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Résumé

L’analyse automatisée de l’argumentation a suscité un intérêt considérable ces
dernières années, car les méthodes informatiques permettent d’améliorer la qualité
du discours dans tous les domaines. Ceci est particulièrement pertinent dans des do-
maines complexes tels que les soins de santé, où un raisonnement solide a un impact
direct sur la vie humaine. Le travail présenté dans cette thèse fait progresser l’état
de l’art en matière d’extraction d’arguments et d’évaluation de la qualité, adapté
aux complexités du domaine médical. La thèse apporte quatre contributions princi-
pales : (1) Développement et application des techniques d’extraction d’arguments,
dont l’analyse de leur utilisation dans divers domaines et les contributions à la
recherche COVID-19. (2) Méthodes d’évaluation de la qualité de l’argumentation,
dont l’annotation d’un nouvel jeu de données de 402 essais d’étudiants avec des di-
mensions de qualité telles que la cohérence, la rhétorique et la vraisemblance. Des
architectures neuronales innovantes combinant des caractéristiques textuelles et des
encastrements de graphes se révèlent capables de classer correctement ces aspects,
obtenant respectivement 0,78 F1, 0,89 F1 et 0,54 F1. (3) Identification des prémisses
potentielles dans le domaine médical en analysant automatiquement les symptômes
de 314 cas cliniques et en les alignant sur des sources de connaissances externes
telles que l’ontologie du phénotype humain (HPO) à l’aide d’enchâssements con-
textuels (précision de 0,53). (4) Développement d’une fonction de prévalence trans-
parente pour classer le pouvoir explicatif des prémisses identifiées, en s’appuyant
sur des statistiques telles que l’anormalité et l’unicité de la base de connaissances.
Cette thèse apporte des contributions significatives aux domaines de l’extraction
d’arguments et de l’évaluation de la qualité grâce au développement de nouvelles
techniques et ressources. Les méthodes proposées repoussent les limites de l’analyse
automatique des arguments, tandis que les ensembles de données spécialement
conçus offrent de nouvelles opportunités pour la recherche axée sur les données.
Un point fort est l’application personnalisée au domaine médical, qui a nécessité
l’adaptation des notions et des objectifs de l’argumentation pour convenir à ce do-
maine complexe. La thèse améliore notre compréhension théorique de la modélisa-
tion de la qualité et apporte des avancées pratiques dans l’extraction d’arguments.
En reliant les idées entre les domaines, elle ouvre la voie à de futures recherches in-
terdisciplinaires à l’intersection de
l’argumentation, de l’apprentissage automatique et de disciplines spécialisées telles
que les soins de santé.
Mots clés: Traitement Automatique du Langage Naturel, Extraction d’Information,
Qualité de l’Argumentation, Fouille d’Arguments, l’IA au Service de la Médecine
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Abstract

The automated analysis of argumentation has garnered significant interest in recent
years, as computational methods stand to enhance discourse quality across domains.
This is especially pertinent in complex fields like healthcare, where sound reasoning
bears direct impacts on human lives. The work presented in this thesis advances
the state-of-the-art in argument mining and quality assessment, crafted to the intri-
cacies of the medical domain. The thesis makes four main contributions: (1) Devel-
opment and application of argument mining techniques, including analysis of their
use in various domains and contributions to COVID-19 research. (2) Argumentation
quality assessment methods, including annotation of a new dataset of 402 student
essays with quality dimensions like cogency, rhetoric, and reasonableness. Inno-
vative neural architectures combining textual features and graph embeddings are
shown to aptly classify these facets, obtaining .78 F1, .89 F1, and 0.54 F1 respec-
tively. (3) Identification of potential premises in the medical domain by automati-
cally analyzing symptoms from 314 clinical cases and aligning them with external
knowledge sources such as the Human Phenotype Ontology (HPO) using contextual
embeddings (.53 accuracy). (4) Development of a transparent prevalence function to
rank the explanatory power of the identified premises, leveraging statistics like ab-
normality and uniqueness from the knowledge base. This thesis makes significant
contributions to the fields of argument mining and quality assessment through the
development of novel techniques and resources. The proposed methods push the
boundaries of automatic argument analysis, while the specially crafted datasets pro-
vide new opportunities for data-driven research. A major highlight is the tailored
application to the medical domain, which required adapting argumentation notions
and objectives to suit this complex field. The thesis enhances our theoretical un-
derstanding of quality modelling and delivers practical advancements in argument
mining. By connecting insights across domains, it paves the way for future inter-
disciplinary research at the intersection of argumentation, machine learning, and
specialized disciplines like healthcare.

Keywords: Natural Language Processing, Information Extraction, Argument Qual-
ity, Argument Mining, AI for Medicine
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Chapter 1

Introduction

In this chapter, the motivation behind the research presented in this thesis is
discussed. The need to automatically evaluate the quality of argumentative text
for educational purposes, particularly in the medical field, is emphasized. Fur-
thermore, the inclusion of external knowledge is deemed necessary to model the
expert’s reasoning in tackling this challenge. This is especially important when
used in conjunction with established frameworks for evidence categorization,
such as medical-named entities.

1.1 Background and Motivation

Argumentation is fundamental to many facets of society, enabling the justification
of claims and decisions in domains like law, politics, and medicine [1]. However,
not all arguments are equally strong or persuasive. Different dimensions have been
proposed to assess argumentative quality such as Cogency, Reasonableness and Ef-
fectiveness [2]. Moreover, evaluating argument quality is an hard task. For instance,
assessing logical cogency requires analyzing if premises are acceptable, relevant,
and collectively sufficient, which demands close reading and logical reasoning, or
determining rhetorical persuasiveness involves subjective judgments of emotional
appeal, style, and credibility that vary across audiences [3].

In recent years, the proliferation of argumentative text requires the definition of
automatic methods to assess the quality of such text. This task is particularly rele-
vant in the educational context, where students need to produce high quality text,
e.g., student persuasive essays. Specialized domains pose further challenges, where
a precise domain expertise is required for informed quality assessment, e.g., clini-
cal knowledge is needed to evaluate medical arguments. Moreover, quality metrics
designed for general arguments may not capture domain-specific notions. Further-
more, quality assessment suffers from subjectivity and inconsistency. While tech-
niques have emerged for computational argument mining and assessment [4, 5],
gaps remain in adapting these models to the real-world settings.
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Recent years have seen a growing interest in developing AI-based healthcare
systems that can support and simplify everyday tasks for clinicians. These systems
handle various types of data, including medical images, biometrics, and textual doc-
uments such as electronic health records and clinical guidelines. Some examples of
such solutions include Evidence-based reasoning for decision-making [6–8] and au-
tomated medical entity extraction [9–13] where the entities range from drug-disease
interactions to the identification of diseases, genes, and molecular entities such as
protein, DNA, RNA. The goal is to extract the necessary information from unstruc-
tured textual documents and present it in a structured manner, making it easy for
clinicians to analyze [14]. In this context, the assessment of argumentation qual-
ity has been tackled as the assessment of medical evidence, with the emergence of
Evidence-Based Medicine (EBM). More precisely, the purpose of EBM is to improve
the quality of medical evidence by establishing systematic evaluation standards and
reducing bias in the reports. EBM emphasizes the critical appraisal and judicious use
of evidence, combining high-quality evidence with the clinician’s individual clinical
experience and the patient’s values to achieve the best possible outcome [15]. More-
over, EBM should help clinicians keep up to date with the latest research findings
and incorporate them into their everyday decision-making. The focus has shifted to
identifying the best available evidence empirically to ensure its quality. When diag-
nosing a patient, physicians must make decisions based on the available evidence,
comparing evidence from trials or guidelines with the patient’s individual circum-
stances. They must determine if the evidence matches the patient’s unique charac-
teristics and whether the potential costs and benefits are reasonable. EBM should
provide the scientific framework necessary for optimal healthcare, from the system-
atic evaluation of evidence to the facilitation of the decision-making process [15–18].

However, to properly assess an argument in the medical domain, the evidence
must be evaluated with respect to established medical knowledge. The reasoning
must be supported by and integrated with the practitioner’s expertise [15]. This
highlights the need for argumentational quality assessment methods that model
clinical knowledge to judge the acceptability of claims and the coherence of the
reasoning. Moreover, residents must learn how to construct cogent rationales that
align with clinical knowledge as practitioners do. Hence, transparent quality as-
sessment methods are needed in such a way that each step taken in evaluating stu-
dent arguments is justified, highlighting flaws in reasoning and integrating domain
expertise for teaching purposes. The goal is to develop argumentation quality as-
sessment techniques that balance domain-specific knowledge with interpretability,
to effectively evaluate the quality of medical argumentation, providing pedagogical
insights to students. Advances in computational argumentation quality assessment
are required to handle the complexity of clinical reasoning.
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Hence, the goal of this PhD thesis is two-fold: (i) defining novel methods to automatically
assess the quality of textual arguments, with a focus on educational use cases such as student
persuasive essays, and (ii) enhance these methods with knowledge-based algorithms to enrich
and assess the quality of clinical evidence in the medical domain.

1.2 Research Questions

We established a road map comprising multiple stages to execute this project. Each
stage was further divided into a research question (RQ) that addressed different
aspects of the project:

1.2.1 General Argument Quality Assessment

Evaluating the quality of argumentation is critical yet challenging, as high-quality
arguments should demonstrate cogency, reasonableness, rhetorical effectiveness, and
other key attributes. However, manually assessing large volumes of argumenta-
tion along these dimensions is infeasible. My first research line aims to develop
computational methods that can automatically assess argument quality in a multi-
dimensional manner, and it corresponds to the first two research questions I an-
swered in this thesis.

RQ1 : How can we model the multi-dimensional notions of quality to capture key aspects
like cogency, rhetoric, and reasonableness?

I addressed this research question by first defining three prominent quality dimen-
sions for natural language argumentation - cogency, rhetoric, and reasonableness -
based on the literature in argumentation theory and social science scoring rubrics
for persuasive writing [2, 19, 20]. I then annotated these dimensions on a corpus of
402 student persuasive essays to create a novel annotated resource [20].

RQ2 : Can integrating textual features with graph embeddings and emotion detection
improve the assessment of argumentation quality dimensions like cogency, rhetoric and rea-
sonableness?

To computationally assess these annotated quality dimensions, I proposed a novel
neural architecture that exploits the inherent graph structure of argumentation frame-
works, in combination with textual features. Specifically, I showed that augmenting
contextualized text embeddings (e.g., BERT [21]) with graph embeddings and emo-
tion detection models significantly improves the predictive performance across the
quality dimensions, increasing macro F1 scores by 5-10 percentage points compared
to baselines relying solely on textual features [20].
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By encoding textual semantics along with topological structure and rhetoric cues,
I demonstrated a more reliable modelling of quality attributes like cogency and rea-
sonableness. These results highlight the benefits of an integrated approach combin-
ing graphical and linguistic information for argument quality prediction.

Through this investigation, I established a general framework for automatically
evaluating key dimensions of argumentation quality on a linguistic dataset for ed-
ucational purposes. However, assessing real-world argumentation in specialized
domains poses additional challenges I sought to address.

Related Publications:

• Santiago Marro, Elena Cabrio and Serena Villata. “Graph Embeddings for
Argumentation Quality Assessment", In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pages 4154–4164, Association for Computa-
tional Linguistics.

• Santiago Marro, Elena Cabrio and Serena Villata. “Argumentation quality as-
sessment: an argument mining approach", European Conference on Argumen-
tation (ECA) 2022, College Publications.

1.2.2 Argument Quality Assessment in Healthcare

While in the first research line of this thesis I proposed novel methods for argu-
ment quality modelling in general domains, clinical argumentation poses unique
challenges needing specialized methods. Medical arguments demand precise, veri-
fied knowledge to justify claims, differently from informal domains where rhetorical
flair or emotional appeals may suffice. I tailored argumentation quality assessment
to handle the intricacies of the medical field, leading me to answer two further re-
search questions.

RQ3 : Which kind of adaptations are required to assess clinical argumentation given its
specialized nature?

To answer this research question, it is worth noticing that dimensions like cogency,
rhetoric, and reasonableness capture important attributes, but lack the precision and
validation required in medicine. Soundness of premises is paramount, requiring ex-
ternal verification rather than internal sufficiency. To tackle these challenging issues,
I proposed new methods to enhance existing quality models with finer-grained val-
idation of medical knowledge. This raises an additional question about integrating
external medical evidence.

RQ4 : How can external knowledge be integrated to enrich the analysis of clinical decision
making and their explanation?
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I explored harnessing medical knowledge bases to extract salient clinical entities
from text and map them to established medical ontologies. By semantically enrich-
ing arguments with the aligned ontology terms, I enabled assessing the veracity
and relevance of the evidence used in the explanations of clinical diagnoses. The
specialized pipeline I proposed extracts and aligns medical concepts to improve
quality evaluation with validated domain knowledge. The investigation of clinical
quality assessment pushed boundaries in adapting argument mining and quality
models to leverage external domain information critical for the healthcare domain.
The work opened promising directions at the intersection of quality modelling and
knowledge-rich reasoning in sensitive applications.

Related Publications:

• Santiago Marro, Benjamin Molinet, Elena Cabrio, Serena Villata. “Natural
Language Explanatory Arguments for Correct and Incorrect Diagnoses of Clin-
ical Cases", In Proceedings of the 15th International Conference on Agents and Arti-
ficial Intelligence 2023: ICAART 2023, vol. 1, pages 438-449, SciTePress.

• Santiago Marro, Theo Alkibiades Collias, Elena Cabrio, Serena Villata. “On
the Automatic Assessment of Natural Language Expert Explanations in Medicine",
In the Workshop on Artificial Intelligence For Healthcare (HC@AIxIA 2023) (under
review)

1.3 Structure

The thesis is organized as follows:

Chapter 2 describes the preliminaries, which are used throughout the thesis. It
provides insights into the context and practices of the applied domain, i.e., evidence-
based medicine. Further, the main concepts and open challenges in the research
fields of Argument Mining and argument quality are presented.

Chapter3 presents the argument quality assessment framework for persuasive es-
says. First, annotation guidelines were developed and used to annotate 402 persua-
sive essays with three quality dimensions: Cogency, Reasonableness, and Rhetorical
strategy. The framework addresses the automatic assessment of these dimensions.
Methods for Cogency and Rhetorical strategy classification include embedding-based
SVMs, Random Forests, and fine-tuned transformer models. Reasonableness assess-
ment is addressed in two ways: by modelling it based only on textual and graph
features, and with a transparent deterministic algorithm leveraging the graph struc-
ture and the cogency of arguments. Results are discussed along with an in-depth
error analysis.
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Chapter4 introduces novel methods focusing on argumentation quality in medicine.
Specifically, I present methods to automatically annotate medical information from
clinical cases and, using external knowledge such as the Human Phenotype On-
tology, to assess potential premises explaining a patient’s diagnosis. The framework
generates template-based explanations using the best-assessed premises, to improve
student explanations.

Chapter 5 demonstrates the applications of the proposed approaches in the med-
ical domain, spanning from the Covid-on-the-Web project developed to address an
argumentative analsys of the clinical articles about Covid-19 to the study of the effect
of interventions on the outcomes for the AbsRCT dataset [22]. A Proof-of-Concept
online system, ACTA 2.0, provides argumentative analysis of medical articles to sup-
port clinicians decision-making in real-time, integrating the effect on outcomes anal-
ysis and a modular pipeline implementation allowing researchers to exploit each
one of the steps in the system separately.

Chapter 6 concludes the thesis by summarizing the main contributions. Further-
more, perspectives for future applications and further research directions are pro-
posed, as well as potential plans for improvements.
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Chapter 2

Background

In this chapter, the preliminaries used throughout the thesis are introduced. We
provide insights into the concepts and challenges in the research field of Argu-
ment Mining with a focus on argumentation quality assessment. Further, given
that this thesis investigates the application of Argument Mining to the medical
domain, this chapter outlines the practices of Evidence-Based Medicine, present-
ing the concepts and challenges in Argument Mining and Quality Assessment,
and the Natural Language Processing methods employed.

This chapter provides the key background concepts and methodologies that enable
the technical contributions presented later in the thesis. First, Section 2.1 introduces
the field of Argument Mining, including core tasks like argument component extrac-
tion and relation prediction. Argument Mining provides a foundation for assessing
argument quality, which is described next in Section 2.2. This section details the mo-
tivation, tasks, and challenges involved in evaluating key qualities like cogency and
reasonableness for natural language arguments. Section 2.2 emphasizes the need for
specialized techniques tailored to assess the quality of clinical arguments in the med-
ical domain. To provide context on this application area, Section 2.3 expands on two
relevant aspects of healthcare. An overview of Evidence-Based Medicine is given,
where argument mining and quality assessment can assist doctors in analyzing clin-
ical trial reports. Furthermore, the use of external knowledge bases to enrich the as-
sessment of medical arguments is discussed. Finally, Section 2.4 surveys the natural
language processing methods leveraged in this thesis to computationally represent
text. Early context-free models like bag-of-words are presented, along with recent
advanced contextualized models.

2.1 Argument Mining

Argumentation is a well-established interdisciplinary field at the intersection of nat-
ural language processing, computational linguistics, and artificial intelligence. Ar-
gumentation is the process by which arguments are constructed, compared, eval-
uated in several respects and judged in order to establish whether any of them is
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warranted [23, 24]. It is an effective approach for solving various theoretical and
practical problems, like explaining and justifying the decision-making outcomes and
reasoning under inconsistent and incomplete information. Roughly, each argument
is a set of premises or assumptions that, together with a claim, is obtained by a
reasoning process. The overall goal of argumentation is to increase or decrease the
acceptability of claims by supporting or attacking them with new arguments. How-
ever, argument-based decision-making requires structured input. In most real-world
contexts, argumentative texts are presented in unstructured natural language with-
out explicit argument components, necessitating the development of computational
methods to automatically extract structured arguments. One of the latest advances
in artificial argumentation [1], which tackles the aforementioned problem, is the so-
called Argument(ation) Mining (AM) [25–28].

The goal of argumentation mining is to automatically identify argumentative
structures within texts by detecting claims, premises, and the relationships between
them [25]. This capability has numerous potential applications, including analyz-
ing persuasiveness in essays, understanding reasoning in legal documents, political
debates, countering disinformation and analyzing clinical trials.

Several pioneering works introduced the problem of mining arguments from
text, though they did not initially gain much traction in the NLP community. One
of the earliest is argumentative zoning [29], where sentences are classified by their
rhetorical role in a scientific paper (e.g. background, objectives). While not ex-
tracting full argument structure, this classification paved the way for later AM ap-
proaches [30]. Other early work includes detecting argument components in le-
gal text [31, 32]. However, these approaches were limited by the NLP techniques
available at the time. As methods for computationally processing natural language
advanced, enabling more complex tasks like AM, interest increased [26]. AM it-
self requires deep natural language understanding and is closely related to natural
language inference, leading initial techniques to draw inspiration from textual en-
tailment [33, 34]. With machine learning and NLP now significantly more mature,
researchers can effectively develop novel AM methods.

Most work conceptualizes argumentation mining as consisting of two main tasks:

1. Argument extraction: Identifying argument components like claims, premises,
and evidence within a text. This may be further divided into detection and
segmentation subtasks.

2. Relation prediction: Predicting the relationships between extracted arguments,
like support, attack, or entailment. This enables constructing full argument
graphs.

Figure 2.1 showcases an example of an argumentation mining pipeline in the context
of clinical trials.

Within these tasks, supervised machine learning techniques predominate. Sup-
port vector machines, recurrent neural networks, conditional random fields, and
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FIGURE 2.1: An illustrative example of an Argumentation Mining
pipeline. Figure drawn from [22].

other algorithms are commonly applied [26]. As with any supervised approach, an-
notated corpora are critical for training and evaluation. Although diverse datasets
have been constructed across domains like student essays, legal decisions, politi-
cal speeches, and social media, their heterogeneity presents challenges for collective
progress [35]

Beyond the core goals of detecting argument components and predicting rela-
tionships, numerous nuanced subtasks have emerged over time that aims to enrich
the extracted structures with additional informative features advantageous for vari-
ous application scenarios. The extracted argument structures can be integrated with
formal argumentation models to enable advanced tasks like identifying fallacies,
assessing argument quality, evaluating student essays, clustering arguments, deter-
mining argument relevance, detecting rhetorical figures, and classifying fine-grained
evidence types.

2.2 Argument Quality Assessment

The assessment of argument quality is a critical aspect of computational argumen-
tation. While simple acceptability calculations can determine the justification status
of abstract arguments [36], they only represent a (basic) part of the complex assess-
ment tasks required in argumentative processes in many everyday life applications
and contexts, e.g., in medicine and education. Assessing natural language argu-
mentation involves examining logical, rhetorical, and dialectical dimensions across
different levels of analysis [2].

Consider the following argument against abortion:

Example 2.2.1 "The fetus has a right to live, so abortion is morally wrong."

Although the conclusion is implicit, it seems logically sound. However, some
people may reject the premise, especially if they prioritize women’s rights. Or they
may doubt this is the most relevant argument in the abortion debate. This example
reveals three key challenges in assessing argument quality:
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1. Quality is evaluated across different granularities, from individual units to full
texts.

2. Many quality dimensions are subjective, depending on people’s preconceived
opinions.

3. Overall quality seems difficult to measure due to complex interactions between
dimensions.

Several theoretical frameworks have examined the characteristics of strong, high-
quality arguments. One influential work is Blair’s argumentation theory [2]. Blair
proposes three overarching qualities for assessing argumentation:

Cogency This refers to the logic and structure of an argument. A cogent argu-
ment has premises that are acceptable, relevant, and jointly sufficient to support the
conclusion [2]. Acceptability means the premises are worthy of belief by the audi-
ence. Relevance indicates the premises contribute toward the conclusion. Sufficiency
means enough evidence is provided to rationally justify the conclusion.

Let us explore two examples extracted from Johnson and Blair [37] of what are
considered good and bad arguments in terms of cogency. Example 2.2.2 deals with
highway speed limits. In the seventies, the speed limit on interstate highways was
reduced from 70 to 55 miles per hour. In an article in En Route magazine, Len Coates
objected as follows:

Example 2.2.2 Yes, it is true that the 55 mph saves lives. The National Highway Traffic
Safety Administration estimates that 4,500 lives have been saved by the 55 mph limit. But
surely there are more cost-efficient ways of saving lives . .. such as equipping every house
with a smoke detector (that would cost $50,000 to $80,000 per life) or putting more dialysis
machines in hospitals ($30,000 per life).

Example 2.2.3. This is an excerpt from Josiah Thompson’s book Six Seconds in
Dallas (New York: Bernard Geis, 1967) about the assassination of President John F.
Kennedy. Thompson is discussing the question, Where did the first bullet go (p. 39).

Example 2.2.3 The testimony of Secret Service Agent Roy Kellerman adds weight to the
theory that the first bullet only lodged in the President’s back. Seated in the right front seat
of the presidential limousine, Kellerman heard Kennedy yell, "My God! I’m hit" just after
the first shot. ... Since the projectile that caused the throat wound ripped his windpipe in
passing, it seems unlikely that the President could have spoken after receiving the throat
wound.

As Johnson and Blair [37] point out, the argument presented in Example 2.2.2 is
flawed. Although it may be factual that installing smoke detectors in every house
could save lives, it is not relevant to the issue of saving lives on the highway, which
is the focus of the argument. The installation of smoke detectors is not impeded by
reducing speed limits.



2.2. Argument Quality Assessment 11

On the other hand, Example 2.2.3 is a fairly strong argument. If the first bullet
pierced Kennedy’s throat (as some allege), then Kellerman could not have heard
what he said he heard. Hence his testimony “adds weight to the theory that the first
bullet only lodged in the President’s back.” Thompson’s conclusion is presented in a
qualified way (“adds weight,” “seems unlikely”), and he presents contrary evidence
later in the book (no one else heard what Kellerman heard the President say). But if
the facts are as recorded in Example 2.2.3, they provide fairly compelling evidence
that the first bullet did not pierce Kennedy’s throat but lodged in his back [37].

Effectiveness - This relates to the persuasive rhetorical style and arrangement of
an argument. An effective argument uses language, reasoning, and emotional ap-
peals tailored to the audience and situation in order to achieve adherence to its con-
clusion [2]. Arrangement and clarity are important factors.

Given the two following examples:

Example 2.2.4 Regular exercise is beneficial for maintaining good health. Numerous stud-
ies have shown that individuals who engage in regular physical activity have a lower risk of
developing chronic diseases such as heart disease, diabetes, and obesity. Additionally, exercise
has been linked to improved mental health and well-being.

The effectiveness of the argument presented in Example 2.2.4 lies in its use of
clear language, logical reasoning, and credible sources to support the claim. It is
designed to be persuasive and easy to follow, tailored to the audience’s knowledge of
health and well-being. Additionally, it presents evidence from trustworthy sources,
making it even more convincing.

Example 2.2.5 Drinking coffee is bad for your health. My friend John drinks coffee daily
and was recently diagnosed with high blood pressure.

Example 2.2.5 presents a weak argument that relies on anecdotal evidence and a
hasty generalization fallacy. The argument is based on a single example that may not
be representative of the broader population, and the evidence provided is not from
a credible source nor does it address counterarguments or other factors that could
contribute to high blood pressure. The argument’s lack of clarity and organization
makes it less persuasive and more challenging to follow its conclusion.

Reasonableness - This considers how an argument contributes to critically resolv-
ing an issue through dialogue. A reasonable argument provides information ac-
ceptable to the audience that helps arrive at a mutually satisfactory conclusion [2,
38]. Reasonableness indicates the argument appropriately moves the discussion for-
ward.

Example 2.2.6 Implementing a recycling program in our community will reduce waste and
promote environmental awareness. Studies have shown that communities with recycling pro-
grams experience a significant reduction in waste sent to landfills and an increase in resource
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conservation. Additionally, recycling programs have been linked to increased environmental
awareness among residents.

Example 2.2.7 We should not implement a recycling program in our community because it
is too expensive. My neighbour told me that their community’s recycling program costs a lot
of money and has not made a significant impact on waste reduction.

The reasonableness of Example 2.2.6 can be justified as it discusses a pertinent
matter and presents reliable facts that can be acknowledged by the readers. The ar-
gument follows a logical sequence, and the supporting evidence corroborates the
assertion that introducing a recycling program would result in beneficial environ-
mental outcomes. The discussion effectively presents a solution to the issue and
encourages conversations around ecological accountability.

However, the argument made in Example 2.2.7 is flawed because it lacks suffi-
cient data to support the claim that recycling programs are not cost-effective. It relies
on anecdotal evidence and a single example, which may not be a reliable representa-
tion of other recycling programs or communities. The argument does not contribute
to a constructive resolution of the issue, as it fails to offer any alternative solutions or
acknowledge the potential benefits of recycling programs. Instead, it impedes pro-
ductive discussion by not presenting strong evidence and failing to engage in critical
dialogue.

Blair synthesizes various perspectives from informal logic and argumentation
theory to unify these dimensions [2]. He details conceptual nuances differentiating
between local, global, and dialectical aspects of quality. Blair’s integration of log-
ical, rhetorical, and dialectical factors provides a robust theoretical foundation for
examining argumentation quality.

Computational approaches leverage this theoretical foundation. Wachsmuth et
al. [39] derive a taxonomy organizing 15 fine-grained dimensions of argument qual-
ity. The taxonomy is illustrated in Figure 2.2. Their annotated corpus covers argu-
ments from debate portals rated by experts along the taxonomy. Recent approaches
in Argument(ation) Mining (AM) tackle specific argument qualities features, such
as argument relevancy [40], convincing arguments [41] and overall argument qual-
ity [42]. Related work scores essay qualities like evidence [43] and organization [44].

Several datasets exist for studying argument quality, each capturing different
notions of quality. The ArgQuality Corpus [39] contains 320 arguments annotated
for 15 dimensions like cogency, effectiveness, and reasonableness. While compre-
hensive, the small scale limits use. Ng et al. [45] introduce a cross-domain corpus
of 5,295 arguments labeled for cogency, reasonableness, effectiveness, and overall
strength. However, the domains of online debates, QA forums, and reviews have
limited diversity. Persing and Ng [46] collected student essay arguments rated for
overall persuasiveness. Gretz et al. [47] crowdsourced arguments labeled by recom-
mendability. While such corpora provide useful training data, they are restricted to
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FIGURE 2.2: The proposed taxonomy of argumentation quality as
well as the mapping of existing assessment approaches to the cov-
ered quality dimensions. Arrows show main dependencies between

the dimensions. Figure drawn from [39].

certain genres, topics, and quality definitions. Notably, no quality assessment re-
sources exist for the complex medical domain, where factors like clinical evidence
and reasoning impact argument strength. The medical field’s intricacies indicate
that further research is needed to model quality, potentially requiring new special-
ized dimensions tailored to clinical arguments. Overall, existing resources exhibit a
lack of diversity in terms of domains, topics, linguistic styles, and notions of quality.

Several promising medical applications could benefit from advances in assessing
argument quality. However, major knowledge gaps exist in adapting argumentation
quality assessment to the medical domain. This thesis addresses these gaps and con-
tributes methods specialized for healthcare arguments. First, we propose computa-
tional techniques to leverage graphical argument structures, combined with textual
features, to evaluate cogency and reasonableness - two key quality dimensions of
clinical arguments. Second, we develop information extraction and external knowl-
edge linking methods tailored to clinical cases, enabling inference for quality assess-
ment. Third, we introduce a ranking and assessment framework that compares stu-
dent explanations against high-quality premises extracted and inferred from cases.
This supports argumentative writing education by suggesting improvements to stu-
dent rationales. Overall, we investigate quality evaluation capabilities needed for
medical applications through spanning graph-enhanced models, clinical informa-
tion extraction, and assessment algorithms that leverage inferred knowledge. By
targeting the complexities of the medical domain, we take significant steps toward
quality-aware dialogue systems for education and social media.
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2.3 Natural Language Processing for the Medical Domain

Evidence-based medicine (EBM) provides the clinical practice framework that mo-
tivates much of the thesis research. The first subsection defines EBM and describes
how argumentation mining and quality assessment can assist core EBM processes
like systematic reviews and appraising evidence. Realizing quality assessment in-
novations for EBM requires drawing on external domain knowledge. The second
subsection introduces key external medical knowledge resources, specifically the
Unified Medical Language System and the Human Phenotype Ontology. These
structured vocabularies and ontologies enable grounding argumentation analysis in
statistical, relational, and definitional data about clinical concepts. Together, the two
subsections situate EBM as a driving application area and highlight the importance
of external knowledge for enhancing quality assessment in the medical domain.

2.3.1 Evidence-Based Medicine

Evidence-based medicine (EBM) is an approach to clinical practice that emphasizes
the use of high-quality scientific evidence to guide medical decision-making. The
principles of EBM were first articulated in the 1990s as a way to shift medical prac-
tice away from reliance on expert opinion and pathophysiological rationales alone
towards carefully evaluated evidence from clinical research studies and trials. [17]

The practice of EBM involves five key steps:

1. Assessment of the clinical problem,

2. Converting clinical problems into well-built questions,

3. Searching the literature for relevant evidence that can answer those questions,

4. Critically appraising the evidence for validity, impact, and applicability, and

5. Integrating the appraised evidence with clinical expertise and patient values
to make decisions

Steps 2-4 highlight the areas most relevant to argumentation mining and qual-
ity assessment. To find high-quality evidence, EBM relies heavily on systematic re-
views and meta-analyses of clinical trials. These provide a rigorous synthesis of all
available evidence related to a focused clinical question. However, constructing sys-
tematic reviews requires meticulous analysis of many study reports to extract key
information on methods, results, and conclusions. This process is time-consuming
and difficult to scale.

Argumentation mining techniques can assist in automating parts of the review
process, especially extracting argument components like claims and evidence from
trial reports [48]. This can accelerate evidence synthesis and ensure all relevant in-
formation is considered. Further, argument mining enables the building of graphical
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representations of the argument structure within trials, revealing how claims relate
to supporting evidence.

Assessing the quality of clinical evidence is also critical in EBM. Not all evidence
is created equal - the design, conduct, analysis, and reporting of trials impact the va-
lidity of results. Argumentation quality assessment can help appraise the strength
of claims and rationales in trials by examining qualities like cogency, effectiveness,
and reasonableness. This assists reviewers in critically analyzing the literature rather
than taking reported conclusions at face value. Furthermore, argumentation qual-
ity assessment techniques have great potential to assist clinical medical education.
Medical residents must learn to construct high-quality clinical explanations regard-
ing diagnoses, treatments, and recommendations. By automatically evaluating the
reasoning quality of residents’ explanations, the techniques explored in this thesis
could give formative feedback to improve their argumentative writing abilities. This
enables sharpening skills in evidence-based rationale construction that are essen-
tial for future medical practice. Argumentation quality assessment, therefore, has
wide applicability spanning EBM, medical dialogue systems, and clinical education.
However, adapting computational argumentation methods to the intricacies of clin-
ical evidence requires specialized techniques tailored to the medical domain. The
research presented in this thesis helps close this gap by pioneering quality assess-
ment innovations needed for EBM applications.

2.3.2 External Medical Knowledge for Quality Assessment

Evaluating the quality of medical argumentation benefits greatly from incorporat-
ing domain knowledge from structured external sources. Medical knowledge bases
provide statistical, relational, and definitional data that enable a richer assessment of
clinical argumentation. Domain knowledge infusion allows moving beyond purely
textual approaches to leverage insights from real-world clinical data when evaluat-
ing explanation quality.

A key resource is the Unified Medical Language System (UMLS) from the U.S.
National Library of Medicine [49]. The UMLS integrates over 60 families of biomed-
ical vocabularies, including clinical terminologies like SNOMED-CT and reference
taxonomies like the NCBI organism taxonomy. It contains over 2.5 million biomed-
ical concepts interconnected by 12 million relations. The UMLS provides a unified
terminology framework to represent medical knowledge computationally.

While the UMLS offers broad terminology coverage, the Human Phenotype On-
tology (HPO) [50] targets the specifics of human disease phenotypes. The HPO pro-
vides a standardized vocabulary of phenotypic abnormalities encountered in genetic
disorders. Diseases in HPO are annotated with the symptoms, phenotypic features,
and comorbidities associated with that condition. Critically, the linkages between
diseases and phenotypes are supplemented with statistical data on the frequency
of each symptom’s occurrence according to aggregated patient data. For instance, a
symptom may be labeled as very frequent (80-99% cases), frequent (30-79% cases), or
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occasional (5-29% cases) for a particular disease. The richness of knowledge in HPO
supports assessing the relevance of clinical findings or symptoms invoked when
explaining a diagnosis. A highly frequent, obligate symptom provides stronger sup-
port for a disease hypothesis than an occasional, tangential one. By grounding anal-
ysis in the probabilistic data of HPO, computational methods can judge explanation
quality from an evidence-based perspective. Medical dialogue systems could lever-
age this capability to offer data-driven feedback on clinician trainee diagnoses.

2.4 Natural Language Representations

Natural language processing (NLP) aims to enable machines to understand human
language. While early NLP systems relied on hand-crafted symbolic rules, statisti-
cal and machine-learning approaches have become increasingly important [51–53].
Such approaches rely on training a mathematical model from the available data to be
able to make predictions on new examples based on what was observed in the sam-
ple data. A core challenge in NLP is representing human language numerically so
that machine learning models can process it [51, 52]. This quantification is essential
for tasks like machine translation and text classification [52]. However, converting
language into numbers is difficult. Languages have diverse vocabularies and gram-
mar [54], so models designed for one may not work for others. Moreover, language
is context-dependent and ambiguous. The meaning of a word or sentence depends
heavily on the speaker’s intent and the discourse context [55]. Even humans some-
times misunderstand each other, highlighting the complexity of language under-
standing. Despite advances, fully understanding natural language remains an open
challenge in NLP. Representing language numerically while preserving its nuance
and context dependence is an active area of research. However, in the last decade,
substantial progress has been made in natural language representation. The next
section will showcase the major approaches to tackle this problem.

2.4.1 Context-free Representations

Context-free representations encode language without considering the surrounding
context. Several major techniques are described below:

Bag of Words The bag-of-words model (BOW) represents text by the occurrences of
words within a document. By retaining word counts, it captures the topics and
themes present but discards word order and grammar. This approach was moti-
vated by information retrieval tasks like document search, where keyword match-
ing is important regardless of linguistic structure. The BOW model quantifies each
sentence or document as a vector, where each dimension of the vector represents a
word from the vocabulary. The value for each word in the vector representation is
equivalent to the number of occurrences of that word in the sentence or document
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being quantified. Consequently, this leads to high-dimensional sparse vectors, as
most dimensions contain zeros and are meaningless for the numerical representa-
tion. Preprocessing techniques such as removing stopwords or lemmatization can
help reduce the vocabulary size, but it remains enormous given the scale of modern
corpora. Moreover, the lack of modelled word relationships means that semantic
meaning is lost, synonyms cannot be identified and word sense disambiguation is
not possible.

TF-IDF Term frequency–inverse document frequency (TF-IDF) builds on bag-of-words
by weighting words based on their rarity, creating more meaningful vectors. Fre-
quent words like “the” which appear across all documents are down-weighted,
while rare words receive higher weights as they provide more specific information
about document content. TF-IDF was developed to improve search engine results
by emphasizing keywords that characterize relevant documents. However, like bag-
of-words models, TF-IDF models lack semantic knowledge and cannot discern word
meanings.

N-grams The local context, i.e., the surrounding words, plays an important role
in understanding the semantics of text units. This contextual information is not
captured by previous techniques like bag-of-words, which consider each word in-
dependently. To incorporate local context, the N-gram technique proposes encoding
not just individual words but also co-occurring word combinations. N-grams were
motivated by the need to handle multi-word phrases and idioms where meaning re-
lies on word co-occurrence patterns. For example, properly interpreting "not happy"
requires modeling bigrams. This approach can also help detect negations and dis-
ambiguate word senses based on context. The most common N-gram variants are
bigrams (N=2) and trigrams (N=3), which model minimal local context. While most
idioms and negations can be captured with low N, higher-order N-grams can be im-
plemented to encode broader context. However, as with bag-of-words, the vector
dimensionality grows exponentially with N, leading to sparsity issues. N-grams can
also serve as a basic statistical language model, estimating the probability of a word
given its context. The same preprocessing techniques used for bag-of-words, like
stopwords and lemmatization, are applicable to N-grams. TF-IDF weighting can
also be employed to emphasize informative N-grams. N-grams provide a simple
method to incorporate local context, but they lack mechanisms to model long-range
semantic dependencies. Long-range semantic dependencies refer to relationships
between words that are not within a small local context window. For example, prop-
erly resolving the referent of a pronoun or resolving lexical ambiguity often requires
reasoning about non-local context from earlier in the discourse. As N-grams only
model a limited word window, they cannot capture these long-range dependencies
that rely on broader discourse phenomena. Extensions like skip-grams have been
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proposed to partially address this limitation, but fully modelling complex semantic
relationships remains challenging with N-gram approaches.

Word Embeddings The mentioned techniques propose a way to encode docu-
ments or sentences in their entirety, but representations of individual words are also
important. A basic approach is one-hot encoding, representing each word as a sparse
vector with a 1 at the index for that word and 0s elsewhere. Representing words as
unique one-hot encoded vectors leads to sparse high-dimensional representations
unsuitable for neural networks. To address this, dense word embeddings were de-
veloped to represent each word as a lower-dimensional vector encoding semantic
relationships based on distributional patterns. Word embedding models observe
words in context across large corpora to learn vector representations, typically with
a fixed size of 300 dimensions. These techniques create a vector space where words
are positioned based on their semantic meaning, on which synonyms are clustered
together, and relationships are modelled. For example, the vector representation
of “King” is to “Man” in the same way that the vector representation of “Queen”
is to “Woman”, capturing analogical reasoning. Any mathematical operations can
be done with such vectors, allowing us to calculate “King2 ´ “Man2 to then add
the vector of “Woman”, obtaining a vector result in which the closest word corre-
sponds to “Queen”. Word embeddings operate well, even with polysemous words.
The reason, as explained by Neelakantan et al. [56], is that “[i]n moderately high-
dimensional spaces a vector can be relatively “close” to multiple regions at a time.”.
However, biases in the training data affect embeddings. If we were to train our em-
beddings with a corpus based on news articles, the vector representation of the word
“apple” may encode corporate rather than fruit meanings. Furthermore, only words
appearing in the training data receive embeddings, causing out-of-vocabulary issues
on unseen words.

Pre-trained word embeddings provide an advantage for machine learning ap-
proaches. Models like Word2Vec [57] or GloVe [58] are trained on diverse generic
corpora to learn broadly useful representations that transfer across tasks. This is
valuable when task-specific training data is limited. However, for specialized do-
mains like biomedicine, pre-trained embeddings may perform poorly if the vocab-
ulary and semantics differ greatly from the general domain. In such cases, custom
in-domain embeddings can be learned from texts in that domain, capturing nuanced
meanings and terminology. This domain-specific fine-tuning typically improves per-
formance but requires sufficient task data. Pre-trained embeddings provide a useful
starting point when data is scarce. With more data, fine-tuning in-domain corpora
yields embeddings better tailored to the task. Various types of word embeddings
were experimented with in this thesis as input representations for neural networks
and other machine learning models.



2.4. Natural Language Representations 19

2.4.2 Contextualized Representations

Recent state-of-the-art textual representations utilize contextualized embeddings, which
address limitations of static word embeddings. While static embeddings capture
general semantic information, they ignore surrounding context and learn only one
fixed vector per word. This representation does not adapt based on context, lead-
ing to issues with polysemy. Words with multiple meanings are conflated into a
single vector, requiring downstream models to disambiguate meanings. However,
properly resolving word senses necessitates modeling context.For example, in sen-
timent analysis, correctly classifying the polarity of “The bank closed my account”
requires understanding whether “bank” refers to a financial institution or a river
bank based on context. Static embeddings cannot effectively disambiguate these
two meanings, demonstrating a key limitation. The context surrounding a word de-
termines its intended semantics, which should be encoded in its representation. In
contrast, contextualized embeddings are “dynamic”, producing context-aware rep-
resentations tailored to each instance. In the case of our example, contextualized em-
beddings can encode the word “bank” differently based on the surrounding text [59,
60], providing the disambiguation needed for accurate sentiment analysis. Rather
than learning one vector per word, they encode words differently based on the lin-
guistic context in each case. This better reflects how word usage and meaning varies
across different contexts.

ELMo Peters et al. pioneered contextualized word representations through Em-
beddings from Language Models (ELMo) [61]. Unlike static embeddings, ELMo
creates dynamic word representations based on the entire input sentence. Under the
hood, ELMo employs a bidirectional language model (biLM) architecture compris-
ing two separate but linked LSTM-based neural networks [62]. The first is a forward
LSTM that processes the sentence left-to-right, while the second is a backward LSTM
that processes right-to-left. Each LSTM layer captures contextual information from
one direction, learning long-range dependencies within the sequence. These LSTMs
are pre-trained on a large text corpus to perform language modeling - predicting the
next word in context. The internal representations from the forward and backward
LSTMs are then concatenated depthwise to produce the ELMo word vectors. Con-
catenating bidirectional outputs allows ELMo to incorporate both past and future
context when constructing each word embedding. Moreover, combining representa-
tions from multiple LSTM layers captures both low-level syntactic and higher-level
semantic information. Consequently, ELMo generates rich dynamic word vectors
tailored to each context, significantly advancing over previous static embeddings.

Transformer The Transformer model, proposed by Vaswani et al. [63], significantly
shifts the paradigm in designing architectures for NLP tasks. Unlike its predeces-
sors, the Transformer model introduces the concept of self-attention, or scaled dot-
product attention, which allows the model to consider the relevance of each word
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in a sentence for encoding a particular word. This capability enables the model to
effectively capture the context of the sentence. In contrast to recurrent models such
as LSTMs that process sentences sequentially, Transformers process all words in the
sentence simultaneously, paving the way for more parallel computation and han-
dling long-range dependencies more effectively. The Transformer model comprises
two main components: an encoder that processes the input text and a decoder that
generates the output text word by word. Each component consists of multiple lay-
ers of self-attention mechanisms and feed-forward neural networks, allowing the
model to learn complex patterns in the data. Notably, the decoder generates each
word considering the encoder’s output and its previously generated words. This
architecture has become foundational for many subsequent models, including BERT
and GPT. The architecture is illustrated in Figure 2.3

FIGURE 2.3: The transformer model architecture. Figure drawn
from [63].

GPT Radford et al. proposed the Generative Pretrained Transformer (GPT) [64],
another influential contextual embedding technique. Utilizing the decoder of the
Transformer model, GPT is pre-trained with a unidirectional language modelling
objective. This allows it to effectively generate text, proving particularly effective in
tasks that involve text generation. However, GPT’s unidirectional nature means it
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can consider context only from one direction when generating embeddings. While
this is sufficient for many applications, it can limit the model’s ability to fully under-
stand the semantic nuances of language. This limitation is addressed by the subse-
quent development of the BERT model.

BERT Devlin et al. [21] introduced the Bidirectional Encoder Representations from
Transformers (BERT) architecture, a significant advancement in the realm of con-
textualized embeddings. Distinct from earlier models like ELMo or unidirectional
models like GPT, BERT utilizes the Transformer encoder in a bi-directional manner.
This characteristic allows BERT to understand the context of a word from both direc-
tions, i.e., from the words preceding and following it, making it particularly effective
in disambiguating word meanings based on their context. BERT is pre-trained using
two main objectives: masked language modelling (MLM) and next sentence predic-
tion (NSP). The MLM objective is inspired by the Cloze task [65], where random
words in the input are masked, and the model is tasked with predicting the origi-
nal masked words. Unlike the unidirectional next-word prediction task, the MLM
objective allows BERT to take into account both the left and the right context. The
second pretraining task, NSP, tests the model’s ability to understand the relationship
between two sentences. This is particularly useful for many downstream NLP tasks
that require an understanding of sentence relationships, such as Question Answer-
ing. In the NSP task, the model is given two sentences and must predict whether the
second sentence follows the first in the original text. After pretraining, BERT can be
fine-tuned on specific downstream tasks. Fine-tuning involves continuing the train-
ing process on a specific task (like sentiment analysis or question answering) using
a smaller, task-specific dataset. This process of fine-tuning adjusts the pre-learned
representations to better suit the specific task, leveraging the broad language un-
derstanding learned during pretraining while adapting to the task-specific patterns.
Fine-tuning is relatively inexpensive compared to pretraining, making BERT a ver-
satile and efficient model for a variety of NLP tasks

The versatility and effectiveness of the BERT model have led to the development
of numerous specialized models that build upon the original architecture or adapt it
to specific domains. These models leverage the power of BERT while tailoring its ca-
pabilities to better suit specific tasks or types of data. For instance, domain-specific
models such as SciBERT [66], BioBERT [67], and PubMedBERT [68] are trained on
scientific, biological, and medical texts, respectively. These models are able to cap-
ture domain-specific language and semantics, greatly improving performance on
tasks within these fields. In addition to these domain-specific models, there have
also been architectural advancements that improve upon the base BERT model. For
example, RoBERTa [69] modifies the BERT training procedure to improve its perfor-
mance, including training with larger mini-batches, using more data, and remov-
ing the next sentence prediction task. ALBERT [70], on the other hand, reduces the
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model size of BERT while maintaining comparable performance, making it more ef-
ficient. These models demonstrate the ongoing evolution of BERT and its continued
influence in the field of natural language processing.

SBERT Expanding the scope of contextualized models beyond word-level em-
beddings, Sentence-BERT (SBERT) [71] revolutionizes the approach towards under-
standing sentence-level semantics. While models like BERT generate embeddings
for individual words, SBERT takes a step further to create embeddings for entire
sentences. This is accomplished by modifying the BERT architecture to accept pairs
of sentences and training it on Natural Language Inference (NLI) tasks. In these
tasks, the model learns to classify pairs of sentences into categories such as ’entail-
ment’, ’contradiction’, and ’neutral’, effectively teaching the model about semantic
relationships between sentences. The SBERT model thus learns to encode the context
and semantic relationships between the words within each sentence, as well as the
relationships between different sentences. The resulting sentence embeddings en-
capsulate the overall semantic content of each sentence, enabling efficient semantic
similarity comparisons between sentences.

This approach represents a shift in focus from understanding individual words
to understanding the larger units of meaning in language, providing a more holistic
view of textual data. Applications that require understanding the overall meaning
of sentences, such as semantic search, text clustering, and paraphrase detection, can
greatly benefit from SBERT embeddings.
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Chapter 3

Argumentation Quality

This chapter introduces my first contribution towards the assessment of argu-
mentation quality. More precisely, my contribution is twofold: first, I present
a novel resource of 402 student persuasive essays, where three main quality di-
mensions (i.e., cogency, rhetoric, and reasonableness) have been annotated, lead-
ing to 1908 arguments tagged with quality facets; second, I address the chal-
lenging task of argumentation quality assessment proposing a novel neural ar-
chitecture based on graph embeddings, combining both the textual features of the
natural language arguments and the overall argument graph, i.e., considering
also the support and attack relations holding among the arguments. Finally, a
discussion of the obtained results and limitations of this approach is presented.
This chapter comprises the work published at the International Conference on
Empirical Methods in Natural Language Processing (EMNLP-2022) [20] and
at the European Conference on Argumentation (ECA-2022) [72].

Argumentation is the process by which arguments are constructed, compared, eval-
uated in several respects and judged in order to establish whether any of them is
warranted. Argumentation is an effective approach for solving various theoretical
and practical problems [1, 73], like explaining and justifying the decision-making
outcomes and reasoning under inconsistent and incomplete information.

A major component of the argumentation process concerns the assessment of a
set of arguments and of their conclusions to establish their justification status, and
therefore compute their acceptability degree [36]. Both qualitative and quantitative
approaches have been proposed in the literature to assess the acceptance of an ar-
gument. However, the assessment of the argument’s acceptability is only a (basic)
part of the complex assessment tasks required in argumentative processes in many
everyday life applications and contexts, e.g., in medicine and education.

The issue of assessing an argumentation is particularly critical when consider-
ing the different aspects of artificial argumentation, from the identification of real
natural language arguments and their relations in text, to the computation of the
justification status of abstract arguments [36], to the gradual assessment of argu-
ments [74, 75] based, e.g., on the trustworthiness of the argument proponents [76] or
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on the value promoted by the argument [77]. In particular, despite some approaches
addressing the automatic assessment of natural language arguments [4, 5, 78], this
issue remains largely unexplored and unsolved.

In this chapter, I address this open issue and answer the following research ques-
tions: (i) How can we model the multi-dimensional notions of quality to capture key
aspects like cogency, rhetoric, and reasonableness? and (ii) Can integrating textual
features with graph embeddings and emotion detection improve the assessment of
argumentation quality dimensions like cogency, rhetoric and reasonableness?

More specifically, I propose an argument mining [26, 79, 80] approach to iden-
tify and classify natural language arguments along with quality dimensions. First,
I define and annotate three prominent quality dimensions for natural language ar-
gumentation, i.e., cogency, rhetoric and reasonableness, on an existing dataset of stu-
dent persuasive essays [81]. Methods for assessing each quality dimension are then
proposed, including SVMs and Random Forest with various word embeddings and
fine-tuned transformer models empowered with graph embeddings and emotion
detection to address the task.

The work I present in this chapter is motivated by the lack of existing resources
of natural language argumentation annotated with quality dimensions and the need
for effective methods to address this task. This contribution advances the state of
the art with a novel resource and an effective method.

This chapter is organised as follows: in Section 3.1 I introduce existing work
on the quality evaluation of natural language arguments. In Section 3.2 I present
the resource of natural language argument graphs annotated with the quality di-
mensions, while in Section 3.3 I describe the proposed architecture to automatically
assess these quality dimensions on the bipolar argumentation graphs. In Section 3.4
I discuss obtained results, and conclusions at the end of the chapter.

3.1 Related Work

Recent approaches in Argument(ation) Mining (AM) [26, 79, 80] tackle specific argu-
ment qualities features, such as argument relevancy [82], convincing arguments [41]
and overall argument quality [42]. Previous work on student essays aimed to assess
clarity [83], organization [44] and argument strength [84]. [85] target the automatic
prediction of the quality of student reflective responses, showing how expert-coded
quality ratings and quality predictions based on their features positively correlate
with student learning gain.

Defining the characteristics of a good and successful argument is a hard task.
Different approaches have been proposed to assess the logical, rhetorical, and di-
alectical quality dimensions of natural language arguments.

Wachsmuth et al. [4] derive a taxonomy of argumentation quality that systemati-
cally decomposes quality assessment based on the interactions of 15 widely accepted
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quality dimensions. The three main characteristics are Cogency, Effectiveness and Rea-
sonableness. As a follow-up, [78] investigate how effectively each dimension can be
automatically assessed, modelling features such as content, style, length and sub-
jectivity. This text-only assessment yields moderate learning success for most of the
evaluated dimensions. In another text-only approach, Lauscher et al.[86] describe
a large argument quality corpus with data extracted from forums. They propose
the first computational model to automatically evaluate Cogency, Reasonableness,
Effectiveness and overall quality.

Saveleva et al. [5] presents an argument quality assessment method defined as
a graph classification task. The authors reconstruct the graph structure of the argu-
ments within the argument quality dataset presented by Wachsmuth et al. [4], show-
ing that this is feasible only in some cases. The reconstructed structures are com-
posed of claims and evidence connected by a support relation, disregarding impor-
tant elements like counterarguments and rebuttals. Results indicate that discourse-
based argument structures reflect the qualitative properties of the arguments. For
rhetorical aspects, Duthie et al. [87] show the impact of the different rhetorical strate-
gies used in political discourse. For Automatic Essay Scoring, Zhang et al [88] show
how human-labelled evidence scores can be replaced with other automated essay
quality signals, such as word count and topic distribution similarity.

In this thesis, we advance the state of the art of natural language argument qual-
ity assessment by investigating three main quality properties of persuasive essays
grounding on social science argument quality assessment scores [19]. Moreover, we
propose a novel method to evaluate the reasonableness of an argument by combin-
ing cogency properties with the argumentation graph structure.

3.2 Quality dimensions of persuasive essays

To annotate the quality dimensions of persuasive essays, we rely on the corpus built
by Stab and Gurevych [81], containing 402 persuasive essays annotated with the
argument components (i.e., evidence, claims and major claims) and relations (i.e.,
support or attack). This results in 402 argument graphs where the argument com-
ponents are the nodes of the graph, and the argumentative relations are the edges
of the graph. We add a new annotation layer by manually labelling for each argu-
ment in the essays the following three quality attributes: cogency, reasonableness and
argumentation rhetoric, following the taxonomy proposed by [4]. Taking advantage of
the relation annotations, we use the argument graph (i.e., argument components and
their relations) to assist annotators in their annotation process.

Annotation guidelines.
Defining the characteristics of a good and successful argument is a hard task.

First, we must address the several text rating procedures that have been proposed in
the literature. Different factors, such as the aim of the assessment, the freedom given
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to the raters, and the number of texts to be analyzed should be considered when
evaluating the quality of argumentative texts. Following Coertjens et al. [89], rating
procedures can be classified into two dimensions: Holistic vs. analytic and absolute
vs. comparative. Holistic rating entails evaluating texts as a complete entity, while
analytic rating involves assessing multiple text features. In absolute ratings, each
text is assessed based on predefined criteria or description, while in comparative
ratings, texts are compared to each other to determine their score. In this study, our
objective is to assess the quality of argumentative texts in persuasive essays through
the application of a consistent and absolute analytic rating system. We focus on
assessing the quality of persuasive essays, where the aim is to assess each essay on its
own. The aim is to ensure that the evaluation is based solely on the essay’s content,
rather than the subjective bias of the evaluator and that the assessment results are
consistent across all raters.

A frequently used analytic rating procedure is the use of rubrics. A set of criteria
for grading text is defined within the rubrics and they usually contain evaluative
criteria, quality definitions for those criteria at particular levels of achievement, and
a scoring strategy. In an analytic rubric, the text features are pre-determined. How-
ever, the significance or weight assigned to each feature is not always determined
in advance. As established by Sasaki et al. [90] and Coertjens et al. [89], evaluators
are given the flexibility to independently assign weights to the pre-determined text
features. Consequently, variations in assessments of a single text among evaluators
may arise.

To tackle this issue, Stapleton and Wu [19], describe the weight of the separate
text features in a rubric as fixed. In this rubric, the authors stated that a strong
argumentative text is composed of two important elements. (i) an argumentative
text must be constructed taking into account all elements contributing to a good
quality of argumentation and (ii) attention must be paid to the quality of the content of
the text. This rubric contemplates several characteristics of the standard definition
of Cogency and Reasonableness, such as Relevancy, Acceptability, and Soundness
as well as the presence of counterarguments and rebuttals. Given that our goal is
to assess persuasive essays written by students, we rely on the quality evaluation
process proposed by Stapleton and Wu [19]. Tables 3.1, 3.2 and 3.3 show the analytic
scoring rubrics proposed by Stapleton and Wu [19]. A scale of 0, 10, 15, 20, and 25 is
given to assess the Cogency and Reasonableness of a given argument.
Cogency. An argument should be seen as cogent if it has individually acceptable
premises that are relevant to the argument’s conclusion and that are sufficient to
draw the conclusion [4]. Annotators were provided with Table 3.1 to assess the co-
gency dimension. Following this definition, we define the acceptable premises as the
ones that are worthy of being believed, and the relevant ones as those that contribute
to the acceptance or rejection of the argument’s conclusionThese criteria are consid-
ered in point (b) (Table 3.1) whilst the structural information about the argument
graph is addressed in point (a). Example 3.2.1 shows the cogency annotation on a
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persuasive essay extracted from the dataset proposed by Stab and Gurevych [81].
The first sentence is the major claim, while the claim to be assessed is in bold and
the premises supporting it are in italics. Example 3.2.1 is annotated with a cogency
score of 25, given that the author presents multiple premises which are acceptable
and relevant to draw a conclusion. On the other hand, Example 3.2.2 is annotated
with a cogency score of 0 (lower score) given that the author provides no acceptable
premises for her claim.

Score: 25 Score: 20 Score: 15

a. Provides multiple
reasons for the claim(s),

and
b. All reasons are

sound/acceptable and free
of irrelevancies

a. Provides multiple reasons for the
claim(s), and

b. Most reasons are
sound/acceptable and free of

irrelevancies, but one or two are weak

a. Provides one to two reasons
for the claim(s), and
b. Some reasons are

sound/acceptable, but some
are weak or irrelevant

Score: 10 Score: 0

a. Provides only one
reason for the claim(s), or
b. The reason provided is

weak or irrelevant

a. No reasons are
provided for the

claim(s); or
b. None of the reasons

are relevant to/support
the claim(s)

TABLE 3.1: Analytic Scoring Rubric to assess Cogency [19].

Example 3.2.1 We should attach more importance to cooperation during primary educa-
tion. [Through cooperation, children can learn about interpersonal skills which are
significant in the future life of all students] 1.[What we acquired from team work is not
only how to achieve the same goal with others but more importantly, how to get along with
others]1. [During the process of cooperation, children can learn about how to listen to opin-
ions of others, how to communicate with others, how to think comprehensively, and even how
to compromise with other team members when conflicts occurred] 2. [All of these skills help
them to get on well with other people and will benefit them for the whole life] 3.

Example 3.2.2 It’s certainly better for children to grow up in a big city. [Growing up in
the countryside is not such a good experience] 1, [you won’t know a lot of people, there
are gossips everywhere, and your life will be really limited].1

Reasonableness. An argumentation should be seen as reasonable if it contributes to
the resolution of the given issue in a sufficient way that is acceptable to the target
audience [4]. The Analytic Scoring Rubric for Reasonableness (Tables 3.2 and 3.3
[19]) integrates these concepts and follows the idea of evaluating the argumentation
graph with a focus on the counterarguments and their respective rebuttals. Anno-
tators were asked to annotate both the Reasonableness Counterargument and the
Reasonableness Rebuttal whenever an essay presented a counterargument. Whilst
the definitions of Reasonableness and Cogency are similar, the key difference is that
with Cogency we evaluate the premises of the argument and with Reasonableness
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the whole argumentation graph involving the argument to be assessed (including
its counterarguments and their rebuttals).

Assessing the Reasonableness of an argument implicates analysing its counter-
arguments and the related rebuttals. In the example of Figure 3.1, we assess the rea-
sonableness quality dimension following Tables 3.2 and 3.3: for counterargument
Claim E, we can see that no reasons, or premises, provided to support it. This falls
under the criteria for Score 0 for Reasonableness Counterargument. For the rebuttal,
we can see that Claim F correctly points out the weakness of the counterargument,
providing an acceptable and sound premise and with a reasoning quality stronger
than of the counterargument, therefore falling under the criteria for Score 25.

Score: 25 Score: 20 Score: 15

a. Provides multiple
reasons for the

counterargument claim(s)
/alternative view(s), and

b. All
counterarguments/reasons
for the alternative view(s)
are sound/acceptable and

free of irrelevancies

a. Provides multiple reasons for the
counterargument

claim(s)/alternative view(s), and
b. Most counterarguments/reasons

for the alternative view(s) are
sound/acceptable and free of

irrelevancies, but one or two are
weak

a. Provides one to two reasons
for the counterargument

claim(s) /alternative view(s),
and

b. Some
counterarguments/reasons

for the alternative view(s) are
sound/acceptable, but some

are weak or irrelevant

Score: 10 Score: 0

a. Provides only one
reason for the

counterargument claim(s)/alternative
view(s), or

b. The
counterargument/reason
for the alternative view is

weak or irrelevant

a. No reasons are
provided for the
counterargument

claim(s)/alternative
view(s); or

b. None of the reasons
are relevant to/support

the counterargument
claim(s)/alternative

view(s)

TABLE 3.2: Analytic Scoring Rubric for assessing Reasonableness
Counterargument [19].

Argumentation Rhetoric. Annotators were asked to evaluate at the argument level
which rhetoric strategy the argument is following among ethos, logos, and pathos [3].
Logos is the act of appealing to the audience through reasoning or logic, by citing
facts and statistics, historical and literal analogies. Ethos is the act of appealing to
the audience through the credibility of the author’s beliefs or authority. Ethos can be
applied by choosing the appropriate language for the audience and the topic (e.g.,
the proper level of vocabulary), making the author sound fair or unbiased, introduc-
ing her expertise, and using correct grammar and syntax. Pathos means to persuade
an audience by appealing to their emotions. Some examples of persuasive essays
annotated with argumentation rhetoric are available in the Appendix. Authors use
pathos to invoke sympathy from an audience, and to make the audience feel what
the author wants them to feel. A common use of pathos would be to draw pity from
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Score: 25 Score: 20 Score: 15

a. Refutes/points out the
weaknesses of all the

counterarguments, and
b. All rebuttals are
sound/acceptable

c. The reasoning quality of
all the rebuttals are

stronger than that of the
counterarguments

a. Refutes/points out the
weaknesses of all the

counterarguments, and
b. Most rebuttals are

sound/acceptable, but one or two
are weak

c. The reasoning quality of most
rebuttals are stronger than that of

the counterarguments, while one or
two are equal to that of the

counterarguments

a. Refutes/points out the
weaknesses of all the

counterarguments, and
b. Some rebuttals are

sound/acceptable, but some are weak
c. The reasoning quality of
some rebuttals are stronger

than that of the counterarguments,
while some are weaker than that of the

counterarguments

Score: 10 Score: 0

a. Refutes/points out the
weaknesses of some

counterarguments, or
b. Few of the rebuttals
are sound/acceptable;

most of them are weak, or
c. The reasoning quality

of most rebuttals are
weaker than that of the

counterarguments

a. No rebuttals are
provided; or

b. None of the rebuttals
can refute the

counterarguments

TABLE 3.3: Analytic Scoring Rubric for assessing Reasonableness Re-
buttal [19].

the audience, and can be induced by using meaningful language, emotional tone,
emotion-evoking examples and implied meanings.

We now describe Argumentation rhetoric dimension through some examples
from the persuasive essays dataset [81] with the help of Examples 3.2.3, 3.2.4 and
3.2.5.

In Example 3.2.3 the claim (in bold) appeals to emotions Pathos when the author
describes how “people are better taken care’ in premises 1 and 3 (in italic). In Exam-
ple 3.2.4 the authors employ Ethos, we can notice that the author refers to personal
experiences in premises 1 and 2. Example 3.2.5 employs Logos, the author refers to a
formal study, in premise 2, in order to support its claim.

Example 3.2.3 The advanced medical care brings with it more benefits than disadvantages.
[The main advantage of high tech medical care is that people are better taken care
so that they have a good health]1. [Healthy workers can create more productivity]1 [They
can contribute effectively to the development of the economy]2. [They do not have to spend
more time in health checking or treatment]. 3 [this saves an amount of time as well as cost]4.

Example 3.2.4 People should sometimes do things that they do not enjoy. [In personal
live, we have some responsibilities towards to other people, there is nobody who
likes all of these responsibilities]1. [Housework is very difficult for me, although my
husband helps me some of them, but it is my responsibility]1. [I really don’t like any of them,
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however I should do]2, [most people’s lives are filled with tasks that they don’t enjoy doing]3.

Example 3.2.5 Following celebrities can be dangerous for the youth. [This has an overall
effect on personality and future of an individual, following celebrities blindly affects
the health of adolescents.]1 [Many young people indulge themselves in drugs and start
smoking at an early age]1. [In a survey carried out in a university, it was asked to students
that why did they start smoking, then around forty percent of individuals answered that they
wanted to look like their favorite screen actor while smoking cigarettes]2 [Imitating celebrities
has a negative influence on health of young individuals]3.

FIGURE 3.1: Example of an argument graph of a persuasive essay
[81].

Before starting the annotation process, three annotators (English speakers and
experts in Argumentation Mining) carried out a training phase, during which they
studied the guidelines and discussed about the ambiguities between the scores for
the definitions of Cogency and Reasonableness, amongst others. Then, the annota-
tors were presented with an argument from a persuasive essay (a Claim or Major
Claim component) and its full argument graph, and they had to annotate the argu-
ment quality following the rubric scores. To prove the reliability of the annotation
task, the inter-annotator agreement (IAA) has been calculated on an unseen set of 33
essays, obtaining a Fleiss’ kappa of 0.68 for Cogency, 0.78 for Reasonableness Coun-
terargument, 0.84 for Reasonableness Rebuttal and 0.85 for Argumentation Rhetoric.
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Despite this substantial agreement, an issue for the annotators was the difficulty to
opt for a precise score, like 25 or 20. To minimize subjectivity issues in the man-
ual annotation and the consequent noise in the training and testing phases for the
automatic assessment of these scores, we decided to merge Score 25 with Score 20,
and Score 15 with Score 10, reducing the number of labels to 3 (Score 0 is kept as
is). We then proceeded to recompute Fleiss’ kappa score, obtaining an increment
for Cogency (from 0.68 to 0.86) only. For this reason, we decided to rely on a three-
label score for Cogency prediction (i.e., 0, 15, 25), and to keep the more fine-grained
score for Reasonableness (i.e., 0, 10, 15, 20, 25). The annotators performed then a rec-
onciliation phase, during which they discussed to reach an agreement on the cases
of disagreements. The rest of the annotation was carried out by one of the expert
annotators. Tables 3.4 and 3.5 report on the statistics of the final dataset1.

Score Cogency Reas. Counterargument Reas. Rebuttal

0 19.70% 27.27% 79.82%

10 9.38% 25.45% 9.65%

15 19.14% 26.36% 4.39%

20 31.71% 13.64% 3.51%

25 20.08% 7.27% 2.63%

TABLE 3.4: Statistics of the dataset, reporting on the percentage of
Cogency and Reasonableness for each score.

No Rhetoric Ethos Logos Pathos

76.04% 11.51% 6.79% 5.66%

TABLE 3.5: Statistics of the dataset, reporting on the percentage and
type of Rhetorical arguments.

3.3 Automatic assessment of argumentation

An overview of the automatic argument quality assessment framework we propose
is visualized in Figure 3.2. Starting from the persuasive essays where argument com-
ponents and their relations are identified, the goal is to assess the quality of each
argument (i.e., the quality of each claim). Three scores are computed: a cogency score
in the range t0, 15, 25u, an argumentation rhetoric label among ethos, logos, and pathos,
and a reasonableness score in the range t0, 10, 15, 20, 25u. Two different methods are
combined to effectively assess the quality dimensions of the arguments: (i) the co-
gency score and the argumentation rhetoric labels are predicted using an attention-
based neural architecture which employs the argumentation graphs through graph
embeddings, and (ii) the reasonableness score is computed by means of an algo-
rithm, combining the cogency score predicted at step (i) and the graph structure of

1https://gitlab.com/santimarro/persuasive-essays-argument-quality-dataset

https://gitlab.com/santimarro/persuasive-essays-argument-quality-dataset
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each persuasive essay. In the following, we present the features we extracted from
the persuasive essays to predict the cogency score and argumentation rhetoric la-
bels, the neural architecture we define to predict these two quality dimensions, and
we conclude with the reasonableness algorithm used to assess this score.

3.3.1 Cogency and rhetoric scoring assessment

Different techniques [4, 78] have been proposed to automatically assess the cogency
of arguments through text-based methods alone. However, following the definition
of cogency by Blair [2], a cogent argument requires premises that are not only ac-
ceptable, relevant and sufficient based on their textual content, but also structured
in a way that properly supports the conclusion. Specifically, the presence of multi-
ple premises that collectively demonstrate acceptability, relevance and sufficiency is
a key structural consideration for cogency.

This need for assessing cogency using both textual and structural features is rein-
forced by the rubric of Stapleton and Wu [19], where the cogency score is determined
by a combination of (a) the number of premises supporting a claim, and (b) the ac-
ceptability, sufficiency and relevancy of each premise based on the text.

To represent and leverage structural features like the number and organization
of premises, we propose using graph embeddings. Graph embeddings are vector
representations that encode the topology and connections in a graph network. For
argument graphs, where nodes are claims and premises and edges indicate support-
/attack relations, graph embeddings can capture informative structural properties.
This includes the number of premises attached to a claim, connectivity patterns be-
tween premises, and relative position in the graph. Such structural nuances can
complement the text-based acceptability, sufficiency and relevancy assessment. Sim-
ple text methods that look at premises individually would miss these graph-level
insights. By combining text embeddings of argument components with graph em-
beddings of the full structure, we can account for both textual and structural influ-
ences when predicting cogency scores. This allows modeling cogency as the rubric
defines it - based on collective premises and their relations, not just isolated texts.
Our approach leverages recent graph embedding techniques like FEATHER-G [91]
to compute argument graph representations.

For textual feature generation, we employ a variety of embedding techniques
from static word vectors like GloVe [58] to contextualized models such as BERT [21]
and Longformer [92]. To represent each argument component, we concatenate all
the sentences composing the claim itself along with any related premises or claims
linked via the argument graph structure. Since combining these sentences results
in lengthy documents, we utilize Longformer given its ability to process sequences
up to 4096 tokens while maintaining state-of-the-art performance. For graph fea-
ture generation, we adopt the FEATHER-G framework [91], which combines node
attribute information and random walk weights to describe node neighborhoods.
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These node-level representations are pooled using mean pooling to obtain graph-
level embeddings. FEATHER-G allows encoding both topology and node content
into a single vector that represents the overall graph structure. By extracting fea-
tures for both text and graphs, we can develop models that account for linguistic
and structural aspects of argumentation. The contextualized text embeddings pro-
vide nuanced representations of component semantics and syntax. The graph em-
beddings complement this by capturing relational patterns and properties. Together,
they allow us to predict cogency based on Blair’s multidimensional definition en-
compassing both textual acceptability and premise sufficiency.

Rhetorical strategies like ethos, logos and pathos rely on different means of per-
suasion. Specifically, pathos invokes strong emotions to persuade the audience.
As such, automatically detecting pathos requires identifying the emotional content
within arguments, beyond just the text. Recent sentiment analysis and emotion de-
tection techniques [93–95] demonstrate progress in modeling the affective dimen-
sion of text. Building on these advances, we propose integrating emotion features
into argument representations to better discern pathos from more neutrally-toned
strategies like logos and ethos.

Concretely, we build emotion embeddings for the arguments by extracting emo-
tion labels leveraging a transformer-based pre-trained model T5 [96], fine-tunned
on the emotion recognition dataset by [97] for the Emotion Recognition downstream
task. This approach allows us to obtain an emotion label amongst sadness, joy, love,
anger, fear, or surprise. We then obtain a word embedding as a feature vector by
either directly extracting the label representation from the fine-tuned model or em-
ploying the label to obtain a word embedding using GloVe. We hypothesize that
arguments exhibiting high emotion intensity are more likely to represent pathos
rhetorical attempts. To test this, we combine the extracted emotion features with
text embeddings of arguments into a single representation. This allows rhetorical
strategy classification to jointly consider linguistic style/content along with affective
properties. The integrated text and emotion features help differentiate impassioned
pathos arguments from logically-driven logos or credibility-focused ethos. By in-
corporating emotion detection into argument analysis, we provide a novel approach
to rhetorical strategy identification tailored to the nuances of pathos. The ability to
model persuasive appeals based on both text and emotionality of arguments is a
unique advantage of our method.

After feature generation, we automatically assess each quality attribute. For Co-
gency and Reasonableness, Support Vector Machines (SVM) [98], Random Forests [99],
Bidirectional LSTM-CRF [100] and fine-tuned Longformer [92] with an added dense
layer for classification models were utlized. In our experiments, we evaluate dif-
ferent combinations of these methods with different combinations of the previously
mentioned embeddings as an input vector.

As the majority of the arguments in our dataset have a non-rhetorical structure
(Table 3.5), the automatic Argumentation Rhetoric assessment task was divided into
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two different steps. First, a binary classification task to distinguish between a rhetori-
cal and a non-rhetorical argument, and then a multi-label classification task to classify
a rhetorical argument into ethos, logos or pathos. For both tasks, the implemented
architectures are the same.

FIGURE 3.2: Overview of our natural language argumentation qual-
ity prediction model.

3.3.2 Reasonableness scoring assessment

Given the fact that in our dataset the majority of the essays did not present any
counterarguments or, for a given counterargument, there was no rebuttal, our mod-
els did not have enough data to learn how to classify the reasonableness quality
dimension. Motivated by this and by the consideration that the structure of the
argumentation graph plays a main role in assessing reasonableness, we propose a
novel approach to address this task. The reasonableness dimension [19] takes into
account (i) the cogency of the counterarguments attacking the argument we want
to assess the reasonableness of, (ii) the cogency of the rebuttals to these counterar-
guments (i.e., the arguments attacking the counterargument), and (iii) the relative
number of rebuttals and counterarguments. This means that to effectively compute
the reasonableness dimension, we need to combine the cogency-based quality of the
argument components and the structure of the argumentation graph. We define the
cogency function CV which assigns to each argument component A a cogency value
in t0, 10, 15, 20, 25u, using the SVM plus graph embeddings approach we proposed.

Based on the rubric by Stapleton and Wu [19], we propose an algorithm (Algo-
rithm 1) to compute the reasonableness score of the arguments in our argumentation
graphs. In this Rebuttal Reasonableness Score algorithm, the reasonableness score
of the argument component A is 0 if (i) no attack to the counterarguments in CA of
A holds (line 19), or (ii) the cogency value of the argument components defending
A, i.e., attacking the counterarguments of A, is 0 (line 16).

For the remaining reasonableness scores, the reasonableness score of A is 10 if (i)
at least one and less than half of its counterarguments are attacked (line 25), or (ii)
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the cogency score of more than half of the argument components defending it is 10
(line 22), or (iii) the cogency score of more than a half of the argument components
defending it is lower than the cogency score of the counterarguments of A (line 29).
The reasonableness of A is 15 if (i) all the counterarguments of A are attacked (line
32), and (ii) the cogency score of at least one of the argument components defending
A is equal to or higher than 15 and at least one of the argument components defend-
ing A has a cogency score lower than 15 (line 33), and (iii) the cogency score of at
least one of the argument components defending A is higher than the cogency score
of the counterarguments of A and at least one of the argument components defend-
ing A has a cogency score lower than the cogency score of the counterarguments of
A (lines 34 and 35, respectively). The reasonableness score of A is 20 if (i) all the
counterarguments of A are attacked (line 32), and (ii) the cogency score of more than
half of the argument components defending A is equal to or higher than 20, and at
least one of the argument components defending A has cogency score equal to or
lower than 10 (line 40), and (iii) the cogency score of more than half of the argument
components defending A is higher than the cogency score of the counterarguments
of A while one or two of the argument components defending A has cogency score
equal to that of the counterarguments of A (line 41). Finally, the reasonableness score
of A is 25 if (i) all the counterarguments of A are attacked (line 32), and (ii) the co-
gency score of all of the argument components defending A is 25 (line 45), and (iii)
the cogency score of all of the argument components defending A is higher than the
one of all of the counterarguments of A (line 46).

Let us consider the example in Figure 3.1. We aim to assess the reasonableness
score of claim C. It holds that CVpEq “ 0 (E is the counterargument of C) and
CVpFq “ 10 (F is the rebuttal of E). Starting from the cogency scores of all the
counterarguments and rebuttals of our target argument component C, we can see
that if the cogency value of every rebuttal is 10 (the cogency score of claim F), then
the reasonableness of claim C is 10.

After the automatic assessment of the Cogency, Rhetoric, and Reasonableness
dimensions, the obtained scores are used to help the student to improve the essay.
Our pipeline ends with the automatic generation of the scores using this template:
The [QUALITY DIMENSION] of this argument is assessed as being [PREDICTED
SCORE] as the argument [DEFINITION] (see Figure 3.2).

3.4 Evaluation

In the following, we report on the experimental setup, the obtained results and the
error analysis.

Experimental Setup. For argument quality prediction, the embeddings (see Sec-
tion 3.3) were combined with either (i) a Random Forest, (ii) a LSTM, (iii) a dense
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Algorithm 1 Rebuttal Reasonableness score
Require: Argument Component A, CA a set with all the argument components that directly attack A.
Ensure: Returns 0, 10, 15, 20 or 25 as a prediction for the Reasonableness Score. ReasonablenessScoreA, CA
1: Y Ð 0
2: cogScores Ð rs

3: CACogScores Ð get the cogency values for each arg. in CA
4: for each argument C in CA do
5: DA Ð get all the arg. components that attack C
6: cogScores Ð append the cogency values for each arg. in DA
7: if lenpDAq ą 0 then
8: Y `“ 1
9: end if

10: end for
11: CV10 Ð Count how many of the rebuttal scores in cogScores are 10
12: CV20 Ð Count how many of the rebuttal scores in cogScores are 20
13: Q Ð Count how many rebuttals have a cogency score lower than the counterarguments.
14: X Ð Count how many rebuttals have a cogency score higher than all of the counterarguments.
15: Z Ð Count how many rebuttals have a cogency score equal to the counterarguments.
16: if max(cogScoresq “ 0 then
17: return Score 0
18: end if
19: if Y “ 0 then
20: return Score 0
21: end if
22: if CV10 ą

lenpcogScoresq

2 then
23: return Score 10
24: end if
25: if 1 ď Y ď

lenpCAq

2 then
26: return Score 10
27: end if
28: if Q ą

lenpcogScoresq

2 then
29: return Score 10
30: end if
31: if Y “ lenpCAq then
32: if max(cogScoresq ě 15 and min(cogScoresq ă 15 then
33: if max(cogScores) ą max(CACogScoresq then
34: if min(cogScoresq ă min(CACogScores) then
35: return Score 15
36: end if
37: end if
38: end if
39: if lenpCV20q ą

lenpcogScoresq

2 and min(cogScores) ď 10 then

40: if X ą
lenpcogScoresq

2 and 1 ă Z ď 2 then
41: return Score 20
42: end if
43: end if
44: if min(cogScores)=25 and max(cogScores)=25 then
45: if min(cogScores) ą max(CACogScores) then
46: return Score 25
47: end if
48: end if
49: end if=0
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layer, or (iv) a SVM. Additionally, the best-performing static and dynamic embed-
dings were concatenated and evaluated as if they were one single embedding. The
PyTorch framework [101] version 1.10 was used for implementing the LSTM model
with a learning rate selected from 0.05, 0.1, RNN layers 1, 2, dropout 0.1, 0.3, 0.5, and
batch size from 8, 16, 32 and a hidden size of 128. For Longformer, BERT and T5 pre-
trained models, we use the PyTorch implementation of huggingface [102] version
4.16.2. For the graph, FEATHER-G embeddings, the Karate Club framework [103]
was used with the standard hyperparameters. The Scikit-learn [104] framework
was employed for the implementation of the Random Forest and SVM models. We
trained the SVM models for each quality attribute, optimizing the Gamma and C
hyperparameter (tested C range: 10´4 to 103, Gamma range: 10´4 to 100) on the
training data set given by the original split [81] in the dataset. For the rhetoric at-
tribute, we trained the SVM models concatenating the Longformer and FEATHER-G
embeddings with the emotion word embedding. The latest was obtained by (i) run-
ning the fine-tuned T5 model to detect emotions, and (ii) either using that label as
an input on Glove, or extracting directly from the model the representation of the
labels by summarizing the hidden states of the last four layers in the model. To
train the binary classification, we converted all of the ethos, pathos and logos labels
to rhetorical, while for the multi-label classification, all the non-rhetorical arguments
were discarded.

Embedding Model f1 F1
Longformer RandomForest 0.72 0.74
Longformer LSTM 0.55 0.51
finetunning Longformer dense layer 0.43 0.33
Longformer SVM 0.74 0.72
Long. + FEATHER-G RandomForest 0.73 0.75
Long. + FEATHER-G SVM 0.78 0.77

TABLE 3.6: Results for the Cogency score of the 3-class sequence tag-
ging task are given in weighted F1 (f1) and macro F1 (F1).

Binary Clf. Multi-label Clf Full Pipeline
Embedding f1 F1 f1 F1 f1 F1
Longformer 0.78 0.69 0.70 0.62 0.91 0.57
Long.+ FEATHER-G 0.78 0.69 0.66 0.58 0.91 0.57
Long.+ FEATHER-G+ T5 0.80 0.73 0.70 0.62 0.89 0.62
Long.+ T5 0.80 0.73 0.80 0.72 0.89 0.62
Long.+ T5w/GloVe 0.80 0.73 0.80 0.77 0.89 0.63

TABLE 3.7: Results of the Argumentation Rhetoric sequence tagging
task training an SVM model (weighted F1 (f1) and macro F1 (F1)).
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Results. Table 3.6 and 3.7 report on the results for the best-performing models and
embedding combinations. Performances are given on the test set in weighted aver-
age and macro multi-class F1-score. Each run was repeated five times with differ-
ent random seeds to assess the stability of the results and the average score is re-
ported. For Cogency classification, a significant improvement (from .72 to .77 macro
F1-score) can be seen when the FEATHER-G graph embeddings are combined with
the Longformer embeddings. The best-performing model (in bold) is composed of
these embeddings along with an SVM model for the quality prediction scores.

To further probe the relationship between argument structure and quality, I con-
ducted an additional correlation analysis. Specifically, I examined the association
between argument density, defined as the number of unique argument components
(claims, premises) in an essay, and the three quality dimensions. Argument density
represents a purely structural measure of argumentation. We computed the Pearson
correlation coefficient between density and each quality score to quantify their linear
relationship. The analysis found a moderate positive correlation (r = 0.52) between
density and cogency scores in the full dataset. However, among essays with non-
zero cogency, the correlation was weaker (r = 0.23), indicating limitations of purely
structural features for quality modelling. This makes sense given that by definition
in the rubric by Stapleton and Wu. [19], essays with only one or no premises (i.e. low
density) must receive a cogency score of 0. Only negligible to weak correlations were
observed between density and reasonableness scores. These supplemental findings
reinforce the importance of combining our graph-based approach with textual fea-
tures to capture nuanced structural influences beyond simplistic counts.

In contrast to our work, Chuang and Yan [105] consider argument quality as only
textual attributes such as acceptability and relevance, and consider argument struc-
ture as a separate aspect of a broader characterization called argumentation skill.
However, accounting for these differences, we can see our results relate to theirs.
They conclude that while low-quality essays tended to lack clear argument struc-
ture, there is not a strong correlation between quality and structure for essays with
well-formed arguments. They further suggest argument structure and quality are
related but distinct facets, with a clear structure being necessary but not fully pre-
dictive of quality. Overall, they articulate that structure and quality are associated
but structure alone does not determine quality, representing overlapping yet distinct
dimensions of persuasiveness and writing proficiency. Our correlation findings re-
inforce the limitations of pure structure metrics, aligning with and providing further
confirmation of their conclusions on modelling text and structure jointly.

For Reasonableness, due to the scarceness of counterarguments and rebuttals, no
deep learning model showed significant learning success. Following Algorithm 1,
we obtain the Rebuttal Reasonableness score for each argument (computed starting
from the cogency values obtained by our model, not the golden labels) yielding an
accuracy of .80 and a macro F1 of .54 while a majority baseline obtains an accuracy
of .78 and a macro F1 score of .18.



3.4. Evaluation 39

Table 3.7 shows the results for the two steps and the full pipeline of the argu-
mentation Rhetoric classification task. The T5 fine-tuned model with Glove embed-
dings shows the best performance with a .73 macro F1-score for the first step of the
pipeline (i.e., the binary classification rhetoric/non-rhetoric), a .77 macro F1-score for
the multi-label classification (i.e., the multi-class classification ethos/logos/pathos), and
a .63 macro F1-score for the full pipeline. We observe that the performance improves
for every model when we add the emotion embeddings to the input feature vector,
supporting our choice of integrating a general emotion dimension into the rhetori-
cal classification for a better embedding representation. We can also notice that the
graph embeddings are not really contributing to this task, leading to a detriment of
macro F1-score. This result can be explained as the persuasive rhetorical strategies
relies mainly on the textual formulation of the argument component itself, without
being impacted by the support and attack relations involving this component.

We addressed a comparison with the state-of-the-art approaches for the Cogency
assessment, despite the fact that we focus on a different dataset and divergent fea-
tures (e.g., graph embeddings in our case). We retrained our model with the dataset
of Wachsmuth et al. [78] following their same configuration. In this dataset of forum
data, each argument instance is associated to 3 different gold labels for Cogency, one
for each annotator. They also separate them into 16 different topics and train each
model with 15 of them, testing on the excluded one. We followed the same process
for each annotator with our baseline model (Longformer embedding + SVM). Given
that they do not provide any graph structure we cannot test our best model on their
data to compare. However, the results obtained are a Mean Absolute Error of .64,
.38 and .52 for Expert #1, #2 and #3, respectively. Comparing with [78], we can see
that for Expert #2 our baseline model outperforms their best model (.38 vs .57). In
the case of Expert #1, we obtain the same result as their baseline, and for Expert #3
we perform similarly (.52 vs .50). The results we obtained on Cogency (.78 f1) are, to
the best of our knowledge, the best result obtained so far in the literature [5, 78].

Error Analysis. A common mistake for Cogency is that the scores 0 and 25 are more
often correctly classified than score 15. This is due to the imbalance of score 15 given
by the nature of the essays, and the complexity of the task for human annotators, as
it is easier to distinguish bad from good cogency quality, but more difficult to assess
a more subtle distinction. For the argumentation Rhetoric binary classification task,
the model tends to misclassify the arguments as non rhetorical. This results from the
imbalanced dataset, where 76% of the arguments are non-rhetorical. For the multi-
label classification task, the model tends to confuse pathos arguments with ethos.
This can be explained by the fact that ethos and pathos are the majority and minor-
ity classes, respectively. A further extension of the dataset with the spans of text in
the argument that justify the annotated rhetorical structure could yield an improve-
ment in the performance of sequence tagging. For Reasonableness, disagreements
between the results given by the algorithm and the gold labels mostly lie in a wrong
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classification of the cogency score for the counterarguments and rebuttals, leading
to a propagation of the error to the reasonableness score.

3.5 Concluding remarks

I presented a novel approach to the task of automatic quality assessment of natural
language argumentation. I built a new resource of 402 students’ persuasive essays
annotated with 3 different quality dimensions, i.e., cogency, rhetoric and reasonable-
ness. Through an extensive evaluation, I show that our neural architecture relying
on a transformer with an attention mechanism and graph embeddings is able to
successfully classify arguments along with these quality dimensions, outperform-
ing standard baselines and similar approaches in the literature. Our quality assess-
ment method conjugates the empirical evaluation of the cogency dimension with the
graph-based computation of the reasonableness one, which encompasses the qual-
ity (expressed in terms of cogency) of the counterarguments and the argumentation
structure.

In the context of AI in education, I aim to include our automatic argument quality
assessment pipeline into a larger framework where the system engages the student
into an explanatory rule-based dialogue to assess her essays, explain why they ob-
tained a certain quality score and how to improve them along with the considered
quality dimensions.

While this work establishes an effective approach to assessing key dimensions of
argument quality, ample opportunity remains to build upon it through expanded re-
sources and specialized modelling. For instance, larger corpora containing more bal-
anced argumentation with extensive counterarguments and rebuttals would provide
richer training data to enhance machine learning of the reasonableness dimension.
Extending existing quality assessment datasets with annotated argument relations
could also facilitate leveraging graphical structure. Furthermore, quality notions
like cogency may require adaptation or extension to effectively evaluate arguments
in specialized domains like medicine or law. Defining new principles and construct-
ing domain-specific corpora would allow tailoring assessment to precise applica-
tion needs. Overall, the presented essay evaluation framework lays the groundwork
for future research to advance multi-dimensional quality modelling through richer,
more diverse training data and metrics tuned to target domains.
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Chapter 4

Integrating and Assessising
External Knowledge in Medical
Text

This chapter bridges argument mining into clinical reasoning, pioneering tech-
niques tailored for medical argumentation. More precisely, in this chapter, I in-
troduce methods to extract clinical information from text and align it with exter-
nal medical knowledge. This enables a transparent assessment of the explanatory
power of different reasons based on their relevance and prevalence. By discerning
between strong, simple reasons versus extraneous details, the approach ranks
evidence to identify the most cogent justifications. Only highly rated reasons
are then utilized to generate template-based explanations, ensuring soundness
and conciseness. Moreover, by contrasting the ranked reasons against those in-
voked in existing explanations, the approach can critique and suggest revisions
to student rationales. This promotes proper reason usage aligned with validated
clinical knowledge. This chapter comprises the work published at the Interna-
tional Conference on Agents and Artificial Intelligence (ICAART-2023) [106]
and work currently under review at the Workshop on Artificial Intelligence For
Healthcare (HC@AIxIA 2023).

Constructing high-quality explanations in the medical domain poses unique chal-
lenges in terms of reliability and transparency of the assessment process. The sensi-
tive nature of this field demands that students thoroughly verify all premises before
invocation, even if they believe a claim is true. A hallmark of medical education in-
volves analyzing a clinical case report containing the requisite details for determin-
ing appropriate diagnoses, treatments, and next steps. Leveraging their acquired
knowledge, students must correctly infer the diagnosis and provide a sound justi-
fication. Research in social sciences [107] explains the cognitive process of explana-
tion generation. Individuals first consider all potential reasons that could explain an
event. Through a process of reason selection [108–111], the most explanatory options
are identified based on their ability to provide a sufficient yet simple account. While
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these traits do not inherently co-occur, the ideal balance engenders the best expla-
nations. For instance, when asked why Ambrose had an accident after deviating from
his routine route, people typically cite the abnormal change, selecting from infinite
possibilities via biases like abnormality detection. In medicine, symptoms exclusive
to one diagnosis facilitate the elimination of alternatives, conferring significant ex-
planatory power. With such cogent reasoning, students can formulate concise yet
sound explanations, e.g., “Given symptom S, unique to diagnosis D, the patient has
diagnosis D”.

This chapter investigates the automated assessment and refinement of this rea-
son selection process. I introduce a computational methodology that inspects the
clinical context, establishes connections to external knowledge in the Human Phe-
notype Ontology, and generates a scored list of explanatory reasons pertaining to
the diagnosis. Scores reflect reasoning strength, with only highly-rated reasons used
in resulting explanations. This evaluation enables the generation of basic template-
based explanations which can be adopted to contrast student explanations to sug-
gest modifications to improve soundness and sound reasoning.

4.1 Introduction

The limits of robustness for knowledge-dependent tasks have been thoroughly demon-
strated in the literature [112]. Results show that while transformer models like BERT
show some robustness to minor input perturbations, they also exhibit clear vulnera-
bilities. Their performance suffers on out-of-domain examples and they rely heavily
on keywords and stylistic cues, rather than a deeper understanding of argument se-
mantics. This aligns with the growing evidence that these models, trained solely
on character patterns in text corpora, reach limits in their reasoning and general-
ization capabilities. Their knowledge remains confined to the statistics of the train-
ing data. As a result, knowledge-dependent tasks pose a particular challenge. For
fine-grained relation classification or entity typing, models often lack the real-world
knowledge to make inferences about connections not overtly stated in the text. In
the medical domain, pertinent to this thesis, complex interrelationships are often im-
plicitly assumed between terms and concepts. Without relevant medical knowledge,
models cannot comprehend the full context.

For assessing argumentation quality, the model needs to draw inferences about
the acceptability, relevance, and sufficiency of premises based on unstated back-
ground knowledge. Relying solely on contextual embeddings has clear limitations.
Potential solutions involve incorporating structured knowledge into language mod-
els, such as from medical ontologies or knowledge graphs. Models like ERNIE [113,
114] integrate entity information to enrich the learned representations.

Other techniques aim to inject different types of background knowledge, not just
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entities, to facilitate deeper language understanding. For example, integrating se-
mantic role information [115] can provide models with knowledge about predicate-
argument structures to better capture relational reasoning. Commonsense knowl-
edge graphs like ConceptNet [116] have also been utilized to inject conceptual re-
lationships between everyday events and concepts. This can aid in implicit causal
reasoning and drawing inferences. Models like KI-BERT [117], CALM [118], and
DiffKG [119] take the approach of injecting external knowledge graphs to teach lan-
guage models relational knowledge and reasoning capabilities. KI-BERT injects en-
tity and concept knowledge from sources like ConceptNet and WordNet to improve
semantic understanding. CALM uses a self-supervised objective to infuse common-
sense conceptual knowledge from text into T5 models. DiffKG incorporates inter-
pretable knowledge graph reasoning directly into transformer models for dialogue
systems. By enabling models to perform multi-hop reasoning on knowledge graphs,
these approaches equip language understanding models with structured factual,
conceptual, and commonsense knowledge beyond what is contained in text corpora.

In the medical domain, medical ontologies such as UMLS [49] or HPO [50] can
be leveraged to incorporate hierarchical medical concepts and terminology. This
domain knowledge teaches models the nuanced differences between related medical
terms.

These approaches demonstrate that providing models with external structured
knowledge beyond surface patterns enables more robust relational and inferential
understanding. This allows for tackling knowledge-dependent tasks where vital
contextual associations are not explicitly stated. In argument assessment, integrat-
ing conceptual knowledge from sources like medical ontologies can enable models
to make judgments requiring domain expertise. Rather than relying on fragile dis-
tributional statistics, structured knowledge infusion equips models with semantics,
common sense, and reasoning capabilities crucial for reliable and generalizable ar-
gument understanding.

While knowledge injection techniques show promise for making models more
robust, a key challenge lies in validating whether the knowledge is properly inte-
grated and applied. For sensitive applications like healthcare, it is critical to ensure
models utilize knowledge appropriately when making high-stakes decisions. This
motivates the need for explainable AI techniques that can evaluate how well the
model reasoning aligns with established domain knowledge. Explainability enables
auditing the model’s inferences to verify sound and transparent usage of the injected
knowledge.

Explainable artificial intelligence (XAI) has become a significant research focus
given the prevalence of opaque models and their use in sensitive domains like medicine
[120, 121]. Although AI systems aid decision-making, their efficacy depends on pro-
viding comprehendible, useful explanations to users [122, 123]. However, leading
XAI techniques often yield unsound or redundant explanations [124]. This chapter
puts forth a methodology to automatically assess explanation quality in medicine,
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ensuring transparency by judging the relevance of reasons against a standardized
ontology. By extracting clinical details from clinical cases and mapping them to val-
idated concepts, the approach can identify strong explanatory reasons grounded in
medical knowledge. Explanations only utilizing highly-rated reasons based on sta-
tistical prevalence are deemed higher quality. Moreover, contrasting system-generated
explanations with student rationales allows critiquing and suggesting improved rea-
soning better aligned with the knowledge. This promotes proper utilization of do-
main expertise.

Specifically, we enable generating natural language argument-based explana-
tions for medical resident training. In these exams, residents analyze a clinical case
and select the correct diagnosis from several options. They must also justify their
choice. We automate explaining why one diagnosis is correct and others incorrect
through arguments based on relevant case symptoms. Additionally, our approach
contrasts student explanations to recommend modifications enhancing soundness
and simplicity.

First, a pipeline extracts and matches symptoms from cases to a medical knowl-
edge base [125], identifying associated diseases and frequencies. Then, explanatory
patterns employ this data to generate arguments. We annotated 314 clinical cases
and evaluated this approach, achieving promising results. This work addresses the
lack of linguistically annotated medical resources for explanation generation.

Subsequently, we score explanation reasons via a prevalence function and exter-
nal knowledge, judging pertinence transparently. Applied to medicine, our tech-
nique evaluates student explanations against computed relevance ratings. It lever-
ages the Human Phenotype Ontology (HPO) [50] and a deterministic prevalence
function to rate reasons based on a case’s context. Analysis of 621 expert-explained
cases demonstrates the method’s effectiveness.

Though assessed on medicine, this methodology extends to any explainable do-
main given appropriate knowledge bases and prevalence functions. It assists resi-
dent training by evaluating explanation reasoning. For online discussions, it helps
identify high-quality explanations, promoting informed dialogue. Overall, this re-
search enables a systematic, transparent assessment of explanation reasoning, espe-
cially for medicine.

The chapter is organized as follows. Section 4.2 covers related work. Section 4.3
presents the clinical information extraction and matching pipeline. Section 4.4 de-
tails assessing explanatory power through scoring via the prevalence function. Sec-
tion 4.5 generates natural language explanations from matched symptoms. Sec-
tion 4.6 concludes and discusses applications to education and online discussions.

4.2 Related Work
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Clinical NLP techniques Since the introduction of BERT [21], transformer-based
models have recently had a major impact on most NLP tasks. Multiple models
evolved from it with different design choices, like RoBERTa [126], ELECTRA [127]
and ALBERT [70]. These models are trained on a large amount of data from mul-
tiple sources and domains, which means that they are not necessarily prepared for
the biomedical domain.

In recent years, a great number of resources and NLP tools have been devel-
oped specifically for the biomedical domain. For entity extraction, the most popular
datasets are BC4CHEMD [9], B5CDR-Chem [10], NCBI-Disease [11], BC2GM [12],
JNLPBA [13], where the annotations range from drug-disease interactions to the
identification of diseases, genes, and molecular entities such as protein, DNA, RNA.
Symptom detection, i.e., the task we address in this chapter, can be seen as a sub-task
of the broader task of medical entity extraction.

Off-the-shelf NLP tool-kits such as Spacy [128], MedSpacy [129] and CLAMP [130]
provide multiple modules for text processing. In particular, MedSpacy is built on
top of Spacy specifically for clinical natural language processing, while CLAMP of-
fers a method for named entity recognition (NER) as well as a visual interface for
annotating and labeling clinical text.

Most of the recent approaches treat NER as a sequence labeling task where spe-
cialized transformer-based models hold the best results. For example, [131] showed
that pre-training the ALBERT model on a huge biomedical corpus ensured that the
model captured better biomedical context-dependent NER. Results outperform non-
specialized models obtaining SOTA results in a lot of datasets. Similar results can
be seen in [132], where the authors pre-train a biomedical language model using
biomedical text and vocabulary with the technique proposed by ELECTRA. Other
specialized models based on BERT have been proposed by [133], [134] and [68] and
BioMed-RoBERTa [135] based on RoBERTa.

[136] propose UmlsBERT, a contextual embedding model that integrates domain
knowledge from the Unified Medical Language System (UMLS) [49], taking into
consideration structured expert domain knowledge. They show that UmlsBERT can
associate different clinical terms with similar meanings in the UMLS knowledge base
and create meaningful input embeddings by leveraging information from the se-
mantic type of each word. In our work, we compare the representation of the symp-
toms found in the clinical case with different contextual embeddings with the goal
to find a representation which matches the one provided in the Human Phenotype
Ontology (HPO).

Ngai et al. [137] also tackle the problem of finding relevant clinical information,
where among the entities they also identify symptoms. In contrast to our work, they
only focus on 6 specific diagnoses. Furthermore, their goal is to predict the correct
diagnosis and explain these predictions using feature attribution methods, whilst
ours is to generate high-quality explanations in natural language for educational
purposes, i.e., to improve medical residents’ skills in explaining their answers to the
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exams.
Besides detecting symptoms from clinical cases, in our work, we also aim to ac-

curately map them to medical ontologies, such as the Human Phenotype Ontology
(HPO), to identify the relationship between the symptoms (originally described in
layperson terms) and diseases. Recent work by [138] proposes a tool for automat-
ically translating between layperson terminology and HPO, using a vector space
and a neural network to create vector representations of medical terms and com-
pare them to layperson versions. However, this approach has a limitation in that
it translates layperson terms without considering their context, potentially missing
relevant information that may change the semantics of the term. In our work, we
propose a method that takes into account the context in which the layperson term is
introduced, leading therefore to an accurate mapping to an HPO term.

Natural Language Explanation Generation Natural language explanation genera-
tion has received a lot of attention in recent years, grounding on the progress of gen-
erative models to train specific models for explanations. [139] generate explanations
by justifying a relation (entailment, contradiction or neutral) for a premise-hypothesis
pair by training a Bi-LSTM on their e-SNLI dataset, i.e., the Stanford Natural Lan-
guage Inference [140] dataset augmented with an explanation layer which explains
the SLNI relations. [141] propose to generate short explanations with GPT-2 [142],
learned together with the input by a classifier to improve the final label prediction,
using e-SNLI [139]. These solutions are not applicable to our use case given that
explaining a medical diagnosis is a more challenging task than restraining the ex-
planations to the three basic relations considered by [139] and [141]. [143] propose
an approach based on the T5 model [144] to generate an explanation after predic-
tion. Again, this solution is not applicable to the specific medical scenario we target,
where explanations require to be structured following precise argumentative struc-
tures [145–147] and to ground on medical knowledge, like the one we inject through
the HPO.

Other approaches use explanations via templates [148], e.g., [149] uses templates
and inject the reasoning steps and query of their Q&A system. To the best of our
knowledge, no related work generates natural language post-hoc explanations for
the medical domain.

Explanation Selection. While the previous sections covered approaches related to
extracting and aligning clinical information, assessing the explanatory power of rea-
sons requires modelling how humans select explanatory causes. The cognitive sci-
ence literature provides theoretical frameworks on how people determine the most
relevant reasons to explain events. The following subsection reviews research on ex-
planation selection in psychology that informs our methodology for discriminating
between explanatory clinical reasons.
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In the process of explanation selection, individuals choose what they perceive to
be the most relevant causes from a larger set of causes for a particular event. This
selection is not arbitrary and is guided by criteria such as temporality, abnormality,
intention, and the differences between a fact and a foil [107]. Hilton [150] sustains
this is due to the fact that causal chains are often too large to comprehend.Research
shows that the primary way individuals select explanations is by contrasting a fact
and a foil. The fact refers to the actual state of affairs, while the foil represents an
alternative state that did not occur. The contrast between the fact and the foil forms
the basis for explanation selection, with the explanation that highlights the greatest
number of differences between the fact and the foil deemed to have the highest ex-
planatory power [151]. Contrastive explanation is a concept that further elaborates
on this idea. It posits that the differences between two events form the basis for
explanation. This theory has garnered support from experimental research in cogni-
tive science, which suggests that people perform causal inference, explanation, and
generalization based on contrastive cases [152, 153].

Abnormality also plays a crucial role in explanation selection. Hilton and Slu-
goski [111] propose the abnormal conditions model, arguing that abnormal events
are key in causal explanation. This model suggests that individuals use their per-
ceived background knowledge to select conditions that are considered abnormal.
This model has been supported by subsequent experimental studies [154–156]. In
this chapter, we introduce an approach that not only evaluates the relevance of each
potential explanation for a given event but also incorporates the principles of abnor-
mality and contrastive explanation into the calculation of the relevance score.

XAI for the Medical Domain. The importance of explanations in AI systems, par-
ticularly in the medical domain, has been extensively studied [157–159]. In the
context of medical diagnosis, explanations often involve identifying the key rea-
sons or symptoms that led to a specific diagnosis. The Human Phenotype Ontol-
ogy (HPO) [50] provides a standardized vocabulary of phenotypic abnormalities
encountered in human disease, which can be used to facilitate the assessment of ex-
planations in this domain. Our work builds upon this ontology by developing an
approach that assesses the selected reasons in explanations. The National Institutes
of Health (NIH) Undiagnosed Diseases Program (UDP) [160] has also investigated
the use of HPO in the context of diagnosing and evaluating patients with conditions
that have eluded diagnosis. The clinical features of a patient are encoded into HPO
terms, which are then used to retrieve a list of candidate diseases that might explain
the patient’s phenotype. This list is then examined by a clinician to identify the most
likely diagnosis. Our methodology extends this approach by not only using HPO to
facilitate diagnosis but also to evaluate the reasons given in explanations.
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4.3 Extracting and Aligning Clinical Information

The proposed approach relies on specialized techniques to identify relevant clini-
cal details from the text and map them to validated medical knowledge. This sec-
tion describes the dataset, methods, and experiments conducted for this extraction
and alignment pipeline. The clinical case dataset used to develop and evaluate
these methods is first outlined, including statistics and annotation details. Then,
an overview is provided of the pipeline architecture and its key steps - symptom ex-
traction using neural models and alignment to ontology terms based on contextual
embeddings. Experiments demonstrate promising results, with a top performance
of 0.86 F1 for entity recognition and 0.53 accuracy for symptom matching. Error anal-
ysis reveals challenges like mental health diagnoses lacking clear ontology linkage.
Overall, this section delineates empirical work enabling the extraction and ground-
ing of explanatory clinical evidence, forming a critical foundation for subsequent
relevance assessment.

4.3.1 Dataset

To train and evaluate the proposed approach to build natural language explanatory
arguments, we rely on the MEDQA dataset [161], which contains a set of clinical case
descriptions together with a set of possible questions and answers on the correct
diagnosis. The questions and their associated answers were collected from the Na-
tional Medical Board Examination in the USA (USMLE), Mainland China (MCMLE),
and Taiwan (TWMLE). In this work, we only focus on the clinical cases and the
questions in English (i.e., USMLE). In total, the MEDQA-USMLE dataset consists
of 12,723 unique questions on different topics, ranging from questions like “Which
of the following symptoms belongs to schizophrenia?” to questions about the most
probable diagnosis, treatment or outcomes for a certain clinical case which is de-
scribed [161]. To reach our goal, we extract the clinical cases belonging to the latter
group, which are intended to test medical residents to make the correct diagnosis.
We end up with 314 unique clinical cases associated with the list of possible diag-
noses.

Annotation of the MEDQA-USMLE Clinical Cases. To annotate the clinical cases
from the MEDQA-USMLE dataset, we rely on the labels from the Unified Medical
Language System (UMLS) [49] Semantic Types, making it consistent with standard
textual annotations in the medical domain [162–164]. In particular, we annotate
the following elements in the clinical case descriptions: Sign or Symptom, Finding,
No Symptom Occurrence, Population Group, Age Group, Location and Temporal Concept.
In this work, we use only the symptoms, but we addressed a complete annotation
to employ these data for future work. Quantifiers defining a symptom have not
been annotated (e.g., we can find “moderate pain", where we only annotate “pain").
The labels Sign or Symptom and No Symptom Occurrence are associated only to the
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text snippet defining the symptom in a sentence. Findings consist of such informa-
tion discovered by direct observation or measurement of an organism’s attribute or
condition. For instance, components in "Her temperature is 39.3°C (102.8°F), pulse is
104/min, respirations are 24/min, and blood pressure is 135/88 mm Hg". Location refers to
the location of a symptom in the human body, and Temporal Concept is used to tag
time-related information, including duration and time intervals. Population Group
and Age Group highlight information on the age and gender of the patient.

To address the annotation process of the MEDQA-USMLE dataset, we first car-
ried out a semi-automatic annotation relying on the UMLS database [49]. We pro-
cessed each clinical case through the UMLS database and obtained all the entities de-
tected along their Concept Unique Identifiers (CUI) and their semantic type. The se-
mantic type is then used to disambiguate the entities and generate the pre-annotated
files. After the definition of the detailed annotation guidelines (summarized above)
in collaboration with clinical doctors, three annotators with a background in com-
putational linguistics carried out the annotation of the 314 clinical cases.

To ensure the reliability of the annotation task, the inter-annotator agreement
(IAA) has been calculated on an unseen shared subset of 10 clinical cases annotated
by four annotators, obtaining a Fleiss’ kappa [165] of 0.70 for all of the annotated
labels, 0.61 for Sign or Symptom, 0.94 for Location, 0.71 for Population Group, 0.66 for
Finding, 0.96 for Age Group and 0.96 for No Symptoms Occurrence. We can see a sub-
stantial agreement for Sign or Symptom, Finding and Population Group, and an almost
perfect agreement for Location, Age Group and No Symptoms Occurrence.

Table 4.1 reports on the statistics of the final dataset, named MEDQA-USMLE-
Symp.1 The accuracy of the annotations provided by the three annotators has been
validated from a medical perspective with a clinical doctor. Of the seven entity la-
bels, only three contain medical vocabulary (Sign or Symptom, Finding, and No
Symptom Occurrence) and they have been evaluated by this expert. More specifi-
cally, we randomly sampled 10% of the data (i.e., 30 cases) and we asked the clinician
to verify whether the entity was correctly labeled and whether there were any miss-
ing or extra words. The results of the validation showed that 98% of the data was
labeled correctly. Less than 2% of the instances were evaluated as incorrectly labeled
(e.g., a Finding that was labeled as a Sign or Symptom or vice versa).

TABLE 4.1: Statistics of the MEDQA-USMLE-Symp dataset.

Label # Entities
Sign or Symptom 1579
Finding 1169
Temporal Concept 567
Location 498
Population Group 364
Age Group 304
No Symptom Occurrence 264

1https://github.com/Wimmics/MEDQA-USMLE-Symp

https://github.com/Wimmics/MEDQA-USMLE-Symp
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External Knowledge of Diseases and Relevant Symptoms. To collect the medical
knowledge needed to define whether a detected symptom is relevant with respect
to a given disease, we employ the HPO knowledge base to retrieve (i) the relevant
information of each diagnosis which is proposed as an option to answer the question
"Which of the following is the most likely diagnosis?", and (ii) the symptoms (named
terms in HPO) associated to each diagnosis. This knowledge base also includes in-
formation on the frequency2 of the occurrence of symptoms, defined in collaboration
with ORPHA3 as follows: Excluded (0%); Very rare (1-4%); Occasional (5-29%); Fre-
quent (30-79%); Very frequent (99-80%). Obligate (100%); HPO integrates different
sources of symptoms, including ORPHA and OMIM4. This knowledge base is quite
rich and contains also links and hierarchical links between symptoms (Symptom S2
subclass of Symptom S1), genes or definitions.

4.3.2 Proposed framework

An overview of the framework we propose to address automatic symptom relevancy
assessment and matching to build our natural language explanations is visualized
in Figure 4.1. Starting from the clinical cases in which the correct and incorrect di-
agnosis are already identified, the goal is to assess the relevant symptoms present in
the case such that these symptoms can be used to explain why a certain diagnosis is
the correct one and why the incorrect ones have to be discarded.

In order to accurately diagnose a patient’s condition, it is important to identify
the symptoms that are most relevant to the possible diagnoses. This means looking
at all of the symptoms that have been detected and determining which ones are most
likely to be related to the underlying cause of the patient’s condition. This can be
done by considering the individual symptoms and their potential connections to the
possible diagnoses. It is also important to consider any additional information that
may be available, such as the patient’s medical history and other relevant factors,
in order to be able to fully explain the diagnosis. Our work focuses on identifying
relevant symptoms in order to accurately diagnose a patient’s condition.

The relevancy assessment model associates, when possible, the pertinent symp-
toms mentioned in the clinical case description with a symptom of a diagnosis found
in the HPO knowledge base. The proposed framework consists of two different
steps, where: (i) we retrieve from HPO the required diagnosis information (i.e., the
symptoms and how common they are), then the symptoms in the case are detected
and extracted using an attention-based neural architecture which relies on the clini-
cal case text only; (ii) the relevancy of each symptom is assessed by matching the
detected symptoms with the ones retrieved from HPO. The matched symptoms

2https://hpo.jax.org/app/browse/term/HP:0040279
3https://www.orpha.net/consor/cgi-bin/index.php?lng=FR
4https://www.omim.org/

https://hpo.jax.org/app/browse/term/HP:0040279
https://www.orpha.net/consor/cgi-bin/index.php?lng=FR
https://www.omim.org/
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FIGURE 4.1: Overview of our full pipeline for symptom prediction
and alignment, and NL explanation generation module.

are then used to generate natural language argument-based explanations for cor-
rect and incorrect diagnoses. In the following, we explain in detail each sub-task in
the pipeline:
Symptoms detection, consisting in detecting the different symptoms described in
the clinical case (medical terms or symptoms described by the patient’s own words).
In order to detect these entities, we propose a neural approach based on pre-trained
Transformer Language Models.
Symptoms alignment, to align a symptom detected in the clinical case with an iden-
tical term in HPO. We first compute an embedding vector for each found symptom
and then calculate the cosine distance with each term in HPO. We then assign the
closest concept to that symptom. We evaluated both static and contextual embed-
ding methods.
Explanation generation We propose template-based explanations based solely on
the symptoms that are relevant to explain the diagnosis. To do this we propose sev-
eral templates that tackle different kinds of explanations, going from explaining why
a patient was given a certain diagnosis to explaining why the alternatives cannot be
considered viable options. We support our explanations with statistical information
obtained from HPO such as the frequency of each symptom incidence, and we pro-
pose to look for possible symptoms that were not detected by the system but are
frequent for a certain disease.

4.3.3 Evaluation

In this section, we report on the experimental setup, the obtained results and the
error analysis for the symptom detection and symptom alignment methods.

Setup. For the symptom detection task, we experimented with different transformer-
based Language Models (LMs) such as BERT [21], SciBERT [133], BioBERT [134],
PubMedBERT [68] and UmlsBERT [136] initialized with their respective pre-trained
weights. All the models we employ are specialized in the biomedical domain, with
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the exception of BERT which will serve us as a baseline. We cast the symptom detec-
tion problem as a sequence tagging task. Following the BIO-tagging scheme, each
token is labeled as either being at the Beginning, Inside or Outside of a component.
This translates into a sequence tagging problem with three labels, i.e., B-Sign-or-
Symptom, I-Sign-or-Symptom and Outside. To fine-tune the LMs, we use the PyTorch
implementation of huggingface [102] (v4.18). For BERT, we use the uncased base
model with 12 transformer blocks, a hidden size of 768, 12 attention heads, and a
learning rate of 2.5e-5 with Adam optimizer for 3 epochs. The same configuration
was used to fine-tune SciBERT BioBERT, PubMedBERT and UmlsBERT. For SciB-
ERT, we use both the cased and uncased versions, and for BioBERT we use version
1.2. Batch size was 8 with a maximum sequence length of 128 subword tokens per
input example.

Regarding the matching module, we experimented with two different methods
to align our detected symptoms with terms in HPO by (i) directly comparing the
computed embeddings of the detected symptoms with the embeddings of the terms
in HPO, and (ii) by taking into account the context in which the symptoms are de-
tected and applying the same context to every term in HPO.

To align our detected symptoms (in the clinical case) with the equivalent HPO
terms, we calculate the cosine distance of each embedding of the HPO terms with
respect to the embedding of the detected symptom. In the experimental setting of
(i) and (ii), we use the static pre-trained embeddings GloVe 6B as well as BERT,
SciBERT, BioBERT and UmlsBERT in the same configurations as in the symptom
detection task. For (ii), it is necessary to calculate the context embeddings “on the
fly" because each context is unique and depends on the clinical case where it was
detected. It is not reasonable to recalculate all HPO term embeddings on the fly for
each new context since the ontology contains 10,319 unique terms, so we propose
to generate all the HPO terms embedding at once and save them. Therefore, this
module takes as input the symptoms detected by the previous module and finds the
context5 of these symptoms in the clinical case.

The context C is embedded using sentence embedding methods and saved sep-
arately from the symptom S, and the two embeddings are added together (C ` S) to
form the reference R. This same context embedding C is added in the same way to
each HPO term embedding T1, T2, . . . , Ti to form the candidates C1, C2, . . . , Ci.

We compute and retrieve the five best cosine distances between C and R to ad-
dress a fair comparison with other systems.

We defined a test set of 23 cases where (i) we retrieved from HPO the symptoms
related to the diseases for each case, and (ii) we manually aligned the annotated
symptoms in the case to the concepts from HPO. This resulted in 162 symptoms
aligned to a specific term in HPO that serve us as a testing set for our matching
module.

5The context consists of the sentence(s) containing the symptom and the entire clinical case.
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As mentioned in Section 4.2, the system proposed by [138] offers a similar ap-
proach to translating layperson terms to medical terms in HPO. However, their work
does not take into account the context in which a symptom is found. To the best of
our knowledge, this system constitutes the state-of-the-art when translating layper-
son terms to HPO terms so we decided to compare our proposal with theirs. How-
ever, due to the unavailability of their model, we rely on their online demo, which
outputs only the top 5 ranking of the HPO terms that are closest to the input symp-
tom. To perform a comparison with our pipeline, we first compute the accuracy of
the aligned symptoms using our symptoms alignment module and then replace it
with [138] proposed system (DASH). Results are shown in Table 4.4.

Since a symptom can be composed of several words (e.g., “shortness of breath"),
we split the symptom into words that we encode by either using each word as an
input on Glove [58], or extracting directly from the contextualized models the rep-
resentation of the symptom by summarizing the hidden states of the last four layers
in the model. We then sum the vectors of each word to get an n-gram representation
of the symptom. We also explore sentence embeddings, by making use of Sentence-
BERT [71], a new model that derives semantically meaningful sentence embeddings
(i.e., semantically similar sentences are close in vector space) that can be compared
using cosine similarity. Sentence-BERT can be used with different pre-trained mod-
els, in this work we focus on the models BERT [21] , SciBERT [133], UMLSBERT [136]
and S-PubMedBert by [166]. The first represents a competitive baseline in our exper-
iments since it is the SOTA model for comparing sentences cross-domain, while the
three latter models are pre-trained on scientific or medical data or both.

To tackle both tasks we make use of our annotated dataset (Section 3). The an-
notations are converted into two datasets, one for each part of the pipeline. The first
dataset is used for the symptom detection task, and it is in the CoNLL format for
token-wise labels. The second dataset, for the symptom alignment task, is converted
into a csv format, where each symptom in the clinical case description and available
related knowledge (i.e., the list of symptoms and their frequencies for each possible
diagnosis associated with the case) extracted from HPO are paired.

Results. Results for the symptom detection task are shown in Table 4.2 in macro
multi-class precision, recall, and F1 score. We can observe that all models perform
similarly, with the best results from the specialized SciBERT [133] model. The biggest
difference in performance is given by comparing SciBERT uncased with PubMed-
BERT, with the SciBERT model performing better. Interestingly, BERT performs
closely to the specialized models, and, in some cases, it outperforms them. This
may be due to the fact that the clinical cases from our dataset are written for medical
exams at the med school. They contain some technical specialized words, but overall
the symptoms are described in layperson terms.

It is worth noticing that the majority of our labels do not pertain to medical ter-
minology (e.g. Age and Population Group, Location and Temporal Concept). Sign
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TABLE 4.2: Results for entity recognition in macro multi-class preci-
sion, recall, and F1-score.

Model P R F1
BERT 0.85 0.84 0.84
BioBERT v1.2 0.84 0.85 0.84
UmlsBERT 0.85 0.85 0.85
PubMedBERTbase 0.83 0.84 0.83
SciBERT cased 0.85 0.85 0.85
SciBERT uncased 0.85 0.86 0.86

TABLE 4.3: Results for entity recognition using our best performing
model (SciBERT uncased) in P, R, and F1-score.

Entity P R F1
Other 0.93 0.91 0.92
Age Group 1.00 0.97 0.98
Finding 0.85 0.88 0.86
Location 0.74 0.80 0.77
No Symptom Occurrence 0.79 0.72 0.75
Population Group 0.88 0.95 0.91
Sign or Symptom 0.83 0.82 0.82
Temporal Concept 0.78 0.87 0.82
Weighted avg 0.89 0.89 0.89
Macro avg 0.85 0.86 0.86

or Symptom and Finding are the only labels that require specialized vocabulary.
Overall, SciBERT uncased is the best-performing model (in bold) with a macro

F1-score of 0.86, outperforming the other approaches for each of the categories. In
Table 4.3 we report the performances for each entity with the best-performing model.
The Sign or Symptom detection task obtains a 0.82 F1 score. In the work of [137], the
authors also detect symptoms obtaining an F1 score of 0.61. However, these results
can not be directly compared since the datasets on which both models were fine-
tuned are different: we train on clinical cases, while they use dialogues between
doctors and patients. Moreover, given that the dataset they use is not released, we
can not evaluate our approach to their data.

The results of the symptoms alignment module experiments are summarised in
Table 4.4. As baseline models, we propose to use the same methods but without the
context of the symptom, similarly to [138] DASH. In Table 4.4 we show only the best-
performing baseline PubMedBERT no context obtaining similar results to DASH (0.41
and 0.37, respectively). Adding contextual representation to the embeddings results
in a significant improvement (up to 0.53 in accuracy) supporting the hypothesis that
context plays an important role when translating layperson terms to formal medical
terms.

Error Analysis. HPO has limitations with respect to the number of symptoms asso-
ciated with each diagnosis. For some diagnoses, we have multiple symptoms, while
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TABLE 4.4: Results for DASH and our symptom alignment method
using different embeddings with and without context (accuracy

score).

Model Accuracy
DASH 0.37
PubMedBERT no context 0.41
BERT + context 0.38
SciBERT + context 0.39
UMLSBERT + context 0.44
S-PubMedBERT + context 0.53

for others we can have only one or none. We have observed that the model tends
to make more mistakes when diagnosing mental diseases. Upon further inspection
of the nature of HPO for such diagnoses, we have found that either the diagno-
sis is not present in the HPO ontology, or the symptoms listed are more general in
nature. These symptoms include common ones such as changes in appetite or low en-
ergy, which alone may not be relevant, but when considered together, may indicate
a precise diagnosis. Additionally, some relevant symptoms may not be explicitly
described but encoded in the clinical cases as Findings.

These findings often refer to a relevant symptom that is not explicitly mentioned
in the case, like in the example introduced in Section 3 about findings, where we
have ”respirations are 24/min" that, combined with the fact that the patient is a 34-
year-old woman, means that she has dyspnea. Automatically deriving this implicit
knowledge remains an open challenging issue. Given that we rely on HPO only,
some diseases or diagnoses are not present in the knowledge base, preventing us
from generating the associated explanations. Combining HPO with more special-
ized medical knowledge bases is a future direction for this work, both to complete
the information we have and also to integrate new diagnoses.

4.4 Assessing Explanatory Power

In domains like healthcare and education, the ability of an AI system to explain its
reasoning is critical for acceptance and effective use. However, recent research re-
veals that many state-of-the-art explainable AI (XAI) [120, 121] techniques fail to
generate high-quality explanations that users can intuitively comprehend and val-
idate [122, 123]. Explanations often lack sound justifications, exhibit redundancy,
or do not match how humans perform explanation selection and assessment [124].
This demonstrates an open challenge in developing AI systems capable of producing
cogent, non-redundant explanations that manifest transparent rationale.

A crucial step towards explainable AI is the ability to automatically assess the
quality of explanations by evaluating the explanatory power of the underlying rea-
sons. Explanatory power refers to how strongly a reason influences the occurrence
of an event, based on relevance, abnormality, and contrast to alternatives [111, 151].
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By algorithmically scoring explanation reasons on these key criteria, we can deter-
mine the strength of the provided justifications. This facilitates comparison to hu-
man explanation best practices and enables iterative improvements to explanation
generation. In our context, medical students play the role of explainers, where they
have to provide explanations for different clinical cases.

Building on the ability to identify and encode relevant clinical features into stan-
dard terminology, the next step is determining which of these features serve as the
strongest reasons to explain a given diagnosis. To enable such assessment in a sys-
tematic and transparent manner, we propose a novel approach that leverages an
external knowledge base and a deterministic prevalence function. This prevalence
function acts similarly to a recipe, taking into account different predefined condi-
tions (like relevance, abnormality, and contrast) and returning a pertinence score in
a transparent, step-by-step manner.

When applied to the medical field, our approach scrutinizes explanations pro-
vided in medical examinations, wherein medical residents elucidate a specific diag-
nosis of a patient, given the context (i.e., a clinical case detailing the patient’s con-
dition) and their medical expertise. Consequently, we generate an assessment that
identifies the reasons employed in the explanation and evaluates them against the
relevance scoring produced by our approach. Our approach leverages an external
knowledge base, the Human Phenotype Ontology (HPO) [50], and a deterministic
prevalence function to score each reason based on its pertinence in the domain. This
function allows to elaborate the resulting reasons’ scores, in a transparent way. We
evaluate our approach on the Antidote Casimedicos dataset [167], a unique resource
comprising 621 clinical case descriptions, each with a set of potential diagnoses, an
indicator of the correct answer, and a detailed explanation of the decision-making
process provided by medical professionals. The results obtained on this dataset
show the effectiveness of the proposed approach.

While our methodology is assessed on a use case from the medical domain, it is
abstract enough to be applied to any domain. We envision two potential scenarios
where our methodology could be particularly beneficial: AI for education and on-
line medical fora. In the context of AI for education, our approach can assist medical
resident students in learning how to solve medical cases. By providing a system-
atic and transparent way of evaluating the reasons given in explanations, we can
help students to understand the rationale behind a specific diagnosis and why other
potential diagnoses are dismissed. In online medical fora, our approach can help on-
line users to distinguish good explanations from bad explanations in medical fora.
Users often discuss diagnoses and share their experiences, but the quality of these
discussions can vary widely. With our approach, we can provide a systematic and
transparent way of evaluating the reasons given in these discussions, helping users
and moderators identify high-quality explanations and promote more informed dis-
cussions.

The research presented in this chapter is driven by the necessity for a systematic
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and transparent methodology to assess the pertinence of reasons used in medical ex-
planations. To the best of our knowledge, this is the first approach that leverages an
external knowledge base, the Human Phenotype Ontology (HPO), and a determin-
istic prevalence function to evaluate the reasons of the potential diagnoses based on
their relevance in the context of a specific clinical case and grounding on the HPO
knowledge base.

4.4.1 Assessing Reasons used in Explanations

My approach to assessing the reasons used in explanations is visualized in Fig-
ure 4.2. I start with a clinical case of a patient, supplemented by an explanation
provided by a medical expert, which elaborates on the specific diagnosis attributed
to the patient. The objective is to evaluate the reasons invoked by the expert to justify
the medical diagnosis. To achieve this, I compute a pertinence score using a determin-
istic prevalence function (see Section 4.4.4), which ensures complete transparency,
allowing us to explain why each reason is more or less pertinent than the others
with respect to the given case.

The HPO Ontology [50] serves as our external knowledge base (KB), providing
a standardized vocabulary of phenotypic abnormalities encountered in human dis-
eases. This external KB is used to facilitate the evaluation of the reasons given in the
explanation.

The approach I propose consists of two main steps: (i) the reasons given in the
explanation are extracted from the clinical case and encoded into HPO terms (fol-
lowing the approach proposed in Section 4.3), in which a medical Named Entity
Recognition (NER) step is performed, to then align them into HPO terms. This al-
lows us to retrieve all the standardized information the ontology contains, such as
the definition and the occurrence rate of that term in each possible disease; (ii) the
pertinence score for each reason is computed using the prevalence function, which
takes into account the relevance of each reason in the context of the specific clinical
case and the knowledge base.

4.4.2 Data Preprocessing

While the MEDQA-USMLE-Symp dataset 4.3.1 allowed us to identify and encode
relevant clinical features, our next goal is assessing the explanatory power of those
features in expert diagnoses. For this, we need a dataset that provides expert ex-
planations justifying the reasoning behind each diagnosis. To obtain such data,
we utilize the Antidote Casimedicos dataset [167], which shares similarities with
MEDQA-USMLE-Symp in its medical domain and exam-style clinical case struc-
ture. It contains 621 clinical cases describing patient symptoms and history, and like
MEDQA-USMLE-Symp, each case has a set of possible diagnoses and an indicator
of the correct answer.
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FIGURE 4.2: Overview of our approach for the automatic assessment
of explanation’s reasons.

The key difference is that the Antidote Casimedicos dataset also provides de-
tailed explanations written by medical professionals, justifying their diagnosis and
contrasting alternatives. These explanations offer a rich basis for evaluating how
doctors select the most pertinent reasons to explain diagnoses.

Since the two datasets share a similar clinical case structure, the natural language
processing techniques used previously to extract symptoms from case descriptions
remain applicable. The Antidote Casimedicos data builds on the encoded clini-
cal features by adding expert rationale. This allows us to assess feature relevance
against doctor-provided explanations, enabling explanation quality evaluation.

To prepare the data, we first enhance contextual information in the explanations
by expanding abbreviated diagnosis references. It is common for the explainer to
refer to diagnoses as “Answer 1”, thus we implement a string replacement with
the corresponding answer. Subsequently, as delineated in [167], the dataset encom-
passes various types of questions. For the purpose of evaluating the explanations
provided by the experts, we manually filter out cases that solely discuss potential
diagnoses of the patients, yielding a total of 206 clinical cases.

4.4.3 Identification and Alignment of Potential Causes

The initial phase of our approach (Figure 4.2) consists in identifying all potential
causes within the given context. In our medical scenario, this context is represented
by clinical cases, and we regard all symptoms as potential causes that could explain
the patient’s diagnosis. To address this, we employ the approach proposed in Sec-
tion 4.3, which performs two critical steps: the first step involves the recognition of
medical-named entities within the text, and the second step aligns these identified
entities with the corresponding terms from HPO.
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4.4.4 Prevalence Function

The Prevalence Function 2 is a central component of our approach, designed to sys-
tematically assess the pertinence of each possible reason that could explain a given
event. This function is inspired by cognitive processes involved in explanation se-
lection, aiming to replicate these processes in a transparent and replicable manner.
The function takes into account the possible reasons found in the clinical case (see
Section 4.4.3) and a KB that serves to find other possible reasons outside of the con-
text but still relevant to the case. It then evaluates all possible reasons based on a
set of predefined conditions, each of which contributes to the final prevalence score
of the key reason. These conditions include whether the key reason is linked to the
correct or incorrect diagnosis, its occurrence rate, and whether it is unique to the
correct diagnosis, or shared among all possible diagnoses. In line with the abnormal
conditions model, our function assigns a higher score to key reasons that are unique
to the correct diagnosis and have a low occurrence rate. This reflects the idea that
abnormal conditions, i.e., conditions that do not usually occur, are more likely to be
the cause of an event. Moreover, our approach integrates the concept of contrastive
explanation. For instance, if a symptom associated with an incorrect diagnosis has a
high occurrence rate and does not appear in the clinical case, it can be invoked to dis-
card the incorrect diagnosis. This aligns with the idea that the differences between
two events form the basis for the explanation.

The computation of the prevalence function starts with the acquisition of the set
of potential reasons to be evaluated. In the context of medical diagnosis, these rea-
sons correspond to symptoms, which can be identified either within the clinical case
or within the Human Phenotype Ontology (HPO) as symptoms associated with each
potential diagnosis. This information facilitates the definition of three distinct sets
of reasons, which serve as the basis for the computation of the Prevalence function:

• SymptomsO f CorrectDiagnosis: symptoms that belong to the correct disease;

• SymptomsO f IncorrectDiagnosis: symptoms that belong to all the incorrect dis-
eases;

• PresentSymptoms: symptoms found in the case description.

The Prevalence Function is then used in conjunction with the additional disease
information and symptom sets obtained from the HPO to produce a list of key rea-
sons and their calculated prevalence scores. This allows us to provide a robust and
transparent framework for assessing the quality of the reasons on which the expla-
nations are grounded.

Prevalence Function Algorithm The Prevalence Score Function, as outlined in Al-
gorithm 2, is designed to assess the relevance or pertinence of a given key reason
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in the context of a clinical case (CC) and a knowledge base (KB). The function oper-
ates by assigning a score to the key reason based on its presence in the correct and
incorrect diagnoses, its occurrence rate, and its presence in the clinical case.

The function begins by initializing the score to zero and setting several boolean
variables to false (lines 2-6). It then retrieves the symptoms associated with the cor-
rect and incorrect diagnoses from the knowledge base (lines 7-8) and identifies the
symptoms present in the clinical case using Named Entity Recognition (NER) (line
9).

The function then checks if the key reason is present in the symptoms of the
correct diagnosis (lines 10-15). If it is, the function increments the score and sets
the variable linkedToCorrectDiagnosis to true. If not, linkedToCorrectDiagnosis is set to
false.

Next, the function checks if the key reason is present in the symptoms of the
incorrect diagnoses (lines 16-20). If it is, the variable linkedToIncorrectDiagnosis is set
to true. If not, it is set to false.

The function then checks the occurrence rate of the key reason (lines 21-28). If
the key reason has a high occurrence rate (more than 70%), the variable hasHigh-
OccurrenceRate is set to true, and if it is linked to the correct diagnosis, the score is
incremented. If the key reason has a low occurrence rate (less than 30%), the variable
hasLowOccurrenceRate is set to true.

The function then checks if the key reason is unique to the correct diagnosis or
shared with other diagnoses (lines 29-40). If the key reason is unique to the correct
diagnosis and has a low occurrence rate, the score is incremented twice. If the key
reason is shared with other diagnoses, the score is decremented.

Finally, the function checks if the key reason is present in the symptoms of the
incorrect diagnoses but not in the present symptoms (lines 41-48). If the key reason
has a high occurrence rate, the score is incremented. Otherwise, the score is decre-
mented.

The final score represents the prevalence of the key reason in the context of the
specific clinical case, providing a measure of its relevance or pertinence.

4.4.5 Reason Alignment via Sentence Matching

A crucial step in our approach is the alignment of potential causes (i.e., reasons)
identified in the clinical case with those actually invoked in the expert’s explana-
tion. This alignment (visualized as the “Reasons alignment module” in Figure 4.1)
is achieved through a sentence matching technique. The objective of this step is to
discern which of the potential reasons identified in the clinical case were actually uti-
lized by the experts in their explanation, thereby enabling subsequent suggestions
of modifications to enhance the explanation’s pertinence.

Our approach to sentence matching is inspired by the work of Lu et al. [168],
particularly their creation of an intermediate dataset using a distance metric for
fine-tuning their sentence-matching model. In their work, Lu et al. [168] employ
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Algorithm 3 Prevalence Function

0: procedure PREVALENCEFUNCTION(KeyReason, CC, KB)
0: score “ 0
0: uniqueToCorrectDiagnosis “ False
0: sharedToOtherDiagnosis “ False
0: hasLowOccurrenceRate “ False
0: hasHighOccurrenceRate “ False
0: SymptomsO f CorrectDiagnosis = KBpCorrectDiseaseq

0: SymptomsO f IncorrectDiagnosis = KBpIncorrectDiseasesq

0: PresentSymptoms = NERpCCq

0: if KeyReason is in SymptomsO f CorrectDiagnosis then
0: linkedToCorrectDiagnosis “ True
0: score = score + 1
0: else
0: linkedToCorrectDiagnosis “ False
0: end if
0: if KeyReason is in SymptomsO f IncorrectDiagnosis then
0: linkedToIncorrectDiagnosis “ True
0: else
0: linkedToIncorrectDiagnosis “ False
0: end if
0: if KeyReason has a high occurrence rate (more than 70%) then
0: hasHighOccurrenceRate “ True
0: if linkedToCorrectDiagnosis ““ True then
0: score = score + 1
0: end if
0: else if KeyReason has a low occurrence rate (less than 30%) then
0: hasLowOccurrenceRate “ True
0: end if
0: if KeyReason is in SymptomsO f CorrectDiagnosis then
0: if KeyReason is not in SymptomsO f IncorrectDiagnosis then
0: uniqueToCorrectDiagnosis “ True
0: score “ score ` 1
0: if hasLowOccurrenceRate ““ True then
0: score “ score ` 1
0: end if
0: else if KeyReason is in SymptomsO f IncorrectDiagnosis then
0: sharedToOtherDiagnosis “ True
0: score “ score ´ 1
0: end if
0: end if
0: if KeyReason is in SymptomsO f IncorrectDiagnosis then
0: if KeyReason is not in PresentSymptoms then
0: if KeyReason has a high occurrence rate then
0: score “ score ` 1
0: else
0: score “ score ´ 1
0: end if
0: end if
0: end if
0: end procedure=0
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the Jaccard distance to identify sentences with high similarity between complex and
simplified texts. We adapt this strategy to our context, aiming to locate similar rea-
sons between the clinical case and the explanations provided by the explainer. In our
adaptation of Lu et al.’s approach, we aim to identify similar reasons between the
clinical case and the explanations provided by the experts. However, our methodol-
ogy diverges in two key aspects: the choice of distance metric, and the preprocessing
of the texts for comparison. Instead of employing the Jaccard distance, we opt for a
process that begins with the detection of medical-named entities within both texts.
Following this, the texts are segmented into individual sentences.

Subsequently, we compute sentence embeddings using only the identified named
entities. This computation leverages the Sentence Transformers method [71], using
various pre-trained models specialized in scientific text. To align sentences from the
clinical case with those in the explanations, we employ cosine similarity. A match
is considered valid only when the cosine distance is sufficiently close, ensuring that
only highly similar sentences are matched, thereby enhancing the precision of our
reason alignment process.

4.4.6 Template-Based Explanation Generation

In the final step of our pipeline, we employ a template-based generation approach to
articulate the pertinence of each reason. This approach allows us to generate natural
language explanations that are understandable by human users. Each template is
designed to address a specific combination of features associated with a reason, and
the appropriate template is selected based on the values of these features for each
reason. The features considered in our approach are:

• uniqueToCorrectDiagnosis indicates whether the reason is unique to the correct
diagnosis.

• sharedToOtherDiagnosis indicates whether the reason is shared with other diag-
noses.

• hasLowOccurrenceRate indicates whether the reason has a low occurrence rate.

• hasHighOccurrenceRate indicates whether the reason has a high occurrence rate.

• linkedToCorrectDiagnosis indicates whether the reason is directly linked to the
correct diagnosis.

• linkedToIncorrectDiagnosis indicates whether the reason is linked to an incorrect
diagnosis.

• presentInClinicalCase indicates whether the reason is present in the clinical case.

Based on the values of these features, a template, like the following, is selected
to generate the explanation:
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• Template 1: "You should consider invoking the reason [reason] since it is unique
to the correct diagnosis, has a high occurrence rate, and is present in the clinical
case."

• Template 2: "You should also consider invoking the reason [reason] since it
is a symptom with a high occurrence rate for the incorrect disease [disease],
and it does not appear in the clinical case, supporting discard [disease] as the
correct diagnosis."

• Template 3: "You should consider removing the reason [reason] since it is a
common symptom alongside all possible diagnoses."

This template-based generation approach allows us to generate explanations that
are informative and specific to the context of each reason, thereby ensuring the in-
terpretability of the proposed approach.

4.4.7 Evaluation

In this section, we first present the experimental setting we propose to assess our
approach, and then we discuss the obtained results. Finally, we apply our approach
to a clinical case to discuss the final outcome of the pipeline.

Experimental Setting. The main experimental component of our task is the
named entity-based sentence matching. This task can be decomposed into two sub-
tasks: first, the generation of tuples of similar sentences based on the medical NERs,
and second, the fine-tuning of Language Models (LMs) using the aforementioned
dataset.

The tuple generation process begins with the segmentation of the clinical cases
and the corresponding explanations into individual sentences. Subsequently, we
employ the initial step of the approach proposed by Marro et al. [106], which in-
volves the detection of medical named entities. These entities are joined into a single
sentence and serve as input to the sentence embedding model [71]. We then com-
pute cosine distances between each sentence in the clinical case and each sentence
in the associated explanation. Then a dataset composed of

pcase_id, answer_sentencei, case_sentencej, tTrue|Falseuq

tuples is generated. For the fine-tuning of the LMs, we employ the PyTorch imple-
mentation provided by Hugging Face [102]. The experiments were conducted with a
batch size of 8, a maximum sequence length of 256, and a learning rate of 2.5e-5 over
4 epochs. We selected all-mpnet-base-v2 [71] as our baseline, and fine-tuned models
such as BioBERT v1.2 [134], S-PubMedBert-MS-MARCO [166], and BioBERT-mnli-
snli-scinli-scitail-mednli-stsb [169] as more domain-specific LMs under the same ex-
perimental setting. Despite each transformer model achieving its best results with a
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different cosine similarity threshold for performing the named entity-based match-
ing, we kept a threshold value of 0.975 to ensure the matching of sentences with the
highest possible semantic coherence.

Results. In this section, we present the obtained results on the Casimedicos
dataset. We evaluate the quality of explanations written by experts, highlighting
both successful and unsuccessful examples. The performance of the sentence match-
ing task is quantified in terms of macro-average precision, recall, and F1 score, as
shown in Table 4.5.

We adopt the all-mpnet-base-v2 model as our baseline, being it the state-of-the-
art for sentence embedding computation across various domains. However, our
results indicate that domain-specific models outperform this baseline across all met-
rics. In particular, the model based on PubMedBert [68, 166] demonstrates superior
performance, achieving the highest scores in precision, recall, and F1 score (high-
lighted in bold in Table 4.5). These results underline the importance of domain-
specific models in achieving high-quality sentence matching.

TABLE 4.5: Results for named entity-based matching in macro multi-
class precision, recall, and F1-score.

Model P R F1
all-mpnet-base-v2 0.84 0.70 0.74
BioBERT cased v1.2 0.84 0.76 0.80
BioBERT-mnli-snli-scinli-scitail-mednli-stsb 0.85 0.79 0.82
S-PubMedBert-MS-MARCO 0.89 0.85 0.87

To illustrate the outcome of our approach, we present a full clinical case, the
expert’s explanation, and the assessment of reasons from the CasiMedicos dataset.
We consider a clinical case where the correct diagnosis is Porphyria cutanea tarda.
The other potential diagnoses considered are Epidermolysis bullosa acquisita, Acute
intermittent porphyria, and Ulerythema ophryogenesis.

Clinical Case: “A 62-year-old man with a history of significant alcohol abuse, carrier
of hepatitis C virus, treated with Ibuprofen for tendinitis of the right shoulder, goes
to his dermatologist because after spending two weeks on vacation at the beach he
notices the appearance of tense blisters on the dorsum of his hands. On examination,
in addition to localization and slight malar hypertrichosis.”

Expert’s Explanation: “Porphyria Cutanea Tarda: 60% of patients with PCT are
male, many of them drink alcohol in excess, women who develop it are usually
treated with drugs containing estrogens. Most are males with signs of iron overload,
this overload reduces the activity of the enzyme uroporphyrinogen decarboxylase,
which leads to the elevation of uroporphyrins. HCV and HIV infections have been
implicated in the precipitation of acquired PCT. There is a hereditary form with AD
pattern. Patients with PCT present with blistering of photoexposed skin, most fre-
quently on the dorsum of the hands and scalp. In addition to fragility, they may
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develop hypertrichosis, hyperpigmentation, cicatricial alopecia, and sclerodermal
induration.”

Assessment of Reasons: The generated explanations for the top and bottom scoring
reasons are as follows:

• You should consider invoking the reason Abnormal blistering of the skin since it
is a symptom unique to the correct diagnosis, has a high occurrence rate, and
it is present in the clinical case.

• You should also consider invoking the reason Abnormal hair morphology since it
is a symptom with a high occurrence rate for the incorrect disease Epidermol-
ysis bullosa acquisita, and it does not appear in the clinical case, supporting
discard Epidermolysis bullosa acquisita as the correct diagnosis.

• You should consider invoking the reason Alcoholism since it is a symptom
unique to the correct diagnosis and present in the clinical case.

• The symptom Contact dermatitis does not meet the criteria for a strong reason
in this case.

• The symptom Dry skin does not meet the criteria for a strong reason in this
case.

• The symptom Dermal atrophy does not meet the criteria for a strong reason in
this case.

The Expert’s Explanation for this case attributes the patient’s condition to Por-
phyria Cutanea Tarda (PCT), citing factors such as the patient’s gender, alcohol
abuse, and the presence of blistering on photoexposed skin. These align with our
top-scoring reasons in the Assessment of Reasons, demonstrating the agreement be-
tween the expert’s explanation and our assessment. In the expert’s explanation, the
symptom “Abnormal hair morphology” is not mentioned. However, our method-
ology identifies it as a significant reason that could enhance the explanation. This
symptom is common in the incorrect disease Epidermolysis bullosa acquisita, but it
is not present in the clinical case. Therefore, its absence provides a strong reason
to discard Epidermolysis bullosa acquisita as the correct diagnosis. This additional
information could potentially enhance the expert’s explanation by providing fur-
ther evidence to support the correct diagnosis and rule out other alternatives. This
demonstrates the capability of our approach not only to validate the reasons used
by the expert but also to suggest new pieces of information that could enrich the
explanation.

4.5 Natural Language Explanation Generation

In the previous section, we described the first steps of our pipeline for automatically
identifying the relevant symptoms which occur in the clinical case description and
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then matching them with the symptoms associated with the diseases in the medical
knowledge base HPO. We move now to the last step of the pipeline, i.e., the genera-
tion of natural language explanatory arguments, according to the identified relevant
symptoms for the correct and incorrect diagnoses. Given the specificity of the clinical
data we are dealing with, we decided to address this task by generating explanations
through the definition of explanatory patterns [145–147]. We have therefore defined
different patterns which take into account the different requirements of our use case
scenario, where we aim at (i) explaining the correct answer by the detected symp-
toms and their frequency, (ii) explaining why the incorrect options cannot hold, and
(iii) highlighting the relevant symptoms not explicitly mentioned in the clinical case.
Let us consider the following clinical case, where in bold we highlight the symptoms
and we underline the relevant symptoms supporting the correct answer.

Clinical case. A previously healthy 34-year-old woman is brought to the physician be-
cause of fever and headache for 1 week. She has not been exposed to any disease. She
takes no medications. Her temperature is 39.3°C (102.8°F), pulse is 104/min, respirations are
24/min, and blood pressure is 135/88 mm Hg. She is confused and oriented only to person.
Examination shows jaundice of the skin and conjunctivae. There are a few scattered pe-
techiae over the trunk and back. There is no lymphadenopathy. Physical and neurologic
examinations show no other abnormalities. Test of the stool for occult blood is positive.
Laboratory studies show: Hematocrit 32% with fragmented and nucleated erythrocytes
Leukocyte count 12,500/mm3 Platelet count 20,000/mm3 Prothrombin time 10 sec Partial
thromboplastin time 30 sec Fibrin split products negative Serum Urea nitrogen 35 mg/dL
Creatinine 3.0 mg/dL Bilirubin Total 3.0 mg/dL Direct 0.5 mg/dL Lactate dehydrogenase
1000 U/L Blood and urine cultures are negative. A CT scan of the head shows no abnormal-
ities. Which of the following is the most likely diagnosis?

The correct diagnosis is Thrombotic thrombocytopenic purpura, whilst the other
(incorrect) options are Disseminated intravascular coagulation, Immune thrombo-
cytopenic purpura, Meningococcal meningitis, Sarcoidosis and Systemic lupus ery-
thematosus.

Why Pattern. We focus here on the correct diagnosis explanation pattern, which
allows explaining why this is the correct diagnosis. We define the following template
to generate our natural language explanations:

Definition 1 (Why for correct diagnosis) The patient is showing a [CORRECT DIAGNOSIS]
as these following symptoms [PERFECT MATCHED SYMPTOMS, MATCHED SYMPTOMS]
are direct symptoms of [CORRECT DIAGNOSIS].

Moreover, [OBLIGATORY SYMPTOMS] are obligatory symptoms (always present, i.e., in
100% of the cases) and [VERY FREQUENT SYMPTOMS] are very frequent symptoms (holding
on 80% to 99% of the cases) for [CORRECT DIAGNOSIS] and are present in the case description.6

In Template 1, the [CORRECT DIAGNOSIS] represents the correct answer to the
question "Which of the following is the most likely diagnosis?" and therefore the

6Sources from HPO: https://hpo.jax.org/app/browse/term/HP:0040279

https://hpo.jax.org/app/browse/term/HP:0040279
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correct diagnosis of the described disease. The [SYMPTOMS] in bold represent the
symptoms automatically detected through the first module of our pipeline, and they
are also underlined when they are considered as relevant by our matching mod-
ule, i.e., they are listed among the symptoms for the disease in the HPO knowledge
base. Both [PERFECT MATCHED SYMPTOMS] and [MATCHED SYMPTOMS]
in Template 1 are considered relevant but they differ in the confidence level the
system assigns to the matched symptoms. This allows us to integrate a notion of
granularity in our explanations and to rely on the symptoms detected in the clini-
cal case that strongly match with a symptom in HPO. If the system does not detect
any relevant symptom, no explanation is generated for the correct answer. Further-
more, we employ the information about the symptom frequencies (retrieved through
HPO) in the [OBLIGATORY SYMPTOMS] and [VERY FREQUENT SYMPTOMS]
to generate stronger evidence to support our natural language argumentative expla-
nations. Sometimes the frequencies are not available in the HPO, in which case we
do not display them in our final explanation.

We present now some examples of explanatory arguments automatically gener-
ated by our system.

Example 4.5.1 The patient is showing a [Thrombotic thrombocytopenic purpura] as these follow-
ing symptoms [Headache, Fever, Confusion (Oriented to persons) and
Reticulocytosis (Jaundice of the skin)] are direct symptoms of [Thrombotic thrombocytopenic pur-
pura].

Moreover [Reticulocytosis (Jaundice of the skin)] are very frequent symptoms (holding on
80% to 99% of the cases) for [Thrombotic thrombocytopenic purpura] and are present in the case
description.

When filling the [SYMPTOMS] span in Template 1, we inject only the symp-
toms matched in the HPO for the [PERFECT MATCHED SYMPTOMS], and we
combine the HPO symptoms with the symptoms detected in the case description for
the [MATCHED SYMPTOMS] in this form: [matched symptom in HPO (detected
symptom in the clinical case)] (e.g., in Example 4.5.1:
Confusion (Oriented to persons) and Reticulocytosis (Jaundice of the skin))

Why not Template. Explaining why a diagnosis is the correct one is important, but
it is also necessary to be able to say why the other options are not correct as possible
diagnoses for the clinical case under investigation [108]. We, therefore, propose to
provide explanations based on the relevant symptoms for the incorrect options by
contrasting them with the clinical case at hand.

Definition 2 (Why not for incorrect diagnosis) Concerning the [INCORRECT DIAGNOSIS]
diagnosis, it has to be discarded because the patient in the case description is not showing [INCOR-
RECT DIAGNOSIS SYMPTOMS FROM HPO (MINUS DETECTED SYMPTOMS IN CASE)]
symptoms.

Despite [SHARED CORRECT SYMPTOMS] symptoms shared with the [CORRECT DIAG-
NOSIS] correct diagnosis, the [INCORRECT DIAGNOSIS] diagnosis is based on [INCORRECT
DIAGNOSIS SYMPTOMS].



68 Chapter 4. Integrating and Assessising External Knowledge in Medical Text

Moreover, [OBLIGATORY SYMPTOMS] are obligatory symptoms (always present, i.e., in
100% of the cases) and [VERY FREQUENT SYMPTOMS] are very frequent symptoms (holding
on 80% to 99% of the cases) for [INCORRECT DIAGNOSIS], and they are not present in the case
description.

Template 2 can be applied to each incorrect possible answer of the case, indi-
vidually. The incorrect answer corresponds to the [INCORRECT DIAGNOSIS] and
[INCORRECT DIAGNOSIS SYMPTOMS] are all relevant symptoms associated
with this disease in the HPO knowledge base, without the symptoms in common
with the correct answer. Again, in the template, we use the frequencies provided
by HPO to provide further evidence to make our explanatory arguments more ef-
fective. The template includes therefore with [OBLIGATORY SYMPTOMS] and
[VERY FREQUENT SYMPTOMS] the mandatory and very frequent symptoms of
the incorrect diagnosis, which are missing in the clinical case description. The fol-
lowing explanations are automatically generated for (one of) the incorrect diagnoses
of the clinical case we introduced at the beginning of this section.

Example 4.5.2 Concerning the [Meningococcal meningitis] diagnostic, it has to be discarded be-
cause the patient in the case description is not showing [Stiff neck, Nuchal rigidity or CSF pleo-
cytosis, Increased CSF protein, Hypoglycorrhachia] symptoms.

Despite [Petechiae, Fever, Headache] symptoms shared with the [Thrombotic thrombocytopenic
purpura] correct diagnosis, the [Meningococcal meningitis] diagnosis is based on [Stiff neck, Nuchal
rigidity or CSF pleocytosis, Increased CSF protein and Hypoglycorrhachia].

Moreover, [Stiff neck, Nuchal rigidity, CSF pleocytosis, Increased CSF protein or Hypo-
glycorrhachia] are very frequent symptoms (holding on 80% to 99% of the cases) for [Meningococcal
meningitis] and are not present in the case description.

Example 4.5.2 shows the NL explanation of why the possible answer [Meningo-
coccal meningitis] is not the correct diagnosis given the symptoms discussed in the
clinical case description. In case the disease is not found in HPO, we do not generate
the associated explanation.

Additional Explanatory Arguments. In order to enrich our explanations with ad-
ditional explanatory arguments to improve critical thinking in the medical residents,
we also generate another template. Indeed, in some clinical cases, it is possible that
the symptoms are not sufficient to explain the diagnosis or sometimes the symptom
has to be combined with vital signs or other characteristics of the patient to be cor-
rectly interpreted. Some of these signs represent potentially important symptoms for
the diagnosis, as in the previous example, where the sentence respirations are 24/min
could be associated with the symptom of Dyspnea in HPO. Template 3 aims at draw-
ing the medical residents’ attention to (statistically) important symptoms that are
missing or not explicitly mentioned in the clinical case description:

Definition 3 Furthermore, [CORRECT DIAGNOSIS VERY FREQUENT SYMPTOMS (MI-
NUS MATCHED SYMPTOMS)] are also frequent symptoms for [CORRECT DIAGNOSIS] and
could be found in the findings of the clinical case.
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Example 4.5.3 is generated by our system and brings attention to Dyspnea. This
additional explanatory argument complements the explanation we generate for the
correct and incorrect diagnoses in the case presented at the beginning of this section.

Example 4.5.3 Furthermore, [Dyspnea, Thrombocytopenia, Generalized muscle weakness,
Reticulocytosis, and Microangiopathic hemolytic anemia] are also frequent symptoms for [Throm-
botic thrombocytopenic purpura] and could be found in the findings of the clinical case.

4.6 Concluding Remarks

In this chapter, a pipeline is presented to generate natural language explanatory ar-
guments for correct and incorrect diagnoses in clinical cases. The pipeline first au-
tomatically identifies relevant symptoms in a clinical case description and matches
them to medical knowledge base terms to associate symptoms with potential diag-
noses. It then generates explanatory arguments highlighting why one diagnosis is
deemed correct and others incorrect. Experiments on a dataset of 314 clinical cases
in English demonstrate promising results, with 0.86 F1-Score for symptom detection
and 0.53 accuracy for top-5 symptom matching, outperforming competitive base-
lines and state-of-the-art approaches.

Furthermore, an approach is presented to recognize the cognitive processes un-
derlying explanation selection and aim to emulate them transparently. By incor-
porating principles of abnormality and contrastive explanation, the approach is at-
tuned to real-world explanation selection, with a focus on medicine. By leveraging
the Human Phenotype Ontology and named entity recognition, potential reasons
are identified and assessed systematically to evaluate explanation alignment with
expert perspectives and suggest enhancements.

However, limitations exist. Template-based explanation generation has draw-
backs like design dependence and inflexibility that may reduce effectiveness in dy-
namic settings. Nevertheless, as symptoms are stable data, this is less concerning
in the current medical application. Future work could investigate conversational
systems and adaptive explanation strategies customized to users’ knowledge. Ex-
panding the approach to multiple knowledge bases could incorporate more external
evidence to further validate claims. Overall, the proposed techniques demonstrate
promising capability in extracting, aligning, and assessing clinical arguments to ap-
ply external medical knowledge. Opportunities remain to enhance reasoning trans-
parency through expanded knowledge and personalized interaction.
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Chapter 5

Argument Mining on Clinical
Trials

This chapter introduces the different applications I contributed to during my
Ph.D. These applications span from the Covid-on-the-Web project developed to
address an argumentative analysis of the clinical articles about COVID-19 to the
study of the effect of interventions on the outcomes for the AbsRCT dataset [22]
towards the implementation of a web tool that provides argumentative analysis
of medical articles to support clinicians decision making in real-time. This chap-
ter surveys on the results published at the International Semantic Web Confer-
ence (ISWC-2020) [170], in Artificial Intelligence in Medicine journal (Elsevier
2021) [22] and in the Proceedings of the 31st International Joint Conference on
Artificial Intelligence (IJCAI-ECAI 2022) [171] (demo paper).

This chapter details contributions applying argument mining techniques to real-
world medical scenarios. First, an overview is provided of ACTA [172], an auto-
mated tool supporting clinicians in extracting argument graphs from clinical trial
reports. ACTA was then utilized in the Covid-on-the-Web project to transform un-
structured coronavirus literature into rhetorical structures, aiding evidence-based
reasoning. To enhance ACTA’s capabilities, the AbsRCT dataset [22] was extended
with annotations on medical intervention outcomes and their effects on patients.
Methods were developed to automatically classify nuanced effect types like Increased
or Decreased. This argument mining tool extracts structured results data from tri-
als to help clinicians efficiently interpret findings. Subsequently, ACTA underwent
upgrades to version 2.0, integrating state-of-the-art neural models, a new module
to analyze outcome effects, and a modular API-based architecture for customiza-
tion. Overall, ACTA 2.0 pushes boundaries in clinical argument mining to em-
power evidence-based medicine through automated search, extraction, and visu-
alization. The chapter discusses each application in turn, delineating how argu-
ment mining techniques were specialized and applied to advance real-world med-
ical scenarios like infectious disease research, drug trials, and decision support. By
targeting healthcare’s intricacies, the work reveals practical benefits across domains
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while tackling open technical challenges in knowledge-aware language understand-
ing, reasoning modelling, and adaptable engineering.

In this context, Mayer et al. [172] presented ACTA, a tool to help clinicians ana-
lyze clinical trial arguments by extracting claims, evidence, and relations. The over-
arching goal is to transform unstructured textual trial reports into structured argu-
ment graphs. This provides a summary of key claims, evidence, and relations to
assist evidence-based decision-making. The ACTA tool is designed to search for
trial abstracts on PubMed. Once a user selects an abstract, the text is processed us-
ing natural language processing techniques, specifically, argument component de-
tection. This involves identifying claims and premises, which are then marked as
argument span boundaries using BIO notation. To handle this tagging, a pre-trained
BERT model is fine-tuned. To predict relations, a choice classification approach is
used. The model selects the most likely target component that a source component
connects to, from a list of candidates. This ensures that there is at most one outgoing
edge per node when constructing the final graph. Key outputs include highlight-
ing detected arguments and PICO elements in the original text, and visualizing the
argument graph. However, ACTA faced limitations like handling clinical abbrevia-
tions and lacking more nuanced relation types beyond binary link prediction. ACTA
pioneered automated analysis of clinical trial arguments to support evidence-based
medicine. In Section 5.1 I detail how ACTA was utilized in the Covid-on-the-web
project to extract argumentative structures from coronavirus literature. However,
opportunities remained to upgrade the techniques and expand the functionality.
Subsequent sections will detail ACTA 2.0.

5.1 Covid-on-the-Web project

In Spring 2020, the rapid spread of the novel coronavirus SARS-CoV-2 motivated my
research team at Inria1 to join global efforts to fight the pandemic. We launched the
Covid-on-the-Web project to assist in utilizing scientific literature on coronaviruses.
During the initial pandemic lockdowns, we adapted and combined our existing
methods, models, and tools (ACTA, Corese2 [173], MGExplorer [174], Morph-xR2RMLL3)
to process, analyze, and enrich the "Covid-19 Open Research Dataset" (CORD-19),
which contains over 50,000 coronavirus-related scientific articles.

The overarching goal of Covid-on-the-Web is to make Covid-19 literature more
accessible and useful for biomedical researchers. We designed a pipeline to con-
tinuously enrich a knowledge graph on COVID-19, as well as software to exploit
this graph. Our approach leverages knowledge representation, text/data/argument
mining, data visualization, and exploration. The pipeline extracts named entities
mentioned in the articles, drawing from DBpedia, Wikidata, and other BioPortal

1https://team.inria.fr/wimmics/
2https://project.inria.fr/corese/
3https://github.com/frmichel/morph-xr2rml/

https://team.inria.fr/wimmics/
https://project.inria.fr/corese/
https://github.com/frmichel/morph-xr2rml/
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vocabularies. It also extracts argumentative graphs to help clinicians analyze clini-
cal trials and make evidence-based decisions. On top of the knowledge graph, we
developed and deployed tools for visualization, exploration, and data science note-
books.

We engaged with biomedical institutions, including project partners like the French
National Institute of Health and Medical Research (Inserm)4 and the French National
Cancer Institute (INCa), to ensure our approach aligned with real needs. Through
discussions, we identified motivating scenarios and competency questions to guide
and test our knowledge graph. For example, users suggested queries like “Find all
articles discussing both a cancer type and a corona-type virus." Continued elicitation
of meaningful queries helps specify and validate our resources.

The Covid-on-the-Web pipeline and services aim to address key scenarios:

• Helping clinicians analyze clinical trials and make evidence-based decisions
using argumentative graphs.

• Assisting hospital physicians in collecting normal ranges for biomarkers from
scientific articles.

• Enabling cancer institute researchers to find articles on cancer-coronavirus links
to inform research programs.

A key pipeline component involves creating RDF argumentative subgraphs with
the ACTA [172] tool. As introduced before in Section 2.1 ACTA identifies the differ-
ent argumentative components such as claims or premises, among their correspond-
ing support or attack relationships. For example, ACTA could extract an argument
with the claim "Hydroxychloroquine is an effective COVID-19 treatment" supported
by a small trial’s results. Clinicians can then critically assess the argument’s co-
gency. By transforming unstructured coronavirus literature into meaningful argu-
ment graphs, the Covid-on-the-Web pipeline aims to make evidence-based reason-
ing more efficient.

In this section, I describe the pipeline developed through the Covid-on-the-Web
project to generate Linked Data from the CORD-19 dataset. I first provide a high-
level overview of the pipeline architecture and its various components and function-
alities. I then delve into the details of how the pipeline creates argumentative RDF
subgraphs using the ACTA tool.

5.1.1 The Covid-on-the-Web RDF Dataset

To create meaningful Linked Data about coronavirus we analyzed the unstructured
COVID-19 Open Research Dataset (CORD-19) [175]. Applying ACTA to enrich this
dataset with argumentative graphs was one of the many steps we took in order
to create the RDF. In this context, the expertise of the team with respect to knowl-
edge graphs allowed us to enrich the CORD-19 dataset from many different sources.

4https://www.inserm.fr/

https://www.inserm.fr/
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Named entity recognition tools like DBpedia Spotlight [176], Entity-fishing5 and
NCBO BioPortal Annotator [177] were employed to identify biomedical entities in
the articles. Such tools allowed us to disambiguate them against Linked Open Data
(LOD) resources from DBpedia, Wikidata and BioPortal ontologies.

The output of these NLP tools, along with the argument graphs from ACTA, are
converted to RDF triples using the Morph-xR2RML framework6. Such framework
maps the extracted information into an RDF representation using ontologies and
vocabularies that make the data interoperable on the Semantic Web. For example,
an extracted claim like “Hydroxychloroquine treats COVID-19" would be encoded
with triples asserting the “treats" relationship between the two named entities.

The resulting knowledge graph, called the Covid-on-the-Web RDF dataset, is served
through a public SPARQL endpoint allowing structured queries. We paid particu-
lar attention to open and reproducible science principles, making the data, code,
and process fully transparent and reusable. The RDF representation enables inter-
operability with other coronavirus datasets. However, a unique capability is the
inclusion of argumentative structures from ACTA alongside biomedical entities.

To manipulate this knowledge graph, we integrated visualization platforms like
Corese7 [173] and MGExplorer [174]. These tools help users analyze relationships in
query results, aiding understanding. MGExplorer and the enclosed notebooks also
enable data scientists to transform results into analysis-ready structures. The cus-
tomizable visualization widgets allow institutions to tailor interfaces to their own
scenarios and competency questions. As shown in Figure 5.1, all of these tools were
fused into a single pipeline [170]. The modular nature of the tools integrated into
the Covid-on-the-Web pipeline allows for the flexible application of its linked data
resources to diverse biomedical scenarios beyond the current focus on SARS-CoV-
2 literature. The interoperability provided by representing extracted information
as structured RDF graphs enables extensions of the knowledge graph to incorpo-
rate new knowledge sources. In this way, the generality of our approach means the
pipeline’s utility may continue even as the focus shifts to future challenges facing
researchers and clinicians.

As new CORD-19 versions are released, the RDF dataset is continuously up-
dated to stay current. This supports monitoring how biomedical knowledge evolves
throughout the pandemic. Overall, the semantically structured knowledge graph
enhances access to the exponentially growing corpus of coronavirus literature. Link-
ing rhetorical structures and biomedical entities also facilitates evidence-based rea-
soning and aids clinicians in making sense of this complex, unfinished science.

5https://github.com/kermitt2/entity-fishing
6https://github.com/frmichel/morph-xr2rml/
7https://project.inria.fr/corese/

https://github.com/kermitt2/entity-fishing
https://github.com/frmichel/morph-xr2rml/
https://project.inria.fr/corese/
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FIGURE 5.1: Illustration of the Covid-on-the-Web [170] pipeline, its
services and applications.

CORD-19 Argumentative Knowledge Graph

The Covid-on-the-Web pipeline generates two interconnected knowledge graphs
from the CORD-19 dataset: the Named Entities Graph and the Argumentative Graph.
This section focuses on the creation of the Argumentative Graph using the ACTA
tool. In brief, ACTA analyzes each CORD-19 abstract to extract argumentative struc-
tures - claims, evidence, and their relationships. It then represents these structures
in RDF format using established argumentation ontologies. The pipeline involves
four main steps:

Component Detection As detailed in Section 2.1, ACTA views this as a sequence
tagging task, using a transformer model to identify argument components in the
text. In this scenario, pre-trained SciBERT weights were used instead of BERT in
order to improve performance given the scientific language.

Relation Classification The type of relationship between argument components
is determined via a 3-class sequence classification approach. A fine-tuned SciBERT
transformer model creates numerical representations of the input text, which con-
sists of component pairs. A linear classification layer then predicts if the relationship
is support, attack or no relation. This extends the original ACTA pipeline by mov-
ing beyond binary link prediction to a richer, nuanced graph showing important
distinctions like evidence challenging or backing a claim.

PICO Extraction Using the same model as in ACTA, PICO elements are detected
within argument components only, not whole abstracts. Unique concepts are then
linked to UMLS for standardized representation.

RDF Conversion Argumentative information is structured in RDF format using
the Argument Model Ontology (AMO)8, the SIOC Argumentation Module (SIOCA)9

8http://purl.org/spar/amo/
9http://rdfs.org/sioc/argument#

http://purl.org/spar/amo/
http://rdfs.org/sioc/argument#
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and the Argument Interchange Format10 ontologies. This enables interoperability.
Overall, ACTA automatically extracts argument graphs from unstructured CORD-

19 text and represents them as meaningful, shareable RDF knowledge graphs. This
facilitates evidence-based reasoning and analysis by biomedical experts.

5.2 Argument Mining on Clinical Trials: Computing the
Effect-on-Outcome

One of the argument mining applications developed was the automated analysis of
the effect of medical interventions on outcomes, termed Effect-on-Outcome. In clin-
ical trial reports, it is crucial to understand how a new treatment impacts disease
symptoms and side effects compared to conventional therapy. However, manually
analyzing these effects is tedious and time-consuming given the volume of litera-
ture. Automating this process would provide structured results data to help clini-
cians efficiently interpret trials and make evidence-based decisions. This section will
describe the Effect-on-Outcome work, outlining the key tasks, data, and results.

For example, consider the sentence: “Patient-reported nausea decreased after
taking drug A compared to placebo, while liver enzyme levels increased." Here,
the outcomes are "nausea" and “liver enzyme levels," with effects “decreased" and
“increased" respectively. Automatically extracting such effects allows clinicians to
quickly synthesize the trial outcomes instead of reading lengthy reports.

To enable automated outcome analysis, a two-part argument mining pipeline
was developed:

Outcome extraction : This first stage treats outcome detection as a sequence tag-
ging problem using a BIO notation, resulting in a three-class classification problem
(B-Outcome, I-Outcome and NoOutcome). Different pre-trained transformer-based
models adapted for sequence tagging are then finetuned, labelling the outcome spans
in text, e.g. tagging “nausea" as B-Outcome and “liver enzyme levels" as B-Outcome
I-Outcome I-Outcome.

Effect classification : The extracted outcomes are then paired with the component
it occurred in, and fed into an effect classifier to predict the effect. Sentences with
multiple detected outcomes generated multiple inputs, one for each detected out-
come. Using labels Improved, Increased, Decreased, NoDifference, and NoOccurrence,
several transformer-based models fine-tuned on these five classes determine the ef-
fect on each outcome.

Figure 5.2 illustrates the role of the outcome analysis in the overall AM pipeline.
The five effect classes represent different types of impacts an intervention can

have on an outcome. The Improved class is used when the outcome had a beneficial

10http://www.arg.dundee.ac.uk/aif#

http://www.arg.dundee.ac.uk/aif#
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Class #outcomes %

Improved 831 25
Increased 765 23
Decreased 782 23

NoDifference 897 27
NoOccurrence 76 2

TABLE 5.1: Statistics of the Outcome dataset, showing the numbers of
Improved, Increased, Decreased, NoDifference and NoOccurrence classes

independent of the disease-based subsets.

effect but the direction is unclear. Increased and Decreased indicate the outcome mea-
sure went up or down, respectively. NoDifference denotes no change in the outcome
or no difference between arms. Finally, NoOccurrence is used when the outcome
did not occur, typically for adverse events. By predicting these nuanced labels, the
model can capture the effect an intervention had on key outcomes in a structured
way.

To evaluate the Effects on Outcome task, we focus on the sentences of the Ab-
stRCT dataset containing outcomes (i.e., 3351 sentences annotated with five classes,
as reported in Table 5.1).

5.2.1 Experimental Setup

Experiments are conducted with the pre-trained transformer models BERTbase, BioBERT
and SciBERT (cased and uncased).

For both parts of the pipeline, i.e., the outcome detection and effect classifier,
the same type of transformer is employed. As for the sequence tagging architec-
ture the LSTM combination with a CRF was chosen for the experiments, because
the difference between the LSTM and GRU approaches were only marginal for the
argument component detection. The outcome pipeline implementation was done

FIGURE 5.2: Illustration of the full Argument Mining pipeline with
the outcome analysis extension.
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with the use of the PyTorch implementation of huggingface Transformers library11

version 2.3. Both transformer models of the pipeline are of the same type and ini-
tialized with the same pre-trained weights. The Effect-on-Outcome annotations are
converted into two datasets, one for each part of the pipeline. The first one is in a
CoNLL format for token-wise labels, and the second one is in csv format, where each
outcome-component pair is listed. This results in multiple entries, if a component
contains more than one outcome. The fine-tuning of the models is done separately,
each task on its own dataset version. The learning rate was set to 2e-5 with Adam
optimizer and the models were fine-tuned over 3 epochs with a batch size of 32 and
a maximal sequence length of 128 tokens. Token-wise evaluation is done on the
full pipeline output, which is reconverted to CoNLL format to compare against the
gold labels, taking the propagated error from the first pipeline part into account.
The annotated dataset was split into a train and test set (80% and 20%, respectively)
respecting the class distribution of the overall dataset in both subsets.

5.2.2 Results and Discussion

Model F1 Improved Increased Decreased NoDiff NoOcc
BERT (cased) .62 .69 .65 .66 .75 .00

BERT (uncased) .72 .72 .70 .72 .72 .50
BioBERT .75 .74 .74 .77 .76 .54

SciBERT (cased) .75 .71 .71 .73 .71 .65
SciBERT (uncased) .80 .81 .75 .81 .85 .59

TABLE 5.2: Results for the outcome analysis pipeline, given in overall
macro F1 and label-wise binary F1-score.

Results on the full pipeline can be seen in Table 5.2. We can observe an increase
in performance on the specialized Bio- and SciBERT models compared to the general
BERT model. In a direct comparison of the cased versions of these two specialised
models, the overall F1-score is the same with .75. In the binary evaluation, BioBERT
is slightly better with the exception of the noOccurrence class. Interestingly here, the
SciBERT cased model performs the best with an F1-score of .65. Overall, SciBERT un-
cased is the best-performing model with a macro F1-score of .80. It also outperforms
the rest of the approaches in every F1-score measured except for the noOccurrence
category, where the cased version has the higher score. This category, in particular,
suffers from sensitivity to class imbalance given that only 2% of the annotated data is
labelled as such. For the other classes, the binary F1-scores are in a comparable range
to each other, where the most prominent class in the annotated data, i.e., noDifference
with 27%, has consistently the highest or second highest score. Besides the noOc-
currence class, the Increased class has always the second lowest scores. Even for the
best-performing model, the difference compared to the worse-performing models is
not as massive as for the other classes. Notable in the confusion matrix, visualized

11https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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in Figure 5.3, the classifier tends to wrongly predict it as Improved, which is a closely
related class. The F1-score for the overall performance of the pipeline, i.e., with
the argument component detection as a prior step, is .62 for the 50% and the 100%
threshold. Both constraints produce a similar F1-score. Taking a look at the number
of detected components for each of the constraints, there is only a total difference of
2 between them. Varying the threshold does not change the difference by much. We
found that if the model detects a component most of the time at least 70% of the to-
kens are detected. Concerning the strong decrease from the gold label to the overall
pipeline performance, we found that the NoOccurrence is the main reason, with not
a single sample correctly predicted; either through not finding the component or, if
detected, misclassifying the outcome with the wrong label. A similar situation was
observed for the BERT cased model on the gold standard, where the 0 F1-score of
the NoOccurrence class lowered the macro F1-score significantly with respect to the
other models. Ignoring the NoOccurrence class to estimate a performance value for
the other classes, the macro F1-score would be at .74 for the whole pipeline.

FIGURE 5.3: Confusion matrix of the predictions on the test set of the
outcome classification.

Error Analysis With respect to the source of error in the pipeline, the two pipeline
parts cause different observable errors in the overall output. Being a binary classi-
fier, the outcome detection is the only part which predicts the negative class label
(referred to as O in the confusion matrix). The second part, the effect classifier, as-
signs effect class labels (Increased/Decreased, etc.) to outcomes, which were found by
the outcome detection module. Consequently, the impact of the propagated error
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from the first part of the pipeline can be observed in the confusion matrix in Fig-
ure 5.3. Effect classes are mostly not misclassified as other effect classes, but as the
negative class O. This is reflected in a stronger coloration in the horizontal direction
for the predicted O label in the confusion matrix. Since the only part in the pipeline
which is responsible for the negative O label is the outcome detection, this means
that the error occurred in the first part of the pipeline. Accordingly, confusion of
effect class labels are errors in the second part, the effect classifier, in the pipeline.

One of the most common mistakes of the models is the incomplete detection of
outcomes. In many cases, the outcome to classify includes other words that com-
plement it, for example in the sentence The levels of VEGF were significantly lower, the
outcome to classify is The levels of VEGF while the model only catches VEGF. We also
find that the model is effectively tagging outcomes in such a way that is different
from the true labels, but correct nonetheless. For example, consider the sentence
Excess limb size (circumference and water displacement) and excess water composition were
reduced significantly. This sentence has as true labels the outcomes Excess limb size
and excess water composition, both labeled as Decreased. The model detects and clas-
sifies those outcomes correctly, but also adding the words circumferences and water
displacement, predicting the label Decreased which would be the correct label.

5.3 ACTA 2.0

Building automated tools to assist clinicians in analyzing medical literature poses
unique challenges. Clinical texts require specialized language processing to handle
domain terminology and parsing the rhetorical structure demands accurate extrac-
tion of claims, evidence, and relations forming argument graphs. Moreover, a usable
interface must integrate search functionality while visualizing extracted semantics.
Despite these difficulties, such tools offer immense potential to enhance evidence-
based reasoning and decision-making.

To address these challenges, I collaborated to develop ACTA 2.0 [12], an up-
graded system for argument mining in clinical trials integrating recent advances
in argument mining and outcome analysis. The overarching motivation was assist-
ing clinicians in extracting key claims and evidence from trial reports through au-
tomated argument analysis. This required tackling issues like clinical abbreviations
and integrating up-to-date neural models to enhance extraction accuracy. Addition-
ally, ACTA 2.0 aimed to provide richer contextual information by detecting PICO
elements, labelling relation types and incorporating the effect-on-outcome analysis
presented earlier in this thesis as a new module in the argument mining pipeline.
This allows enriching extracted arguments with insights into how interventions im-
pact disease symptoms or side effects. On the implementation side, adopting a
modular API-based architecture improved flexibility and customization. Overall,

12http://ns.inria.fr/acta/

http://ns.inria.fr/acta/
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ACTA 2.0 pushes boundaries in clinical argument mining to empower evidence-
based medicine through automated search, extraction, and visualization. The sub-
sequent sections detail the components enabling these key functionalities.

To the best of our knowledge, ACTA 2.0 is the only automated tool which allows
for a deep analysis of clinical text from the argumentative point of view to sup-
port evidence-based medicine. Few systems tackle similar tasks, like EVIDENCEM-
INER [178] (which, given a natural language query, automatically retrieves sentence-
level textual evidence from a corpora of biomedical literature), RobotReviewer [179,
180] (which summarizes the key information of a clinical trial, including the inter-
ventions, trial participants and risk of bias), and ExaCT [181] (which extracts infor-
mation containing PICO elements based on a SVM). Also, Lehman et al. [182] pro-
posed an approach to infer if a study provides evidence with respect to a given in-
tervention, comparison intervention and outcome. However, none of these systems
is able to extract a full argument graph (where evidence and claims are the nodes,
and attacks and supports are the labelled edges) from a clinical text. Concerning
the identification of PICO elements in text, different approaches are proposed in the
literature [183–185] to identify them in text, but none of these approaches tackles the
issue of analysing the effects of an intervention on the outcomes of a clinical trial
study, as in ACTA 2.0.

5.3.1 Main Functionalities

ACTA 2.0 provides the following functionalities:

Search on Pubmed. PubMed13 is a free search engine accessing primarily the MED-
LINE database14 of references and abstracts on life sciences and biomedical topics.
Given the importance of this search engine in the healthcare domain, ACTA 2.0
maintains the possibility to search for a (set of) abstract(s) directly on the PubMed
catalogue, through their API15. As in the previous version of ACTA, this API is in-
tegrated as a search bar to enter queries in the common PubMed format, similar to
the original PubMed web interface. After the query is executed, when the results
are shown, the user can then select one or more abstracts to proceed with the anal-
yses offered by ACTA 2.0. Alternatively, the system accepts raw text as input to be
processed via Analyse Custom Text.

Enhanced Argumentative Analysis. Once the text is uploaded or an abstract is
selected from the list of search results, the user can proceed with the argumenta-
tive and outcome analyses by pressing the Analyse button. After a short processing
time, the result is visualized in the user interface in form of an argumentative graph.

13https://pubmed.ncbi.nlm.nih.gov/
14https://www.nlm.nih.gov/medline/medlineoverview.html
15https://pubmed.ncbi.nlm.nih.gov/advanced/

https://pubmed.ncbi.nlm.nih.gov/
https://www.nlm.nih.gov/medline/medline overview.html
https://pubmed.ncbi.nlm.nih.gov/advanced/
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FIGURE 5.4: Multiple screenshots to illustrate the different function-
alities of ACTA and the visualization of the argument graph returned

to the user.
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There, the nodes are the premises and the claims automatically detected in the ab-
stract, and the labelled edges correspond to the relations among them. In contrast to
the previous version, ACTA 2.0 integrates a completely overhauled relation classi-
fication module, implementing the methods described by Mayer et al. [48]. Besides
underlying technical changes regarding architecture, loss function and problem for-
mulation, the most notable difference for the user is the updated linking of the argu-
ments in the graph, which are now not only identified, but also labeled, indicating
their argumentative function as either attack or support. For readability purposes, the
text of the argumentative components is not shown by default in the argumentation
graph. However, the user can unveil it by interacting with the graph, i.e., hovering
over the respective argument component. Additionally, argument components are
highlighted with different colors (evidence in blue, claims in orange) in the abstract,
which is always fully shown on the right side of the window.

PICO Element Detection. The detected PICO elements can be visualized in a sim-
ilar fashion through the PICO Elements button. Again, each PICO category is high-
lighted in a different color. For the PICO detection, we rely on the same module
employed in the first version of ACTA.

Effects on Outcomes. As one of the major upgrades, ACTA 2.0 implements a new
module to analyse the reported effects an intervention has on the outcomes (O of
PICO) in the clinical trial abstract. Such as if an intervention increased or decreased
the measured outcome, as proposed in [22]. The underlying motivation for this
is twofold: first, to enrich the arguments with valuable medical information and
thus increase versatility of the application; and second, to provide structured and
machine-processable data, which can serve as input to a computational model of ar-
gument system [1], for instance. In the web interface of the tool, these effects can
also be visualized by pressing the Effects on Outcome button. As a consequence, the
outcomes are highlighted in the displayed abstract to the right with different colors
according to their predicted effect, i.e., Increased, Decreased, Improved, NoOccurrences
or NoDifferences.

ACTA 2.0 Public API. Another major upgrade is the conversion from a static mono-
lithic pipeline to a modular and extendable system to foster versatility and re-usability.
In particular, each of the processing steps, i.e., argument component detection, re-
lation classification, PICO and effect prediction, are now independent executable
units, which can be called separately via our publicly available REST API16. Re-
searchers, developers and clinicians can now not only try them all individually, but
have also the possibility to replace or add custom modules to the workflow, or build
parts into their own projects. The required input and output formats for each mod-
ule are defined in the documentation of the API.

16https://ns.inria.fr/acta/doc/

https://ns.inria.fr/acta/doc/
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Data Format Description. Each module takes as input a JSON file, where for the ar-
gument components, the PICO elements and Outcome Detection modules, the field
“text” must be filled in with the medical text to be analyzed. For the relation clas-
sification module, the input JSON file must have the field “candidates” filled with
the list of all of the argumentative components text and type (claim or premise) for
which the user wants to predict the relation ( support or attack). For the effect predic-
tion module, both the original text and the selected outcomes have to be provided
in the “text” and “outcomes” fields respectively. For every module, a JSON file is
produced as output with the corresponding results, either being the detected com-
ponent spans or the predicted labels. All the results, including the argumentative
analysis together with PICO elements and effects on outcomes, can be downloaded
as a JSON file for each of the processed abstracts.

5.4 Open Challenges

Building usable tools that automate argument mining on real-world medical texts
poses several core challenges. A primary difficulty is adapting natural language pro-
cessing models to handle intricate clinical terminology and abbreviations. General
pre-trained models often fail to capture the nuances of domain-specific language.
Creating customized embeddings and fine-tuning in-domain corpora can improve
clinical language understanding, but may require scarce expert-annotated data. Ad-
ditionally, precise extraction of rhetoric structures like claims and evidence relies
on accurate sequence tagging and relation classification. However, modelling the
complexity of clinical reasoning patterns to robustly identify arguments is an open
issue. Beyond extraction, effectively visualizing connected graphs and highlighting
text semantics in an interpretable interface raises its own obstacles. Enriching ar-
guments with contextual information like PICO elements and intervention effects
provides useful analytics but complicates system design. On the implementation
side, flexibility demands balancing modularity with efficient pipelines. Although
systems like ACTA 2.0 make further progress, argument mining intricacies remain
around domain adaptation, modelling clinical reasoning, explainable interfaces, and
customizable architectures. The field would benefit from shared clinical resources
and competitions to systematically address these lingering challenges. Overall, im-
pactful medical argument mining requires overcoming issues in knowledge-aware
language understanding, reasoning modelling, human-centred design, and adapt-
able engineering. Progress necessitates interdisciplinary collaboration across NLP,
medicine, visualization, and software engineering.
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Chapter 6

Conclusion and Future
Perspectives

Assessing argument quality is critical yet challenging across domains, especially
sensible fields like medicine where sound reasoning bears immense consequences.
This thesis tackled key obstacles in computational argument quality assessment,
both generally and for clinical applications. The core research questions aimed to
advance multi-dimensional quality modelling, push boundaries in mining natural
language arguments, and enable transparent assessment tailored to medical intrica-
cies. In particular, to provide these solutions, the research questions introduced in
Chapter 1 were addressed resulting in the following contributions:

1. Modelling Argumentation Quality. This thesis investigated the modelling of
argumentation quality along dimensions like cogency, rhetoric, and reasonableness.
I developed a framework to automatically assess three key quality attributes of per-
suasive student essays: cogency, rhetorical strategy, and reasonableness. Cogency
indicates how logically sound the reasoning is, rhetorical strategy captures the writ-
ing style and use of persuasive elements, while reasonableness judges how well-
balanced the essay is in considering counterarguments. To enable data-driven mod-
elling, I built a novel corpus of 402 essays annotated by experts from the social sci-
ences using rubrics for scoring persuasive writing.

The essays were labelled for cogency on a scale of 1 to 3 (or 0, 15, 25 in the met-
rics of Stapleton and Wu [19]) indicating low to high logical coherence. For rhetorical
strategy, four categories were annotated reflecting different persuasive styles. Rea-
sonableness ratings followed a similar but more fine-grained scale as cogency, with
a scale of 1 to 5. I experimented with textual-only models using SVM and trans-
former embeddings to classify cogency and rhetorical strategy. Then I proposed
a novel architecture incorporating graph-based argument structure along with text
embeddings, which significantly improved predictive performance by 5-10 percent-
age points in macro F1 score. This demonstrated the benefits of a multi-modal ap-
proach integrating topological and linguistic information. For reasonableness, the
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dataset size was insufficient for statistical modelling. Instead, I devised an algo-
rithm leveraging cogency classifications and the argument structure graph to deter-
ministically evaluate debate balance. Overall, this work established an encompass-
ing framework for multi-dimensional quality assessment of argumentative writing,
achieving a strong performance, with macro F1 scores of 0.77 for cogency, 0.63 for
rhetorical strategy, and 0.54 for reasonableness.

2. Tailoring argumentation quality to the medical domain. To enable quality as-
sessment tailored to the medical domain, this thesis introduced a specialized method-
ology to extract and enrich clinical argumentation. From a medical case report, I
first automatically detect key entities like symptoms and test findings using natu-
ral language processing methods. These textual entities are then mapped to stan-
dardized medical ontologies like HPO to align them with validated knowledge. By
linking case details to external sources, additional relevant information is obtained
such as which symptoms frequently co-occur with certain diagnoses and their rel-
ative prevalence. To automatically detect the different medical entities described
in the clinical cases, we experimented with different transformer-based language
models such as SciBERT, BioBERT, PubMedBERT, and UmlsBERT initialized with
their respective pre-trained weights specialized for the biomedical domain. We cast
the symptom detection problem as a sequence tagging task, using a BIO tagging
scheme. Our experiments showed that the SciBERT model achieved the best per-
formance, with a macro F1-score of 0.86 for named entity recognition of symptoms.
To accurately map the detected symptoms to the HPO medical ontology, we com-
puted embedding vectors for each symptom and calculated the cosine distance with
each HPO term to find the closest match. Our context-aware embedding approach,
which summed the symptom and sentence embeddings, significantly outperformed
a baseline method without context such as DASH, improving the accuracy from 0.37
to 0.53 for top-5 matches. By accounting for the contextual information, we obtained
a more reliable alignment between the layperson symptom descriptions and the for-
mal HPO terminology. Overall, the specialized neural models and context-aware
embedding technique enabled effective extraction and alignment of salient clinical
entities, providing a robust foundation for assessing the relevance of symptoms to
potential diagnoses and generating explanatory arguments grounded in validated
medical knowledge.

To further enrich this evidence, I developed a transparent prevalence function
that scores the explanatory power of each symptom or finding based on medical
statistics like abnormality and uniqueness [107, 111, 152–156]. Highly ranked ev-
idence represents salient, simple reasons that should be invoked in cogent expla-
nations. Conversely, low scores indicate extraneous details that overly complicate
the reasoning if included. This evidence scoring allows for generating concise yet
sound template-based explanations using only the best-ranked details. Moreover, it
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enables assessing student explanations by suggesting modifications - adding high-
scored evidence not utilized or removing low-scored extraneous entities. By select-
ing explanatory clinical details in a principled, interpretable manner, this framework
provides pedagogical insights to improve clinical reasoning. Overall, it pushes qual-
ity assessment boundaries by integrating external knowledge required for validating
specialized argumentation.

3. Proof-of-Concept Applications. Finally, this thesis made notable contributions
by applying argument mining to real-world medical scenarios in Chapter 5. I col-
laborated on the Covid-on-the-Web project, which leveraged tools like ACTA to ex-
tract argument graphs from Coronavirus literature. These rhetorical structures aug-
mented a knowledge graph created by disambiguating biomedical entities against
resources like Wikidata. The resulting linked dataset aims to enhance evidence-
based reasoning and clinician decision-making during the pandemic. Additionally,
I helped develop techniques for automatically analyzing the effects of medical inter-
ventions on outcomes in clinical trials. Framing this argument mining task as a two-
step pipeline of outcome extraction and then effect classification, we trained special-
ized transformer models to predict nuanced labels like Increased or Decreased. The
pipeline achieves a macro F1-score of 0.80 for effect-on-outcome classification. For
outcome extraction, a sequence tagging approach using BIO notation was employed.
The extracted outcomes were then paired with their context and fed into an effect
classifier implemented as a sequence classification task. By detecting outcomes in
the text and categorizing their effect with specialized models, the pipeline provides
structured results data to help clinicians efficiently interpret trials and synthesize
findings. For example, it can be identified that “nausea decreased after taking drug
A" while “liver enzyme levels increased", capturing the nuanced effects of the inter-
vention on different outcomes. Such automated analysis facilitates evidence-based
decision-making. Lastly, I upgraded the ACTA tool to version 2.0 with state-of-the-
art neural models, a new module to detect intervention effects, and a modular API-
based architecture. ACTA 2.0 enriches arguments with PICO elements and outcome
impacts to better contextualize evidence. The public API enables customization, al-
lowing components to be swapped within external systems. Through these applied
contributions, the thesis demonstrated practical real-world benefits in adopting ar-
gument mining methods to support and enhance clinical decision making.

In brief, the research conducted in the context of this thesis showed how argu-
ment mining techniques can be specialized and applied to enhance decision mak-
ing in complex real-world domains like medicine. Novel methods were introduced
that model multi-faceted notions of quality, enabling computational assessment of
key attributes like cogency and rhetoric. By integrating medical knowledge through
contextualized concept embedding and prevalence functions, the thesis pushed the
boundaries in adapting quality evaluation and argument extraction to the intrica-
cies of clinical reasoning. These results pave the way for future work furthering this
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interdisciplinary approach to augmenting clinical argumentation with validated ev-
idence and transparent, data-driven evaluation.

Future Perspectives

While important concepts have been carved out in my work, further research direc-
tions and future improvements are envisaged. First, larger corpora of persuasive
essays are needed to explore machine learning approaches for reasonableness mod-
elling. The current dataset lacked counterarguments, constraining available training
examples for statistical models. Constructing resources with more balanced, holistic
essay argumentation would enable enhanced learning of reasonableness and other
qualities. Additionally, existing argument quality datasets provide only isolated ar-
gument components, not the full text with relations. Annotating arguments and re-
lations in such data could facilitate assessment using topological structure. Finally,
quality notions like cogency, though generalizable, may require adaptation or exten-
sion for certain domains. Defining new principles and corpora for specialized con-
texts like medicine would allow quality evaluation tailored to precise needs. Over-
all, the presented essay assessment framework could be expanded through richer
corpora capturing variable reasonableness, annotated argument graphs, and dimen-
sions tuned for target applications. Pursuing these directions can build on the thesis
foundations to further computational quality modelling.

While the medical quality assessment techniques showed promise, enhancements
could further strengthen clinical explanations and reasoning analysis. First, combin-
ing multiple knowledge bases beyond just HPO would allow a deeper validation
of the claims. Advanced reasoning could also infer new symptoms from crossed
ontology information. Additionally, moving beyond template-based generation to
conversational explanations would enable clarifying student doubts through rule-
based dialogues. Students could interactively engage the system to reinforce learn-
ing. Moreover, assessing dimension relevance and possible extensions would al-
low quality notions to be specialized for clinical needs. Pursuing these directions
can augment the current methodology with expanded knowledge graphs, conversa-
tional pedagogical interaction, and metrics fine-tuned for healthcare. Overall, medi-
cal quality innovations could be enhanced to be even more dynamic, knowledge-rich
and tailored to nuanced clinical explanation requirements.

Another promising direction is combining essay scoring techniques with argu-
ment quality assessment innovations. Existing methods automatically score stu-
dent essays along dimensions like strength, coherence and organization [44, 84, 186,
187]. These could be augmented by also evaluating cogency, rhetorical strategy, and
reasonableness as modelled in this thesis. Furthermore, scoring frameworks opti-
mized for specialized domains like medicine are needed, integrating quality notions
with external knowledge. Adding verified facts into the argumentation functions as
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warrants in scientific argumentation, which are mostly implicitly presumed in the
biomedical domain [188].

Beyond scoring, future intelligent tutoring systems could employ assessed rea-
sons to propose argument revisions to guide students, like suggesting improve-
ments aligned with feedback [189]. Dialogue-based interaction could also allow
dynamically adapting feedback and explanations based on student needs [190]. As
students revise drafts, personalized feedback conversations could address individ-
ual struggles, reinforcing successful revisions while correcting flawed reasoning.

Such personalized argumentation support would enhance learning and writing
skills. By integrating automated evaluation with interactive guidance, future tools
could close the assessment loop, ensuring students properly implement revision ad-
vice [186]. Alongside scoring models optimized for domains like medicine, these ad-
vances would help students construct cogent, persuasive arguments essential across
education. This thesis lays the groundwork for uniting essay assessment, transpar-
ent revision analysis, and adaptive pedagogical interaction to substantially improve
argumentation abilities.

Another promising direction consists of exploring different explanation strate-
gies tailored to the student’s needs and mental model. The appropriateness of ar-
guments depends not just on logical soundness but also on aligning with the au-
dience [3]. Strategies effective for scientific writing may differ from informal set-
tings. Future systems could identify the student’s background and adaptivity and
provide personalized explanations, like balancing technical details versus intuitive
analogies. Tailoring dialogue and feedback to the individual student’s knowledge
and abilities could enhance engagement and learning gains. Personalized learning,
which includes adaptive learning, focuses on addressing the needs and goals of each
student, allowing them to work at their own pace and with content tailored to their
specific requirements [191]. Adaptive learning environments have also been found
to have a statistically significant positive impact on student engagement [192]. This
thesis assessed argument quality independently of the audience, but customizing
persuasion and justification strategies based on the explainee is an important next
step. Overall, the ability to discern student characteristics and adapt reasoning ac-
cordingly would allow to generate more effective explanations for each student.

Overall, this thesis addresses a few of the many facets of argumentation quality
with a focus on education and the medical domain. One further future work direc-
tion is integrating the innovations from education and medical domains. Techniques
like multi-modal quality classification could be combined with external knowledge
alignment to enable domain-specific assessment. Expanding annotated resources
with graph structure and target domains would facilitate adapting the models. Fu-
ture scoring frameworks should also incorporate domain-tailored quality dimen-
sions alongside general attributes. Additionally, personalized and conversational
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systems present promising opportunities in this field. Employing revision analy-
sis to guide students via actionable feedback would enhance writing skills. Adap-
tive explanations tailored to individual learners’ abilities and needs could improve
engagement and outcomes. With respect to medicine, this thesis provided initial
steps toward evidence search, selection, appraisal and application for evidence-
based practice. Significant complexity remains in the comprehensive computational
modelling of clinical reasoning, necessitating substantial future work. Areas such
as validating the veracity of evidence sources, weighing statistical significance, and
reconciling contradictory claims require dedicated investigation. By pursuing key
open challenges, future interdisciplinary research can fulfil the promise of aligning
AI systems with the nuances of human argumentation.
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