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Résumé

Cette thèse a pour l’étude des paraproduits de martingales à la fois dans le cadre
commutatif et noncommutatif. Il se compose de deux parties. La première concerne la dé-
composition bilinéaire de la multiplication ponctuelle d’éléments dans l’espace de Hardy
de martingales H1 et son dual BMO. Nous étendons également cette décomposition bi-
linéaire continue aux espaces de Hardy de martingales Hp (0 < p < 1) et leurs espaces
duaux. Nos décompositions sont basées sur des paraproduits de martingales. Comme
conséquences de notre travail, nous obtenons des résultats analogues pour des martin-
gales dyadiques sur des espaces de type homogène munis d’une mesure de dédoublement.
Nos arguments reposent sur l’existence de systèmes dyadiques sur des espaces de type ho-
mogène. La deuxième partie porte principalement sur l’appartenance à la classe de Schat-
ten des paraproduits de martingales semi-commutatifs et purement non commutatifs, en
particulier pour les algèbres de Clifford et les produits tensoriels d’algèbres matricielles
∞
⊗
k=1

Md en termes d’espaces de Besov de martingales. En utilisant la technique de la mar-
tingale dyadique de Hytönen, nous obtenons également des conditions suffisantes pour
l’appartenance à la classe de Schatten et la bornitude des commutateurs à valeurs d’opé-
rateurs concernant des opérateurs intégraux singuliers généraux. De plus, nous donnons
une preuve alternative sur la caractérisation BMO de la bornitude des commutateurs
concernant des opérateurs intégraux singuliers généraux dans le cadre commutatif.

Mots-clefs
Paraproduits de martingales ; Espaces de Hardy-Orlicz ; Espaces de Musielak-Orlicz ;

Espaces de dédoublement ; Espaces de Besov de martingales ; Martingales noncommu-
tatives ; Produit tensoriel ; Classe de Schatten ; Algèbre de CAR ; Algèbres matricielles ;
Commutateurs ; Opérateurs intégraux singuliers ; Espaces de BMO.
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Abstract

This thesis is devoted to the study of martingale paraproducts both in the commu-
tative and noncommutative settings. It consists of two parts. The first one is about the
bilinear decomposition of pointwise multiplication of elements in martingale Hardy space
H1 and its dual BMO space. We also extend this continuous bilinear decomposition
to martingale Hardy spaces Hp (0 < p < 1) and their dual spaces. Our decomposi-
tions are based on martingale paraproducts. As a consequence of our work, we obtain
analogous results for dyadic martingales on spaces of homogeneous type equipped with
a doubling measure. Our arguments are based on the existence of dyadic systems on
spaces of homogeneous type. The second part focuses on the Schatten class membership
of semicommutative and purely noncommutative martingale paraproducts, especially for
CAR algebras and tensor product of matrix algebras

∞
⊗
k=1

Md in terms of martingale Besov
spaces. Using Hytönen’s dyadic martingale technique, we also obtain sufficient conditions
on the Schatten class membership and the boundedness of operator-valued commutators
involving general singular integral operators. In addition, we give an alternative proof on
the BMO characterization of the boundedness of commutators involving general singular
integral operators in the commutative setting.

Keywords
Martingale paraproducts; Hardy-Orlicz spaces; Musielak-Orlicz spaces; Doubling spaces;

Martingale Besov spaces; Noncommutative martingales; Tensor product; Schatten class;
CAR algebra; Matrix algebras; Commutators; Singular integral operators; BMO spaces.
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Chapter 0

Introduction

In [26], David and Journé showed that for any standard singular integral operator T ,
T is bounded on L2(Rn) if and only if T1 and T ∗1 both belong to BMO space and T
satisfies the weak boundedness property. This result is now referred to the celebrated
David-Journé T1 theorem. It was not long before Coifman and Semmes gave a different
proof of the T1 theorem based on dyadic martingales, which made dyadic martingales
become an important tool in harmonic analysis. More precisely, the idea of Coifman and
Semmes is to use dyadic martingale paraproducts. We refer the reader to [21] and [70] for
more details about the dyadic proof of the T1 theorem. We also point out that the concept
of paraproducts first emerged in [11] about the theory of paradifferential operators.

Since then, dyadic martingales have caught wide attention in harmonic analysis and
dyadic martingale paraproducts have also become a crucial tool. As an extension of
the work of David-Journé and Coifman-Semmes, Nazarov, Treil and Volberg applied
dyadic martingale paraproducts to establish the T1 theorem and the Tb theorem on
non-homogeneous spaces in [63], which can be perceived as a major step to complete the
theory of Calderón-Zygmund operators on non-homogeneous spaces.

The deep connection between singular integral operators and dyadic martingale para-
products has been closely investigated in various works. For example, it dates back to
Figiel [29] who introduced Haar shift operators (also known as dyadic shift operators) and
invoked the boundedness of martingale transforms in the study of singular integral opera-
tors. Later on Petermichl developed an explicit representation formula for the one-variable
Hilbert transform [72] and Petermichl, Treil and Volberg extended this representation to
the Riesz transforms [75] . In [88], Vagharshakyan successfully recovered one-dimensional
Calderón-Zygmund transforms with sufficiently smooth convolution kernels by means of a
properly chosen averaging of dyadic shift operators. This technique provides a bridge from
the dyadic world to the non-dyadic world, where the former possesses neater structure
properties and is easier to handle to some extent.

Such representations have been proved to be very powerful and widely applicable to
harmonic analysis, such as the weighted inequality theory. For instance, Petermichl gave
the sharp weighted bound for the Hilbert transform and the Riesz transforms, respectively
in [73] and [74]. In particular, the famous A2 conjecture, which concerns the sharp
weighted bound for Calderon-Zygmund operators, has been fully resolved by Hytönen [40].
The key tool in [40] is a new dyadic representation for general singular integral operators,
from which dyadic shift operators and dyadic martingale paraproducts naturally appear.

3



INTRODUCTION

In addition, we refer the reader to [48] and [49] for the use of such representations on
commutators. Hence, dyadic martingale paraproducts and dyadic shift operators have
become a fundamental and useful model to study a variety of properties for singular
integral operators.

Apart from close connections between martingale paraproducts and harmonic analysis,
it is of independent interest to study martingale paraproducts in its own right. This is
partly due to the fact that these operators are generalizations of Hankel type operators.
Hankel operators are another important class of operators in function theory. It is very
interesting to investigate the boundedness, compactness and Schatten class membership
of Hankel operators.

Motivated by the aforementioned pioneering work, the theme of this thesis is the
study of martingale paraproducts, with two different directions. The first focuses on the
bilinear decompositions of the multiplication between elements in martingale Hardy spaces
and their dual spaces in the commutative setting. This is a joint work with Odysseas
Bakas, Zhendong Xu, and Yujia Zhai in [4]. The novelty of the work lies in the endpoint
estimate of the boundedness of martingale paraproducts. Our approach is based on the
atomic decompositions of martingale Hardy spaces, and thus also applies to the case for
martingale Hardy space Hp with 0 < p < 1 and its dual space. As an application, we
extend these bilinear decompositions to spaces of homogeneous type.

The second direction concerns the Schatten class membership of martingale paraprod-
ucts in the noncommutative setting. This is a joint work with Zhenguo Wei in [90]. More
precisely, we describe the Schatten class membership of semicommutative d-adic mar-
tingale paraproducts in terms of martingale Besov spaces. Using transference, we also
obtain characterizations of Schatten class membership of purely noncommutative martin-
gale paraproducts for CAR algebras and the tensor product of matrix algebras

∞
⊗
k=1

Md.
We exploit the technique using dyadic representation developed by Hytönen [40] and
further derive the Schatten class membership and the boundedness of operator-valued
commutators involving general singular integral operators.

Our proof for operator-valued commutators relies heavily on the bilinear decompo-
sitions of the pointwise operator Mb, which is the main subject of study in the first
direction. This provides a new proof of the well-known theorem [22] on the boundedness
of commutators in the Euclidean setting from the perspective of martingale theory.

In the remaining part of the introduction, a detailed discussion on the background,
motivations and main results will be given. After the introduction, we will give a prelim-
inary in Chapter 1 which contains most of definitions and notation needed in this thesis,
and then present our work in details. The presentation will be separated into two parts,
and each part is devoted to one of the two directions highlighted above.

In the appendix, we include the proof of the boundedness of martingale paraproducts
for general martingales instead of dyadic martingales. We also give another proof of the
Necessity of Theorem II.2 for p ≥ 2 by Schur multipliers.
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I. MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES
AND THEIR DUAL SPACES

I Multiplication between elements in martingale Hardy
spaces and their dual spaces

The pointwise product of a function in the classical Hardy spaceH1(Rn) and a function
of bounded mean oscillation on Rn need not be in L1(Rn); see e.g. §6.2 in Chapter IV
in [86]. However, using Fefferman’s duality theorem [28] and the fact that the pointwise
product of a BMO-function and a C∞0 -function is in BMO(Rn), Bonami, Iwaniec, Jones
and Zinsmeister defined in [9] the product f × g of a function f ∈ H1(Rn) and a function
g ∈ BMO(Rn) as a distribution given by

〈f × g, φ〉 = 〈g · φ, f〉, φ ∈ C∞0 (Rn), (I.1)

where in the right-hand side of (I.1) the duality between f ∈ H1(Rn) and g·φ ∈ BMO(Rn)
is employed. Moreover, it is shown in [9] that for any fixed f ∈ H1(Rn) there exist two
linear continuous operators Sf from BMO(Rn) to L1(Rn) and Tf from BMO(Rn) to a
weighted Hardy–Orlicz space such that

f × g = Sf (g) + Tf (g)

for all g ∈ BMO(Rn); see [9, Theorem 1.6].
In [8], using wavelet analysis, Bonami, Grellier and Ky showed that there exist two

bilinear continuous operators S fromH1(Rn)×BMO(Rn) to L1(Rn) and T fromH1(Rn)×
BMO(Rn) to H log(Rn) such that

f × g = S(f, g) + T (f, g)

for all f ∈ H1(Rn) and for all g ∈ BMO(Rn); see [8, Theorem 1.1]. The Musielak Hardy–
Orlicz space H log(Rn) is defined as the class consisting of all distributions h on Rn whose
grand maximal functionMh satisfies∫

Rn

|Mh(x)|
log(e+ |x|) + log(e+ |Mh(x)|)dx <∞

and is smaller than the weighted Hardy–Orlicz space appearing in [9]. In fact, as ex-
plained in [9], in view of the results of Nakai and Yabuta [60] on pointwise multipliers
of BMO(Rn) and duality, the Musielak Hardy–Orlicz space H log(Rn) is optimal in the
above decomposition.

In addition, continuous bilinear decomposition theorems for products of elements in
Hp(Rn), for 0 < p < 1, and their dual spaces were established in [7].

Using the theory of wavelets on spaces of homogeneous type, which was developed by
Auscher and Hytönen in [1] and [2], the aforementioned results have been extended to
spaces of homogeneous type by Liu, Yang and Yuan [50] and Xing, Yang and Liang [31].
More precisely, in [50] and [31], continuous bilinear decompositions for products between
elements in atomic Hardy spaces Hp

at(Ω) (in the sense of Coifman and Weiss [23]) and
their dual spaces were established in the case where p ∈ ( n

n+1 , 1]. Here n is defined as the
dimension of the homogeneous space Ω.

Recently in [3], Bakas, Pott, Rodríguez-López and Sola established a dyadic variant
of the aforementioned results of Bonami, Grellier, and Ky; see [3, Theorem 24], which in
turn was used to deduce a periodic version of [8, Theorem 1.1]; see [3, Theorem 28].
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INTRODUCTION

Motivated by [3], the first part of this thesis is concerned with the study of multipli-
cation between Hardy spaces and their dual spaces for martingales on a probability space
Ω. More specifically, we study multiplications between functions in the martingale Hardy
space H1(Ω) and its dual space BMO(Ω) as stated in our first result, Theorem I.1. We
also investigate the case 0 < p < 1, namely multiplication between elements in Hp(Ω) and
their dual spaces, the so-called martingale Lipschitz spaces Λ1(αp) with αp := 1

p
− 1, see

Theorem I.2. Since the dual space (Hp(Ω))∗ could be {0} for some irregular martingales,
we will only consider regular martingales where every σ-algebra Fk in the corresponding
filtration is generated by countably many atoms.

We would like to mention that Bonami, Jiao, Xie, Yang, and Zhou have independently
obtained Theorem I.1, and derived from it interesting applications on the boundedness of
operators involving commutators in [10].

Theorem I.1. Let (Ω,F , P ) be a probability space equipped with the filtration {Fk}k≥1.
There exist continuous bilinear operators Π1 : H1(Ω)×BMO(Ω)→ L1(Ω), Π2 : H1(Ω)×
BMO(Ω)→ H1(Ω) and Π3 : H1(Ω)×BMO(Ω)→ HΦ(Ω) such that

f · g = Π1(f, g) + Π2(f, g) + Π3(f, g)

for all f ∈ H1(Ω) and g ∈ BMO(Ω), where f · g is in the sense of the pointwise multipli-
cation.

In Theorem I.1, HΦ(Ω) is a martingale Hardy–Orlicz space defined in terms of the
growth function Φ(t); see Definition 1.3.14 and (1.3.2) below. We will refer to the terms
Π2(f, g) and Π3(f, g) as the martingale paraproducts.

Theorem I.1 can be regarded as an extension of [3, Theorem 24] to the general case of
martingales.

For 0 < p < 1, if f ∈ Hp(Ω), g ∈ Λ1(αp) and f0 = g0 = 0, then their product can be
regarded as a continuous linear functional on L∞(Ω) ∩ Λ1(αp). To be more precise, for
any h ∈ L∞(Ω) ∩ Λ1(αp), define

〈f × g, h〉 = 〈h · g, f〉,

where in the right-hand side the duality between Hp(Ω) and Λ1(αp) is invoked. Note that
h · g belongs to Λ1(αp) since h is a pointwise multiplier on Λ1(αp) (see [59]).

Our following theorem establishes a continuous bilinear decomposition for products
between elements in Hp(Ω) and functions in the dual space Λ1(αp) when 0 < p < 1.

Theorem I.2. Let (Ω,F , P ) be a probability space equipped with the regular filtration
{Fk}k≥1, where Fk is generated by countably many atoms for any k ≥ 1.

If Hp(Ω) (0 < p < 1) are martingale Hardy spaces, then there exist continuous bilinear
operators Π1 : Hp(Ω) × Λ1(αp) → L1(Ω), Π2 : Hp(Ω) × Λ1(αp) → H1(Ω) and Π3 :
Hp(Ω)× Λ1(αp)→ Hp(Ω) such that

f × g = Π1(f, g) + Π2(f, g) + Π3(f, g)

for all f ∈ Hp(Ω) and g ∈ Λ1(αp).

6



II. SCHATTEN CLASS MEMBERSHIP OF NONCOMMUTATIVE MARTINGALE
PARAPRODUCTS

In the remaining sections of the first part, we study analogues of Theorems I.1 and I.2
for the case of dyadic martingales on spaces of homogeneous type. Such martingales were
first constructed in [43]. We investigate the corresponding martingale Hardy spaces and
extend Mei’s results in [52] to this general setting. Compared with the probability setting,
the case of spaces of homogeneous type is more difficult to deal with since backward
martingales arise, and the underlying measures on homogeneous spaces may be infinite.

II Schatten class membership of noncommutative mar-
tingale paraproducts

Hankel operators were first studied by Hankel in [35], since then they have become
an important class of operators. Later, Nehari characterized the boundedness of Hankel
operators on the Hardy space H2(T) in terms of the BMO space in [64], and Hartman
discussed their compactness by the VMO space in [36]. In [67], Peller obtained the
Schatten p-class criterion of Hankel operators by Besov space for 1 ≤ p < ∞, while the
case 0 < p < 1 was discussed by Peller in [68] and Semmes in [84], respectively.

In harmonic analysis, commutators involving singular integral operators and multipli-
cation operators are generalizations of Hankel type operators. So it is certainly worthwhile
to study their boundedness, compactness and Schatten class membership. In [22], Coif-
man, Rochberg and Weiss showed the boundedness of commutators with regards to the
BMO space on Rn, which yields a new characterization of BMO. Soon after their work,
Uchiyama sharpened one of their results and showed the compactness of commutators by
virtue of the CMO space in [87]. The Schatten class membership of commutators was
developed by Janson and Wolff in terms of Besov spaces in [45]. Afterwards, Janson and
Peetre established a fairly general framework to investigate the boundedness and Schatten
class of commutators in [44].

As described at the beginning of the introduction, close connections between singular
integral operators and dyadic operators have been extensively explored. Thanks to such
connections, dyadic operators, such as martingale paraproducts, serve as crucial tools in
harmonic analysis. For instance, Petermichl discovered an explicit representation formula
for the one-variable Hilbert transform as an average of dyadic shift operators to investigate
Hankel operators with matrix symbol. Nazarov, Treil and Volberg in [63] proved the T1
and the Tb theorems based on martingale paraproducts. Later, Hytönen refined in an
essential way the method of Nazarov, Treil and Volberg, and settled the well-known A2
conjecture [40].

We would like to highlight that the dyadic operators in [40] can be considered as a
particular case of martingale paraproducts. In addition to its intrinsic connection with
various operators in harmonic analysis, martingale paraproducts have attracted much
interest in its own right as they are martingale variants of operators of Hankel type.
The boundedness of martingale paraproducts has been studied in [17]. In addition, the
compactness and Schatten class have been discussed in [18] for d-adic martingales.

Motivated by all this, we aim to establish the Schatten class membership of mar-
tingale paraproducts in the noncommutative setting. Via the methodology developed
by Hytönen, we also obtain the Schatten class characterization for the operator-valued
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commutators involving singular integral operators and noncommutative pointwise multi-
plication.

At first, we introduce noncommutative martingale paraproducts. Let M be a von
Neumann algebra equipped with a normal semifinite faithful trace τ . Given a semi-
commutative d-adic martingale b = (bk)k∈Z ∈ L2(R, L2(M)), recall that the martingale
paraproduct with symbol b is defined as

πb(f) =
∞∑

k=−∞
dkb · fk−1, ∀f = (fk)k∈Z ∈ L2(R, L2(M)),

where dkb = bk−bk−1 for any k ∈ Z. See Subsection 1.7 for the definitions of semicommu-
tative d-adic martingales. When d = 2, d-adic martingales are just dyadic martingales.

WhenM = C, Chao and Peng described the Schatten class membership of πb by virtue
of the martingale Besov spaces. They showed the following theorem (see [18, Theorem
3.1]):

Theorem II.1. For 0 < p <∞ and a locally integrable function b, πb ∈ Sp(L2(R)) if and
only if

∞∑
k=−∞

dk‖dkb‖pLp(R) <∞.

Chao and Peng’s proof invoked some results about Schatten p-norms in [82]. In [80],
Pott and Smith gave another proof of Theorem II.1 based on the p-John-Nirenberg in-
equality for d = 2. They also obtained an equivalent characterization of the Schatten
class membership of πb whenM = B(H), still with d = 2.

Inspired by all this, we are concerned with the Schatten class membership of πb for
semicommutative d-adic martingales with arbitrary d and arbitrary semifinite von Neu-
mann algebrasM.

Our first main theorem concerns the Schatten class membership of πb for semicommu-
tative d-adic martingales. More specifically, we use the semicommutative d-adic martin-
gale Besov spaces BBBd

p(R,M) (see Definition 1.7.2) to characterize ‖πb‖Lp(B(L2(R))⊗M):

Theorem II.2. For 0 < p < ∞, πb ∈ Lp(B(L2(R)) ⊗M) if and only if b ∈ BBBd
p(R,M).

Moreover,
‖πb‖Lp(B(L2(R))⊗M) ≈d,p ‖b‖BBBdp(R,M). (II.1)

It is much more tempting to study martingale paraproducts for purely noncommutative
martingales. Let b = (bk)k≥1 be a noncommutative martingale. (see Subsection 1.6 for
the definition.) The noncommutative martingale paraproduct with symbol b for any
noncommutative martingale f = (fk)k≥1 ∈ L2(M) is defined by

πb(f) =
∞∑
k=1

dkb · fk−1.

However, it remains open under which circumstances πb is bounded in B(L2(M)), which
is also deeply related to the operator-valued T1 problem. The reader is referred to [38]
for more details about the operator-valued T1 problem.
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Let Md be the algebra of d × d matrices equipped with the normalized trace. In
particular, ifM = L∞(R)⊗Md, Katz employed an ingenious stopping time procedure in
[47] to show

‖πb‖B(L2(M)) . log(d+ 1)‖b‖BMO(R,Md), (II.2)

where BMO(R,Md) is the strong operator BMO. We refer the reader to [54] for more
information for such BMO spaces. Meanwhile, Nazarov, Treil and Volberg independently
obtained (II.2) in [62] by the Bellman method, and they also gave an example to show
that for any d ∈ N there exists b such that

‖πb‖B(L2(M)) &
√

log(d+ 1)‖b‖BMO(R,Md).

This implies that the boundedness of πb cannot be characterized solely by BMO(R,Md)
for infinite-dimensionalM.

In [61], Nazarov, Pisier, Treil and Volberg have proved that log (d+ 1) is the optimal
order of the best constant in (II.2). Indeed, it has been shown that in general, ‖πb‖B(L2(M))
cannot even be dominated by the operator norm ‖b‖M for infinite-dimensionalM in [53].

Even though we do not know how to describe the boundedness of πb, surprisingly by
transference method in [77] and Theorem II.2, we get the equivalent characterization of
the Schatten class membership of πb for two families of noncommutative martingales, i.e.
CAR algebra denoted by C, and M =

∞
⊗
k=1

Md.

For the CAR algebra, we obtain:

Theorem II.3. For 0 < p <∞, πb ∈ Sp(L2(C)) if and only if b ∈ BBBp(C). Moreover,

‖πb‖Sp(L2(C)) ≈p ‖b‖BBBp(C).

Similarly, for M =
∞
⊗
k=1

Md, we also have:

Theorem II.4. For 0 < p <∞, πb ∈ Sp(L2(M )) if and only if b ∈ BBBp(M ). Moreover,

‖πb‖Sp(L2(M )) ≈d,p ‖b‖BBBp(M ).

The martingale Besov spaces BBBp(C) and BBBp(M ) in Theorem II.3 and Theorem II.4
are defined in Definition 1.7.6 and Definition 1.7.7 respectively.

Next, we employ Theorem II.2 to give a characterization of Schatten class membership
for operator-valued commutators involving singular integral operators and noncommuta-
tive pointwise multiplication, in terms of operator-valued Besov spaces. Our method is
based on the dyadic representations of singular integral operators developed by Hytönen
in [40] and [41]. We first provide the setup for singular integral operators.

Let T ∈ B(L2(Rn)) be a singular integral operator with a kernel K(x, y), i.e. for any
f ∈ L2(Rn)

Tf(x) =
∫
Rn
K(x, y)f(y)dy, x /∈ suppf.

9
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We assume that K(x, y) is defined for all x 6= y on Rn × Rn and satisfies the following
standard kernel estimates:

|K(x, y)| ≤ C

|x− y|n
,

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C|x− x′|α

|x− y|n+α

(II.3)

for all x, x′, y ∈ Rn with |x − y| > 2|x − x′| > 0 and some fixed α ∈ (0, 1] and constant
C > 0.

In particular, if for any x 6= y

K(x, y) = φ(x− y), (II.4)

where φ is homogeneous of degree −n with mean value zero on the unit sphere, then T is
called a Calderón-Zygmund transform.

In the second part of this thesis, T : L2(Rn) → L2(Rn) will always be assumed to
satisfy the above standard estimates (II.3) and to be bounded. The celebrated David-
Journé T1 theorem in [26] asserts that for any singular integral operator T satisfying
(II.3) , T is bounded on L2(Rn) if and only if T1 and T ∗1 both belong to BMO(Rn)
and T satisfies the weak boundedness property. We recall that BMO(Rn) is the space
consisting of all locally integrable functions b such that

‖b‖BMO(Rn) = sup
Q⊂Rn
Q cube

(
1

m(Q)

∫
Q

∣∣∣b− ( 1
m(Q)

∫
Q
b dm

)∣∣∣2dm)1/2

<∞,

where m is Lebesgue measure on Rn.
Assume b ∈ L2(Rn, L2(M)), and let Mb be the pointwise multiplication by b. The

operator-valued commutator is defined by CT,b = [T,Mb] = TMb −MbT , that is for any
f ∈ L2(Rn, L2(M)),

CT,b(f) = T (b · f)− b · T (f).

The operator-valued Besov space BBBp(Rn, Lp(M)) is defined as the completion of all b ∈
S(L∞(Rn)⊗M) satisfying

‖b‖BBBp(Rn,Lp(M)) =
(∫

Rn

∫
Rn

‖b(x)− b(y)‖pLp(M)

|x− y|2n
dxdy

) 1
p

<∞, (II.5)

with respect to the norm ‖ · ‖BBBp(Rn,Lp(M)). If M = C, BBBp(Rn, Lp(C)) coincides with the
classical Besov space of parameters (p, p, n/p), namely the space Λp,q

α (Rn) in [85, Chapter
V, §5].

In the commutative setting, Janson and Wolff have obtained the following theorem
(see [45, Theorem 1]):

Theorem II.5. Let T be a Calderón-Zygmund transform with a kernel φ defined in (II.4).
Assume φ is C∞(Rn) except at the origin and not identically zero.

Suppose n ≥ 2 and 0 < p < ∞. For 0 < p ≤ n, CT,b ∈ Sp(L2(Rn)) if and only if b is
constant. For p > n, CT,b ∈ Sp(L2(Rn)) if and only if b ∈ BBBp(Rn, Lp(C)).
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We get the analogous result for p ≥ 2 and n ≥ 1 in the semicommutative setting. The
following theorem describes the Schatten class membership of operator-valued commuta-
tors.

Theorem II.6. Let T ∈ B(L2(Rn)) be a singular integral operator with kernel K(x, y)
satisfying the standard estimates (II.3). If b ∈ BBBp(Rn, Lp(M)) and 2 ≤ p < ∞, then
CT,b ∈ Lp(B(L2(Rn))⊗M) and

‖CT,b‖Lp(B(L2(Rn))⊗M) .n,p

(
1 + ‖T1‖BMO(Rn) + ‖T ∗1‖BMO(Rn)

)
‖b‖BBBp(Rn,Lp(M)).

Theorem II.6 directly implies the necessity of Theorem II.5 for p > n ≥ 2 if we just let
M = C. So we give an alternative proof of the necessity of Theorem II.5 for p > n ≥ 2
based on martingale paraproducts. We would like to remark that Theorem II.6 is more
general than Theorem II.5 because it not only concerns the semi-commutative setting,
but also deals with commutators involving general singular integral operators, while [44]
and [45] focus on Calderón-Zygmund transforms.

Last but not least, we attain the boundedness of commutators by martingale para-
products. It has been shown by Coifman, Rochberg an Weiss in [22] that if b ∈ BMO(Rn)
and T is a Calderón-Zygmund transform with kernel φ satisfying the following estimate

|φ(x)− φ(y)| ≤ |x− y|, ∀ |x| = |y| = 1, (II.6)

then for 1 < p < ∞, CT,b is bounded on Lp(Rn). In fact, we will give a new proof to
show the following theorem concerning general singular integral operators not necessarily
of convolution type, which is known (for instance see [37, Theorem 1.1] or [20, Theorem
3.1]) but more general than the case considered in [22]. Our new approach is based
on the boundedness of martingale paraproducts. But some new interesting martingale
inequalities (Lemma 5.2.3 and Proposition 5.2.4) will be needed so as to prove the following
theorem.

Theorem II.7. Let 1 < p < ∞ and T ∈ B(L2(Rn)) be a singular integral operator with
kernel K(x, y) satisfying the standard estimates (II.3). If b ∈ BMO(Rn), then CT,b is
bounded on Lp(Rn) and

‖CT,b‖Lp(Rn)→Lp(Rn) .n,p

(
1 + ‖T1‖BMO(Rn) + ‖T ∗1‖BMO(Rn)

)
‖b‖BMO(Rn).

The idea of the proof is the same as that of Theorem II.6. We also establish the bound-
edness of commutators involving martingale paraproducts and pointwise multiplication
operator (see Proposition 5.2.4).

We would like to remark that the converse to Theorem II.7 seems to be much subtler.
Coifman, Rochberg and Weiss have obtained a partial result of the “only if” part just for
Riesz transforms in [22]. Uchiyama generalized this result and obtained the “only if” part
for any Calderón-Zygmund transforms with the smooth estimate (II.6) in [87]. Recently,
Hytönen further extended it to general “non-degenerate” singular integral operators in
[42]. We refer to [42] for more details on the converse to Theorem II.7.
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We can also consider the boundedness of operator-valued commutators involving gen-
eral singular integral operators on L2(Rn, L2(M)). Denote by BMOM(Rn) the space
consisting of allM-valued functions b that are Bochner integrable on any cubes such that

‖b‖BMOM(Rn) = sup
Q⊂Rn
Q cube

(
1

m(Q)

∫
Q

∥∥∥b− ( 1
m(Q)

∫
Q
b dm

)∥∥∥2

M
dm

)1/2

<∞.

The next theorem states the boundedness of operator-valued commutators for p = 2.

Theorem II.8. Let T ∈ B(L2(Rn)) be a singular integral operator with kernel K(x, y)
satisfying the standard estimates (II.3). If b ∈ BMOM(Rn), then CT,b is bounded on
L2(Rn, L2(M)) and

‖CT,b‖L2(Rn,L2(M))→L2(Rn,L2(M)) .n

(
1 + ‖T1‖BMO(Rn) + ‖T ∗1‖BMO(Rn)

)
‖b‖BMOM(Rn).

When T is a Riesz transform, Theorem II.8 coincides with the statement of [38, The-
orem A.1], and fixes a small gap presenting in the argument of that theorem. Moreover,
Theorem II.8 involves general singular integrals, which is new in the semicommutative
setting and answers an open question in [38, Remark A.3].

The thesis is organized as follows. In Chapter 1, we set down notation and give some
background on martingales in the commutative and noncommutative settings, spaces of
homogeneous type and martingale Besov spaces. Then we divide the remaining content of
the thesis into two parts separately, where detailed proofs of the above mentioned results
are given.

The first part consists of Chapters 2 and 3. It is devoted to the multiplication be-
tween elements in martingale Hardy spaces and their dual spaces. In section 2.1, we prove
Theorem I.1. In section 2.2, we present a characterization of martingale Lipschitz spaces
Λ1(αp), which is of independent interest (see Theorem 2.2.4 and Remark 2.2.5 below),
and then we show Theorem I.2. The remaining sections are concerned with spaces of
homogeneous type. For the convenience of the reader, in section 1.8, we recall some defi-
nitions and facts regarding Hardy spaces and Lipschitz spaces on spaces of homogeneous
type in the sense of Coifman and Weiss [23]. In section 3.1, we give new proofs of some
results in [23] based on the martingale method and the existence of dyadic martingales on
homogeneous spaces. In section 3.2, we establish analogues of Theorems I.1 and I.2 for
dyadic martingales on spaces of homogeneous type; see Theorem 3.2.7 below. In the last
section of the first part, we apply Theorem 3.2.7 to obtain a decomposition of products
of functions in Hardy spaces and their dual spaces on spaces of homogeneous type.

The second part consists of Chapters 4 and 5. It is devoted to the Schatten class
membership of noncommutative martingale paraproducts. In Section 4.1, we prove The-
orem II.2. We proceed with our proof mainly by iteration. In Section 4.2 and Section 4.3,
we show Theorem II.3 and Theorem II.4 respectively by transference and Theorem II.2.
At the end, by virtue of Hytönen’s dyadic representation for singular integral operators,
we show Theorem II.6, Theorem II.7 and Theorem II.8 in Section 5.1, Section 5.2 and
Section 5.3, respectively.

Throughout this thesis, the terms “homogeneous spaces” and “spaces of homogeneous
type” will be used interchangeably. We will use the following notation: A . B (resp.
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A .ε B) means that A ≤ CB (resp. A ≤ CεB) for some absolute positive constant C
(resp. a positive constant Cε depending only on ε). A ≈ B or A ≈ε B means that these
inequalities as well as their inverses hold.
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Chapter 1

Preliminaries

In this chapter, we provide notation and background that will be used in the thesis.
More precisely, Section 1.1, Section 1.2, Section 1.3 and Section 1.8 are devoted to intro-
ducing Musielak-Orlicz-type spaces, fundamental concepts and results about martingales,
spaces of homogeneous type, which will needed for Chapter 2 and 3.

Section 1.4, Section 1.5, Section 1.6, and Section 1.7 are devoted to presenting semi-
commutative d-adic martingales, noncommutative martingales, noncommutative Lp-spaces
and martingale Besov spaces. These will be used for Chapter 4 and 5.

1.1 Notation
We will consider sums and intersections of quasi-normed spaces. For the convenience

of the reader we recall these notions.

Definition 1.1.1. Let (X1, ‖ · ‖X1), (X2, ‖ · ‖X2) be two quasi-normed spaces and let X
be a topological vector space X such that X1, X2 ⊂ X continuously.

1. (X1 ∩X2, ‖ · ‖X1∩x2) is the intersection of X1 and X2, where

‖x‖X1∩X2 := max{‖x‖X1 , ‖x‖X2}

for all x ∈ X1 ∩X2;

2. (X1 +X2, ‖ · ‖X1+X2) is the sum of X1 and X2, where

‖x‖X1+X2 := inf{‖x1‖X1 + ‖x2‖X2 : x = x1 + x2, x1 ∈ X1, x2 ∈ X2}

for all x ∈ X1 +X2.

For convenience, the sum X1 +X2 + · · ·+Xn and the intersection X1 ∩X2 + · · · ∩Xn

will also be denoted by
n∑
k=1

Xk and ⋂nk=1Xk, respectively.
Note that (X1∩X2, ‖·‖X1∩X2) and (X1 +X2, ‖·‖X1+X2) are both quasi-normed spaces.

Moreover, if (X1, ‖ · ‖X1) and (X2, ‖ · ‖X2) are Banach spaces, then (X1 ∩X2, ‖ · ‖X1∩X2)
and (X1 +X2, ‖ · ‖X1+X2) are both Banach spaces.
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1.2 Musielak–Orlicz-type spaces
We first recall some definitions and properties of Orlicz-type spaces and Musielak–

Orlicz-type spaces. In what follows, (Ω,F , µ) denotes a σ-finite measure space.
A function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is strictly positive on

(0,∞), non-decreasing, unbounded and Φ(0) = 0. A measurable function Ψ : Ω×[0,∞)→
[0,∞) is called a Musielak–Orlicz function if for all x ∈ Ω, Ψ(x, ·) is an Orlicz function.

The Musielak–Orlicz-type space LΨ(Ω) is the set consisting of all measurable functions
f on Ω such that ∫

Ω
Ψ(x, λ−1|f(x)|)dµ <∞

for some λ > 0. We equip LΨ(Ω) with the Luxembourg quasi-norm

‖f‖LΨ(Ω) := inf
{
λ > 0 :

∫
Ω

Ψ(x, λ−1|f(x)|)dµ 6 1
}
, f ∈ LΨ(Ω).

Let p ∈ R. A Musielak–Orlicz function is said to be of uniformly lower type (respec-
tively, upper type) p if there exists a positive constant C such that

Ψ(x, st) 6 CspΨ(x, t)

for all x ∈ Ω, t > 0 and s ∈ (0, 1) (respectively, s ∈ [1,∞)). In particular, if Ψ is of
uniformly lower type p with 0 < p < 1 and of uniformly upper type 1 then

Ψ(x, ct) ≈c Ψ(x, t) for all c > 0. (1.2.1)

In the sequel, Ψ(x, t) is always assumed to be of uniformly lower type p with 0 <
p < 1 and of uniformly upper type 1, and to be continuous in the t variable. For more
information on Musielak–Orlicz spaces, we refer the reader to [8] and [95].

1.3 Martingales
Let (Ω,F , P ) be a fixed probability space. Given a filtration which consists of a

sequence of σ-algebras
F1 ⊂ · · · ⊂ Fk ⊂ · · · ⊂ F

such that σ(∪∞k=1Fk) = F , for a random variable f ∈ L1(Ω,F , P ) and k ∈ N+, we set

fk = E (f | Fk) , dkf = fk − fk−1,

where we adopt the convention that f0 = 0. We shall also denote fk by Ek(f). A sequence
f = {fk}k≥0 is called a martingale with respect to ∪∞k=1Fk if fk = E (fk+1 | Fk) for every
k ≥ 1, and {dkf}k≥1 is called the martingale difference sequence of f = {fk}k≥0. To
simplify notation, we write Lp(Ω) instead of Lp(Ω,F , P ).

Definition 1.3.1. If f = {fk}k≥0 and {dkf}k≥1 are as above, we define:

1. the maximal function
f ∗ = sup

k>0
|fk|;
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2. the square function

S(f) =
( ∞∑
k=1
|dkf |2

)1/2

;

3. the conditional square function

s(f) =
( ∞∑
k=1

Ek−1|dkf |2
)1/2

.

There are several types of martingale Hardy spaces, which are defined in terms of
maximal functions, square functions and conditional square functions.

Definition 1.3.2. For 1 ≤ p < ∞, the martingale Hardy spaces hp(Ω), Hp(Ω), Hp
m(Ω)

are defined as follows

hp(Ω) = {f ∈ L1(Ω) : ‖f‖hp := ‖s(f)‖p <∞},
Hp(Ω) = {f ∈ L1(Ω) : ‖f‖Hp := ‖S(f)‖p <∞},
Hp
m(Ω) = {f ∈ L1(Ω) : ‖f‖Hp

m
:= ‖f ∗‖p <∞},

respectively.
For 0 < p < 1, hp(Ω) is defined as the completion of the space {f ∈ L1(Ω) : ‖f‖hp :=

‖s(f)‖p < ∞} with respect to the norm ‖ · ‖hp . Similarly, Hp(Ω) is defined as the
completion of the space {f ∈ L1(Ω) : ‖f‖Hp := ‖S(f)‖p < ∞} with respect to the norm
‖ · ‖Hp , and Hp

m(Ω) is defined as the completion of the space {f ∈ L1(Ω) : ‖f‖Hp
m

:=
‖f ∗‖p <∞} with respect to the norm ‖ · ‖Hp

m
.

In general, the above three martingale Hardy spaces are different. However, for 1 ≤
p <∞, Hp(Ω) = Hp

m(Ω) (see [13], [27], [92]).

Definition 1.3.3. (Regular filtration) A filtration is regular if there exists a constant
C > 0 such that for all k ≥ 2, Fk ∈ Fk, there exists a Gk ∈ Fk−1 satisfying

Fk ⊂ Gk, P (Gk) ≤ C · P (Fk).

In addition, a martingale f = {fk}k≥0 with respect to such a regular filtration is called a
regular martingale.

Remark 1.3.4. Suppose that for a positive random variable f ∈ L1(Ω) the corresponding
martingale {fk}k>0 is regular. Then for any k ≥ 2

fk 6 A · fk−1,

where A > 0 is a constant that depends only on the constant C of Definition 1.3.3.
See [51] for more information about regular filtrations and martingales.

Remark 1.3.5. For regular filtrations, Hp(Ω) = hp(Ω) = Hp
m(Ω) for all 0 < p < ∞. See

[91], [92] and [51] for more information.
An important aspect of martingale Hardy spaces is that they admit atomic decompo-

sitions. The definition of atoms in the martingale setting is given below.
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Definition 1.3.6. A random variable a : Ω→ C is called a martingale simple (p, q)-atom
(0 < p ≤ 1, 1 ≤ q 6∞) if there exist k ∈ N and A ∈ Fk such that

1. Ek(a) = 0;

2. supp(a) ⊂ A;

3. ‖a‖q 6 P (A)
1
q
− 1
p ,

where 1
q

:= 0 when q =∞ as convention.

Definition 1.3.7. We define the martingale atomic Hardy spaces Hp,q
at (Ω) for 0 < p <

1 6 q 6∞ or p = 1, 1 < q ≤ ∞ as follows

Hp,q
at (Ω) =

f =
∞∑
j=0

λja
j : aj is a simple (p, q)-atom and

∞∑
j=0
|λj|p <∞

 ,
equipped with the quasi-norm

‖f‖Hp,q
at (Ω) := inf

(
∞∑
j=0
|λj|p

) 1
p : f =

∞∑
j=0

λja
j, where aj is a simple (p, q)-atom

 .
It is well-known that hp(Ω) = Hp,2

at (Ω) when 0 < p ≤ 1 (see [91]). In particular, if
the martingale filtration is regular, then hp(Ω) = Hp,q

at (Ω) when 0 < p ≤ 1 and 1 < q ≤
∞. The following result is the atomic decomposition of H1(Ω), which follows from the
noncommutative result in [71]. In particular, it reveals the relationship between H1(Ω)
and h1(Ω) and shows that H1(Ω) 6= h1(Ω) for general martingales.

Theorem 1.3.8. We have H1(Ω) = h1(Ω) + h1
d(Ω), where h1

d denotes the diagonal Hardy
space of martingale differences

h1
d(Ω) =

{
h ∈ L1(Ω) : ‖h‖h1

d
(Ω) :=

∞∑
k=1
‖dkh‖1 <∞

}
.

We now introduce the martingale BMO and bmo spaces, which are the duals of H1(Ω)
and h1(Ω), respectively (see Theorem 1.3.12 below).

Definition 1.3.9. Assume f, g ∈ L2(Ω). We say that f is a martingale BMO function if

‖f‖BMO(Ω) := sup
n>1
‖En|f − fn−1|2‖1/2

∞ <∞.

We say that g is a martingale bmo function if

‖g‖bmo(Ω) := sup
n>0
‖En|g − gn|2‖1/2

∞ <∞.

Denote by BMO(Ω) and bmo(Ω) the spaces consisting of all martingale BMO and
bmo functions, respectively.

For regular martingales, BMO(Ω) = bmo(Ω). The following result is the so-called
martingale John–Nirenberg inequality and can be found in [32].
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Theorem 1.3.10. There exists a constant κ > 0 such that for any f ∈ BMO(Ω) with
‖f‖BMO(Ω) ≤ κ, we have

E
(
e|f |
)
6 1.

Remark 1.3.11. From the martingale John–Nirenberg inequality, we have for any 1 ≤ p <
∞,

‖f‖BMO(Ω) ≈p sup
n>1
‖En|f − fn−1|p‖1/p

∞ .

However, the above John–Nirenberg inequality fails for bmo(Ω) in the general setting.
For the following duality theorem, see [32], [51], [92].

Theorem 1.3.12. (H1(Ω))∗ = BMO(Ω) and (h1(Ω))∗ = bmo(Ω).

The following proposition, which can be found in [24] and [32], is a consequence of
Theorems 1.3.8 and 1.3.12 and it gives a description of the relationship between BMO(Ω)
and bmo(Ω). In particular, it implies that BMO(Ω) $ bmo(Ω) for general martingales.

Proposition 1.3.13. Assume f is a martingale BMO function. Then

‖f‖BMO(Ω) ≈ ‖f‖bmo(Ω) + sup
k≥1
‖dkf‖∞. (1.3.1)

We end this section with the definition of martingale Musielak–Orlicz Hardy spaces
and the generalized Hölder inequality.

Definition 1.3.14. The martingale Musielak–Orlicz Hardy space HΨ(Ω) (where Ψ is
described in Section 1.2) is the space consisting of all martingales f = {fk}k≥0 such that
the square function S(f) ∈ LΨ(Ω). Moreover, we define the quasi-norm

‖f‖HΨ(Ω) := ‖S(f)‖LΨ(Ω).

If Ψ is replaced by an Orlicz function Φ, the corresponding Hardy–Orlicz space HΦ(Ω) is
defined in an analogous way.

To obtain the generalized Hölder inequality, we introduce a particular Orlicz space
LΦ(Ω), where

Φ(t) := t

log(e+ t) , t ≥ 0. (1.3.2)

Note that Φ is an Orlicz function of uniformly lower type p (0 < p < 1) and upper type
1, which guarantees that the space LΦ(Ω) is a quasi-normed space. Note that L1(Ω) ⊂
LΦ(Ω).
Remark 1.3.15. It follows from [57] that if f = {fk}k≥0 is a regular martingale, then the
martingale Hardy–Orlicz space HΦ(Ω) can also be characterized by martingale maximal
functions and conditional square functions. For any f ∈ HΦ(Ω) one has

‖f‖HΦ(Ω) = ‖S(f)‖LΦ(Ω) ≈ ‖f ∗‖LΦ(Ω) ≈ ‖s(f)‖LΦ(Ω).

The following lemma is a variant of [9, Proposition 2.1] in the martingale setting.
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Lemma 1.3.16. Assume (Ω,F , P ) is a probability space, f ∈ L1(Ω) and g ∈ BMO(Ω).
Then f · g ∈ LΦ(Ω) and

‖f · g‖LΦ(Ω) . ‖f‖1‖g‖BMO(Ω). (1.3.3)

Proof. The proof is similar to the proof of the corresponding Euclidean result and we will
only outline it here for the convenience of the reader. By [9, Lemma 2.1], one has

st

M + log(e+ st) ≤ et−M + s. (1.3.4)

for all M ≥ 0, s ≥ 0, t ≥ 0.
When ‖f‖1 = 0 or ‖g‖BMO(Ω) = 0, (1.3.3) trivially holds. Assume g ∈ BMO(Ω) with

‖g‖BMO(Ω) > 0 and f ∈ L1(Ω) with ‖f‖1 > 0. Let κ be the constant in Theorem 1.3.10,
M = 0, t = κ|g(x)|

‖g‖BMO(Ω)
and s = |f(x)|

‖f‖1 . Then by Theorem 1.3.10 and (1.3.4), we have

∫
Ω

Φ
(

|f(x) · g(x)|
κ−1‖f‖1‖g‖BMO(Ω)

)
dP ≤

∫
Ω
e

κ|g(x)|
‖g‖BMO(Ω) dP +

∥∥∥∥∥ f

‖f‖1

∥∥∥∥∥
1
≤ 2. (1.3.5)

Hence, from (1.2.1) we conclude

‖f · g‖LΦ(Ω) . κ−1‖f‖1‖g‖BMO(Ω),

which completes the proof of the lemma.

We will refer to (1.3.3) as the generalized Hölder inequality.

1.4 d-adic martingales
Let d ≥ 2 be a fixed integer. We are particularly interested in d-adic martingales since

it is closely related to dyadic martingales on Euclidean spaces. In this section, we give a
general definition of d-adic martingales. Afterwards we will present an orthonormal basis
of Haar wavelets for d-adic martingales, which will be used to represent martingale para-
products and to define martingale Besov spaces for semicommutative d-adic martingales
(to be defined in Section 1.7).

Let Ω be a measure space endowed with a σ-finite measure µ. Assume that in Ω, there
exists a family of measurable sets In,k for n, k ∈ Z satisfying the following properties:

1. In,k are pairwise disjoint for any k if n is fixed;

2. ∪k∈ZIn,k = Ω for every n;

3. In,k = ∪dq=1In+1,kd+q−1 for any n, k, so each In,k is a union of d disjoint subsets
In+1,kd+q−1;

4. µ(In,k) = d−n for any n, k.

Then In,k are called d-adic intervals, and let D be the family of all such d-adic intervals.
For I ∈ D, let Ĩ be the parent interval of I, and I(j) the j-th subinterval of I, namely

(In,k)(j) = In+1,kd+j−1, ∀n, k ∈ Z, 1 ≤ j ≤ d.
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Denote by Dn the collection of d-adic intervals of length d−n in D. Given I ∈ D, let D(I)
be the collection of d-adic intervals contained in I, and Dn(I) the intersection of Dn and
D(I). For each n ∈ Z, denote by Fn the σ-algebra generated by the d-adic intervals In,k,
∀k ∈ Z. Denote by F the σ-algebra generated by all d-adic intervals for all In,k, ∀n, k ∈ Z.

Then (Fn)n∈Z is a filtration associated with the measure space (Ω,F , µ). In the sense
of Definition 1.3.3, (Fn)n∈Z is regular. Denote by Lloc

1 (Ω) the family of all locally integrable
functions g on Ω, that is, g ∈ L1(In,k) for all n, k ∈ Z. For a locally integrable function
g ∈ Lloc

1 (Ω), the sequence (gn)n∈Z is called a d-adic martingale, where

gn = E(g|Fn) =
∞∑

k=−∞

1In,k

µ(In,k)

∫
In,k

g dµ.

The martingale differences are defined as dng = gn − gn−1 for any n ∈ Z. We also denote
gn by En(g) (n ∈ Z) as usual.
Remark 1.4.1. We would like to remark that d-adic martingales are slightly different from
the martingales defined in the previous Section 1.3, since we are no longer working with
a probability space, and the filtration for d-adic martingales is indexed by Z.

Definition 1.4.2. Let ω = e
2πi
d (here i is the imaginary number). For any I = In,k ∈ D,

define
hiI = dn/2

d−1∑
j=0

ωi(j+1)
1In+1,kd+j , ∀ 1 ≤ i ≤ d− 1,

and h0
I := dn/21I .

Then {hiI}I∈D,1≤i≤d−1 is an orthonormal basis on L2(Ω) because ∀g ∈ L2(Ω)

g =
∞∑

k=−∞
dkg =

∞∑
k=−∞

( ∑
|I|=d−k+1

d−1∑
i=1

hiI〈hiI , g〉
)
.

We call {hiI}I∈D,1≤i≤d−1 the system of Haar wavelets. Note that for any 1 ≤ i, j ≤ d− 1,

hiI · h
j
I = µ(I)−1/2hi+jI , (1.4.1)

where i+ j is the remainder in [1, d] modulo d. The equality (1.4.1) is vital in our proof
of Theorem II.2 and Lemma 5.1.1.

Example 1.4.3. A natural example of d-adic martingales is where Ω = R, µ = m and
In,k are defined as follows

In,k = [kd−n, (k + 1)d−n), ∀n, k ∈ Z.

In the sequel, for simplicity of notation, we will always assume that Ω = R as this does
not change the d-adic martingale structure. Denote also by |I| the length m(I) of I ∈ D.

In particular, if d = 2n for some n ∈ N, we can let Ω = Rn, and define

Dk = {2−k([0, 1)n + q) : q ∈ Zn}, ∀k ∈ Z.

Then D = {2−k([0, 1)n + q) : k ∈ Z, q ∈ Zn} is the family of all 2n-adic intervals. Indeed,
this is the dyadic filtration on Rn.
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As in Definition 1.3.9, we define the d-adic martingale BMO space as follows:

Definition 1.4.4. The martingaleBMO space of d-adic martingale denoted byBMOd(R)
is the space of all locally integral functions b such that

‖b‖BMOd(R) = sup
n∈Z

∥∥∥∥∥En
( ∞∑
k=n+1

|dkb|2
)∥∥∥∥∥

1/2

∞
<∞. (1.4.2)

Remark 1.4.5. Notice that BMOd(R) is the martingale BMO space associated with d-adic
martingale for d ≥ 2.

For h ∈ Lloc
1 (R), we define the d-adic martingale square function

S(h) =
(∑
k∈Z
|dkh|2

)1/2

.

Definition 1.4.6. The d-adic martingale Hardy space is defined by

Hd
1 (R) = {h ∈ L1(R) : ‖h‖Hd

1 (R) := ‖S(h)‖L1(R) <∞}. (1.4.3)

Remark 1.4.7. By the same arguments in Theorem 1.3.12, we have (Hd
1 (R))∗ = BMOd(R).

1.5 Noncommutative Lp-spaces
Let M be a von Neumann algebra equipped with a normal semifinite faithful trace

τ . Denote byM+ the positive part ofM. Let S+(M) be the set of all x ∈ M+ whose
support projection has a finite trace, and S(M) be the linear span of S+(M). Then S(M)
is a w∗-dense ∗-subalgebra ofM. Let x ∈ S(M), then |x|p ∈ S(M) for any 0 < p <∞,
where |x| := (x∗x)1/2. Define

‖x‖p = (τ(|x|p))1/p.

Thus ‖ · ‖p is a norm for p ≥ 1, and a p-norm for 0 < p < 1. The noncommutative Lp-
space associated with (M, τ) is the completion of (S(M), ‖ · ‖p) for 0 < p < ∞ denoted
by Lp(M, τ). Let L0(M, τ) be the family of all measurable operators with respect to
(M, τ). We also write Lp(M, τ) simply by Lp(M) for short. When p = ∞, we set
L∞(M) :=M equipped with the operator norm. In particular, when p = 2, L2(M) is a
Hilbert space. We will viewM as a von Neumann algebra on L2(M) by left multiplication,
namelyM ↪→ B(L2(M)) via the embedding x 7−→ Lx ∈ B(L2(M)), where x ∈ M and
Lx(y) := x ·y ∈ L2(M) for any y ∈ L2(M). Hence in this way,M is in its standard form.
It is well-known that for 1 ≤ p <∞ and p′ = p

p−1(
Lp(M)

)∗
= Lp′(M).

We refer the reader to [78] for a detailed exposition of noncommutative Lp-spaces.
If H is a Hilbert space andM = B(H) equipped with the usual trace Tr, then Lp(M)

is the Schatten p-class on H and denoted by Sp(H). Denote by η1⊗η2 the rank 1 operator
on H given by

η1 ⊗ η2(η) := η1〈η2, η〉, ∀η ∈ H,
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where η1 and η2 are two vectors in H. Then η1 ⊗ η2 ∈ S(B(H)), and for any 0 < p ≤ ∞

‖η1 ⊗ η2‖Sp(H) = ‖η1‖H‖η2‖H.

Now we present the tensor product of von Neumann algebras. Assume that eachMk

(k = 1, 2) is equipped with a normal semifinite faithful trace τk. Then the tensor product
ofM1 andM2 denoted byM1⊗M2 is the w∗-closure of span{x1⊗x2|x1 ∈M1, x2 ∈M2}
in B(L2(M1)⊗L2(M2)). Here L2(M1)⊗L2(M2) is the Hilbert space tensor product of
L2(M1) and L2(M2).

It is well-known that there exists a unique normal semifinite faithful trace τ on the
von Neumann algebra tensor productM1 ⊗M2 such that

τ (x1 ⊗ x2) = τ1 (x1) τ2 (x2) , ∀x1 ∈ S(M1),∀x2 ∈ S(M2).

τ is called the tensor product of τ1 and τ2 and denoted by τ1 ⊗ τ2.
Let Md be the algebra of d× d matrices equipped with the usual trace Tr. Denote by

trd := 1
d
Tr the normalized trace on Md. For k ≥ 1, let

(M⊗kd , tr⊗kd ) =
k
⊗
i=1

(Md, trd)

be the tensor products in the sense of von Neumann algebras. We define

(
∞
⊗
k=1

Md,
∞
⊗
k=1

trd) =
∞
⊗
i=1

(Md, trd)

as the inductive limit of (M⊗kd , tr⊗kd )k≥1, also denoted by
∞
⊗
k=1

Md for simplicity. (see [34,
Lemma 4.5] for the inductive limit)

In this thesis, we are concerned with the von Neumann algebra tensor product of
B(L2(R)) and M, where B(L2(R)) is endowed with the usual trace Tr, and M is a
semifinite von Neumann algebra equipped with a normal semifinite faithful trace τ .

In the sequel, we will identify any left multiplication Lx ∈ B(L2(M)) and x ∈ M.
Then for any T ∈ B(L2(R)), T ⊗ Lx ∈ B(L2(R)) ⊗M ↪→ B(L2(R)) ⊗ B(L2(M)) =
B(L2(R)⊗ L2(M)), and

‖T ⊗ Lx‖Lp(B(L2(R))⊗M) = ‖T‖Sp(L2(R))‖x‖Lp(M).

In the following, we write T ⊗ Lx as x · T , and thus

(x · T )(f) = T ⊗ Lx(f) = x · T (f), ∀f ∈ L2(R, L2(M)). (1.5.1)

1.6 Noncommutative martingales
This section is devoted to noncommutative martingales. The reader is referred to [78]

and [94]. AssumeM is a von Neumann algebra equipped with a normal faithful semifinite
trace τ and N is a von Neumann subalgebra of M such that the restriction of τ to N
is again semifinite. Then there exists a unique map E :M→ N satisfying the following
properties:
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1. E is a normal contractive positive projection fromM onto N ;

2. E(axb) = aE(x)b for any x ∈M and a, b ∈ N ;

3. τ ◦ E = τ .

E is called the conditional expectation ofM with respect to N . Besides, E extends to a
contractive positive projection from Lp(M) onto Lp(N ) for any 1 ≤ p <∞, still denoted
by E .

Recall that a filtration of von Neumann subalgebras ofM is an nondecreasing sequence
(Mn)n≥1 of von Neumann subalgebras of M such that ∪nMn is w∗-dense in M and
the restriction of τ to ∪nMn is also semifinite for every n. Let En be the conditional
expectation of M with respect to Mn. A sequence x = (xn) ⊂ L1(M) is called a
martingale with respect to (Mn)n≥1 if En(xn+1) = xn for every n ≥ 1. In addition, if
xn ∈ Lp(M) with p ≥ 1, x is called an Lp-martingale with respect to (Mn)n≥1. Denote
the martingale differences by dnx = xn − xn−1 for n ≥ 1 with the convention x0 = 0.
Remark 1.6.1. Let 1 < p ≤ ∞ and x = (xn) a noncommutative martingale such that

sup
n
‖xn‖p <∞.

Then there exists x∞ ∈ Lp(M) such that xn = En (x∞) for every n.
We are going to introduce two particular noncommutative martingales: the CAR

algebras and tensor products of matrix algebras.

1.6.1 CAR algebra
We consider the following Pauli matrices:

σ0 =
(

1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
.

For n ≥ 1, define

c2n−1 = σ0 ⊗ · · · σ0 ⊗ σ1 ⊗ 1⊗ 1 · · · , c2n = σ0 ⊗ · · · σ0 ⊗ σ2 ⊗ 1⊗ 1 · · · ,

where σ1 and σ2 occur in the n-th position. Then (cn)n≥1 are selfadjoint unitary operators
and satisfy the following canonical anticommutation relations (CAR):

cjck + ckcj = 2δjk, j, k ≥ 1. (1.6.1)

The CAR algebra (Clifford algebra) denoted by C is the von Neumann algebra generated
by (cn)n≥1. Let us give more details.

Let I denote the family of all finite subsets of N. For a nonempty A ∈ I, we arrange
the integers of A in an increasing order and write A = {k1 < k2 < · · · < kn}. Define
max(A) := kn and

cA = ck1ck2 · · · ckn .
If A = ∅, we set max(∅) := 1 and cA = 1. Then cA is unitary for any A ∈ I. If A is
a singleton {k}, we still use ck instead of c{k}. Let C0 be the family of all finite linear
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combinations of (cA)A∈I . Then C0 is an involutive algebra. Define τ to be the linear
functional on C0 given by

τ(x) = α∅, (1.6.2)
where x = ∑

A∈I
αAcA. One can check that τ is a positive faithful tracial state on C0. Then

the CAR algebra C is the von Neumann algebra of the GNS representation of τ . Note
that (cA)A∈I is an orthonormal basis of L2(C). We refer the reader to [83] and [79] for
more information on CAR algebra.

Let Cn be the von Neumann subalgebra generated by {cA : max(A) ≤ n} for any
n ≥ 1. It is clear that Cn is of dimension 2n, and (Cn)n≥1 is a filtration of C. Then for any
b ∈ Lp(C) (1 ≤ p ≤ ∞),

dnb =
∑

max(A)=n
b̂(A)cA, ∀ n ≥ 1,

where b̂(A) = τ(c∗A · b).

1.6.2 Tensor products of matrix algebras
Let Mn = M⊗nd be endowed with the normalized trace tr⊗nd . We embed Mn into M

via the map x ∈ Mn 7−→ x ⊗ 1 ⊗ 1 ⊗ · · · ∈ M . Then (Mn)n≥1 is a natural filtration of
M . We will give an orthonormal basis of L2(M ) in Section 4.3.

1.7 Semicommutative d-adic martingales and mar-
tingale Besov spaces

In this section, we are concerned with semicommutative d-adic martingales and mar-
tingale Besov spaces. Firstly, we introduce the definition of semicommutative d-adic mar-
tingales. Then we give the definitions of martingale Besov spaces for semicommutative
d-adic martingales, CAR algebra and M =

∞
⊗
k=1

Md.
We define the semicommutative d-adic martingales in the same way as in the com-

mutative setting. Similarly, denote by Lloc
1 (R, L1(M)) the family of all f such that

1In,k · f ∈ L1(R, L1(M)) for any n, k ∈ Z. Then ∀f ∈ Lloc
1 (R, L1(M)), the sequence

(fn)n∈Z is called a semicommutative d-adic martingale, where

fn = E(f |Fn) =
∞∑

k=−∞

1In,k

µ(In,k)

∫
In,k

f dµ. (1.7.1)

For any f ∈ L1(R, L1(M)) and g ∈ L∞(R), define

〈g, f〉 =
∫
R
g · f dm.

One can easily deduce that 〈g, f〉 ∈ L1(M) from the triangle inequality. By a slight
abuse of notation, we use the same notation 〈·,·〉 to denote the inner product in any given
Hilbert space. Besides, by (1.7.1), the martingale differences are given by

dnf =
∑

|I|=d−n+1

d−1∑
i=1

hiI ⊗ 〈hiI , f〉, ∀f ∈ Lloc
1 (R, L1(M)) and n ∈ Z.
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Note that 〈hiI , f〉 ∈ L1(M). Later, we will give a more general definition of martingale
differences.
Remark 1.7.1. By Remark 1.6.1, if f ∈ Lp(R, Lp(M)) for 1 < p ≤ ∞, then

k∑
n=−k

dnf −→ f as k →∞

in Lp(R, Lp(M)) (in w∗-topology for p =∞).
We will utilize hiI to give a direct representation of πb, which is easier to handle. It is

well-known that L2(R, L2(M)) = L2(R)⊗ L2(M). In the sequel, for any f ∈ L2(R) and
x ∈ L2(M), we use “x · f ” (or “f · x ”) to denote f ⊗ x ∈ L2(R, L2(M)) for the sake of
simplicity.

Now we calculate πb. Let b ∈ Lloc
1 (R, L1(M)). For f ∈ L2(R, L2(M)), we have

πb(f) =
∞∑

k=−∞
dkb · fk−1

=
∞∑

k=−∞

( ∑
|I|=d−k+1

d−1∑
i=1

hiI ⊗ 〈hiI , b〉
)( ∑
|I|=d−k+1

1I ⊗
〈
1I

|I|
, f

〉)

=
∑
I∈D

d−1∑
i=1

hiI ⊗ 〈hiI , b〉
〈
1I

|I|
, f

〉
,

(1.7.2)

which by (1.5.1) can be rewritten as

πb(f) =
∑
I∈D

d−1∑
i=1

hiI〈hiI , b〉
〈
1I

|I|
, f

〉
. (1.7.3)

The adjoint operator of πb is given by ∀f ∈ L2(R, L2(M))

π∗b (f) =
∑
k∈Z

Ek−1(dkb∗dkf)

=
∑
I∈D

d−1∑
i=1

1I

|I|
〈hiI , b〉∗〈hiI , f〉

=
∑
I∈D

d−1∑
i=1

1I

|I|
〈b, hiI〉〈hiI , f〉.

(1.7.4)

From (1.7.3), we can see that the martingale paraproduct πb with symbol b is induced
by the operator-valued Haar multiplier (biI)I∈D,1≤i≤d−1 where

biI := 〈hiI , b〉.

Hence, in general, we define πb in the following way: for any operator-valued Haar multi-
plier b = (biI)I∈D,1≤i≤d−1 ⊂ L0(M), πb with symbol b is defined as follows

πb(f) =
∑
I∈D

d−1∑
i=1

hiIb
i
I

〈
1I

|I|
, f

〉
, ∀f ∈ L2(R, L2(M)). (1.7.5)
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Besides, the corresponding sequence of martingale differences (dnb)n∈Z with symbol b is
given by

dnb =
∑

|I|=d−n+1

d−1∑
i=1

hiI · biI , ∀n ∈ Z. (1.7.6)

Thus each operator-valued Haar multiplier in L0(M) corresponds to a sequence of mar-
tingale differences one-to-one. In the sequel, πb is defined as in (1.7.5), and for consistency
of notation, we identify biI and 〈hiI , b〉 by a slight abuse of notation.

As mentioned before, we use Haar wavelets to define martingale Besov spaces for
semicommutative d-adic martingales.
Definition 1.7.2. The martingale Besov space BBBd

p(R,M) (0 < p < ∞) of the semi-
commutative d-adic martingale is the space of all operator-valued Haar multipliers b =
(〈hiI , b〉)I∈D,1≤i≤d−1 ⊂ L0(M) such that

‖b‖BBBdp(R,M) :=
(∑
I∈D

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p)1/p

<∞. (1.7.7)

Remark 1.7.3. It is clear that when 1 ≤ p < ∞, BBBd
p(R,M) is a Banach space. When

0 < p < 1, BBBd
p(R,M) is a quasi-Banach space.

Remark 1.7.4. It is easy to see that for x ∈ S(M), then b = hiI ⊗ x ∈ S(L∞(R) ⊗M)
belongs toBBBd

p(R,M) for any 0 < p <∞. Hence, the subspace S(L∞(R)⊗M)∩BBBd
p(R,M)

is dense in BBBd
p(R,M).

Remark 1.7.5. Recall that martingale differences are defined in (1.7.6). One can verify
that for any 0 < p <∞ and b ∈ BBBd

p(R,M)

‖b‖BBBdp(R,M) ≈d,p
( ∞∑
k=−∞

dk‖dkb‖pLp(R,Lp(M))

)1/p

.

In particular, ifM = C, the martingale Besov space BBBd
p(R,C) is as same as that in [18].

As for the martingale Besov spaces concerning the CAR algebra and M =
∞
⊗
k=1

Md, we
use the martingale differences to formulate their definitions.
Definition 1.7.6. The martingale Besov space BBBp(C) (0 < p <∞) for the CAR algebra
is the completion of the set consisting of all b ∈ S(C) such that

‖b‖BBBp(C) :=
( ∞∑
k=1

2k‖dkb‖pLp(C)

)1/p

<∞,

with respect to ‖ · ‖BBBp(C).

Definition 1.7.7. The martingale Besov space BBBp(M ) (0 < p <∞) for M =
∞
⊗
k=1

Md is
the completion of the set consisting of all b ∈ S(M ) such that

‖b‖BBBp(M ) :=
( ∞∑
k=1

d2k‖dkb‖pLp(M )

)1/p

<∞,

with respect to ‖ · ‖BBBp(M ).
Remark 1.7.8. When 1 ≤ p <∞, BBBp(C) andBBBp(M ) are Banach spaces. When 0 < p < 1,
they are quasi-Banach spaces.
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1.8 Homogeneous spaces
In this section, we introduce some fundamental concepts and important theorems

for homogeneous spaces, which can be found in [23]. We begin with the definition of
homogeneous spaces. Recall that d is a quasi-metric on Ω if

1. d(x, y) ≥ 0, ∀x, y ∈ Ω and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x), ∀x, y ∈ Ω;

3. there exists a constant A0 ≥ 1 such that

d(x, y) 6 A0(d(x, z) + d(z, y)), ∀x, y, z ∈ Ω. (1.8.1)

Denote by B(x, r) := {y ∈ Ω : d(y, x) < r} the open ball centered at x with radius r.
In this paper, all quasi-metric spaces are assumed to have the doubling property: there
exists a positive integer A1 ∈ N such that any ball of radius r can be covered by A1 balls
of radius r

2 .

Definition 1.8.1. A σ-finite measure space (Ω,F , µ) equipped with a quasi-metric d is
called a homogeneous space if µ is a Borel measure of homogeneous type:

0 < µ (B(x, 2r)) 6 2Cµµ (B(x, r)) <∞, ∀x ∈ Ω, r > 0, (1.8.2)

where the constant Cµ is independent of x and r.

In [23], Coifman and Weiss defined Hardy spaces on homogeneous spaces by regarding
their elements as linear functionals acting on some appropriate quasi-normed spaces. In
order to state their definition, we need to introduce the notions of atoms, BMO and
Lipschitz spaces on homogeneous spaces.

Definition 1.8.2. If 0 < p 6 1 6 q ≤ ∞ and p < q, we say that a function a is a
(p, q)-atom if

1. supp(a) ⊂ B where B is a ball;

2. ‖a‖q 6 (µ(B))
1
q
− 1
p ;

3.
∫

Ω adµ = 0.

Definition 1.8.3. A locally integrable function f is called a BMO function if

‖f‖BMO := sup
B

1
µ(B)

∫
B
|f − fB|dµ <∞,

where fB := 1
µ(B)

∫
B fdµ, and the supremum runs over all balls B. Denote by BMO(µ)

the BMO space consisting of all BMO functions.
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Definition 1.8.4. For α > 0, a locally integrable function l is called a Lipschitz function
if
|l(x)− l(y)| 6 Cα (µ(B))α for any x, y ∈ Ω and any ball B containing x, y. (1.8.3)

Moreover,
‖l‖Lα := inf{Cα : |l(x)− l(y)| 6 Cα (µ(B))α , ∀x, y ∈ B}, (1.8.4)

where the infimum runs over all balls B. Denote by Lα(µ) the space consisting of all
Lipschitz functions.

It is well-known that each BMO function can be regarded as a continuous linear
functional on the vector space generated by finite linear combinations of (1, q)-atoms for
1 < q ≤ ∞ (cf. [23]). Hence we can define the atomic Hardy space H1,q

at (µ) (1 < q ≤ ∞)
as follows:

H1,q
at (µ) =f ∈ (BMO(µ))∗ : f =

∞∑
j=0

λja
j, aj is a (1, q)-atom and

∞∑
j=0
|λj| <∞

 (1.8.5)

endowed with the norm

‖f‖H1,q
at (µ) := inf


∞∑
j=0
|λj| : f =

∞∑
j=0

λja
j, aj is a (1, q)-atom

 .
Similarly, each Lipschitz function l ∈ Lαp(µ) can be also regarded as a continuous

linear functional of the vector space generated by finite linear combinations of (p, q)-
atoms where 0 < p < 1 ≤ q ≤ ∞ and αp = 1

p
− 1 (cf. [23]). We define the atomic Hardy

spaces Hp,q
at (µ) as follows:

Hp,q
at (µ)

=

f ∈ (Lαp(µ)
)∗

: f =
∞∑
j=0

λja
j, aj is a (p, q)-atom and

∞∑
j=0
|λj|p <∞

 (1.8.6)

endowed with the quasi-norm

‖f‖Hp,q
at (µ) := inf


 ∞∑
j=0
|λj|p

 1
p

: f =
∞∑
j=0

λja
j, aj is a (p, q)-atom

 .
Although the Hardy spaces vary with p and q according to the above definitions, the

following theorem, which can be found in [23], shows that they actually depend only on
p. Consequently, this enables us to define the Hardy spaces Hp

at(µ) for 0 < p 6 1 to be
any one of the spaces Hp,q

at (µ) for 0 < p < q 6∞, 1 6 q ≤ ∞.
Theorem 1.8.5. Hp,q

at (µ) = Hp,∞
at (µ) whenever 0 < p ≤ 1 6 q 6∞ and p < q.

We end this section with the following duality theorem in [23].
Theorem 1.8.6. (H1

at(µ))∗ = BMO(µ), and (Hp
at(µ))∗ = Lαp(µ) for 0 < p < 1.

The proofs of Theorem 1.8.5 and Theorem 1.8.6 in [23] are very technical. In Section
3.1, by employing martingale methods, we give much simpler proofs of these facts. Our
approach is based on the fact that Hp

at(µ) for 0 < p ≤ 1 is the finite sum of several dyadic
martingale Hardy spaces.
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Chapter 2

Bilinear decompositions on
probability spaces

In this chapter, we first prove Theorem I.1. Then we will present a characterization of
martingale Lipschitz spaces Λ1(αp), which is needed to show Theorem I.2 (see Theorem
2.2.4 below). At last, we will prove Theorem I.2. Our method is mainly based on the
atomic decomposition.

2.1 Bilinear decompositions on H1(Ω)×BMO(Ω)
In this section we prove Theorem I.1. Let (Ω,F , P ) be a fixed probability space and

let f ∈ H1(Ω), g ∈ BMO(Ω). If we assume that f and g are finite martingales, then we
may write their pointwise product f · g as follows

f · g = Π1(f, g) + Π2(f, g) + Π3(f, g), (2.1.1)

where

Π1(f, g) :=
∞∑
k=1

dkfdkg, Π2(f, g) :=
∞∑
k=1

fk−1dkg and Π3(f, g) :=
∞∑
k=1

gk−1dkf.

We will estimate Π1(f, g),Π2(f, g), Π3(f, g) separately. To do so, we will make use
of the atomic decomposition of H1(Ω). It follows from our arguments below that the
operators Π1, Π2 and Π3 are well-defined (in a pointwise sense) on the product space
H1(Ω)×BMO(Ω). Hence, the proof of Theorem I.1 will follow from the boundedness of
Π1, Π2 and Π3, (2.1.1) and a limit argument.

In §2.1.4, we present a direct way to deal with Π3(f, g), which avoids the use of the
atomic decomposition.

Proof of Theorem I.1. By Theorem 1.3.8, there always exist two functions fh and fd such
that f = fh + fd, where fh ∈ h1(Ω) and fd ∈ h1

d(Ω). For any such decomposition of f ,
since fh ∈ h1(Ω), there exist {λj}j>1 ⊂ R and simple (1, 2)-atoms {aj}j>1 such that

fh =
∞∑
j=1

λja
j, ‖fh‖h1(Ω) ≈

∞∑
j=1
|λj|, (2.1.2)
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where we assume supp(aj) ⊂ Anj and Anj ∈ Fnj with P (Anj) > 0 for j ≥ 1. Then

Πi(f, g) =
∞∑
j=1

λjΠi(aj, g) + Πi(fd, g), i = 1, 2, 3. (2.1.3)

2.1.1 Estimates for Π1(fh, g) and Π1(fd, g)

We are going to show that Π1 is a bounded bilinear operator from H1(Ω)×BMO(Ω)
to L1(Ω). In fact, the boundedness of Π1 follows naturally from the duality between
H1(Ω) and BMO(Ω), i.e. Theorem 1.3.12 (see [32]). For the reader’s convenience, we
give a proof based on atomic decompositions.

We first focus on Π1(fh, g), which can further be decomposed into atoms as described
in (2.1.2). It thus suffices to consider

Π1(aj, g) =
∞∑
k=1

dka
jdkg,

which can further be localized as dkaj = 1Anj dka
j when k ≥ nj + 1 since Anj ∈ Fnj ,

namely

Π1(aj, g) =
∞∑

k=nj+1
1Anj dka

jdkg.

Now, by applying the Cauchy-Schwarz inequality, we derive the estimate

‖Π1(aj, g)‖1 = E

∣∣∣∣∣∣
∞∑

k=nj+1
1Anj dka

jdkg

∣∣∣∣∣∣


6

E
 ∞∑
k=nj+1

|dkaj|2
 1

2
E

 ∞∑
k=nj+1

1Anj |dkg|
2

 1
2

6 ‖aj‖2

EEnj
 ∞∑
k=nj+1

1Anj |dkg|
2

 1
2

6 P (Anj)−
1
2

E
1AnjEnj

 ∞∑
k=nj+1

|dkg|2
 1

2

6 P (Anj)−
1
2‖g‖bmo(Ω)P (Anj)

1
2

where the fourth inequality follows from the definition of the atom. Hence, we deduce
from the definition of the bmo−norm that

‖Π1(aj, g)‖1 ≤ ‖g‖bmo(Ω). (2.1.4)
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By using (2.1.4) and (2.1.3), we have by Theorem 1.3.13

‖Π1(f, g)‖1 6
∞∑
j=1
|λj|‖g‖bmo(Ω) +

∥∥∥∥∥
∞∑
k=1

dkf
ddkg

∥∥∥∥∥
1

. ‖fh‖h1‖g‖bmo(Ω) +
(

sup
k≥1
‖dkg‖∞

)( ∞∑
k=1
‖dkfd‖1

)

.
(
‖fh‖h1(Ω) + ‖fd‖hd1(Ω)

)
‖g‖BMO(Ω).

Since the decomposition of f = fh + fd is arbitrary, by Theorem 1.3.8 we conclude

‖Π1(f, g)‖1 . ‖f‖H1(Ω)‖g‖BMO(Ω). (2.1.5)

2.1.2 Estimates for Π2(fh, g) and Π2(fd, g)
We are going to show that Π2 is a bounded bilinear operator from H1(Ω)×BMO(Ω)

to H1(Ω). Arguing as in section 2.1.1, we perform the localization on each term

Π2(aj, g) =
∞∑
k=1

ajk−1dkg =
∞∑

k=nj+2
1Anja

j
k−1dkg.

It is easy to verify that

dk(Π2(aj, g)) = ajk−1dkg, k ≥ nj + 2 and dk(Π2(aj, g)) = 0, 1 6 k 6 nj + 1.

We consider the corresponding square function

S
(
Π2(aj, g)

)
=
 ∞∑
k=nj+2

(
|ajk−1|21Anj |dkg|

2
) 1

2

6 |(aj)∗|
 ∞∑
k=nj+2

1Anj
(
|dkg|2

) 1
2

.

Then by invoking the Cauchy-Schwarz inequality, we have that

‖Π2(aj, g)‖H1(Ω) = E
[
S
(
Π2(aj, g)

)]
6 ‖(aj)∗‖2

E
 ∞∑
k=nj+2

1Anj (|dkg|
2)
 1

2

6 ‖aj‖2

E
1AnjEnj

 ∞∑
k=nj+2

|dkg|2
 1

2

6 P (Anj)−
1
2‖g‖BMO(Ω)P (Anj)

1
2

and hence,
‖Π2(aj, g)‖H1(Ω) 6 ‖g‖BMO(Ω). (2.1.6)
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Similarly, by Theorem 1.3.13

∥∥∥Π2(fd, g)
∥∥∥
H1(Ω)

= E
[
S

(
Π2(

∞∑
m=1

dmf
d, g)

)]

6
∞∑
m=1

E
[
S
(
Π2(dmfd, g)

)]

=
∞∑
m=1

E

Em
 ∞∑
k=m+1

|dmfd|2|dkg|2
 1

2


=
∞∑
m=1

E

|dmfd|Em
 ∞∑
k=m+1

|dkg|2
 1

2


6
∞∑
m=1

‖dmfd‖1

∥∥∥∥∥∥Em
 ∞∑
k=m+1

|dkg|2
∥∥∥∥∥∥

1
2

∞


and hence, ∥∥∥Π2(fd, g)

∥∥∥
H1(Ω)

6 ‖fd‖h1
d
(Ω)‖g‖BMO(Ω). (2.1.7)

By using (2.1.7), (2.1.2) and (2.1.3), we have by Theorem 1.3.8

‖Π2(f, g)‖H1(Ω) ≤
∥∥∥Π2(fh, g)

∥∥∥
H1(Ω)

+
∥∥∥Π2(fd, g)

∥∥∥
H1(Ω)

6
∞∑
j=1
|λj|‖g‖BMO(Ω) + ‖fd‖hd1(Ω)‖g‖BMO(Ω)

.
(
‖fh‖h1(Ω) + ‖fd‖h1

d
(Ω)

)
‖g‖BMO(Ω).

Since the decomposition of f = fh + fd is arbitrary, by Theorem 1.3.8 we conclude

‖Π2(f, g)‖H1(Ω) . ‖f‖H1(Ω)‖g‖BMO(Ω). (2.1.8)

2.1.3 Estimates for Π3(fh, g) and Π3(fd, g)
We are going to show that Π3 is a bounded bilinear operator from H1(Ω)×BMO(Ω)

to HΦ(Ω). To this end, we first deal with Π3(fh, g). Note that

S(Π3(fh, g)) = S

 ∞∑
k=1

∞∑
j=1

λjgk−1dka
j

 ≤ ∞∑
j=1

λjS

( ∞∑
k=1

gk−1dka
j

)

=
∞∑
j=1

λj

 ∞∑
k=nj+1

|gk−1|2|dkaj|2
 1

2

≤
∞∑
j=1

λj

 ∞∑
k=nj+1

|gk−1 − gnj |2|dkaj|2
 1

2

+
∞∑
j=1

λj|gnj |S(aj)

=: I1 + I2.
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It thus suffices to handle I1 and I2. For I1, we have

E(I1) 6
∞∑
j=1
|λj|E

 ∞∑
k=nj+1

1Anj |gk−1 − gnj |2|dkaj|2
 1

2

6
∞∑
j=1
|λj|

E
 ∞∑
k=nj+1

1Anj |gk−1 − g|2|dkaj|2
 1

2

+ E

 ∞∑
k=nj+1

1Anj |g − gnj |
2|dkaj|2

 1
2


6
∞∑
j=1
|λj|

P (Anj)
1
2

E
 ∞∑
k=nj+1

|gk−1 − g|2|dkaj|2
 1

2

+ E
(
1Anj |g − gnj |S(aj)

)
6
∞∑
j=1
|λj|

P (Anj)
1
2

E
 ∞∑
k=nj+1

|dkaj|2Ek(|gk−1 − g|2)
 1

2

+ ‖aj‖2P (Anj)
1
2‖g‖BMO(Ω)


6 2

∞∑
j=1
|λj|P (Anj)

1
2‖g‖BMO(Ω)‖aj‖2

and so,
E(I1) . ‖fh‖h1(Ω)‖g‖BMO(Ω). (2.1.9)

Next, we obtain an estimate for I2. To this end, notice that

I2 ≤

 ∞∑
j=1

1Anj |λj|S(aj)
 · |g|+ ∞∑

j=1
|λj|1Anj |gnj − g|S(aj)

=: I3 + I4.

Since aj is a simple (1, 2)-atom, we have ‖1AnjS(aj)‖1 ≤ 1 and∥∥∥∥∥∥
∞∑
j=1

1Anj |λj|S(aj)

∥∥∥∥∥∥
1

≤
∞∑
j=1
|λj| . ‖fh‖h1(Ω).

By Lemma 1.3.16, we have

‖I3‖LΦ(Ω) .

∥∥∥∥∥∥
∞∑
j=1

1Anj |λj|S(aj)

∥∥∥∥∥∥
1

‖g‖BMO(Ω) . ‖fh‖h1(Ω)‖g‖BMO(Ω). (2.1.10)

The following estimate is implicit in the proof of (2.1.9):

E(I4) 6
∞∑
j=1
|λj|P (Anj)

1
2‖g‖BMO(Ω)‖aj‖2 . ‖fh‖h1(Ω)‖g‖BMO(Ω). (2.1.11)

By combining (2.1.10) and (2.1.11), we deduce that

‖I2‖LΦ(Ω) . ‖fh‖h1(Ω)‖g‖BMO(Ω). (2.1.12)

In conclusion, by (2.1.9) and (2.1.12) we get

‖Π3(fh, g)‖HΦ(Ω) . ‖fh‖h1(Ω)‖g‖BMO(Ω). (2.1.13)
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It remains to deal with Π3(fd, g). We have

S(Π3(fd, g)) =
( ∞∑
k=1
|gk−1|2|dkfd|2

) 1
2

6
∞∑
k=1
|gk−1||dkfd|

≤
∞∑
k=1
|gk−1 − g||dkfd|+ |g|

( ∞∑
k=1
|dkfd|

)
.

By Lemma 1.3.16,∥∥∥∥∥g
( ∞∑
k=1
|dkfd|

)∥∥∥∥∥
LΦ(Ω)

.

( ∞∑
k=1
‖dkfd‖1

)
‖g‖BMO(Ω) = ‖fd‖h1

d
(Ω)‖g‖BMO(Ω). (2.1.14)

For the remaining term, we have

E
( ∞∑
k=1
|gk−1 − g||dkfd|

)
= E

( ∞∑
k=1
|dkfd|Ek|gk−1 − g|

)

6 ‖g‖BMO(Ω)

( ∞∑
k=1
‖dkfd‖1

)

and so
E
( ∞∑
k=1
|gk−1 − g||dkfd|

)
6 ‖fd‖h1

d
(Ω)‖g‖BMO(Ω). (2.1.15)

Hence, by (2.1.14) and (2.1.15), we get

‖Π3(fd, g)‖HΦ(Ω) . ‖fd‖h1
d
(Ω)‖g‖BMO(Ω). (2.1.16)

By (2.1.13) and (2.1.16), we obtain

‖Π3(f, g)‖HΦ(Ω) .
(
‖fh‖h1(Ω) + ‖fd‖h1

d
(Ω)

)
‖g‖BMO(Ω).

Thus we conclude
‖Π3(f, g)‖HΦ(Ω) . ‖f‖H1(Ω)‖g‖BMO(Ω). (2.1.17)

This completes the proof of Theorem I.1

2.1.4 Another method for handling Π3(f, g)
In this subsection we present a different method for dealing with Π3(f, g), which is

much neater and simpler than the one presented above, and it relies on the following
theorem which has been shown in [32].

Theorem 2.1.1. If g ∈ BMO(Ω) and g0 = 0, then (g∗)0 . ‖g‖BMO(Ω) and g∗ ∈
BMO(Ω). Moreover, ‖g∗‖BMO(Ω) . ‖g‖BMO(Ω).

We begin with a pointwise estimate for S(Π3(f, g)). Towards this aim, note that
dk(Π3(f, g)) = gk−1dkf , which implies that

S(Π3(f, g)) =
( ∞∑
k=1
|gk−1|2|dkf |2

) 1
2

6 |g∗|S(f) 6 J1 + J2,
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where
J1 := |g∗ − (g∗)0|S(f) and J2 := S(f)‖g‖BMO(Ω).

Clearly,
‖J2‖1 . ‖f‖H1(Ω)‖g‖BMO(Ω). (2.1.18)

By Theorem 2.1.1, we get g∗ ∈ BMO(Ω), and hence by Lemma 1.3.16

‖J1‖LΦ(Ω) . ‖g∗‖BMO(Ω)‖S(f)‖1 . ‖f‖H1(Ω)‖g‖BMO(Ω). (2.1.19)

As S(Π3(f, g)) ≤ J1 + J2, by combining (2.1.18) with (2.1.19), and by the fact L1(Ω) ⊂
LΦ(Ω), we conclude

‖Π3(f, g)‖HΦ(Ω) = ‖S(Π3(f, g))‖LΦ(Ω) . ‖f‖H1(Ω)‖g‖BMO(Ω),

as desired.
We would like to end this section with the comparison between our proof and the one

provided in [10]. Though both arguments heavily rely on the atomic decomposition of
H1(Ω), they further use weak atom decomposition for the diagonal Hardy space while our
proof proceeds more directly. Moreover, the treatment of the most technical term Π3 is
significantly simplified in this section thanks to Theorem 2.1.1.

After the submission of our paper, the authors in [10] also independently discovered a
similar way to estimate Π3 by martingale maximal functions of BMO functions. However,
they utilize the John-Nirenberg inequality for the martingale maximal functions of BMO
functions instead of Theorem 2.1.1.

2.2 Bilinear decompositions on Hp(Ω)× Λ1(αp) for 0 <
p < 1

In this section, we give a proof of Theorem I.2. Arguing as in the proof of Theorem
I.1, it suffices to establish appropriate estimates for the bilinear operators Π1, Π2 and Π3.

Let (Ω,F , P ) be a fixed probability space. If we consider the filtration F0 = {∅,Ω}
and Fk = F for all k > 1, then Hp(Ω) = Lp(Ω) for 0 < p < ∞. It is well-known that
(Lp(Ω))∗ 6= {0} if and only if the probability space (Ω,F , P ) contains at least one atom
with non-zero measure when 0 < p < 1. This means that (Hp(Ω))∗ = {0} may occur.
Therefore, we are only concerned with regular martingales where every Fk is generated
by countably many atoms.

To prove Theorem I.2, we start with the following lemma, which holds for general
martingales that are not necessarily regular. This will be familiar to the experts in the
area, but we will enclose the proof here for the sake of completeness.

Lemma 2.2.1. For any 0 < p < 1, we have L1(Ω) ⊂ Hp
m(Ω).

Proof. By Doob’s maximal inequality, for any f ∈ L1(Ω) and for any λ > 0 we have

P (f ∗ > λ) 6 1
λ

∫
{f∗>λ}

|f |dP. (2.2.1)
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Without loss of generality, we may assume ‖f‖1 6 1. Then

‖f ∗‖pp =
∫

Ω
|f ∗|pdP = p

∫ ∞
0

P (|f ∗| > λ)λp−1dλ

= p
∫ 1

0
P (f ∗ > λ)λp−1dλ+ p

∫ ∞
1

P (f ∗ > λ)λp−1dλ

6 p
∫ 1

0
λp−1dλ+ p

∫ ∞
1

1
λ

(∫
{f∗>λ}

|f |dP
)
λp−1dλ

= 1 + p
∫
{f∗>1}

|f |
(∫ f∗

1
λp−2dλ

)
dP

= 1 + p

1− p

∫
{f∗>1}

|f |
(
1− |f ∗|p−1

)
dP

6 1 + p

1− p

∫
{f∗>1}

|f |dP 6
1

1− p.

This implies that for any f ∈ L1(Ω)

‖f‖Hp
m(Ω) 6

( 1
1− p

) 1
p‖f‖1,

which yields the desired result.

For regular martingales, we have L1(Ω) ⊂ Hp
m(Ω) = Hp(Ω) = hp(Ω). In what follows,

the martingales are always assumed to be regular and every Fk is generated by countable
atoms.

Corollary 2.2.2. For 0 < p < 1 and 1 ≤ q ≤ ∞, Hp(Ω) = Hp,q
at (Ω).

Proof. By considering the aforementioned atomic decomposition of Hp(Ω) and Definition
1.3.7, we have Hp(Ω) = Hp,∞

at (Ω). It is easy to see Hp,∞
at (Ω) ⊂ Hp,q

at (Ω) ⊂ Hp,1
at (Ω). It thus

suffices to show that Hp,1
at (Ω) ⊂ Hp(Ω). By Lemma 2.2.1, if a is a simple (p, 1)-atom, then

‖a‖Hp(Ω) .p ‖a‖1,

which implies that a ∈ Hp(Ω). Hence, Hp,1
at (Ω) ⊂ Hp(Ω) and so, Hp(Ω) = Hp,q

at (Ω).

2.2.1 Characterization of martingale Lipschitz spaces
In this subsection, we give a characterization of martingale Lipschitz spaces that ap-

pears to be new and useful in our argument. We will first recall the definition of martingale
Lipschitz spaces. For 0 < p < 1 define

Λq(αp) :=
{
f ∈ L2(Ω) : ‖f‖Λq(αp) = sup

n≥0
sup
A∈Fn

P (A)−
1
q
−αp

(∫
A
|f − fn|qdP

) 1
q

<∞
}
,

(2.2.2)
where q = 1 or q = 2, αp := 1

p
− 1 > 0.

In [91], Weisz showed that (Hp(Ω))∗ = Λ1(αp) and Λ1(αp) = Λ2(αp).

Corollary 2.2.3. For any g ∈ Λ1(αp), we have ‖g − g0‖∞ .p ‖g‖Λ1(αp).
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Proof. By duality and Lemma 2.2.1, for any f ∈ L2(Ω),

|E
(
f(g − g0)

)
| =

∣∣∣E (g(f − f0))
∣∣∣ .p ‖f‖Hp‖g‖Λ1(αp) .p ‖f‖1‖g‖Λ1(αp).

The above estimate together with the fact
(
L1
(
Ω)
)∗

= L∞(Ω) yields

‖g − g0‖∞ .p ‖g‖Λ1(αp),

which finishes the proof.

By virtue of Corollary 2.2.3, we have the following property of martingale Lipschitz
spaces.

Theorem 2.2.4. If g ∈ Λ1(αp), we have ‖1A · |g − gn|‖∞ .p P (A)αp‖g‖Λ1(αp), for any
n ∈ N and any A ∈ Fn.

Proof. Note that when P (A) = 0, the desired result holds trivially. Fix n ∈ N and A ∈ Fn
with P (A) 6= 0. For k ≥ 0, let FAk := {B ∈ Fk+n : B ⊆ A}. Note that the union FA of
all FAk is exactly {B ∈ F|B ⊂ A}. Hence, if we define

PA(B) := P (B)
P (A) (B ∈ FA)

then (A,FA, PA) is a probability space. Note that for any g ∈ L1(A,FA, PA) one has

E(g|FAk ) = 1A · E(g|Fk+n).

Denote E(·|FAk ) by EAk . It is easy to verify {EAk (g)}k≥0 is also a regular martingale on
(A,FA, PA). If g ∈ Λ1(αp), then for B ∈ FAk with P (B) 6= 0,

PA(B)−1−αp
(∫

B
|g − EAk (g)|dPA

)
= P (A)αp

(
P (B)−1−αp

(∫
B
|g − gk+n|dP

))
≤ P (A)αp‖g‖Λ1(αp)

which implies that by Corollary 2.2.3,

‖1A · |g − gn|‖∞ = ‖1A · |g − EA0 (g)|‖∞ .p P (A)αp‖g‖Λ1(αp).

This completes the proof of the theorem.

Remark 2.2.5. By Theorem 2.2.4 and (2.2.2), we conclude that for g ∈ Λ1(αp) we have
the characterization

‖g‖Λ1(αp) ≈p sup
n≥0

sup
A∈Fn

P (A)−αp‖1A · |g − gn|‖∞. (2.2.3)

Note that the results in [56] can be deduced from (2.2.3).

2.2.2 Proof of Theorem I.2
As in the proof of Theorem I.1, we divide the proof into three parts. Without loss of

generality, we may assume that f0 = g0 = 0.
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Estimates for Π1(f, g) and Π3(f, g)

The boundedness of Π1 from Hp(Ω)×Λ1(αp) to L1(Ω) follows directly from the duality
between Hp(Ω) and Λ1(αp), we omit the details.

We will also prove that Π3 is a bounded bilinear operator from Hp(Ω) × Λ1(αp) to
Hp(Ω). Note that

S(Π3(f, g))2 =
∞∑
k=1
|gk−1|2|dkf |2 6 (g∗)2S(f)2. (2.2.4)

Hence we conclude from Corollary 2.2.3 and the L∞ boundedness of the maximal function
that

‖Π3(f, g)‖pHp(Ω) . ‖g
∗‖p∞E(S(f)p) ≤ ‖g‖p∞‖f‖

p
Hp(Ω) .p ‖f‖pHp(Ω)‖g‖

p
Λ1(αp), (2.2.5)

as desired.

Estimates for Π2(f, g).

We will show that Π2 is a bounded bilinear operator from Hp(Ω)× Λ1(αp) to H1(Ω).
Note that Hp(Ω) = hp(Ω), and hp(Ω) admits an atomic decomposition.

Then there exist {λj}j>1 ⊂ R and simple (p,∞)-atoms {aj}j>1 such that

f =
∞∑
j=1

λja
j, ‖f‖Hp(Ω) ≈p

 ∞∑
j=1
|λj|p

 1
p

, (2.2.6)

where we assume supp(aj) ⊂ Anj and Anj ∈ Fnj with P (Anj) > 0 for j ≥ 1. By arguing
as in the corresponding case in the proof of Theorem I.1,

S(Π2(aj, g)) =
 ∞∑
k=nj+1

1Anj |a
j
k−1|2|dkg|2

 1
2

6 |(aj)∗|
 ∞∑
k=nj+1

1Anj |dkg|
2

 1
2

. (2.2.7)

Hence,

E
[
S(Π2(aj, g))

]
6 ‖(aj)∗‖∞

E
1Anj

∞∑
k=nj+1

|dkg|2
 1

2


6 ‖aj‖∞

P (Anj)
E ∞∑

k=nj+1
|dkg|2

 1
2

6 P (Anj)
− 1
p

(
P (Anj)‖g‖2

Λ2(αp)P (Anj)1+2αp
) 1

2

= ‖g‖Λ2(αp)P (Anj)
− 1
pP (Anj)1+αp

6 ‖g‖Λ2(αp) .p ‖g‖Λ1(αp),

where the last inequality follows from the condition that αp = 1
p
− 1. As a consequence

of the above estimates, we have that

‖Π2(f, g)‖pH1(Ω) 6
∞∑
j=1
|λj|p

[
ES(Π2(aj, g))

]p
.p ‖f‖pHp(Ω)‖g‖

p
Λ1(αp). (2.2.8)

This completes the proof of the theorem.

40



Chapter 3

Bilinear decompositions on
homogeneous spaces

This chapter is devoted to extending Theorem I.1 and Theorem I.2 to spaces of homo-
geneous type. Our approach is on the basis of the existence of dyadic systems on spaces
of homogeneous type developed by Hytönen and Kairema in [43]. We also show that
Hp

at(µ) for 0 < p ≤ 1 is some finite sum of several dyadic martingale Hardy spaces on
homogeneous spaces.

3.1 Dyadic systems on homogeneous spaces

In this section, we start with introducing dyadic systems on homogeneous spaces,
which first appeared in the work of Hytönen and Kairema [43]. With the help of these
dyadic structures, we then show that Hp

at(µ) is exactly the finite sum of martingale Hardy
spaces associated with some adjacent dyadic martingales, which extends Mei’s result [52]
to homogeneous spaces.

The following theorem concerning the existence of dyadic structures is due to Hytönen
and Kairema [43].

Theorem 3.1.1. Let Ω denote a homogeneous space. Suppose that the constants 0 <
c0 6 C0 <∞ and δ ∈ (0, 1) satisfy

12A3
0C0δ 6 c0,

where A0 is specified in the definition of quasi-metric, see (1.8.1).
Given a set of reference points {zkα}α, α ∈ Ak (an index set), for every k ∈ Z, with

the properties that

d(zkα, zkβ) > c0δ
k, (α 6= β) min

α
d(x, zkα) < C0δ

k, for all x ∈ Ω,

one can construct families of sets Q̃k
α ⊆ Qk

α ⊆ Q̄k
α, called open, half-open and closed dyadic

41
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cubes respectively, such that:

Q̃k
α and Q̄k

αare the interior and closure of Qk
α; (3.1.1)

if k 6 l, then either Ql
β ⊆ Qk

α or Ql
β ∩Qk

α = ∅; (3.1.2)
X = ⋃

α
Qk
α (disjoint union) for all k ∈ Z; (3.1.3)

B(zkα, c1δ
k) ⊆ Qk

α ⊆ B(zkα, C1δ
k) =: B(Qk

α); (3.1.4)
if k 6 l and Ql

β ⊆ Qk
α then B(Ql

β) ⊆ B(Qk
α), (3.1.5)

where c1 = (3A2
0)−1c0 and C1 = 2A0C0. The open and closed cubes Q̃k

α and Q̄k
α depend

only on the points zlβ for l > k. The half-open cubes Qk
α depend on zlβ for l > min(k, k0),

where k0 ∈ Z is a preassigned number entering the construction.

It is obvious that the construction of the above dyadic systems is not unique, and
it depends on the set of the reference points {zkα}α. We denote this dyadic system by
D = {Qk

α}k,α. Let Fk = σ({Qk
α}α) be the σ-algebra generated by {Qk

α}α. Then it is clear
that

· · · ⊂ Fk−1 ⊂ Fk ⊂ · · · ,

which implies that {Fk}k∈Z is a filtration generated by atoms. Let F = σ(∪k∈ZFk). Note
that each Qk

α is an atom of Fk.
Remark 3.1.2. The standard dyadic grid on the real line is a dyadic system given by

Fk = {[2−km, 2−k(m+ 1)) : m ∈ Z} for all k ∈ Z.

Similarly, an example of a dyadic system on Rn is given by the family of standard dyadic
cubes in Rn.

Recall that, for f ∈ Lloc
1 (Ω,F , µ), the martingale maximal function, the square func-

tion and the conditional square function of f associated with (Fk)k∈Z are given by

f ∗ := max
k∈Z
|fk|, S(f) :=

∑
k∈Z
|dkf |2

 1
2

and s(f) :=
∑
k∈Z

Ek−1|dkf |2
 1

2

,

respectively.
Let 0 < p ≤ 1. The martingale Hardy space Hp

m,D(µ) is defined as the completion of
the space consisting of all f ∈ Lloc

1 (Ω) such that f ∗ ∈ Lp(Ω) with respect to the quasi-norm
‖f‖Hp

m,D(µ) := ‖f ∗‖p.
We define Hp

D(µ) and hpD(µ) by the square functions and the conditional square func-
tions respectively, with the additional assumption that

lim
n→−∞

∫
Ω

sup
k≤n
|fk|pdµ = 0. (3.1.6)

From (3.1.6), we have
lim

n→−∞
sup
k≤n
|fk| = 0.

Analogously, define the martingale atomic Hardy spaces Hp,q
at,D(µ) (0 < p < 1 ≤ q ≤

∞ or p = 1, 1 < q ≤ ∞) like Definition 1.3.7.
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In order to show Theorem 1.8.6, we introduce the dual spaces of these atomic martin-
gale Hardy spaces. For 0 < p < 1, q = 1 or 2 and αp = 1

p
− 1, define

BMOD(µ) :=
{
f ∈ Lloc

1 (Ω, µ) : ‖f‖BMOD(µ) := sup
Q∈D

1
µ(Q)

∫
Q
|f − fQ|dµ <∞

}
,

ΛD
q (αp) :=

{
f ∈ Lloc

1 (Ω, µ) : ‖f‖ΛD
q (αp) := sup

Q∈D
µ(Q)−

1
q
−αp

(∫
Q
|f − fQ|qdµ

) 1
q

<∞
}
.

The spaces ΛD
q (αp) are called the martingale Lipschitz spaces with respect to D . Note

that ΛD
1 (αp) = ΛD

2 (αp).
Arguing as in [91], one can show that(

H1
at,D(µ)

)∗
= BMOD(µ),

and for 0 < p < 1, (
Hp

at,D(µ)
)∗

= ΛD
q (αp).

Remark 3.1.3. Since every simple (p, q)-atom is locally supported, by Corollary 2.2.2, we
conclude that for 0 < p < 1 ≤ q ≤ ∞ or p = 1, 1 < q ≤ ∞

Hp,q
at,D(µ) = Hp,∞

at,D(µ).

Thus we are only concerned with Hp
at,D(µ) := Hp,∞

at,D(µ).

Proposition 3.1.4. For 0 < p 6 1, the martingale Hardy spaces defined above are
mutually equivalent. Namely, Hp

D(µ) = Hp
m,D(µ) = hpD(µ) = Hp

at,D(µ).

Proof. Let p ∈ (0, 1] be fixed. First, we show Hp
D(µ) = Hp

m,D(µ). Suppose that f ∈
Hp
m,D(µ). Then for any n > 0, by a well-known inequality of Burkholder–Davis–Gundy,

∫
Ω

|f−n|2 +
n∑

k=−n+1
|dkf |2


p
2

dµ .
∫

Ω
sup

−n≤k≤n
|fk|pdµ .

∫
Ω

(f ∗)pdµ

which yields by letting n→∞ and by Fatou’s lemma

‖S(f)‖p . ‖f ∗‖p.

Thus Hp
m,D(µ) ⊂ Hp

D(µ).
Conversely, if f ∈ Hp

D(µ), then for n > 0,

∫
Ω

sup
−n≤k≤n

|fk|pdµ .
∫

Ω

|f−n|2 +
n∑

k=−n+1
|dkf |2


p
2

dµ,

and hence ∫
Ω

sup
−n≤k≤n

|fk|pdµ .
∫

Ω
sup
k≤−n

|fk|pdµ+
∫

Ω
|S(f)|pdµ <∞. (3.1.7)

Then by letting n→∞ and applying Fatou’s lemma, we obtain ‖f ∗‖p <∞ and

‖f ∗‖p . ‖S(f)‖p.
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Therefore, Hp
D(µ) ⊂ Hp

m,D(µ) and Hp
m,D(µ) = Hp

D(µ).
One shows Hp

m,D(µ) = hpD(µ) in a completely analogous way. To show hpD(µ) =
Hp

at,D(µ), one can argue by mimicking the corresponding proof in [91] and [92]. We omit
the details.

The following theorem can be found in [43] and ensures that there exist enough dyadic
cubes to cover all balls on homogeneous spaces.

Theorem 3.1.5. Given a set of reference points {zkα}, k ∈ Z, α ∈ Ak, suppose that there
exists constant δ ∈ (0, 1) that satisfies 96A6

0δ 6 1. Then there exists a finite collection of
families D t, t = 1, 2, · · · , K = K(A0, A1, δ) <∞, where each D t is a collection of dyadic
cubes, associated to dyadic points {zkα}, k ∈ Z, α ∈ Ak, with the properties (3.1.1)-(3.1.5)
in Theorem 3.1.1.

In addition, the following property is satisfied:

for every B(x, r) ⊆ Ω, there exist t and Q ∈ D t with B(x, r) ⊆ Q and diam(Q) 6 Cr.
(3.1.8)

The constant C < ∞ in (3.1.8) only depends on the quasi-metric constant A0 and the
parameter δ.

By virtue of Proposition 3.1.4 and Theorem 3.1.5, we have the following theorem,
which extends Mei’s result in [52].

Theorem 3.1.6. For 0 < p 6 1, we have

Hp
at(µ) =

K∑
t=1

Hp
at,Dt(µ) =

K∑
t=1

Hp
Dt(µ) =

K∑
t=1

Hp
m,Dt(µ) =

K∑
t=1

hpDt(µ). (3.1.9)

Proof. Let p ∈ (0, 1] be fixed. In view of Proposition 3.1.4, it suffices to show Hp
at(µ) =

K∑
t=1

Hp
at,Dt(µ). We prove it via comparing the atoms. Let a be a (p,∞)-atom in Hp

at(µ).
Then there exists a ball B such that

supp(a) ⊂ B, ‖a‖∞ 6 (µ(B))−
1
p ,

∫
B
a(x)dµ = 0.

By Theorem 3.1.5, there exist t and a cubeQ ∈ D t such thatB ⊂ Q, and µ(Q) . µ(B).
Then

supp(a) ⊂ B ⊂ Q, ‖a‖∞ 6 (µ(B))−
1
p . (µ(Q))−

1
p ,

∫
Q
adµ = 0,

which implies that a is a constant multiple of a simple (p,∞)-atom in Hp
at,Dt(µ). Thus

Hp
at(µ) ⊂

K∑
t=1

Hp
at,Dt(µ). (3.1.10)

For any t = 1, 2, · · · , K and for any given simple (p,∞)-atom b in Hp
at,Dt(µ), there

exists Q ∈ D t such that

supp(b) ⊂ Q, ‖b‖∞ 6 (µ(Q))−
1
p ,

∫
Q
bdµ = 0.
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By Theorem 3.1.1, there exists a ball B such that Q ⊂ B and µ(Q) & µ(B). Hence

supp(b) ⊂ Q ⊂ B, ‖b‖∞ 6 (µ(Q))−
1
p . (µ(B))−

1
p ,

∫
B
bdµ = 0,

which implies that a multiple of b is also a (p,∞)-atom in Hp
at(µ), thus

K∑
t=1

Hp
at,Dt(µ) ⊂ Hp

at(µ). (3.1.11)

To complete the proof of the theorem, combine (3.1.10) and (3.1.11).

Remark 3.1.7. Theorem 1.8.5 follows immediately from Corollary 2.2.2, Proposition 3.1.4
and Theorem 3.1.6, which simplifies the original proof by Coifman and Weiss in [23].

By duality and Theorem 3.1.6, we recover the following result of [43], which is an
extension of a result due to Mei [52]:

BMO(µ) =
K⋂
t=1

BMODt(µ). (3.1.12)

We will now establish an analogous result for Lαp(µ) (0 < p < 1).

Theorem 3.1.8. For 0 < p < 1,

Lαp(µ) =
K⋂
t=1

ΛDt

2 (αp).

Proof. By Theorem 3.1.1, for any Q ∈ D t (and t = 1, 2, · · · , K), there exists a ball B
such that Q ⊂ B and µ(B) . µ(Q). If f ∈ Lαp(µ), then for any x, y ∈ Q, we have

|f(x)− f(y)| ≤ ‖f‖Lαp (µ)µ(B)αp . ‖f‖Lαp (µ)µ(Q)αp .

We thus have

‖f‖ΛDt
2 (αp) ≤ sup

Q∈Dt

(µ(Q))−
1
2−αp

(
µ(Q)−2

∫
Q

(∫
Q
|f(x)− f(y)|dµ(y)

)2
dµ(x)

) 1
2

6 sup
Q∈Dt

(µ(Q))−
1
2−αp

(∫
Q
‖f‖2

Lαp (µ)µ (Q)2αp dµ
) 1

2

. ‖f‖Lαp (µ),

which yields

Lαp(µ) ⊂
K⋂
t=1

ΛDt

2 (αp). (3.1.13)

Conversely, let f ∈
K⋂
t=1

ΛDt

2 (αp). For Q ∈ D t, by Theorem 2.2.4,

|f(x)− fQ| . µ(Q)αp‖f‖ΛDt
2 (αp) ∀x ∈ Q,
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which implies that for any x, y ∈ Q,

|f(x)− f(y)| . µ(Q)αp‖f‖ΛDt
2 (αp). (3.1.14)

For any ball B ⊂ Ω, by Theorem 3.1.5, there exist t and Q ∈ D t such that B ⊂ Q
and µ(Q) . µ(B). Then for any x, y ∈ B, by (3.1.14)

|f(x)− f(y)| . µ(B)αp‖f‖ΛDt
2 (αp).

Thus
‖f‖Lαp .

K∑
t=1
‖f‖ΛDt

2 (αp),

which implies
K⋂
t=1

ΛDt

2 (αp) ⊂ Lαp(µ). (3.1.15)

The theorem follows from (3.1.13) and (3.1.15).

Remark 3.1.9. Theorem 3.1.6 and Theorem 3.1.8 give a simple proof of Theorem 1.8.6
originally established by Coifman and Weiss [23]:

(Hp
at(µ))∗ =

(
K∑
t=1

Hp
at,Dt(µ)

)∗
=

K⋂
t=1

(Hp
at,Dt(µ))∗ =

K⋂
t=1

ΛDt

2 (αp) = Lαp(µ).

3.2 Bilinear decompositions for dyadic martingales
on homogeneous spaces

In this section, we focus on bilinear decompositions arising in the study of products
between elements in spaces of dyadic martingales on homogeneous spaces introduced in
the previous section. In the setting of homogeneous spaces, due to their quasi-metrics and
measures, the dyadic martingales behave worse than martingales in probability spaces and
the underlying analysis is more intricate.

In §3.2.1 we prove appropriate generalized Hölder-type inequalities on homogeneous
spaces (see Lemmas 3.2.2 and 3.2.4 below). We then introduce a class of pointwise mul-
tipliers of ΛD

1,+(αp) and BMOD(µ); see Theorem 3.2.5 below. Using Theorem 3.2.5, we
define products between dyadic martingale Hardy spaces on homogeneous spaces and their
duals and then, in §3.2.2 we establish analogues of the results of Sections 2.1 and 2.2 in
the setting of homogeneous spaces.

3.2.1 A generalized Hölder-type inequality
Let 0 < p ≤ 1 and D be a dyadic system, constructed as in Theorem 3.1.1. The

martingale Musielak–Orlicz Hardy spaces HΨp
D (µ) consist of all measurable functions f

on (Ω,F , µ) such that s(f) ∈ LΨp(Ω) where O ∈ Ω is a fixed point, and

Ψ1(x, t) := t

log (e+ d(x,O)) + log(e+ t) ,

Ψp(x, t) := t

1 + {t[1 + µ(B(O, d(x,O)))]}1−p (0 < p < 1).

46



3.2. BILINEAR DECOMPOSITIONS FOR DYADIC MARTINGALES ON
HOMOGENEOUS SPACES

Note that LΨp(Ω) is a quasi-normed space.
Let M := (Cµ + 1) log (e+ d(x,O)). By (1.3.4) we obtain

Ψ1(x, st) . (e+ d(x,O))−(Cµ+1)et + s . w(x)et + s, for all x ∈ Ω, s, t > 0, (3.2.1)

where w : Ω→ R+ is a weight function with

w(x) . min
{

1, d(x,O)−(Cµ+1)
}
. (3.2.2)

Let Q0 ∈ F0 be the dyadic cube such that O ∈ Q0. For g ∈ BMOD(µ), define

‖g‖BMOD
+ (µ) := sup

α∈A0

|gQ0
α
− gQ0|

log (e+ d(z0
α, O)) + |gQ0|+ ‖g‖BMOD(µ),

where Q0
α ∈ F0 is a dyadic cube with its center z0

α andA0 is the index set in Theorem 3.1.1.
Denote by BMOD

+(µ) the space consisting of all g ∈ BMOD(µ) such that ‖g‖BMOD
+ (µ) <

∞. It is not difficult to verify that ‖ · ‖BMOD
+ (µ) is a norm on BMOD

+(µ).
Remark 3.2.1. If we consider the dyadic martingales on Rn, by taking appropriate cubes
Q0 one shows that if g ∈ BMOD(µ), then g ∈ BMOD

+(µ). Note that if g ∈ BMO(µ),
then g ∈ BMOD

+(µ). Moreover,

‖g‖BMOD
+ (µ) . ‖g‖BMO(µ) + |gQ0|.

We now introduce the following generalized Hölder inequality for L1(Ω,F , µ) and
BMOD

+(µ).

Lemma 3.2.2. If f ∈ L1(Ω,F , µ) and g ∈ BMOD
+(µ), then f · g ∈ LΨ1(Ω). Moreover,

‖fg‖LΨ1 (Ω) . ‖f‖1‖g‖BMOD
+ (µ). (3.2.3)

Proof. Without loss of generality, assume ‖f‖1 ≤ 1, ‖g‖BMOD
+ (µ) ≤ 1 and gQ0 = 0. It

suffices to show that ∫
Ω

Ψ1(x, |f(x)g(x)|)dµ . 1.

Let Sk := B(O,C0δ
k) \ B(O,C0δ

k+1) for k < 0 and S0 := B(O,C0), where δ ∈ (0, 1)
is the constant in Theorem 3.1.1. Then for each k ≤ 0, there exists a finite index subset
Bk ⊂ A0 such that B(O,C0δ

k) ⊂ ⋃
α∈Bk

Q0
α (where Q0

α ∈ F0) and

∑
α∈Bk

µ
(
Q0
α

)
= µ

 ⋃
α∈Bk

Q0
α

 ≤ µ
(
B(O, 2A0C0δ

k)
)
. δCµk.

Take s = ν−1|f(x)|, t = ν|g(x)| in (3.2.1), one has
∫

Ω
Ψ1(x, |f(x)g(x)|)dµ =

0∑
k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

Ψ1(x, |f(x)g(x)|)dµ

.
0∑

k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

w(x)eν|g(x)|dµ+ ν−1‖f‖1.
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Therefore, ∫
Ω

Ψ1(x, |f(x)g(x)|)dµ . T1 + ν−1‖f‖1, (3.2.4)

where

T1 :=
0∑

k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

w(x)eν
∣∣∣g(x)−g

Q0
α

∣∣∣
e
ν

∣∣∣gQ0
α

∣∣∣
dµ.

Let ν := min{κ,1}
2 > 0 (where κ is defined in Theorem 1.3.10), by (3.2.2) and Theorem

2.2.1, one has

T1 .
0∑

k=−∞

∑
α∈Bk

µ(Q0
α) (e+ d(z0

α, O))
1
2

δ(k+1)(Cµ+1)

.
0∑

k=−∞

∑
α∈Bk

µ(Q0
α)δ k2

δ(k+1)(Cµ+1) .
0∑

k=−∞

δCµkδ
k
2

δCµk+k

.
0∑

k=−∞
δ−

1
2k,

and hence
T1 . 1. (3.2.5)

Combine (3.2.4), (3.2.5) and the fact that ν−1‖f‖1 . 1, and the proof is complete.

We consider the case 0 < p < 1. Define

‖g‖ΛD
1,+(αp) := sup

α∈A0

|gQ0
α
− gQ0|

1 + µ {B (O, d(z0
α, O))}αp + |gQ0|+ ‖g‖ΛD

1 (αp),

Denote by ΛD
1,+(αp) the space consisting of all g ∈ ΛD

1 (αp) such that ‖g‖ΛD
1,+(αp) < ∞. It

is easy to verify that ‖ · ‖ΛD
1,+(αp) is a norm on ΛD

1,+(αp).

Remark 3.2.3. If we consider the dyadic martingales on Rn, by taking appropriate cubes
Q0 one can show that if g ∈ ΛD

1 (αp), then g ∈ ΛD
1,+(αp). Note that if g ∈ Lαp(µ), then

g ∈ ΛD
1,+(αp). Moreover,

‖g‖ΛD
1,+(αp) . ‖g‖Lαp (µ) + |gQ0|.

Next we present a generalized Hölder inequality for Lp(Ω,F , µ) and ΛD
1,+(αp) for 0 <

p < 1.

Lemma 3.2.4. If f ∈ Lp(Ω,F , µ) and g ∈ ΛD
1,+(αp) for 0 < p < 1, then f · g ∈ LΨp(µ).

Moreover,
‖fg‖LΨp (Ω) . ‖f‖p‖g‖ΛD

1,+(αp). (3.2.6)

Proof. Without loss of generality, assume ‖f‖p ≤ 1, ‖g‖ΛD
1,+(αp) ≤ 1 and gQ0 = 0. It

suffices to show that ∫
Ω

Ψp(x, |f(x)g(x)|)dµ . 1.

48
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Take the same family of sets {Sk}k≤0 as above. From Theorem 2.2.4, we know that
for x ∈ Q0

α,

|g(x)| = |g(x)− gQ0| 6
∣∣∣g(x)− gQ0

α

∣∣∣+ ∣∣∣gQ0
α
− gQ0

∣∣∣
≤
(
µ(Q0

α)
)αp + µ

{
B
(
O, d(z0

α, O)
)}αp + 1

. µ
(
B(O, 2A0C0δ

k)
)αp + 1.

Therefore
∫

Ω
Ψp(x, |f(x)g(x)|)dµ =

0∑
k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

|g(x)||f(x)|
1 + {|g(x)||f(x)| [1 + µ (B(O, d(x,O))]}1−pdµ

.
0∑

k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

|g(x)|p|f(x)|p

1 + µ (B(O, d(x,O))1−pdµ

.
0∑

k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

µ
(
B(O, 2A0C0δ

k)
)αpp + 1

{1 + µ (B(O,C0δk+1)}1−p |f(x)|pdµ

. 1,

which finishes the proof.

We are now about to present the analogues of the results in Sections 2.1 and 2.2
concerning bilinear decompositions for dyadic martingales on homogeneous spaces. To this
end, we need to define the product between martingale Hardy spaces and their dual spaces
first. As in the probability setting, we regard the product in the sense of distribution as
follows: for 0 < p < 1,

〈f × g, h〉 := 〈h · g, f〉, f ∈ Hp
at,D(µ), g ∈ ΛD

1,+(αp),

where h is a test function such that h · g is in ΛD
1,+(αp). For p = 1, we may define the

product between H1
at,D(µ) and BMOD(µ) analogously. To this end, we need to introduce

some pointwise multipliers of ΛD
1,+(αp) and BMOD(µ).

Denote the space of test functions by H(αp) (0 < p ≤ 1), and a measurable function
h is a test function if it satisfies the following properties:

|h(x)| . 1
(1 + µ(B(O, d(x,O)))αp) log(e+ d(x,O)) , ∀x ∈ Ω, (3.2.7)

and

|h(y)− h(z)| . µ(B)αp
(1 + µ[B(O, 1 + r + d(cB, O))]αp) log(e+ r + d(cB, O)) (3.2.8)

whenever y, z are both contained in a ball B with center cB and radius r ≤ d(cB ,O)
2A0

+ 1.
It is obvious that H(αp) ⊂ L∞(Ω). The following theorem shows that if h ∈ H(αp),

then h is a pointwise multiplier of ΛD
1,+(αp).
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Theorem 3.2.5. For 0 < p < 1 and any dyadic system D , H(αp) is a space of pointwise
multipliers of ΛD

1,+(αp). For p = 1, H(0) is a space of pointwise multipliers of BMOD
+(µ).

More precisely, for any g ∈ ΛD
1,+(αp) and h ∈ H(αp), we have

‖g · h‖ΛD
1,+(αp) . ‖g‖ΛD

1,+(αp)

(
‖h‖L∞(Ω) + 1

)
,

and for any g ∈ BMOD
+(µ) and h ∈ H(0), we have

‖g · h‖BMOD
+ (µ) . ‖g‖BMOD

+ (µ)

(
‖h‖L∞(Ω) + 1

)
.

Proof. First, we consider the case 0 < p < 1. Assume that g ∈ ΛD
1,+(αp) and h ∈ H(αp).

According to [58], it suffices to show that

sup
Q

|gQ|
µ(Q)αp+1

(∫
Q
|h(x)− hQ|dx

)
<∞, (3.2.9)

where Q runs over all dyadic cubes in D .
If Q ⊂ Q0

β for some β ∈ A0, there exists a collection of cubes Q = Q0 ⊂ Q1 ⊂ · · · ⊂
QN = Q0

β such that there exists a universal constant 0 < δ
′
< 1 with µ(Qk−1) ≤ δ

′
µ(Qk).

Hence

|gQ − gQ0
β
| ≤

N∑
k=1
|gQk − gQk−1| .

N∑
k=1

µ(Qk)αp‖g‖ΛD
1,+(αp)

. ‖g‖ΛD
1,+(αp)

N∑
k=1

∫ µ(Qk)

µ(Qk−1)
tαp−1dt

. µ(Q0
β)αp‖g‖ΛD

1,+(αp).

Similarly, if Q0
β ⊂ Q, we have

|gQ − gQ0
β
| . µ(Q)αp‖g‖ΛD

1,+(αp).

By Theorem 3.1.1, there exists a ball B, with center cB and radius r, such that Q ⊂ B
and µ(B) . µ(Q).

If Q0
β ⊂ Q and r > d(O,cB)

2A0
+ 1, for any x ∈ B(O, r), we have d(cB, x) ≤ A0(d(cB, O) +

d(O, x)) < (2A2
0 + A0)r. Then µ(Q) & µ(B) & C

−(2A2
0+A0)

µ µ (B(O, r)) & 1. Similarly, we
also have d(z0

β, O) < (2A2
0 + A0)r and µ

{
B
(
O, d(z0

β, O)
)}

. µ(B) . µ(Q). Thus

|gQ|
µ(Q)αp+1

(∫
Q
|h(x)− hQ|dx

)
.
|gQ − gQ0

β
|+ |gQ0

β
− gQ0|+ |gQ0|

µ(Q)αp · ‖h‖L∞(Ω)

.
µ(Q)αp + µ

{
B
(
O, d(z0

β, O)
)}αp + 1

µ(Q)αp · ‖g‖ΛD
1,+(αp)‖h‖L∞(Ω)

. ‖g‖ΛD
1,+(αp)‖h‖L∞(Ω).
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If Q0
β ⊂ Q and r ≤ d(O,cB)

2A0
+ 1, for any x ∈ B, we have d(x,O) ≤ A0(d(O, cB) + r),

then µ(Q) . µ (B(O,A0(d(O, cB) + r)). Thus

|gQ|
µ(Q)αp+1

(∫
Q
|h(x)− hQ|dx

)
.
|gQ − gQ0

β
|+ |gQ0

β
− gQ0|+ |gQ0|

µ(Q)αp+1
µ(B)αp+1

(1 + µ[B(O, 1 + r + d(O, cB))])αp

.

(
µ(Q)αp + µ

{
B
(
O, d(z0

β, O)
)}αp + 1

)
‖g‖ΛD

1,+(αp)

(1 + µ[B(O, 1 + r + d(O, cB))])αp

. ‖g‖ΛD
1,+(αp).

If Q ⊂ Q0
β, from Theorem 3.1.1, we can choose C0 sufficiently small such that C1 =

2A0C0 ≤ 1, then r ≤ C1 ≤ d(cB ,O)
2A0

+ 1. For any x ∈ Q0
β, we have d(O, x) ≤ A0(d(O, z0

β) +
C1). Then

µ(Q0
β) . µ

{
B
(
O,A0(d(O, z0

β) + C1)
)}
.

By a calculation similar to the one presented above, we get the desired result.
Combining the above estimates, we finish our proof for 0 < p < 1. The case for p = 1

is similar.

Remark 3.2.6. Note that in Theorem 3.2.5, the dyadic system D is arbitrary. Then from
Theorem 3.1.8 and (3.1.12), we conclude that H(αp) is a space of pointwise multipliers of
Lαp(µ) and H(0) is a space of pointwise multipliers of BMO(µ).

3.2.2 Bilinear decompositions
Assume f ∈ H1

D(µ), g ∈ BMOD
+(µ) or f ∈ Hp

D(µ), g ∈ ΛD
1,+(αp), 0 < p < 1.

Denote by Hp
D ,fin(µ) (0 < p ≤ 1) the linear space consisting of all functions which can

be written as a finite sum of simple (p,∞)-atoms. Thus if f ∈ Hp
D ,fin(µ), f is locally

supported, f ∈ L1(Ω) ∩ L∞(Ω) and
∫

Ω fdµ = 0. Note that Hp
D ,fin(µ) is dense in Hp

D(µ)
with respect to the norm ‖ · ‖Hp

D(µ).
In the following, we shall only consider the case where f ∈ Hp

D ,fin(µ). Then f · g ∈
L1(Ω), and we can write

f · g = Π1(f, g) + Π2(f, g) + Π3(f, g), (3.2.10)

where

Π1(f, g) :=
∞∑

k=−∞
dkfdkg, Π2(f, g) :=

∞∑
k=−∞

fk−1dkg and Π3(f, g) :=
∞∑

k=−∞
gk−1dkf.

Theorem 3.2.7. We have the following:

1. Π1 is a bilinear bounded operator from H1
D(µ)×BMOD

+(µ) to L1(Ω), and
when 0 < p < 1, Π1 is a bilinear bounded operator from Hp

D(µ)×ΛD
1,+(αp) to L1(Ω).

2. Π2 is a bilinear bounded operator from H1
D(µ)×BMOD

+(µ) to H1
D(µ), and

when 0 < p < 1, Π2 is a bilinear bounded operator from Hp
D(µ)×ΛD

1,+(αp) to H1
D(µ).

3. Π3 is a bilinear bounded operator from H1
D(µ)×BMOD

+(µ) to HΨ1
D (µ), and

when 0 < p < 1, Π3 is a bilinear bounded operator from Hp
D(µ)×ΛD

1,+(αp) to HΨp
D (µ).
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Proof. For Π1 and Π2, we can argue as in the corresponding part of the proof of Theorem
I.1. As for Π3, we can also argue as in the corresponding part of the proof Theorem I.1,
where in the homogeneous setting one needs to apply Lemma 3.2.2 and Lemma 3.2.4. We
omit the details.

Remark 3.2.8. For Π1 and Π2, the condition H1
D(µ) × BMOD

+(µ) and Hp
D(µ) × ΛD

1,+(αp)
can be in fact replaced by H1

D(µ)×BMOD(µ) and Hp
D(µ)× ΛD

1 (αp), respectively.

3.3 Applications to homogeneous spaces
In the first part of this section we show that HΨp

D (µ) admits an atomic decompo-
sition for 0 < p < 1, which allows us to integrate several adjacent dyadic systems on
homogeneous spaces.

For a given dyadic system D on Ω, we define the dyadic HΨp
at,D -atom as follows.

Definition 3.3.1. A measurable function a is said to be an HΨp
at,D -atom if

(i) supp(a) ⊂ Q where Q ∈ D is a cube;

(ii)
∫

Ω adµ = 0;

(iii) ‖a‖∞ 6 ‖1Q‖−1
LΨp (Ω).

The atomic dyadic martingale Musielak–Orlicz Hardy spaces HΨp
at,D(µ) (0 < p < 1) are

defined in a way analogous to (1.8.5) and (1.8.6). We first introduce the space BMOD
Ψp(µ),

which is a subspace of continuous linear functionals on finite sums of atoms.

Definition 3.3.2. A locally integrable function g is said to be a dyadic BMOD
Ψp(µ)

function associated with a dyadic system D if

‖g‖BMOD
Ψp (µ) := sup

k∈Z
sup
Q∈Fk

1
‖1Q‖LΨp (Ω)

∫
Q
|g(x)− gk(x)|dx <∞.

Then we define the atomic Musielak–Orlicz martingale Hardy spaces HΨp
at,D(µ) as fol-

lows:

H
Ψp
at,D(µ) :={

f ∈
(
BMOD

Ψp(µ)
)∗

: f =
∞∑
i=0

λiai, where ai is an HΨp
at,D(µ)-atom supported on a cube Qi.

}
,

where
∞∑
i=0

∫
Qi

Ψp(x, |λi|‖ai‖∞)dµ <∞.

Moreover,

‖f‖
H

Ψp
at,D(µ) := inf

{
ρ > 0 :

∞∑
i=0

∫
Qi

Ψp(x, ρ−1|λi|‖ai‖∞)dµ 6 1
}
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Arguing as in [93], one can show that for 0 < p < 1

H
Ψp
D (µ) = H

Ψp
at,D(µ). (3.3.1)

We now introduce the atomic Musielak–Orlicz Hardy spaces HΨp
at (µ) (0 < p ≤ 1) on

the homogeneous space Ω. The interested reader is referred to [89] for more details. First,
we present the definition of atoms for HΨp

at (µ).

Definition 3.3.3. A measurable function a(x) is said to be an HΨp
at (µ)-atom if

(i) supp(a) ⊂ B where B ⊂ Ω is a ball;

(ii)
∫

Ω adµ = 0;

(iii) ‖a‖∞ 6 ‖1B‖−1
LΨp (Ω).

Definition 3.3.4. A locally integrable function g is said to be a BMOΨp(µ) function if

‖g‖BMOΨp (µ) := sup
B

1
‖1B‖LΨp (Ω)

∫
B
|g(x)− gB|dx <∞,

where B runs over all balls in Ω.

Definition 3.3.5. The atomic Musielak–Orlicz Hardy spaces HΨp
at (µ) (0 < p ≤ 1) are

defined as follows:

H
Ψp
at (µ) :={

f ∈
(
BMOΨp(µ)

)∗
: f =

∞∑
i=0

λiai, where ai is an HΨp
at (µ)-atom supported on a ball Bi

}
,

where ∞∑
i=0

∫
Bi

Ψp(x, |λi|‖ai‖∞)dµ <∞.

Moreover,

‖f‖
H

Ψp
at (µ) := inf

{
ρ > 0 :

∞∑
i=0

∫
Bi

Ψp(x, ρ−1|λi|‖ai‖∞)dµ 6 1
}
.

Let D t (1 ≤ t ≤ K) be the adjacent systems of Theorem 3.1.5. By arguing as in the
proof of Theorem 3.1.6, we have the following:

Lemma 3.3.6. For 0 < p < 1, HΨp
at (µ) = H

Ψp
at,D1(µ) +H

Ψp
at,D2(µ) + · · ·+H

Ψp
at,DK(µ).

Proof. It suffices to show that any dyadicHΨp
Dt -atom a is a constant multiple of anHΨp(µ)-

atom, and any HΨp(µ)-atom b is a constant multiple of a dyadic HΨp
Dt -atom.

If B := B(x0, r), then denote the ball B(x0, Dr) by DB for D ≥ 1. Denote d :=
d(x0, O). In what follows, C(D, p,A0, Cµ) denotes a constant that depends on D, p,A0, Cµ
and may differ from line to line. We first show that if∫

B

1
1 + [1 + µ(B(O, d(x,O)))]1−pdµ(x) = 1,
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then ∫
DB

1
1 + [1 + µ(B(O, d(x,O)))]1−pdµ(x) 6 C(D, p,A0, Cµ). (3.3.2)

Notice that

1 =
∫
B

1
1 + [1 + µ(B(O, d(x,O)))]1−pdµ(x)

>
µ(B)

sup
x∈B
{1 + [1 + µ(B(O, d(x,O)))]1−p}

>
µ(B)

1 + [1 + µ(B(O,A0(d+ r)))]1−p ,

which implies
µ(B) 6 1 + [1 + µ(B(O,A0(d+ r)))]1−p.

If d 6 2A0Dr, we have

µ(B) 6 1 + [1 + µ(B(O,A0(2A0D + 1)r))]1−p

6 1 + {1 + µ[B(x0, A0(A0 + 1)(2A0D + 1)r)]}1−p

6 1 +
{

1 + [A0(A0 + 1)(2A0D + 1)]Cµ µ(B)
}1−p

,

and thus µ(B) 6 C(D, p,A0, Cµ).
Then∫
DB

1
1 + [1 + µ(B(O, d(x,O)))]1−pdµ(x) 6 µ(DB) 6 DCµµ(B) 6 C(D, p,A0, Cµ).

(3.3.3)
If d > 2A0Dr, then∫

DB

1
1 + [1 + µ(B(O, d(x,O)))]1−pdµ(x)

6
µ(DB)

inf
x∈DB

{1 + [1 + µ(B(O, d(x,O)))]1−p}

6
DCµµ(B)

1 + [1 + µ(B(O, d/A0 −Dr))]1−p
,

6
DCµ {1 + µ[B (O, [A0 + 1/(2D)]d)]}1−p +DCµ

1 + {1 + µ[B(O, d/(2A0))]}1−p

6
DCµ

{
1 + [(2A0 + 1/D)A0]Cµ µ[B(O, d/(2A0))]

}1−p

1 + {1 + µ[B(O, d/(2A0))]}1−p +DCµ .

Hence ∫
DB

1
1 + [1 + µ(B(O, d(x,O)))]1−pdµ(x) 6 C(D, p,A0, Cµ) (3.3.4)

Combining (3.3.3) with (3.3.4), we get (3.3.2).
Assume a is an HΨp(µ)-atom supported on B. By Theorem 3.1.5, there exist t and a

cube Q ∈ D t such that B ⊂ Q and diam(Q) 6 Cr, hence B ⊂ Q ⊂ CB.
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Note that supp(a) ⊂ Q,
∫
Q a(x)dµ(x) = 0 and

‖1Q‖LΨp (µ) 6 ‖1CB‖LΨp (µ) 6 C(C, p,A0, Cµ)‖1B‖LΨp (µ),

which follows from (3.3.2). Thus

‖a‖∞ 6 ‖1B‖−1
LΨp (µ) . ‖1Q‖

−1
LΨp (µ),

which implies a is a multiple of dyadic HΨp
Dt -atom supported on Q.

For any t = 1, 2 · · · , K, assume b is a dyadic HΨp
Dt -atom supported on Qk

β. By Theorem
3.1.1, there exists two balls such that B(zkβ, c1δ

k) ⊂ Qk
β ⊂ B(zkβ, C1δ

k).
Thus supp(b) ⊂ B(zkβ, C1δ

k),
∫
B(zk

β
,C1δk) b(x)dµ(x) = 0 and

‖1B(zk
β
,C1δk)‖LΨp (µ) 6 C

(
C1

c1
, p, A0, Cµ

)
‖1B(zk

β
,c1δk)‖LΨp (µ) . ‖1Qkβ‖LΨp (µ),

which follows from (3.3.2). Therefore,

‖b‖∞ 6 ‖1Qk
β
‖−1
LΨp (µ) . ‖1B(zk

β
,C1δk)‖−1

LΨp (µ),

which implies b is a multiple of dyadic HΨp-atom supported on B(zkβ, C1δ
k).

Remark 3.3.7. In [30], Fu, Ma and Yang defined another kind of Musielak–Orlicz Hardy
spaces by grand maximal function and they also proved that these Musielak–Orlicz
Hardy spaces are equivalent to HΨp

at (µ) with respect to the corresponding norms when
p ∈ ( Cµ

Cµ+1 , 1].
Let B1 := B(O, 1). Define

‖g‖BMO+(µ) := |gB1|+ ‖g‖BMO(µ), for g ∈ BMO(µ),

and
‖g‖L+,α(µ) := |gB1|+ ‖g‖Lαp (µ), for g ∈ Lαp(µ).

Thus ‖ · ‖BMO+(µ) and ‖ · ‖L+,αp (µ) are quasi-norms on BMO(µ) and Lαp(µ), respectively.

Theorem 3.3.8. Let 0 < p < 1 and f ∈ Hp
at(µ). There exist three linear continuous

operators Πf
1 : Lαp(µ) → L1(Ω), Πf

2 : Lαp(µ) → H1
at(µ) and Πf

3 : Lαp(µ) → H
Ψp
at (µ) such

that
f · g = Πf

1(g) + Πf
2(g) + Πf

3(g) for all g ∈ Lαp(µ),
where Lαp(µ) is endowed with the quasi-norm ‖ · ‖L+,αp (µ).

Proof. Let f ∈ Hp
at(µ). By Theorem 3.1.6 there exist f t ∈ Hp

Dt(µ) (t = 1, 2, · · · , K) such
that f = f 1 + f 2 + · · ·+ fK , and

K∑
t=1
‖f t‖Hp

Dt
(µ) ≈ ‖f‖Hp

at(µ).

Define Πf
i (g) :=

K∑
t=1

Πi(f t, g) for i = 1, 2, 3 and g ∈ Lαp(µ) (Πi defined as in Theorem
3.2.7). Then

f · g = Πf
1(g) + Πf

2(g) + Πf
3(g).
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By Theorem 3.2.7, Theorem 3.1.6 and Lemma 3.3.6, we have

‖Πf
1(g)‖1 .

K∑
t=1
‖Π1(f t, g)‖1 .

K∑
t=1
‖f t‖Hp

Dt
(µ)‖g‖ΛDt

1,+(αp) . ‖f‖Hp
at(µ)‖g‖L+,αp (µ),

‖Πf
2(g)‖H1

at(µ) .
K∑
t=1
‖Π2(f t, g)‖H1

Dt
(µ) .

K∑
t=1
‖f t‖Hp

Dt
(µ)‖g‖ΛDt

1,+(αp) . ‖f‖Hp
at(µ)‖g‖L+,αp (µ),

‖Πf
3(g)‖

H
Ψp
at (µ) .

K∑
t=1
‖Π3(f t, g)‖

H
Ψp
Dt

(µ) .
K∑
t=1
‖f t‖Hp

Dt
(µ)‖g‖ΛDt

1,+(αp) . ‖f‖Hp
at(µ)‖g‖L+,αp (µ).

which finishes the proof.

Remark 3.3.9. If the homogeneous space (Ω, µ) satisfies the reverse doubling condition,
then Lemma 3.3.6 holds for p = 1. Then we conclude the following.

Let f ∈ H1
at(µ). There exist three linear continuous operators Πf

1 : BMO(µ)→ L1(Ω),
Πf

2 : BMO(µ)→ H1
at(µ) and Πf

3 : BMO(µ)→ HΨ1
at (µ) such that

f · g = Πf
1(g) + Πf

2(g) + Πf
3(g) for all g ∈ BMO(µ),

where BMO(µ) is endowed with the norm ‖ · ‖BMO+(µ).
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Chapter 4

Schatten class of martingale
paraproducts

This chapter is devoted to the proofs of Theorem II.2, Theorem II.3 and Theorem II.4
on the Schatten class membership of martingale paraproducts.

4.1 Proof of Theorem II.2
We divide this proof into two parts. The first aims to show the necessity of Theorem

II.2, and the second focuses on the sufficiency.
Our proof of the necessity follows the pattern set up in [80]. More precisely, we use the

iteration method. However, our case is more complicated since d andM are arbitrary in
Theorem II.2. In addition, we need Lemma 4.1.2 for any d ≥ 2 to implement the iteration
procedure, while in [80] the authors only considered d = 2. It should be noted that for
0 < p ≤ 2, we come up with an alternative approach, which is more general than the
corresponding argument in [80].

4.1.1 The Necessity of Theorem II.2
In this subsection, we are about to show that

b ∈ BBBd
p(R,M) =⇒ πb ∈ Lp(B(L2(R))⊗M) ∀ 0 < p <∞. (∗)

At first, we prove the result in the case 0 < p ≤ 1. Then we reduce the case 1 < p ≤ 2
to that 0 < p ≤ 1. Finally, we show that if (∗) holds for p/2, then so does it for p with
2 < p < ∞. Our main ingredients are the p-John-Nirenberg inequality (Lemma 4.1.3)
which appears in [80], and the decomposition of π∗bπb (Lemma 4.1.2). As a result, the
necessity of Theorem II.2 follows iteratively for all 2 < p <∞.

Proposition 4.1.1. If 0 < p ≤ 2 and b ∈ BBBd
p(R,M), then πb ∈ Lp(B(L2(R))⊗M).

Proof. For any I ∈ D and 1 ≤ i ≤ d− 1, define

πI,ib = 〈hiI , b〉 ·BI,i, (4.1.1)
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where BI,i ∈ B(L2(R)) is defined by

BI,i = hiI ⊗
1I

|I|
. (4.1.2)

Then we have
πb =

∑
I∈D

d−1∑
i=1

πI,ib . (4.1.3)

Note that πI,ib ∈ Lp(B(L2(R))⊗M) and

‖πI,ib ‖Lp(B(L2(R))⊗M) = ‖BI,i‖Sp(L2(R))‖〈hiI , b〉‖Lp(M) =
‖〈hiI , b〉‖Lp(M)

|I|1/2
.

If 0 < p ≤ 1, since ‖ · ‖p is a p-norm, one has

‖πb‖pLp(B(L2(R))⊗M) ≤
∑
I∈D

d−1∑
i=1
‖πI,ib ‖

p
Lp(B(L2(R))⊗M)

=
∑
I∈D

d−1∑
i=1

‖〈hiI , b〉‖
p
Lp(M)

|I|p/2
= ‖b‖pBBBdp(R,M) <∞

Next, we consider the case 1 < p ≤ 2. If I 6= J or i 6= j, then ∀g, h ∈ L2(R),

〈(BI,i)∗BJ,j(g), h〉 = 〈BJ,j(g), BI,i(h)〉 =
〈
1J

|J |
, g

〉〈
1I

|I|
, h

〉
〈hjJ , hiI〉 = 0,

which implies that if I 6= J or i 6= j,

(πI,ib )∗(πJ,jb ) = 0. (4.1.4)

So from (4.1.3) we get

π∗bπb =
∑
I∈D

d−1∑
i=1

(πI,ib )∗(πI,ib ). (4.1.5)

Note that p/2 ≤ 1, hence we use (4.1.5) to estimate

‖πb‖pLp(B(L2(R))⊗M) = ‖π∗bπb‖
p/2
Lp/2(B(L2(R))⊗M) =

∥∥∥∥∥∑
I∈D

d−1∑
i=1

(πI,ib )∗(πI,ib )
∥∥∥∥∥
p/2

Lp/2(B(L2(R))⊗M)

≤
∑
I∈D

d−1∑
i=1
‖(πI,ib )∗(πI,ib )‖p/2Lp/2(B(L2(R))⊗M)

=
∑
I∈D

d−1∑
i=1
‖(BI,i)∗BI,i‖p/2Sp/2(L2(R))‖〈h

i
I , b〉∗〈hiI , b〉‖

p/2
Lp/2(M)

=
∑
I∈D

d−1∑
i=1
‖BI,i‖pSp(L2(R))‖〈h

i
I , b〉‖

p
Lp(M)

=
∑
I∈D

d−1∑
i=1

‖〈hiI , b〉‖
p
Lp(M)

|I|p/2
= ‖b‖pBBBdp(R,M).

Thus the proof is completed.
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As mentioned before, we will proceed with our proof by iteration for 2 < p <∞. We
need the following definitions.

The dyadic square function Sb of b ∈ L2(R, L2(M)) is defined by

Sb :=
∑
I∈D

d−1∑
i=1

1I

|I|
〈hiI , b〉∗〈hiI , b〉. (4.1.6)

Besides, Db is defined as follows:

Db :=
∑
I∈D

1
|I|

d∑
q=1

M I,q ⊗N I,q, (4.1.7)

where M I,q ∈ B(L2(R)) and N I,q are given by

M I,q :=
d−1∑
i=1

d−1∑
m=1

ω(i−m)qhmI ⊗ hiI , (4.1.8)

N I,q :=
∑

J∈D(I(q))

d−1∑
j=1
〈hjJ , b〉∗〈h

j
J , b〉. (4.1.9)

It is clear that span{hiI : 1 ≤ i ≤ d − 1} is an invariant subspace of M I,q. So for any
J,K ∈ D, 1 ≤ j, k ≤ d− 1 and x, y ∈ L2(M), if J 6= K, we have

〈Db(hjJ ⊗ x), hkK ⊗ y〉 = 0. (4.1.10)

The following decomposition of π∗bπb allows us to reduce the case p to p/2. It first
appears in [6] for d = 2. We extend it for general d thanks to the good choice of the
orthonormal basis {hiI}I∈D,1≤i≤d−1.

Lemma 4.1.2.
π∗bπb = πSb + π∗Sb +Db.

Proof. It suffices to prove that for all J,K ∈ D, 1 ≤ j, k ≤ d− 1, and x, y ∈ L2(M),

〈π∗bπb(h
j
J ⊗ x), hkK ⊗ y〉 = 〈(πSb + π∗Sb +Db)(hjJ ⊗ x), hkK ⊗ y〉.

Note that if J ⊆ K, then for any f ∈ L2(R, L2(M)),

〈πf (hjJ ⊗ x), hkK ⊗ y〉 =
〈∑
I∈D

d−1∑
i=1

hiI ⊗ 〈hiI , f〉
〈
1I

|I|
, hjJ

〉
x, hkK ⊗ y

〉

=
〈
1K

|K|
, hjJ

〉
τ(x∗〈f, hkK〉y) = 0.

(4.1.11)

We also have
〈hkK , Sb〉 =

∑
I∈D

d−1∑
i=1

〈
hkK ,

1I

|I|

〉
〈hiI , b〉∗〈hiI , b〉. (4.1.12)

Now we divide the rest of the proof into three cases.
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1. J = K. From (4.1.5) one has

〈π∗bπb(h
j
J ⊗ x), hkJ ⊗ y〉 =

∑
I∈D

d−1∑
i=1
〈πI,ib (hjJ ⊗ x), πI,ib (hkJ ⊗ y)〉

=
∑
I∈D

d−1∑
i=1

〈
1I

|I|
, hjJ

〉〈
1I

|I|
, hkJ

〉
τ(x∗〈hiI , b〉∗〈hiI , b〉y)

= 1
|J |

d−1∑
i=1

d∑
q=1

∑
I∈D(J(q))

ω(k−j)qτ(x∗〈hiI , b〉∗〈hiI , b〉y)

=
〈

d−1∑
i,m=1

1
|J |

d∑
q=1

∑
I∈D(J(q))

ω(j−m)qhmJ ⊗ 〈hiI , b〉∗〈hiI , b〉x, hkJ ⊗ y
〉
.

By the definition (4.1.7) of Db, we deduce

〈Db(hjJ ⊗ x), hkJ ⊗ y〉 =
〈∑
I∈D

1
|I|

d∑
q=1

M I,q ⊗N I,q(hjJ ⊗ x), hkJ ⊗ y
〉

=
〈∑
I∈D

1
|I|

d∑
q=1

d−1∑
i,m=1
〈hiI , h

j
J〉ω(i−m)qhmI ⊗N I,qx, hkJ ⊗ y

〉

=
〈

d−1∑
i,m=1

1
|J |

d∑
q=1

∑
I∈D(J(q))

ω(j−m)qhmJ ⊗ 〈hiI , b〉∗〈hiI , b〉x, hkJ ⊗ y
〉
.

By (4.1.11), recall that J = K, and we see

〈πSb(h
j
J ⊗ x), hkK ⊗ y〉 = 0, 〈π∗Sb(h

j
J ⊗ x), hkK ⊗ y〉 = 0,

hence we conclude that

〈π∗bπb(h
j
J ⊗ x), hkK ⊗ y〉 = 〈(πSb + π∗Sb +Db)(hjJ ⊗ x), hkK ⊗ y〉.

2. K $ J and K ∈ D(J(p)) for some 1 ≤ p ≤ d− 1. Then from (4.1.10)-(4.1.12),

〈π∗bπb(h
j
J ⊗ x), hkK ⊗ y〉 =

∑
I∈D

d−1∑
i=1

〈
1I

|I|
, hjJ

〉〈
1I

|I|
, hkK

〉
τ(x∗〈hiI , b〉∗〈hiI , b〉y)

=
d∑
q=1

∑
I∈D(K(q))

d−1∑
i=1

ωkq−pj

|J |1/2|K|1/2
τ(x∗〈hiI , b〉∗〈hiI , b〉y)

=
〈
1K

|K|
, hjJ

〉
τ(x∗〈Sb, hkK〉y) = 〈πSb(h

j
J ⊗ x), hkK ⊗ y〉

= 〈(πSb + π∗Sb +Db)(hjJ ⊗ x), hkK ⊗ y〉.

3. J $ K and J ∈ D(K(p)) for some 1 ≤ p ≤ d − 1. This case is symmetric to the
previous case by passing to adjoints:

〈π∗bπb(h
j
J ⊗ x), hkK ⊗ y〉 = 〈π∗Sb(h

j
J ⊗ x), hkK ⊗ y〉

= 〈(πSb + π∗Sb +Db)(hjJ ⊗ x), hkK ⊗ y〉.
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The proof is finished.

In order to apply Lemma 4.1.2, we will show that the upper bounds of ‖Sb‖BBBd
p/2(R,M)

and ‖Db‖Lp/2(B(L2(R))⊗M) are dominated by ‖b‖2
BBBdp(R,M) when p ≥ 2. This owes to the

following p-John-Nirenberg inequality appearing in [80].
Lemma 4.1.3. Let 0 < p < ∞. For each nonnegative sequence (aI,i)I∈D,1≤i≤d−1 indexed
by the dyadic intervals, we have

∑
I∈D

(
1
|I|

∑
J∈D(I)

d−1∑
j=1

aJ,j

)p
.d,p

∑
I∈D

d−1∑
i=1

(
aI,i
|I|

)p
.

Proof. For 0 < p ≤ 1 and for all I ∈ D, we have(
1
|I|

∑
J∈D(I)

d−1∑
j=1

aJ,j

)p
≤ 1
|I|p

∑
J∈D(I)

d−1∑
j=1

apJ,j,

which yields ∑
I∈D

(
1
|I|

∑
J∈D(I)

d−1∑
j=1

aJ,j

)p
≤
∑
I∈D

1
|I|p

∑
J∈D(I)

d−1∑
j=1

apJ,j

=
∑
J∈D

d−1∑
j=1

(∑
J⊆I

1
|I|p

)
apJ,j

=
∑
J∈D

d−1∑
j=1

( ∞∑
k=0

1
(dk|J |)p

)
apJ,j

= dp

dp − 1
∑
J∈D

d−1∑
j=1

(
aJ,j
|J |

)p
.

Let 1 < p <∞. For a fixed I = In,k ∈ D, by the Jensen inequality and the equality
∞∑
m=n

(m− n+ 1)−2 = π2

6 ,

one has(
1
|I|

∑
J∈D(I)

d−1∑
j=1

aJ,j

)p
=
(
dn

∞∑
m=n

∑
J∈Dm(I)

d−1∑
j=1

aJ,j

)p

=
( ∞∑
m=n

(m− n+ 1)−2(m− n+ 1)2dn−m
∑

J∈Dm(I)

d−1∑
j=1

dmaJ,j

)p

.p

∞∑
m=n

(m− n+ 1)2p−2dp(n−m)
( ∑
J∈Dm(I)

d−1∑
j=1

dmaJ,j

)p
.

Let p′ = p
p−1 . When m ≥ n, by the Hölder inequality,( ∑

J∈Dm(I)

d−1∑
j=1

dmaJ,j

)p
≤
( ∑
J∈Dm(I)

d−1∑
j=1

(dmaJ,j)p
)( ∑

J∈Dm(I)

d−1∑
j=1

1p′
)p/p′

= (d− 1)p−1d(m−n)(p−1) ∑
J∈Dm(I)

d−1∑
j=1

(dmaJ,j)p.
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We then take the summation for all I ∈ D, and change the order of summations to obtain

∑
I∈D

(
1
|I|

∑
J∈D(I)

d−1∑
j=1

aJ,j

)p
.d,p

∑
n,k∈Z

∞∑
m=n

(m− n+ 1)2p−2dn−m
∑

J∈Dm(In,k)

d−1∑
j=1

(dmaJ,j)p

=
∑
n,k∈Z

∞∑
m=n

(m− n+ 1)2p−2dn−m
d−1∑
j=1

(dma(Im,k),j)p

=
∑
m,k∈Z

m∑
n=−∞

(m− n+ 1)2p−2dn−m
d−1∑
j=1

(dma(Im,k),j)p.

Note that ∀m ∈ Z, the sum

m∑
n=−∞

(m− n+ 1)2p−2dn−m =
∞∑
l=1

l2p−2d1−l

is a constant only depending on d and p. Therefore,

∑
I∈D

(
1
|I|

∑
J∈D(I)

d−1∑
j=1

aJ,j

)p
.d,p

∑
I∈D

d−1∑
i=1

(
aI,i
|I|

)p
.

Lemma 4.1.4. If 2 ≤ p <∞ and b ∈ BBBd
p(R,M), then Sb ∈ BBBd

p/2(R,M) and ‖Sb‖BBBd
p/2(R,M) .d,p

‖b‖2
BBBdp(R,M).

Proof. Note that by the triangle inequality and (4.1.12)

‖〈hiI , Sb〉‖Lp/2(M) =
∥∥∥∥∥∑
J∈D

d−1∑
j=1

〈
1J

|J |
, hiI

〉
〈hjJ , b〉∗〈h

j
J , b〉

∥∥∥∥∥
Lp/2(M)

≤ 1
|I|1/2

∑
J$I

d−1∑
j=1
‖〈hjJ , b〉∗〈h

j
J , b〉‖Lp/2(M)

= 1
|I|1/2

∑
J$I

d−1∑
j=1
‖〈hjJ , b〉‖2

Lp(M).

By Lemma 4.1.3, we conclude

‖Sb‖p/2BBBd
p/2(R,M) ≤

∑
I∈D

d−1∑
i=1

(
1
|I|

∑
J$I

d−1∑
j=1
‖〈hjJ , b〉‖2

Lp(M)

)p/2
.d,p ‖b‖pBBBdp(R,M),

as desired.

Lemma 4.1.5. If 2 ≤ p < ∞ and b ∈ BBBd
p(R,M), then Db ∈ Lp/2(B(L2(R)) ⊗M) and

‖Db‖Lp/2(B(L2(R))⊗M) .d,p ‖b‖2
BBBdp(R,M).
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Proof. From (4.1.7)-(4.1.9), for any x, y ∈ L2(M), K,L ∈ D, 1 ≤ k, l ≤ d− 1, one has

〈hkK ⊗ x,Db(hlL ⊗ y)〉 =
∑
I∈D

1
|I|

d∑
q=1
〈hkK ,M I,qhlL〉〈x,N I,qy〉

=
∑
I∈D

1
|I|

d∑
q=1

d−1∑
i,m=1
〈hiI , hlL〉ω(i−m)q〈hkK , hmI 〉〈x,N I,qy〉

=


〈
x, 1
|K|

d∑
q=1

ω(l−k)qNK,qy

〉
, if K = L;

0, if K 6= L.

This shows that Db is a block diagonal matrix with respect to the basis {hiI}I∈D,1≤i≤d−1.
Denote for any I ∈ D, 1 ≤ k, l ≤ d− 1

EI,k,l := 1
|I|

d∑
q=1

ω(l−k)qN I,q.

Then the matrix of Db with respect to the basis {hiI}I∈D,1≤i≤d−1 is (EI,k,l)I . Hence by the
triangle inequality,

‖Db‖p/2Lp/2(B(L2(R))⊗M) =
∑
I∈D

∥∥∥∥∥
(
EI,k,l

)
1≤k,l≤d−1

∥∥∥∥∥
p/2

Lp/2(Md−1⊗M)

=
∑
I∈D

∥∥∥∥∥
(

1
|I|

d∑
q=1

ω(l−k)qN I,q

)
1≤k,l≤d−1

∥∥∥∥∥
p/2

Lp/2(Md−1⊗M)

≤
∑
I∈D

(
d∑
q=1

∥∥∥∥∥
(

1
|I|
ω(l−k)qN I,q

)
1≤k,l≤d−1

∥∥∥∥∥
Lp/2(Md−1⊗M)

)p/2
,

where Md−1 is equipped with the usual trace.
However, note that (ω(l−k)q)1≤k,l≤d−1 (1 ≤ q ≤ d) is a (d − 1) × (d − 1) matrix only

depending on d, p, thus
d∑
q=1

∥∥∥∥∥
(

1
|I|
ω(l−k)qN I,q

)
1≤k,l≤d−1

∥∥∥∥∥
Lp/2(Md−1⊗M)

= 1
|I|

d∑
q=1

∥∥∥∥∥
(
ω(l−k)q

)
1≤k,l≤d−1

∥∥∥∥∥
Sp/2(Md−1)

‖N I,q‖Lp/2(M)

.d,p
1
|I|

d∑
q=1
‖N I,q‖Lp/2(M).

Consequently, by the triangle inequality and Lemma 4.1.3, we have

‖Db‖p/2Lp/2(B(L2(R))⊗M) .d,p

∑
I∈D

(
1
|I|

d∑
q=1
‖N I,q‖Lp/2(M)

)p/2

.d,p

∑
I∈D

(
1
|I|

d∑
q=1

∑
J∈D(I(q))

d−1∑
j=1
‖〈hjJ , b〉‖2

Lp(M)

)p/2

.d,p

∑
I∈D

d−1∑
i=1

(
1
|I|1/2

‖〈hiI , b〉‖Lp(M)

)p
= ‖b‖pBBBdp(R,M).
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This completes the proof.

Proposition 4.1.6. Let 2 ≤ p < ∞. Assume that for any b ∈ BBBd
p/2(R,M), the corre-

sponding martingale paraproduct satisfies the following estimate

‖πb‖Lp/2(B(L2(R))⊗M) .d,p ‖b‖BBBd
p/2(R,M).

Then for any b ∈ BBBd
p(R,M), we have

‖πb‖Lp(B(L2(R))⊗M) .d,p ‖b‖BBBdp(R,M).

Proof. By direct calculations, one has

‖πb‖pLp(B(L2(R))⊗M) = ‖π∗bπb‖
p/2
Lp/2(B(L2(R))⊗M)

≤
(
2‖πSb‖Lp/2(B(L2(R))⊗M) + ‖Db‖Lp/2(B(L2(R))⊗M)

)p/2
(Lemma 4.1.2)

.d,p

(
2‖Sb‖BBBd

p/2(R,M) + ‖Db‖Lp/2(B(L2(R))⊗M)
)p/2

.d,p ‖b‖pBBBdp(R,M). (Lemma 4.1.4 and Lemma 4.1.5)

Thus the result is proved.

Proof of the Necessity of Theorem II.2. We see that if b ∈ BBBd
p(R,M) for 0 < p ≤

2, then πb ∈ Lp(B(L2(R))⊗M) from Proposition 4.1.1. By Proposition 4.1.6, we employ
iteration and finally conclude the desired result for 2 < p <∞.

4.1.2 The Sufficiency of Theorem II.2
We divide the proof into two cases: p ≥ 1 and 0 < p < 1. Each one will be stated and

proved in Propositions 4.1.8 and 4.1.9 respectively. For the first case, the proof is easier
and relies on the following elementary lemma.

Lemma 4.1.7. Let 1 ≤ p < ∞ and T ∈ Lp(B(L2(R)) ⊗M). E = (EI,i)I∈D,1≤i≤d−1 is
defined as the block diagonal of T , where for I ∈ D and 1 ≤ i ≤ d − 1, EI,i : L2(M) →
L2(M) is given by

〈EI,ix, y〉 = 〈ThiI ⊗ x, hiI ⊗ y〉, ∀x, y ∈ L2(M).

Then

‖T‖pLp(B(L2(R))⊗M) ≥
∑
I∈D

d−1∑
i=1
‖EI,i‖pLp(M) = ‖E‖pLp(B(L2(R))⊗M).

Proof. Note that E is a trace preserving conditional expectation, and thereby contractive.

Proposition 4.1.8. If p ≥ 1 and πb ∈ Lp(B(L2(R))⊗M), then b ∈ BBBd
p(R,M).
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Proof. First, define for any I ∈ D, 1 ≤ i ≤ d− 1, x ∈ L2(M),

R : L2(R, L2(M))→ L2(R, L2(M))
hiI ⊗ x 7→ hiĨ ⊗ x,

where Ĩ is the parent interval of I. Then R is well-defined and bounded. Indeed, for any
f ∈ L2(R, L2(M)),

‖Rf‖L2(R,L2(M)) =
∥∥∥∥∥R
(∑
I∈D

d−1∑
i=1
〈hiI , f〉hiI

)∥∥∥∥∥
L2(R,L2(M))

=
∥∥∥∥∥∑
I∈D

d−1∑
i=1
〈hiI , f〉hiĨ

∥∥∥∥∥
L2(R,L2(M))

=
∥∥∥∥∥∑
Ĩ∈D

d−1∑
i=1

( ∑
I⊂Ĩ

|I|=d−1|Ĩ|

〈hiI , f〉
)
hiĨ

∥∥∥∥∥
L2(R,L2(M))

=
(∑
Ĩ∈D

d−1∑
i=1

∥∥∥∥∥ ∑
I⊂Ĩ

|I|=d−1|Ĩ|

〈hiI , f〉
∥∥∥∥∥

2

L2(M)

)1/2

≤
(
d
∑
Ĩ∈D

d−1∑
i=1

∑
I⊂Ĩ

|I|=d−1|Ĩ|

‖〈hiI , f〉‖2
L2(M)

)1/2

=
√
d‖f‖L2(R,L2(M)) .

(4.1.13)
Now let E = (EI,i)I∈D,1≤i≤d−1 be the block diagonal of πbR defined in Lemma 4.1.7. Then
for x, y ∈ L2(M), we have

〈EI,ix, y〉 = 〈πbR(hiI ⊗ x), hiI ⊗ y〉 = 〈πb(hiĨ ⊗ x), hiI ⊗ y〉

= ω−iq

|Ĩ|1/2
〈〈hiI , b〉x, y〉 = ω−iq√

d|I|1/2
〈〈hiI , b〉x, y〉,

where Ĩ(q) = I, 1 ≤ q ≤ d. Thus EI,i = ω−iq√
d|I|1/2 〈h

i
I , b〉. Therefore, from (4.1.13) and

Lemma 4.1.7, we get

‖πb‖pLp(B(L2(R))⊗M) ≥
1
dp/2
‖πbR‖pLp(B(L2(R))⊗M)

≥ 1
dp/2

∑
I∈D

d−1∑
i=1
‖EI,i‖pLp(M))

= 1
dp
∑
I∈D

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M))

|I|1/2

)p
&d,p ‖b‖pBBBdp(R,M).

This yields the desired result.

Proposition 4.1.9. If 0 < p < 1 and πb ∈ Lp(B(L2(R))⊗M), then b ∈ BBBd
p(R,M).

The remaining part of this section is devoted to the proof of Proposition 4.1.9. We
will follow the arguments in [69] or [80]. To this end, define for any m,n ∈ Z

πn,mb := dm+1πbdn+1. (4.1.14)
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Recall that dkb = ∑
|I|=d−k+1

d−1∑
i=1

hiI〈hiI , b〉. Thus for any f ∈ L2(R, L2(M)),

πn,mb (f) =
∑
I∈Dm
J∈Dn

d−1∑
i,j=1

〈
1I

|I|
, hjJ

〉
hiI〈hiI , b〉〈h

j
J , f〉.

If m ≤ n, then for I ∈ Dm and J ∈ Dn,〈
1I

|I|
, hjJ

〉
= 0.

It thus follows that πn,mb = 0.
Let b ∈ BBBd

p(R,M) and N ≥ 2 be a fixed positive integer (to be chosen later). For
k = 0, 1, · · · , N − 1, define

πb,k =
∞∑

n=−∞

∞∑
m=−∞

πNn+k,Nm+k+1
b =

∞∑
m=−∞

m∑
n=−∞

πNn+k,Nm+k+1
b . (4.1.15)

In addition, we define
π

(0)
b,k =

∞∑
n=−∞

πNn+k,Nn+k+1
b ,

and
π

(1)
b,k =

∞∑
m=−∞

m−1∑
n=−∞

πNn+k,Nm+k+1
b .

Then
πb,k = π

(0)
b,k + π

(1)
b,k .

Indeed, π(0)
b,k is defined as the minor diagonal and will play an important role in our later

proof. In the following, we are about to obtain the lower bound of ‖πb‖Lp(B(L2(R))⊗M) by
‖π(0)

b,k‖Lp(B(L2(R))⊗M), which will be the dominant term. The following lemma implies that
‖π(1)

b,k‖Lp(B(L2(R))⊗M) is the minor term since ‖πn,mb ‖Lp(B(L2(R))⊗M) shrinks rapidly when
m > n.

Lemma 4.1.10. Let b ∈ BBBd
p(R,M). If m > n and 0 < p < 1, then

‖πn,mb ‖
p
Lp(B(L2(R))⊗M) ≤ (d− 1)d(n−m)p/2 ∑

I∈Dm

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p
.

Proof. Write πn,mb in the following concrete form:

πn,mb =
∑
I∈Dm
J∈Dn

d−1∑
i,j=1

〈
1I

|I|
, hjJ

〉
(πn,mb )i,jI,J

=
∑
J∈Dn

d∑
q=1

∑
I∈Dm(J(q))

d−1∑
i,j=1

ωqj
1
|J |1/2

(πn,mb )i,jI,J ,
(4.1.16)

where
(πn,mb )i,jI,J := 〈hiI , b〉 · hiI ⊗ h

j
J .
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Hence, one has

‖πn,mb ‖
p
Lp(B(L2(R))⊗M) ≤

∑
J∈Dn

∑
I∈Dm(J)

d−1∑
i,j=1

(
‖(πn,mb )i,jI,J‖Lp(B(L2(R))⊗M)

|J |1/2

)p

=
∑
J∈Dn

∑
I∈Dm(J)

d−1∑
i,j=1

(
‖hiI ⊗ h

j
J‖Sp(L2(R))‖〈hiI , b〉‖Lp(M)

|J |1/2

)p

=
∑
J∈Dn

∑
I∈Dm(J)

d−1∑
i,j=1

(
‖〈hiI , b〉‖Lp(M)

|J |1/2

)p

= (d− 1)d(n−m)p/2 ∑
I∈Dm

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p
.

This finishes the proof.

By virtue of Lemma 4.1.10, we can estimate ‖π(1)
b,k‖Lp(B(L2(R))⊗M) as follows:

Lemma 4.1.11. We have
N−1∑
k=0
‖π(1)

b,k‖
p
Lp(B(L2(R))⊗M) ≤

(d−1)d−p/2
dNp/2−1 ‖b‖

p
BBBdp(R,M).

Proof. By Lemma 4.1.10, one has

‖π(1)
b,k‖

p
Lp(B(L2(R))⊗M) ≤

∞∑
m=−∞

m−1∑
n=−∞

‖πNn+k,Nm+k+1
b ‖pLp(B(L2(R))⊗M)

≤
∞∑

m=−∞

m−1∑
n=−∞

(d− 1)d(Nn−Nm−1)p/2 ∑
I∈DNm+k+1

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p

=
∞∑

m=−∞
(d− 1)d−(Nm+1)p/2 ∑

I∈DNm+k+1

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p m−1∑
n=−∞

dNnp/2

= (d− 1)d−p/2
dNp/2 − 1

∞∑
m=−∞

∑
I∈DNm+k+1

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p
.

We then deduce
N−1∑
k=0
‖π(1)

b,k‖
p
Lp(B(L2(R))⊗M) ≤

(d− 1)d−p/2
dNp/2 − 1

∑
I∈D

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p

= (d− 1)d−p/2
dNp/2 − 1 ‖b‖

p
BBBdp(R,M).

Now we come to the estimate of ‖π(0)
b,k‖

p
Lp(B(L2(R))⊗M). The following well-known lemma

is straightforward but very helpful for us.

Lemma 4.1.12. Let 0 < p < ∞. If {Ri}1≤i≤n are operators in Lp(B(L2(R)) ⊗ M)
satisfying R∗iRj = 0, ∀1 ≤ i, j ≤ n, i 6= j and T =

n∑
i=1

Ri, then

‖T‖pLp(B(L2(R))⊗M) ≥
1
n

n∑
i=1
‖Ri‖pLp(B(L2(R))⊗M). (4.1.17)
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Proof. This follows from the fact that

T ∗T =
n∑
i=1

R∗iRi ≥ R∗iRi.

Remark 4.1.13. It is obvious that our estimate is far from being optimal in (4.1.17), but
it does not affect our later proof. See [46, Theorem 1.3] or [19, Lemma 2.1] for better
constants in (4.1.17).

Lemma 4.1.14. Let b ∈ BBBd
p(R,M) and 0 < p < 1. Then

N−1∑
k=0
‖π(0)

b,k‖Lp(B(L2(R))⊗M) ≥
(d− 1)p/2−1

dp/2+1 ‖b‖pBBBdp(R,M).

Proof. From (4.1.16) we deduce

πNn+k,Nn+k+1
b =

∑
J∈DNn+k

d∑
q=1

∑
I∈DNn+k+1(J(q))

d−1∑
i,j=1

ωqj

|J |1/2
(πNn+k,Nn+k+1

b )i,jI,J

=
∑

J∈DNn+k

d∑
q=1

d−1∑
i,j=1

ωqj

|J |1/2
(πNn+k,Nn+k+1

b )i,jJ(q),J .

Then
π

(0)
b,k =

∞∑
n=−∞

∑
J∈DNn+k

d∑
q=1

d−1∑
i,j=1

ωqj

|J |1/2
(πNn+k,Nn+k+1

b )i,jJ(q),J

=
d∑
q=1

d−1∑
i=1

∞∑
n=−∞

∑
J∈DNn+k

d−1∑
j=1

ωqj

|J |1/2
(πNn+k,Nn+k+1

b )i,jJ(q),J

=:
d∑
q=1

d−1∑
i=1

Aq,i.

Since the ranges of {(πNn+k,Nn+k+1
b )i,jJ(q),J}1≤q≤d,1≤i≤d−1 are mutually orthogonal, by Lemma

4.1.12 we have

‖π(0)
b,k‖

p
Lp(B(L2(R))⊗M) ≥

1
d(d− 1)

d∑
q=1

d−1∑
i=1
‖Aq,i‖pLp(B(L2(R))⊗M).

When q and i are fixed, the operator Aq,i is a block diagonal matrix with respect to the
basis {hjJ , hiJ(q)}J∈DNn+k . Consequently, one has∥∥∥∥∥

∞∑
n=−∞

∑
J∈DNn+k

d−1∑
j=1

ωqj

|J |1/2
(πNn+k,Nn+k+1

b )i,jJ(q),J

∥∥∥∥∥
p

Lp(B(L2(R))⊗M)

=
∞∑

n=−∞

∑
J∈DNn+k

∥∥∥∥∥
d−1∑
j=1

ωqj

|J |1/2
(πNn+k,Nn+k+1

b )i,jJ(q),J

∥∥∥∥∥
p

Lp(B(L2(R))⊗M)

=
∞∑

n=−∞

∑
J∈DNn+k

∥∥∥∥∥
d−1∑
j=1

ωqj

|J |1/2
hiJ(q) ⊗ h

j
J

∥∥∥∥∥
p

Sp(L2(R))
‖〈hiJ(q), b〉‖

p
Lp(M).
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It is clear that ∥∥∥∥∥
d−1∑
j=1

ωqj

|J |1/2
hiJ(q) ⊗ h

j
J

∥∥∥∥∥
Sp(L2(R))

= (d− 1)1/2

|J |1/2
.

Combining the preceding inequalities, we obtain

‖π(0)
b,k‖

p
Lp(B(L2(R))⊗M) ≥

(d− 1)p/2
d(d− 1)

d∑
q=1

d−1∑
i=1

∞∑
n=−∞

∑
J∈DNn+k

1
|J |p/2

‖〈hiJ(q), b〉‖
p
Lp(M)

= (d− 1)p/2−1

dp/2+1

d−1∑
i=1

∞∑
n=−∞

∑
J∈DNn+k+1

1
|J |p/2

‖〈hiJ , b〉‖
p
Lp(M).

Hence
N−1∑
k=0
‖π(0)

b,k‖
p
Lp(B(L2(R))⊗M) ≥

(d− 1)p/2−1

dp/2+1

∑
J∈D

d−1∑
i=1

(
‖〈hiJ , b〉‖Lp(M)

|J |1/2

)p

= (d− 1)p/2−1

dp/2+1 ‖b‖pBBBdp(R,M).

Proposition 4.1.15. Let b ∈ BBBd
p(R,M) and 0 < p < 1. Then

‖b‖BBBdp(R,M) .d,p ‖πb‖Lp(B(L2(R))⊗M).

Proof. From (4.1.14) and (4.1.15) we observe that

πb,k =
( ∞∑
m=−∞

dNm+k+2

)
πb

( ∞∑
n=−∞

dNn+k+1

)
.

Note that
∞∑

n=−∞
dNn+k+1 and

∞∑
m=−∞

dNm+k+2 are projections with norm 1. Thus

‖πb,k‖Lp(B(L2(R))⊗M) ≤ ‖πb‖Lp(B(L2(R))⊗M).

By Lemmas 4.1.11, 4.1.12 and 4.1.14, we have

‖πb‖pLp(B(L2(R))⊗M) ≥
1
N

N−1∑
k=0
‖πb,k‖pLp(B(L2(R))⊗M)

≥ 1
N

N−1∑
k=0

(
‖π(0)

b,k‖
p
Lp(B(L2(R))⊗M) − ‖π

(1)
b,k‖

p
Lp(B(L2(R))⊗M)

)

≥ 1
N

(
(d− 1)p/2−1

dp/2+1 − (d− 1)d−p/2
dNp/2 − 1

)
‖b‖pBBBdp(R,M),

which yields the desired result as long as we choose N sufficiently large.

Now we give the proof of Proposition 4.1.9.
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Proof of Proposition 4.1.9. When 0 < p < 1, Proposition 4.1.9 follows from Proposition
4.1.15 and the standard limit argument. Indeed, for any positive integer a, we define

b(a) :=
∑

I∈D(a)

d∑
i=1
〈hiI , b〉hiI ,

where
D(a) := {In,k ∈ D : |n| ≤ a, |k| ≤ a}.

By (4.1.5), one has for any 0 < p <∞

‖πb‖Lp(B(L2(R))⊗M) ≥ ‖πI,ib ‖Lp(B(L2(R))⊗M) =
‖〈hiI , b〉‖Lp(M)

|I|1/2
.

This implies that b(a) ∈ BBBd
p(R,M). Therefore by Proposition 4.1.15,

‖b‖BBBdp(R,M) = lim
a→∞
‖b(a)‖BBBdp(R,M) .d,p ‖πb‖Lp(B(L2(R))⊗M).

Proof of the sufficiency of Theorem II.2. The desired result follows from Proposition 4.1.8
for p ≥ 1, and from Proposition 4.1.9 for 0 < p < 1.

Finally, the proof of Theorem II.2 is completed.

4.2 Proof of Theorem II.3
First recall the Walsh system. Let G = {1,−1}N be equipped with the uniform

distribution P . Recall that for any n ≥ 1, εn((θk)k∈N) := θn, ∀θ = (θk)k∈N ∈ G. Then
(εn)n≥1 is the Rademacher sequence on G, namely a sequence of independent identically
distributed random variables on (G, P ) such that P (εn = 1) = P (εn = −1) = 1/2 for all
n ∈ N.

Recall that I denotes the family of all finite subsets of N. For a nonempty set A ∈ I,
we write A = {k1 < k2 < · · · < kn} in an increasing order. Define

ωA = εk1εk2 · · · εkn .

If A = ∅, we set εA = 1. If A is a singleton {k}, we still use ωk instead of ω{k}. Thus
(ωA)A∈I , called the Walsh system, is an orthonormal basis of L2(G). Denote by Gn the
σ-algebra generated by {ωA : max(A) ≤ n}. Then (Gn)n≥1 is the filtration of (G, P ) for
the Walsh system.

We define for any θ ∈ G,

σθ : C → C
ci 7→ εi(θ)ci, ∀i ∈ N.

Then σθ extends to a trace preserving automorphism of the CAR algebra C, and con-
sequently extends to an isometry on Lp(C) for all 0 < p < ∞. By virtue of σθ, the
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CAR algebra can be transfered to the operator-valued Walsh system. For any given
b = ∑

A∈I
b̂(A)cA ∈ Lp(C) with 0 < p <∞, we define

b̃(θ) := σθ(b) =
∑
A∈I

b̂(A)cA · ωA(θ).

Then b̃ ∈ Lp(G, Lp(C)). Hence, for any given b, define the martingale paraproduct πb̃ of
symbol b̃ associated with the Walsh system on L2(G, L2(C)) by

πb̃ : L2(G, L2(C))→ L2(G, L2(C))

g 7→
∞∑
k=1

dkb̃ · gk−1.

In fact, πb̃ is a martingale paraproduct for semicommutative dyadic martingales.
Now we come to the proof of Theorem II.3.

Proof of Theorem II.3. Since L2(C) ∼= `2(I) and L2(G, L2(C)) ∼= `2(I, L2(C)), we repre-
sent πb and πb̃ in the matrix form. For any A,B ∈ I, note that for k ≥ 1

(cB)k−1 =
∑

max(D)≤k−1
τ(c∗D · cB)cD =

cB, if k − 1 ≥ max(B);
0, otherwise.

Then
〈cA, πb(cB)〉 = 〈cA,

∞∑
k=1

dkb · (cB)k−1〉 = 〈cA,
∑

k−1≥max(B)
dkb · cB〉

= 〈cA,
∑

max(E)≥max(B)+1
b̂(E)cE · cB〉

= 〈cAc∗B,
∑

max(E)≥max(B)+1
b̂(E)cE〉.

From the CAR (1.6.1), we have

c∗A = ±cA and cAcB = ±cA∆B, ∀A,B ∈ I,

where A∆B = (A ∪B)\(A ∩B). Then

〈cA, πb(cB)〉 = 〈±cA∆B,
∑

max(E)≥maxB+1
b̂(E)cE〉

=

±b̂(A∆B), if max(A∆B) > max(B);
0, if max(A∆B) ≤ max(B),

=


b̂(A∆B), if max(A) > max(B) and cAc∗B = cA∆B;
−b̂(A∆B), if max(A) > max(B) and cAc∗B = −cA∆B;
0, if max(A) ≤ max(B).

In the same way, one has

〈ωA, πb̃(ωB)〉 =

b̂(A∆B)cA∆B, if max(A) > max(B);
0, if max(A) ≤ max(B).
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Denote by

[πb] :=
(

(πb)A,B
)
A,B∈I

the matrix form of πb with respect to the basis (cA)A∈I , where (πb)A,B = 〈cA, πb(cB)〉.
Analogously, let

[πb̃] :=
(

(πb̃)A,B
)
A,B∈I

be the matrix form of πb̃ with respect to the basis (ωA)A∈I , where (πb̃)A,B = 〈ωA, πb̃(ωB)〉.
By the above discussion, we see that

[πb̃] =
(

(πb)A,BcAc∗B
)
A,B∈I

=


. . . 0

cA

0 . . .


A∈I

([πb]⊗ 1C)


. . . 0

c∗B

0 . . .


B∈I

,

where 1C is the identity of C. So this leads to for any 0 < p <∞

‖πb̃‖Lp(B(L2(G))⊗C) = ‖[πb̃]‖Lp(B(`2(I))⊗C)

= ‖[πb]‖Sp(`2(I)) · ‖1C‖Lp(C)

= ‖πb‖Sp(L2(C)).

By Theorem II.2, we have πb̃ ∈ Lp(B(L2(G))⊗ C) if and only if b̃ ∈ BBB2
p(R, C), where

‖b̃‖BBB2
p(R,C) ≈p

( ∞∑
k=1

2k‖dkb̃‖pLp(G,Lp(C))

)1/p

.

However, note that for any θ ∈ G and k ≥ 1,

(dkb̃)(θ) =
( ∑

max(A)=k
b̂(A)cAωA

)
(θ) = σθ

( ∑
max(A)=k

b̂(A)cA
)

= σθ(dkb),

which yields

‖dkb̃‖pLp(G,Lp(C)) =
∫
G
‖(dkb̃)(θ)‖pLp((C)dP (θ) =

∫
G
‖σθ(dkb)‖pLp((C)dP (θ) = ‖dkb‖pLp(C).

Therefore, we get πb ∈ Sp(L2(C)) if and only if b ∈ BBBp(C) with relevant constants depend-
ing only on p. Thus Theorem II.3 is proved.
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4.3 Proof of Theorem II.4
First we construct an orthonormal basis of Md, which will induce an orthonormal basis

in M =
∞
⊗
k=1

Md. Denote by ei,j the matrix which has 1 in the (i, j)-th position as its only
nonzero entry. Let σ = (1 2 · · · d) be the d-cycle, and recall ω = e2πi/d. Define

Ω =
{
U(i,j) =

d∑
l=1

ωi·lel,σj(l) : 1 ≤ i, j ≤ d

}
.

Then Ω is an orthonormal basis of L2(Md, trd), and every element in Ω is unitary. In
particular, U(d,d) = 1. Moreover, for any 1 ≤ i, j, k, l ≤ d

1. U∗(i,j) = ωi·jU(−i,−j);

2. U(i,j)U(k,l) = ωj·kU(i+k,j+l).

Denote A = {(k, ik, jk) : k ∈ N, 1 ≤ ik, jk ≤ d}. For any nonempty finite subset α =
{(1, i1, j1), (2, i2, j2), · · · , (n, in, jn)} ⊂ A , define max(α) = n. Besides, define max(∅) =
1. Let J be the family of all finite subsets α ⊂ A with (imax(α), jmax(α)) 6= (d, d). For any
given α = {(1, i1, j1), (2, i2, j2), · · · , (n, in, jn)} ∈ J , define

Uα = U(i1,j1) ⊗ U(i2,j2) ⊗ · · · ⊗ U(in,jn) ⊗ 1⊗ 1 · · · ∈M .

In addition, we set U∅ = 1. Then (Uα)α∈J is an orthonormal basis of L2(M ). Next, we
calculate UαU∗β . For any given α, β ∈ J , write

α = {(1, ĩ1, j̃1), · · · , (max(α), ĩmax(α), j̃max(α))}

where 1 ≤ ĩ1, j̃1, · · · , ĩmax(α), j̃max(α) ≤ d and

β = {(1, i1, j1), · · · , (max(β), imax(β), jmax(β))}

where 1 ≤ i1, j1, · · · , imax(β), jmax(β) ≤ d. To calculate UαU∗β , we define ηα,β ∈ J associated
with α and β as follows:

1. If max(α) = max(β),

ηα,β = {(1, ĩ1− i1, j̃1− j1), · · · , (max(α), ĩmax(α)− imax(α), j̃max(α)− jmax(α))}; (4.3.1)

2. If max(α) < max(β),

ηα,β = {(1, ĩ1 − i1, j̃1 − j1), · · · , (max(α), ĩmax(α) − imax(α), j̃max(α) − jmax(α)),
(max(α) + 1, imax(α)+1, jmax(α)+1), · · · , (max(β), imax(β), jmax(β))};

(4.3.2)

3. If max(α) > max(β),

ηα,β = {(1, ĩ1 − i1, j̃1 − j1), · · · , (max(β), ĩmax(β) − imax(β), j̃max(β) − jmax(β)),
(max(β) + 1, ĩmax(β)+1, j̃max(β)+1), · · · , (max(α), ĩmax(α), j̃max(α))}.

(4.3.3)
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Notice that the case where α = ∅ or β = ∅ has been included in the construction of
ηα,β. In (4.3.1), (4.3.2) and (4.3.3), if ĩk − ik ≤ 0 (respectively j̃k − jk ≤ 0), then we can
substitute ĩk − ik + d (respectively j̃k − jk + d) for ĩk − ik (respectively j̃k − jk).

One can verify that
UαU

∗
β = λα,βUηα,β , (4.3.4)

where

λα,β =

ω−i1(j̃1−j1) · · ·ω−imax(α)(j̃max(α)−jmax(α)), if max(α) ≤ max(β);
ω−i1(j̃1−j1) · · ·ω−imax(β)(j̃max(β)−jmax(β)), if max(α) > max(β).

This implies that |λα,β| = 1.

Let υ = e2πi/d2 . LetR = {υ1, υ2, · · · , υd2}N be equipped with the uniform distribution.
For 1 ≤ i, j ≤ d, we define

h(i,j) :=
d2∑
l=1

υ(di+j)l
1{vl}.

Similarly, for any given α = {(1, i1, j1), (2, i2, j2), · · · , (n, in, jn)} ∈ J , define

hα = h(i1,j1) ⊗ h(i2,j2) ⊗ · · · ⊗ h(in,jn) ⊗ 1⊗ 1 · · · ∈ L2(R),

namely, for every t = (tm)m∈N ∈ R,

hα(t) :=
n∏
k=1

h(ik,jk)(tk).

We also set h∅ = 1. Then (hα)α∈J is an orthonormal basis of L2(R). Let Rn be the σ-
algebra generated by {hα : max(α) ≤ n}, and then (Rn)n≥1 is a filtration for R. Indeed,
a martingale in L2(R) with respect to the filtration (Rn)n≥1 is a d2-adic martingale.

Define for any t = (tm)m∈N ∈ R, and ∀k ∈ N, 1 ≤ ik, jk ≤ d,

σh(t) : M →M

U{(k,ik,jk)} 7→ h{(k,ik,jk)}(tk)U{(k,ik,jk)},

then σh(t) extends to a trace preserving automorphism of M , and hence extends to an
isometry on Lp(M ) for all 0 < p <∞.

Now for any given b = ∑
α∈J

b̂(α)Uα ∈ Lp(M ) with b̂(α) := τ(U∗α · b), we define

b̃(t) := σh(t)(b) =
∑
α∈J

b̂(α)Uα · hα(t),

then b̃ ∈ Lp(R, Lp(M )). Therefore, for any given b, define the martingale paraproduct πb̃
of symbol b̃ on L2(R, L2(M )) by

πb̃ : L2(R, L2(M ))→ L2(R, L2(M ))

g 7→
∞∑
k=1

dkb̃ · gk−1.

In fact, πb̃ is a martingale paraproduct for semicommutative d2-adic martingales.
Now we come to the proof of Theorem II.4.

74



4.3. PROOF OF THEOREM II.4

Proof of Theorem II.4. Since L2(M ) ∼= `2(J ) and L2(R, L2(M )) ∼= `2(J , L2(M )), we
represent πb and πb̃ in the matrix form. Note that for k ≥ 1,

(Uβ)k−1 =

Uβ, if k − 1 ≥ max(β);
0, otherwise.

This implies

〈Uα, πb(Uβ)〉 = 〈Uα,
∞∑
k=1

dkb · (Uβ)k−1〉 = 〈Uα,
∑

k−1≥max(β)
dkb · Uβ〉

= 〈Uα,
∑

max(γ)≥max(β)+1
b̂(γ)UγUβ〉

= 〈UαU∗β ,
∑

max γ≥max(β)+1
b̂(γ)Uγ〉.

Then by (4.3.4)

〈Uα, πb(Uβ)〉 = 〈λα,βUηα,β ,
∑

max γ≥max(β)+1
b̂(γ)Uγ〉

=

λα,β · b̂(ηα,β), if max(α) > max(β);
0, if max(α) ≤ max(β).

In the same way, one has

〈hα, πb̃(hβ)〉 =

b̂(ηα,β)Uηα,β , if max(α) > max(β);
0, if max(α) ≤ max(β).

Denote by

[πb] =
(

(πb)α,β
)
α,β∈J

the matrix form of πb with respect to the basis (Uα)α∈J , where (πb)α,β = 〈Uα, πb(Uβ)〉.
Analogously, let

[πb̃] =
(

(πb̃)α,β
)
α,β∈J

be the matrix form of πb̃ with respect to the basis (hα)α∈J , where (πb̃)α,β = 〈hα, πb̃(hβ)〉.
Observing that (πb̃)α,β = (πb)α,βUαU∗β for any α, β ∈ J , one has

[πb̃] =
(

(πb)α,βUαU∗β
)
α,β∈J

=


. . . 0

Uα

0 . . .


α∈J

([πb]⊗ 1M )


. . . 0

U∗β

0 . . .


β∈J

,

where 1M is the identity of M . So this implies that for any 0 < p <∞
‖πb̃‖Lp(B(L2(R))⊗M ) = ‖[πb̃]‖Lp(B(`2(J ))⊗M )

= ‖[πb]‖Sp(`2(J )) · ‖1M‖Lp(M )

= ‖πb‖Sp(L2(M )).
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By Theorem II.2, we have πb̃ ∈ Lp(B(L2(R))⊗M ) if and only if b̃ ∈ BBBd2
p (R,M ), where

‖b̃‖BBBd2p (R,M ) ≈d,p
( ∞∑
k=1

d2k‖dkb̃‖pLp(R,Lp(M ))

)1/p

.

However, note that for any t ∈ R and k ≥ 1,

(dkb̃)(t) =
( ∑

max(α)=k
b̂(α)Uαhα

)
(t) = σh(t)(

∑
max(α)=k

b̂(α)Uα) = σh(t)(dkb).

This yields

‖dkb̃‖pLp(R,Lp(M )) =
∫
R
‖(dkb̃)(t)‖pLp(M )dt =

∫
R
‖σh(t)(dkb)‖pLp(M )dt = ‖dkb‖pLp(M ),

Therefore, we conclude that πb ∈ Sp(L2(M )) if and only if b ∈ BBBp(M ) with relevant
constants depending only on d and p. This completes the proof of Theorem II.4.
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Chapter 5

Schatten class and boundedness of
operator-valued commutators

The last chapter focuses on the applications of martingale paraproducts to the analy-
sis of commutators and operator-valued commutators involving general singular integral
operators, which are summarized in Theorem II.6, Theorem II.7 and Theorem II.8. Such
applications are feasible thanks to the dyadic martingale technique developed by Hytönen
in [40] and [41].

5.1 Proof of Theorem II.6

We first start with preparations concerning martingale paraproducts and Schatten
classes, namely Lemma 5.1.1 and Proposition 5.1.4, which will be helpful in the proof of
Theorem II.6. Then we introduce the key ingredient: the dyadic representation of singular
integral operators by Hytönen in [40] and [41]. This representation enables the reduction
to the d-adic martingale setting. Finally, we will give a proof of Theorem II.6 using the
result about martingale paraproducts stated in Theorem II.2.

5.1.1 Schatten class of operator-valued commutators involving
martingale paraproducts

Lemma 5.1.1. Assume that 1 ≤ p < ∞. For any semicommutative d-adic martingale
f = (fk)k∈Z ∈ L2(R, L2(M)), we define

Λb(f) =
∑
k∈Z

dkb · dkf.

If b ∈ BBBd
p(R,M), then Λb ∈ Lp(B(L2(R))⊗M) and

‖Λb‖Lp(B(L2(R))⊗M) .d,p ‖b‖BBBdp(R,M).
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Proof. We write Λb as follows:

Λb(f) =
∑
k∈Z

dkb · dkf

=
∑
k∈Z

( ∑
I∈Dk−1

d−1∑
i=1
〈hiI , b〉hiI

)( ∑
J∈Dk−1

d−1∑
j=1
〈hjJ , f〉h

j
J

)

=
∑
k∈Z

∑
I∈Dk−1

(
d−1∑
i=1
〈hiI , b〉hiI

)(
d−1∑
j=1
〈hjI , f〉h

j
I

)

=
∑
k∈Z

∑
I∈Dk−1

( ∑
i+j=d

〈hiI , b〉〈h
j
I , f〉

1I

|I|
+

d−1∑
l=1

∑
i+j=l

〈hiI , b〉〈h
j
I , f〉

hlI
|I|1/2

)

=
∑
k∈Z

∑
I∈Dk−1

( ∑
i+j=d

〈b∗, hd−iI 〉〈h
j
I , f〉

1I

|I|
+

d−1∑
l=1

∑
i+j=l

〈hiI , b〉〈h
j
I , f〉

hlI
|I|1/2

)

= (πb∗)∗(f) + Λ̃b(f),

(5.1.1)

where we have used (1.7.4), and where

Λ̃b(f) :=
∑
k∈Z

∑
I∈Dk−1

d−1∑
l=1

∑
i+j=l

〈hiI , b〉〈h
j
I , f〉

hlI
|I|1/2

.

By Theorem II.2, we know

‖(πb∗)∗‖Lp(B(L2(R))⊗M) ≈d,p ‖b‖BBBdp(R,M). (5.1.2)

It remains to estimate ‖Λ̃b‖Lp(B(L2(R))⊗M). We represent it into the matrix form. Note
that for any S, T ∈ D, 1 ≤ s, t ≤ d− 1, and x, y ∈ L2(M),

〈hsS ⊗ x, Λ̃b(htT ⊗ y)〉 =

〈x, |S|−1/2〈hs−tS , b〉y〉, if S = T and s 6= t;
0, otherwise.

This yields that Λ̃b is a block diagonal matrix with respect to the basis {hiI}I∈D,1≤i≤d−1.
(If s − t < 0, replace s − t with s − t + d, and still denote it by s − t.) For any I ∈ D,
1 ≤ s 6= t ≤ d− 1, denote |I|−1/2〈hs−tI , b〉 by aIs−t, and define aI0 = 0. Hence one has

‖Λ̃b‖pLp(B(L2(R))⊗M) =
∑
I∈D

∥∥∥∥∥
(
aIs−t

)
1≤s,t≤d−1

∥∥∥∥∥
p

Lp(Md−1⊗M)
,

where Md−1 is equipped with the usual trace. Let

BI =



aI0 aId−1 · · · aI2 aI1
aI1 aI0 aId−1 · · · aI2
... . . . . . . . . . ...

aId−2 · · · aI1 aI0 aId−1
aId−1 · · · aI2 aI1 aI0

 =


aI1(

aIs−t

)
1≤s,t≤d−1

...

aId−1
aId−1 · · · aI1 aI0

 .
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By Lemma 4.1.7, we have∥∥∥∥∥
(
aIs−t

)
1≤s,t≤d−1

∥∥∥∥∥
Lp(Md−1⊗M)

≤ ‖BI‖Lp(Md⊗M),

which implies
‖Λ̃b‖pLp(B(L2(R))⊗M) ≤

∑
I∈D
‖BI‖pLp(Md⊗M).

Note that we can write BI as

BI = aI1A+ aI2A
2 + · · ·+ aId−1A

d−1,

where
A = e1,d +

d−1∑
j=1

ej+1,j.

Using the triangle inequality, one has

‖Λ̃b‖pLp(B(L2(R))⊗M) ≤
∑
I∈D
‖aI1A+ aI2A

2 + · · ·+ aId−1A
d−1‖pLp(Md⊗M)

.d,p

∑
I∈D

d−1∑
i=1
‖aIiAi‖

p
Lp(Md⊗M) ≤

∑
I∈D

d−1∑
i=1
‖aIi ‖

p
Lp(M)‖A‖

p
Sp(Md)

.d,p

∑
I∈D

d−1∑
i=1
‖aIi ‖

p
Lp(M) =

∑
I∈D

d−1∑
i=1

(
‖〈hiI , b〉‖Lp(M)

|I|1/2

)p
= ‖b‖pBBBdp(R,M).

Combining this with (5.1.2), we obtain the desired result.

Remark 5.1.2. Lemma 5.1.1 also holds for 0 < p < 1 with the same proof, and we leave
the details to the interested reader.

In what follows, we need to use the boundedness of the triangular projection on Schat-
ten class. The triangular projection is defined as follows

P : B(`2) −→ B(`2)
(mij)i,j 7−→ (δi>j ·mij)i,j,

where δi>j = 1 if i > j, and δi>j = 0 if i ≤ j. It is well-known that P is bounded from
Sp(`2) to Sp(`2) when 1 < p <∞. We refer to [33].

Then for 1 < p < ∞, we can define P ⊗ IdLp(M) on the algebraic tensor product
Sp(`2)⊗Lp(M). The next lemma is well-known, and it also follows from Corollary B.1.3.

Lemma 5.1.3. Let 1 < p < ∞. Then P ⊗ IdLp(M) extends to a bounded map on
Lp(B(`2)⊗M). Moreover,

‖P ⊗ IdLp(M)‖Lp(B(`2)⊗M)→Lp(B(`2)⊗M) . max{p′, p}.

Before proving Theorem II.6, we give the following proposition, which concerns the
p-Schatten class of operator-valued commutators involving martingale paraproducts and
the pointwise multiplication operator Mb.
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Proposition 5.1.4. Let 1 < p <∞. If a ∈ BMOd(R) and b ∈ BBBd
p(R,M), then [πa,Mb] ∈

Lp(B(L2(R))⊗M) and

‖[πa,Mb]‖Lp(B(L2(R))⊗M) .d,p ‖a‖BMOd(R)‖b‖BBBdp(R,M).

Proof. Let
Rb(f) =

∑
k∈Z

bk−1 · dkf, ∀f ∈ L2(R, L2(M)). (5.1.3)

Note that for b, f ∈ L2(R, L2(M)), Mb(f) = πb(f) + Λb(f) +Rb(f). Thus

[πa,Mb] = [πa, πb] + [πa, Λb] + [πa, Rb].

We first estimate ‖[πa, Rb]‖Lp(B(L2(R))⊗M). For any f ∈ L2(R, L2(M)),

[πa, Rb](f) = πa(Rb(f))−Rb(πa(f))

=
∑
k∈Z

dka · Ek−1

(∑
j∈Z

bj−1 · djf
)
−
∑
k∈Z

bk−1 · dk
(∑
j∈Z

dja · fj−1

)

=
∑
k∈Z

dka ·
( ∑
j≤k−1

bj−1 · djf
)
−
∑
k∈Z

bk−1 · dka · fk−1

=
∑
k∈Z

dka ·
( ∑
j≤k−1

bj−1 · djf − bk−1 · fk−1

)

= −
∑
k∈Z

dka ·
( ∑
j≤k−1

djb · djf
)
−
∑
k∈Z

dka ·
( ∑
j≤k−1

djb · fj−1

)

= −
∑
k∈Z

dka ·
( ∑
j≤k−1

djb · djf
)
− πa(πb(f))

=: −Ψa,b(f)− πa(πb(f)).

Thus
[πa, Rb] = −Ψa,b − πaπb. (5.1.4)

From Theorem II.2, we know that

‖πb‖Lp(B(L2(R))⊗M) .d,p ‖b‖BBBdp(R,M).

Since πa is bounded on L2(R, L2(M)), one has

‖πaπb‖Lp(B(L2(R))⊗M) .d,p ‖a‖BMOd(R)‖b‖BBBdp(R,M). (5.1.5)

To deal with Ψa,b, let Qn =
{

(S, s) : S ∈ Dn, 1 ≤ s ≤ d− 1
}
and

Q := · · · Q−2 ∪Q−1 ∪Q0 ∪Q1 ∪Q2 · · · ,

with such above order. Note that L2(R, L2(M)) ∼= `2(Q, L2(M)). Besides, we denote by

[Ψa,b] :=
(

(Ψa,b)(S,s),(T,t)

)
(S,s),(T,t)∈Q
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the matrix form of Ψa,b with respect to the basis (hsS)(S,s)∈Q, where (Ψa,b)(S,s),(T,t) =
〈hsS, Ψa,b(htT )〉. Analogously, let

[πaΛb] :=
(

(πaΛb)(S,s),(T,t)

)
(S,s),(T,t)∈Q

be the matrix form of πaΛb.
Our aim is to prove that

[Ψa,b] = (P ⊗ IdLp(M))([πaΛb]). (5.1.6)

On the one hand, note that

Ψa,b(f) =
∑
k∈Z

dka ·
(
Ek−1

(∑
j∈Z

djb · djf
)
− Ek−1

(∑
j≥k

djb · djf
))

=
∑
k∈Z

dka ·
(
Ek−1(Λb(f))− Ek−1

(∑
j≥k

djb · djf
))

= πa(Λb(f))−
∑
k∈Z

dka · Ek−1

(∑
j≥k

djb · djf
)
.

(5.1.7)

Suppose that S ∈ Dm, T ∈ Dn, and m > n. For any 1 ≤ s, t ≤ d − 1, note that
dm+1h

s
S = hsS and dn+1h

t
T = htT , hence

〈hsS, Ψa,b(htT )〉 − 〈hsS, πa(Λb(htT ))〉 = −
〈
hsS,

∑
k∈Z

dka · Ek−1

(∑
j≥k

djb · djhtT

)〉

= −
〈
dm+1h

s
S,

∑
k≤n+1

dka · Ek−1

(
dn+1b · dn+1h

t
T

)〉

= −
〈
hsS, dm+1

( ∑
k≤n+1

dka · Ek−1

(
dn+1b · htT

))〉
= 〈hsS, 0〉 = 0.

This implies that when S ∈ Dm, T ∈ Dn, and m > n

(Ψa,b)(S,s),(T,t) = (πaΛb)(S,s),(T,t). (5.1.8)

On the other hand,

Ψa,b(f) =
∑
k∈Z

∑
I∈Dk−1

d−1∑
i=1
〈hiI , a〉hiI ·

( ∑
j≤k−1

∑
L∈Dj−1

d−1∑
l=1
〈hlL, b〉hlL ·

∑
Q∈Dj−1

d−1∑
q=1
〈hqQ, f〉h

q
Q

)

=
∑
k∈Z

∑
I∈Dk−1

d−1∑
i=1
〈hiI , a〉hiI ·

( ∑
j≤k−1

∑
L∈Dj−1

d−1∑
l=1

d−1∑
q=1
〈hlL, b〉〈h

q
L, f〉h

l+q
L

)

=
∑
I∈D

d−1∑
i=1
〈hiI , a〉 ·

(∑
I$L

d−1∑
l=1

d−1∑
q=1
〈hlL, b〉〈h

q
L, f〉hiIh

l+q
L

)

=
∑
I∈D

d−1∑
i=1
〈hiI , a〉 ·

(∑
I$L

d−1∑
l=1

d−1∑
q=1
〈hlL, b〉〈h

q
L, f〉

〈
1I

|I|
, hl+qL

〉
hiI

)
,
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where the last equality follows from

hiIh
l+q
L = hiI(1I · h

l+q
L ) =

〈
1I

|I|
, hl+qL

〉
hiI , ∀I $ L.

This implies that

(Ψa,b)(S,s),(T,t) =


〈hsS, a〉

d−1∑
l=1
〈hlT , b〉

〈
1S

|S| , h
l+t
T

〉
= (πaΛb)(S,s),(T,t), if S $ T ;

0, otherwise.
(5.1.9)

Hence from (5.1.8) and (5.1.9), we conclude (5.1.6).
From Lemma 5.1.1, we know that

‖Λb‖Lp(B(L2(R))⊗M) .d,p ‖b‖BBBdp(R,M).

Hence from (5.1.6) and Lemma 5.1.3 one has

‖Ψa,b‖Lp(B(L2(R))⊗M) = ‖[Ψa,b]‖Lp(B(`2(Q))⊗M)

= ‖(P ⊗ IdLp(M))([πaΛb])‖Lp(B(`2(Q))⊗M)

.p ‖[πaΛb]‖Lp(B(`2(Q))⊗M)

= ‖[πaΛb]‖Lp(B(L2(R))⊗M) .d,p ‖a‖BMOd(R)‖b‖BBBdp(R,M).

Combining the preceding inequalities, we arrive at

‖[πa, Rb]‖Lp(B(L2(R))⊗M) .d,p ‖a‖BMOd(R)‖b‖BBBdp(R,M).

Therefore, by the triangle inequality we deduce that

‖[πa,Mb]‖Lp(B(L2(R))⊗M) ≤ ‖[πa, πb]‖Lp(B(L2(R))⊗M) + ‖[πa, Λb]‖Lp(B(L2(R))⊗M)

+ ‖[πa, Rb]‖Lp(B(L2(R))⊗M)

.d,p ‖a‖BMOd(R)‖b‖BBBdp(R,M),

as desired.

Corollary 5.1.5. Let 1 < p <∞. If a ∈ BMOd(R) and b ∈ BBBd
p(R,M), then [π∗a,Mb] ∈

Lp(B(L2(R))⊗M) and

‖[π∗a,Mb]‖Lp(B(L2(R))⊗M) .d,p ‖a‖BMOd(R)‖b‖BBBdp(R,M).

Proof. It is easy to verify that

[π∗a,Mb]∗ = −[πa,Mb∗ ].

By Proposition 5.1.4 we deduce that

‖[π∗a,Mb]‖Lp(B(L2(R))⊗M) = ‖[πa,Mb∗ ]‖Lp(B(L2(R))⊗M) .d,p ‖a‖BMOd(R)‖b‖BBBdp(R,M).
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5.1.2 Hytönen’s dyadic representation
Now we introduce the dyadic system on Rn. Recall that the standard system of dyadic

cubes is
D0 = {2−k([0, 1)n + q) : k ∈ Z, q ∈ Zn}.

Let D0
k = {2−k([0, 1)n + q) : q ∈ Zn} for any k ∈ Z. Define `(I) := 2−k and |I| := 2−nk if

I ∈ D0
k. Let ω = (ωj)j∈Z ∈ ({0, 1}n)Z and define

I+̇ω = I +
∑

j:2−j<`(I)
2−jωj. (5.1.10)

Note that by (5.1.10), I ∩ I+̇ω 6= ∅ unless some coordinate of ∑j:2−j<`(I) 2−jωj is exactly
1. Then set

Dω = {I+̇ω : I ∈ D0},
which are obtained by translating the standard system. Indeed, in particular, if ω =
(ωj)j∈Z ∈ ({0, 1}n)Z such that ∃j0 ∈ Z, ∀j ≤ j0, ωj = 0, then

Dω =
{
I +

∑
j

2−jωj : I ∈ D0
}
.

See [39] for more details on Dω.
Let Dωk be the family of all dyadic cubes with volume 2−nk. For any I ∈ Dω, let Dω(I)

be the collection of dyadic cubes in Dω contained in I, and Dωk (I) be the intersection of
Dωk and Dω(I) for any k ∈ Z. In addition, we assign to the parameter set ({0, 1}n)Z the
natural probability measure, that is the infinite tensor product of the uniform probability
measure ∑

ω∈{0,1}n
δω
2n . Here δω is the Dirac measure. Denote by Eω the expectation on

({0, 1}n)Z.
For any given cube I = I1×· · ·×In ∈ Dω, letH0

Ii
:= |Ii|−1/2

1Ii andH1
Ii

:= |Ii|−1/2(1Ii`−
1Iir), where 1Ii` and 1Iir are the left and right halves of Ii for 1 ≤ i ≤ n. For any
η ∈ {0, 1}n\{0}, we denote by Hη

I the function on the cube I = I1× · · · × In which is the
product of the one-variable functions:

Hη
I (x) = H

(η1,··· ,ηn)
I1×···×In (x1, · · · , xn) :=

n∏
i=1

Hηi
Ii

(xi).

Hence {Hη
I }I∈Dω ,η∈{0,1}n\{0} form an orthonormal basis of L2(Rn).

Let i, j ∈ N∪{0}. For a fixed dyadic system Dω, the dyadic shift with parameters i, j
is an operator of the form

Sijω f =
∑

K∈Dω
AijKf, AijKf =

∑
I,J∈Dω ;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η∈{0,1}n\{0}

aξηIJK〈H
ξ
I , f〉H

η
J ,

with coefficients aξηIJK satisfying

|aξηIJK | ≤

√
|I||J |
|K|

.
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The map Si,jω : L2(Rn) → L2(Rn) is bounded with norm at most one. Moreover, by
[40, Proposition 5.1], we see that Sijω is of weak type (1, 1) with norm O(i). Hence, by
interpolation and duality, one has for 1 < p <∞

‖Sijω ‖Lp(Rn)→Lp(Rn) .n,p i+ j.

We refer the reader to [40] and [41] for more information.
Recall that in this thesis, T : L2(Rn) → L2(Rn) is always assumed to be bounded

and its kernel satisfies the estimates (II.3). The following is the dyadic representation of
singular integral operators discovered by Hytönen in [40] and [41] (see [41, Theorem 3.3]).

Theorem 5.1.6. Let T be a bounded singular integral operator. Then T has a dyadic
expansion, say for f, g ∈ L2(Rn),

〈g, Tf〉 = C1Eω
∞∑
i,j=0

max{i,j}>0

2−max{i,j}α/2〈g, Sijω f〉+ C2Eω〈g, S00
ω f〉

+ Eω〈g, πωT1f〉+ Eω〈g, (πωT ∗1)∗f〉,
(5.1.11)

where Sijω is the dyadic shift of parameters (i, j) on the dyadic system Dω, πωb is the
dyadic martingale paraproduct on the dyadic system Dω associated with the BMO-function
b ∈ {T1, T ∗1}, and C1, C2 are positive constants.

Remark 5.1.7. Note that Sijω is always contractive on L2(Rn, L2(M)) for all w and i, j.
Besides, the assumption that T1 ∈ BMO(Rn) and T ∗1 ∈ BMO(Rn) also implies that
πωT1 and (πωT ∗1)∗ are still bounded on L2(Rn, L2(M)). This yields that T is bounded on
L2(Rn, L2(M)), and (5.1.11) also holds for any f, g ∈ L2(Rn, L2(M)).

The dyadic system Dω on Rn can be regarded as the 2n-adic system by our definition
of d-adic martingales (see Subsection 1.7). So we can define the martingale Besov space
BBBω,2n
p (Rn,M) on Rn by virtue of Hη

I similarly as in Definition 1.7.2. More precisely,
BBBω,2n
p (Rn,M) (0 < p <∞) associated with semicommutative dyadic martingale on Rn is

the completion of the set consisting of all b ∈ S(L∞(Rn)⊗M) such that

‖b‖
BBBω,2

n
p (Rn,M) :=

( ∑
I∈Dω

∑
η∈{0,1}n\{0}

(
‖〈Hη

I , b〉‖Lp(M)

|I|1/2

)p)1/p

<∞. (5.1.12)

In addition, Theorem II.2, Lemma 5.1.1, Proposition 5.1.4 and Proposition 5.1.5 also
hold for the dyadic system on Rn with d = 2n since our proof only depends on the
martingale structure and martingale differences, and does not depend on the dimension
of the Euclidean space.

The following lemma shows that ‖b‖
BBBω,2

n
p (Rn,M) can be dominated by ‖b‖BBBp(Rn,Lp(M)).

Lemma 5.1.8. Let 1 ≤ p < ∞. If b ∈ BBBp(Rn, Lp(M)), then b ∈ BBBω,2n
p (Rn,M) and

‖b‖
BBBω,2

n
p (Rn,M) .n,p ‖b‖BBBp(Rn,Lp(M)).
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Proof. Without loss of generality, assume ω = 0. For any given J ∈ D0 and η ∈
{0, 1}n\{0},

‖〈Hη
J , b〉‖Lp(M)

|J |1/2
= 1
|J |1/2

∥∥∥∥∥
〈
Hη
J , b−

〈
1J

|J |
, b

〉〉∥∥∥∥∥
Lp(M)

≤ 1
|J |

∫
J

∥∥∥∥∥b(x)−
〈
1J

|J |
, b

〉∥∥∥∥∥
Lp(M)

dx

≤ 1
|J |2

∫
J

∫
J
‖b(x)− b(y)‖Lp(M)dxdy.

Given t ∈ Z, I ∈ D0
t and η ∈ {0, 1}n\{0}, by the Hölder inequality, one has

∑
J∈D0(I)

‖〈Hη
J , b〉‖

p
Lp(M)

|J |p/2
≤

∑
J∈D0(I)

1
|J |2

∫
J

∫
J
‖b(x)− b(y)‖pLp(M)dxdy

=
∞∑
s=t

∑
J∈D0

s(I)

1
(2n(t−s)|I|)2

∫
J

∫
J
‖b(x)− b(y)‖pLp(M)dxdy

= 1
|I|2

∫
Rn

∫
Rn
KI(x, y)‖b(x)− b(y)‖pLp(M)dxdy,

where
KI(x, y) =

∞∑
s=t

∑
J∈D0

s(I)
22n(s−t)

1J(x)1J(y).

Clearly, if x /∈ I or y /∈ I, then KI(x, y) = 0. On the other hand, suppose that x, y ∈ I,
and |x− y| >

√
n`(J) for some J ∈ D0

s(I). Then ∃1 ≤ k ≤ n such that |xk − yk| > `(J),
where xk is the k-th coordinate of x. We then deduce that 1J(x)1J(y) = 0. Hence

KI(x, y) ≤ 1I(x)1I(y)
t+blog2(

√
n`(I)/|x−y|)c∑
s=t

22n(s−t) ≤ (4n)n
4n − 1

|I|2

|x− y|2n
1I(x)1I(y),

where b·c is the floor function.
Therefore, for a given t ∈ Z, we sum up all I ∈ D0

t , and obtain

∑
I∈D0

t

∑
J∈D0(I)

∑
η

‖〈Hη
J , b〉‖

p
Lp(M)

|J |p/2
≤ 2p(4n)n(2n − 1)

4n − 1

∫
Rn

∫
Rn

‖b(x)− b(y)‖pLp(M)

|x− y|2n
dxdy.

Finally letting t→ −∞, we have

‖b‖p
BBB0,2n
p (Rn,M)

.n,p ‖b‖pBBBp(Rn,Lp(M)).

5.1.3 Proof of Theorem II.6
The following two lemmas will also be needed for the proof of Theorem II.6. Before

formulating them, we introduce some definitions. Let (ei)i∈N be the standard orthonormal
basis on `2. For any A ∈ Lp(B(`2)⊗M), denote by Ai,j the (i, j)-th entry defined as

Ai,j = 〈ei, Aej〉 ∈ Lp(M).
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Lemma 5.1.9. Suppose that (Aγ)γ∈Γ is a net of operators in Lp(B(`2)⊗M) (1 ≤ p <∞).
Let A ∈ Lp(B(`2)⊗M). If for any i, j ∈ N and x ∈ Lp′(M)

lim
γ
τ

((
(Aγ)i,j − Ai,j

)
x

)
= 0,

then
‖A‖Lp(B(`2)⊗M) ≤ sup

γ
‖Aγ‖Lp(B(`2)⊗M).

Proof. Note that for any projection p ∈ B(`2) with finite rank, one has for any B ∈
Lp′(B(`2)⊗M)

Tr⊗ τ((p⊗ 1M)A(p⊗ 1M)B) = lim
γ

Tr⊗ τ((p⊗ 1M)Aγ(p⊗ 1M)B).

By duality, this implies that

‖(p⊗ 1M)A(p⊗ 1M)‖Lp(B(`2)⊗M) ≤ sup
γ
‖(p⊗ 1M)Aγ(p⊗ 1M)‖Lp(B(`2)⊗M).

Therefore, we have

‖A‖Lp(B(`2)⊗M) = sup
p2=p=p∗
finite rank

‖(p⊗ 1M)A(p⊗ 1M)‖Lp(B(`2)⊗M)

≤ sup
p2=p=p∗
finite rank

sup
γ
‖(p⊗ 1M)Aγ(p⊗ 1M)‖Lp(B(`2)⊗M)

≤ sup
γ
‖Aγ‖Lp(B(`2)⊗M),

as desired.

Let T ∈ B(L2(Rn)). Then T⊗IdL2(M) extends to a bounded operator on L2(Rn, L2(M)).
We still denote it by T for simplicity. Thus by virtue of continuity and linearity, T satisfies
the following properties: for any f ∈ S(L∞(Rn)⊗M) and x ∈M

T (f)x = T (fx) and τ(T (fx)) = T (τ(fx)). (5.1.13)

Lemma 5.1.10. Suppose that (Tγ)γ∈Γ is a bounded net of operators in B(L2(Rn)). As-
sume that (Tγ)γ∈Γ converges to T ∈ B(L2(Rn)) with respect to the weak operator topology.
If 2 ≤ p <∞ and b ∈ Lp(Rn, Lp(M)), then

‖CT,b‖Lp(B(L2(Rn))⊗M) ≤ sup
γ
‖CTγ ,b‖Lp(B(L2(Rn))⊗M).

Proof. First we show that for any finite cubes I, J ⊂ Rn and x ∈ Lp′(M), one has

lim
γ
τ

(〈
1I , CTγ ,b(1J)

〉
x

)
= τ

(〈
1I , CT,b(1J)

〉
x

)
.

Note that by (5.1.13)

τ

(〈
1I , CTγ ,b(1J)

〉
x

)
= τ

(〈
1I , Tγ(b1J)− bTγ(1J)

〉
x

)
= τ

(〈
1I , Tγ(bx1J)

〉)
− τ

(〈
x∗b∗1J , Tγ(1J)

〉)
=
〈
1I , Tγ(τ(bx)1J)

〉
−
〈
τ(x∗b∗)1J , Tγ(1J)

〉
.

86



5.1. PROOF OF THEOREM II.6

This implies that

lim
γ
τ

(〈
1I , CTγ ,b(1J)

〉
x

)
=
〈
1I , T (τ(bx)1J)

〉
−
〈
τ(x∗b∗)1J , T (1J)

〉
= τ

(〈
1I , CT,b(1J)

〉
x

)
.

Hence, the desired result follows from Lemma 5.1.9.

The remainder of the section is devoted to the proof of Theorem II.6.

Proof of Theorem II.6. From Proposition 5.1.4, Corollary 5.1.5 and Lemma 5.1.8, we have

‖[πωT1,Mb]‖Lp(B(L2(Rn))⊗M) .n,p ‖T1‖BMO(Rn)‖b‖BBBp(Rn,Lp(M))

and
‖[(πωT ∗1)∗,Mb]‖Lp(B(L2(Rn))⊗M) .n,p ‖T ∗1‖BMO(Rn)‖b‖BBBp(Rn,Lp(M)).

Hence by Theorem 5.1.6, it remains to estimate ‖[Sijω ,Mb]‖Lp(B(L2(Rn))⊗M) for any i, j ∈
N ∪ {0}. By the triangle inequality

‖[Sijω ,Mb]‖Lp(B(L2(Rn))⊗M) ≤ ‖[Sijω , πb]‖Lp(B(L2(Rn))⊗M) + ‖[Sijω , Λb]‖Lp(B(L2(Rn))⊗M)

+ ‖[Sijω , Rb]‖Lp(B(L2(Rn))⊗M).

Here the operators πb, Λb and Rb are associated with the dyadic system on Dω.
From Theorem II.2 and Lemma 5.1.1, we know that

‖πb‖Lp(B(L2(Rn))⊗M) .n,p ‖b‖BBBω,2np (Rn,M), ‖Λb‖Lp(B(L2(Rn))⊗M) .n,p ‖b‖BBBω,2np (Rn,M).

Meanwhile, recall that Sijω ∈ B(L2(Rn, L2(M))) is with norm at most one. Thus, using
Lemma 5.1.8, one gets

‖[Sijω , πb]‖Lp(B(L2(Rn))⊗M) . ‖Sijω ‖‖πb‖Lp(B(L2(Rn))⊗M))

.n,p ‖b‖BBBω,2np (Rn,M) .n,p ‖b‖BBBp(Rn,Lp(M)).

Similarly,
‖[Sijω , Λb]‖Lp(B(L2(Rn))⊗M) .n,p ‖b‖BBBp(Rn,Lp(M)).

For any i, j ∈ N ∪ {0}, we will show that ‖[Sijω , Rb]‖Lp(B(L2(Rn))⊗M) increases with
polynomial growth with respect to i and j uniformly on ω. Then from Theorem 5.1.6 and
the triangle inequality, the desired result will follow.

Now we begin to estimate ‖[Sijω , Rb]‖Lp(B(L2(Rn))⊗M). Without loss of generality, we
assume ω = 0. Let Φ = [Sij0 , Rb]. Then

Φ(f) =
∑
K∈D0

∑
I,J∈D0;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η∈{0,1}n\{0}

aξηIJK〈H
ξ
I , Rb(f)〉Hη

J −
∑
k∈Z

bk−1dk(Sij0 (f)).
(5.1.14)

87



CHAPTER 5. SCHATTEN CLASS AND BOUNDEDNESS OF
OPERATOR-VALUED COMMUTATORS

Note that for any s ∈ Z and ξ ∈ {0, 1}n\{0}, if I ∈ D0
s , then ds+1H

ξ
I = Hξ

I . Hence, for
any I ∈ D0

k,

〈Hξ
I , Rb(f)〉 =

〈
Hξ
I ,
∑
l∈Z

bl−1dlf

〉
=
〈
dk+1H

ξ
I ,
∑
l∈Z

bl−1dlf

〉

=
〈
Hξ
I , dk+1

(∑
l∈Z

bl−1dlf

)〉
= 〈Hξ

I , bkdk+1f〉

= 〈Hξ
I , bk1Idk+1f〉 =

〈
Hξ
I ,

〈
1I

|I|
, b

〉
1Idk+1f

〉

=
〈
1I

|I|
, b

〉
〈Hξ

I , dk+1f〉 =
〈
1I

|I|
, b

〉
〈Hξ

I , f〉.

For the second term in (5.1.14), one has

∑
k∈Z

bk−1dk(Sij0 (f)) =
∑
k∈Z

bk−1dk

( ∑
K∈D0

∑
I,J∈D0;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η

aξηIJK〈H
ξ
I , f〉H

η
J

)

=
∑
k∈Z

∑
K∈D0

k−1−j

∑
I,J∈D0;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η

aξηIJKbk−1〈Hξ
I , f〉H

η
J

=
∑
k∈Z

∑
K∈D0

k−1−j

∑
I,J∈D0;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η

aξηIJK

〈
1J

|J |
, b

〉
〈Hξ

I , f〉H
η
J

=
∑
K∈D0

∑
I,J∈D0;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η

aξηIJK

〈
1J

|J |
, b

〉
〈Hξ

I , f〉H
η
J .

Therefore,

Φ(f) =
∑
K∈D0

∑
I,J∈D0;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η

aξηIJK

(〈
1I

|I|
, b

〉
−
〈
1J

|J |
, b

〉)
〈Hξ

I , f〉H
η
J =:

∑
K∈D0

BK(f).

(5.1.15)
Let bIJ = 〈1I|I| , b〉 − 〈

1J

|J | , b〉.
Since BK1 , BK2 have orthogonal ranges when K1 6= K2, we see

B∗K1BK2 = 0, ∀K1 6= K2, K1, K2 ∈ D0,

which yields Φ∗Φ = ∑
K∈D0

B∗KBK . Note that ∀f ∈ L2(Rn, L2(M)),

B∗KBK(f) =
∑

I,Ĩ,J∈D0;I,Ĩ,J⊆K
`(I)=`(Ĩ)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,ξ̃,η

aξηIJKa
ξ̃η

ĨJK
b∗ĨJbIJ〈H

ξ
I , f〉H

ξ̃

Ĩ
, (5.1.16)
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which implies that Φ∗Φ is a block diagonal matrix with blocks B∗KBK for all K ∈ D0.
Consequently, we have

‖Φ‖pLp(B(L2(Rn))⊗M) = ‖Φ∗Φ‖p/2Lp/2(B(L2(Rn))⊗M)

=
∑
k∈Z

∑
K∈D0

k

‖B∗KBK‖p/2Lp/2(B(L2(Rn))⊗M).
(5.1.17)

Now we fix k ∈ Z and K ∈ D0
k. For any Q̃, Q ⊆ K satisfying `(Q̃) = `(Q) = 2−i`(K) and

ζ̃ , ζ ∈ {0, 1}n\{0},

〈H ζ̃

Q̃
, B∗KBKH

ζ
Q〉 =

〈
H ζ̃

Q̃
,

∑
I,Ĩ,J∈D0;I,Ĩ,J⊆K
`(I)=`(Ĩ)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,ξ̃,η

aξηIJKa
ξ̃η

ĨJK
b∗ĨJbIJ〈H

ξ
I , H

ζ
Q〉H

ξ̃

Ĩ

〉

=
∑

J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

aζηQJKa
ζ̃η

Q̃JK
b∗Q̃JbQJ

:=
∑

J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

WK,J,η

(Q̃,ζ̃),(Q,ζ).

Denote by

[B∗KBK ] =
(

(B∗KBK)(Q̃,ζ̃),(Q,ζ)

)
Q̃,Q∈D0;Q̃,Q⊆K,`(Q̃)=`(Q)=2−i`(K),ζ̃,ζ∈{0,1}n\{0}

the matrix form of B∗KBK with respect to the basis {Hζ
Q}Q∈D0;Q⊆K,`(Q)=2−i`(K),ζ∈{0,1}n\{0},

where (B∗KBK)(Q̃,ζ̃),(Q,ζ) = 〈H ζ̃

Q̃
, B∗KBKH

ζ
Q〉. We also denote the 2in(2n − 1)× 2in(2n − 1)

matrix by

WK,J,η =
(
WK,J,η

(Q̃,ζ̃),(Q,ζ)

)
Q̃,Q∈D0;Q̃,Q⊆K,`(Q̃)=`(Q)=2−i`(K),ζ̃,ζ∈{0,1}n\{0}

. (5.1.18)

Then recalling that p ≥ 2 and using the triangle inequality, one has

‖B∗KBK‖Lp/2(B(L2(Rn))⊗M) = ‖[B∗KBK ]‖Lp/2(M2in(2n−1)⊗M)

≤
∑

J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∥∥∥WK,J,η
∥∥∥
Lp/2(M2in(2n−1)⊗M)

.

Hence by (5.1.17)

‖Φ‖pLp(B(L2(Rn))⊗M) ≤
∑
k∈Z

∑
K∈D0

k

( ∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∥∥∥WK,J,η
∥∥∥
Lp/2(M2in(2n−1)⊗M)

)p/2
. (5.1.19)

Define the 2in(2n − 1)× 2in(2n − 1) matrix V K,J,η, the only non-zero row of which is the

first row, as a row vector
(
aζηQJKbQJ

)
Q∈D0;Q⊆K,`(Q)=2−i`(K),ζ∈{0,1}n\{0}

. Thus

WK,J,η =
(
V K,J,η

)∗
V K,J,η. (5.1.20)
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Consequently,

∥∥∥WK,J,η
∥∥∥
Lp/2(M2in(2n−1)⊗M)

=
∥∥∥V K,J,η

(
V K,J,η

)∗∥∥∥
Lp/2(M2in(2n−1)⊗M)

=
∥∥∥∥∥ ∑

Q∈D0;Q⊆K
`(Q)=2−i`(K)
ζ∈{0,1}n\{0}

aζηQJKa
ζη
QJKbQJb

∗
QJ

∥∥∥∥∥
Lp/2(M)

≤
∑

Q∈D0;Q⊆K
`(Q)=2−i`(K)
ζ∈{0,1}n\{0}

∥∥∥∥∥aζηQJKaζηQJKbQJb∗QJ
∥∥∥∥∥
Lp/2(M)

=
∑

Q∈D0;Q⊆K
`(Q)=2−i`(K)
ζ∈{0,1}n\{0}

∥∥∥∥∥aζηQJKbQJ
∥∥∥∥∥

2

Lp(M)
.

(5.1.21)

Together with (5.1.19),

‖Φ‖pLp(B(L2(Rn))⊗M) ≤
∑
k∈Z

∑
K∈D0

k

( ∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∑
I∈D0;I⊆K
`(I)=2−i`(K)

∑
ξ

∥∥∥∥∥aξηIJKbIJ
∥∥∥∥∥

2

Lp(M)

)p/2
.

Note that |aξηIJK | ≤ 2−(i+j)n/2, then we estimate

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∑
I∈D0;I⊆K
`(I)=2−i`(K)

∑
ξ

∥∥∥∥∥aξηIJKbIJ
∥∥∥∥∥

2

Lp(M)
≤ (2n − 1)2

2(i+j)n

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
I∈D0;I⊆K
`(I)=2−i`(K)

‖bIJ‖2
Lp(M).

Since bIJ = bIK − bJK , by the triangle inequality and the Cauchy-Schwarz inequality, we
have

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∑
I∈D0;I⊆K
`(I)=2−i`(K)

∑
ξ

∥∥∥∥∥aξηIJKbIJ
∥∥∥∥∥

2

Lp(M)

≤ (2n − 1)2

2(i+j)n

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
I∈D0;I⊆K
`(I)=2−i`(K)

2(‖bIK‖2
Lp(M) + ‖bJK‖2

Lp(M))

= (2n − 1)2

2in−1

∑
I∈D0;I⊆K
`(I)=2−i`(K)

‖bIK‖2
Lp(M) + (2n − 1)2

2jn−1

∑
J∈D0;J⊆K
`(J)=2−j`(K)

‖bJK‖2
Lp(M).

(5.1.22)
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Note that bIK · 1I = (bk+i − bk) · 1I , and sum all I and J , one has

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∑
I∈D0;I⊆K
`(I)=2−i`(K)

∑
ξ

∥∥∥∥∥aξηIJKbIJ
∥∥∥∥∥

2

Lp(M)

≤ (2n − 1)22kn+1
(
‖(bk+i − bk)1K‖2

L2(Rn,Lp(M)) + ‖(bk+j − bk)1K‖2
L2(Rn,Lp(M))

)

≤ (2n − 1)221+2nk/p
(
i

k+i∑
l=k+1

‖dlb · 1K‖2
Lp(Rn,Lp(M)) + j

k+j∑
l=k+1

‖dlb · 1K‖2
Lp(Rn,Lp(M))

)
.

(5.1.23)
Hence using the convex inequality, we obtain

‖N‖pLp(B(L2(Rn))⊗M)

≤ (2n − 1)p2p
∑
k∈Z

∑
K∈D0

k

2nk
(
ip−1

k+i∑
l=k+1

‖dlb · 1K‖pLp(Rn,Lp(M)) + jp−1
k+j∑
l=k+1

‖dlb · 1K‖pLp(Rn,Lp(M))

)

= (2n − 1)p2p(ip + jp)
∑
k∈Z

2nk‖dkb‖pLp(Rn,Lp(M))

.n,p (ip + jp)‖b‖p
BBB0,2n
p (Rn,M)

≤ (ip + jp)‖b‖pBBBp(Rn,Lp(M)).

Since the above estimation is independent of the choose of ω, one has

‖[Sijω , Rb]‖Lp(B(L2(Rn))⊗M) .n,p (ip + jp)1/p‖b‖BBBp(Rn,Lp(M)),

which yields

‖[Sijω ,Mb]‖Lp(B(L2(Rn))⊗M) .n,p (ip + jp + 1)1/p‖b‖BBBp(Rn,Lp(M)).

Therefore by Lemma 5.1.10 and the triangle inequality,

‖[T,Mb]‖Lp(B(L2(Rn))⊗M)

=
∥∥∥∥∥
[
C1Eω

∞∑
i,j=0

max{i,j}>0

2−max{i,j}α/2Sijω + C2EωS00
ω + EωπωT1 + Eω(πωT ∗1)∗,Mb

]∥∥∥∥∥
Lp(B(L2(Rn))⊗M)

.
∞∑

i,j=0
2−max{i,j}α/2Eω‖[Sijω ,Mb]‖Lp(B(L2(Rn))⊗M) + Eω‖[πωT1 + (πωT ∗1)∗,Mb]‖Lp(B(L2(Rn))⊗M)

.n,p

(
1 + ‖T1‖BMO(Rn) + ‖T ∗1‖BMO(Rn)

)
‖b‖BBBp(Rn,Lp(M)).

This completes the proof of Theorem II.6.

5.1.4 Comparison between Theorem II.5 and Theorem II.6
From our proof of Theorem II.6, we see that when p ≥ 2 andM = C, one always has

‖[T,Mb]‖pSp(L2(Rn)) .n,p

∫
Rn

∫
Rn

|b(x)− b(y)|p
|x− y|2n

dxdy.

However, this does not contradict with Theorem II.5 for p ≤ n and n ≥ 2 due to the
following fact.
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Proposition 5.1.11. Let 0 < p ≤ n. Then b is constant if∫
Rn

∫
Rn

|b(x)− b(y)|p
|x− y|2n

dxdy <∞.

Proof. By changing the variables, we have∫
Rn

∫
Rn

|b(x)− b(y)|p
|x− y|2n

dxdy =
∫
Rn

‖b(x+ t)− b(x)‖pLp(Rn)

|t|2n
dt.

We proceed with the proof by contradiction. Assume that b is not constant. Then there
exists ϕ ∈ C∞c (Rn) such that b ∗ ϕ ∈ C∞(Rn) is not constant either. Since by the Young
inequality

‖ϕ ∗ b(x+ t)− ϕ ∗ b(x)‖pLp(Rn) ≤ ‖ϕ‖
p
L1(Rn)‖b(x+ t)− b(x)‖pLp(Rn),

we get ∫
Rn

‖ϕ ∗ b(x+ t)− ϕ ∗ b(x)‖pLp(Rn)

|t|2n
dt <∞.

Hence we can assume that b ∈ C∞(Rn), otherwise we replace b with b ∗ ϕ.
Since b is not constant, there exists x̃ = (x̃1, · · · , x̃n) ∈ Rn, such that ∇b(x̃) 6= 0. Let

U be a unitary matrix in Mn such that ∇b(x̃) · U = (|∇b(x̃)|, 0, · · · , 0). We substitute
b̃(y) := b(y · U) for b. So we can also assume that there exists x̃ ∈ Rn with ∇b(x̃) =
(M, 0, · · · , 0) and M > 0.

Since b ∈ C∞(Rn), ∃ δ > 0 such that ∀ |y − x̃| < 2δ with

|∇b(y)−∇b(x̃)| ≤ M

4 .

Thus for any |x− x̃| < δ and |t| < δ with |t1| > |t|
2 , by the mean value theorem,

|b(x+ t)− b(x)| = |∇b(x+ θ · t) · t| (0 < θ < 1)
≥ |∇b(x̃) · t| − |

(
∇b(x+ θ · t)−∇b(x̃)

)
· t|

≥M |t1| −
M |t|

4 ≥ M |t1|
2 .

This yields that
‖b(x+ t)− b(x)‖pLp(Rn) &n,p δ

nMp|t1|p.
Consequently, one has∫

Rn

‖b(x+ t)− b(x)‖pLp(Rn)

|t|2n
dt &n,p

∫
t∈Rn,|t|<δ

|t1|>
|t|
2

|t1|p

|t|2n
dt

&n,p

∫ δ

0

rp

r2n · r
n−1dr

=
∫ δ

0

1
rn+1−pdr =∞.

This leads to a contradiction.
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5.2 Proof of Theorem II.7
We will follow the same route as the argument for Theorem II.6. In particular, we

include theorems regarding the boundedness of commutators involving martingale para-
products and related operators. Via Hytönen’s dyadic martingale technique, we will derive
Theorem II.7.

From (1.4.2) we see that

‖b‖BMOd(R) = sup
I∈D

1
|I|1/2

(∑
J⊆I

d−1∑
i=1
|〈hiJ , b〉|2

)1/2

.

In [18], Chao and Peng showed that for 1 < p < ∞, πb is bounded from Lp(R) to Lp(R)
if and only if b ∈ BMOd(R). See the detailed proof in Theorem A.0.1 and Remark A.2.5
in Appendix A.

Recall that the operator Λb is introduced in Lemma 5.1.1.

Lemma 5.2.1. Let 1 < p <∞. If b ∈ BMOd(R), then Λb is bounded on Lp(R).

Proof. We use the same notation as that in Lemma 5.1.1, and the proof of this lemma is
also similar to that of Lemma 5.1.1. From (5.1.1), we write Λb as follows:

Λb(f) = (πb∗)∗(f) + Λ̃b(f), ∀f ∈ L2(R), (5.2.1)

where

Λ̃b(f) =
∑
k∈Z

∑
I∈Dk−1

d−1∑
l=1

∑
i+j=l

〈hiI , b〉〈h
j
I , f〉

hlI
|I|1/2

. (5.2.2)

It has been shown in [18] that

‖(πb∗)∗‖Lp(R)→Lp(R) = ‖πb∗‖Lp′ (R)→Lp′ (R) ≈d,p ‖b‖BMOd(R). (5.2.3)

It remains to estimate ‖Λ̃b‖Lp(R)→Lp(R).
At first, we show the boundedness of Λ̃b for p = 2. Since Λb is a block diagonal matrix

with respect to the basis {hiI}I∈D,1≤i≤d−1, one has

‖Λ̃b‖L2(R)→L2(R) = sup
I∈D

∥∥∥∥∥
(
aIs−t

)
1≤s,t≤d−1

∥∥∥∥∥
S∞(Md−1)

,

where aIs−t = |I|−1/2〈hs−tI , b〉, and aI0 = 0. We have
∥∥∥∥∥
(
aIs−t

)
1≤s,t≤d−1

∥∥∥∥∥
S∞(Md−1)

≤ ‖BI‖S∞(Md),

which implies
‖Λ̃b‖L2(R)→L2(R) ≤ sup

I∈D
‖BI‖S∞(Md),
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where BI is defined in (5.1.1). Thus by using the triangle inequality, one has

‖Λ̃b‖L2(R)→L2(R) ≤ sup
I∈D
‖aI1A+ aI2A

2 + · · ·+ aId−1A
d−1‖S∞(Md)

≤ sup
I∈D

d−1∑
i=1
‖aIiAi‖S∞(Md) ≤ sup

I∈D

d−1∑
i=1
|aIi |

= sup
I∈D

1
|I|1/2

d−1∑
i=1
|〈hiI , b〉| ≤ (d− 1)‖b‖BMOd(R).

(5.2.4)

From (5.2.3) and (5.2.4), we obtain that Λ̃b is bounded on L2(R).
Next, we prove that Λ̃b satisfies weak type (1,1). Assume f ∈ L1(R) and let λ > 0.

In the same way as in [70, Lemma 2.7], we have the Calderón-Zygmund decomposition
f = g + h with

1. ‖g‖L∞(R) ≤ dλ, ‖g‖L1(R) ≤ ‖f‖L1(R);

2. h = ∑
j
hj, where hj =

(
f −

〈
1Ij

|Ij | , f

〉)
1Ij = ∑

J⊆Ij

d−1∑
l=1
〈hlJ , f〉hlJ and {Ij} form a

sequence of disjoint d-adic intervals such that ∑
j
|Ij| ≤

‖f‖L1(R)
λ

.

We see that Λ̃b is of strong type (2,2). In particular, (5.2.4) implies that

|{|Λ̃b(g)| > λ/2}| ≤ 4(d− 1)‖b‖BMOd(R)
‖g‖2

L2(R)

λ2

≤ 4(d− 1)‖b‖BMOd(R)
‖g‖L∞(R)‖f‖L1(R)

λ2

≤ 4d(d− 1)‖b‖BMOd(R)
‖f‖L1(R)

λ
.

(5.2.5)

On the other hand, from (5.2.2) we deduce that suppΛ̃(hj) ⊆ Ij, and

|{|Λ̃b(h)| > λ/2}| ≤ | ∪j Ij| ≤
‖f‖L1(R)

λ
. (5.2.6)

Then from (5.2.5) and (5.2.6), we conclude that

|{|Λ̃b(f)| > λ}| ≤ |{|Λ̃b(g)| > λ/2}|+ |{|Λ̃b(h)| > λ/2}|

≤ (4d(d− 1)‖b‖BMOd(R) + 1)‖f‖L1(R)

λ
.

Hence Λ̃b is of weak type (1,1). Using interpolation and duality argument, we obtain that
Λ̃b is bounded on Lp(R) for 1 < p <∞.

Remark 5.2.2. There is another easy proof to show that Λb is bounded on Lp(R) when
1 < p 6= 2 <∞. By the duality between the d-adic martingale Hardy spaceHd

1 (R) (see the
definition below in (1.4.3)) and the d-adic martingale BMO space BMOd(R), we see that
if b ∈ BMOd(R), then Λb is bounded from Hd

1 (R) to L1(R). Using the boundedness of Λb
on L2(R) and by interpolation, we conclude that Λb is bounded on Lp(R) for 1 < p ≤ 2.
The boundedness of Λb on Lp(R) for 2 ≤ p <∞ follows from the duality.
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We now provide the following useful lemma so as to prove Proposition 5.2.4.

Lemma 5.2.3. Let 1 < p <∞, f ∈ Lp(R) and b ∈ BMOd(R). Then∥∥∥∥∥sup
k∈Z

∣∣∣Ek−1
(∑
j≥k

djb · djf
)∣∣∣∥∥∥∥∥

Lp(R)
.p ‖b‖BMOd(R)‖f‖Lp(R).

Proof. By the Hölder inequality, one has∣∣∣∣∣Ek−1

(∑
j≥k

djb · djf
)∣∣∣∣∣ = |Ek−1(b− bk−1)(f − fk−1)|

≤
(
Ek−1|b− bk−1|q

)1/q
·
(
Ek−1|f − fk−1|q

′)1/q′
,

where q = 2p
p−1 and 1

q
+ 1

q′
= 1. From the martingale John-Nirenberg inequality in Remark

1.3.11, we have
‖b‖BMOd(R) ≈q sup

k∈Z

∥∥∥Ek−1|b− bk−1|q
∥∥∥1/q

∞
. (5.2.7)

Hence by (5.2.7),∥∥∥∥∥sup
k∈Z

∣∣∣∣∣Ek−1

(∑
j≥k

djb · djf
)∣∣∣∣∣
∥∥∥∥∥
Lp(R)

≤
∥∥∥∥∥sup
k∈Z

(
Ek−1|b− bk−1|q

)1/q
· sup
k∈Z

(
Ek−1|f − fk−1|q

′)1/q′
∥∥∥∥∥
Lp(R)

.p ‖b‖BMOd(R) ·
∥∥∥∥∥sup
k∈Z

(
Ek−1|f − fk−1|q

′)1/q′
∥∥∥∥∥
Lp(R)

.

Note that |f |q′ ∈ Lp/q′(R) and p/q′ > 1, by the Doob maximal inequality,∥∥∥∥∥sup
k∈Z

(
Ek−1|f − fk−1|q

′)1/q′
∥∥∥∥∥
Lp(R)

.p

∥∥∥∥∥sup
k∈Z

(
Ek−1|f |q

′)1/q′
∥∥∥∥∥
Lp(Rn)

+
∥∥∥sup
k∈Z
|fk−1|

∥∥∥
Lp(R)

.p ‖f‖Lp(R).

Therefore ∥∥∥∥∥sup
k∈Z

∣∣∣∣∣Ek−1

(∑
j≥k

djb · djf
)∣∣∣∣∣
∥∥∥∥∥
Lp(R)

.p ‖b‖BMOd(R)‖f‖Lp(R),

as desired.

Before proving Theorem II.7, we give the following two propositions concerning the
boundedness of commutators involving martingale paraproducts.

Proposition 5.2.4. Let 1 < p < ∞. If a, b ∈ BMOd(R), then [πa,Mb] is bounded on
Lp(R) and

‖[πa,Mb]‖Lp(R)→Lp(R) .d,p ‖a‖BMOd(R)‖b‖BMOd(R).
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Proof. Recall that Rb is defined in (5.1.3). We will first focus on the estimate of the norm
‖[πa, Rb]‖Lp(R)→Lp(R). By (5.1.4) and (5.1.7), one has ∀f ∈ Lp(R)

[πa, Rb](f) = −πa(Λb(f)) +
∑
k∈Z

dka · Ek−1

(∑
j≥k

djb · djf
)
− πa(πb(f)).

Define
Va,b(f) =

∑
k∈Z

dka · Ek−1

(∑
j≥k

djb · djf
)
, ∀f ∈ Lp(R) (5.2.8)

and
Θb = πb + Λb. (5.2.9)

Then by the above calculations,

[πa, Rb] = −πaΘb + Va,b. (5.2.10)

By Lemma 5.2.1, one has

‖πaΘb‖Lp(R)→Lp(R) ≤ ‖πa‖Lp(Rn)→Lp(R)
(
‖πb‖Lp(R)→Lp(R) + ‖Λb‖Lp(R)→Lp(R)

)
.d,p ‖a‖BMOd(R)‖b‖BMOd(R).

(5.2.11)

For any f ∈ Lp(R) and g ∈ Lp′(R),

〈Va,b(f), g〉 =
∑
k∈Z

〈
dka · Ek−1

(∑
j≥k

djb · djf
)
, g

〉

=
∑
k∈Z

〈
dka, dkg · Ek−1

(∑
j≥k

djb · djf
)〉

=
〈
a,
∑
k∈Z

dkg · Ek−1

(∑
j≥k

djb · djf
)〉

.

To use duality, we need to estimate the following∥∥∥∥∥∑
k∈Z

dkg · Ek−1

(∑
j≥k

djb · djf
)∥∥∥∥∥

Hd
1 (R)

=
∥∥∥∥∥
(∑
k∈Z
|dkg|2

∣∣∣∣∣Ek−1

(∑
j≥k

djb · djf
)∣∣∣∣∣

2)1/2∥∥∥∥∥
L1(R)

≤
∥∥∥∥∥
(∑
k∈Z
|dkg|2

)1/2

· sup
k∈Z

∣∣∣∣∣Ek−1

(∑
j≥k

djb · djf
)∣∣∣∣∣
∥∥∥∥∥
L1(R)

≤ ‖S(g)‖Lp′ (R) ·
∥∥∥∥∥sup
k∈Z

∣∣∣∣∣Ek−1

(∑
j≥k

djb · djf
)∣∣∣∣∣
∥∥∥∥∥
Lp(R)

.p ‖b‖BMOd(R)‖g‖Lp′ (R)‖f‖Lp(R),

(5.2.12)
where the third inequality is from the Hölder inequality, and the fourth is from Lemma
5.2.3. Therefore

|〈Va,b(f), g〉| . ‖a‖BMOd(R)

∥∥∥∥∥∑
k∈Z

dkg · Ek−1

(∑
j≥k

djb · djf
)∥∥∥∥∥

Hd
1 (R)

.p ‖a‖BMOd(R)‖b‖BMOd(R)‖g‖Lp′ (R)‖f‖Lp(R).
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This implies that
‖Va,b‖Lp(R)→Lp(R) .p ‖a‖BMOd(R)‖b‖BMOd(R). (5.2.13)

From (5.2.11) and (5.2.13) we have

‖[πa, Rb]‖Lp(R)→Lp(R) .d,p ‖a‖BMOd(R)‖b‖BMOd(R).

Recall that
[πa,Mb] = [πa, πb] + [πa, Λb] + [πa, Rb].

Since πa is bounded on Lp(R), by the triangle inequality we deduce that

‖[πa,Mb]‖Lp(R)→Lp(R) .d,p ‖a‖BMOd(R)‖b‖BMOd(R).

This completes the proof.

Corollary 5.2.5. Let 1 < p <∞. If a, b ∈ BMOd(R), then [π∗a,Mb] is bounded on Lp(R)
and

‖[π∗a,Mb]‖Lp(R)→Lp(R) .d,p ‖a‖BMOd(R)‖b‖BMOd(R).

Proof. Recall that
[π∗a,Mb]∗ = −[πa,Mb∗ ].

By Proposition 5.2.4 we deduce that

‖[π∗a,Mb]‖Lp(R)→Lp(R) = ‖[πa,Mb∗ ]‖Lp′ (R)→Lp′ (R) .d,p ‖a‖BMOd(R)‖b‖BMOd(R).

We can define the martingale BMO space BMOω,2n(Rn) on Rn by virtue of Hη
I

similarly as in Definition 1.4.2. More precisely, BMOω,2n(Rn) associated with the dyadic
system Dω on Rn is the space consisting of all locally integrable functions b such that

‖b‖BMOω,2n (Rn) := sup
I∈Dω

1
|I|1/2

(∑
J⊆I

∑
η∈{0,1}n\{0}

|〈Hη
J , b〉|2

)1/2

<∞. (5.2.14)

Then Lemma 5.2.1, Proposition 5.2.4 and Corollary 5.2.5 also hold for the dyadic system
Dω. It is straightforward to verify that if b ∈ BMO(Rn), then b ∈ BMOω,2n(Rn) and

‖b‖BMOω,2n (Rn) ≤ ‖b‖BMO(Rn).

We come to the proof of Theorem II.7.

Proof of Theorem II.7. We use the same notation as that in the proof of Theorem II.6.
From Proposition 5.2.4 and Corollary 5.2.5, we have

‖[πωT1,Mb]‖Lp(Rn)→Lp(Rn) .n,p ‖T1‖BMO(Rn)‖b‖BMO(Rn)

and
‖[(πωT ∗1)∗,Mb]‖Lp(Rn)→Lp(Rn) .n,p ‖T ∗1‖BMO(Rn)‖b‖BMO(Rn).
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By Theorem 5.1.6, it suffices to estimate ‖[Sijω ,Mb]‖Lp(Rn)→Lp(Rn) for any i, j ∈ N ∪ {0}.
Note that by the triangle inequality

‖[Sijω ,Mb]‖Lp(Rn)→Lp(Rn)

≤ ‖[Sijω , πb]‖Lp(Rn)→Lp(Rn) + ‖[Sijω , Λb]‖Lp(Rn)→Lp(Rn) + ‖[Sijω , Rb]‖Lp(Rn)→Lp(Rn).

Here πb, Λb and Rb are with respect to the dyadic system Dω. From [18] and Lemma
5.2.1, we know that

‖πb‖Lp(Rn)→Lp(Rn) .n,p ‖b‖BMOω,2n (Rn), ‖Λb‖Lp(Rn)→Lp(Rn) .n,p ‖b‖BMOω,2n (Rn).

However, Sijω is bounded on Lp(Rn). Therefore one has

‖[Sijω , πb]‖Lp(Rn)→Lp(Rn) . ‖Sijω ‖Lp(Rn)→Lp(Rn)‖πb‖Lp(Rn)→Lp(Rn)

.n,p (i+ j)‖b‖BMOω,2n (Rn) .n,p (i+ j)‖b‖BMO(Rn).

Analogously, we have

‖[Sijω , Λb]‖Lp(Rn)→Lp(Rn) .n,p (i+ j)‖b‖BMO(Rn).

It remains to estimate ‖[Sijω , Rb]‖Lp(Rn)→Lp(Rn) for any i, j ∈ N ∪ {0}. We will show that
‖[Sijω , Rb]‖Lp(Rn)→Lp(Rn) increases with polynomial growth with respect to i and j uniformly
on ω. Then from Theorem 5.1.6 and the triangle inequality, the desired result will follow.

We first prove
‖[Sijω , Rb]‖L2(Rn)→L2(Rn) .n ‖b‖BMO(Rn). (5.2.15)

Without loss of generality, we can assume ω = 0. Let Φ = [Sij0 , Rb]. The form of Φ and
BK (K ∈ D0) have been given in (5.1.14) and (5.1.15) respectively. From (5.1.16) we
know Φ∗Φ is a block diagonal matrix with blocks B∗KBK for all K ∈ D0. Hence

‖Φ‖L2(Rn)→L2(Rn) = ‖Φ∗Φ‖1/2
L2(Rn)→L2(Rn) = sup

k∈Z
sup
K∈D0

k

‖B∗KBK‖1/2
L2(Rn)→L2(Rn). (5.2.16)

Now we fix k ∈ Z and K ∈ D0
k. We write B∗KBK in the matrix form [B∗KBK ] with respect

to the basis {Hζ
Q}, where Q ∈ D0, Q ⊆ K , `(Q) = 2−i`(K) and ζ ∈ {0, 1}n\{0}. Then

using the triangle inequality, one has

‖B∗KBK‖L2(Rn)→L2(Rn) = ‖[B∗KBK ]‖S∞(M2in(2n−1))

≤
∑

J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∥∥∥WK,J,η
∥∥∥
S∞(M2in(2n−1))

≤
∑

J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∥∥∥V K,J,η
(
V K,J,η

)∗∥∥∥
S∞(M2in(2n−1))

,

where WK,J,η, V K,J,η are defined in (5.1.18) and (5.1.20). Analogously to (5.1.21), we
deduce∥∥∥V K,J,η

(
V K,J,η

)∗∥∥∥
S∞(M2in(2n−1))

=
∣∣∣∣∣ ∑
Q∈D0;Q⊆K
`(Q)=2−i`(K)
ζ∈{0,1}n\{0}

aζηQJKa
ζη
QJKbQJbQJ

∣∣∣∣∣ =
∑

Q∈D0;Q⊆K
`(Q)=2−i`(K)
ζ∈{0,1}n\{0}

∣∣∣∣∣aζηQJKbQJ
∣∣∣∣∣
2

,
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where bIJ = 〈1I|I| , b〉 − 〈
1J

|J | , b〉 for any I, J ∈ D
0. This implies that

‖Φ‖L2(Rn)→L2(Rn) ≤ sup
k∈Z

sup
K∈D0

k

( ∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∑
I∈D0;I⊆K
`(I)=2−i`(K)

∑
ξ

∣∣∣∣∣aξηIJKbIJ
∣∣∣∣∣
2)1/2

.

Note that |aξηIJK | ≤ 2−(i+j)n/2, bIJ = bIK − bJK and bIK ·1I = (bk+i− bk) ·1I . Then by the
Cauchy-Schwarz inequality

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
η

∑
I∈D0;I⊆K
`(I)=2−i`(K)

∑
ξ

∣∣∣∣∣aξηIJKbIJ
∣∣∣∣∣
2

≤ (2n − 1)2

2(i+j)n

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
I∈D0;I⊆K
`(I)=2−i`(K)

|bIJ |2

≤ (2n − 1)2

2(i+j)n

∑
J∈D0;J⊆K
`(J)=2−j`(K)

∑
I∈D0;I⊆K
`(I)=2−i`(K)

2(|bIK |2 + |bJK |2)

= (2n − 1)2

2in−1

∑
I∈D0;I⊆K
`(I)=2−i`(K)

|bIK |2 + (2n − 1)2

2jn−1

∑
J∈D0;J⊆K
`(J)=2−j`(K)

|bJK |2

= (2n − 1)22kn+1
(
‖(bk+i − bk)1K‖2

L2(Rn) + ‖(bk+j − bk)1K‖2
L2(Rn)

)
.

(5.2.17)

We also notice that

‖(bk+i − bk)1K‖2
L2(Rn) =

∫
K
Ek(|bk+i(t)− bk(t)|2)dt ≤ |K|‖b‖2

BMO0,2n (Rn).

Hence
‖Φ‖L2(Rn)→L2(Rn) .n ‖b‖BMO0,2n (Rn) ≤ ‖b‖BMO(Rn). (5.2.18)

Now we prove that Φ is of weak type (1,1). Assume f ∈ L1(Rn) and let λ > 0. We let
AξηIJK = aξηIJKbIJ , then by (5.1.15)

Φ(f) =
∑
K∈D0

∑
I,J∈D0;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η

AξηIJK〈H
ξ
I , f〉H

η
J .

(5.2.19)

Note that if Ĩ is the parent of I, then∣∣∣∣∣
〈
1I

|I|
, b

〉
−
〈
1Ĩ

|Ĩ|
, b

〉∣∣∣∣∣ ≤ 1
|I|

∫
I

∣∣∣∣∣b(t)−
〈
1Ĩ

|Ĩ|
, b

〉∣∣∣∣∣dt
≤ 2n

|Ĩ|

∫
Ĩ

∣∣∣∣∣b(t)−
〈
1Ĩ

|Ĩ|
, b

〉∣∣∣∣∣dt
≤ 2n‖b‖BMO0,2n (Rn).
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Together with the triangle inequality, this implies that

|AξηIJK | = |a
ξη
IJK ||bIJ | ≤ |a

ξη
IJK ||bIK |+ |a

ξη
IJK ||bJK | ≤ 2n(i+ j)‖b‖BMO0,2n (Rn)|aξηIJK |.

Thus the operator Φ can be written as a multiple of Sij0 . Recall that Sij0 is also of weak
type (1,1), and hence for any λ > 0

|{|Φ(f)| > λ}| .n i(i+ j)‖b‖BMO0,2n (Rn)
‖f‖L1(Rn)

λ
.

Therefore using interpolation and duality, Φ = [Sij0 , Rb] is bounded on Lp(Rn). Since
the above estimation is independent of the choose of ω, one has

‖[Sijω , Rb]‖Lp(Rn)→Lp(Rn) .n,p (i+ j)2‖b‖BMO(Rn),

which yields
‖[Sijω ,Mb]‖Lp(Rn)→Lp(Rn) .n,p (i+ j + 1)2‖b‖BMO(Rn).

As a consequence,

‖[T,Mb]‖Lp(Rn)→Lp(Rn)

=
∥∥∥∥∥
[
C1Eω

∞∑
i,j=0

max{i,j}>0

2−max{i,j}α/2Sijω + C2EωS00
ω + EωπωT1 + Eω(πωT ∗1)∗,Mb

]∥∥∥∥∥
Lp(Rn)→Lp(Rn)

.
∞∑

i,j=0
2−max{i,j}α/2Eω‖[Sijω ,Mb]‖Lp(Rn)→Lp(Rn) + Eω‖[πωT1 + (πωT ∗1)∗,Mb]‖Lp(Rn)→Lp(Rn)

.n,p

(
1 + ‖T1‖BMO(Rn) + ‖T ∗1‖BMO(Rn)

)
‖b‖BMO(Rn).

This completes the proof.

5.3 Proof of Theorem II.8
We end this thesis with the proof of Theorem II.8. Denote by BMOd

M(R) the operator-
valued BMO space associated with the d-adic martingale consisting of all M-valued
functions b that are Bochner integrable on any d-adic interval such that

‖b‖BMOdM(R) := sup
I∈D

(
1

m(I)

∫
I

∥∥∥∥∥b−
(

1
m(I)

∫
I
b dm

)∥∥∥∥∥
2

M
dm

)1/2

<∞, (5.3.1)

where D is the family of all d-adic intervals on R.
During the proof of Theorem II.8, we also need to utilize the d-adic martingale square

function defined as follows

S(h) =
(∑
k∈Z
|dkh|2

)1/2

, ∀h ∈ L1(R, L1(M)),

and the d-adic martingale Hardy space Hd
1,max(R) is defined by

Hd
1,max(R) =

{
h ∈ L1(R, L1(M)) : ‖h‖Hd

1,max(R) :=
∥∥∥∥∥ sup
m∈Z
‖Emh‖L1(M)

∥∥∥∥∥
L1(R)

<∞
}
.
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Bourgain and Garcia-Cuerva proved independently that BMOd
M(R) embeds continuously

into the dual of Hardy space (Hd
1,max(R))∗. We refer the reader to [12] for more details.

Firstly we give the following proposition and its corollary, which will be helpful in the
proof of Propositions 5.3.3 that can be regarded as an analogue of Propositions 5.2.4.

Proposition 5.3.1. Let 1 < p <∞ and b ∈ BMOd
M(R). Then πb + (πb∗)∗ is bounded on

Lp(R, Lp(M)) and

‖πb + (πb∗)∗‖Lp(R,Lp(M))→Lp(R,Lp(M)) .d,p ‖b‖BMOdM(R).

Proof. For any f ∈ Lp(R, Lp(M)) and g ∈ Lp′(R, Lp′(M)), by (1.7.4)

〈(πb + (πb∗)∗)(f), g〉 =
〈∑
k∈Z

dkb · fk−1 +
∑
k∈Z

Ek−1(dkb · dkf), g
〉

=
∑
k∈Z
〈dkb, dkg · f ∗k−1〉+

∑
k∈Z
〈dkb, gk−1 · dkf ∗〉

=
〈
b,
∑
k∈Z

dkg · f ∗k−1 +
∑
k∈Z

gk−1 · dkf ∗
〉
.

Using the same method as in [55, Theorem 1.1] or [5], we obtain that

|〈(πb + (πb∗)∗)(f), g〉| .d,p ‖b‖BMOdM(R)‖f‖Lp(R,Lp(M))‖g‖Lp′ (R,Lp′ (M)).

Therefore, one has

‖πb + (πb∗)∗‖Lp(R,Lp(M))→Lp(R,Lp(M)) .d,p ‖b‖BMOdM(R).

Recall that Θb has been defined in (5.2.9). The following corollary is about the bound-
edness of Θb, which has been proved in [38, Proposition A.2], but it seems that the proof
there contains a small gap. We give a detailed proof here.

Corollary 5.3.2. If b ∈ BMOd
M(R), then Θb is bounded on L2(R, L2(M)) and

‖Θb‖L2(R,L2(M))→L2(R,L2(M)) .d ‖b‖BMOdM(R).

Proof. By the triangle inequality, one has

‖Θb‖L2(R,L2(M))→L2(R,L2(M))

≤ ‖πb + (πb∗)∗‖L2(R,L2(M))→L2(R,L2(M)) + ‖Λb − (πb∗)∗‖L2(R,L2(M))→L2(R,L2(M)).

Using the same notation as in Lemma 5.2.1 and from (5.2.1) and (5.2.4), we have

‖Λb − (πb∗)∗‖L2(R,L2(M))→L2(R,L2(M)) ≤ sup
I∈D
‖aI1A+ aI2A

2 + · · ·+ aId−1A
d−1‖L∞(Md⊗M)

≤ sup
I∈D

d−1∑
i=1
‖aIiAi‖L∞(Md⊗M)

≤ sup
I∈D

d−1∑
i=1
‖aIi ‖M = sup

I∈D

1
|I|1/2

d−1∑
i=1
‖〈hiI , b〉‖M.
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However,

‖〈hiI , b〉‖M =
∥∥∥∥∥
〈
hiI , b−

〈
1I

|I|
, b

〉〉∥∥∥∥∥
M

≤ 1
|I|1/2

∫
I

∥∥∥∥∥b(x)−
〈
1I

|I|
, b

〉∥∥∥∥∥
M
dx

≤
(∫

I

∥∥∥∥∥b(x)−
〈
1I

|I|
, b

〉∥∥∥∥∥
2

M
dx

)1/2

.

This implies

‖Λb − (πb∗)∗‖L2(R,L2(M))→L2(R,L2(M)) ≤ (d− 1)‖b‖BMOdM(R). (5.3.2)

Therefore from (5.3.2) and Proposition 5.3.1

‖Θb‖L2(R,L2(M))→L2(R,L2(M)) .d ‖b‖BMOdM(R),

as desired.

Proposition 5.3.3. If a ∈ BMOd(R) and b ∈ BMOd
M(R), then [πa,Mb] is bounded on

L2(R, L2(M)) and

‖[πa,Mb]‖L2(R,L2(M))→L2(R,L2(M)) .d ‖a‖BMOd(R)‖b‖BMOdM(R).

Proof. We use the same notation as that in the proof of Proposition 5.2.4. Note that by
the triangle inequality

‖[πa,Mb]‖L2(R,L2(M))→L2(R,L2(M))

≤ ‖[πa,Θb]‖L2(R,L2(M))→L2(R,L2(M)) + ‖[πa, Rb]‖L2(R,L2(M))→L2(R,L2(M)).

Note also that from Corollary 5.3.2

‖πaΘb‖L2(R,L2(M))→L2(R,L2(M)) ≤ ‖πa‖L2(R,L2(M))→L2(R,L2(M))‖Θb‖L2(R,L2(M))→L2(R,L2(M))

.d ‖a‖BMOd(R)‖b‖BMOdM(R).

(5.3.3)
Hence, one has

‖[πa,Θb]‖L2(R,L2(M))→L2(R,L2(M)) .d ‖a‖BMOd(R)‖b‖BMOdM(R).

Now, we estimate ‖[πa, Rb]‖L2(R,L2(M))→L2(R,L2(M)). From (5.2.10) we have

[πa, Rb](f) = −πa(Θb(f)) + Va,b(f), ∀f ∈ L2(R, L2(M)).
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For any f ∈ L2(R, L2(M)) and g ∈ L2(R, L2(M)),

〈Va,b(f), g〉 =
∑
k∈Z

〈
dka · Ek−1

(∑
j≥k

djb · djf
)
, g

〉

=
∑
k∈Z

〈∑
j≥k

djb · djf,Ek−1

(
dka

∗ · dkg
)〉

=
∑
k∈Z

〈
dkb,

∑
j≤k

Ej−1(dja∗ · djg) · dkf ∗
〉

=
〈
b,
∑
k∈Z

∑
j≤k

Ej−1(dja∗ · djg) · dkf ∗
〉

=
〈
b,
∑
k∈Z

dk(dka∗ · dkg) · f ∗k−1

〉
+ 〈b,Wa,f,g〉,

(5.3.4)

where

Wa,f,g =
∑
k∈Z

∑
j≤k

Ej−1(dja∗ · djg) · dkf ∗ −
∑
k∈Z

dk(dka∗ · dkg) · f ∗k−1.

Note that

〈
b,
∑
k∈Z

dk(dka∗ · dkg) · f ∗k−1

〉
=
∑
k∈Z
〈dkb, dkg · dka∗ · f ∗k−1〉

=
∑
k∈Z
〈dkg∗ · dkb, dka∗ · f ∗k−1〉

=
∑
k∈Z
〈dk(dkg∗ · dkb), dka∗ · f ∗k−1〉

=
〈(

(Λb∗ − (πb)∗)(g)
)∗
, πa∗(f ∗)

〉
.

Then by (5.3.2),

∣∣∣∣∣
〈
b,
∑
k∈Z

dk(dka∗ · dkg) · f ∗k−1

〉∣∣∣∣∣ ≤ ‖(Λb∗ − (πb)∗)(g)‖L2(R,L2(M))‖πa∗(f ∗)‖L2(R,L2(M))

.d ‖a‖BMOd(R)‖b‖BMOdM(R)‖g‖L2(R,L2(M))‖f‖L2(R,L2(M)).

(5.3.5)
We now estimate Wa,f,g. By duality, one has

|〈b,Wa,f,g〉| . ‖b‖BMOdM(R)‖Wa,f,g‖Hd
1,max(R).
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We calculate directly that for any m ∈ Z,

Em(Wa,f,g)
=
∑
k≤m

∑
j≤k

Ej−1(dja∗ · djg) · dkf ∗ −
∑
k≤m

dk(dka∗ · dkg) · f ∗k−1

=
∑
j≤m

Ej−1(dja∗ · djg) · (f ∗m − f ∗j−1)−
∑
j≤m

dj(dja∗ · djg) · f ∗j−1

=
∑
j≤m

Ej−1(dja∗ · djg) · f ∗m −
∑
j≤m

(dja∗ · djg) · f ∗j−1

= Em
(∑
j≤m

Ej−1(dja∗ · djg)
)
· f ∗m −

∑
j≤m

(dja∗ · djg) · f ∗j−1

= Em
(∑
j∈Z

Ej−1(dja∗ · djg)
)
· f ∗m − Em

( ∑
j≥m+1

Ej−1(dja∗ · djg)
)
· f ∗m −

∑
j≤m

(dja∗ · djg) · f ∗j−1

= Em
(∑
j∈Z

Ej−1(dja∗ · djg)
)
· f ∗m − Em

( ∑
j≥m+1

dja
∗ · djg

)
· f ∗m −

∑
j≤m

(dja∗ · djg) · f ∗j−1.

Hence

‖Wa,f,g‖Hd
1,max(R)

=
∥∥∥∥∥ sup
m∈Z
‖Em(Wa,f,g)‖L1(M)

∥∥∥∥∥
L1(R)

≤
∥∥∥∥∥ sup
m∈Z

∥∥∥∥∥Em
(∑
j∈Z

Ej−1(dja∗ · djg)
)
· f ∗m

∥∥∥∥∥
L1(M)

∥∥∥∥∥
L1(R)

+
∥∥∥∥∥ sup
m∈Z

∥∥∥∥∥Em
( ∑
j≥m+1

dja
∗ · djg

)
· f ∗m

∥∥∥∥∥
L1(M)

∥∥∥∥∥
L1(R)

+
∥∥∥∥∥ sup
m∈Z

∥∥∥∥∥∑
j≤m

(dja∗ · djg) · f ∗j−1

∥∥∥∥∥
L1(M)

∥∥∥∥∥
L1(R)

:= (I) + (II) + (III).

For the term (I), from (1.7.4), we have
∑
j∈Z

Ej−1(dja∗ · djg) = (πa)∗(g).

Thus

(I) ≤
∥∥∥∥∥sup
m∈Z

∥∥∥∥∥Em((πa)∗(g))
∥∥∥∥∥
L2(M)

· sup
m∈Z
‖fm‖L2(M)

∥∥∥∥∥
L1(R)

≤
∥∥∥∥∥sup
m∈Z

∥∥∥∥∥Em((πa)∗(g))
∥∥∥∥∥
L2(M)

∥∥∥∥∥
L2(R)

·
∥∥∥∥∥sup
m∈Z
‖fm‖L2(M)

∥∥∥∥∥
L2(R)

. ‖(πa)∗(g)‖L2(R,L2(M))‖f‖L2(R,L2(M))

.d ‖a‖BMOd(R)‖g‖L2(R,L2(M))‖f‖L2(R,L2(M)),

(5.3.6)

where the first and the second inequalities are both due to the Cauchy-Schwarz inequal-
ity, and the third is from the vector-valued Doob maximal inequality for L2(M)-valued
functions.
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For the term (II), one uses the Cauchy-Schwarz inequality to obtain

sup
m∈Z

∥∥∥∥∥Em
( ∑
j≥m+1

dja
∗ · djg

)
· f ∗m

∥∥∥∥∥
L1(M)

= sup
m∈Z

∥∥∥Em((a∗ − a∗m)(g − gm)
)
· f ∗m

∥∥∥
L1(M)

≤ sup
m∈Z

∥∥∥Em((a∗ − a∗m)(g − gm)
)∥∥∥

L2(M)
· sup
m∈Z
‖fm‖L2(M).

Let r = 3/2. We have

∥∥∥Em((a∗ − a∗m)(g − gm)
)∥∥∥

L2(M)

≤ Em
∥∥∥(a∗ − a∗m)(g − gm)

∥∥∥
L2(M)

= Em
(
|a− am| · ‖g − gm‖L2(M)

)
≤
(
Em

(
|a− am|r

′))1/r′(
Em

(
‖g − gm‖rL2(M)

))1/r

. ‖a‖BMOd(R)

((
Em‖g‖rL2(M)

)1/r
+
(
Em‖gm‖rL2(M)

)1/r
)

= ‖a‖BMOd(R)

((
Em‖g‖rL2(M)

)1/r
+ ‖gm‖L2(M)

)
.

Hence

(II) ≤
∥∥∥∥∥ sup
m∈Z
‖fm‖L2(M)

∥∥∥∥∥
L2(R)

·
∥∥∥∥∥sup
m∈Z

∥∥∥Em((a∗ − a∗m)(g − gm)
)∥∥∥

L2(M)

∥∥∥∥∥
L2(R)

. ‖f‖L2(R,L2(M))‖a‖BMOd(R) ·
∥∥∥∥∥sup
m∈Z

((
Em‖g‖rL2(M)

)1/r
+ ‖gm‖L2(M)

)∥∥∥∥∥
L2(R)

≤ ‖f‖L2(R,L2(M))‖a‖BMOd(R) ·
(∥∥∥∥∥sup

m∈Z
Em‖g‖rL2(M)

∥∥∥∥∥
1/r

L2/r(R)
+
∥∥∥∥∥sup
m∈Z
‖gm‖L2(M)

∥∥∥∥∥
L2(R)

)

.r ‖f‖L2(R,L2(M))‖a‖BMOd(R) ·
(∥∥∥‖g‖rL2(M)

∥∥∥1/r

L2/r(R)
+ ‖g‖L2(R,L2(M))

)
. ‖f‖L2(R,L2(M))‖a‖BMOd(R)‖g‖L2(R,L2(M)),

(5.3.7)
where in the first inequality we have used the Cauchy-Schwarz inequality, the second and
the fourth are both from the vector-valued Doob maximal inequality, and the third is
from the triangle inequality.

For the term (III), note that

∑
j≤m

(dja∗ · djg) · f ∗j−1 =
∑
j≤m

djg · (dja∗ · f ∗j−1).
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This implies that,

(III) ≤
∥∥∥∥∥sup
m∈Z

∥∥∥∥∥
(∑
j≤m
|djg|2

)1/2∥∥∥∥∥
L2(M)

∥∥∥∥∥
(∑
j≤m
|dja · fj−1|2

)1/2∥∥∥∥∥
L2(M)

∥∥∥∥∥
L1(R)

=
∥∥∥∥∥
∥∥∥∥∥
(∑
j∈Z
|djg|2

)1/2∥∥∥∥∥
L2(M)

∥∥∥∥∥
(∑
j∈Z
|dja · fj−1|2

)1/2∥∥∥∥∥
L2(M)

∥∥∥∥∥
L1(R)

. ‖g‖L2(R,L2(M))‖πa(f)‖L2(R,L2(M))

.d ‖a‖BMOd(R)‖g‖L2(R,L2(M))‖f‖L2(R,L2(M)),

(5.3.8)

where in the third inequality we have used the Cauchy-Schwarz inequality.
Hence from (5.3.6), (5.3.7) and (5.3.8) we deduce

|〈b,Wa,f,g〉| ≤ ‖b‖BMOdM(R)‖Wa,f,g‖Hd
1,max(R)

.d ‖a‖BMOd(R)‖b‖BMOdM(R)‖g‖L2(R,L2(M))‖f‖L2(R,L2(M)).
(5.3.9)

Then by (5.3.4), (5.3.5) and (5.3.9), we get

|〈Va,b(f), g〉| .d ‖a‖BMOd(R)‖b‖BMOdM(R)‖g‖L2(R,L2(M))‖f‖L2(R,L2(M)),

which yields

‖Va,b‖L2(R,L2(M))→L2(R,L2(M)) .d ‖a‖BMOd(R)‖b‖BMOdM(R).

Therefore
‖[πa,Mb]‖L2(R,L2(M))→L2(R,L2(M)) .d ‖a‖BMOd(R)‖b‖BMOdM(R).

Corollary 5.3.4. If a ∈ BMOd(R) and b ∈ BMOd
M(R), then [π∗a,Mb] is bounded on

L2(R, L2(M)) and

‖[π∗a,Mb]‖L2(R,L2(M))→L2(R,L2(M)) .d ‖a‖BMOd(R)‖b‖BMOdM(R).

Proof. It is follows from Proposition 5.3.3 and

[π∗a,Mb]∗ = −[πa,Mb∗ ].

We define the operator-valued martingale BMO space BMOω,2n
M (Rn) on Rn similarly

as in (5.3.1). More precisely, BMOω,2n
M (Rn) associated with dyadic system Dω on Rn

consists of all M-valued functions b that are Bochner integrable on any d-adic interval
such that

‖b‖
BMOω,2

n

M (Rn) := sup
Q∈Dω

(
1

m(Q)

∫
Q

∥∥∥∥∥b−
(

1
m(Q)

∫
Q
b dm

)∥∥∥∥∥
2

M
dm

)1/2

<∞. (5.3.10)

Then Corollary 5.3.2, Proposition 5.3.3 and Corollary 5.3.4 also hold for the dyadic system
Dω. It is easy to verify that if b ∈ BMOM(Rn), then b ∈ BMOω,2n

M (Rn) and

‖b‖
BMOω,2

n

M (Rn) ≤ ‖b‖BMOM(Rn).

Thus we come to the proof of Theorem II.8.
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5.3. PROOF OF THEOREM II.8

Proof of Theorem II.8. We use the same notation as that in the proofs of Theorem II.7
and Theorem II.6. From Proposition 5.3.3 and Proposition 5.3.4, we have

‖[πωT1,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M)) .n ‖T1‖BMO(Rn)‖b‖BMOM(Rn)

and
‖[(πωT ∗1)∗,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M)) .n ‖T ∗1‖BMO(Rn)‖b‖BMOM(Rn).

It suffices to estimate ‖[Sijω ,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M)) for any i, j ∈ N∪{0}. Note that
by the triangle inequality

‖[Sijω ,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M))

≤ ‖[Sijω ,Θb]‖L2(Rn,L2(M))→L2(Rn,L2(M)) + ‖[Sijω , Rb]‖L2(Rn,L2(M))→L2(Rn,L2(M)).
(5.3.11)

From Corollary 5.3.2 one has

‖[Sijω ,Θb]‖L2(Rn,L2(M))→L2(Rn,L2(M)) .n ‖b‖BMOM(Rn).

Now, we estimate ‖[Sijω , Rb]‖L2(Rn,L2(M))→L2(Rn,L2(M)). Take any f with ‖f‖L2(Rn,L2(M)) =
1. From (5.1.15) and by the Cauchy-Schwarz inequality,

‖[Sijω , Rb]f‖2
L2(Rn,L2(M))

=
∥∥∥∥∥ ∑
K∈Dω

∑
I,J∈Dω ;I,J⊆K
`(I)=2−i`(K)
`(J)=2−j`(K)

∑
ξ,η

aξηIJKbIJ〈H
ξ
I , f〉H

η
J

∥∥∥∥∥
2

L2(Rn,L2(M))

=
∑

K∈Dω

∑
J∈Dω ;J⊆K
`(J)=2−j`(K)

∑
η

∥∥∥∥∥ ∑
I∈Dω ;I⊆K
`(I)=2−i`(K)

∑
ξ

aξηIJKbIJ〈H
ξ
I , f〉

∥∥∥∥∥
2

L2(M)

≤
∑

K∈Dω

∑
J∈Dω ;J⊆K
`(J)=2−j`(K)

∑
η

( ∑
I∈Dω ;I⊆K
`(I)=2−i`(K)

∑
ξ

|aξηIJK |2
)( ∑

I∈Dω ;I⊆K
`(I)=2−i`(K)

∑
ξ

‖bIJ〈Hξ
I , f〉‖2

L2(M)

)

≤
∑

K∈Dω

∑
J∈Dω ;J⊆K
`(J)=2−j`(K)

(2n − 1)22−jn
( ∑

I∈Dω ;I⊆K
`(I)=2−i`(K)

∑
ξ

‖bIJ〈Hξ
I , f〉‖2

L2(M)

)
,

(5.3.12)
where bIJ = 〈1I|I| , b〉 − 〈

1J

|J | , b〉. Note that if Ĩ is the parent of I, then
∥∥∥∥∥
〈
1I

|I|
, b

〉
−
〈
1Ĩ

|Ĩ|
, b

〉∥∥∥∥∥
M
≤ 1
|I|

∫
I

∥∥∥∥∥b(t)−
〈
1Ĩ

|Ĩ|
, b

〉∥∥∥∥∥
M
dt

≤ 2n/2

|Ĩ|1/2

(∫
Ĩ

∥∥∥∥∥b(t)−
〈
1Ĩ

|Ĩ|
, b

〉∥∥∥∥∥
2

M
dt

)1/2

≤ 2n/2‖b‖BMOM(Rn).

This implies that by the triangle inequality,

‖bIJ‖M ≤ ‖bIK‖M + ‖bJK‖M ≤ 2n/2(i+ j)‖b‖BMOM(Rn).
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As a consequence, one has from (5.3.12) that

‖[Sijω , Rb]f‖2
L2(Rn,L2(M))

≤ 2n(2n − 1)2(i+ j)2‖b‖2
BMOM(Rn)

∑
K∈Dω

( ∑
I∈Dω ;I⊆K
`(I)=2−i`(K)

∑
ξ

‖〈Hξ
I , f〉‖2

L2(M)

)

.n (i+ j)2‖b‖2
BMOM(Rn).

By (5.3.11), we have

‖[Sijω ,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M)) .n (i+ j + 1)‖b‖BMOM(Rn).

Therefore by the triangle inequality, we conclude

‖[T,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M)) .
∞∑

i,j=0
2−max{i,j}α/2Eω‖[Sijω ,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M))

+ Eω‖[πωT1 + (πωT ∗1)∗,Mb]‖L2(Rn,L2(M))→L2(Rn,L2(M))

.n (1 + ‖T1‖BMO(Rn) + ‖T ∗1‖BMO(Rn))‖b‖BMOM(Rn).

This completes the proof.
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Appendix A: Boundedness of
commutative martingale
paraproducts

In this appendix, we will use the same notation as in Section 1.3. Given a martingale
{fk}k≥0 on a fixed probability space Ω, let f0 = 0 and recall that the martingale maximal
function, the martingale difference and the conditional square function are defined as
follows:

f ∗ = sup
k≥0
|fk|, dkf = fk − fk−1, s(f) =

( ∞∑
k=1

Ek−1|dkf |2
) 1

2 .

For b ∈ L1(Ω), recall that the martingale paraproduct with symbol b is defined as

πb : L2(Ω) −→ L2(Ω)

f 7−→ πb(f) =
∞∑
k=1

dkb · fk−1.

It is interesting to find the conditions that characterize the boundedness of πb. We will
show that πb is bounded on L2(Ω) if and only if b ∈ bmo(Ω). Recall that

‖b‖bmo(Ω) = sup
k≥1
‖Ek(

∑
j≥k+1

|djb|2)‖
1
2∞ <∞.

See Definition 1.3.9 for BMO(Ω) and bmo(Ω).
We are about to show the following theorem.

Theorem A.0.1. πb is bounded on L2(Ω) iff b ∈ bmo(Ω). Moreover,

‖πb‖L2(Ω)→L2(Ω) ≈ ‖b‖bmo(Ω).

In addition, if b ∈ bmo(Ω) and 1 < p ≤ 2, then πb is bounded on Lp(Ω) and

‖πb‖Lp(Ω)→Lp(Ω) .p ‖b‖bmo(Ω).

We divide the proof of Theorem A.0.1 into two parts.

A.1 Proof of the necessity of Theorem A.0.1
Lemma A.1.1. Let 2 ≤ p <∞. If πb is bounded on Lp(Ω), then b ∈ bmo(Ω).
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Appendix A: Boundedness of commutative martingale paraproducts

Proof. Note that dk(πb(f)) = fk−1dkb for k ≥ 1. Let f = fn ∈ Lp(Ω) for n ≥ 1, and by
the Burkholder-Gundy inequality

‖πb‖pLp(Ω)→Lp(Ω)‖fn‖
p
p ≥ ‖πb(f)‖pp &p E

(( ∞∑
k=1
|dkb · fk−1|2

)p/2)
≥ E

(( ∞∑
k=n+1

|dkb · fk−1|2
)p/2)

= E
(( ∞∑

k=n+1
|dkb|2

)p/2
|fn|p

)

= E
(
En
( ∞∑
k=n+1

|dkb|2
)p/2
|fn|p

)
.

This implies that
‖En

( ∞∑
k=n+1

|dkb|2
)p/2
‖∞ .p ‖πb‖pLp(Ω)→Lp(Ω),

since fn is arbitrary and |fn|p ∈ L1(Ω). Note that since p ≥ 2,

‖En
( ∞∑
k=n+1

|dkb|2
)
‖∞ ≤ ‖En

( ∞∑
k=n+1

|dkb|2
)p/2
‖2/p
∞ .

Hence, ‖b‖bmo(Ω) .p ‖πb‖Lp(Ω)→Lp(Ω).

A.2 Proof of the sufficiency of Theorem A.0.1
Lemma A.2.1. Let 1 < p ≤ 2 and p′ = p/(p− 1). If f ∈ Lp(Ω) and g ∈ Lp′(Ω), then

πg(f) =
∞∑
k=1

fk−1dkg ∈ h1(Ω).

Proof. By direct calculation, one has

s(πg(f)) =
( ∞∑
k=1

Ek−1|fk−1dkg|2
) 1

2 =
( ∞∑
k=1
|fk−1|2Ek−1|dkg|2

) 1
2

≤ f ∗ · s(g).

The famous Burkholder inequality (cf. [14] and [15]) asserts that

‖s(g)‖p′ .p ‖g‖p′ .

This yields by the Hölder inequality,

‖s(πg(f))‖1 ≤ ‖f ∗‖p‖s(g)‖p′ .p ‖f‖p‖g‖p′ .

Thus πg(f) ∈ h1(Ω).
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A.2. PROOF OF THE SUFFICIENCY OF THEOREM A.0.1

Remark A.2.2. Let 1 < p < ∞. If f ∈ Lp(Ω) and g ∈ Lp′(Ω), then πg(f) ∈ H1(Ω). The
proof is similar to the above lemma, and we will use the fact that

‖S(g)‖p ≈p ‖g‖p.

Lemma A.2.3. Let 1 < p ≤ 2. If b ∈ bmo(Ω), then πb is bounded on Lp(Ω). Moreover,

‖πb‖Lp(Ω)→Lp(Ω) .p ‖b‖bmo(Ω).

Proof. We proceed by duality. For any f ∈ Lp(Ω) and g ∈ Lp′(Ω), we have by Lemma
A.2.1

|〈πb(f), g〉| = |
∞∑
k=1
〈dkb · fk−1, g〉| = |

∞∑
k=1
〈dkb, fk−1 · g〉|

= |
∞∑
k=1
〈dkb, dk(fk−1 · g)〉|

= |
∞∑
k=1
〈dkb, fk−1 · dkg〉| = |

∞∑
k=1
〈dkb, dk(πg(f))〉|

. ‖b‖bmo(Ω)‖πg(f)‖h1(Ω) .p ‖b‖bmo(Ω)‖f‖p‖g‖p′ ,

since dk is an orthogonal projection in L2(Ω) and (h1(Ω))∗ = bmo(Ω). We can conclude
that

‖πb‖Lp(Ω)→Lp(Ω) .p ‖b‖bmo(Ω).

Remark A.2.4. From the proof of Theorem I.1 (in particular the estimate of the term Π2),
we also see that if b ∈ bmo(Ω), then πb is bounded from h1(Ω) to h1(Ω). Hence, if πb is
bounded on L2(Ω), then by interpolation, we have πb is bounded on Lp(Ω) for 1 < p ≤ 2.

Now we come to the proof of Theorem A.0.1.

Proof of Theorem A.0.1. The necessity of Theorem A.0.1 follows from Lemma A.1.1. The
remaining part follows from Lemma A.2.3.

Remark A.2.5. If b ∈ BMO(Ω), then πb is bounded on Lp(Ω) for any 1 < p < ∞ by
Remark A.2.2 and by the same proof as that of Lemma A.2.3. So for regular martingales,
the boundedness of πb on L2(Ω) implies that πb is bounded on Lp(Ω) for any 1 < p <∞.
However, this extrapolation property fails for irregular martingales.
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Appendix B: Another proof of the
Necessity of Theorem II.2 by Schur
multipliers

In this appendix, we will give another proof of the Necessity of Theorem II.2 for
2 ≤ p <∞ from [81]. This new approach is based on the boundedness of Schur multipliers,
which is simpler than the former proof in Section 4.1. Moreover, our new method yields
better constants in (II.1) when p→∞.

At first, we present the definition of Schur multipliers. Let n ∈ N be strictly positive.
Denote by Mn(M) the tensor product of von Neumann algebras Mn(C) and M, where
Mn(C) is equipped with the usual trace, and M is equipped with a normal semifinite
faithful trace τ . Let T be the unit circle of the complex plane endowed with normalized
Haar measure.

Definition B.0.1. Let A = [ai,j] ∈ Mn(C). The Schur multiplier induced by A on
Mn(M) is the operator SA defined by

SA : Mn(M) −→Mn(M)
[mi,j] 7−→ SA([mi,j]) = [ai,j ·mi,j].

We refer the reader to [66] and [76] for more details about Schur multipliers. We also
need to use the Fourier multipliers.

Definition B.0.2. Let ϕ : Z→ C. The Fourier multiplier with symbol ϕ is defined by

Fϕ
(∑
k∈Z

ake
ikt
)

=
∑
k∈Z

ϕ(k)akeikt, t ∈ [0, 2π]

for any finite sequence (ak)k inM.

For example, if ϕ(k) = 1 for all k ≥ 0, and ϕ(k) = −1 for all k < 0, then Fϕ is called
the Hilbert transform, usually denoted by H. Moreover, H is bounded on Lp(T, Lp(M))
for any 1 < p <∞ and

‖H‖Lp(T,Lp(M))→Lp(T,Lp(M)) = cot(π/(2 max{p, p′})). (B.0.1)

The proof of (B.0.1) is based on Cotlar equality. See [25] and [65] for more details. Next,
we will show a special class of Schur multipliers by virtue of the Hilbert transform.
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Appendix B: Another proof of the necessity of Theorem II.2 by Schur multipliers

B.1 Transference method
This section in devoted to exploring the relationship between Schur multipliers and

Fourier multipliers. In fact, using transference method in [16] and [65], we can show the
boundedness of some particular Schur multipliers by Fourier multipliers.

Our main ingredient is the following lemma.

Lemma B.1.1. Let ϕ : Z → C. Assume that (αi)i∈Z and (βj)j∈Z are two sequences of
integers. If A = [ai,j] ∈Mn(C) where ai,j = ϕ(αi + βj), then for 0 < p ≤ ∞

‖SA‖Lp(Mn(M))→Lp(Mn(M)) ≤ ‖Fϕ‖Lp(T,Lp(Mn(M)))→Lp(T,Lp(Mn(M))).

Proof. We consider the following commutative diagram: ∀z ∈ T and ∀ M = [mi,j] ∈
Mn(M)

M = [mi,j] Γ([mi,j])

SA([mi,j]) Fϕ ◦ Γ([mi,j])

Γz

SA Fϕ

Γz

where Γz is defined as

Γz([mi,j]) :=


. . . 0

zαi

0 . . .


i

[mi,j]


. . . 0

zβj

0 . . .


j

.

Indeed, one has

Fϕ ◦ Γz([mi,j]) = Fϕ([zαi+βj ·mi,j]) = [ϕ(αi + βj)zαi+βj ·mi,j],

and in the same way,

Γz ◦ SA([mi,j]) = Γz([ϕ(αi + βj) ·mi,j]) = [ϕ(αi + βj)zαi+βj ·mi,j].

Note that for any z ∈ T, and for 0 < p ≤ ∞

‖Γz([mi,j])‖Lp(Mn(M)) = ‖[mi,j]‖Lp(Mn(M)).

Hence, since Γz ◦ SA = Fϕ ◦ Γz, we conclude that

‖SA‖Lp(Mn(M))→Lp(Mn(M)) ≤ ‖Fϕ‖Lp(T,Lp(Mn(M)))→Lp(T,Lp(Mn(M))),

as desired.

Corollary B.1.2. Assume that A = [ai,j] where for each 1 ≤ i ≤ n, there exists ji such
that if 1 ≤ j ≤ ji, ai,j = −1, and if ji < j ≤ n, ai,j = 1. Then for 1 < p <∞,

‖SA‖Lp(Mn(M))→Lp(Mn(M)) ≤ cot(π/(2 max{p, p′})).

Proof. Let ϕ(k) = 1 for all k ≥ 0, and ϕ(k) = −1 for all k < 0. Choose βj = j for any
1 ≤ j ≤ n. It suffices to let αi = −ji − 1 for each 1 ≤ i ≤ n. Thus ϕ(αi + βj) = ai,j. By
Lemma B.1.1 and (B.0.1), we obtain the desired result.
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Corollary B.1.3. Assume that A = [ai,j] where for each 1 ≤ i ≤ n, there exists ji1 ≤ ji2
such that if ji1 ≤ j ≤ ji2, then ai,j = 1, and otherwise ai,j = 0. Then for 1 < p <∞,

‖SA‖Lp(Mn(M))→Lp(Mn(M)) ≤ cot(π/(2 max{p, p′})).

Proof. It is easy to find A1 and A2 in Mn(C) which satisfy the assumptions in Corollary
B.1.2 such that

A = A1 + Idn
2 − A2 + Idn

2 .

This yields the desired result by Corollary B.1.2.

Note that the estimates in Corollary B.1.2 and Corollary B.1.3 do not depend on the
dimension of the matrix A, which is due to (B.0.1).

B.2 Another proof of the Necessity of Theorem II.2
We are going to prove the Necessity of Theorem II.2 for the case p ≥ 2 with the help

of Schur multipliers and by Corollary B.1.3. As mentioned before, this new method gives
a better constant. However, this method fails for 0 < p ≤ 1, and gives a worse constant
when p → 1+. Note that our previous proof yields a universal constant as p → 1+, and
see Proposition 4.1.1.

Theorem B.2.1. For 2 ≤ p < ∞, if b ∈ BBBd
p(R,M), then πb ∈ Lp(B(L2(R)) ⊗M).

Moreover,
‖πb‖Lp(B(L2(R))⊗M) ≤ d cot(π/(2p)) · ‖b‖BBBdp(R,M). (B.2.1)

Proof. Define Ξb as follows:

Ξb(f) =
∑
I∈D

d−1∑
i=1

hiI
〈hiI , b〉
|I|1/2

〈hiI , f〉, ∀f ∈ L2(R, L2(M)).

Thus one has
‖Ξb‖Lp(B(L2(R))⊗M) = ‖b‖BBBdp(R,M).

Without loss of generality, we can assume that 〈hI , b〉 is zero except finite I. The
general case naturally follows by the standard limit argument. Then we can take N ∈ N
large enough to satisfy that 〈hI , b〉 6= 0 only if d−N ≤ |I| ≤ dN and I ⊂ [−dN , dN ]. Hence
it suffices to consider f ∈ L2(DN , L2(M)), where

DN = σ{IN,k| − d2N ≤ k ≤ d2N − 1}.

Thus {hiI |d−N+1 ≤ |I| ≤ dN , I ⊂ [−dN , dN ], 1 ≤ i ≤ d − 1} ∪ { 1[−dN ,0]
|[−dN ,0]|1/2 ,

1[0,dN ]
|[0,dN ]|1/2} and

{
1IN,k

|IN,k|1/2
| − d2N ≤ k ≤ d2N − 1} are two orthonormal basis of L2(DN). We will write πb

and Ξb with respect to these two bases.
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Appendix B: Another proof of the necessity of Theorem II.2 by Schur multipliers

We arrange hiI with the order as follows:

(hiI
N−1,−d2N−1

)1≤i≤d−1, (hiI
N−1,−d2N−1+1

)1≤i≤d−1, · · · , (hiI
N−1,d2N−1−1

)1≤i≤d−1,

(hiI
N−2,−d2N−2

)1≤i≤d−1, · · · ,

· · · · · · ,
(hi[−dN ,0])1≤i≤d−1, (hi[0,dN ])1≤i≤d−1

1[−dN ,0]

|[−dN , 0]|1/2 ,
1[0,dN ]

|[0, dN ]|1/2 ,

(B.2.2)

and arrange 1IN,k

|IN,k|1/2
from k = −d2N to k = d2N − 1.

Denote by [(πb)(I,i),J ] (|J | = d−N) the matrix form of πb where

(πb)(I,i),J =


〈
hiI , πb

(
1J

|J |1/2

)〉
, if I 6= [−dN , 0] and I 6= [0, dN ];

0, otherwise

=


〈hiI ,b〉
|I|1/2 〈

1I

|I|1/2 ,
1J

|J |1/2 〉 if I 6= [−dN , 0] and I 6= [0, dN ];
0, otherwise.

(B.2.3)

Note that ‖πb‖Lp(B(L2(R))⊗M) = ‖[(πb)(I,i),J ]‖Lp(B(L2(R))⊗M). Similarly, denote by [(Ξb)(I,i),J ]
the matrix form of Ξb where

(Ξb)(I,i),J =


〈hiI ,b〉
|I|1/2 〈h

i
I ,

1J

|J |1/2 〉 if I 6= [−dN , 0] and I 6= [0, dN ];
0, otherwise.

(B.2.4)

Thus ‖[(Ξb)(I,i),J ]‖Lp(B(L2(R))⊗M) = ‖Ξb‖Lp(B(L2(R))⊗M) = ‖b‖BBBdp(R,M).
Define the matrix M = [m(I,i),J ] where

m(I,i),J =

〈hiI ,
1J

|J |1/2 〉 ·
|I|1/2
|J |1/2 if I 6= [−dN , 0] and I 6= [0, dN ];

0, otherwise.
(B.2.5)

Then one has
(πb)(I,i),J = m(I,i),J(Ξb)(I,i),J .

From our construction, m(I,i),J ∈ {ω, ω2, · · · , ωd}.
Therefore, it suffices to show that the Schur multiplier induced by the matrix M is

bounded on Lp(M2·d2N (M)). It is clear to see that there exist Ai (1 ≤ i ≤ d)

M = ω · A1 + ω2 · A2 + · · ·+ ωd · Ad

where each Ai is in M2·d2N (C) satisfying the assumption in Corollary B.1.3. Thus by
Corollary B.1.3, we conclude

‖SM‖Lp(M2·d2N (M))→Lp(M2·d2N (M)) ≤ d cot(π/(2p)).

This completes the proof.
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B.2. ANOTHER PROOF OF THE NECESSITY OF THEOREM II.2

Remark B.2.2. In particular, for d = 2, there is a better way to find the Schur multiplier,
which yields a better constant in (B.2.1). Let I+ and I− be the left and right halve of I
respectively. Define the matrix M = [mI,J ] as follows:

(1) if J ⊂ I+, then let mI,J = 1;

(2) if J ⊂ I−, then let mI,J = −1;

(3) if J ∩ I+ = ∅ and J is on the left of I+, then let mI,J = 1;

(4) if J ∩ I− = ∅ and J is on the right of I−, then let mI,J = −1.

So the matrix M is well-defined. In addition, we have

(πb)I,J = mI,J(Ξb)I,J .

Therefore, by this choice of Schur multiplier M , the constant in (B.2.1) can be improved
to cot(π/(2p)) by Corollary B.1.2.
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Appendix C: Open problems

C.1 Problems on continuous bilinear decompositions
Problem C.1.1. Let Ω be a probability space. Do we have a continuous bilinear decom-
position of pointwise multiplication between h1(Ω) and bmo(Ω)?

Problem C.1.2. Let Ω be a homogeneous space and n its dimension. Are there contin-
uous bilinear decompositions of multiplication between atomic Hardy spaces Hp

at(Ω) and
their duals for 0 < p < n

n+1?

C.2 Problems on Schatten class and boundedness of
martingale paraproducts

Problem C.2.1. Are there similar results of the converse to Theorem II.6? More pre-
cisely, under which circumstances for the kernel K(x, y) does CT,b ∈ Lp(B(L2(Rn))⊗M)
imply b ∈ BBBp(Rn, Lp(M))?

Problem C.2.2. Is there any equivalent characterization of the boundedness of CT,b on
L2(Rn, L2(M))?

Problem C.2.3. For semicommutative d-adic martingales,

1. under which circumstances for symbol b is the martingale paraproduct πb bounded
on L2(R, L2(M))?

2. does πb have the extrapolation property? To be more specific, does the boundedness
of πb on L2(R, L2(M)) yield the boundedness of πb on Lp(R, Lp(M)) (1 < p <∞)?

3. if πb does not satisfy the extrapolation property, under which circumstances is πb
bounded on Lp(R, Lp(M)) for a fixed p ∈ (1,∞)?

Problem C.2.4. It is also tempting to investigate the boundedness of martingale para-
products concerning CAR algebra and tensor products of matrix algebras.

Problem C.2.5. It is very interesting to establish the vector-valued variant of the bound-
edness of commutators, namely the vector-valued case of Theorem II.7.
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Résumé :
Cette thèse a pour l’étude des paraproduits de martingales à la fois dans le cadre commutatif

et noncommutatif. Il se compose de deux parties. La première concerne la décomposition bili-
néaire de la multiplication ponctuelle d’éléments dans l’espace de Hardy de martingales H1 et
son dual BMO. Nous étendons également cette décomposition bilinéaire continue aux espaces de
Hardy de martingales Hp (0 < p < 1) et leurs espaces duaux. Nos décompositions sont basées sur
des paraproduits de martingales. Comme conséquences de notre travail, nous obtenons des ré-
sultats analogues pour des martingales dyadiques sur des espaces de type homogène munis d’une
mesure de dédoublement. Nos arguments reposent sur l’existence de systèmes dyadiques sur des
espaces de type homogène. La deuxième partie porte principalement sur l’appartenance à la
classe de Schatten des paraproduits de martingales semi-commutatifs et purement non commu-
tatifs, en particulier pour les algèbres de Clifford et les produits tensoriels d’algèbres matricielles
∞
⊗
k=1

Md en termes d’espaces de Besov de martingales. En utilisant la technique de la martingale
dyadique de Hytönen, nous obtenons également des conditions suffisantes pour l’appartenance
à la classe de Schatten et la bornitude des commutateurs à valeurs d’opérateurs concernant des
opérateurs intégraux singuliers généraux. De plus, nous donnons une preuve alternative sur la
caractérisation BMO de la bornitude des commutateurs concernant des opérateurs intégraux
singuliers généraux dans le cadre commutatif.

Mots-clés : Paraproduits de martingales ; Espaces de Hardy-Orlicz ; Espaces de Musielak-

Orlicz ; Espaces de dédoublement ; Espaces de Besov de martingales ; Martingales noncommuta-
tives ; Produit tensoriel ; Classe de Schatten ; Algèbre de CAR ; Algèbres matricielles ; Commu-
tateurs ; Opérateurs intégraux singuliers ; Espaces de BMO.
Abstract:

This thesis is devoted to the study of martingale paraproducts both in the commutative
and noncommutative settings. It consists of two parts. The first one is about the bilinear
decomposition of pointwise multiplication of elements in martingale Hardy space H1 and its
dual BMO space. We also extend this continuous bilinear decomposition to martingale Hardy
spaces Hp (0 < p < 1) and their dual spaces. Our decompositions are based on martingale
paraproducts. As a consequence of our work, we obtain analogous results for dyadic martingales
on spaces of homogeneous type equipped with a doubling measure. Our arguments are based on
the existence of dyadic systems on spaces of homogeneous type. The second part focuses on the
Schatten class membership of semicommutative and purely noncommutative martingale para-
products, especially for CAR algebras and tensor product of matrix algebras

∞
⊗
k=1

Md in terms of
martingale Besov spaces. Using Hytönen’s dyadic martingale technique, we also obtain sufficient
conditions on the Schatten class membership and the boundedness of operator-valued commu-
tators involving general singular integral operators. In addition, we give an alternative proof
on the BMO characterization of the boundedness of commutators involving general singular
integral operators in the commutative setting.

Keywords : Martingale paraproducts; Hardy-Orlicz spaces; Musielak-Orlicz spaces; Dou-
bling spaces; Martingale Besov spaces; Noncommutative martingales; Tensor product; Schatten
class; CAR algebra; Matrix algebras; Commutators; Singular integral operators; BMO spaces.
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