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Résumé

Cette these a pour 1’étude des paraproduits de martingales a la fois dans le cadre
commutatif et noncommutatif. Il se compose de deux parties. La premiere concerne la dé-
composition bilinéaire de la multiplication ponctuelle d’éléments dans ’espace de Hardy
de martingales H' et son dual BMO. Nous étendons également cette décomposition bi-
linéaire continue aux espaces de Hardy de martingales H? (0 < p < 1) et leurs espaces
duaux. Nos décompositions sont basées sur des paraproduits de martingales. Comme
conséquences de notre travail, nous obtenons des résultats analogues pour des martin-
gales dyadiques sur des espaces de type homogene munis d’une mesure de dédoublement.
Nos arguments reposent sur I'existence de systemes dyadiques sur des espaces de type ho-
mogene. La deuxiéme partie porte principalement sur I’appartenance a la classe de Schat-
ten des paraproduits de martingales semi-commutatifs et purement non commutatifs, en
particulier pour les algebres de Clifford et les produits tensoriels d’algebres matricielles

%O) M en termes d’espaces de Besov de martingales. En utilisant la technique de la mar-
k=1
tingale dyadique de Hytonen, nous obtenons également des conditions suffisantes pour

I’appartenance a la classe de Schatten et la bornitude des commutateurs a valeurs d’opé-
rateurs concernant des opérateurs intégraux singuliers généraux. De plus, nous donnons
une preuve alternative sur la caractérisation BMO de la bornitude des commutateurs
concernant des opérateurs intégraux singuliers généraux dans le cadre commutatif.

Mots-clefs

Paraproduits de martingales; Espaces de Hardy-Orlicz ; Espaces de Musielak-Orlicz ;
Espaces de dédoublement; Espaces de Besov de martingales; Martingales noncommu-
tatives; Produit tensoriel ; Classe de Schatten; Algebre de CAR ; Algebres matricielles;
Commutateurs ; Opérateurs intégraux singuliers ; Espaces de BMO.
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Abstract

This thesis is devoted to the study of martingale paraproducts both in the commu-
tative and noncommutative settings. It consists of two parts. The first one is about the
bilinear decomposition of pointwise multiplication of elements in martingale Hardy space
H' and its dual BMO space. We also extend this continuous bilinear decomposition
to martingale Hardy spaces H? (0 < p < 1) and their dual spaces. Our decomposi-
tions are based on martingale paraproducts. As a consequence of our work, we obtain
analogous results for dyadic martingales on spaces of homogeneous type equipped with
a doubling measure. Our arguments are based on the existence of dyadic systems on
spaces of homogeneous type. The second part focuses on the Schatten class membership
of semicommutative and purely noncommutative martingale paraproducts, especially for

CAR algebras and tensor product of matrix algebras ® My in terms of martingale Besov
k=1

spaces. Using Hytonen’s dyadic martingale technique, we also obtain sufficient conditions
on the Schatten class membership and the boundedness of operator-valued commutators
involving general singular integral operators. In addition, we give an alternative proof on
the BM O characterization of the boundedness of commutators involving general singular
integral operators in the commutative setting.

Keywords

Martingale paraproducts; Hardy-Orlicz spaces; Musielak-Orlicz spaces; Doubling spaces;
Martingale Besov spaces; Noncommutative martingales; Tensor product; Schatten class;
CAR algebra; Matrix algebras; Commutators; Singular integral operators; BMO spaces.
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Chapter O

Introduction

In [26], David and Journé showed that for any standard singular integral operator T
T is bounded on Ly(R™) if and only if 71 and 7*1 both belong to BMO space and T
satisfies the weak boundedness property. This result is now referred to the celebrated
David-Journé T'1 theorem. It was not long before Coifman and Semmes gave a different
proof of the T'1 theorem based on dyadic martingales, which made dyadic martingales
become an important tool in harmonic analysis. More precisely, the idea of Coifman and
Semmes is to use dyadic martingale paraproducts. We refer the reader to [21] and [70] for
more details about the dyadic proof of the T'1 theorem. We also point out that the concept
of paraproducts first emerged in [11] about the theory of paradifferential operators.

Since then, dyadic martingales have caught wide attention in harmonic analysis and
dyadic martingale paraproducts have also become a crucial tool. As an extension of
the work of David-Journé and Coifman-Semmes, Nazarov, Treil and Volberg applied
dyadic martingale paraproducts to establish the 7T'1 theorem and the 70 theorem on
non-homogeneous spaces in [63], which can be perceived as a major step to complete the
theory of Calderén-Zygmund operators on non-homogeneous spaces.

The deep connection between singular integral operators and dyadic martingale para-
products has been closely investigated in various works. For example, it dates back to
Figiel [29] who introduced Haar shift operators (also known as dyadic shift operators) and
invoked the boundedness of martingale transforms in the study of singular integral opera-
tors. Later on Petermichl developed an explicit representation formula for the one-variable
Hilbert transform [72] and Petermichl, Treil and Volberg extended this representation to
the Riesz transforms [75] . In [88], Vagharshakyan successfully recovered one-dimensional
Calderén-Zygmund transforms with sufficiently smooth convolution kernels by means of a
properly chosen averaging of dyadic shift operators. This technique provides a bridge from
the dyadic world to the non-dyadic world, where the former possesses neater structure
properties and is easier to handle to some extent.

Such representations have been proved to be very powerful and widely applicable to
harmonic analysis, such as the weighted inequality theory. For instance, Petermichl gave
the sharp weighted bound for the Hilbert transform and the Riesz transforms, respectively
in [73] and [74]. In particular, the famous Ay conjecture, which concerns the sharp
weighted bound for Calderon-Zygmund operators, has been fully resolved by Hytonen [40].
The key tool in [40] is a new dyadic representation for general singular integral operators,
from which dyadic shift operators and dyadic martingale paraproducts naturally appear.
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In addition, we refer the reader to [48] and [49] for the use of such representations on
commutators. Hence, dyadic martingale paraproducts and dyadic shift operators have
become a fundamental and useful model to study a variety of properties for singular
integral operators.

Apart from close connections between martingale paraproducts and harmonic analysis,
it is of independent interest to study martingale paraproducts in its own right. This is
partly due to the fact that these operators are generalizations of Hankel type operators.
Hankel operators are another important class of operators in function theory. It is very
interesting to investigate the boundedness, compactness and Schatten class membership
of Hankel operators.

Motivated by the aforementioned pioneering work, the theme of this thesis is the
study of martingale paraproducts, with two different directions. The first focuses on the
bilinear decompositions of the multiplication between elements in martingale Hardy spaces
and their dual spaces in the commutative setting. This is a joint work with Odysseas
Bakas, Zhendong Xu, and Yujia Zhai in [4]. The novelty of the work lies in the endpoint
estimate of the boundedness of martingale paraproducts. Our approach is based on the
atomic decompositions of martingale Hardy spaces, and thus also applies to the case for
martingale Hardy space H? with 0 < p < 1 and its dual space. As an application, we
extend these bilinear decompositions to spaces of homogeneous type.

The second direction concerns the Schatten class membership of martingale paraprod-
ucts in the noncommutative setting. This is a joint work with Zhenguo Wei in [90]. More
precisely, we describe the Schatten class membership of semicommutative d-adic mar-
tingale paraproducts in terms of martingale Besov spaces. Using transference, we also
obtain characterizations of Schatten class membership of purely noncommutative martin—

gale paraproducts for CAR algebras and the tensor product of matrix algebras ® M.

We exploit the technique using dyadic representation developed by Hyténen [40] and
further derive the Schatten class membership and the boundedness of operator-valued
commutators involving general singular integral operators.

Our proof for operator-valued commutators relies heavily on the bilinear decompo-
sitions of the pointwise operator M,, which is the main subject of study in the first
direction. This provides a new proof of the well-known theorem [22] on the boundedness
of commutators in the Euclidean setting from the perspective of martingale theory.

In the remaining part of the introduction, a detailed discussion on the background,
motivations and main results will be given. After the introduction, we will give a prelim-
inary in Chapter 1 which contains most of definitions and notation needed in this thesis,
and then present our work in details. The presentation will be separated into two parts,
and each part is devoted to one of the two directions highlighted above.

In the appendix, we include the proof of the boundedness of martingale paraproducts
for general martingales instead of dyadic martingales. We also give another proof of the

Necessity of Theorem I1.2 for p > 2 by Schur multipliers.
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[. MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES
AND THEIR DUAL SPACES

I Multiplication between elements in martingale Hardy
spaces and their dual spaces

The pointwise product of a function in the classical Hardy space H'(R") and a function
of bounded mean oscillation on R™ need not be in L;(R"); see e.g. §6.2 in Chapter IV
in [86]. However, using Fefferman’s duality theorem [28] and the fact that the pointwise
product of a BMO-function and a C{°-function is in BMO(R"), Bonami, Iwaniec, Jones
and Zinsmeister defined in [9] the product f x g of a function f € H'(R™) and a function
g € BMO(R") as a distribution given by

(fxg.0)={9-¢,f), ¢€CFR"), (L1)

where in the right-hand side of (I.1) the duality between f € H'(R") and g-¢ € BMO(R")
is employed. Moreover, it is shown in [9] that for any fixed f € H'(R™) there exist two
linear continuous operators Sy from BMO(R™) to Li(R™) and T from BMO(R") to a
weighted Hardy—Orlicz space such that

fxg=_S8;(9)+Ty(g)

for all g € BMO(R"); see [9, Theorem 1.6].

In [8], using wavelet analysis, Bonami, Grellier and Ky showed that there exist two
bilinear continuous operators S from H!(R")x BMO(R") to L;(R") and T from H'(R") x
BMO(R™) to H"°8(R™) such that

fxg=S(f9)+T(f 9)

for all f € H'(R") and for all g € BMO(R"); see [8, Theorem 1.1]. The Musielak Hardy—
Orlicz space H'°8(R") is defined as the class consisting of all distributions & on R™ whose
grand maximal function Mh satisfies

[Mh(z)]

d
/R” log(e + |z|) + log(e + | Mh(z)]) T

and is smaller than the weighted Hardy—Orlicz space appearing in [9]. In fact, as ex-
plained in [9], in view of the results of Nakai and Yabuta [60] on pointwise multipliers
of BMO(R") and duality, the Musielak Hardy-Orlicz space H'°¢(R") is optimal in the
above decomposition.

In addition, continuous bilinear decomposition theorems for products of elements in
HP(R™), for 0 < p < 1, and their dual spaces were established in [7].

Using the theory of wavelets on spaces of homogeneous type, which was developed by
Auscher and Hyténen in [1] and [2], the aforementioned results have been extended to
spaces of homogeneous type by Liu, Yang and Yuan [50] and Xing, Yang and Liang [31].
More precisely, in [50] and [31], continuous bilinear decompositions for products between
elements in atomic Hardy spaces HE, () (in the sense of Coifman and Weiss [23]) and
their dual spaces were established in the case where p € (RLH, 1]. Here n is defined as the
dimension of the homogeneous space {2.

Recently in [3], Bakas, Pott, Rodriguez-Lopez and Sola established a dyadic variant
of the aforementioned results of Bonami, Grellier, and Ky; see [3, Theorem 24], which in
turn was used to deduce a periodic version of [8, Theorem 1.1]; see [3, Theorem 28].

>



INTRODUCTION

Motivated by [3], the first part of this thesis is concerned with the study of multipli-
cation between Hardy spaces and their dual spaces for martingales on a probability space
Q2. More specifically, we study multiplications between functions in the martingale Hardy
space H'(Q) and its dual space BMO(f) as stated in our first result, Theorem I.1. We
also investigate the case 0 < p < 1, namely multiplication between elements in H?(2) and
their dual spaces, the so-called martingale Lipschitz spaces A;(«,) with oy, == % — 1, see
Theorem I.2. Since the dual space (HP(2))* could be {0} for some irregular martingales,
we will only consider regular martingales where every o-algebra Fj. in the corresponding
filtration is generated by countably many atoms.

We would like to mention that Bonami, Jiao, Xie, Yang, and Zhou have independently
obtained Theorem 1.1, and derived from it interesting applications on the boundedness of
operators involving commutators in [10].

Theorem 1.1. Let (2, F, P) be a probability space equipped with the filtration {F}i>1.
There exist continuous bilinear operators 11 : H(2) x BMO(Q) — L1(Q2), TI, : HY{(Q) x
BMO(Q) — HY(Q) and 113 : HY(Q) x BMO(Q) — H®(Q) such that

for all f € HY(Q) and g € BMO(Q), where f - g is in the sense of the pointwise multipli-
cation.

In Theorem I.1, H*(Q) is a martingale Hardy—Orlicz space defined in terms of the
growth function ®(t); see Definition 1.3.14 and (1.3.2) below. We will refer to the terms
II5(f, g) and I3(f, g) as the martingale paraproducts.

Theorem 1.1 can be regarded as an extension of [3, Theorem 24| to the general case of
martingales.

For 0 <p<1,if f € HP(Q), g € Ai(a,) and fy = go = 0, then their product can be
regarded as a continuous linear functional on Lo (£2) N Aj(ay,). To be more precise, for
any h € Loo(2) N Ay(ay,), define

(f xg,h)y=<h-g,f),

where in the right-hand side the duality between H?(2) and A;(cy,) is invoked. Note that
h - g belongs to A;(a,) since h is a pointwise multiplier on A;(a,) (see [59]).

Our following theorem establishes a continuous bilinear decomposition for products
between elements in H?(€2) and functions in the dual space A;(a,) when 0 < p < 1.

Theorem 1.2. Let (2, F, P) be a probability space equipped with the reqular filtration
{Fi}e>1, where Fy, is generated by countably many atoms for any k > 1.

If H?(Q2) (0 < p < 1) are martingale Hardy spaces, then there exist continuous bilinear
operators Ty : HP(Q) x Ai(ap) — Li1(Q), My : HP(Q) x Ay(oy) — HY(Q) and 113 :
H?(Q) x Ay(ap,) — HP() such that

f Xg:Hl(fag)+H2(fag)+H3(fag)

for all f € HP(Q) and g € Ay(ay).



II. SCHATTEN CLASS MEMBERSHIP OF NONCOMMUTATIVE MARTINGALE
PARAPRODUCTS

In the remaining sections of the first part, we study analogues of Theorems I.1 and 1.2
for the case of dyadic martingales on spaces of homogeneous type. Such martingales were
first constructed in [43]. We investigate the corresponding martingale Hardy spaces and
extend Mei’s results in [52] to this general setting. Compared with the probability setting,
the case of spaces of homogeneous type is more difficult to deal with since backward
martingales arise, and the underlying measures on homogeneous spaces may be infinite.

II Schatten class membership of noncommutative mar-
tingale paraproducts

Hankel operators were first studied by Hankel in [35], since then they have become
an important class of operators. Later, Nehari characterized the boundedness of Hankel
operators on the Hardy space H%(T) in terms of the BMO space in [64], and Hartman
discussed their compactness by the VMO space in [36]. In [67], Peller obtained the
Schatten p-class criterion of Hankel operators by Besov space for 1 < p < oo, while the
case 0 < p < 1 was discussed by Peller in [68] and Semmes in [84], respectively.

In harmonic analysis, commutators involving singular integral operators and multipli-
cation operators are generalizations of Hankel type operators. So it is certainly worthwhile
to study their boundedness, compactness and Schatten class membership. In [22], Coif-
man, Rochberg and Weiss showed the boundedness of commutators with regards to the
BMO space on R", which yields a new characterization of BMO. Soon after their work,
Uchiyama sharpened one of their results and showed the compactness of commutators by
virtue of the CMO space in [87]. The Schatten class membership of commutators was
developed by Janson and Wolff in terms of Besov spaces in [45]. Afterwards, Janson and
Peetre established a fairly general framework to investigate the boundedness and Schatten
class of commutators in [44].

As described at the beginning of the introduction, close connections between singular
integral operators and dyadic operators have been extensively explored. Thanks to such
connections, dyadic operators, such as martingale paraproducts, serve as crucial tools in
harmonic analysis. For instance, Petermichl discovered an explicit representation formula
for the one-variable Hilbert transform as an average of dyadic shift operators to investigate
Hankel operators with matrix symbol. Nazarov, Treil and Volberg in [63] proved the T'1
and the T theorems based on martingale paraproducts. Later, Hytonen refined in an
essential way the method of Nazarov, Treil and Volberg, and settled the well-known A,
conjecture [40].

We would like to highlight that the dyadic operators in [40] can be considered as a
particular case of martingale paraproducts. In addition to its intrinsic connection with
various operators in harmonic analysis, martingale paraproducts have attracted much
interest in its own right as they are martingale variants of operators of Hankel type.
The boundedness of martingale paraproducts has been studied in [17]. In addition, the
compactness and Schatten class have been discussed in [18] for d-adic martingales.

Motivated by all this, we aim to establish the Schatten class membership of mar-
tingale paraproducts in the noncommutative setting. Via the methodology developed
by Hytonen, we also obtain the Schatten class characterization for the operator-valued

7
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commutators involving singular integral operators and noncommutative pointwise multi-
plication.

At first, we introduce noncommutative martingale paraproducts. Let M be a von
Neumann algebra equipped with a normal semifinite faithful trace 7. Given a semi-
commutative d-adic martingale b = (by)rez € Lo(R, Ly(M)), recall that the martingale
paraproduct with symbol b is defined as

m(f) = i dib- fe1, Vf = (fi)rez € L2(R, Ly(M)),

k=—o00

where dib = b, — b, for any k € Z. See Subsection 1.7 for the definitions of semicommu-
tative d-adic martingales. When d = 2, d-adic martingales are just dyadic martingales.

When M = C, Chao and Peng described the Schatten class membership of 7, by virtue
of the martingale Besov spaces. They showed the following theorem (see [18, Theorem

3.1]):

Theorem II.1. For 0 < p < oo and a locally integrable function b, m, € S,(La2(R)) if and
only if

) dkHdkaip(R) < ©0.

k=—o00

Chao and Peng’s proof invoked some results about Schatten p-norms in [82]. In [80],
Pott and Smith gave another proof of Theorem II.1 based on the p-John-Nirenberg in-
equality for d = 2. They also obtained an equivalent characterization of the Schatten
class membership of m, when M = B(H), still with d = 2.

Inspired by all this, we are concerned with the Schatten class membership of 7, for
semicommutative d-adic martingales with arbitrary d and arbitrary semifinite von Neu-
mann algebras M.

Our first main theorem concerns the Schatten class membership of 7, for semicommu-
tative d-adic martingales. More specifically, we use the semicommutative d-adic martin-
gale Besov spaces BY(R, M) (see Definition 1.7.2) to characterize ||m| 1, (5(L,®)oMm):

Theorem IL.2. For 0 < p < oo, m, € Ly(B(La(R)) ® M) if and only if b € BL(R, M).
Moreover,

17\l 2, (B(L2 @)@ M) Rdp (bl BiERM)- (IL1)
It is much more tempting to study martingale paraproducts for purely noncommutative
martingales. Let b = (bg)r>1 be a noncommutative martingale. (see Subsection 1.6 for

the definition.) The noncommutative martingale paraproduct with symbol b for any
noncommutative martingale f = (fx)r>1 € La(M) is defined by

m(f) = idkb - fr1
P

However, it remains open under which circumstances 7, is bounded in B(Ly(M)), which
is also deeply related to the operator-valued T'1 problem. The reader is referred to [38]
for more details about the operator-valued 171 problem.

8
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Let M be the algebra of d x d matrices equipped with the normalized trace. In
particular, if M = L, (R) ® My, Katz employed an ingenious stopping time procedure in
[47] to show

1Tl B(L2Mm)) S log(d + 1)|16]| Brro@ ) (I1.2)

where BMO(R,M,) is the strong operator BMO. We refer the reader to [54] for more
information for such BM O spaces. Meanwhile, Nazarov, Treil and Volberg independently
obtained (II.2) in [62] by the Bellman method, and they also gave an example to show
that for any d € N there exists b such that

|76l BeLar)) 2 1/10g(d 4+ 1) |16l Brrommy)-

This implies that the boundedness of 7, cannot be characterized solely by BMO(R, M)
for infinite-dimensional M.

In [61], Nazarov, Pisier, Treil and Volberg have proved that log (d 4+ 1) is the optimal
order of the best constant in (I1.2). Indeed, it has been shown that in general, |7 Bz, (A1)
cannot even be dominated by the operator norm ||b|| o for infinite-dimensional M in [53].

Even though we do not know how to describe the boundedness of 7, surprisingly by
transference method in [77] and Theorem I1.2, we get the equivalent characterization of
the Schatten class membership of 7, for two families of noncommutative martingales, i.e.

CAR algebra denoted by C, and .Z = ® M.

k=1

For the CAR algebra, we obtain:

Theorem I1.3. For 0 < p < oo, m, € S,(L2(C)) if and only if b € B,(C). Moreover,
1731, (221 = [10]] B, c)-
Similarly, for .#Z = k%)) My, we also have:
-1

Theorem IL.4. For 0 < p < oo, m, € Sy(La(A)) if and only if b € B,(.4). Moreover,

17|l 5, (La(ar)) Rap 10180 -

The martingale Besov spaces B,(C) and B,(.#) in Theorem II.3 and Theorem II.4
are defined in Definition 1.7.6 and Definition 1.7.7 respectively.

Next, we employ Theorem II.2 to give a characterization of Schatten class membership
for operator-valued commutators involving singular integral operators and noncommuta-
tive pointwise multiplication, in terms of operator-valued Besov spaces. Our method is
based on the dyadic representations of singular integral operators developed by Hytonen
in [40] and [41]. We first provide the setup for singular integral operators.

Let T' € B(Ly(R™)) be a singular integral operator with a kernel K (z,y), i.e. for any
f € Ly(R™)

Tf(x) = / K(z,y)f(y)dy, x ¢ suppf.

9
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We assume that K(x,y) is defined for all x # y on R™ x R"™ and satisfies the following
standard kernel estimates:

¢
lz —y|’
K (x,y) — K (2, y)| + |K(y, z) — K(y,2)| <

K (z,y)| <
(11.3)

Clx — 2'|*

|z —y|r+e

for all z,2',y € R™ with |z — y| > 2|z — 2| > 0 and some fixed o € (0, 1] and constant
C > 0.
In particular, if for any =z # y

K(z,y) = ¢(v —y), (IL.4)

where ¢ is homogeneous of degree —n with mean value zero on the unit sphere, then 7' is
called a Calderén-Zygmund transform.

In the second part of this thesis, T' : Ly(R") — Lo(R™) will always be assumed to
satisfy the above standard estimates (II.3) and to be bounded. The celebrated David-
Journé T'1 theorem in [26] asserts that for any singular integral operator T satisfying
(IL.3) , T" is bounded on Lo(R™) if and only if 71 and 7*1 both belong to BMO(R")
and T satisfies the weak boundedness property. We recall that BMO(R™) is the space
consisting of all locally integrable functions b such that

1 9 1/2
16l Baro@®n) = SUP / ‘ — (Q)/Qb dm)‘ dm < 00,

Q cube

where m is Lebesgue measure on R".

Assume b € Ly(R", Ly(M)), and let M, be the pointwise multiplication by b. The
operator-valued commutator is defined by Cr, = [T, M| = TM, — M,T, that is for any
[ € Lay(R™, Ly(M)),

Crp(f) =T(b- f) = b-T(f).

The operator-valued Besov space B,(R", L,(M)) is defined as the completion of all b €
S(Loo(R™) ® M) satistying

1

1b(x) — b(y)l|7 v
HbHB (R, Ly (M)) (/n/n \:c— e rM) 1 dy) < 00, (IL.5)

with respect to the norm || - ||, ®»,r,my). If M = C, B,(R", L,(C)) coincides with the
classical Besov space of parameters (p, p,n/p), namely the space A24(R™) in [85, Chapter
V, §5].

In the commutative setting, Janson and Wolff have obtained the following theorem
(see [45, Theorem 1]):

Theorem I1.5. Let T be a Calderon-Zygmund transform with a kernel ¢ defined in (11.4).
Assume ¢ is C°(R"™) except at the origin and not identically zero.

Suppose n > 2 and 0 < p < co. For 0 < p <n, Crp € S,(L2(R™)) if and only if b is
constant. For p > n, Cry € Sy,(La(R™)) if and only if b € B,(R™, L,(C)).

10
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We get the analogous result for p > 2 and n > 1 in the semicommutative setting. The
following theorem describes the Schatten class membership of operator-valued commuta-
tors.

Theorem I1.6. Let T € B(Ly(R™)) be a singular integral operator with kernel K(x,y)
satisfying the standard estimates (11.3). If b € B,(R™,L,(M)) and 2 < p < oo, then
CT,b S Lp(B(LQ(Rn)) & M) and

ICrllzy B per Snp (1+ 1T srown + 1T 0@ ) 1518, @, L,m)-

Theorem I1.6 directly implies the necessity of Theorem I1.5 for p > n > 2 if we just let
M = C. So we give an alternative proof of the necessity of Theorem I1.5 for p > n > 2
based on martingale paraproducts. We would like to remark that Theorem II.6 is more
general than Theorem II.5 because it not only concerns the semi-commutative setting,
but also deals with commutators involving general singular integral operators, while [44]
and [45] focus on Calderén-Zygmund transforms.

Last but not least, we attain the boundedness of commutators by martingale para-
products. It has been shown by Coifman, Rochberg an Weiss in [22] that if b € BMO(R™)
and T is a Calderén-Zygmund transform with kernel ¢ satisfying the following estimate

0(2) —o(y)| <z —yl, V| =lyl=1, (I1.6)

then for 1 < p < oo, Cry is bounded on L,(R"™). In fact, we will give a new proof to
show the following theorem concerning general singular integral operators not necessarily
of convolution type, which is known (for instance see [37, Theorem 1.1] or [20, Theorem
3.1]) but more general than the case considered in [22]. Our new approach is based
on the boundedness of martingale paraproducts. But some new interesting martingale
inequalities (Lemma 5.2.3 and Proposition 5.2.4) will be needed so as to prove the following
theorem.

Theorem II.7. Let 1 < p < oo and T € B(Ls(R™)) be a singular integral operator with
kernel K(z,y) satisfying the standard estimates (I1.3). If b € BMO(R"), then Cry is
bounded on L,(R™) and

1C7 bl Ly &)= Ly (7)Y Snip (1 + |71 Baron) + HT*l”BMO(R")) [0l Brmro®ny-

The idea of the proof is the same as that of Theorem II1.6. We also establish the bound-
edness of commutators involving martingale paraproducts and pointwise multiplication
operator (see Proposition 5.2.4).

We would like to remark that the converse to Theorem I1.7 seems to be much subtler.
Coifman, Rochberg and Weiss have obtained a partial result of the “only if” part just for
Riesz transforms in [22]. Uchiyama generalized this result and obtained the “only if” part
for any Calderén-Zygmund transforms with the smooth estimate (I1.6) in [87]. Recently,
Hytonen further extended it to general “non-degenerate” singular integral operators in
[42]. We refer to [42] for more details on the converse to Theorem I1.7.

11
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We can also consider the boundedness of operator-valued commutators involving gen-
eral singular integral operators on Lo(R™, Ly(M)). Denote by BMO(R™) the space
consisting of all M-valued functions b that are Bochner integrable on any cubes such that

1/2
Wlasiowe = s (o 10 gy b am) dm) <o

Q cube

The next theorem states the boundedness of operator-valued commutators for p = 2.

Theorem I1.8. Let T' € B(Ly(R™)) be a singular integral operator with kernel K(x,y)
satisfying the standard estimates (11.3). If b € BMOm(R™), then Cry is bounded on
Ly(R™, Ly(M)) and

17 a@r Lty La@r Loty S (14 T aro@e) + 1T | maro@n) ) 1bll zaro @n)-

When T is a Riesz transform, Theorem I1.8 coincides with the statement of [38, The-
orem A.1], and fixes a small gap presenting in the argument of that theorem. Moreover,
Theorem II.8 involves general singular integrals, which is new in the semicommutative
setting and answers an open question in [38, Remark A.3].

The thesis is organized as follows. In Chapter 1, we set down notation and give some
background on martingales in the commutative and noncommutative settings, spaces of
homogeneous type and martingale Besov spaces. Then we divide the remaining content of
the thesis into two parts separately, where detailed proofs of the above mentioned results
are given.

The first part consists of Chapters 2 and 3. It is devoted to the multiplication be-
tween elements in martingale Hardy spaces and their dual spaces. In section 2.1, we prove
Theorem I.1. In section 2.2, we present a characterization of martingale Lipschitz spaces
Ai(ayp), which is of independent interest (see Theorem 2.2.4 and Remark 2.2.5 below),
and then we show Theorem 1.2. The remaining sections are concerned with spaces of
homogeneous type. For the convenience of the reader, in section 1.8, we recall some defi-
nitions and facts regarding Hardy spaces and Lipschitz spaces on spaces of homogeneous
type in the sense of Coifman and Weiss [23]. In section 3.1, we give new proofs of some
results in [23] based on the martingale method and the existence of dyadic martingales on
homogeneous spaces. In section 3.2, we establish analogues of Theorems 1.1 and 1.2 for
dyadic martingales on spaces of homogeneous type; see Theorem 3.2.7 below. In the last
section of the first part, we apply Theorem 3.2.7 to obtain a decomposition of products
of functions in Hardy spaces and their dual spaces on spaces of homogeneous type.

The second part consists of Chapters 4 and 5. It is devoted to the Schatten class
membership of noncommutative martingale paraproducts. In Section 4.1, we prove The-
orem I1.2. We proceed with our proof mainly by iteration. In Section 4.2 and Section 4.3,
we show Theorem II.3 and Theorem I1.4 respectively by transference and Theorem II.2.
At the end, by virtue of Hytonen’s dyadic representation for singular integral operators,
we show Theorem I1.6, Theorem I1.7 and Theorem II.8 in Section 5.1, Section 5.2 and
Section 5.3, respectively.

Throughout this thesis, the terms “homogeneous spaces” and “spaces of homogeneous
type” will be used interchangeably. We will use the following notation: A < B (resp.

12



II. SCHATTEN CLASS MEMBERSHIP OF NONCOMMUTATIVE MARTINGALE
PARAPRODUCTS

A <. B) means that A < CB (resp. A < C.B) for some absolute positive constant C'
(resp. a positive constant C. depending only on ). A ~ B or A ~. B means that these
inequalities as well as their inverses hold.
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Chapter 1

Preliminaries

In this chapter, we provide notation and background that will be used in the thesis.
More precisely, Section 1.1, Section 1.2, Section 1.3 and Section 1.8 are devoted to intro-
ducing Musielak-Orlicz-type spaces, fundamental concepts and results about martingales,
spaces of homogeneous type, which will needed for Chapter 2 and 3.

Section 1.4, Section 1.5, Section 1.6, and Section 1.7 are devoted to presenting semi-
commutative d-adic martingales, noncommutative martingales, noncommutative L,-spaces
and martingale Besov spaces. These will be used for Chapter 4 and 5.

1.1 Notation

We will consider sums and intersections of quasi-normed spaces. For the convenience
of the reader we recall these notions.

Definition 1.1.1. Let (X1, - [|x,), (X2, || - ||x,) be two quasi-normed spaces and let X
be a topological vector space X such that X, Xy C X continuously.

1. (X1N X, || - [ xyn2,) is the intersection of X; and Xy, where
2]l xinx, = max{{|z]lx,, [[#]lx, }
for all x € X7 N Xo;
2. (X1 + Xo, | |lx,4+x,) is the sum of X; and X5, where
2] x,+x, = Inf{[|z1]| x, + [|22]lx, © =21+ 22, 21 € Xy, 22 € X5}
for all x € X7 + Xo.

For convenience, the sum X1+ X9+ -+ X,, and the intersection X; N Xy +---NX,
will also be denoted by Z Xy and Nj_; Xk, respectively.

Note that (X;NXs, H HXIHXQ) and (X7 + Xo, || || x,+x,) are both quasi-normed spaces.
Moreover, if (X1, - ||x,) and (Xs, ] - ||x,) are Banach spaces, then (X7 N Xo, | « [|x,nx5)
and (X7 + Xo, || - [|x,+x,) are both Banach spaces.
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1.2 Musielak—Orlicz-type spaces

We first recall some definitions and properties of Orlicz-type spaces and Musielak—
Orlicz-type spaces. In what follows, (€2, F, ) denotes a o-finite measure space.

A function @ : [0,00) — [0, 00) is called an Orlicz function if it is strictly positive on
(0, 00), non-decreasing, unbounded and ®(0) = 0. A measurable function ¥ : 2x [0, c0) —
[0, 00) is called a Musielak-Orlicz function if for all z € Q, ¥(z, ) is an Orlicz function.

The Musielak—Orlicz-type space LY () is the set consisting of all measurable functions
f on € such that

| W@ A f@))dn < oo

for some A > 0. We equip LY (Q) with the Luxembourg quasi-norm

Ifllze iy == inf{)\ >0 /Q\p(x,xlyf(a:)\)du < 1} AT

Let p € R. A Musielak—Orlicz function is said to be of uniformly lower type (respec-
tively, upper type) p if there exists a positive constant C' such that

U(z,st) < CsPU(x,t)

for all z € Q,t > 0 and s € (0,1) (respectively, s € [1,00)). In particular, if ¥ is of
uniformly lower type p with 0 < p < 1 and of uniformly upper type 1 then

U(x,ct) ~, Y(z,t) forall ¢ > 0. (1.2.1)

In the sequel, ¥(z,t) is always assumed to be of uniformly lower type p with 0 <
p < 1 and of uniformly upper type 1, and to be continuous in the ¢ variable. For more
information on Musielak—Orlicz spaces, we refer the reader to [8] and [95].

1.3 Martingales

Let (Q,F,P) be a fixed probability space. Given a filtration which consists of a
sequence of g-algebras
FC--CFC---CF

such that (U2, Fi) = F, for a random variable f € Li(Q, F, P) and k € N, we set

=E(f|Fe), duf=fr— fe,

where we adopt the convention that fy = 0. We shall also denote fi, by Ex(f). A sequence
f = {fx}r>0 is called a martingale with respect to U3, Fy if fr = E (fxr1 | Fi) for every
k > 1, and {dgf}r>1 is called the martingale difference sequence of f = {fx}r>0. To
simplify notation, we write L,(€2) instead of L,(2, F, P).

Definition 1.3.1. If f = {f; }x>0 and {djf},r>1 are as above, we define:
1. the maximal function

5 =sup|ful;
k>0
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2. the square function
00 1/2
()= (S ausP)
k=1

3. the conditional square function

o 1/2
S(f) = (Z Ek_ndm?) .
k=1

There are several types of martingale Hardy spaces, which are defined in terms of
maximal functions, square functions and conditional square functions.

Definition 1.3.2. For 1 < p < oo, the martingale Hardy spaces h?(2), H?(2), H?, (Q)
are defined as follows

W) = {f € Li(Q) : [|fllww == [Is(f)llp < o0},
HP(Q) = {f € Li(Q) - [ fllaw = [1S()llp < 00},
HE () = {f € Lo(Q) = [[fllag, = 1F7]lp < o0},

respectively.

For 0 < p < 1, h?(Q) is defined as the completion of the space {f € L1(Q) : || f|lne :=
|s(f)ll, < oo} with respect to the norm || - ||4». Similarly, HP(2) is defined as the
completion of the space {f € Li(Q) : || flae := [|S(f)||, < oo} with respect to the norm
| - |ae, and HE (€2) is defined as the completion of the space {f € Li(2) : || f||gz, =
| f*|l, < oo} with respect to the norm || - || gz .

In general, the above three martingale Hardy spaces are different. However, for 1 <
p < o0, HP(Q) = HJ, () (see [13], [27], [92]).

Definition 1.3.3. (Regular filtration) A filtration is regular if there exists a constant
C > 0 such that for all k& > 2, F}, € Fy, there exists a Gy € Fj_; satisfying

In addition, a martingale f = { f }x>0 with respect to such a regular filtration is called a
regular martingale.

Remark 1.3.4. Suppose that for a positive random variable f € L;(2) the corresponding
martingale { fx}x>o is regular. Then for any k& > 2

Je <A~ [,
where A > 0 is a constant that depends only on the constant C' of Definition 1.3.3.
See [51] for more information about regular filtrations and martingales.

Remark 1.3.5. For regular filtrations, H?(Q2) = h?(Q2) = HP (2) for all 0 < p < co. See
[91], [92] and [51] for more information.

An important aspect of martingale Hardy spaces is that they admit atomic decompo-
sitions. The definition of atoms in the martingale setting is given below.
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Definition 1.3.6. A random variable a : 2 — C is called a martingale simple (p, ¢)-atom
(0<p<1,1<q<o0)if there exist k € N and A € Fj, such that

1. Eg(a) = 0;
2. supp(a) C 4;
3. lally < P(A)a»,
where % := 0 when ¢ = oo as convention.

Definition 1.3.7. We define the martingale atomic Hardy spaces HE(2) for 0 < p <
I1<g<worp=1, 1 <q< o0 as follows

HPA(Q) = {f =Y \jd : @ is a simple (p, g)-atom and Y_ |\;|P < oo} ,
=0 =0

equipped with the quasi-norm

J=0

oo 1 oo ) _
1 £l 2y = inf {(Z |)\j|p)p . f =Y\, where @ is a simple (p, q)—atom} :
=0

It is well-known that hP(Q) = HZ*(Q) when 0 < p < 1 (see [91]). In particular, if
the martingale filtration is regular, then h?(Q2) = HSY(Q2) when 0 < p <l and 1 < ¢ <
oo. The following result is the atomic decomposition of H*(€2), which follows from the

noncommutative result in [71]. In particular, it reveals the relationship between H?'(£2)
and h'(Q)) and shows that H*(Q2) # h'(Q) for general martingales.

Theorem 1.3.8. We have H'(Q2) = h'(Q) + h}(Q), where b} denotes the diagonal Hardy
space of martingale differences

RY(Q) = {h € () : [l = 3 bl < oo}.
k=1

We now introduce the martingale BMO and bmo spaces, which are the duals of H'({2)
and h'(Q), respectively (see Theorem 1.3.12 below).

Definition 1.3.9. Assume f,g € Ly(2). We say that f is a martingale BM O function if
|£ o) = sup [Eal f - Fac1PI8 < 0.
We say that ¢ is a martingale bmo function if
9llbmo(e) = Sup IEnlg — gnl?I|2? < o0

Denote by BMO(Q2) and bmo(£2) the spaces consisting of all martingale BMO and
bmo functions, respectively.

For regular martingales, BMO(2) = bmo(£2). The following result is the so-called
martingale John—Nirenberg inequality and can be found in [32].
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Theorem 1.3.10. There exists a constant k > 0 such that for any f € BMO(Q) with
| fllBmow) < Kk, we have
E (e|f|> < 1.

Remark 1.3.11. From the martingale John—Nirenberg inequality, we have for any 1 < p <
OO?

| fllBrro@) =p sup 1Bl f — fooi Pl|2P.

However, the above John—Nirenberg inequality fails for bmo(€2) in the general setting.

For the following duality theorem, see [32], [51], [92].
Theorem 1.3.12. (H'(Q))* = BMO(Q) and (h'(Q2))* = bmo(Q).

The following proposition, which can be found in [24] and [32], is a consequence of
Theorems 1.3.8 and 1.3.12 and it gives a description of the relationship between BMO(2)
and bmo(S2). In particular, it implies that BMO(2) & bmo(Q2) for general martingales.

Proposition 1.3.13. Assume f is a martingale BMO function. Then

I l1m3101) 2 | lmotey + 5D e f . (13.)

We end this section with the definition of martingale Musielak-Orlicz Hardy spaces
and the generalized Holder inequality.

Definition 1.3.14. The martingale Musielak—Orlicz Hardy space HY () (where ¥ is
described in Section 1.2) is the space consisting of all martingales f = {fi}r>0 such that
the square function S(f) € L¥(£2). Moreover, we define the quasi-norm

HfHH‘I’(Q) = HS<f)”L‘I’(Q)-

If W is replaced by an Orlicz function ®, the corresponding Hardy—Orlicz space H®(Q) is
defined in an analogous way.

To obtain the generalized Holder inequality, we introduce a particular Orlicz space
L*(Q), where

D(t) = —

=—7 t2>0 1.3.2
logle +t)  — ( )

Note that ® is an Orlicz function of uniformly lower type p (0 < p < 1) and upper type
1, which guarantees that the space L®(Q) is a quasi-normed space. Note that L,(Q) C
L2(9).

Remark 1.3.15. Tt follows from [57] that if f = {fx}r>0 is a regular martingale, then the
martingale Hardy—Orlicz space H®(2) can also be characterized by martingale maximal
functions and conditional square functions. For any f € H®({) one has

Il @) = IS e@) = 1 e @) = [s()le@)-

The following lemma is a variant of [9, Proposition 2.1] in the martingale setting.
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Lemma 1.3.16. Assume (£, F, P) is a probability space, f € L1(2) and g € BMO(S).
Then f-g € L*(Q) and
1f - glley S Il llgll Barow)- (1.3.3)

Proof. The proof is similar to the proof of the corresponding Euclidean result and we will
only outline it here for the convenience of the reader. By [9, Lemma 2.1}, one has

st
<e M4, 1.3.4
M+10g(e+st)_e T ( )
for all M > 0,5 > 0,t > 0.
When ||f||1 =0 or |gllBmo) = 0, (1.3.3) trivially holds. Assume g € BMO(2) with
gl Bro) > 0 and f € Li(Q) w1th ||fll1 > 0. Let k be the constant in Theorem 1.3.10,
M=0,t= 880l ang s = O Then by Theorem 1.3.10 and (1.3.4), we have

||QHBMO(Q) 11

/(=) - g() B rrrver f
Pl — dP < BMO@) d P + <2 (1.3.5)
Q [l ||9||BM0(9) [AIFYP
Hence, from (1.2.1) we conclude
1f - gllze@) < &7 1 lullgllmaroc)
which completes the proof of the lemma. O

We will refer to (1.3.3) as the generalized Holder inequality.

1.4 d-adic martingales

Let d > 2 be a fixed integer. We are particularly interested in d-adic martingales since
it is closely related to dyadic martingales on Euclidean spaces. In this section, we give a
general definition of d-adic martingales. Afterwards we will present an orthonormal basis
of Haar wavelets for d-adic martingales, which will be used to represent martingale para-
products and to define martingale Besov spaces for semicommutative d-adic martingales
(to be defined in Section 1.7).

Let 2 be a measure space endowed with a o-finite measure p. Assume that in §2, there
exists a family of measurable sets I,, , for n, k € Z satisfying the following properties:

1. I, are pairwise disjoint for any k if n is fixed;
2. Ugezln i = €2 for every n;

3. Iy = ngllnﬂ,kdﬂ,l for any n,k, so each I, is a union of d disjoint subsets
It kdq—1:

4. p(l, ) = d " for any n, k.

Then I, are cz}lled d-adic intervals, and let D be the family of all such d-adic intervals.
For I € D, let I be the parent interval of I, and I(j) the j-th subinterval of I, namely

(L) () = Lnyrkarj1, YV k€Z,1<j<d.
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1.4. D-ADIC MARTINGALES

Denote by D,, the collection of d-adic intervals of length d~" in D. Given I € D, let D(I)
be the collection of d-adic intervals contained in I, and D, (/) the intersection of D,, and
D(I). For each n € Z, denote by F,, the o-algebra generated by the d-adic intervals I, x,
Vk € Z. Denote by F the o-algebra generated by all d-adic intervals for all I, ., Vn, k € Z.

Then (F,)nez is a filtration associated with the measure space (2, F, ). In the sense
of Definition 1.3.3, (F,)nez is regular. Denote by Li°¢(£2) the family of all locally integrable
functions g on €, that is, g € Ly([,) for all n,k € Z. For a locally integrable function
g € L¢(Q), the sequence (g, )nez is called a d-adic martingale, where

00 1;
. =E(g|F,) = ik / du.
I (g| ) k:z_oo M(InJc) In,k:g a

The martingale differences are defined as d,,g = g, — g,—1 for any n € Z. We also denote
gn by E,(g) (n € Z) as usual.

Remark 1.4.1. We would like to remark that d-adic martingales are slightly different from
the martingales defined in the previous Section 1.3, since we are no longer working with
a probability space, and the filtration for d-adic martingales is indexed by Z.

Definition 1.4.2. Let w = e’d' (here i is the imaginary number). For any I = I,,, € D,
define

d—1
Rt = PR Z WU,

i, Y1<i<d—1,
=0
and hY := d"/?1;.
Then {h}}1epi<i<a_1 is an orthonormal basis on Ly(§2) because Vg € Lq(€2)
o) 00 d—1 ] )
g= > dig= Y ( > Zhlz(h?,w)-
k=—o00 k=—co \|I|=d—Fk+1 i=1

We call {h}}1epi<i<a_1 the system of Haar wavelets. Note that for any 1 <4,5 < d—1,

By -y = p(1)~ ki, (14.)

where ¢ + j is the remainder in [1,d] modulo d. The equality (1.4.1) is vital in our proof
of Theorem II.2 and Lemma 5.1.1.

Example 1.4.3. A natural example of d-adic martingales is where Q2 = R, ;4 = m and
I, ; are defined as follows

Ly = [kd™", (k+1)d™), Vn,k € Z.

In the sequel, for simplicity of notation, we will always assume that 2 = R as this does
not change the d-adic martingale structure. Denote also by |I| the length m([) of I € D.
In particular, if d = 2" for some n € N, we can let 2 = R", and define

D ={27%[0,1)" +q): q €Z"}, VkeZ.

Then D = {27%([0,1)" + q) : k € Z,q € Z"} is the family of all 2"-adic intervals. Indeed,
this is the dyadic filtration on R".
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CHAPTER 1. PRELIMINARIES

As in Definition 1.3.9, we define the d-adic martingale BM O space as follows:

Definition 1.4.4. The martingale BM O space of d-adic martingale denoted by BMO%(R)
is the space of all locally integral functions b such that

En( i |dkb|2>

k=n+1

1/2
< 0. (1.4.2)

||b||BMod(R) = sup |
nez 00

Remark 1.4.5. Notice that BMO%(R) is the martingale BM O space associated with d-adic
martingale for d > 2.

For h € LY°(R), we define the d-adic martingale square function

S(h) = (Z |dkh|2> "

keZ

Definition 1.4.6. The d-adic martingale Hardy space is defined by
HY(R) = {h € Li(R) : [Pl gary := [1S(W)||rawy < 00} (1.4.3)

Remark 1.4.7. By the same arguments in Theorem 1.3.12, we have (H¢(R))* = BMO%(R).

1.5 Noncommutative L, -spaces

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace
7. Denote by M the positive part of M. Let S, (M) be the set of all x € M, whose
support projection has a finite trace, and S(M) be the linear span of Sy (M). Then S(M)
is a w*-dense *-subalgebra of M. Let z € S(M), then |z|? € S(M) for any 0 < p < o0,
where |z| := (2*2)/2. Define
Il = ().

Thus || - ||, is @ norm for p > 1, and a p-norm for 0 < p < 1. The noncommutative L,-
space associated with (M, 7) is the completion of (S(M), || - ||,) for 0 < p < oo denoted
by L,(M,7). Let Lo(M,7) be the family of all measurable operators with respect to
(M, 7). We also write L,(M,7) simply by L,(M) for short. When p = oo, we set
Loo(M) := M equipped with the operator norm. In particular, when p = 2, Ly(M) is a
Hilbert space. We will view M as a von Neumann algebra on Ly(M) by left multiplication,
namely M < B(Ly(M)) via the embedding x — L, € B(Ly(M)), where x € M and
L.(y) :=x-y € Ly(M) for any y € Ly(M). Hence in this way, M is in its standard form.
p

It is well-known that for 1 < p < oo and p' = P~
p

(Ly(M))" = Ly(M).

We refer the reader to [78] for a detailed exposition of noncommutative L,-spaces.

If H is a Hilbert space and M = B(H) equipped with the usual trace Tr, then L, (M)
is the Schatten p-class on H and denoted by S,(#). Denote by 7, @1, the rank 1 operator
on H given by

m@mn2(n) =mn,n), VneH,
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1.6. NONCOMMUTATIVE MARTINGALES

where 7, and 7, are two vectors in H. Then 7, @ 7o € S(B(H)), and for any 0 < p < oo

71 @ nalls, ) = mll#llmells-

Now we present the tensor product of von Neumann algebras. Assume that each My
(k =1,2) is equipped with a normal semifinite faithful trace 7. Then the tensor product
of M; and My denoted by M;® M, is the w*-closure of span{z, @xs|r; € My, 29 € My}
in B(La(M;) ® La(My)). Here Lo(M;) ® Ly(My) is the Hilbert space tensor product of
LQ(.Ml) and LQ(MQ)

It is well-known that there exists a unique normal semifinite faithful trace 7 on the
von Neumann algebra tensor product M; ® M such that

T($1®.’E2) =T (1’1)7'2 (1‘2), Vxl ES(M1>,V1’2 GS(MQ)

7 is called the tensor product of 7 and 7 and denoted by 71 ® 75.
Let M be the algebra of d x d matrices equipped with the usual trace Tr. Denote by
try := éTr the normalized trace on M. For k > 1, let

k
(MF*, tr3*) = @ (My, try)
i=1
be the tensor products in the sense of von Neumann algebras. We define
((% Md, % trd) == (%? (Md,trd)
k=1 k=1 =1

M, for simplicity. (see [34,

as the inductive limit of (M$*, tr$*)s>1, also denoted by
= k=1

Lemma 4.5] for the inductive limit)

In this thesis, we are concerned with the von Neumann algebra tensor product of
B(Ls(R)) and M, where B(Ls(R)) is endowed with the usual trace Tr, and M is a
semifinite von Neumann algebra equipped with a normal semifinite faithful trace 7.

In the sequel, we will identify any left multiplication L, € B(Ly(M)) and = € M.
Then for any 7' € B(Ly(R)), T ® L, € B(L2(R)) @ M — B(L2(R)) ® B(Ly(M)) =
B(Ly(R) ® Ly(M)), and

|7 ® Lo || 1, BLa®)em) = T ||s, @l 2] 2, am)-
In the following, we write T'® L, as x - T', and thus
(- T)(f) =T ® Lo(f) = v - T(f), Vf € Lo(R, Lo(M)). (15.1)

1.6 Noncommutative martingales

This section is devoted to noncommutative martingales. The reader is referred to [78§]
and [94]. Assume M is a von Neumann algebra equipped with a normal faithful semifinite
trace 7 and N is a von Neumann subalgebra of M such that the restriction of 7 to N/
is again semifinite. Then there exists a unique map € : M — N satisfying the following
properties:
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1. € is a normal contractive positive projection from M onto N;
2. E(axb) = a&(z)b for any x € M and a,b € N;
3. To&E =T1.

£ is called the conditional expectation of M with respect to N. Besides, £ extends to a
contractive positive projection from L,(M) onto L,(N) for any 1 < p < oo, still denoted
by £.

Recall that a filtration of von Neumann subalgebras of M is an nondecreasing sequence
(My,)n>1 of von Neumann subalgebras of M such that U, M, is w*-dense in M and
the restriction of 7 to U, M,, is also semifinite for every n. Let &, be the conditional
expectation of M with respect to M,,. A sequence z = (z,) C L1(M) is called a
martingale with respect to (My,)n>1 if E,(Tpi1) = z, for every n > 1. In addition, if
T, € L,(M) with p > 1, z is called an L,-martingale with respect to (M,,),>1. Denote
the martingale differences by d,z = x,, — x,,_1 for n > 1 with the convention xq = 0.

Remark 1.6.1. Let 1 < p < 0o and = = (z,,) a noncommutative martingale such that

sup ||z, ||, < oo.
n

Then there exists zo, € L,(M) such that x, = &, (z) for every n.

We are going to introduce two particular noncommutative martingales: the CAR
algebras and tensor products of matrix algebras.

1.6.1 CAR algebra

We consider the following Pauli matrices:
(10 (01 (0 —i
0=\ —1) {10 27\ o)

Con1=00® - 00R01 Q1L+, ¢ =00R---00@02Q1X1---,

For n > 1, define

where oy and o3 occur in the n-th position. Then (¢, ),>; are selfadjoint unitary operators
and satisfy the following canonical anticommutation relations (CAR):

cick + cre; =20,  J, k> 1. (1.6.1)

The CAR algebra (Clifford algebra) denoted by C is the von Neumann algebra generated
by (¢n)n>1. Let us give more details.

Let Z denote the family of all finite subsets of N. For a nonempty A € Z, we arrange
the integers of A in an increasing order and write A = {k; < ks < -+ < k,}. Define
max(A) := k, and

CA = CkyCly =+ Ck,, -
If A =10, we set max(P)) := 1 and ¢4 = 1. Then c4 is unitary for any A € Z. If A is
a singleton {k}, we still use c¢; instead of cgry. Let Cy be the family of all finite linear
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combinations of (ca)aez. Then Cy is an involutive algebra. Define 7 to be the linear
functional on Cy given by

T() = ay, (1.6.2)
where £ = > ascq. One can check that 7 is a positive faithful tracial state on Cy. Then

the CAR a?gegbra C is the von Neumann algebra of the GNS representation of 7. Note
that (ca)aez is an orthonormal basis of Ls(C). We refer the reader to [83] and [79] for
more information on CAR algebra.

Let C, be the von Neumann subalgebra generated by {cs : max(A) < n} for any
n > 1. It is clear that C, is of dimension 2", and (C,),>1 is a filtration of C. Then for any
be L,(C) (1 <p<o0),

db= Y b(A)ca, Vn>1,

max(A)=n

where b(A) = 7(c¢ - b).

1.6.2 Tensor products of matrix algebras

Let ., = MJ" be endowed with the normalized trace tr"™. We embed ., into .#
viathemapr € 4, — 2@ 1®1®--- € A. Then (A,),>1 is a natural filtration of
A . We will give an orthonormal basis of Lo(.#) in Section 4.3.

1.7 Semicommutative d-adic martingales and mar-
tingale Besov spaces

In this section, we are concerned with semicommutative d-adic martingales and mar-
tingale Besov spaces. Firstly, we introduce the definition of semicommutative d-adic mar-
tingales. Then we give the definitions of martingale Besov spaces for semicommutative

d-adic martingales, CAR algebra and .# = ® M.

We define the semicommutative d-adic martmgales in the same way as in the com-
mutative setting. Similarly, denote by LP¢(R,L;(M)) the family of all f such that
1;,, - [ € Li(R,Li(M)) for any n,k € Z. Then Vf € LY*(R, L;(M)), the sequence
(fn)nez is called a semicommutative d-adic martingale where

fu = E(f|F) = P e (1.7.1)

k*oo

For any f € L1(R, L1(M)) and g € Lo (R), define

<g,f>=/R§'fdm.

One can easily deduce that (g, f) € Li(M) from the triangle inequality. By a slight
abuse of notation, we use the same notation (-,-) to denote the inner product in any given
Hilbert space. Besides, by (1.7.1), the martingale differences are given by

d—1
dof = > Y hi@(hi,f), VfeLPR,Li(M))andneZ.

|I|:d7n+1 =1
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Note that (h%, f) € Li(M). Later, we will give a more general definition of martingale
differences.

Remark 1.7.1. By Remark 1.6.1, if f € L,(R, L,(M)) for 1 < p < oo, then

in L,(R, L,(M)) (in w*-topology for p = c0).

We will utilize h' to give a direct representation of 7, which is easier to handle. Tt is
well-known that Ly(R, Lay(M)) = Ly(R) @ Lo(M). In the sequel, for any f € Lo(R) and
x € Ly(M), weuse “z- f 7 (or “f -z 7) to denote f @ x € Ly(R, Ly(M)) for the sake of
simplicity.

Now we calculate 7. Let b € L'°°(R, L1(M)). For f € Ly(R, Ly(M)), we have

wlf) = 3 db- fos

k=—00
[e%S) d—1
= 2 ( > Zh3®<h’}7b>>< > 11®<1;af>> (1.7.2)
k=—o0 |I|7d*k+1 i=1 |[I|=d—F+1 | |
-3 St ()
1€D =1 |]|

which by (1.5.1) can be rewritten as

ZZM Ry, b <|Iy’f> (1.7.3)

IeD i=1

The adjoint operator of 7, is given by Vf € Lo(R, Ly(M))

T (f) =Y Ero1(dib*dif)

kEZ

:ZZI% “(h, f) (1.7.4)
I1€D i= 1| |

—ZZ bhl h},f>.
I€D i= 1|I|

From (1.7.3), we can see that the martingale paraproduct 7, with symbol b is induced
by the operator-valued Haar multiplier (b%);cp 1<i<a—1 where

by = (b, b).

Hence, in general, we define 7, in the following way: for any operator-valued Haar multi-
plier b = (b})1epi<ica—1 C Lo(M), m, with symbol b is defined as follows

ZZh’bZ<|I| > Vf € Ly(R, Ly(M)). (1.7.5)

1€D i=1
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Besides, the corresponding sequence of martingale differences (d,,b),cz with symbol b is
given by
d—1
dib= > > hi-b;, VneL (1.7.6)
[I|=d—n+1 i=1
Thus each operator-valued Haar multiplier in Ly(M) corresponds to a sequence of mar-
tingale differences one-to-one. In the sequel, m, is defined as in (1.7.5), and for consistency
of notation, we identify b} and (h%,b) by a slight abuse of notation.
As mentioned before, we use Haar wavelets to define martingale Besov spaces for
semicommutative d-adic martingales.

Definition 1.7.2. The martingale Besov space B4R, M) (0 < p < o0) of the semi-
commutative d-adic martingale is the space of all operator-valued Haar multipliers b =
((h,b))1epi<i<d—1 C Lo(M) such that

Il = ZZ TN 1/p< (1.7.7)
B(RM) - HEE 0. o

IeD i=1

Remark 1.7.3. It is clear that when 1 < p < oo, BP(R,M) is a Banach space. When
0<p<l, Bg(R, M) is a quasi-Banach space.

Remark 1.7.4. Tt is easy to see that for z € S(M), then b = h} @ z € S(L(R) ® M)
belongs to BE(R, M) for any 0 < p < co. Hence, the subspace S(La(R)@M)NBL(R, M)
is dense in BE(R, M).

Remark 1.7.5. Recall that martingale differences are defined in (1.7.6). One can verify
that for any 0 < p < oo and b € BY(R, M)

1/p
bllssern ~a ( S bl r v ) |

k=—o00

In particular, if M = C, the martingale Besov space Bg(R, C) is as same as that in [18].

As for the martingale Besov spaces concerning the CAR algebra and .# = ® My, we
k=1
use the martingale differences to formulate their definitions.

Definition 1.7.6. The martingale Besov space B,(C) (0 < p < oo) for the CAR algebra
is the completion of the set consisting of all b € §(C) such that

1/p
[bll3, 0 = (Zz‘wdkb|\w) < oo,

with respect to || - ||B,c)-
Definition 1.7.7. The martingale Besov space B,(.#) (0 < p < oo) for .4 = ® My is

k=1
the completion of the set consisting of all b € S(.#) such that

0o 1/p
Il = (3 Il ) <0
k=1

with respect to || - ||B,(.x)-

Remark 1.7.8. When 1 < p < 00, B,(C) and B,(.#) are Banach spaces. When 0 < p < 1,
they are quasi-Banach spaces.
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1.8 Homogeneous spaces

In this section, we introduce some fundamental concepts and important theorems
for homogeneous spaces, which can be found in [23]. We begin with the definition of
homogeneous spaces. Recall that d is a quasi-metric on €2 if

1. d(z,y) >0, Va,y € Q and d(z,y) = 0 if and only if x = y;
2. d(z,y) = d(y,z), Yz,y €Y
3. there exists a constant Ag > 1 such that

d(z,y) < Ao(d(z,2) +d(z,y)), Vz,y,z €. (1.8.1)

Denote by B(z,7) :={y € Q : d(y,z) < r} the open ball centered at = with radius r.
In this paper, all quasi-metric spaces are assumed to have the doubling property: there
exists a positive integer A; € N such that any ball of radius r can be covered by A; balls
of radius 3.

Definition 1.8.1. A o-finite measure space (€2, F, 1) equipped with a quasi-metric d is
called a homogeneous space if u is a Borel measure of homogeneous type:

0 < pu(B(x,2r)) <2%u(B(z,r)) < oo, VYzeQr>0, (1.8.2)
where the constant C), is independent of z and r.

In [23], Coifman and Weiss defined Hardy spaces on homogeneous spaces by regarding
their elements as linear functionals acting on some appropriate quasi-normed spaces. In
order to state their definition, we need to introduce the notions of atoms, BMO and
Lipschitz spaces on homogeneous spaces.

Definition 1.8.2. If 0 < p < 1 < ¢ < oo and p < ¢, we say that a function a is a
(p, q)-atom if

1. supp(a) C B where B is a ball;

Q=
3=

2. [lallg < (u(B))="7;
3. Jqadu =0.
Definition 1.8.3. A locally integrable function f is called a BMO function if

1
n(B)

/ |f_fB|d:u’ < 00,
B

| fllBaro = sup
B

1
where fp := i) [ fdu, and the supremum runs over all balls B. Denote by BMO(u)
i
the BMO space consisting of all BMO functions.
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Definition 1.8.4. For a > 0, a locally integrable function [ is called a Lipschitz function
if
1(z) — l(y)] < Co (u(B))* for any =,y € Q and any ball B containing x,y.  (1.8.3)

Moreover,

1Ulz, = inf{Cq : [l(z) = I(y)| < Ca (u(B))*, Va,y € B}, (1.8.4)
where the infimum runs over all balls B. Denote by L£,(1) the space consisting of all
Lipschitz functions.

It is well-known that each BMO function can be regarded as a continuous linear
functional on the vector space generated by finite linear combinations of (1, ¢)-atoms for
1 < ¢ < oo (cf. [23]). Hence we can define the atomic Hardy space Hy?(u) (1 < g < 00)
as follows:

Ho' (1) =
{f € (BMO(p)": f= i)\jaj, a’ is a (1,¢)-atom and i I\ < oo} (1.8.5)
=0 =0
endowed with the norm ] ]
”f”H;gq(u) := inf {i\)\ﬂ f= i))\jaj, @’ is a (l,q)—atom} .
j= j=

Similarly, each Lipschitz function [ € L, (1) can be also regarded as a continuous
linear functional of the vector space generated by finite linear combinations of (p,q)-
atoms where 0 < p <1 <¢g <oo and o, = %D — 1 (cf. [23]). We define the atomic Hardy

spaces HY(u) as follows:
H ()

= {f € (E%(,u))* c f= i)\jaj, @’ is a (p, q)-atom and i AP < oo} (1.8.6)
=0

J=0

endowed with the quasi-norm
1

oo ; o0
| £l 7oy = inf (Z |/\j\p> cf=)_Nd, @ is a (p,g)-atom
=0 =0

Although the Hardy spaces vary with p and ¢ according to the above definitions, the
following theorem, which can be found in [23], shows that they actually depend only on
p. Consequently, this enables us to define the Hardy spaces HL (i) for 0 < p < 1 to be
any one of the spaces HY?(u) for 0 < p < ¢ < 00,1 < g < 0.

Theorem 1.8.5. HY (1) = HY™ (1) whenever 0 < p <1< ¢ < o0 andp < q.
We end this section with the following duality theorem in [23].
Theorem 1.8.6. (H} (1))" = BMO(p), and (HL(p)" = La, (1) for 0 <p < 1.

The proofs of Theorem 1.8.5 and Theorem 1.8.6 in [23] are very technical. In Section
3.1, by employing martingale methods, we give much simpler proofs of these facts. Our
approach is based on the fact that HE, (1) for 0 < p < 1 is the finite sum of several dyadic
martingale Hardy spaces.
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Chapter 2

Bilinear decompositions on
probability spaces

In this chapter, we first prove Theorem I.1. Then we will present a characterization of
martingale Lipschitz spaces A;(a;,), which is needed to show Theorem 1.2 (see Theorem
2.2.4 below). At last, we will prove Theorem 1.2. Our method is mainly based on the
atomic decomposition.

2.1 Bilinear decompositions on H'(Q2) x BMO(Q)

In this section we prove Theorem I.1. Let (2, F, P) be a fixed probability space and
let fe HY(Q), g€ BMO(Q). If we assume that f and g are finite martingales, then we
may write their pointwise product f - g as follows

where

9= defdg, Ta(fig) =3 firdrg and Ts(f.g) ng \duf.
k=1

k=1

We will estimate I1;(f, g), 2(f, g), I3(f, g) separately. To do so, we will make use
of the atomic decomposition of H(2). It follows from our arguments below that the
operators IIj, I, and II3 are well-defined (in a pointwise sense) on the product space
H'(Q) x BMO(). Hence, the proof of Theorem 1.1 will follow from the boundedness of
11y, I, and II3, (2.1.1) and a limit argument.

In §2.1.4, we present a direct way to deal with II3(f, g), which avoids the use of the
atomic decomposition.

Proof of Theorem I.1. By Theorem 1.3.8, there always exist two functions f* and f? such
that f = f* + f¢ where f" € h'(Q) and f? € hL(2). For any such decomposition of f,
since f" € h'(Q), there exist {\;},., C R and simple (1,2)-atoms {a’},., such that

= nd, M = D2 vl (2.1.2)
Jj=1 j=1
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where we assume supp(a’) C A, and A, € F,, with P(A,;) >0 for j > 1. Then

IL(f,9) = iAjHi(aJ,g) +IL(f4 ), i=1,2,3. (2.1.3)

=1

2.1.1 Estimates for II,(f", g) and II,(f9, g)

We are going to show that II; is a bounded bilinear operator from H*(2) x BMO(2)
to L*(Q2). In fact, the boundedness of II; follows naturally from the duality between
HY(Q2) and BMO(R), i.e. Theorem 1.3.12 (see [32]). For the reader’s convenience, we
give a proof based on atomic decompositions.

We first focus on II;(f", g), which can further be decomposed into atoms as described
in (2.1.2). It thus suffices to consider

11, (aja g) = Z dka']dk:ga
k=1

which can further be localized as dpa’ = 1 An, dpa’ when k > n; + 1 since A, € F,,
namely

i(a,9) = > la, dvd’dig.

k:nj+1

Now, by applying the Cauchy-Schwarz inequality, we derive the estimate

|

~ 3
E ( > 1Anj’dkg|2)]
k=n;+1

- 3
EEnj( > 1Anj|dk9|2)]

k:nj+1

o 3
k:nj+1

1

< P(An) "2 [lgllomoey P (An,)?

||H1<aﬂ',g>||1—E( S 1, dideg
k:nj-—l—l

2

<

E|l > \dkajIZ)

k:nj—f—l

< lla’ll

1

< P(A,,)"

where the fourth inequality follows from the definition of the atom. Hence, we deduce
from the definition of the bmo—norm that

I (a?, g)]|x < 191lbmo(e)- (2.1.4)
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2.1. BILINEAR DECOMPOSITIONS ON H!(Q) x BMO()

By using (2.1.4) and (2.1.3), we have by Theorem 1.3.13

1T (f, 9)[h < Z X119 llbmoce) +

fldyg
1

< 17 g lmotey + (sup ||dkg||oo) (Z IIdkdel>
k=1 k=1
S (1" Iy + 1 Nnacey) gl Barocey
Since the decomposition of f = f* 4 f¢ is arbitrary, by Theorem 1.3.8 we conclude
1T (f, @)l S I f o llgll Bao)- (2.1.5)

2.1.2 Estimates for II,(f", ¢g) and II,(f9, g)

We are going to show that I, is a bounded bilinear operator from H'(Q) x BMO(f)
to H'(€2). Arguing as in section 2.1.1, we perform the localization on each term

Mo(a’,g) = Y ah_drg = Y. la, af_ydrg.
k=1 k=n;+2

It is easy to verify that

di(My(a?, g)) = af_drg, k>n;+2 and dp(Ily(a’,9)) =0, 1<k<n;+1.

We consider the corresponding square function

[N

5 (Ta(e',g)) - ( 5 (|a;;_1|21Anj|dkg|2))

k:nj +2

< (@) ( > i, (|dkg|2)>

k:n]- +2

N

Then by invoking the Cauchy-Schwarz inequality, we have that

@’.9))

1
( > La,, (Jdrg)? )}
k=n;+2
%
k=mn;+2

_1 1
< P(An) 2 llgllBmo@) P(An;)?

Iy (a?, 9)ll 1) = E [5 (Hz

< (@)l |E

< lla’[l2

and hence, '
L2 (a”, 9)l| 1) < |9l BMO9)- (2.1.6)
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Similarly, by Theorem 1.3.13

H(Q =k
(@)

|T(£7, 9)]

M8

N

1

3
Il

I
gk

I
Mg 3

—_

3
[

[e.9]
<

m=1

and hence,

Im(r, )|

E

&=

E

(dmfdl

H(Q) < Hdeh;(Q)HQHBMO(Q)-

K

o (s

(H2(dmfd, 9))]

En
k=m+1

> ldufldrg]

[e.o]

Z ’%9‘2

k=m+1

|dn f B, (

[e.9]

By using (2.1.7), (2.1.2) and (2.1.3), we have by Theorem 1.3.8

IT(f,9) o) < [Ma(f",9)

[e.e]

e (. 9)]

k=m+1

1
2
2

)1
)
|

|

)

oo

(2.1.7)

HY(Q)

<> Nlllglsmow + ||fd||h‘f(Q)||g||BMO(Q)

Jj=1

S (1 M + 1) 9l mrro)-

Since the decomposition of f = f* 4 f¢ is arbitrary, by Theorem 1.3.8 we conclude

ITL(f )l S 1flla@llgllzrow)-

2.1.3 Estimates for II3(f" ¢g) and II3(f%, g)

We are going to show that I3 is a bounded bilinear operator from H'(Q) x BMO()
to H®(€). To this end, we first deal with II3(f", g). Note that

S(H?,(fh;g)) =S (

k=1j=1

e}

o

=1 +IQ

YD Nige1dia’
Z |91c—1|2|dl~c0lj|2

(k:nj —+1

j Z |gk—1 — gnj|2|dkaj|2
k=n;+1

1
)2
2

)1
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+3

J]=

(2.1.8)

) <> A8 (Z gkldkaj>
j=1 k=1
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2.1. BILINEAR DECOMPOSITIONS ON H!(Q) x BMO()

It thus suffices to handle Iy and I,. For I, we have

oo oo 2
E(L) <Y INE[ Y La, g1 — G, || dia? |?
7=1 k:n]-—l—l

1
2

1
o [e.0] oo 2
<YINIE ( > la,lgr-1— g|2|dka]|2> +E[ > 1a,l9— gnj’2|dka]’2>

7=1 k:nj—f—l k:nj—i—l

o [ oo 1 %
<IN P(A)? |E ( > g — 9|2’dka3|2) +E (1Anj 9 — gnj|5(aj))
J=1 L ]

k:n]-—f—l

D=

; 1
+ |la? ||2P(An,) 2|l 9]| Brro()

<IN P(AL)? E( > \dkaj|2Ek(|gk—1—9|2)>

j=1 k=n;+1

o0

l .
<2 [NIP(A) 2 |9l Bao@ lld’ [l
j=1

and so,
E(L) S 1o llgllsaow- (2.1.9)

Next, we obtain an estimate for I5. To this end, notice that

I < (Z L4, |/\j|S(aj)> gl + D2 NI, [gn, — 91S(a?)

=1 =1
= ]3 + [4.
Since @’ is a simple (1,2)-atom, we have ||14, S(a’)|l; <1 and

> La, |A18(a)

Jj=1

<SSV S 1 e
j=1

1

By Lemma 1.3.16, we have

lgllzarow@) < 1" ln@ 9l saro). (2.1.10)
1

||—73||L4>(Q) S Z 1Anj |)\j|5(aj)

J=1

The following estimate is implicit in the proof of (2.1.9):
E(L) < X INIP(A) 2 llgllsrowllalla S 1L lnwllgll srow):- (2.1.11)
j=1

By combining (2.1.10) and (2.1.11), we deduce that

12l e @) S Hfh”hl(Q)HgHBMO(Q)- (2.1.12)

In conclusion, by (2.1.9) and (2.1.12) we get
(" o) S W 9]l saro- (2.1.13)
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It remains to deal with II3(f9, g). We have

S(II5(f% g (i Gr—1|?|dr ] 2) Z|gk—1||dkfd|
k= k=1
<3 g6r — lldes + 1ol (z dkfd)
k=1 k=1

By Lemma 1.3.16,

o (Ee)

For the remaining term, we have

E (Z gt — g||dkfd|) R (z o F Blgp — g|)
k=1

k=1

< gl Brow) (Z ||dkfd||1>
k=1

S <Z ||dkfd||1> gl zarow = 1f @ llgllBrow.  (2.1.14)
k=1

L*(Q)

and so

B (X b = al) <1 oo, 2115)
k=1
Hence, by (2.1.14) and (2.1.15), we get

(% 9oy < I @ llgll zro- (2.1.16)

By (2.1.13) and (2.1.16), we obtain

IT(f, Doy S (1 1@ + 17l lgllsaro@:

Thus we conclude
s(f, Do) S Nl llgllzrow):- (2.1.17)
This completes the proof of Theorem I.1 ]

2.1.4 Another method for handling II3(f, g)

In this subsection we present a different method for dealing with II3(f, g), which is
much neater and simpler than the one presented above, and it relies on the following
theorem which has been shown in [32].

Theorem 2.1.1. If g € BMO(Q) and go = 0, then (¢*)o S |l9llBmow) and g* €
BMO(S). Moreover, ||g*| symow) S gl Brmo)-

We begin with a pointwise estimate for S(II3(f,g)). Towards this aim, note that
dr(I13(f, 9)) = gr—1drf, which implies that

|=

S(ILs(f, 9)) <Z |g—1] Idka) < g [S(f) < i+ Jo,
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where

Jyi= g = (g9)olS(f) and Jy:= S(F)|lg]l srow-

Clearly,
| 2llr S Il llgll Baoc)- (2.1.18)

By Theorem 2.1.1, we get g* € BMO(S2), and hence by Lemma 1.3.16

| N1lle ) S g™l Brro@ IS(HIIL S (1 f e @) |9l Braro)- (2.1.19)

As S(II3(f,9)) < Ji + J2, by combining (2.1.18) with (2.1.19), and by the fact L,(Q2) C
L*®(2), we conclude

IMs(f; 9)l[ o) = 1SMs(f; 9)lIe @) S [1f L@ llgllzmow)

as desired.

We would like to end this section with the comparison between our proof and the one
provided in [10]. Though both arguments heavily rely on the atomic decomposition of
H'(Q), they further use weak atom decomposition for the diagonal Hardy space while our
proof proceeds more directly. Moreover, the treatment of the most technical term Il3 is
significantly simplified in this section thanks to Theorem 2.1.1.

After the submission of our paper, the authors in [10] also independently discovered a
similar way to estimate II3 by martingale maximal functions of BM O functions. However,
they utilize the John-Nirenberg inequality for the martingale maximal functions of BMO
functions instead of Theorem 2.1.1.

2.2 Bilinear decompositions on H”(2) x Ay(«q,) for 0 <
p <l

In this section, we give a proof of Theorem 1.2. Arguing as in the proof of Theorem
I.1, it suffices to establish appropriate estimates for the bilinear operators I1;, I, and I5.

Let (2, F, P) be a fixed probability space. If we consider the filtration Fy = {0, Q}
and F = F for all k > 1, then HP(Q) = L,(Q2) for 0 < p < oo. It is well-known that
(L,(€2))* # {0} if and only if the probability space (§2, F, P) contains at least one atom
with non-zero measure when 0 < p < 1. This means that (H?(Q2))* = {0} may occur.
Therefore, we are only concerned with regular martingales where every F is generated
by countably many atoms.

To prove Theorem 1.2, we start with the following lemma, which holds for general
martingales that are not necessarily regular. This will be familiar to the experts in the
area, but we will enclose the proof here for the sake of completeness.

Lemma 2.2.1. For any 0 < p < 1, we have L,(2) C H? (Q).
Proof. By Doob’s maximal inequality, for any f € L;(£2) and for any A > 0 we have
1
P(P >N <y dP. 2.2.1
S N 22.1)
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Without loss of generality, we may assume || f||; < 1. Then

171 = [ 1rrap =p [T P(57] > NN A

—p/ (f* > AN~ 1d)\+p/ P(f* > AN Ld)

<p/ /\p_ld)\—i—p/ - (/ |f|dP> AL
0 1 A \J{f>a

f*
14y K (/ /\P‘Qd/\>dP
sy

P *|p—1
=14 1— |fr~t) P
L =)

1

1+—/ iP < ——.
{f>1} i I—p

This implies that for any f € L;(Q)

1 1
ez < (7—)"Ifl1,
£ 1|22z, () (1_p) /1l

which yields the desired result. O]

For regular martingales, we have Ly(Q) C HP (Q) = HP(Q2) = h?(Q2). In what follows,
the martingales are always assumed to be regular and every F is generated by countable
atoms.

Corollary 2.2.2. For0 <p<1and1 < q < oo, H?(Q) = HI(Q).

Proof. By considering the aforementioned atomic decomposition of H?(2) and Definition
1.3.7, we have H?(Q) = H%™(Q). Tt is easy to see HZ™(Q) ¢ HZY(Q) ¢ H%'(Q). Tt thus
suffices to show that H%'(Q) ¢ H?(Q). By Lemma 2.2.1, if a is a simple (p, 1)-atom, then

lallzr@) Sp llally,

which implies that a € HP(Q). Hence, HY' (Q) € H?(Q) and so, H?(Q) = HZ(Q). O

2.2.1 Characterization of martingale Lipschitz spaces

In this subsection, we give a characterization of martingale Lipschitz spaces that ap-
pears to be new and useful in our argument. We will first recall the definition of martingale
Lipschitz spaces. For 0 < p < 1 define

e = { € Lo 5oy =s0p sup )50 ([ 1= o) < oo,

" (2.2.2)
where ¢ =1 or ¢ = 2, ap::%—1>0.
In [91], Weisz showed that (H?(Q2))* = Ay(a,) and Aj(a,) = As(ay).

Corollary 2.2.3. For any g € Ai(oy,), we have ||g — golloo Sp |9la1(ap) -
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Proof. By duality and Lemma 2.2.1, for any f € Ly(€2),
E(f(g—90))| = [E(f = ) | Sp Il ll9lascon) So 1 F111G0A s (-
The above estimate together with the fact (L1 (Q))* = Lo (92) yields

19 = golloc Sp l9llascay)-
which finishes the proof. O

By virtue of Corollary 2.2.3, we have the following property of martingale Lipschitz
spaces.

Theorem 2.2.4. If g € Ai(ay,), we have [[14 - |9 = gnlllc Sp P(A)*?||gllA;(ap), for any
n € N and any A € F,.

Proof. Note that when P(A) = 0, the desired result holds trivially. Fixn € Nand A € F,
with P(A) # 0. For k > 0, let 7! := {B € Fyyn : B C A}. Note that the union F* of
all 7! is exactly {B € F|B C A}. Hence, if we define

Pa(B) = ]ng; (B e FY)

then (A, F4, P4) is a probability space. Note that for any g € L;(A4, F4, P4) one has
E(g|Fi) = 1a - B(g| Fiin)-

Denote E(-|F#') by El. It is easy to verify {Ei(g)}r>0 is also a regular martingale on
(A, FA Py). If g € Ai(ay), then for B € Fi with P(B) # 0,

Py (P(B) " ([ o= gurnliP)
< P(A)*[|g]l a1

PaB) o ([ 19— Bl (g)ldPa)

which implies that by Corollary 2.2.3,

11419 = gnllloe = 114 - 19 = E5 ()l Sp P(A)** (9]l as(ap)-
This completes the proof of the theorem. O

Remark 2.2.5. By Theorem 2.2.4 and (2.2.2), we conclude that for g € Ay(a,) we have
the characterization

191181 (a) 22 sUD sUP P(A)™[14 - |g = gn|[|oo- (2:2.3)
n>0 AEFn
Note that the results in [56] can be deduced from (2.2.3).

2.2.2 Proof of Theorem 1.2

As in the proof of Theorem 1.1, we divide the proof into three parts. Without loss of
generality, we may assume that fy = gy = 0.
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Estimates for II;(f, g) and II3(f, g)

The boundedness of II; from HP(€2) x Ay (a,) to L1 (€2) follows directly from the duality
between H?(Q) and A;(a,), we omit the details.

We will also prove that Il is a bounded bilinear operator from H?(Q2) x Aq(cy,) to
H?(€2). Note that

S(Ms(f. 9) Zlgk PldefI? < (g7)*S(f)% (2.2.4)

Hence we conclude from Corollary 2.2.3 and the L., boundedness of the maximal function
that

s (f, ey S NG IEES ) < Mgl @) Sp 1 V@195, 0y, (2:25)

as desired.

Estimates for TIy(f, g).

We will show that II5 is a bounded bilinear operator from H?(Q) x A;(a,) to H*(Q).
Note that H?(2) = h?(2), and hP(§2) admits an atomic decomposition.
Then there exist {A;},., C R and simple (p, c0)-atoms {a’},., such that

f=> 50 fllaene ~ (Z|)\j|”> : (2.2.6)
Jj=1 j=1

where we assume supp(a’) C Ay, and A, € F,, with P(A, ) > 0 for j > 1. By arguing
as in the corresponding case in the proof of Theorem I.1,

S(Iz(d’, g)) ( > la,laiyl? |dk9\2> < [(a)] ( > la, |dk9|2) - (227)

k=n;+1 k=n;+1

o 3
E<1Anj > \dk9|2) ]
k=n;+1

< [lo?[loo (P(Anj) (E > \dkg|2)>
k=n;+1

< P(An,) 7% (P(An)ll9ll3, 0y P(An)) H227)
— 19]|rs(ay) P(An,) 7 P(A,, )

g HgHAZ(ap) S/p HgHAl ap I

Hence,

E [S(I(a’, 9))] < [I(@)" oo

where the last inequality follows from the condition that «, = % — 1. As a consequence
of the above estimates, we have that

IL(f. ey < 2 Il [ESTL @, 9))] S 1 Wi 1915 o (2.2.8)

j=1

This completes the proof of the theorem.
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Chapter 3

Bilinear decompositions on
homogeneous spaces

This chapter is devoted to extending Theorem 1.1 and Theorem I.2 to spaces of homo-
geneous type. Our approach is on the basis of the existence of dyadic systems on spaces
of homogeneous type developed by Hytonen and Kairema in [43]. We also show that
HY () for 0 < p < 1 is some finite sum of several dyadic martingale Hardy spaces on
homogeneous spaces.

3.1 Dyadic systems on homogeneous spaces

In this section, we start with introducing dyadic systems on homogeneous spaces,
which first appeared in the work of Hyténen and Kairema [43]. With the help of these
dyadic structures, we then show that HZX (1) is exactly the finite sum of martingale Hardy
spaces associated with some adjacent dyadic martingales, which extends Mei’s result [52]
to homogeneous spaces.

The following theorem concerning the existence of dyadic structures is due to Hytonen
and Kairema [43].

Theorem 3.1.1. Let Q) denote a homogeneous space. Suppose that the constants 0 <
co < Cp<ooandé e (0,1) satisfy

12A3C00 < co,
where Ay is specified in the definition of quasi-metric, see (1.8.1).

Given a set of reference points {zF},, o € Ap (an index set), for every k € Z, with
the properties that

(2%, 25) = cod”, (a # B) mgnd(x,zfi) < Co6*, for all v € Q,

«?

one can construct families of sets @Z CQkC QZ, called open, half-open and closed dyadic

41
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cubes respectively, such that:

Q’é and Q’C‘;M‘e the interior and closure of QF; ( )
if k <1, then either Q% C QF or Q4N QL = 0; ( )
X =UQF (disjoint union) for all k € Z; (3.1.3)
(3.1.4)

(3.1.5)

B(zk, c10%) € QF C B(zF,C16%) =: B(QL);
if k <1 and Q4 C QF then B(Q}) C B(QF),

where ¢, = (3A3) ¢y and Cy = 2A0Cy. The open and closed cubes Q’; and Q’; depend
only on the points zlﬁ for 1 > k. The half-open cubes Q* depend on zlﬁ for 1 = min(k, ko),
where ko € 7 is a preassigned number entering the construction.

It is obvious that the construction of the above dyadic systems is not unique, and
it depends on the set of the reference points {2*},. We denote this dyadic system by
2 ={Q%}1.o. Let Fr, = c({QF},) be the o-algebra generated by {Q*},. Then it is clear
that

C«Fk—l kac sl

which implies that {Fy }rez is a filtration generated by atoms. Let F = o(UgezFr). Note
that each QF is an atom of F,.

Remark 3.1.2. The standard dyadic grid on the real line is a dyadic system given by
Fo={27"m,27"(m+1)):meZ} foralkelZ.

Similarly, an example of a dyadic system on R" is given by the family of standard dyadic
cubes in R".

Recall that, for f € LP¢(Q, F, 1), the martingale maximal function, the square func-
tion and the conditional square function of f associated with (Fy)gez are given by

[N

= Iilélz?i\fkfa S(f) = (Z |dkf|2) and s(f) = (Z Ek—1|dkf|2) '
e kEZ

respectively.
Let 0 < p < 1. The martingale Hardy space H%@(/L) is defined as the completion of
the space consisting of all f € L°°(Q) such that f* € L,(Q) with respect to the quasi-norm

1 ez oy o= 1l
D

We define HY,(u) and A7, (1) by the square functions and the conditional square func-
tions respectively, with the additional assumption that

n——0oo

lim [ sup|fiPdp = 0. (3.1.6)
Q k<n

From (3.1.6), we have

Analogously, define the martingale atomic Hardy spaces H3%,(u) (0 < p <1< ¢ <
oo or p=1,1< ¢ < o0) like Definition 1.3.7.
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In order to show Theorem 1.8.6, we introduce the dual spaces of these atomic martin-
gale Hardy spaces. For 0 <p <1, ¢=1or 2 and o, = % — 1, define

BMO% () = {1 € L@+ W fllawos =500 o [ 1F = Fold < oo,
Qez Q)

A (o) = {f € Ly (1) ¢ fllaz ey = ZQI;M(Q)_‘II“’” (/Q If - f@lqdu>q < OO}.

The spaces Af (o) are called the martingale Lipschitz spaces with respect to 2. Note
that A7 (a,,) = AZ ().
Arguing as in [91], one can show that

(Hio(w) = BMO? (),
and for 0 < p < 1,

(HE (1) = AL (a).

Remark 3.1.3. Since every simple (p, ¢)-atom is locally supported, by Corollary 2.2.2; we
conclude that for O <p<1<g<ooorp=11<¢g<

Halo (1) = Hyig(p)-
Thus we are only concerned with H}, , (1) := HE%, (1)

Proposition 3.1.4. For 0 < p < 1, the martingale Hardy spaces defined above are
mutually equivalent. Namely, H7, (1) = H), ,(p) = hiy (1) = HY, ().

m,

Proof. Let p € (0,1] be fixed. First, we show Hy,(u) = H} ,(u). Suppose that f €
H}, (). Then for any n > 0, by a well-known inequality of Burkholder-Davis-Gundy,

[NJiS)

k=—n-+1 —n<k<n

/. (If—n|2 P> |dkf|2) ans [ swp IfiPdn s [ () du
which yields by letting n — oo and by Fatou’s lemma

SO < (177l

Thus HY, , (4) C HY ().
Conversely, if f € HJ, (i), then for n > 0,

P

/Q sup \fk!pdﬁb</ (!f—n|2+ Z |dkf|2) dp,

—n<k< k=—n+1
and hence

/ sup Ifklpdusfgksgp |fk|pdu+/9|5(f)|pdu< 0. (3.1.7)

Q —n<k<n

Then by letting n — oo and applying Fatou’s lemma, we obtain || f*||, < co and

1Ml < 1S CH -
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Therefore, Hf,(u) C H), ,(p) and H}, () = HE ().

One shows H? ( ) = hY(p) in a completely analogous way. To show Al (u) =
HY, 5(p), one can argue by mimicking the corresponding proof in [91] and [92]. We omit
the details. O

The following theorem can be found in [43] and ensures that there exist enough dyadic
cubes to cover all balls on homogeneous spaces.

Theorem 3.1.5. Given a set of reference points {2*}, k € Z,a € Ay, suppose that there
exists constant § € (0,1) that satisfies 96A35 < 1. Then there exists a finite collection of
families 2.t =1,2,--- | K = K(Ag, A1,0) < 0o, where each 2" is a collection of dyadic
cubes, associated to dyadic points {z*}, k € Z,a € A, with the properties (3.1.1)-(3.1.5)
in Theorem 3.1.1.

In addition, the following property is satisfied:

for every B(z,r) C Q, there exist t and Q € 9" with B(x,r) C Q and diam(Q) < Cr.
(3.1.8)
The constant C' < oo in (3.1.8) only depends on the quasi-metric constant Ay and the
parameter 0.

By virtue of Proposition 3.1.4 and Theorem 3.1.5, we have the following theorem,
which extends Mei’s result in [52].

Theorem 3.1.6. For 0 < p < 1, we have

(i) = ;Hft,@r(u) = ;H%t () =D Hy, olp) = ;h’;t(u). (3.1.9)

t=1

Proof. Let p € (0,1] be fixed. In view of Proposition 3.1.4, it suffices to show HE (u) =

K
t; HY, (). We prove it via comparing the atoms. Let a be a (p, o0)-atom in Hg(u).
Then there exists a ball B such that

supp(a) € B, lallo < (u(B) +, [ a(x)dyu =0,

By Theorem 3.1.5, there exist t and a cube @ € 2" such that B C @, and u(Q) < u(B).
Then

supp(a) € B C Q. flall < (u(B)) # £ (u(Q) . [ adp =0,
which implies that a is a constant multiple of a simple (p, c0)-atom in H}, ,(p2). Thus
K
HE (1) © 30 HY (1), (3.1.10)
t=1

For any t = 1,2,---, K and for any given simple (p,00)-atom b in HJ, ,.(p), there
exists ) € 2" such that

supp(b) C Q, [|b]lo < / bdp = 0.
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By Theorem 3.1.1, there exists a ball B such that @ C B and u(Q) 2 u(B). Hence

supp(b) € Q € B, [l < (u(@)) 7 S (u(B)#, [ b =0,

which implies that a multiple of b is also a (p, co)-atom in HE (1), thus

K
Z b (1) C Hi(p). (3.1.11)
To complete the proof of the theorem, combine (3.1.10) and (3.1.11). O

Remark 3.1.7. Theorem 1.8.5 follows immediately from Corollary 2.2.2, Proposition 3.1.4
and Theorem 3.1.6, which simplifies the original proof by Coifman and Weiss in [23].

By duality and Theorem 3.1.6, we recover the following result of [43], which is an
extension of a result due to Mei [52]:

BMO(u ﬂ BMO” (1). (3.1.12)

We will now establish an analogous result for £, (1) (0 <p < 1).

Theorem 3.1.8. For0 <p< 1,
K .
Eap (M) = ﬂ A2 (ap)'
t=1

Proof. By Theorem 3.1.1, for any Q € 2" (and t = 1,2,--- , K), there exists a ball B
such that @ C B and u(B) < u(Q). If f € L4, (1), then for any x,y € @Q, we have

|f(@) = W < Nl 2wyt (B)* S N fll 2oy Q)
We thus have

1 9 %
Wligin g 0@ (@ [ (1760 $@laptn)) o)
< s, @) ([ 11 o (@0 du)g
S 1w

which yields
K
Lo, (1) € (VAT (o). (3.1.13)
t=1

K t
Conversely, let f € N AY (a,). For Q € 2¢, by Theorem 2.2.4,
=1

(@)~ fal S n@Q™ I fllyzr(o,, Yo € Q.
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which implies that for any =,y € Q,

7@) = ] S Q12 o, (3.1.14)

For any ball B C 2, by Theorem 3.1.5, there exist ¢t and Q € 2" such that B C Q
and u(Q) S u(B). Then for any z,y € B, by (3.1.14)

[f (@) = FWI < (B[ flla9t (o)
Thus
1 ey S 1Nz o

t=1
which implies

(VAT () € Lay10). (3.1.15)

t=1

The theorem follows from (3.1.13) and (3.1.15). O

Remark 3.1.9. Theorem 3.1.6 and Theorem 3.1.8 give a simple proof of Theorem 1.8.6
originally established by Coifman and Weiss [23]:

K

(Har(p))" = (2_:1 HQ,gr(M)) = (V(Hz 5 (1) = (VAT (0) = Lo, (0)-

t=1 t=1

3.2 Bilinear decompositions for dyadic martingales
on homogeneous spaces

In this section, we focus on bilinear decompositions arising in the study of products
between elements in spaces of dyadic martingales on homogeneous spaces introduced in
the previous section. In the setting of homogeneous spaces, due to their quasi-metrics and
measures, the dyadic martingales behave worse than martingales in probability spaces and
the underlying analysis is more intricate.

In §3.2.1 we prove appropriate generalized Hélder-type inequalities on homogeneous
spaces (see Lemmas 3.2.2 and 3.2.4 below). We then introduce a class of pointwise mul-
tipliers of A7, (a,) and BMO?(p); see Theorem 3.2.5 below. Using Theorem 3.2.5, we
define products between dyadic martingale Hardy spaces on homogeneous spaces and their
duals and then, in §3.2.2 we establish analogues of the results of Sections 2.1 and 2.2 in
the setting of homogeneous spaces.

3.2.1 A generalized Holder-type inequality

Let 0 < p < 1 and Z be a dyadic system, constructed as in Theorem 3.1.1. The

martingale Musielak—Orlicz Hardy spaces H ;” (i) consist of all measurable functions f
on (2, F, ) such that s(f) € LY?(Q2) where O € Q is a fixed point, and

t
Vilz, ) = log (e + d(z,0)) + log(e + t)’

U (2, t) = L
PO+ (B0, d(z, O]}

(0<p<1).
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Note that L¥7(Q) is a quasi-normed space.
Let M := (C, + 1)log (e + d(z,0)). By (1.3.4) we obtain

(
Uy (z,5t) S (e +d(z,0))"CtVel 45 Sw(z)e! +5, forallzeQ,s,t>0 (3.2.1)
where w : 2 — R, is a weight function with
w(z) < min {1,d(z, )"}, (3.2.2)
Let Q° € Fy be the dyadic cube such that O € Q°. For g € BMO? (), define

. 92 — 9a°]
||g||BMOf(u) T SG.EQ log (6 + d(Zg,O)) + |gQ0| + ||g||BM09(u)7

where Q% € Fy is a dyadic cube with its center z2 and Ay is the index set in Theorem 3.1.1.
Denote by BMOY (1) the space consisting of all ¢ € BMO? () such that HQHBMOf(u) <

cc. It is not difficult to verify that || - || paro2(,) is & norm on BMOZ(p).

Remark 3.2.1. If we consider the dyadic martingales on R™, by taking appropriate cubes
Q° one shows that if g € BMO?(p), then g € BMOZ(p). Note that if g € BMO(p),
then g € BMOZ (). Moreover,

BMOZ (1) ~ BMO(p) QY-
191l 31102y < 9l + [90o|

We now introduce the following generalized Holder inequality for Li(Q,F, ) and
BMO? (1)

Lemma 3.2.2. If f € Li(2, F,u) and g € BMOZ(p), then f - g € LY (). Moreover,

19l @) S 119l zroz - (3.2.3)

Proof. Without loss of generality, assume ||f|; < 1, ||g||BMO%(#) < 1and ggo = 0. It
suffices to show that

| i@ @)g@) ) S 1.

Let S := B(O,Cyd%) \ B(O,Co5k+1) for k < 0 and Sy := B(O, Cy), where § € (0,1)
is the constant in Theorem 3.1.1. Then for each k < 0, there exists a finite index subset
B C Ay such that B(O,Cyd%) € U Q2 (where Q° € Fy) and

a€EBy,

> (Q0) =u ( U Q‘;> < 1 (B(0,240Cod")) < 6+,
a€By a€eBy,
Take s = v=!|f(z)],t = v|g(z)| in (3.2.1), one has

[ W f@a@hde= ¥ Y | f(x)g(@))dp

k=—o0 aeBy Y SKNQL

sy v )@l dpe 471 .

k—foo a€B) Skaa
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Therefore,

| i@ f@g@) e S T+ v b, (3.2.4)

where

( )_gQg v gQO

e "“>ldu.

|

kh=—o0 acB, ” kN4

Let v := % > 0 (where & is defined in Theorem 1.3.10), by (3.2.2) and Theorem
2.2.1, one has

N[

nsy y MRerdE0)

k=—o00 a€B;, (k+1)(Cut1)
< : ( )52 0. §Cu k52
~ k:z_:oo achr Sk+1)(Cut1) S Z SCuktk

0

S D 6E

k=—o00

and hence
LRSES (3.2.5)

Combine (3.2.4), (3.2.5) and the fact that v~!|| f||; < 1, and the proof is complete. []

We consider the case 0 < p < 1. Define

. 1908 — 9e0| |
||g||A?+(ozp) T O?élj)o 1+ ,U{B (O,d(zg,O))}a” + |gQO 7 (ap)
Denote by AY, (a,) the space consisting of all g € A7 (ay) 2 (ap) < 00. It

is easy to verify that || - [[z2 (4, 15 & norm on A7 (ap).

+(O‘P

Remark 3.2.3. If we consider the dyadic martingales on R", by taking appropriate cubes
Q" one can show that if g € AY(cy,), then g € AY (). Note that if g € Lo, (p), then
g € A (ap). Moreover,

191z, (0p) S N9llza, ) + 1900 ]-

Next we present a generalized Holder inequality for LP(Q, F, 1) and AY, () for 0 <
p < 1.

Lemma 3.2.4. If f € L,(Q, F,p) and g € A/ (o) for 0 <p <1, then f-g e LY (n).
Moreover,

19l ) S I 1lpllgllaz, (ay)- (3.2.6)

Proof. Without loss of generality, assume ||f]|, < 1, ||g]| A7, (
suffices to show that

< 1and gg = 0. It

(ap)

| W @) g@)dn 5 1.
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Take the same family of sets {Si}r<o as above. From Theorem 2.2.4, we know that
for z € Q°,

9(2)| = l9(x) — 90| < |9(x) — gqu| + |908 — 900
< (@) +n{B(0.d(=0,0)}" +1
< 1 (B(0,240Cod"))™ +1.

Therefore

) 9@ @)
fy v @@ = 3 52 [ o s (30w o

° lg(@)P|f ()P
Zoo agk /SWQO 1+ 1 (B(O, d(z,0)) "

0 1 (B(0,240Co0%)) ™"

Pd
k_z_:oo (Xék /Sana {1 + 1 (B(O, Co5k+1)}1—p ‘f(JE)‘ 2
S
which finishes the proof. O

We are now about to present the analogues of the results in Sections 2.1 and 2.2
concerning bilinear decompositions for dyadic martingales on homogeneous spaces. To this
end, we need to define the product between martingale Hardy spaces and their dual spaces
first. As in the probability setting, we regard the product in the sense of distribution as
follows: for 0 < p < 1,

(fxgh)y:=(h-g,f), [E€ Hgt,@(ﬂ) € Al +(ap>

where h is a test function such that h - g is in A%+(@p)' For p = 1, we may define the
product between Hy, (1) and BMO?(y1) analogously. To this end, we need to introduce
some pointwise multipliers of A{, (a,) and BMO?(p).

Denote the space of test functions by H(a,) (0 < p < 1), and a measurable function
h is a test function if it satisfies the following properties:

1
M@ S A B dw o)) e a0y EED (3:27)

and

u(B)™
(1 + u[B(O,1+ 1+ d(cg, 0))]*r) log(e + r + d(cg, 0))

[h(y) — h(z)] £ (3.2.8)

whenever y, z are both contained in a ball B with center cg and radius r < (CB O) + 1.
It is obvious that H(a,) C Loo(€2). The following theorem shows that if h e H(ay),
then h is a pointwise multiplier of AY_ (o).

49
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Theorem 3.2.5. For 0 < p <1 and any dyadic system 2, H(w,) is a space of pointwise
multipliers of A{ (). For p =1, H(0) is a space of pointwise multipliers of BMOY ().
More precisely, for any g € AY (o) and h € H(oy,), we have

lg - hllaz ) S 190142 @) (17l + 1)

and for any g € BMOZ (i) and h € H(0), we have

lg - Pllzaso2 iy S N9l sar02 ) (17 aee) +1) -

Proof. First, we consider the case 0 < p < 1. Assume that g € AY_ () and h € H(qy).
According to [58], it suffices to show that

sup |gci|p+1 (/ Ih(z hQ|dx> < o0, (3.2.9)

where () runs over all dyadic cubes in Z.
IfQ C Q% for some 5 € Ay, there exists a collection of cubes Q = Qo C Q1 C -+ C

Qn = Q% such that there exists a universal constant 0 < 0 < 1 with u(Qr_1) < & u(Qx).
Hence

90 — 99| < Z 90 — 9o 1| S ZM Qr)9l1r2 (o)
k=1

k
S 1902, oy Z / g
—1

< n(@Qj) pllgllA

1 +(0‘p

Similarly, if Q3 C Q, we have
196 — 93| S Q)" [|9llA7, ()

By Theorem 3.1.1, there exists a ball B, with center cg and radius r, such that ) C B
and u(B) S p(@Q)-

If Q3 C Q and r > d(onjcoB) + 1, for any = € B(O,r), we have d(cg,z) < Ay(d(cp, O) +
d(O,z)) < (242 + Ag)r. Then u(Q) = u(B) = C’;(2A3+AO) (B(O,r)) Z 1. Similarly, we
also have d(2§,0) < (243 + Ao)r and p{B (0,d(23,0))} < u(B) < u(Q). Thus

Y

!9 | 190 = 99| + 199 — 9ao| + |gqo]
0% ([ Ih@) = halaz) < L Nl

O‘p+1 ,U(Q)ap
@)+ p {B (O, d(23, O))} "+
~ 1(Q)er : ||9HA3+(%)HhHLOO(Q)

N ||9||A%+(ap)||h||Loo(Q)
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If Q% C Qand r < (O ¢8) 1 1, for any 2 € B, we have d(z,0) < Ay(d(O, cg) + 1),
then M(Q) w(B(O, Ao(d(O cB) —|—r)) Thus

lgcz! 190 — 9031 + 1909 — 9oo| + 90| j(B)ertl
Q)ertl </ |h(x hQ|d$> S pn(Q)ew+t (1+ u[B(O,1+r+d(O, CB))]) -
_ (@ + u{B(0.d(5,0))}" +1) lgllag, o,
~ (14 p[B(O,1+1+d(0,cp))))™

S |’9|’A?+(ap)-

IfQ C Q%, from Theorem 3.1.1, we can choose Cj sufficiently small such that C; =
240C; < 1, then r < €y < %29 1 1. For any z € QY, we have d(0,z) < Ay(d(0, 23) +
(). Then

(@) < n{B (0, A(d(0,23) + 1))}
By a calculation similar to the one presented above, we get the desired result.

Combining the above estimates, we finish our proof for 0 < p < 1. The case for p =1
is similar. n

Remark 3.2.6. Note that in Theorem 3.2.5, the dyadic system & is arbitrary. Then from
Theorem 3.1.8 and (3.1.12), we conclude that #H(«,) is a space of pointwise multipliers of
Lo, (1) and H(0) is a space of pointwise multipliers of BMO(p).

3.2.2 Bilinear decompositions

Assume f € Hy(u),g € BMOZ () or f € Hy (), g € AY (), 0 <p < 1.

Denote by H?, 5, (1) (0 < p < 1) the linear space consisting of all functions which can
be written as a finite sum of simple (p,o0)-atoms. Thus if f € HY 4, (1), f is locally
supported, f € L1(Q2) N Loo(2) and [, fdu = 0. Note that H7, 5 (u) is dense in HE, (1)
with respect to the norm || - ||z (-

In the following, we shall only consider the case where f € HY, 5 (u). Then f-g €
Ly(R2), and we can write

f-g9=1L(f,9) +1a(f, 9) +115(f, 9), (3.2.10)

where

IL(f,g) = i drfdrg, Ta(f,9) : Z fe—1drg and TI3(f,9) : Z Gr—1dy f.

k=—o00 k=—o00 k=—o00

Theorem 3.2.7. We have the following:

1. TLy is a bilinear bounded operator from HZ(p) x BMOZ () to Ll(Q), and
when 0 < p < 1, Iy is a bilinear bounded operator from HY, () x (ap) to L1(2).

2. 1y is a bilinear bounded operator from HY (1) x BMOZ(p) to HY (1), and
when 0 < p < 1, I, is a bilinear bounded operator from HY (1) x AY  (a,) to HL(p).
)

3. Tl is a bilinear bounded operator from HY(n) x BMOZ(p) to Hy' (1), and
when 0 < p < 1, I3 is a bilinear bounded operator from HY, (1) x A (a) to H ().
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Proof. For 11} and Iy, we can argue as in the corresponding part of the proof of Theorem
[.1. As for I3, we can also argue as in the corresponding part of the proof Theorem 1.1,
where in the homogeneous setting one needs to apply Lemma 3.2.2 and Lemma 3.2.4. We
omit the details. O

Remark 3.2.8. For II; and IIy, the condition HJ(p) x BMOY () and HE(u) x AY, (oy)
can be in fact replaced by HJ (1) x BMO? () and HY (1) x A7 (a,), respectively.

3.3 Applications to homogeneous spaces

In the first part of this section we show that H ;p (1) admits an atomic decompo-
sition for 0 < p < 1, which allows us to integrate several adjacent dyadic systems on
homogeneous spaces.

For a given dyadic system Z on (), we define the dyadic H;I;” »-atom as follows.

Definition 3.3.1. A measurable function a is said to be an H:;f’g-atom if
(i) supp(a) C @ where Q € Z is a cube;
(ii) Joadp = 0;
(i) flalle < 110174, 0

The atomic dyadic martingale Musielak—Orlicz Hardy spaces H:;f’@(p) (0<p<1)are
defined in a way analogous to (1.8.5) and (1.8.6). We first introduce the space BMO&,jp(,u),
which is a subspace of continuous linear functionals on finite sums of atoms.

Definition 3.3.2. A locally integrable function ¢ is said to be a dyadic BM O?ﬁp(u)

function associated with a dyadic system & if

1
19153108 o := 5D sup = [ lg(z) = gu(a)ldz < o0,
8 kez QeFy, |1l pvr () /@

Then we define the atomic Musielak-Orlicz martingale Hardy spaces H;I;pg(,u) as fol-
lows:

v, .
Hat,@(:u) =

{f € (BMO??? (M))* . f =Y A\a;, where q; is an Hif’@(u)—atom supported on a cube Qi.} ,
i=0

where N
S [ e illaslloc)dpe < oo
i=0 7 Qi

Moreover,

L —imflp>0: /\1: o lllasllo)dp < 1
I = 0> 03 [ (o™ NIl < 1
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Arguing as in [93], one can show that for 0 <p < 1
\Ilp \I’p
Hgy" (1) = Hylo (1) (3.3.1)

We now introduce the atomic Musielak-Orlicz Hardy spaces Hy? (1) (0 < p < 1) on
the homogeneous space ). The interested reader is referred to [89] for more details. First,
we present the definition of atoms for Ho” (11).

Definition 3.3.3. A measurable function a(z) is said to be an Hy? (p)-atom if

(i) supp(a) C B where B C Q is a ball;
(i) Joadp = 0;
(iil) [lalleo < ||1B||Z}'p(g)'

Definition 3.3.4. A locally integrable function g is said to be a BM Oy, (1) function if

1
9]l Briog, (u) = sup 17/ lg(z) — gpldr < oo,
B | BHL‘I’P(Q) B

where B runs over all balls in €2.

Definition 3.3.5. The atomic Musielak-Orlicz Hardy spaces Hu? (1) (0 < p < 1) are
defined as follows:

Hy! (p) =
{f € (BMOq,p (p))* . f =Y A\ia;, where a; is an H;I’t” (u)-atom supported on a ball Bi} ,
i=0
where .
> [ Wy llaillo)dp < oo.
=07 Bi
Moreover,

||f”H‘I/p(“) = inf {p >0: Z/B \I/p(x,p_1|)\i|||ai||oo)du < 1} )
. i—=0 7 Bi

Let 2" (1 <t < K) be the adjacent systems of Theorem 3.1.5. By arguing as in the
proof of Theorem 3.1.6, we have the following:

Lemma 3.3.6. For 0 < p < 1, Hy (1) = Hy'p (1) + Ho (1) + - + Hot? ().

Proof. 1t suffices to show that any dyadic H ;i’ -atom a is a constant multiple of an H"Y» (y)-

atom, and any H"Y»(u)-atom b is a constant multiple of a dyadic H ;f -atom.

If B := B(xg,r), then denote the ball B(xy,Dr) by DB for D > 1. Denote d :=
d(zo, O). In what follows, C'(D, p, Ay, C,,) denotes a constant that depends on D, p, Ay, C,,
and may differ from line to line. We first show that if

1
/B 1+ [1+ wu(B(O,d(z, O)))]1_pdﬂ($) =1,
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then
1

/DB 1+ [1+ u(B(O,d(x, O)))]l—pdﬂ(x) < C(D,p, Ay, Cp). (3.3.2)
Notice that

1
- /B T 15 p(BO, w0y @)
N 1(B)
- ilelg{l + [1 4 u(B(O,d(x,0)))]*P}
- 1(B)
T 1+ [1+ u(B(O, Ag(d + 1))+

which implies
p(B) <1+ [1+ u(B(O, Ao(d +1)))]'~
If d < 2AyDr, we have

u(B) < 1+ [1+ u(B(O, Ag(240D + 1)r))]*~
<1+ {14 p[B(xo, Ao(Ag 4+ 1) (240D + 1)r)]} 7
<1+ {1+ [Ao(Ap + 1)(240D + 1) M(B)}l‘p

and thus u(B) < C(D,p, Ao, C,,).
Then

I

1
/DB 1+ 1+ u(B(O,d(x, O)))]lfpdﬂ(l“) < u(DB) < DYu(B) < C(D,p, Ay, C,,).

(3.3.3)

If d > 2AyDr, then

1
/DB 1+ [1+ u(B(O,d(z, O)))]kpdﬂ(m)

< u(DB)

=it {1+ [T (B (O, d(x, 0))]7)

< DC”N(B)

S1+4+ 1+ w(B(O,d/A; — Dr))]'—»’

DS {1+ uB (O, [A + 1/ (D))} + D

b L+ {1+ p[B(O,d/(240))]} 7

D% {1+ [(24y + 1/D) Ao u[B(O, d/(2A0))]} ”
1+ {1+ u[B(0,d/(240))]} "

\

+ D%,

H
ence .

/DB 1+ [1+ p(B(O,d(x, O)))]l_pdﬂ(fv) < C(D,p, Ao, Cy) (3.3.4)
Combining (3.3.3) with (3.3.4), we get (3.3.2).

Assume a is an H"Y?(u)-atom supported on B. By Theorem 3.1.5, there exist ¢ and a
cube Q € 2" such that B C @ and diam(Q) < Cr, hence B C Q C CB.
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Note that supp(a) C Q, [, a(z)du(r) = 0 and

ellzwr gy < osllpve gy < C(C,p; Ao, Cu)l1sl v )
which follows from (3.3.2). Thus

lalloo < 116074 S Iallh

which implies a is a multiple of dyadic H ;{' -atom supported on Q).

Foranyt=1,2-.-, K, assume b is a dyadic H ;f -atom supported on QE. By Theorem
3.1.1, there exists two balls such that B(zj, c10%) C Qf C B(zf, C16%).
Thus supp(b) C B(zf, C16%), fB(Z§7clék) b(x)du(z) = 0 and

Cy
o i llssogn < C (2240, Cu) s nsmll ooy S s lussgu

which follows from (3.3.2). Therefore,
8lloe < 1105 150 ) S NLneat 160 | o -

which implies b is a multiple of dyadic HY¥r-atom supported on B (zg, Cy0%). ]

Remark 3.3.7. In [30], Fu, Ma and Yang defined another kind of Musielak—Orlicz Hardy
spaces by grand maximal function and they also proved that these Musielak—Orlicz
Hardy spaces are equivalent to H;I;” (n) with respect to the corresponding norms when

Cu
pE (ma ]-]
Let By := B(0O,1). Define

l9llBr04 (1) = 1981 | + lgllBroGr,  for g € BMO(p),

and
I9llcy ot = 19B:] + 191l 2oy s for g € Lo, (1)

Thus || - | Mo, () and | - | () are quasi-norms on BMO(u) and Ly, (1), respectively.

‘L+,ap

Theorem 3.3.8. Let 0 < p < 1 and f € HY(u). There exist three linear continuous
operators T1J : L, (1) — Li(Q), I} Lo, (1) = Hy (1) and I} L, (1) — Hor (1) such
that

f-9="T(g) +15(g) +{(g) for all g € La, (),

where Lo, (1) is endowed with the quasi-norm || - ||z, ., -

Proof. Let f € HE (). By Theorem 3.1.6 there exist f* € H,(u) (t =1,2,---, K) such
that f = f1 4+ f2+--- + f&, and

K
> 17 0 = 1
t=

M=

Define II/ () :=
3.2.7). Then

IL(f* g) for i =1,2,3 and g € L,, (1) (II; defined as in Theorem

t=1

frg=1{(g) +T(g) + {(g).
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CHAPTER 3. BILINEAR DECOMPOSITIONS ON HOMOGENEOUS SPACES

By Theorem 3.2.7, Theorem 3.1.6 and Lemma 3.3.6, we have

I (9)lh S ZHHl o9l S lef ez, |9l a2t (o) S 11z 00 1911 a0

K K

115 (9) 13, P> Mo (f5 9, S ; 1 2, 19162t () S 1 Nz, 191 24,000
/ K K

1T 0) 50, < ;||H3 TR PR 9l T P Ry P 7 P

which finishes the proof. m

Remark 3.3.9. If the homogeneous space (£, ) satisfies the reverse doubling condition,
then Lemma 3.3.6 holds for p = 1. Then we conclude the following.

Let f € H.(u). There exist three linear continuous operators IT{ : BMO(u1) — Ly (),
I} : BMO(p) — HY (1) and I : BMO(;1) — H2'(11) such that

frg=T1(g) +115(g) +T1{(g) forall g€ BMO(n),

where BMO(jt) is endowed with the norm || - || sayo. (u)-
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Chapter 4

Schatten class of martingale
paraproducts

This chapter is devoted to the proofs of Theorem I1.2, Theorem I1.3 and Theorem I1.4
on the Schatten class membership of martingale paraproducts.

4.1 Proof of Theorem I1.2

We divide this proof into two parts. The first aims to show the necessity of Theorem
I1.2, and the second focuses on the sufficiency.

Our proof of the necessity follows the pattern set up in [80]. More precisely, we use the
iteration method. However, our case is more complicated since d and M are arbitrary in
Theorem I1.2. In addition, we need Lemma 4.1.2 for any d > 2 to implement the iteration
procedure, while in [80] the authors only considered d = 2. It should be noted that for
0 < p < 2, we come up with an alternative approach, which is more general than the
corresponding argument in [80].

4.1.1 The Necessity of Theorem 11.2

In this subsection, we are about to show that
beBIR,M) = m € L(B(L(R)) ® M) V0 <p< o0. (%)

At first, we prove the result in the case 0 < p < 1. Then we reduce the case 1 < p < 2
to that 0 < p < 1. Finally, we show that if () holds for p/2, then so does it for p with
2 < p < oo. Our main ingredients are the p-John-Nirenberg inequality (Lemma 4.1.3)
which appears in [80], and the decomposition of mim, (Lemma 4.1.2). As a result, the
necessity of Theorem I1.2 follows iteratively for all 2 < p < oc.

Proposition 4.1.1. If0 < p < 2 and b € BY(R, M), then m, € L,(B(Lz(R)) ® M).
Proof. For any I € D and 1 <17 <d — 1, define
mt = (hi,b) - B, (4.1.1)

o7



CHAPTER 4. SCHATTEN CLASS OF MARTINGALE PARAPRODUCTS

where B € B(Ly(R)) is defined by

, , 1
B =kl @ |—]’| (4.1.2)

Then we have

=y Zw . (4.1.3)

I€eD i=1

Note that 7} € L,(B(Ly(R)) ® M) and

I D)y

I i i _
17 |2, (Bz2@pesy = 1B s, wa@y 1 vy 0|z, = HEE
If 0 <p<1,since || - ||, is a p-norm, one has
||7Tb”ll7,p(B(L2 Yom) = Z Z ||7T (R))®M)
1€eD i=1
(R, b ||pp(/vt
=2 Z Tpr = [bllBye.pr) < 0
1€D i=1

Next, we consider the case 1 < p < 2. If [ # J or i # j, then Vg, h € Ly(R),

(B B). 1) = (B4(5), B 00) = {0 ){ S ) = .

which implies that if I # J or i # 7,

(m")"(m”) = 0. (4.1.4)
So from (4.1.3) we get
=3 Y () (m). (4.1.5)
1D i=1

Note that p/2 < 1, hence we use (4.1.5) to estimate

p/2
Hﬂ-bHZD(B(LQ(R))®M s b||Lp/2(B(L2(R OM) Z Z ) (
I€D i=1 Ly 2(B(L2(R)@M)
/2
< ];)2 (7 WL, Bzamyem)
i i 2 i * /11 2
> Zl I(BY)Y BI 4 1) (i Y2
cD 1=
= IX;)Z 1B, (o 1T DI,
€D i=1
7 p
s Z LKA DI, vy bl
fepim PP By® M
Thus the proof is completed. n
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4.1. PROOF OF THEOREM I1.2

As mentioned before, we will proceed with our proof by iteration for 2 < p < co. We
need the following definitions.
The dyadic square function S, of b € Ly(R, Ly(M)) is defined by

ZZ 1] (R bY*(h%, b). (4.1.6)

1€D =1
Besides, D, is defined as follows:
Dy:=)Y — Z M" @ N, (4.1.7)
feb Ml =

where M9 € B(Ly(R)) and N%9 are given by
d-1 d—1

ME =3 N WM @ b (4.1.8)

i=1 m=1

NT .= Z Zh?,, “(h%,,b) (4.1.9)

JeD(I(q)) j=1

It is clear that span{h} : 1 < i < d — 1} is an invariant subspace of M’?. So for any
JKeD 1<jk<d-—1andz,y€ Ly(M),if J# K, we have

(Dy(h, @ ), bk @ y) = 0. (4.1.10)

The following decomposition of mim, allows us to reduce the case p to p/2. It first
appears in [6] for d = 2. We extend it for general d thanks to the good choice of the
orthonormal basis {h%}rep1<i<d—1-

Lemma 4.1.2.
Ty Ty = s, + Mg, + Dy

Proof. 1t suffices to prove that for all J; K € D, 1 < j,k <d—1, and x,y € Ly(M),
(mym(h) @ 2), b @ y) = (s, + 75, + Dy)(h) ® ), b @ y).
Note that if J C K, then for any f € Ly(R, Ly(M)),

(b 2), i, @) = <zzh3®h3, (1ot Yot o)

I€eD i=1

i o (4.1.11)

We also have

(Wi, Sp) = > Z<h’;{, |I|> (R%,bY*(R%, D). (4.1.12)

IeD i=1

Now we divide the rest of the proof into three cases.
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CHAPTER 4. SCHATTEN CLASS OF MARTINGALE PARAPRODUCTS

1. J = K. From (4.1.5) one has

(mymy(h) @ x), bk @ y) = ZZ YW @), Tt (B @)

1eD =1

_IGZD;W< T Yoo (00,0
Sy

|J|ZZ Z wk=9) T(z <h§,b>*<h§,b>y)

i=1lgq 1]61)()

=<Z |J,Z 2 w“m”h’}”‘@<h3,b>*<h3,b>x,h§®y>.

i,m=1 q=11eD(J(q))

By the definition (4.1.7) of D,, we deduce

(R, B)w ™R @ N1z bk @ y>

d—1 d
- < |7§

By (4.1.11), recall that J = K, and we see

wU=map™ @ (BY DY (RY, b), h’}@y>
D(J(q))

(rs, (W) @ 2), b @y) =0, (5, (b @ x),hl ®y) =0,
hence we conclude that
(mym(h) @ x), B @ y) = ((7s, + 75, + Do) (h) @ ), e @ y).

2. KS Jand K € D(J(p)) for some 1 <p < d— 1. Then from (4.1.10)-(4.1.12),

(w1 @ 2), W @) = ZZM<|I| h'f> (o (15 B)" (ki b))

I€eD i=1
= Taena T (@ (hy, ) (AT, by)
q:lIeD(K( |J|1/2’K’1/2
1

- <|§| h§>7<x*<sb, WEdy) = (s, (7, @ ), W )
= ((ms, + 75, + Dp) (W), ® 2), b ® y).

3. J G K and J € D(K(p)) for some 1 < p < d — 1. This case is symmetric to the
previous case by passing to adjoints:

(mymy(h)) @ x), b @ y) = (%, (B, ®@ 2), bl ® y)
= (s, + 75, + Dp) () @ z), B @ y).

60



4.1. PROOF OF THEOREM I1.2

The proof is finished. O]

In order to apply Lemma 4.1.2, we will show that the upper bounds of ||Sb||Bd/2(R M)

D th
and {|Dy| 1,5
following p—John—Nirenberg inequality appearing in [80].

Ly®)eMm) are dominated by HbH%d(R amy when p > 2. This owes to the
P k)

Lemma 4.1.3. Let 0 < p < co. For each nonnegative sequence (ar;)repi<i<a—1 indezed
by the dyadic intervals, we have

(.2, Sow) S0 25 (%)

I€D I€D i=1
Proof. For 0 < p <1 and for all I € D, we have
1 d—1
(1 2 Z) STp 2 2
| | JeD(I) j=1 | | JeD(I) j=1

which yields

p
> > Z ar; | < ay;
Ie <|[| JeD(I ]> IeD |[|p JeD(I) j=1 ’

JED j=1 \JCI L)
:Zd1<i kl )an
jeb =1 \imo (d*| 1)
Lo S(w)
dr —1 JeD j=1 |‘]| .
Let 1 < p < oo. For a fixed I = I,,, € D, by the Jensen inequality and the equality
S (m—n 1) T
JR— n —_—
m=n 6 ’

one has

(H,Jz Sa) = (03 ¥ Sa)

eD() j=1 M=n j€Dpm (I) j=1

(i —n+1)m-—n+1)%d"" Y dz_:ldmam)p

m=n JED(I) j=1
<p > (m—n+1)%*" 2dp”m< > dean> .
m=n JED,(I) j=
Let p' = . When m > n, by the Holder inequality,
d—1 -1 p/v’
( > Yow) (¥ Swar)( $ 5]
JEDR (1) j=1 JED (I eDm(I) J=1
= (d— 1)p*1d(m*n)(%1) Z Z ™ a;)P
JEDm(I) j=1
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CHAPTER 4. SCHATTEN CLASS OF MARTINGALE PARAPRODUCTS

We then take the summation for all I € D, and change the order of summations to obtain

(UID I ) I i) SUEER e I S

1eD eD(I) =1 n,k€Z m=n JEDm(nk)j 1

= Y S DY (@ )

n,k€Z m=n j=1
d—1
= Z Z —n+ 1 = Zdn m Z a(Im,k),j)p'
m,k€Z n=—00 7=1
Note that Vm € Z, the sum
Z (m —n4+ 1)2p72dn7m — Z l2p72d17l
n=-—00 =1

is a constant only depending on d and p. Therefore,

(.5, ow) s R 5 ()

1€eD I1eD i=1

]

Lemma 4.1.4. If2 < p < o0 and b € B4R, M), then S, € BZ/Q(R, M) and HSbHB;l/Q(R,M) Sdp

160350

Proof. Note that by the triangle inequality and (4.1.12)

{17, Su)ll L, 5 (M

-z z<u|> RN

JeD j=1 Lp/Q(M)
’[|1/2 Z Z xS h ’b>||Lp/2(M)
JCIj=1
— s S I
JGII

By Lemma 4.1.3, we conclude

d—1 p/2

2 |

1552 0 = 53217 X S M0 0] S Il
IeD i=1 JC[j:l

as desired. ]

Lemma 4.1.5. If 2 < p < oo and b € B}(R, M), then Dy € Ly/3(B(Ly(R)) ® M) and
IDsll 2, 2BLa@norM) Sdp 1017 @ 1)
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4.1. PROOF OF THEOREM I1.2

Proof. From (4.1.7)-(4.1.9), for any x,y € Ly(M), K, L € D, 1 < k,l < d— 1, one has

(hf @, Dy(hl @ y)) = > — \II Z (W, MPIRY ) (2, NTy)

1eD
d d—1
= S X O B B e, N
IeD |I| q=11i,m=1
d
B < %; (=k)q Nqu> if K = L;
0, if K+ L.

This shows that Dy is a block diagonal matrix with respect to the basis {h'}repi1<i<a_1-
Denote forany I € D, 1 <k, <d—1

1 d
Ergg = m Z w=Ra T,

Then the matrix of D, with respect to the basis {hlj}lev,lgz‘gd—l is (Er k)7 Hence by the

triangle inequality,
(El,k,l>
1<ki<d—111L, /5 (Mg—1®M)

/2 _
DI, B(za@pyery = 2
(mz“’l N)

p/2

IeD
p/2

-y

1eD

1<k,I<d—1

(I=FK)a p T q)
(W 1<k,l<d—1

where Ml;_; is equipped with the usual trace.
However, note that (w¢="9),c; <41 (1 < g <d)isa(d—1)x (d— 1) matrix only

depending on d, p, thus
<1wl k)a N1 q>
1] 1<kl<d—1

d
( > 1<k, 1<d—-1

Z
Ndp|]| Z “ Iq||Lp/2

Consequently, by the triangle inequality and Lemma 4.1.3, we have

p/2
/2 Iq
LYTERmEn 5| (-5 ULy

I1eD

<o X (12 > S kb ||LPM))W

Ly/o(Mg—1®9M)

_z(

I1eD

p/2
)
Lyj2(Mg—1@M)

Ly2(Mg—1®©M)

NP, )
Spra(Ma-1)

| I

IeD q=1JeD(I(q)) j=1
d—1 p
<Y Z(|[|1/2||<hz, >||L,,<M>> = e
IeD =1
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CHAPTER 4. SCHATTEN CLASS OF MARTINGALE PARAPRODUCTS

This completes the proof. n

Proposition 4.1.6. Let 2 < p < oo. Assume that for any b € Bp/2(]R,./\/l), the corre-
sponding martingale paraproduct satisfies the following estimate

171z, (B (r2@)@rI) S [0llBe @ a0)-
Then, for any b € BJ(R, M), we have

175l Ly (B(L2®)@M) Sdp [10]| BaEAM)-

Proof. By direct calculations, one has

||k /2
HﬂbHip(B(Lg(R))@M) = HﬂbﬂszIip/z(B(Lg(lR))®M)
p/2
< (2H7st||Lp/2(B(L2(R))®M) + HDbHLp/Z(B(LQ(R))@M)) (Lemma 4.1.2)

p/2
Sdp (2||Sb||3d ®M) T ||DbHLp/2(B(L2(R))®M))

Sdp ||b||Bd @y (Lemma 4.1.4 and Lemma 4.1.5)

Thus the result is proved. O

Proof of the Necessity of Theorem I1.2. We see that if b & Bg(R,M) for 0 < p <
2, then m, € L,(B(Ly(R)) ® M) from Proposition 4.1.1. By Proposition 4.1.6, we employ
iteration and finally conclude the desired result for 2 < p < co. O]

4.1.2 The Sufficiency of Theorem II1.2

We divide the proof into two cases: p > 1 and 0 < p < 1. Each one will be stated and
proved in Propositions 4.1.8 and 4.1.9 respectively. For the first case, the proof is easier
and relies on the following elementary lemma.

Lemma 4.1.7. Let 1 < p < oo and T € L,(B(Ls(R)) ® M). E = (Er;i)1epi<i<d—1 1S
defined as the block diagonal of T, where for I € D and 1 <i<d—1, Er; : Ly(M) —
Ly(M) is given by

<El,ixay> = <ThZI ®x7hll ®y>7 VZL’,y S LQ(M)

Then

7%, ®M>>ZZHEqu ) = BN, (5o m)erm)-

I€D i=1

Proof. Note that E is a trace preserving conditional expectation, and thereby contractive.

[]

Proposition 4.1.8. Ifp > 1 and m, € L,(B(Lz(R)) ® M), then b € BI(R, M).
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4.1. PROOF OF THEOREM I1.2

Proof. First, define for any I € D, 1 <i<d—1, x € Ly(M),
R: La(R, Ly(M)) = Lo(R, La(M))
Rt @ x h% ®z,

where I is the parent interval of I. Then R is well-defined and bounded. Indeed, for any
f € Ly(R, Ly(M)),

d—1
I oy = | 2 55 051 S S o o

I€D i=1 La(R,L2(M)) I€D i=1 L2 (R,La(M))
d—1
zz( 5 <hz,f>)h;~
Jep i=1 icrI B LQ(R,LQ(M))
[I|=d—1|]|
d-1 2 1/2
= (Z YUY (L) )
jep =1 Icl ~ LQ(M)
[I|=d—1|]|

i1 1/2
< (d Z Z Z ”<h117 f>”%2(/\/()> = \/a”fHM(R,Lz(M))

fepi=1 1ci
[1|=d=1|1]

(4.1.13)
Now let E = (E;;)1ep,1<i<d—1 be the block diagonal of m, R defined in Lemma 4.1.7. Then
for z,y € Ly(M), we have

(Eriz,y) = (mR(h] © x),h @ y) = < b(hs @ ), hy ® y)
w4

= s by = fuw?“ )z, y),

where f(q) =1,1<gqg<d Thus E;; =
Lemma 4.1.7, we get

%(h?,b). Therefore, from (4.1.13) and

1
17117, (@@t = m””bR”i B(L2(R)aM)

S S0 DI

IEDz 1

722 H hl[a ”Lp M) P
7172

I1€D i=1

Zd,p ||b||Bg(]R7M)'
This yields the desired result. [l
Proposition 4.1.9. If0 < p < 1 and m, € L,(B(L2(R)) ® M), then b € B(R, M).

The remaining part of this section is devoted to the proof of Proposition 4.1.9. We
will follow the arguments in [69] or [80]. To this end, define for any m,n € Z

" = dp 1 Ty (4.1.14)
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Recall that dib= Z h%(h%,b). Thus for any f € Ly(R, Ly(M)),

|]‘ d—k+1 i=

-y ¥ <|I, >h@ (R, 0) B f).

I1€Dm 3,5=1
JEDnp

If m < n, then for I € D,, and J € D,,

1;
“Lh ) =0,
(i)
It thus follows that 7, = 0.

Let b € B(R, M) and N > 2 be a fixed positive integer (to be chosen later). For
k=0,1,---,N —1, define

o) = Z Z Nn+kNm+k+1 i Z 7TNn+kNm+k+1 (4115)

nN=—00 M=—00 m=—0o0 N=—00

In addition, we define

o) Nntk,Nntk+1
Top = Z ™, ,
n=—oo
and
1 Nn+l<: Nmek+1
Tok = Z Z
m=—o0 N=—0o0
Then

1
kazﬁz(m)Jr ng)

Indeed, ng?,g is defined as the minor diagonal and will play an important role in our later
proof. In the following, we are about to obtain the lower bound of 7|1, (B(Ly®)2Mm) DY
H7r£0,2 | £, (B(L2®)@M), Which will be the dominant term. The following lemma implies that
||7ng7lzc)||Lp(B(L2(R))®M) is the minor term since ||m,"™ ||z, (B(Ls(r))eMm) shrinks rapidly when

m > n.

Lemma 4.1.10. Let b € Bg(R,M). Ifm>nand 0 <p<1, then

) p
P, 425 B) 12,
|7y ||Lp(B(L2(R))®M) (d—1)d » ZZ( |1]1/2 :

I1€eD,, 1=1
Proof. Write ;"™ in the following concrete form:
B 5 (T Y

I€Dm 4,5=1

JEPn (4.1.16)

= Z Z Z Z |J|1/2 nm)zI]Ja

JED,, ¢=1 I€D,, (J(q)) i,j=1

where ' .
(™)) o= (h,b) - hy @ W)
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4.1. PROOF OF THEOREM I1.2

Hence, one has

o ™), B @yer \"
s |‘€p(B(L2(R))®M) <> Z ( |J‘p1/2 )

>

JEDy, TED,( J)
>

(J)

-3

JEDy I€Dm (

155 @ 1 |ls, Loy 1ChE, D)L,y
|J’1/2

1

7j

= Z SYLERI RIS
- y=AN PR

JeDnIEDm
— (d d(n m)p/2 Z Z(H hl]v ||Lp )p'
16D, i=1 |1]1/2

This finishes the proof. O

By virtue of Lemma 4.1.10, we can estimate ||7T(E,1;2HL,,(B(L2(R))®M) as follows:

<(d 1)d—P/2

N-1
1
Lemma 4.1.11. We have = TSR Brampeny < v b1 0

Proof. By Lemma 4.1.10, one has

o

1 Nn+k,Nm+k+1
||7Tz§713||12p(B(L2(R))®M)§ Z Z 7% pr(B(Lz(R))@M)

m=—0o0 N=—00

-1 p
S\ n—Nm— <A D)Ly
S S AN VD CL L

m=—00 N=—00 I€DNm+k+1 =1

00 ) P m-—1
= Z (d_l)d—(Nm+1)p/2 Z Z(H hli]|1|l§p ) Z dNn’p/2

m=—0o IGDNm+k+1 =1 n=-—00

(d—ldp/2 . <R, O e, \ "
= T gNp/2 _ Z Z Z 1‘1’1/2 :

m=—00 I€DNpm4k+1 1=1

We then deduce

(d—=1)d 7 K170 L, )
Z i ®)oM) <WI;}; oo

(d—1)d 2

T (Np/2 — ”bHBd RM)
O

Now we come to the estimate of H7r£0,2 17, (B(L> )@y The following well-known lemma
is straightforward but very helpful for us.

Lemma 4.1.12. Let 0 < p < oo. If {Rih<i<n are operators in L,(B(L:(R)) @ M)
satisfying R*R; =0, V1<¢,j<n,i#jandT = En: R;, then
=1

1 n
TN, 5a@yer = " YR, (Bzamnerm): (4.1.17)
=1

67
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Proof. This follows from the fact that

T*T =S RIR; > R'R,

=1

O

Remark 4.1.13. It is obvious that our estimate is far from being optimal in (4.1.17), but
it does not affect our later proof. See [46, Theorem 1.3] or [19, Lemma 2.1] for better
constants in (4.1.17).

Lemma 4.1.14. Let b € B4R, M) and 0 < p < 1. Then

(d—mw21
Z “WMHLP R)OM) Z W“b”Bd R,M)"

Proof. From (4.1.16) we deduce

7rl])\fn—f—k,Nn-i—k-i-l _ Z Z Z Z |J’1/2 Nn+k7Nn+k+1>ifi]

JeDNn+kq IIEDNn+k+1(J(
d d—1

= 2 22

JEDNntk ¢=11%,5=1

Nn—l—k,Nn-l—k—l—l)i,j
J(q),J"

|J|1/2

Then
o) d d—1

YEID VDD DD

n=—00 JEDNn+k ¢=114,j=1
d d-1 oo j

:ZZ Z Z Z 1/2 Nn+k,Nn+k+1)f],{q)7J

q=11i=1n=—00 JED N1k j=1

Nn—l—k,Nn—‘rk-i-l)i,j

|J|1/2 J(q),J

Since the ranges of {(my "% Nn+k+1)

4.1.12 we have

Y U, L x>

d—1

d
1y 2 2 el aens

ql'Ll

0)p L
Hﬂ'b,k ”L,,(B(Lz( R))®@M d(d

When ¢ and ¢ are fixed, the operator A,; is a block diagonal matrix with respect to the
basis {7, hY,} seDy,.,- Consequently, one has

p

Nn+k,Nn+k+1>i,j
J(9),J

DD

n=—00 JEDNn 1k j=1

-y X

] |1/2
Lp(B(L2(R))@M)

Z Nn+k,Nn+k+1)i,j
‘1/2 J(a),J

n=—oo JGDNn+ ] LP(B(LQ(R))®M)
00 d— qj p
w 7
-3 v S emgen] el
n=—00 JED N4k !lj=1 Sp(L2(R))
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It is clear that

df Y i ® K @-7"
T2 J =
PR seay 1Y
Combining the preceding inequalities, we obtain

(d _ 1 p/2 d d-1 oo 1

(0)
||7Tb,k‘|i,,( ())@M)— d(d ZZ Z Z 7 |p/QH< J(q >||Lp M)

g=1i=1n=—00 JED N+

(d 1)/21(1100

1 i
e > ) > ‘J’T/Q‘Khﬁbﬂyip(/\/()

i=1 n=—00 JEDNn+k+1
Hence
> (d =120 < IR ) )
Z Im @M Z g 2 2\ g
JED i=1 ||

(d —1)p/2-1

- W”b”mmm

Proposition 4.1.15. Let b € B4R, M) and 0 < p < 1. Then

16l Ba. ) Sap 1Tl (BL2®)EM)-

Proof. From (4.1.14) and (4.1.15) we observe that

Tk = ( > de+k+2>7Tb< > dNn+k+1>-

m=—oo n=-—o00

o o
Note that > dypirs1 and Y. dymaki2 are projections with norm 1. Thus

7okl L, (B @YeM) < [Tl L, (B(L2R)M)-

By Lemmas 4.1.11, 4.1.12 and 4.1.14, we have

H7TbHLp B(La(R))®M) Hﬂb,kHip(B(LQ(R))@M)

v

/_: f MH OMZ

(1)
(H T,k Lay(R)@M) — ||7Tb,k||21;p(B(L2(R))®M))

)P/2 b (d—l)d p/2 )
dp/2+1 dNp/2 — I ”Bd R, M)’

1
N
1N
N ¢
1
N

v

which yields the desired result as long as we choose N sufficiently large. O]
Now we give the proof of Proposition 4.1.9.
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Proof of Proposition 4.1.9. When 0 < p < 1, Proposition 4.1.9 follows from Proposition
4.1.15 and the standard limit argument. Indeed, for any positive integer a, we define

d
b= 37 > (hib)h,

Iepla) i=1
where
D@ = {I,,€D:|n| <a,lkl <al}.
By (4.1.5), one has for any 0 < p < oo

i hZ ) b Ly(M
7/l (BLa@)Er = 1T LB La@)em) = W

This implies that b(®) € BY(R, M). Therefore by Proposition 4.1.15,

16/l e, A1) = Jim ||b(a)||Bg(]R,M) Sap 17l 2, (B(L2®)2M)-
[l

Proof of the sufficiency of Theorem II.2. The desired result follows from Proposition 4.1.8
for p > 1, and from Proposition 4.1.9 for 0 < p < 1. O]

Finally, the proof of Theorem II.2 is completed.

4.2 Proof of Theorem I1.3

First recall the Walsh system. Let G = {1,—1}" be equipped with the uniform
distribution P. Recall that for any n > 1, €,((0x)ken) = On, Y0 = (Ox)ren € G. Then
(€n)n>1 is the Rademacher sequence on G, namely a sequence of independent identically
distributed random variables on (G, P) such that P(e, = 1) = P(e, = —1) = 1/2 for all
n € N.

Recall that Z denotes the family of all finite subsets of N. For a nonempty set A € Z,
we write A = {k; < kg < --- < k,,} in an increasing order. Define

wa = 5k15k2 c Ck

"t

If A= 0, weset eq =1. If Ais a singleton {k}, we still use wy instead of wyyy. Thus
(wa) ez, called the Walsh system, is an orthonormal basis of Ly(G). Denote by G, the
o-algebra generated by {wa : max(A) < n}. Then (G,),>1 is the filtration of (G, P) for
the Walsh system.

We define for any 0 € G,

og:C—C
Ci — 5i(6)ci> Vi € N.

Then oy extends to a trace preserving automorphism of the CAR algebra C, and con-
sequently extends to an isometry on L,(C) for all 0 < p < oo. By virtue of gy, the
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4.2. PROOF OF THEOREM I1.3

CAR algebra can be transfered to the operator-valued Walsh system. For any given
b= Y b(A)ca € L,(C) with 0 < p < 0o, we define
A€z

b(0) == =Y b(A)ca - wal®).
A€z

Then b € Ly(G, L,(C)). Hence, for any given b, define the martingale paraproduct 7 of
symbol b associated with the Walsh system on Ly (G, L2(C)) by

Ty - LQ(gv L2<C)) - L2(g7 L2(C)>
g > dib- g
k=1

In fact, m; is a martingale paraproduct for semicommutative dyadic martingales.
Now we come to the proof of Theorem II.3.

Proof of Theorem I1.3. Since Ly(C) = lo(Z) and Ly(G, L2(C)) = €5(Z, L2(C)), we repre-
sent m, and 7 in the matrix form. For any A, B € Z, note that for k > 1

ifk—1> B);
(CB)k—l — Z T(C*D . CB)CD _ {CB, 1 > max( )7

max(D)<k—1 0, otherwise.

Then
(ca,m(cB)) = (ca, de (cB)k—1) = (ca, Z dpb - cp)

k—1>max(B)

= <CA7 Z B(E)CE . CB>
max(F)>max(B)+1

= <CACE7 ZA)(E)CE>
max(F)>max(B)+1

From the CAR (1.6.1), we have
iy = tca and cacp = *canp, VA, B €T,

where AAB = (AU B)\(AN B). Then

~

(ca,m(cB)) = (£caas, Z b(E)cE)

max(E)>max B+1
B +b(AAB), if max(AAB) > max(B);
o, if max(AAB) < max(B),
b(AAB),  if max(A) > max(B) and cs¢ = cang:
= { —b(AAB), if max(A) > max(B) and cacly = —Canp;
0, if max(A) < max(B).

In the same way, one has

b(AAB)canp, if max(A) > max(B);

(wa, m(wp)) = {O, if max(A) < max(B).
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CHAPTER 4. SCHATTEN CLASS OF MARTINGALE PARAPRODUCTS

Denote by

[m] == <(7Tb)A,B> o

the matrix form of m, with respect to the basis (ca)aecz, where (mp)ap = (ca, m(cB)).

Analogously, let
[m3) == <(7TB)A,B>
A,BET

be the matrix form of 7; with respect to the basis (wa)aez, where (7;) a5 = (wa, T (wp)).
By the above discussion, we see that

(7] = ((”b)A’BCAC*B> ABeT

0 0
= ca ([m] ® 1¢) Ch :

AeT "/ Bex

where 1¢ is the identity of C. So this leads to for any 0 < p < 0o

75| L (BL2(0))20) = 78|, (Ba()20)
= |[[m]ll s, 22y - eIz, )
= |Imlls, (za(c))-

By Theorem T1.2, we have 7; € L,(B(L2(G)) ® C) if and only if b € B2(R,C), where

0o 1/p
~ ~ k ~
bl B2=.C) ~ (;; 2 ||dkb||]2p<g,Lp(c>>> :

However, note that for any 6 € G and k£ > 1,

(db)(®) = (> b(A)cawa)(0) =oo( > b(A)ea) = op(did),

max(A)=k max(A)=k

which yields

I4B1E 6.y = I DOI 0y P(6) = [ ool i), P O) = bl e

Therefore, we get m, € S,(L2(C)) if and only if b € B,(C) with relevant constants depend-
ing only on p. Thus Theorem II.3 is proved. O]
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4.3 Proof of Theorem 11.4

First we construct an orthonormal basis of My, which will induce an orthonormal basis
(o]

in # = ® My. Denote by e, ; the matrix which has 1 in the (4, j)-th position as its only
k=1

nonzero entry. Let o = (12 --- d) be the d-cycle, and recall w = €™/, Define

d
Q= {U(i,j) = Zwl'lel,gj(z) 1<, < d},
=1

Then Q is an orthonormal basis of Ly(My, try), and every element in  is unitary. In
particular, U4 = 1. Moreover, for any 1 <14, j,k, 1 <d

L Uiy =" Uz

—%=]

2. U j)Us) = @ Ugrr -

Denote o7 = {(k,ix, jx) : k € N, 1 <'ig, jr. < d}. For any nonempty finite subset o =
{(1,41,71), (2,49, 72), =+, (Nyin, Jn)} C &, define max(a) = n. Besides, define max()) =
1. Let J be the family of all finite subsets v C &7 With (imax(a)s Jmax(a)) 7 (d, d). For any
given o = {(1,141,j1), (2,42,72), -+, (N, in, Jn)} € T, define

Ua = Ui j)) @Ufigj) @ - QU jy @1 @1--- € M.

In addition, we set Uy = 1. Then (U, )acs is an orthonormal basis of Ly(.#). Next, we
calculate U,Uj. For any given «, 8 € J, write

Q= {(1751751)7 R (max(a>7%max(a)ujmax(aﬁ}

where 1 < ;17517 to 7imax(a)7jmax(a) < d and

B = {(17i17j1>7 ) (max(ﬁ)7imax(ﬂ)ajmax(ﬂ))}

where 1 < 41,1, , tmax(8), Jmax(8) < d. To calculate UaUg, we define 1, 3 € J associated
with a and 3 as follows:

1. If max(«) = max(f),

No,p = {(17 %1 - il?jl _jl)a ) (max(a), Z‘max(oz) - imax(a)ajmax(a) _jmax(a))}; (431)

2. If max(«) < max(5),

Na,p = {(17 ;1 - il;jl - j1)7 Tty (max(a), gmax(a) - imax(a);jmax(a) - jmax(a));
(maX(a) + 17 Z-maX(a)Jrhjmax(cz)Jrl)a T, (max(ﬂ), imax(5)7jmax(5))};
(4.3.2)

3. If max(«) > max(3),

No,p = {(17 %1 - Z.lujl - j1)7 Tty (max(ﬁ), ;max(ﬂ) - Z.max(ﬁ)a.jmax(ﬁ) - jmax(ﬁ))a

(max(@) + 17 gmax(ﬂ)+175max(ﬁ)+l)7 T (max(a), %max(aﬁjmax(a))}-
(4.3.3)
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CHAPTER 4. SCHATTEN CLASS OF MARTINGALE PARAPRODUCTS

Notice that the case where o = or B = ) has been included in the construction of
Na,s- In (4.3.1), (4.3.2) and (4.3.3), if 4 — i), < 0 (respectively ji — jr < 0), then we can
substitute i, — ix + d (respectively jr — ji + d) for iy — i) (respectively jx — ji).
One can verify that
UaUg = Ao gUp, 59 (4.3.4)

where
)\ {w—il (.}l _jl) e w_imax(u) (Emax(a) _jmax(a) )’ lf max(a) S max(ﬁ) ;
a?IB =

w_il(.;l_jl) e w_imax(ﬁ)(jmax(ﬁ)_jmax(ﬁ))’ lf max(oé) > max</8)

This implies that |\, 5| = 1.

Let v = /% Let R = {v!, 02, , 0" }N be equipped with the uniform distribution.

For 1 <1i,j5 < d, we define
d2

hiigy = Y 0 Ly
=1
Similarly, for any given o = {(1,41,71), (2,42, J2), -+ , (N, in, jn)} € T, define
ha = Ry ji) © Pig,jo) ® -+ @ Ry ,) @1 @1 --- € Ly(R),

namely, for every t = (t,,)men € R,
hoc(t) = H h(%jk)(tk)-
k=1

We also set hy = 1. Then (hy)aes is an orthonormal basis of Ly(R). Let %, be the o-
algebra generated by {h, : max(«) < n}, and then (%, ),>1 is a filtration for R. Indeed,
a martingale in Ly(R) with respect to the filtration (%,),>1 is a d*-adic martingale.

Define for any t = (t,,)men € R, and Vk € N, 1 < ', jx < d,
Oh(t) M — M
Uksinge)y 7 Mkinin)} E) Ul hingn)

then o3 extends to a trace preserving automorphism of .#, and hence extends to an
isometry on L, () for all 0 < p < oo.

Now for any given b = ¥ b(a)U, € Ly(.4) with b(e) := 7(UZ - b), we define
acd

b(1) = onn () = 3 b()Us - (1),

aceJ

then b € Ly(R, L,(A)). Therefore, for any given b, define the martingale paraproduct 7z
of symbol b on Ly(R, Lo(A4)) by

T - LQ(R, Lg(%)) — LQ(R, LQ(%))

g dib- g1
k=1

In fact, 7 is a martingale paraproduct for semicommutative d*-adic martingales.
Now we come to the proof of Theorem II.4.
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Proof of Theorem I1.4. Since Lo(A) = (5(J) and Lo(R, La( M) = (T, Lo( A )), we
represent m, and 7 in the matrix form. Note that for k£ > 1,

Ug, if k—1> max(p);

0, otherwise.

(Us)r—1 = {

This implies

(Ua, m(Up)) omzdk (Us)i-1) = (Ua, Y, dib-Ug)
k—1>max(3)

= (Ua, > b(7)U,Us)

max(y)>max(8)+1

= (VU5 > bV,

max y>max(3)+1

Then by (4.3.4)

<Ua777b(UB)> (Ao BU'rzaﬁv Z 6(7)Uv>

max y>max(8)+
B 5-D(Nag), if rnax(a) > max(f);
B O7 if max(a) < max(f).

In the same way, one has

S

(05)Upo e 1 max(a) > max(9);

(he, m(hg)
™)) { : if max(a) < max(p).

e

Denote by

[m=<mugww

the matrix form of 7, with respect to the basis (U,)aes, Where (m)0 s = (Ua, m(Us)).

Analogously, let
) = (s
a,BeT

be the matrix form of 7j; with respect to the basis (ha)acy, Where (73)a.s = (ha, m3(hg)).
Observing that (7;)a,s = (73)a,sUsUj for any a, 8 € J, one has

[mz(muww@

a,feT
- 0 - 0
= Ua ([m) ® 1) Uj ;

0 - aeJ 0 B BeT

where 1, is the identity of .#. So this implies that for any 0 < p < oo

75| Lo BL2R) @) = [T Ly (Bl ()20
= [mo)lls, 020y - 1|l L)

= 7ol 5, (Lo (.a0)-
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By Theorem 11.2, we have 73 € L,(B(Ly(R)) ® .#) if and only if b € Bg2 (R, A ), where

1/p
Hb”BgQ(R,//Z) ~dp (Z d%HdkaLP RLP(///))> :

k=1

However, note that for any t € R and k > 1,

A

@d)(t) = (X ba)aha)(t) = onn( X B(@)Ua) = o (deb).

max(a)=k max(a)=k

This yields

1daBI, ) = [ IABYONE, e = [ lonr (daB)IE, apdt = bl

Therefore, we conclude that m, € S,(Lao(#)) if and only if b € B,(.#) with relevant
constants depending only on d and p. This completes the proof of Theorem I1.4. O
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Chapter 5

Schatten class and boundedness of
operator-valued commutators

The last chapter focuses on the applications of martingale paraproducts to the analy-
sis of commutators and operator-valued commutators involving general singular integral
operators, which are summarized in Theorem II1.6, Theorem II1.7 and Theorem II.8. Such
applications are feasible thanks to the dyadic martingale technique developed by Hytonen
in [40] and [41].

5.1 Proof of Theorem I1.6

We first start with preparations concerning martingale paraproducts and Schatten
classes, namely Lemma 5.1.1 and Proposition 5.1.4, which will be helpful in the proof of
Theorem I1.6. Then we introduce the key ingredient: the dyadic representation of singular
integral operators by Hytonen in [40] and [41]. This representation enables the reduction
to the d-adic martingale setting. Finally, we will give a proof of Theorem I1.6 using the
result about martingale paraproducts stated in Theorem II.2.

5.1.1 Schatten class of operator-valued commutators involving
martingale paraproducts

Lemma 5.1.1. Assume that 1 < p < oco. For any semicommutative d-adic martingale

= (fu)rez € La(R, Ly(M)), we define

Ao(f) =S dib - dyf.

keZ

If b € BLR, M), then A, € Ly(B(Lz(R)) ® M) and

1Al 2, (B2 ®)@M) Sdp 1Bl BeERM)-
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Proof. We write A, as follows:

= dib-dif
kEZ
-1 . -1 '
-3 (> Topan)( X Swam)
k€Z \I€Dy,_1 1=1 JED_1 j=1
-1 4
-> ¥ (Son 1><Z<h%,f>h%>
k€ZIED)_, =1 (5.1.1)
% 7 hl
€Z 1€Dy, 1 i+j=d = 17,+] l
hl
— * pd— 7, 7 1
-y ¥ (z NTRIINIE S v U, W)
KEZ 1€Dsr \ifj=d I=1 75—
= (m)"(f) + A(f),
where we have used (1.7.4), and where
hl
=> Z > (g b)Y ) s
k€Z I€Dy_1 I= 1Z+] l |I|1/2
By Theorem I1.2, we know
(o2 )* | L (B (L) 2M) Rap ([0l Ba®.A)- (5.1.2)

It remains to estimate ||| Ly(B(L2(R))oM)- We Tepresent it into the matrix form. Note
that for any S, T € D, 1 <s,t <d—1, and x,y € La(M),

(2, 1S 20y byy), i S =T and s # t;
0, otherwise.

(hs ® x, Ay(hr @ y)) = {

This yields that /L, is a block diagonal matrix with respect to the basis {h’[} 1€D,1<i<d—1-
(If s —t < 0, replace s —t with s —t +d, and still denote it by s — t.) For any I € D,
1<s#t<d-—1,denote |[I|72(hi"" b) by a!_,, and define a} = 0. Hence one has

s—1?
P
< _ s
||Ab||Lp(B(L2(R))®M) = Z (%-t) )
IeD 1<s,t<d—111L,(My_, @M)
where M,_; is equipped with the usual trace. Let
I I I I I
ay g Qg -0 Gy I
B[ _ . . . . . _ asft
- : o T - : - 1<s,t<d—1 ;
I I I
a?_z a} a9 ag_, , ad;1
Qg1 ay ayp Qg g1 ay Qg
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By Lemma 4.1.7, we have

I
1<s,t<d—1

||Ab||Lp B(L2(R))®M) < Z ||BI||LP (Mg®@M)*

< |1 B'| L, aaem);
Ly(Mg_1@M)

which implies

I€D
Note that we can write B’ as
=alA+adlA?+. 4+ al_ AT
where
d—1
A= €1.d + Z €it+1,5-
j=1
Using the triangle inequality, one has
r I I d—
1417, Loy < IZ;) laiA + a3 A% + -+ af AL o
€
1 1
Sdp Z Z a; AZHIZP(MUZ@M) < Z Z |a; HIEP(M)“AHZP(Md)
I€D i=1 1D i=1
d— i
S 90 DI AIPEED 3y i (L ZHEL) BT
~d,p ‘ i I L,(M |_]|1/2 Bg¢(R,M)"
1€D i=1 1eD i=1
Combining this with (5.1.2), we obtain the desired result. O

Remark 5.1.2. Lemma 5.1.1 also holds for 0 < p < 1 with the same proof, and we leave
the details to the interested reader.

In what follows, we need to use the boundedness of the triangular projection on Schat-
ten class. The triangular projection is defined as follows
P B(fg) — B(fg)
(mij)ig — (0is5 - mij)ij,
where d;5; = 1if ¢ > j, and 9,5, = 0 if ¢ < j. It is well-known that P is bounded from
Sp(la) to Sp(¢2) when 1 < p < oo. We refer to [33].

Then for 1 < p < oo, we can define P ® Idy,m on the algebraic tensor product
Sp(l2) @ Ly(M). The next lemma is well-known, and it also follows from Corollary B.1.3.

Lemma 5.1.3. Let 1 < p < oo. Then P ® Idp,m) extends to a bounded map on
L,(B(ty) @ M). Moreover,

|P @ Idp,(m)ll L, (Be)oM)y— Ly (Be)oMm) S max{p’,p}.

Before proving Theorem I1.6, we give the following proposition, which concerns the
p-Schatten class of operator-valued commutators involving martingale paraproducts and
the pointwise multiplication operator M.
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Proposition 5.1.4. Let 1 < p < oo. Ifa € BMOYR) and b € B4R, M), then [r,, M) €
L,(B(Ls(R)) ® M) and

I[ma; M)l L, (B(La®)EM) Sap HGHBMOd(R)Hb”Bg(R,M)-
Proof. Let
Ry(f) = %bk,l dipf, Vf € Ly(R, Ly(M)). (5.1.3)
Note that for b, f € Ly(R, Lo(M)), My(f) = m(f) + Ao(f) + Rp(f). Thus
[a; My] = [a, m] + [Ta, Ab] + [7a; Be].
We first estimate ||[7q, Ro||L,(B(Lo®)om)- For any f € Ly(R, Ly(M)),
[7a, Bo](f) = ma(R(f)) = Ro(ma(f))

S B, (Z by - djf) — S b - dy (Z d;a - fj—l)

keZ JEZ keZ JEZ
= Z dka . < Z bj,1 . djf> - Zbkfl : dka ' fkfl
keZ j<k—1 keZ
=Y dya- ( > bjy - dif —bpy - fk:—l)
keZ Jj<k—1
— _dea. ( Z djb-djf> —dea- ( Z djb.fj_1>
kez j<k—1 keZ j<k—1
=Y dra- ( > dib- djf> — ma(mb(f))
kezZ Jj<k—1
= =V (f) — malms([))-
Thus
[Tay Rb] = —Way — Tammy. (5.1.4)

From Theorem I1.2, we know that
176l L, (B (La@)oM) Sdp ”bHBg(R,M)-
Since 7, is bounded on Ly(R, Ly(M)), one has
7ol (BL2@)erm) Sdp llallBrodm)lbl Ba@ - (5.1.5)
To deal with ¥, ;, let Q,, = {(S, $):S€D,,1<s<d—- 1} and
Qi=--Q,UQ 1 UQUQ Uy -,

with such above order. Note that Ly(R, Ly(M)) = £5(Q, La(M)). Besides, we denote by

[%,b] = ((%,b)(&@,(:ﬁ,t))

(S,8),(Tt)eQ
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the matrix form of ¥,, with respect to the basis (h%)sseco, Where (Wyp)(s.s),m) =
(h, Wap(h%)). Analogously, let

[ﬂ-a/lb] = ((Wa/lb) (S,s),(T,t))

(S:5),(Tt)eQ

be the matrix form of 7, A,.
Our aim is to prove that

Wap] = (P @ Idp,m))([Tads))- (5.1.6)

On the one hand, note that

=S dya- <Ek—1 (Z d;b- djf> - Ek_1<z d;b - djf))

keZ JEZ j>k
= dea <Ek 1(A(f)) — B (Z djb'djf>> (5.1.7)
kez Jj=k
= Wa(Ab(f)) — Z dka . Ek—l (Z d]b . d]f> .
keZ Jj=k

Suppose that S € D,,, T € D,, and m > n. For any 1 < s,t < d — 1, note that
dmi1h% = hi and d,, 1Y = bl hence

(5. 5s(60) = (5, 0) = (1,3 a3 - ) )

kEZ 5>k
= _<dm+1h§, Z dpa - Ey_y (dn+lb : dn+1htT>>
k<n+1
= _< S» m+1< Z dra - By 1<dn+1b-h§1>>>
k<n+1
= (hs,0) =0.

This implies that when S € D,,,, T' € D,,, and m > n

(Wa,b)(s,s),(:r,t) = (Wa/lb)(s,s),(T,t)- (5.1.8)
On the other hand,

d—1

L) =3 5 (b)) S S S () )

Q€eD;_1 q=1

S (hL, by (hL., f>hl;q>

Jj<k—1LeD; 1 l=1q=
-1

d—1 -
:zzw,(zz (i %h%ﬂ

k€EZ IEDy_1 1=

_Zzzhlb i'

k€EZ I€ED)_; i=1

I1eD i=1 [CLl 1q=1
d—1 ) d—1d—1
=S S () (zzz (B By (15 f) < hl+q>ha),
1eD i=1 ICLZ 1 g=1 |I|
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where the last equality follows from
hihbFe = Ri(1; - hEFY) = <|I| hl+Q>h§, VI G L.
This implies that

(h%, a) 2:3 (hip, ><ﬂg‘°’| hl+t> = (Tadls) (5.0, S GT;

0, otherwise.

(ap)(,8),(Tt) = (5.1.9)

Hence from (5.1.8) and (5.1.9), we conclude (5.1.6).
From Lemma 5.1.1, we know that

1Al 2, (B2 @)@ M) Sdp 1Bl BeERM)-

Hence from (5.1.6) and Lemma 5.1.3 one has

H%,bHLp(B(LQ(R))QaM) = H[wa»b]||Lp(B(é2( Q))’aM)
= [[(P @ Idp,om))([Tals]) | L, (B2(2) M)
Sp mabo]ll 2, (Bea(0))em)
= e ]|l 2, (B(La®)@M) Sap 1ol Brroa) D] Ba@.r)-

Combining the preceding inequalities, we arrive at

1[7a, Bolll 2, (Ba@per) Sap lallzroam)|bl B -

Therefore, by the triangle inequality we deduce that

[7ma, M|\l 2, (B(L2®)orm) < | [Tas To)|| L, (B(L2®)@M) + || [Tas Ab]|| Ly (B(La (R))2M)
+ [7as Bolll £, (B(L2®)@M)

Nd,p ||a||BMod R) ||b||Bg (R,M)>
as desired. O

Corollary 5.1.5. Let 1 < p < oo. If a € BMO%R) and b € BL(R, M), then [r}, M,] €
L,(B(L2(R)) ® M) and

17, Mo]l| 1, (B(La®p@rM) Sdp 1ol Brroa)lbllBaw a1)-
Proof. 1t is easy to verify that
[W;> Mb]* = _[ﬂ-a» Mb*]'

By Proposition 5.1.4 we deduce that

e, M)l (BL.@pery = 7 M)l L, (BL2)em) Sdp lallBrroiw) 10]Bar a1)-
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5.1.2 Hytonen’s dyadic representation

Now we introduce the dyadic system on R". Recall that the standard system of dyadic
cubes is
DY = {27%([0,1)" +q): k€ Z,q € Z"}.

Let DY = {27%([0,1)" + q) : ¢ € Z"} for any k € Z. Define ¢(I) := 27% and |I| := 27"F if
I € D). Let w= (wj)jez € ({0,1}")% and define

IHw=I+ > 27w, (5.1.10)
J273<e(I)

Note that by (5.1.10), I N I+w # () unless some coordinate of > ji2-i<u(D) 27w; is exactly
1. Then set
DY = {I+w: I c D",

which are obtained by translating the standard system. Indeed, in particular, if w =
(wj)jez € ({0,1}™)% such that Fjo € Z, Vj < jo, w; = 0, then

D¢ ={I+Y 27w;: I € D},
J

See [39] for more details on D¥.

Let D¢ be the family of all dyadic cubes with volume 2="*. For any I € D*, let D*(I)
be the collection of dyadic cubes in D contained in I, and D% (1) be the intersection of
D¢ and D¥(I) for any k € Z. In addition, we assign to the parameter set ({0,1}")% the
natural probability measure, that is the infinite tensor product of the uniform probability

measure  ». g—ﬁ. Here 9§, is the Dirac measure. Denote by E, the expectation on

we{0,1}"
({0, 13m)%.
For any given cube [ = Iy x---x1I, € D¥ let H) := |L|~"/?1;, and H] = |L;|7"/?(1,,,—
1, ), where 17, and 1, are the left and right halves of I; for 1 < i < n. For any
n € {0,1}"\{0}, we denote by H} the function on the cube I = I x --- x I,, which is the
product of the one-variable functions:

H(w) = HY ) oo sn) s= TLH (@0)
i=1
Hence {H]}1epw nefo,13m oy form an orthonormal basis of Lo(R™).

Let 4,7 € NU{0}. For a fixed dyadic system D*, the dyadic shift with parameters i, j
is an operator of the form
Sif= Y Axf.  Alf= Y >, ail(H]. NH],
KeD» 1,JeD¥;1,JCK ¢ne{0,1}7\{0}

(I)=2""(K)
2(J)=2"74(K)

with coefficients a?}K satisfying

7111
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The map S%7 : Ly(R™) — Ly(R™) is bounded with norm at most one. Moreover, by
[40, Proposition 5.1], we see that S¥ is of weak type (1,1) with norm O(i). Hence, by
interpolation and duality, one has for 1 < p < oo

||SZJj||Lp(]R")ALp(]R") Snp @+ 7.

We refer the reader to [40] and [41] for more information.

Recall that in this thesis, T : Ly(R™) — Lo(R") is always assumed to be bounded
and its kernel satisfies the estimates (I1.3). The following is the dyadic representation of
singular integral operators discovered by Hyténen in [40] and [41] (see [41, Theorem 3.3]).

Theorem 5.1.6. Let T' be a bounded singular integral operator. Then T has a dyadic
expansion, say for f,g € Lo(R™),

o0

(9.Tf) = C\E, > 27 maxlidle/2(g S #) + 4B, (g, SO f)
mai’{]%,:j(;>0 (5111)

+Eo(g, 771 f) + Eulg, (77+1)" f),

where S is the dyadic shift of parameters (i,7) on the dyadic system D¥, w§ is the
dyadic martingale paraproduct on the dyadic system D* associated with the BM O-function
be {T1,T*1}, and Cy, Cy are positive constants.

Remark 5.1.7. Note that S¥ is always contractive on Ly(R", Ly(M)) for all w and 1, ;.
Besides, the assumption that 1 € BMO(R") and T*1 € BMO(R™) also implies that
7%, and (m%.,)* are still bounded on Lo(R™, Ly(M)). This yields that 7" is bounded on
Ly(R™, Ly(M)), and (5.1.11) also holds for any f,g € La(R", La(M)).

The dyadic system D* on R" can be regarded as the 2"-adic system by our definition
of d-adic martingales (see Subsection 1.7). So we can define the martingale Besov space
B2?" (R, M) on R" by virtue of Hj similarly as in Definition 1.7.2. More precisely,
B;”zn (R*, M) (0 < p < 00) associated with semicommutative dyadic martingale on R™ is
the completion of the set consisting of all b € S(L>*°(R") ® M) such that

/p
ICHT, D)l 7|
[/ ::<Z 3 ( I|II1/2 M) < 0. (5.1.12)

I€D ne{0,1}7\{0}

In addition, Theorem II.2, Lemma 5.1.1, Proposition 5.1.4 and Proposition 5.1.5 also
hold for the dyadic system on R™ with d = 2" since our proof only depends on the
martingale structure and martingale differences, and does not depend on the dimension
of the Euclidean space.

The following lemma shows that Hb“B;ﬁ""" (&n ) Can be dominated by 16| B, (&, L, (M)

Lemma 5.1.8. Let 1 < p < co. Ifb € By(R",Ly(M)), then b € BS* (R", M) and
181 g2 gen pt) Sp 11018y 2 (M) -
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Proof. Without loss of generality, assume w = 0. For any given J € D° and n €

10, 13™\{0}, .
<Hw—<m>>
dx

= (), o

< — b(z) —0b dzdy.
_UPLLHM )1,y drdy
Givent € Z, I € Dg and n € {0,1}"\{0}, by the Holder inequality, one has

[{(H7, )L, 1
|J|1/2 o |J|1/2

Lp(M)

s 1 |”/ LT JGDO |J [ /s M
= b(x b odzdy
gkg R //H DI, 00

:upﬂ/gwamww—mwamw@

where

Ki( Z S0 2260 (2) 1, (y).

s=t JeDI(I)
Clearly, if x ¢ I or y ¢ I, then K;(x,y) = 0. On the other hand, suppose that z,y € I,

and |z — y| > /nl(J) for some J € DY(I). Then 31 < k < n such that |z — yx| > £(J),
where zy, is the k-th coordinate of z. We then deduce that 1;(z)1,(y) = 0. Hence

t+|logy (vnl(I)/|z—yl)] (4n)” |I‘2
K]([L',y) < ﬂl(l')ﬂj(y) Z 22n(s—t) <

s=t

where |-] is the floor function.
Therefore, for a given t € Z, we sum up all I € DY, and obtain

(H7,b) 2P (4n)"(2" — 1) b(z
|j|p/2 n Jon

1€DY JEDO(I) 7 |$ - y|2n

Finally letting t — —o0o, we have

”bH%gm(Rn’M) Sn,p ”bH%p(Rn,Lp(M))‘

5.1.3 Proof of Theorem 11.6

The following two lemmas will also be needed for the proof of Theorem II.6. Before
formulating them, we introduce some definitions. Let (e;);en be the standard orthonormal
basis on ¢5. For any A € L,(B({2) ® M), denote by A;; the (i, j)-th entry defined as

Ai,j = <6i,A€j> € LP(M)

85



CHAPTER 5. SCHATTEN CLASS AND BOUNDEDNESS OF
OPERATOR-VALUED COMMUTATORS

Lemma 5.1.9. Suppose that (A, )~er is a net of operators in Ly(B({2)@M) (1 < p < 00).
Let A€ L,(B(ly) @ M). If for any i,j € N and x € Ly (M)

11’Iyn7'<((147)17] — A@j)l’) == O,

then
1Al L, (Be2)erm) < Sup 1 A5, (BE) M)

Proof. Note that for any projection p € B({;) with finite rank, one has for any B €
Ly(B(ly) @ M)

Tro7((p®@1pm)Alp © 1) B) = imTr @ 7((p @ 1y) Ay (p @ 1) B).-
By duality, this implies that
[(p @ La)Alp @ Ly |, (Ble2)om) < Sup [(p @ 1pm) Ay (p @ 1) |, By oM)-

Therefore, we have

1AL, Benery = sup [[(p @ 1) Alp ® Lad)ll, sie)em)
pT=p=p*
finite rank

< sup sup [[(p® 1Lm) Ay (p @ 1) ||z, (Be2)oMm)
Lo

< sup 1AL |z, (BE2) @ M),

as desired. ]

Let T € B(L2(R"™)). Then T®Idp, ) extends to a bounded operator on Ly (R™, Ly(M)).
We still denote it by T for simplicity. Thus by virtue of continuity and linearity, T satisfies
the following properties: for any f € S(L>*(R") ® M) and z € M

T(f)r =T(fr) and 7(T(fz))=T(7(fx)). (5.1.13)

Lemma 5.1.10. Suppose that (1) er is a bounded net of operators in B(Ly(R™)). As-
sume that (T',)yer converges to T € B(Lo(R™)) with respect to the weak operator topology.
If2<p<ooandbe L,(R" L,(M)), then

1Crpll L, (B(La®m @M < Sup 1Cr bl Lo (B(L2 BP0 M)-

Proof. First we show that for any finite cubes I, J C R" and = € L,y (M), one has
li£n7<<]lj, CT,Y7I)(1J)>$> = T<<]11, CT7b(]1J)>:E>.
Note that by (5.1.13)

T<<1LI, Cwa(ILJ)>x> = T<<11, T, (b1y) — bTw(ILJ)>x>

T(<11,,T(bx11J)>) ({2015, T,(1)))
<]l[, bl’ ]]_J)> < (.I*b*)]lJ,Tfy(]lJ)>
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This implies that
11317(@1, oTw,b(nJ)ﬁ) = (11, T(7(bx)1,)) = (7(2"b")1,, T(L,))

- ¢<<111,0T7,,(1J)>x>.

Hence, the desired result follows from Lemma 5.1.9. n
The remainder of the section is devoted to the proof of Theorem II.6.

Proof of Theorem I1.6. From Proposition 5.1.4, Corollary 5.1.5 and Lemma 5.1.8, we have

11771, My]l| L, (BLa@myorm) Snp [T Brro@n|0||B, @, L, A1)

and
1[(751)", My)|| 2, BLa@myor) Snp T 1| Brro@m ||l B, @n, L, Mm)-

Hence by Theorem 5.1.6, it remains to estimate ||[S7, My]| 1, (B(Ls®n)em) for any i,j €
N U {0}. By the triangle inequality

1S5, M|l L, (B(La@per) < NS, m)llL,Bre@mnem) + 1152, Al L, (B(La@)@m)
+1[SY, Ry)ll £, (B(La @)@ M)-

Here the operators m,, A, and Ry, are associated with the dyadic system on D“.
From Theorem I1.2 and Lemma 5.1.1, we know that

176l B @M) Snp 1Pl go2 @ agyr 16l Ly B2 @ )@M) Snp 101 go2n @ pgy-

Meanwhile, recall that S¥ € B(Ly(R", Ly(M))) is with norm at most one. Thus, using
Lemma 5.1.8, one gets

1S, 7o)l 2, B @mper S NSE ol L, (BLa@m)em)

Sn,p HbHB;?"(Rn,M) Sn,p HbHBp(anLp(M))'

Similarly,
IS Al (B(La@)orm) Snp 10]B,@n L, (M))-

For any i,j € N U {0}, we will show that [[SY, Ry)||1,(B(Lo®"))em) increases with
polynomial growth with respect to ¢ and j uniformly on w. Then from Theorem 5.1.6 and
the triangle inequality, the desired result will follow.

Now we begin to estimate ||[SY, Ryl 1, (B, )em). Without loss of generality, we
assume w = 0. Let & = [SF, R,]. Then

= Z Z Z aIJK<H§7Rb<f)>H9 - Z bkfldk(séj(f))-

KeD© [,JeD%1,JCK £ne{0,137\{0} keZ (5.1.14)
L(I)=2""(K)
0(J)=2"70(K)
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Note that for any s € Z and ¢ € {0,1}"\{0}, if I € D?, then d,,HS = H5. Hence, for

any I € DY,
(Hf, Ry(f) < Y b 1dzf> <dk+1H§’Zbl—1dzf>
IeZ =7
= <H[7dk+1 (Z bl—ldlf>> = (H},bydy 1 f)
=7

1
= (H§, byl ydyyr f) = <H§7 <|Il‘>b>11dk+1f>

= {0y = (s

For the second term in (5.1.14), one has

S (S = b ¥ = a1 1)
keZ keZ KeDO | JeDO 1 JCK &

é’(l) HU(K)

UJ))=2"74(K)

=2 2 > Y aiykbe(H, f)H]

keZ KeD) | . 1,JeD%I,JCK &n
o(D)=2""4(K)
2(J)=2"74(K)

S VI VD I o N T T Ly

k€Z KeDY) 1,JeD%I1,JCK &m
(I)=2" ”f( )

0(J)=2"90(K)

—1-j

SOOI M W R T N T

KeD [,JeD%I1,JCK &n
21)=2""(K)
L()=2"94(K)

Therefore,

5, 5 sl (om0

KeDO 1,JeD%I,JCK &m
é(I):Tié(K)
2(J)=2"94(K)

Let bIJ <|1[I| b> <‘]lJ]| b>

Since By,, B, have orthogonal ranges when K; # K, we see
B;(IBK2 :0, VKl#KQ,Kl,KQ EDO7
which yields #*® = Y. B} Bg. Note that Vf € Ly(R™, Ly(M)),

KeDb

By B (f) = Z Z aIJKa[Z-Kb bIJ<H§a f>H£,
I,1,JeDY%I1,1,JCK ££.n
L(N=L(I)=2""4(K)
2(J)=2"94(K)
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which implies that #*® is a block diagonal matrix with blocks Bj By for all K € D°.
Consequently, we have

* /2
Iy ipiraenenn = 19 (ppr/Q B(La(R")@ M)
- 2 5.1.17
€ k

Now we fix k € Z and K € DY. For any Q,Q C K satisfying £(Q) = /(Q) = 27"/(K) and
¢,¢ €40,1}"\{0},

<H§}>B}k<BKHg2> - <HC%’ ) > aIJKaI?]Kb* bIJ(H;’Hé>H§>
I,1,JeD%I, 1, JCK ¢£n
e([):f(i):rie(K)
L(J)=2"4(K)

- Z Z aQJKaQJK QJbQJ
JeDYJCK M
U(J)=277U(K)

R K,Jn

= 2 2 Wghes
JeDY: JCK
{N)=2"9U(K)

Denote by

[BkBxk] = <(B?<BK )(@,§>,<Q,c>> o i o
Q,QeD%Q,QCK U(Q)=6(Q)=2""(K),¢,¢e{0,1}"\{0}

the matrix form of Bj; By Wit~h respect to the basis {H(%}QGDO;QgKvg(Q)zg—ig(K)746{071}n\{0},

where (B Brk) 6.6 0.0) = (Hé, B} Bi Hg). We also denote the 2(2" — 1) x 2(2" — 1)

matrix by

W = (WKJ” (5.1.18)

Q,0) (Q7C)> ~ ~ ~ _ .
Q,QEDY%Q,QCK U(Q)=(Q)=2"4(K),(,¢€{0,1}"\{0}

Then recalling that p > 2 and using the triangle inequality, one has

1Bk Bic || L, oL@ orm) = I[BrBillL, 20450 50y @00

sy,

JeDY: JCK
£(J)=2"14(K)

VAN

p/2 2in(2n—1)®M).
Hence by (5.1.17)

p/2

LIRPISSNIES 3 3 Wi )

B(L2(RM)®M) = lé:zzg;)g JGD%QK 277: H HLP/Q(M2M(2”1)®M) (5.1.19)
0(J)=2-70(K)

Define the 2%(2" — 1) x 2(2" — 1) matrix V77 the only non-zero row of which is the

first row, as a row vector a%"JKbQ J . Thus
QED%QCK L(Q)=274(K),¢e{0,1}\{0}

WEIn — (VK,JM)*VKaJﬂ?' (5.1.20)
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Consequently,

HWKJW

- vy

Lp/2(M2i"(2"71>®M) Lp/Q(Mzin(2"71)®M)

= Z aggnJKaEQnJKbQJbz)J
QED();Q_QK Lp/Q(M)
£Q)=27"U(K)
¢e{0,1}™\{0}
< Z ag)JKaanJKbQJb*QJ (5.1.21)
QEDYQCK Ly/s(M)
{Q)=27"U(K)
¢e{0,13™\{0}
2
= > |athxbes
QeDY;QCK Lp(M)
HQ)=2""U(K)
¢ef{0,13™\{0}
Together with (5.1.19),
p/2
LIRPPSSVES 5 of (5 VD vIb vl ) 1'% Wl I
k€Z KeD) \ JeDY%JCK IeDO ICK Lp(M)
0(N)=2"00(K)  (I)=2""¢(K)
Note that |a§ | < 270072 then we estimate
(2" —1) 2
oo > Z CLUKbIJ < G > > 1625112, (m)-
JEDY,JCK N I€DYICK Lp(M) JEDYJCK  IeD%ICK
(N=2"T4(K)  I)=2""¢(K) 0())=2"16(K) ((I)=2""¢(K)

Since b;; = brx — bk, by the triangle inequality and the Cauchy-Schwarz inequality, we
have

> 2 X X |aiikb
JeD%JCK M IeD%ICK € Lp(M)
L(J)=2"94(K) L(I)=2""(K)
<CoD s (bl e + Bl )
DIGED TRNLy (M) JENLy (M) (5.1.22)
JeDY,JCK 1eD%ICK
£(J)=2"90(K) £(I)=2""(K)
(2 — 1)’ ) (2 — 1) )
= g1 > o517, (a0 + 50— Yo bkl o
IeDY;ICK JeDY;JCK
((1=2""(K) £(J)=2"94(K)
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Note that byg - 1; = (bgss — bx) - 17, and sum all I and J, one has

ZZZZ

JeDY,JCK M IeDO ICK
U(J)=2"74(K) (I)=2""U(K)

< (20— 1)kt (H(bk+i - bk)ILKH%Q(R”,LP(M)) + [[(br45 — bk)]lKH%Q(]R”,Lp(M))>

aIJKbI J

Lp(M)

ki k+j
< (2n — 1)%ttkp (Z > lldib- ILKH%p(R”,Lp(M)) +5 > lldib- HKH%I,(R",L,,(M))>‘

I=k+1 I=k+1
(5.1.23)
Hence using the convex inequality, we obtain

INIE, (320 @00

k+i k+j
< (2n _ 1)p2p Z Z gnk (Z'Pl Z ||dlb . ]lKHip(R”,Lp(M)) _i_jP*l Z Hdlb . HKHip(R",LP(M))>
k€Z KeD) I=k+1 I=k+1

= (2" = P2+ 57) 3 2" kbl o 1, 0

kEZ
Snp (@ +37) HbHZgz"(Rn’M) < (" +47) HbH%p(R",LP(M))'

Since the above estimation is independent of the choose of w, one has
115, Rolllz, (Biza@memy Snp ( + 3°)7116]| B, n 1, (00)),
which yields
1S, My]ll 1, (B(1a@ @) Snp (7 + 57+ 1)VP (0]l B, w0, Ly (00))-
Therefore by Lemma 5.1.10 and the triangle inequality,

[T, My)|| L, (B(L2®P))2M)

- H [Cle > 2 melie2gl 4 GBS + Eumdy + Eu(m8)", MJ
max i} >0 Lyp(B(L2(R"))©M)

o0
<> o mabdde2R 1S M| L, (B(La o) + Boll[m5 + (75a) s M)|| 1, (B(La (R )M
ij=0

Snp (L+ 1T U sro@e) + 1T 1 sro@n) ) 1Bl B, @, 1,

This completes the proof of Theorem II.6. O]

5.1.4 Comparison between Theorem II.5 and Theorem 11.6

From our proof of Theorem II1.6, we see that when p > 2 and M = C, one always has

T, M, —()|pdd
L A e L

However, this does not contradict with Theorem IL.5 for p < n and n > 2 due to the
following fact.
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Proposition 5.1.11. Let 0 < p <n. Then b is constant if

/ / y|2 dxdy < 0.

Proof. By changing the variables, we have

b(x +t) —b LA
[b(z) = bw)PP ay [b(z +1t) — b(2) |7, & ) g
n n |2n n |t|2n

We proceed with the proof by contradiction. Assume that b is not constant. Then there
exists ¢ € C°(R™) such that b* ¢ € C*°(R") is not constant either. Since by the Young
inequality

lp*b(z + ) = o x b(@)I|7, @y < NlL, @ l10(x + 1) = b(@)IZ, )
we get

dt < oo

I * b(w + ) = o x b(T)I|7 n)
/n ‘t’Qn

Hence we can assume that b € C*°(R"), otherwise we replace b with b * .

Since b is not constant, there exists & = (Z1,--- ,Z,) € R", such that Vb(z) # 0. Let
U be a unitary matrix in M, such that Vb(z) - U = (|Vb(%)],0,---,0). We substitute
b(y) := b(y - U) for b. So we can also assume that there exists # € R" with Vb(Z) =
(M,0,---,0) and M > 0.

Since b € C*(R™), 3 6 > 0 such that ¥ |y — | < 2 with

M

[Vb(y) = Vb(@)| < .

Thus for any |z — Z| < ¢ and |t| < ¢ with [t;] > | , by the mean value theorem,

bz +1) — b(z)| = |Vbx+0-1)-t| (0<6<1)

> |Vb(#) - t] — |(Vb(x + 0 - 1) = Vb(F)) - 1
M M
> ajey| - M M

This yields that
1b( + ) = o)L, @ny Znp 8" M|t

Consequently, one has

AR iy,
n ~,p
T oy 1P
\t1|> il
§ P
~n,p 7“271 * ldT
- / Tn-i—l pdT -
This leads to a contradiction. O
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5.2 Proof of Theorem I1.7

We will follow the same route as the argument for Theorem I1.6. In particular, we
include theorems regarding the boundedness of commutators involving martingale para-
products and related operators. Via Hytonen’s dyadic martingale technique, we will derive
Theorem I1.7.

From (1.4.2) we see that

1/2
HbHBMOd( R) — Sup |I‘1/2 <Z Z ’ h?]? ) .

JCI =1

In [18], Chao and Peng showed that for 1 < p < oo, m, is bounded from L,(R) to L,(R)
if and only if b € BMO%(R). See the detailed proof in Theorem A.0.1 and Remark A.2.5
in Appendix A.

Recall that the operator A is introduced in Lemma 5.1.1.

Lemma 5.2.1. Let 1 <p < oo. Ifb € BMO“(R), then A, is bounded on L,(R).

Proof. We use the same notation as that in Lemma 5.1.1, and the proof of this lemma is
also similar to that of Lemma 5.1.1. From (5.1.1), we write A, as follows:

Ao(f) = (me)"(f) + L(f),  Vf € La(R), (5.2.1)

where
!

- Bt
=2 2 Z > (b YR ) T (5.2.2)
keZ 1€Dy 1 =1 1551 ’ ‘

It has been shown in [18] that

||(7Tb*)*HLp(R)—>Lp(R) = ||7Tb* L, (R)—=L, (R) Rd,p ||b||BMOd(R)- (5-2-3)
It remains to estimate ||/L,H Ly(R)— Ly (R)-

At first, we show the boundedness of A, for p = 2. Since A, is a block diagonal matrix
with respect to the basis {h’}ep 1<i<d—1, one has

I
D 1<s,t<d—1

| A6 o) La(m) = SUP
Ie

Y

Soo(Mg—_1)

where a!_, = [I|7Y2(h57")b), and a} = 0. We have

I
1<s,t<d—1

[ Ap|| a®)— La(r) < sup || B || s )
IeD

< NB || s )
Soo(Mdfl)

which implies
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where B! is defined in (5.1.1). Thus by using the triangle inequality, one has

]| LRy — Lo () < sup a1 A+ a3 A% + - + af 1 A s u)

d—1 d—1
< su al A < su al
< Ieg; llai A'll s gy < Ieg;\ il (5.2.4)
d—1

(b}, b)] < (d = 1)[|bll prroaw)-
i—1

= Su
i SVIE

From (5.2.3) and (5.2.4), we obtain that A, is bounded on Ly(R).

Next, we prove that A, satisfies weak type (1,1). Assume f € Li(R) and let A > 0.
In the same way as in [70, Lemma 2.7], we have the Calder6n-Zygmund decomposition
f =g+ h with

L glleeem < aX gl < | fllziw):

d-1
2. h = Y hj, where h; = (f — <1117'|,f>>]llj = 3 Y (b, )k} and {I;} form a
5 i JCI; =1

Il £, &)
S

sequence of disjoint d-adic intervals such that 3 |I;] <
J

We see that A, is of strong type (2,2). In particular, (5.2.4) implies that

i lgll7
{I4(g) > A/2}| < 4(d - 1)||b||BMod(R)%®
9l L@ £z, e
< 4(d = Dbl syoim) ())\2 ®) (5.2.5)

f
< 4d(d — V)bl msrosge L.
On the other hand, from (5.2.2) we deduce that suppA(h;) C I;, and

A > 22} < |y 1y < s, (5.26)

Then from (5.2.5) and (5.2.6), we conclude that
[{IA()] > M < {IAu(9)] > A/2}| + [{[A(h)] > A/2}|

!
< (4d(d — V)||bll paross) + 1>””§1®

Hence Ay is of weak type (1,1). Using interpolation and duality argument, we obtain that
Ay is bounded on L,y(R) for 1 < p < oo. O

Remark 5.2.2. There is another easy proof to show that A, is bounded on L,(R) when
1 < p # 2 < co. By the duality between the d-adic martingale Hardy space H{(R) (see the
definition below in (1.4.3)) and the d-adic martingale BM O space BMO%(R), we see that
if b € BMOYR), then A, is bounded from H{(R) to L;(R). Using the boundedness of A,
on Ly(R) and by interpolation, we conclude that A, is bounded on L,(R) for 1 < p < 2.
The boundedness of A, on L,(R) for 2 < p < oo follows from the duality.

94



5.2. PROOF OF THEOREM IIL.7

We now provide the following useful lemma so as to prove Proposition 5.2.4.

Lemma 5.2.3. Let 1 <p < oo, f € L,(R) and b € BMOR). Then

sup|Ex—1 (Y d;b- d; f)|

So Iblleroam | fllz,@)-

Lp(R)

Proof. By the Holder inequality, one has

E, (Z d;b - djf) ‘ = [Eg—1(b — be—1)(f — fr—1)]

Jj=k

< (Ek_1|b — bk_1|q> v (Ek—llf — fk—1|q/)1/q/7

where g = ]% and %—ki = 1. From the martingale John-Nirenberg inequality in Remark
1.3.11, we have

1/q
6] Brmrodr) =g SUP HEkﬂ!b - bk—1|qH : (5.2.7)
keZ o

Hence by (5.2.7),

sup
keZ

By, (Z djb- djf>

j=>k

Lp(R)

<

1/q N 1/d
sup (Ekq’b - bkfl‘q) - sup (Ek71|f - fkf1|q )
kez keZ

Lp(R)

rgp ||bHBMOd(R) :

N 1/d
sup (Ex-1f = fi1l”)
keZ

Lp(R)

Note that |f| € L, /¢ (R) and p/q’ > 1, by the Doob maximal inequality,

nN1/d N 1/d
sup (Ekfﬂf - fkfl‘q ) ,Sp sup (Ekq’f’q ) + HSUP ’fkfl‘HL ®)
keZ Lp(R) keZ LP(R") keZ P
S 1l zo®)-
Therefore
soplBis (S a7 )| % Wlaonn 111
keZ >k LP(R)
as desired. O

Before proving Theorem I1.7, we give the following two propositions concerning the
boundedness of commutators involving martingale paraproducts.

Proposition 5.2.4. Let 1 < p < co. If a,b € BMO%R), then [r,, My] is bounded on
L,(R) and

|| [Wa, Mb] HLP(R)—>Lp(R) Sd,p ||CLHBMod(R) HbHBMOd(]R)'
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Proof. Recall that R, is defined in (5.1.3). We will first focus on the estimate of the norm
H[ﬂ'a, Rb”le(R)%Lp(R)- By (5.1.4) and (5.1.7), one has Vf S LP(R)

o Bi)(f) = —mal (1)) + 3 - By (Z 4. djf> — ra(mlf))

keZ >k
Define
Vao(f) =D dra-Eiy (Z d;b - djf>, Vf € L,(R) (5.2.8)
keZ >k
and
@b = Ty + Ab. (529)

Then by the above calculations,
[7as Bo] = —76Op + Vi (5.2.10)
By Lemma 5.2.1, one has

||7Ta@b||L,,(R)—>L,,(R) < ||7Ta||Lp(Rn)—>Lp(R)(||7Tb||Lp(R)—>L,,(R) + ||Ab||Lp(R)—>Lp(R))

(5.2.11)
Sdp HCLHBMod(R)HbHBMod(Ry
For any f € L,(R) and g € L, (R),
(Vap(f),9) = Z<dka cErq (Z d;b - djf>79>
keZ >k
= Z<dka, dkg . Ek:—l (Z d]B . d]f> >
keZ Jj>k
= <(l, Z dkg . ]Ek—l (Z djg . d]f> >
keZ j>k
To use duality, we need to estimate the following
o 2\ 1/2
> dig By (Z d;b - djf) = ‘ (Z |dy.g]? | Ep—1 <Z d;b - djf) >
keZ j>k H(R) keZ J>k L1(R)
1/2
< ‘ (Z |dk9’2> -sup|Ey_y (Z d;b - djf)
keZ keZ J>k L1(R)
< U560 et (S -
keZ ]Zk LP(R)
Sp 0l Broawll9lle, @1 fllz, @),
(5.2.12)

where the third inequality is from the Holder inequality, and the fourth is from Lemma
5.2.3. Therefore

[(Vau(f), 9| S ||aHBMOd(R)

> dig-Bus (T ap-47)

keZ >k H{(R)

Se HCLHBMOd(R)Hb”BMOd(R)Hg”Lp/(R)Hf”Lp(]R)-

96
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This implies that
Vapllz,®-z,@ Sp lallsrodm 0] Brroam)- (5.2.13)
From (5.2.11) and (5.2.13) we have

H [7Ta, Rb] HLP(]R)—>LP(R) Sd,p H@HBMOd(R) HbHBMod(R)-

Recall that
{ﬂ-a’ Mb] == [ﬂ-a7ﬂ-b] + [77-(17 Ab] + [71—(17 Rb]

Since 7, is bounded on L,(R), by the triangle inequality we deduce that

[, Mb]HLp(R)—wP(R) Sd,p ||CLHBMOd(R)||b||BMOd(]R)-
This completes the proof. O

Corollary 5.2.5. Let 1 < p < 0o. Ifa,b € BMO%R), then [r%, My is bounded on L,(R)
and

[, Mb]HLp(R)aLp(R) Sdp HaHBMOd(R)HbHBMOd(R)-

Proof. Recall that
[ﬂ-;? Mb]* = _[ﬂ-a? Mb*]‘

By Proposition 5.2.4 we deduce that

72 Mo] ||z, ®)—Lo®) = [l[Tas M|, )L, ®R) S lall Brosw)|bll Brrodw)-
O

We can define the martingale BMO space BMO“?"(R") on R" by virtue of H}
similarly as in Definition 1.4.2. More precisely, BM O“?" (R") associated with the dyadic
system D“ on R” is the space consisting of all locally integrable functions b such that

1/2

1

10ll arow2m (mny = sup 172 <Z > !(Hf},b>|2> < 00. (5.2.14)
Teb JCI ne{0,1}\{0}

Then Lemma 5.2.1, Proposition 5.2.4 and Corollary 5.2.5 also hold for the dyadic system
D¥. Tt is straightforward to verify that if b € BMO(R"), then b € BMO“?*" (R") and

16/l Barow2m mny < 1|0l BrAro®R)-
We come to the proof of Theorem I1.7.

Proof of Theorem I1.7. We use the same notation as that in the proof of Theorem II.6.
From Proposition 5.2.4 and Corollary 5.2.5, we have

771, Mo] ||,y L&) Snp T Brro@n) |16l Bro@n)

and

1[(7F1)™s Myl 2, mr)— Ly @) Snp 1T 1| Brro@n) |6l Brro@n)-
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By Theorem 5.1.6, it suffices to estimate ||[S¥, M|, ®n)—r,®n) for any i,j € NU{0}.
Note that by the triangle inequality

IS, My)|| 1, ) 1, ()
< ST, mlll o, @)= z@ey + 1S Abl|| 2, @)= Lp@ny + 115, Ro)l| Ly ry— L, ®7)-

Here m,, A, and R, are with respect to the dyadic system D“. From [18] and Lemma
5.2.1, we know that

75| L, &r) = L@ S 10l Brr0w2 @y, ([ A6l Ly @my=Lo@e) S [0l Brrow2n ®e)-

However, S is bounded on L,(R™). Therefore one has

IS 7o)l Ly Ly @) S NS N L) Ly (o) 70| 1 () L )

Snp (0 + D0 Brrow2 ®ny Snp (@ + 5)1bl Brro@n)-

Analogously, we have

0S5, Al Ly mmy— Lorry Snp (84 9|6l Baro@n)-

It remains to estimate ||[S¥, Ry)||L,®n)—r,®n) for any 4,7 € NU{0}. We will show that

1[SY, Ry)|| £, (rn)— 1, (R increases with polynomial growth with respect to ¢ and j uniformly

on w. Then from Theorem 5.1.6 and the triangle inequality, the desired result will follow.
We first prove

IS Bolllagry Loy S 1Bl a0 (5.2.15)

Without loss of generality, we can assume w = 0. Let & = [Sf/, Ry]. The form of ¢ and
Br (K € D) have been given in (5.1.14) and (5.1.15) respectively. From (5.1.16) we
know @*® is a block diagonal matrix with blocks B} By for all K € D°. Hence

||¢||L2 R7)— Ly (R") = = ||&* ¢||L2(Rn )= La(R) — SUP sup HBKBKHLg R")— Ly (R")* (5.2.16)
€Z KeD)
Now we fix k € Z and K € DY. We write Bj; By in the matrix form [Bj, Br] with respect
to the basis {Hé}, where Q € D°,Q C K , {(Q) = 27%(K) and ¢ € {0,1}"\{0}. Then
using the triangle inequality, one has

1Bic B a(eny-staem) = 1B Biclls gtymcon )
K,Jn
< X ZHW —
JeDO,JCK (2n-1))

oJ)=2"7¢(K)

K,J, K,J,
o S
0(T)=2-74(K)

where W:Jn VK1 are defined in (5.1.18) and (5.1.20). Analogously to (5.1.21), we
deduce

2

K K * —_
HV ’J’n(v ’J’n) HS (M, ) = S agikadixboibos = Y agicbo|
o ain(@n -1 QeDYQCK QEDYQCK
(Q)=2""UK) {Q)=2""U(K)
¢e{0,13"\{0} ¢e{o,1}"\{0}

98
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b) — (£2,b) for any I, J € D°. This implies that

where by = (1 Wik

[1]°
&n
a;yrbrs

2> 1/2

Note that ‘aIJK’ < 2—(z’+j)n/27 b[J = b[K — bJK and b[K : ]1[ = (karl — bk) . ]1]. Then by the
Cauchy-Schwarz inequality

@] ey < D sup( Y Y oY ¥

REZL KEDY\ jepOjck 1 [eDYICK €
o)=2"90(K)  £(I)=2""(K)

Z Z Z Z a?jmbu

JEDYJCK N IeD%ICK €
()=2"74(K)  UI)=2""(K)

(2n —1)2 )
< 2(i+4)n Z Z ’bIJ’
JeDY;JCK IeDY;ICK
L(J)=2"74(K) £(I)=2""4(K)
< Sem 2 > 2fbrx + [bxl) (5.2.17)
JeDPY,JCK IeDYICK
L(N)=2"9L(K) L(I)=2""(K)
(2" —1)? 2, (2" —1)° 2
B 2mt IEDOZ-ICK |bIK| ' 2t JEDOZJCK |bJK|
o(n=2""¢(K) o= 0K

_ (20 — 1)2oht <||<bk+i Bl ey + By — bkmm&ﬂw))
We also notice that
s = b L By = [ Bellnst) = bl0) )t < B0 o

Hence
1P| Lo ®r )= Loy Sn 16l Brroo2n @y < |6l BroE®R)- (5.2.18)

Now we prove that @ is of weak type (1,1). Assume f € Li(R™) and let A > 0. We let
A8 = a5" by, then by (5.1.15)

= > X D AU(H NH].
KeDO [,7eD%1,JCK &m (5.2.19)
o(I)=2""¢(K)
L(J)=2"94(K)

Note that if I is the parent of I, then

(o) =) < m

ho- ()
< 7 Ib(t) <|1]J| b>|dt

S 2n||b||BMOOv2n(]R")'
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Together with the triangle inequality, this implies that
AT x| = 1aixcl1brs| < lafhllbrrc| + [af)wclbsic] < 2°(i+ )bl sasoor mylaf) |-

Thus the operator @ can be written as a multiple of S/. Recall that SZ is also of weak
type (1,1), and hence for any A > 0

G 1l
PN > AN S i+ 3Bl parooan oy - 222,

Therefore using interpolation and duality, ® = [S{, R,] is bounded on L,(R™). Since
the above estimation is independent of the choose of w, one has

0S5, Ro)ll 2, mey— 1y @) Snp (8 + 5)2(10] Baro@n),

which yields 3
1055, M)l L, )=, ) Snp (@ + 5 4+ 1|16l Bromn-

As a consequence,

1T, My][| () 1 ()

= || [Cle S ormaxtiile26i 4 OR, S + By + Eu(m5)", Mb]
ma)i’{ji,:j%>0 LP(RH)HLP(Rn)

< > 27 mBeRE ([SY, My] ||, mey-s 2,y + Bull[m + (1501)*, Mol 1, )1 o)
i.j=0

Snp (14 1T ro@n) + 1TV poen ) 1bll sarogn) -

This completes the proof. O

5.3 Proof of Theorem I1.8

We end this thesis with the proof of Theorem I1.8. Denote by BMO4%,(R) the operator-
valued BMO space associated with the d-adic martingale consisting of all M-valued
functions b that are Bochner integrable on any d-adic interval such that

1 1
e e | e g

where D is the family of all d-adic intervals on R.
During the proof of Theorem II.8, we also need to utilize the d-adic martingale square
function defined as follows

2 1/2
dm) < 00, (5.3.1)
M

1/2
S(h) = (z \dkhﬁ)  Vhe LR, LyM)),

kEZ

and the d-adic martingale Hardy space Hﬁ (R) is defined by

max

sup [[Enhl| 2, (m)
mEeZ

1,max

HE (R) = {h € LR L (M) : [l o =

< oo}.
L1 (R)
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Bourgain and Garcia-Cuerva proved independently that BMO%,(R) embeds continuously
into the dual of Hardy space (H{ . (R))*. We refer the reader to [12] for more details.

1,max

Firstly we give the following proposition and its corollary, which will be helpful in the
proof of Propositions 5.3.3 that can be regarded as an analogue of Propositions 5.2.4.

Proposition 5.3.1. Let 1 < p < oo and b € BMO%(R). Then m, + (m)* is bounded on
LP<R7 LP<M>) and

76 + ()" || Lo (® Ly (M) = Ly R Ly (M) Sdp 10l 104, (R)-
M

Proof. For any f € L,(R,L,(M)) and g € Ly(R, Ly(M)), by (1.7.4)

((mp + (mp)*)(f), 9) = <Z dib - fr—1+ ZEkq(dkb : dkf)7g>

keZ kEZ
= (dib,drg - fri_y) + D (dib, ge—1 - dif™)
keZ keZ
= <b, odrg foi Y grot- dkf*>~
keZ keZ

Using the same method as in [55, Theorem 1.1] or [5], we obtain that

(o + (m)") (), 9] Sap 101 Baros, @l f 1|y, (rp 1912, .,y (11))-

Therefore, one has

M
D

Recall that O, has been defined in (5.2.9). The following corollary is about the bound-
edness of ©y, which has been proved in [38, Proposition A.2|, but it seems that the proof
there contains a small gap. We give a detailed proof here.

Corollary 5.3.2. If b € BMO%,(R), then © is bounded on Ly(R, Ly(M)) and

19| Lo ®, oMy~ Lo® L2(M)) Sd 1]l Br04, () -
Proof. By the triangle inequality, one has
”61)|’Lz(R,Lz(M))HLz(R:M(M))
< H7Tb + (Wb*)*HLQ(R,LQ(M))—>L2(R,L2(M)) + ||Ab - (Trb*>*||L2(R,L2(M))_>L2(R7L2(M))'
Using the same notation as in Lemma 5.2.1 and from (5.2.1) and (5.2.4), we have

||Ab - (Wb*)*||L2(R,L2(M))—>L2(R7L2(M)) < §1€15 ||CL{A + aéAQ bt Clé_lAd_lnLoo(Md@M)
d—1 '
<sup Y [laf A 1o g
1D j=
= 1o
< su a: = sup —— i : b '
_Ie’g;“ 1||M Ieg |I|1/222::1”< I >||M
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i — i L
01 = | (110 = (o))

1 1,
< 7/ b(x) — <,b>|| dx
1]V Jr Haiy

< (/I bx) - <|]1[”b> ;d:v>1/2.

[ Ay = (02 )" || Lor, Lo (M) > Lo @, Lo(m)) < (d = Dbl parod, w)- (5.3.2)

However,

This implies

Therefore from (5.3.2) and Proposition 5.3.1

19| L@, oM La® L2(M)) Sd 10l Brrod, )

as desired. O

Proposition 5.3.3. If a € BMOYR) and b € BMO%,(R), then [m,, My] is bounded on
Ly(R, Ly(M)) and

[7as M) || Lo (R, Lo(M))— Lo (R, Lo (M) Sd HQHBMod(R)HbHBMOMR)'

Proof. We use the same notation as that in the proof of Proposition 5.2.4. Note that by
the triangle inequality

117 M|l Lo (. Lo(M)) = Lo (@, Lo (M)
< [[7a; O]l 2@, oMy~ La® Lo M)y + [ [Tas B[l 2R, La(M) > Lo (R, Lo (M)) -

Note also that from Corollary 5.3.2

17O Lo (R, Lo (M) > La®, LaM)) < 1Tal| Lo(R,Lo(M))— Lo (R, La (M) | Ob| Lo (R, Lo (M) La (R, Lo (M)

Sd HaHBMOd(R)||bHBMO‘fM(R)~
(5.3.3)

Hence, one has
1[7a, O] || La®, Lo (M) La(® L2(M)) Sa @l Brroaw) 0]l Brrod ®)-
Now, we estimate ||[7a, Rb)|| 1o (&, Lo(M))— Lo (R, Lo (M))- From (5.2.10) we have

[Ta, Bo](f) = =ma(©6(f)) + Vap(f), VI € La(R, Ly(M)).
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For any f € Ly(R, Ly(M)) and g € Ly(R, Lo(M)),

Vo). g} = z<dka By (z db- djf>,g>

keZ Jj>k
= Z<Z djb . djf, Ek—l (dka* . dkg>>
keZ \j>k
keZ i<k
= <b7 > D> Ej(dja”-djg) - dkf*>
keZ j<k

_ <b, S di(daa - dug) - f> b W),

keZ
where
Ware= > > Ei1(dja* - djg) - df* = di(dpa® - dpg) - fi_s.

keZ j<k keZ

Note that

<b, 3" dy(dpa” - dyg) - f,:1> =Y (dib, dg - dra* - fi_y)

kez kez
kez

= (di(drg” - dib), dra” - fi_y)
kez

*

= (A = (@) )9)) s 7ar (7))-

Then by (5.3.2),

< (A = (7)) (9 22 L2000 1T ()| 22 2200

|<b, Z di(drpa™ - drg) - fl:1>

kEZ

S HGHBMOCZ(R)HbHBMO’}VI(R)Hg”LQ(Rsz(M))”fHLz(R,Lz(M))‘
(5.3.5)
We now estimate W, ¢ ,. By duality, one has

W)? Wa,f,g>| 5 ”bHBMOj{A(R)HWa,f,gHHd (R)*

1,max
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We calculate directly that for any m € Z,

Em(Wa,f,g)
k<m j<k k<m
=Y B (dja*-dig) - (fr, = fi1) — D dj(dsa” - dsg) - f} 4
Jj<m j<m
= Z E;_ 1( ]g) I Z (dja* : djg) : f;—l
j<m j<m
(Z E;_ 1 ]g)> f* - Z (dja* : djg) : f;—l
j<m j<m

Jj=m+1 Jj<m

= m(ZEj—l(dja’* ' de)) fm —Em< > Eja(dja*- de)) = D (dja - dig) - fi
= m<Z E;_1(dja” - djﬂ)) fm —Em< Y dija”- de) o= D (dja” - dyg) - fiy

=/ j>m+1 j<m
Hence
Wasrallmg ...
SHPIIE (Wa,r.o) Ly omy
Li(R)
Sup <ZE3 1 ]Q)) f*
meZ jez Li(M)IIL(R)
+ || sup|[E ( > dja* ) - fr + | sup|| Y (dja* - djg) - [,
meZ j>m+1 LMLy (R) mEL||j<m Li(M) 1Ly (R)
= (I) + (II) + (I1I).
For the term (I), from (1.7.4), we have
Y Eji(dja” - dig) = (ma)*(g)-
JEZ
Thus
(I) < |sup||Ep((74)"(g)) = sup || fonll 2o vy
meZ La(M) meZ L1(R)
< ||sup||Em((ma)"(g)) Supllfmllew (5.3.6)
meZ Lo(M) I Ly(R)  lImEZ La(R)

S (ma) (D Lo Lo 1L f | Lo @, Lo (M)

Sa llall Broa) |91 L@ o) L || 2o, Lo (M)

where the first and the second inequalities are both due to the Cauchy-Schwarz inequal-
ity, and the third is from the vector-valued Doob maximal inequality for Ls(M)-valued
functions.
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For the term (II), one uses the Cauchy-Schwarz inequality to obtain

Em( > dj@*'djg> “fm

sup
meZL j>m+1 Ly(M)

e [En (0" = ai)o = m)) - £ 0

< sup [En((0” = a2,)(0 = 9m) |, 0gy 592 il 2200

Let r = 3/2. We have

HEW((a* —ap,)(g— 9m>) HLQ(M)

< EmH(a* —ap)(g — gm)HLz(M)

— Em(ya — | |lg— gmHL2<M>)
< (Enlla= enl”))"" (En(lg = aullzian))"”

N 1/r - 1/r
sHanBModaR)((Em|\gr\L2(M>) + Eallgnlann) )

N 1/r
. uaHBModoR)((Emr|gr|L2<M)) ; Hgm\|L2<M>).

Hence

L>(R)

<
(H) - La(M)

S [l fmllzarn)| - sup B (0" = @},)(g — gm)

Ly (R)

- 1/r
S%I%((EmHgHLQ(M)) + Hgm“Lz(M))

S HfHL2(R7L2(M))HCLHBMOUZ(R) :
Ly (R)

1/r
+
L2/T(R)

SUp || gm || (M)
meZ

o)

(5.3.7)

where in the first inequality we have used the Cauchy-Schwarz inequality, the second and
the fourth are both from the vector-valued Doob maximal inequality, and the third is
from the triangle inequality.

For the term (III), note that

< s lallamons - s Bnllalinn

- 1/r
S 1o ooy lall Baroaqw) - (HHQHLQ(M)HL%(R) + ”gHL2(R,L2(M)))

Sl o Loy llall Brroa) 191 Lo @, Lo (M)

Yo (dja*-dig) - i =) dig- (dja" - fi ).

j<m j<m
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This implies that,

(Z |d]9|2> : (Z |dja - fj—1|2>1/2

(II) < sup ‘
j<m La(M) Il \j<m La(M)IIL1(R)
/2 1/2
H‘ (Z |dgg|2> <Z |dja - fj—1|2> (5.3.8)
JEL La(M) I \jeZ La(M)IIL1(R)

S 9l zo@ 2o | Ta () Lo @, Lom))
Sa llall Broa) |91 Lo, Loy 1L || o, Lor))

where in the third inequality we have used the Cauchy-Schwarz inequality.
Hence from (5.3.6), (5.3.7) and (5.3.8) we deduce

[0, Wa, )| < [Ibllaros, @) Warallmg . ) (53.9)
Sa llallparoaw) 10l Brrod @191l Lo, Loy L f 1 2o @ La(M)) -

Then by (5.3.4), (5.3.5) and (5.3.9), we get
[(Vas (), 9 Sa llall saroaw 1l Brrod, ey 191l Lo o L 1| 2o,
which yields
VabllLo@ Lo(r)—»Lo@ Loy Sa llall Broa 16l Brod, )-

Therefore
[[a: Myl Lo, Lo(rM) > La® La(rM)) Sa 1@l Broa) 10l Brrod, ) -
Il

Corollary 5.3.4. If a € BMO%R) and b € BMO%,(R), then [r%, M) is bounded on
Ly(R, Ly(M)) and

1[7a: Mol Lo, Lor) Lo, Lom)) Sa 1ol Broa 10l Brrod, w)-
Proof. 1t is follows from Proposition 5.3.3 and
[W; Mb]* = _[Ww Mb*]'
O

We define the operator-valued martingale BM O space BM Oj(fn (R™) on R™ similarly
as in (5.3.1). More precisely, BM Oﬁ,’f (R™) associated with dyadic system D“ on R"
consists of all M-valued functions b that are Bochner integrable on any d-adic interval

such that
1 2
— | ——/ bd
(m(@>/@ m) y

Then Corollary 5.3.2, Proposition 5.3.3 and Corollary 5.3.4 also hold for the dyadic system
D¥. Tt is easy to verify that if b € BMO(R"), then b € BMO% (R™) and

1/2
dm) < 00. (5.3.10)
QeDv

1] (1
0,27 pny 1= SUP
BMOS" (R™) m(Q) Jo

181l paros 2 ey < 11BNl BAIO M (n)-

Thus we come to the proof of Theorem II.8.
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5.3. PROOF OF THEOREM IL.8

Proof of Theorem I1.8. We use the same notation as that in the proofs of Theorem II.7
and Theorem II.6. From Proposition 5.3.3 and Proposition 5.3.4, we have

1771, Mb]|| Lo®n LoM)) = Lo®n LMy S 1T Brro®) [0l Baro v m)

and

I(771)"s M]l| (@, 2000 L2 @, 2 00)) S T | BAro@n) 18] B30 01 (7
It suffices to estimate ||[SY, M| Lo(®n,Lo(M))— Lo, Lo (M) TOr any i, j € NU{0}. Note that
by the triangle inequality

<1157, Op)|| o @, Lo (M) Lo @7, La(M)) + 1197 s Boll| Lo (R, Lo (M) Lo (R?, s (M) -

From Corollary 5.3.2 one has

1157, O8] || Lo @, s (M) Lo &, Lo (M) S 110l BMO s () -

Now, we estimate ||[[S, Ry)|| Lo @, Lo(M))— Lo Lo(m))- Take any f with || f]| @ Loy =
1. From (5.1.15) and by the Cauchy-Schwarz inequality,

IS, Ro) fII7 & Lo ()

Z Z ZaIJKbIJ Hlaf>Hn

KeD» 1,JeD¥;1,JCK &
E(I):2*ié(K)
2(N)=2"94(K)

=X > X > Ydilkbu(Hif)

KeDw JeDw;JCK n |l IeD“;ICK ¢
0(J0)=2"7((K) o(I)=2""0(K)

S oovos(x s (X St i)

KeDv JeD¥,JCK n \ IeD“;ICK ¢ IeDY;ICK ¢
L(J)=2"74(K) é(I):Z*ié(K) 5(1):2*1‘2(1()

DS <2"—1>2zf”( S S b ) \|L2(M)
KeDw JeD¥;JCK I1eDY;ICK &
L(J)=2"74(K) é(l):zfié(K)

2

Lo(R™,La(M))

2

Lay(M)

IN

IN

(5.3.12)
where by = (1. b) — (L b). Note that if I is the parent of I, then

i) - (o), = m o - (o)

2n/2 1 2 1/2
< ~1/2< {b(t) — <J,b> dt)
1] I 1] M

< 2"21|b]| Baro pmr)-

This implies that by the triangle inequality,
1621 < ozl ae + 1barcllan < 2772+ ) 1] Baso,@n)-
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As a consequence, one has from (5.3.12) that
H [Sg’ Rb]fH%Q(Rn,LQ(M))

< 2°(2" = *(i + )b Bmopmny 2 ( > Z||<H§7f>lli2w>>
KeDw \ IeDw,ICK ¢
o1=2"4(K)

S (4 5)° 1101010 00 (-
By (5.3.11), we have
||[SZJJ7 Mb]||L2(Rn7L2(M))"LQ(R”,LQ(M)) Sn (Z +‘] + 1)||b||BMOM(Rn)

Therefore by the triangle inequality, we conclude

T, M)l Ly, Loy = La®r Laay) S 9 27 ™I [ST , Myl Ly, (M) = Lo (7. La(M)
i,j=0
+ EWH [77?‘1 + (Wélu‘*l)*> Mb] "L2(R"sz(M))%M(R”,M(M))
S (LT Baroeny + 1T 1| Baro@m)) |0l Brro v &) -

This completes the proof. n
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Appendix A: Boundedness of
commutative martingale
paraproducts

In this appendix, we will use the same notation as in Section 1.3. Given a martingale
{fr}r>0 on a fixed probability space 2, let fo = 0 and recall that the martingale maximal
function, the martingale difference and the conditional square function are defined as
follows:

o0 1
“=sup|fil, dif = fi— for, s(f) = (X Braaldif ).
k>0 k=1
For b € Ly(Q2), recall that the martingale paraproduct with symbol b is defined as
Ty - LQ(Q) — LQ(Q)
fr—m(f) =D dib- fei.
k=1

It is interesting to find the conditions that characterize the boundedness of m,. We will
show that 7, is bounded on Lo(2) if and only if b € bmo(€2). Recall that

1
bl = sup [Be( 3 Id;b) & < oo.

j>k+1

See Definition 1.3.9 for BMO(2) and bmo(2).
We are about to show the following theorem.

Theorem A.0.1. 7, is bounded on Lo(S2) iff b € bmo(2). Moreover,

17| Lo (@)= La() = 1|6][bmo(@)-

In addition, if b € bmo(Q2) and 1 < p < 2, then m, is bounded on L,(Q2) and

7] Lo )=o) Sp [|6]lomor)-

We divide the proof of Theorem A.0.1 into two parts.

A.1 Proof of the necessity of Theorem A.0.1

Lemma A.1.1. Let 2 < p < oo. If m, is bounded on L,(Q2), then b € bmo(f2).
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Appendix A: Boundedness of commutative martingale paraproducts

Proof. Note that d(m,(f)) = fe—1dib for k > 1. Let f = f, € L,(2) for n > 1, and by
the Burkholder-Gundy inequality

e p/2
I7sll? @ Il = el IE 2 E(( ldib- fial?)™)
k=1

o0

>E(( Y ldib- fial?)”)
k=n+1
— E((é.; dibf?)" 1)
—E(E( Y [abl?)”I5p).
k=n+1

This implies that

> p/2
IEn( 3 1debl®)" oo S Imol7, @)oo
k=n+1

since f, is arbitrary and |f,,|? € L1(€2). Note that since p > 2,

IE( 3 1db) Ml < IEa( 3 1deb?)”I122
k=n+1 k=n+1

Hence, [|D|lomo) Sp 17|, 0)—L,(0)-

A.2 Proof of the sufficiency of Theorem A.0.1

Lemma A.2.1. Let 1 <p<2andp =p/(p—1). If f € L,() and g € Ly (), then
To(f) =Y frmidrg € B (Q).
k=1
Proof. By direct calculation, one has

00 1 o0 1
s(mg(f)) = (ZEkflyfkfldeP)z = (Z ’fk71’2]Ek71‘dk9’2)2
k=1 k=1
< [ s(g).
The famous Burkholder inequality (cf. [14] and [15]) asserts that

I5(a) 1y Sp llglp-

This yields by the Holder inequality,

(g (NN < N Mol Sp 17 11p gl
Thus 7,(f) € h* (). O
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A.2. PROOF OF THE SUFFICIENCY OF THEOREM A.0.1

Remark A.2.2. Let 1 < p < oo. If f € L,(Q) and g € Ly (), then m,(f) € H' (). The
proof is similar to the above lemma, and we will use the fact that

15()llp = llgllp-

Lemma A.2.3. Let 1 <p <2. Ifb € bmo(2), then m, is bounded on L,(§2). Moreover,

17512, @) 2,09) Sp [10llomoe:

Proof. We proceed by duality. For any f € L,(Q2) and g € Ly(Q2), we have by Lemma
A2.1

(o (f) :deb So—1, 9) = 1D _(dib, fr_y1 - 9)|
P =1

= Z (dib, d( fk 19|

= | Z<dkb,?k71 - drg)| Z (dib, di(my()))]
k= k=1

S bllsmoten 74 (F)lInr@) o Nbllbmoten [1f llpllgllp

since dj, is an orthogonal projection in Lo(£2) and ( 1(Q))* = bmo(Q). We can conclude
that
17512, @) 2,09) Sp [10llomoe-

]

Remark A.2.4. From the proof of Theorem 1.1 (in particular the estimate of the term II,),
we also see that if b € bmo(Q2), then m, is bounded from A'(Q) to h'(Q2). Hence, if m, is
bounded on Ly(€2), then by interpolation, we have 7, is bounded on L,(€2) for 1 < p < 2.

Now we come to the proof of Theorem A.0.1.

Proof of Theorem A.0.1. The necessity of Theorem A.0.1 follows from Lemma A.1.1. The
remaining part follows from Lemma A.2.3. O]

Remark A2.5. If b € BMO(S?), then 7, is bounded on L,(Q2) for any 1 < p < oo by
Remark A.2.2 and by the same proof as that of Lemma A.2.3. So for regular martingales,
the boundedness of m, on Ly(£2) implies that m, is bounded on L,(2) for any 1 < p < oo.
However, this extrapolation property fails for irregular martingales.
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Appendix B: Another proof of the
Necessity of Theorem 11.2 by Schur
multipliers

In this appendix, we will give another proof of the Necessity of Theorem II.2 for
2 < p < oo from [81]. This new approach is based on the boundedness of Schur multipliers,
which is simpler than the former proof in Section 4.1. Moreover, our new method yields
better constants in (II.1) when p — co.

At first, we present the definition of Schur multipliers. Let n € N be strictly positive.
Denote by M, (M) the tensor product of von Neumann algebras M, (C) and M, where
M., (C) is equipped with the usual trace, and M is equipped with a normal semifinite
faithful trace 7. Let T be the unit circle of the complex plane endowed with normalized
Haar measure.

Definition B.0.1. Let A = [a;;] € M,(C). The Schur multiplier induced by A on
M, (M) is the operator S defined by

Sa: M,(M) — M, (M)
[mij] — Sa([mij]) = [ai; - mijl.

We refer the reader to [66] and [76] for more details about Schur multipliers. We also
need to use the Fourier multipliers.

Definition B.0.2. Let ¢ : Z — C. The Fourier multiplier with symbol ¢ is defined by

F@( > akeikt) =Y p(k)are™, t€0,27]

kezZ keZ
for any finite sequence (ay); in M.

For example, if (k) =1 for all £ > 0, and ¢(k) = —1 for all £ < 0, then F,, is called
the Hilbert transform, usually denoted by H. Moreover, H is bounded on L, (T, L,(M))
for any 1 < p < 0o and

[ H | L, (T, Ly (M) Ly (T, (1)) = c0t(7/(2max{p, p'})). (B.0.1)

The proof of (B.0.1) is based on Cotlar equality. See [25] and [65] for more details. Next,
we will show a special class of Schur multipliers by virtue of the Hilbert transform.
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Appendix B: Another proof of the necessity of Theorem I1.2 by Schur multipliers

B.1 Transference method

This section in devoted to exploring the relationship between Schur multipliers and
Fourier multipliers. In fact, using transference method in [16] and [65], we can show the
boundedness of some particular Schur multipliers by Fourier multipliers.

Our main ingredient is the following lemma.

Lemma B.1.1. Let ¢ : Z — C. Assume that (c;)icz and (B;);ez are two sequences of
integers. If A = [a; ;] € M,,(C) where a; ; = p(oi; + 5;), then for 0 < p < oo

1S allzp @)= Ly @) < E Ly (L (01 (M) = Ly (0,Ly (080, (A1)
Proof. We consider the following commutative diagram: Vz € T and V M = [m;;] €
M, (M)

M = [myy] —— T([mi)

S
Sa([mij]) —— F,oT([my;])

where I', is defined as

i i
Indeed, one has
Fy o Tu([mil) = Fo([27 - mij)) = [o(as + B;)2 "% - mag),
and in the same way,
[ 0 Sa([mig]) = Ta(lp(ai + B;) - mig]) = [p(a + 8;)z" 7 - my ).

Note that for any z € T, and for 0 < p < o0

1T (s gD 2y ot vy = Il 2, v, (M) -

Hence, since I', 0 Sy = F,, oI';, we conclude that

1Sl Ly (M) = Ly (M) S || 2y (0L (M (M) =5 L (T, Ly (M (M)
as desired. O

Corollary B.1.2. Assume that A = [a; ;] where for each 1 < i < n, there exists j; such
that if 1 < j < s, a;; =—1, and if 5, < j <n, a;j = 1. Then for 1 <p < oo,

1S all Ly 0 (M) Ly (0, (M) < cOt(/(2max{p, p'})).

Proof. Let (k) =1 for all k > 0, and ¢(k) = —1 for all £ < 0. Choose ; = j for any
1 < j <mn. It suffices to let a; = —j; — 1 for each 1 < ¢ < n. Thus ¢(a; + ;) = a;;. By
Lemma B.1.1 and (B.0.1), we obtain the desired result. O
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Corollary B.1.3. Assume that A = [a; ;| where for each 1 < i < n, there exists ji1 < ji
such that if jq < j < jio, then a;; = 1, and otherwise a; j; = 0. Then for 1 < p < oo,

1Sl Ly (0 (M) = Lo (M) < cOt(m/(2max{p, p'})).

Proof. Tt is easy to find A; and Ay in M,,(C) which satisfy the assumptions in Corollary

B.1.2 such that
A +1d, As+1d,

2 2
This yields the desired result by Corollary B.1.2. O]

A:

Note that the estimates in Corollary B.1.2 and Corollary B.1.3 do not depend on the
dimension of the matrix A, which is due to (B.0.1).

B.2 Another proof of the Necessity of Theorem II.2

We are going to prove the Necessity of Theorem II.2 for the case p > 2 with the help
of Schur multipliers and by Corollary B.1.3. As mentioned before, this new method gives
a better constant. However, this method fails for 0 < p < 1, and gives a worse constant
when p — 1,. Note that our previous proof yields a universal constant as p — 1., and
see Proposition 4.1.1.

Theorem B.2.1. For 2 < p < oo, if b € B}(R, M), then m, € Ly(B(Ly(R)) ® M).
Moreover,

175/ 2, (B(L2®) M) < dcot(m/(2p)) - (bl Bage - (B.2.1)

Proof. Define =, as follows:

7
(h%, b

-S Y i, f), S € La(R, Lo(M)).
IeD i=1 |]|
Thus one has
IZ] Ly siea@ner = 1blBge.rn-

Without loss of generality, we can assume that (h;,b) is zero except finite I. The
general case naturally follows by the standard limit argument. Then we can take N € N
large enough to satisfy that (hy,b) # 0 only if d™V < |I| < d¥ and I C [—d",d"]. Hence
it suffices to consider f € Ly(Dy, L2(M)), where

Dy = o{lys| —d* <k <d*™ —1}.

Thus {hid """ < |I| < dV, 1 C [-d",d"],1 <i<d—1}U{ = dem, ,[OE;J“F/Z} and

1
{7017 INIZ|{“/2| —d*N <k < d* — 1} are two orthonormal basis of Ly(Dy). We will write
and =, with respect to these two bases.
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We arrange h’ with the order as follows:

(hhy  pnoisicats (R, oy iicamn oo (B |y, iicaen,

(hirNiZﬁdngghgigd—h T

--;c.. y . (B.2.2>

(hiax o) 1<i<a—1, (hfo av))1<i<d—1

Li—av Tjo,av)
|[=d™, 0]'/2" [[0, dN][1/2°
and arrange |I]l NE from k = —d?N to k = d*V — 1.
Denote by [(m)(1),4] (|J] = d™) the matrix form of m, where
homy( tm | ), i T # [—dY,0] and T # [0, d"];
(Wb)(l,i),J = 71

0 otherwise (B.2.3)
¢

= |?|§17/b2><|11\l11/27 \J]LJ/2> if I # [~d",0] and I # [0,d"];
0, otherwise.

Note that H7TbHLp( Ly(R)OM) = H[(Wb) 1), ]HL,, La(R)OM) - Similarly, denote by [(Eb)(Li),J]
the matrix form of =, where

(hi.b) 17 : N NT.
(Eb)([ Z')”] ‘I|1/2 <hI7 |J|1/2> lf ] 7£ [ d 70] a’nd ‘[ 7é [O7d ]7 (B24)
0, otherwise.
Thus [[[(Z1) 4.0y (Ba@em) = 1Zsl L, BEa@yem = 1bllBawrm-
Define the matrix M = [m(14),7] where
i . |I|1/2 ; _ N N1.
S (hi, |J‘1/2> WL if I # [—d™,0] and I # [0,d"]; (B.25)
0, otherwise.

Then one has
(Wb)(l,i),J = m(I,i),J(Eb)(I,i),J-
From our construction, mr; ; € {w,w? -+, w?}.
Therefore, it suffices to show that the Schur multiplier induced by the matrix M is
bounded on L,(Mjy s2v(M)). It is clear to see that there exist A; (1 <i < d)
M=w-A+w? A+ F+w Ay

where each A; is in M, .2~ (C) satisfying the assumption in Corollary B.1.3. Thus by
Corollary B.1.3, we conclude

[Sa 1 Ly (0, o (M) =Ly (41, o (M) < d cOb(T/(2D)).

This completes the proof. n
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B.2. ANOTHER PROOF OF THE NECESSITY OF THEOREM I1.2

Remark B.2.2. In particular, for d = 2, there is a better way to find the Schur multiplier,
which yields a better constant in (B.2.1). Let I, and I_ be the left and right halve of I
respectively. Define the matrix M = [my ] as follows:

(1) if J C I, then let m; ; = 1;

(2) if J C I_, then let m; ; = —1;

(3) if JN I, =0 and J is on the left of I, then let m; ; = 1;
(4) if JNI- =0 and J is on the right of I_, then let m;; = —1.

So the matrix M is well-defined. In addition, we have

(Wb)I,J = mLJ(Eb)I,J-

Therefore, by this choice of Schur multiplier M, the constant in (B.2.1) can be improved
to cot(m/(2p)) by Corollary B.1.2.
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Appendix C: Open problems

C.1 Problems on continuous bilinear decompositions

Problem C.1.1. Let €2 be a probability space. Do we have a continuous bilinear decom-
position of pointwise multiplication between h'(Q) and bmo(£2)?

Problem C.1.2. Let €2 be a homogeneous space and n its dimension. Are there contin-
uous bilinear decompositions of multiplication between atomic Hardy spaces Hi () and

their duals for 0 <p < 257

C.2 Problems on Schatten class and boundedness of
martingale paraproducts

Problem C.2.1. Are there similar results of the converse to Theorem I1.67 More pre-
cisely, under which circumstances for the kernel K (x,y) does Crj, € L,(B(L2(R™)) @ M)
imply b € B,(R", L,(M))?

Problem C.2.2. Is there any equivalent characterization of the boundedness of Crj on
Ly(R™, Ly(M))?

Problem C.2.3. For semicommutative d-adic martingales,

1. under which circumstances for symbol b is the martingale paraproduct 7, bounded
on Ly(R, Ly(M))?

2. does 7, have the extrapolation property? To be more specific, does the boundedness
of m, on La(R, Ly(M)) yield the boundedness of 7, on L,(R, L,(M)) (1 < p < 00)?

3. if m, does not satisfy the extrapolation property, under which circumstances is
bounded on L,(R, L,(M)) for a fixed p € (1,00)?

Problem C.2.4. It is also tempting to investigate the boundedness of martingale para-
products concerning CAR algebra and tensor products of matrix algebras.

Problem C.2.5. It is very interesting to establish the vector-valued variant of the bound-
edness of commutators, namely the vector-valued case of Theorem I1.7.
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Résumé :

Cette these a pour I’étude des paraproduits de martingales a la fois dans le cadre commutatif
et noncommutatif. Il se compose de deux parties. La premiére concerne la décomposition bili-
néaire de la multiplication ponctuelle d’éléments dans I’espace de Hardy de martingales H' et
son dual BMO. Nous étendons également cette décomposition bilinéaire continue aux espaces de
Hardy de martingales H? (0 < p < 1) et leurs espaces duaux. Nos décompositions sont basées sur
des paraproduits de martingales. Comme conséquences de notre travail, nous obtenons des ré-
sultats analogues pour des martingales dyadiques sur des espaces de type homogéene munis d’une
mesure de dédoublement. Nos arguments reposent sur I’existence de systémes dyadiques sur des
espaces de type homogene. La deuxieme partie porte principalement sur 'appartenance a la
classe de Schatten des paraproduits de martingales semi-commutatifs et purement non commu-
tatifs, en particulier pour les algebres de Clifford et les produits tensoriels d’algebres matricielles

oo
® My en termes d’espaces de Besov de martingales. En utilisant la technique de la martingale
k=1
dyadique de Hytonen, nous obtenons également des conditions suffisantes pour 'appartenance

a la classe de Schatten et la bornitude des commutateurs a valeurs d’opérateurs concernant des
opérateurs intégraux singuliers généraux. De plus, nous donnons une preuve alternative sur la
caractérisation BMO de la bornitude des commutateurs concernant des opérateurs intégraux
singuliers généraux dans le cadre commutatif.

Mots-clés : Paraproduits de martingales ; Espaces de Hardy-Orlicz ; Espaces de Musielak-

Orlicz ; Espaces de dédoublement ; Espaces de Besov de martingales ; Martingales noncommuta-
tives; Produit tensoriel ; Classe de Schatten ; Algebre de CAR ; Algebres matricielles ; Commu-
tateurs ; Opérateurs intégraux singuliers ; Espaces de BMO.

Abstract:

This thesis is devoted to the study of martingale paraproducts both in the commutative
and noncommutative settings. It consists of two parts. The first one is about the bilinear
decomposition of pointwise multiplication of elements in martingale Hardy space H' and its
dual BMO space. We also extend this continuous bilinear decomposition to martingale Hardy
spaces HP (0 < p < 1) and their dual spaces. Our decompositions are based on martingale
paraproducts. As a consequence of our work, we obtain analogous results for dyadic martingales
on spaces of homogeneous type equipped with a doubling measure. Our arguments are based on
the existence of dyadic systems on spaces of homogeneous type. The second part focuses on the
Schatten class membership of semicommutative and purely noncommutative martingale para-

products, especially for CAR algebras and tensor product of matrix algebras § My in terms of
k=1
martingale Besov spaces. Using Hytonen’s dyadic martingale technique, we also obtain sufficient

conditions on the Schatten class membership and the boundedness of operator-valued commu-
tators involving general singular integral operators. In addition, we give an alternative proof
on the BMO characterization of the boundedness of commutators involving general singular
integral operators in the commutative setting.

Keywords : Martingale paraproducts; Hardy-Orlicz spaces; Musielak-Orlicz spaces; Dou-

bling spaces; Martingale Besov spaces; Noncommutative martingales; Tensor product; Schatten
class; CAR algebra; Matrix algebras; Commutators; Singular integral operators; BMO spaces.
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