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Thèse de doctorat de l’Institut Polytechnique de Paris
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Ingénieur-Chercheur, ONERA (DTIS/NPGA) Co-directeur de thèse
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autres désagréments de cette pénible pandémie. Et je n’oublie pas l’humour
ironique de Bruno, les vastes quantités de saccharose gracieusement offertes
par Alexandre, et l’inspiration que représente Julien en matière de barbe.
Je remercie également Goran d’avoir chaperonné ma thèse et Elliot pour son
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Introduction en Français

Il y a très très très longtemps, sur une planète difforme à gauche du
ciel, vivaient les Shadoks 1. C’étaient des oiseaux avec des petites ailes, de
longues pattes qui leur servaient à pomper et un cerveau avec littéralement
quatre cases mais qui était, étonnamment, capable d’ingénierie aérospatiale.
Ils construisirent une fusée en forme de maison pour migrer vers une planète
plus agréable. Cependant, le professeur Shadoko, leur scientifique en chef,
estima que leur fusée avait seulement une chance sur un million de décoller.
Afin de garantir la réussite de leur exode, les Shadoks s’empressèrent donc
de rater 999 999 essais pour arriver au millionième décollage, qui, selon leur
compréhension des probabilités, serait le bon.

Malheureusement, cette approche n’est pas concevable pour l’humanité,
d’une part parce que la preuve de sécurité n’est pas très convaincante, et
d’autre part parce que le budget des programmes spatiaux humains, visi-
blement inférieurs à celui des Shadoks, ne nous permettent pas de crasher
autant de fusées. Nous avons donc besoin de contrôle optimal et robuste.
Celui-ci consiste à calculer des trajectoires de fusée qui vont simultanément
minimiser les chances d’accident et le carburant consommé.

1Les Shadoks, Série TV de J. Rouxel, C. Piéplu et J. P. Couturier, 1968.
Image issue du site maths-et-tiques.fr:
https://www.maths-et-tiques.fr/index.php/detentes/probabilites-chez-les-shadoks
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Le but est de fournir une preuve numérique qui garantisse en avance que le
vaisseau atteindra l’espace même s’il subit quelques erreurs et perturbations
pendant le vol, et ce, en utilisant le moins de carburant possible. De telles
techniques auraient diminué les pertes d’appareils et de carburant, ce qui
aurait rendu le programme spatial Shadok moins cher et évité de risquer la
vie des Shadoknautes.

Lors de la course à l’espace des années 60, on s’intéressa à la question de
trouver le contrôle, c’est-à-dire les instructions à envoyer au moteur, pour
envoyer un véhicule d’un point A à un point B en utilisant le moins de carbu-
rant possible. Cela mena notamment au développement de l’école de contrôle
de Lev Pontryagin [53]. Cette école adapte la théorie de l’Hamiltonien de
la mécanique pour avoir une définition implicite du contrôle optimal à tout
instant, ce qui permet de calculer la trajectoire optimale et son contrôle avec
plus de précision que les méthodes qui approximent le contrôle directement.
Cette trajectoire peut alors être utilisée pour guider le véhicule, c’est-à-dire
servir de trajectoire de référence. Cependant, la modélisation mathématique
du véhicule utilisée pour calculer cette trajectoire ne correspond pas exacte-
ment au véhicule réel. Cette différence cause un écart entre la trajectoire
réelle et la trajectoire de référence ; le véhicule a donc besoin d’un algo-
rithme de guidage, navigation et contrôle pour corriger. On se demande
alors à quel point cet algorithme est robuste : quelles magnitudes d’écart
peut-il corriger ? Y a-t-il des scénarios où le véhicule va échouer à atteindre
sa destination ? Habituellement, la robustesse du contrôle est mesurée en
dispersant aléatoirement les paramètres du modèle autour de leurs valeurs
nominales avec une simulation Monte Carlo [20] ou d’autres méthodes prob-
abilistes [23]. Ces méthodes n’excluent pas complètement la possibilité d’un
problème, ce qui peut être rédhibitoire pour les systèmes critiques où la
moindre défaillance peut causer la perte du véhicule.

En parallèle, Ramon E. Moore publia un traité d’arithmétique des inter-
valles [47] qui engendra les méthodes intervalles modernes. Celles-ci consis-
tent à encadrer des réels dans des intervalles plutôt que les approximer par
des flottants. Cela permet d’encadrer les erreurs numériques, les différences
entre les calculs flottants et les calculs exacts, ainsi que les erreurs inhérentes
aux méthodes, les écarts dus aux approximations et simplifications faites
par une méthode donnée. Dès lors, les méthodes intervalles fournissent des
ensembles qui sont garantis de contenir les solutions exactes. Cependant,
cette approche peut être trop pessimiste : les sur-approximations successives
peuvent faire crôıtre les intervalles au point qu’ils ne sont plus exploitables,
par exemple en garantissant que la solution est entre zéro et l’infini. Par
conséquent, la communauté des méthodes ensemblistes validées développe
d’autres représentations d’ensemble pour encadrer des résultats, notamment
les zonotopes symboliques [29] et les zonotopes contraints [63] qui calculent
et enregistrent les corrélations linéaires entre les variables et utilisent ces
corrélations pour obtenir des encadrements plus fins.

8 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris
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Les méthodes ensemblistes sont appliquées à grand nombre de problèmes,
notamment les systèmes dynamiques et le contrôle. Un outil notable est
la simulation validée [45] qui encadre toutes les trajectoires possibles d’un
système soumis à des incertitudes bornées, c’est-à-dire un système dont l’état
initial est une valeur inconnue dans un ensemble borné et qui dépend de
paramètres eux aussi inconnus, mais dans des ensembles bornés. Cet outil
peut prouver la robustesse d’un véhicule autonome vis-à-vis d’erreurs d’une
certaine amplitude. En effet, si l’algorithme de contrôle peut être exprimé
comme une fonction explicite, alors le système peut être simulé avec in-
certitudes pour vérifier que toutes les trajectoires possibles atteignent la
destination sans rencontrer un obstacle ou une autre zone dangereuse [6].

Cependant, cet outil n’a pas été appliqué au cas où le contrôle est connu
implicitement comme minimisant un coût, comme c’est le cas d’une fusée qui
optimise sa trajectoire et son contrôle de manière autonome en vol comme
dans [16].

Pour résumer, il y a d’un côté le contrôle optimal qui peut calculer une
trajectoire et un contrôle optimal avec précision, mais pas garantir la ro-
bustesse aux incertitudes ; de l’autre côté il y a les méthodes ensemblistes
qui peuvent encadrer des ensembles de trajectoires soumises à des incerti-
tudes.

C’est ce qui justifie cette thèse, qui consiste à encadrer l’ensemble des
trajectoires et contrôles optimaux d’un problème avec incertitudes bornées
afin de garantir la robustesse du guidage d’un véhicule autonome.

Ce travail est divisé en cinq parties : état de l’art, définition d’ensembles
de trajectoires, calcul de ces ensembles avec des intervalles, puis avec des
zonotopes, et application.

Tout d’abord, le Chapitre 1 présente les deux piliers de cette thèse :
le contrôle optimal et les méthodes ensemblistes. En particulier les condi-
tions d’optimalité du premier ordre en contrôle optimal, aussi connu sous le
nom du Principe du Maximum de Pontryagin, et la simulation validée pour
systèmes avec incertitudes bornées. Ensuite, nous listons d’autres méthodes
de contrôle robuste et les problématiques auxquelles elles répondent, afin
d’en tirer des objectifs pour nos travaux.

Comme la littérature n’a pas traité les ensembles de trajectoires opti-
males avec incertitudes tels que nous les envisageons, le Chapitre 2 les définit
en combinant la condition d’optimalité du premier ordre et les incertitudes
bornées. Nous proposons trois ensembles : le premier encadre les trajec-
toires et contrôles optimaux d’un système qui a une estimation parfaite de
son état initial et de ses paramètres, les autres encadrent les trajectoires et
contrôles possibles d’un véhicule concret sujet à des erreurs d’estimation et
dont l’algorithme de contrôle fonctionne en boucle-ouverte ou boucle-fermée.
Nous explicitons alors comment ces trois ensembles peuvent être calculés en
les écrivant sous la forme de systèmes dynamiques hybrides avec incertitude
et sujets à des contraintes de bord, et nous investiguons leur géométrie dans

Etienne BERTIN / ONERA Palaiseau, ENSTA Paris 9
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l’espace de phase.
Le but du Chapitre 3 est d’utiliser cette théorie en développant des

méthodes pour encadrer les ensembles de trajectoires en utilisant des inter-
valles et la simulation validée. La simulation validée encadre le système dy-
namique avec incertitude tandis que les méthodes par intervalles permettent
d’appliquer la contrainte au bout pour encadrer l’intégralité de l’ensemble
des trajectoires possibles à partir d’un nuage de simulation Monte Carlo.
Nous commençons avec des méthodes par intervalles car ce sont les méthodes
ensemblistes les plus simples. Cependant les intervalles sont aussi limités :
leur forme rectangulaire induit une forte sur-approximation et les méthodes
pour la compenser ont une complexité exponentielle de la dimension du
problème, ce qui limite le champ d’application de nos algorithmes.

Afin de pallier les difficultés des intervalles, le Chapitre 4 développe de
nouvelles techniques à base de zonotopes. Nous proposons les zonotopes
symboliques contraints en combinant les zonotopes symboliques de [29] et
les zonotopes contraints de [63]. Nous montrons que ces zonotopes sont
particulièrement adaptés pour encadrer des ensembles définis implicitement
comme satisfaisant des contraintes et qu’il suffit pour cela d’évaluer la fonc-
tion contrainte avec l’arithmétique des zonotopes symboliques, et ensuite
résoudre des problèmes d’optimisation linéaires. Ensuite, nous développons
les zonotopes spatio-temporels qui permettent de facilement simuler un
système hybride et nous le combinons avec nos zonotopes symboliques con-
traints pour encadrer les solutions d’un problème avec contrainte au bord
en une seule simulation validée. Tout cela mène à des réimplémentations
moins limitées des algorithmes du Chapitre 3.

Nous avons alors des méthodes qui peuvent calculer des ensembles de tra-
jectoires optimales, et ce, pour un grand nombre de problèmes, théoriquement.
Le but du Chapitre 5 est d’évaluer ces méthodes en construisant un protocole
de traitement de problème de contrôle avec incertitude, puis en le testant sur
une suite de problèmes d’aérospatiale de plus en plus complexes. On mesure
en particulier la quantité d’incertitude que peut gérer notre méthode pour
un problème donné et son évolution avec la complexité du problème. Nous
explorons ensuite comment les ensembles de trajectoires et contrôle pour-
raient être utilisés en pratique, de l’évaluation de robustesse à de la synthèse
de contrôle.

10 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris
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Introduction

Long long long ago, on a distant formless planet lived the Shadoks 2.
They were birds with small wings, long legs they used to pump and a brain
that was capable of remembering literally four things but was somehow ca-
pable of rocket engineering. They built a house shaped spaceship to migrate
to a better planet but their leading scientist professor Shadoko estimated
that it had only one chance in a million to fly. To guarantee the safety of
their exodus, their strategy was to fail 999 999 launches as fast as they could
and embark on the millionth launch, which, according to their understanding
of probability, was sure to succeed.

Sadly, this approach is not possible in real life, firstly because the proof
of safety is not very convincing and secondly because humanity’s industry is
not as formidable as the Shadok’s, and we cannot afford to crash that many
rockets. Hence, the need for Robust Optimal Control, which consists in
computing trajectories that simultaneously maximize the chance of success
and minimize the overall cost. Its goal is to provide a numerical proof that
guarantees ahead of launch that the spaceship will reach orbit even if it
suffers some amount of errors and disturbances during the flight,

2Les Shadoks, TV series by J. Rouxel, C. Piéplu and J. P. Couturier, 1968.
Image from website maths-et-tiques.fr:
https://www.maths-et-tiques.fr/index.php/detentes/probabilites-chez-les-shadoks
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and it will reach orbit using as little fuel as possible. This reduces the loss of
fuel and rockets, which could have made the Shadok Space Program cheaper
and avoided risking the lives of the Shadoknauts.

During the space race in the 1960s, the question on how to guide a ve-
hicle from point A to point B while using as little fuel as possible gained
attention. This lead to the development of Lev Pontryagin’s school of con-
trol in mathematics [53]. It adapts Hamiltonian theory from mechanics to
abstract the control away, which allows to compute an optimal trajectory
and its associated control with greater accuracy than with methods that
approximate the control directly. That trajectory can be used to guide a
launch vehicle, that is, serve as reference trajectory. Only a reference tra-
jectory because the model of the vehicle that was used in its computation
is not exact. The discrepancies between model and reality cause the actual
trajectory to deviate, requiring a guidance, navigation and control algorithm
to correct the trajectory. Then arises the question of how robust such an
algorithm is: how much deviation is manageable? Are there scenarios where
the controller will fail to complete the mission? Usually, the robustness of
the solution is demonstrated by dispersing the parameters around nominal
values with Monte Carlo simulations [20] or other probabilistic methods [23],
but these methods do not exclude the possibility of failure, which can be
problematic on critical systems.

In parallel, Ramon E. Moore published a book on interval arithmetic [47]
which birthed modern interval methods in computer science. Interval meth-
ods handle intervals that conservatively enclose reals in two floating points
instead of approximating reals by a single floating point. This allows to
enclose numerical errors: differences between floating point computations
and exact computations, as well as method errors: errors that arise from
approximations done by a given method. Thus, interval methods provide
guaranteed bounds on a result. However, this approach can be too pes-
simistic: the accumulation of error can cause intervals to grow so much that
they are no longer informative, for instance by guaranteeing that a number
is between zero and a billion. As a consequence new set representation were
proposed to enclose results, notably symbolic zonotopes [29] and constrained
zonotopes [63], that compute and store linear correlations between variables
and use them to produce tighter enclosures. Methods that use these kinds
of sets constitute the school of set-based, or validated methods.

Set-based methods have been applied to a range of problems, including
dynamical system and control. A notable tool is validated simulation [45]
which can simulate systems with bounded uncertainties, that is a system
where the initial state can take an unknown value within a bounded set and
which depends on parameters that are also unknown but bounded. This
tool can prove the robustness of an autonomous vehicle in respect to errors
and disturbances of a given amplitude.

12 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris
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If the control algorithm of an autonomous vehicle can be expressed explicitly,
it can be simulated with uncertainties. This can check if the controller leads
the vehicle to its destination and if it stays outside unsafe zones [6]. How-
ever, they have not been applied to the case where the controller is known
implicitly as minimizing a cost, as in the case of a rocket that optimizes its
trajectory and control autonomously during the flight as in [16].

To sum up, we have on one hand a school of mathematics that can
compute optimal trajectories with great accuracy but lacks robustness, and
on the other hand a school of computer science that can enclose sets of
trajectory conservatively.

This leads to this thesis, which consists in enclosing sets of optimal
trajectories of a problem with uncertainty to guarantee the robustness of
the guidance of autonomous vehicles.

Our work is divided in five parts: review of literature; definition of sets of
trajectories; computation of those sets, first with intervals then with zono-
topes; and applications.

Firstly, Chapter 1 probes the state of the art. The objective is twofold.
First, we present the two pillars of this thesis which are optimal control and
set-based methods, and list all concepts and tools we use. Notably the first
order characterization of optimal trajectories, also known as Pontryagin’s
Minimum Principle, and validated simulation for models with bounded un-
certainty in set-based methods. Then we list trends of robust control and
the problematic they answer to, to set objectives for our methods.

Since the literature has not tackled sets of optimal trajectories of au-
tonomous vehicles for problems with uncertainties as we envision, Chapter 2
defines them by combining the first order characterization of optimal trajec-
tories and bounded uncertainties. We propose three sets, one that encloses
the trajectory and control of a system that has a perfectly accurate esti-
mation of its parameters and initial state, two sets that enclose trajectories
and controls of more concrete systems that suffer from estimation errors
and work in open-loop or closed-loop. We then state how these sets can be
computed by writing their elements as hybrid dynamical systems with un-
certainty that are subject to boundary constraints, and investigating their
geometry in the phase diagram.

The goal of Chapter 3 is to put this theory to use, by developing methods
that enclose our sets of trajectories using interval methods and validated sim-
ulation. Validated simulation encloses dynamical systems with uncertainties
while interval methods allow to enclose a solution set from a cloud of solution
points. We use interval methods because they are among the simplest val-
idated methods. However, intervals are also limited: their rectangle shape
induces significant over approximation and methods to counteract it are of
exponential complexity and this severely reduce the scope of our methods.

In an effort to replace intervals in the methods of Chapter 3 and thus
expand their capabilities, Chapter 4 develops new methods for zonotopes.
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We first propose constrained symbolic zonotopes by combining the symbolic
zonotopes of [29] and the constrained zonotopes of [63]. We notably prove
that this set representation can enclose sets defined implicitly as satisfying
a constraint by simply computing the constraint function with affine arith-
metic and solving linear optimization problems. Then we develop spatio-
temporal constrained zonotopes which allow to easily simulate a hybrid sys-
tem and can be combined with our symbolic zonotopes to solve boundary
value problems in a single forward swipe of validated simulation, thus fixing
all issues of Chapter 3.

At this point we have methods that can theoretically compute our sets
for a wide range of optimal control problems. The goal of Chapter 5 is to
challenge them by building a unified protocol that encapsulates the work
of all other chapters, then testing it on a sequence of increasingly complex
aerospace problems. The main criteria is the magnitude of uncertainty that
can be integrated in a given problem, and how that amount changes with
the problem’s complexity. We then set out to explore how our results could
be used, from classical robustness assessment to exotic methods for control
synthesis.
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INTRODUCTION

Notations

• Interval variables and interval vectors are enclosed in brackets: [x].

• The bounds of an interval [a] are noted a, a. Its middle point is noted
mid ([a]).

• Set-valued functions are enclosed in brackets: [f ] : X 7→ [f ](X ), even
if X is not an interval.

• (·) such as in y(·) denotes a time function: y(·) : t ∈ [ti, tf ] 7→ y(t).

• y(τ) and yτ are different, the later is a vector and is a targeted bound-
ary value of y(.).

• A hat as in ξ̂ denotes a variable that is related to an estimation.

• The blackboard bold font denotes a zonotope Z (except R: it is the
set of reals as usual).

• Constrained zonotopes are noted ZA, where A is the constraint part.
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Chapter 1

State of the Art

In this section, important notions of dynamical systems and notations are
introduced. Then, the two pillars of this thesis are presented. First, optimal
control with a focus on indirect methods, then validated methods and in
particular constrained zonotopes and validated simulation. A summary of
related works in robust control are presented in both the optimal control
and validated methods sections.

1.1 Dynamical Systems

A dynamical system is a function of time describing the evolution of a vector
of variables that represents a system. This system is represented by Ordinary
Differential Equations (ODE) comprised of a dynamic and an initial point
such as in (1.1). {

ẋ(t) = f(t, x(t)),
x(ti) = xi,

(1.1)

where f : R× Rd → Rd is the dynamic, ti ∈ R and xi ∈ Rd the initial time
and initial condition, and x(·) : R→ Rd the solution.

The main goal of those mathematical objects is to define the trajectory
of a concrete system, and thus find to which future states a given initial state
will lead. When the initial state has degrees of freedom, it is convenient to
define flow functions (or end-point mappings) as follows: for given initial
and final times ti, tf ∈ R, define φti,tf : Rd 7→ Rd as (1.2).

φti,tf (xi) = x(tf ) with x(·) the solution of

{
ẋ(t) = f(t, x(t)),
x(ti) = xi.

(1.2)

A difficulty that arises with nonlinear dynamics is an explosion in finite
time, meaning the solution x(·) is only defined on a subset of R.
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It is also possible that Equation (1.1) has multiple solutions. Fortunately,
Picard-Lindelöf theorem [44, 51] proves the existence and uniqueness of a
maximal solution (that is a solution defined on the longest time span possi-
ble) if f is locally Lipschitz continuous on x and continuous on t. However,
this solution cannot be computed analytically in the general case, which
arises the need for numerical approximations. Picard’s fixed-point method
is one way to compute an approximation, but the more popular approach
is to discretize the ODE and simulate it, as with Euler’s explicit or implicit
methods, Heun’s method, or the wide range of other Runge-Kutta methods
(see [21, 22]), which are presented in the following section.

1.1.1 Numerical simulation

A first way to approximate the solution of an ODE numerically is directly
derived from the proof of Picard-Lindelöf theorem. Consider a sequence of
function xk(·) : R 7→ Rd defined by:

∀k ≥ 1,∀t ∈ R, xk+1(t) = xi +
∫ t
ti
f(s, xk(s))ds,

∀t ∈ R, x0(t) = xi.
(1.3)

Fixed-point theorem ensures that xk(·) converges when k →∞ to a time
function x(·) such that x(t) = xi+

∫ t
ti
f(s, x(s))ds, hence a solution of (1.1).

This method can be cumbersome as it requires multiple iterations and an
entire trajectory xk(·) is kept in memory at all time.

Hence the simulation approach, which computes the trajectory in a sin-
gle forward swipe, is often preferred. The oldest and simplest simulation
methods are Euler’s (implicit and explicit) methods that approximate the
trajectory by a tangent in between time steps. More refined methods ex-
ist, notably Taylor’s method, which consists in computing the subsequent
derivative of the trajectory at time t up to an order n then computing an
approximation of x(t+ h) using Taylor’s theorem (1.4).

x(t+ h) =
∑n

k=0
x(k)(t)
k! hk + o(hn),

= x(t) +
∑n

k=1
f (k−1)(t)

k! hk + o(hn).
(1.4)

This method requires by hand or automatic differentiation, leading many
programmers to use Runge-Kutta methods, notably RK4, which is very
popular due to its ease of implementation. Indeed RK4 creates a fourth
order Taylor approximation of the solution with a weighted average of the
first derivative (i.e. f) in 4 different locations.

Beside the comparative ease of use, Runge-Kutta methods have the ben-
efit of being more customizable, and can thus better fit a problem. Indeed,
Runge-Kutta method of any order with different stability properties and
computational resource usage can be implemented, see [22, 37] for details.
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Because these simulation methods approximate the integral of the Tay-
lor series of the solution, they require the solution to be sufficiently differen-
tiable. However, many aerospace systems experience brutal change of state
and dynamics due to detaching stages or the engine shutting off. This raises
the need for a specific class of systems with brutal change of dynamics.

1.1.2 Hybrid systems

Hybrid systems consist of a combination of a discrete automaton and dy-
namical systems. Due to their multidisciplinary nature and the wide range
of systems they model, hybrid systems have multiple formalisms and nomen-
clatures in the literature. For instance authors stemming from the computer
science community such as [9] define a hybrid system as a ”discrete program
with an analog environment” and endow it with invariants and labeling func-
tions. By contrast, members of the control community define hybrid systems
as dynamical systems with ”discontinuous dynamics ruled by a partition of
the state space” for which the change of discrete variables are not directly
controlled [36], and endow it with switch functions and indexed dynamics.
Hybrid systems are generally defined as a tuple [9, 10, 33, 36, 52], but the
number and nature of attributes vary. Hence, we use the following 4-tuple
composed of the 4 recurring attributes, which is the simplest definition re-
quired for this thesis:

A hybrid system H = {Q,M,F ,S} is composed of:

• Q = {1..M}: a finite set of integers corresponding to discrete automa-
ton modes,

• M = {M1..MM}: a finite set of continuous state spaces or manifolds,
one for each mode,

• F = {f1..fM}: a finite set of dynamics, one for each mode,

• S: a set of switch maps, each defined by start and finish modes
q−, q+ ∈ Q, a switch function s : Mq− → R and a jump function
j : M−q →Mq+ .

A switch happens when there is a switch map in S with start mode q = q(t)
and switch function such that s(y(t)) = 0. In that case we note t− the
time right before the switch and t+ right after the switch, and we have:
q(t−) = q−, q(t+) = q+, y(t+) = j(y(t−)). Note that hybrid system can also
be defined by invariants as in [9] or guard sets as in [56]. This is often equiv-
alent as modes could be defined with the invariant s(x) > 0 (or s(x) < 0)
and use set {x ∈Mq− : s(x) = 0} as guard set. Because Chapter 2 expresses
the optimization problem as a boundary value problem, we use switching
functions as those turn naturally into boundary constraints.
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This formalism encompasses all hybrid phenomena that are highlighted
in [48]: state events, change of simulation model, reinitialization, and dis-
continuous change of the state. The concept of chattering is also highlighted
in [48]: it happens when a hybrid system alternates between two modes very
quickly. In our context, this is a sign of a faulty model that should be cor-
rected by adding hysteresis or a singular mode. Indeed, a rocket engine
cannot be turned on and off repeatedly.

mode 1{
ṙ = v
v̇ = −g

r > rground
or v > 0

r+ = r−

v+ = −λv−

mode 1
ṙ = v

v̇ = − G
r2

+ C1
m

ṁ = −b1

m > mempty

mode 2
ṙ = v

v̇ = − G
r2

+ C2
m

ṁ = −b2

r+ = r−

v+ = v−

m+ = m− −ms

Figure 1.1: Two hybrid automata: bouncing ball (left) and two stage rocket
(right)

Two hybrid systems that will be used in future sections are presented in
Figure 1.1.

The first system is a bouncing ball, it has one mode: Q = {1}, the
state space is position and speed (r, v) ∈ R2: M = {R2}, dynamics follow
Newton’s law with gravity: F = {f(r, v) = (v,−g)}, and it bounces when it
reaches the ground while descending, such that v+ = −λv− which translates
to a switch from mode 1 to itself: S = {(1, 1, s(r, v) = r − rground if v <
0 and s(r, v) = 1, j(r, v) = (0,−λv))}.

The second system is a two stage rocket: it has two modes, before and
after the first stage is jettisoned:Q = {1, 2}, both state spaces are position,
speed and mass (r, v,m): M = {R3,R3},

20 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris



CHAPTER 1. STATE OF THE ART

dynamics follow Newton’s law with gravity, thrust and fuel consumption, but
with different engine coefficients F = {f1(r, v,m) = (r,−G/r2+C1/m,−b1),
f2(r, v,m) = (r,−g + C2/m,−b2)}, and the first stage is dropped when it
is empty, leading to switch S = {(1, 2, s(r, v,m) = m−mempty, j(r, v,m) =
(r, v,m−ms))} where ms is the mass of the empty stage.

Simulation of hybrid systems can be achieved by making simulation
timestamps coincide with event timestamps. Indeed, the dynamic of the
system are smooth in between events, so simulation methods can be ap-
plied. Hence, the main difficulty is detecting events and locating their time
of occurrence. Common situations in which an event can be missed entirely
are highlighted in [31], notably when the system goes through a guard set
then back in between two simulation steps. Once an event is detected, the
location of the time of occurrence can be computed with high precision by
applying a Newton-like zero finding method to the flow function. To that
end, the following section explains how derivatives of the flow can be com-
puted.

1.1.3 Differentiation of the flow

Consider two times ti and tf , consider a flow function Φti,tf as defined in (1.2)
and a point xi. Derivatives of the flow can be computed using the following
theorem from [37].

Theorem: If ∂f/∂x exists and is differentiable along the trajectory
starting in xi, then the flow function is differentiable and the following holds:
∂Φti,tf /∂xi = Rti,tf (xi), ∂Φti,tf /∂ti = Rti,tf (xi)·f(ti, xi), where Rti,tf (xi) is
the resolvent matrix defined by system (1.5), and ∂Φti,tf /∂tf = f(tf , x(tf )).

ẋ(t) = f(t, x),

Ṙti,t(xi) =
∂f

∂x
(t, x(t)) ·Rti,t(xi),

x(ti) = xi,
Rti,ti(xi) = Id.

(1.5)

A similar formula exists to compute the derivative of the flow with re-
spect to parameters [55], it is used for local sensitivity analysis. Indeed,
sensitivity analysis evaluates how sensitive a system is to a variation of pa-
rameter, and the resolvent maps small perturbations of the initial state and
parameters to subsequent deviation.

Resolvents can be used to define and differentiate the flow of a hybrid
system. The flow of a hybrid systems can be defined by composition of flows
and jumps. As an example, consider the two stage launcher of Figure 1.1. It
starts in Mode 1 with dynamic f1 until switch time t1 such that s(t1, x(t1)) =
0, is transported to the space of Mode 2 by jump function j and continues
with dynamic f2 until final time tf .

Etienne BERTIN / ONERA Palaiseau, ENSTA Paris 21



ROBUST OPTIMAL CONTROL FOR GUIDANCE OF AUTONOMOUS
VEHICLES

This leads to formula Φti,tf (xi) = Φ2
t1,tf

(j(Φ1
ti,t1(xi))), with Φ2

t1,tf
the flow

of dynamics f2 and Φ1
ti,t1 the flow of dynamics f1.

However, differentiating this flow is difficult because a change of initial
state results in change of switch time:

1. start with a small perturbation to the initial state x(ti) = xi + δxi,

2. this changes the intermediate state x(t1) = x1 +δx1 with δx1 ≈ R1
ti,t1 ·

δxi,

3. which changes the value of the switch function s(x(t1)) = δs with
δs ≈ ∇s · δx1,

4. as a consequence the switch time changes by δt1 such that 0 = s(x(t1+
δt1)) ≈ ∇s · f1δt1 + δs.

Considering t1 as a function of x1 leads to a cumbersome formula. Hence, it
is often more convenient to consider switch times as degrees of freedom for
the purpose of flow differentiation. This means defining a flow that takes
switch times as inputs: Φti,tf (xi, t1) and differentiating it by chain rule.
However, the dependencies between initial state and switch times will need
to be taken into account by the program at another level.

Note that there are instances where the derivative of the flow does not
exist, notably when the system rides along a guard set such that a small
perturbation will change the structure of the trajectory. In our applications
we take systems for which we know in advance that they go through a se-
quence of modes in order, so we can safely assume that this does not happen.

All the tools that were presented in this section describe systems that are
determined by their initial state and dynamics. However, controlled systems
have an additional input that is chosen online. Next section discusses how
to model such systems.

1.2 Optimal control

A controlled system is a time varying system that takes another input chosen
by a controller. It takes the form (1.6){

ẏ(t) = f(t, y(t), u(t)),
y(ti) = yi,

(1.6)

where y(·) is the state trajectory and u(·) : [ti, tf ] 7→ Rdu is the control. This
control is chosen with respect to certain goals, like reaching a desired end
point without entering unsafe regions.
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Such specifications often leave degrees of freedom, which can be chosen so
as to minimize a cost. This yields an Optimal Control Problem (OCP) such
as (1.7).

min
u(·):[ti,tf ]→U

∫ tf
ti
`(t, y(t), u(t))dt

s.t.

{
ẏ(t) = f(y(t), u(t)),
y(ti) = yi, cf (tf , y(tf )) = 0, tf is free.

(1.7)

Interpretation We are searching a final time tf ∈ R, a control u(·) :
[ti, tf ] → U ⊂ Rdu and a corresponding trajectory y(·) : [ti, tf ] → Rd such
that the system goes from an initial state yi ∈ Rd to a final state that sat-
isfies a constraint c(tf , y(tf )) = 0, with cf : Rd+1 → Rm, while minimizing

the integral of an instantaneous cost ` : R× Rd × U → R.

The first question that arises is whether this problem has a solution. The
topic of the existence of a solution is vast, hence this thesis will only use the
following existence theorem from [65].

Theorem Assume that U is compact, that there may be state constraints
c0(y) ≤ 0, c1(y) ≤ 0 · · · , where c0, c1 · · · are continuous functions on Rd,
that Yf is reachable from yi, that every trajectory steering the system from
yi to Yf is bounded by a same constant and that the set {(`(t, y, u) +
γ, f(t, y, u))|u ∈ U , γ ∈ R+} is convex for all t ∈ R and y ∈ Rd.

Then there exists an optimal control such that the corresponding trajec-
tory steers the system from yi to Yf .

When the solution does exist, it can be approximated numerically. The
main difficulty is that y(·) and u(·) are time functions, hence variables of
infinite dimension. Many methods exist and they mainly fall in two cate-
gories:

• direct methods: the control is discretized, thus turning the infinite di-
mensional problem into an Euclidean nonlinear optimization problem
such as (1.8).

• indirect methods: using a characterization of the optimal trajectory
and control, the infinite dimensional optimization problem is trans-
formed into a Boundary Value Problem (BVP).

Direct methods suffer from a lack of precision due to the discretization
but they require little prior analysis and no knowledge of the structure of the
optimal trajectory. Some methods can be found in [15], though the direct
method field is as vast as Euclidean optimization.
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min
(un)∈UN

∑N
n=0 `(tn, yn, un)dt

s.t.

{
yn+1 = Φtn,tn+1(yn, un),
y0 = yi, yN ∈ Yf , tN is free.

(1.8)

Direct method are particularly fit when the discretization rate can be
set to the controller’s frequency as it makes the control representation ex-
act. For instance, a popular school of control that is very similar if not part
of direct control is Model Predictive Control (MPC) [60]. It is an online
closed-loop, or feedback control technique that uses a model of the dynamic
to compute the optimal sequence of controller inputs, applies the first input
then solve the problem again at the next time step with new sensor data.
The main difference with the problem at hand is that historically, MPC
focuses on linear and quadratic models that can be solved online and has a
receding horizon since it applies to ongoing systems such as batch processes,
though MPC has grown to encompass a lot more problems [34, 54].

In aerospace design for example, controllers cannot run an expensive
optimization method due to severe limitation in computational resource.
Instead, they are designed to make the launch vehicle follow a reference
trajectory that is planned offline, that is before the launch. This reference
trajectory needs to be computed with high precision, which is where indi-
rect methods shine. The main approach is to use the first order optimality
condition, also known as Pontryagin’s Minimum Principle (PMP). It trans-
forms the OCP into a Euclidean two point boundary value problem [19, 65].
This problem may be solved with a shooting method, an algorithm that
takes an initial guess, simulates it until the end time, measures how far the
systems lands from the desired final set, then corrects the initial guess using
a Newton-like algorithm, and repeats. Such algorithms have a high local
convergence rate leading to higher precision than direct methods when they
do converge. However, they will not converge if they are initialized too far
from the solution.

To solve the initial guess issue, shooting methods can be embedded in a
continuation (or homotopy) method [5]. This procedure uses the fact that
if an OCP is deformed continuously, the optimal solution is deformed con-
tinuously as well. It starts by solving a simplified version of the problem,
then make the problem slightly closer to the actual problem, solves it again
using the preceding solution as initial guess, then repeats until the actual
problem is solved. We refer the reader to [15] for a more thorough presen-
tation and to [20] for an implementation for aerospace system for where the
continuation is done by slowly changing parameter values.

In order to tackle a wide range of problems, the PMP is generalized. A
formulation for hybrid systems can be found in [30, 33, 36],
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and a formulation of the PMP for a discrete set of trajectories can be found
in [18]. The hardest generalization is when the OCP is subject to state
constraints, e.g. when the speed of a vehicle cannot exceed a dangerous
threshold. A PMP with state constraints is stated in [26], but it replaces
trajectories with measures, which makes the problem significantly more chal-
lenging. As a consequence further analysis of the state constraints is required
to implement numerical methods. A survey in optimal control with state
constraints can be found in [38, 67].
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Discrete sequential system with

transition costs and final cost.

Value function is constructed backward

by minimizing accumulated costs.

Value function reaches initial state. Optimal trajectory is computed by

following the path of least value.

Figure 1.2: A simple example of dynamic programming.

A drawback of both direct and indirect methods is that they are local,
they have no guarantee to converge to a global minimum. In fact some can
even converge to a local maximum as first order optimality conditions are
the same for all extremums. This arises the need for second order condi-
tions as can be found in [46]. The main global method for OCPs is based
on Bellman’s dynamic programming principle [12]. This principle consists
in cutting an optimization problem into smaller more manageable problems
and linking them together with a value function, it is illustrated in Fig-
ure 1.2. The application of this principle to an OCP yields the Hamilton
Jacobi Bellman (HJB) partial differential equation [41], which, when solved,
allows to find the globally optimal trajectory by following the path of least
value.
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However, the HJB approach requires the computation of a value field across
all state space, which implies a numerical complexity that is exponential in
the dimension and limits it to low dimension problems. Nevertheless, the
existence of the value field has ramifications with the PMP: under some as-
sumptions the co-state in the PMP is the gradient of the HJB value function
along the optimal trajectory [27]. We believe it is a nice way to make sense
of the otherwise abstract theory presented in the next section.

1.2.1 Pontryagin’s Principle

In this section, the indirect approach is presented in greater detail. It ad-
dresses OCP (1.7) by introducing a co-state p(·) : [ti, tf ]→ Rd (also known
as adjoint vector) to characterize the optimal solution with Principle (1.9).

Pontryagin’s Minimum Principle (PMP) If (y(·), u(·)) are a normal
optimum, then there exists a nontrivial co-state p(·) such that (y(·), p(·), u(·))
satisfy the following equations:

H(t, y, p, u) = `(t, y, u) + p.f(t, y, u)

ṗ(t) = −∂H
∂y

(t, y(t), p(t), u(t))

∀t ∈ [ti, tf ], u(t) ∈ arg minv∈U H(t, y(t), p(t), v),
Cf (tf , y(tf ), p(tf )) = 0

(1.9)

where H is the pre-Hamiltonian and Cf : R1+2d → Rd is an end point
constraint function that depends on the constraints and boundary cost of
the initial problem (see [19]). The optimal control u(·) is implicitly defined
as minimizing the pre-Hamiltonian at every time.

In many control problems including Goddard’s problem [19], which is
the aerospace problem we tackle, this implicit definition yields an explicit
expression. That is, there is a function µ : Rd × Rd → U such that:

u ∈ arg min
v∈U

H(y, p, v) ⇐⇒ u = µ(y, p). (1.10)

The equations of the PMP (1.9) can be combined with those of Prob-
lem (1.7) to get uncontrolled System (1.11).

ẏ(t) = f(y, µ(y, p))

ṗ(t) = −∂H
∂y (y, µ(y, p), p)

y(ti) = yi,
Cf (tf , y(tf ), p(tf )) = 0.

(1.11)

Equation (1.11) is a two point boundary value problem where one searches
an initial co-state pi such that the end point of Dynamics (1.11) satisfy
Cf (tf , y(tf ), p(tf )) = 0.
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See [19, 20, 64, 65] for numerical shooting methods that solve this problem
with aerospace systems.

The theory of optimal control appeared in the 1960s and the first optimal
control based controllers produced disappointing results, notably crashing
a plane in a simulator [62]. As a consequence later methods focused on
making optimal control more robust.

1.2.2 Stochastic methods for robust optimal control

The failings of optimal control based controllers is caused by the imperfection
of the model. This is exacerbated by the fact that optimal control tend to
incentivize risky trajectories, like riding along the boundary of an unsafe set.
Indeed, the shortest path around an obstacle often skims its surface. As a
consequence much effort has been done to make trajectories more robust.

A common approach consists in simulating the system with parameter
values taken at random around the nominal value [20], similarly to a Monte
Carlo method. More developed stochastic methods combine those random
trajectories with Gaussian kernels to better approximate the probabilistic
field of trajectories and can thus solve a chance constrained optimal con-
trol problem in order to guarantee a probability of success [23]. However,
stochastic methods cannot completely exclude the possibility of failure which
can be problematic on critical systems.

In parallel, a school of computer science was developed with the precise
objective of completely excluding all possibility of errors.

1.3 Set-based methods

This section introduces the second pillar of this thesis: set-based, or vali-
dated, methods. Those consists in enclosing reals in sets rather than ap-
proximating them with floating points numbers.

To manipulate these sets, real valued function are overloaded with con-
servative set valued counterparts. That is, for any f : x 7→ f(x), one can
create an inclusion function [f ] : [x] 7→ [f ]([x]) satisfying Inclusion (1.12).

[f ] ([x]) ⊇ {f(x)|∀x ∈ [x]} . (1.12)

This means that outputs are sets that are guaranteed to contain the actual
result.

Validated methods started with interval arithmetic that was popularized
by Moore [47] then Neumaier [49].
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1.3.1 Set representation using interval arithmetic

An interval [x] is a convex subset of R that contains all reals between a
lower bound x and an upper bound x, with x, x ∈ R∪ {−∞,+∞}. Interval
arithmetic was proposed as an alternative to floating-point arithmetic to
avoid errors due to numerical errors [47] but they have gained more use
cases.

Interval vectors, or boxes, are an axis-aligned rectangular set in a finite
dimensional space. They are an inexpensive representation of a high dimen-
sional set (compared to polytopes) but may induce a wrapping effect during
computations [40].

Figure 1.3: The paving approach to enclosing sets. The search space is
cut into mutually disjoint boxes and the red boxes that intersect with the
ellipsoidal set form an outer enclosure of that set.

In lower dimension, an accurate enclosure of a set can be achieved with
a paving of boxes, a set of mutually disjoint boxes which together cover the
whole set. A simple paving is illustrated in Figure 1.3. Such a representation
is potentially very precise, but the computational cost grows very fast in high
dimension. Indeed, to double the precision, the number of tiles has to be
doubled in each direction, which means 2n as many tiles, where n is the
dimension of the vector space. Hence, the complexity of this representation
is exponential in the dimension of the state, which makes it ill-suited for
many practical cases.

As a consequence, solvers with polynomial complexity were developed,
notably by using contractors. Contractors are interval functions used to
enclose the solutions of a set Constraint Satisfaction Problem (CSP) of the
form:

find all x such that 0 ∈ [A] · x+ [b] or more generally 0 ∈ [f ](x).

A contractor C takes a box [x] as input and outputs a possibly smaller
box that contains all possible solutions in [x], that is C([x]) is such that
{x ∈ [x] : 0 ∈ [f ](x)} ⊂ C([x]).
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Contractors can be defined as interval counterparts of numerical al-
gorithm, for instance Gauss elimination and Gauss-Seidel Algorithm for
0 ∈ [A] · [x] + [b] and Newton’s method for 0 ∈ [f ](x). Alternatively they
can be built using interval constraint propagation techniques, yielding the
forward backward contractor, or linear programming. A list of those con-
tractors and their workings can be found in [40].

Later sections will use Krawczyk’s contractor Ck, which is inspired by
Newton’s method to enclose 0 ∈ [f ](x) and can be defined as follows [40]:

Let mid ([x]) the middle point of [x], CK : IRd → IRd (IR is the set of
real intervals) is defined as follows:

CK([x]) = [x] ∩

 mid ([x])−M · f(mid ([x]))+(
Id −M ·

[
∂f

∂x

]
([x])

)
· ([x]−mid ([x]))

 , (1.13)

where [∂f/∂x] ([x]), an enclosure of the first derivative of f on [x] in the
form of an interval matrix and M is an invertible real matrix, typically
M = mid ([∂f/∂x] ([x]))−1.

Contractors are generally embedded in iterative solvers, firstly because
doing multiple contractions [x]k+1 = C([x]k) will yield tighter enclosures on
most problems, secondly because such procedure requires that [x]0 be an a
priori enclosure of all solutions, as all solutions outside of [x]0 are ignored.
When no bounds are known and when inputting [x]0 = [−∞,+∞] does not
work, an enclosure of a connected set of solutions can be built using an
inflate procedure[40]. i) Initialize [x]0 with a search area containing at least
one solution (which can be computed by solving the problem with the center
point of [f ] with a numerical solver). ii) Repeat [x]k+1 = [§]‖+(1+λ)∗([x]k−
mid ([x]k)) until C([x]k) is in the interior of [x]k, that is, until C([x]k) does
touch the boundaries of [x]k. Indeed, if there are locally connected solutions
outside [xk], then there would be a path of solutions that would go through
the boundary of [x]k and C([x]k) would enclose that path, hence touch the
boundary, hence not be in the interior. This is a simple way to enclose a set
from a single point, however it is not guaranteed to terminate, since the set
could be unbounded, or over-approximation may make it appear so.

Over-approximation is indeed a prominent problem of boxes: because of
their rectangular axis-aligned shape, they tend to enclose sets loosely. For
instance the two-dimensional needle shape set {(x, x)|x ∈ [−1, 1]} would be
represented by the box [−1, 1] × [−1, 1], thus losing all correlation between
the two variables. This over-approximation is known as the wrapping effect,
and it can snowball with computations to a point where boxes explode in
width and are no longer informative. As a consequence, intervals are ill fitted
for many problems and other set representations were developed, notably
zonotopes [29].
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1.3.2 Zonotopes and constrained zonotopes

Zonotopes are subsets of Rd defined by the affine deformation of a box of
dimension dε ≥ d, as showcased in Figure 1.4.

0
Z0

Z · ε + Z0

Figure 1.4: Zonotope and constrained zonotope. Left: The noise box
[−1, 1]dε (blue) and the intersection of the unit box with constrained set
A · ε+ A0 = 0 (red). Right the d dimensional deformation of these sets by
Z · ε+ Z0 with d = 2. Zonotope (blue) and constrained zonotope (red).

A zonotope Z = [Z,Z0] is defined by
{
Z · ε+ Z0 : ε ∈ [−1, 1]dε

}
, where

Z is the generator matrix, of dimension d × dε and Z0 is the center vector
of dimension d× 1. A zonotope is represented in blue right of Figure 1.4.

There are multiple zonotope formalisms that we separate in two cat-
egories: symbolic zonotopes [29] and the others. Symbolic zonotopes re-
tains dependencies between distinct zonotopes by having each noise symbol,
textite.g. each coordinate εi of ε have a unique identifier that is shared
across all zonotopes, thus connecting the ith column of every generator ma-
trices. New noise symbols are created during computations to enclose errors
and nonlinear phenomena to satisfy the Fundamental Invariant of Affine
Arithmetic [29], which states: ”at any stable instant in an affine arithmetic
computation, there is a single assignment of values from [−1, 1] to each of
the noise variables in use at the time that makes the value of every affine
form equal to the value of the corresponding quantity in the ideal computa-
tion”[29]. Retaining linear correlations between all zonotopes in a program
is useful, notably for distributed systems [28], however it requires a unique
noise symbol provider and forces the program to encode zonotopes as sparse,
or column-wise sparse matrices, since dε is proportional to the total number
of operations in the program and most columns are full of zeros.

On the other hand, non-symbolic zonotopes as in 1.3.2 can be encoded
as plain matrices but retain no correlation between separate zonotopes.

Zonotopes are popular because they represent affine operations very well
and the computational cost is customizable. Indeed, the computational cost
of a zonotope depends on the number of generators, that is the number of
nonzero columns in Z.
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To achieve a good precision/computational cost trade-off, the number of
generators is reduced through operations called reductions, which encloses
a zonotope in a bigger zonotopes with fewer generators.

One shortcoming of zonotopes however is that they are not closed under
intersections. This leads to the development of constrained zonotopes.

We refer specifically to constrained zonotopes as proposed in [63]: a
constrained zonotope ZA = [Z,Z0,A,A0] is the affine deformation of a
unit box intersected with a plane

{
Z · ε+ Z0 : ε ∈ [−1, 1]dε ,A · ε+ A0 = 0

}
,

where A the constraint matrix and A0 the constraint vector. See red in
Figure 1.4. We propose our own notations because we consider a zonotope Z
and its constraint part A as two distinct zonotopes, while they are considered
a single entity in [63]. This will be explained in greater detail in Chapter 4.

They are practical because they benefit from the efficiency of affine
arithmetic while being closed under intersection with themselves and hy-
perplanes.

Their semi implicit form is hard to represent exactly but an over approx-
imation can be built with the procedure showcased in Figure 1.5. Indeed,
a constrained zonotope ZA can be bound in a direction d by solving the
Linear Problem (LP):

max dT · (Z0 + Z · ε).
ε ∈ [−1, 1]dε

A0 + A · ε = 0

d

Figure 1.5: Enclosing a Constrained Zonotope. i) Choose a direction d and
bound the constrained zonotope in this direction by solving a LP. ii) Repeat
for several directions. iii) Build an outer enclosure.

Enclosing a constrained zonotope requires the solution of a LP, hence
the need for a validated linear solver, like the one proposed in [50].

Zonotopes and intervals can be used to enclose trajectories of dynamical
systems.
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1.3.3 Validated simulation

Validated simulation can simulate a set membership ODE like:{
ẋ(t) ∈ [f ](x, t)
x(ti) ∈ [xi].

Such an ODE has a set of possible states and a set of possible dynamics at
every time. As a consequence, its solution is a tube of possible trajectories
rather than a single trajectory, see orange in Figure 1.6. Validated simu-
lation encloses every possible trajectories in a sequence of sets, in our case
zonotopes and boxes.

To that end, the time range [ti, tf ] is discretized in (tn)n∈0..N , t0 =
ti, tN = tf . Starting with an enclosure [xn] of the systems at time tn (which
is either the input [xi] or the output of a previous state) an enclosure of
the system on the whole time range [tn, tn+1] (called a Picard box) is built.
This is done by computing a box [x̃] that is a fixed point of interval valued
Picard’s Operator (1.3):

[xn] + [0, tn+1 − tn][f ]([tn, tn+1], [x̃]) ⊂ [x̃]

by fixed point iterations. Indeed:

∀k ≥ 1, ∀t ∈ [tn, tn+1], x(t) = xn +
∫ t
tn
f(s, x(s))ds,

∈ [xn] +
∫ t
tn

[f ](s, [x̃])ds,

∈ [xn] + [0, tn+1 − tn][f ]([tn, tn+1], [x̃]),
(1.14)

Then this Picard box is used to compute an enclosure of x(tn+1). In [4],
interval Runge-Kutta method are used coupled with inflating terms that
enclose the truncation error of the method. Indeed, if the dynamics are
sufficiently differentiable, the truncation error can be bounded by evaluating
the Lagrange remainder of the difference between the Taylor series of the
actual solution and the Taylor series of the Runge-Kutta approximation.
For instance, if dynamics are four time differentiable, the truncation error
of Runge-Kutta 4 may be enclosed.

The output of validated simulation is showcased in Figure 1.6
Validated simulation is akin to simulating multiple systems between two

common time stamps. A time switch is a time horizon shared by all systems,
hence all systems can be simulated by doing a first simulation until the
switch and another simulation starting right after the switch. Contrarily,
a variable time horizons or a state dependent transitions differs from one
system to another. As a consequence, there is no shared time stamp to use as
a duration for the simulation, which makes validated simulation challenging.
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Figure 1.6: Possible trajectories of a falling ball with unknown initial velocity
(orange) enclosed with validated simulation library DynIbex [4]. The prop-
agation of the uncertainty on the initial velocity creates a tube of possible
trajectories. Validated simulation encloses trajectories in zonotopes (blue,
plain) at the endpoints of each time range, and by Picard boxes (black,
dashed) on time ranges.
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There are several validated simulation libraries that enclose dynamical
or hybrid systems with uncertainties in the literature:

• The Matlab toolbox COntinuous Reachability Analyzer(CORA) [7].
It represents sets as zonotopes (or polynomial zonotopes, where noise
symbols are multiplied with one another) and simulates nonlinear dy-
namics with Taylor expansions. It simulates hybrid systems by con-
verting to other set representations during events.

• The software FLOW* [25]. It represents sets as Taylor models: poly-
nomials that coincide with the Taylor expansion of the actual state,
with an interval remainder term to enclose truncation errors. These
Taylor models can be multiplied with the Taylor expansion of nonlin-
ear dynamics using adapted arithmetic. It simulates hybrid systems
by contracting the state set during event using interval contractors,
and converting to other set representations [24].

• The C++ toolbox Computer Assisted Proofs in Dynamics (CAPD) [42].
It represents sets as parallelepipeds and simulates dynamics using Tay-
lor expansions.

• SpaceEx [32]. It represents sets as polyhedra in support function rep-
resentation, which consists in bounding the set in multiple directions
similarly to Figure 1.5. It focuses on affine dynamics and applies spe-
cialized techniques to compute the evolution support functions.

• The C++ toolbox DynIbex [4]. It represents sets as symbolic zono-
topes and simulates nonlinear dynamics using validated Runge-Kutta
methods.

• The Julia toolbox JuliaReach [17]. It represents sets as ellipsoids,
boxes, polytopes or zonotopes. It does not have an embedded algo-
rithm to simulate hybrid systems but provides a framework to imple-
ment one.

The reader may refer to [7] for more libraries.

We use DynIbex [4], first because it is developed by our laboratory,
and second because Chapter 4 develops novel uses of symbolic zonotopes to
simulate hybrid systems and enclose BVPs.

Such methods can be used to assess robustness.

1.3.4 Set-based methods for robust control

A notable field of set-based robust control is viability theory [11] that com-
putes the set of positions from which there exist an admissible control and
can thus deduce safe sets.
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Similarly, reachability analysis as in [6, 35, 56] as well as in previously cited
validated simulation libraries [4, 7, 25, 32, 42], computes the set of position
that can be reached from a given initial position for a given set of possible
inputs. Reachability analysis can answer two questions: either the input is
a control in which case it assesses whether the vehicle can reach its target,
or the input is a disturbance in which case it assesses whether the system
can be nudged in an unsafe set.

Interval methods can also be used to prove stability, for instance by
computing the invariant set of a system [61].

Lastly, validated method can be used for worst case control synthesis:
[57, 58] propose algorithms to compute a control that stirs a system to a de-
sired state for any realization of a bounded noise while achieving the lowest
upper bound on the cost.

However, we set out to tackle a slightly different setting in which the
control is not chosen by the user but rather computed by an autonomous
controller that solves an OCP, like the rocket does before the descending
phase in [16]. In this case the control is implicitly defined as solution of an
optimization problem, and since we did not find a definition for such sets of
trajectories in the literature, so we propose our own in the following chapter.
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Chapter 2

Characterization of sets of optimal
trajectories for systems with

uncertainties

In this section, the main matter of this thesis is presented. Our goal is to
build conservative enclosures of optimal trajectories of an OCP subject to
uncertainties, so as to quantify the robustness of the optimal control ap-
proach in respect to quantitative difference between the model and reality.
The motivation is to assess whether a given OCP outputs an adequate trajec-
tory for any realizations of the initial state and parameter functions. Indeed,
a trajectory is characterized by two realizations: the actual trajectory and
parameter function y(·), ξ(·) and the trajectory and parameter function es-
timated by the system ŷ(·), ξ̂(·). Both parameter variables are taken amidst
the same bound [ξ] but they may differ as the actual parameters are often
unknown in practice. Trajectories differ notably when the initial state is not
estimated ŷ(0) 6= y(0) or due to difference between the actual dynamics and
the model.

Hence, the following three enclosures are proposed:

• An anticipative enclosure containing trajectories whose control is com-
puted with the perfect knowledge of the parameter function ξ̂(·) = ξ(·)
and trajectory ŷ(·) = y(·)

• An open-loop enclosure containing trajectories whose control is com-
puted once at the start with an inaccurate parameter function ξ̂(·) 6=
ξ(·) and initial state ŷ(0) 6= y(0) and then followed blindly.

• A closed-loop enclosure containing trajectories whose control is com-
puted several times online with accurate measurements of the state
but an inaccurate parameter function ξ̂(·) 6= ξ(·).
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To create those enclosures, we state the problem, then make three sets
of hypotheses, deduce analytical and geometrical properties from these hy-
potheses and illustrate them on an example.

2.1 Problem statement

In this section, the main problem is formally stated, as well as assumptions
on the uncertainties.

2.1.1 OCP with uncertainties

Consider the following Optimal Control Problem with uncertainties, inspired
by both optimal control and robust control:

min
u(·)

∫ tf

ti

`(y(t), u(t), ξ(t))dt+ Ψ(tf , y(tf )),

s.t.


ẏ(t) = f(y(t), u(t), ξ(t)),
y(ti) ∈ Yi, cf (tf , y(tf )) = 0, tf is free,
c(y(t)) ≤ 0.

(2.1)

This problem is characterized by the following data:

• a state y(t) ∈ Rd, the time function y(·) : [ti, tf ]→ Rd is the trajectory,

• a control input u(·) : [ti, tf ]→ U ,

• parameters ξ(t) ∈ [ξ]. They are either constant or time dependent
disturbances ξ(·), e.g. estimation errors, material fatigue,

• dynamics f : Rd × U × [ξ]→ Rd,

• an instantaneous cost ` : Rd × U × [ξ]→ R,

• a final cost Ψ : Rd+1 → R,

• an initial state yi ∈ Yi ⊂ Rd,

• final constraints cf (tf , y(tf )) = 0 with cf : Rd+1 → Rm, m ≤ d.

• possible state constraints c(y(t)) ≤ 0.

The first source of uncertainty is the initial state y0, which is unknown
but within a set: yi ∈ Yi. The second source of uncertainties is parameters.
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2.1.2 Parameter uncertainty in the OCP.

Assuming that uncertainties are disturbances that depend on time gives a
general framework as it allows the consideration of noises as well as estima-
tion errors. However, this also makes the problem significantly more difficult
in the nonlinear case: like in optimal control, the worst uncertainty might
not be constant equal to a bound. This first creates an issue at a theory
level as there are effectively two control inputs with two objectives. While
this seems similar to minimax control [66] where u(·) minimizes the cost
function and ξ(·) maximizes it, there is a significant difference in that tra-
jectories that maximize the cost are not those that stray furthest from the
nominal trajectory. Hence, computing ξ(·) with minimax control techniques
will not yield an enclosure of all possible trajectories as will be highlighted
by the example in Section 2.5. Instead, we consider that ξ(·) is chosen first,
then the solution of the OCP is expressed as a function of ξ(·). As a con-
sequence, we assume that the parameter function is Lipschitz so that the
existence theorem and necessary optimality condition from Section 1.2 hold.

Once the solution of the OCP is stated for any ξ(·), we integrate every
solution at once using set based methods.

However, this creates a second issue as our validated simulation library
DynIbex [4] assumes that parameters are piecewise constant.

As a consequence, most of our experimental results are restricted to
piecewise constant parameter function or to Problem 2.2 where parameters
have unknown but constant values.

min
u(·)

∫ tf

0
`(y(t), u(t), ξ)dt+ Ψ(y(tf )),

s.t.


ẏ(t) = f(t, y(t), u(t), ξ),
y(i) ∈ Yi, cf (y(tf )) = 0, tf is free.
ξ ∈ [ξ]

(2.2)

Our first endeavor is enclosing the solutions of these OCPs, which is
investigated in the next section.

2.2 Anticipative enclosure: bounding mathemati-
cally perfect solutions of the OCP

To have an accurate enclosure of the optimal control, we apply the PMP
(see Section 1.2). Optimal trajectories and controls of Problem (2.1) are
entirely characterized by Boundary Value Problem (BVP) (2.3).
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
ẏ(t) = f(y(t), arg minuH(y, p, u, ξ), ξ),

ṗ(t) = −∂H
∂y

(y(t), arg minuH(y, p, u, ξ), ξ),

y(ti) ∈ Yi,
p(ti) s.t Cf (tf , y(tf ), p(tf )) = 0.

(2.3)

Geometrically, solving this OCP with uncertainties means taking the
intersection of two sets. Indeed, for a time τ ∈ [ti, tf [, if the state is such
that y(τ) ∈ Yτ , with Yτ a subset of Rd, then possible (state, co-state) couples
are in the set Yτ×Rd which is the orange vertical strip on Figure 2.1. On the
other hand, optimal (state, co-state) couples, which are solutions of (2.3),
form another set, represented in blue. The solutions of the OCP lie in the
intersection (in red) of these two sets.

y0 y0 Yf
state space

co
-s

ta
te

sp
ac

e

Figure 2.1: Geometric resolution of the OCP at time τ . These sets corre-
spond to the solution of the example of Section 2.5.

For simplicity, we condense time, state and co-state of System (2.3) to
obtain System (2.4).

ẋ(t) = g(x(t), ξ(t)),

x =

 t
y
p

 , g =


1

f(y, arg minH, ξ)

−∂H
∂y

(y, p, arg minH, ξ).

 (2.4)

This system is hard to simulate because the term arg minH creates non-
continuous behaviors. We propose a hybrid formalism to account for that.

40 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris



CHAPTER 2. CHARACTERIZATION OF SETS OF OPTIMAL
TRAJECTORIES FOR SYSTEMS WITH UNCERTAINTIES

2.2.1 Hybrid formalism

Many controlled systems have hybrid dynamics that are either inherent to
the system or emergent from the control minimization. Indeed, the dy-
namical system in (2.1) could be replaced by a hybrid controlled system as
formulated in [33], to account for a multistage mission for instance. Even
when the system is not hybrid, the optimality and state constraints induce
hybrid behaviors such as bang-bang controls. For instance, the minimization
of the Hamiltonian in Goddard’s problem [19] yields the hybrid automaton
of Figure 2.2.

mode with engine on

ẋ = gon(x)

ψ(x) > 0

mode with engine off

ψ(x) < 0

singular mode

ẋ = goff (x)
∇ψ · goff ≤ 0

∇ψ · gon ≥ 0

ẋ = gsing(x)

∇ψ · gon < 0
∇ψ · goff > 0

∇ψ
· g o
ff

=
0

∇ψ
· g o
n
<

0

∇
ψ · g

on =
0

∇
ψ · g

off >
0

ψ(x) = 0

ψ(x) = 0

ψ
(x

) =
0ψ
(x) =

0

Figure 2.2: Hybrid structure emerging from Hamiltonian minimization for
Goddard’s problem [19]. There are no jumps, for each transition x(t+) =
x(t−).

Indeed, u minimizes a(x) · u + b(x)||u||, meaning that the system alter-
nates between three modes

• when ψ(x) = ||a(x)|| − b(x) < 0 then u = 0 which means the engine is
off and the dynamic is gon,

• when ψ(x) > 0 then ||u|| = 1 which means the engine is at maximum
thrust and the dynamic is goff 6= gon,
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• when ψ(x) = 0 and 0 ∈ [∇ψ · gon,∇ψ · gon] then u takes a value such
that ∇ψ · gsing = 0, this is a singular mode where the launcher cannot
switch to one of the modes without immediately switching to the other
(this avoids chattering).

However, this can be simplified into a single branch tree by using prior
knowledge of the optimal trajectory structure, which may be achieved by
analyzing the problem or solving it for nominal values of the parameters
and initial state with numerical methods. For instance, Goddard’s takeoff
problem is known to start with engine on, then have a singular arc and finish
with the engine off. Hence, this hybrid system can be simplified into the
automaton on Figure 2.3.

mode 0

ẋ = g0(x)

ψ(x) > 0

mode 2

mode 1

ẋ = g2(x)

ẋ = g1(x)

∇ψ · goff > 0

∇ψ
· g o
ff

=
0

ψ
(x) =

0

Figure 2.3: Simplification of Automaton 2.2 using knowledge of the optimal
structure.

In this case the problem can be simplified by using a semi indirect
method, e.g., adding switch times as variables and switch conditions as
boundary constraints. This results in the optimality condition of OCP (2.1)
taking the form of a hybrid system with boundary constraints (2.5).
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
ẋ(t) = gn(x(t), ξ(t)), ∀t ∈ [t+n−1, t

−
n ]

x(t+n ) = jn(x(t−n )), ∀n ∈ 1..N − 1
x(0) = x0

(2.5)

where 0 = t0 < t1 < ... < tN = tf are transition times and jn : R1+2d 7→
R1+2d are jump functions. Switching and optimality conditions are compiled
as Constraints (2.6).

Cn(x(t−n )) = 0, ∀n ∈ 1..N, (2.6)

where (Cn)n∈1..N−1 are the previously mentioned switch functions, like ψ(x) =
0 on the first jump of the automaton given in figure 2.3, and CN (x(t−N )) = 0
is the transversality condition Cf (x(tf )) = 0. Uncertainties nudge the state
which changes the time at which constraints are satisfied. Hence tn vary
depending on uncertainties.

To enclose the solutions of this problem, we usually use zero finding
methods, which require to differentiate the BVP.

2.3 First derivative of the BVP

A BVP can be formalized as ζ(xi, t1...tN ) = 0 using the flow of a hybrid
system composed with constraint functions:

ζ(xi, t1...tf ) =


C1(Φti,t1(xi))
C2(Φti,t2(xi))

...
CN (Φti,tN (xi))

 .

As noted in 1.1.3, the flow of a hybrid system Φti,tn(xi) can be written
as a composition of flows and jump functions. For instance Φti,t2(xi) =
Φt1,t2(j1(Φti,t1(xi))). The derivative of a flow over any duration [t+n−1, t

−
n ]

where the dynamics are differentiable is a resolvent matrix (see Section 1.1.3)
and can be computed by simulating System (2.8). Hence, by chain rule, the
first derivative of the BVP with respect to the initial state is:

∂ζ

∂xi
=


∇C1(x1) ·W1

∇C2(x2) ·W2
...

∇CN (xN ) ·WN

 . (2.7)
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For every n, Wn = Rtn−1,tn(xn−1) · ∇jn−1(xn−1) ·Wn−1, x−n and Rtn−1,tn

are the solution at time tn of System (2.8) and x+
n = jn(x−n ).

ẋ(t) = gn(x, ξ)

Ṙtn−1,t(xn−1) =
∂f

∂x
(t, x(t)) ·Rtn−1,t(xn−1)

x(tn−1) = x+
n−1

Rtn−1,tn−1(xn) = Id.

(2.8)

The derivative with respect to switch time can be deduced by the fact
that delaying the switch time tn means integrating dynamics gn longer,
hence, ∂x(t−n )/∂tn = gn(x−n ). It also means integrating dynamics gn+1 less
afterward so ∂x(t+n )/∂tn = ∇jn−1(x−n ) · gn(x−n )− gn+1(x+

n ). It follows that:

∂ζ

∂ti
=



0
...
0

∇Ci(xi) · gn(x−i )

∇Ci+1(xi+1) ·Wti
i+1

...

∇CN (xN ) ·Wti
N


,

with Wti
i = ∇ji−1(x−i )·gi(x−i )−gi+1(x+

i ) and Wti
n = Rtn−1,tn(xn)·∇jn−1(xn)·

Wti
n−1,∀n > i.
This will help to solve the BVP, thus compute trajectory sets.

2.3.1 Anticipative enclosure

We propose the following enclosure, which is an enclosure of optimal trajec-
tories in the mathematical sense.

Definition 1. For any parameter function ξ(·) : [ti, tf ]→ [ξ] and any initial
state yi ∈ Yi, the anticipative enclosure contains the trajectory:{

ẏ(t) = f(y(t), u(t), ξ(t)),
y(ti) = yi,

with u(·) the solution of the OCP:

min
u(·)∈U

∫ tf

ti

`(y(t), u(t))dt+ Ψ(y(tf )) s.t.

{
ẏ(t) = f(y(t), u(t), ξ(t))
y(ti) = yi.

,

To characterize the actual optimal trajectories, the following criterion is
applied. If a trajectory is optimal from A to B, and C is an intermediate
state of that trajectory, then the trajectory is optimal from A to C and from
C to B. If A is the state at time τ , B is the state at time tf and C is the
state at time τ + dt, then its (state, co-state) couple at time τ + dt satisfies
the following two optimality properties.
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• Optimality condition between A and C: the (state, co-state) couple
lies in the right red polyhedron on Figure 2.4, which is also repre-
sented in purple polyhedron on Figure 2.5. This is the set obtained by
integrating System (2.3) from time τ .

• Optimality condition between C and B: the (state, co-state) couple is
in the blue cone on Figure 2.5, which is the set of solutions of BVP (2.3)
with the initial time τ + dt.

y0 y0
yτ yτ Yf
state space

co
-s

ta
te

sp
ac

e

Figure 2.4: Simulation of the System (2.3) from time τ to time τ + dt,
starting with the red set obtained on Figure 2.1

By taking the intersection of these two sets, the set of optimal (state,
co-state) couples is refined.

When doing this, the function ξ(·) corresponds to both the actual real-
ization of the parameters and the estimation made by the system, so it is as
if the vehicle has perfect knowledge of the uncertainties, even anticipating
their future values. As such, this enclosure gives little information on the
trajectory of a concrete system. In practice, parameter uncertainties will
cause the system to deviate from its optimal trajectory and exit this en-
closure. As a consequence, we propose the following two enclosures. They
are meant to enclose the trajectory of a concrete system that computes its
control by solving the OCP with an inaccurate model.
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Figure 2.5: Anticipative: refining of the optimal couples at time τ + dt by
intersecting the set of figure 2.4 with the blue set of optimal state, co-state
couples.

2.4 Open-loop and closed-loop enclosures: bound-
ing trajectories of a concrete system

In this section, we take into consideration that the controller might not have
complete information in practice. We highlight two cases: a very pessimistic
case where the system is blind and applies an incorrect control with no cor-
rection, and a less pessimistic case where the controller has information on
the state and uses it to recompute the control. The latter has two variants:
either the system recomputes its control at a few discrete instants, or it
recomputes its control continuously.

2.4.1 Open-loop enclosure

In this section we consider the worst case scenario in which the controller
computes a control with incorrect data and cannot correct afterward.
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Definition 2. The open-loop enclosure considers a system which blindly
follows an initial solution that was computed with the nominal value of the
parameters. For any two parameter functions ξ(·), ξ̂(·) : [ti, tf ] → [ξ], and
any two initial states yi, ŷi ∈ Yi, the open-loop enclosure contains the tra-
jectory: {

ẏ(t) = f(t, y(t), û(t), ξ(t))
y(ti) = yi,

with û(·) the solution of the OCP:

min
û(·)∈U

∫ T

0
`(ŷ(t), û(t))dt+ Ψ(ŷ(T )) s.t.

{
˙̂y(t) = f(ŷ(t), û(t), ξ̂(t))
ŷ(ti) = yi.

We assume that the system knows its initial state, but the actual real-
ization of the parameters function ξ(·) is unknown. Hence, the system has
an inaccurate estimation ξ̂(·). This estimation can be the nominal value as
is often the case in practice: ∀t, ξ̂(t) = mid ([ξ]). Alternatively, we can have
ξ̂(·) ∈ [ξ], which corresponds to a system that does parameter identification
online. This second scenario is close to worst case analysis, since the worst
case is applying a control tailored for an extreme value of the parameters
to the opposite extreme value: the enclosure will contain the worst under
or over-shooting scenarios. This will however create interesting properties,
notably that the anticipative enclosure is contained in the open-loop enclo-
sure.

The control is deduced by the state and co-state of the PMP. However,
the state in this equation does not correspond to the actual state, rather to
an estimation.

This can be formulated as the following system:

ẏ(t) = f(t, y(t), arg minuH(ŷ, p̂, u, ξ̂(t)), ξ(·))
˙̂y(t) = f(t, ŷ(t), arg minuH(ŷ, p̂, u, ξ̂(t)), ξ̂(t))

˙̂p(t) = −∂H
∂y

(t, ŷ(t), arg minuH(ŷ, p̂, u, ξ̂(t)), ξ̂(t))

y(ti) = yi ∈ Yi,
ŷ(ti) = yi,

p̂(ti) solution of IVP C(t̂f , ŷ(tf ), p̂(tf )) = 0.

(2.9)

Hence, this open-loop enclosure can be built by first computing the an-
ticipative enclosure, then integrating trajectories alongside it. This yield
as very pessimistic enclosure as can be seen with our example system in
Figure 2.7.

A less pessimistic enclosure is built by taking into account the fact that
the system can correct its trajectory online using sensor data.
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2.4.2 Closed-loop enclosure with finite recomputations

Some systems recompute their trajectory online. For instance reusable
launchers solve an OCP right before the landing burn to compute a new
guidance trajectory tailored for their actual position [16]. We propose the
following enclosure to take that into account.

Definition 3. The discrete closed-loop enclosure considers a system that
uses a perfect measure of its state to recompute the solution of the OCP
online (but with inaccurate parameters). Consider a list of recomputation
time (τk)k∈0..K , ti = τ0 < τ1.. < τK = tf . For any two parameter func-

tions ξ(·), ξ̂(·) : [ti, tf ] → [ξ], and any initial states yi ∈ Yi, the closed-loop
enclosure contains the trajectory of the piecewise-defined system:{

ẏ(t) = f(t, y(t), ûk(t), ξ(t)),∀t ∈ [τk, τk+1]
y(ti) = yi,

with ûk(·) the solution of the OCP:

minû(·)∈U
∫ T
τk
`(ŷ(t), û(t))dt+ Ψ(ŷ(T )) s.t.

{
˙̂y(t) = f(t, ŷ(t), û(t), ξ̂(t))
ŷ(τk) = y(τk).

The overall control is made of pieces ûk(·) that are computed with an
accurate measurement of the state y(τk). As in the open-loop enclosure, ξ(·)
corresponds to the actual realization of the parameters, which is unknown,
and ξ̂(·) is its inaccurate estimation. The goal is to enclose the actual op-
eration of a system with an optimal control regulator. The system does
not have access to the value of the parameters, but it compensates using
measures of its state.

Recomputations can be simulated by resetting the estimated state and
optimal co-state at each recomputation time, yielding:



ẏ(t) = f(t, y(t), arg minuH(ŷ, p̂, u, ξ̂(t)), ξ(·))
˙̂y(t) = f(t, ŷ(t), arg minuH(ŷ, p̂, u, ξ̂(t)), ξ̂(t))

˙̂p(t) = −∂H
∂y

(t, ŷ(t), arg minuH(ŷ, p̂, u, ξ̂(t)), ξ̂(t))

y(i) ∈ Yi,
∀tk, ŷ(tk) = y(tk),

∀tk, p̂(tk) solution of BVP C(t̂f , ŷ(tf ), p̂(tf )) = 0.

(2.10)

Note that the equation ŷ(tk) = y(tk) assumes a perfect observer and a
more realistic system can be built by replacing this equality by a concrete ob-
server. Note also that in between two recomputation times, Dynamics (2.10)
are the same as open-loop Dynamics (2.10). This is due to the fact that when
no sensor data is available, the system is effectively in open-loop.
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Figure 2.6: Closed-loop: recomputation of the optimal co-states at time
τ + dt.

If the system recomputes its control at τ + dt using accurate measure-
ments from the sensors, the OCP is solved again with an initial state in
[yτ+dt]. This is illustrated in Figure 2.6, which is similar to Figure 2.4. An
important point is that the red set of recomputed (state, co-state) couples
is not contained in the purple set obtained by integrating System (2.3) from
a prior step. This is due to the fact that the prior co-states were computed
with inaccurate parameters. Replacing them is a correction. Hence, these
trajectories do not respect the equations of the PMP: applying a control
that is optimal for a faulty model results in a non optimal trajectory.

This is exacerbated when the frequency of the controller is great com-
pared to the duration of the mission, in which case the system can be better
represented by continuous recomputation times.

2.4.3 Closed-loop enclosure with continuous recomputation

When the frequency of recomputation time is high, recomputation itself can
be approximated by a differential algebraic equation.

ẏ(t) = f(t, y(t), arg minuH(ŷ, p̂, u, ξ̂(t)), ξ(·))
y(ti) ∈ Yi,
∀t, ŷ(t) = y(t),

∀t, p̂(t) solution of BVP C(t̂f , ŷ(tf ), p̂(tf )) = 0.

The co-state has no derivative as it is defined implicitly at all time.
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To have a general idea of what sets those definitions correspond to, we
showcase them on a controlled integrator with quadratic cost.

2.5 Application to an integrator

In this section we illustrate the three enclosures on a simple problem. Con-
sider a simple integrator with quadratic cost:

min
u(·)∈U

∫ tf

τ

u2

2
dt s.t.


ẏ(t) = ξ(t)u,
y(ti) = yi,
y(tf ) = yf ,
tf is fixed.

We use this system because it can easily be displayed on a graph, and an
analytical solution can be computed.

Indeed, the application of PMP yields:

H(y, p, u) = u2

2 + pξu,

ṗ(t) = −∂H
∂y = 0,

u = minuH = −pξ.

Combining these equations yields BVP:
ẏ(t) = −ξ(t)2p,
ṗ(t) = 0,
y(tf ) = yf , p(tf ) is free.

The analytical solutions of the optimal state and co-state are:

p(t) = −yf−y(τ)∫ tf
τ ξ2

∈ −yf−y(τ)
tf−τ [ 1

ξ
2 ,

1
ξ2

],

y(t) = y(ti) +

∫ t
ti
ξ2∫ tf

0 ξ2
(yf − y(ti)) ∈ y(ti) + t

yf−y(ti)
tf−ti [

ξ2

ξ
2 ,

ξ
2

ξ2
],

(2.11)

which we use to draw the anticipative enclosure.
Note that if the parameter is constant, then anticipative trajectories

simplify as a straight line y(t) = (tf − t)/(tf − ti)yi − yf , which means that
the anticipative enclosure is a cone converging to the target no matter the
uncertainties on ξ. However, when the parameter is variable, the anticipative
enclosure is oval, as can be seen on Figure 2.7. Moreover, the boundary of
the enclosure does not correspond to two extreme trajectories, rather each
point is the extreme point at time τ of the trajectory corresponding to
parameter ξ(t) = ξ, ∀t < τ and ξ(t) = ξ,∀t > τ . This is due to a rebound
effect, when parameters change, the control adapts, here it lies behind when
the value of the parameter is low and advances faster when the parameter
is high.
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Note also that the worst case parameter in the minimax sense is ξ(t) =
ξ, ∀t, as it will achieve the worst performance on the cost. But is not an
extreme deviation: it will yield a straight trajectory from yi to yf . This
illustrates the fact that final cost and deviation are two different criteria
that are generally not correlated.

The open-loop enclosure is expressed by taking the set of possible initial
co-states using Equation 2.11 at time ti, then integrating forward without
ever correcting the co-state. This lead to a cone shape of Figure 2.7 that
misses its target.

In continuous closed-loop, Equation 2.11 yields:

ẏmax = ξ
2

(tf−t)ξ2
(yf − ymax)

ẏmin =
ξ2

(tf−t)ξ
2 (yf − ymin)

(2.12)

Indeed, both can be rewritten as ẏ = K
tf−t(yf − y). If we take z = (T −

t)−K(y− yf ) then ż = 0. Hence, (T − t)−K(y(t)− yf ) = T−K(y(ti)− yf ) et

y(t) = yf + (
tf−t
T )K(y(ti)− yf )).

This leads to a bulge-shaped enclosure in Figure 2.7 with a vertical
tangent at the final time, which correspond to the dangerous scenario where
a system spends a lot of energy to correct all accumulated error within a
very short time frame.

All enclosures in Figure 2.7 are computed with the following uncertain-
ties: yi ∈ [−0.5, 0.5] and ξ ∈ [9, 11].

Most dynamical systems do not have analytical solutions. Hence, the
next two sections focus on the design of set-based algorithms to compute
these three enclosures.
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Figure 2.7: Enclosures of optimal trajectories for an integrator with
quadratic cost with uncertainties. The anticipative enclosure delimited by
the purple curves converges to the target. The continuous closed-loop en-
closure delimited by the blue curves also converges to the target, but it
deviates at the beginning due to flawed estimation and corrects its trajec-
tory abruptly at the end, leading to bulge shape and a very steep tangent
at the final time. The open-loop enclosure delimited by the orange curves
completely overshoots and undershoots its target. Those are the patterns
we seek to evaluate with our enclosures: how hard will the system correct
its trajectory if it works in closed-loop? How far will it land from its target
if it works in open-loop?
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Chapter 3

Development of interval-based
methods to enclose sets of optimal

trajectories

This chapter presents our first method to compute the three enclosures de-
fined in Chapter 2. This method is the main contribution of our first pub-
lication [13], it uses intervals exclusively, hence Optimal Control Problem
(OCP) (2.1) is changed so that all uncertainties are intervals. We also re-
strict ourselves to the case with no variable durations for reasons that will
be discussed in Section 3.3.1, which means the final time is fixed, and the
system is not hybrid. This yields OCP (3.1):

min
u(·)

∫ tf

ti

`(y(t), u(t), ξ(t))dt+ Ψ(y(tf )),

s.t.


ẏ(t) = f(y(t), u(t), ξ(t)),
y(ti) ∈ [yi], cf (tf , y(tf )) = 0, tf is fixed,
ξ(t) ∈ [ξ],

(3.1)

where f , ` and U are such that no hybrid dynamics emerge from the control
minimization.

To enclose optimal trajectories, we propose a contractor-based OCP
solver that encloses the set of possible initial co-states around a nominal
solution. Then this solver is embedded in three algorithms, one for each
enclosure of Chapter 2. This however runs into difficulties due to box sets
retaining no correlation between each possible state and their associated
co-state, which we alleviate with paving. This method is applied to a low
dimension system, and we discuss its shortcomings, which set the objectives
for our later work presented in Chapter 4.
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3.1 Interval-based OCP solver

The first step to enclose optimal trajectories is to compute the set of optimal
(state, co-state) couples, that is the red set on Figure 3.1 (which is a recall
of Figure 2.1).

Figure 3.1: The set of possible optimal state co-state couples is enclosed in
a box. The initial state box (horizontal axis) is given so the unknown is the
co-state box (vertical axis).

To that end, we design a contractor-based method. First, we formulate
Krawczyk’s contractor for the optimality condition derived from Pontrya-
gin’s Minimum Principle (PMP) which is recalled in System (3.2) and use
validated simulation to compute it. This contractor is then used in a classic
Inflate&Contract algorithm to compute all possible optimal (state, co-state)
couples around nominal solutions.

ẏ(t) = f(y(t), arg minuH(y, p, u, ξ), ξ),

ṗ(t) = −∂H
∂y

(y(t), arg minuH(y, p, u, ξ), ξ),

y(ti) ∈ [yi],
p(ti) s.t C(tf , y(tf ), p(tf )) = 0.

(3.2)

3.1.1 A Krawczyk contractor for OCPs

The aim is to enclose all possible optimal trajectories spanning from a given
state at time τ ∈ [ti, tf [: either the initial time or an intermediary recom-
putation time (the final time tf is excluded).
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Optimal trajectories verify the optimality condition given by PMP. Be-
cause we restrict ourselves to the case with fixed final time and no hybrid
behaviors, there is no intermediate switching time, hence condition (2.6)
consists of a single boundary condition which can be written as:

ζ(p) = C(Φτ,tf (τ, y, p)) = 0,

where Φτ,tf (τ, y, p) is the flow of System (3.2). Hence, for a given enclosure
of the state [yτ ], a Krawczyk operator of the function y, p → C(τ, yτ , p) is
built using Krawczyk Formula (1.13) and the first derivative of the BVP
proposed in Section 2.3.

CK([pτ ]) = [pτ ] ∩

 mid ([pτ ]) +M · [ζ](mid ([pτ ]))+(
Id −M ·

[
∂ζ

∂pτ

]
([pτ ])

)
· ([pτ ]−mid ([pτ ]))

 , (3.3)

where:

• [ζ](mid ([pτ ])) = [C]
([

Φτ,tf

]
(τ, [yτ ],mid ([pτ ]))

)
,

•
[
∂ζ

∂pτ

]
([pτ ]) = [∇C] · [R]pτ,tf ,

• M = mid

([
∂ζ

∂pτ

]
([pτ ])

)−1

.

Unlike in Section 2.3, we only differentiate to the initial co-state, hence
we only enclose Rp

τ,t = ∂Φτ,t/∂p. This is computed by integrating ODE (3.4),
which is an interval counterpart of ODE (2.8).

ẋ(t) ∈ [g](x, [ξ]),

Ṙp
τ,t ∈

[
∂g

∂x

]
(x, [ξ]) ·Rp

τ,t

x(τ) ∈ (0; [yτ ]; [pτ ]),
Rp
τ,τ = (0; Id).

(3.4)

The enclosure of the midpoint flow [Φτ,tf ]([yτ ],mid ([pτ ])) can be com-
puted by simulating: {

ẋ(t) ∈ [g](x, [ξ]),
x(τ) ∈ (0; [yτ ]; mid ([pτ ])),

(3.5)

This results in Algorithm 1 that computes Krawczyk’s contractor for
given states and co states.
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Algorithm 1: Computes CK([pτ ]) for given [yτ ] and [pτ ].

Data: [yτ ] and [pτ ].
Result: CK([pτ ]).

1 Compute [R]pτ,tf ([yτ ], [pτ ]) by simulating (3.4).

2 Compute
[
Φτ,tf

]
(τ, [yτ ],mid ([pτ ])) by simulating (3.5).

3 Compute CK([pτ ]) using Formula (3.3).

This algorithm requires two forward simulations with fixed horizons,
hence it will terminate because validated simulation always terminates,
even if that entails outputting useless sets. Indeed, in the case where val-
idated simulation cannot simulate the system, because of an explosion of
the state set notably, it terminates regardless and outputs the entire space:
[y(tf ), p(tf )] ∈ R2d. The resulting set CK([pτ ]) is guaranteed to enclose all
possible solutions in the inputted initial box as a consequence of contractor
properties (see Section 1.3.1 or [40]). However, it will miss solutions that
are outside the initial box. As a consequence this contractor is embedded in
an iterative algorithm.

3.1.2 Inflate&contract method around nominal solution

Because Krawczyk contractor is such that CK([pτ ]) encloses all optimal co-
states in [pτ ], we have the following properties:

• CK([pτ ]) ⊆ [pτ ],

• CK([pτ ]) contains all optimal co-states in [pτ ],

• If CK([pτ ]) ⊂ Int([pτ ]), the interior of [pτ ], then CK([pτ ]) contains all
optimal co-states, or at least all connected local optimums.

Indeed, the set of optimal co-states are locally connected because changing
parameters and initial state changes the OCP continuously, and changing
an OCP continuously changes its solution continuously [5]. As noted in
Section 1.3.1, if there are solutions outside the box, then the solution set
touches the border, hence it is not in its interior, so if CK([pτ ]) ⊂ Int([pτ ])
then it is guaranteed to enclose all local solutions. However, there might
be multiple separate solutions sets. A typical example is planning a car
trajectory around an obstacle in the middle of the road. There will be one
set of co-states that corresponds to the car passing the obstacle on the right,
and the other set of co-states corresponds to the co-state passing the obstacle
on the left. We restrict ourselves to connected local optimums as the first
order optimality condition given by PMP is only a local condition, hence we
have little means to find solutions disconnected from the nominal solution.
Moreover, even if we were given a set of disconnected solutions, enclosing
all of them with a single box would probably be counter-productive.
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In the car example, enclosing both sets of co-states in a single box would
yield trajectories that go head first into the obstacle. Better results would
be achieved by considering connected local optimums around each of these
solutions individually.

Figure 3.2: Inflate&Contract method. i) Take an initial box [pτ ] around
solutions for nominal values of the uncertainties. ii) Inflate it until it encloses
the entire solution set, which is checked with sufficient condition CK([pτ ]) ⊂
Int([pτ ]). iii) Contract with fixed point iteration [pτ ] ← CK([pτ ]). Note
that this procedure is only applied along the vertical axis, which corresponds
to co-state space because the state is an input.

To compute those connected local optimums, Algorithm 2 is used. It is a
classic inflate and contract algorithm specialized to enclose initial co-states
and is illustrated on Figure 3.2.

Algorithm 2: Computes a thin enclosure [pτ ] of the optimal co-
states corresponding to a given state enclosure [yτ ].

Data: [yτ ] and an initial searching area [pτ ].
Result: [pτ ].

1 Compute CK([pτ ]) using algorithm 1.
2 while CK([pτ ]) 6⊂ Int([pτ ]) do
3 Inflate [pτ ] by a coefficient λ.
4 Compute CK([pτ ]) using algorithm 1.

5 while DHausdorff ([pτ ], CK([pτ ])) > precision do
6 [pτ ]← CK([pτ ]).
7 Compute CK([pτ ]) using algorithm 1.

Inflating an interval is the operation that increases it in both direction:
[a, a]→ [a−h, a+h], with h ∈ R+. We typically take h proportional to the
radius of the interval h = λ(a− a). Inflating a box on Line 3 means inflat-
ing each of its interval coordinates. The convergence criterion is Hausdorff
distance, which measures to how much one box needs to be inflated to fit
the other box and vice versa.
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Algorithm 2 is not guaranteed to converge: the convergence criterion on
Line 2 might never be met, and the box can be inflated endlessly. This is
due to the fact that over-approximation increases with the size of the search
box and past a certain threshold it overtakes the contraction of optimality
conditions. This phenomenon is key in the determination of inflate coeffi-
cient λ on Line 3: if λ is big, the inflating part converges faster, unless it is
too big in which case the inflating part does not converge at all. As a conse-
quence it is necessary to add an iteration counter and cap it to ensure that
the program terminates, with the program returning Rd if the maximum
iteration is reached. This convergence issue is one of the main weakness of
our method and discussed in depth in Chapter 5. Nevertheless, when the
inflating part does converge, the contracting part is guaranteed to converge
as well (see [40]) and the result encloses all connected solutions, as explained
in previous paragraphs.

Unlike in the real case, an enclosure of optimal states and co-states at a
given time is not enough to have an enclosure at all subsequent times. This
will be discussed in next section where Algorithm 2 is paired with validated
simulation to compute the three enclosures.

3.2 Computation of the enclosures

In this section, interval-based methods are designed to enclose each enclo-
sure proposed in Chapter 2. We first highlight that naive implementations
encounter a significant wrapping effect due to a loss of correlation between
the solver and simulation. We then propose paving-based algorithms for
open-loop, closed-loop and anticipative enclosures.

3.2.1 The necessity of paving

The naive implementation to compute enclosures consists in first enclosing
optimal co-states with Algorithm 2 then integrating PMP dynamics with
validated simulation and solving the OCP again when in closed loop.

However, validated simulation suffers from wrapping effect due to a loss
of correlation between optimal state and co-state as illustrated on Figure 3.3.
Indeed, it implicitly applies a co-state (hence a control) tailored for extreme
state to the other extreme state, leading to significant over-approximation.

This is especially troublesome for closed-loop algorithm as recomput-
ing the co-state to simulate the controller correcting the trajectory actually
increases the size of the enclosure. This phenomenon is illustrated on Fig-
ure 3.4 where the box obtained by recomputing the co-state at an interme-
diate time does not filter out open-loop trajectories.
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Figure 3.3: Callback to Figure 2.4. The right black box is obtained with vali-
dated simulation and significantly overestimates the orange stripe of possible
states.

Figure 3.4: Purple: (state, co-state) couples obtained by simulating solu-
tions from previous time. Black: box enclosing the purple set obtained by
integrating the system (left of Figure 3.3). Red: optimal couples. Grey:
results of our OCP solver. Parts of the purple set that are outside of the
blue set are no longer optimal and should be culled. Because the gray box
does not exclude this purple set and is larger than the black box, it will be
more pessimistic than open-loop.
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To alleviate this wrapping effect, paving is used. Paving consists in split-
ting the box into a set of smaller boxes. The gain of precision is showcased
on Figures 3.5 and 3.6. This reduces wrapping effect enough to compute
our closed-loop enclosure.

y0 y0 Yf
state space

co
-s

ta
te

sp
ac

e

Figure 3.5: Paving the state enclosure to get a thinner approximation.

However, paving comes at the cost of significant computation time in
high dimension. Indeed, splitting a box of dimension d in l parts in each
direction yields ld boxes.

Nevertheless, this allows the computation of enclosures in low dimension
which is presented in the next section.

3.2.2 Paving-based algorithms to compute the three enclo-
sures in low dimension

In this section, we present the first three algorithms we developed to compute
the three enclosures defined in Chapter 2.

We first tackle the open-loop enclosure as it is the simplest. Indeed, it is
sufficient to enclose the solution of the OCP with Algorithm 2 then simulate
open-loop Dynamics 2.9. To achieve better performance this is done not on
the entire box [yi] but rather on a paving ([yi]k)k∈0..K (see previous section).
This yields Algorithm 3 which uses temporary variables [y], [p] that are
marked without indexes. The paving ([yi]k)k∈0..K is obtained by splitting
each interval coordinate of [yi] in l sub intervals of equal length, yielding
K = ld boxes, then organizing them in a single sequence for ease of use.
However, we do not keep every result of every box of the paving in memory
as it could potentially take a lot of space and be hard to visualize.

60 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris



CHAPTER 3. DEVELOPMENT OF INTERVAL-BASED METHODS
TO ENCLOSE SETS OF OPTIMAL TRAJECTORIES

Figure 3.6: The OCP is solved and simulated for one part at a time. The
union of the boxes is considerably tighter than the box on Figure 3.3.

Rather we compute the union of every result incrementally (see lines 7, 14,
15, 16 and 17). Note that despite the wrapping effect this union creates,
paving still yields a tighter enclosure as can be seen on Figure 3.6.

Algorithm 3 is composed of calls to Algorithm 2 followed by validated
simulation on a fixed duration. As such it terminates as long as Algo-
rithm 2 does. Its output, the sequence of boxes ([yn])n∈0..N , and Picard
boxes ([ỹn])n∈0..N−1, is guaranteed to enclose open-loop trajectories because
Algorithm 2 encloses all optimal initial co-states, which includes the one that
will be used by the system’s controller, then validated simulation encloses
all trajectory of open-loop Dynamics (2.9). It is recalled that open-loop Dy-
namics (2.9) have two states, the true state [y] of the system and its estima-
tion [ŷ], and the system computes its control with the estimation [ŷ] and its
associated co-state [p̂], rather than the true state, because it does not know
it (see Chapter 2 for details). Algorithm 3 does not output the enclosure of
the estimated state and co-state because those are mathematically perfect
trajectories, hence can be computed more accurately with Algorithm 6 that
is dedicated to anticipative enclosure.

To compute the closed-loop enclosure, the problem needs to be recom-
puted at times of interest. Since each recomputation requires a dedicated
paving, the paving loop on variable k and the time loop on n are swapped.
This yields Algorithm 4. Like Algorithm 3, it terminates as long as Algo-
rithm 2 does.
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Algorithm 3: Paving-based algorithm for the open-loop enclosure.

Data: [yi], times of interest ti < τ1 < ... < τN−1 < tf .
Result: ([yn])n∈0..N enclosures at times τn, ([ỹn])n∈0..N−1

enclosures over [τn, τn+1].
1 ([yn])n∈0..N , ([pn])n∈0..N , ([ỹn])n∈0..N−1, ([p̃n])n∈0..N−1 ← ∅.
2 [y0]← [yi].
3 Split [yi] in a paving ([yi]k)k∈0..K−1.
4 k ← 0.
5 while k < K do
6 [p̂]← Algorithm 2 with [yi]k.
7 [p̂0]← [p̂0] ∪ [p̂].
8 [y]← [yi]k.
9 [ŷ]← [yi]k.

10 n← 0.
11 while n < N do
12 Simulate System (2.9) from τn to τn+1 with initial state

([y], [ŷ], [p̂]).
13 ([y], [ŷ], [p̂])← end state of simulation.
14 [yn+1]← [yn+1] ∪ [y].
15 [ŷn+1]← [ŷn+1] ∪ [ŷ].
16 [p̂n+1]← [p̂n+1] ∪ [p̂].
17 ([ỹn], [p̃n])← ([ỹn], [p̃n])∪ Picard boxes of simulation.
18 n← n+ 1.

19 end
20 k ← k + 1.

21 end
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However, Algorithm 2 is much more likely to not converge at some point.
Indeed, co-states are enclosed not only at the initial time but also later on
after the system deviated from its nominal course due to uncertainties. As
a consequence it is possible to reach the limit of the admissible set, leading
to abnormal trajectories, leading to unbounded co-states and causing Algo-
rithm 2 to not converge. This is a recurring issue in tracking problems and
we believe that detecting those scenarios ahead of time is a possible use of
the closed-loop enclosure. This is discussed in depth in the Discussion Chap-
ter 5.2. The sequence of boxes ([yn])n∈0..N , and Picard boxes ([ỹn])n∈0..N−1 it
outputs is guaranteed to enclose closed-loop trajectories because Algorithm 2
encloses optimal co-states at each time τn, and validated simulation encloses
closed-loop Dynamics (2.10) which work like open-loop dynamics (2.9) (see
Chapter 2 for details). The co-state output ([pn])n∈0..N−1 monitors the op-
timal co-state that the system finds when it recomputes its control.

Algorithm 4: Paving-based algorithm for the closed-loop enclo-
sure.

Data: [yi], times of interest ti < τ1 < ... < τN−1 < tf
Result: ([yn])n∈0..N , ([pn])n∈0..N−1 enclosures at times τn,

([ỹn])n∈0..N−1, ([p̃n])n∈0..N−1 enclosures over [τn, τn+1].
1 [y0]← [yi].
2 n← 0.
3 while n < N do
4 [yn+1], [p̂n], [ỹn], [p̃n]← ∅.
5 Split [yn] in a paving ([yn]k)k∈0..K−1.
6 k ← 0.
7 while k < K do
8 [p̂]← Algorithm 2 with [yn]k.
9 [p̂n]← [p̂n] ∪ [p̂].

10 Simulate System (2.10) from τn to τn+1 with initial state
([yn]k, [p]).

11 ([y], [ŷ], [p̂])← end state of simulation.
12 [yn+1]← [yn+1] ∪ [y].
13 [ỹn],← [ỹn]∪ Picard boxes of simulation.
14 k ← k + 1.

15 end
16 n← n+ 1.

17 end

The critical difference between closed-loop and anticipative enclosure is
that at each recomputation time, we enclose the part of the current co-state
set that satisfies the optimality condition, rather than compute a new one.
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Indeed, as stated in Chapter 2, the trajectories of interest are optimal be-
tween the initial time and current time, meaning the true co-state lies in
the purple set in Figure 3.7, which is the current co-state, obtained by sim-
ulating from the previous recomputation time. And they are also optimal
between this time and the final time, meaning they also satisfy the opti-
mality condition at the current time, hence lie in the blue set in Figure 3.7.
Hence, Algorithm 6, which computes the anticipative enclosure, use the full
Inflate&Contract Algorithm 2 only at the start to find the initial co-state.
Afterward, it uses Contract Algorithm 5, which only contracts the box to
find all solutions within the inputted initial search area, to refine the box of
co-state obtained by integrating Dynamics 1.11 from preceding iterations.
A paving is used to improve accuracy, as presented in Figure 3.7.

Algorithm 5: Computes a thin enclosure [pτ ] of the optimal co-
states in the initial search area.

Data: [yτ ] and an initial searching area [pτ ].
1 Compute CK([pτ ]) using Algorithm 1.
2 while CK([pτ ]) 6= ∅ and DHausdorff([pτ ], CK([pτ ])) > precision do
3 [pτ ]← CK([pτ ]).
4 Compute CK([pτ ]) using Algorithm 1.

5 if CK([pτ ]) = ∅ then
6 [pτ ]← ∅.

Because Algorithm 5 only does fixed point iteration it always converges.
Hence Algorithm 6 terminates as long as Algorithm 2 does. The sequence of
boxes ([yn])n∈0..N , ([pn])n∈0..N , and Picard boxes ([ỹn])n∈0..N−1, ([p̃n])n∈0..N−1

it outputs is guaranteed to enclose optimal trajectories because Algorithm 2
encloses initial co-states, validated simulation enclose all trajectories spring-
ing from them, hence all optimal trajectories as well as open-loop trajecto-
ries, and the later are culled by Algorithm 5 (see Chapter 2 for details).

Due to the paving complexity, these algorithms cannot be applied to
high dimensional problems. Nonetheless, their result can be highlighted on
low dimensional problems.
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Figure 3.7: To enclose the red set, the box obtained by solving the OCP and
simulating (see Figures 3.3 and 3.6) is paved along state space, yielding the
black boxes. Algorithm 5 is applied to each box. It encloses the intersection
between the box and the blue solution set and yields the gray boxes. Note
that some boxes like the rightmost box might contain no solution, in which
case Algorithm 5 outputs ∅. Precision could be enhanced by paving along
the co-state space as well, thus better enclosing the purple set and then the
red set. This would however double the dimension of the paving, hence
square its complexity.
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Algorithm 6: Paving-based algorithm for the anticipative enclo-
sure.

Data: [yi], times of interest ti < τ1 < ... < τN−1 < tf .
Result: ([yn])n∈0..N , ([pn])n∈0..N enclosures at times τn,

([ỹn])n∈0..N−1, ([p̃n])n∈0..N−1 enclosures over [τn, τn+1].
1 ([yn])n∈0..N , ([pn])n∈0..N , ([ỹn])n∈0..N−1, ([p̃n])n∈0..N−1 ← ∅.
2 [y0]← [yi].
3 Split [yi] in a paving ([yi]k)k∈0..K−1.
4 k ← 0.
5 while k < K do
6 [p]← Algorithm 2 with [yi]k.
7 [p0]← [p0] ∪ [p].
8 Simulate System (1.11) from ti to τ1 with initial state ([yi]k, [p]).
9 ([y1, p1])← ([y1, p1])∪ end state of simulation.

10 ([ỹ0], [p̃0])← ([ỹ0], [p̃0])∪ Picard boxes of simulation.
11 k ← k + 1.

12 end
13 n← 1.
14 while n < N do
15 [yn+1], [pn+1], [ỹn], [p̃n]← ∅.
16 Split [yn] in a paving ([yn]k)k∈0..K−1.
17 k ← 0.
18 while k < K do
19 [p]← Algorithm 5 with [yn]k.
20 [pn]← [pn] ∪ [p].
21 Simulate System (1.11) from τn to τn+1 with initial state

([yn]k, [p]).
22 ([yn+1, pn+1])← ([yn+1, pn+1])∪ end state of simulation.
23 ([ỹn], [p̃n])← ([ỹn], [p̃n])∪ Picard boxes of simulation.
24 k ← k + 1.

25 end
26 n← n+ 1.

27 end
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3.3 Application to a problem in low dimension

In this section, we apply algorithms of Section 3.2.2 to a double integrator
with quadratic cost which is the main system of our first article [13] and
a stepping stone toward aerospace problems. Then the limits of the algo-
rithms are brought to light and the specifications of later methods are stated.

Consider a double integrator in a uniform gravity field and with a re-
actor thrust. It is subject to a quadratic continuous cost and a quadratic
penalization on the final state. We chose this problem because it is used to
initialize a continuation method to solve Goddard’s problem [19, 20].

min

∫ tf

0

||u||2
2

dt+Kv
||v(tf )||2

2
,

+Kr
||r(tf )− rf ||2

2
,

such that


ṙ(t) = v,

v̇(t) = −C
mu−Ge2,

r(ti) = ri, v(ti) = vi,

(3.6)
where G is the normalized gravity field, e2 is the unit vector of the vertical
axis, C is the maximum thrust and m is the mass of the system, which is
assumed to be constant.

By using the method in Chapter 2, this OCP turns into the following
two point boundary value problem:

ṙ(t) = v,

v̇(t) = −pv
(
C
m

)2 −Ge2,
ṗr(t) = 0,
ṗv(t) = −pr,

r(ti) = ri, v(ti) = vi,
pr(tf )−Krr(tf ) = 0, pv(tf )−Kvv(tf ) = 0.

(3.7)

The values used are inspired by the take-off problem in [19]. The pa-
rameter nominal values are the same as in [19]: C = 3.5, G = 1 and b = 1.
The initial position of the system corresponds to the final position of the
take-off mission. The initial velocity has been chosen to be coherent with a
re-entry mission.

The solution of the nominal case is presented on Figure 3.8.
The initial position has an uncertainty of around 5 km, which is about

2% of the span of the trajectory. The initial speed has a relative uncertainty
of 1.7% and the parameter ratio C/m has a relative uncertainty of 0.2%.
However, the mission duration is greater than the optimal duration so as
to emphasize the differences between the enclosures. The longer the mis-
sion, the more the system has to fight gravity, the more uncertainties are
accumulated along the vertical axis.

Figures 3.9, 3.10 and 3.11 depict enclosures of the double integrator
computed using Algorithms 3, 4 and 6.
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Figure 3.8: Optimal trajectory, velocity space trajectory and control for the
a double integrator with quadratic cost.

Due to the system being in dimension 4, the paving complexity is high.
To keep computation time low, we did not compute the resolvent with Sys-
tem (3.4). Instead, because System (3.7) is linear time invariant with a
strictly triangular matrix, there are analytic formulae for the flow and the
resolvents and we used them in Algorithm 1. Still, we observed that val-
idated simulation yields the same resolvent as the analytical formula and
are confident one would obtain the same result given enough computation
power.

The anticipative enclosure on Figure 3.9 starts wide because of initial
uncertainty but gets thinner as all the system converge to the target. As a
result, the final box is very thin.

Contrarily, the open-loop enclosure on Figure 3.10 becomes wider over
time and the final box is very big. Systems over-shoot or under-shoot the
target because of their lack of correction.

Lastly, the closed-loop enclosure on Figure 3.11 is somewhere in between
the two other enclosures. These systems deviate from their optimal trajec-
tory but correct it, leading to a bulge in the middle and end of the trajectory
that gets abruptly smaller at the end. To sum up, those three enclosures
corroborate our observations from the analytical enclosures of the integrator
in Section 2.5.
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Figure 3.9: Anticipative enclosure of position and velocity.
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Figure 3.10: Open-loop enclosure of position and velocity.
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Figure 3.11: Closed-loop enclosure of position and velocity.

While being able to enclose a double integrator is encouraging, it is not
quite the same as enclosing an aerospace problem, and the interval-based
algorithms of this chapter are not up to the task for several reasons.
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3.3.1 Limits of this approach

While these algorithms are a step toward the goal of computing the enclo-
sures introduced in Chapter 2, we highlighted critical issues.

• The exponential complexity of paving forbids the resolution of high di-
mensional systems. This also excludes hybrid systems as each discrete
event adds variables that need to be paved (see for instance [56]).

• The loss of correlation between state and co-state that happens in
between OCP resolution and simulation causes wrapping effect and
forces us to intersect our co-state with the solution set several times in
Anticipative Algorithm 6 when ideally we would solve the OCP only
once.

• Computing a resolvent considerably increases the size of the dynamical
system, which considerably increases computation time and can cause
validated simulation to fail return the entire vector space because it
failed to enclose the system.

As a consequence, Chapter 4 focuses on avoiding paving, especially for
hybrid discrete events, and we question whether computing a resolvent is
necessary. To that end, Interval are replaced by another set representation.
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Chapter 4

Replacing intervals by constrained
symbolic zonotope

In this chapter, we develop methods for symbolic constrained zonotopes, to
overhaul the algorithms of Section 3.2.2. Indeed, symbolic zonotopes keep
linear correlations between all variables in the program, which addresses
the issues highlighted in Section 3.3.1. This allows us to address the entire
problem as highlighted in Chapter 2 which we recall here:

min
u(·)

∫ tf

ti

`(y(t), u(t), ξ(t))dt+ Ψ(y(tf )),

s.t.


ẏ(t) = f(y(t), u(t), ξ(t)),
y(ti) ∈ Yi, y(tf ) ∈ Yf , tf is free,
c(y(t)) ≤ 0.

(4.1)

We first list our contributions to constrained symbolic zonotopes, we no-
tably propose constrained spatio-temporal zonotopes to check for collisions
with unsafe of guard set and enclose hybrid systems during events. We use
those spatio-temporal zonotopes to build a Boundary Value Problem (BVP)
solver, which we presented at CDC21 [14], then we propose a simpler and
faster BVP solver that relies on the fundamental invariant of affine arith-
metic [29]. The latter is used to compute the three enclosures of Chapter 2,
and compared to the analytical OCP of Chapters 2 and to a simple nonlin-
ear aerospace problem which opens the way to our most advanced results in
Chapter 5.

4.1 Enhancing the BVP solver with constrained
zonotopes

In this section, we use symbolic zonotopes [29], constrained zonotopes [63]
and zonotope validated simulation library DynIbex [4] to build a BVP solver.
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To that end, we propose constrained spatio-temporal zonotopes which are a
convenient way to simulate hybrid systems. Then we use them to apply the
propagate boundary conditions of our BVP, Lastly, we adapt the inflate &
contract algorithm from Chapter 3.

While working with constrained zonotopes, we had several ideas to im-
prove this formalism. We note constrained zonotopes ZA = {Z0 + Z · ε|ε ∈
[−1, 1]dε ,A0 + A · ε = 0} to emphasize that the constraint part A is a zono-
tope on its own rather than a subpart like in our main inspiration [63].
Indeed, because we use symbolic zonotopes as defined in [29], noise symbols
are shared by all zonotopes in the entire program, hence Z and A can be
handled separately.

The main benefit is that a single zonotope A can be used as the constraint
part of several zonotopes, even zonotopes corresponding to quantities that
were computed at another point in the program. This property is derived
from the fundamental invariant of affine arithmetic [29] and formalized as
follow:

Proposition 1. Consider a set X , enclosed in a zonotope X : X ⊂ X ⊂ Rd;
let a constraint function c : Rd → Rdc. The implicit set X c defined as
X c = {x ∈ X : c(x) = 0} is a subset of XA, with A = [c](X).

The zonotope A = [c](X) is the evaluation of a zonotope valued coun-
terpart of function c on the zonotope X, which was computed with affine
arithmetic.

Proof. The fundamental invariant of affine arithmetic states that at any sta-
ble instant in an affine arithmetic computation, there is a single assignment
of values from [−1, 1] to each of the noise variables in use at the time that
makes the value of every affine form equal to the value of the corresponding
quantity in the ideal computation [29]. Ideal computations refer to the math-
ematically perfect value one would obtain by doing the computation with
infinite precision. Hence, if we take any x ∈ X, there is an assignment of the
noise values such that X and A are equal to their corresponding quantity,
that are x and c(x). This can be formulated as the follows:

∀x ∈ X , ∃ε ∈ [−1, 1]dε s.t.

{
x = X0 + X · ε,
c(x) = A0 + A · ε.

From there, we conclude:

∀x ∈ X c, ∃ε ∈ [−1, 1]dε s.t.

{
X0 + X · ε = x,
A0 + A · ε = 0.

By definition, ∀x ∈ X c, x ∈ XA.
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This property makes the combination of symbolic zonotopes and con-
strained zonotope very convenient. By contrast, constrained zonotopes
in [63] are not symbolic and that arises the need to put coordinates, con-
straints and any other affine form of interest in one big zonotope and drag
all these affine forms along in every operation. The ability to apply con-
straints at one point of the program to a set at another point is particularly
useful for solving BVPs, as boundary constraint on the final zonotope can
be added on the initial zonotope through the noise symbols.

However, to retain correlations between zonotopes, operations need to be
done with Affine Arithmetic [29], which means using zonotopes exclusively.
In particular, this means we cannot simulate the discrete events of hybrid
systems by switching to a more adapted state representation as in [7, 8, 24].
As a consequence we propose a method to simulate hybrid systems using
constrained zonotopes.

4.1.1 Developing spatio-temporal zonotopes for simulation
of hybrid systems

The validated simulation used by DynIbex [4] encloses possible trajectories
in sequences of zonotopes and Picard boxes, with zonotopes enclosing the
system at instants and Picard boxes enclosing the system over a time range.
This causes two difficulties, which are illustrated in Figure 4.1. Firstly, it
is hard to assert the safety with respect to state constraints because those
constraints must be satisfied not at given instants but at all times. Since
zonotopes only enclose the system at instant, the only way to ensure the
satisfaction of state constraints is proving that all Picard boxes stay out of
the unsafe set, and that can cause a false positive due to wrapping effect.
Secondly, enclosing a hybrid system through a discrete event accurately is
challenging. Indeed, if the event time is variable, then no single zonotope
will enclose the system at all possible event time, so one must apply the
jump to a Picard box instead, which causes significant over approximation.
There are techniques to alleviate this, such as subdividing the event time
range and simulating systems that have an event over each sub time interval
separately (see [56, 24]) or switching to other set representations to sim-
ulate the event with more accuracy (see [24, 7, 8]). However, those incur
significant computational costs, and crucially they invalidate the symbolic
zonotope approach because they require switching back and forth between
zonotopes and other set representations, and those switch create new zono-
topes with new noise symbols that have no correlation with past zonotopes
in the program.

To alleviate the shortcomings of the usual validated simulation frame-
work, we introduce spatio-temporal zonotopes.
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Figure 4.1: Difficulties of Validated simulation. The set of possible trajecto-
ries of a falling ball with unknown initial velocity are computed analytically
(orange) and enclosed with DynIbex [4]. Left: the safety of the system is
not guaranteed because boxes intersects with the gray unsafe set due to
wrapping effect. Right: the intersection with the black guard set is loosely
enclosed in a Picard box because the blue zonotopes all line up with the
initial time rather than event time.

A spatio-temporal zonotope is of the form:

Z =

(
T
Y

)
,

where T is a one dimensional affine form that encloses a time range [t, t+hZ ],
with hZ is a duration chosen by the user, and Y is a zonotope enclosing the
state on time range [t, t + hZ ]. Such a zonotope can be built using the
following procedure which is illustrated in Figure 4.2. We start with a given
zonotope Y0 enclosing the state at instant t = 0, either because it is an
input of the problem or because it is the output of a preceding validated
algorithm. We compute a Picard box [ỹ] such that ∀s ∈ [0, hZ ], y(s) ∈ [ỹ]
using validated simulation. Then a validated Taylor interpolation [47] is
used. We use the following order zero interpolation (4.2).

∀t ∈ [0, hZ ], y(t) ∈ Y0 + t× [f ]([ỹ]). (4.2)

This inclusion can be derived similarly to Picard’s operator:

∀t ∈ [0, hZ ], y(t) = y(0) +
∫ t

0 f(y(s))ds

∈ Y0 +
∫ t

0 [f ]([ỹ])ds
∈ Y0 + t× [f ]([ỹ]).

It follows from Equation (4.2) that the spatio-temporal zonotope Z can
be initialized with Formula (4.3).
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Figure 4.2: Building a spatio-temporal zonotope. i) Start with an enclosure
Y0 at time 0. ii) Compute Picard box [ỹ] that encloses all trajectories
spanning from Y0 for t ∈ [0, h] with Picard’s operator. iii) Enclose dynamics
on [ỹ]. iv) Deduce a zonotope that encloses trajectories over the range [0, h].
This differs from regular validated simulation in that the last step encloses
the system on the entire range rather than h only, allowing to have linear
correlations between space and time.

Z0 =

(
T

Y0 + T× [f ]([ỹ])

)
, (4.3)

where T = hZ
2 + hZ

2 ε0 with ε0 ∈ [−1, 1] is a one dimensional zonotope
enclosing time range [0, hZ ]. We believe that there is considerable room
for improvement with this formula. Indeed, the gap between the tube of
trajectories and the zonotope is significant, as can be seen in Figure 4.2.
We switch to a centered formula in later sections as it provides a tighter
enclosure (see Figure 4.3) but it could be improved further with higher
order methods.
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Figure 4.3: Forward (left) and centered (right) method to building a spatio-
temporal zonotope. Forward goes forward in time from its initial enclosure
while centered is centered on time 0. For a same Picard box, centered
method gives a tighter zonotope.

Once initialized, spatio-temporal zonotope may be simulated with dy-
namics: (

ṫ
ẏ

)
∈
(

1
[f ] (y, [ξ])

)
, (4.4)

which yields an enclosure of all possible trajectories. The entire procedure
to enclose trajectories at all time is summed up in Algorithm 7 and its result
is represented in Figure 4.4.

This algorithm initializes spatio-temporal zonotopes by computing a Pi-
card box with validated simulation, then applying Formula (4.3). Then it
simulates forward.

As illustrated in Figure 4.4, if the integration step h is equal (or inferior)
to the duration hZ covered by each zonotope, then the possible trajectories
are contained in the sequence of spatio-temporal zonotopes. These zono-
topes can be used to validate a state constraint, for instance staying out of
an unsafe set as illustrated in Figure 4.4. This allows to enclose the state
during the discrete, then refine it with a constraint and use this constrained
zonotope to initialize a new simulation after the discrete event, thus simu-
lating a hybrid system.

This is illustrated on a bouncing ball formalized as the automaton in
Figure 1.1 in Section 1.1.2. It is subject to uncertainties on the bounce
parameter: λ ∈ [λ], and uncertainties on the initial velocity: vi ∈ [vi].
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Algorithm 7: Enclose all possible trajectories in spatio-temporal
zonotopes

Result: (Zn)n∈0..N a sequence of zonotopes that encloses the
system’s state between t = ti and t = tf

Data: The final time tf , a duration hZ , an enclosure of the initial
state Yi, dynamics f

1 n← 0.

2 T← hZ
2 + hZ

2 ε0.
3 [ỹ]← Picard box (or union of Picard boxes) of the validated

simulation of dynamics f with initial state Y0 and horizon hZ .
4 Z0 ← (T;Y0 + T× [f ]([ỹ])).
5 while maxZn,0 < tf do
6 n← n+ 1.
7 Zn ← the validated simulation of extended dynamics (4.4) with

initial state Zn−1 and horizon h = hZ .

8 end
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Figure 4.4: The challenges of Figure 4.1 are addressed with spatio-temporal
zonotopes. Left: zonotopes enclose the tube more tightly than boxes and
guarantee that the system does not enter the unsafe set. Right: the inter-
section with the guard set is enclosed in a single zonotope, and refined with
a constraint, yielding the red constrained zonotope.
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We recall the bouncing ball dynamics:
ṙ(t) = v(t)
v̇(t) = −9.81
r(0) = 1
v(0) ∈ [v0],

and its state dependent event:

if ψ(r(t−1 )) = r(t−1 ) = 0 then v(t1+) ∈ −[λ]v(t1−).

0
time t2 of the second simulation
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Figure 4.5: In Figure 4.4 a bouncing ball is simulated until it bounces on the
ground. Its last zonotope is used to initialize a simulation after bouncing,
yielding the enclosure on the left. The entire trajectory is displayed on the
right. The change of shape is due to the fact that the second simulation
starts at bounce time rather than initial time, and the duration between
the two is variable. The dashed hull is the enclosure without taking into
account that the ball is on the ground at bounce time, while plain has this
information in the form of a zonotope constraint.

A preliminary validated simulation is done to find bounds on event time.
For instance, on the right of Figure 4.1, it can be seen that at time 7h the
ball enclosure is above the ground and at time 8h it is below, hence the
event is guaranteed to happen in t ∈ [7h, 8h]. Then Algorithm 7 is applied.
This yields the enclosure displayed on the right of Figure 4.4. Then the
last zonotope of that simulation is used to initialize another simulation with
Algorithm 7 to compute the post bounce trajectory, which is displayed on
the left of Figure 4.5. The entire trajectory is showcased on the right of Fig-
ure 4.5. It encloses the tube of possible trajectories in a single forward swipe.

These methods can enclose trajectories of a hybrid system in a sequence
of constrained zonotopes without ever switching to another set representa-
tion and lose correlation. Next section will use that to enclose solutions of
BVPs.
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4.1.2 Propagating boundary constraints backward

In this section, we consider our full hybrid BVP. We have hybrid system:
ẋ(t) = gn(x(t), ξ(t)), ∀t ∈ [t+n−1, t

−
n ]

x(t+n ) = jn+1(x(t−n )), ∀n ∈ 0..N − 1
x(0) = x0

(4.5)

where 0 = t0 < t1 < ... < tN = tf are transition times and jn : R1+2d 7→
R1+2d are jump functions. It is subject to switching and optimality condi-
tions:

Cn(x(t−n )) = 0,∀n ∈ 1..N. (4.6)

Our first attempt at enclosing trajectories in zonotopes followed natu-
rally the same reasoning as with intervals. We linearize the system at several
times by computing a resolvent of the system and using a formula similar
to that of our Krawczyk contractor in Chapter 2. Our second attempt uses
properties of affine arithmetic to compute a tube in a single forward swipe.

First approach: linearization of the flow with a resolvent

Our first method to propagate boundary constraints computes the first
derivative of the BVP with affine arithmetic, then adds it as constraints
using constrained zonotope formalism. This takes the form of the following
equations, which are an affine arithmetic counterpart of the first derivative
equation proposed in Section 2.3.

A =


[∇C1] (x1) ·W1

[∇C2] (x2) ·W2
...

[∇CN ] (xN ) ·WN

 ,

with for every n, Wn = [Rtn−1,tn ](xn−1) · [∇jn−1](xn−1) ·Wn−1. x−n−1 and
[Rtn−1,tn ] are the solution at time tn−1 of System (4.7) and x+

n = [jn](x−n ).
ẋ(t) ∈ [gn] (x, [ξ])

Ṙtn−1,t(xi) ∈
[
∂gn
∂x

]
(x, [ξ])) ·Rtn−1,t(xi)

x(tn−1) = x+
n−1

Rtn−1,tn−1(xn) = Id.

(4.7)
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Wn are the derivatives with respect to the initial state and co-state, hence
we also add the derivative with respect to switch time:

∀i ∈ 1..N,A← A +



0
...
0

∇Ci(xi) · [gn](x−i , [ξ])

∇Ci+1(xi+1) ·Wti
i+1

...

∇CN (xN ) ·Wti
N


,

with Wti
i = [∇ji−1](x−i )·[gi](x−i , [ξ])−[gi+1](x+

i , [ξ]) and Wti
n = [Rtn−1,tn ](xn)·

[∇jn−1](xn) ·Wti
n−1, ∀n > i.

We then build a method that computes these flows and resolvents with
validated simulation as with Algorithm 1 and adds them as constraints, thus
enclosing optimal co-states and switch times. With repeated computation
of these constraints, optimal trajectories are enclosed.

This method however proved inefficient. As our grasp of constrained
zonotopes and symbolic zonotope tightened, we realized that the process of
validated simulation computes a linear correlations between initial and final
state through the noise symbols, and that the resolvent is redundant. This
lead us to a simpler and more precise method.

Second approach: propagation through noise symbols

This section applies the results of Section 4.1 to BVPs. The solution set of
our BVP is defined implicitly as:

XC = {(y0, p0, (tn)) ∈ Y0 × Rd × RN : Cn(Φ0,tn(y0, p0)) = 0, ∀n}.

Let a zonotope P0 of initial co-states and a zonotope T of switch times,
and let A = [Cn](Xn), where Xn = [Φ0,Tn ](Y0,P0) is an enclosure at time
tn computed with validated simulation and spatio-temporal zonotopes. By
application of Proposition 1, all optimal co-states within P0 are enclosed in
PA

0 and optimal switch times within T are enclosed in TA.
In less abstracts terms, Affine Arithmetic as presented in [29] is such

that noise symbols keep correlations between all zonotopes in the program.
In the case of validated simulation, this means that all state enclosures are
correlated, in particular, enclosures at boundary times that are subject to
optimality constraints are correlated to state enclosures at all other times.
Hence, adding optimality condition as constraints on those boundary zono-
topes also adds them on all other state enclosure through the noise symbols.
This phenomenon is illustrated in Figure 4.6.

We propose a BVP Solver 8 that takes initial co-states and switch times
in zonotope form and computes boundary constraints A.
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Noise symbol space State and co-state space

Cn = 0

X0 Xn

Figure 4.6: The boundary state x(tn) is enclosed in Xn and subject to
Cf (x(tn)) = 0. We compute A = [Cn](Xn) and add it as linear constraints
on the noise symbol hypercube. This yields constrained zonotope XA

n (plain
blue) which conservatively enclose the part of the final zonotope that satisfies
Cf = 0. Since all symbolic zonotopes are affine transformations of the same
noise symbol hypercube (as shown by the red arrows), constraints on the
hypercube can be applied to them as well. Hence, a constraint on Xn
can be propagated to the initial zonotope X0 through the noise symbols as
illustrated by the black arrows.

The result of this solver is illustrated on the integrator OCP with fixed
final time in Figure 4.7. When boundary times are not fixed, we use spatio
temporal zonotopes to enclose the system at boundary times (Line 7). BVP
Solver 8 is different from Algorithm 7 in that it is not designed to enclose the
system at all times. As a consequence, we simulate forward first and initialize
our spatio-temporal zonotope afterward. This yields a tighter enclosure of
the state at switch time. Indeed, a spatio-temporal zonotope that encloses
the system over a duration is typically bigger than the initial zonotope it
was built with. Since wrapping effect grows with the size of the zonotope,
it is better to do the bulk of the simulation with that initial zonotope first
and apply our formula afterward. The input T in Solver 8 is a temporal
zonotope, with one coordinate for each switch time. Solver 8 returns A such
that PA

0 encloses all optimal co-states in P0 and TA encloses all switch times
in T, hence Section 4.1.3 embeds this solver in a method that provides P0

and T containing all solutions.
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Figure 4.7: Result of constraint propagation on the integrator OCP. On
the left, we illustrate Algorithm 8: we take an initial enclosure of state and
co-state, we simulate up to the final time (from left to right) and compute
A = [Cf ] (Xf ). On the right, we add constraint A as constraints on the
noise symbols, which propagates to all zonotopes as illustrated on Figure 4.6.
This yields an enclosure of final state and co-state couples that intersect with
the solution set Cf = 0 (black line), and also an enclosure of initial state
and co-state couples that are solution of the BVP. This initial constrained
zonotope encloses the analytical solution set in red at the bottom. Note
however that this initial constrained zonotope is a subset of the inputted
initial enclosure, hence, it is necessary that the input of Solver 8 contains
all solutions.
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Algorithm 8: Computes boundary constraints as constrained
zonotopes.

Data: Y0, P0, switch times T.
Result: Boundary constraints A.

1 A← zonotope with 0 lines.
2 X← (0,Y0,P0).
3 n← 0.
4 while n < number of coordinate of T do
5 X← validated simulation of dynamics gn of System (2.4) over

duration mid (Tn).
6 [x̃]← Picard box of system over time range [min(Tn),max(Tn)].
7 X← X + (Tn −mid (Tn))× [gn]([x̃]).
8 A← (A;Cn(X)).
9 n← n+ 1.

10 end

Algorithm 8 is a forward simulation and some affine operations, hence it
will terminate. The results of this method depends on the amount of linear
correlation between zonotopes, which depend on how nonlinear the dynamic
system is. It will typically struggle with highly nonlinear systems, like those
encountered in Chapter 5. Nevertheless, we found in our experiments in
Section 4.2 that it produces tighter results than the resolvent-based method
of Section 4.1.2 while also being significantly faster.

This propagation of constraints allows the re-implementation of Inflate
& Contract Algorithm 2.

4.1.3 Inflate & Contract Method with constrained zonotopes

There are no zonotope-based inflate & contract methods in the literature to
the best of the author’s knowledge, which is expected considering zonotope
are not closed under intersection, rendering contraction difficult.

As a side note, we entertained the thought of engineering a constrained-
zonotopes-based inflate & contract methods, as constrained zonotopes are
closed under intersection. We came to the conclusion that it would fare
worse than their interval counterparts for two reasons.

Firstly because it is hard to guarantee that a constrained zonotope is in-
cluded in the interior of another constrained zonotope. Indeed, this requires
checking that the constrained part does not touch its hull at any point.
Computing vertices is very costly hence we tried proving strict inclusion on
the noise box instead. Indeed, it can be deduced from the definition that
if all noise symbols in XA take their value in ] − 1, 1[ then XA is included
in X. However, this approach is more pessimistic the more generators X has.
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For instance if X has a single generator, and we have a constraint that
translates as 3ε0 ∈ [−2, 2], then we have ε ∈] − 1, 1[, but if we have three
generators and constraint ε0 + ε1 + ε2 ∈ [−2, 2] then no information can be
deduced. To counteract this issue, one must take as many generators as
there are variables, which is equivalent to taking a rotated box.

Secondly zonotope intersections in the form of constrained zonotopes
have as much wrapping effect as their parent zonotopes, rendering contrac-
tion useless. Indeed, when representing the intersection of two zonotopes as
a constrained zonotope XA using formulae in [63], the unconstrained hull X
is one of the parent zonotope, and all affine arithmetic operations are done
with this hull rather than the constrained part. Moreover, intersections add
loads of constraints and noise symbols.

Instead, zonotopes will be used as a medium for a regular interval-
method by defining a contractor with Algorithm 9.

Algorithm 9: Computes C([pτ ]) and C([t]).
Data: [yτ ], [pτ ], switch times [t].
Result: C([pτ ]), C([t]).

1 Convert box [pτ ] to a zonotope P.
2 Convert box [t] to a zonotope T.
3 Compute constraint part A with Algorithm 8.
4 C([pτ ])← bounding box of PA.
5 C([t])← bounding box of TA.

As seen in Section 4.1.2, PA encloses all co-states in P, hence in [pτ ].
The bounding box in Line 4 is computed with a simplex solver and rounded
outward with Neumaeir Scherbina post-processing [50], this ensures that all
solution in PA are in C([pτ ]). The same holds for switch times. Hence, we
have inclusion of our solution set. This procedure uses validated simula-
tion and linear programming, hence it will terminate as long as validated
simulation does.

The contractor outputted by Algorithm 9 is used in place of the Krawczyk
contractor in Algorithm 2. This allows us to compute enclosures for aerospace
problems.

4.2 Application

In this section we apply our new BVP solver to two systems. we first go
back to the integrator with quadratic cost of Section 2.5, to compare our
results with analytical solutions. Then we tackle a simple nonlinear hybrid
aerospace problem.
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4.2.1 Integrator with quadratic cost

For our first application, we recall the OCP of the integrator with quadratic
cost of Section 2.5:

min
u(·)∈U

∫ tf

τ

u2

2
dt s.t.


ẏ(t) ∈ [ξ(t)]u,
y(ti) ∈ [yi],
y(tf ) = yf ,
tf is fixed.

(4.8)

As well as its BVP form:


ẏ(t) ∈ [ξ(t)]2p,
ṗ(t) = 0,
y(ti) ∈ [yi], p(ti) is free,
y(tf ) = yf , p(tf ) is free.

We use the following uncertainties: [yi] = [−0.1, 0.1] and [xi] ∈ [9.5, 10.5].

We first apply our inflate & contract algorithm with constrained zono-
tope contractor, its result is showcased on Figure 4.9.

We then compute the anticipative and closed-loop enclosures, which are
displayed on Figure 4.8. We took unknown but constant parameters, which
is why the anticipative enclosure is cone-shaped (see Section 2.5).
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Figure 4.8: Analytical anticipative enclosure (orange, left) and closed-loop
enclosure (orange, right) enclosed by constrained zonotopes. Constrained
zonotopes successfully enclose the analytical set.

Now that we checked that our new constrained zonotope methods match
with analytical solutions, we apply them to a nonlinear system with hybrid
behaviors.
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Figure 4.9: Inflate & contract algorithm with constrained zonotope contrac-
tor enclosing the integrator with quadratic cost, compared with the analyt-
ical solution set. The diamond sets are constrained zonotopes obtained by
propagating boundary condition backward. Pale orange, pale blue and pale
red are respectively the analytical set of possible (state, co-state) couples,
the analytical set of optimal (state, co-state) and analytical solution set, as in
Figure 2.1 and other figures throughout Chapters 2 and 3. i) The algorithm
is initialized with the bounding box of Monte Carlo solutions (crosses), ii)
inflated until the constrained zonotope fits vertically (which signals that the
initial co-state is enclosed) iii) contracted. Constrained zonotopes always
enclose the analytical solution set as expected.
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4.2.2 Simple take-off problem

We illustrate our methods on the following vertical take-off problem:

min
u(·)

∫ tf

0
|u|dt

s.t.


ṙ(t) = v(t), r(0) = r0, r(tf ) = rf ,

v̇(t) = − G
r2

+ C
mu, v(0) = v0, v(tf ) free,

ṁ(t) = −b|u(t)|, m(0) = m0, m(tf ) free,

(4.9)

where r, v,m are position, velocity and mass of a launcher with a controlled
thruster subject to gravity. It is the one-dimensional version of Goddard’s
Problem as formulated in [19], without the drag force. Application of the
PMP yields:

H(y, p, u, ξ) = prv + pv(− G
r2

+ C
mu)− pmb|u|,

ṗr(t) = −2pv(t)
G
r3
,

ṗv(t) = −pr(t),
˙pm(t) = pv(t)

C
m2 ,

u =

{ pv
|pv | if C|pv| − (1 + bpm)m > 0,

0 if C|pv| − (1 + bpm)m < 0.

(4.10)

The expression of u in System (4.10) leads to a hybrid automaton with a
free fall mode when C|pv| − (1 + bpm)m > 0, a full throttle mode when
C|pv| − (1 + bpm)m < 0 and a singular mode if C|pv| − (1 + bpm)m = 0
over a period of time. It follows that C|pv| − (1 + bpm) = 0 at each mode
transition. Further analysis of the problem shows that the optimal solution
of the take-off problem with no drag force has N = 2 phases, starting by full
throttle and ending in free fall. This coupled with transversality condition
leads to constraints functions (4.11).

C1(x) = C|pv| − (1 + bpm)m,

C2(x) =


r − rf
pv
pm
v

 .
(4.11)

We took an exact initial state and uncertain parameters: r0 = 1, rf =
1.01, v0 = 0, m0 = 1 and C ∈ [3.4, 3.6], G ∈ [0.99, 1.01] and b ∈ [6.8, 7.2].
We computed 100 optimal trajectories with parameters taken at random in
their respective intervals.

Figure 4.11 shows the workings of Inflate & Contract Algorithm with the
Constrained Zonotope Contractor 9. We see it successfully encloses Monte
Carlo results.
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Figure 4.10: Results on Goddard’s Problem (4.9). Orange: simulations with
random parameters. t1 has two graduations that indicate bounds t1 and t1,
likewise for tf = t2. The generated constrained zonotopes (blue, plain) are a
much more precise enclosure of optimal trajectories than the unconstrained
hull (blue, dashed) which accumulates error. The red zonotope encloses the
system during the transition from full throttle to free fall.
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Figure 4.11: Inflate & Contract with constrained zonotopes on Goddard’s
problem. The search box is 5 dimensional, with three coordinates corre-
sponding to initial co-states pi and two corresponding to switch time and
final time. Only two are represented. The diamond sets are constrained
zonotopes, they enclose Monte Carlo solutions (orange) as expected.
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As a side note, we also implemented a variant of the Inflate & Contract
Algorithm that uses the resolvent-based propagation of boundary conditions
of Section 4.1.2. We then compared the volume of the final box obtained
with each constraint propagation technique and found that there was no no-
ticeable difference, in fact the noise symbol variant yielded a box that was
slightly smaller. However, the difference of computation time is of about a
factor ten for our 1D version of Goddard’s problem, and likely to be worse
in higher dimension. Indeed, computing a resolvent requires simulating a
system of dimension d2 (or d systems of dimension 2d if one simulate the
columns of the resolvent separately). As a consequence we focus mostly on
the noise symbol propagation technique.

We now have a guaranteed enclosure of optimal co-states and switch
times. We proceed to compute the anticipative enclosure. This is done by
calling Algorithm 8 and having it export state enclosures Xn as well as con-
straints A. Results are displayed In Figure 4.10. Optimal trajectories are
enclosed as expected and optimality constraints compensate for the accu-
mulation of errors caused by uncertainties.

In this chapter, we developed tools to overcome the difficulties of Chap-
ter 3:

• we no longer use paving and are no longer limited by its exponential
complexity,

• we no longer compute resolvents meaning the size of the dynamic sys-
tem is proportional to d rather than d2,

• symbolic zonotopes retain correlations between the initial co-state and
subsequent states, and we no longer need to solve the OCP several
times to compute the anticipative enclosure.

All of this significantly lowered the computational complexity of our method,
so we now have methods that enclose the trajectory sets defined in Chapter 2
that are not limited to low dimension and can tackle hybrid behaviors. What
remains to be seen is how well it fares on harder problems, and how those
sets can be used in the context of guidance.
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Chapter 5

Evaluating our methods on
aerospace problems

The goal of this chapter is to assess to what extent our work can be applied
to guidance of launchers. The goal is to first check whether our methods
are capable of computing enclosures of launch vehicle trajectories, then list
the information that can be deduced from these enclosures. To that end,
we combine everything that was developed in previous chapters in a unified
procedure, and confront it to aerospace optimal control problems. Then we
investigate how those enclosures can be used.

5.1 Unifying the procedure

In order to assess the viability of our methods, we combine them in a unified
procedure by which we tackle every Optimal Control Problem (OCP). It is
summarized on Diagram 5.1, and we present it in greater detail below.

First, we transform our OCP into a hybrid Boundary Value Problem
(BVP) (2.6) as described in Chapter 2 with pen and paper. We did not
automate this task because the topic of optimal control is vast and there
is no method that works on all problems, especially when state constraints
are involved. Later sections will provide insight as to how many problem
specific tweaks are required to tackle seemingly similar OCPs.

The OCP is inputted in our main algorithm as a sequence of dynam-
ics (gn)n∈0..N−1 and boundary constraint functions (Cn)n∈0..N−1, as well as
jump functions (jn)n∈0..N−1 when the OCP requires. These functions, as
well as all our set based operations in our C++ code, are encoded with
classes from the Ibex C++ Library [1]. Specifically Ibex-2.01 as it is the
latest release that is compatible with our validated simulation library.
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Figure 5.1: Summary of how we tackle optimal control problems.
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Our algorithm starts with Monte Carlo simulations. For each simulation,
we take one value amidst the set of possible parameters and possible initial
states and solve the OCP with SOCP, a numerical shooting method devel-
oped by ONERA [20]. The values are chosen as follows: first we tackle every
extreme case (if possible) then we complement with values taken uniformly
at random until we have the desired sample size. For instance, if we have
one initial state yi ∈ [yi] and one parameter ξ ∈ [ξ] and desire 100 sample
points, we tackle the four extreme cases (yi = yi, ξ = ξ), (yi = yi, ξ = ξ),

(yi = yi, ξ = ξ) and (yi = yi, ξ = ξ) then take 96 points where yi takes a value
in [yi] chosen uniformly at random and ξ does the same in [ξ]. In the event
where the number 2d+dparam of extreme cases exceeds the desired sample size,
we only take random values. These Monte Carlo simulations give a cloud
of initial co-states and switch times which will be used afterward, as well as
a set of numerical trajectories to compare our sets to. Note that SOCP is
numerical and not validated, hence we have no guarantee that those points
and trajectories are solutions. Though since numerical errors are several
orders of magnitude smaller than uncertainty induced over-approximation,
we expect our sets to enclose those numerical solutions regardless.

We then compute our trajectory sets. The point cloud is used to initial-
ize inflate & contract Method 2 with our Constrained Zonotope Contrac-
tor 9. We recall that this contractor requires validated simulation, which
is done with DynIbex [4], a C++ library developed at ENSTA Paris that
uses symbolic zonotopes. Constrained zonotopes and spatio-temporal zono-
topes are handled by our interface rather than DynIbex itself, though re-
sults could be improved by hacking into DynIbex, as will be discussed in
Section 5.2. The contractor uses Ibex embedded linear solver to compute
the bounds of constrained zonotopes. This solver uses Neumaier Scherbina
post-processing [50] to ensure all locally optimal co-states and switch times
are enclosed. As a side note, we observed that this post-processing some-
times over-approximates the bounds by several orders of magnitude if there
are generators that are too small, as the problem is numerically ill-posed.
To avoid this, we do special reduction operations to cull all generators com-
ponents below 10−12 and over-approximate them by a generator of norm at
least 10−12.

Then these initial co-states and switch times are used to compute an
anticipative, open-loop or closed-loop enclosure. This is done by simulat-
ing respectively Dynamics (2.5), (2.9) or (2.10) with DynIbex and adding
boundary constraints as zonotopes and exporting affine forms in text files.

Then we use a Python algorithm to compute outer-approximations of
constrained zonotopes by bounding it in several directions using linear op-
timization (see Figure 1.5). Unlike our C++ solver, our Python solver
is not validated, and we have not implemented Neumaier Scherbina post-
processing for lack of time.
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Making the python solver validated was not a priority because our Python al-
gorithm is only used for visualization and numerical errors are likely smaller
than the width of a line in our figures.

The results will only be compared to our Monte Carlo trajectories as
there are no validated software that computes the same sets as us to the best
of our knowledge. In any case our main concern is whether our procedure
works at all since the inflate & contract is not guaranteed to converge. As a
consequence, we challenge our method with increasingly complex problems.

5.1.1 Testing a range of aerospace problems

To evaluate our method, we run it on six test cases. Our main criterion is the
size of uncertainties we can put in the model without causing our method
to fail. Indeed, our procedure relies on an inflate & contract method that is
not guaranteed to converge, but will converge if the uncertainties are small
enough. The smaller the uncertainties, the more linear the BVP, the tighter
our constrained zonotope contractor. For the purpose of the following study,
we assume that all uncertainties are a percentage λ of the nominal value:
yi ∈ [ŷi − λŷi, ŷi + λŷi] and ξ ∈ [ξ̂ − λξ̂, ξ̂ + λξ̂]. This is not realistic, but it
unifies our test cases and allows for comparison: for each OCP we compute
the biggest possible λ by trial and error. For all test cases, we compute 100
Monte Carlo trajectories and the final enclosure is always the anticipative
enclosure.

Our test cases are built using the launcher model of Goddard’s prob-
lem [19]:

min
u(·)

∫ tf

ti

||u||dt,

s.t.


ṙ(t) = v(t), r(ti) = ri,

v̇(t) = − G
r2

+ C
mu−Kρ v

||v||3 , v(ti) = vi,

ṁ(t) = −b||u(t)||, m(ti) = mi.

(5.1)

The state is composed of the position r, the velocity v and the mass m. The
derivative of the position is velocity, the derivative of the mass is the sum
of forces, which are gravity, thrust and drag force. For a take-off problem,
v(ti) = 0, and in 1D r(ti) = 1.00, which correspond to a position on earth’s
crust because the model is normalized. The final velocity is free and there
is a final constraint r(tf ) = rf = 1.01 which sets the target. For a reentry
problem it is the other way around: the initial state is in the air and initial
speed is nonzero, while the final state is at the surface and the final velocity
is null: r(tf ) = 1.00 and v(tf ) = 0. In all cases the initial mass starts at
m(ti) = 1 and the final mass is unconstrained. To sum up, in the take-off
problem, only the initial mass mi is subject to uncertainty while in the reen-
try problem position ri, velocity vi and mass mi are subject to uncertainties.
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ρ is the atmosphere density and will be either null, constant or a state vari-
able depending on the test case. Parameters are composed of the normalized
gravity field G = 1, the engine max thrust C = 3.5, the fuel consumption
b = 7 and drag coefficient K = 350, their values are taken from [19]. We
consider that these three parameters are uncertain but constant in each test
case.

We built six versions of this problem of varying hardness. The most
prominent driver of difficulty is dimension. Indeed, most of our test will be
done in dimension 1, where the control and drag are binary: either upward or
downward. In higher dimension, the control is a vector which considerably
increases the system’s nonlinearity.

Then second driver of difficulty is air drag, which also significantly in-
creases nonlinearity. We take a gradual approach to air drag, starting with
no atmosphere, then going to the case where the air density ρ is constant,
then address the exponential model of atmosphere ρ = exp(−Ar).

Then there are state constraints. Although state constraints are a big
hindrance when doing theory, in our case we consider simple dynamic pres-
sure constraint, and they only change the control structure and add jumps.

Lastly, there is the matter whether it is a take-off or reentry problem.
The former tend to be simpler because the initial position and velocity do
not have uncertainty.

Our six test cases are sorted in general order of hardness in the following
table:

# Dimension type atmosphere state constraint

1 1D take-off no no
2 1D take-off no v ≤ vmax
3 1D reentry no no
4 1D reentry ρ = 1 no
5 1D reentry ρ = exp(−Ar) no
6 2D reentry no no

Test 1: take-off problem

We detail our procedure on this first test case. We start with a pen and
paper analysis. The application of the PMP yields:

H(y, p, u, ξ) = prv + pv(− G
r2

+ C
mu)− pmb|u|

ṗr(t) = −2pv(t)
G
r3
,

ṗv(t) = −pr(t),
˙pm(t) = pv(t)

C
m2 ,

u =

{ pv
|pv | if Ψ(t, y, p, ξ) > 0,

0 if Ψ(t, y, p, ξ) < 0,

(5.2)

where Ψ(t, y, p, ξ) = C|pv| − (1 + bpm)m.
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We then deduce the optimal sequence of modes. Because fighting gravity
costs fuel, the vehicle wants to escape it as fast as possible, hence the trajec-
tory starts at full throttle: u = 1. Once the vehicle has enough momentum
it turns its engine off to save fuel: u = 0. This translates as control:

u(t) =

{
1 ∀t ∈ [ti, t1],
0 ∀t ∈ [t1, tf ].

We write the resulting BVP using the notations of System (2.5):

ẋ(t) = gn(x(t), ξ(t)),∀t ∈ [t+n−1, t
−
n ],

Cn(x(t−n )) = 0,∀n ∈ 1, 2,

x =



t
r
v
m
pr
pv
pm


, g1 =



1
v

− G
r2

+ C
m

−b
−2pv

G
r3

−pr
pv

C
m2


, g2 =



1
v

− G
r2

0

−2pv
G
r3

−pr
0


,

C1 =
(

Ψ
)
, C2 =


r − rf
pv
pm
H

 .

We solve it for several values of the parameter and initial state, which
yields the orange point cloud that initializes our inflate & contract method
in Figure 5.2.

Then we compute the anticipative enclosure, and display them with our
Python code, yielding Figure 5.3.

For the sake of example we assume that there is a velocity vmax = 0.10
that must not be exceeded. Since the unconstrained systems exceeds it, the
OCP needs to add v ≤ vmax as a state constraint. The next section shows
how to reformulate the BVP.
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Figure 5.2: Inflate & Contract applied to Goddard’s take-off problem, as
in Figure 4.11 but with other coordinates. The final box is guaranteed to
contain all local optimal co-states, as explained in Chapter 4.
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Figure 5.3: Coordinates of the extended state of Goddard’s problem as a
function of time. Left: Height, velocity, mass, right: co-state. The two
modes of the trajectory are particularly visible on velocity and mass: dur-
ing the full throttle phase, velocity increases and mass decreases while in
free fall velocity decreases and mass stagnates. Our Monte Carlo trajecto-
ries (orange) are successfully enclosed by our constrained zonotopes (blue).
Unlike in Figure 4.10, unconstrained zonotope hulls are omitted to improve
readability.
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Test 2: take-off with max velocity constraint

To avoid exceeding the maximum velocity, we ask the launcher to satisfy
state constraint v ≤ vmax. This changes the structure of the trajectory.
Indeed, the vehicle reaches this maximum speed during the boost phase. At
this point, the vehicle decreases its thrust just enough to not exceed the
maximum velocity, which translates to v̇ = 0 =⇒ u = Gm/Cr2. Then the
trajectory ends in free fall meaning the control follows:

u(t) =


1 ∀t ∈ [ti, t1],
Gm
Cr2

∀t ∈ [t1, t2],
0 ∀t ∈ [t2, tf ].

However, there is also the possibility of a co-state jump when the con-
straint is reached. This jump writes pv(t

+
1 ) = pv(t

−
1 ) + µ1 and pv(t

+
2 ) =

pv(t
−
2 )− µ2, because the constraint is on v (see [38] for details).
This adds 2 degrees of freedom (µ1 and µ2), because there are always as

many boundary constraints as variables, boundary constraints are:

C1(t, y, p) =

(
v − vmax
H(t, y, p)

)
, C2(t, y, p) =

(
C|pv| − (1 + bpm)m

H(t, y, p)

)
.

This uses the fact that the Hamiltonian is constant equal to 0, which is a
consequence of the PMP when parameters are constant.

To sum up, the BVP is:

ẋ(t) = gn(x(t), ξ(t)),∀t ∈ [t+n−1, t
−
n ],

pv(t
+
1 ) = pv(t

−
1 ) + µ1, pv(t

+
2 ) = pv(t

−
2 )− µ2,

Cn(x(t−n )) = 0, ∀n ∈ 1, 2, 3,

x =



t
r
v
m
pr
pv
pm


, g1 =



1
v

− G
r2

+ C
m

−b
−2pv

G
r3

−pr
pv

C
m2


, g2 =



1
v
0

−bGm
Cr2

−2pv
G
r3

−pr
pv

G
mr2


, g3 =



1
v

− G
r2

0

−2pv
G
r3

−pr
0


,

C1(x) =

(
v − vmax

H

)
, C2(x) =

(
Ψ
H

)
C3(x) =


r − rf
pv
pm
H

 .

And its trajectories are enclosed in Figure 5.4.
The goal is to tackle reusable launchers, so after taking off, the system

must return to its landing pad. Next section encloses reentry problems.
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Figure 5.4: take-off with state constraint. The maximum velocity con-
straint v ≤ vmax = 0.1 is visible on the velocity graph. Because those are
mathematically perfect trajectories, they ride along the border of the unsafe
set. As a consequence our zonotopes are horizontal (the vertical zonotope
on the left of that trajectory segment belongs to the previous portion and
is an over-approximation caused by spatio-temporal zonotopes). Although
there could be a jump of co-state in theory, our numerical solver found none.
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Tests 3-5: Reentry

A reentry problem starts in the air (typically at the end point of a take-off
problem) and needs to finish on a landing site with a null velocity. The
PMP takes the same form as with take-off problems, however the trajectory
structure is different. Indeed, in 1D the system only needs to slow down
at the end to reach the ground of a null velocity. As a consequence, the
optimal control is:

min
u(·)

∫ tf

ti

|u|dt,

s.t.


ṙ(t) = v(t), r(ti) = ri,

v̇(t) = −sign(v)Kρv2 − G
r2

+ C
mu, v(ti) = vi,

ṁ(t) = −b|u(t)|, m(ti) = mi,

u(t) =

{
1,∀t ∈ [ti, t1],
0,∀t ∈ [t1, tf ].

u(t) =

{
0,∀t ∈ [ti, t1],
1,∀t ∈ [t1, t2].

Note that sign(v) is problematic because it is not differentiable. In our
test case, the initial velocity is downward, and it stays downward the entire
trajectory. As a consequence we can assume that sign(v) = −1. In general,
we would need to add additional modes for each case with a switch condition
v = 0.

When ρ is constant, the BVP takes the form:

ẋ(t) = gn(x(t), ξ(t)),∀t ∈ [t+n−1, t
−
n ],

Cn(x(t−n )) = 0,∀n ∈ 1, 2,

x =



t
r
v
m
pr
pv
pm


, g1 =



1
v

Kρv2 − G
r2

0

−2pv
G
r3

−pr
0


, g2 =



1
v

Kρv2 − G
r2

+ C
m

−b
−2pv

G
r3

−pr
pv

C
m2


,

C1 =
(

Ψ
)
, C2 =


r − rf
v
pm
H

 .

We first compute the anticipative enclosure with no atmosphere ρ = 0,
the result is displayed in Figure 5.5. Then we compute with a constant
atmosphere, the result is displayed in Figure 5.6.
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Figure 5.5: Reentry without drag force. It is like the take-off problem, but
the other way around.

102 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris



CHAPTER 5. EVALUATING OUR METHODS ON AEROSPACE
PROBLEMS

0.0 0.1 0.2
1.0000

1.0025

1.0050

1.0075

1.0100

0.0 0.1 0.2
0.01

0.02

0.03

0.04

0.0 0.1 0.2

−0.04

−0.02

0.00

0.0 0.1 0.2
−0.4

−0.3

−0.2

−0.1

0.0

0.0 0.1 0.2

0.90

0.95

1.00

0.0 0.1 0.2

0.00

0.01

0.02

0.03

Figure 5.6: Reentry without constant atmosphere force. We can see the
rocket reaching terminal velocity. The fact that co-state enclosures start
very small but become very big at switch time is a sign that our spatio-
temporal formula is imprecise.
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Then we tried computing those enclosures with a more realistic model
of the atmosphere ρ = exp(−A(r − 1)) The straightforward approach is to
replace ρ by exp(−A(r − 1)) in OCP (5.1.1). However, the dynamics of the
resulting BVP could not be enclosed by DynIbex. We are confident that this
is because the exponential function is highly nonlinear and repeated calls
caused the error to explode very fast. Nevertheless, we found a workaround
by adding ρ as a coordinate to the state, yielding OCP (5.3) which we
successfully enclosed, see Figure 5.7. We believe many problem specific
adjustments of this caliber would be required to make our methods work on
complex aerospace problems.

min
u(·)

∫ tf

ti

|u|dt,

s.t.



ṙ(t) = v(t), r(ti) = ri,

v̇(t) = −sign(v)Kρv2 − G
r2

+ C
mu, v(ti) = vi,

ṁ(t) = −b|u(t)|, m(ti) = mi,
ρ̇(t) = −Aρv, ρ(ti) = exp(−A(ri − 1)),

u(t) =

{
1, ∀t ∈ [ti, t1],
0, ∀t ∈ [t1, tf ].

(5.3)

With that OCP, the BVP becomes:

ẋ(t) = gn(x(t), ξ(t)),∀t ∈ [t+n−1, t
−
n ],

Cn(x(t−n )) = 0,∀n ∈ 1, 2,

x =



t
r
v
m
ρ
pr
pv
pm
pρ


, g1 =



1
v

Kρv2 − G
r2

+ C
m

−b
−Aρv
−2pv

G
r3

−pr
pv

C
m2

Kpvv
2 + pρAv


, g2 =



1
v

Kρv2 − G
r2

0
−Aρv
−2pv

G
r3

−pr + pvAρ
0

Kpvv
2 + pρAv


,

C1(x) =
(

Ψ
)
, C2(x) =


r − rf
v
pm
pρ
H

 .

It is enclosed in Figure 5.7.
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Figure 5.7: Optimal trajectories with realistic atmosphere. Last row is at-
mosphere density ρ(t) and associated co-state. ρ(t) starts close to 0 because
the launcher is above the atmosphere, then increases exponentially as the
launcher enters the atmosphere at high speed, but then drag force slows the
launcher down. Hence, ρ(t) is close to a logistic function.
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2D dragless reentry

In this section, we increase the dimension of the state, velocity and associ-
ated co-states. This significantly complexifies the dynamics as the control
is now a unitary vector. The initial state is the final state of the multi-
dimensional take off-problem in [19], and the final state is its initial state.
The goal is to emulate a reentry mission where the same platform serves as
both launch and landing platform. In particular, the initial velocity vector
of the reentry mission is in the wrong direction, since the previous take-off
mission was getting away from the platform. So unlike previous reentry mis-
sions, the trajectory is in three phases and starts with a boost to turn around
back toward the platform, then goes into free fall, then does a landing boost.
This takes the form of the following BVP:

ẋ(t) = gn(x(t), ξ(t)), ∀t ∈ [t+n−1, t
−
n ],

Cn(x(t−n )) = 0, ∀n ∈ 1, 2,

x =



t
r1

r2

v1

v2

m
pr1
pr2
pv1

pv2

pm



, g1,3 =



1
v1

v2

− Gr1
||r||3 + Cpv1

m||pv ||
− Gr2
||r||3 + Cpv2

m||pv ||
−b

Gpv1||r||2−3(pTv ·r)r1
||r||5

Gpv2||r||2−3(pTv ·r)r2
||r||5

−pr1
−pr2
||pv|| Cm2



, g2 =



1
v1

v2

− Gr1
||r||3

− Gr2
||r||3

0

Gpv1||r||2−3(pTv ·r)r1
||r||5

Gpv2||r||2−3(pTv ·r)r2
||r||5

−pr1
−pr2

0



,

C1 =
(

Ψ
)
, C2 =



r1 − rf1

r2 − rf2

v1

v2

pm
H

 .

The results are displayed in Figure 5.8. While we do manage to enclose
trajectories of this difficult problem, our blue constrained zonotopes in Fig-
ure 5.8 are so small they are barely visible. This is symptomatic of the main
weakness of our approach, which is discussed in the next section.
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Figure 5.8: 2D reentry without drag force. Unlike previous systems, the
upper four figures display trajectories in 2D rather than time functions.
The vehicle starts at altitude 1.01 on the left, does a horizontal boost to
turn around, then falls, then does an upward boost to reach the landing pad
with a null velocity. This structure is especially visible on the velocity figure
in the middle left: it starts on the left, then goes right to turn the launcher
around, then falls due to gravity, then converges to 0.
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5.1.2 Synthesis

As expected, the more difficult the problem, the least uncertainties we can
put in our procedure because the inflate & contract fails. Table 5.1.2 synthe-
sizes this phenomenon by listing the maximum magnitude of uncertainties
we can put in a given test case. Those magnitudes were computed by trial
and error: we run our code with 1% relative uncertainty on each parame-
ter and uncertain initial state, then divide that magnitude by 10 when the
inflate & contract algorithm fails to converge. Table 5.1.2 also lists com-
putation time. All tests were done on a personal work computer with an
AMD® Ryzen 5 4500u CPU. We add the integrator with quadratic cost as
test case 0 for comparison.

# Test case uncertainty run time Infl iter Contr

0 integrator 30% 70 seconds 11 24
1 take-off 3% 7 minutes 9 13
2 take-off, v ≤ vmax 2% 25 minutes 11 31
3 reentry, ρ = 0 1% 7 minutes 30 40
4 reentry, ρ = 1 0.2% 1 hour 30 24
5 reentry, ρ = exp(−Ar) 0.09% 2 hours 17 14
6 2D reentry 0.04% 10 hours 17 14

And computation time is spread as follows:

# Monte Carlo Infl&Contract OuterEnclosure

0 1 minute 10 seconds 10 second
1 4 minutes 2 minutes 1 minute
2 11 minutes 9 minutes 4 minutes
3 4 minutes 2.5 minutes 45 seconds
4 15 minutes 45 minutes 2 minutes
5 1 hour 1 hour 2 minutes
6 5 hours 5 hours 10 minutes

”OuterEnclosure” corresponds to the Python code that solves LPs to display
the enclosures. The 100 Monte Carlo simulations take a lot of time because
each of them solves the OCP for different value of the parameters and initial
state, so they each require a call to a nonlinear solver and several simulations.
It is a lot more time-consuming than solving the OCP once, then doing 100
open-loop simulations around the nominal solution.

The next section draws conclusions on performance from this data.
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5.2 Discussion

In this section, we make an overview of our methods to enclose trajectories:
its performance, advantages and shortcomings.

5.2.1 Performance

Our procedure proved its ability to compute trajectory sets of moderately
difficult OCPs in a couple of hours on an average CPU, and Monte Carlo
simulations take a significant proportion of that time. This is due to the fact
that our BVP solver does not require any discretization, hence its complexity
does not scale exponentially with dimension like our initial paving-based
algorithm. Our BVP solver is a single swipe of validated simulation, so the
inflate & contract and enclosure computation as a whole is about tens of
calls to validated simulation.

As a consequence, computation time mostly depends on how long it takes
to simulate the system. Table 5.1.2 shows that the mere addition of drag
force with constant atmosphere multiplies the inflate & contract time by
20, even though this does not increase the dimension of the system. That
slowdown can be explained by the fact that DynIbex uses adaptive step
size: when errors are too high as a result of the dynamics being complex, it
decreases its simulation step until sufficiently small errors are achieved, and
this increases the number of steps required to reach final time. Sadly, it is
difficult to accelerate the program because the inflate & contract method is
sequential, so it cannot be parallelized like paving or Monte Carlo methods.

The post treatment to display curves and compute enclosures can also
take long, since displaying constrained zonotopes requires several calls to a
linear solver, one for each direction, and those LPs have as many variables
as there noise symbols in the constrained zonotope. However, this is highly
customizable: the user can choose the number of directions they want for
each enclosure, and they can also do a reduction operation on the zonotopes
to decrease the size of the LPs. In our testing, the display LPs were not a
significant proportion of the overall time.

In any case, computation time is not the biggest issue.

5.2.2 Failure to converge

The main weakness of our approach is that it relies on an inflate & contract
method that is not guaranteed to converge. Our test case support our con-
jecture that the more nonlinear the system, the harder it is to converge, the
smaller the uncertainties we can put in the model. While 1% relative uncer-
tainty is good enough for some parameters and initial states like the mass
at launch, it is insufficient to model air drag uncertainties that range in 10%.
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The convergence rate, could be improved by improving the geometry of
our method, we see three main routes:

• rotating the box of initial co-states and switch time to improve con-
traction,

• improving our spatio-temporal zonotope initialization with higher or-
der Taylor or B-series [3],

• hacking in the validated simulation and affine arithmetic library so
that it uses the constrained part of a constrained zonotope ZA rather
than its unconstrained hull Z, thus decreasing the size of the state set
and decreasing over-approximations.

However, there is an inherent limitation in using zonotopes, as they only
model linear correlations. Some problems will be too non-linear for them,
and may require using other set representations, for instance polynomial
constrained zonotopes as proposed in [43].

However, when the method does give results, those are validated.

5.2.3 Correctness

Our approach benefits from being correct by design: we have a proof that any
optimal trajectory that fits the hypothesis of our model is in our enclosures.
And that applies to a class of problems that are quite difficult, namely
nonlinear hybrid systems which control is implicitly defined as minimizing an
OCP. This is significant added value compared to probabilistic approaches
like Monte Carlo, which never completely exclude the possibility of failure,
or numerical methods that suffer from errors.

However, all our proofs are built on the assumption that our model with
uncertainties is correct: that it encloses the actual dynamics of the vehicle.
It is possible that a parameter or initial states exceeds the bounds of the
model, as those are empirical.

As a side note, this is the reason why we put a lot of effort in generalizing
our results and methods to the case where parameters are time functions
rather than constant, even though DynIbex (and all the methods we built
with it) can only simulate piecewise constant parameters. Indeed, in reality,
some parameters (like atmosphere drag coefficients) are not constant, and
many phenomena (like noises and disturbances) can only be modeled by a
time dependent input. So if we started our reasoning with the assumption
that parameters are constant, then all our proofs and results would have
been considerably less applicable. Even though our code could not tackle
variable parameters in the end, we hope to have convinced the reader that
our methods could, given more information on the parameters, like Lipschitz
bounds.

110 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris



CHAPTER 5. EVALUATING OUR METHODS ON AEROSPACE
PROBLEMS

There is another model-related difficulty, in that our approach is com-
plicated.

5.2.4 Need for preliminary work

As highlighted on Diagram 5.1, our procedure starts with a pen and pa-
per analysis of the OCP, which requires advanced mathematical tools and
knowledge of the optimal trajectory structure. Some difficulties subsist past
the pen and paper step. We made a lot of effort to make our code open to
strange trajectory structure, notably by encoding it as a sequence of dynam-
ics and boundary constraints with little requirements on each. Yet we still
had to hack in problem specific adjustments, notably the co-state jumps for
OCPs with state constraints.

Moreover, our procedure may require additional adjustments to work,
for instance our code could not enclose the test case with exponential at-
mosphere density until we added atmosphere density as a coordinate of the
state.

Nevertheless, we envision potential use cases of these enclosures.

5.3 Perspectives

In this section, we propose ideas to use our enclosures.

5.3.1 Post-treatment of shooting method

Even when tackling problems with no uncertainties, numerical solvers are
subject to rounding errors which will cause the result to differ from the ac-
tual solution. Our inflate & contract method and BVP solver could be used
as post-processing to provide validated results. By enclosing the solution
set, it can obtain safe bounds on the amount of error, hence prove that
the optimal trajectory is within a certain distance of the numerical approx-
imation given by the solver. Alternatively, new numerical trajectory and
control could be computed by taking the centers of our enclosure state sets,
and used as a reference trajectory.

There are however cases where a numerical solver converges to a so-
lution that does not exist due to accumulated errors. One could check
for this scenario by complementing the outer-approximation with an inner-
approximation.
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5.3.2 Inner-approximation method using symbolic zonotopes

Because our methods only compute outer-enclosures, they can detect the
possibility of failure, but they cannot prove that there is indeed an actual
scenario that leads to failure, unless the entire outer enclosure enters the
unsafe set. There is always the possibility that an outer-enclosure crossed
an unsafe set not because there are parameter values that lead there, but
because of too much over-approximation. However, if one computes an
inner-approximation, that is a set for which it is guaranteed that there ex-
ists an actual trajectory that goes through each point, and this set crosses
the unsafe set, that proves the existence of a scenario where the system fails.

f

X

f(X )

Figure 5.9: Computing an inner and outer-approximations at the same time.
The gray set of inputs X on the left is enclosed in a zonotope which gen-
erators are the black arrows. Its image by a function f is approximated
with affine arithmetic. The affine transformation of the black arrows form
the black dashed zonotope which do not represent f(X ). Hence, the blue
generator is added to enclose this error. Adding the blue arrow outward
yields the blue outer-enclosure of f(X ), subtracting it inward yields the red
inner-enclosure.

An inner approximation could be computed with post-treatment algo-
rithm that flags noise symbols that correspond to coordinates of the input set
X (typically those that correspond to initial state or parameter uncertainty)
and noise symbols that correspond to over-approximations of errors. For a
given zonotope Z that encloses the set [f ](X ), we compute the Minkowski-
sum of generators that correspond to noise symbol of X , as for the classical
outer-approximation, but we ”subtract” generators that correspond to error
noise symbols, as illustrated in Figure 5.9.
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It can be proven with the fundamental invariant of affine arithmetic [29] that
if f is continuous, then the inner set is subset of the true image f(X ). Thus,
one could build an inner-approximations of the set of optimal trajectories,
as in Figure 5.10.
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Figure 5.10: Inner and outer-approximation of the tube of optimal trajecto-
ries of an integrator with quadratic cost. Blue constrained zonotope enclose
all trajectories, while each point of red inner sets are guaranteed to have at
least one trajectory going through them.

Such inner and outer-enclosures can be used to assess robustness with
respect to state constraints.

5.3.3 Assessing risks and computing margins

These enclosures can be used for reachability theory like the enclosures in [6].
The main application is to check if there is a chance to reach an unsafe set
or violate a constraint of any kind.

If our outer enclosures are out of an unsafe set then that risk can be
neglected. This is strong guarantee of robustness. Contrarily if the enclosure
intersects with the unsafe set that can be enough to justify changing the
controller of some critical system on which the possibility of failure is not
tolerated. Our enclosure can help adapt a model.

Indeed, when faced with an unsafe set in optimal control, there are two
main approaches. Either a state constraint is added to forbid the trajectory
from going in the unsafe set, a cost penalization is added to desincentivize
the system from going near the unsafe set. In both cases, the choice of the
margin or penalization is crucial: if they are too small the system might
enter the unsafe set, if they are too big it will impact performance.
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Our enclosure can provide quantitative information on whether a given mar-
gin or penalization is enough, which can be used to find the right one as
illustrated in Figure 5.11.
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Figure 5.11: Open-loop enclosure of the velocity of take-off problem with
state constraint v ≤ vmax = 0.10. Unlike the mathematically perfect trajec-
tories in Figure 5.4, trajectories in open-loop might exceed vmax. We could
use the open loop enclosure to have an upper bounds on how high the ve-
locity reaches for a given value of vmax and use this information to find an
adequate safety margin to put below the actual unsafe velocity. This could
be done through trial and error or a more advanced iterative algorithm.

Other information can be deduced by the computation of gradients.

5.3.4 Global Sensitivity analysis

Sensitivity analysis consists in computing how much a change of parameter
value affects the trajectory as a whole. Local sensitivity analysis is done
computing a resolvent, which gives the linear correlation between initial
states or parameter values and subsequent states of the system. Global
sensitivity analysis is generally done with statistical methods [39].

Our method could provide global guaranteed sensitivity analysis.

Firstly, validated simulation alone can generalize local sensitivity analy-
sis by enclosing the resolvent of a dynamical system over a set of parameter
values. This would give a linear end point mapping with error bounds. This
can also be achieved cheaply simulating the system and using the correlation
of the noise symbols.
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Our methods are a little different in that they deal with OCPs, and tra-
jectories are subject to a rebound effect that is not directly visible by simply
computing a resolvent. For instance, if the thrust parameter decreases, then
the burn will last longer to compensate, and we would not see this effect in
the resolvent. However, this information is encapsulated in our constraint
zonotope.

We can compute our enclosures for different values of the parameter (by
adding a constraint ξ = ξ̂ to our constrained zonotope) and thus approxi-
mate influence a given parameter has on the system.

Alternatively, we could compute the actual value of a parameter.

5.3.5 Parameter estimation

Calibration consists in estimating the true value of parameters with mea-
surement. Interval-based validated calibration algorithms are proposed in [2]
which consists in writing the correlation between parameters and noisy mea-
surements as an interval constraint satisfaction problem, then enclosing its
solutions.

We propose a similar algorithm using constrained zonotopes. Take a
range P of parameters, compute an enclosure, add the measurement as con-
straints A, then compute PA. All values that are outside the outer enclosure
PA are guaranteed to not be the actual values. Another upside is that we can
apply it to optimal trajectories despite the previously mentioned rebound
effect.

The idea to add measurement as constraint can also be used for naviga-
tion.

5.3.6 Online Guidance and Navigation

We put this case last because although control synthesis is the first thing
that comes to mind, it is actually the most exotic use case of our algorithms
because of the context of our work. Indeed, in the French literature, control
of aerospace systems is composed of three blocks:

• trajectory generation: computing the reference trajectory, it is often
done offline because it requires too much computing power for onboard
electronics,

• guidance and navigation: correcting the trajectory using sensor data,

• attitude control: using actuators to follow the trajectory.

Control synthesis for trajectory generation corresponds to what we do in
Sections 5.3.1, and 5.3.3: computing a trajectory and control in advance
with safe bounds, margins and penalizations to ensure robustness.
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Control synthesis for navigation on the other hand would rather consist in
an online correction algorithm.

However, our algorithms are engineered for offline trajectory generation
specifically, they cannot run online. Indeed, our algorithms are very expen-
sive computationally (they take several hours on a computer) and they can
fail to yield usable results (because of the inflate & contract method). But
suppose that the system’s dynamics are complicated enough that only a pre-
dictive controller can do the navigation, and its electronics cannot simulate
the system online but can solve linear problems. Then Algorithm 10 could
be used.

Algorithm 10: A controller based on our enclosure.

Data: Prior to the mission: an OCP, bounds on sensor errors.
During the mission: sensor data (yk).

1 Prior to the mission
2 Compute the closed loop enclosure of the OCP.
3 (Yk)← observable quantities of the closed-loop enclosure, plus error

bounds.
4 (Uk)← controls of the closed-loop enclosure.
5 A← optimality constraints.
6 During the mission
7 while true do
8 A← (A;Yk − yk).
9 u← center of UA

k .
10 use u as control.
11 k ← k + 1.

12 end

Algorithm 10 is composed of two parts. Prior to the mission, it computes
a zonotope tube with one state zonotope for each sampling time. Then it
saves the observable quantities (states that can be later cross-referenced
with sensor data) as well as the control zonotopes in the memory of the
vehicle. During the mission, the navigation program adds sensor data as
zonotope constraints (at Line 9), similarly to [59]. It then computes the
center of control zonotope with optimality and sensor data constraints using
a linear solver (at Line 9) and use it as control. The main benefit of this
algorithm is that it does not need to simulate dynamical systems or solve
nonlinear OCPs online. Instead, it only needs to keep zonotopes, hence
matrices, in memory and solve LPs It also does parameter estimation online
since zonotope constraints A from sensor data can be applied to all other
zonotopes through the fundamental invariant of affine arithmetic, and in
particular to the zonotope that encloses parameters.

116 Etienne BERTIN / ONERA Palaiseau, ENSTA Paris



CHAPTER 5. EVALUATING OUR METHODS ON AEROSPACE
PROBLEMS

The main weakness of this navigation algorithm is that UA
k could become

empty, typically if the model and sensor error bounds that were used to
compute the closed-loop enclosure did not correspond to the actual system.

There might be other ways to use our enclosures, but we have not ex-
plored them as this thesis comes to its conclusion.
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Conclusion

Our goal was to combine indirect methods of optimal control with set-based
methods to enclose sets of optimal trajectories for problems with uncer-
tainties. To that end, we defined three sets of optimal trajectories, then
studied the geometry of those sets and how they could be computed. We
then put our theory to work by designing interval-based methods to enclose
those sets. Those methods gave promising results but were limited to simple
problems because they relied on expensive paving method to compensate for
intervals’ inherent wrapping effect. To tackle more complex problems, we
developed techniques for zonotopes: spatio-temporal zonotopes to simulate
hybrid systems and solve boundary value problem with ease. In addition to
being contributions in their own right, those zonotope techniques allowed
us to compute enclosures for a wider range of problems, even moderately
complex aerospace problems. We streamlined our procedure and applied it
to a range of increasingly complex problems. This allowed us to assess the
main weakness of our approach: our method can fail to produce results,
especially when the uncertainties are big and the system is highly nonlinear.
Nevertheless, by decreasing the size of the uncertainty we obtained validated
outer-approximations of our trajectory sets, and the computation time and
errors are reasonable. We then proposed some use cases for these enclosures,
like validated shooting method, robustness assessment, parameter adjusting
and estimating and control synthesis for navigation.

In future works, we could improve the tightness of our zonotopes, or
switch to other set representations, to tackle higher uncertainties and more
complex problems. It could also be interesting to experiment on an ac-
tual vehicle. Lastly, we could develop our constrained zonotopes techniques
further and apply them to other zonotope-based algorithms.
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Titre : Contrôle Optimal et Robuste pour le Guidage de Véhicules Autonomes

Mots clés : Méthodes Ensemblistes, Simulation validée, Intervalles, Zonotopes, Contrôle Optimal, Principe
du Maximum Pontryagin

Résumé : Le guidage d’un lanceur réutilisable est un
problème de contrôle qui nécessite à la fois précision
et robustesse : il faut calculer une trajectoire et un
contrôle, de sorte que le lanceur atteigne la piste d’at-
terrissage, sans s’écraser ni exploser en vol, le tout en
utilisant le moins de carburant possible. Les méthodes
de Contrôle Optimal issu du Principe de Pontrya-
gin calculent une trajectoire optimale avec grande
précision, mais les incertitudes, soit les erreurs entre
les estimations de l’état initial et des paramètres et
leurs valeurs réelles, causent une déviation poten-
tiellement dangereuse de la trajectoire réelle. En pa-
rallèle, les méthodes ensemblistes et notamment la
simulation validée peuvent encadrer toutes les trajec-
toires possibles d’un système dynamique avec des
incertitudes bornées. Cette thèse combine ces deux
approches pour encadrer des ensembles de trajec-
toires optimales de systèmes avec incertitudes afin de
garantir la robustesse du guidage d’un véhicule auto-
nome.
Nous commençons par définir des ensembles
de trajectoires optimales pour des systèmes
avec incertitudes, d’abord pour les trajectoires

mathématiquement parfaites, puis pour les trajec-
toires d’un véhicule sujet à des erreurs d’estimation,
mais qui utiliserait, ou non, les données des capteurs
pour recalculer sa trajectoire en cours de route. Le
principe de Pontryagin caractérise ces ensembles
comme solutions de problèmes aux deux bouts avec
des dynamiques avec incertitudes. Nous développons
alors des algorithmes qui encadrent toutes les so-
lutions de ces problèmes aux deux bouts en utili-
sant la simulation validée, l’arithmétique des inter-
valles et la théorie des contracteurs. Cependant, la
simulation avec des intervalles occasionne une forte
sur-approximation qui limite nos méthodes. Pour y
remédier, nous remplaçons les intervalles par des
zonotopes symboliques contraints. Nous utilisons no-
tamment ces zonotopes pour simuler des systèmes
hybrides, encadrer des solutions de problèmes aux
deux bouts et construire des sous-approximations
en complément de la sur-approximation classique.
Enfin, nous combinons tout ceci pour calculer des en-
sembles de trajectoires de systèmes aérospatiaux et
les utilisons pour évaluer la robustesse du contrôle.

Title : Robust Optimal Control for Guidance of Autonomous Vehicles

Keywords : Set-Based Methods, Validated Simulation, Intervals, Zonotopes, Optimal Control, Pontryagin’s
Maximum Principle

Abstract : The guidance of a reusable launcher is
a control problem that requires both precision and ro-
bustness: one must compute a trajectory and a control
such that the system reaches the landing zone, wi-
thout crashing into it or exploding mid-flight, all while
using as little fuel as possible. Optimal control me-
thods based on Pontryagin’s Maximum Principle can
compute an optimal trajectory with great precision, but
uncertainties, the discrepancies between estimated
values of the initial state and parameters and actual
values, cause the actual trajectory to deviate, which
can be dangerous. In parallel, set-based methods and
notably validated simulation can enclose all trajecto-
ries of a system with uncertainties. This thesis com-
bines those two approaches to enclose sets of optimal
trajectories of a problem with uncertainties to guaran-
tee the robustness of the guidance of autonomous ve-
hicles.
We start by defining sets of optimal trajectories for
systems with uncertainties, first for mathematically

perfect trajectories, then for the trajectory of a ve-
hicle subject to estimation errors that can use, or
not use, sensor information to compute a new trajec-
tory online. Pontryagin’s principle characterizes those
sets as solutions of a boundary value problem with
dynamics subject to uncertainties. We develop algo-
rithms that enclose all solutions of these boundary va-
lue problem using validated simulation, interval arith-
metic and contractor theory. However, validated si-
mulation with intervals is subject to significant over-
approximation that limits our methods. To remedy that
we replace intervals by constrained symbolic zono-
topes. We use those zonotopes to simulate hybrid
systems, enclose the solutions of boundary value pro-
blems and build an inner-approximation to comple-
ment the classical outer-approximation. Finally, we
combine all our methods to compute sets of trajec-
tories for aerospace systems and use those sets to
assess the robustness of a control.
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