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Résumé

Les moussons se définissent par un renversement saisonnier des vents qui apporte plus de 80% des
précipitations annuelles en Inde et au Sahel, qui en sont largement tributaires. Prévoir leur évolution sous
l’effet de l’Homme, qu’on appelle la réponse anthropique, est donc d’une importance capitale d’autant
plus que ces deux régions abriteront deux milliards d’habitants en 2100. Cependant, les prédictions de
ces moussons que nous sommes capables de fournir sont accompagnées de fortes incertitudes portant sur
l’amplitude et parfois sur le signe même de ces changements. En utilisant les simulations réalisées pour le 6𝑒𝑚𝑒
rapport du Groupe Intergouvernemental sur l’évolution du Climat (GIEC), nous cherchons à comprendre
l’origine de ces incertitudes dans les modèles de climat.

La performance des modèles à reproduire l’évolution historique (1850-2014) est un facteur de confiance dans
leur capacité à prévoir l’avenir. Cependant, ces évolutions historiques sont également marquées par des
incertitudes. La première question à laquelle nous voulons répondre est donc: peut-on expliquer l’incertitude
des modèles à simuler l’évolution des moussons indienne et sahélienne sur la période historique? Les
erreurs que font les modèles par rapport aux observations sont appelées des biais et nous souhaitons tester
l’hypothèse qu’ils sont susceptibles d’expliquer en partie les différentes réponses des moussons simulées par
les modèles.

Nous traitons d’abord le cas de l’Inde, et suivant cette hypothèse, nous montrons que les biais de température
des modèles dans l’océan Pacifique équatorial modulent la façon dont ils simulent la réponse historique de la
mousson indienne. En effet, nous montrons qu’en modulant la réponse historique de l’océan Pacifique, les
biais dans ce dernier affectent la mousson indienne via des mécanismes similaires à ceux qui lient l’ENSO (El
Niño – Southern Oscillation) et la mousson en variabilité interannuelle.

Nous reproduisons ensuite la même étude pour la mousson sahélienne, où nous montrons que des biais de
température dans tous les Tropiques sont fortement liés à la façon dont les modèles simulent son évolution
historique. Cependant, nous n’identifions pas le mécanisme physique précis liant ce biais à la mousson
sahélienne, mais montrons que cette dernière est fortement dépendante de la façon dont les modèles simulent
la réponse du gradient inter-hémisphérique de température, ce qui est physiquement cohérent avec le rôle
connu de ce gradient comme modulateur de la position de la zone de convergence intertropicale (ITCZ).

Dans la deuxième partie de nos investigations nous basculons dans les projections (2014-2100) basées
sur un scénario pessimiste de fortes émissions et adressons la question suivante: quelles sont les sources
d’incertitudes de la réponse forcée des moussons au sein des projections? Nous abordons cette fois le cas
du Sahel en premier et lions la diversité des réponses à travers les modèles à deux facteurs: la réponse du
gradient inter-hémisphérique de température et celle du Pacifique équatorial. Les mécanismes sous-jacents
font intervenir une migration de l’ITCZ et une circulation de surface renforcée pour le premier, et une
modulation de la circulation de Walker et des ondes tropicales pour le second. Via ces deux facteurs, nous
expliquons 62% de l’incertitude des projections au Sahel.

Nous traitons finalement le cas du futur de la mousson indienne, et montrons que les incertitudes de celle-ci
sont fortement liées à la réponse en température des déserts allant du Sahara au Pakistan, qui influencent
également la réponse de la mousson sahélienne. En effet, plus la réponse en température est forte, plus le
Heat Low sur les déserts sera prononcé ce qui renforce la circulation en surface des moussons.





Summary

The monsoons are defined by a seasonal reversal of winds that brings more than 80% of annual precipitation
to India and the Sahel, which are largely dependent on them. Predicting their evolution under the influence
of man - the so-called anthropogenic response - is therefore of the utmost importance, all the more so as these
two regions will be home to two billion people by 2100. However, the monsoon projections we are currently
able to provide are accompanied by major uncertainties concerning the amplitude and sometimes the very
sign of these changes. Using recent simulations carried out for the 6𝑡ℎ report of the Intergovernmental Panel
on Climate Change (IPCC), we seek to understand the origin of these uncertainties in climate models.

The performance of these models in reproducing historical trends (1850-2014) is a factor of confidence in their
ability to predict the future. However, these historical trends are also marked by uncertainties. Consequently,
the first question we want to answer is: can we explain the uncertainty of the models in simulating the
evolution of the Indian and Sahelian monsoons over the historical period? Model errors in relation to an
observed climatology calculated over a reference period of at least thirty years are called biases, and we wish
to test the hypothesis that they may partly explain the different responses of the models.

We first consider the case of India, and following this hypothesis, we show that the climatological temperature
biases of models in the equatorial Pacific Ocean modulate the way they simulate the historical response
of the Indian monsoon. Indeed, we show that by modulating the historical response of the Pacific Ocean,
climatological biases in the latter affect the Indian monsoon via mechanisms similar to those linking ENSO
(El Niño - Southern Oscillation) and monsoon interannual variability.

We then reproduce the same study for the Sahelian monsoon, where we show that climatological temperature
biases in all the Tropics are strongly linked to the way models simulate its historical evolution. We do not,
however, identify the precise physical mechanism linking this bias to the Sahelian monsoon, but we do
show that the latter is strongly dependent on the way models simulate the response of the inter-hemispheric
temperature gradient, which is physically consistent with the known role of this gradient as a modulator of
the position of the inter-tropical convergence zone (ITCZ).

In the second part of our investigations, we switch to projections (2014-2100) based on a pessimistic scenario of
high emissions, and address the following question: what are the sources of uncertainty in the forced response
of the monsoons within the projections? This time, we tackle the Sahel case first and link the diversity of
responses across models to two factors: the response of the inter-hemispheric temperature gradient and
that of the equatorial Pacific. The underlying mechanisms involve ITCZ migration and enhanced surface
circulation for the first factor, and modulation of the Walker circulation and tropical waves for the second.
These two factors account for 62% of the uncertainty in Sahel projections.

Finally, we look at the future of the Indian monsoon, and show that its uncertainties are strongly linked
to the temperature response of deserts from the Sahara to Pakistan, which also influences the response of
the Sahelian monsoon. Indeed, the stronger the temperature response, the more pronounced the thermal
depression over the deserts, the stronger the monsoon surface circulation and hence the precipitation.

Keywords: Climate - Variability - Monsoon - Sahel - India - CMIP - Teleconnections - ENSO
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At the time of writing this preamble on 9 May 2023, the Intergovernmen-
tal Panel on Climate Change (IPCC) sixth assessment report (AR6) states
that global temperature at the surface of the Earth has risen by +1.1°C com-
pared to pre-industrial values. The cause of this warming is unequivocal:
mankind, through the use of fossil fuels and the accompanying emission
of greenhouse gasses (GHGs), is playing the sorcerer’s apprentice with
the Earth. Beyond this global rise in temperature, other major changes
are expected, notably in the water cycle and therefore rainfall intensity
and distribution (AR6 chapter 8). In developed countries, what we once
thought was only for others is now knocking on our door: the summer of
2022 in France was marked by unprecedented drought, forest’s fires and
water restrictions in many departments, and the winter was marked by a
historical record of 32 days without significant rainfall. Monsoon regions,
where annual rainfall is concentrated in the summer season, have long
known the ravages of erratic rainfall. They are home to half of humanity,
which rely heavily on rain-fed agriculture, and where the infrastructure
to manage water resources is limited. Consequently, rainfall variations
have dramatic consequences such as landslides, flooding, crop failure
and drinking water scarcity.

In order to understand the consequences of our activities on the Earth
equilibrium and to be able to act accordingly, climate models simulate
future climates shaped by our emission choices. In a scenario where
we pursue our current economic growth, it is very likely that global
warming will exceed 4°C and could even exceed 5°C. While the models
give relatively consistent results for global temperature, there are large
uncertainties about changes in precipitation and the hydrological cycle,
especially in monsoon regions (AR6 chapter 8). In this context and the
particular cases of the Sahelian and Indian monsoons, we will try to
answer the following question: what are the origins of model uncertainties
in the Sahelian and Indian monsoons simulations and projections? The
question may seem daunting at first, but the following introduction
will equip us for the adventure that awaits us in the next chapters. We
will begin by introducing the great machine of the climate system, its
dynamics and the factors that shape it, both natural and anthropogenic.
We will then present the place of the monsoons in this grand scheme and
highlight their importance in more detail. Finally, we will explain how to
put the Earth into a computer by presenting what climate models are, as
well as the limitations associated with them. Here we go !
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1.1 Did I hear climate?

Nothing is better to start than a quote, so let us turn to the wise words of
Edward Lorenz to define climate: "Climate is what you expect, weather
is what you get". Lorenz’s quote gives a simplified yet powerful version
of the precise definition of climate provided by the IPCC, which states
that "climate in a narrow sense is the statistical description in terms of
the mean and variability of relevant quantities over a period ranging
from months to thousands or millions of years" (IPCC, 2021: Annex VII:
Glossary). While surface air temperature and precipitation are the first
key climatic quantities that come to mind, this thesis will also use other
characteristics of the climate system such as wind and temperature at
different atmospheric levels, as well as relative humidity, which all fall
under the category of ’relevant quantities’ mentioned by the IPCC. The
most commonly used time interval to define climate is 30 years.

The thirty-year average of a climate variable provides a first-order de-
scription of its probability distribution at a given location and this will be
the metric primarily studied in this thesis under the name of climatology.
It is a simple but powerful tool that has, for example, enabled Wladimir
Köppen to create one of the most famous global climate classifications
(Koppen, 1936) using only precipitation and temperature (Figure.1.1).
This classification defines the 5 major types of climate that we learn in
middle school: tropical, dry, temperate, continental, and polar. Each type
is then subdivided into subtypes based on variations in temperature
and precipitation patterns, but this becomes the domain of specialized
individuals such as geographers, hydrologists or climatologists...

It is possible to go further in the description of the probability distri-
bution of a climate variable by using, for example, the second-order
moment, namely the standard deviation, which corresponds to what
is called climate variability. The best-known example of variability is
the seasonality, which falls into the category of natural, but periodic,
variability shaped by the tilt of the Earth’s axis and its orbit around the
Sun. However, there is a wide range of variability, the origins of which
may be natural or forced, occurring on very different timescales, up to
several millennia. Neverthelss, such definitions of the first two moments
of the probability distribution of a climate variable are relevant in a
stationary climate, or at least one that is stationary on the time scales
of interest. It is not necessarily the case today because of the impacts of
human activities on the climate and the rapid changes that they generate.
As an example, Météo France reevaluates seasonal normal temperatures
every ten years, which increase on average by 0.4°C due to the rapid
global warming, so that a "normal" month of May today would have been
considered exceptionally hot in the 1970s. Therefore, due to the rapid
human-induced changes, these designations are potentially misleading,
and it is important to place things in relation to a fixed reference. In our
case, the reference will be the period around 1850, which we are using
as an approximation of the pre-industrial era, and therefore a climate in
which man has not yet had much impact.
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Figure 1.1: World map of Köppen climate classification (Kottek et al, 2006).

1.2 The climate system

1.2.1 Definition of the climate system

As always in sciences, the first step is to define the system under study.
The climate system encompasses all the surface components of the Earth,
namely the atmosphere, oceans, cryosphere, and continental surfaces,
including the biosphere (Figure.1.2). The main object of study of climate
sciences is the global energy (im)balance of this system, which has been
greatly disrupted by human activities, resulting in modifications in all
its components and in their interactions on large spatio-temporal scales.
Of the five components of the climate system named above, three will
be of particular interest to us in this thesis: the atmosphere, the oceans
and the continental surfaces. We therefore describe them in more detail
below, and it should be borne in mind that although we describe them
individually, they are tightly coupled.

The atmosphere

The atmosphere is a layer of gasses that surrounds the Earth, extending
from the surface up to about 10,000 km. It contains a complex mixture
of gases, including nitrogen, oxygen, and water vapor, as well as trace
amounts of other gases such as carbon dioxide, methane, and ozone. The
atmosphere is responsible for regulating the Earth’s temperature through
the greenhouse effect (mainly due to the water vapor), which traps heat
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and keeps the planet warm enough to support life. Through its circulation
and the water cycle, the atmosphere also participates in the redistribution
of energy on Earth, as we will develop later. The troposphere, which is
the first 10 km of the atmosphere and our subject of study, is both the air
we breathe as well as the weather and the stage for our activities.

The oceans

The oceans cover about 70% of the Earth’s surface and play a critical
role in the climate system. They absorb and store large amounts of heat,
carbon dioxide, and other gases from the atmosphere, and they transport
heat, salt and nutrients around the globe through ocean currents. The
oceans also affect the Earth’s albedo (the amount of sunlight reflected
back into space), and they provide habitat for a wide range of marine
organisms.

Continental surfaces

The land surfaces include all non-frozen parts of the Earth’s surface,
including forests, grasslands, deserts, and urban areas. They interact with
the atmosphere and oceans through processes such as evapotranspiration
(the combined loss of water to the atmosphere through evaporation and
transpiration by plants) and runoff, which affect the water cycle and can
influence weather patterns.

Figure 1.2: Components of the Cli-
mate System, Processes, and Interactions
(IPCC, AR4).

1.2.2 Internal variability and external forcing

The state of the climate system and its related climate features, such as
temperature or precipitation, may vary around its average state for two
reasons: external forcings and internal variability. External forcings refers
to any factors external to the Earth’s climate system (as defined above)
that can alter the balance of energy and induce shifts in temperature,
precipitation, and other climate variables at both the global and regional
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scales. External forcing can be divided into two categories: natural and
anthropogenic.

Natural forcing

Natural forcing includes phenomena like changes in solar radiation
and volcanic eruptions, which can have significant effects on the Earth’s
climate. A well-known example is the variation in the distribution of solar
radiation at the Earth’s surface due to its rotation and the obliquity of its
axis of rotation. This can be seen as a natural and periodic forcing that
gives rise to the alternance of the day and the night and to the seasons
we mentioned earlier, and is intrinsically linked to the monsoons as we
will explain later. On much longer time scales (>10,000 years), variations
in the Earth’s orbital parameters also give rise to spectacular changes in
the radiation received by the Earth. This forcing is responsible for the
alternation between ice ages and interglacial periods. Finally, we can have
more sporadic forcings, such as volcanic activity which leads to more
abrupt and less predictable changes. As an illustration, the Pinatubo
eruption in 1991 released large amounts of aerosols into the stratosphere,
reflecting sunlight back into space and leading to a drop in average
surface temperatures by about 0.5°C in the year following the eruption
(Graft et al., 1993).

Anthropogenic forcing

Anthropogenic forcing refers to the impact of human activities on the
climate system, such as deforestation, GHGs and aerosol emissions.
These anthropogenic factors can cause long-term changes in the Earth’s
energy balance, some of which are counteracting and some of which
are synergistic, but which ultimately lead to the global warming we are
experiencing. We will give a detailed description of their effects on the
climate and more specifically on the monsoons later in the introduction.

Internal variability

Internal variability refers to variations resulting from the interactions
between the different components of the climate system, mainly the ocean
and the atmosphere which are inherently unstable due to being fluids.
These fluctuations can result in changes in temperature, precipitation,
and circulation patterns. Internal variability is typically organized in
large-scale perturbations from the mean state, with specific time and
frequency characteristics called modes of variability. The most promi-
nent mode of climate variability at interannual timescales is the El
Niño-Southern Oscillation (ENSO) which is an irregular and coupled
ocean-atmosphere phenomenon in the tropical Pacific that can affect
precipitation patterns and temperatures worldwide for several months or
a few years (AR6 chapter 4). In particular, El Niño events are associated
with a global increase in the Earth’s temperature that is superimposed on
anthropogenic warming, leading to fears of severe heat waves when they
occur, as expected for this summer of 2023. We will provide an overview
of ENSO later in the introduction, when we describe the mechanisms
explaining its global impacts, which will be extensively used in Chapters
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3 and 4. The sum of internal variability and of the fluctuations due to
natural forcing is known as natural variability.

How about a mix of all of them?

An important degree of complexity of the climate system is that internal
variability, natural forcing and anthropogenic forcing can interact, amplify,
or counteract each other at both the regional and global scales during some
time intervals. This was the case in the early 2000s, when a combination
of volcanic activity, low solar activity, and specific pattern of internal
variability slowed down the warming trend over the period 1998-2012
compared to previous decades. Climate skeptics then claimed that global
warming had stopped, and in a sense, we would have liked them to
be right. However, it was actually just a temporary pause known as
the global warming hiatus (Held, 2013;Deser et al., 2017), and recent
observations show that warming has since resumed at a faster pace. This
interplay illustrates why it is difficult to isolate and fully understand the
specific impact of anthropogenic forcing on the climate, and consequently
to anticipate the future. In light of these challenges, a range of statistical,
dynamical and observational methods have been developed in order to
separate the effects of internal variability and external forcings. These
so-called detection and attribution approaches involve analyzing long-
term observed trends and patterns, as well as simulations performed
with climate models to understand the relative contributions of different
factors to global temperature or precipitation changes. The notion of a
climate model may seem unclear at the moment, but we will come back
to it in detail later; for the moment let us assume that it is an (unperfect)
digital representation of the Earth climate. The results from such methods
are illustrated in Figure.1.3 which displays the relative impact of the
different forcings on global warming trend over the 1951-2010 period
(Morice et al., 2012).

Figure 1.3: attribution of global warm-
ing trends over the 1951-2010 period to
well-mixed GHGs, anthropogenic forc-
ing which includes GHGs and anthro-
pogenic aerosols (ANT), aerosols (OA),
natural forcing (NAT) and internal vari-
ability. From Morice et al., 2012.
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1.3 Energetics and dynamics of the climate

system

1.3.1 Energy balance of the climate system

The Earth’s radiative budget refers to the balance between incoming and
outgoing radiations at the top of the Earth’s atmosphere (Figure.1.4). The
Earth receives energy from the sun in the form of shortwave radiation
(primarily visible light) and radiates energy back into space in the form
of longwave radiation (primarily infrared). We will first describe the
integrated version of the Earth’s radiative balance, i.e. its average on
a global and annual scale, before refining this vision regionally and
seasonally. This will allow us to introduce more rigorously the notion
of season as well as the atmospheric and oceanic circulations that result
from it. A tempting program that will open the highway to the monsoons,
at last!

Figure 1.4: Schematic of the radiative
balance of the Earth (provided by UCAR
Center for Science Education).

The sun is the source of energy that powers the Earth (Figure.1.4). On
a yearly and global average, it provides 341 𝑊.𝑚−2 at the top of the
Earth’s atmosphere. The atmosphere absorbs 20% of the solar incident
radiation and about 30% is reflected back to space by the atmosphere
and earth’s surfaces with a high albedo. As defined above, albedo is a
quantity that refers to the ability of the Earth’s surfaces, in particular the
bright ones (clouds, deserts, ice) to reflect incident light .The remaining
50% is absorbed by the surface (both ocean, land and cryosphere). After
absorbing solar energy, the surface will seek energy balance through three
types of cooling: sensible heat, latent heat and black body radiation. The
latter corresponds to the emission of infrared radiation in proportion to
the surface temperature. However, the atmosphere contains species that
strongly absorb infrared radiation, such as water vapor and GHGs. The
atmosphere will then also try to reach energy balance, but its only way to
do so is to emit infrared radiation in all directions. Some of this radiation
then returns to the surface and constitutes a second source of heating,
which is what we call the greenhouse effect. The greenhouse effect allows
life to exist on Earth, because without it the average global temperature
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would be -18°C. However, by emitting GHGs through our activities,
we amplify this second source of energy towards the surface, and the
system seeks a new energy balance. All the cooling terms from the surface
therefore increase, especially the infrared radiation emitted by the surface,
which is accompanied by the rise in atmospheric temperature that we
are currently experiencing. In fact this atmospheric rise of temperature is
only a small (yet directly felt by humans) proportion of the excess of heat
induced by the anthropogenic increase of the greenhouse effect: 90% of
the excess of heat is stored in the ocean interior at depth. This may induce
dynamical adjustments that can further modify the surface climate.

Figure 1.5: Solar insolation map averaged
over ten year for January (top) and April
(bottom) (Surface Meteorology and Solar
Energy Project, NASA Langley Research
Center, and the ISCCP Project.)

This integrated view of the Earth’s radiative balance (and imbalance)
hides a more complex reality if we remove time and space averaging.
Firstly, keeping the annual average, the fact that the Earth is not flat
(unless...) implies that the Equator receives more energy than the poles.
There is therefore a spatial energy imbalance that will set in motion
the oceanic and atmospheric masses to redistribute this energy surplus.
Secondly, if we now look at monthly averages, because of the inclination
of the Earth’s axis of rotation in relation to its plane of rotation around
the sun, the northern and southern hemispheres will successively receive
more or less solar energy (Figure.1.5). This is what gives rise to the
seasons as mentioned earlier; we speak of a boreal summer when the
northern hemisphere receives more energy, and a boreal winter when it
receives less. Thus, the energy imbalance at the Earth’s surface also varies
throughout the year, as do the atmospheric and oceanic circulations that
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accompany it. For example, the Indian and Sahelian monsoons are a
feature of the boreal summer atmospheric circulation, but we will come
back to this in detail later.

We now have the fundamentals on the radiative balance on Earth, its
major variations in space and time and the accompanying imbalances,
which set the oceans and the atmosphere in motion. Moving on, we will
now describe these circulations and the way they redistribute energy,
which will be a very useful foundation for discussing monsoons!

1.3.2 Dynamics of the climate system

If the redistribution of energy on Earth gives rise to oceanic and atmo-
spheric circulations, one last detail crowns it all: the Earth turns! The
Coriolis force is the result of the Earth’s rotation for an observer at its
surface. It is a central element that shapes the circulation of fluids on
Earth. In the Northern Hemisphere, the Coriolis force is directed towards
the east for an object moving northward and towards the west for an
object moving southward. Conversely, in the Southern Hemisphere. The
intensity of this force is zero at the Equator and increases with latitude,
adding a little more complexity and beauty to the system (Figure.1.6).
Indeed, rather than two cells connecting the Equator to the poles (left),
we observe that a more complex structure emerges (right).

Figure 1.6: Diagram of atmospheric circulation on a non-rotating and rotating Earth (from Lutgens and Tarbuck, 2001).

As part of our work on monsoons, we are primarily interested in circula-
tions within the Tropics. Therefore, within the set of atmospheric cells
represented in Figure.1.6 we will primarily focus on the cells closest to
the Equator, known as the Hadley circulation, and explain, among other
things, why it does not extend to the poles. While this circulation broadly
describes the meridional (north-south) circulation of the atmosphere
in the Tropics, there is also a zonal (east-west) circulation called the
Walker circulation, which completes the picture of large-scale tropical
dynamics.
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The Hadley circulation

As mentioned earlier, on an annual average, the surface of the Earth
is heated more at the Equator than at higher latitudes. Consequently,
the air at the Equator is warmer and less dense than the air at the
poles which leads to a rising motion. As the air rises, it expands and
cools, causing water vapor to condense, which releases latent heat
into the atmosphere and forms clouds. In the lower layers, this rising
motion creates a low-pressure zone near the Equator toward which
surface winds converge. Due to the Coriolis force, these winds have an
eastward component in both hemispheres and form the well-known
trade winds. These winds are famous to sailors and were named as such
due to their role in maritime commerce during the 16𝑡ℎ century. This
region of low-level wind convergence and upward motion is called the
InterTropical Convergence Zone (ITCZ). It corresponds to the region
where precipitation is concentrated in the Tropics and is closely related to
monsoons, as we will explain later. After reaching the upper-troposphere
due to the upward motion, the air flows towards the poles, reducing
its distance from the Earth’s rotation axis and resulting in an increase
in its zonal velocity in accordance with the conservation of angular
momentum. This leads to the limit of its meridional extension at around
30° latitude in both hemispheres (Figure.1.6). Furthermore, it cools as
it travels poleward and begins to sink back toward the surface which
creates a high-pressure region known as the subtropical highs. These
are closely linked to deserts, which are very common at these latitudes
in both hemispheres. The descending air then flows back towards the
Equator as surface winds, completing the trade winds and the Hadley
cell.

This annual and zonal average view gives a rough outline of the Hadley
circulation. However on a shorter timescale, we know that the Northern
and Southern Hemispheres alternately experience a period of the year
during which they receive an energy surplus. As the Hadley circulation
arises from the need to redistribute this surplus, it is natural for it
to exhibit seasonality in accordance with these variations (Figure.1.5).
During the boreal summer, when the Northern Hemisphere has an excess
of energy, the Hadley circulation deforms and loses its symmetry with
respect to the Equator. The ITCZ shifts northward, and the cell in the
Southern Hemisphere expands to the North and strengthens to intensify
the energy transport towards this hemisphere (and conversely during
boreal winter). Figure.1.7 shows a schematic of this seasonal circulation,
with the alternating strength and expansion of the Hadley cells in each
hemisphere depending on the season. At mid-latitudes, Figure.1.7 also
suggests another rotational circulation in the meridian plane, called
Ferrel circulation, which we will not focus on as our attention is on the
Tropics, but which is in agreement with Figure.1.6

Figure.1.7 shows that with the seasons, the zone of convergence and
ascent corresponding to the ITCZ, which has been said to be the heart
of precipitation in the Tropics, moves on either side of the Equator. In
boreal summer, it is located around 15°N . This latitude corresponds
to the latitude of the Indian and Sahel monsoons. The latter can thus
be interpreted as a regional manifestation of the ITCZ. We therefore
understand one of the reasons why rainfall only exists during a particular
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season in the monsoon regions, which corresponds to the boreal summer
in the case of India and the Sahel. The inter-hemispheric energy imbalance
associated with the seasons is therefore a first mechanism at the origin of
the monsoons, but it is not the only one and we must look for explanations
on a regional scale to refine our vision as monsoons concern only some
specific areas at subtropical latitudes. Before that however, as promised,
we will explore the Tropics in the zonal direction and describe the Walker
circulation!

Figure 1.7: Zonal average of the stream function over 1979-2001 period from ERA40 reanalysis, north to the left and south to the right
(extracted from Joly et al, 2009).

The Walker circulation

The Walker circulation is a convective cycle that originates from the
interaction between the ocean and the atmosphere along the Equator,
mainly in the Pacific Ocean. We have seen that the trade winds blow
inexhaustibly in the Tropics from east to west as the Hadley cell returns
to the Equator in the eastern part of the different oceanic basins. This
causes warm surface waters to accumulate in the west of the basins with
relatively cooler waters in the east due to the coastal upwelling systems.
This gives rise to a sea surface temperature (SST) gradient along the
Equator, accompanied by a gradient of Sea Level Pressure (SLP). As
we are at the Equator, the Coriolis force is zero and the SLP gradient
gives rise to a direct thermal circulation along the SLP gradient, which
reinforces the trade winds. With the trade winds strengthened, we could
start the loop we have just described again, this is called the Bjerknes
feedback (J. Bjerknes, 1969).

Similarly to the Hadley circulation, the warmer temperature leads to a
rising motion which releases latent heat into the atmosphere and forms
large convective clouds. After reaching the upper troposphere, the air
diverges from the ascending areas, cools and begins to sink back toward
the surface, forming a zonally overturning circulation composed of several
cells (Figure.1.8). Through the interaction of gradients of SST, SLP and
trade winds along the Equator, the Walker circulation strongly depends
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on the ocean-atmosphere coupling and the thermocline depth in each
oceanic basin which are crucial to understand its dynamics. Furthemore,
through the interaction between the various cells that make up the Walker
circulation, significant teleconnections are created within the Tropics
which will be extensively explored in the rest of the manuscript.

Figure 1.8: Schematic of the Walker cir-
culation (provided by the NOAA).

So here we are with the meridional and zonal circulations in the Tropics.
I promised you an explanation of ENSO at the beginning of the intro-
duction, didn’t I? The long awaited moment has come. The description
of ENSO, the main mode of climate interannual variability, only comes
now in the introduction because it is actually closely linked to the Walker
circulation, as it is a modulation of the latter. ENSO is characterized
by a warm (El Niño) or cold (La Niña) phase of the SSTs in the central
and eastern Pacific. During an El Niño event, the warm SST anomalies
reduce the equatorial SST gradient which induces a weakening of the
trade winds by virtue of Bjerknes feedback and results in an eastward
shift of the Pacific Walker cell. During a La Niña event, the opposite
occurs, with stronger equatorial SST gradient and trade winds, and leads
to changes in the other cells making up the Walker circulation as they
are interconnected (Figure.1.9) This is why ENSO is able to generate very
large-scale changes within the Tropics, called teleconnections, but even
beyond since it also impacts the extra-tropics by locally perturbing the
Hadley circulation and generating atmospheric waves in association with
the zonal rainfall changes induced by ENSO (Trenberth et al., 1998).

Regarding monsoons, El Niño events are associated with unfavorable
Sahelian and Indian monsoon conditions, while La Niña events are
synonymous with intense precipitation (Webster et al., 1998; Janicot et al.,
2001). By way of anecdote, it was while studying the Indian monsoon
that Sir Gilbert Walker discovered the ENSO in the early 20𝑡ℎ century.
The mechanisms linking this mode of variability to monsoons will be
extensively explored in chapters 3 and 4 as very similar mechanisms
seem to operate in the context of climate change. However, we will
briefly discuss them here from an atmospheric point of view, to set
the stage and get warmed up for what’s to come. Firstly, by creating
displacements in the ascending branches of the Walker circulation, ENSO
is capable of creating a large-scale context that is more or less favorable
for convection and therefore more or less favorable for precipitation
in the Tropics. Secondly, ENSO modifies the release of latent heat into
the atmosphere. These heating anomalies can then propagate in the
Tropics in two forms: eastward and along the Equator as Kelvin waves,
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or westward as Rossby waves. The propagation of these anomalies, by
locally altering the distribution of heat, is likely to modulate monsoon
circulations.

Figure 1.9: Schematic of the Walker cir-
culation during El Niño event (provided
by the NOAA).

1.4 It’s monsoon time!

1.4.1 What are monsoons?

Finally in the heart of the matter you will tell me! Indeed, the time has
come to talk about monsoons, and the first question that comes to mind
is: what is it?

From an etymological perspective, the term "monsoon" comes from the
Arabic word "mausim," which means "season" or "wind shift", which was
used by sailors to designate the seasonal reversal of the winds over the
Arabian Sea (Webster et al., 1998). Figure.1.10 illustrates this northeast-
southwest wind inversion during the transition from boreal winter to
boreal summer in the observations, which is particularly pronounced
along the Indian coast and West Africa. During the Middle Ages, the Arab
and Chinese sailors were known to use the monsoon winds to navigate
across the Indian Ocean. This led to the establishment of trade routes
between Asia, Africa, and Europe, which played a significant role in the
development of the global economy. The concept of monsoons has been
known and studied for thousands of years, with ancient civilizations in
Africa, India, China, and Arabia developing their own systems of predict-
ing and understanding monsoons. In the 17𝑡ℎ century, European scientists
began to study monsoons in more detail. One of the earliest and most
notable researchers of monsoons was Edmund Halley, who proposed
a theory for the origin of monsoons based on the differential heating
of land and ocean surfaces. In the 19𝑡ℎ and 20𝑡ℎ centuries, advances in
meteorology and atmospheric science led to significant breakthroughs in
our understanding of monsoons. Scientists began to study the complex
interactions between ocean currents, orography, atmospheric circula-
tion patterns, convection, and regional climate systems that give rise to
monsoons.

Now, for a modern definition of monsoons, we turn again to the wise
words of the world’s leading climate authority, the IPCC: «A monsoon
is a tropical and subtropical seasonal reversal in both the surface winds
and associated precipitation, caused by differential heating between a
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Figure 1.10: Seasonal change in lower tropospheric wind (925 hPa) between boreal summer and winter (JJA minus DJF). Winds are from
ERA40 reanalysis (Source: The Global Monsoon Systems by WCRP).

continental-scale land-mass and the adjacent ocean» (IPCC, 2021: Annex
VII: Glossary). If this definition is a bit simplistic, it has the merit of
rebounding on the mechanisms we mentioned in the previous sections:
once again, it is the redistribution of energy that puts things in motion! In
fact, we can see monsoons as a regional manifestation of the large-scale
dynamics we mentioned earlier. Monsoons are all at once: part of the
ITCZ, part of the Hadley circulation, part of the Walker circulation and a
transition zone between the Tropics and Subtropics. In this context of
position at the interface of multiple large-scale dynamics, we understand
that the sources of modulations are numerous and that the interactions
are complex, which would deserve a slightly more detailed definition!
Actually, we are a bit of a tease by using this definition found in the
glossary, as AR6 provides a much more precise definition in the section
on monsoons (IPCC, 2021: Annex V: Monsoons), it’s tough love with the
IPCC!

Figure 1.11: Land monsoon domains, as
defined by Wang et al (2012).

While the Indian monsoon is the most famous, there are several monsoon
systems across the globe and in both hemispheres. Various criteria have
been established to define accurately monsoon domains, and in this
manuscript we will adopt the following definition only based on rainfall:
monsoon domain are areas where the precipitation difference between the
local summer and winter is larger than 2.0𝑚𝑚.𝑑𝑎𝑦−1, and local summer
precipitation exceeds 55% of the annual total precipitation (Wang et al.,
2012). This criterion defines 7 monsoon domains which include more
than half of humanity. Two of them are the subject of this thesis, namely
the Sahelian monsoon which is part of the North African monsoon (NAF
in Figure.1.11), and the Indian monsoon which is a part of the South Asian
monsoon (SAS in Figure.1.11). Fluctuations in spatial extent and intensity
of monsoons can have significant impacts on biodiversity, food security
and economic development which we will discuss on a case-by-case basis
for the Sahelian and Indian monsoons in the next subsections.
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1.4.2 The Indian monsoon

Description and stakes

Figure.1.12 again shows the seasonal reversal of monsoon winds but in the
specific case of India, and the dramatic changes in rainfall associated with
it. The increase in summer precipitation is spectacular as the monsoon
delivers 80% of the annual precipitation for most Indian regions. However
the spatial distribution of precipitation is far from being homogeneous
over the whole country (Figure.1.12) and is influenced by several factors,
including the location and orientation of mountain ranges (Figure.1.13),
prevailing wind patterns (Figure.1.12), and the distance from the sea.

Figure 1.12: Map of surface winds
and precipitation over India, left panel
represents winter (October-January),
right panel represents summer (June-
September). Source: Diercke Interna-
tional Atlas.

Firstly, moisture-laden winds crossing the Indian Ocean are channeled
towards the western part of the basin by the mountains of East Africa.
The monsoon winds then continue their path towards the west coast
of India, where they encounter the Western Ghats (Figure.1.13). This
mountain range forces the air to rise and cool, leading to significant
precipitation on the windward side of the mountain. This is known as the
Foehn effect. The monsoon winds then continue over India, and a portion
of them recharges with moisture while crossing the Bay of Bengal before
encountering a fairly well-known mountain range called the Himalayas
(Figure.1.13) in the northeastern part of India. Once again, due to the
Foehn effect, very heavy precipitation strikes the region, which is the
area with the highest rainfall in the country, with an average of over 2500
mm of rainfall per year. For comparison, the average annual rainfall in
France is barely 850 mm of rainfall per year. Finally, as the monsoon
winds cannot pass over the Himalayas due to their high altitude, they
are deflected to the west and cross the Indo-Gangetic plains (Figure.1.13).
This region combines favourable rainfall with a topography suitable for
human activities. Thus, it is one of the most densely populated regions
in the world and is considered as the most important agricultural region
in India.

India, which was recently crowned as the most populous country in the
world, with over 1.4 billion people, is fundamentally dependent on the
monsoon which provides 80% of the annual rainfall as mentioned above.
The monsoon rainfall replenishes India’s water resources, including rivers,
lakes, and reservoirs which serve as lifelines for irrigation, hydroelectric
power generation, and domestic water supply. It is crucial for rain-fed
agriculture as sufficient rainfall during the monsoon season ensures good
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Figure 1.13: Topographic map of India.

soil moisture content and is the main source of water for irrigation, thereby
ensuring agricultural productivity. Agriculture is still the backbone of
the Indian economy and the country’s food security. Indeed, it is a major
contributor to India’s GDP, accounting for around 18% and employing
about 250 million people, which is more than the entire population of
Pakistan or Brazil, respectively the 4𝑡ℎ and 5𝑡ℎ most populous countries
in the world. Moreover, monsoon rains bring relief from the scorching
heat of summer and aid in the dispersal of air pollutants, creating a
more favorable living environment. This list of monsoon benefits is not
exhaustive, but it helps to understand how important the monsoon is to
India. Let us now tackle the dynamic structure and physical mechanisms
of the monsoon to become real specialists!

Mean circulation

In a first simplistic approximation and as defined by the IPCC AR6,
the Indian monsoon can be considered as a very large-scale land-sea
breeze system oscillating seasonally rather than diurnally as the standard
land-sea breeze systems (Figure.1.15). During the spring and summer,
the continent warms up faster than the surrounding Indian Ocean
and becomes warmer, creating a low-pressure zone over the Indian
subcontinent. To fill this «void», the moisture-laden winds from the
Indian Ocean rush into the subcontinent, rise over the heated landmass
and finally cools, leading to the formation of precipitation. The sea breeze
mechanism, although significant during the initial phase of the monsoon
known as the onset, which occurs generally at the beginning of June,
becomes insufficient to explain the persistence of the rainfalls once the
monsoon has set in. It is then time to look up to find the complementary
mechanism because the explanation is at the top! Indeed, the monsoon’s
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sustenance stems from the release of latent heat through precipitation
and the heating effect of the Tibetan plateau, culminating at an average
altitude of 5 km, in the high troposphere. This heat release generates a
similar situation to that at the surface, with a meridional temperature and
pressure gradient between the Subtropics and the Equator in the upper
troposphere, which feeds the anticyclonic circulation and the associated
divergence in the upper troposphere. Thus, during the monsoon onset, it
is the surface situation that starts the machine by "pushing" the circulation
from below, while other mechanisms then take over and "pump" the
circulation from the upper troposphere. This view still gives only a rough
picture of the Indian monsoon and a regional explanation of its origins.
It should be kept in mind that the monsoon is part of a planetary-scale
phenomenon involving the northward migration of the ITCZ during the
boreal summer as a part of the Hadley circulation, as well as the zonal
Walker circulation. So while these regional mechanisms provide a local
explanation for the origin of the Indian monsoon, it’s just one piece of the
larger puzzle that also involves global atmospheric circulation patterns
and the migration of the ITCZ.

Lower-level circulation

Figure.1.12 illustrates the low-level circulation of the Indian monsoon,
with the convergence of moisture-laden winds from the southwest over
the Indian Ocean towards India during boreal summer and an opposite
wind pattern during boreal winter. As we said earlier, winds then interact
with the Indian topography to shape the spatial distribution of rainfall.

Upper-level circulation

Figure 1.14: Climatology (1971-2000) of
June-August geopotential height anoma-
lies (shading in gpm, relative to the mean
of the whole domain) and winds (arrows)
at 200 hPa. From (Dai et al., 2013).

In response to the meridional temperature gradient in the upper tro-
posphere, resulting from the release of latent heat and heating from
the Tibetan Plateau, an anticyclonic circulation is established around
200-300 hPa over India. This anticyclonic circulation gives rise to the
Tropical Easterly Jet (TEJ) around 15°N (Figure.1.14) concurring with the
thermal wind relationship. This jet extends from East Asia to the west
coast of Africa and only exists during the boreal summer. It is fed not
only by the Indian monsoon but also by the Sahelian monsoon as we will
see next. The southern branch of this anticyclonic circulation at higher
levels is also an integral part of the meridional Hadley cell during boreal
summer illustrated in Figure.1.7 (bottom panel). This illustrates the tight
connection between the local Hadley cell and the Indian monsoon. The
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strength of the Tropical Easterly Jet (TEJ) can be used as a measure of
monsoon dynamics’ intensity since it is responsible for its formation.
However, TEJ modulation can also influence the monsoon through the
modulation of the vertical shear it induces, giving it an ambivalent role
Dai et al., 2013).

In a nutshell

Figure.1.15 provides a summary of the main elements of the Indian
monsoon circulation we have discussed above, but the complexity linked
to the topography and the three-dimensional nature of the circulation
must always be kept in mind. Here’s a good thing done! Let’s not stop
here and strike while the iron is hot! For the next step, I propose a similar
scenario but with a different actor: it’s the turn of the Sahelian monsoon
to present itself.

Figure 1.15: Conceptual diagram of the
Indian monsoon circulation opposing
summer and winter seasons.
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1.4.3 The Sahel monsoon

Description and stakes

The Sahel is a region in West Africa which marks a transition zone
between the Sahara desert to the north and the more fertile savannas and
forests in equatorial Africa to the south. The origin of the name "Sahel" is
not entirely clear, but it is believed to come from the Arabic word "sahil"
which means "coast" or "shore". This is likely due to the fact that the
Sahel region is located on the southern edge of the Sahara desert and is
sometimes referred to as the "shore of the desert". The climate of the Sahel
is generally dry, with a short rainy season lasting from June to September,
which provides between 80% and 90% of the annual rainfall.

Figure 1.16: Annual average rainfall
over north Africa. The purple box corre-
sponds to the Sahel.(OECD, An atlas of
the Sahara-Sahel:Geography, Economics,
Politics; 2014).

We can see from Figure.1.16 that the spatial distribution of the annual
precipitation is remarkably zonal: the further away from the Equator,
the less it rains. This is in stark contrast with the complexity of the
precipitation distribution that could be found in India (Figure 1.12).
Can you recall what factors contributed to this complex pattern of
precipitation over India? Yes, topography, I see that you’ve been paying
attention! One of the peculiarities of the Sahel is that there are no major
mountain ranges or massifs blocking the path of moisture-laden winds.
It is a relatively flat region, with a remarkably zonal coastline, which
results in a relatively uniform penetration of winds towards the north
during the monsoon season, and therefore rainfall. The strong meridional
precipitation contrast (Figure.1.16) has resulted in different livelihoods
and settlement patterns, with nomadic herders being more common in
the drier northern part, while sedentary farmers are more prevalent in the
southern part. This North/South contrast in average annual precipitation
is also reflected in its variability, as shown in Figure.1.17, where it can be
observed that precipitation varies strongly from one year to another in
the northern part of the Sahel.

According to the Food and Agriculture Organization (FAO) of the United
Nations, the agriculture sector in the Sahel provides employment and
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Figure 1.17: Coefficient of variation for
annual precipitation calculated over 1901-
2006 (standard deviation normalized by
the mean). Extracted from An Atlas of
the Sahara-Sahel (OECD, An atlas of
the Sahara-Sahel:Geography, Economics,
Politics; 2014).

income for around 80% of the population, including smallholder farmers
and pastoralists, who rely on agriculture and natural resources for their
livelihoods. A consequence is that the socio-economic situation of the
Sahel region is closely linked to the intensity of the Sahelian Monsoon.
As such, the monsoon rainfall is a critical factor in shaping the region’s
political and security landscape. Indeed, while the region has always been
characterized by a complex and conflict-prone geopolitical situation, the
large variations in rainfall amount that have occurred in recent decades
(Biasutti, 2019) have certainly added fuel to the fire. By forcing farmers
to adopt new practices, the changing monsoon rains have intensified
competition for land and resources, generating waves of migration that
further accentuate the geopolitical instability of the entire West Africa
region. Insofar as the Sahel currently has 150 million inhabitants, with
one of the highest growth rates on the planet which will bring the region
to 350 million inhabitants by 2050, we realize the importance of the
monsoon and the importance of understanding it for the local population.
But enough chattering, let’s draw up a portrait of this monsoon, which I
am sure you are already passionate about!

Mean circulation

As was the case for its Indian counterpart, the Sahelian monsoon can
be roughly described as a large-scale thermal breeze. At the beginning
of summer, the SSTs of the Gulf of Guinea are cold compared to the
continents, especially the Sahara north of the Sahel, which warms up
intensely during this time of the year. The Sahara then becomes the seat
of a large low-pressure zone called the Saharan Heat Low, leading to dry
convection, which is limited in altitude by the subsiding branch of the
Hadley circulation. As a consequence of the large meridional temperature
gradient, moisture-laden winds from the Atlantic Ocean rush into the
subcontinent and are "drawn" towards the thermal low pressure zone.
These winds from the south eventually meet the winds from the Heat Low,
known as the Harmattan. It is the convergence of these surface winds
and the resulting upward movement that gives rise to the convective
and rainy events that collectively form the Sahelian monsoon (Fig.1.18).
Just like the Indian monsoon, the Sahelian monsoon can be seen as a



1.4 It’s monsoon time! 23

part of the ITCZ and thus integrates into the global-scale atmospheric
circulation and factors that can influence it such as the inter-hemispheric
temperature gradient and energy imbalance (Schneider et al., 2014).

Lower-level circulation

Figure.1.18 illustrates the path of the winds to the Sahel during the
monsoon season. Coming from the Atlantic Ocean, they cross the Equator
due to the significant meridional thermal gradient, both inter-hemispheric
and local. They then turn eastward due to the Coriolis force inversion
and rush towards the lands, where they eventually meet the Harmattan
around 15°N.

Figure 1.18: Mean June-August surface
winds from ERA40 (1958-2001). Unit is
𝑚.𝑠−1. The isolines representing wind
speed are drawn every 2𝑚.𝑠−1 starting
from 4𝑚.𝑠−1. Colors from purple to red
are proportional to the wind speed. Ex-
tracted from Joly et al (2008).

Upper-level circulation

In the mid-troposphere, the situation is a bit more complex than for the
Indian monsoon. Around 600 hPa, we find the African Easterly Jet (AEJ)
which originates from the thermal contrast between the very hot air
masses coming from the Heat Low (45°C at the surface) and the relatively
cooler air masses coming from the Gulf of Guinea (25°C at the surface).
The AEJ plays a significant role in the development of thunderstorms and
other convective systems in the region by providing a source of warm,
moist air that can fuel these storms. Its average position is around 15°N
(Figure.1.19).

In the upper troposphere, a familiar face can be found! We explained
earlier that the strong pressure gradient near the tropopause resulting
from the intense convection of the Indian monsoon gives rise to the
TEJ (Tropical Easterly Jet). The situation is similar here, where the high
pressures generated at high altitude by Sahelian convection will extend
the TEJ from the Indian monsoon. Over the Sahel region, however, the
TEJ is located between 5°N and 10°N, which is further south compared to
its Indian counterpart. Due to its relationship with convection, the TEJ is
an important factor in modulating the Sahelian monsoon. (Figure.1.19).

In a nutshell

Once again, a picture is worth a thousand words! Figure.1.20 summarizes
the key elements of the circulation of the Sahelian monsoon! However,
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Figure 1.19: Mean June-August mid and
upper-level winds from ERA40 (1958-
2001). Unit is 𝑚.𝑠−1. The isolines rep-
resenting wind speed are drawn every
2𝑚.𝑠−1starting from 4𝑚.𝑠−1. Purple to
red colors are proportional to the wind
speed. Extracted from Joly et al (2008).

for both monsoons, we have mentioned that the amount of precipitation
is not the same every year, or even every decade. I understand that you
are now curious about why this is the case, and the answers you are
seeking are just ahead, with a section that will discuss the variability of
the monsoon systems, their anthropogenic or natural origins, as well as
the underlying mechanisms!
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Figure 1.20: Conceptual diagram representing, on a zonal average, the key elements of the African monsoon during the boreal summer.
Source: Manuel de météorologie tropicale, Beucher (2010).

1.5 Monsoons variability: from interannual to

long-term trend

Monsoon variability refers to the fluctuations or changes that occur over
time in the characteristics of the mean systems beyond the seasonal
variations we have described above, with a particular focus on precipi-
tation. These fluctuations in precipitation can occur over a wide range
of time scales, and in particular from annual to multidecadal timescales.
Typical timescales are a bit longer in the Sahel region, as illustrated
in Figure.1.21. Such low-frequency variations in the amount of rainfall
during the monsoon season can have dramatic consequences as both
India and Sahel are largely dependent on it. In years to decades when
the monsoon brings above-average rainfall, it can lead to flooding and
landslides, causing loss of life and damage to property and infrastructure.
On the other hand, in years of below-average rainfall, drought conditions
can occur, leading to water scarcity, crop failures, and food insecurity.

In this thesis, we investigate long-term anthropogenic changes, whether
they have already occurred or are yet to come, to answer a paradoxically
simple and complex question: how do monsoons change? In reality,
this question is a big investigation with many remaining grey areas.
Generations of detectives have taken over from each other, leaving us
with many clues, but also some inconsistencies. It is up to us to shed light
on this matter. Fortunately, we are like Sherlock and Watson, aren’t we?
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To begin the investigation, the first step is to present very briefly some
of the suspects and their operating methods. Although we will present
them individually, keep in mind that complex relationships connect or
oppose our suspects. In a later stage, we will present our investigation
method and the uncertainties left by the investigators who came before
us. Remember that we said at the beginning of the introduction that there
are a priori two categories of suspects: those belonging to the natural
variability gang, and those belonging to the anthropogenic forcing mob.
We are trying to isolate the responsibility of the latter and understand
how they act, but let us keep in mind that they are likely to interact.

Figure 1.21: Anomalies (in %) of (a) Indian and (b) Sahelian rainfall compared to long-term average (1901-2012). The solid line represents
the moving average over a 9-year interval (4 years before and 4 years after). The Indian panel uses Indian Meteorological Department
(IMD) dataset and Sahel panel uses GPCP.

1.5.1 The natural variability gang

The members of this gang are numerous and operate on very variable
time scales, but here only those identified by our predecessors as likely
to exert long-term changes on monsoons will be presented (Biasutti,
2019;Huang et al., 2020).

The Interdecadal Pacific Oscillation (IPO): the Pacific kingpin

Figure 1.22: Photofit of the positive phase
of the IPO (from Deser et al., 2010).

The Interdecadal Pacific Oscillation (IPO) refers to the long-term variabil-
ity of the Pacific Ocean SSTs on a timescale of decades (20-30 years period,
Power et al., 2021). The IPO is characterized by a pattern of warming
and cooling phases in the tropical and northern Pacific Ocean, which
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can have significant impacts on global weather and climate patterns.
During a positive phase of the IPO, the tropical Pacific Ocean experiences
warmer-than-average SSTs, while the northern Pacific cools (Figure.1.22).
The positive phase of the IPO is associated with more frequent El Niño
events, which are associated with weaker than usual Indian and Sahe-
lian monsoons as you already know ! Conversely for the IPO negative
phase.

The Atlantic Multidecadal Variability (AMV) : the Atlantic ringleader

The Atlantic Multidecadal Variability (AMV) refers to the long-term
variability of SSTs in the North Atlantic Ocean (Qin et al., 2020). The
AMV is characterized by a fluctuation of several decades, with a typical
duration of 60-80 years. During the positive phase of the AMV, the
SSTs in the North Atlantic are warmer than average (Figure.1.23), while
during the negative phase, the SSTs are cooler than average. During the
positive phase of the AMV, there tends to be an increase in rainfall over
the Sahel/Indian region and conversely for the negative phase (Biasutti,
2019;Sandeep et al., 2022). In climate models, and in the absence of
external forcings, the AMV is typically associated with modulations of
the Atlantic Meridional Overturning Circulation (AMOC) (e.g. Knight
et al., 2005). Nevertheless, some have suggested that the AMV is also
driven by changes in anthropogenic radiative forcing (Bellomo et al.,
2021). The relative role of both is the topic of an active debate in the
literature (Qin et al., 2020).

Figure 1.23: Photofit of the positive phase
of the AMV (from Deser et al, 2010).

Knowing what they look like and what is their relationship with mon-
soons will be enough for the rest of the day, so let’s not dwell on their
cases! Let’s get down to business with the newcomers, who have gained
notoriety over the past 150 years and are now among the most influential
spheres of climate variability: the anthropogenic forcings.
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1.5.2 The anthropogenic forcing mob

Aerosols: the chilly outlaw

Anthropogenic aerosols are tiny particles of solid or liquid suspended
in the air, which are emitted by human activities such as burning fossil
fuels, industrial processes, and transportation. They are not well-mixed
and tend to stay close to where they were emitted.

Modus operandi:

First, they can absorb or scatter sunlight and reduce the amount of
solar radiation that reaches the surface. This is called the direct effect of
aerosols and leads to a cooling effect from which it gets its nickname.
Historically, most aerosol emissions have occurred in the Northern
Hemisphere due to earlier industrialisation. On a global-scale, this
asymmetric distribution on the surface of the globe has been accompanied
by an equally asymmetric cooling. Aerosols are thus able to modify the
inter-hemispheric temperature gradient, which is reduced during the
boreal summer. Remember that the Hadley cell deforms to redistribute
the excess energy, resulting in the northward migration of the ITCZ in
summer, of which the monsoons are a part? Great! The consequence
of a reduction in this inter-hemispheric gradient is therefore a weaker
northward migration of the ITCZ (Lau and Kim, 2010), which results in
weaker precipitation over the monsoon areas. On a regional scale, aerosols
are mostly emitted over continental surfaces, so the cooling they induce
modifies the land/sea temperature gradient which is also one of the
drivers of the monsoon. The monsoon circulation can therefore be slowed
down, with less moisture-laden winds converging on the monsoon areas
and therefore less precipitation (Bollasina et al., 2011;Biasutti, 2013). On a
local scale, while the absorption of part of the sun’s radiation by aerosols
cools surface temperatures, it warms the atmospheric layer where they
are concentrated, i.e. the first two kilometers of the atmosphere. This has
the effect of reducing the temperature difference between the surface
and the atmosphere. By now you know the drill: it is the differences in
energy distribution that set the circulation in motion. As a result the
circulation slows down, the atmosphere is said to be more stable and
therefore less likely to generate precipitation (X. Li et al., 2018). Finally,
aerosols have a second effect which is called indirect and corresponds to
the modification of the formation and properties of clouds, due to the
fact that they can serve as a condensation nucleus. This can change the
albedo or the lifetime of clouds, leading to changes in the precipitation
regime and the energetics of the climate system. We will leave this aspect
aside during our work, but it is good to keep in mind that this indirect
effect of aerosols has important implications for the climate system and
suffers from high uncertainties (X. Li et al., 2018). This suspect therefore
has a very broad scope, from global to local, but the evidence is consistent
that they tend to reduce rainfall. Moving on to the other big fish in the
climate underworld?

GHGs : the warming menace

GHGs are gases that absorb and reemit thermal infrared wavelengths,
causing Earth’s temperature to rise.
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Modus operandi:

It is worth remembering that precipitation comes from the lifting of
moisture-laden air masses to higher altitudes. On global average, the
increase in temperature associated with GHGs is accompanied by an
increase in absolute humidity under the Clausius-Clapeyron law at a
rate of 7%/°C (Allan et al., 2020). If circulation remains unchanged, you
might think that precipitation should increase by the same amount, and
you would be right. However, simulations using climate models that
only consider GHG forcing show an increase in precipitation of only
2-3%/°C, suggesting that GHGs are slowing down the circulation (Allan
et al., 2020). Here we are touching upon the complexity of this forcing:
it exerts contradictory effects on precipitation. If we understand that
GHGs are likely to increase precipitation by increasing the water vapor
content of the air, you may be wondering why they slow down circulation,
and more specifically why they slow down monsoon circulation? No
preferential treatment for suspects in this manuscript! So we’ll use the
same description as we used for aerosols, from the global to the local
scale, to understand the effect of GHGs on monsoon circulation.

Firstly, and this is an argument we have already used previously, land
heats up more quickly than the oceans’ surface. In a simplistic view, as land
surfaces represent 40% of the area in the Northern Hemisphere compared
to 19% in the Southern Hemisphere, the Northern Hemisphere warms
more than the Southern Hemisphere. This amplifies the inter-hemispheric
gradient in the summer, which favors the northward migration of the
ITCZ and promotes monsoon circulation, following the same reasoning
as for aerosols’ global effect. At the regional scale, the intensification of the
land-sea temperature contrast is favorable to monsoon precipitation as it
accentuates the local circulation by geostrophy (Chiang and Friedman,
2012;Zuo and Zhang, 2023).

But we still haven’t presented anything that can reduce circulation,
right? There it is! The reduction of circulation by GHGs is the result of
opposing effects, and we will present here those that prevail and tend
to reduce it. GHGs absorb and re-emit infrared radiation, leading to
an increase in the amount of energy trapped in the atmosphere and
consequently its temperature. This temperature increase is greater in the
upper troposphere than in the lower troposphere, which implies again a
reduction in the vertical temperature gradient. As a result, there is less
energy difference between the vertical levels, and therefore less need
for redistribution, which translates into enhanced atmospheric stability
and less ascending motion. One last crucial point is that temperature
changes over the oceans are not homogeneous, leading to changes in SST
gradients and, thus, SLP gradients and surface winds. In the Pacific, for
example, models predict that the eastern part of the basin will warm
more than the western part, reducing the temperature gradient across
the Pacific Ocean and thus the associated Walker cell. This example can
be extended to other basins, and in reality, the entire Walker circulation,
of which monsoons are an integral part, is slowed down (Wang et al.,
2014;G. Li et al., 2017).



30 1 Introduction

Land surface condition : the threat from below

Land surface conditions refer to the physical characteristics and properties
of the Earth’s land surface, such as topography, soil type, vegetation
cover, land use, and land cover.

Modus operandi:

Firstly, J. Charney et al., 1977 suggest that changes in surface conditions
such as deforestation or land use change result in an increase in surface
albedo, causing more incident radiation to be directly reflected rather
than absorbed. This leads to a decrease in temperature over land and
consequently of the temperature contrast between land and sea. Should
I repeat once again that a weaker thermal contrast implies a weaker
monsoon circulation because there is less need for energy redistribution?
Secondly, trees and vegetation play a critical role in the hydrologic cycle
by absorbing and storing water from the soil and the atmosphere, and
releasing it back into the atmosphere through transpiration. Consequently,
deforestation and land use change can lead to a decrease in soil moisture
and a reduction in the transpiration rates of plants, which in turn can
lead to a decrease in atmospheric humidity and a reduction in rainfall
(Baldocchi, 2014; Chadwick et al., 2019).

What’s next?

You’ve become experts! You know about the mean state and variability of
the Indian and Sahelian monsoons, the factors that can modify them, and
some avenues for understanding how. However, an important question
awaits before continuing the adventure. For those of you who have
seen The Matrix, consider now that I am Morpheus: Do you choose the
blue pill or the red pill? The blue pill ends your reading here, and you
remain in the world of observations. You can study past climates, but
your data is often scattered in time and space, and internal variability
gives you headaches. The red pill takes you with me into the Matrix,
more commonly known as the world of climate models. You can conduct
experiments on a global scale, eliminate internal variability by conducting
ensembles of simulations, and venture into seeing the future. However, I
cannot promise a perfect world there; reproducing the climate system
is not an easy task. Just like Neo, you’ve embraced the red pill, so
let us embark on a journey to Wonderland. In the next and final part
of this introduction, we will present what a climate model is, how it
works, the issues it addresses, and its limitations. This will lead us to the
questions that mark this thesis, especially those we have attempted to
answer in Chapters 3 and 4: can we explain the uncertainty of models in
explaining the historical changes in the Indian monsoon? Can we explain
the uncertainty of models in projecting the Sahelian monsoon?
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1.6 Climate models

1.6.1 History of climate models

In climate science, as in other scientific fields, experiments are the
keystone of knowledge! The problem is that we’ve already started playing
sorcerer’s apprentice with the unique Earth we have, and now we need to
do experiments to understand the poorly controlled one we’ve launched
at full scale. So, to make up for the absence of “Earth2” and to provide a
playground for our community, some brilliant scientists have reproduced
the climate system on a computer.

Figure 1.24: Chronology of climate
model development from “Introduction
to climate modelling” (Thomas Stocker,
2011).

This adventure began in 1922 with the first numerical weather prediction
by Lewis Fry Richardson, who based his work on Bjerknes’ assertion that
changes in the state of the atmosphere could be predicted using a set
of seven “primitive equations” and a precise initial state. Although the
seven equations evoked by Bjerknes are still the ones used today, Edward
Lorenz, who gave us the honour of the first words of this thesis, will prove
him wrong about the initial conditions in the 1960s, thus introducing the
notion of chaos into meteorology. It was not until the early 1950s and
the development of the first computers that regional weather models
really took off, notably under the impetus of John Von Neumann in
the USA and Carl Gustaf Rossby in Sweden. After initially focusing on
regional models, the first global atmospheric model was created in 1956
by Norman Philipps. The meteoric progress in computer science made it
possible to make the models increasingly complex, and it was in 1976 that
the first coupled global ocean-atmosphere circulation model (CGCM)
was created. This achievement earned Syukuro Manabe and Klaus Has-
selmann the Nobel Prize for Physics in 2021. Subsequently, several other
laboratories developed their own CGCMs, making them more complex
over time both in terms of resolution and physical processes taken into
account (Figure.1.24), giving rise in 1995 to the international Coupled
Models Intercomparison Project (CMIP), whose aim is to understand the
dynamics of past and future climate and to serve as a scientific basis of
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the IPCC reports. In a sense, we are the heirs to this scientific heritage,
since this thesis will use the results of the sixth iteration of this initiative:
CMIP6.

In this brief history lesson, we have described the milestones that have
marked the birth and development of climate models, but what do
models look like when we look inside?

1.6.2 Anatomy of a CGCM

The primitive equations

To create a climate model, the first step is to establish the laws that
regulate its different components, known as primitive equations. In the
context of ocean-atmosphere circulation models, the foundation lies in
the conservation of mass, momentum, and energy. Additional equations
are required to describe the specific characteristics of each component
and the variables that govern them. For instance, an equation for the
conservation of moisture is necessary for the atmosphere, while one for
the conservation of salinity applies to the ocean. In addition, an equation
of state is needed to relate the thermodynamic variables in the different
components of the climate system, such as the famous ideal gas law
for the atmosphere. By counting these equations, as the conservation of
momentum equation actually contains three equations (one per spatial
direction), one can conclude that there are seven fundamental equations,
as Bjerknes pointed out (V. Bjerknes, 1904).

I spare you here the formulation of these equations to prevent us all
from having nightmares. They form such a complex set that there is no
exact solution except in rare and simple cases. Models therefore seek
an approximate solution through numerical methods that vary across
the CGCMs. This represents a first cause of uncertainty. Nevertheless,
I would like to remind you here that one million dollars is promised
to whoever proves that a solution always exists for the conservation
of momentum equations, enough to take a few years’ vacation by the
seaside!

The Earth through computer’s eyes

The world is continuous and thus contains an infinite number of points,
unlike computer memory which is finite. In order to overcome this
problem, we need to transform the Earth into a discrete set that a
computer can process. Since the Earth is three-dimensional, we will
divide it into a set of "shoeboxes" called grid cells and the computer
solves the primitive equations on such a mesh of grid cells (Figure.1.25).
Note that there are now alternative grid forms, notably the icosahedral
grid, which avoids certain pitfalls, but the idea remains the same.

The size and height of the grid cells define the spatial and vertical
resolutions of the models, which currently averages 100 km, compared
to 500 km in 1990, when the first IPCC report was published. The finer
the resolutions, the more the models are able to account for small-
scale phenomena and provide information at regional and local scales.
However, increasing the resolution also results in an increase in processing
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Figure 1.25: Representation of the three-
dimensional mesh of the Earth. The col-
ors represent temperature. Courtesy L.
Fairhead, LMD.

time. In general terms, doubling the resolution of a model requires ten
times more computing power to achieve the same processing time.
Therefore, we cannot increase the resolution of models indefinitely,
especially since these computations are very energy-consuming and
carbon-emitting (Balaji et al., 2022). The same principle applies to time,
which must be discretized into timesteps, which define a temporal
resolution for the integration of the model. Therefore, we also understand
that we cannot obtain as many states of the climate system as we would
like, and that a compromise must be found between spatial and temporal
resolutions and the physical processes represented in the model.

So far, there doesn’t seem to be anything too serious, but hold on tight,
troubles are about to rear their head. Indeed, an important question must
surely be bothering you: what happens to phenomena that are smaller
than the grid size, or shorter than the timestep? The models are unable to
explicitly solve them, and yet they can not be neglected: clouds are very
frequently smaller than one hundred kilometers and the condensation of
water vapor occurs on an even smaller scale. This touches upon the “apple
of discord” between modelers and is a prominent source of uncertainty
in the results of climate models: the parameterization.

Parameterization of climate models

Parametrization refers to representing the average effect of complex
physical processes that cannot be directly solved on the model’s grid
or resolution. Figure.1.26 illustrates some climate processes which typi-
cally need to be parameterized in current atmospheric models but such
processes are also present in ocean models. The principle of parame-
terization is to express the averaged effect of phenomena that occur at
unresolved scales in terms of variables and phenomena that the model
explicitly resolves. This process therefore involves finding robust physical
or statistical relationships between phenomena occurring at different
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spatiotemporal scales. Finding such relationships involves making ad-
hoc approximations and assumptions about physics, as well as from a
mathematical standpoint to ensure their tractability in models. An unre-
solved process is not linked to a unique parameterization, and modelers
therefore make choices between the different relationships that exist, and
thus between the different approximations that may have been made
along the way. Additionally, the effectiveness of parameterizations is
contingent upon the chosen spatio-temporal scales. Hence, a parame-
terization that yields favorable results for a spatial resolution of 100 km
might not necessarily hold true for a resolution of 30 km. This highlights
why increasing the spatial and vertical resolutions is not a definitive
solution for generating better climate models as it often opens the need
for a new parametrization. The variety of climate models thus partly
finds part of its origins in the choice of unresolved phenomena that they
choose to represent, as well as the parameterization they use to do so.
These choices are a major source of uncertainties for the models (Hourdin
et al., 2017).

Figure 1.26: A list of 20 climate processes
and properties that typically need to
be parameterised within global climate
models (from MetEd, The COMET Pro-
gram,UCAR).

In particular, the parameterization of a certain element of the climate
system constitutes a thorn in the side of climatologists, and especially for
us: clouds (Peatier et al., 2022). Clouds cover approximately two-thirds of
the Earth’s surface at any given time, yet, individual clouds can form and
dissipate within minutes. Moreover, clouds can both warm and cool the
planet depending on the type of cloud, their altitude and the time of day.
This therefore requires parameterizations covering a very wide range of
spatio-temporal scales, with phenomena ranging from microphysics to
convection. In fact, clouds represent the biggest source of uncertainties
in the projections made by models (Held and Soden, 2006;Vial et al.,
2013;Schneider et al., 2017)(, and particularly in our case because they are
inherently linked to precipitation and therefore to the monsoon. Beyond
their direct link to precipitation, their impact on the Earth’s radiative
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balance and the resulting feedbacks are capable of shaping patterns of
future warming and precipitation.

The critical point of climate models is therefore their parameterization,
particularly for clouds and thus precipitation. We now have one final
point to address since we are studying the anatomy of a climate model.
If the grid constitutes its skeleton, the primitive equations and parame-
terizations are the muscles that set it in motion, but how is it fed? What
do we need to give it so that it can start working?

The inputs of a climate model

In meteorological forecasting, the initial state of the system is critical
for making accurate predictions. Thus, after a dozen days at most we
are no longer able to predict the realizations of the atmospheric system,
due to uncertainties in the initial state: we have reached the limit of
meteorological forecasting. Nevertheless, on longer time scales, the
weather realizations tend to fluctuate around what is defined as an
attractor in Lorenz chaos theory. In the context of ocean-atmosphere-
cryosphere coupled system, this attractor represents the “climatological
mean” as defined at the beginning of this manuscript. This attractor
is independent of the initial state of the system, and studying climate
change consists in investigating the possible changes of this attractor
due to external constraints. This will be the main context of this thesis.
Note that initial conditions may however be important for the climate
trajectories on interannual to decadal timescales, consistently with the
typical memory of the ocean and cryosphere. This is the topic of decadal
predictions, which we will not tackle here.

One consequence of not providing an observed initial state is that the
simulations we carry out with climate models have no reason to be in
phase with the observations, even if the models were perfect and climate
predictability unlimited. Thus the model could not follow the exact time
sequence of weather events as they occur, it has for example no reason to
reproduce the El Niño event of 1982-1983 at this timing. In practice, several
(10-100) simulations with different initial states are performed, which is a
huge advantage in the context of this manuscript as they provide one
way of getting rid of the internal variability of the system (Lehner et al.,
2020;Maher et al., 2021). Indeed, the models reproduce the low-frequency
internal variability of the climate (more or less realistically), but with a
random phase shift in climate models. Therefore, if we average multiple
realizations of a given climate model that are initialized differently, we
can easily “remove” the internal variability, which is not the case with
observations with which we only have one realization. This is one of the
major advantages of the models, which make it possible to isolate the
anthropogenic component (Deser et al, 2020; Maher et al, 2021), and we
will not fail to use this to our advantage in Chapters 3 and 4!

In our context, the most important inputs in climate models are external
forcings, which are elements that cause variations in the amount of energy
received (solar constant, aerosols) or trapped (GHGs) in the climate
system. To accurately model past climates, a thorough understanding
of both natural and anthropogenic external forcings and their temporal
evolution is crucial. This mainly requires time series of CO2, methane,
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aerosol, and nitrous oxide concentrations, which are then translated into
radiative forcing. For projections, the same concept applies, except that
instead of measuring past concentrations, scenarios are developed to
imagine future concentrations depending on hypothetical economical
and political considerations (Figure.1.27). As an illustration, the sixth
report from the IPCC considers five main scenarios, ranging from the
most pessimistic to the most optimistic regarding our future emissions,
thereby creating a range of possible futures for the Earth.

Figure 1.27: CO2 (GtCO2/yr), CH4 (MtCH4/yr), N2O (MtN2O/yr) and SO2 (MtSO2/yr)emissions are provided over the historical
period and for six scenarios, along with the associated radiative forcing (from IPCC, 2021: Climate Change 2021: The Physical Science
Basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change).

1.6.3 Climate models uncertainties

I promised you an imperfect world in which we could see the future and
here we are about to play modern day Nostradamus. If astrology inspired
his prophecies, we will for our part stick to using climate models. I leave
it up to you to try his method and send me your results!

Figure.1.28 shows the sources of uncertainty concerning the future of pre-
cipitation at various time horizons, distinguishing the three contributors
discussed in the previous sections of this introduction: internal variability,
models and scenarios. At the global scale and at short and medium terms,
we can see that the uncertainty of the future of precipitation is little linked
to the scenario considered. This is due to the fact that at this time horizon,
the forcings of the different scenarios are relatively similar and so are
the impacts on climate variables. Moreover, this scenario uncertainty is
considered irreducible from the point of view of climate science, since the
scenarios are based on socio-economic decisions (Lehner et al., 2020).

Conversely, the uncertainty related to internal variability, which corre-
sponds to the fact that a climate projection is uncertain at any given
time in the future due the chaotic nature of the climate system, plays an
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Figure 1.28: Geographical and zonal mean distribution of the percentage of variance explained by the three sources of uncertainty in
CMIP6 projections of 20-year mean precipitation changes in 2021–2040 (top), 2041–2060 (middle) and 2081–2100 (bottom) relative to the
1995–2014 base period: Internal climate variability (left), model response uncertainty (middle) and scenario uncertainty (right, considering
four plausible concentration scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Percentage numbers give the area-weighted global
average value for each map. Right panels show the zonal mean fractions over both land and sea (solid lines) and over land only (dashed
line). Source: Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change.

important role in the short-term uncertainty but its role almost disappears
at the end of the period. This uncertainty is intrinsically irreducible on
long time scales after which information about the initial conditions has
been lost, which corresponds to a decade at most for the climate system
(Lehner et al., 2020).

But there is something that is valid on all time scales, and which is even
more true the further into the future we go: the dominant uncertainty
is that of the models. These uncertainties, as explained earlier, are
related to structural differences between models arising from physical
and numerical choices made by modeling centers, from which different
responses to forcings arise both in the time and spatial dimensions. In
principle, it is possible to reduce this uncertainty as it is simply related to
the imperfection of the climate models. So this is rather good news: the
most important uncertainty is the one we can control, at least theoretically!
Now that we are convinced that focusing on the models is the best way to
explore uncertainty about the future, it is time to look at what they project
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for the Indian and Sahelian monsoons and the associated discrepancies
between models.

1.6.4 The fateful questions of this thesis

Figure 1.29: Indian (left panel) and Sa-
helian (right panel) monsoon precipita-
tion change in near-term (2021–2040),
midterm (2041–2060), and long-term
(2080–2099) projections under SSP1–2.6,
SSP2–4.5, SSP3–7.0, and SSP5–8.5 sce-
narios, relative to the climatology in
1995–2014 (unit: %). The thick horizontal
lines represent the Coupled Model In-
tercomparison Project Phase 6 (CMIP6)
multimodel ensemble, while the bars in-
dicate the 10𝑡ℎ to 90𝑡ℎ percentile ranges
(from Chen et al, 2020).

Figure.1.29 shows the relative evolution of Indian and Sahelian monsoon
rainfall for different periods and scenarios, ranging from near- to long-
term, and from a significant reduction in GHG emissions to an energy-
intensive economy based on fossil fuels. In both regions, monsoon
precipitation tends to increase over time, and the more emissive the
scenario, the higher the increase. At first sight, this seems to be linked to
the increase in absolute humidity, which is a consequence of the Clausius-
Clapeyron relationship in a warming world (Z. Chen et al., 2020). On
average, models predict a 20% increase in monsoon precipitation for
the Indian monsoon and 10% for the Sahelian monsoon compared to
current values. As a reminder, a drought or flood is considered to occur
when precipitation differs by 10% from current climatology. For the high-
emission scenarios, the future therefore looks more like a threat than a
promise, although locally some regions may benefit from these changes.
However, whether it is happiness or misfortune, a key-point is that there
are strong uncertainties regarding these projections. For the Sahel region,
they are such that we are not even sure whether we will experience a
decrease or an increase in precipitation, or perhaps no change at all!
These large uncertainties have persisted for many generations of models
because of the complexity of simulating the monsoons, especially over
West Africa (Monerie et al., 2017;Z. Zhang and Li, 2022). Although models
have improved on average, the picture remains unclear and we need
to make further progress in order to be able to implement adaptation
policies, especially in the event that we do not reduce our emissions.

A first approach to better understand the uncertainties of projections
could be summed up by this quote from Niccolo Machiavelli: “Whoever
wishes to foresee the future must consult the past”. Indeed the robustness
of the models’ performance over the historical period compared to
observations seems to be a natural criterion to trust what they tell us
about the future. However, strong uncertainties persist regarding the
magnitude of the forced component of monsoon variability over the
historical period, as illustrated by the significant long-term discrepancies
among climate models when simulating Sahelian and Indian forced
precipitation changes over the historical period (Figure.1.30). Knowing
that these models are our main tool for making projections and that
the anthropogenic forcings are becoming more and more important, the
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uncertainty on the historical forced response casts doubt on the reliability
of the results produced by models, or at least, it is thought that being more
accurate over the historical period could help reduce the uncertainties
of the projection. From now on the question is fairly simple : can we
explain the discrepancies about the historical anthropogenic response of
the monsoons ? Despite all the efforts of the modelers and the convincing
results obtained, the models still make errors not only in simulating
the monsoons but throughout the climate system. One hypothesis we
can make is that these errors compared to observations, called biases,
are likely to influence the way the models respond to anthropogenic
forcing, especially if these biases occur in "critical" areas for the monsoons.
The first question that naturally arises is: do monsoon biases have an
influence on how the models simulate the monsoons’ forced response?
In other words, is there a local explanation for the disagreement on the
forced response of the monsoons? In a second step, the question can be
extended to the whole world: can biases elsewhere on Earth have an
influence on the anthropogenic response of the monsoons ? We explore
those questions in Chapter 3, in which we will partially shed light on
the origin of the model disagreement on the forced change of Indian
monsoon by linking it to biases in the Pacific Ocean. To go beyond the
article, we will extend this study to the case of the Sahel and analyze the
limitations of the methodology used.

Figure 1.30: estimation of historical forced response of ISMR in CMIP6 models. It corresponds to low-pass filtered ISMR time series
represented as normalized anomalies and expressed in % of the respective mean over 1901-2012 for each time series. The thin lines
represent represent the multi-members average for all models with more than 1 member available from the CMIP6 repository (see
supplementary Chapter 2), while bold lines represent the Multi-Model Ensemble mean (MMM) of the 25 historical members (red), the
observed AIR (blue) and IMD (orange) indices, respectively.

A second approach consists in directly trying to understand what is un-
certain within projections. Some studies have looked at the uncertainties
within monsoons themselves: is it the change in monsoon circulation
that is uncertain? Is it the change in humidity? The results show that the
uncertainty in monsoon projections mainly comes from uncertainty in
the changes in their circulation, known as uncertainty in the dynamic
response of the monsoons (Roxy, 2017;Turner et al., 2020;Z. Zhang and Li,
2022). In contrast, the models tend to agree more on the thermodynamic
response, which refers to changes in atmospheric humidity. In this thesis,
we place the question a little differently and approach the problem as
follows: what is uncertain in the projections and has an impact on the
monsoon response simulated by the models? This involves looking for
links between monsoon rainfall uncertainties and other regions on the
globe, in order to understand whether it is due to uncertainties in remote
regions, or whether the error is linked to local phenomena. Numerous
studies have established links with uncertainties on SST changes, pointing
mainly to the Atlantic Ocean for the Sahel and the Pacific Ocean for India



40 1 Introduction

(Park et al., 2015;G. Li et al., 2017;Z. Zhang and Li, 2022). In Chapter 4
we focus on the case of the Sahel monsoon and revisit these sources of
uncertainty in the light of a new methodology. We find that uncertainties
on the future inter-hemispheric gradient as well as on the mean state of
the Pacific Ocean are at the origin of more than 60% of the disagreement
of the CMIP6 models on the Sahelian monsoon projections. To go beyond
the article, we will also use this methodology on the Indian monsoon,
which will allow us to understand once again the limits of our method.

We will not provide further details in the introduction, as its purpose is
to entice you to read further! Chapters 3 and 4 will delve into the relevant
literature in more details, addressing issues related to both historical
period and projections. I know you’re already excited! This first chapter
is therefore concluded and will pave the way for the presentation of the
data, simulations and methods we have used to establish our results.
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We have presented the questions we want to answer, but in order to
move from intention to realization a crucial question arises: how? Firstly,
we need climate archives, i.e., a set of observed data that tells us what
has happened since we began introducing anthropogenic forcing into
the climate system. Ideally, these archives begin around 1850 and span
the so-called ‘historical period’ (1850-present day). For our studies, we
mainly need records of two variables: rainfall, and surface temperatures.
These variables form the core of this thesis although we have also used
a wide range of other oceanic and atmospheric variables to illustrate
the physical processes explaining the observed and simulated rainfall
and temperature evolutions as will be detailed below. Secondly, in order
to study the monsoons’ response to anthropogenic forcing, we have
chosen to make extensive use of climate models. This will allow us to
revisit the past as well as to explore the possible futures. As we have
already presented the concept of climate modeling in Chapter 1, we
will focus here on the international modeling initiative which provides
us with all the climate simulations used in this thesis: CMIP6. Finally,
after presenting the simulations and validation datasets, we will give a
quick overview of the statistical methods that will allow exploiting them
efficiently as the number of models and simulations available in CMIP6
is now quite impressive. The opportunity to travel to the land of statistics
that you have always dreamed of!

2.1 Validation datasets

2.1.1 A global portrait of precipitation

The Global Precipitation Climatology Project (GPCP, Adler et al., 2003) is
a set of monthly data on global precipitation with a spatial resolution of
2.5° latitude x 2.5° longitude. The dataset is based on a combination of
satellite observations and surface measurements and covers the period
from 1979 to present. It is an extremely valuable dataset, as it provides a
global record of precipitation by combining several types of observations,
which improve its reliability. In view of these qualities, it will serve
as a global reference for present-day precipitation climatology (1979-
2014) when assessing the model’s performance and to define the global
precipitation bias of climate models in our studies. However, it does
not go back very far in time, which poses a problem for the analysis of
long-term trends such as the anthropogenic response of monsoons.

GPCP dataset is available on National Oceanographic and Amospheric
Administration (NOAA) website:

https://psl.noaa.gov/data/gridded/data.gpcp.html

https://psl.noaa.gov/data/gridded/data.gpcp.html
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2.1.2 The case of Indian rainfall

Since no long-term trends can be estimated with GPCP, we supplement
our validation sets with two new long-term datasets specific to India:

All-India Rainfall index (AIR)

AIR (Parthasarathy et al., 1994) provides information about the amount
of rainfall received over India from 1871 to present day. The dataset is
maintained by the Indian Institute of Tropical Meteorology (IITM) and
consists of an area-weighted mean from a fixed ensemble of 306 rain
gauge stations over India, excluding the hilly regions.

India Meteorological Department (IMD)

IMD (Mohapatra et al., 2018) index provides detailed and local infor-
mation about the amount of rainfall received over India from 1901 to
present day. From this dataset, another All-India rainfall index has been
computed, also as an area-weighted mean, but based on about 6329
stations, with at least 90% data availability over the period.

IMD rainfall dataset is available on IMD website : https://cdsp.imdpune.
gov.in/

These two indices provide useful time series detailing the long-term
evolution of rainfall in India. However, these datasets have limitations. For
instance, the limited number of rain gauges for AIR does not guarantee
a good spatial sampling of precipitation in India, especially as we have
shown that spatial variability in precipitation is substantial (Figure.1.12).
On the other hand, IMD has a much larger number of stations, but
does not provide data for every time step (up to 10% of missing data),
which does not guarantee the temporal consistency of the series. These
imperfections in the datasets can lead to inconsistencies in precipitation
trends in India (Lin and Huybers, 2019;Singh et al., 2019), especially
in the recent period, as will be discussed in Chapter 3. Observations
are therefore not perfect! This is partly why it is difficult to assess the
impact of human activity on the monsoons. Another tool for assessing
this impact is climate models, which are also far from perfect, as we have
already said, but which provide a complementary vision and are just as
valuable!

2.1.3 The case of Sahel rainfall

We also complement GPCP with two long-term datasets. They are not
specific to the Sahel, but still allow long-term trends to be estimated:

https://cdsp.imdpune.gov.in/
https://cdsp.imdpune.gov.in/
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The Global Precipitation Climatology Centre (GPCC)

The GPCC dataset uses the complete GPCC station database (64.400
stations with at least 10 years of data) available at the time of analysis
(Rudolf et al., 1994). This land dataset provides monthly outputs with a
spatial resolution up to 2.5° latitude x 2.5° longitude, available from 1891
to 2023.

GPCC dataset is available on NOAA website :

https://psl.noaa.gov/data/gridded/data.gpcc.html

The DELAWARE dataset

The DELAWARE dataset is primarily based on observation-station records
that were compiled, for the most part, from several publicly available
sources such as the Global Historical Climatology Network dataset
(Peterson and Vose, 1997), the Global Historical Climatology Network
Monthly Version 3 dataset (Lawrimore et al., 2011), the Daily Global
Historical Climatology Network archive (Menne et al., 2012), and the
Global Surface Summary of Day. It provides monthly outputs from 1901
to 2014 on a 0.5° latitude x 0.5 ° longitude global grid, but again only for
land areas.

DELAWARE dataset is available on NOAA website :

https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html

2.1.4 A global portrait of surface temperature

To describe global surface temperatures and assess the models tempera-
ture biases, we will use data from ERA-Interim (ERAi, Dee et al., 2011),
which are global atmospheric reanalyses. What is a reanalysis, you might
ask ?

Climate reanalysis is a method of optimally combining historical obser-
vations from a variety of sources, including weather stations, satellites
and ocean buoys, with atmospheric models to create a record of past
weather and climate. It provides a fairly long-term and high-resolution
dataset of various atmospheric and surface variables, including surface
temperature. However, it should be borne in mind that combining obser-
vations and models makes one vulnerable to the errors of each. Indeed,
as we have said, observations may be limited in quantity or quality, and
models may not correctly reproduce all the physical processes at work.
As precipitation is more difficult to observe and model than temperature,
precipitation products from ERAi may be subject to greater uncertainty
and bias compared to temperature products. This is why we will only
use reanalyses in the case of surface temperatures. This dataset will serve
as a global surface temperature reference for the present-day climatology
(1979-2014), allowing us to define the global surface temperature bias
of climate models. Like GPCP, this dataset does not go back very far in
time and therefore cannot be used to assess long-term trends. The spatial
resolution of the ERAi is approximately 80 km and we used monthly
outputs.

https://psl.noaa.gov/data/gridded/data.gpcc.html
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html
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ERAi dataset is publicly accessible upon registration on the European
Centre for Medium-Range Weather Forecasts (ECMWF) data portal :
https://www.ecmwf.int/

2.2 CMIP6

As mentioned earlier, CMIP6 (Eyring et al., 2016) is a collaborative effort
among the international climate modeling community and is the latest
in a series of intercomparison projects that have been conducted over
the past few decades. The goal of CMIP6 is to provide a state-of-the-art
set of coordinated climate model simulations that can be used to better
understand the drivers of climate change under different GHGs emission
scenarios. CMIP6 generates the protocol for a set of standard simulations
that each model runs. This allows results to be directly comparable across
different models, to see where models agree and disagree on past and
future changes. Last but not least, CMIP6 also provides detailed and
comprehensive documentation on the simulations and coupled models
participating in the initiative. In our work, we have used the monthly
outputs of about forty models (see Table.2.1) both for the historical period
and for the projections with the highest emission scenario (SSP5-8.5).
We also derived some important dynamical diagnostics such as the
streamfunction and the velocity potential from the wind variables output
from CMIP6. The methods to obtain these diagnostics are detailed in the
methods sections of Chapters 3 and 4

CMIP6 data are publicly available upon registration on the data portal of
the Earth System Grid Foundation :

https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/

 https://www.ecmwf.int/
https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/


2.2 CMIP6 47

Model Name Modeling Center Spatial Resolution Chapter 3 Chapter 4

ACCESS-CM2 CSIRO, Australia 1.875° x 1.25° Yes Yes
ACCESS-ESM1-5 CSIRO, Australia 1.875° x 1.25° Yes Yes
AWI-CM-1-1-MR AWI, Germany 0.9375° x 0.9375° No Yes
BCC-CSM2-MR BCC, China 1.125° x 1.125° Yes Yes

BCC-ESM1 BCC, China 2.815° x 2.815° Yes No
CAMS-CSM1-0 CAMS, China 1.125° x 1.125° Yes Yes

CanESM5 CCma, Canada 2.8125° x 2.8125° Yes Yes
CAS-ESM2-0 CAS, China 1.4° x 1.4° Yes Yes

CESM2 NCAR, USA 1.25° x 0.9375° Yes Yes
CESM2-WACCM NCAR, USA 1.25° x 0.9375° Yes Yes
CMCC-CM2-HR4 CMCC, Italy 1.25° x 0.9375° Yes No
CMCC-CM2-SR5 CMCC, Italy 1.25° x 0.9375° Yes Yes

CNRM-CM6-1 CNRM-CERFACS, France 1.4° x 1.4° Yes Yes
CNRM-ESM2-1 CNRM-CERFACS, France 1.4° x 1.4° Yes Yes

E3SM-1-1 E3SM-Project, DOE, USA 1.0° x 1.0° Yes Yes
EC-Earth3 EC-Earth consortium 0.7° x 0.7° No Yes

FGOALS-f3-L CAS, China 1.0° x 1.0° Yes Yes
FIO-ESM-2-0 FIO, China 1.875° x 1.25° Yes Yes
GFDL-CM4 NOAA-GFDL, USA 1.25°x1.0° Yes Yes
GFDL-ESM4 NOAA-GFDL, USA 1.25°x1.0° Yes Yes
GISS-E2-1-G NASA-GISS, USA 2.5° x 2.0° Yes Yes
GISS-E2-1-H NASA-GISS, USA 2.5° x 2.0° Yes Yes

HadGEM3-GC31-LL MOHC, UK 1.875° x 1.25° Yes Yes
HadGEM3-GC31-MM MOHC, UK 0.83° x 0.55° No Yes

INM-CM5-0 INM, Russia 2.0° x 1.5° Yes Yes
IPSL-CM5A2-INCA IPSL, France 3.75° x 3.75° Yes No

IPSL-CM6A-LR IPSL, France 2.5° x 1.125° Yes Yes
KACE-1-0-G NIMS-KMA, Korea 1.875° x 1.25° Yes Yes

MIROC-ES2L MIROC, Japan 2.8° x 2.8° Yes Yes
MIROC6 MIROC, Japan 1.4° x 1.4° Yes Yes

MPI-ESM-1-2-HAM Hammoz Consortium 1.875° x 1.875° Yes No
MPI-ESM1-2-LR MPI, Germany 1.875°x 1.25° No Yes
MPI-ESM1-2-HR MPI, Germany 0.9375° x 0.9375° No Yes

MRI-ESM2-0 MRI, Japan 1.125° x 1.125° Yes Yes
NESM3 NUIST, China 1.875° x 1.875° Yes No

NorCPM1 NCC, Norway 2.5° x 1.875° Yes No
NorESM2-LM NCC, Norway 2.5° x 1.875° Yes Yes

SAM0-UNICON SNU, Korea 1.25° x 0.9375° Yes No
TaiESM1 AS-RCEC, China 1.875° x 1.25° Yes Yes

Table 2.1: Climate Models
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2.3 Methods

Climate, as defined in the introduction, is described to first order using
variables averaged over a long period (around thirty years). In our studies,
we have been interested in the changes in this mean state both over the
historical period and in the future, which we define in the simplest way
as a difference between the end and the beginning of the studied periods.
From this definition, we obtained as many values of change as models
used because of their diversity. This inter-model spread in the climate
response is one of the main focuses of this work.

But we are going one step further. I said in the introduction that we would
take advantage of the fact that models often have several realizations for
each period, remember? In fact, for each of the models, we have calculated
the change for all the available members, which we have then averaged
together, enabling us to obtain the best possible estimate of the forced
response for each of the models (number of members in Appendices 1
and 2). We have therefore reduced the influence of internal variability
on the inter-model spread as much as possible, in order to focus on the
different responses of the models to anthropogenic forcing (Kay et al.,
2015;Deser et al., 2020).

In our quest for explanations, we had to explore the jungle of CMIP6
models that not even Indiana Jones dared to venture into. To do so, we
equipped ourselves with a powerful but potentially misleading arsenal:
statistics. In one of his books on climate variability, Hans von Storch said
in typical German humour: “The history of misuses of statistics is as long
as the history of statistics itself” (Von Storch and Navarra, 1999). So to try
to prove him wrong, or at least not to prove him right, we have multiplied
the methods, the domains and tried to assess the statistical significance
of the results in different ways. Statistical significance is a measure of the
likelihood that the result of a statistical test is due to chance, and while it
lends robustness to a statistical test, it does not always ensure practical
(physical) value beyond the world of mathematics. In addition, we have
used statistical methods that assume independence of realizations, or at
least perform better under this context. However, this assumption is not
entirely verified by the climate models that sometimes share the same
ocean or atmosphere components.

In the rest of this section we will describe the two main statistical methods
we have used, as well as their limitations. Many of the statistical methods
and significance tests used are part of the NCSTAT software developed
by our benefactor Pascal Terray. A detailed documentation can be found
on his personal webpage, which includes a detailed description of the
methods, associated references, as well as numerous other tools besides
those we used in our work.

Despite their limitations, the statistical tools have been of great help in
navigating the models, their countless variables and the relationships
that link them. While banning such tools would be excessive, caution
is always warranted when analyzing statistical results. To avoid pitfalls
and because we remain climate scientists, we systematically looked
for physical mechanisms that could underlie and explain the statistical
relationships we found.
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2.3.1 Trends, regressions and correlations

To estimate trends, we used locally weighted regression also called LOESS
(Cleveland and Devlin, 1988), which is a nonparametric method for fitting
a smoothed regression curve to data through local smoothing, in a
moving fashion analogous to a moving average. We have applied LOESS
with a moving time window of 20 years in some time series in Chapters 3
and 4, and call them "low-pass filtered", as LOESS eliminates fluctuations
with periodicities of less than 20 years in such a configuration.

The most fundamental tools that will be widely used in our studies are
correlations and linear regressions (Von Storch and Navarra, 1999). These
methods are used to identify and quantify the relationships between
two sets of data. If the most common case is to work on time series, it
should nevertheless be borne in mind that throughout this thesis we’ll
be working on series of "model" dimension. First, we need to define
indices that characterize an element of the climate system, which can
be spatial averages of certain variables, and we calculate them for each
of the models. Consequently, these methods depend on our ability to
define indices that represent the phenomenon we wish to study. Once
these indices have been computed, we regress them on all sorts of
variables, meaning that we look for the best-fitting line or curve that
represents the relationship between the variables across the models.
If not specified, statistical significance from regressions/correlations
is obtained by conducting a Student’s t-test. This test is based on the
assumption that the data follows a Gaussian distribution, which we
assume to be true throughout our studies. Beyond the necessity of using
relevant indices, it is important to note that correlation does not imply
causality. The physical mechanisms we will develop in the upcoming
chapters will aim to untangle the underlying causal relationships of the
correlations, while also ensuring that we are not dealing with a statistical
artifact.

In the case of monsoons, the definition of precipitation indices derives
directly from the monsoon domains shown in Fig.1.11, which are based on
observations. However, describing model biases and/or future changes
on the basis of indices, and therefore spatial averages, implies a certain
spatial homogeneity of the quantity studied. Nevertheless, there is no
reason why model uncertainties should be homogeneous within monsoon
domains. Furthermore, it is not certain that the definition domains based
on observations are adapted to the monsoon as represented by the
models, given the biases they may suffer from. Consequently, there is
no guarantee that the examination of an index averaging over these
domains is relevant. Fortunately, we have a secret card up our sleeve:
Maximum Covariance Analysis (MCA), also known as Singular Value
Decomposition (SVD). This technique will allow us to free ourselves from
the definition of indices for monsoon domains, and enable us to find
spatial patterns that maximize monsoon uncertainty and its interaction
with other variables.

2.3.2 Maximum Covariance Analysis (MCA)

This section will explain the idea, pitfalls and safeguards behind MCA.
However, for the more curious, we develop some calculations at the end
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of this section and full details are available in Bretherton et al., 1992!
MCA is actually a generalization of Principal Component Analysis (PCA),
which, rather than studying the variability of a dataset, extends this
concept and studies the covariability between two datasets. The aim of
MCA is to identify coupled modes of variability between two fields. In
our case, we use a «model» dimension rather than a time dimension, as
we want to describe the statistical relationships between the inter-model
spread of precipitation changes with other variables. MCA results in
pairs of spatial structures and associated expansion coefficients, which
constitute a MCA mode that explain the most covariance between these
two fields along the “model” dimension. Mathematically, the expansion
coefficients of one MCA mode form a pair of Singular Variables (SV), one
for each field, that evolve jointly and which describe a certain covariance
fraction, quantified by the Squared Covariance Fraction (SCF). Each MCA
mode describes part of the covariance matrix between the two fields, just
as PCA mode describes part of the variance of one field. As illustrated in
Figure.2.1, two types of maps can be obtained from a pair of SVs defining
a MCA mode :

Homogeneous map

Map of regressions of a field onto the standardized SV of the same field.
This map allows visualizing the spatial structure that the SV represents
within its original field.

Heterogeneous map

Map of regressions of a field onto the standardized SV of the other field. It
shows the extent to which the values of the second field can be ’predicted’
from the SV of the first field.

Figure 2.1: Homogeneous and heterogeneous maps from MCA.

Limits and safeguards

While we have presented this technique as a secret card up our sleeve,
it is not magical and has some important limitations. Firstly, no matter
what the datasets are, and even if they are perfectly independent, MCA
will yield modes of co-variability. As a result, it will be essential for MCA,
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more than for any other statistical method used in this thesis, to check
the significance of the results in order to ensure their robustness. We
present the robustness metrics associated with MCA in the following
paragraph, and will also use complementary regression analyses based
on other simpler indices to test the reliability of the results. Secondly,
because in our case we have only few models compared to the spatial
size of the domains of interest (typically 8,000 grid points if we consider
phenomena on a global scale), the covariance matrix is singular and
its decomposition into MCA modes is not unique. For this reason, we
only focus on the 1st mode from the MCAs. By doing so, we also avoid
the problems of interpretation related to the orthogonality constraints,
inherent to the higher MCA modes (Cherry, 1997).

Relevant measure of the physical significance of the patterns obtained
with MCA is given by the fraction of domain-integrated variance of each
field explained by the SVs. This metric quantifies how well each pattern
retrieves the variability of the original fields. Furthermore, the SCF is
used for comparing the relative importance of modes in a given MCA
while the correlation value between the 1st SVs of the two fields and the
Normalized root-mean-square Covariance (NC) allows us to assess more
quantitatively how the coupled patterns associated with a MCA mode
are related (Y. Zhang et al., 1998). Finally, for all these metrics, confidence
levels can be estimated using a blockwise bootstrap procedure and this
approach will be used to assess the robustness of the MCA modes.

The mathematicians’ corner

If you venture here, you love mathematics and you’re probably angry
with me for depriving you of the primitive equations in the introduction.
Fortunately, now is the time for reconciliation! Here are a few details on
the mathematical problem behind MCAs.

First, we consider two data matrices X [m ×n] and Y [q ×n], where n is
the number of models and m and q are respectively the number of grid
points for each pattern. Then, we choose an arbitrary pattern in the x
domain which is represented by a unit column vector of size m called u.
We do the same in the y domain and define v as a unit column vector of
size q representing a pattern of the y field.

As a reminder, we are looking for the pair of patterns that interact the
most. We are therefore looking for the projection of data X and Y onto a
x-pattern and a y-pattern that maximize covariance. Mathematically, this
corresponds to finding an optimal u and v that maximize covariance:

𝑐 = 𝑐𝑜𝑣(𝑢𝑡𝑋, 𝑣𝑡𝑌)
𝑐 = 1

𝑛−1 (𝑢𝑡𝑋(𝑣𝑡𝑌)𝑡)
𝑐 = 𝑢𝑡𝐶𝑋𝑌𝑣 with 𝐶𝑋𝑌 = 1

𝑛−1𝑋𝑌
𝑡

The maximum c is obtained from the leading mode of the SVD of 𝐶𝑋𝑌 ,
resulting in a x-pattern called u1 (the first SV of X), and a y-pattern called
v1 (the first SV of Y), and 𝑐 = 𝜎1, the first singular value. Each SVD mode
explains an amount 𝜎𝑘 of the overall squared covariance in 𝐶𝑋𝑌 . Thus, it
is useful to think of the importance of the SVD modes in MCA in terms
of their squared covariance fraction (SCF) as we mentioned earlier.
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Inter-model Spread of Historical

Indian and Sahelian Monsoon

Rainfall Change in CMIP6 3

The objective of this chapter is to study the inter-model spread of the
Indian Summer Monsoon (ISM) and the Sahel monsoon responses to
anthropogenic forcing over the historical period (1850-2014). In particular,
we aim at assessing and understanding whether the diversity of evolution
of precipitation in two monsoon regions as simulated by the models
over the historical period are related to local or remote climatological
biases of the models. The results obtained on the ISM were the topic of
an article published in Journal of Climate in 2023 (see section 3.2) and
are summarized below. The focus on the Sahel monsoon, which is more
difficult, is detailed in section 3.3.

3.1 Inter-model Spread of Historical Indian

Monsoon Rainfall Change in CMIP6:

objectives and summary

This chapter is based on a large set of 34 coupled models from the CMIP6
exercise, comprising between 1 and 50 members each (see Annex 1).
Firstly, we show, for the first member of each model, the filtered time
series (with a LOESS smoother, see Chapitre 2) of summer monsoon (June
to September) precipitation over India, focusing only on low-frequency
variability greater than 20 years. This allows us to highlight the fact
that there is an inter-model spread that increases significantly towards
the end of the period (1990-2014). However, at this stage, a question
arises: is this spread related to internal variability or forced response
of the Indian monsoon? As we announced in Chapter 2, we can damp
the internal variability of the models by averaging over the available
members. Therefore, by plotting the same series as before, but averaging
all available members for models with at least two members (25 models
out of 34), we can visualize the best estimation of the anthropogenic
response of each model over time. This allows us to demonstrate that the
inter-model spread is identical as when considering only one member per
model, which implies two things: (i) the low-frequency filtering largely
removes internal variability even with only one member, and (ii) the
inter-model spread is due to the forced response of the monsoon and
the way each model responds specifically to the external forcing. We
have also emphasized some disagreement among the observation series,
particularly towards the end of the period, which indicates that there
may be large uncertainties in the data derived from observations as well.
Finally, we show that the inter-model spread of the historical response of
the monsoon is primarily linked to the circulation response, particularly
the meridional wind component and its vertical shear.

At this stage, we propose to test the following hypothesis: Can model’s
biases in tropical precipitation and surface temperature, locally or re-
motely, influence the forced response of the Indian monsoon? While the
influence of biases on the future response of the Indian monsoon has
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already been studied (G. Li et al., 2017), a possible link with the historical
change remains an open question.

The first step is to look for an explanation at the local scale, focusing
on the in-situ biases of surface temperature and precipitation over
India. However, we demonstrate that there is no significant relationship
with these local variables despite the seasonal cycle of ISM rainfall
being commonly used as a metric for selecting CMIP models and their
associated projections of ISM. Therefore, we go one step further and look
for remote links, and we choose to focus mainly on the Tropics taking into
account the well-known teleconnections of ISM with different tropical
modes of interannual variability, especially ENSO (see Chapitre 1). The
second step, then, is to review the tropical temperature and rainfall biases
and the diversity of the models responses over the historical period for
these two variables before searching for possible relationships with the
inter-model spread of Indian monsoon change. Biases and responses are
characterized by two metrics respectively: the multi-model mean and
the inter-model standard deviation, which represents the inter-model
spread. Evaluating the temperature/rainfall biases and changes over
the historical period gives us the opportunity to compare the results of
CMIP6 with previous exercises, in particular CMIP5. After describing the
temperature and rainfall mean-state changes, we are placing particular
emphasis on areas where there is a large inter-model spread of both bias
and response, as these are likely to generate uncertainties in the historical
response of the ISM.

We then use MCAs and find that precipitation and surface temperature
biases in the tropical Pacific Ocean are responsible for an almost homo-
geneous modulation of the historical response of the ISM. We therefore
focus on the Pacific Ocean and show that the local biases in precipitation
and temperature are strongly coupled there, primarily of oceanic origin
in the sense that point-wise correlations between rainfall and SST biases
in the tropical Pacific are high and positive, meaning that precipitation
bias are likely generated by the biases in local SST

Furthermore, we found that the bias in SST gradient along the equatorial
Pacific drives the inter-model spread in the historical response of the
Indian monsoon. The question now is: how does this bias manage to
influence the response of the Indian monsoon? We demonstrate that
there is a positive and significant correlation between the bias and the
historical response of the equatorial Pacific SST gradient. In other words,
models with an El Niño-like (too weak) SST gradient tend to produce a
historical response that is also El Niño-like (reduction of SST gradient)
and vice-versa. This modulation of SSTs in the equatorial Pacific has an
impact on the historical response of the Indian monsoon in two ways.
Firstly, it induces a shift in the Walker circulation, creating an unfavorable
context for convection in the case of an El Niño-type bias, and conversely.
Secondly, by modifying the release of latent heat, the equatorial Pacific
coupled response generates anomalies in the upper troposphere that
propagate towards India in the form of Rossby waves, altering the ISM
atmospheric circulation response, and thus, indo-pacific precipitation
patterns.
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3.2 Article in extenso, published in Journal of

Climate

Additional material for this article can be found in the first section of the
appendix!
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ABSTRACT: Robust projections of the Indian summer monsoon rainfall (ISMR) are critical as it provides 80% of the
annual precipitation to more than 1 billion people who are very vulnerable to climate change. However, even over the his-
torical period, state-of-the-art climate models have difficulties in reproducing the observed ISMR trends and are affected
by a large intermodel spread, which questions the reliability of ISMR projections. Such uncertainty could come from inter-
nal variability or model biases. Here, we study the impact of the latter on the historical forced change of ISMR in 34 mod-
els from CMIP6. First, we show that models’ biases over India do not significantly impact how they simulate the historical
change of ISMR. However, we do find statistically significant relationships between ISMR historical forced changes and
remote rainfall and temperature biases within the tropics by using a maximum covariance analysis (MCA). Our results
highlight the key role of tropical Pacific sea surface temperature (SST) mean state biases as an important source of inter-
model spread in the ISMR change. The physical mechanisms underlying these statistical relationships between ISMR
change and the intermodel spread of Pacific SST biases are finally explored. We found that models having El Niño/
La Niña–like mean SST bias in the Pacific tend to exhibit El Niño/La Niña–like changes over the historical period, impacting
ISMR through a shift in the Walker circulation and Rossby wave propagation across the Pacific.

KEYWORDS: Monsoons; Climate change; ENSO

1. Introduction

Indian summer monsoon rainfall (ISMR) plays a critical
role for India as it provides up to 80% of the annual precipita-
tion from June to September (Ramage 1971; Jain and Kumar
2012) in a country that represents about 20% of today’s world
population. ISMR changes have profound impacts on local
livelihood, economic development, and social stability. As an
illustration, in 2002, India suffered an unusually weak summer
monsoon with a 20% ISMR decrease. This resulted in billions
of dollars in economic damages (Gadgil et al. 2004) and af-
fected more than a billion people through drinking and sanita-
tion. In this context, the weakening trend of the Indian
summer monsoon at the end of the twentieth century and its
possible recovery during the last 20 years are of great concern
for India (Raghavan et al. 2016; Jin and Wang 2017).

Consequently, predicting ISMR evolution is critically im-
portant for India, and the Indian government launched the
“Monsoon Mission” in 2012, a national initiative which aims
to tackle scientific and economic challenges raised by the pre-
dictability and future of the Indian monsoon (Rao et al.

2019). One of the major achievements of this ongoing project
is that an Indian coupled model [Indian Institute of Technol-
ogy Madras Earth System Model, version 2 (IITM-ESMv2)]
contributed to phase 6 of the Coupled Model Intercompari-
son Project (CMIP6) (Swapna et al. 2018). More generally,
the will to better understand monsoon variability at different
time scales is illustrated by the coordination of a monsoon-
dedicated international cooperation program in CMIP6 called
the Global Monsoon Model Intercomparison Project (Zhou
et al. 2016).

Understanding the unfolding challenges of the future ISMR
evolution relies on coupled atmosphere–ocean general circula-
tion models (CGCMs) and climate projections. However, even
over the historical period, large uncertainties remain about the
ability of CGCMs to reproduce ISMR seasonal cycles and
trends (Saha et al. 2014; Annamalai et al. 2017). To improve
the reliability of CGCMs, it is necessary to identify the factors
that are responsible for their inaccuracy in reproducing the
evolution of the ISMR over the historical period and to distin-
guish between the part of this failure that is related to system-
atic errors and other factors such as internal variability.

In terms of radiative forcing, the first main anthropogenic
forcing is the increase of atmospheric GHGs. The thermody-
namic effect of GHGs on precipitation refers to the increase of
precipitable water in the atmosphere induced by the increase in
temperature. This implies that moisture convergence must in-
crease in response to global warming if one assumes unchanged
atmospheric circulation. This is called the “wet-get-wetter”
mechanism (Vecchi and Soden 2007). The impact of GHG forc-
ing on circulation is also of critical importance. In recent deca-
des, the Indian subcontinent has warmed faster than the Indian
Ocean (IO), thereby reinforcing the meridional thermal gradient
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in the lower troposphere, which enhances ISMR (Lau and Kim
2017; Singh et al. 2019; Jin et al. 2020). However, reducing
GHGs’ impact over ISMR to surface temperature gradient
would be erroneous (Ma and Yu 2014; Lau and Kim 2017).
Indeed, latent heating also modulates the land–ocean thermal
contrast and the monsoon circulation in the mid–upper tropo-
sphere according to the thermal wind relationship (Dai et al.
2013). This overview illustrates the complexity of ISMR re-
sponse to GHG forcing and possible sources of uncertainty in
the way models represent the evolution of ISMR.

The second main anthropogenic forcing is the increase
of atmospheric aerosols, which have on average a cooling
effect at the surface (Ming et al. 2011). Aerosol emission rose
sharply during the 1950s in the Northern Hemisphere, leading
to an asymmetric cooling at the end of the twentieth century.
This cooling may have caused a reduction in the summer in-
terhemispheric energy imbalance resulting in an equatorward
shift of the intertropical convergence zone (ITCZ) and hence
of ISMR (Salzmann et al. 2014; Polson et al. 2014). At the
regional scale, aerosols have furthermore compensated for
GHG-induced temperature increases over South Asia, but
not over the IO (Lau and Kim 2017; Li et al. 2018; Singh et al.
2019; Seth et al. 2019), leading to a reduced land–sea thermal
contrast, which has contributed to slowing down the monsoon
circulation and led to a decrease in precipitation during the
twentieth century (Li et al. 2015). Even if the direct effect is
dominant, the indirect effect of aerosols, which refers to
changes induced in clouds’ radiative properties, their fre-
quency, and their lifetimes, should not be overlooked. Indeed,
CGCMs including both processes tend to reproduce better
temperature and precipitation records over the twentieth cen-
tury (Wilcox et al. 2013; Wang et al. 2015).

In addition to uncertainty coming from these complex pro-
cesses, the recent ISMR changes in models may also be signif-
icantly influenced by internal variability (Huang et al. 2020).
The interdecadal variability of the IO SST, which refers to a
basinwide warm (cold) phase, is linked to ISMR through
increased (decreased) southwesterly winds (Vibhute et al.
2020). The interdecadal Pacific oscillation (IPO), which is
characterized by a tropical Pacific warmer or colder than aver-
age, also has remote impacts on ISMR variations (Chinta et al.
2022). The positive IPO phase weakens the Walker and Hadley
circulations, which results in decreased ISMR (Joshi and
Kucharski 2017). A transition from a cold to a warm phase of
the IPO is thus another factor that may have contributed to
the drying trend of ISMR over the last half of the twentieth
century (Salzmann and Cherian 2015; Huang et al. 2020).

The relative roles of these different factors may not be sta-
tionary in time, both in the observations and CGCMs, and
they may be altered in the latter due to systematic errors in
simulating Indian summer monsoon (ISM) (Hurley and Boos
2013; Annamalai et al. 2017; Terray et al. 2018) or because of
missing key physical processes, for example, those related to
clouds (Oueslati et al. 2016). As noted by Oueslati et al.
(2016), present-day climatological biases in specific humidity
and profile of vertical velocity are important sources of inter-
model spread in the tropics, both over land and ocean, in CMIP5
models. The parameterizations of convection or orography are

also sources of uncertainty to reproduce ISMR and its long-term
trend (Hurley and Boos 2013; Sabeerali et al. 2015). Continental
errors, including large cold biases over Eurasia and the subtropi-
cal deserts adjacent to India, can also affect ISMR and its long-
term behavior by modulating the ISM circulation and the fast
ISM response to GHG forcing (Endo et al. 2018; Terray et al.
2018; Sooraj et al. 2019). Biases in adjacent or remote regions
can also impact ISMR. As an illustration, errors in the SST
climatology of the eastern equatorial IO have been shown to be
linked to errors in ISM simulation through Bjerknes feedback
(Annamalai et al. 2017), and cold SST biases in the Arabian Sea
can weaken humidity transport toward India (Levine et al.
2013). Beyond climatological errors, biases in simulated modes
of interannual variability, like El Niño–Southern Oscillation
(ENSO) or the Indian Ocean dipole (IOD), can also induce
errors in ISMR projections (Li et al. 2017).

The skill of CGCMs at reproducing ISM climatology has
increased from CMIP3 to CMIP6 (Rajendran et al. 2022;
Choudhury et al. 2022). However, most current CGCMs still
exhibit a large and persistent dry ISMR bias and a strong in-
termodel spread for ISMR projections (Sperber et al. 2013;
Jain et al. 2019; Jin et al. 2020; Katzenberger et al. 2021). It is
thus necessary to reduce models’ uncertainties so as to
strengthen our confidence in the models’ projections. The
main goal of this study is to provide a systematic assessment
of the statistical and physical relationships between intermo-
del spread of ISMR changes and models’ biases. A few previ-
ous studies have already discussed some aspects of these
relationships but have been restricted to the possible influ-
ence of one basin or region and using CMIP5 future projec-
tions (Li et al. 2017; Shamal and Sanjay 2021). Here, we focus
on the influence of precipitation and surface temperature
biases over the whole tropical band on the historical changes
of ISMR in the new CMIP6 database. We choose to focus on
the historical period in order to take advantage of the larger
number of models, each of them including more members
than over the future period. The underlying questions are as
follows: 1) Is there a local link between climatological biases
over India and ISMR change? 2) Are there links with some
remote biases over land or the tropical oceanic basins? 3) By
which physical processes do local and/or remote biases influ-
ence ISMR historical evolution? Section 2 describes observa-
tional data, model simulations, and analysis methods used in this
study. In section 3, we evaluate historical simulations against ob-
servations and investigate local relationships. Section 4 extends
the scope of section 3 to assess relationships with remote biases
over the whole tropics with the help of maximum covariance
analysis (MCA). The last section presents a summary and future
perspectives.

2. Data and methods

a. Coupled simulations and validation datasets

This study is based on the outputs of 34 CGCMs from
CMIP6 (see supplemental Table S1 in the online supplemental
material; Eyring et al. 2016). Most models have multiple members
of the “historical” experiment (herein referred to as “historical,”
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covering the period from 1850 to 2014). All these historical inte-
grations are forced by the same time-varying external radiative
forcings (both natural and anthropogenic) derived from observa-
tions, but they have different initial conditions. The monthly
mean outputs used in our analysis include rainfall (Pr), precipita-
ble water (PRW), surface temperature (Ts), near-surface air tem-
perature (Tas), sea level pressure (SLP), and horizontal winds
(U andV) at different levels.

For model validation of the precipitation field, we use the
Global Precipitation Climatology Project (GPCP) monthly
mean precipitation flux dataset from 1979 to 2017 (Adler et al.
2003). For surface temperature, precipitable water, and hori-
zontal winds we use ERA-Interim (Dee et al. 2011). We also
use the all-India rainfall (AIR) index, which is an area-
weighted mean from a fixed ensemble of 306 rain gauge sta-
tions over India (Parthasarathy et al. 1994), and an ISMR
index derived from the India Meteorological Department
(IMD) rainfall dataset to monitor the observed ISMR evolu-
tion over the historical period. This last index is based on
about 6329 stations (with least 90% data availability over the
period) for the period 1901–2013 (Mohapatra et al. 2018).

b. Climate and ISMR indices

To understand how models’ biases interact with the change
of ISM rainfall and circulation, we define several indices,
which serve as proxies for the main thermodynamic and dy-
namic components of the moisture budget (Seager et al.
2010). The different climate and dynamical indices used in
this study are defined in Table 1. The overall thermodynamic
change is approximated by averaging the change of the PRW
change over the domain. It corresponds to the evolution of
humidity integrated over the whole atmospheric column. The
dynamical changes are split into zonal and meridional contri-
butions by using the Webster–Yang index (WYI) and the
monsoon meridional circulation index (MMCI), respectively
(Webster and Yang 1992; Goswami et al. 1999). These indices
are measures of the vertical shear of zonal and meridional
winds between the 850- and 200-hPa levels, respectively.
These shears are well related to the strength of the monsoon
circulation and to tropospheric temperature gradients (Dai
et al. 2013). Finally, we use the difference of surface tempera-
ture between part of the Eurasian continent and the sur-
rounding oceans, later referred to as Eurasian land–ocean
thermal contrast (ELOTC), to determine whether or not the

large-scale surface thermal contrast is a key factor in shaping
the ISM change during the historical period, as it is in projec-
tions (Jin et al. 2020). Note that thereafter, “ISMR change”
refers to regionally averaged ISM rainfall (defined above as
ISMR) change over the historical period (see Table 1), while
ISM rainfall change refers to change in the rainfall pattern
over India over the historical period. The former is an index,
while the latter is a spatial pattern.

c. Methods

We define climate change over the historical period as the
difference of climatological means between the end of the his-
torical period (1979–2014) and the early industrial period
(1850–75). This definition will be justified in section 3a in
which we demonstrate that ISMR changes are most promi-
nent during the last decades of the historical period. Model
biases are defined as the differences between model and vali-
dation data climatologies over the 1979–2014 period during
which the quality of observations and reanalysis products has
greatly improved as compared to the early period. Model var-
iability is defined as the average over the various available
members of the temporal standard deviation computed over
1979–2014. Among the available datasets, we choose GPCP
(ERA-Interim) to define precipitation (temperature) biases,
while AIR and IMD are used to evaluate ISMR trends over the
historical period. Our analysis will focus on June–September
(JJAS) as it is the monsoon season and all datasets were inter-
polated onto a common 2.88 3 2.88 horizontal resolution by bi-
linear interpolation prior to the analysis. It should be noted that
due to the specific focus on JJAS season, the time-lagged links
between ISM changes and biases are not explored in this study.
However, our results are robust if annual rather than JJAS
averages are considered for the tropical SST and rainfall biases
in the analysis.

For both observations and simulations, velocity potential,
streamfunction, and divergent and rotational winds were calcu-
lated at different levels from horizontal winds with the spectral
method (Tanaka et al. 2004). Furthermore, in order to accu-
rately describe the low-frequency variations in the observed
and simulated ISMR time series in Fig. 1, a locally weighted re-
gression called locally estimated scatterplot smoothing (LOESS;
Cleveland and Devlin 1988) was applied to the ISMR index
(only for this time series). LOESS is a nonparametric method
for fitting a smoothed regression curve to data through local

TABLE 1. Definition of the indices used in the present study. Angle brackets h?i stand for spatial averaging; the superscript indicates
the surface type or the atmospheric level over which the average is taken, when relevant, and the subscript the domain.

Indices Domain and variable used

ISMR hPriLand[78N;308N],[658E;958E]
Precipitable water content over India (PRWI) hPRWiLand[78N;308N],[658E;958E]
Webster–Yang index (WYI) hUi850hPa[08N;208N],[408E;1108E] 2 hUi200hPa[08N;208N],[408E;1108E]
Monsoon meridional circulation index (MMCI) hVi850hPa[108N;308N],[708E;1108E] 2 hVi200hPa[108N;308N],[708E;1108E]
Eurasian land–ocean thermal contrast (ELOTC) hTasiLand[08N;608N],[308E;1808] 2 hTasiOcean

[108S608N],[308E;1808]
Pacific equatorial SST gradient hSSTi[58S;58N],[1308E;1708W] 2 hSSTi[58S;58N],[808W;1408W]
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smoothing. We applied LOESS with a moving time window of
20 years (equivalent to a low-pass filter eliminating fluctuations
with periodicities less than 20 years) to the full time series, and
we chose to show the low-pass-filtered time series on the period
1901–2012, which is the common period for the observations
and the simulations. The ISMR climatology over this period
was then calculated for each dataset in order to express the
smoothed time series as anomalies (in percentages) with respect
to this climatology. Note that all other computations use the
raw data without any filtering.

To investigate the first-order linear relationships between
changes over the historical period and model biases as seen
from climate indices, we use scatterplots and regressions. For
a more systematic exploration, we use MCA, which extracts
the dominant covariability patterns from two geophysical
datasets (Bretherton et al. 1992; Cherry 1997). MCA calcula-
tion is described in detail in supplemental Text S1.

3. ISMR trends, tropical biases, and changes over the
historical period

a. ISMR trends over the historical period

First, we document the skill of CMIP6 models in simulating
the ISMR modulations over the historical period. It has been
demonstrated that CMIP5 models were not skillful in this

respect (Saha et al. 2014). AIR and IMD are used for obser-
vations, as they cover the whole twentieth century, and the
ISMR index as defined in Table 1 is used for simulations.

AIR and IMD oscillate mainly between 25% and 5% be-
tween 1900 and 2012, except at the beginning and end of this
period when variations are stronger (Fig. 1a; see the thick
blue and orange lines). The correlation between AIR and
IMD is significant (r 5 0.70; p , 0.01), which proves an over-
all good agreement between our validation datasets. How-
ever, even if both observation datasets show an increase of
ISMR over the recent period (2000–12; Jin and Wang 2017),
there is a surprising disagreement on the magnitude of this
wetting trend. This difference could possibly be related to the
variable network of stations used in IMD or a too-coarse net-
work in AIR (Lin and Huybers 2019; Singh et al. 2019). This
highlights strong uncertainty on the observed recent ISMR
trend and potential problems in the validation datasets.

This recent recovery of the monsoon has been attributed to
an increase in atmospheric moisture content coupled to a
favorable land–sea thermal contrast between East Asia and the
western North Pacific Ocean (Huang et al. 2020; Rajendran
et al. 2022) and between the Indian subcontinent and the IO
(Jin and Wang 2017; Roxy 2017). Such evolution may also arise
from the sustained increase of GHG emissions. Recent studies
furthermore showed that, as sulfate aerosol mitigation policies
are now applied, GHG forcing is overtaking the aerosol forcing

FIG. 1. (a) Low-pass-filtered ISMR time series represented as normalized anomalies and expressed in percent of the respective mean
over 1901–2012 for each time series. The thin lines represent the first historical member of each of the 34 models available from the
CMIP6 repository (see supplemental Table S2), while bold lines represent the MMM of these 34 first historical members (red) and the ob-
served AIR (blue) and IMD (orange) indices, respectively. (b) As in (a), but where thin lines represent the multimember average for all
models with more than one member (25 of 34 models; see supplemental Table S1 for details), and MMM is calculated on these multimem-
bers only. (c) Mean anomalies over the 1979–2014 period relative to 1901–2012. The first column is for observations, with the same color
code as in (a) and (b). The last three columns are whisker plots for three different ensembles of simulations. The first whisker column is
for the multimember average for all the 34 available models, even those with only one member available. The second whisker column con-
siders only the first member for each model [see (a)]. The third whisker column considers the multimember average for the 25 models
with more than one member available [see (b)]. In all panels, the observed and simulated ISMR raw time series have been low-pass
filtered with LOESS (Cleveland and Devlin 1988). See text and section 2 for details.
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after the 1980s (Seth et al. 2019; Allan et al. 2020). If GHGs
are responsible for the recent wetting ISMR trend, the latter is
likely to become more prominent in the future (Katzenberger
et al. 2021).

Figure 1a also shows the first (single for models proposing
only one member; see supplemental Table S2) member of his-
torical realizations taken from all the 34 CMIP6 models avail-
able from the Earth System Grid Federation repository.
Taken as a whole, this ensemble of simulations yields rela-
tively large multidecadal variations of ISMR with an ampli-
tude generally comparable to those found in observations
(Fig. 1a). The multimodel ensemble mean (MMM) (thick red
line) typically yields weaker variations than the validation
datasets (from 22% to 14%), which is expected as simulated
internal variability is damped by the model averaging. The rel-
ative amplitude of the drying ISMR trend during the 1950–90
period seen in both AIR and IMD (Bollasina et al. 2011; Saha
et al. 2014; Salzmann et al. 2014; Roxy et al. 2015) is not well
reproduced by the MMM, as in CMIP5. This result is consis-
tent with the partial attribution of this drying trend to internal
variability (Huang et al. 2020). After the 2000s, the MMM in-
creases and peaks around 14%, which is comparable to the
observed ISMR interannual variability (which is typically
about 10% of the ISMR mean).

This recent recovery of ISM thus appears consistently in
the MMM (computed from single or first member for each
model), IMD, and AIR (Fig. 1a). This is in line with the partial
attribution of this wetting trend to external forcings. However,
consistent with the weaker amplitude, the slope of MMM re-
cent trend is much weaker than the observed one. Further-
more, the single-member intermodel spread increased from
the 1980s until the end of the period. Indeed, in single realiza-
tions, the anomalies are spanning from 28% to 121% toward
the end of the period, while they were earlier approximately
ranging between27% and16%.

Since the single members are influenced both by natural
variability and external forcings, it is difficult to distinguish
their respective contributions to the increase in the intermo-
del spread. To get further insights about the origin of this in-
crease, Fig. 1b presents the temporal evolution of ISMR in
multimember average for all models with more than one
member (25 of 34 models). The multidecadal variability of
ISMR modeled over the twentieth century is largely reduced
in these multimember ensembles as expected from the aver-
aging which damps the internal variability. The MMM is nev-
ertheless very close to the one computed from single-member
only for the whole period (r 5 0.93), including the recent wet-
ting period. Interestingly, the increase in the intermodel
spread is still present in the multimember averages. This sug-
gests that this spread is also associated with a biased and vari-
able response of the models to external forcings.

To validate more quantitatively this hypothesis, we now focus
on the distributions of the mean averages over the 1979–2014
period for the single-member versus multimember model sets as
these time averages are used to define the climate changes (see
section 2 for details) in the following sections. The two right-
hand columns in Fig. 1c show that, when averaged over the
1979–2014 period, the spread of ISMR change as represented in

the CMIP6 database is slightly weaker when considering only
the 25 models offering multiple members of historical simula-
tions than when considering all the 34 single or first historical
realizations. Nevertheless, a two-sample version of the Smirnov–
Kolmogorov test (Hodges 1958) applied to the two empirical
distributions leads to the rejection of the hypothesis that these
two distributions differ even at a very low confidence level
(p value is 0.80).

Taking into account this result and in order to keep the model
panel as large as possible to maximize the significance of our re-
sults, we consider in the following the multimember average for
each of our 34 models even when only one member is available
without any weighting (second column of Fig. 1c). Figure 1c
illustrates that this ensemble only shows small differences with
the two other ones. By using a Smirnov–Kolmogorov test as
above, we could furthermore show that all these distributions
are similar (p . 0.80). This allows us to use a multimember
average for all of our models despite the fact that some of
them have only one member, because the time average over
the last 35 years is sufficient to damp the effect of internal vari-
ability in all cases. This also justifies our choice to give the
same weight to each of the models in the rest of the study,
regardless of their number of members. Finally, in order to
have an overview of the relative importance of this intermodel
spread with respect to internal variability, we have assessed
the intramodel spread (related to internal variability) for CMIP6
models with more than one member (see supplemental Fig. S3).
Interestingly, for the majority of models, the intramodel spread
is lower than the intermodel spread, with the exception of the
CanESM5 model.

b. Contributions to ISMR change and spread

To gain more insights into the physical mechanisms under-
lying the ISMR changes over the historical period and its
intermodel spread, we now study its links with dynamical or
large-scale indices (see section 2 and Table 1).

MMMs of WYI (Fig. 2a) and MMCI (Fig. 2d) changes aver-
aged over the multimodel ensemble described above show a
decrease over the historical period (see the crosses in the pan-
els), while MMM of precipitable water content over India
(PRWI) change shows a strong increase (Fig. 2e). This indi-
cates that the small decrease in the MMM of ISMR seen in
the y axis of each panel in Fig. 2 is due to a decrease in the dy-
namic component, which is partially compensated by the ther-
modynamic component. This may explain why, even if global
warming and ISMR are both significantly correlated with the
change in PRWI, they are not correlated with each other (Fig. 2b;
r 5 0.25; p . 0.10). On the other hand, the intermodel spread of
PRWI is significantly correlated with the global surface tempera-
ture change among models (r5 0.50; p, 0.01; not shown), illus-
trating the link between thermodynamics of ISMR and global
warming in agreement with the Clausius–Clapeyron relationship.
Consistently, there is also a significant relationship between the
intermodel spread of ISMR and PRWI changes (Fig. 2e).

The intermodel spread is also significantly related to dy-
namical changes with a very strong relationship between the
ISMR and MMCI changes (Fig. 2d) and a weaker, but still
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significant, relationship with the WYI change (Fig. 2a). How-
ever, the origin of the dispersion of the dynamic component
of the ISMR remains unexplained. Indeed, in the future pro-
jections, ISMR and WYI changes are both significantly corre-
lated with ELOTC (Jin et al. 2020), indicating a role for land–
sea thermal contrast. This is not the case over the historical
period (Fig. 2c for IMSR and not shown for WYI). This sug-
gests that the mechanisms in the historical period and in pro-
jections differ. This difference may be due to the fact that
aerosol forcing is strong over the historical period and does
not allow for the emergence of a strong land–sea contrast.

We have shown that the intermodel spread of ISMR
change is mainly related to the intermodel spread of the dy-
namic component. However, we lack explanations as to the
origin of the intermodel spread of this dynamic component. A
first approach is to look at the local scale. Hence, in the next
subsection we investigate the role of the model’s mean biases
and variability over India to explain ISMR changes.

c. Local relationships between ISMR bias and change
over the historical period

Figure 3 explores the linear dependence between ISMR change
with local precipitation and temperature biases over India.
Figures 3a and 3d show that in spite of the strong intermodel
spread of ISMR biases in mean and temporal variability (e.g.,
standard deviation), there is no significant relationship between
these biases and the ISMR change at the 95% confidence level.
Hence, selecting models based on their performance in repro-
ducing the present-day precipitation climatology and variability

(Katzenberger et al. 2021) is not a discriminating criterion for
how they simulate ISMR change. As for precipitation, there is
also no significant relationship (p . 0.05) between climatologi-
cal and variability biases of Indian surface temperature and
ISMR change (Figs. 3b,e). On the other hand, Fig. 3c highlights
a significant and expected relationship between climatological
biases of surface temperature and precipitation over India. This
can be explained by a reduced cooling effect (e.g., less clouds
and evaporation) due to a deficit of local precipitation over
India. Note, nevertheless, that an anomalous land warming
could enhance the regional land–sea contrast, thereby inducing
an opposite precipitation bias (Jin and Wang 2017), but this
effect does not seem to dominate here, consistent with the weak
correlation between ISMR and ELOTC changes (Fig. 2c).

To conclude, no obvious link was found at the local scale
between the spread of local rainfall/temperature biases and
ISMR change. This lack of linkage could be due to the fact
that the changes in precipitation and biases are averaged over
India where there are potentially inhomogeneities and error
compensations for both biases and changes. It could also be
that there are simply no relationships at the local scale. To
discriminate between these two hypotheses, we need to zoom
out from the local scale.

d. Global changes of surface temperature and
precipitation over the historical period

Figure 4a displays the JJAS precipitation historical changes
over the whole globe. Central America, Sahel, and East Asia,
which are three major monsoon regions, all exhibit a strong

FIG. 2. Scatterplots of ISMR change (mm day21; defined in section 2 as the difference of JJAS means between 1979–2014 and 1850–1875),
respectively, with changes of (a) the WYI (m s21), (b) global mean surface temperature (K), (c) ELOTC (K), (d) MMCI (m s21), and
(e) PRWI (kg m22), computed over the same periods. All indices are defined in section 2. The black cross in each scatterplot marks the
MMM. As explained in the text, all the 34 available CMIP6 models are used here, with 1 to 50 simulations (see Table S1). For each panel, the
correlation and the corresponding p value are computed as described in section 2. The red outline of the panel means that the correlation is
significant at the 95% confidence level (p , 0.05). Temperature and precipitation change are computed as the difference of climatological
means between the end of the historical period (1979–2014) and the early industrial period (1850–75).

J OURNAL OF CL IMATE VOLUME 363942

Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 05/16/23 03:38 PM UTC



drying over the historical period. Figure 4a also displays a
strong drying over the north subtropical Atlantic and over the
Maritime Continent, both accompanied with a strong spread
across models (Fig. 4b). The Pacific Ocean presents notable
wetting over the South Pacific convergence zone (SPCZ) and
over the western part of the ITCZ, which is located at 108N
over this region during the boreal summer and some drying in
between. Furthermore, the intermodel spread of precipitation
change in the Pacific Ocean is particularly strong over the
warm pool and the convergence zones (SPCZ and ITCZ)
forming a double ITCZ structure (Fig. 4b). Figures 4a and 4b
also display a large intermodel spread of precipitation change
over India, while the MMM change is not very strong and
quite inhomogeneous. These features indicate a strong dis-
agreement between models, but also indicate that averaging
precipitation change over India may not be representative of
ISMR change. This justifies the need to take into account the
spatial pattern of rainfall changes over India when looking for
relationships between biases and ISMR change.

Looking at the warming signal (Fig. 4c), an interesting fea-
ture is that the SST gradient along the equatorial Pacific (see
its definition in Table 1) is enhanced toward the end of the
historical period in 25 of 34 models (not related to the models
with more than one member) and in the MMM (0.1 K). This
latter result is at odds with the CMIP5 MMM, but it is in line
with observed trends (Lian et al. 2018). Hence, CMIP6 mod-
els show a better agreement with observations than the previ-
ous generation, but they still underestimate the enhancement
of the equatorial Pacific SST gradient (0.3 K). This pattern is

complex and not “La Niña–like” or “El Niño–like” as dis-
cussed in Lian et al. 2018. It is rather “El Niño Modoki–
like” (Ashok et al. 2007) with a stronger warming over the
central Pacific, an intermediate warming over the warm
pool, and a weaker warming signal over the eastern equa-
torial Pacific. Furthermore, the Pacific warming pattern,
and hence the change in the SST gradient, is quite different
between annual and JJAS mean averages (supplemental
Fig. S4), highlighting that focusing on yearly ENSO pat-
terns only may be misleading for understanding ISMR
changes. It is necessary to look at the seasonal scale of
change in the Pacific to fully understand the interactions
with ISMR.

There is a strong intermodel spread of surface tempera-
ture change over the whole Eurasian continent and specifi-
cally over the Tibetan Plateau, which have both been
suggested as important driving factors for ISMR projec-
tions (Fig. 4d; Ge et al. 2017; Wang et al. 2020). The largest
spread of land temperature changes among models occurs
over central Africa, North America, and north of India.
Over the ocean, intermodel spread is high at mid- to high
latitudes of both hemispheres and also in the eastern equa-
torial Pacific.

We now have an overview of the MMM spatial changes in
surface temperature and precipitation over the historical pe-
riod, as well as an idea of the areas with the highest disagree-
ment between the models. In the following subsection, we will
focus on the biases of these two variables and highlight the re-
gions where the intermodel spread is important in CMIP6

FIG. 3. Scatterplots of ISMR change (mm day21), respectively, with (a) mean ISMR bias (mm day21), (b) mean temperature bias over
India (K), (d) ISMR standard deviation bias (mm day21), and (e) temperature standard deviation bias over India (K). Temperature biases
are calculated over India, which corresponds to the same domain as the one used for ISMR. Temporal standard deviation in (d) and (e) is
computed for each individual historical member and averaged for each model in case of several members. (c) Scatterplot of mean ISMR
bias and mean surface temperature bias over India to illustrate local interaction between temperature and precipitation bias over India.
The correlation and its associated p value for each pair of model series are indicated in each panel. The red outline means that the correla-
tion is significant at the 95% confidence level (p, 0.05). Crosses indicate the MMM position in each scatterplot.
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models, as we seek to establish a link with the spread in the
ISMR change.

e. An overview of climatological rainfall and temperature
biases in CMIP6 models

Figures 5a and 5b first show that India suffers on average
from an important dry bias with a large intermodel spread.
This dry bias is very pronounced over northern India, while it
is almost absent in the south. This is consistent with the ten-
dency of models to produce an ITCZ located 108 south of the
observed location in most monsoon regions (Choudhury et al.
2022). In the Indian sector, this southward shift of the ITCZ
may be due to warm SST biases over the southwest IO or
along the equator (Bollasina and Ming 2013; Prodhomme
et al. 2014; Annamalai et al. 2017) and/or to cold surface tem-
perature biases over adjacent deserts (Fig. 5c; Terray et al.
2018; Sooraj et al. 2019). Both the arid regions to the west of
India and the western IO have large mean biases and present
a strong intermodel spread of surface temperature (Fig. 5d);
they are therefore potential candidates for modulating ISMR
changes.

Focusing now on remote regions, the Pacific Ocean displays
an erroneous double ITCZ structure in both MMM (Fig. 5a)
and intermodel spread (Fig. 5b) of precipitation bias. These
errors have been typical and prominent biases of CGCMs
from CMIP3 to CMIP6 even if they have been shown to be
slightly reduced in CMIP6 (Tian and Dong 2020). Interest-
ingly, both the mean and intermodel spread patterns of rain-
fall changes in Figs. 4a and 4b are also reminiscent of this
double ITCZ bias. The equatorial Pacific is also characterized

by a cold tongue bias extending from the warm pool to the
eastern Pacific, and the Maritime Continent is marked by a
warm bias. The upwelling regions off the Chilean and Peru-
vian coasts show an important warm bias that spreads north-
ward and meets the cold tongue bias at the equator. The
equatorial Atlantic also presents an important wet bias. It is
attributed to the strong warm bias over the southeastern At-
lantic (Fig. 5c), which causes a southeastward shift of the
ITCZ over the Atlantic (Richter and Tokinaga 2020). How-
ever, as the warm Atlantic bias does not present an important
intermodel spread, it is unlikely to explain the equatorial
spread of precipitation alone at least in a simple linear frame-
work. Again, continental biases, especially those over the Sahara,
or erroneous combined land–ocean temperature gradients are
more plausible candidates (Terray et al. 2018; Sooraj et al. 2019).
Using CMIP5 models, Shamal and Sanjay (2021) have suggested
that these intermodel spreads of temperature and rainfall biases
in the Atlantic sector may provide a strong observational con-
straint for reducing the uncertainties of ISMR projections. We
will test this hypothesis with CMIP6 and the historical period in
the next section. Finally, Fig. 5d displays a very strong intermodel
spread along with a cold bias in the MMM over the Himalayas,
which may arise from the variety of the model’s resolution and
orography as it is a limiting factor in this region of complex orog-
raphy (Lalande et al. 2021).

To conclude, given the large intermodel spread of surface
temperature and rainfall biases, including both land and
ocean, and the complexity in existing teleconnections to ISMR
(Chowdary et al. 2021), we will next track the origins of the
spread of ISMR change within the whole tropics. To this end,

FIG. 4. JJAS MMM and intermodel spread of (top) precipitation (mm day21) and (bottom) surface temperature (K) changes computed
for the 34 CMIP6 models. (a) MMM precipitation change. (b) Intermodel spread of precipitation. (c) MMM surface temperature change.
(d) As in (b), but for surface temperature. Contours in (a) are for JJAS mean precipitation from GPCP (contour interval is 3 mm day21)
and in (c) are for JJAS mean surface temperature from ERA-Interim (285 K, blue; 295 K, green; 300 K, orange contours). Temperature
and precipitation changes are computed as the difference of climatological means between the end of the historical period (1979–2014) and
the early industrial period (1850–75). See section 2 for details.
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we will investigate the dominant modes of covariance between
tropical temperature or precipitation biases and ISMR changes
with the help of MCAs. This method allows us to move away
from spatial averaging over India and to explore the possible
link between the pattern of precipitation change over India and
tropical biases elsewhere.

4. Remote impact of biases on ISMR historical changes

a. Spatial patterns of biases and rainfall changes from
maximum covariance analysis

We computed two MCAs, one between rainfall changes over
India (78–208N and 658–958E; land only) and surface tempera-
ture biases within the tropical band (308S–308N) (Figs. 6a,b),
and the other between rainfall change over India (same region)
and tropical precipitation biases (Figs. 6c,d). A brief introduction
to MCA is provided in Text S1 of the supplemental material for
convenience, and more details can be found in Bretherton et al.
(1992). We only study the leading coupled mode for each of
these MCAs, as they describe a major part of the covariability
between the original fields (Table 2), and they are well separated
from the remaining MCAmodes (not shown).

The heterogeneous maps of rainfall changes over India are
spatially homogeneous and very similar in both computations
(Figs. 6a,c). Consistently, the correlation between the singular
variable (SV) series (e.g., expansion coefficient series) associ-
ated with the rainfall change patterns over India in both MCAs
is 0.99. The SV series of precipitation changes over India in
each MCA are also strongly correlated with the average index
ISMR (r5 0.95 and 0.94; see Table 2). This latter result confirms

that tropical precipitation and surface temperature biases
(Figs. 6b,d) are covarying with the Indian monsoon as a whole
despite the fact that MMM rainfall changes are inhomoge-
neous over India (Fig. 4a). The rainfall change patterns from
the MCAs (Figs. 6a,c) are also very close to the first EOF
mode of ISM rainfall change (not shown). The spatial struc-
tures of the leading modes from EOF and MCA are correlated
with r 5 0.99, and the explained variances by these modes are
again very close (42% for the first mode of EOF and 39% for
both MCAs). These features suggest that the patterns of bias
identified in Figs. 6a and 6c are linked with the main mode of
intermodel spread of ISM rainfall change, which further moti-
vates a detailed analysis of these modes.

The first modes of the MCAs between surface temperature
and precipitation biases with ISM rainfall changes have a
square covariance fraction (SCF) of 47% and 40%, respec-
tively, and they have similar normalized root-mean-square co-
variance (NC) statistics (see Text S1 in the supplemental
material for a more detailed definition of this MCA statistic),
suggesting that the precipitation and surface temperature
biases have a statistical relationship with Indian rainfall
change of similar strength (Table 2). Moreover, the correla-
tions between the SV series corresponding to the leading pat-
terns of precipitation and temperature biases and those of
rainfall changes in each MCA are quite similar too (0.75 and
0.67; see Table 2), which corroborates that a similar strong
relationship exists between biases and ISMR changes. Note
that the correlation between the SV series associated with the
leading bias pattern in each MCA is r 5 0.67 (p , 0.01). This
further shows that a linear relationship may also exist be-
tween the leading patterns of rainfall and temperature biases

FIG. 5. Boreal summer MMM and intermodel spread of (top) precipitation (mm day21) and (bottom) temperature (K) biases computed
over the 1979–2014 period for 34 CMIP6 models. (a) MMM precipitation bias with respect to GPCP. (b) Intermodel spread of precipita-
tion. (c) MMM temperature bias with respect to ERA-Interim. (d) As in (b), but for temperature. Contours in (a) are for JJAS mean pre-
cipitation from GPCP (contour interval is 3 mm day21) and in (c) are for JJAS mean temperature from ERA-Interim (285 K, purple;
295 K, orange; 300 K, green contours).

G U I L B ER T E T A L . 394515 JUNE 2023

Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 05/16/23 03:38 PM UTC



associated with ISM rainfall changes. In other words, this
suggests the existence of coupled ocean–atmosphere and/or
land–atmosphere biases, which may modulate ISMR changes
over the historical period.

Associated with an increase of precipitation over India from
the beginning to the end of the historical period (Fig. 6a), Fig. 6b
exhibits a strong cooling over the Sahara and Arabian Deserts
extending to the west of India, while the rest of India presents a
strong warm bias. This spatial inhomogeneity of the intermodel
temperature bias over India could explain the lack of relationship
between the intermodel spread of ISMR change and Indian sur-
face temperature bias shown in Fig. 3b. The warm bias extends
to eastern and southeastern Asia, which, as mentioned earlier,

experience a significant drying trend. From an oceanic perspec-
tive, Fig. 6b presents a well-defined equatorial SST gradient in
the Pacific, with a cooling in the east and a warming in the west,
but mainly off the equator and up to the subtropics. This pattern
of SST bias in the Pacific is reminiscent of a La Niña–like SST
mean pattern. Interestingly, from a statistical perspective, this
La Niña–like SST pattern is significant (e.g., see the dotted areas
in the Pacific) in contrast to the temperature gradient over land
described above. This is physically consistent with the increase of
precipitation over India in Fig. 6a as seen for the interannual
time scale framework (Chowdary et al. 2021).

From the atmospheric perspective, the leading pattern of
model precipitation biases presents strong signals over the

TABLE 2. Statistics of the MCAs between surface temperature or precipitation biases with Indian rainfall change shown in Fig. 6.
All correlations in the last four columns are significant at the 99% confidence level. See text and Text S1 in the supplemental
material for more details on the SCF and NC statistics.

Explained
variance of

Indian rainfall
change SCF NC

Correlation
between SVs of
rainfall change
over India and
ISMR change

Correlation
between SV of
bias and SV of
rainfall change
over India

Correlation
between SVs
of surface

temperature and
precipitation bias
from the two

MCAs

Correlation
between SVs of
rainfall change
over India from
the two MCAs

Pr bias; Indian
rainfall change

39.4% 40% 12.5% 0.95 0.75 0.67 0.99

Ts bias; Indian
rainfall change

39.5% 47% 12.9% 0.94 0.67

FIG. 6. (a) Heterogeneous and (b) homogeneous maps obtained from the MCA performed between the surface temperature bias of the
34 climate models and the ISM precipitation changes detected over the historical period in the same 34 models. (c),(d) As in (a) and (b),
but for the MCA computed between the precipitation bias and the ISM precipitation change. Dotted points indicate significant correla-
tions at the 95% confidence level between the respective SV and gridpoint time series. See Text S1 in the supplemental material for a
short introduction to MCA or Bretherton et al. (1992) for more details on SVs (e.g., expansion coefficient series), heterogeneous and ho-
mogeneous maps, and the various statistics produced by MCA.
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whole tropics. First, Fig. 6d shows a double ITCZ structure
over the Pacific Ocean consistent with the intermodel spread
of precipitation biases discussed in section 3e. Statistical signif-
icance is moreover well defined along the equatorial Pacific
and the SPCZ (Fig. 4d). Models showing a positive ISM rain-
fall change typically also present a strong dry bias (more
precisely a reduced wet bias; see Fig. 5a) over the equatorial
Atlantic, accompanied by a wet bias (e.g., a reduced dry bias)
over the Sahel and central Africa, which corresponds to a
northward shift of the ITCZ. This signal therefore strongly
modulates the MMM rainfall bias shown in Fig. 5a over the
Atlantic region. The bias pattern is complex over the IO, with
a tripolar structure composed of an enhanced wet bias be-
tween 08 and 108N, surrounded by a dry bias north and south
of this band. Note that over the Indian and Atlantic regions,
not many areas exhibit statistically significant gridpoint corre-
lation in contrast to what is detected over the tropical Pacific.

To further illustrate the leading role of the tropical Pacific
biases in generating intermodel spread in ISMR changes over
the historical period, we computed MCAs with surface tem-
perature and precipitation biases restricted to the tropical
Pacific (see supplemental Fig. S5). The results are very similar
to the Pacific structure described in Figs. 6b,d, but with higher
correlations (r . 0.85) between the SV model series associ-
ated with the patterns of biases in each MCA. This points out
the importance of Pacific biases described above and also
again to the key role of ocean–atmosphere coupling in this
basin for ISM rainfall changes as simulated by CMIP6 models.

As mentioned above, there is a strong relationship between
the pattern of surface temperature and precipitation biases in
the Indo-Pacific domain. Figure 7 explores this relationship
by correlating precipitation and surface temperature biases
at every grid point. The negative correlations over land are
expected and consistent with the analysis of section 3c. They
arise from a reduced cooling effect associated with a deficit of
local precipitation and indicate that the atmosphere drives
the coupling between surface temperature and precipitation
biases. Over the ocean, the sign and the intensity of the cor-
relation between these two variables are spatially variable
due to the complexity of local ocean/atmosphere processes
in each basin. Correlations are highest over the equatorial

and subtropical areas in the Pacific. The Pacific Ocean mostly
displays a positive correlation except along the Mexican coast,
the Philippine Sea, and off the coast of Australia. The correla-
tion is particularly strong in the same regions, which exhibit
gridpoint statistical significance in Figs. 6b and 6d. This is
especially true over the eastern Pacific, indicating that en-
hanced oceanic warm bias is associated with a wet bias over
this region and vice versa across the models. This suggests
that surface temperature biases drive the atmosphere biases
over this region.

Therefore, since the biases in the tropical Pacific Ocean,
particularly along the equator, are correlated with the ISM
rainfall changes (Figs. 6b,d), and there is a tight coupling
between the ocean and atmosphere biases over the Pacific
(Fig. 7), we will focus in the following subsection on the im-
pact of the bias affecting the equatorial Pacific SST gradient
as a possible key factor for explaining the intermodel spread
of historical change of this SST gradient over the equatorial
Pacific and, in turn, ISMR changes.

b. Relationship between intermodel spread of ISMR
change and the equatorial SST gradient in the Pacific

To explore the role of equatorial Pacific SST gradient
biases, we first define an index of the zonal SST gradient as
the SST difference between the western and eastern equato-
rial Pacific (see Table 1). A positive value of this zonal SST
gradient index indicates a La Niña–like situation in both the
SST bias and change spatial patterns over the tropical Pacific.
There is a significant correlation between the SST gradient
bias index and ISMR change (r 5 20.47; p , 0.01), which
confirms our previous interpretations on the role of tropical
Pacific biases, especially along the equator, from the MCAs,
and this subsection will look at the underlying mechanisms
behind this statistical relationship.

First, Fig. 8a shows that models that present a La Niña–like
bias have a tendency to produce a strong cooling over the
equatorial eastern Pacific and a warming over the equatorial
western Pacific by the end of the historical period. The corre-
lation between the equatorial Pacific SST gradient (as defined
in Table 1) bias and change confirms the existence of this
strong and significant linear relationship between bias and

FIG. 7. Intermodel correlation between surface temperature and precipitation biases computed at every grid point
in the Indo-Pacific region for the 34 CMIP6 models (see supplemental Table S2 for the list of models). Dotted points
indicate grid points where the correlation is significant at the 95% confidence level.
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historical changes (r 5 0.66; p , 0.01). In other words, mod-
els that simulate a La Niña–like SST gradient (positive
gradient bias) tend to produce La Niña–like SST change
over the Pacific Ocean and vice versa. According to Fig. 8,
the SST gradient bias correlates more strongly with SST
changes in the eastern equatorial Pacific. Furthermore, the
bias of the Pacific SST gradient is more correlated with
the SST bias in the eastern Pacific than in the western (sup-
plemental Fig. S6). This suggests that, over the historical
period and for CMIP6 models, the eastern equatorial Pacific
plays a dominant role in shaping the change of the equato-
rial SST gradient as compared to the west. This is reminis-
cent of the ocean dynamical thermostat (ODT) mechanism
(Clement et al. 1996).

Consistently, models with a La Niña–like SST gradient bias
also show an increase in the SLP gradient across the Pacific
via an increase in pressure in the east and a decrease in the
west during the historical period (Fig. 8a). These changes in
SLP and SST gradients are accompanied with an increase in
easterly winds over the tropical Pacific, with all three variables

being related to each other through the Bjerknes feedback
(Bjerknes 1969).

These changes in surface variables are accompanied by
changes at higher levels in the atmosphere (Fig. 8b) as the sur-
face communicates with higher atmospheric levels via the la-
tent heat release and the Walker circulation. An anomalous
positive equatorial SST gradient in the Pacific induces an in-
tensification of the Walker circulation, as well as a westward
shift of its ascending branch (see supplemental Fig. S7).
Indeed, Fig. 8b shows an increase in upper-level wind diver-
gence over the Bay of Bengal and India, which implies more
intense convective activity and release of latent heat. On the
other hand, over the eastern Pacific we observe an increase in
upper-level wind convergence, which is accompanied by an in-
crease in subsidence and therefore a reduction in precipitation
by enhanced atmospheric stability.

The intermodel spread of precipitation changes over the
eastern and central Pacific, associated with the intermodel
spread of the equatorial Pacific SST gradient, induces an in-
termodel spread of latent heat release aloft which propagates

FIG. 8. Intermodel regressions against the equatorial Pacific SST gradient bias of (a) changes in SST (color shaded;
K K21), sea level pressure (contour interval: 2 hPa K21) and wind at 850 hPa (vectors; m s21 K21); (b) historical changes
of velocity potential at 200 hPa (color shaded; m2 s21 K21), precipitation (contour interval: 0.1 mm day21 K21), and diver-
gent wind at 200 hPa (vectors; m s21 K21); and (c) historical changes in 200–500-hPa thickness (color shaded; m K21),
850-hPa streamfunction (contour interval: 30000 m2 s21 K21), and rotational wind at 850 hPa (vectors; m s21 K21). The
colors of the arrows in all three panels vary from purple to cyan according to the intensity of the wind speed for readability.
In (a), only one vector of two is shown also for readability.
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eastward in the form of a Kelvin wave over the Atlantic (not
shown in Fig. 8c) and westward across the subtropical Pacific
in the form of Rossby waves. The latter can be seen in Fig. 8c
with the equatorially symmetric response of the tropospheric
thickness change. Models that tend to show a positive bias in
the SST equatorial gradient (e.g., La Niña–like anomalous
pattern) are associated with an anticyclonic circulation around
158N in the western Pacific at the end of the historical period
(Fig. 8a), which promotes the moisture transport across the
Bay of Bengal to India through enhanced southerlies at the
surface (Figs. 8a,c). This increase of the meridional circulation
can also be evidenced by the increase of the zonal tropo-
spheric thickness gradient around India, which strengthens
the vertical shear of the meridional wind according to the
thermal wind relationship (Dai et al. 2013). Note that these
relationships work conversely for models showing a negative
bias of the SST equatorial gradient in the Pacific, as our analy-
sis is linear. This mechanism is further supported by the corre-
lation between the change in precipitation over the central
Pacific (58S–58N; 1808–1008W) and the change in the MMCI
(r 5 20.45; p , 0.01), which was itself significantly linked to
the intermodel spread of ISMR change in section 3b.

In summary, a mean bias in the equatorial Pacific SST
gradient seems to modulate the ISMR change (r 5 20.47;
p , 0.01) by physical mechanisms very similar to those oper-
ating in the ENSO–monsoon teleconnection (Roy et al.
2019). Indeed, the intermodel spread of the equatorial Pa-
cific SST gradient bias in the CMIP6 models modulates the
historical change in this gradient, which is accompanied by
cascading effects through the Bjerknes feedback, leading to
a change in the Walker circulation that favors convection
over India when the initial bias is more La Niña–like and vice
versa. In other words, models that simulate a La Niña (El Niño)–
like SST gradient tend to produce La Niña (El Niño)–like
changes over the Pacific Ocean.

5. Conclusions

The impact of tropical temperature and precipitation biases
on simulated changes of ISMR has been analyzed here using
historical simulations of 34 coupled models from CMIP6 in
order to unravel the potential roles of these biases in the large
uncertainties and intermodel spread affecting ISMR simula-
tions and projections.

a. Summary

Our results first confirm that the skill of CGCMs at repro-
ducing ISMR climatology and trend has increased from
CMIP3 to CMIP6, but the latest models still exhibit significant
biases during JJAS (Jin et al. 2020; Wang et al. 2020). In par-
ticular, ISMR still suffers from a persistent mean dry bias. In
terms of historical changes, the MMM from CMIP6 models
still struggles to reproduce the observed post-1950 drying
trend of ISMR, but the agreement of CMIP6 MMM with ob-
servations is better over the recent decades (1990–2014) dur-
ing which both AIR and IMD datasets present a significant
wetting trend (Jin and Wang 2017; Roxy 2017). However, both
observed datasets and individual CMIP6 models disagree on

the amplitude of this wetting trend. Over this wetting period,
the models present a very large intermodel spread, and 40%
of them produce a (nonobserved) drying trend. Our analysis
demonstrates that this cannot simply be attributed to internal
variability as the intermodel spread is also prominent in multi-
member averages in which internal variability plays a second-
ary role.

On a broader scale, CMIP6 models also present similar
errors as previous generations: the Pacific Ocean displays
an erroneous double ITCZ (Tian and Dong 2020), an equa-
torial Pacific cold tongue bias (Li et al. 2016), and warmer-
than-observed SST in eastern boundary upwelling systems,
especially in the southeast Pacific and Atlantic Oceans
(Farneti et al. 2022). On an annual basis, but even more so
in boreal summer, the Pacific Ocean shows an El Niño
Modoki pattern of change in the historical period. How-
ever, the east–west equatorial SST gradient is increased
in the MMM, suggesting also a La Niña–like pattern of
change. These results are not in line with those of CMIP5,
where many models agreed on an El Niño–like warming
over the historical period, nor are they consistent with ob-
servations (Lian et al. 2018).

Following this assessment of the performance of the models
in CMIP6, we answered the three questions that had been
raised in the introduction concerning the intermodel spread
of historical change ISMR:

1) Is there a local link between climatological biases over
India and ISMR change? We demonstrated that tempera-
ture and rainfall climatology (and variability) biases over
India cannot be used to constrain the intermodel spread
of ISMR changes despite that these local biases also pre-
sent a large intermodel spread. This is consistent with past
investigations on CMIP5 (Racherla et al. 2012).

2) Are there links with some remote biases over land or the
tropical oceanic basins? The MCAs suggest that tropical
rainfall and temperature biases play a leading role in the
intermodel spread of ISMR rainfall changes over the his-
torical period, producing a similar and uniform rainfall
change over India. The MCA results also confirm that the
local biases are not key to reducing the uncertainties in
ISMR changes. Further analysis demonstrates that remote
coupled ocean–atmosphere biases in the Pacific Ocean play
a dominant role. Furthermore, the strong positive correla-
tion between local temperature and precipitation biases in
the Pacific suggests that the ocean is driving the coupled
biases. Consequently, we focused on the role of the bias of
the equatorial SST gradient and found that the climatologi-
cal background state for each model plays a pivotal role in
determining the Pacific mean state change over the histori-
cal period with the eastern equatorial Pacific playing a lead-
ing role in these interactions (Fig. 6b).

3) By which physical processes do local and/or remote biases
influence ISMR historical evolution? Our analysis sug-
gests that models having a La Niña–like SST gradient bias
tend to favor a La Niña–like change and, conversely, an
El Niño–like bias promotes an El Niño–like change.
Therefore, by modulating the change of the SST gradient
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in the Pacific, the bias of this gradient impacts the local
rainfall and the Walker circulation changes, which result
in ISM rainfall changes through teleconnection mecha-
nisms very similar to those associated with the ENSO–

ISM teleconnection (Roy et al. 2019; Chowdary et al.
2021). The equatorial Pacific SST gradient bias also mod-
ulates changes of latent heat release (associated with the
local rainfall changes) that propagate westward in the
form of Rossby waves into the subtropical North Pacific
Ocean. For La Niña–like models, this creates low-level
anticyclonic anomalies 108 north of the Maritime Conti-
nent and changes the midtropospheric temperature gradi-
ent westward of the rainfall change in the central Pacific.
Conversely, for El Niño–like models in which the Pacific
equatorial SST gradient is reduced, the changes of this
midtropospheric temperature gradient are reversed dur-
ing the historical period. This finally leads to a modulation
of the meridional monsoon circulation across the CMIP6
models, which also results in an intermodel spread of ISM
rainfall and MMCI changes. The modulation of the merid-
ional monsoon circulation by biases in the Pacific Ocean
has already been suggested to play a key role in the inter-
model spread of ISMR projections in CMIP5 (Li et al.
2017). However, and although the circulation patterns in-
volved here are similar, the underlying mechanisms we
suggest for the historical period are different; they involve
mainly the eastern equatorial Pacific, while the role of
the western Pacific is dominant in the future as diagnosed
by Li et al. (2017).

b. Discussion and perspectives

As summarized in Lian et al. (2018), the changes of the
equatorial Pacific SST gradient can be understood in an atmo-
spheric or oceanic framework. On the one hand, the atmo-
spheric framework links a reduction of the equatorial Pacific
gradient to the weakening of the tropical and Walker circula-
tions under a GHG forcing scenario (Held and Soden 2006).
On the other hand, the oceanic framework leads to an in-
crease of the gradient under global warming (Clement et al.
1996). The oceanic framework is based on the ODT mecha-
nism, which refers to the damping effect of the oceanic up-
welling in the eastern equatorial Pacific for a given forcing
through heat divergence (Clement et al. 1996). Here, we sug-
gest that a positive SST gradient bias is associated with an
overly pronounced upwelling in the eastern Pacific, which
causes an overestimation of the ODT mechanism, leading to
a reinforcement of the Pacific equatorial SST gradient over
the historical period and vice versa for models with a negative
SST gradient bias in the equatorial Pacific. Note that a poor
sampling of “observed” internal variability can also play an
important additional role in the mismatch between observa-
tions and simulations. Recent results show that a correct rep-
resentation of the internal variability requires large ensemble
simulations, and when this is done the observed Pacific
trend lies in the spread of the simulated internal variability
(Watanabe et al. 2021).

Future studies should investigate in more detail how the
equatorial biases in the Pacific can lead to a misrepresentation
of the forced response (Lian et al. 2018) and whether these
biases can be understood solely by intrinsic modeled errors of
the Pacific coupled system or if these biases can be induced by
remote errors, for example, those in the Atlantic or Indian ba-
sins (McGregor et al. 2018; Shamal and Sanjay 2021; Terray
et al. 2021, 2023).

In a future study, the relationship between the Pacific
equatorial SST gradient bias and ISMR change could be fur-
ther tested using SST nudging experiments to corroborate
the mechanisms that we proposed. We could also investigate
whether the relationships we found over the historical pe-
riod between the Pacific equatorial SST gradient biases and
ISMR would still hold in CMIP projections. Indeed, we
have suggested that the ODT mechanism links the equato-
rial Pacific gradient bias and change, but this relationship
may diminish on longer time scales because the ODT mech-
anism is described as a rapid response of the Pacific Ocean
to radiative forcing (Heede et al. 2020), as the ODT mecha-
nism is weakening with the progressive warming of the
equatorial thermocline (Luo et al. 2017).
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response of the Sahel

In this section, we will apply the methodology used earlier for the Indian
monsoon to the case of the Sahelian monsoon in order to assess possible
links between the inter-model spread of its response to anthropogenic
forcing over the historical period and the temperature and rainfall biases
elsewhere. A small technical accident that occurred in the summer of
2022 will nevertheless modify the models we will use this time. Indeed,
the servers hosting the data used in the first article burnt down, so the
same models as those used in Chapter 4 are used here instead of those
used in Section 3.1 for ISM. This new set includes 32 models, 26 of which
are common to those used in the original study (see Table.2.1 in Chapter
2). The change is therefore minimal but no secrets between us!

3.3.1 Sahel rainfall trend over the historical period

Figure 3.1: This figure is equivalent to Fig.1a of the article, but for the simulated and observed Sahel precipitation trends. Low-pass-filtered
(with LOESS) Sahel precipitation time series are represented as normalized anomalies and expressed in percent of the respective mean
over 1901–2013 for each time series. The thin lines represent the first historical member of each of the 32 models available, while bold
lines represent the MMM of these 32 first historical members (red), the observed GPCC (blue) and DELAWARE (orange).

We use two observed precipitation datasets, namely GPCC and DELAWARE,
which provide station-based rainfall observations over the Sahel from
the beginning of 20th century to the present. GPCC and DELAWARE
mainly fluctuate between -15% and 15% except at the very beginning of
the period where GPCC and DELAWARE has a maximum (Figure.3.1).
These two sets of observations agree remarkably well over the whole
period, both in terms of the temporality of the trends, which is confirmed
by their strong correlation (p-value=0.99), and in terms of amplitude
with variations of the same order of magnitude. The drying trend from
the 1960s to the 1980s (Dai et al., 2004;Greene et al., 2009)is clearly visible
here, with a drop in precipitation of around 30% over the period. From
the 1980s onwards, there is a partial revival of monsoonal rainfall in the
Sahel with a strong positive trend to the present day (Lebel and Ali,
2009) on which GPCC and DELAWARE agree very well. Thus, while the
low-frequency fluctuations of Sahel rainfall are quite different from those
of ISM in the first part of the observed record, both systems experience
increased monsoon rainfall during the recent decades.
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As will be discussed again in Chapter 4, the 1960-1980 drought includes
probably both a human-induced component and one related to inter-
nal variability. During this period, the anthropogenic component is
thought to consist mainly of land-atmosphere feedback (J. G. Charney,
1975;Kucharski et al., 2013) and aerosols (Dong and Sutton, 2015;Giannini
and Kaplan, 2019), while teleconnections driven by the Atlantic ocean
decadal mode of internal variability (e.g., AMV, see Chapter 1) may also
play a role (Martin and Thorncroft, 2014). Their respective magnitude
is still hotly debated (Janicot et al., 2015), as well as the “real” internal
character of the AMV (e.g., Qin et al., 2020). As for the partial recovery
of precipitation, it could be linked to the reduced effect of aerosols in
connection with environmental policies in the 1980s (Seth et al., 2019) and
to the concomitant increasing influence of GHGs which could globally
favor Sahelian monsoon precipitation despite conflicting effects as for
the ISM (Chou and Neelin, 2004;Biasutti, 2013.

The thick orange line in Figure.3.1 represents the MMM which fluctuates
between -5% and 12%. The sharp fall in rainfall from the 1960s to the
1980s does not seem to be reproduced by the MMM, especially in terms
of amplitude, although Ndiaye et al., 2022 show a significant correlation
over the same period between MMM and observations. The lowest value
is -5% compared to -15% in the observations, and this minimum is reached
around 1970 whereas in the observations this is the time when the drying
trend is strongest and the minimum occurs only after 1980. This result is
consistent with the partial attribution of the drought to internal variability,
which is largely attenuated in the MMM (Martin and Thorncroft, 2014).
On the other hand, the monsoon renewal trend is very well reproduced
by the MMM with an increase of 13% over the period 1980-2013, which is
also found in the GPCC and DELAWARE observations. This indicates
that this trend seems to be linked to anthropogenic forcing, notably
GHGs, as this trend of increasing Sahelian precipitation is prolonged in
the projections (see Chapter 4 and also Z. Chen et al., 2020).

Concerning the first members of each of our 32 models, we note that
they have a variability, at least for some of them, fairly close in amplitude
to that of the observations up to the 1980s, although not reaching the
highest values, oscillating between -10% and +10%. Nevertheless, the
inter-model spread increases sharply after the 1980s, with values ranging
from -2% to +38% at the end of the period. Based on the results of
the previous paper focusing on ISM and also investigations reported in
Chapter 4 on the relative roles of internal variability and anthropogenic
forcing in the inter-model spread of Sahel rainfall projections, we assume
that the 35-year averaging used to define the historical change, strongly
attenuates the internal variability and that the inter-model spread over
the period is mainly related to a variable response of the models to the
external forcings, although we only use one member for each model.

Since the historical changes and biases of global temperature and pre-
cipitation have been already presented and discussed in the published
article (see especially Figure 4 and Figure 5 in Section 2 of Chapter 3)
and assuming that the small changes in the sets of models do not disrupt
them, we now go straight to the results of the MCAs exploring the links
between the Sahel rainfall change and the temperatures and rainfall
biases across the models. As a reminder, by using MCAs, we want to
answer the following question: is there a link between local or remote
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climatological biases (during boreal summer) in the models and the way
they simulate the historical rainfall response in the Sahel?

3.3.2 Local and remote impacts of temperature and

precipitation biases on Sahel rainfall historical

changes

MCAs are performed over a slightly larger area ([20W;20E],[3N;20N],
land only) than the canonical Sahel domain ([20W;20E],[10N;20N], land
only) in order to better capture meridional shifts movements of the
precipitation band and the ITCZ position.

Figure 3.2: (a) Heterogeneous and (b) homogeneous maps obtained from the MCA performed between the Sahel precipitation changes
detected over the historical period and the surface temperature bias during boreal summer. (c),(d) As in (a) and (b), but for the MCA
computed between the Sahel precipitation change and the precipitation bias during boreal summer. Dotted points indicate significant
point-wise correlations at the 95% confidence level between the respective SV and gridpoint time series.

The heterogeneous rainfall maps of the Sahel rainfall change (Figure.3.2ac)
show a predominantly meridional modulation of rainfall, with an in-
tensification of rainfall in the southern Sahel and little change in the
north. However, this modulation is more pronounced in the western part
of the domain than in the eastern part, particularly when the MCA is
computed with surface temperature biases (Figure.3.2a). The statistics
for the MCAs are presented in Table.3.1. They show values of the same
order of magnitude to those found in the case of India’s historical change,
except that the explained variance of the Sahel change is a bit lower here
(33% compared to 39% previously). The change in precipitation over the
Sahel from the MCAs is also very close to the first mode of the EOF for
this same field, with r=0.97, and very similar explained variances (33%
for the MCA, 35% for the EOF). This suggests that the precipitation and
temperature bias patterns identified through the MCA are related to the
main inter-model spread mode of historical precipitation change in the
Sahel.
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These MCA modes have a SCF of 41% and 40% with surface temperature
and precipitation biases, respectively, and they have similar NC statistics
(Table.3.1). This suggests that the precipitation and surface temperature
biases have a statistical relationship with Sahel rainfall change of similar
strength . Moreover, the correlations between the SV series corresponding
to the leading patterns of precipitation and temperature biases and those
of rainfall changes in each MCA are quite similar too (0.74 and 0.67; see
Table.3.1), which corroborates that a similar strong relationship exists
between biases and Sahel rainfall changes. These results are in agreement
with the fact that bias modes from the MCAs are strongly related (r=0.69,
p-value<0.01).

Table 3.1: Statistics of the MCA between precipitation bias and Sahel historical precipitation change (Figure.3.2). Correlation is between
the SV of Sahel rainfall change and the SV of the associated bias.

Explained variance SCF(%) NC(%) Correlation
of Sahel rainfall change

Pr bias; Sahel rainfall change 32% 40% 13% 0.67
Ts bias; Sahel rainfall change 33% 41% 13% 0.74

On a regional scale, models having a wet bias off the coast of Senegal and
over the gulf of Guinea show a general increase of Sahel rainfall over the
historical period (Figure.3.2d). Interestingly, from the perspective of the
MCA modes displayed in Figure.3.2ac, these wet biases are not directly
related to local SST biases, but to cold biases in the western tropical At-
lantic. On a more tropical scale, the precipitation bias mode (Figure.3.2d)
seems to be linked with an intensification of the Walker circulation in the
Indo-Pacific regions, with a pattern of excessive precipitation over the
maritime continent framed by dry biases over the western Indian Ocean
and the Pacific Ocean. Note, however, that the rainfall patterns shown
in Figure.3.2d are only weakly significant over the equatorial Pacific
and Indian oceans. Finally, on the global scale, The temperature bias
pattern (Figure.3.2b) shows a more significant large-scale structure than
its precipitation counterpart, with a broad SST cold bias covering the
whole Tropics. This cold bias is particularly pronounced over the western
Indian Ocean from 40°S to 15°N. We also note that at high northern
latitudes, a warm bias also emerges. This suggests that the inter-model
spread of historical response of Sahel rainfall is partly associated with
the inter-model spread of the inter-hemispheric temperature gradient
during boreal summer across the models and that this relationship is
mainly driven by the tropical SST bias in the models. Consistent with
this hypothesis, there is a good spatial correspondence between cold SST
and dry biases South of the Equator in the MCA modes displayed in
Figure.3.2c and Figure.3.2d. However, this link is not seen in the North
Hemisphere as the homogeneous map of rainfall bias does not show a
northward shift of the ITCZ (Figure.3.2d).

To try to better understand the links between the biases and the responses,
we also carried out MCAs between historical precipitation changes in
the Sahel and global changes in precipitation and surface temperature.
The modes over the Sahel are identical to those found with the biases
(Figure.3.2ac, r=0.98), and thus we show only the global change modes
in Figure.3.3 We can see that an increase in precipitation over the Sahel
over the historical period is well associated with a sharp rise in the inter-
hemispheric temperature gradient (Figure.3.3a). This result linking the
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inter-hemispheric temperature gradient and Sahel precipitation is in line
with previous studies (Hwang et al, 2013; Schneider et al, 2014) and also
echoes what we will present in Chapter 4 in the context of the projections.
From the perspective of precipitation changes (Figure.3.3b), no global
pattern seems to emerge. Indeed, while a strong correlation is found in
the Sahel region by design, the homogeneous rainfall map is very patchy.
Yet, Some significant correlations are found in East Asia and Southeast
Pacific. Consequently, the inter-model spread of historical Sahel rainfall
change does not appear to be regulated by tropical dynamics as was the
case for India.

Figure 3.3: (a) homogeneous maps ob-
tained from the MCA performed be-
tween the surface temperature change
and the Sahel precipitation changes de-
tected over the historical period. (b) same
as (a), but for the MCA computed be-
tween the global precipitation change
and the Sahel precipitation change. Dot-
ted points indicate significant correla-
tions at the 95% confidence level between
the respective SV and gridpoint time se-
ries.

To summarize, we have identified, on one hand, a global surface temper-
ature response mode reflecting a modulation of the inter-hemispheric
temperature gradient across the models and, on the other hand, modes
in precipitation and temperature biases also suggesting the role of the
inter-hemispheric temperature gradient, all of which are linked to the
same mode of precipitation change in the Sahel. As we seek to explain the
connections between the identified biases and the historical response of
the Sahel, we can question whether there is a link between the identified
bias mode and the global temperature change mode. Figure.3.4 shows
that there is only a modest relationship between the identified bias mode
and the global temperature change, which suggests that the bias mode
is not linked to the historical temperature change mode despite both of
them being linked to a modulation of the inter-hemispheric temperature
gradient at the global scale. In other words, these two modes appear
as independent sources of the inter-model spread of the Sahel rainfall
response during the historical period.
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Figure 3.4: Scatterplots of SV of global
temperature change with SV of global
temperature bias.

To better understand the mechanisms underlying the statistical relation-
ships we have identified, further diagnostics would be necessary, such as
analyzing cloud cover or radiative balance variables. However, this goes
beyond the scope of this supplement (and the available time to complete
this manuscript). It is thus left for future studies.

While this section can be frustrating as it raises more questions than it
provides answers, it illustrates the difficulty in establishing links between
model biases and historical responses, in this case, regarding the Sahelian
monsoon. However, this issue is quite general in nature. It also highlights
the fact that monsoons are highly distinct systems that do not necessarily
exhibit similar behavior, challenging the notion of a global monsoon.
Despite not being able to reach definitive conclusions regarding the
biases, we have highlighted that the inter-model spread of the Sahel’s
historical response is strongly linked to how models simulate the response
of the inter-hemispheric gradient. Spoiler alert: this will also apply to
projections and appears to be a consistent feature over time.



Inter-model Spread of Future

Indian and Sahelian Monsoon

Rainfall in CMIP6 4

The aim of this chapter is to study the inter-model spread that affects the
projections of the Indian and Sahelian monsoons under the assumption
of the strongest emissions scenario (SSP5-8.5), which results in the
strongest anthropogenic responses. In particular, we seek to understand
the mechanisms underlying the varied responses of the two monsoons
across the models. The results obtained on the Sahel monsoon have been
the topic of an under-review article in Journal of Climate in 2023 (see
section 4.2) and are summarized below. The focus on the Indian monsoon
is detailed in section 4.3.

4.1 Sources of uncertainty in Sahelian rainfall

projections under global warming in CMIP6:

objectives and summary

This chapter is based on a large set of 32 coupled models from the CMIP6
exercise, comprising between 1 and 50 members each (see Annex 2).
First, we show that precipitation change in the Sahel at the end of the
21st century (i.e. 2064-2099) is highly uncertain in CMIP6 in agreement
with previous studies (Monerie et al., 2017;Z. Zhang and Li, 2022), with
one-third of models showing a decrease in precipitation and two-thirds
an intensification. For the Multi-Model Mean (MMM), our results are
also in line with previous studies, as we find a dipolar response over
the Sahel, with a decrease in precipitation over the western Sahel and
an increase over the central Sahel (Monerie et al., 2017;Almazroui et al.,
2020). On a more global scale, the MMM response shows a dipolar
response of precipitation along the Equator in the Indo-Pacific zone,
with a decrease in precipitation over the eastern Indian Ocean and an
increase over the central to eastern Pacific. This dipolar response is in
agreement with the El Niño-like response in SST over the Pacific Ocean.
However, both the precipitation and SST response over the Indo-Pacific
present strong uncertainties across the models. From the point of view
of temperature changes, the continents show a very strong inter-model
spread, notably over the Sahara and Eurasia, which have both been
pointed out as drivers of change in the Sahelian monsoon (Park et al.,
2015;Z. Zhang and Li, 2022). But the area with the greatest uncertainty
is the northern Atlantic Ocean, which has also been suggested to be
an inter-model spread generator for Sahelian precipitation response (Z.
Zhang and Li, 2022).

After providing an overview of the MMM changes and associated un-
certainties, we use MCAs with global precipitation and temperature
changes to identify the sources of inter-model spread in Sahel rainfall
change at a global scale. In order to ensure that the extracted MCA modes
are mainly linked to the different models’ responses to anthropogenic
forcings rather than internal variability, we perform two sets of twin
MCAs: the first considering only one member for each model, and the
second in which we average all available members for each model before
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computing the covariance matrix between the two fields as was done
in Chapter 3. The fact that almost identical modes are obtained from
these two approaches allows us to demonstrate that (i) the long-term
averaging (2064-2099) used to define changes effectively dampens in-
ternal variability (a feature already observed in Chapter 3), and (ii) the
inter-model spread is indeed mostly attributable to forced response. For
the remainder, to simplify calculations, especially those with wind and
geopotential at different levels, we will only use one member per model
based on these preliminary investigations. Furthermore, we note that the
analysis is performed on a more extended region than the strict canonical
definition of the Sahel region. The extended region may rather be called
the west african region. This extended region was indeed defined so as
to better capture the meridional shifts of the maximum summer rainfall.
Given the results which indeed primarily highlight meridional shifts
within the Sahel region, and the seasonal analysis performed only over
the season of the Sahel monsoon, we will use the term Sahel monsoon
and Sahel region in all this chapter to name the changes in summer
rainfall identified over the western Africa.

The MCAs show that changes in tropical precipitation and global sur-
face temperature patterns modulate zonally the Sahel rainfall change.
The strong correlation between the two MCAs suggests that coupled
ocean-atmosphere and land-atmosphere changes are responsible for the
Sahelian change’s uncertainty. In order to compare our results with previ-
ous studies, we focus on the impact of temperature changes and identify
two major sources of uncertainty: the inter-hemispheric gradient and the
equatorial Pacific mean-state during boreal summer. These two factors
are strongly correlated with Sahel rainfall change, but not significantly
correlated with each other, allowing us to consider them as independent
in a first approximation.

The next step is to address the following question: what are the physi-
cal processes that connect these sources of uncertainty in the models’
response to Sahelian rainfall change?

Case of the inter-hemispheric gradient change

The more pronounced the inter-hemispheric temperature gradient (e.g.,
with a positive anomaly in the North and a negative anomaly in the South),
the further north the ITCZ shifts and the greater the precipitation in the
Sahel, in accordance with the energy framework (Schneider et al., 2014).
Additionally, as the ITCZ moves northward and the inter-hemispheric
SLP gradient is enhanced, the West African Westerly Jet (WAWJ; Pu and
Cook, 2010), a surface jet at 15°N off the African coast, becomes stronger.
Since this jet brings moisture to the Sahel, the stronger it is, the greater
the monsoon precipitation tends to be.

Case of the equatorial Pacific change

The change in the mean-state of the equatorial Pacific has two main
impacts. Firstly, it affects the large-scale zonal circulations in the Tropics
(Trenberth et al., 1998). Models that exhibit a La Niña-like anomalous
sea surface temperature (SST) change show a stronger westward shift of
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the Walker circulation compared to the MMM, which has an El Niño-
like pattern as noted above. This favors anomalous upper-tropospheric
divergence over the Sahel and promotes local convection. The situation is
reversed for El Niño-like models. Secondly, SST changes in the equatorial
Indo-Pacific region modulate the intensity and position of tropospheric
warming by influencing the positions of latent heat release sources. This,
in turn, generates tropical Kelvin and extratropical Rossby waves that
modify the meridional mid-tropospheric temperature gradient around
the Sahel. Consequently, there are changes in the upper-level zonal
circulation over the Sahel, particularly in the intensity of the Tropical
Easterly Jet (TEJ). The strength of the TEJ then influences upper-level
divergence and vertical zonal wind shear, thereby impacting convection
in the region (Nicholson, 2009).

Lastly, after identifying these two sources of uncertainty, the final step
is to quantify their respective contributions to the inter-model spread
of Sahelian precipitation changes. While we initially considered these
sources to be independent in a first approximation based on statistical
considerations, we ultimately demonstrate that their interactions account
for 12% of the uncertainty in Sahel precipitation change. Using attribution
methods and a bilinear regression model, we allocate this portion to each
of our indices and ultimately show that among the 62% of inter-model
spread in Sahel precipitation change that we are able to explain, 40%
are explained by the inter-hemispheric gradient change and 22% are
explained by the equatorial Pacific change.

4.2 Article in extenso, under review in Journal

of Climate

Additional material for this article can be found in the second section of
the appendix!
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ABSTRACT

The Sahel is one of the most vulnerable regions to climate change. Robust estimation

of future changes in the Sahel monsoon is therefore essential for effective climate change

adaptation. Unfortunately, state-of-the-art climate models show large uncertainties in their

projections of Sahel rainfall, even concerning the sign of changes toward the end of the 21st

century. In this study, we use 32 models from CMIP6 to identify the sources of this large

inter-model spread of Sahel rainfall. By using Maximum Covariance Analysis, we first

highlight two key drivers of this spread during boreal summer: the inter-hemispheric

temperature gradient and equatorial Pacific Sea Surface Temperature (SST) changes. Next,

we unravel the physical mechanisms behind their statistical relationships with Sahel rainfall

changes, which bear strong similarities with those operating at decadal and interannual

timescales. Firstly, the modulation of the inter-hemispheric temperature gradient across the

models leads to varying latitudinal positions of the ITCZ and, consequently, varying Sahel

rainfall intensity. The greater the gradient, the more pronounced the northward shift of the

ITCZ, resulting in a spatially homogeneous increase in precipitation over the Sahel.

Secondly, models that exhibit less warming than others in the equatorial Pacific, thereby

projecting a more "La Niña-like" mean state, simulate enhanced precipitation over the central

Sahel in the future through a shift in the Walker circulation and a modulation of the Tropical

Easterly Jet (TEJ) via the propagation of Rossby and Kelvin waves. The situation is reversed

for models exhibiting an enhanced El-Niño-like SST change. Finally, we show that these two

physically based indices collectively explain 62% of Sahel rainfall change uncertainty: 40%

due to the inter-hemispheric temperature gradient and 22% through equatorial Pacific SST.

KEYWORDS : MONSOON, CLIMATE CHANGE, TELECONNECTIONS, MODEL UNCERTAINTY



1. Introduction

The Sahel experiences a rainy season from June to September (JJAS) associated with the

northward migration of the InterTropical Convergence Zone (ITCZ) (Nicholson 2013), while

the rest of the year is practically entirely dry. The Sahel monsoon is characterized by a

complex vertical structure of the atmospheric circulation (Shekhar and Boos 2017;

Akinsanola and Zhou 2019). In the lower troposphere, southwesterly winds bring moisture

from the tropical Atlantic (Sultan and Janicot 2003), while, in the middle (500 hPa) and upper

troposphere (200 hPa), the circulation is dominated, respectively, by the African Easterly Jet

(AEJ) and the Tropical Easterly Jet (Nicholson 2009). The Sahel monsoon provides most of

the water resources for predominantly rainfed agriculture, which is the main source of income

for the region (Sultan and Gaetani 2016). Coupled with the exponential growth of the

population and the ongoing desertification process (Wei et al. 2017), Sahel is one of the most

vulnerable places to climate change in the world (Sylla et al. 2016).

The long-lasting Sahel drought in the 1970s and 1980s has offered a glimpse of the potential

climate impacts of human activities on this region. Indeed, many studies have established the

existence of a human-induced component in the drought, mainly related to land surface

atmosphere feedbacks (Charney et al. 1975; Kucharski et al. 2013) and anthropogenic

aerosols (Dong and Sutton 2015; Giannini and Kaplan 2019; Ndiaye et al. 2022). The latter

have an impact on Sahel rainfall through the anomalous inter-hemispheric radiative

imbalance they induce (Hwang et al. 2013; Schneider et al. 2014) and via their effects on

anomalous Sea Surface Temperature (SST) patterns, especially in the Atlantic ocean

(Giannini and Kaplan 2019; Hirasawa et al. 2020). However, as the internal component of the

Atlantic Multidecadal Oscillation can lead to similar anomalous SST patterns (Martin and

Thorncroft 2014) and a partial recovery of the the West African Monsoon (WAM) has been

observed since the early 2000s (Lebel and Ali 2009), the magnitude of the human-induced

component of the 1980s drought is still hotly debated (Janicot et al. 2015). At the same time,

the reduction in aerosols emissions around the North Atlantic that resulted from

environmental legislation during the 1980s (Seth et al. 2019; Biasutti 2019), combined to

their short atmospheric lifetime, may also have reversed the anomalous inter-hemispheric



radiative imbalance (Giannini and Kaplan 2019) and thereby played a role in the recent

recovery. While most studies focus on the Atlantic, Park et al. (2016) suggest that rising SSTs

in the Mediterranean may also be a driver in the Sahel monsoon recovery.

Finally, Greenhouse gases (GHGs) emissions could have also contributed to the observed

modulations, yet with two opposing effects (Chou and Neelin 2004; Marvel et al. 2020;

Monerie et al. 2022). On the one hand, by increasing the specific humidity according to the

Clausius-Clapeyron relationship and by strengthening the Saharan shallow meridional

circulation associated with a warmer Sahara and a stronger Sahara Heat Low (Cook and Vizy

2015; Wei et al. 2017; Terray et al. 2018), GHG forcing could increase local precipitation by

promoting moisture convergence (Sooraj et al. 2019) and shifting the rainbelt northward in a

warming climate (Byrne et al. 2018). On the other hand, the stabilization of the tropical

troposphere and the dry air intrusions from the Sahara linked to GHGs could make

convection more difficult in this transition zone (Chou and Neelin 2004; Biasutti 2013; Hill

2019). Thus, GHGs forcing promotes several contradictory effects, primarily in terms of

dynamical response, but also through interactions between the dynamic and thermodynamic

responses (Chen et al. 2020).

In a nutshell, the historical period illustrates that there are many factors potentially

influencing the Sahel rainfall, each with different and sometimes contradictory effects,

ranging from regional to global scales. This complexity might be partly reflected in the

substantial disagreement between coupled model projections, persisting from Coupled Model

Intercomparison Project (CMIP) 3 to CMIP6, with an inter-model spread larger than the

mean multi-model change, and some CMIP models projecting a drying and others a

wettening of the Sahel (Monerie et al. 2017b; Zhang and Li 2022). As the forcing at the end

of the 21st century is dominated by GHGs, the large inter-model spread probably comes

mainly from the opposing GHG effects described above (Biasutti 2019). More specifically, a

recent study had suggested that the main source of inter-model spread in the projections does

not seem to come from the thermodynamic response, but rather from the dynamic one, for

which climate models have difficulty in reaching a robust agreement (Kent et al. 2015;

Monerie et al. 2020b; Zhang and Li 2022). This dynamical disagreement among models’



projections has been mainly linked to teleconnections arising from anomalous SSTs in

various oceanic basins, but also to the persistent difficulties of CMIP coupled models to

capture realistically the main processes driving the WAM (Roehrig et al. 2013). Park et al.

(2015) and Monerie et al. (2020b) suggested that the spread in the relative warming between

the Northern Hemisphere and the Tropics modulates the strength of the Sahara Heat Low

(SHL) and the low-level monsoon circulation. Some studies specifically highlight the role of

individual oceanic basins. Regarding the Atlantic Ocean, it is suggested that differential

warming between the tropical and North Atlantic regions is a key player (Zhang and Li

2022). Beyond its role in the revival of the Sahel monsoon in the recent decades, Park et al.

(2016) also identified Mediterranean warming as a key factor in shaping the future of the

Sahel monsoon. Finally, a link between model biases in various regions of the world over the

current period and the inter-model spread of the future Sahel monsoon has also been put

forward by several studies (Roehrig et al. 2013; Yan et al. 2019). As an illustration, Yan et al.

(2019) indicate a strong relationship between the uncertainties of future Sahel monsoon

rainfall and the inter-model spread of summer precipitation biases in South Asia and the

North-West Pacific (NWP), suggesting that this relationship stem from the diversity of deep

convection parameterizations used by the models.

In this study, we use Maximum Covariance Analysis (MCA) to objectively analyse the

relationships between the projected Sahel rainfall and projected global surface temperatures

and rainfall (including both land and ocean) across CMIP6 models. The underlying questions

are : 1) Can we revisit the factors explaining the projected Sahel rainfall uncertainties from an

objective analysis of the projected changes at the ocean-atmosphere-land surface ? 2) By

what physical processes are these factors related to Sahel rainfall? 3) How much uncertainty

can they explain? Section 2 describes models and analysis methods used in this study. Section

3 provides a systematic evaluation of the statistical relationship between the inter-model

spread of Sahel rainfall and global surface temperature and rainfall changes by the end of the

21st century in the CMIP6 models. Section 4 examines the physical processes linking the

influencing large-scale drivers and regions found in Section 3 to Sahel rainfall, the amount of

uncertainty they explain and their respective individual contributions to it. The last section

presents a summary and future perspectives.



2. Data and methods

a) Coupled simulations, validation datasets and climate indices

This study is based on the high emission Shared Socio-economic Pathways 8.5

(SSP5-8.5) scenario experiments, and uses outputs of 32 CGCMs from CMIP6 (see

supplementary Table S1; Eyring et al. 2016). Here, in most of our statistical analyses, we use

only one simulation member for each model, but we also checked in a preliminary step that

our main results are not sensitive to the multi-members averaging, which imply that the

inter-model spread is largely driven by differences in the forced response of the models (see

Section 4a). The monthly mean outputs used in our analysis are rainfall (Pr), surface

temperature (Ts), near-surface air temperature (Tas), Sea Level Pressure (SLP), horizontal

winds (U and V) and geopotential (Zg) at different levels.

Table 1 summarizes the different climate indices and regions used in our analysis. In

addition to definitions of the whole Sahel region, or parts of it (Monerie et al. 2021), and the

canonical Nino3.4 index, it includes an interhemispheric temperature gradient, a northern

hemisphere differential warming and a northern minus tropical Atlantic SST index, all

defined in previous studies as important drivers of the Sahel rainfall changes (Park et al.

2015; Monerie et al. 2020a; Zhang and Li 2022). Note also that our inter-hemispheric

temperature gradient is defined with respect to the latitude 15°N because our focus is on the

boreal summer season (e.g. from June to September). However, our results remain valid if we

define this gradient with respect to the Equator instead (not shown). A tropospheric thickness

gradient is also introduced and will be used in Section 5b when discussing the influence of

the equatorial Pacific on the TEJ.



Regions / Indices Domain and variable used when relevant

Canonical Sahel [10N;20N], [20W;20E], land only

Extended Sahel [3N;20N], [20W;20E], land only

Western Sahel [10N;20N], [20W;5W], land only

Central Sahel [10N;20N], [5W;20E], land only

Niño3.4 < SST >[5S;5N], [170W,120W]

Inter-hemispheric temperature
gradient

< Ts >[15N;90N],[0;360] - < Ts >[90S;15N],[0;360]

Northern hemisphere differential
warming

< SST >[30N;75N],[0;360] - < SST >[20S;20N],[0;360]

Northern minus tropical Atlantic SST
change

< SST >[45N;65N],[40W;10W] - < SST >[20S;10N],[40W;10W]

Thickness gradient around Sahel < Zg200hPa-Zg850hPa>[20N;30N],[20W;20E]-<Zg200hPa-Zg850hPa>[0;10N],[20W;20E]

TABLE 1. Definition of the indices used in the present study. < > stands for spatial

averaging over the subscript domain. The superscript indicates the surface type or the

atmospheric level over which the average is taken, when relevant.

b) Methods

Our analysis will focus on June-September (JJAS) as it is the rainy season for the Sahel.

We define the change of a given variable associated with global warming as the difference

between the future climatology defined over the period [2064-2099] using SSP5-8.5

experiment and the present simulated climatology computed over the period [1979-2014]

using historical experiment. In the following, all changes are normalized by the

corresponding global mean surface temperature increase for each model, so that we look at

responses for a same level of warming among models. This choice will be discussed in more

details and validated in Section 4. All datasets were interpolated onto a common 2.8°x2.8°

horizontal resolution by bilinear interpolation prior to the analysis, which is the coarsest



spatial resolution among the 32 models. Velocity potential used in Section 5 is calculated at

different levels from horizontal winds with the spectral method (Tanaka et al. 2004).

In order to investigate the first order linear relationships between changes seen from

climate indices, we use scatter plots and correlation/regression analyses across the various

models. P-values of correlations are calculated using Student t-test with 31 degrees of

freedom, given the use of 32 GCMs and thus assuming that they are independent. Yet, for a

more systematic exploration, we use MCA, which extracts the dominant co-variability

patterns from two geophysical datasets (Bretherton et al. 1992; Cherry 1997). We will use

quantities such as Squared Covariance Fraction (SCF) and Normalized root-mean-square

Covariance (NC), the former being an indicator of the importance of a mode within a MCA,

while the latter is a metric that allows to compare the importance of modes from different

MCAs. Further details about the MCA and its metrics are given in supplementary Text S1.

We compute the significance of the MCA statistics by using a bootstrap resampling MCA

scheme with 500 shuffles (e.g., in each shuffle, the rows of one of the matrix fields are

randomly permuted before recomputing the covariance matrix and the MCA). The idea is to

generate a large number of independent realizations of the covariance matrix under the

assumption that the two fields are independent of each other in order to assess the confidence

level of the obtained signal as seen by the MCA statistics.

To capture the entire main mode of Sahel precipitation change with the MCA, we use an

extended region compared to the canonical Sahel definition, called “extended Sahel” in Table

1. This enables us to better capture the meridional shifts of the ITCZ than over the canonical

Sahel region. Note, however, that the first MCA modes obtained by using the canonical or

extended boxes are almost identical (r=0.99), illustrating the robustness of the leading MCA

patterns with respect to the choice of the Sahel boundaries.

Finally, in Section 5, we use three statistical methods to estimate the relative contributions of

the different factors that explain the inter-model spread in rainfall change over the Sahel.

First, we use a Permutation Feature Importance (PFI) method (Fisher et al. 2019) to get a

measure of how much the accuracy of the regression model depends on the information in

each input variable. Technically, all variables are held constant except one for which random

permutations are made. The difference in the sum of squared residuals (SSR) between the

output of the regression model when using the initial input data versus the randomly



permuted variable is evaluated. This is repeated 10,000 times for each variable and the

median of the SSR distributions for each variable are compared to obtain the relative

contribution of the given input data. Second, we construct a Random Forest model fitting the

data. We also use a similarity measure of variable importance (Breiman 2001) to assess the

results of our first method. From each constructed tree, we randomly permute one of the input

variables and run down the corresponding tree. Then, we compare the resulting output with

the correct one to get a mis-regression rate. This is similar to the PFI method, but adapted to

the method of random forest. Thirdly and finally, we use a Dominance Analysis (Azen and

Budescu 2003), which computes the variable’s individual effect as well as its effect in the

presence of other variables to identify its relative contribution to the full regression model.

For bilinear regression, this corresponds to the average between the individual contribution

and the incremental contribution resulting from the interactions with the other factor.

3. Global changes of surface temperature and precipitation over the 21st

century



Fig. 1. Rainfall change (JJAS) computed on (a) the Sahel canonical domain, (b) Central Sahel and

(c) Western Sahel for 32 CMIP6 models and their Multi-Models Mean (MMM; left orange bar). All

the model changes are scaled by the global surface temperature change in each model as explained in

Section 2. Units is mm.d⁻¹.K⁻¹. See Table 1 for indices definitions.

In agreement with previous studies (Monerie et al. 2017b; Zhang and Li 2022), Fig.1

illustrates that CMIP6 models show a wide range of responses of the Sahel monsoon to

climate change towards the end of the 21st century in the SSP5-8.5 simulations. The

multi-model mean (MMM; 0.11 mm.d-¹.K-¹) results from an increase in precipitation over

the central Sahel (MMM;0.18 mm.d-¹.K-¹) and a reduction over the western Sahel (MMM;

-0.06 mm.d-¹.K-¹), which is consistent with the dipolar pattern as seen in previous CMIP

models (Monerie et al. 2017a; Almazroui et al. 2020; Monerie et al. 2021). The intermodel

spread is the same for the Western and Central Sahel regions and therefore for the whole



region (about 0.17 mm.d⁻¹.K⁻¹; see the statistics in the upper left corner of each panel in

Fig.1). It is larger than the MMM especially for Western Sahel. There is a general agreement

on the sign of the projected change for central Sahel but with a largely varying amplitude.

However, there is no agreement on the sign of the projected change for Western Sahel and

Sahel as a whole: one third of the models predict a reduction in precipitation and two thirds

an increase. As we seek to establish links between the inter-model spread of Sahel

precipitation change and changes elsewhere, we present first an overview of the MMM

changes of global surface temperature and precipitation, as well as an outlook of the areas of

greatest disagreement between the models regarding the change of these two variables.

Fig. 2. JJAS MMM and inter-model spread of scaled precipitation (mm.d⁻¹.K⁻¹, top) and surface

temperature (K.K⁻¹, bottom) changes computed for the 32 CMIP6 models. (a) MMM precipitation

change, (b) inter-model spread of precipitation. (c) and (d) are the same as (a) and (b), respectively,

but for surface temperature. Contours in (a) are for JJAS precipitation present day (1979 to 2014)

observed climatology (Global Precipitation Climatology Project (GPCP) monthly mean precipitation

flux dataset (Adler et al. 2003), contour interval is 3 mm.day⁻¹) and in (c) for JJAS surface

temperature present day climatology (ERA-Interim reanalysis (Dee et al. 2011), 285K blue, 295K red,

300K green contours). Temperature and precipitation changes are computed as the difference of

climatological means between the end of the century (2064-2099) and the end of the historical period

(1979-2014). See Section 2 for details.



Fig.2a displays the JJAS precipitation changes over the 21st century in the SSP5-8.5 scenario,

as defined in Section 2. As expected the main changes take place in the Tropics. Over the

Sahel, we find a dipolar zonal rainfall pattern as in previous generations of CMIP (Roehrig et

al. 2013; Monerie et al. 2013, 2021), with a decrease in rainfall over the western part of the

Sahel and an intensification over the rest of the region in agreement with Fig.1. This rainfall

zonal gradient over land is in fact part of a larger quadrupole rainfall pattern in the tropical

Atlantic-WAM region (Fig.2a). Sahel rainfall presents one of the largest uncertainties in

relative precipitation change and large disagreement regarding the sign of the change (Figs.1

and 2b; AR6). This large uncertainty is also a characteristic of the whole quadrupole rainfall

pattern described above. The other monsoon regions around the world tend to show an

increase of precipitation in the future, except Central America (Fig.2a). There is a large

uncertainty about the magnitude of change over all monsoon regions, not only the Sahel, but

the relative changes are the highest for the Sahel (Chen et al. 2020).

Overall, Fig.2a shows that the most important changes in precipitation over the ocean occur

in the Pacific ITCZ, which shows both a strong intensification and an asymmetric double

ITCZ structure. Fig.2a displays also a precipitation zonal dipole around the maritime

continent, with an intensification of precipitation in the central and eastern Pacific and a

decrease in precipitation in the southeastern Indian Ocean. This feature is consistent with the

emergence of an Indian Ocean Dipole (IOD) mean state changes in the SSP5-8.5 scenario of

CMIP6 (see Fig.8.6 in Cherchi et al. 2021). This Indo-pacific dipole is also consistent with

the evolution towards an El Niño-like mean SST state in the Indo-pacific region in the

SSP5-8.5 scenario (Fig.2c; see also Lian et al. 2019; Cherchi et al. 2021). There is also a

strong inter-model spread across the Pacific, more pronounced in the eastern part of the basin

(Fig.2b), which is also consistent with the large inter-model spread affecting the American

monsoon in CMIP5 (Pascale et al. 2017).

In terms of temperature (Fig.2c), it is no surprise that the continents are warming more than

the oceans, and also that lands in the Northern Hemisphere are warming more than in the

southern one during boreal summer. Over land, the greatest uncertainties are found in the

Himalayas, the Sahel and Central Africa (Fig.2d). There are, in particular, large uncertainties

over the Sahara and Europe, which have both been pointed out as regions that may influence

the Sahel monsoon (Cook and Vizy 2015; Biasutti 2019; Zhang and Li 2022). Uncertainties

are less pronounced over the Asian monsoon regions, which is surprising given the



uncertainties in precipitation described above, but may be explained by the fact that the

temperature changes are mainly controlled by the precipitation changes in this region

(Guilbert et al. 2023). Turning now to the SSTs (Fig.2c; supplementary Fig.S1), one of the

major robust changes over CMIP generations of models is that the mean state of the Pacific

tends to be more El Niño-like, with a more pronounced warming in the east of the basin. The

mean state of the Indian Ocean is more positive IOD-like, which is consistent with the strong

coupling between the two oceanic basins (Lian et al. 2019; Cherchi et al. 2021). Large

uncertainties regarding the amplitude of the eastern Pacific warming persist nonetheless (Fig.

2d), similarly to the historical period (Guilbert et al. 2023). Model uncertainties are largest

around the South Pole (supplementary Fig.S1) and in the northern Atlantic subpolar gyre,

where inter-model spread maxima are found (Fig.2d). Overall, uncertainty is much stronger

for the northern hemisphere and the North Atlantic than for the tropical SSTs.

Given the large inter-model spread of surface temperature and precipitation changes, and the

complex teleconnections linking the Sahel rainfall with the rest of the globe (Janicot et al.

2011; Martin et al. 2014; Giannini and Kaplan 2019; Nakanishi et al. 2021), we will track in

the following section the main sources of inter-model spread of Sahel rainfall change on a

global scale, by using a series of MCA analyses.

4. Sources of Sahel precipitation change uncertainties

a) Global temperature and precipitation changes associated with Sahel rainfall



Fig. 3. Heterogeneous (a) and homogeneous (b) maps obtained from the MCA analysis performed

between the scaled surface temperature change (K.K⁻¹) of the 32 climate models and the scaled Sahel

precipitation changes (mm.d⁻¹.K⁻¹) in the same 32 models. (c) and (d): same as (a) and (b) for the

MCA between the precipitation change (mm.d⁻¹.K-1) and the Sahel precipitation change (mm.d⁻¹.K-1).

Precipitation and temperature fields are scaled by global temperature change (see text and Section 2

for details). Dotted points indicate pointwise correlations significant at the 95% confidence level

between the respective Singular Variable (SV) and grid-point model series using a Student test and 31

degrees of freedom (Section 2). See Text.S1 in the supplemental material for a short introduction to

MCA.

We compute two MCAs, one between changes in precipitation over the extended Sahel

region and changes in global surface temperature (Figs.3a,b), and the other onebetween

changes in precipitation over the extended Sahel and global precipitation changes (Figs.

3c,d). First, in a preliminary analysis, to assess the influence of internal variability on our

MCA results, we recompute the two MCAs by considering all members available for each

model and averaging them before computing the covariance matrix (see Fig.S3). The extreme

similarity between Fig.3 and Fig.S3 shows that internal variability does not play an important



role, as damping it by considering multi-member averages in the MCAs has no notable

impact on the relationships highlighted by the MCAs. This shows that the inter-model spread

of Sahel rainfall change as computed from the difference between two 35-year periods is

mainly dominated by uncertainty in the models' response to external forcing, not internal

variability, in agreement with (Monerie et al. 2021).

Second, in order to assess the possible influence of the climate sensitivity of the models on

the MCA results, we also performed the MCAs both with and without global temperature

scaling (see Fig.S4). The precipitation change MCA patterns over the Sahel or globally are

again robust (Fig.3.a,b,c and Fig.S4.a,b,c), as they remain unchanged whether the

temperature scaling is applied or not. However, as global warming is a very strong signal and

is an important amplifying factor of the inter-model surface temperature spread (compare

Fig.2 and Fig.S2), it influences the first temperature MCA pattern (Fig.3b and Fig.S4.b) even

though it has no impact on the corresponding rainfall change in the Sahel, as we have just

discussed (Figs.3a,c and Figs.S4a,c). This phenomenon is also well illustrated by the strong

and significant relationship between the global warming series across the models and the

unscaled temperature change SV (r=0.90), while the unscaled Sahel rainfall change SV

shows no significant relationship with this global temperature series (r=0.20, P-value>0.20).

Thus, given that the climate sensitivity of each of the models can artificially blur the signal of

interest for the Sahel, we have chosen to work with scaled quantities, as also done in many

previous studies (Kent et al. 2015; Li et al. 2017; Zhang and Li 2022). This allows to

eliminate the effect of the large spread of ECS in CMIP6 models (e.g. Meehl et al. 2020;

Zelinka et al. 2020) as an additional source of inter-model difference. This amounts to an

analysis of climate responses between models for the same level of warming.

We study only the leading mode for each of these MCAs, as they describe most of the

covariability between the original fields (Table 2) and they explain much more inter-model

spread of Sahel rainfall change than the second MCA mode (51% against 17%). The Square

Covariance Fraction (SCF) and Normalized root-mean-square Covariance (NC) statistics

characterizing the strength of the coupling in the MCA (see Text. S1 for a more detailed

definition of these MCA statistics) are strong (see Table 2) and significant at the 1% level for

the leading modes, which again corroborates the reliability of these modes.

The associated heterogeneous maps (see Text. S1) of rainfall changes over extended Sahel are

similar in both computations (Figs.3a,c). The spatial loadings are fairly homogeneous and

positive, but with weaker values at the edges of the domain. Consistently, the correlations



between the Singular Variable series (SV; e.g. expansion coefficient series from the MCA)

associated with the rainfall change patterns over the extended Sahel (Fig.3a and Fig.3c

respectively), and precipitation averaged over the canonical Sahel are respectively 0.99 and

0.94.

Finally, the rainfall changes patterns from the MCAs (Figs.3a,c) are also very close to the

first Empirical Orthogonal Function (EOF) mode of Sahel rainfall change (not shown): the

leading modes from EOF and MCA are correlated with r=0.99 and the variance explained by

these modes are again very close (51% for the first mode of EOF and 50% for both MCAs)

despite that the MCA is designed to maximize the covariance between the two fields rather

than the explained variances of the fields.

These results further motivate a detailed analysis of the covariability of these modes of

inter-model spread of Sahel rainfall change with local and remote factors. The correlations

between the SV series of the main modes of precipitation and temperature changes (Fig.3b

and Fig.3d) and those of the Sahel precipitation change (Fig. 3a and Fig. 3c) highlight strong

and similar statistical relationships within the two pairs of fields (0.89 and 0.80 respectively;

see Table 2). This suggests first that projected precipitation and surface temperature

inter-model spreads have relationships of rather equivalent strength with the inter-model

spread of Sahel rainfall change and, second, the existence of regional or global

ocean-atmosphere and/or land-atmosphere couplings that modulate the Sahel rainfall

projections across the models. Consistently, there is a significant linear relationship between

the main precipitation and temperature change patterns (Fig.3b and Fig.3d) associated with

Sahel precipitation changes (r=0.70).

Fig.3b shows that associated with an intensification of Sahel rainfall, there is a strong global

contrast between the northern and southern hemispheres with an anomalous warming north of

15°N and an anomalous cooling south of 15°N during boreal summer. This inter-hemispheric

temperature gradient is superimposed on the global (uniform) warming simulated by all

models, not shown here as it has been eliminated by the temperature scaling. In a global

energetic framework of the ITCZ (Schneider et al. 2014; Byrne et al. 2018; Biasutti et al.

2018), such inter-hemispheric temperature gradient is associated with an inter-hemispheric

radiative imbalance and a migration of the Hadley cell system and the associated ITCZ

towards the warmer hemisphere. The lower branch of the Hadley circulation indeed

transports moisture towards the warmer hemisphere, which is materialized by the migration

of the ITCZ. It allows energy to be transported towards the cooler hemisphere along its



reinforced upper branch to compensate for the energy imbalance. Fig.S5 corroborates the

involvement of the lower branch of the Hadley cell by showing a well defined strengthening

of subtropical highs and trade winds in all oceanic basins of the Southern Hemisphere. Note

that the inter-hemispheric temperature and SLP gradients and the associated

inter-hemispheric low-level atmospheric flow are particularly well defined in the Atlantic

sector as expected. Moreover, the associated strengthening of the Southern Hemisphere trade

winds is consistent with the significant cooling observed at the margins of subtropical highs

in the Southern hemisphere in all three oceanic basins (Fig.3b).

In addition to this large-scale inter-hemispheric signature, there is an anomalous equatorial

cooling over the eastern and central Pacific (Fig.3b) that modulates significantly the El-Niño

like signal found in the MMM (Fig.2c, see also Lian et al. 2019, Fredriksen et al. 2020). This

suggests that models with a more La Niña-like temperature change in the tropical Pacific tend

to project an intensification of precipitation in the Sahel (Fig.3b). This is plausible given the

strong negative correlation found in observations between El Niño-Southern Oscillation

(ENSO) and rainfall in the Sahel on interannual time scales (Joly and Voldoire 2009; Janicot

et al. 2011). In the observations and at interannual timescales, such SST anomalies exert an

influence on the atmosphere by shifting the heat sources associated with deep convection,

with the upper tropospheric heating propagating through the Tropics in the form of Kelvin

and Rossby waves (Trenberth et al. 1998). Yet, it remains to be proven that similar

mechanisms are at work for explaining a part of the inter-model spread of Sahel rainfall

projections, and that they apply in the case of changes in the mean state of the equatorial

Pacific rather than in ENSO variability (see below). Note that the anomalous cooling

occurring in the southeastern tropical Pacific could be related to both the emergence of this

La Niña-like pattern and the strengthening of the subtropical anticyclone discussed above

(see Fig.S5), and therefore be related to both the near global inter-hemispheric gradient and

the ENSO-like mean-state. This aspect is further detailed in Subsection 4b below.

From the rainfall perspective, Fig.3d shows a large rainfall modulation over the entire Sahel

band. Along the western side of Africa, it extends in latitude up to 30°N. Along the equatorial

Atlantic, Fig.3d displays a band of decreasing rainfall which could be associated with the

increase in Sahel rainfall. In this case, it could be interpreted as a northeastward shift of the

ITCZ, which would be partly consistent with the inter-hemispheric surface temperature and



SLP patterns described above. Nevertheless, Fig.3d shows that this northward migration of

the ITCZ is not found in other basins, suggesting that there are other important factors

besides the inter-hemispheric temperature gradient. In connection with the MCA analysis we

have conducted on global temperature changes (Fig.3b), one can consider the modulation of

equatorial Pacific SSTs, which are known to exert a strong influence on tropical precipitation

and could dominate over the inter-hemispheric temperature gradient in these regions. For

example, Fig.3d shows that the Arabian sea and India also experience anomalously strong

rainfall for models projecting a wet Sahel. This feature is consistent with the role of central

Pacific SSTs if we assume that the mechanisms involved in interannual variability also apply

to changes, which remains to be proven (see Section 5b). Indeed, the Indian and African

monsoons covary under the influence of ENSO in the observations (Madhavan et al. 2022).

Accordingly, the Pacific Ocean presents a strong signal of precipitation change, with stronger

than average precipitation over the Maritime Continent and the Indian region, but a weaker

precipitation over the NWP monsoon area, all of which are consistent with the variability of

Indo-Pacific precipitation during La Niña events (Timmermann et al. 2018; Tao et al. 2022).

However, even if the intensification of precipitation over the western part of the Indo-Pacific

region is consistent with an enhanced zonal circulation, the most significant signal is the

drying on the northwestern part of the Pacific Ocean, which is under the influence of the

NWP monsoon system. Therefore, rainfall changes in the Indo-Pacific region could also be

related to a westward shift in the zonal circulation rather than an intensification alone.

Finally, Fig. 3d shows a drying in the vicinity of the Southern Hemisphere subtropical highs

in each of the three ocean basins, which is consistent with a strengthening of the Hadley cells

and supports the importance of the inter-hemispheric temperature gradient described above.

To conclude, the MCA analyses highlight an increased inter-hemispheric gradient and an

ENSO-like signature as important factors in explaining the differential response of Sahel

rainfall in the CMIP6 projections.



Explained

variances

of

Extended

Sahel

rainfall

change by

the first

leading

mode in

each

MCA

SCF NC Correlations

between the

first SVs of

rainfall change

over extended

Sahel and

Sahel averaged

precipitation

change

Correlation

between

first SV of

global

change and

first SV of

rainfall

change over

Sahel

Correlation

between the

first SVs of

global

precipitation

and surface

temperature

change from

the two

MCAs

(Figs.3bd)

Correlation

between the

first SVs of

rainfall

change over

the

Extended

Sahel from

the two

MCAs

(Figs.3ac)

MCA:
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51 % 68 % 22 % 0,93 0,89 0,70 0,99
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global Ts
change with

Sahel

rainfall

change

49 % 79 % 25 % 0,95 0,80

TABLE 2. Statistics associated with the MCAs between surface temperature or

precipitation changes with Sahel rainfall change shown in Fig.3. All correlations in the last

four columns are significant at the 99% confidence level considering each model

independent. See text and Text.S1 in the supplemental material for more details on the SCF

and NC statistics.

b) Performance of averaged temperature indices in explaining Sahel rainfall change



Fig. 4. Scatterplots of SV Sahel change (mm.d⁻¹.K⁻¹, from Fig.3a), respectively, with (a)

inter-hemispheric temperature change (K.K⁻¹), (b) Niño3.4 temperature change (K.K⁻¹), (c)

northern-hemispheric SST differential warming (K.K⁻¹), (d) northern minus tropical Atlantic SST

change (K.K⁻¹). The definition of each index can be found in Section 2 and Table 1. All model series

are scaled by the global temperature change in each model. The correlation and its associated P-value

for each pair of model series are indicated in each panel.

In view of the consistent results between the two MCAs, we choose to focus on selected key

temperature indices representing well defined modes of variability or physical processes to

explain the inter-model spread of Sahel precipitation change. The inter-hemispheric

temperature gradient index has a strong correlation with the Sahel rainfall change spread

(Fig.4a), stronger than the Niño3.4 index (Fig.4b), both being significant at the 99%

significance level. Note that if we extend the regression line in Fig.4a to a zero change in the



inter-hemispheric temperature gradient, i.e., uniform warming, this relationship predicts a

drier Sahel, which is consistent with the results of Chou and Neelin (2004), Held et al. (2005)

or Gaetani et al. (2017) describing a stabilization of the tropical troposphere, and also with

the dry air intrusions from the Sahara due the uneven atmospheric boundary layer moisture

increase between convective and non convective regions, known as the upped-ante

mechanism. Other indices, mostly inspired from previous studies (defined in Table 1), such as

the northern-hemispheric differential warming (Park et al. 2015) or differential warming

between north and tropical Atlantic SSTs (Zhang and Li 2022) are also displayed,

respectively, in Figs.4c and 4d. The differential warming between north and tropical Atlantic

SSTs show consistent, but weaker correlation with the inter-model spread of Sahel

precipitation change, whereas the index derived by Park et al. (2015) yields a correlation very

close to the inter-hemispheric gradient index defined here.

Fig.4b confirms that the inter-model spread of Niño3.4 SST change is also significantly

correlated with the inter-model spread of Sahel precipitation change. Interestingly, the

inter-hemispheric temperature gradient is not significantly correlated with temperature

change over Niño3.4 (r=-0.25, P-value=0.17), unlike both the Northern Hemisphere

differential warming and the northern minus tropical Atlantic SST gradient (their correlations

with Niño3.4 are, respectively, r=-0.49 (P-value<0.01) and r=-0.42 (P-value=0.02). This

supports the choice of the inter-hemispheric temperature gradient and Niño3.4 SST as key

indices to explain the Sahel rainfall change in the rest of the study. Furthermore, they are

associated with well-defined modes of variability which are both known to be important for

Sahel variability at interannual and/or decadal or centennial timescales (Joly and Voldoire

2009; Biasutti et al. 2018). This makes them both plausible candidates from the point of view

of physical processes in addition to their statistical relevance for explaining the inter-model

spread of Sahel rainfall projections.

In order to check for the existence of other potential drivers, we compute regression analyses

of the SV of the Sahel precipitation change with surface temperature change after removing

the effect of the inter-hemispheric temperature gradient index alone (top, Fig. S6) and of the

effect of both the inter-hemispheric temperature gradient and Niño3.4 indices (bottom, Fig.

S6). The results show that when we remove the linear contributions of both indices, there is

almost no significant correlation left over the globe between surface temperature changes and



Sahel rainfall changes, except over the Sahel itself. The inter-hemispheric temperature

gradient alone is however not sufficient to remove all the signal with the temperature

changes, especially in the Pacific (bottom, Fig. S6).

5. Mechanisms of future Sahel rainfall uncertainties

a) Inter-hemispheric gradient change and Sahel rainfall

Fig. 5. Inter-model regressions against the inter-hemispheric temperature gradient change of (a):

changes in SLP (color shaded, Pa.K⁻²) and wind at 850 hPa (vectors, m.s⁻¹.K⁻²); (b) precipitation

change (color shaded : 0,1 mm.d⁻¹.K⁻²). The colors of the arrows vary from green to yellow according

to the intensity of the wind speed for readability. On panel (a), only 1 vector out of 3 is shown also for

readability and dotted points indicate grid-points where the regression with sea-level pressure change

is significant at the 95% confidence level. On panel (b), dotted points indicate grid-points where the

regression with precipitation change is significant at the 95% confidence level.

Figure 5a shows that the models with an enhanced inter-hemispheric gradient in the future

with respect to the MMM tend to produce an intensification of the subtropical highs in the

Southern Hemisphere and a reduction of those in the Northern Hemisphere in all oceanic



basins as compared to the MMM. Consistently, the trade-winds in the south subtropics and

the eastward low-level anomalous flow at about 15°N towards the West African, Indian and

American monsoons regions are both stronger when the inter-hemispheric temperature

gradient is enhanced. Note that these low-level wind, temperature and SLP gradients between

the two hemispheres are reminiscent of the positive wind-evaporation-SST feedback linking

the SST gradient and the cross-gradient flow in the Tropics at the interannual and decadal

time scales (Chang et al. 1997; Chiang and Vimont 2004). This suggests that local coupled

ocean-atmosphere interactions may also sustain this wind regime changes in both the Pacific

and Atlantic basins.

These patterns of SLP and low-level wind changes are broadly similar to those associated

with the first leading MCA mode of Sahel rainfall illustrated in Fig.S5, especially in the

Southern Hemisphere. This is further confirmed by the associated precipitation change (Fig.

5b), which depicts a northward shift of the ITCZ in the Atlantic sector, with a homogeneous

intensification of precipitation over the Sahel and a decrease along the equator. An additional

mechanism that may link an anomalously strong inter-hemispheric gradient change to

enhanced precipitation change over the Sahel is the intensification of the West African

Westerly Jet (WAWJ), leading to an increase in moisture convergence over the Sahel

(Grodsky et al. 2003; Pu and Cook 2010). This is in agreement with previous studies such as

Park et al. (2015) or Zhang and Li (2022), which point, respectively, to an amplification of

low pressure over the Sahara or over Western Europe as the origin of these westerly wind

anomalies. These regions are also highlighted in Fig.5a, but we emphasize here that the

northward migration of the ITCZ could be also a key factor in the intensification of the

WAWJ. Indeed, when the Atlantic ITCZ is shifted northwards, the southerly winds are

stronger, which reinforces the eastward acceleration by the Coriolis force as they cross the

Equator and reach the west coast of Africa, consequently reinforcing the WAWJ (Pu and

Cook 2012).

Some differences between the SLP and wind anomalous patterns in the Northern

Hemisphere in Fig.S5 and those associated with the globally enhanced meridional

temperature gradient in Fig.5a are nevertheless noteworthy. Although both figures show

high-pressure anomalies over the NWP, as well as the low-pressure anomalies over North

Africa and Europe, these are more pronounced in Fig.S5 than in Fig.5a, as can be seen from

the loss of significance over certain parts of these regions. This suggests that other



mechanisms are at work to complete the picture, notably from the influence of the equatorial

Pacific SSTs that we highlighted earlier.

b) Teleconnection between Niño3.4 and Sahel rainfall



Fig. 6. Inter-model regressions against minus Niño3.4 temperature change of (a): SLP changes

(color shaded, Pa.K⁻¹) and 850 hPa winds (vectors); (b) change of velocity potential at 200 hPa (color

shaded, x10⁶ m².s⁻¹.K⁻²); (c) 200 hPa geopotential change (color shaded : m².s⁻².K⁻²) and winds

(vectors). “Minus Nino3.4” refers to the fact that we have taken the opposite of Nino3.4 in order to

have a positive modulation of rainfall over the Sahel as in the MCA patterns of Fig. 3a and c.

In order to facilitate the comparison with the MCA results which display an intensification of

Sahel rainfall (Fig.3ac), Figs. 6-8 show regressions with the opposite (minus) of the Niño3.4

index, thus featuring anomalous La Niña patterns. Note that this is an approximation within

the linear framework of our study, as the (observed) El Niño/La Niña patterns are not simply

opposite to each other, as we imply here (Su et al. 2010).

In the Tropics, a classic mechanism for remote large-scale teleconnections at interannual

timescales arises from the fact that ENSO is associated with an eastward migration of the

Indo-Pacific warm pool causing the Walker circulation to shift zonally (Trenberth et al. 1998;

Joly and Voldoire 2009; Roy et al. 2019). The hypothesis that similar mechanisms are at work

here for explaining a part of the inter-model spread of Sahel rainfall change is suggested by

Fig.6. This is firstly seen via the surface variables changes associated with the inter-model

changes in the (minus) Niño3.4 index shown in Fig.6a. Models with a La Niña-like change in

the equatorial Pacific with respect to the MMM show a stronger and significant

intensification of the subtropical anticyclone in the southeast Pacific and of the pressure

gradient along the Equator, resulting in an intensification of the trade winds from 30°S to

5°N. To the west of the basin, there are also strong positive pressure anomalies around 30°N,

which lead to strong anticyclonic circulation anomalies corresponding to a drastic weakening

of the NWP monsoon during boreal summer. Taken together, these features strongly enhance

wind and moisture convergence from the Pacific towards the Maritime Continent and the

Indian Ocean, especially along the Equator, but also over South Asia as shown in Fig.7.

Coupled with the westerly low-level wind anomalies over the Atlantic Ocean and Africa

between 0° and 15°N, there is a strong low-level moisture convergence anomaly over the

African-Indian region materialized by precipitation anomalies (Fig.7). This illustrates a zonal



shift of convection in the Indo-Pacific sector which is very similar to what is observed

traditionally during developing La Niña events, with a weak NWP monsoon, and conversely

during El Niños (Wang et al. 2001; Chou et al. 2003; Crétat et al. 2017).

Fig.6b further illustrates the pronounced shift of the Walker circulation from the perspective

of the upper troposphere. It shows stronger than average velocity potential changes at 200hPa

over the Pacific Ocean which correspond to anomalous convergence above the Pacific Ocean

and, thus, a weaker convection for anomalous La Niña-like changes. Conversely, weaker than

average changes of the velocity potential extending from the Indian Ocean to western Africa

correspond to increased upper level divergence associated with heavier rainfall over the Sahel

and Indian sector (Fig.7). Therefore, through interactions with the large-scale circulation, a

change in SST toward a more La Niña-like mean state in the Pacific Ocean in a particular

model (see Supplementary Fig.S7, Lian et al. 2019) tends to produce amplified rainfall over

the Sahel in this model compared to the MMM. This large-scale mechanism is broadly

consistent with the rainfall changes observed in Fig.3d, which shows increased rainfall from

West Africa to the Maritime Continent, and a decrease over the Pacific Ocean.

This link between Pacific mean state change and Sahel rainfall could also occur through the

modulation of upper tropospheric jets (Nicholson 2009). Fig.6c shows that a La Niña-like

SST change tends to produce easterly wind anomalies at 200 hPa from 120E to 90E which

are symmetric about the Equator. This corresponds to a strong enhancement of the TEJ

located between 5°N and 10°N. Such conditions are favorable to enhanced Sahel rainfall as

an enhanced TEJ promotes uplift and upper-level divergence (Nicholson 2009). Furthermore,

it is known that an increase of the vertical shear of the summer mean flow may be a primary

factor leading to the northward propagation of the intra-seasonal convection and the rainfall

band (Jiang et al. 2004; Bickle et al. 2021). The symmetry of 200 hPa dynamical features

with respect to the equator first suggests that these upper-level zonal wind anomalies may be

caused by the eastward propagation of a Kelvin wave from the equatorial Pacific. Consistent

with this view, Fig.6c shows 200 hPa geopotential anomalies extending along the Equator

from the equatorial Pacific to Africa, reminiscent of a Kelvin wave signature from a

Matsuno-Gill type response (Gill 1980). However, these equatorial 200 hPa geopotential

anomalies are not statistically significant. Furthermore, the Kelvin wave response is centered

at the Equator and decreases exponentially away from the Equator while the TEJ position is

at 10-15°N. Therefore the Kelvin wave response does not seem to be sufficient to explain the



TEJ anomalies on their own. Nonetheless, Fig.6 also suggests an additional pathway which

may explain how models showing a more La Niña-like mean state than the MMM may also

simulate an enhanced TEJ and thus WAM. The 200 hPa geopotential anomalies (Fig.6c)

associated with the minus Niño3.4 index exhibit anomalous maxima and minima centers over

the North Pacific, North America and the North Atlantic, which appear to be consistent with

the extratropical teleconnections mediated through Rossby wave propagation associated with

ENSO in observations and models (Trenberth et al. 1998; García-Serrano et al. 2017). The

positive 200 hPa geopotential anomalies above the North Atlantic produced by this

extratropical wave train can modulate tropospheric properties above 15°N and, thus, the TEJ.

Indeed, although 200 hPa geopotential changes around the Sahel related to the minus Niño3.4

index are not individually significantly, the geopotential thickness (between 200 and 850 hPa)

gradient around the Sahel (see Section 2 and Table 1 for details) is significantly linked to the

(minus) Niño3.4 index (r=0.46, p<0.01). Via the thermal wind relationship, this tropospheric

thickness gradient is also strongly related to the vertical wind shear over the Sahel, itself

largely driven by the TEJ (not shown). Therefore, a change of the Pacific mean state could be

linked to a change in the TEJ via both tropical and extratropical pathways, resulting in

modulation of Sahel rainfall by promoting or inhibiting deep convection.

Fig.7. Inter-model regression of precipitation change against minus Niño3.4 temperature change

(mm.d⁻¹.K⁻²)



c) Respective contributions of the inter-hemispheric gradient and Niño3.4 index to the

inter-model spread of Sahel rainfall

The sources of uncertainty in Sahel precipitation that we have highlighted have so far been

considered as independent to first order. Nevertheless, although not statistically significant,

there is still a correlation between the two indices (r=-0.25, P-value=0.17) which have thus

some cross effects. In order to quantify their global and collective contributions to the

inter-model spread of Sahel rainfall, we first use a bilinear regression model with these two

indices. The parameters of the bilinear model is computed using a least squares optimization

which aims to minimize the sum of the squared differences between the target variable and

the values predicted by the model with the two explanatory variables. In our case, the target

variable is the SV of precipitation change in the Sahel, and the predictor variables are the

changes in the inter-hemispheric temperature gradient and Nino3.4 SST. This simple bilinear

model explains 62% of the inter-model spread of the SV of Sahel precipitation change

(R²=0.62, r=0.79), which is very close to the inter-model spread explained by the temperature

pattern from the MCA (R²=0.64, r=0.80). Similar results are obtained when we consider the

precipitation change average over the Sahel canonical domain (not shown). In other words,

the two indices taken together explain a very similar amount of future Sahel rainfall change

spread as the first MCA mode shown in Fig.3.



Fig. 8. Partial correlation between minus Niño3.4 index change with changes in (a) SLP and 850

hPa winds -; (b) 200 hPa velocity potential; excluding in all variables their linear dependance to the

inter-hemispheric temperature change (see Section 2 for details). Dotted points indicate significant

correlations at the 95% confidence level. The black square emphasizes the area that lost intensity and

significance compared to Fig.6a.

Next, to estimate the individual contribution of the interhemispheric temperature gradient and

the equatorial Pacific SST change to the uncertainty, we use partial regressions that allow to

isolate the effect of one index by removing the linear contribution of the other. The

contributions of the inter-hemispheric gradient and Nino3.4, assuming the other factor is held

constant, are estimated to be 34% and 16%, respectively. What remains of the 62% of the

spread explained by the bilinear model, i.e. 12%, corresponds to the role of the interactions



between the two indices. This redundancy is not small and therefore can’t be overlooked.

This is illustrated first by the comparison between Figs.8a and 6a, which shows that the

strength of the subtropical anticyclone in the South-East Pacific Ocean (see the black box in

Fig.8a) decreases considerably and loses significance when considering the 'pure' influence of

the minus Niño3.4 index after the removal of the linear contribution of the inter-hemispheric

gradient. Similarly, in the upper-troposphere (compared Fig.8b with Fig.6b): the anomalous

pattern is the same, but the amplitude of the velocity potential anomalies are smaller when

the contribution from the inter-hemispheric temperature gradient is removed.

Finally, to estimate the individual contributions from the two indices, which correspond to the

"pure" contribution of each of them, plus a part of the interactions, we use three different

attribution methods as described in Section 2. As shown in Table 3, the three methods give

very similar results, which gives confidence in the robustness of the results. By averaging the

results of the three methods, we find that 40% of the inter-model spread of precipitation

change over the Sahel is explained by the inter-hemispheric gradient and 22% by the SST

Pacific mean state. This corresponds, on average over the methods, to an equal distribution of

the 12% of the interactions to each of the two indices. Thus, we confirm, as previously

supposed, that the inter-hemispheric gradient is the main source of uncertainty, and that the

the tropical Pacific mean state is a secondary, but critical, source of uncertainty for Sahel

rainfall projection and its spatial modulation, which may also positively interact with the

inter-hemispheric gradient. Our results are consistent with Monerie et al. (2021) who shows

that the fast response of the Sahel precipitation is associated with a reinforced

inter-hemispheric gradient of temperature and explains most of the uncertainty. Moreover,

our estimate of the inter-model spread of the change in precipitation in the Sahel explained by

Nino3.4 is also consistent with the part explained by the slow response of the Sahel

precipitation in Monerie et al (2021), which may be partly associated with the equatorial

Pacific according to the same study.



Dominance
analysis

Permutation

Feature

Importance

Random forest
attribution

Niño3.4 estimated
contribution

23% 22% 20%

Inter-hemispheric
gradient estimated
contribution

39% 40% 42%

TABLE 3. Relative contributions of Niño3.4 and inter-hemispheric gradient to the

inter-model spread of the SV of Sahel rainfall change, estimated with three different

attribution methods (see Section 2 for details).

6. Conclusions and discussion

The response of Sahel monsoon rainfall to global warming suffers from large uncertainties

which have not decreased from CMIP3 to CMIP6 (Monerie et al. 2020a; Zhang and Li 2022),

and the origins of this inter-model spread are not yet well understood. In this study, we

analyze 32 coupled models from CMIP6 under a high emission scenario (SSP5-8.5) in order

to revisit the sources of Sahel rainfall change uncertainties at the end of the 21st century.

Our results first confirm that Sahel rainfall change in CMIP6 still suffers from large

uncertainties with one third of the models projecting a decrease in precipitation and two

thirds an intensification. We also confirm that these uncertainties are mainly due to the

dynamic component of the monsoon as the scaled and unscaled (by the global temperature)

pattern from the MCAs are broadly similar. The MMM change of Sahel precipitation exhibits

a dipolar pattern with an increase over the central Sahel and a decrease in the western Sahel

as in previous CMIP generations (Monerie et al. 2017b; Almazroui et al. 2020), but this zonal

contrast is not apparent in the inter-model spread, which is fairly homogeneous over the

Sahel. This suggests that mechanisms responsible for this spread induce primarily zonally

homogeneous changes, which will be confirmed later by the predominant role of the

inter-hemispheric temperature gradient.



On a broader scale, CMIP6 models also present large uncertainties regarding precipitation

and SST change over the Pacific ocean. Indeed, although the models agree on a rather

El-Niño-like warming in the equatorial Pacific, the magnitude of this change is highly

uncertain (Lian et al. 2019; Fredriksen et al. 2020). The Sahara and Eurasia also show a large

inter-model spread of surface temperature changes. This is consistent with previous studies

and suggests that they are also potential drivers of the change of the Sahel monsoon under

global warming across the models (Park et al. 2015; Zhang and Li 2022). Finally, the largest

surface temperature uncertainty is found over the North Atlantic ocean, which has been

suggested as another important source of uncertainty for Sahel precipitation change (Park et

al. 2015; Monerie et al. 2020b; Bellomo et al. 2021; Zhang and Li 2022). Following this

overview of the changes and related uncertainties from the models in CMIP6, we answered

the three questions that had been raised in the introduction concerning the inter-model spread

of Sahel rainfall change :

1. Can we revisit and improve the factors explaining the projected Sahel rainfall

uncertainties from an objective analysis of the projected changes at the

ocean-atmosphere-land surface ?

The MCAs show that changes in tropical precipitation and surface temperature both

zonally modulate the change in Sahel precipitation. However, this modulation is more

important in the central Sahel than at the eastern and western edges of the region. The

close correspondence among the two MCA analyses demonstrate that coupled

ocean-atmosphere and land-atmosphere changes are linked to the uncertainties in

Sahel rainfall change. In order to compare our results with previous studies, we

choose to focus on the impact of surface temperatures which highlights two major

sources of uncertainties: an inter-hemispheric temperature gradient and the equatorial

Pacific mean-state represented here by a Niño3.4 index. In addition to being strongly

correlated with Sahel precipitation change, these two indices are not significantly

correlated with each other, which allows us to consider them as two independent

sources of uncertainty in a first statistical approximation. It should be remembered

that MCAs can be used to demonstrate relationships, but not causality. Causality

arises from the physical mechanisms described below.



2. By what physical processes are these factors related to Sahel rainfall?

The major processes which link the inter-model spread of Sahel rainfall change to the

two factors mentioned above are summarized in Fig.9.

a) The inter-hemispheric temperature gradient impacts Sahel rainfall change by

modulating the position of the ITCZ. Based on the energetic framework and

the assumption that this gradient is a good proxy for the radiative imbalance

between the two hemispheres during boreal summer (Schneider et al. 2014;

Byrne et al. 2018), an increased inter-hemispheric gradient results in a

northward shift of the ITCZ and stronger rainfall over the Sahel. The

associated rainfall modulation is homogeneous over the Sahel, which has been

a factor of exclusion of this large-scale differential warming for explaining the

inter-model spread of Sahel rainfall in previous studies (Park et al. 2015). Here

we can rehabilitate this source of uncertainty because we demonstrate that the

zonal contrast in the inter-model spread of Sahel rainfall changes is secondary

in CMIP6 and also because the spatial rainfall modulation in the Sahel itself is

provided by the change in the equatorial Pacific mean-state.

b) The change in the equatorial Pacific mean-state has an impact firstly via the

large-scale overturning zonal circulations in the Tropics. Indeed, for the

models exhibiting a La-Niña-like anomalous SST change, the Walker

circulation is strongly shifted westward compared to the MMM (which is

El-Niño-like), creating anomalous divergence in the upper-troposphere that

extends over the Sahel and promotes local convection. The situation is

reversed for El-Niño-like models. Secondly, by modulating the latent heat

release, SST changes in the equatorial Pacific modulate both the intensity and

position of tropospheric warming and, subsequently, generate tropical Kelvin



and extra-tropical Rossby waves that modify the meridional mid-tropospheric

temperature gradient around the Sahel. This ultimately leads to changes in the

upper-level zonal circulation over the Sahel and in particular of the TEJ

intensity. The strength of the TEJ in turn modulates upper-level divergence

and the vertical zonal wind shear, and hence convection over the region

(Nicholson 2009). The minus Niño3.4 index produces more intense rainfall

modulation over Central Sahel, and therefore seems responsible for the spatial

signature of monsoon rainfall change over the Sahel (Fig.S8).

3. How much uncertainty can they explain?

Although the two sources of uncertainty are not significantly correlated, we

demonstrate that there are nevertheless plausible physical interactions between them,

notably mediated by the strength of the subtropical anticyclone in the southeast

Pacific. These interactions account for 12% of the uncertainty of rainfall change in the

Sahel according to a bilinear regression model. However, by using attribution

methods, we were able to distribute this share between the two indices and, finally,

estimate their respective full contributions. Of the 62% of the inter-model spread of

rainfall change in the Sahel explained by the bilinear regression: 40% are explained

by the inter-hemispheric gradient and 22% by Niño3.4. Finally, the overall

performance of the bilinear model is equivalent to what is obtained from the

multivariate MCA optimization, and is, thus, unlikely to be further significantly

improved by using only linear relationships and surface temperature indices.



Fig. 9. Schematic diagram showing the processes by which the inter-hemispheric gradient and

Niño3.4 anomalous warming patterns modulate the inter-model spread of Sahel rainfall change and

their respective contributions to this inter-model spread.

The relationship between the inter-hemispheric gradient, equatorial Pacific SST and Sahel

rainfall change could be further tested using SST nudging experiments. Further understanding

of the mechanisms could also be obtained by using a moisture budget analysis (Chou et al.

2009; Chen et al. 2020). As our study focused on the sources of uncertainty in the change of

the Sahel monsoon under SSP5-8.5 scenario, one could also extend it to the historical period

and other scenarios to verify if the sources of uncertainty we have highlighted are still

relevant and robust, and also to determine their time of emergence. Regarding its key role in

Sahel rainfall uncertainty and its importance for global climate, further work should focus on

the inter-hemispheric temperature gradient change and the radiative imbalance between the

two hemispheres during boreal summer. Chung and Soden (2017) showed that by modulating

cloud properties, anthropogenic aerosol can be critical in shaping future inter-hemispheric

temperature change at least in near future. A future study should also address the sources of

uncertainty in SST change in the equatorial Pacific as it plays a pivotal role in the Tropics.

Such uncertainties have been linked to model biases in the Pacific itself (Guilbert et al. 2023)



or to biases in other basins (McGregor et al. 2018; Marathe et al. 2021; Terray et al. 2021),

with equatorial undercurrent and inter-basin interactions suggested to be key to reduce these

models biases (Coats and Karnauskas 2017). Finally, as we have so far mainly used

interannual to decadal variability mechanisms to link our indices to Sahel rainfall change,

improving present day performance at simulating Sahel rainfall variability could be critical to

further reduce the disagreement between models projections and predictions.
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4.3 To go further: the case of future Indian

rainfall

You’ve probably got an idea of what’s to come in this section, haven’t
you? That’s right! We’re going to try and extend the study we did on
Sahel monsoon projections to the case of India. Indeed, numerous studies
have examined the nature of the uncertainty in the projections of the
Indian monsoon, and have shown that it is mainly linked to its dynamic
response (G. Li et al., 2017;Z. Chen et al., 2020). But, regardless of the
thermodynamic or dynamic nature of the uncertainty, few studies to our
knowledge have sought to answer the following question: what is the
source of uncertainty in the Indian monsoon?

The projected changes of global temperature and precipitation and their
related inter-model spread have been already presented and discussed
in Section.4.2 (see especially Figure 2 in the article above). We now go
straight to the results of the MCAs exploring the links between the Indian
rainfall change and global temperatures and rainfall changes across the
models.

Note that based on the results of the Section 2 of Chapter 4, we will
also use a single member per model in the case of India, assuming that
the inter-model spread of Indian rainfall change as computed from the
difference between two 35-years is mainly dominated by uncertainty in
models’ response to external forcings, a feature already observed for the
historical changes in Chapter 3.

4.3.1 Global temperature and precipitation changes

associated with Indian rainfall projected change

Firstly, the domain we’re working on is slightly truncated compared with
the Indian domain we used in Chapter 3. Indeed, when using the same
domain as in Chapter 3 to compute the MCAs shown in Figure.4.1, few
points in the north-eastern part of the domain monopolized the entire
covariance due to their very large inter-model spread (not shown), and
made the pattern of change over India less robust and dependent on
whether or not we scaled by global temperature increases. We therefore
slightly reduced the domain on its eastern edge (85°E instead of 95°E) to
ignore the few over-represented points, making the MCAs independent
of global warming (r=0.15, p-value<0.30) as in the case of the Sahel.

The heterogeneous maps of the ISM rainfall change (Figure.4.1ac) show a
relatively homogeneous intensification of rainfall in the core monsoon
zone (corresponding to the position of the monsoon trough) in both the
MCAs involving the global temperature and rainfall changes, still with
lower values on the edges of the domain . The statistics for the two MCAs
are presented in Table.4.1. First, they show values significantly lower than
those found in the case of Sahel projected change, with, in particular,
a lower explained variance of the change in monsoon rainfall : 26% of
ISM change in both cases (temperature and precipitation changes)here
compared to 50% in the case of Sahel changes. The explanation lies in the
fact that in both cases, the first two MCA modes are almost “degenerated”
in terms of explained variance: the first explains 26% in both cases, while
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Figure 4.1: Heterogeneous (a) and homogeneous (b) maps obtained from the MCA analysis performed between the scaled surface
temperature change (𝐾.𝐾−1) of the 32 climate models and the scaled ISM precipitation changes (𝑚𝑚.𝑑−1 .𝐾−1) in the same 32 models. (c)
and (d): same as (a) and (b) for the MCA between the precipitation change (𝑚𝑚.𝑑−1 .𝐾−1) and the ISM precipitation change (𝑚𝑚.𝑑−1 .𝐾−1).
Dotted points indicate pointwise correlations significant at the 95% confidence level between the respective Singular Variable (SV) and
grid-point model series using a Student test with 31 degrees of freedom.

the second explains 24%. However, the SCF, which is a metric of relative
importance of modes in a given MCA (see Section 2), is much higher in
mode 1 than in mode 2 (48% vs. 24%). Consequently, this first mode is
the most likely to interact with changes in precipitation and temperature
on a global scale, which is why we will be working on the leading MCA
mode.

The correlations between the SV series of the main MCA modes of
precipitation and temperature changes (Figure.4.1b and Figure.4.1d) and
those of the ISM rainfall change (Figure.4.1 and Figure.4.1) highlight
strong statistical relationships within the two pairs of fields (0.84 and
0.72 respectively; see Table.4.1). This suggests the existence of regional
or global ocean-atmosphere and/or land-atmosphere couplings that
modulate ISM rainfall projections across the models. Consistently, there
is a significant linear relationship between the SV series featuring the main
homogeneous precipitation and temperature change patterns (Figure.4.1b
and Figure.4.1d) associated with ISM precipitation changes (r=0.65, see
Table.4.1) in the two MCAs.

Figure.4.1b shows a strong meridional temperature gradient between the
desert zones of the Northern Hemisphere, from the Sahara to Pakistan,
and the tropical Africa-Atlantic region. This pattern is reminiscent of the
meridional global temperature gradient identified for the Sahel monsoon.
Yet, it is much more localized on continental regions: it is not significant
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Table 4.1: Statistics associated with the MCAs between surface temperature or precipitation changes with ISM rainfall change shown in
Figure.4.1. All correlations in the last four columns are significant at the 99% confidence level.

Explained variances
of ISM rainfall change SCF NC

Correlation between
SV of global change

and
SV of ISM rainfall change

(Figure.4.1ac)

Correlation between
the SV of global precipitation

and
surface temperature change

(Figure.4.1bd)
Global Pr change

with
ISM rainfall change

27% 48 % 17 % 0,84 0,65

Global Ts change
with

ISM rainfall change
25 % 43 % 15 % 0.72

over the Pacific and particularly marked over the desertic African-Arabia
region. Furthermore, the important role of desert areas in the Northern
Hemisphere is also highlighted by the high significance of the eastern
United States, which was not identified in the literature as connected
to the Indian monsoon region, but is highlighted because it is also an
arid zone. Samson et al., 2017, Terray et al., 2018 and Sooraj et al., 2019,
using different coupled models and experimental setups, showed that the
desert surface albedo to the west of India is crucial for Indian monsoon
biases and for modulating the India rainfall changes, challenging the
view that the monsoon circulation at mid- and upper-levels is driving
the monsoon. Our present results seem to extend this finding for Indian
monsoon projections, although we are not looking directly at albedo but
at its effect on surface temperatures. We may also wonder why these arid
regions are not an important source of inter-model spread for the Indian
monsoon during the historical period covered in Chapter 3. We conjecture
that this factor becomes increasingly important and discriminant for
a strong anthropogenic forcing only. This hypothesis can be tested by
analyzing a scenario with moderate emissions such as the SSP2-4.5, but
this interesting extension of the present results is left for a future study.
We also note that this meridional temperature gradient extends over
the Atlantic Ocean, with warm anomalies between 15°N and 45°N and
cold anomalies in the equatorial Atlantic. The cold anomalies both over
land and ocean could be linked to the atmospheric response of the Sahel
Monsoon due to the increased meridional SLP gradient driven by the
strong warm temperature anomalies of the adjacent arid regions if we
consider the continental response to be the dominant signal, which is
likely due to its extension and consistency (cf. arid zone of the United
States). This interpretation is also consistent with albedo perturbation’s
experiments analyzed in Sooraj et al., 2019. Note that there are also
strong warm anomalies in the NWP extending towards the maritime
continent, and cold anomalies along the equatorial Pacific, suggesting
the emergence of an anomalous La Niña-like horseshoe SST pattern
in the tropical Pacific as in the historical period (see Chapter 3), . The
significance in the tropical Pacific is nevertheless very low compared to
the regional meridional temperature gradient driven by the arid regions
to the west

From the rainfall perspective, Figure.4.1d shows a large coherent rain-
fall modulation extending from the entire Sahel band to the Indian
subcontinent and the adjacent oceanic regions (North Arabian Sea and
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Bay of Bengal). Along the equatorial Atlantic, Figure.4.1d displays a
band of decreasing rainfall which could be associated with the increase
in Sahel rainfall. In this case, it could be interpreted as a shift of the
ITCZ, which would be consistent with the surface temperature gradient
and its effect on the surface circulation mediated by the associated SLP
gradient described above. In this sense, we see that the uncertainties of
the Sahelian and Indian monsoons’ future changes appear to be partly
linked, since their precipitation modulation is evolving hand in hand in
response to the regional temperature changes. The Pacific is marked by a
strong negative precipitation anomaly covering the entire northern part
of the basin. This is consistent with the forcing (e.g. strengthening) of
the Northern Pacific subtropical anticyclone in response to the enhanced
monsoon rainfall to its west over India and West Africa Rodwell and
Hoskins, 2001) and the zonal planetary-scale perspective of the Northern
summer monsoons (T.-C. Chen, 2003). Furthermore, Terray et al., 2018
have demonstrated that such a zonal response in the Northern Subtropics
can be triggered by temperature changes over the arid regions of Africa
and Asia. Along the Equator, we note a precipitation dipole between the
maritime continent and the western equatorial Pacific, which is consistent
with the temperature signature indicating a strengthening of the SST
gradient across the Pacific as during the historical period.

4.3.2 Performance of averaged temperature indices in

explaining ISM rainfall change

In view of the consistent results between the two MCAs of Figure.4.1 and
in order to remain within the same framework as the Sahel study, we have
chosen to focus on temperature change indices. We compute an African
temperature gradient index, solely based on continental temperature,
because of the consistency of the signals for desert areas highlighted
above, and the uniform response over tropical Africa (see Table.4.2 for
definition). To compare the sources of uncertainties of the Sahelian and
Indian monsoons we also use the inter-hemispheric temperature gradient
change we used in the previous section.

We can see that the African temperature gradient is very strongly corre-
lated with the ISM change spread (Figure.4.2b). Note that if we extend the
regression line in Figure.4.2b to a zero change in the African temperature
gradient, i.e., uniform warming, this relationship predicts a drier ISM,
which is consistent with the results of Chou and Neelin, 2004, Held
and Soden, 2006 describing a stabilization of the tropical troposphere.
The inter-hemispheric gradient also shows a significant relationship
(Figure.4.2a) , albeit much weaker, which illustrates that the sources of
inter-model spread are not exactly the same in the case of the Sahelian
and Indian monsoons, as expected from the MCAs. The Sahel monsoon
uncertainty across the models is mainly driven by the interhemispheric
temperature gradient, while the Indian monsoon is mainly associated
with zonal contrasts driven by the uncertainty of the temperature over the
arid regions across the models. Nevertheless, there is a strong correlation
between the two temperature gradient indices we used, as illustrated
in Figure.4.2c, which is to be expected since the African temperature
gradient is a subset of the inter-hemispheric gradient. Consequently,
although the sources of uncertainty for the two monsoons are different,
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Table 4.2: Definition of the indices used in the present study. < > stands for spatial averaging over the subscript domain. The superscript
indicates the surface type or the atmospheric level over which the average is taken, when relevant.

Regions/Indices Domain and variable used when relevant
ISM [65E;85E], [7N;30N]
Inter-hemispheric temperature gradient <Ts >[15N;90N],[0;360] - <Ts >[90S;15N],[0;360]
Tropical Africa temperature change <Ts >[15S;15N],[20W;40E] land only
Deserts temperature change <Ts >[20N;45N],[20W;65E] land only
Africa temperature gradient change Deserts temperature change - Tropical Africa temperature change

they are strongly related, and the uncertainties of the Sahelian and In-
dian monsoons are therefore also strongly related. This is corroborated
by the strong and positive correlation between the SVs of Indian and
Sahelian precipitation changes (r=0.58, not shown), which illustrates that
the uncertainties of these two monsoons across the models are partly
related.

Figure 4.2: Scatterplots of SV of ISM change (𝑚𝑚.𝑑−1 .𝐾−1, from Figure.2.1a), respectively, with (a) inter-hemispheric temperature change
(𝐾.𝐾−1), (b) African temperature gradient change (𝐾.𝐾−1). (c) Scatterplot between inter-hemispheric temperature change (𝐾.𝐾−1) and
African gradient change (𝐾.𝐾−1). The definition of each index can be found in Table.4.2. All model series are scaled by the global
temperature change in each model. The correlation and its associated P-value for each pair of model series are indicated in each panel.

As the source of uncertainty we have highlighted is a large-scale factor, we
can also look individually at the two regions that make it up, namely the
deserts and tropical Africa, to see if we can also explain the inter-model
spread of ISM precipitation change by more regional mechanisms and
solely by the role of the deserts suggested above.

As we see in Figure.4.3, and as expected from the MCAs and previous
results, both components of the large scale temperature index have strong
and largely significant correlations with inter-model spread of ISM
precipitation change (Figure.4.3ab). However, we note the presence of
two outliers in the relationship linking the deserts to the Indian monsoon,
one of which is MIROC6, which has already been mentioned as having
significant and very serious problems with continental temperatures in
CMIP6 (Kamworapan et al., 2021). We thus propose to remove them in
our analysis. Note these models are not outliers in terms of the large-
scale index of African temperature gradient (Figure.4.2b), and removing
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them does not affect the relationship we highlighted earlier (r=0.79 vs
r=0.78 previously, not shown), probably because they affect most land
areas. Similarly, the relationship linking tropical African temperatures
to the ISM is unchanged when removing the two models, as shown
in Figure.4.3bd. However, Figure.4.3c now highlights a very strong
relationship between the desert response and the ISM which is almost
equivalent to that of the African large-scale index. This result raises an
alternative and more local view of the sources of uncertainty of the ISM
response. This regional subtropical index is in line with previous studies
showing the existence of relationships between subtropical deserts and
the Indian monsoon and a planetary-scale zonal perspective of the
monsoons (Rodwell and Hoskins, 1996;Rodwell and Hoskins, 2001;T.-C.
Chen, 2003;Sooraj et al., 2019), which is in sharp contrast with the Hadley
and energetic perspectives (Schneider et al., 2014) well adapted to the
Sahel monsoon. Here we extend these contrasting views and results to
model projections. These different results also show the complexity of the
relationships that can drive the ISM response and uncertainties across the
models, and the possible interaction between factors of different spatial
scales, given that the large-scale and regional visions we have proposed
coexist and mutually interact.

Figure 4.3: Scatterplots of SV of ISM change (𝑚𝑚.𝑑−1 .𝐾−1, from Figure.4.1a), respectively, with (a) deserts temperature change (𝐾.𝐾−1),
(b) tropical Africa temperature change (𝐾.𝐾−1). (c) and (d), same as (a) an (b) but without the circled outliers. The definition of each
index can be found in Table 2. All model series are scaled by the global temperature change in each model. The correlation and its
associated P-value for each pair of model series are indicated in each panel.

4.3.3 Atmospheric mechanisms of future ISM rainfall

uncertainties

In light of the previous results, and in order to go beyond the statistical
relationship, we propose here to further explore the physical mechanisms
that can link the inter-model spread of the temperature response of
subtropical deserts to the inter-model spread of the ISM rainfall change.

Figure.4.4a shows that models with anomalous warm response over
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subtropical deserts consistently exhibit a low-pressure anomaly at their
surface, corresponding to an intensification of the Heat Low extending
from the Sahara to the Arabian Peninsula. Associated with this reinforced
Heat Low, there is a significant intensification of winds coming from
the Gulf of Guinea. Note that, the extended Sahelian region we studied
previously covers the western part of the North African monsoon as
defined in AR6. The latter indeed extends almost to the East Coast of
Africa (see Fig.1.11). Consistent with these strengthened monsoon winds
circulating on the southern flank of the Heat Low in agreement with
geostrophic balance, Figure.4.4b demonstrates enhanced precipitation
between 10°N and 15°N, indicating an intensification of the African mon-
soon due to increased moisture flux inland. Next, the winds encounter
the Ethiopian Highlands around 40°E, where the generation of topo-
graphic waves is observed. The winds deflect northward upon reaching
the massif and then deflect southward once the relief is surpassed. The
winds, reinforced by the Heat Low, then reach the Indian Ocean and
interact with the Indian monsoon circulation by reinforcing the Somali
jet off the African coast and the zonal flux over the Arabian Sea. The
strong acceleration of surface winds over the northeastern part of the
Indian Ocean also increases the moisture flux towards India, resulting in
increased precipitation over the western Arabian Sea, on the windward
side of the Ghats, and along the monsoon trough in the Indo-Gangetic
plains (Figure.4.4a), as illustrated in Figure.4.4b. This mechanism is very
similar to the one linking the Sahelian and Indian monsoons with the
Heat Low in previous studies (Rodwell and Hoskins, 1996;Biasutti, 2019).
However, it has never been explored in projections and is likely to explain
the strong relationship between the uncertainties of Sahelian and Indian
precipitation changes that we have already mentioned (r=0.58). Thus,
whether considering the large-scale index (African gradient) or a more
regional perspective (deserts), we find the intertwined fate of the Indian
and Sahelian monsoons and the contrasting, but not contradicting, effects
of the “meridional” and “zonal” large-scale theories of the monsoons
(T.-C. Chen, 2003;Schneider et al., 2014).
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Figure 4.4: Inter-model regressions against the subtropical deserts temperature change of (a): changes in SLP (color shaded, 𝑃𝑎.𝐾−2) and
wind at 850 hPa (vectors, 𝑚.𝑠−1 .𝐾−2); (b) precipitation change (color shaded : 0,1 𝑚𝑚.𝑑−1 .𝐾−2). The colors of the arrows vary from blue
to green according to the intensity of the wind speed for readability. On panel (a)dotted points indicate grid-points where the regression
with SLP change is significant at the 95% confidence level. On panel (b), dotted points indicate grid-points where the regression with
precipitation change is significant at the 95% confidence level.
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Precipitation, through the water cycle, is an integral part of the energy
balance of the climate system. However, mankind is modifying the
latter by introducing anthropogenic forcings, notably greenhouse gasses.
As a result, precipitation is changing so that the energy balance of
the atmosphere (or surface) remains in equilibrium (O’Gorman et al.,
2012;Allan et al., 2020). On a global scale and based mainly on theoretical
arguments, this translates into a ∼3%/°C increase in precipitation (Held
and Soden, 2006). This is less than the increase in specific humidity
directly expected from global warming through the Clausius-Clapeyron
relationship which amounts to ∼7%/°C. This difference must reflect,
among other things, a slowdown in circulation, particularly in the Tropics
(Ma et al., 2018), but this differential signal between specific humidity
and precipitation is not yet clearly seen in the observations (Wentz et al.,
2007). Moreover, this response of precipitation to anthropogenic forcing
is highly variable from one region to another (Allan et al., 2020), and in
this thesis we have focused on the case of the monsoons over India and
the Sahel. In these regions, monsoon rainfall accounts for around 80% of
annual precipitation for populations living mainly on rain-fed agriculture.
Projecting monsoon changes is therefore essential for these regions, which
could be home to more than two billion people by 2100. In line with
paleoclimatic studies that link monsoon precipitation to global mean
surface temperature, notably with stronger monsoons during interglacial
eras such as the mid-Holocene (Mohapatra et al., 2018;Braconnot et
al., 2019), models project an average increase in Sahelian and Indian
monsoon precipitation by the end of the 21st century (Z. Chen et al.,
2020). However, there is a significant inter-model spread regarding the
amplitude of this change for both monsoons. This is described as the
model uncertainty of the monsoon response to climate change, and it
tends to persist in each successive generation of models and to increase
with higher-emission scenarios (Monerie et al., 2017;Katzenberger et al.,
2021;Z. Zhang and Li, 2022). Many studies have focused on deciphering
the origins of this inter-model spread and this uncertainty has been
predominantly attributed to the dynamic response of the monsoon, i.e.,
how its circulation changes, while the mean response is mainly explained
by thermodynamics factors (Z. Chen et al., 2020;Monerie et al., 2021;Z.
Zhang and Li, 2022). Other studies have sought to determine whether
model errors during the current period, known as biases, could explain
this inter-model spread in monsoon responses (G. Li et al., 2017;Yan
et al., 2019). Finally, some studies have sought relationships between
model uncertainties directly within the projections, in order to identify
whether certain model disagreements at the local or global scale could
have an impact on the monsoons (Park et al., 2015;Z. Zhang and Li, 2022).
This is the backdrop to our studies, whose mission is to describe the
response to anthropogenic forcing of the Indian and Sahelian monsoons,
but more specifically to revisit the origins of their uncertainties, both
during the historical period and in climate projections of the next 80
years, using simulations from climate models that participated in the
last CMIP6 exercise. In doing so, we also illustrate how difficult it is to
design robust precipitation Emergent Constraints (ECs), e.g. to find a
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physically-explainable relationship between model simulations of a past
climate variable and projections of a future climate variable (Ferguglia
et al., 2023).

The first introductory chapter set the stage and reminded us of the
fundamentals about the climate system, monsoons and climate models.
In Chapter 2, you were introduced to the data and simulations we used,
as well as the arsenal of statistical methods to explore them, especially the
jungle of CMIP6 multi-model and multi-member simulations. Chapter 3
was dedicated to the historical period, where we provided explanations
or insights into the origins of the inter-model spread in summer precipi-
tation responses over the Sahel and India. Chapter 4 was the futuristic
alter ego of the previous chapter, where we provided explanations for
the uncertainties in the precipitation response in the Sahel and India
within the context of a high-emission scenario. Finally, for dessert, this
last chapter offers a synthesis of the obtained results, seasoned with
perspectives fueled by our findings and the new questions they have
raised.

5.1 Synthesis

5.1.1 The historical period

Based on a set of 34 coupled models that participated to the CMIP6
exercise, we showed that both the mean response and the inter-model
spread of the Indian Summer Monsoon (ISM) rainfall intensify towards
the end of the historical period, and that this intensification is primarily
driven by the response of the climate models to various external forcings
rather than internal variability. This has also been an opportunity to
highlight uncertainty within observed datasets of Indian precipitation,
which demonstrate certain limitations of observational data. We then
confirmed that the uncertainty in the historical response of the Indian
monsoon is linked to the uncertainty in its dynamical response, primarily
the meridional component of its circulation.

Biases in tropical precipitation and surface temperature, both locally and
remotely, were explored as potential influencers of the forced ISM change
over the historical period. However, the analysis reveals no significant
relationship with local (i.e. around and in India) variables and thus
expands the investigation to remote links. Precipitation and temperature
biases in the tropical Pacific have emerged as key modulators of the inter-
model spread of the historical ISM response during the 20th century. In
particular, the bias in the equatorial Pacific SST gradient drives the inter-
model spread of the ISM response, with models exhibiting El Niño-like
biases also producing El Niño-like changes over the historical period.
This bias in the SST gradient affects the monsoon response by influencing
the Walker circulation and generating upper tropospheric anomalies
that propagate as Rossby waves, ultimately impacting the atmospheric
circulation and precipitation patterns in the Indo-Pacific region. These
findings shed light on the complex dynamics underlying the uncertainty
in historical response of the Indian monsoon. They also underline their
links to remote biases in the tropical Pacific rather than with local or
regional factors such as the land-sea contrast in the Indian region or
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the warming of the Indian Ocean (Hurley and Boos, 2013;Levine et al.,
2013;Annamalai et al., 2017). Overall, these results are consistent with
recent investigations by Wilks et al.(2022) which show that both the
simulated enhanced warming in the eastern equatorial Pacific and the
inter-model spread associated with this warming by CMIP5 and CMIP6
models can be partly explained by local model biases in the tropical
Pacific.

We then replicated the same study on the historical response of Sahelian
precipitation. Similar to India, both the mean response and inter-model
spread also increase towards the end of the period. Based on the previous
results and investigations on SSP5-8.5 projections discussed below, we
assume that this inter-model spread is primarily due to the different
forced responses of the models rather than internal variability.

Again and surprisingly, the statistical analysis shows that local biases do
not seem to have an impact on the inter-model spread of the historical
response of Sahel precipitation. However, the study of remote biases
reveals strong statistical relationships, primarily with a large cold SST
bias in the Tropics, particularly marked in the Indian Ocean. We then
identify that the spread of the historical Sahel response is also strongly
linked to the historical response of the inter-hemispheric temperature
gradient, without being able to link it unambiguously to temperature or
precipitation biases across the models. Thus, unlike the case of India, we
have not been able to find a physically-explained relationship between
biases and a remote response of temperature or precipitation that would
influence the Sahel through teleconnections. However, we did find
patterns related to inter-hemispheric temperature gradient in both the
historical period and the high-emission scenario. In any case note that
this additional analysis is preliminary and was conducted for illustrative
purposes and would warrant further investigation, which is left to my
successors, or perhaps myself after my vacations!

5.1.2 Projections under SSP5-8.5 scenario

Based on 32 coupled models from the CMIP6 exercise, we then focused on
the uncertainties of future Sahelian precipitation changes in the context of
global warming. The analysis reveals that there are strong uncertainties
in the precipitation projections for the Sahel by the end of the 21st century
(2064-2099) among the CMIP6 models, with one-third of the models
indicating a decrease in precipitation, while the remaining two-thirds
show an intensification. These findings align with previous studies that
have also highlighted the uncertainty in Sahelian precipitation projections
(Monerie et al., 2017;Biasutti, 2019;Z. Zhang and Li, 2022). As we did for
the historical period, we showed that the inter-model spread of Sahel
monsoon rainfall intensifies over time, and that this intensification is
primarily driven by the various forced responses of the climate models
rather than internal variability.

The analysis then explored the sources of these inter-model spread in
Sahelian rainfall changes using MCAs based on global precipitation
and temperature changes as simulated by the recent CMIP6 models.
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The MCAs reveal strong correlations between changes in tropical pre-
cipitation, large-scale surface temperature, and Sahelian rainfall dur-
ing boreal summer. These findings suggest that coupled and remote
ocean-atmosphere and land-atmosphere interactions contribute to the
uncertainty in Sahelian precipitation projections. The study further inves-
tigates two major sources of uncertainty: the change in inter-hemispheric
temperature gradient and the future mean-state of the equatorial Pacific,
which have already been detected, respectively, as potential drivers of
the inter-model spread responses of the Sahelian and Indian monsoons
during the historical period (see section a) above). The inter-hemispheric
gradient influences the northward shift of the ITCZ and the strength of
the West African Westerly Jet (WAWJ; Pu and Cook, 2010), both of which
impact precipitation in the Sahel. The mean-state of the equatorial Pacific
affects the Walker circulation, which influences upper-level divergence,
vertical zonal wind shear and local convection over the Sahel. Addition-
ally, changes in SST in the equatorial Pacific modulate the intensity and
position of tropospheric warming, leading to tropical and extratropical
waves which modulate the strength of the Tropical Easterly Jet (TEJ) over
the Sahel. Finally, attribution methods and bilinear regression techniques
show that we can explain 62% of the inter-model spread of Sahel rainfall
change with these two sources of uncertainty: 40% with the changes in
the inter-hemispheric temperature gradient and 22% with the changes in
the equatorial Pacific.

We then replicated the same study on the projected change of ISM pre-
cipitation based on the previous results and investigations on SSP5-8.5
projections, and we assume again that this inter-model spread is primarily
due to the different forced responses of the models rather than internal
variability. The MCAs reveal a strong relationship between the surface
temperature response over the northern subtropical deserts, from the
Sahara to Pakistan, and the ISM response. This temperature response is
also found to be important for the African monsoon responses. This result
is consistent with previous studies that have shown the existence of a con-
nection between subtropical deserts and ISM, supporting the concept of a
planetary-scale zonal perspective of the monsoons (Rodwell and Hoskins,
1996;Rodwell and Hoskins, 2001;Samson et al., 2017;Terray et al., 2018).
We then explore the mechanisms underlying these relationships between
deserts and the ISM across the models in the projections. We demonstrate
that models exhibiting greater surface warming over northern subtrop-
ical deserts tend to have a strengthened heat low over the region. The
winds around the heat low strengthen through geostrophy, increasing
the moisture flux towards the Sahel and intensifying the ISM circulation,
particularly the Somali jet off the African coast and the monsoon winds
over the Arabian Sea, which also enhance the moisture flux towards
India and consequently increase ISM precipitation. This mechanism is
very similar to the one linking the Heat Low to the Indian and Sahelian
monsoons, but here in the context of projections (Biasutti, 2019;Samson
et al., 2017), illustrating the intertwined uncertainties linking the two
monsoons.
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5.2 Perspectives

And now what? This is the final question we will ask in this manuscript,
where we will open up possibilities and try to provide good (or bad)
ideas to extend our studies.

5.2.1 Cross-perspective on our studies: the link between

biases, historical and projected monsoon responses

Concerning the fate of the Sahelian monsoon over the historical period
(section 3, chapter 3), we identified the importance of a large bias in
tropical SSTs. While we were not able to explore more thoroughly how
these biases are linked to the inter-model spread of the historical response,
we propose here to check first whether this relationship persists over
time, i.e. in future projections. This is indeed a necessary condition for
implementing robust techniques such as emergent constraints to reduce
model uncertainty (G. Li et al., 2017;Ferguglia et al., 2023).

Figure 5.1: (a) Heterogeneous and (b) homogeneous maps obtained from the MCA performed between the projected Sahel precipitation
changes and the surface temperature bias during boreal summer across the models. Dotted points indicate significant point-wise
correlations at the 95% confidence level between the respective SV and the grid-point series across the models.

Therefore, we replicate the analysis we conducted in Section 3 of Chapter
3, but this time we examine the relationships between biases and the
future response of the Sahelian monsoon (Fig.5.1). The MCA mode of
projected Sahel rainfall change shows a homogeneous modulation of
response (Fig.5.1a), while historical change showed mainly a modulation
of precipitation over the western Sahel (see figure 2 of Section 3 from
Chapter 3). However, we observe that for both historical and projected
Sahel rainfall change, the associated patterns of temperature biases are
very similar and are, in particular, dominated by negative SST anomalies
over the Indian Ocean, tropical Atlantic and tropical Pacific. Warm biases
in the Mediterranean Sea, Arabic Peninsula and Pakistan seem to be
also associated with future changes of the Sahel monsoon (Fig. 5.1).
The correlation between the corresponding singular vectors (SVs) of
temperature biases is highly significant (r=0.56, p-value<0.01), thereby
confirming the relative similarity between the two temperature bias
patterns. Consequently, the potential role of cold SST biases in the
Indian and Pacific oceans in particular, and tropical Atlantic to a lesser
extent, appear to be fairly stationary for the Sahelian monsoon, making it
particularly interesting for developing a possible robust EC for reducing
the inter-model spread associated with this monsoon system.
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What about the ISM? In the historical period, we emphasized the impor-
tance of the bias in the equatorial Pacific SST gradient, but does this bias
stand the test of time (Ferguglia et al., 2023)? As for the Sahel, we also
reproduce the MCAs we carried out in Section 2 of Chapter 3, but this
time we focus on the link between biases and the projected response of
the ISM. Afterwards, I promise we are almost done with the MCAs!

Figure 5.2: (a) Heterogeneous and (b) homogeneous maps obtained from the MCA performed between the projected ISM precipitation
changes and the surface temperature bias during boreal summer. Dotted points indicate significant point-wise correlations at the 95%
confidence level between the respective SV and gridpoint series across the models.

The biases that are linked to the ISM rainfall spread in the future are
concentrated in the western Indian Ocean, north Atlantic and the western
tropical and south Pacific (Figure 5.2b). This pattern is very different
from the tropical Pacific pattern identified in Chapter 3 , which highlights
the role of the equatorial Pacific SST gradient (See Figure 6 in Section 2
from Chapter 3). The relationship we identified in the historical period is
therefore not stationary and cannot be used to reduce the uncertainties
in the ISM projections. To explain this failure, we have first to reckon
that the domain used for the ISM region is slightly different from the
one used over the historical period, for the reasons explained in Chapter
4. This may partly explain the discrepancies. This is also in agreement
with certain hypotheses we made in Section 2 of Chapter 3. Indeed, we
suggested that the Ocean Dynamical Thermostat (ODT, Clement et al.,
1996) was one of the mechanisms at play in the bias-ISM response during
the historical period. However, this mechanism is a rapid response of the
Pacific Ocean (Heede et al., 2020) that weakens as the Pacific thermocline
warms (Luo et al., 2017). Thus, in a scenario of high emissions and
consequently strong warming of the Pacific thermocline, this mechanism
potentially becomes negligible, which is consistent with the absence of
a relationship between equatorial SST gradient bias and the projected
ISM precipitation change. Finally, it is interesting to observe that the
surface temperature biases over the subtropical deserts are not emerging
in Fig.5.2.b while the inter-model spread of surface temperature changes
are tightly associated with the future ISM changes across the models (see
Figure 1 in Section 3 from Chapter 4). This illustrates again the challenges
associated with the design of robust ECs, at least for the ISM, which may
be partly due to the role of aerosols, which are important during the
historical period, but much less so in the high-emission scenario, which
is dominated by GHGs forcing. This raises the question of whether using
DAMIP (The Detection and Attribution Model Intercomparison Project;
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Gillett et al., 2016) to build robust EC from the historical period is a better
strategy, than using standard historical simulations to better constrain
the future model uncertainties which are tightly linked to the GHGs by
design.

However, the temperature biases associated with the ISM projections
(Figure 5.2b) exhibit significant similarities to the ones we highlighted for
the future response of the Sahelian monsoon over the oceans (Fig.5.1b).
We confirm this by correlating the SVs of temperature biases derived from
these MCAs and show that there is a very strong and highly significant
correlation (r=0.82, p-value<0.01). Therefore, it seems that a common bias
in the current SST climatology, in particular in terms of homogeneous
biases in the western indian ocean and off-equatorial Pacific and Atlantic
oceans, is associated with the inter-model spread of the projections of
both monsoons, in addition to being stationary in the case of the Sahel.
This result, along with those from Section 3 of Chapter 4, seems to indicate
that the inter-model spreads of both the Sahel and Indian monsoons
share an intertwined fate in the projections. It is therefore crucial to better
understand the physical origins, if any, of this statistical relationship in
order to reduce the uncertainty in the monsoon projections.

To take this a step further, we could for example look at the radiative
balance of the Tropics and/or clouds parameters and distributions, as
these variables have the potential to generate tropic-scale patterns, and
are known to be a major source of uncertainty in climate models (Vial
et al., 2013;Schneider et al., 2017). Recent studies have proposed a semi-
automatic analysis of the impact of these parameters in one coupled
model (Peatier et al., 2022). Such analysis applied to different coupled
models could help diagnosing the origins of the SST bias across the
models. This could also be of interest in understanding the inter-model
spread of the inter-hemispheric gradient or the response of subtropical
deserts, which we have highlighted as key parameters for monsoon
projection. Finally, it can be very instructive to look at the dependence of
these various relationships with respect to anthropogenic forcing and
the DAMIP simulations can be again very useful for this task.

5.2.2 Another step towards understanding physics.

Next, we propose here a few avenues for further exploration of the
physical mechanisms underlying the relationships we have highlighted
in this thesis.

Variability and forced responses

In our studies, most of the mechanisms linking model responses to
anthropogenic forcing that we have identified are similar to well-known
existing interannual to decadal variability mechanisms. More generally,
we can question the link between interannual variability and the response
to anthropogenic forcings in climate models, in the sense that model
performance in simulating variability could be a critical parameter for
constraining uncertainties in the models’ forced response. To explore this
type of question, we could employ the same MCA-based methodology but
focus on variability biases instead of mean-state biases across the models.
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For example, given the relationships we have highlighted between future
precipitation uncertainty in the Sahel (or alternatively historical ISM
precipitation) and the equatorial Pacific, it could be that the relationships
are even more pronounced when considering the inter-model spread of
simulated variability.

The impact of land feedback

In chapter 4, we were able to attribute more than 60% of the inter-
model spread of Sahel rainfall projected change to the response of
the inter-hemispheric gradient and the equatorial Pacific. The partial
correlation maps (Appendix 2, Fig.S3) show an absence of significant
links between Sahel rainfall change and temperatures, outside of the Sahel
itself, when excluding the linear dependance to the two explaining factors.
Consequently, it appears that there are no other remote relationships
and the logical next step would be to investigate whether local factors
such soil’s humidity, which can sustain a local temperature-evaporation
rainfall feedback, could explain the remaining residual inter-model
spread of Sahel rainfall. Since land-atmosphere feedback is known to
be a strong modulator of the forced response of the Sahelian monsoon
(Kucharski et al., 2013), studying them could prove valuable in reducing
the uncertainty of the forced response, notably by using the LUMIP
simulations (Lawrence et al., 2016).

Single model exploration

Using a single coupled model, such as the in-house IPSL model for
example, to conduct nudging or sensitivity experiments could also enable
us to verify some of the mechanisms proposed in different chapters and
delve further into their understanding. For example, to test our results
from Chapters 3 and 4, we could use a pacemaker experiment on the
equatorial Pacific. In a pacemaker experiment, climate is forced into a
specific region while being allowed to evolve freely elsewhere (Deser
et al., 2017). So, by prescribing different SST gradients in the equatorial
Pacific, we could study the effect of its historical or future changes, in
particular on the response of the ISM and Sahelian monsoons, and verify
the teleconnection mechanisms we propose. Such experiments have been
successful to analyze teleconnections from the Tropical Pacific and to
demonstrate the role of the tropical Pacific in the global warming hiatus
during the period 1998–2013 (Kosaka and Xie, 2013;Deser et al., 2017).
Working with a single model (or at least less models) would also allow
us to assess more easily moisture budgets, something that is not feasible
with large model ensembles due to the lack of certain variables, or high-
frequency outputs, for evaluating all the terms of the water budget for
many models in the CMIP databases.

5.2.3 Another step towards improving the models

In this thesis, we stated several times that the aim was to reduce un-
certainties in monsoon projections. This also involves improving the
models, and we propose here a few ways of transferring our results,
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which have identified certain critical points, into constraints for the
models development. Let’s get down to the modelers’ business and get
our hands dirty! Intrinsic uncertainty of climate models comes to a large
extent from the fact that many aspects of the climate are represented with
parameterizations that summarize the effect of missing processes, such as
those happening on scales that are smaller than the model grid sizes. The
parameterizations in turn involve many parameters, sometimes poorly
estimated from observations, that have to be calibrated. Among many
steps, the development of climate models thus implies constraining these
parameters. For this, modelers typically use a few metrics based on large-
scale variables such as near-global mean temperature, summer Arctic
sea-ice extent (e.g. Mauritsen and Roeckner, 2020; Hourdin et al., 2017;
Schmidt et al., 2017; Senior et al., 2020; Mignot et al., 2021). Our results
suggest that specific patterns such as the tropical SST bias identified to
influence both ISM and Sahelian monsoon projections should be added
to this list of target metrics. At Institut Pierre Simon Laplace (IPSL), the
climate modeling group is currently testing a semi-automatic tuning
protocol for the forthcoming IPSL-CM7 model, following Hourdin et al
(2023). Highlighting such impactful bias patterns is, thus, particularly
timely. However, this will lead only to a reduction of the inter-model
spread if other modeling groups use the same kind of semi-automatic
tuning. This is obviously a huge collective task for the future!

5.2.4 Other futures, other monsoons

Finally, we have studied the responses of the monsoons for the high-
emission scenario, but it would also be interesting to verify if the relation-
ships we have found are applicable to scenarios where anthropogenic
forcing is lower, in order to assess their robustness and the validity of
potential ECs. Another possibility would be to test our methodology
on other monsoons. In particular, the South American monsoon could
be an interesting system to study, as there is considerable uncertainty
regarding its future in high-emission scenarios, with just as many models
projecting an increase as a decrease in precipitation (Z. Chen et al., 2020).
Constraining these projections could be essential insofar as this region
constitutes a biodiversity hotspot and also because drier conditions, can
push the rainforest ecosystem past a tipping point, beyond which there is
rapid land surface degradation, a sharp reduction in atmospheric mois-
ture recycling, an increase in the fraction of precipitation that runs off,
and a further shift towards a drier climate (Staal et al., 2015;Ruiz-Vásquez
et al., 2020).





Appendix





Supplementary materials 6

6.1 Supplementary material of Intermodel
spread of historical Indian monsoon rainfall
change in CMIP6: The role of the tropical
Pacific mean-state.



Intermodel spread of historical Indian monsoon rainfall change in CMIP6:

The role of the tropical Pacific mean-state

Marcellin Guilberta, Pascal Terraya, Juliette Mignota

a Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon

Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

Corresponding author: Marcellin Guilbert, marcellin.guilbert@locean.ipsl.fr

S1: introduction to Maximum Covariance Analysis (MCA)

MCA aims at estimating the covariance matrix between two fields and computing the

Singular Value Decomposition (SVD) of this covariance matrix by defining pairs of spatial

patterns ranked in decreasing order by the Squared Covariance Fraction (SCF) they describe

(Bretherton et al. 1992). Usually, the two fields are geophysical datasets with the same time

dimension, but with different space dimensions, and the covariance matrix has dimensions

corresponding to the space dimensions of the two fields. Here, we use a «model» dimension

rather than a time dimension, as we want to describe the statistical relationships between the

inter-model spread of precipitation change over India and tropical temperature or rainfall

biases. Hence in our case, the « model » dimension is 34 and this corresponds to the number

of CGCMs we use (see Table S1). Note that due to the small number of models compared to

the “spatial” dimensions of the bias fields, the covariance matrix is singular. For this reason,

we only focus on the 1st mode from the MCAs. By doing so, we also avoid the problems of

interpretation related to the orthogonality constraints, inherent to the higher MCA modes

(Cherry 1997).

The MCA results in « model » series and spatial patterns for both investigated fields (e.g.

rainfall change over India and tropical temperature/rainfall bias). For each field, the 1st

Singular variable (SV) is the projection of the original field onto the 1st singular vector of the

SVD of the covariance matrix, thus it is a « model » series whose length is the number of



models used (i.e. 34). The SV series are the Expansion Coefficient (time) series in the

terminology of Bretherton et al. (1992).

Using the 1st SVs, two types of regression maps can be generated : the 1st homogeneous

map, which is the regression map of a given input field and its 1st SV, and the 1st

heterogeneous map, which is the regression map between a given input field and the 1st SV

of the other field. The heterogeneous map indicates how one field can be predicted from the

SV time series of the other field at the grid-point level. Here, as we are interested in how the

inter-model spread of temperature (or rainfall) bias can explain the inter-model spread of ISM

rainfall change, we will use homogenous maps for the biases and heterogeneous maps for

ISM rainfall change (see figure 6 in the main text). Another relevant measure of the

significance of the patterns obtained with MCA is given by the fraction of domain-integrated

variance of each field explained by the SVs. This metric quantifies how well each pattern

retrieves the variability of the original fields.

Finally, the SCF is used for comparing the relative importance of modes in a given MCA

while the correlation value (r) between the 1st SVs of the two fields and the Normalized

root-mean-square Covariance (NC) allows us to assess how the coupled patterns associated

with a MCA mode are related (Zhang et al. 1998).

Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for

finding coupled patterns in climate data. J. Clim., 5, 541–560,

https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.
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https://doi.org/10.1175/1520-0442(1998)011<2473:SOLSAO>2.0.CO;2.



Model name Modeling center, country Spatial atmospheric
resolution (Lon x Lat)

Number of historical
members used

BCC-ESM1 BCC, China 2.815° x 2.815° 3

BCC-CSM2-MR BCC, China 1.125° x 1.125° 3

NESM3 NUIST, China 1.875° x 1.875° 5

GISS-E2-1-G NASA-GISS, USA 2.5° x 2.0° 10

GISS-E2-1-H NASA-GISS, USA 2.5° x 2.0° 10

NorESM2-LM NCC, Norway 2.5° x 1.875° 3

NorCPM1 NCC, Norway 2.5° x 1.875° 1

IPSL-CM5A2-INCA IPSL, France 3.75° x 3.75° 1

IPSL-CM6A-LR IPSL, France 2.5° x 1.125° 32

HadGEM3-GC31-LL MOHC, UK 1.875° x 1.25° 4

E3SM-1-1 E3SM-Project, DOE,
USA

1.0° x 1.0° 1

CanESM5 CCCma, Canada 2.8125° x 2.8125° 25

CNRM-ESM2-1 CNRM-CERFACS,
France

1.4° x 1.4° 11

CNRM-CM6-1 CNRM-CERFACS,
France

1.4° x 1.4° 30

FGOALS-f3-L CAS, China 1.0° x 1.0° 2

CAMS-CSM1-0 CAMS, China 1.125° x 1.125° 2

MIROC-ES2L MIROC, Japan 2.8° x 2.8° 10



MIROC6 MIROC, Japan 1.4° x 1.4° 50

GFDL-ESM4 NOAA-GFDL, USA 1.25°x1.0° 1

GFDL-CM4 NOAA-GFDL, USA 1.25°x1.0° 1

MRI-ESM2-0 MRI, Japan 1.125° x 1.125° 5

CAS-ESM2-0 CAS,China 1.4° x 1.4° 2

INM-CM5-0 INM, Russia 2.0° x 1.5° 9

SAM0-UNICON SNU, Korea 1.25° x 0.9375° 1

CESM2 NCAR, USA 1.25° x 0.9375° 6

CESM2-WACCM NCAR, USA 1.25° x 0.9375° 3

ACCESS-CM2 CSIRO, Australia 1.875° x 1.25° 3

ACCESS-ESM1-5 CSIRO, Australia 1.875° x 1.25° 20

FIO-ESM2-0 FIO, China 1.875° x 1.25° 2

TaiESM1 AS-RCEC, China 1.875° x 1.25° 1

KACE-1-0-G NIMS-KMA, Korea 1.875° x 1.25° 3

CMCC-CM2-HR4 CMCC, Italy 1.25° x 0.9375° 1

CMCC-CM2-HR4 CMCC, Italy 1.0° x 1.0° 1

MPI-ESM-1-2-HAM Hammoz Consortium 1.875° x 1.875° 2

S2. List of CMIP6 models and simulations used in the present study.



S3: boxplots of the mean anomalies over the 1979-2014 period relative to
1901-2012 of ISMR (in % as in Fig. 1) for each member for CMIP6 models

with more than one member.



S4: MMM change of SST (K) computed over JJAS (top) and annually (bottom)
in the tropical Pacific.



S5: MCA analyses as Fig.6 in the main text, but the domain for the temperature
and precipitation bias fields in the MCAs is restricted to the tropical Pacific

Ocean.



S6 : regression between the equatorial Pacific SST gradient bias and the SST
bias (K.K⁻¹). Dotted points indicate significant correlations at the 95%

confidence level .



S7: MMM of velocity potential climatology (1979-2014) at 200 hPa (x10⁷
m².s⁻¹, color shaded) and regression of the 200-hPa velocity potential change
over the historical period onto the bias of the equatorial Pacific SST gradient

bias (contour lines : 8x10⁴ m².s⁻¹.K⁻¹). Note that the contour lines on the Western
Pacific are not centered on the minimum of the MMM, which indicates a

westward shift.
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S1: introduction to Maximum Covariance Analysis (MCA) 

   
  Maximum Covariance Analysis  (MCA) is a statistical  method whose aim is  to find the main

modes of covariability between two fields, i.e. the main modes by which they interact. In our case,

we  are  trying  to  find  out  how  Sahel  rainfall  change  varies  with  global  precipitation/surface

temperature change in CMIP6 models.  MCA aims at estimating the covariance matrix between two

fields  and  computing  the  Singular  Value  Decomposition  (SVD)  of  this  covariance  matrix  by

defining pairs of spatial patterns ranked in decreasing order by the Squared Covariance Fraction

(SCF) they describe (Bretherton et al. 1992). Usually, the two fields are geophysical datasets with

the  same time  dimension,  but  with  different  space  dimensions,  and  the  covariance  matrix  has

dimensions  corresponding to  the  space  dimensions  of  the  two fields.  Here,  we use a  «model»

dimension rather than a time dimension, as we want to describe the statistical relationships between

the inter-model spread of precipitation change over the Sahel and global surface temperature and

rainfall changes. Hence in our case, the « model » dimension is 32 and this corresponds to the

number of CGCMs we use (see Table S1). Note that due to the small number of models compared

to the “spatial” dimensions of the global change fields, the covariance matrix is singular. For this

reason, we only focus on the 1st mode from the MCAs. By doing so, we also avoid the problems of

interpretation related to the orthogonality constraints, inherent to the higher MCA modes (Cherry

1997).

  The MCA results in « model » series and spatial patterns for both investigated fields (e.g. rainfall

change over the Sahel and global  temperature/rainfall  change).  For each field,  the 1st  Singular

variable (SV) is the projection of the original field onto the 1st singular vector of the SVD of the

covariance matrix, thus it is a « model » series whose length is the number of models used (i.e. 32).

The SV series are the Expansion Coefficient (time) series in the terminology of Bretherton et al.

(1992).



  Using the 1st SVs, two types of regression maps can be generated : the 1st homogeneous map,

which is the regression map of a given input field and its 1st SV, and the 1st heterogeneous map,

which is the regression map between a given input field and the 1st SV of the other field. The

heterogeneous map indicates how one field can be predicted from the SV time series of the other

field at the grid-point level. Here, as we are interested in how the inter-model spread of temperature

(or  rainfall)  change  can  explain  the  inter-model  spread  of  Sahel  rainfall  change,  we  will  use

homogeneous maps for the global changes and heterogeneous maps for Sahel rainfall change (see

figure 6 in the main text). Another relevant measure of the significance of the patterns obtained with

MCA is given by the fraction of domain-integrated variance of each field explained by the SVs.

This metric quantifies how well each pattern retrieves the variability of the original fields.

Finally, the SCF is used for comparing the relative importance of modes in a given MCA while the

correlation value (r) between the 1st SVs of the two fields and the Normalized root-mean-square

Covariance (NC) allows us to assess how the coupled patterns associated with a MCA mode are

related (Zhang et al. 1998).

Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding 

coupled patterns in climate data. J. Clim., 5, 541–560, https://doi.org/10.1175/1520-

0442(1992)005<0541:AIOMFF>2.0.CO;2.

Cherry, S., 1997: Some comments on singular value decomposition analysis. J. Clim., 10, 1759–

1761, https://doi.org/10.1175/1520-0442(1997)010<1759:SCOSVD>2.0.CO;2.

Zhang, Y., J. R. Norris, and J. M. Wallace, 1998: Seasonality of large-scale atmosphere–ocean 

interaction over the North Pacific. J. Clim., 11, 2473–2481, https://doi.org/10.1175/1520-

0442(1998)011<2473:SOLSAO>2.0.CO;2



Model name Modeling center,
country

Spatial
atmospheric

resolution (Lon x
Lat)

ECS Members

BCC-CSM2-
MR

BCC, China 1.125° x 1.125° 3.02 1

GISS-E2-1-G NASA-GISS,
USA

2.5° x 2.0° 2.71 1

NorESM2-LM NCC, Norway 2.5° x 1.875° 2.56 1

IPSL-CM6A-
LR

IPSL, France 2.5° x 1.125° 4.70 7

HadGEM3-
GC31-LL

MOHC, UK 1.875° x 1.25° 5.55 4

HadGEM3-
GC31-MM

MOHC, UK 0.83° x 0.55° 5.44 4

UKESM1-0-
LL

MOHC, UK 1.875° x 1.25° 5.36 3

E3SM-1-1 E3SM-Project,
DOE, USA

1.0° x 1.0° 5.31 1

CanESM5 CCCma, Canada 2.8° x 2.8° 5.64 25

CNRM-ESM2-
1

CNRM-
CERFACS,

France

1.4° x 1.4° 4.79 6

CNRM-CM6-1 CNRM-
CERFACS,

France

1.4° x 1.4° 4.90 5

FGOALS-f3-L CAS, China 1.0° x 1.0° 2.98 1



CAMS-CSM1-
0

CAMS, China 1.125° x 1.125° 2.29 2

MIROC-ES2L MIROC, Japan 2.8° x 2.8° 2.66 6

MIROC6 MIROC, Japan 1.4° x 1.4° 2.60 50

GFDL-ESM4 NOAA-GFDL,
USA

1.25°x1.0° 2.65 1

GFDL-CM4 NOAA-GFDL,
USA

1.25°x1.0° 3.89 1

MRI-ESM2-0 MRI, Japan 1.125° x 1.125° 3.13 1

CAS-ESM2-0 CAS,China 1.4° x 1.4° 2

INM-CM5-0 INM, Russia 2.0° x 1.5° 1.92 1

CESM2 NCAR, USA 1.25° x 0.9375° 5.15 4

CESM2-
WACCM

NCAR, USA 1.25° x 0.9375° 4.68 3

ACCESS-CM2 CSIRO, Australia 1.875° x 1.25° 4.66 3

ACCESS-
ESM1-5

CSIRO, Australia 1.875° x 1.25° 3.88 9

FIO-ESM2-0 FIO, China 1.875° x 1.25° 2

TaiESM1 AS-RCEC, China 1.875° x 1.25° 4.36 1

KACE-1-0-G NIMS-KMA,
Korea

1.875° x 1.25° 4.93 3

CMCC-CM2-
SR5

CMCC, Italy 1.25° x 0.9375° 3.55 1

EC-Earth3 EC-Earth
consortium

0.7° x 0.7° 4.26 3

MPI-ESM1-2-
LR

MPI, Germany 1.875°x1.25° 3.03 2



MPI-ESM1-2-
HR

MPI, Germany 0.9375° x 0.9375° 2.98 10

AWI-CM-1-1-
MR

AWI, Germany 0.9375° x 0.9375° 3.16 3

   

S2: List of CMIP6 models and simulations used in the present study.



Fig. S1. (a) MMM temperature change (K.K ¹), (b) inter-model spread of⁻
temperature change(K.K ¹), during JJAS and ocean-only. Computed⁻

for the 32 CMIP6 models.



Fig.S2: same as Fig.2 but without the scaling by global temperature
change. 



Fig.S3: same as Fig.3 but multi-members average are considered for all
models with more than one member. 



Fig.S4: same as Fig.3 but with unscaled temperature and precipitation
fields. 



Fig.S5. Regression between SV of Sahel rainfall change with sea-level
pressure change and lower-tropospheric winds (850hPa). Contour
line indicate significant correlations at the 95% confidence level



 Fig.S6. Partial correlation between SV of Sahel rainfall change with
temperature change, excluding in both their linear dependance (a) to

the inter-hemispheric temperature change, (b)t o the inter-
hemispheric temperature change and Nino3.4 change (see Section 2

for details). Dotted points indicate significant correlations at the 95%
confidence level.



Fig.S7.MMM of velocity potential change at 200 hPa (x10  m².s ¹.K ¹, color shaded)⁵ ⁻ ⁻
and regression of the 200-hPa velocity potential change over onto the Nina 3.4

index (contour lines : x10  m².s ¹.K ²). Note that the contour lines seems to⁵ ⁻ ⁻
oppose the MMM change. 



Fig.S8. Inter-model regression against minus Niño3.4 (see Niña3.4 in Section 2)
temperature change of precipitation change (mm.d ¹.K ²)⁻ ⁻







List of acronyms

AEJ: African Easterly Jet
AIR: All-India Rainfall
AMOC: Atlantic Meridional Overturning Circulation
AMV: Atlantic Meridional Variability
CGCM: Coupled Global Circulation Model
CMIP: Coupled Model Intercomparison Project
DAMIP: Detection and Attribution Model Intercomparison Project
EC: Expansion Coefficient
ECMWF: European Center for Medium-ranged Weather Forecasting
ENSO: El-Nino Southern Oscillation
ERAi: ERA Interim
FAO: Food and Agriculture Organization of the United Nations
GDP: Gross Domestic Product
GHG: Greenhouse Gas
GPCC: Global Precipitation Climatology Centre
GPCP : Global Precipitation Climatology Project
IMD: India Meteorological Department
IPCC: Intergovernmental Panel on Climate Change
IPO: Interdecadal Pacific Oscillation
IPSL: Institut Pierre-Simon Laplace
ISM: Indian Summer Monsoon
ITCZ: Inter-Tropical Convergence Zone
LUMIP: Land Use Model Intercomparison Project
MCA: Maximum Covariance Analysis
MMM: Multi-Model Mean
NAF: North African monsoon
NC: Normalized root-mean-square Covariance
NOAA: National Oceanographic and Atmospheric Administration
ODT: Ocean Dynamical Thermostat
PCA: Principal Component Analysis
SAS: South Asian monsoon
SCF: Squared Covariance Fraction
SLP: Sea-level Pressure
SST: Sea Surface Temperature
SV: Singular Value
SVD: Singular Value Decomposition
TEJ: Tropical Easterly Jet
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