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Résumé

La connaissance de la variabilité du manteau neigeux est indispensable pour la prévision

du risque d’avalanche ainsi que pour le suivi de la ressource en eau. D’une part, la cou-

verture spatio-temporelle des observations in-situ et télédétectées de la neige est limitée.

Les réflectances satellites dans le visible et le proche infra-rouge fournissent de précieuses

informations sur les propriétés de surface du manteau neigeux mais ont une couverture par-

cellaire, notamment à cause des nuages. De la même manière, les observations in-situ de

hauteur de neige (HN) ont une représentativité et une couverture spatiale limitées. D’autre

part, les modèles détaillés du manteau neigeux offrent la possibilité de simuler la stratigra-

phie complète du manteau neigeux en tout point. Cependant ceux-ci souffrent d’importantes

erreurs provenant de leurs forçages météorologiques ainsi que de leur propre représentation

de la physique de la neige. Dans ce contexte, l’assimilation de données, qui permet d’intégrer

l’information provenant des observations dans les simulations de ces modèles, semble promet-

teuse. L’objectif de cette thèse est d’évaluer la capacité de l’assimilation de réflectances

satellites et d’observations in-situ de HN à améliorer la simulation du manteau neigeux en

montagne. Les problématiques suivantes seront donc abordées :

• Les observations de réflectances satellites de la neige permettent-elles de

mieux contraindre la modélisation du manteau neigeux en montagne ?

• Peut-on propager de l’information sur l’état du manteau neigeux depuis des

zones observées vers des zones non-observées ?

• Dans quelle mesure peut-on utiliser les observations in-situ de HN pour

améliorer les simulations du manteau neigeux dans leur voisinage ?

Nous avons choisi d’utiliser une approche d’assimilation de données ensembliste séquen-

tielle, untilisant le Filtre Particulaire (FP) qui est adapté aux modèles détaillés du man-

teau neigeux. Le système de modélisation d’ensemble est basé sur ESCROC, un ensemble

de modèles multi-physiques du manteau neigeux, forcé par un ensemble de perturbations

stochastiques des analyses météorologiques SAFRAN. Cette conception permet à la chaîne

de modélisation de tenir compte de ses principales sources d’incertitude. Plusieurs versions

innovantes du FP ont été développées afin d’assimiler un grand nombre d’observations si-

multanément, tout en évitant la dégénérescence du FP, un problème apparaîssant lorsque le

nombre d’observations augmente.(Palchetti et al., 2021)

Le potentiel de l’assimilation de réflectances satellites a été estimé en comparant des

observations du capteur satellite MODIS avec des sorties de simulations. Des expériences

jumelles assimilant des observations partielles nous ont permis d’analyser la capacité du FP

à propager de l’information vers des zones non-observées. Enfin, nous avons évalué l’apport

de l’assimilation d’un réseau d’observations de HN couvrant les Alpes et les Pyrénées par

une approche de validation croisée de type "un contre tous".
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Nos résultats montrent que l’approche proposée permet d’éviter la dégénérescence du FP

tout en réussissant à propager de l’information entre différentes conditions topographiques.

Un biais a été mis en evidence dans les observations standard MODIS, qui empêche leur

assimilation directe. En revanche, nous avons mis en valeur le bénéfice de l’assimilation

de HN dans les zones où les erreurs de modélisation sont systématiques et dépassent la

variabilité naturelle. Ce travail ouvre la voie à l’assimilation d’autres produits satellitaires

ainsi que d’observations in-situ de HS dans un contexte spatialisé, représentant un saut

qualitatif important pour la prévision du risque d’avalanche et l’hydrologie de montagne.

Mots-clefs : Manteau neigeux, modélisation, assimilation, télédétection
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Abstract

Understanding mountain snowpack variability is key to anticipate avalanche hazards and

monitor water resources. On the one hand, remotely-sensed and in-situ observations of snow

have a limited spatial and temporal coverage. For instance, visible and near infrared satellite

reflectances provide useful information on snowpack surface properties, but are affected by

important gaps of coverage e.g. due to clouds. Likewise, in-situ observations of the height

of snow (HS) are reliable but with a limited representativeness and spatial coverage. On

the other hand, detailed snowpack models can simulate the complete snow stratigraphy

virtually anywhere, but they suffer from large uncertainties in their meteorological inputs

and their representation of snow physical processes. Thus, data assimilation offers an unique

opportunity to merge information from observations and models into a better estimate of the

snowpack state. The aim of this thesis is to investigate the potential for satellite reflectances

and in-situ HS to improve snowpack simulations in mountainous areas via assimilation. In

this work, we will try to address the following questions:

• Can we use observations of snowpack reflectance from satellites to better

constrain snowpack modelling over mountainous areas?

• Can we propagate information on the snowpack state from observed areas

to unobserved areas with data assimilation?

• To what extent can we use in-situ observations of HS to improve snowpack

simulations in their neighborhood?

We opt for a sequential ensemble data assimilation strategy, using the Particle Filter algo-

rithm (PF), which is well adapted to detailed snowpack models. An ensemble modelling

system is built by forcing ESCROC, a multiphysics ensemble of snowpack models, with an

ensemble of stochastic perturbations on SAFRAN meteorological analyses. This design en-

ables the modelling system to account for its main sources of uncertainty. Several innovative

versions of the PF are developed in order to assimilate large numbers of observations and

propagate information to unobserved areas while avoiding PF degeneracy, an issue arising

when the number of observations increases.

The potential for assimilation of satellite reflectance is assessed by comparing MODIS

observations with simulated reflectances. We conduct twin experiments assimilating partial

observations to analyse the ability of the PF to propagate information into unobserved areas.

Finally, we assess the added value of the assimilation of HS observations from an observation

network over the Alps and Pyrenees using a Leave-One-Out approach.

Results show that the proposed methodology is efficient to tackle PF degeneracy while

managing to propagate information across topographic conditions. Though standard MODIS

observations cannot be directly assimilated because they are biased, the assimilation of HS

observations have some added value where modelling errors are systematic and larger than
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natural variability. This work is a novel contribution to improve the assimilation of other

satellite products and in-situ HS observations in a spatialised context, a significant qualitative

leap for avalanche forecasting and hydrological studies.

Keywords : Snowpack, modelling, data assimilation, remote sensing
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General introduction

Preamble

Just as matter is essentially made of vacuum, snow is often more made of air than of ice.

Indeed, the ice matrix of snow hosts so many air cavities that snow density can be ten times

lower than pure ice density. But snow is not only made of ice and air. Liquid water and

water vapour can fill its matrix. Hitch-hiking dusts can find their way from Sahara into

Alpine snow. Its myriad of prisms is a labyrinth for photons. They generally find their way

out –snow is white– but sometimes get trapped: snow is bluish like water, and episodically

brownish as dusts absorb the visible light besides red. Snow is an ever-evolving medium

which transforms under the laws of diffusion, phase change, light scattering and gravity.

In the mountains, the snow is highly variable. Transported by the wind, trapped by veg-

etation, shaded by peaks: snow can change in the blink of an eye, from one footstep to

another. Grasping its diversity and variations with any sensor, any equation, any model

alone, is an impossible task. But what comes up if we put all these sources of information

together? This is our challenge. Before getting into this adventure, let’s see why it is worth it.

Snow has a strong influence on the climate (Solomon et al., 2007). It is one of the

Earth’s most reflective natural surfaces (in the visible part of the spectrum). As a good

thermal insulator, snow controls on the ground thermal regime (Domine et al., 2006b) and

shrub growth spring offset (Pulliainen et al., 2017; Francon et al., 2020) In the montains

snow is used by many animals to hunt, hide or protect from te cold (Storch, 1993; Zimova

et al., 2018). Snowmelts contributes to river flow, irrigating downstreams ecosystems (Arnell

and Reynard, 1996; Rolls et al., 2012, e.g.). As a matter of fact, snow is both a resource

and a risk. In the mountains, snow is indeed a source of leisure activities which serve as

a substrate for local economy, which in turns attracts humans into the mountains (Xiao

et al., 2015). This situation exposes them to numerous snow-related natural hazards such
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as avalanches, landslides and floods (Haeberli and Whiteman, 2015). Monitoring mountain

snow conditions, and forecasting their evolution (from hourly to climatic timescales) is essen-

tial to understand, evaluate and anticipate the potential snow-related risks and opportunities

(Morin et al., 2020).

Snow is an ice matrix filled with air and eventually a liquid phase. A snowpack builds up

b the accumulation of solid and liquid precipitation. It can be macroscopically described by

the height of snow (HS (m)) or its snow water equivalent (SWE (kg m−2)). The chronology

of precipitation results in strong variations of its internal properties on the vertical scale.

Close to the snowpack surface, strong energy exchanges (visible-near infrared (shortwave,

SW) and thermal longwave (LW) radiative fluxes, as well as turbulent heat exchange with

the atmosphere) determine an important share of the energy budget along with ground ther-

mal fluxes. If a snow layer has a positive energy budget, it will heat up and potentially melt

provided that it reaches 0oC. If this liquid water doesn’t refreeze, it will percolate through

the underlying layers, and leave the snowpack by its bottom. Surface snow can also subli-

mate under dry wind conditions. In both situations, the snowpack looses some mass: these

processes are referred as ablation. As snowpack energy interactions with its environment

are confined to its bottom and its base, and since the snow is a good thermal insulator,

a strong macroscopic thermal gradient often forms. This gradient is one of the drivers of

modifications of the microstructural properties of snow.

Snow microstructural properties undergo perpetual modifications, from snowfall to abla-

tion. Due to local thermodynamic imbalances, ice crystals forming the snowpack will change

of shape due to sublimation, melt or recrystallisation. In the presence of liquid water, snow

grains tend to grow and round.

These changes in microstructural properties have a decisive influence on the optical proper-

ties of snow, particularly in the SW, where ice is a partially absorbing material. Depending

on the geometric properties of the myriad of prisms that make up the snowpack, photons

will have more or less chance of "escaping" from it, or conversely, of being absorbed, thus

contributing to "warming" the snow. These microstructural optical properties can be partly

described by the SSA (Specific Surface Area (m2 kg−1), (Domine et al., 2006a)), which char-

acterises the total air/ice interface area per unit mass of snow. From a macroscopic point

of view, the albedo, defined as the ratio of the SW energy backscattered by the snowpack

to the incident SW energy, is used to describe the ability of the snowpack to reflect incident

SW radiation. Although snow is one of the most reflective materials in the visible range

(hence its white colour), its albedo varies greatly with the wavelength: it is important to

look at its spectral variation, or reflectance.
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The reflectance of snow is higher in the visible than in the infrared. The SSA induces strong

variations in the near infrared and to a lesser extent in the visible. High SSA values, typical

of fresh snow, are associated with high reflectance. Low SSA values ("old snow") enhance

the absorption of SW energy by the snowpack. For instance, this accelerates snow melting

at the end of the season. Absorbing impurities, emanating from anthropogenic or natural

combustion, as well as dust raised in particular by Saharan storms, can be deposited on the

snowpack or during precipitation. They increase the energy absorption of the snowpack in

the visible range, which can be noted by the orange colour of the snow in their presence,

and also contribute to an earlier melting. Finally, it is important to note that reflectance

depends on the illumination conditions (local incidence and presence or absence of direct

radiation).

Net SW radiation is one of the most important terms in the energy balance. On a clear day,

about 80% of this energy is received as direct radiation from the sun, the rest coming from

SW radiation scattered by the atmosphere or adjacent slopes. In the mountains, the incident

SW radiation is extremely variable in space and time. The more the radiation is normal

to the surface, the grater the amount of SW energy per unit of surface will be received.

Moreover, mountains can hide the incident direct radiation to the surrounding slopes. This

is the main reason why, at the same altitude and in our latitudes, the snowpack melts faster

on the southern slopes than on the northern slopes. Clouds can also temporarily intercept

the direct part of the radiation. In addition, snow is a very "backscattering" material, so

that two facing snow-covered slopes can re-illuminate each other. Snow cover properties can

therefore be extremely variable depending on the topography.

In the same way, several factors induce a great spatial variability of snowpack surface

properties as well as of its integrated quantities such as SWE or HS (Blöschl, 1999; Helbig

et al., 2020), and a fortiori of its stratigraphy (e.g. Bellaire and Schweizer, 2011). In addition

to SW fluxes, topography controls the air temperature and the precipitation phase via the

altitude. In interaction with the topography, the wind also plays a major role through its

ability to redistribute snow, from the centimetre scale to the mountain scale. In addition,

partly owing to wind fields, precipitation is also variable on a mountain scale, or even be-

tween the two sides of a ridge. Avalanches redistribute the snow towards less steep slopes

while modifying its properties. Finally, vegetation can intercept the snow, and forests trap

the LW radiation emitted by the underlying snow, thus limiting its night-time cooling. In

summary, snow is extremely variable spatially, from metric to mountain scales.

Due to its high spatial variability, snow is difficult to accurately observe over large areas.

The relatively widespread in-situ observations of HS or SWE cannot capture this variability
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beyond the local scale, i.e. they have a limited representativeness. Fortunately, things seem

to be simpler when we take a step up: satellites regularly provide us with images of snow

over the entire surface of the globe. To date, visible and near-infrared observations from

sensors such as MODIS (MODerate resolution Imaging Spectroradiometer) or the Sentinel-2

satellite, seem to be the only ones with sufficient information content and spatial resolution

to better constrain the variability of the snow cover. Indeed, these observations contain

valuable information on the surface properties of the snow, such as its absorbing impuri-

ties content and its SSA, which both affect the radiative budget. Such observations could

make it possible to verify the chronology and phase of precipitation events (Dozier et al.,

2009). However, there is no evidence that their level of accuracy is sufficient to constrain

the properties of the snowpack (e.g. Warren, 2013). Reflectances can also be used to deter-

mine the snow cover fraction (SCF) of each pixel, which is very useful to constrain ablation

rates or reconstruct snow cover dynamics in a retrospective manner (Aalstad et al., 2018).

However, these observations are generally patchy, as they are unavailable or too inaccurate

under clouds, in the presence of shadows, and in forests and steep slopes (Sirguey et al., 2009).

Snowpack models are complementary to observations in the sense that they can evaluate

virtually any snow variable. They make it possible to forecast snow conditions anywhere, at

any time, including in the future. Snowpack models are used for avalanche risk and hydro-

logical forecasting. In practice, snowpack models simulate the mass and energy balance as

well as a number of physical processes (albedo, metamorphism, settlement, turbulent fluxes,

liquid water percolation, etc.) with a more or less fine vertical resolution. A high spatial

resolution is also important to represent the main causes of snowpack variability (e.g. topog-

raphy, wind drift, vegetation, etc.), but comes with a numerical overhead preventing their use

on large scales. At present, snowpack models used for avalanche risk forecasting such as Cro-

cus, the operational model of Météo-France, represent a detailed stratigraphy with a variable

number of layers, and take into account the influence of the topography (semi-distributed ge-

ometry). However, such models generally ignore gravity and wind redistribution processes,

which are too costly in terms of calculation time. These models are forced by imprecise

weather forecasts in the mountains (e.g. Nousu et al., 2019), and are themselves limited

by numerous errors and uncertainties linked in particular to uncertain parametrisations of

the physical processes (Krinner et al., 2018), and to the non-representation of wind drift.

These two sources of error and uncertainty contribute significantly to the modelling errors.

Moreover, these are bound to persist. Since the atmosphere is inherently chaotic, weather

models are insufficiently resolved in the mountains, and due to a lack of sufficiently detailed

observations, snow modelling errors cannot be targeted and reduced enough(Menard et al.,

2020).
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The probabilistic approach allows to account for modelling errors and uncertainties. In

this formalism, instead of estimating a single value, the model provides a probability den-

sity function (pdf), i.e. a "range of possibilities" for the considered variable. A method

has emerged to provide this probabilistic approach: ensemble forecasting. This consists of

simultaneously launching a set of simulations (or members) from different initial conditions,

propagated by different versions of the model. The probability density of the forecast is di-

rectly estimated from the density of the values predicted by the members of the simulation.

In this way it is possible to estimate the modelling uncertainties, whether they are linked

to a particularly chaotic situation or to weaknesses of the model. If the probability density

function of a forecast is "narrow" (the members have almost all the same value), one can

deduce that the forecast is sure, otherwise the simulation will be considered uncertain. Of

course, the model providing these forecasts must be trusted. To do this, some of its proper-

ties must first be checked against a large number of "test" events. Reliability, its ability to

issue the right probability to an event, regardless of its likelihood, and resolution, its ability

to discriminate between two different events, are essential properties.

Ensemble forecasting first appeared in numerical weather prediction and is now emerging in

snowpack modelling (e.g. Essery et al., 2013; Magnusson et al., 2014; Vernay et al., 2015;

Lafaysse et al., 2017; Nousu et al., 2019; Dumont et al., 2020). In particular, although it

is essential to take both sources of uncertainty into account, ensembles of meteorological

forcings have rarely been combined with ensembles of snow models (Günther et al., 2019).

Data assimilation is a unique opportunity to combine observations and models in an

optimal way. Known as "the art of making sense of observations", it allows to establish an

"analysis" taking into account the values predicted by the model and the observations, as

well as their respective errors. It thus takes excellent advantage of ensemble modelling which

provides a dynamic estimate of the modelling errors. In an idealised framework, the analysis

is both closer to reality and more accurate than the two sources of information from which

it is derived. In a real-time sequential context, where observations are assimilated as they

become available, this analysis can then be fed back into the model, bringing it closer to

reality. The model is then used until another observation becomes available. This sequen-

tial approach lends itself well to the problem of weather forecasting, and in particular to

avalanche risk forecasting and hydrological monitoring.

Data assimilation has made spectacular progress in numerical weather prediction over

the last 40 years. It then appeared in snowpack modelling, through hydrological forecast-

ing (Slater and Clark, 2006), and continental surface modelling (De Lannoy et al., 2012).
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For snowpack modelling, ensemble assimilation methods such as the ensemble Kalman filter

(EnKF) or the particle filter with sequential resampling (PF) are the most widely used for

forecasting purposes (e. e.g. Magnusson et al., 2014; Larue et al., 2018), and have been

successful in assimilating integrated variables such as the height of snow (Magnusson et al.,

2017), or even multiple variables (Piazzi et al., 2018). On the other hand, reflectance assim-

ilation has never gone beyond the idealised framework (Charrois et al., 2016). Smoothing

algorithms, such as Particle Batch Smoother (PBS, Margulis et al., 2015) are more suitable

for backward-looking modelling problems working with variables such as the CWS (e.g. Aal-

stad et al., 2018). A comprehensive review of assimilation methods for snow has recently

been proposed by Largeron et al. (2020).

Assimilation can also be used to propagate information from observed into unobserved areas.

This is essential in our case to respond to the patchy nature of the observations (in-situ as

well as satellite) available to us. Indeed, a "point by point" assimilation (e.g. Kim et al.,

2019; Deschamps-Berger et al., in review) cannot correct the model in the unobserved zones,

which leads to too large differences in performance with the observed zones. While spatial

interpolation methods (from observations as well as from point analyses) (Slater and Clark,

2006; Cantet et al., 2019) have been proposed to fill these "holes", they seem too approximate

in complex terrain. The question of the propagation of information by assimilation for the

modelling of the snowpack in complex terrain remains largely unexplored.

As far as the problem of avalanche risk forecasting is concerned, the PF seems best suited

to Lagrangian models such as Crocus, which involve a variable number of numerical layers.

Moreover, it is the only method that preserves the physical consistency between the variables

in a certain way. This is important, as small local vertical gradients can have a significant

impact on the modelled metamorphism. The analysis of the PF consists in rejecting the

members (or particles) furthest from the observation (with respect to the observation error),

and replacing them with the closest members(Gordon et al., 1993; Kitagawa, 1996).

One of the major difficulties encountered by the PF is the degeneracy problem: when the

number of simultaneously assimilated observations increases, too few particles are dupli-

cated to correctly represent the pdf of the system (Snyder et al., 2008). Solutions exist to

solve it: inflation of the observation errors (Larue et al., 2018) or the localisation of the PF

(Van Leeuwen, 2009).

The resolution of degeneracy by localisation methods is in fact linked to the question of

the propagation (notably spatial) of information by the assimilation algorithm. When the

degeneracy prevents the production of a global analysis on a whole domain, the localisation

of the PF proposes to separate this problem into a set of local problems. An analysis is

performed at each point, considering the observations in its neighbourhood. As a result, the
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number of observations is reduced, and the degeneracy of the PF is avoided. On the other

hand, each point receives a different analysis, causing spatial discontinuities in the analy-

sis fields. This can cause problems when horizontal coupling requires a physical balance.

Localization is therefore based on the notion of neighbourhood, which aims to define a set

of positions that can contain relevant information on the considered point. It is necessary

here to dwell on this notion of "relevance". Information on the state of a point can be used

to improve the knowledge on the state of another point via assimilation if they are statis-

tically linked (but not necessarily physically, this link can be caused by an external factor

such as meteorological forcings). In most geophysical systems, points can be considered as

statistically independent past a certain distance, and the classically accepted notion of neigh-

bourhood is based on this principle, in the PF (e.g. Poterjoy, 2016) and the EnKF likewise.

In the latter, this statistical independence is often inferred from the ensemble correlation

structures (e.g. Hamill et al., 2001).

For the mountain snowpack, this link between distance and statistical independence remains

to be verified. In the absence of snow transport by the wind, beyond a few metres, the points

are to a large extent physically independent, for which most snow models are 1D, even the

most physically detailed ones (e.g. Brun et al., 1989; Lehning et al., 1999). On the other

hand, they can be subject to the same factors (meteorology, lighting conditions), resulting

in statistical links, and thus, the possibility of propagating information. As mentioned for

the EnKF, ensemble correlations can be used to estimate this statistical dependence, but at

present, due to the still incipient use of ensembles for snowpack modelling, we know nothing

about these spatial correlation structures. It is thus possible that the notion of neighbour-

hood, based on distance criteria, is not adapted to snow in complex terrain at the considered

modelling scales (beyond a hundred metres). For a local analysis on a sunny south-facing

slope, a distant observation, but in similar lighting conditions, could be better indicated

than a closer observation, but coming from a shaded slope.

The objective of this thesis is to better characterise the spatial variability of the snow-

pack in the mountains. The method consists in trying to take advantage of in-situ snow

height observations and satellite reflectances by including them in ensemble simulations of

the snowpack with Crocus, using data assimilation. Our work will attempt to answer the

following questions:

In this work, we will investigate the potential for assimilation of space-borne reflectance

and in-situ snow depth observations into ensemble snowpack simulations in a spatialised

context, with a particular focus on the question of the propagation of information from ob-

served into unobserved areas. After an introduction to the problem in Chapter 1, Chapters

2-4 will respectively address the following questions:
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• Can we use observations of snowpack reflectance from satellites to better

constrain snowpack modelling over mountainous areas?

While their potential to constrain snowpack simulations has been proven with Crocus

in an idealized setting, real snowpack spectral reflectance data have never been successfully

assimilated before, let alone in a spatialized context. We will therefore investigate whether

MODIS and Sentinel-2 reflectance data can be assimilated into ensemble simulations of the

snowpack. To do so, the representation of uncertainties in the ensemble simulation system

used will need to be improved to include snowpack modelling uncertainties. We will address

this issue in Chapter 2.

• Can we propagate information on the snowpack state from observed areas

to unobserved areas with data assimilation?

Satellite reflectances have a patchy spatial coverage (Sirguey et al., 2009). For example,

they are rarely available on shaded slopes. We wonder if it is possible to improve snowpack

simulations in unobserved areas using observations from observed areas through assimilation.

The particle filter appears to be an appropriate assimilation method for modelling mountain

snowpack, but suffers from degeneracy when too many observations are assimilated simul-

taneously. After having built a set assimilation system able to answer this problem, we will

see if it is possible, in an idealized framework, to avoid this degeneration while managing to

propagate information in the unobserved zones. This problem will be tackled in Chapter 3.

• To what extent can we use in-situ observations of HS to improve snowpack

simulations in their neighborhood?

Several studies have successfully assimilated integrated snowpack (snow height or SWE)

observations in a spatialized context in mountainous terrain (e.g. Magnusson et al., 2014;

Winstral et al., 2019). These are based on an exceptionally dense network of observations.

It is likely that the performance of such assimilation systems decreases with the density

of available observations (Largeron et al., 2020), which would limit the scope of such an

approach to a very limited number of mountain regions. We will apply our ensemble assimi-

lation system to the case of a network of snow height observations covering the French Alps

and Pyrenees, as well as Andorra. This network has very variable observation densities. We

will thus be able to evaluate the contribution of assimilation in relation to the operational

system of Météo-France in a wide variety of situations. This question will be treated in

Chapter 4.
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Dictes moy ou, n’en quel pays

Est Flora, la belle Rommaine,

Archipiades, ne Thaïs,

Qui fut sa cousine germaine,

Écho parlant quand bruyt on maine

Dessus riviere ou sus estan,

Qui beaulté ot trop plus qu’humaine.

Mais ou sont les neiges d’antan ?

Ou est la très sage Hellois

Pour qui chastré fut et puis moyne

Pierre Esbaillart a Saint Denis ?

Pour son amour ot ceste essoyne.

Semblablement, ou est la royne

Qui commanda que Buridan

Fust geté en ung sac en Saine ?

Mais ou sont les neiges d’antan ?

La royne Blanche comme lis

Qui chantoit a voix de seraine,

Berte au grant pié, Bietris, Alis,

Haremburgis qui tint le Maine,

Et Jehanne la bonne Lorraine,

Qu’Englois brulerent a Rouan,

Ou sont ilz, Vierge souveraine ?

Mais ou sont les neiges d’antan ?

Princes, n’enquerez de sepmaine

Ou elles sont, ne de cest an,

Qu’a ce reffrain ne vous remaine :

Mais ou sont les neiges d’antan ?

François Villon (XVème siècle), Ballade des dameuses du temps jadis
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Introduction Générale

Si on cherche de la neige, mieux vaut aller en montagne. En effet, les montagnes sont vastes,

sublimes, inaccessibles, prétexte à de nombreuses rêveries et souvent couvertes de neige. Le

poète du moyen-âge François Villon voit dans la neige saisonnière1 une métaphore du cycle

de vie (Frappier, 1971). Si chaque année, le destin de cette neige est de disparaitre, nous

savons qu’elle resurgira un jour : cela n’a pas de sens de se demander si la neige reviendra.

Cependant, par une étrange coïncidence, le glissement sémantique du mot "antan" de son

sens originel (l’année passée) vers son sens actuel (passé lointain) a accompagné le boule-

versement de notre climat : les neiges d’antan ne sont plus toujours au rendez-vous (Spandre

et al., 2019). En sus de notre accès à quelques sensations fortes, c’est sans doute une part

de notre identité qui est en jeu (Albrecht et al., 2007).

Ceci étant dit, il est entendu que la neige a une influence importante sur le climat

(Solomon et al., 2007). En effet, c’est l’une des surfaces naturelles les plus réfléchissantes

sur Terre (dans le spectre visible), et ses propriétés d’isolant thermique contrôlent le régime

thermique des sols (Domine et al., 2006b) ainsi que la pousse printanière de la végétation

arctique et alpine (Pulliainen et al., 2017; Francon et al., 2020). En montagne la neige est

essentielle pour de nombreux animaux, qu’ils soient à l’affût, en cachette, ou encore à l’abri

du froid (Storch, 1993; Zimova et al., 2018). Sa fonte nourrit le débit des rivières, ainsi

précieuse à de nombreux écosystèmes en aval (e.g. Arnell and Reynard, 1996; Rolls et al.,

2012). De manière plus pragmatique, les humains voient la neige à la fois comme une source

d’opportunités, mais aussi de risques. Celle-ci est en effet prétexte à de nombreuses actitivés

de loisir somme tout assez futiles mais servant de substrat à une économie locale, qui en

retour incite les humains à s’installer en montagne (Xiao et al., 2015). Cette situation les

expose à de nombreux risques naturels liés à la neige, tels que les avalanches, glissement de

terrains et crues nivales (Haeberli and Whiteman, 2015). Il est indispensable de suivre les

conditions d’enneigement en montagne, ainsi que de prédire leur évolution (à des échelles

courtes comme climatiques) afin de comprendre, évaluer et anticiper les risques et opportu-

nités liés à la neige (e.g. Morin et al., 2020).

1À l’époque, "antan" faisait référence à l’année passée, contrairement à son sens actuel (Frappier, 1971).
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La neige est une matrice de glace remplie d’air et éventuellement d’une phase liquide.

Le manteau neigeux se constitue par l’accumulation de précipitations solides et liquides, et

peut être décrit macroscopiquement par sa hauteur de neige (height of snow, HS (m)) ou

son équivalent en eau (snow water equivalent SWE, (kg m−2)). Il hérite de cette chronologie

de précipitations d’importantes variations verticales de ses propriétés physiques. Près de sa

surface, le manteau neigeux connait des échanges d’énergie (flux radiatifs dans le visible et le

proche infrarouge (shortwave, SW) issus du rayonnement solaire, rayonnements thermique

(longwave, LW) et échanges de chaleurs turbulents avec l’atmosphère) qui déterminent une

grande part de son bilan d’énergie, l’autre part significative étant les échanges de chaleur

avec le sol sous-jacent. Si une couche de neige a un bilan d’énergie positif, celle-ci va se

réchauffer et éventuellement fondre, dès lors que sa température aura atteint 0oC. Si elle ne

regèle pas, cette eau liquide pourra ensuite percoler à travers les couches inférieures du man-

teau neigeux et quitter celui-ci par sa base. La neige peut également se sublimer à la surface

sous l’effet d’un vent sec. Dans les deux cas, le manteau neigeux perd de la masse : on parle

d’ablation. Comme le manteau neigeux ne peut échanger de l’énergie avec l’extérieur que

près de sa surface ou de sa base, et comme la neige est très bon isolant, le manteau neigeux

est souvent soumis à un fort gradient thermique macroscopique, un des facteurs à l’origine

de transformations dans les propriétés microstructurales de la neige.

Les propriétés microstructurales de la neige sont en perpétuelle évolution, depuis la chute

des flocons de neige jusqu’à l’ablation. Sous l’effet de déséquilibres thermodynamiques lo-

caux, induits par exemple par le gradient thermique macroscopique, les cristaux de glace

composant la neige vont changer de forme, par sublimation ou recristallisation de glace. On

retiendra qu’en présence d’eau liquide (par exemple lors de la fonte), les grains de neige ont

tendance à s’arrondir et à grossir.

Ces changements de propriétés microstructurales ont une influence déterminante sur les pro-

priétés optiques de la neige, notamment dans le SW, où la glace est un matériau partiellement

absorbant. Selon les propriétés géométriques de la myriade de prismes qui compose neige.

Ces propriétés optiques microstructurales peuvent être en partie décrites par la SSA (Spe-

cific Surface Area (m2 kg−1), (Domine et al., 2006a)), qui caractérise l’aire totale d’interface

air/glace par unité de masse de neige. D’un point de vue macroscopique, l’albédo, défini

comme le ratio entre l’énergie SW rétrodiffusée par le manteau neigeux et l’énergie SW

incidente, permet de décrire la capacité du manteau neigeux à réfléchir le rayonnement

shortwave incident. Si la neige est un des matériaux les plus réfléchissants dans le visible

(d’où sa couleur blanche), son albédo varie fortement en fonction de la longueur d’onde : il

est important de s’intéresser à sa variation spectrale, ou réflectance.

La réflectance de la neige est plus élevée dans le visible que dans l’infra-rouge. Celle-ci est
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principalement affectée par la SSA, qui induit de fortes variations dans le proche infra-rouge

et dans une moindre mesure, le visible. De fortes valeurs de SSA, typiques de neige fraîche,

sont associées à une forte réflectance, tandis qu’à l’inverse des SSA faibles ("vieille neige")

renforcent l’absorption d’énergie SW par le manteau neigeux, contribuant par exemple à

accélérer sa fonte en fin de saison. Les impuretés absorbantes, émanant de la combustion

anthropique ou naturelle, ainsi que les poussières soulevées notamment par les tempêtes

sahariennes, peuvent se déposer sur le manteau neigeux ou au cours des précipitations.

Celles-ci augmentent l’absorption d’énergie du manteau neigeux dans le visible, qui peut

être notée par la couleur ocre prise par la neige en leur présence, et contribuent également

à une fonte plus précoce. Enfin, il est important de noter que la réflectance dépend des

conditions d’éclairement (incidence locale et présence ou non de rayonnement direct).

Le rayonnement net SW est l’un des termes prépondérants du bilan d’énergie, et provient

du rayonnement solaire. Par ciel clair, 80% environ de cette énergie est reçue sous forme

de rayonnement direct, le reste provenant du rayonnement SW diffusé par l’atmosphère ou

les pentes adjacentes. En montagne, le rayonnement SW incident est extrêmement variable

spatialement et temporellement. Plus le rayonnement direct sera orthogonal à la surface,

plus celle-ci recevra d’énergie par unité de surface. C’est la raison principale pour laquelle à

altitude égale et sous nos latitudes, le manteau neigeux fond plus vite en versant sud qu’en

versant nord. Des montagnes peuvent cacher le rayonnement direct incident aux pentes

environnantes. Des nuages peuvent également occulter la fraction directe du rayonnement

de manière éphémere. En outre, la neige étant un matériau très "rétrodiffusant", des pentes

enneigées se faisant face peuvent se rééclairer mutuellement. On comprend donc que les

propriétés optiques du manteau neigeux peuvent être extrêmement variables en fonction de

la topographie.

De la même manière, plusieurs facteurs induisent une grande variabilité spatiale des pro-

priétés de surface du manteau neigeux ainsi que de ses grandeurs intégrées telles que le SWE

ou HS (Blöschl, 1999; Helbig et al., 2020), et a fortiori de sa stratigraphie (e.g. Bellaire and

Schweizer, 2011). En plus des flux SW, la topographie contrôle la température de l’air et la

phase des précipitations via l’altitude. En interaction avec la topographie, le vent joue égale-

ment un rôle prépondérant par sa capacité à redistribuer la neige, de l’échelle centimétrique

à celle d’une montagne. En outre, en partie sous l’effet du vent, les précipitations sont égale-

ment variables à l’échelle d’une montagne, ou même entre les deux versants d’une crête. Les

avalanches contribuent a redistribuer la neige vers des pentes moins raides tout en modifiant

ses propriétés. Enfin, la végétation peut intercepter la neige, et la forêt piège le rayonnement

LW émis par la neige sous-jacente, limitant ainsi son refroidissement nocturne. En résumé,

la neige est extrêmement variable spatialement, de l’échelle métrique à celle d’une montagne.
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Du fait de sa grande variabilité spatiale, la neige est difficile à observer avec précision sur

de grandes étendues. Les observations in-situ de HS ou de SWE, relativement répandues, ne

peuvent pas suffire à capturer cette variabilité au delà de l’échelle locale, on dit alors que leur

représentativité est limitée. Heureusement, les choses semblent plus simples quant on prend

un peu de hauteur : les satellites nous fournissent régulièrement des images de la neige sur

toute la surface du globe. À ce jour, les observations dans le visible et le proche infra-rouge,

fournies par des capteurs comme MODIS (MODerate resolution Imaging Spectroradiometer)

ou le satellite Sentinel-2 semblent les seules à avoir un contenu en information et une réso-

lution spatiale suffisants pour mieux contraindre la variabilité du manteau neigeux (Dozier

et al., 2016). En effet, ces observations contiennent de précieuses informations sur les pro-

priétés de surface de la neige telles que son contenu en impuretés absorbantes et sa SSA, qui

affectent son bilan radiatif, et pourraient permettre de vérifier la chronologie et la phase des

événements de précipitation (Dozier et al., 2009). En revanche, rien ne dit que leur niveau

de précision est suffisant pour contraindre les propriétés du manteau neigeux (e.g. Warren,

2013). Les réflectances permettent également de déterminer la fraction de couvert nival

(snow cover fraction SCF) occupant chaque pixel, une grandeur très utile pour contraindre

des taux d’ablation, ou reconstituer la dynamique de l’enneigement de manière rétrospective

(e.g. Aalstad et al., 2018). Cependant, ces observations sont généralement parcellaires, car

indisponibles ou trop peu précises sous les nuages, en présence d’ombres, et en forêts et

pentes raides (Sirguey et al., 2009).

Les modèles de manteau neigeux peuvent permettre de compléter ces observations,

en estimant les variables non-observées, et rendant possible la prévision de conditions

d’enneigement où qu’on le souhaite, à n’importe quel moment, y compris dans le futur.

Ceux-ci sont notamment utilisés pour la prévision du risque d’avalanche et la prévision

hydrologique (Magnusson et al., 2014). En pratique, les modèles de manteau neigeux

simulent le bilan de masse et d’énergie ainsi qu’un nombre plus ou moins élevé de processus

physiques (albédo, métamorphisme, tassement, flux turbulents, percolation de l’eau liquide

etc.) avec une résolution verticale plus ou moins fine. La résolution spatiale est également

importante pour représenter les principales causes de variabilité du manteau neigeux (e.g.

topographie, transport de neige par le vent, végétation, etc.), avec un surcoût numérique

important empêchant leur application sur de grandes échelles. À l’heure actuelle, les

modèles de manteau neigeux utilisés pour la prévision du risque d’avalanches tels que

Crocus, le modèle opérationnel de Météo-France (Brun et al., 1989; Vionnet et al., 2012),

représentent une stratigraphie détaillée avec un nombre variable de couches, et prennent en

compte l’influence de la topographie (géométrie semi-distribuée). En revanche, ils ignorent
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généralement les processus de redistribution de la neige par le vent et la gravité, notamment

en raison de leur coût de calcul. Ces modèles sont forcés par des prévisions météorologiques

particulièrement imprécises en montagne (e.g. Nousu et al., 2019), et sont eux mêmes

entachés de nombreuses erreurs et incertitudes notamment liées à la paramétrisation

incertaine des processus physiques (Krinner et al., 2018), et à la non-représentation du

transport de neige par le vent. Ces deux sources d’erreurs et incertitudes contribuent

significativement aux erreurs de modélisation (Raleigh et al., 2015). En outre, celles-ci sont

vouées à perdurer, car l’atmosphère est intrinsèquement chaotique (Lorenz and Haman,

1996), les modèles météorologiques insuffisamment résolus en montagne, et à cause d’un

manque d’observations suffisament détaillées permettant de cibler et réduire les erreurs de

modélisation de la neige (Menard et al., 2020).

L’approche probabiliste permet de rendre compte des erreurs et incertitudes de modélisa-

tion. Dans ce formalisme, au lieu d’estimer une valeur unique, le modèle fournit une densité

de probabilité (ou probability density function, pdf) une "étendue des possibles" pour la

variable considérée. Une méthode s’est imposée pour fournir cette approche probabiliste : la

prévision d’ensemble. Celle-ci consiste à lancer simultanément un ensemble de simulations

(ou membres) à partir de conditions initiales différentes, propagées par des versions de

modèles différentes. La densité de probabilité de la prévision est directement estimée à

partir de la densité des valeurs prédites par les membres de la simulation.

On peut ainsi estimer les incertitudes de modélisation, qu’elles soient liées à une situation

particulièrement chaotique, ou aux faiblesses du modèle. Si la densité de probabilité d’une

prévision est "resserrée" (les membres ont quasiment tous tous la même valeur), on en

déduira que la prévision est sûre, dans le cas contraire la précision sera considérée comme

incertaine. Bien entendu, il faut que l’on puisse faire confiance au modèle fournissant ces

prévisions. Pour cela, on doit avoir vérifié au préalable certaines de ses propriétés contre un

grand nombre d’événements "tests". La fiabilité, sa capacité à donner la bonne probabilité

à un événement, qu’il soit rare ou fréquent, et sa résolution, sa capacité à discriminer deux

événements différents, sont des propriétés essentielles.

La prévision d’ensemble est apparue pour la prévision numérique du temps (Molteni et al.,

1996), et est en cours d’émergence dans la modélisation du manteau neigeux (e.g. Essery

et al., 2013; Magnusson et al., 2014; Vernay et al., 2015; Lafaysse et al., 2017; Nousu et al.,

2019; Dumont et al., 2020). En particulier, bien qu’il soit indispensable de prendre en

compte ces deux sources d’incertitudes, des ensembles de forçages météorologiques n’ont

que rarement été combinés avec des ensembles de modèles de neige (Günther et al., 2019).

L’assimilation de données propose de combiner observations et modèles de manière
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optimale, et est en cela une chance unique pour la modélisation. Connue comme "l’art de

comprendre les observations" (Lahoz and Menard, 2010), elle permet d’établir une "analyse"

tenant compte des valeurs prédites par le modèle, et les observations, ainsi que de leurs

erreurs respectives. Elle tire donc un excellent parti des méthodes ensemblistes qui lui four-

nissent une estimation dynamique des erreurs de modélisation. En théorie, cette analyse est

à la fois plus près de la réalité et plus précise que les deux sources d’information dont elle est

issue. Dans un cadre séquentiel en temps réel, où les observations sont assimilées au fur et à

mesure qu’elles sont disponibles, cette analyse peut ensuite être réinjectée dans le modèle, le

rapprochant ainsi de la réalité. Celui-ci est alors utilisé jusqu’à ce qu’une autre observation

soit disponible. Cette approche séquentielle se prête bien au problème de la prévision

météorologique, et en particulier à la prévision du risque d’avalanche et au suivi hydrologique.

L’assimilation de données a permis des progrès spectaculaires en prévision numérique

du temps ces quarantes dernières années. Elle est ensuite apparue dans la modélisation du

manteau neigeux, où elle est encore balbutiante, par le biais de la prévision hydrologique

(e.g. Slater and Clark, 2006), et de la modélisation des surfaces continentales (e.g. De Lan-

noy et al., 2012). En ce qui concerne la modélisation du manteau neigeux, les méthodes

d’assimilation ensemblistes telles que le filtre de Kalman d’ensemble (EnKF) ou le filtre

particulaire avec réechantillonnage séquentiel (PF) sont les plus répandues à des fins

de prévision (e.g. Magnusson et al., 2014; Larue et al., 2018), et ont permis d’assimiler

avec succès des variables intégrées telle que la hauteur de neige (e.g. Magnusson et al.,

2017), voire même plusieurs variables (Piazzi et al., 2018). En revanche, l’assimilation de

réflectances n’a jamais dépassé le cadre idéalisé (Charrois et al., 2016). Les algorithmes

de lissage, tels que le Particle Batch Smoother (PBS, Margulis et al., 2015) sont eux plus

adaptés aux problèmes de modélisation rétrospective travaillant avec des variables comme

la SCF (e.g. Aalstad et al., 2018). Une revue complète des méthodes d’assimilation pour la

neige a été récemment proposée par Largeron et al. (2020).

L’assimilation peut également être utilisée pour diffuser de l’information depuis les zones

observées vers les zones non observées. Ceci est indispensable dans notre cas pour répondre

à la parcellarité des observations (in-situ comme satellitaires) dont nous disposons. En

effet, une assimilation "point par point" (e.g. Kim et al., 2019; Deschamps-Berger et al., in

review) ne peut pas corriger le modèle dans les zones non-observées, ce qui induit de trop

grandes différences de performance avec les zones observées. Si des méthodes d’interpolation

spatiale (des observations comme des analyses ponctuelles) (e.g. Slater and Clark, 2006;

Cantet et al., 2019) ont été proposées pour combler ces "trous", celles-ci semblent trop

approximatives en terrain complexe. La question de la propagation de l’information par

l’assimilation pour la modélisation du manteau neigeux en terrain complexe reste largement
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inexplorée (Largeron et al., 2020), nous y reviendrons.

En ce qui concerne le problème de la prévision du risque d’avalanche, le PF semble le plus

adapté aux modèles lagrangiens tels que Crocus, qui impliquent un nombre variables de

couches numériques (Magnusson et al., 2017). En outre, c’est la seule méthode qui préserve

la cohérence physique entre les variables de manière certaine. C’est important, car de petits

gradients verticaux locaux peuvent avoir une incidence importante sur le métamorphisme

modélisé. L’analyse du PF consiste en effet à rejeter les membres (ou particules) les plus

loin de l’observation (par rapport à l’erreur d’observation), et de les remplacer par les

membres les plus proches (Gordon et al., 1993; Kitagawa, 1996).

Une des grandes difficultés rencontrées par le PF est le problème de dégénérescence :

lorsque le nombre d’observations simultanément assimilées augmente, un trop faible nombre

de particules se trouve dupliqué pour correctement représenter la pdf du système (Snyder

et al., 2008). Des solutions existent pour la résoudre: l’inflation des erreurs d’observations

(Larue et al., 2018) ou la localisation du PF (Van Leeuwen, 2009).

La résolution de la dégénérescence par des méthodes de localisation est de fait liée

à la question de la propagation (notamment spatiale) de l’information par l’algorithme

d’assimilation. Lorsque la dégénérescence empêche de produire une analyse globale sur

tout un domaine, la localisation du PF propose de séparer ce problème en un ensemble de

problèmes locaux. Une analyse est effectuée en chaque point, en considérant les observations

dans son voisinage. De ce fait, le nombre d’observations est réduit, et la dégénerescence du

PF est évitée2. La localisation repose donc sur la notion de voisinage, qui vise à définir un

ensemble de positions pouvant contenir des informations pertinentes sur le point considéré.

Il est nécessaire ici de s’attarder sur cette notion de "pertinence". De l’information sur

l’état d’un point peut servir à améliorer la connaissance sur l’état d’un autre point via

l’assimilation si ceux si sont statistiquement liés (mais pas nécessairement physiquement, ce

lien peut être causé par un facteur externe tel que des forçages météorologiques)3. Dans la

plupart des systèmes géophysiques, des points peuvent être considérés comme statistique-

ment indépendants passée une certaine distance, et la notion de voisinage classiquement

admise s’appuie sur ce principe, dans le PF (e.g. Poterjoy, 2016) comme l’EnKF. Dans ce

dernier, ce sont souvent les structures de corrélations de l’ensemble qui sont utilisées pour

estimer cette indépendance statistique (e.g. Hamill et al., 2001).

En ce qui concerne le manteau neigeux en montagne, ce lien entre distance et indépendance

statistique reste à vérifier. En l’absence de transport de neige par le vent, au delà de quelques

2En revanche, on obtient des analyses discontinues, car différentes en chaque point, ce qui peut poser des
problèmes lorsque ceux-ci sont couplés (Farchi and Bocquet, 2018)

3Reste à trouver le facteur externe reliant le changement sémantique du mot "antan" avec le changement
climatique...
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mètres, les points sont dans une grande mesure physiquement indépendants4. En revanche,

ceux-ci peuvent être soumis à de mêmes facteurs (méteorologie, conditions d’éclairement),

apportant des liens statistiques, et donc, la possibilité de propager de l’information. Comme

nous l’avons évoqué pour l’EnKF, les corrélations d’ensemble peuvent être utilisées pour

estimer cette dépendance statistique, mais à l’heure actuelle, du fait de l’utilisation encore

balbutiante des ensembles en modélisation du manteau neigeux, nous ne connaissons rien de

ces structures spatiales de corrélation. Il est ainsi possible que la notion de voisinage, basée

sur des critères de distance, ne soit pas adaptée à la neige en terrain complexe aux échelles

de modélisation considérées (au delà de la centaine de mètres). Pour une analyse locale

en pente sud ensoleillée, une observation distante, mais dans des conditions d’éclairement

similaires, pourrait être mieux indiquée qu’une observation plus proche, mais venant d’un

versant ombragé.

L’objectif de cette thèse est de mieux caractériser la variabilité spatiale du manteau

neigeux en montagne. La méthode consiste à essayer de tirer parti des observations in-situ

de hauteur de neige, et des réflectances satellitaires en les incluant dans des simulations

d’ensemble du manteau neigeux avec Crocus, à l’aide de l’assimilation de données. Nos

travaux tenteront de répondre aux questions suivantes:

• Les observations de réflectances satellites de la neige permettent-elles de

mieux contraindre la modélisation du manteau neigeux en montagne ?

Si leur potentiel pour contraindre les simulations du manteau neigeux a été prouvé avec

Crocus dans un cadre idéalisé (Charrois et al., 2016), des données réelles de réflectances

spectrales du manteau neigeux n’ont encore jamais été assimilées avec succès, a fortiori

dans un contexte spatialisé. Nous chercherons donc à voir si des données de réflectances

MODIS et Sentinel-2 peuvent être assimilées dans des simulations d’ensemble du manteau

neigeux. Pour ce faire, la représentation des incertitudes dans le système de simulation

d’ensemble utilisé devra être améliorée afin d’inclure les incertitudes de modélisation du

manteau neigeux. Nous traiterons de cette question dans le Chapitre 2.

• Peut-on propager de l’information sur l’état du manteau neigeux depuis des

zones observées vers des zones non-observées ?

Les réflectances satellites ont une couverture spatiale parcellaire (Sirguey et al., 2009).

Par exemple, elles sont rarement disponibles en versant Nord. On se demande s’il est pos-

sible d’améliorer les simulations du manteau neigeux dans les zones non observées à l’aide

d’observations dans des zones observées grâce à l’assimilation. Le filtre particulaire semble

une méthode d’assimilation appropriée à la modélisation du manteau neigeux en montagne,

mais souffre de dégénérescence lorsque trop d’observations sont assimilées simultanément.

4Raison pour laquelle la plupart des modèles de neige sont 1D, même les plus détaillés physiquement (e.g.
Brun et al., 1989; Lehning et al., 1999)
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Après avoir construit un système d’assimilation ensembliste à même de répondre à ce prob-

lème, nous allons voir s’il est possible, dans un cadre idéalisé, d’éviter cette dégénérescence

tout en parvenant à propager de l’information dans les zones non observées. Ce problème

sera abordé en Chapitre 3.

• Dans quelle mesure peut-on utiliser les observations in-situ de HN pour

améliorer les simulations du manteau neigeux dans leur voisinage ?

Plusieurs études sont parvenues à assimiler des observations intégrées du manteau neigeux

(hauteur de neige ou SWE) dans un contexte spatialisé en terrain montagneux (e.g. Magnus-

son et al., 2014; Winstral et al., 2019). Celles-ci s’appuient sur un réseau exceptionnellement

dense d’observations. Il est probable que la performance de tels systèmes d’assimilation

décroisse avec la densité d’observations disponibles (Largeron et al., 2020), ce qui limiterait

la portée d’une telle approche à un nombre très limités de régions montagneuses. Nous allons

appliquer notre système d’assimilation ensembliste au cas d’un réseau d’observations de hau-

teur de neige couvrant les Alpes et Pyrénées françaises, ainsi que l’Andorre. Ce réseau a des

densités d’observation très variables. On pourra ainsi évaluer l’apport de l’assimilation par

rapport au système opérationnel de Météo-France dans une grande diversité de situations.

Cette question sera traitée dans le Chapitre 4.
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1.1 Snow in the mountains

1.1.1 Why is snow important?

Snow is an essential component of mountainous areas worldwide. Though mountains cover

only about 12% of the Earth’s continental surfaces (excluding Antarctica) (Körner et al.,

2011), they host an above average biodiversity (Mutke and Barthlott, 2005). About 10%

of the humanity live close to mountain cryosphere (i.e. snow, glaciers, permafrost, lake

and river ice) (Hock et al., 2019), of which snow is a major component. Understanding its

spatio-temporal variability is therefore key to anticipate the influence of climate change on

these areas.

Climate

Snow plays an important role on the climate (Solomon et al., 2007) as it is one of the Earth’s

more reflective surfaces, and its cover extends up to about 14% of the Northern Hemisphere

continental surfaces in March (Pielke et al., 2004). Snow also has an impact on the carbon

balance, since low vegetation cannot grow until it melts (Pulliainen et al., 2017), and on

the soil and permafrost thermal regime due to its low thermal conductivity (Domine et al.,

2006b). Many other climatic feedbacks implying e.g. snow photochemistry and impact on

sea-ice are summarized in Domine et al. (2006b).

Biodiversity

Snow is key to many live species including mammals, birds and plants. Its insulating prop-

erties are used by lemmings and grouse to save energy during the winter (Domine et al.,

2018; Storch, 1993), and controls the thermal regime of the ground, with implications for

the vegetation (Sturm et al., 2001). For example, the snow melt-out date is key for the

onset of plant growth in the Alps (Jonas et al., 2008; Francon et al., 2020). Snow whiteness

is exploited for camouflage by many species in a predator-prey relationship (Zimova et al.,

2018).

Human activities

Snow and glaciers inspire respect, fear, and fascination to humans. It is an intrinsic cul-

tural element of many communities in mountainous areas worldwide, including the Andes,

Himalayas and the Alps (Gagné et al., 2014; Jurt et al., 2015; Frappier, 1971, pp. 320-331).

It is also a crucial part of the mountainous economy, both as a resource for recreational

activities (Xiao et al., 2015; Spandre et al., 2019) and because of its controls on pastoral
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resources (Fuhrer et al., 2014). Snow accumulates during the winter and its spring melt

supplies the river flow of downstream areas hosting about a sixth of the earth’s population

(Barnett et al., 2005). This water is key for irrigation of crops (Nüsser and Schmidt, 2017),

fisheries (McNeeley, 2017) and hydropower energy (Gaudard et al., 2014). As interannual

variability is high, anticipating the amount and timing of the melt is essential, especially in

a changing climate (Lafaysse et al., 2014).

Snow related hazards

There are several snow-related hazards, causing many human fatalities, billions of damages

worth every year (Haeberli and Whiteman, 2015), and shaping mountainous ecosystems

(Bebi et al., 2009). During the winter, snowfall events pile-up into a snowpack formed by

the successive precipitation events. The cohesion between the different layers can be poor,

and an avalanche may be triggered if the local slope is sufficient enough (Schweizer et al.,

2003). Snow-related floods are also an important threat, especially during rain-on-snow

events. Depending on several physical properties of the snowpack such as its liquid water

content, liquid water from the rain may flow faster on the snowpack than it would through

bare ground, thus causing a shorter but more intense flood peak (Pomeroy et al., 2016). Such

events can result in extreme infrastructural damage and fatalities as during the centennial

flood of the Garona river in the Pyrenees in 2013 (Fig. 1.1).

Figure 1.1: Infrastructural damages caused by the Garona river flash flood
of 2013, June 18th, in Les (Spain). (©AEAG P. Barthe)

1.1.2 Physical properties of the snowpack

A snowpack is a pile of snow, formed by accumulation of successive precipitation events,

resulting in vertically varying properties. In mid-latitude mountains, due to seasonality,

this snowpack grows under snowfall during the winter and cold season (accumulation
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period). Its fate is to melt during the spring and summer (ablation period). At intermediate

altitudes, melt can occur any time during the season (Morin et al., 2012). Sublimation

is also often a significant ablation process (Strasser et al., 2008a). If the balance between

accumulation and ablation is positive, the snowpack will survive and accumulate from year

to year, eventually forming a glacier. The key point of the evolution of a mountainous

snowpack is therefore its mass and energy budget.

Mass and energy budget

Snow is an ice matrix filled with air and potentially liquid water. The mass budget of the

snowpack includes its mass of ice and liquid water. The primary income for the mass budget

is solid precipitation. The snowpack can be soaked up by liquid precipitation, therefore

increasing its total mass. Phase changes at the surface from or to the vapor state can be

significant. Snow deposition or ablation by wind transport and gravitational processes are

significant too, but will be excluded in the following.

Under this hypothesis, the snowpack can loose mass by the three following processes: basal

runoff of liquid water, sublimation of surface ice and evaporation of surface liquid water.

Following Essery (2015), the snowpack mass variation can be formulated as:

dM

dt
= P + E + S + R (1.1)

With the following terms, counted positive when they increment the mass budget:

• M: the mass of ice and liquid water in the snowpack.

• P: the precipitation rate (liquid or solid).

• S: ice-vapor phase change flux, positive in the case of deposition (e.g. formation of

surface hoar (Hachikubo and Akitaya, 1997)), negative for sublimation.

• E: the liquid-valor phase change flux, positive in the case of condensation, negative in

the case of evaporation of surface liquid water (Bengtsson, 1980), in general negligible

compared to S.

• R: the basal runoff (negative). Liquid water percolates until the bottom of the snow-

pack where it infiltrates on the ground or flows on it. Water percolation depends on

the liquid water holding capacity of the snowpack layers, as well as the formation of

preferential flows or capillary barriers. For further details, the reader is referred to

Wever et al. (2015) and Quéno et al. (2020a).

The total energy E in the liquid and solid phase is convenient to represent the energy budget

of the snowpack as it accounts for phase change inside the snowpack. Its variation can be
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formulated as (in W):

dE

dt
= SW↓ +SW↑ +LW↓ +LW↑ +H + LvE + LsS + Hp + Hr + G (1.2)

With the following terms, (positive sign for entering fluxes):

• SW↓: Incoming shortwave (SW) radiation. The shortwave domain corresponds to the

wavelength range [300 nm, 4 µm]. SW ↓ radiation is parted into direct and diffuse

radiation. Direct radiation SWdir ↓ is proportional to the cosine angle between the

surface normal vector and the direction of the sun. Diffuse radiation SWdif↓ includes

contribution from the atmosphere and adjacent slopes, and accounts for approximately

20% of SW↓ under clear-sky conditions. SW does not penetrate much more than about

10 cm into the snowpack (Tuzet et al., 2019).

• SW↑: Outgoing shortwave radiation, SW↑= −αSW↓, with α the snow albedo. Snow

albedo is mostly affected by light absorbing impurities present in the snowpack and

snow surface microstructure (Warren, 1982).

• LW↓: Incoming longwave (LW) radiation from the thermal emission of the overlying

atmosphere, clouds, vegetation and surrounding slopes. The longwave domain is de-

fined as the domain of thermal emission [4 µm, 100 µm]. As this term increases with

the temperature and emissivity of the emitting body, it is particularly prominent for

low clouds and under the forest.

• LW ↑: Outgoing longwave radiation in the form of thermal emission from the snow

surface. Snow is an almost perfect black body, i.e. its emissivity ε is close to 11:

LW↑= −εσT 4
s (1.3)

• Heat and mass energy fluxes due to turbulent fluxes. Turbulent fluxes increase with

the temperature gradient between the snow surface and the atmosphere as well as

surface wind speed (Martin and Lejeune, 1998). H is the sensible heat flux from the

atmosphere. Latent heat fluxes (LE) are related to phase changes. They include

LvE (evaporation fluxes), with Lv the latent heat of vaporisation, LsS (sublimation

fluxes), with Ls the latent heat of sublimation. LE fluxes are proportional to the

deviation between the atmospheric specific humidity and its saturation value. The

melting/refreezing of snow doesn’t appear as E accounts for the total energy of liquid

and solid phases. However, the melting of snow reduces the amount of energy available

to warm up the snowpack. Latent heats of evaporation and sublimation are about ten

times higher than the latent heat of melt, so these phase changes result in a stronger

1In fact, snow emissivity slightly depends on snow density and microstructure though the relation is yet
not well known (Hori et al., 2006)
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cooling effect per unit of mass concerned than melt.

• Hp: The total energy advected by the precipitation.

• Hr: The energy flux lost through the runoff (total energy of the runoff), proportional

to R.

• G: ground heat flux. This heat flux generally prevents snowpack basal temperature

from decreasing below zero in alpine terrain. G is also important during early snowfall

when the soil temperature is still high.

Fig. 1.2 shows an example of the evolution of the energy budget terms along a snow

season. Net SW and LW terms are usually dominant and opposite at mid-latitudes. LW

is the major contributor to the snowpack cooling, because in general, snowpack radiative

cooling during clear sky nights takes over incoming LW radiation. The amplitude of SW

also strongly increases during the melting season.

Figure 1.2: Example of daily simulated energy fluxes (excluding G) of an
alpine seasonal snowpack (Col de Porte, 1325 m.a.s.l, French Alps), showing
the order of magnitude of the different terms. Adapted from Lafaysse et al.

(2017).

There is a high variability between the energy budgets of the different layers composing

the snowpack, as most of the terms of the energy budget only affect the surface layers or the

first upper layers. This often results in the formation of a temperature gradient, between

the bottom of the snowpack, whose temperature is in general fixed to zero due to the ground

flux G and the top, whose temperature is fixed by the energy exchanges with the atmosphere

and can be much lower. This macroscopic temperature gradient induces a significant heat

conduction through the snowpack, and increases for shallower snowpack and lower snow

thermal conductivity. It is one of the drivers of snow metamorphism.
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Snow metamorphism

A snowpack is an accumulation of snow grains deposited on the ground. Snow grains

undergo perpetual transformations, the snow metamorphism, defined as the adjustment

of local thermodynamic imbalance by sublimation or recrystallisation of ice. Snow mostly

originates from snow crystals formed in the clouds below zero degrees Celsius2. Crystal

shapes are very diverse, depending on the air temperature and vapor super-saturation (Fig.

1.3) during their growth. Super saturation quantifies the amount of water vapor above the

vapor saturation pressure at the current pressure and temperature: it is the amount of

water vapor potentially available for precipitation, in g m−3. Snow crystals often aggregate,

forming snowflakes. For a complete review of the formation of ice crystals the reader may

refer to (Libbrecht, 2005).

Figure 1.3: Morphology of the snow crystals as a function of super saturation
and temperature, takem from (Libbrecht, 2005).

Once in the snowpack, snow particles are referred to as snow grains, as their shape

and size is affected by metamorphism driven by phase changes, temperature and gravity.

Metamorphism results in a diversity grain types described in Fierz et al. (2009). There

are two types of metamorphism: wet snow metamorphism and dry snow metamorphism.

Wet snow metamorphism occurs in the presence of liquid water, and leads to the rounding

and coarsening of the snow grains. Dry snow metamorphism occurs below 0 oC under

2This classification excludes graupel, frozen precipitation particles formed by the successive accretion of
cloud droplets on an ice particle. These particles can cause snowpack instability (Reinking, 1975; Abe, 2004).
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temperature gradient. When the temperature gradient is small (about 5 K m−1 or less),

dry metamorphism is driven by the grain curvature. Stronger temperature gradients lead to

the formation of faceted crystals and depth hoar. For more details on snow metamorphism,

the reader is referred to Colbeck (1982).

As it modifies the snow microstructure, snow metamorphism affects the albedo of snow

and therefore has a significant impact on the SW radiative budget.

1.1.3 Shortwave radiative budget

In the mid-latitudes, and in a flat open terrain, the incoming shortwave radiation SW ↓

is generally the dominant term of the daily snowpack energy budget as seen in Fig. 1.2,

and especially during the ablation period. Snowpack albedo, α = SW↑
SW↓

can be seen as its

capacity to reject this amount of energy, is therefore a key parameter. In the SW spectrum,

snow albedo strongly varies with the wavelength. The reflectance is defined as the albedo

for a given wavelength. The shortwave domain can be partitioned between the near-UV-

visible range [300 nm , 4 µm ] (VIS) and the Near Infra-Red (NIR). The amount of incoming

energy, is equally parted between the VIS and NIR (Fig. 1.4). However, snow is more

reflective in the VIS part of the spectrum (Fig. 1.5), therefore the amount of absorbed

energy is higher in the IR. Note finally that SW radiation does not penetrate much into the

snowpack. Penetration depth ranges from about a few tens cm (unpolluted snow) in the

VIS to only a few millimeters in the IR (Warren, 1982; Tuzet et al., 2019). Therefore, the

absorbed SW energy is concentrated at the top of the snowpack (Brun et al., 1992).

Figure 1.4: Example of normalized solar radiation intensity at the bottom
of atmosphere (clear-sky conditions). Source: www.lmd.polytechnique.fr

www.lmd.polytechnique.fr
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Figure 1.5: Snow reflectance as a function of the wavelength, taken from
Tuzet (2019).

The impact of snow microstructure

Snow grain microstructure influences the scattering and absorption of light inside the snow-

pack (Warren, 1982). Snow specific surface area (SSA (m2 kg−1)) quantifies the area of

air-ice interface per kilogram of snow, in relation with its optical properties (Domine et al.,

2006a). The coarser the grains, the lower the SSA. Fig. 1.6 shows that a coarsening of

the snow grains (lower SSA) causes a marked drop in near-infrared (NIR) reflectance and

affects VIS reflectance to a lesser extent. This optical phenomenon leads to the so-called

"albedo feedback effect" which is crucial for the radiative budget. A positive energy budget

cause surface melt which favours wet metamorphism on the snowpack surface. This form of

metamorphism leads to a coarsening of the grains (see Sec. 1.1.2), which in turns reduces

snowpack reflectance. Finally, this albedo reduction leads to an enhanced positive energy

budget through the SW terms.

Light Absorbing Particles

As depicted on Fig. 1.7, the presence of light absorbing particles (LAP) leads to a decrease

in the visible reflectance of snow evidenced by its brown color (e.g. Fig. 1.8). This impact

can extend to the closer part of the NIR for significant LAP concentrations.

LAP include aerosols such as black carbon (BC) from anthropogenic or biomass burning,

mineral dust (dust), originating from deserts such as the Sahara, volcanic ash, as well as

microscopic algae blooming during spring (Skiles et al., 2018).

BC and dust are the main LAP types in the Alps (Di Mauro et al., 2015). These particles

are present in suspension in the air and inside precipitation particles. They can deposit on

the snow without precipitation (dry deposition) and during precipitation (wet deposition).
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Figure 1.6: Influence of SSA on snow reflectance. Source : http://

snowtartes.pythonanywhere.com

Black carbon fluxes are rather constant throughout the year, while dust deposition occurs

only during specific events, when southern fluxes bring Saharan air masses over Europe,

preferentially during the Spring (Di Mauro et al., 2019, e.g. Fig. 1.9). Only a small

fraction of the BC and dust can scavenge to the bottom of the snowpack with percolating

water (Flanner et al., 2007). As a result, most of the dust stratifies within the snowpack

(Fig. 1.10) embedded with the layer it was deposited with (wet deposition) or onto (dry

deposition), progressively becoming optically inactive due to the limited penetration depth

of SW radiation. However, melt causes the "disappearance" of the snowpack superior

layers through percolation or evaporation. This results in the re-emergence and accu-

mulation of buried LAP on the snowpack surface which increases the radiative effect of LAP.

Geometrical properties

Snowpack spectral reflectance also varies with the properties of the incoming radiation

such as the incidence angle Φ of SWdir↓ and the ratio between direct and diffuse incoming

radiation. A detailed study of these geometric processes can be found in (Wiscombe and

Warren, 1980; Dumont et al., 2017).

Without going much into details, we will note that the spectral reflectance increases with

the incidence angle of the incoming light. As a consequence, since diffuse light is equally

coming from all the hemisphere, diffuse reflectance is lower than direct reflectance for high

http://snowtartes.pythonanywhere.com
http://snowtartes.pythonanywhere.com
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Figure 1.7: Influence of LAP concentration on snow reflectance. Source :
http://snowtartes.pythonanywhere.com

Figure 1.8: Saharan dust on top of the snowpack in the Pyrenees (Pic du
Midi D’Ossau, 2018 April 21th).

direct incidence angle Φ (the sun is close to the local horizon), and vice versa when Φ gets

close to 0 (the sun direction gets close to the normal to the surface). Direct and diffuse

reflectance equals at Φ ≈ 53o (Libois, 2014).

http://snowtartes.pythonanywhere.com
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Figure 1.9: Dust aerosol optical depth (AOD) during a strong dust depo-
sition event on April 15th, 2018. Source: Barcelona Dust Forecast Center,

http://dust.aemet.es/.

Figure 1.10: Dust layer buried within the snowpack at col du Lautaret (2018,
April 5th)

http://dust.aemet.es/
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Since snow is highly reflective in the SW, it scatters a high amount of energy which

can influence surrounding targets as shown on Fig. 1.11. However, it is also significantly

non-isotropic (Dumont et al., 2010), requiring a complete knowledge of the illumination,

surface properties and topographic geometry to account for any possible re-illumination.

This phenomenon can be significant from small scales including snow surface roughness

(Larue et al., 2020) to the kilometer scale (Sirguey, 2009; Lamare et al., 2020).

Self Shadow Cast Shadows

Trees
Mixed pixels

Figure 1.11: Example of reillumination in a valley. The slope on the left
is reilluminated by the facing sunny slope. It seems brighter than the slopes
in cast shadows, which, by essence, are facing self shadowed slopes (Sirguey,

2010). (col du Lautaret, 2017, December 20th.)

1.1.4 Snow in a mountainous terrain

In the mountains, snowpack bulk properties, and a fortiori its stratigraphy, are highly

variable. Mountain topography plays an important role on several terms of the energy and

mass budgets such as SW radiation presented in previous Section 1.1.3. Indeed, the eleva-

tion, aspect and slope are fundamental local parameters. First of all, the air temperature

decreases in the free atmosphere at a rate of approximately 0.0065 K m−1 in standard

conditions (Minzner, 1977). As a consequence the elevation controls on the precipitation

phase and energy fluxes such as the sensible heat flux H and indirectly the incoming

LW ↓ which decrease with the elevation. Elevation has also indirect effects through other

atmospheric parameters. A tendency to stronger winds at higher altitude also influence the

heat fluxes. Lower vapor saturation pressure (through the temperature-elevation gradient),

influences the latent heat fluxes and leads to enhanced precipitation. The orientation and

slope affect the amount of incoming direct shortwave energy per surface unit, through the

cosine effect (presented on Sec. 1.1.2).
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To a lower extent, the topographic position relative to surrounding slopes exerts a control

on shortwave atmospheric diffuse and longwave fluxes through the sky view factor, (the

portion of visible sky), to which they are proportional. The complementary portion of the

sky view factor controls the amount of longwave and shortwave radiations received from the

surrounding slopes (see e.g. Fig.1.11 and Sec. 1.4).

Wind is also a direct cause of snowpack variability through its ability to transport snow.

Wind drift is defined as the redistribution of snow from exposed to sheltered areas, as well

as the preferential deposition of falling snow in sheltered area (Lehning et al., 2008). This

phenomenon happens at every scale between a few centimetres to the scale of a mountain

range. At small scales (below few meters) the snow surface interacts with the wind flow

by forming surface patterns such as dunes and sastrugi (Kochanski et al., 2019). At the

slope scale, (few meters-hundreds of meters), the wind drifts snow from wind-exposed

edges into local thalwegs (Vionnet et al., 2014). At the mountain scale (hundreds of

meters-kilometer), it occurs with preferential deposition of snow in the leeward slope, and

the formation of precipitation eddies (Udina et al., 2020). At the scale of the mountain

range (kilometers-hundreds of kilometers), orographic precipitation plays an important role,

with often contrasted precipitation amounts between the wind exposed and leeward slopes

of a mountain range, as exemplified by the usually strong contrast of precipitation between

the French and Spanish sides of the Pyrenees. The reader is referred to Clark et al. (2011);

Mott et al. (2018) for a complete review of wind-driven redistribution processes, including

orographic precipitation and snow-vegetation interactions. Finally, the foehn effect (Richner

and Hächler, 2013) is another example of strong contrasts in meteorological conditions with

strong temperature and humidity gradients between two sides of a mountain range (e.g.

Malardel, 2009).

To wrap things up, snowpack variability is caused by a multiplicity of factors. The

topography is the primary factor, controlling the precipitation phase, temperature, and

several energy fluxes. Snowpack variability is therefore primarily affected by the complexity

of topography. Likewise, through its ability to transport snow, the wind is a key factor of

variability in interaction with topography at every spatial scale, not to mention its influence

on sensible and convective heat fluxes H and LE. This entanglement of spatial scales makes

it a challenge to grasp snowpack variability with observations as any observation at any scale

will be affected by some variability, which will limit its representativeness.
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1.1.5 Summary

Snow is key to the Earth System and diverse human activities. Along with high shortwave

albedo and thermal insulation properties, the snowpack has a complex and potentially un-

stable stratigraphy which can result in avalanches. Snow also controls on the hydrological

regime of many watersheds worldwide. It is therefore essential to capture its spatial and

temporal variations. They are considerable at various scales. Monitoring its evolution is

therefore a challenge.

1.2 Snowpack observations

In-situ and satellite observations are useful to capture the spatial and temporal variability

of the snowpack in the mountains. This section gives an overview of the observed variables

and the techniques used to retrieve them. Our aim is to identify observations relevant to

monitor the snowpack variability over large mountainous areas.

1.2.1 Snowpack internal variables and energy fluxes

For the most part, snowpack internal variables and energy fluxes are only measurable in-situ,

which limits their potential to capture snowpack spatial variability at large scales.

Snowpack internal variables

Apart from a few exceptions, measurements of the snowpack internal variables require human

operations and cannot be automated or remotely-sensed. Snowpack stratigraphy is tradi-

tionally performed by digging a snow pit in order to exhibit a vertical section of the snow

layers. The layers can be sampled to measure parameters such as their density, snow grain

type and size, hardness, SSA, temperature, liquid water content, and thermal conductivity

(Lejeune et al., 2019). These measurements are routinely performed in ski resorts of many

countries on a daily to weekly basis. Experts use them to evaluate the snowpack stability

and monitor its thermal state, although their spatial representativeness is known to be very

limited.

Snowpack energy fluxes

Snowpack energy flux measurements are mainly used to assess the ability of snowpack

models to reliably represent snow physical processes (Morin et al., 2012). In most cases,

they are only accessible in-situ in a very reduced number of sites around the world (Ménard

et al., 2019). The radiative budget is measured by directly measuring broadband SW and

LW incoming and upcoming fluxes (e.g. Lejeune et al., 2019). Convective fluxes H and LE
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are much more difficult to assess, requiring a measurement of snow surface temperature,

wind speed and turbulence close to the snow surface, along with classical meteorological

variables such as air temperature, humidity and pressure (e.g. Martin and Lejeune, 1998).

The basal heat flux G is measured by heat flux plates positioned on the soil surface.

1.2.2 Bulk variables

Bulk and surface observation are the only variables available at large spatial and temporal

scales, since they are easily measurable and suited to remote sensing.

Height of snow

The height of snow (HS, m) defined as the vertical distance between the snow surface and

its base, is probably the most commonly observed variable (Fierz et al., 2009). This bulk

variable is of a primary interest to monitor the interactions of snow with topographic, wind

and vegetation and any transport of snow, including avalanches. However, it only is a coarse

estimate of the mass-energy budget because snow density is highly variable in time. HS

can be measured with a wide diversity of techniques. In its simplest form, reliable points

scale observations are obtained by manual measurements using a graduated snow probe or

automated ultrasonic or laser HS gauges. Given the limited representativeness of point-scale

measurements (Molotch and Bales, 2006; Grünewald and Lehning, 2015; Lejeune et al.,

2019), a particular attention is in general paid to the location of these measurements, in

order to increase their representativeness3. In general, such observations are located in areas

where wind drift is limited. The power of these approaches stands in their reliability and

simplicity. The deployment of operational manned or automated HS observation network

over large areas is common in numerous countries (Morin et al., 2020).

Alternatively, remote measurements enabling to map the HS are the best way to capture

snowpack variability. The use of LIDAR (LIght Detection And Ranging) technology

emerged in the snow community about a decade ago (Prokop, 2008) producing HS maps

of high resolution (metric or less). It was first used during measurement campaigns from

ground sensor, thus with a limited spatial extent. In recent years, several airborne (i.e.

from planes) Lidar campaigns (ALS for Airborne LaserScan) were conducted, providing

meter-scale HS maps over large areas, which became operational in the western USA with a

bi-weekly to monthly overpass (Painter et al., 2016). Finally, HS maps can also be derived

from stereoscopic imagery from airplanes (Bühler et al., 2015), drones (e.g. Harder et al.,

2020) , or agile optical satellites such as Pléiades (Marti et al., 2016). The latter method

3The representativeness of an observation is somewhat subjective (Molotch and Bales, 2006), e.g. a point
scale observation cannot be representative for wind sheltered and wind-exposed areas at the same time...
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covers areas of about 400 km2 with a metric resolution (Deschamps-Berger et al., 2020). It

requires the rotation of the satellite to acquire two or three successive along-track images of

a target (with a different viewing angle), therefore only a few targets can be monitored per

orbit). Though its pixel-accuracy ten times lower than of ALS, its spatial aggregates offer

an accuracy suitable to monitor intermediate variability (Deschamps-Berger et al., 2020;

Eberhard et al., 2020). Contrary to ALS, this technique virtually covers any location on

the globe without any additional operating cost.

Snow water equivalent

Snow water equivalent (SWE, kg m−2) is the mass of snow per unit area. SWE is the

integrated mass budget and has many ranges of use in particular for hydrological studies.

Its measurement is in general more complex than for HS. Manual measurements require

to weight a vertical snow core of a given section. Several automated measurements are

available. The so-called "snow pillows" are basically a buried scale (Serreze et al., 1999)

weighting the overlying snow. This sensor is common in northern America but suffer from

significant errors in the case of snow bridging over the scale. Other techniques using cosmic

ray or gamma emission sensors are reliable but require yearly calibrations with snow cores

(Paquet and Laval, 2006; Choquette et al., 2008; Gottardi et al., 2013). Networks of such

sensors are generally sparser than HS networks and more oriented towards the monitoring

of seasonal snow stock (i.e., higher altitudes) (e.g. Magnusson et al., 2014; Winstral et al.,

2019). As for remote sensing, radar sensors aboard satellites such as Sentinel-1 shows some

sensitivity to SWE though only for wet snow (Veyssière et al., 2019) or derived at a relatively

coarse spatial resolution of about 1 km in our context (Lievens et al., 2019). Passive C

and L band microwaves sensors such as AMSR-E are also sensitive to SWE (Durand et al.,

2009), but their resolution is too coarse as well for mountain applications (Dozier et al., 2016).

Bulk density

Bulk density (kg m−3) can be derived from co-located measurements of HS and SWE. Snow

thermal conductivity increases with its density (Yen, 1981). Bulk density is therefore in-

teresting to constrain its thermal state and in particular the snowpack ability to cool down

during clear sky nights. The spatial variability of bulk density is generally lower than other

bulk variables such as HS or SWE (e.g. Elder et al., 1998; López-Moreno et al., 2013).
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1.2.3 Surface Reflectance

Surface reflectance is closely related to the SW radiative budget which is a key term of

the energy budget (see Sec. 1.1.3). Surface information on SSA, characterizing snow

microphysical properties can be derived from reflectance spectra (Fily et al., 1999; Durand

and Margulis, 2007; Dozier et al., 2009; Painter et al., 2009; Mary et al., 2013) with

interesting applications. For example, since fresh snow has a much higher reflectance than

melt forms, the rain-snow line could be detected using reflectance observation following

precipitation events, as well as binary information on the occurrence of solid precipitation.

Snow surface metamorphism can be monitored via reflectance as well. However, because of

the low penetration depth of the SW , deep and relatively thin fresh snow can have similar

reflectance properties, making it difficult to discriminate using reflectance observations.

Reflectance is also sensitive to the presence of LAP on top of the snowpack. However, its

sensitivity is lower than for SSA, and the required measurement accuracy might be out of

reach to derive small BC concentrations (Warren, 2013). Recent studies demonstrated its

potential to monitor large dust deposition events (Dumont et al., 2020).

Though only surface properties can be derived from snow reflectance, regular acquisitions

of the reflectance along the season could yield information on the snowpack stratigraphy

(Charrois et al., 2016) and detect the re-emergence of buried dust layers during the melting

season which is critical for the timing of the melt (Tuzet et al., 2017; Dumont et al., 2020).

Reflectance can be monitored in-situ using bi-hemispherical spectrometers integrating the

incoming and outgoing radiation (Dumont et al., 2017; Picard et al., 2020). However, there

is only a handful of such sensors worldwide. Reflectance can also be retrieved from VIS/NIR

top of atmosphere (TOA) radiances measured by satellite sensors such as MODIS, VIIRS

or Sentinel-2 and 3. These sensors have various spatial resolution (10-300m) suitable to

monitor snowpack variability in relation with the topography, and daily to weekly revisit

times in the mid latitudes.

The retrieval of Reflectances from TOA radiances is not an easy task. Under clear-sky

conditions, it requires to estimate the incoming and outgoing spectral illumination for

each pixel. Incoming radiation primarily depends on the solar and atmospheric SW

radiation (see Fig. 1.4 in Sec. 1.1.3), whose intensity and spectral signature depends

on atmospheric conditions. The use of an appropriate atmospheric radiative transfer

model is therefore needed to estimate this term. Then, because snow is highly reflective,

direct and indirect (through the atmosphere) re-illumination occur, which are locally

significant as depicted in Fig. 1.11. This coupling needs to be accounted for using a

Digital Elevation Model (DEM) and terrain information (snow cover, land cover, vegetation

properties...) of sufficient accuracy. As an example, neglecting re-illumination terms
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would lead to consider that the same amount of incoming energy is received by pixels

in self and cast shadows in Fig. 1.11, while the former receives more energy. Since

the self-shadowed pixels appear more bright, it would lead to attribute them a higher

reflectance, which is not necessarily the case. The anisotropy of reflectance, and several

other geometrical phenomenon must be accounted for as well. Readers and authors are re-

ferred to Sirguey (2009); Lamare et al. (2020) for a thorough description of the methodology.

The retrieval of snow surface properties from SW sensors suffers from important spatio-

temporal gaps (De Lannoy et al., 2012). Cloud coverage drastically limits their ability since

they are opaque in this part of the spectrum. They also induce errors as they are sometimes

difficult to distinguish from snow (Gascoin et al., 2019). However, cloud-free images are

generally obtained on a weekly to bi-weekly frequency (Gascoin et al., 2015; Charrois et al.,

2016). It is also difficult to retrieve snow properties from pixels with mixed cover (snow-

vegetation or snow-rocks)(Sirguey et al., 2009; Masson et al., 2018) or illumination conditions

(shadow/non-shadow) (Sirguey, 2009). This issue is even more important at coarser reso-

lution (Lamare et al., 2020). It is finally impossible to retrieve snow properties under the

forests which represent at least 19% of the snow-covered areas in the Northern Hemisphere

(Rutter et al., 2009).

Thanks to its high contrast with other earth surfaces in the SW , the snow cover fraction

(SCF) of each pixel can be retrieved from its SW reflectances (Sirguey et al., 2009; Masson

et al., 2018). This variable is related to the HS or SWE via the snow depletion curve (e.g.

De Lannoy et al., 2012), which strongly depends on the pixel size, topography, and land cover

(Helbig et al., 2020). In the accumulation period, the SCF quickly reaches 1 for SWE above

20-40 kg m−2. During the ablation period, an hysteresis phenomenon can be evidenced (e.g.

Andreadis and Lettenmaier, 2006; Magand et al., 2014): same SWE values yield lower SCF

values than during the accumulation period. The most important property here of the SCF

is its saturation above 20-40 kg m−2: for the most part, the information content of SCF

is confined to snowfall on the ground events and during the ablation period. While it may

be informative for intermittent snowpacks (Baba et al., 2018; Alonso-Gónzalez et al., 2020),

or for reanalyses (Aalstad et al., 2018), it may be of least interest for seasonal snowpack

modelling in alpine terrain. Furthermore, it is implicitly linked with snowpack reflectance

since both are retrieved jointly by spectral unmixing methods (Masson et al., 2018).



1.3. Snowpack modelling and ensemble modelling 45

1.2.4 Summary

Available observations of bulk and surface variables offer important information on the snow-

pack variability in mountainous areas. HS in-situ observations are widespread and opera-

tional but they have a limited spatial representativeness. Reflectance retrievals from satel-

lite seem promising as they offer observations of the surface snow properties on a weekly

to bi-weekly basis over whole mountain ranges. However, they suffer from important spatio

temporal gaps.

1.3 Snowpack modelling and ensemble modelling

Snowpack modelling appears as a way to fill these gaps and more comprehensively assess the

spatio-temporal variability of the snowpack without any restriction on spatial and temporal

coverage.

1.3.1 On snowpack modelling and spatial discretization

Physically based snowpack models primarily aim at solving the energy and mass balance

of the snowpack column (Anderson, 1976), as formulated in Sec. 1.1.2 (Eqs. 1.1& 1.2).

As there are strong gradients between the bottom and the top of the snowpack, several

numerical layers are necessary to properly solve the heat transfer (Essery et al., 2016).

In particular, thermal gradients are higher close to the surface and the bottom, requiring

a refined layering (Vionnet et al., 2012). Snowpack models used for stability assessment

also require to account for the snow properties of the physical layers by an appropriate

layering, leading to the use of more than 50 numerical layers in a lagrangian formulation,

which implies a variable number of layers (Brun et al., 1992; Lehning et al., 1999). In

addition, a large diversity of physical processes can be simulated or ignored: snowpack

model complexity is therefore defined as the amount of processes, interactions and feedbacks

that are accounted for in the model (Menard et al., 2020).

In the following, we will focus on Crocus (Brun et al., 1989; Vionnet et al., 2012) is

the operational snowpack model for avalanche hazard forecasting at Météo-France (Morin

et al., 2020), and was used in this work. It can be defined as a detailed snowpack model.

Crocus is one-dimensional and includes up to 50 numerical layers. Each layer is represented

by several several physical parameters such as the enthalpy (from which are derived the

temperature and liquid water content), density, snow water equivalent, grain size and shape,

etc. (see. Fig. 1.12). Crocus represents several physical processes such as heat conduction,

liquid water percolation, snow metamorphism, phase change and snow compaction. Vertical
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vapor fluxes are not explicitly represented. As a 1-D snow model, it can not account for

horizontal fluxes (e.g. liquid water (Wever et al., 2016)) explicitly. Crocus is embedded

within SURFEX surface platform (Masson et al., 2013) and therefore coupled with the land

surface model ISBA (Noilhan and Planton, 1989). A detailed presentation of Crocus and

its implementation in SURFEX can be found in (Vionnet et al., 2012). TARTES (Libois

et al., 2013), a physically-based snowpack shortwave radiative transfer scheme was recently

implemented within Crocus. Together with a realistic representation of the deposition and

stratification of LAP within the snowpack (Tuzet et al., 2017, see Fig. 1.12), it allows for a

better representation of the snowpack shortwave energy budget.

Figure 1.12: Main physical processes and variables model simulated by Cro-
cus, including the shortwave radiative transfer (right part). Taken from Tuzet

et al. (2017).

In parallel to model complexity (see above), snowpack models need to account for the

complexity of the topography over large areas e.g. for avalanche forecasting or in order to

monitor water resources. The semi-distributed approach is the simplest way to represent

topographic-induced variability by running snowpack simulations in discrete topographic

classes of given elevation, aspect and slope (Durand et al., 1999, see Fig. 1.13), which

are the main drivers of energy balance and snowpack variability as described in Sec 1.1.

This approach is operational for avalanche forecasting at Météo-France, and has been

adopted for many hydrological applications ever since Beven and Kirkby (1979), (e.g.

Lafaysse et al., 2011; Xie et al., 2012; Ajami et al., 2016). However this approach is purely

conceptual, since it neglects local effects. Reasonably accounting for it requires to go down
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to at least 250 m horizontal resolution (Fiddes and Gruber, 2012; Winstral et al., 2014;

Vionnet et al., 2019; Baba et al., 2019)4. Other approaches use an irregular meshing which

adapts to terrain ruggedness (Marsh et al., 2020) or statistical methods (Fiddes et al., 2019).

Figure 1.13: Representation of the semi-distributed geometry with the flat
(a), 20o slope (b) and 40o slope (c) classes.

1.3.2 Modelling chains and uncertainties

Snowpack models require meteorological input, basal heat flux and topographic information

in order to compute the different terms of the energy budget and mass transfer. Indeed,

strong thermal and convective coupling occur between the snow surface and the atmospheric

boundary layer (e.g. Arduini et al., 2019), and to a lower extent with the ground. To

date explicit coupling between the snowpack and atmosphere models over large areas has

mostly been done for NWP and climate applications (e.g. Dutra et al., 2012; Niwano et al.,

2018). It is more unusual and generally localised when snow cover modelling is the main

focus (e.g. Brun et al., 2011; Vionnet et al., 2014). Indeed, in such a situation (hydrology,

avalanche hazard forecasting etc.), snow cover models are rather forced by pre-established

estimates of meteorological conditions because (1) raw high-resolution NWP outputs are

still less accurate than those estimates (e.g. Quéno et al., 2016) (2) it allows using more

computationally expensive snow cover schemes. The snowpack models are sometimes

coupled with a ground model (e.g. Decharme et al., 2016), and its outputs can be used for

avalanche hazard assessment (Morin et al., 2020) or hydrological studies (e.g. Le Moigne

et al., 2020).

In such modelling chains, snowpack models inherit from errors in the meteorological

forcings which are particularly prominent in a mountainous terrain and account for about

half of the modelling error (Raleigh et al., 2015; Günther et al., 2019). The downscaling of

atmospheric models into resolutions suitable for snowpack modelling was also identified as

4A similar trend towards distributed modelling is observed in hydrology (e.g. Vincendon et al., 2010)
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a key knowledge gap by the IPCC SROCC (Special Report on the Ocean and Cryophere in

a Changing Climate by the Intergovenmental Panel on Climate Change, Hock et al., 2019).

Snowpack models also suffer from uncertainties partly inherited from this uncoupled mod-

elling structure. Indeed, snow-atmosphere interactions are parametrized in a wide variety

of ways (e.g. for turbulent fluxes) with significant uncertainties, and without the capability

to explicitly account for snow-atmosphere feedbacks. This is a major source of model error

(Slater et al., 2001; Menard et al., 2020). According to these studies, SW albedo modelling

is the other major source of modelling error. Other internal processes such as fresh snow

density, compaction of snow, snow metamorphism, and the liquid water holding capacity are

also important factors of uncertainty (Essery et al., 2013; Lafaysse et al., 2017). Reducing

modelling errors requires to identify the best model parameterization and structure,

which is not an easy task (and could even be a dead-end as more complex models do not

necessarily yield better performance) as concluded by the recent model intercomparison

projects (Krinner et al., 2018; Menard et al., 2020). An example of potential improvements

is the recent implementation of fully-physical modelling of snow albedo (Tuzet et al.,

2017; Skiles and Painter, 2019). However, the use of such formulations is not widespread

as they require detailed and accurate LAP forcings from chemistry-transport models

(Josse et al., 2004; Nabat et al., 2015; Horowitz et al., 2020), which are actually badly

constrained in mountainous areas and over snow surfaces. Indeed, LAP forcing on snow ra-

diative budget has been identified as a key knowledge gap in the SROCC (Hock et al., 2019).

Another aspect of snowpack modelling error and uncertainties lies in the difficult repre-

sentation of gravitational redistribution of snow and wind drift. Gravitational redistribution

is accounted for in a simplified manner in some models (Lehning et al., 2006; Strasser et al.,

2008b). Pragmatically, it can be excluded by considering areas below 30o of slope which are

rarely affected by such processes (Schweizer et al., 2003). Wind drift is a more widespread

phenomenon (see Sec. 1.1). Although a number of modelling strategies of various complexity

have been proposed (e.g. Liston et al., 2007; Vionnet et al., 2017, 2020), large scale applica-

tions commonly ignore this process. Therefore, they are not representative for wind-exposed

areas. This is mostly due to the prohibitive cost of downscaling atmospheric wind fields into

the local topography and account for mass transfers between grid points, which is only an

achievable goal at small scales (Lehning et al., 2006).

1.3.3 Ensemble modelling

As presented in previous Sec. 1.3.2, snowpack models suffer from uncertainties and errors

which may be difficult to mitigate in the near future. These errors also vary with time and

space: depending on the situation, simulations may be accurate, or not. A quantification of



1.3. Snowpack modelling and ensemble modelling 49

uncertainties is necessary to provide model output users with an appropriate and objective

level of confidence.

Principles of ensemble modelling

Ensemble modelling offers a way to issue probabilistic forecasts. The principle is to consider

that since the available information (the initial state, the meteorological forecasts and the

model) is approximate, it is impossible to determine the future state with certainty. Each

slight modification of these conditions may, or may not result in significant variations of the

future state. Ensemble modelling proposes to run different simulations, or members, each

one with different settings and initial conditions exploring the likely ranges for the uncertain

conditions. The members will then evolve on different trajectories. At a given forecast date,

the distribution of the members can be analysed. This results in a probabilistic forecast: the

most likely states are the ones where the density of members is the highest. The dispersion,

or spread of the members, informs on the uncertainty of the simulation. The higher the

dispersion, the higher the uncertainty of the simulation.

From an ensemble of predictions, one can derive the probability of an event to occur (e.g.

for the snow depth to exceed a certain threshold) by calculating the proportion of members

above this threshold. An ensemble is reliable if its issued probability are accurate regardless

the probability level. As it is a statistical property, it needs to be verified over a large set of

samples and a diversity of conditions (Atger, 1999; Bellier et al., 2017; Nousu et al., 2019).

Reliability is equivalent to the verification data being statistically indistinguishable from

the ensemble members. A necessary but insufficient condition for reliability is that the

ensemble spread equals the average error of the ensemble (Fortin et al., 2015).

Another important property is ensemble resolution. Consider an ensemble issuing the clima-

tology of a variable for a given day: this ensemble is reliable, since its distribution matches

the distribution of the observations. However, its skill is limited: every year, it will issue the

same forecast, regardless of the specific situation of the day. The resolution is the ability of

a forecast to issue different forecasts for different situations (i.e. its ability to discriminate

the different situations in different probability levels) (Atger, 1999). For a reliable ensem-

ble, an ensemble resolution is equivalent to its spread: e.g. climatology has a poor resolution.

Brief history of ensemble modelling towards snow modelling

Ensemble forecasting first appeared in the NWP community as a way to account for

the chaotic nature of the atmospheric system (Palmer, 1993; Tracton and Kalnay, 1993).
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They are nowadays operationally used by national weather prediction centers worldwide

(Bannister, 2017). Hydrologic and earth surface systems, including snow, generally exhibit

"dampening" dynamics which make them less prone to chaotic error growth (Reichle

and Koster, 2003; Reichle, 2008). Therefore, modelling uncertainties are inherited from

uncertain meteorological conditions and model parametrization and structure.

Probably for this reason, ensemble modelling came a few years later into the hydrological

modelling community (e.g. Clark and Hay, 2004; Schaake et al., 2007). This field is

especially affected by meteorological errors (e.g. consider the impact that precipitation

timing, localisation and intensity has on downstream river flow), and uncertainties in

land surface initial conditions. Ensembles are now of standard use in hydrology (Cloke

and Pappenberger, 2009), and usually combine meteorological ensembles with ensembles

of hydrological models (e.g. Clark et al., 2008; Velázquez et al., 2011). Snow is also

sensitive to meteorological uncertainty, justifying the use of meteorological ensembles

as input (Slater and Clark, 2006). Ensembles of snowpack models emerged more re-

cently from the acknowledgement that many uncertain physical parametrization lead to

poor model behaviour (Slater et al., 2001; Rutter et al., 2009), and that quantifying it

was necessary (Essery et al., 2013; Essery, 2015; Lafaysse et al., 2017; Günther et al., 2019). .

Generation of ensembles

In the NWP community, uncertainties in initial conditions probably exhibit the highest

error growth rates, and originally, ensemble were generated by initializing deterministic

models with an ensemble of initial conditions (Molteni et al., 1996). Later on, ensemble of

models were generated by either stochastic perturbations (Leutbecher et al., 2017), or using

multiphysics (Descamps et al., 2015). Stochastic perturbations have been first applied to

state variables (e.g. Stochastically Perturbed Parametrisation Tendencies, SPPT Buizza

et al., 1999) and to simulate unrepresented subgrid processes (Stochastic Kinetic Energy

Backscatter, SKEB Palmer et al., 2009). These methods are easily tunable (i.e. amplitude,

and spatio-temporal correlation of perturbations) and provide a convenient control on the

ensemble spread, for example. One of the major limitations of SPPT is the introduction

of physical imbalances, while SKEB might be less physically sound in the context of an

increasing model resolution (Leutbecher et al., 2017).

Stochastic perturbations on uncertain parameters of the physical processes (SPP, Ollinaho

et al., 2017) may be more consistent, and resolves imbalance issues. However, it only

offers an indirect control on the ensemble behaviour therefore requiring more development

effort to obtain the desired ensemble properties (e.g. spread). In a similar approach,

multiphysics build ensembles by factorially combining different but fixed physical schemes
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for several uncertain processes (e.g. Descamps et al., 2015). The different physical

schemes are taken from the literature. This approach ensures an easy reproducibility of

simulations (i.e. no stochastics), and can be used to explore some of the model structure

errors (e.g. Clark et al., 2008; Günther et al., 2019). It is in general easy to implement

(provided that several parametrisations exist in the literature), and ensemble properties

can be calibrated by an adequate selection of ensemble configurations (e.g. Lafaysse et al.,

2017). However, it may induce biases and violate the equiprobability property (i.e. in a

proper ensemble, all ensemble members should be equiprobable, members should not ex-

hibit systematic biases), as the several available parametrisations are not necessarily centred.

State of the art in the snowpack modelling community

Ensemble methods are much less advanced in the snowpack modelling community. Little is

known about the sensitivity of seasonal snow modelling to errors in initial conditions, except

that their influence is expected to diminish with the lead time (e.g. Gichamo and Tarboton,

2019). It likely depends on the initialisation date, and is probably more prominent at the

beginning of the season (e.g. initial conditions of the soil thermal state). It seems most

likely not to be the dominant source of snowpack modelling error (e.g. Rutter et al., 2009,

see also Sec. 1.3.2). For this reason, so far, efforts have concentrated on using ensemble of

meteorological forcings combined (or not) with ensembles of snowpack models.

Regarding meteorological input for snow models, many studies used perturbations of mete-

orological forcings (e.g. Magnusson et al., 2014; Raleigh et al., 2015; Charrois et al., 2016;

Larue et al., 2018; Aalstad et al., 2018; Winstral et al., 2019; Smyth et al., 2019), Only a

few studies used physically based meteorological ensembles such as the PEARP (Descamps

et al., 2015) or the EFS (Molteni et al., 1996), which keep the consistency between the me-

teorological variables (e.g. Vernay et al., 2015; Nousu et al., 2019). However, meteorological

ensembles seem to suffer from biases and under-dispersion in mountainous terrain (Nousu

et al., 2019), which makes them impractical. As regards to snowpack models, perturbations

have been used in several low complexity models with success (e.g. Aalstad et al., 2018;

Smyth et al., 2019), probably because they offer an easy calibration of the meteorological

uncertainty and systematic errors (see upper paragraph). The multiphysics approach, capi-

talising on a dense literature on the most uncertain snow processes (see e.g. Fig. 1.14), has

been mostly used for detailed snowpack models (Essery et al., 2013; Lafaysse et al., 2017;

Magnusson et al., 2017; Sandells et al., 2017; Pritchard et al., 2020; Dumont et al., 2020;

Tuzet et al., 2020). Lastly, meteorological and snowpack models ensemble have rarely been

combined, despite both equally contribute to snowpack modelling errors (Günther et al.,
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2019).

Figure 1.14: Physical options used in the multiphysics system ESCROC.
Taken from Lafaysse et al. (2017).

1.3.4 Summary

Snowpack modelling potentially offers a comprehensive estimation of snowpack variability

in the mountains, but suffers from important errors. Modelling chains use outputs from me-

teorological models to force snowpack models. Errors in such modelling chains are primarily

inherited from uncertain meteorological forcings and snowpack modelling errors. Ensembles

are used to account for these sources of uncertainties by using stochastic perturbations or

multiphysics approaches. Meteorological and snowpack model ensembles have rarely been

combined for snowpack modelling purposes yet it is essential in order to fully acknowledge

for snowpack modelling errors.
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1.4 Data assimilation of snowpack observations in the

mountains

Previous sections showed a need for information on the spatial and temporal variability of

the snowpack (Sec. 1.1.1), which cannot be fulfilled by observations alone given their spatio-

temporal gaps (Sec. 1.2). Snowpack models can fill this gap and provide full stratigraphic

informations, but suffer from large errors (Sec. 1.3), potentially estimated using ensemble

methods. In this section, we consider data assimilation as a way to combine observations

and models into a better estimate of the snowpack, at the light of the specificities of the

mountain snowpack, snowpack observations and models.

1.4.1 Introduction to data assimilation

Data assimilation consists in updating the modelled state of a system based on observations.

Models provide a physical and dynamical interpretation of the evolution of the system, often

called "background" which is imperfect. Observations give insights on some variables of

this system at given dates, with an associated uncertainty. Data assimilation consists in

finding an "optimum estimate" of the system in the model space, based on the modelled and

observed values and their associated uncertainties. The result, called an "analysis", inherits

the comprehensiveness, physical consistency and dynamics from the model, but gets closer

to the reality thanks to the observations. In general, data assimilation also provides an

estimate of the uncertainty of such analysis.

Introductory example

A simple example from Lahoz and Menard (2010) is a nice introduction for two key concepts

of data assimilation. Consider a background value xb of uncertainty σb taken from a model,

and an observation yo of error σo. First, it can be shown in a Gaussian framework that the

Best Linear Unbiased Estimate (BLUE Henderson, 1975) xa is the barycentre of the two

values weighted by the inverse of their respective uncertainties: the more we trust the model

xb respective to the observation, the closer the analysis will be to xb. Second, the associated

variance uncertainty of xa (a for analysis) can be derived as:

σa
2 =

1
1

σ2

b

+ 1
σ2

o

(1.4)

Therefore, σa is smaller than σb and σo, i.e. in general the analysis is more accurate than

the background and the observations. In other words, even if the background is more

accurate than observations, the analysis will benefit from both thanks to data assimilation:
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data assimilation actually makes the best of models and observations.

Data assimilation strategies and goals

The primary aim of data assimilation is to reduce modelling errors by feeding models

with external information on the system. As such, data assimilations strategies have been

targeting the major sources of model uncertainty (see. Sec1.3.2): uncertain initial conditions

and modelling errors. Consistently, data assimilation has first been used to better constrain

initial conditions of the atmosphere for human experts or atmospherical models to predict

its evolution, e.g. deriving a surface pressure-temperature field from spurious observations

and a rough initial background (Cressman, 1959). In the 1980’s, along with the progress of

the modelling capacities and the emergence of satellite observations, state-of-the-art data

assimilation turned into a dynamic problem, i.e. estimating the trajectory of a system along

time, constrained by observation timeseries, by regularly updating the modelled state with

the analyses.

Most applications of data assimilation are real-time: observations must be assimilated

as time goes by. The filtering approaches such as the Kalman filter (Ghil et al., 1981),

Ensemble Kalman Filter (EnKF) (Evensen, 2003) and the Particle Filter (Gordon et al.,

1993; Van Leeuwen, 2009) assimilate new observations date-by-date, in a sequence of

analyses. Other approaches such as the 4D-Variational approach (Talagrand and Courtier,

1987) and smoothers (e.g. Cosme et al., 2012; Evensen and Van Leeuwen, 2000) adjust the

model trajectory over a temporal window of several observation dates, and are usually the

most complex. In contrast with real time data assimilation, reanalyses are retrospective

assimilations performed once all observations are available, either over a season (e.g.

Margulis et al., 2015) or to reconstruct climate series (e.g. Hersbach et al., 2020).

As shown in the initial example, the relative importance of the observation and model errors

is key for the data assimilation problem (e.g. Kalnay, 2003).These errors must be specified

or dynamically estimated by any assimilation method. Determining observation errors is

generally a challenge (e.g. Desroziers et al., 2005; Geer and Bauer, 2011), principally in the

case of snow because of the representativeness errors (see Sec. 1.2). The most practical way

of estimating modelling errors is to use ensembles (see Sec. 1.3.3). This is one of the main

advantages of ensemble methods such as the EnKF or the PF. Furthermore, ensembles

methods such as the EnKF have been used as companions to estimate background errors of

4D-Var methods in several NWP services (Bonavita et al., 2012; Clayton et al., 2013). For

a complete overview of data assimilation strategies in the geosciences, the user is referred to

the books of Lahoz and Menard (2010); Blayo et al. (2014) and the review Carrassi et al.
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(2018).

Data assimilation serves several goals beyond the dynamical estimation of a sytem’s

state. Statistical analysis of the difference between the analysis xa and the initial model

state xb, called the increment, enable modellers to identify systematic errors in the models

and disentangle equifinality issues (Klinker and Sardeshmukh, 1992; Rodwell and Palmer,

2007; Durand and Margulis, 2008; Wong et al., 2020). Data assimilation can also contribute

to a better estimation of model parameters (e.g. Ruiz et al., 2013; Kantas et al., 2015; Piazzi

et al., 2018).

1.4.2 Data assimilation into snowpack models

In the last fifteen years, the trend towards snow cover data assimilation has been mostly

driven by progresses in the retrieval of snow properties from satellite observations and the

emergence of ensemble-based data assimilation (e.g. Andreadis and Lettenmaier, 2006;

Durand and Margulis, 2007; Leisenring and Moradkhani, 2011; De Lannoy et al., 2012).

Several reviews recently addressed this subject (Helmert et al., 2018; Largeron et al.,

2020). Bayesian sequential methods (i.e. EnKF, PF) are suited to real-time applications

such as avalanche hazard forecasting. The use of the EnKF is widespread within the

snow hydrology community from points scale to large scale applications (e.g. Slater and

Clark, 2006; De Lannoy et al., 2012; Piazzi et al., 2019). However, the EnKF is not well

adapted to the lagrangian formulation (i.e. variable state vector dimension) used in detailed

snowpack models, contrary to the Particle Filter with Sequential Importance Resampling

(PF) (Magnusson et al., 2017). In addition, contrary to the EnKF, the PF preserves the

physical consistency between the model state variables without effort (Charrois et al., 2016;

Magnusson et al., 2017; Largeron et al., 2020). This last point is essential for avalanche

hazard forecasting as even small, vertically-confined artificial gradients (e.g. temperature)

could locally impact snow metamorphism (see. Sec. 1.1.2), leading to a change in the

modelled stratigraphy and stability, not to mention direct changes in the stratigraphy due

to the removal or addition of numerical layers.

For these reasons, the PF has been increasingly used for snow cover data assimilation

in the last years. Charrois et al. (2016) demonstrated the potential of the assimilation

of shortwave reflectance in point scale simulations with the PF, while Magnusson et al.

(2017) assimilated in-situ observations of the height of snow (HS) thereby improving the

modelled snow water equivalent (SWE). Larue et al. (2018) successfully assimilated passive

microwave observation in the case of a network of snow stations, exhibiting a strong added
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value on snow bulk properties. Piazzi et al. (2018) were the first to attempt to assimilate

snowpack variables of different nature (e.g. surface temperature, albedo and bulk variables)

at a site in the French Alps.

Spatialised applications include e.g. the assimilation of airborne microwave brightness

temperatures (Kim et al., 2019). However, this application can be seen as a collection of

in-situ problems as points were treated independently and the ensemble was not corrected

where observations were not available. Several spatialised applications assimilating snow

cover fraction included some corrections for unobserved areas by aggregating to the total

snow cover area (e.g Thirel et al., 2013) or using a sophisticated score accounting for

pixel-wise differences (Baba et al., 2018). However, Batch Smoothing techniques (Durand

et al., 2008; Margulis et al., 2015; Aalstad et al., 2018; Alonso-Gónzalez et al., 2020) seem

to make the best of snow cover fraction which is the most informative for reanalyses and

during the ablation period (Dozier et al., 2016).

1.4.3 The Particle Filter

Notations

The following notations will be used for the formulation of the PF sequential data assimilation

problem, adapted from Arulampalam et al. (2002). The studied system is represented within

a model by the state vector x. Because the model is imperfect, x is only an approximation

of the true state of the state vector xt: the aim of data assimilation is to bring x closer to xt.

Before data assimilation, the model produces a first-guess, or prior, or background, denoted

xb. By comparing xb to a vector of observations y, the data assimilation algorithm produces

an analysis xa, which hopefully will be closer to xt than xb.

The model M is used to propagate x between analysis dates tk, which correspond to the

dates when observations are available:

xk = M(xk−1) + εk (1.5)

Where εk is the modelling error.

Data assimilation algorithms are based on the comparison between modelled and observed

values which must be expressed in the same units. Observed and modelled variables may

be different, e.g. satellite TOA VIS/NIR radiances and modelled snowpack reflectance. To

bridge such a gap, it is natural to bring the model into the observed space. This is a forward

operation into a space of smaller or equal dimension. This operation is done by means of

an observation operator, h, which comes with its own imperfections µk (i.e. operator errors

and model representativeness errors) combined with sensor and retrieval errors from the
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observation acquisition in itself ηk
5)6:

yk = h(xt
k) + µk + ηk (1.6)

Several additional quantities are useful for data assimilation algorithms or to evaluate

them.

• R is the error covariance matrix of observations accounting for all the errors in the

observation process (Eq. 1.6). On its diagonal lie the error variances of each variable

and non diagonal terms are non-null when errors are not independent (i.e their errors

are correlated). R is often badly constrained in geosciences, even its diagonal terms

(Reichle and Koster, 2003), and in particular when it comes to snow in a mountainous

terrain (e.g. Magnusson et al., 2014; Charrois et al., 2016). Therefore a common

assumption is to consider R as constant along time and diagonal. Several approaches

even consider its terms as a tuning parameter for the assimilation algorithm (e.g.

Reichle and Koster, 2003; Larue et al., 2018).

• P b is the background covariance matrix quantifying the error statistics of xb − xt, in

other words, the model errors before assimilation. In ensemble methods such as the

EnKF, P b is approximated by the covariance matrix of the ensemble members, which

is a convenient way to dynamically estimate this quantity. The ensemble covariance

structures also allow to propagate information between variables or locations.

• D = y − h(xb) is the innovation (or departure) vector, quantifying the difference

between the observations and the model before assimilation.

• Res = y − h(xa) is the residual.

• Inc = xa − xb is the increment, assessing the impact of the analysis on all the modelled

variables.

The PF equations

The Particle Filter is a sequential Bayesian ensemble data assimilation algorithm (Gordon

et al., 1993). Its aim is to determine the probability density function of a system at time

tk given a sequence of observations (yo
1, ..., yk). This quantity is the posterior distribution

p(xk|yo
1:k). The modelling process is assumed to be Markov: only present conditions are

necessary to determine the future. As a result, observations can be assimilated sequentially.

The assimilation sequence alternates propagation steps with analysis steps. The propagation

5representativeness errors can also be attributed to observations depending on the situation, without loss
of generality.

6These errors would be much higher if the inverse operation was conducted into the model space, and
would lead to a problem of higher dimension, explaining why this is not done in practice.
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step uses the model to compute the transition density from tk−1 to tk as p(xk|xk−1), pro-

ducing the prior density p(xk|yo
1:k−1). Using the marginalisation rule, it can be formulated

as:

p(xk|yo
1:k−1) =

∫

p(xk|xk−1)p(xk−1|yo
1:k−1)dxk−1 (1.7)

Where p(xk−1|yo
1:k−1) is the analysis at tk−1, i.e. the pdf of x at tk−1 given the observations

until tk−1 and prior information. The following analysis expresses the posterior density

p(xk|yo
1:k−1) using Bayes’ rule and the independence of observations:

p(xk|yo
1:k) =

p(yo
k|xk, yo

1:k−1)p(xk|yo
1:k−1)

p(yo
k|yo

k−1)
∝ p(yo

k|xk)p(xk|yo
1:k−1) (1.8)

In this term, the prior density is multiplied by the likelihood p(yo
k|xk), and a normalisation

factor. The likelihood can be derived from Eq. 1.6, provided that µk and ηk are known.

In general, errors are assumed Gaussian, and the likelihood is expressed using the error

covariance matrix R:

p(yo
k|xk) ∝ exp

(

−
1
2
[yo

k − h(xk)]
T R−1[yo

k − h(xk)]
)

(1.9)

The prior and posterior densities can not be fully known. Instead, in the Particle Filter,

they are approximated by a set of Ne random states x1, ...xNe , called particles. The prior is

formulated as:

p(xk|yo
1:k−1) =

Ne
∑

i=1

ωi
k,priorδ(xk − xi

k), with
Ne
∑

i=1

ωi
k,prior = 1 (1.10)

And similarly the posterior writes:

p(xk|yo
1:k) =

Ne
∑

i=1

ωi
k,posteriorδ(xk − xi

k), with
Ne
∑

i=1

ωi
k,posterior = 1 (1.11)

In these formulations, the particles xi
k are attributed a weight wi

k which quantifies their

relative importance: the higher the weight of a particle, the higher the importance of the

value xi
k in the approximation of the true state pdf.

The idea of the Particle Filter is to update the weights at each analysis, thus integrating the

information from the new observation yo
k. Accounting for Eqs. 1.10 and 1.11, the analysis
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Eq. 1.8 becomes:

p(xi
k|yo

1:k) ∝ p(yo
k|xk)

Ne
∑

i=1

ωi
k,priorδ(xk − xi

k)

∝
Ne
∑

i=1

p(yo
k|xi

k)ω
i
k,priorδ(xk − xi

k)

(1.12)

From which we derive by identification inside Eq. 1.11 that the analysis step simply consists

in multiplying each particle xi
k by the associated likelihood p(yo

k|xi
k) and then normalizing:

ωi
k,posterior =

ωi
k,priorp(yo

k|xi
k)

∑Ne

i=1 ωi
k,priorp(yo

k|xi
k)

(1.13)
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Figure 1.15: Schematic of the Particle Filter sequence whereby the pdf is
propagated into time using the transition density p(xk|xk−1) and the analysis

is done by computing the likelihoods for yo

k
.

Degeneracy of the PF

The PF suffers from a major issue, the phenomenon of degeneracy: usually, after several

analyses, only a few particles have non-negligible weights. Indeed, Doucet (1998) demon-

strated that the variance of the weights can only increase with time. As a result, most of the

members do not significantly contribute to the estimation of the state pdf: they are useless.

A solution to this issue is to perform a resampling of the particles after the analysis step,

the so-called PF with Sequential Importance Resampling (PF-SIR). This method rejects the

particles with the lower weights, and replicates the others based on their relative weights.

Several resampling algorithm exists, the most common being from Kitagawa (1996).

Nevertheless, the degeneracy problem also appears with the PF-SIR when a too large

number of observations is assimilated simultaneously, an issue called "the curse of dimen-

sionality". Bengtsson et al. (2008); Snyder et al. (2008) showed that in order to avoid
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degeneracy, the required number of particles increases exponentially with the number of

independent observations. This issue is a severe drawback for the use of the PF-SIR in large

scale geophysical problems (Snyder et al., 2015; Stigter et al., 2017).

Several solutions have been proposed to solve the curse of dimensionality. The proposal

density (van Leeuwen, 2010) is one of the most sophisticated approaches yet it hasn’t

proved to be completely efficient to tackle this issue (Snyder et al., 2015). Larue et al.

(2018) applied an inflation factor to observation errors, thus reducing the variance of the

weights, obtaining good results. Inspired on the EnKF localisation (e.g. Houtekamer and

Mitchell, 2001), localisation of the PF (Penny and Miyoshi, 2016; Poterjoy, 2016; Farchi and

Bocquet, 2018) is a pragmatic solution aiming at reducing the number of simultaneously

assimilated observations. It lies on the assumption that past a certain distance, locations

can be considered as independent (Farchi and Bocquet, 2018). Independent analyses are

performed on each point, only considering observations in their neighbourhood. One of

the drawbacks of this approach is the lack of spatial consistency of the analyses, as each

point receives a different analysis. These discontinuities can be minimized using optimal

transport theory or other techniques (Farchi and Bocquet, 2018). For a complete review

of the different implementations of the PF, the reader is referred to Van Leeuwen et al. (2019).

Propagation of information with the PF

As we presented in Sec. 1.2, snow observations suffer from spatial gaps. Spatial interpolation

of observations (e.g. Brasnett, 1999; Slater and Clark, 2006) or particle filter weights (Cantet

et al., 2019) have been used to fill these gaps but these methods might be too simplistic in a

complex terrain (Dozier et al., 2016). In order to avoid discrepancies between the observed

and the non-observed areas, we must find a way to propagate information from observations

with the PF. In the EnKF (Evensen, 1994), information is propagated by the ensemble

background covariance (e.g. Hamill et al., 2001; Reichle and Koster, 2003). Similarly, in the

PF, information is implicitly propagated by the conditional pdf: information on one model

state variable (i.e. variable or model point) can be used to constrain the marginal density

for another model state variable.

Let’s take an example with two points p1 and p2 where we want to predict he height of

snow (HS) with a 160-member ensemble E = {x1, ..., x160} = {(x1
1, x1

2), ..., (x160
1 , x160

2 )}, (the

components of the members correspond to the predicted values at p1 and p2, respectively).

The left panel of Fig. 1.16 shows the HS values predicted by E over p1 and p2 at a given

date t. Each dot corresponds to one member. From the density of ensemble members (black

contours), we can deduce a statistical link between the predicted HS at p1 and p2, e.g.

in general, the members predicting the lowest HS at p1 also predict the lowest HS at p2.
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Now assume that we have one observation yo
1 ± σo available at p1, and no observation at

p2. The ensemble seems to underestimate the HS at p1, compared to this observation. The

"information" conveyed by the observation is represented by the mauve rectangle: only the

values at p1 are constrained. As denoted by the spread of marginal densities of the prior

(blue lines on the upper and right parts of this panel for p1 and p2, respectively), the prior

uncertainties are much higher than the observation error (spread of the observation pdf in

mauve on the upper part).

The PF analysis is based on the observation yo
1 and the predicted values at the same location:

p(x1, x2|yo
1). This analysis consists in a resampling of the prior particles, represented on the

central panel (green circles). The posterior marginal density of x1 (green, upper panel) is

narrower than the prior (blue) and closer to the observed values7. The analysis also impacts

x2 posterior marginal density. It is narrower than the prior and shifted towards higher HS

values.

Assume now that an observation y2 for p2, taken at time t too, is available later on. It

can be used to verify the PF analysis at x2. The result is shown on the right panel. The

observation, located at (y1, y2) is denoted by a star, and its pdf is plotted in dashed line

on the right. The marginal density is closer to the observation than the prior on x2 in this

case. The PF analysis, using predicted values for x1 and observations y1, has brought the

ensemble closer to the verification data y2: information has been successfully transferred

from x1 to x2, by implicitly exploiting the statistical relations between the predicted values

in these locations. Finally, we see intuitively that the sharpness of the posterior pdf, depends

of course on the observation error, but also on the original bivariate pdf p(x1, x2). Indeed, if

no relation had existed between the prior estimations for x1 and x2, the marginal posterior

pdf for x2 would be almost equal to the prior’s: no information could be inferred. Conversely,

if the prior bivariate pdf were wrong (imagine that x2 decreases when x1 increases, but that

the observation is the same), then the analysis would be likely to degrade the ensemble

performance at p2.

What about snow in a complex terrain?

This example showed us how information is implicitly propagated by the PF (regardless of

the quality of the outcome). No particular effort seems necessary to constrain unobserved

areas. However, when trying to find a global PF analysis over a large domain, the PF

degeneracy will sooner or later arise as the domain size increases (and concomitantly

the number of observations). The problem of information propagation is indeed strongly

connected to the curse of dimensionality.

Just as localisation is likely the best way to avoid PF degeneracy (Farchi and Bocquet,

7Similarly to the introductory example in Sec. 1.4.1.
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Figure 1.16: PF analysis on HS predicted by a 160-member ensemble on
2009, December 3rd, considering two neighbouring stations p1 and p2 in the
Pyrenees. An observation (yo

1, yo
2); σ0 = 0.1m is available. yo

1 value is assimi-
lated and the analysis at p2 is validated with yo

2 value. Left panel shows the
prior state (blue, density contours in black), the assimilated observation (ma-
genta rectangle for yo

1 ± σo) and their marginal densities (same colours). The
central panel shows the PF posterior p(x1, x2|yo

1), with its marginal densities
(green). The right panel adds the verification data (magenta star at (yo

1, yo
2)

and dashed marginal density on the right). Note that x-scale and y-scale are
not equal. See text for more details. Adapted from Blayo et al. (2014, pp.

85-86).

2018), it has also strong links with the propagation of information. In the example of the

EnKF, localisation is often based on covariance criteria (e.g. Houtekamer and Mitchell,

2001): meaningful observations come from correlated areas. Because no useful information

can be inferred from observation coming from decorrelated areas, these areas must be

excluded from the local analysis, thereby making the analysis more affordable8. Domain

localisation, by excluding observation past a certain radius, can be seen as an implicit

covariance localisation, because it assumes that points are uncorrelated past a certain

distance. This hypothesis is reasonable in most NWP or land surface problems it has been

used for.

It might not be the case for snow at the modelling scales we are considering (i.e. beyond

a few hundreds of meters of resolution). As ensemble modelling is relatively new to the

snowpack community, little is known about the spatial correlation of snowpack variables

at such scales in a complex terrain. Though coupling processes exist (e.g. wind drift,

re-illumination, gravitational redistribution, see Sec. 1.1.4), in many cases, they are not the

dominant factor and locations can be reasonably well assumed independent (e.g Hanzer

8Another major reason for EnKF localisation is the presence of spurious correlations due to the finite
ensemble size, which would induce information propagation where there shouldn’t physically be (Houtekamer
and Mitchell, 2001), but this "technical" consideration doesn’t affect our reasoning.
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et al., 2016). Under this hypothesis, spatial correlations are inherited from the external

drivers of the snowpack. Precipitation fields exhibit spatial correlations, which should be

transferred to snowpack variables. Similarly, the elevation smoothly controls on e.g. the

precipitation phase and air temperature. On the contrary, several parameters of the topog-

raphy which affect the energy budget, namely the orientation and slope, exhibit poor spatial

correlation. As a result, we can not exclude that close points on the Northern and Southern

sides of a ridge might be less correlated than two points of same orientation but separated

by a large distance. Depending on the actual correlation fields, domain localisation could

therefore be physically unsound, and lead to poor performance. The idea would therefore

to base localisation on correlation criteria explicitly, rather than using a distance criteria.

In other words, we could ask the ensemble what are the observed locations in which the

snowpack looks similar to the local conditions, and base an analysis on these observa-

tions, rather than imposing the algorithm to take all the observations within a certain radius.

Whether such an approach is actually necessary (i.e. at the considered resolution, snow-

pack correlation fields are not primarily controlled by the distance), how should it be imple-

mented, and what would be the result, are open questions.

1.4.4 Summary

Data assimilation offers a way to insert information content from observations into model

simulations. Originating from the Numerical Weather Prediction community, it appeared

only recently into the snowpack modelling community. Among a wealth of different ap-

proaches, the Particle Filter seems to fit detailed snowpack models such as Crocus well.

However, it suffers from the issue of the degeneracy, when ingesting large numbers of obser-

vations. Localisation, whereby observations are only used in their vicinity is a convenient

solution to this issue. In the mountains, the ability of the PF to implicitly exploit ensemble

correlation patterns could be used to propagate information into unobserved areas.



64 Chapter 1. Snowpack observations, modelling and data assimilation

1.5 Knowledge gaps

Snowpack variability is imperfectly captured by snowpack models, due to errors in the mete-

orological input, uncertain representation of physical processes and unresolved spatial scales.

Satellite retrievals of snow reflectance provide a wealth of information on snow surface proper-

ties, with an intermediate to high resolution, and a daily to weekly revisit time. Information

from such products could be leveraged by means of data assimilation into spatialised snow-

pack models. Similarly, information from in-situ observations of the height of snow could

be used to correct snowpack simulations despite their limited representativeness. Since both

type of observations suffer from spatial and temporal gaps, it is crucial to investigate whether

information from such observations can be propagated from observed to unobserved areas.

We therefore identified the following open questions:

• Can we use observations of snowpack reflectance from satellites to better

constrain snowpack modelling over mountainous areas?

• Can we propagate information on the snowpack state from observed areas

to unobserved areas with data assimilation?

• To what extent can we use in-situ observations of HS to improve snowpack

simulations in their neighborhood?

1.6 Objectives

The aim of this thesis is to assimilate space-borne reflectance and in-situ HS observations

in view of improving the representation of snowpack variability by snowpack models, and

the associated errors and uncertainties. Capitalising on the operational snowpack modelling

chain from Météo-France, which is applied in a semi-distributed geometry, we defined the

following objectives:

• Build an ensemble version of the operational chain accounting for the major sources

of snowpack modelling uncertainty.

• Evaluate the potential for assimilation of reflectance products retrieved from MODIS

and Sentinel-2 observations by comparing the two entities with in situ observations

and simulations over a semi-distributed domain.

• Develop a Particle Filter variant in this ensemble modelling framework able to

assimilate a large number of observations simultaneously, and investigate ways of

propagating information across topographic conditions.
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• Evaluate the potential of such approach to leverage the information content of in-situ

HS observations over large mountainous areas.

This manuscript is organised as follows:

In chapter 2, ensemble simulations are compared with reflectances retrieved from space-

borne MODIS and Sentinel-2 observations as well as in-situ observations over two contrasted

snow seasons. Satellite products are aggregated into the modelling semi-distributed geome-

try. This comparison shows that despite a good agreement with the temporal variations of

the ensemble, MODIS observations are negatively biased compared to in-situ observations,

while the ensemble outputs are compatible with those in-situ observations of VIS/NIR re-

flectance. This bias is preventing from assimilating such observations. Band ratios seem less

biased, and we subsequently try to assimilate it in an idealised setting, with limited success.

We speculate that their information content is lower than the raw products. Furthermore,

we show that observations of reflectance are not reliable in shadows, steep slopes, mixed

terrain and forests.

In chapter 3, we address the issue of observation scarcity by developing CrocO, an ensemble

data assimilation system suited to propagate information from snowpack observations in a

mountainous terrain. Several innovative versions of the PF are implemented within CrocO.

This system is tested in an idealised setting showing good potential for partial observations

of HS and reflectance to correct simulations across a topographic conditions.

In Chapter 4, we finally evaluate the potential for in-situ HS observations across the Alps

and Pyrenees to improve nearby simulations of the snowpack with CrocO. Results show that

these observations yield precious improvements in areas where the pre-existing modelling

error is the highest.

In the last Chapter 5, we summarize our main results, address the open questions we iden-

tified, and suggest avenues to further improve the modelling of snowpack variability in the

mountains by means of data assimilation.
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2.1 Extended abstract

Space-borne shortwave observations contain precious information on the snowpack variabil-

ity over large mountainous areas (Dozier et al., 2016). Snowpack shortwave reflectances,

retrieved from sensors such as MODIS or Sentinel-2, are sensitive to snowpack surface

properties such as the specific Surface Area (SSA, (m2 kg−1) or the light absorbing particles

content (LAP, (g g−1
snow)) (e.g. Durand and Margulis, 2006; Mary et al., 2013; Dumont

et al., 2020, and Fig. 2 of the article). An observation operator for reflectances (Libois

et al., 2013) has recently been implemented within Crocus, a detailed snowpack model. It

makes it possible to directly compare observed and modelled reflectances. The potential for

assimilation of reflectances within Crocus has been demonstrated (Charrois et al., 2016),

yet in an idealised setting (synthetic observations), at the local scale, and without explicitly

accounting for the LAP influence on the snowpack shortwave radiative transfer (Tuzet

et al., 2017). Our aim is to address these limitations.

The study presented in Sec. 2.2 assesses the potential for assimilation of MODIS and

Sentinel-2 reflectances into ensemble snowpack simulations performed in a semi-distributed

geometry identical to the operational application of Crocus (based on topographic classes).

This ensemble modelling system accounts for meteorological and snowpack modelling

uncertainties (Fig. 4). It combines an ensemble of meteorological forcings (Charrois et al.,

2016) including LAP deposition fluxes from MOCAGE chemistry-transport model (Josse

et al., 2004), with a multiphysics ensemble snowpack model (Lafaysse et al., 2017) explicitly

accounting for the presence of LAP in the snowpack (Tuzet et al., 2017).

The study takes place in the Grandes-Rousses an area of approximately 500 km2 in the

Central French Alps (Fig. 1), over snow seasons 2013-2014 and 2016-2017. Automated

in-situ reflectance measurements were available at the Col du Lautaret (2058 m) for the

last season (Tuzet et al., 2020). MODImLab algorithm (Sirguey, 2009) was used to retrieve

snowpack surface reflectances and snow cover information from MODIS top of atmosphere

radiances into a 250 m resolution. Sentinel-2 surface reflectances, retrieved with MAJA

processor (Hagolle et al., 2017) were downloaded at 10 to 20 m resolution. In this Chapter,

we will refer to these retrievals simply as MODIS reflectances and Sentinel-2 reflectances

for the sake of brevity. Both were aggregated into the semi-distributed geometry (Figs. 5

and 6).

The significant level of spatial noise in the raw reflectance products (not shown), seemed

successfully filtered by the topographic aggregation (Fig. 7). However, any valuable

information on natural variability inside the topographic classes is lost in the process.

Ensemble simulations seemed well compatible with in-situ observations (Fig. 9), although

they do not account for intraclass variability either.

We showed that the variations of Sentinel-2 reflectance observations with the aspect did not
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match those of MODIS and the ensemble (Fig. 7). Their amplitude seems too strong and

opposite to expectations (i.e. lower reflectance for lower local zenith angle, e.g. Dumont

et al., 2010). MAJA retrieval algorithm, which was not specifically designed for snow

surfaces, is a likely cause of this issue.

Then, MODIS observations are strongly biased with respect to the ensemble and in-situ

observations (Figs. 8, 9 and 10). However, strong temporal correlations between the

ensemble and MODIS timeseries were evidenced in a wide diversity of classes (Fig. 11)

showing that they might have compatible information contents.

The bias of MODIS observation make them impossible to directly assimilate. We evidenced

that ratios of MODIS reflectances were not biased with respect to the ensemble (Figs

12-15). Moreover, these variables exhibited the same level of correlation with the ensemble

than raw reflectances.

The potential for assimilation of band ratios was explored in Sec. 2.3 with a twin

experiment setup (Charrois et al., 2016) at the col du Lautaret, on winter 2016-2017.

An open-loop ensemble run (i.e. without assimilation) was performed, from which three

members were extracted, corresponding to different quantiles of SWE in the open-loop (Fig.

2.1) . Investigations were performed on the optimal parameters for the ensemble setup and

the value of band ratios observation errors (Fig. 2.2). Band ratios and raw reflectances

from the selected members were assimilated with a Particle Filter. The performance of the

runs assimilating band ratios was compared with the open-loop and the runs assimilating

reflectances (Fig. 2.3).

Results show that the band ratios seem to convey less information than the raw reflectances,

with only about 10-15% of CRPS improvement compared to the open-loop in the best case,

against about 50% (best cases) for the raw reflectances. Assimilation performance seem

rather unstable, potentially due to badly specified observation errors causing PF degeneracy.

This issue will be further investiated in (Revuelto et al., 2021), and an avenue against PF

degeneracy will be proposed in next Chap. 3).

To conclude, this study was the first one to perform ensemble snowpack simulations

accounting for meteorological and snowpack modelling uncertainties in a spatialised setting.

Simulation outputs seemed to well represent modelling errors of reflectance and snow depth at

the Col du Lautaret. The aggregation of satellite reflectances into the modelling geometry

reduces their level of noise. MODIS observations seem consistent with the ensemble in

a wide diversity of topographic classes. However, they are not available in the shadows,

steep slopes and forests. This stresses the need for a data assimilation algorithm able to

propagate information from the observed classes into these locations. Moreover, MODIS
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observations suffer from a significant bias which prevents from assimilating it without effort.

Several ratios of reflectance are not biased but our attempt to assimilate these variables

suggests that they do not provide as much information as the raw reflectances. Therefore,

improving the topographic corrections of reflectance retrievals is a major prerequisite for

their assimilation.

2.2 Towards the assimilation of satellite reflectance

into semi-distributed ensemble snowpack simula-

tions

Citation:

Cluzet, B., Revuelto, J., Lafaysse, M., Tuzet, F., Cosme, E., Picard, G., Arnaud, G. &

Dumont, M. (2020). Towards the assimilation of satellite reflectance into semi-distributed

ensemble snowpack simulations. Cold Regions Science and Technology, 170, 102918.
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A B S T R A C T

Uncertainties of snowpack models and of their meteorological forcings limit their use by avalanche hazard
forecasters, or for glaciological and hydrological studies. The spatialized simulations currently available for
avalanche hazard forecasting are only assimilating sparse meteorological observations. As suggested by recent
studies, their forecasting skills could be significantly improved by assimilating satellite data such as snow re-
flectances from satellites in the visible and the near-infrared spectra. Indeed, these data can help constrain the
microstructural properties of surface snow and light absorbing impurities content, which in turn affect the
surface energy and mass budgets. This paper investigates the prerequisites of satellite data assimilation into a
detailed snowpack model. An ensemble version of Météo-France operational snowpack forecasting system
(named S2M) was built for this study. This operational system runs on topographic classes instead of grid points,
so-called ‘semi-distributed’ approach. Each class corresponds to one of the 23 mountain massifs of the French
Alps (about 1000 km2 each), an altitudinal range (by step of 300m) and aspect (by step of 45°). We assess the
feasability of satellite data assimilation in such a semi-distributed geometry. Ensemble simulations are compared
with satellite observations from MODIS and Sentinel-2, and with in-situ reflectance observations. The study
focuses on the 2013–2014 and 2016–2017 winters in the Grandes-Rousses massif. Substantial Pearson R2 cor-
relations (0.75–0.90) of MODIS observations with simulations are found over the domain. This suggests that
assimilating it could have an impact on the spatialized snowpack forecasting system. However, observations
contain significant biases (0.1–0.2 in reflectance) which prevent their direct assimilation. MODIS spectral band
ratios seem to be much less biased. This may open the way to an operational assimilation of MODIS reflectances
into the Météo-France snowpack modelling system.

1. Introduction

The avalanche forecasting services of some countries use a chain
composed of meteorological forcings, coming from either a Numerical
Weather Prediction model (NWP) or observations, and a detailed
multilayer snowpack model such as Crocus (Vionnet et al. 2012) or
SNOWPACK (Lehning et al. 2002). Both meteorological forcings and
snowpack modelling induce errors and uncertainties in the simulations
(Essery et al. 2013; Vernay et al. 2015; Raleigh et al. 2015; Günther
et al. 2019). These errors are considerably limiting the use of snowpack
models by avalanche hazard forecasters (Morin et al., 2019). The re-
presentativeness of simulations is also limited in complex mountain
terrain (Fiddes and Gruber 2012). In addition, most of these snowpack
modelling chains do not operationally assimilate any available

information on the snowpack properties (either in-situ or remotely-
sensed) (Helmert et al. 2018). There are several reasons for that: (1)
snowpack in-situ observations are sparse and lack representativeness
(2) satellite observations retrieval is challenging (Nolin 2011; Helmert
et al. 2018), (3) preserving state variable consistency within detailed
snowpack models, which is a key point for avalanche forecasting, re-
quires sophisticated assimilation algorithms (Magnusson et al. 2017).
As a consequence, the errors often accumulate along the snow season
leading to increasingly poor model performance and utility for ava-
lanche hazard forecasting and other operational applications.

Data assimilation systems using ensemble approaches is the best
way to reduce snowpack modelling errors (Charrois et al. 2016; Larue
et al. 2018; Piazzi et al. 2018; Winstral et al. 2019). The Particle Filter
(PF) ensemble assimilation algorithm seems to be especially well suited
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to reduce detailed snowpack modelling errors (Magnusson et al. 2017).
Indeed, ensembles enable to quantify the uncertainties of (1) meteor-
ological forcings, using physically based ensembles (Vernay et al. 2015)
or statistical perturbations (Charrois et al. 2016; Winstral et al. 2019),
and (2) snowpack modelling, using multiphysical systems (Essery 2015;
Lafaysse et al. 2017). Charrois et al. (2016) did the first application of a
PF within a detailed snowpack model, but only at one specific location
and their ensemble only described the meteorological uncertainty, not
model uncertainty. They were followed by Magnusson et al. (2017) and
Larue et al. (2018). Recently, Piazzi et al. (2018) and Smyth et al.
(2019) applied the PF to a combination of meteorological and model
ensembles, but with a less complex model and at the local scale as well.
In parallel, spatialized application of PF has been done in several stu-
dies (Thirel et al. 2013; Baba et al. 2018), but with deterministic and
low complexity snow models, not suited for avalanche hazard fore-
casting. This paper fills a gap by implementing a combination of a
meteorological ensemble and a multiphysical system of detailed snow
models in a spatialized context.

Daily moderate-resolution observations (250 to 500m) in the visible
(VIS) and near infra-red (NIR) spectrum from the MODerate Resolution
Imaging Spectroradiometer (MODIS) are suitable to monitor the
snowpack properties (Hall et al. 2002). Sentinel-2 (S2) has a coarser
revisit time (5 days) but captures much finer spatial scales (10–20m).
From MODIS and S2 spectral Top Of Atmosphere (TOA) radiance pro-
ducts, it is possible to retrieve the snowpack extent as a Snow Cover
Fraction by pixel (SCF) and Bottom of Atmosphere (BOA) reflectances
which requires to account for the complexity of the radiative transfer in
mountainous area (Richter 1998; Sirguey 2009). Many studies focus on
the assimilation of SCF, showing a strong impact of assimilation in
hydrological models (De Lannoy et al. 2012; Thirel et al. 2013; Stigter
et al. 2017; Aalstad et al. 2018; Baba et al. 2018). However, SCF is
expected to be of less interest for detailed snowpack modelling in alpine
terrain, because the information content is limited to the snow line
(Andreadis and Lettenmaier 2006; Toure et al. 2018). Meanwhile, it is
expected for the BOA reflectances to carry useful information on the
temporal and spatial variability of the snowpack surface properties such
as Light Absorbing Particles concentration (LAP, [kg kgsnow

−1]) and
snow microstructure (quantified by the Specific Surface Area, SSA,
[m2kg−1]) (Dozier et al. 2009; Kokhanovsky et al. 2018). Indeed, these
variables drive the shortwave (SW) radiation absorption of the snow-
pack, and thus carry crucial information on the snow surface energy
budget (Skiles et al. 2018; Mauro et al. 2019). Moreover, monitoring
the surface snow microstructure can help detect precipitation (solid and

liquid) and melting events, while frequent observations of surface LAP
contents can enable to constrain LAP vertical layering within the
snowpack. In line with this, Charrois et al. (2016) showed that assim-
ilating satellite reflectances could help reduce Snow Water Equivalent
(SWE, [kg m−2]) modelling uncertainties by up to 45%.

The most detailed snow models are also able to compute re-
flectances from the snowpack properties, through the use of a detailed
radiative transfer (Libois et al. 2015; Skiles and Painter 2019) and the
explicit evolution of SSA (Carmagnola et al. 2013) and LAP (Tuzet et al.
2017). Such radiative transfer models play the role of observation op-
erators, computing observation-like variables from the model state
variables. However, modelling geometries often differ from the dis-
tributed geometry of satellite retrievals (Mary et al. 2013). For instance,
Météo-France multilayer snowpack model Crocus is operationally ap-
plied on several topographical classes (by 300m elevation bands, for 8
different aspects and 3 different slopes, so-called “semi-distributed”
geometry) inside so-called” massif” regions of about 1000 km2 (Durand
et al. 1999; Lafaysse et al. 2013). This semi-distributed framework, with
around 200 topographical classes, was proven to be sufficient to re-
present the main features of snowpack variability with topography
compared to fully distributed simulations at 25 to 250m resolution
(Fiddes and Gruber 2012; Revuelto et al. 2018). However, the feasi-
bility of the assimilation of satellite reflectances in Crocus semi-dis-
tributed model using the PF ensemble data assimilation algorithm, still
needs to be assessed.

The main objective of this paper is to assess the potential for semi-
distributed assimilation of satellite observations of snowpack re-
flectances into ensemble snowpack simulations. For that purpose, we
present extended comparisons of openloop simulations (e.g. without
assimilation) with satellite observations from MODIS and S2 aggregated
in this geometry. Section 2 presents the data and the modelling fra-
mework, while Section 3 introduces the aggregation method and de-
fines the points of comparison from the assimilation perspective. Then
Section 4 presents the comparison results, which are discussed in
Section 5.

2. Data and model

2.1. Case study

This study focuses on two snow seasons (2013–2014 and
2016–2017) in the Grandes-Rousses (see Fig. 1). The area of about
500 km2 is located in the Central French Alps, and is characterized by a

Fig. 1. Map of the study area of the Grandes-Rousses (red),
located in the central French Alps. Lautaret field site (dia-
mond) and satellite retrieval tiles (boxes) are also indicated,
together with the limits of other SAFRAN massifs (black).
Source: Shuttle Radar Topography Mission (SRTM), resolu-
tion: 90m. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of
this article.)
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wide elevation range from the bottom of Romanche valley (about
700m a.s.l.) to the top of Aiguilles d'Arve (3514m a.s.l.). This specific
massif was chosen because it encompasses the Col du Lautaret
(2058m a.s.l.), where field campaigns have been carried out since
winter 2016–2017 close to an automatic weather station (Tuzet et al.
2019).

The two snow seasons have been selected because they show con-
trasted snow conditions. 2013–2014 is characterized by above average
snow depths, with frequent snowfall events and two major dust de-
position events (end of February, end of March) (Dumont et al. 2017; Di
Mauro et al. 2015). 2016–2017 was a warm winter, without significant
snowfall between late November and beginning of January, and early
melting in spring. In addition, several minor dust deposition events
occurred after the end of February according to MOCAGE outputs.

2.2. Digital Elevation Model (DEM) and landcover

2.2.1. DEM
Digital Elevation Models (DEM) of the study area are used here to

retrieve satellite data and to perform a topographical aggregation of
observations into the model semi-distributed geometry. For that pur-
pose, DEM BD Alti®1 (IGN25) from the French Geographical Institute
(Institut National de l'information Géographique et forestière, IGN) with
native 25m resolution was used in this study at different scales: 125m
for the retrieval of MODIS images (IGN125) (see Section 2.3.1) and
250m (IGN250) for the topographical aggregation. In addition, a dif-
ferent DEM from Shuttle Radar Topography Mission (SRTM, Farr et al.
(2007)) with 90m resolution (SRTM90) is employed in the retrieval of
S2 data (see Section 2.3.2).

2.2.2. Land Cover
CORINE Land Cover database2 was used to filter the land cover

types of the region. Only land cover types 321 (grassland), 322
(moorland), 332 (bare rocks), 333 (sparse vegetation) and 335 (glaciers
and perennial snow) were considered valid, hence excluding forests,
urbanized area, and water bodies from this study since both modelling
and satellite retrieval are difficult in such areas (Gascoin et al. 2019).

2.3. Snow observations

2.3.1. MODIS observations
MODIS top of atmosphere radiance in the first seven spectral bands

are available at 250 to 500m spatial resolution depending on the
channel (see. Table 1). As depicted in Fig. 2 and Table 1, reflectance in
visible bands (1,3,4) is mostly affected by the impurities content in
snow (BC and dust) whereas it depends mostly on SSA in the near-
infrared spectral bands (2,5,6,7) (Dozier et al. 2009).

We extracted and post-processed these data in a 36×41 km2 region
(23,616 pixels of 250m resolution, see Fig. 1) including the Grandes-
Rousses and Col du Lautaret field site during 2013–2014 and
2016–2017 snow seasons with MODImLab retrieval algorithm. In such
context of complex terrain, MODImLab retrieval algorithm (Sirguey
2009) was shown to outperform other products in many studies
(Dumont et al. 2012; Charrois et al. 2013). Indeed, MODImLab ac-
counts for atmospherical radiative transfer, direct and diffuse con-
tribution, multiple topographical reflection, terrain shading and snow
reflectance anisotropy (see Fig. 3).

For mixed pixels, MODImLab's spectral unmixing algorithm com-
putes the reflectance of the snow fraction of the pixel together with a
Snow Cover Fraction (SCF). For all the pixels, resulting product is the
bi-hemispherical reflectance (accounting in particular for snow

Bidirectional Refletance Density Function (BRDF), (Dumont et al.
2011)), with 250m resolution in all bands. MODImLab provides addi-
tional masks for shadows (self and cast, see Fig. 3) and clouds. For both
snow seasons, dates with good geometrical acquisition properties
(Sensor Zenithal Angle (SZA)≤ 30°), and clear sky were selected (see
Table A.1 in Appendix) in order to ensure a maximal accuracy, fol-
lowing Sirguey et al. (2016) and Charrois et al. (2016).

2.3.2. Sentinel-2 observations
S2 is an ESA-Copernicus satellite program operational since 2016,

carrying a multi-spectral high resolution (10–20m) VIS/NIR sensor
with several bands coinciding with MODIS wavelengths (see Table 1
and Fig. 2). Sentinel-2 ground flat bi-hemispherical reflectance pro-
ducts (product FRE, assuming a Lambertian surface) are retrieved by
the MAJA processor (Hagolle et al. 2017), which is similar to MOD-
ImLab. Snow masks are retrieved by Let It Snow algorithm3 and dis-
tributed by Theia Land data center4 (Gascoin et al. 2019). Acquisition is
done close to nadir, with SZA≤ 10∘. Seven clear sky dates were selected
during the 2016–2017 snow season (see Table A.1 in Appendix).

2.3.3. In-situ observations
Autosolalb is a high accuracy instrument measuring snow bi-hemi-

spherical reflectance in the VIS/NIR spectrum (200–1100 nm, 3 nm
resolution) including MODIS bands 1–4 (Dumont et al. 2017). In-situ
Autosolalb observations of snowpack bi-hemispherical reflectance were
acquired at Col du Lautaret field site (see Fig. 1 for location) during
2016–2017 winter. The acquisition time step is 12min and acquisition
for 2016–2017 winter started on 2017, February 16th. For a given
observation time (see Table A.1 in Appendix), observation was com-
puted as the mean of all available measurements within +30/−30min
and corrected for local slope effects as in Dumont et al. (2017).

2.4. Model

In S2M (SAFRAN-SURFEX/ISBA/Crocus-MEPRA), the Meteo-France
operational modelling system of the snowpack, meteorological forcings
from SAFRAN analysis (Durand et al. 1993) are used as inputs to the
coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus
(Vionnet et al. 2012). Ensemble versions for these two components
were used here.

2.4.1. Ensemble of meteorological forcings
In SAFRAN, a meteorological guess from the NWP model ARPEGE is

adjusted with weather observations within each massif on the semi-
distributed geometry. Here, in order to represent the uncertainties of
this analysis, an ensemble of 35 meteorological forcings was generated
by stochastic perturbations on all the meteorological variables of the
reference SAFRAN analysis for the Grandes-Rousses. Following Charrois
et al. (2016), the magnitude of perturbations was adjusted by a local
assessment of SAFRAN errors. SAFRAN does not provide impurities
deposition fluxes. Therefore, LAP wet and dry deposition fluxes for BC
and dust were extrapolated from MOCAGE chemistry-transport model
(Josse et al. 2004) at Lautaret field site (see Fig. 1). For LAP fluxes,
Tuzet et al. (2017) showed that the order of magnitude were badly
captured by ALADIN-Climate chemistry-transport model (Nabat et al.
2015), while the timing of events was well captured. Similar behaviour
was found with MOCAGE, with an over estimation of BC fluxes in
particular. As a consequence, each of the 4 LAP fluxes variables, for
each of the 35 members, was multiplied by a constant random factor
along the forcing time period, following a lognormal law (μ=0.01,

1 http://professionnels.ign.fr/bdalti
2 https://www.data.gouv.fr/fr/datasets/corine-land-cover-occupation-des-

sols-en-france/

3 http://tully.ups-tlse.fr/grizonnet/let-it-snow/blob/master/doc/tex/ATBD_
CES-Neige.pdf

4 CNES.; Gascoin, S.; Grizonnet, M.; Hagolle, O.; Salgues, G. Theia Snow
collection, 2017
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σ=10) for BC, and (μ=1, σ=10) for dust.

2.4.2. Ensemble of snow models
ESCROC (Lafaysse et al. 2017) is the multiphysical ensemble version

of SURFEX/ISBA/Crocus handling 7774 different model configurations.
For this study, the last developments of the radiative transfer model
TARTES and LAP handling in Crocus were mandatory to properly
model the snowpack reflectance (T17 option of radiative transfer, Tuzet
et al. (2017)), which were not included in Lafaysse et al. (2017). An
ensemble of 1944 members using T17 option, so-called “E1tartes” was
built for this study, including all the physical options described by
Lafaysse et al. (2017) except for options of solar radiation absorption
scheme.

2.4.3. Model chain
The ensemble modelling chain setup is summarized in Fig. 4. At the

beginning of a simulation, 35 model configurations are randomly
drawn from E1tartes. Each one is associated with a perturbed forcing
file to perform the simulation for the whole year, totalling 35 different

Table 1

MODIS considered spectral band properties together with the closest matching Sentinel-2 band.

Modis ID /S2 ID B3/B2 B4/B3 B1/B4 B2/B8A B5 B6/B11 B7/B12

Central wavelength (nm) 469/497 555/560 645/665 858.5/865 1240 1640/1614 2130/2202
Bandwidth (nm) 20/100 20/45 50/40 35/33 20 24/143 50/242
Resol. at nadir (m) 500/10 500/10 250/10 250/20 500 500/20 500
Spectral domain VIS VIS VIS VIS/NIR NIR IR IR
Sensitivity to LAP ++ ++ ++ +
Sensitivity to SSA + + + ++ +++ ++ ++
Penetration depth (m) Up to 10-20 cm A few cm A few cm A few cm mm mm mm

Fig. 2. Computation of snow diffuse reflectances using TARTES for varying soot concentrations (SSA=40 m2kg−1) (1) and varying SSA (1), for 1m of
300 kgm−3300.^-3 density uniform snowpack, together with MODIS and S2 spectral bands.
Source: http://snowtartes.pythonanywhere.com

Fig. 3. Example of the complexity of the retrieval of reflectance affected by
shadows, trees, and mixed snow covers in a complex terrain. (Bertrand Cluzet,
Col du Lautaret, December 20th 2017).

Fig. 4. Setup of the ensemble modelling chain.
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snowpack simulations.

3. Methods

3.1. Topographic aggregation

An aggregation process is used to adapt the observations to the
model semi-distributed geometry with the aim of assimilation. Another
added value of the aggregation is to reduce random observation errors
and average out features that are not accounted for in the model (Hyer
et al. 2011).

3.1.1. DEM and topographical classification
In our modelling framework, a topographical class Ci is described by

a triplet (ei,ai, si) where the elevation ei∈ [600,900,…,3600], the as-
pect ai∈ [0,45,90, ...315] (in degrees, clockwise from North), and the
slope si∈ [20,40] (in degrees). Flat classes are described by a triplet
(ei, − ,0). In our case, there is a total of 187 different topographical
classes. For each pixel p, a triplet (e,a,s) is computed from the IGN250
DEM (see Section 2.2.1) and thus is attributed to a topographical class.
The classification rule is described as follows for tilted classes (Eq. (1))
and for flat classes (Eq. (2)):
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Note that this classification process excludes pixels steeper than 50°
were both modelling and remote sensing are unsound.

3.1.2. MODIS aggregation
An algorithm is used to aggregate MODIS distributed observations

into semi-distributed observations in order to compare it with model
outputs. In this process, a particular attention is paid to the validity and
spatial representativeness of the observations, as described in Fig. 5.
Regarding the validity, pixels with clouds, self/cast shadows, invalid
CORINE land covers (see Section 2.2.2) as well as pixel lying outside the
Grandes-Rousses are filtered out (A label in Fig. 5). Then for reflectance
only, pixels with Snow Cover Fraction SCFpix inferior to 0.85, are dis-
carded (B), since MODImLab reflectance product is less accurate for
mixed pixels (Mary et al. 2013). The product (B) is referred to as”

distributed reflectance”.
Finally, reflectance and SCF are aggregated into semi-distributed

products by taking the median value within each class. In order to
ensure the spatial representativeness of the aggregated observations,
classes where the number of valid pixels is below ten and having less
than 10% of pixels with reflectance observations are filtered out in this
process (C and D). For the same reason, classes where the average Snow
Cover Fraction SCFclass is inferior to 0.85 are masked for reflectance in a
final step (E).

3.1.3. Sentinel-2 aggregation
S2 images were aggregated to the semi-distributed geometry in a

similar process as for MODIS (see Section 3.1.2), as described in Fig. 6.
In a first step, a validity masking is performed on Theia L2B Snow Mask
using Theia L2A Clouds and Geophysical masks (A). Then, we produce
the distributed S2 product (B) by classifying using the IGN250 DEM and
discarding non-snow pixels. The aggregated SCF value (D) was here
computed as the ratio between snowy and valid populations, when the
valid population was above 10 pixels and 10 % of the total population
(as described in the previous paragraph). Finally, aggregated SCF was
used to filter the semi-distributed reflectance (D) as in Section 3.1.2.

3.2. Assessing the feasibility of data assimilation

Data assimilation algorithms generally require that systematical
bias between the ensemble and the observations is negligible for a
proper functioning (Dee and Da Silva 1998). In addition, for ensemble
data assimilation such as the PF, the observation should usually lie
within the ensemble envelope, otherwise the algorithm is likely to
collapse (Charrois et al. 2016). Rank diagrams are commonly used in
the ensemble forecasting community to check for both issues by com-
puting the histogram of the position of the observation within the en-
semble for all available dates and places (Hamill 2001). Furthermore,
apart from these considerations, correlations between ensemble and
observations timeseries can help quantify the information content from
observation and its potential for assimilation (Reichle et al. 2004). If
timeseries are weakly correlated, this means that it is likely that ob-
servations carry substantial information valuable for the ensemble, but
that data assimilation of such different datasets will be a difficult task.

In order to assess the potential of applying assimilation algorithms
to our spatialized ensemble simulation, a thorough comparison of ob-
served and openloop (i.e. whithout assimilation) simulated reflectances
is carried out here: (1) We assess the consistency of the spatial and
temporal variations of the ensemble and observations based on two

Fig. 5. Flowchart of the conversion of MODImLab products (purple) to semi-distributed data (green), using the Topographical Classification (orange) from Section
3.1.1. Masked data are hatched. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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examples (one date and one topographic class). (2) We evaluate the
products against in-situ observations, in order to detect systematic
biases and errors. (3) We compute Pearson correlations (R) between the
ensemble median and semi-distributed observations timeseries in a
wide range of topographic classes, to have additional information on
the potential of information. (4) We generalize the results by computing
rank diagrams, looking for bias and observation position within the
ensemble at the same time and over numerous topographic classes and
dates.

4. Results

4.1. Comparison of observed and simulated variables

4.1.1. Spatial comparison on a specific date
Fig. 7 shows maps of NIR semi-distributed reflectance (MODIS band

2) for the two satellite products (MODIS and S2) and the ensemble
mean on February 18–19th, 2017. All pixels within the same topo-
graphical class are attributed the same value, and in many classes,
observations and model are masked out because of shadows.

MODIS and S2 remarkably agree on the snowpack extent, while the
ensemble mean seems to overestimate it. Both satellite products show
on average more contrasted and lower reflectance values than the
model. However, MODIS and the model agree on the reflectance de-
pendence on aspect (lower in South-Eastern slopes), contrary to S2.

4.1.2. Ensemble and satellite reflectance timeseries
Fig. 8 shows the timeseries of ensemble and observations in MODIS

bands 4 (VIS) and 2 and 5 (NIR) for the two snow seasons, in 2400m
flat class. This specific class was chosen here because it is flat, above the
tree line and with a long snow covered season, thus easing the com-
parison all along the snow season. Although there is a strong departure
among observations and simulations (0.1–0.2 in bands 4 and 2, 0.1 in
band 5), consistent time variations can be seen between semi-dis-
tributed observations (green stars) and the ensemble median (blue
stars), for example in December and January of both snow seasons for
band 5. For 2013–2014 winter (Fig. 8a,c,e), high values of reflectance
in all bands during the mid-winter are consistent with the recent
snowfall at observation dates during this period (fresh snow has a high
SSA, thus a high reflectance as shown in Fig. 2. Decrease in reflectance
in all bands from November 2013 to mid December and on January
12th is related with extended periods without snowfall as seen on the

HS curve. At the end of the snow season, the snow melt causes a de-
crease in SSA (i.e. low reflectance in band 2 and 5) due to wet meta-
morphism (Carmagnola et al. 2014). Meanwhile, two dust deposition

Fig. 6. Flowchart of the conversion of Sentinel-2 products (purple) to semi-distributed data (green), using the Topographical Classification (orange) from Section
3.1.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Map of aspect in the Grandes-Rousses (a), and comparison of the 3 re-
flectance products in the NIR (860 nm) on 2017-02-18, 10:00 am: ensemble
median (b), semi-distributed MODIS band 2 (c) and S2 Band 8A (2017-02-19,
11:00 am) (e). Boxplots (quartiles and medians) for the ensemble (blue), dis-
tributed MODIS (green) and S2 (red) in the 2400m, flat and 20° slope classes.
On the maps (a–d), the contours denote the model's 300m elevation bands,
orange arrows show the approximate sun direction and shadows are masked.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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events (end of February 2014, end of March 2014 in MOCAGE model)
can explain drops in band 4 reflectance through an increase in the
snowpack surface LAP content. All those events appear in both en-
semble and observation timeseries as well as in simulated surface im-
purities concentrations (not shown). Season 2016–2017 (Fig. 8b,d,f)
had few, intense snowfall and extended dry periods with clear sky, al-
lowing observe more pronounced reflectance variations.

Regarding the ensemble behaviour, in the visible bands, the en-
semble Inter-Quartile Range (IQR) (blue boxes) seems generally lower
during 2013–2014 winter than in 2016–2017. For all bands, the IQR is
reduced after a snowfall (0.01–0.02 in bands 4 and 2, 0.02–0.03 in band
5), and increases with the time elapsed since the last snowfall and all
along the melting season (up to 0.1 in bands 4 and 2 and 0.05 in band
5).

However, the main feature here is the strong departure between the
ensemble and MODIS observations. For almost all dates of both winters,
the semi-distributed observation is under all the members of the en-
semble in bands 4 and 2. This deviation is smaller in band 5. Note also
that the distributed observations IQR (green boxes) is considerable, and
notably lower in band 5 (0.02–0.05) than in bands 2 and 4 (0.05–0.1).
Regarding S2 observations, (Fig. 8b,d), agreement of semi-distributed
observations (red stars) with the ensemble is good for fresh snow (2016,
December 1st) but a strong departure (0.1–0.2) appears after extended
periods without snowfall (2016, December 31th for exambple). Fur-
thermore, the IQR of S2 distributed observations (red boxes) is 2–3
times larger than for MODIS.

4.1.3. Comparison with in-situ measurements
Comparison with field measurements at Col du Lautaret (Height of

Snow (HS) and reflectance in bands 4 and 2) is possible for the 2100m
a.s.l flat class during 2016–2017 winter (see Fig. 9). First and foremost,

there is a strong bias of MODIS observations with respect to in-situ
Autosolalb observations (about 0.2 in band 4 and 0.1–0.15 in band 2).
However, their time variations reproduce the temporal pattern ob-
tained from in-situ observations for example between March 20th and
27th when an increase of reflectance is occurring in both products.

Meanwhile, the ensemble reflectance generally has the same mag-
nitude as the in-situ observations in both bands. In band 4, the in-situ
observations lie within the ensemble for fresh snow, for example on
February 18th, March 27th and April 3rd. In band 2, reflectance is
underestimated by the ensemble for those dates, except on March 27th.
In addition, most of the members are overestimating reflectance in both
bands during early melt (11th and 13th of March), while the compar-
ison of the ensemble median and in-situ observed HS (blue and orange
lines in Fig. 9) show that melt might be underestimated in the model.
On March 20th, ensemble band 4 reflectance generally decreases while
band 2 increases, together with a light snowfall in the model. Mean-
while, in-situ observations of HS show that there was no snowfall for
this date.

4.1.4. Comparison over all reliable topographical classes
To investigate the distribution of this bias over time and space,

MODIS observed semi-distributed values were plotted against the en-
semble median. We restricted this study to topographical classes where
the observation process is the most reliable, i.e. with low probability of
being mixed/rocky (20° maximal slope) and with large enough pixel
populations over the whole snow seasons (1800–3000m.a.s.l.). In
bands 4 and 2, Fig. 10a and b show a strong deviation from the 1:1 line.
Moreover, the value range in band 4 is much lower in the model (about
0.05) than in the observations (about 0.3). In band 5 (Fig. 10c), ob-
servations and model better align with the 1:1 line.

In order to refine this analysis over space, linear regressions were
systematically carried out between the ensemble median and the semi-
distributed observations for each band inside each reliable topo-
graphical class (e.g. computing regressions between timeseries of blue

Fig. 8. 2013–2014 (a,c,e) and 2016–2017 (b,d,f) timeseries of reflectance in
MODIS band 4 (a,b), 2 (c,d) and 5 (e,f) for the three different products (en-
semble in blue, MODIS in green, S2 in red). The stars denote the median of the
ensemble and the semi-distributed satellite products. The boxes shows the en-
semble and distributed satellite products quartiles. See Table 1 for the wave-
lengths and S2 corresponding bands. The blue line denotes the ensemble
median Height of Snow (HS). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Same as Fig. 8, in 2100m.a.s.l flat class for 2016–2017 winter in MODIS
band 4 (a) and 2 (b). In addition, Lautaret data from Autosolalb (orange dia-
monds), and observed HS (orange line) are displayed. Note that bars denote the
ensemble 5–95th percentiles. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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stars and green stars in Fig. 8). The associated Pearson R2, slope and
intercept coefficients are shown in Fig. 11a and b for bands 2 and 5. In
the absence of model or observational bias, Slope should be close to 1
and Intercept to 0.

In band 2, overall high and significant R2 (0.75–0.85) are noted.
Slope is generally> 1, and Intercept< -0.4. However, regression is
close to identity in the sunny slopes (strong dependence on aspect) with
higher correlations. Band 5 shows high and significant R2 as well (about
0.8–0.9). Slope and Intercept moderately deviates from Identity
(Slope<1).

4.2. Spectral bands reflectance ratio

4.2.1. Timeseries comparison between the model and satellite products
The bias between observations and model described in Section 4.1 is

likely to be problematic for data assimilation. Computing a ratio be-
tween the reflectances in two different bands (so-called “band ratio”)
might reduce this issue.

To that aim, the ratios between bands 5 and 4 (r54) and bands 5 and
2 (r52) were computed for MODIS observations. To do so, each ratio
was computed on every pixel of the distributed reflectance (label B in
Fig. 5), and aggregated and masked with the same method as for raw
reflectances.

Fig. 12 shows the temporal evolution of these variables in the
2400m flat class. Time variations of the ensemble median and semi-
distributed observations have compatible values (for example in r54
0.6–0.7 for fresh snow, and 0.25–0.4 in the late season). In about 50%
of the cases, the semi-distributed observation falls within the ensemble
IQR (blue boxes) for r54. In addition, note that r52 and r54 signals are
very similar, be it in the model or the observations.

4.2.2. Comparison over all the reliable classes
Fig. 13 shows the semi-distributed observations against the en-

semble medians for the ratios for all the reliable classes and the two
snow seasons as in Section 4.1.4. There is no notable systematic bias
between the observed ratios and the modelled ones.

Statistics of linear regression in Fig. 14a, and b show high R2 values
generally above 0.85, similar to those for band 5 in Fig. 11b. More
interestingly, regression parameters are now around identity
(Slope=1, Intercept= 0) which illustrates the better agreement (no
systematic bias) of observations and model for these ratios. While
correlation patterns are almost identical for r54 and r52, Slope

Fig. 10. Semi-distributed MODIS observations in band 4 (a),
2 (b) and 5 (c) against ensemble median (density in colour),
for the 45 topographical classes within 1800–3000m and
0–20 slope, for all the observation dates of 2013–2014 and
2016–2017 snow seasons. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 11. Linear regression statistics (upper panel: squared
Pearson correlations R2, center panel: regression slope,
bottom panel: regression intercept) in band 2 (a) and 5 (b)
between the time series of ensemble median and semi-dis-
tributed observations for the 45 classes within
1800–3000m.a.s.l and 0–20 degrees of slope, during
2013–2014 and 2016–2017 snow seasons. Regressions with p-
values > 0.01 and less than 6 dates overall are greyed out.

Fig. 12. Same as Fig. 8 for band ratios r54 (a,b) and r52 (c,d).
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parameter is generally more departing from identity for r52 than for
r54, with a significant dependence on aspect (lower Slopes in sunny
aspects).

4.3. Towards assimilation

Fig. 15a shows the rank diagram for the raw reflectance of band 4,
over all considered dates and topographical classes of the two snow
seasons. In this graph, the observations lie in rank 0 (under all members
of the ensemble) about 60 % of the occurrences, consistently with the
negative bias depicted in previous section. On the contrary, the rank
diagram for band ratio r54 in Fig. 15b is highly improved with respect
to band 4, the observation being in the ensemble 80 % of the occur-
rences. Result is similar for r52 (not shown). Though overestimation of
frequency of ranks 0 (under the ensemble) and 36 (over the ensemble)
denote that the ensemble dispersion is insufficient, the rank diagram is
flat, all the ranks having similar frequencies.

5. Discussion

5.1. On the relevance of the comparison in the semi-distributed framework

The semi-distributed framework was chosen for the comparison
between observed and simulated reflectances because it is the basis of
the French operational snowpack modelling system, and considering
that running this model on a 250m-grid requires about 100 times more
computer resources. Since it is quite specific, the different types of er-
rors in observations and simulations in this semi-distributed geometry

must be discussed for a correct interpretation of our results. Within a
topographical class, observations are affected by (1) natural variability,
(2) retrieval errors and (3) classification errors. In particular, DEM er-
rors and resolution have a strong impact in satellite retrievals via sha-
dows and subgrid topography (Baba et al. 2019; Davaze et al. 2018),
leading to about± 10% errors in broadband albedo for MODIS data
(Dumont et al. 2012). Moreover, S2 data are particularly affected by the
three sources, since the retrieval DEM (SRTM90) in the MAJA processor
is too coarse to capture the topographic variability at the scale of the
pixels (10–20m) and because the classification is done to an even much
coarser scale (IGN250). The resulting intraclass variability of S2 and
MODIS is particularly visible in Figs. 7e, 8 and 9.

However, the resulting distributions of the observations within the
classes are reasonably gaussian (see Fig. B.1), meaning that semi-dis-
tributed observations, aggregated by taking the median, should remove
random unbiased noises and outliers.

From the model point of view, the ensemble approach in this study
is expected to satisfactorily assess snowpack modelling errors by the
combination of meteorological and multiphysical model ensembles.
However the semi-distributed simulations can have a limited spatial
representativeness due to the snowpack natural variability, for example
when the snow line or rain-snow line lies within the topographic class.
In the general case, though, we expect this issue to be of limited im-
portance, in the line with other studies (Mary et al. 2013).

(a) (b)

Fig. 13. Same as Fig. 10 for r54 (a) and r52 (b).

Fig. 14. Same as Fig. 11a for r54 (14a) and r52 (14b).

Fig. 15. Rank diagrams for the semi-distributed MODIS observations in band 4
(a) and r54 (b) within the ensemble for all classes between 1800 and
3000m.a.s.l. and between 0 and 20° of slope, and all dates of 2013–2014 and
2016–2017 snow seasons (1009 occurrences).
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5.2. Assets and limits of the satellite products

Since we consider that the observation process is not reliable in
shadowed area, we filter out many observations, thus reducing the
amount of spatial information available for assimilation. This means
that from November to February, North facing slopes will likely not be
observed. Therefore, ensemble simulations would not be corrected
there during this period, if the assimilation were to be carried out on
each topographic class independently. This stresses the need for a
spatially coherent data assimilation algorithm, e.g. assimilating all
observed topographic classes at the same time, in order to spatially
propagate the effect of assimilation and to avoid inconsistent spatial
patterns. Furthermore, a spatially comprehensive assimilation of SCF
would be needed beforehand to detect topographic classes where the
ensemble and observations disagree on the presence of snow and assess
where reflectance can be compared, similarly as in Baba et al. (2018).

Observations are also affected by significant errors and biases that
are problematic for assimilation. S2 reflectance observations suffer
from two significant inconsistencies. (1) The dependence of reflectance
on aspect is too strong and unexpected. Higher band 2 reflectance are
obtained in South-Eastern slopes where SSA should preferentially de-
crease owing to sun exposure (causing a decrease in reflectance through
enhanced metamorphism) and lower SZA (Fig. 7) (Warren 1982). (2)
Reflectance decrease with time in the absence of snowfall in the early
2016–2017 snow season is too pronounced (Fig. 8b and d). These two
considerations can be explained by retrieval errors in the MAJA algo-
rithm, probably owing to the representation of topography and atmo-
sphere, which was not specifically designed for snow reflectance re-
trieval in complex terrain (Hagolle et al. 2017). In addition, the
reflectance retrieval is also affected by the use in MAJA retrieval of a
coarse DEM (SRTM90) compared to the native resolution of the data
(10–20m). For all those reasons, improvements in the retrieval of S2
absolute reflectance values is necessary before considering their future
assimilation.

MODIS reflectance observations also have a strong bias with the
model. This bias is unambiguously attributed to MODIS according to
the comparison with in-situ observations (Fig. 9). It is much higher than
the intraclass variability of the observations and the ensemble IQR. In
addition, Figs. 10 and 11 show that this bias is well described by a
linear function of reflectance which is rather invariant in space and well
stable in time.

However, MODIS semi-distributed product (median) seems con-
sistent, because: (1) we demonstrate that the median of the observa-
tions within the topographical classes is a representative value of the
distribution in the general case, (2) reflectance dependence on aspect
corresponds to the model one (Fig. 7) (3) date-to-date time variations
notably match those of the ensemble, (4) these variations sometimes
better matches in-situ observations than the ensemble, which proves
that their information content is good (Fig. 9, in March). All these
considerations give us good confidence in the intrinsic quality and in-
formation content of MODIS observations, but a solution to this bias is
required for assimilation.

5.3. Assimilating band ratios

Biases are a common issue of snowpack remote sensing (Veyssière
et al. 2019; Balsamo et al. 2018) and require a proper estimation or
correction before assimilation. Many methods exist in the NWP com-
munity to correct for the bias or dynamically estimate it in a data as-
similation system (Draper et al. 2015; Auligné et al. 2007). However,
these methods would require either (1) to assume a non-biased model
(2) a representative in-situ reflectance dataset to analyse and model the
bias before correcting it on-line (3) extensive, representative, and
continuous in-situ observations of snowpack variables to constrain sa-
tellite reflectance biases (4) additional data from other satellite sources
(Balsamo et al. 2018). All of those suffer from limitations owing to the

specificities of snowpack modelling and monitoring in a complex ter-
rain, respectively: (1) snowpack reflectance modelling probably suffers
from some biases (Tuzet et al. 2017) (2) absence of any operational
network measuring in-situ snowpack reflectance (3) sparse in-situ
snowpack measurements in general (4) lack of reliable reflectance re-
trieval from other satellite sources (as shown here for S2).

Therefore, computing reflectance ratios for assimilation could be an
appropriate solution in the current state of the art, because it does not
require any assumption on the bias attribution (observations and/or
model) and nature. Results show that this method outstandingly allows
to unbias the observations using r54 and r52 (Figs. 13 and 14). Fur-
thermore, band ratios are at the core of snowpack surface properties
retrieval from satellites (Lyapustin et al. 2009; Negi and Kokhanovsky
2011; Dumont et al. 2014; Kokhanovsky et al. 2018). It is not clear,
however, whether all the precious information content of reflectance
variables is preserved when computing band ratios. Firstly, the corre-
lation of the two unbiased ratios is very high (≥0.9), as already noted
by (Lyapustin et al. 2009), and these variables have similar temporal
variations than MODIS band 5 (only sensitive to SSA) (see Figs. 8e,f and
12), suggesting that some information on the LAP content might be lost.
Since it has been stated that reflectance assimilation requires at least
two degrees of freedom, given the dependence of reflectance on LAP
and SSA (Charrois et al. 2016), further work is required to infer whether
these band ratios are varying sufficiently between polluted and pristine
snowpacks. Other band combinations, with a higher sensitivity to LAP
could also be used (if unbiased), as implemented in Di Mauro et al.
(2015).

Nevertheless, rank diagrams are greatly improved compared to re-
flectance variables (Fig. 15). The obtained almost flat rank diagram for
r54 shows that this variable is very likely to fall within the ensemble
without any preferential position, for any topographical class and date.
This is really encouraging towards spatialized assimilation of such
variables.

5.4. Ensemble modelling

The remaining underdispersion of the ensemble evidenced by the
over representation of the extremal positions in the rank diagrams,
could be improved in the near future by a better characterization of the
modelling chain uncertainties. (1) Increasing the amplitude of me-
teorological/impurities fluxes perturbations (Charrois et al. 2016) or
using physical NWP ensemble such as PEARP (Descamps et al. 2015;
Vernay et al. 2015) could allow to better account for NWP modelling
uncertainties and intra-massif variability of weather conditions. (2)
Including recent developments in Crocus such as blowing snow within
the semi-distributed geometry (SYTRON, (Vionnet et al. 2018)) (3)
Including different impurities scavenging parameter and optical prop-
erties configurations within the multiphysical ensemble (Tuzet et al.
2017).

Furthermore, adaptations to the presented ensemble modelling
chain could make it more suitable for assimilation. First, the ensemble
population (N=35) is small compared to recent local ensemble as-
similation attempts in snowpack modelling (e.g. Piazzi et al. (2018),
Larue et al. (2018), Charrois et al. (2016)). However ensemble size must
be kept to reasonable values for larger scale operational applications,
and scores are not expected to highly depend on ensemble size for
openloop simulations (Leutbecher 2018). In addition, though in-
creasing the ensemble population would allow to run several combi-
nations of the forcings with ESCROC members, note that combining
each forcing member with only one physical configuration of the
model, therefore limiting the combinations, is a current practice in
NWP to sample uncertainties (Descamps et al. 2015). Secondly, the
choice of randomly drawing “N” ESCROC configurations versus care-
fully building a given subset of “N” members can be discussed. Indeed,
Lafaysse et al. (2017) showed that the ensemble error representative-
ness could be improved by an appropriate optimized sample of
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members. However, this sample could not be tested here because it did
not include T17 radiative transfer option (Tuzet et al. 2017), mandatory
for reflectance modelling. Moreover, site-specific calibrations are ex-
pected to be suboptimal when applied over a wide diversity of sites
(Krinner et al. 2018).

6. Conclusions

This study investigated the potential for assimilation of MODIS re-
flectance observations in ensemble snowpack simulations within a
semi-distributed framework.

First, it is shown that MODIS observations of reflectance aggregated
by topographic classes can be compared with semi-distributed ensemble
simulation outputs, and that they convey substantial information con-
tent. However, it also clearly appears that MODIS observations are
noisy and biased, due to the difficulty of retrieving surface reflectances
in a complex terrain. In addition, it seems that S2 reflectance retrieval
was affected by even bigger errors.

Meanwhile, it seems that the semi-distributed framework is parti-
cularly adapted to reflectance assimilation. First, it enables to effi-
ciently remove observational noise thanks to aggregation within topo-
graphical classes. It is clear though, that monitoring the substantial
intraclass natural variability of reflectance is then out of reach.
Furthermore, state-of-the-art distributed snowpack modelling is cur-
rently not able to represent this spatial variability either. Reaching this
goal would require the use of high resolution meteorological forcings
(Quéno et al. 2016), and modelling of snow redistribution by wind and
gravitation (Vionnet et al. 2014; Mott and Lehning 2010; Freudiger
et al. 2017) in distributed simulations. However, such simulations
would require intensive computational resources compared to the semi
distributed framework, added to the increase in computational cost due
to ensemble forecasting already present here.

This study was also the first attempt of spatialized ensemble detailed
snowpack modelling using a combination of meteorological and model
ensembles. Results showed that the semi-distributed setup is able to
represent the associated errors and uncertainties in the modelling of
reflectance well, and identified paths to make it more suitable to data
assimilation.

Therefore, we are confident on the potential for assimilation to take
full advantage of reflectance observations and detailed snowpack
modelling in such a geometry. However, the remaining strong bias in
MODIS semi-distributed reflectance observations prevents from directly
assimilating them. A workaround was proposed for MODIS bias by
computing ratios of reflectances, a simple method that should preserve

the observations information content. We are confident that assim-
ilating such variables is possible and could be beneficial for snowpack
modelling in the near future. Furthermore, efforts to improve the re-
trieval of reflectances in complex terrain must be conducted, in order to
reduce retrieval errors and bias, and implement retrieval of other
medium-resolution satellite sources such as VIIRS and Sentinel3.

Data and code availability

The datasets analysed during this study and the code used to pro-
duce the figures are available from the corresponding author on re-
quest. ESCROC is developed inside the open source SURFEX project
(http://www.umr-cnrm.fr/surfex). While it is not implemented in an
official SURFEX release, the code can be downloaded from the specific
branch of the git repository maintained by Centre d'Études de la Neige.
The full procedure and documentation can be found at https://
opensource.umr-cnrm.fr/projects/snowtools_git/wiki/Procedure_for_
new_users and hhttps://opensource.umr-cnrm.fr/projects/snowtools_
git/wiki/Data_assimilation_of_snow_observations. For reproducibility
of results, the version used in this work is tagged as cluzetCRST.
Processing of the albedo images has been performed using the open-
source MODImLab algorithm, (version 1.2.5.d). This algorithm can be
accessed by contacting its administrator, P. Sirguey.
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Appendix A. Table of observation dates

Table A.1
Summary of observation dates for MODIS, S2 and Autosolalb sensors over 2013–14 and 2016–2017 winters. Time is given for the corresponding closest model output
time step (hour).

Date MODIS S2 Autosolalb Date MODIS S2 Autosolalb

2013-11-11 11:00 X 2016-12-14 10:00 X
2013–11–22 10:00 X 2016-12-23 10:00 X
2013–11–29 10:00 X 2016-12-28 11:00 X
2013-12-04 11:00 X 2016-12-31 10:00 X
2013-12-13 11:00 X 2017-01-06 11:00 X
2013-12-29 11:00 X 2017-01-11 11:00 X
2014-01-05 11:00 X 2017-01-15 11:00 X
2014-01-12 11:00 X 2017–01–20 11:00 X
2014–01–25 10:00 X 2017–01–24 10:00 X
2014-02-06 11:00 X 2017–01–29 11:00 X
2014-02-22 11:00 X 2017-02-16 11:00 X X
2014-03-05 10:00 X 2017-02-18 10:00 X X
2014-03-17 11:00 X 2017-02-19 11:00 X X
2014-03-28 10:00 X 2017-02-25 10:00 X X
2014-04-06 10:00 X 2017-03-11 11:00 X X

(continued on next page)
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Table A.1 (continued)

Date MODIS S2 Autosolalb Date MODIS S2 Autosolalb

2014-04-15 10:00 X 2017-03-13 10:00 X X
2014-06-05 11:00 X 2017-03-20 11:00 X X
Winter 2016–2017 2017-03-27 11:00 X X
2016-11-01 11:00 X 2017-04-03 11:00 X X
2016-11-12 10:00 X 2017-04-14 10:00 X X
2016-11-15 11:00 X 2017-04-20 10:00 X X
2016-11-28 10:00 X 2017-05-09 10:00 X
2016-12-01 11:00 X 2017-05-16 10:00 X
2016-12-05 11:00 X 2017-05-21 11:00 X
2016-12-11 11:00 X 2017-06-08 11:00 X

Appendix B. Intraclass distribution of observations

Fig. B.1. Histograms of MODIS band 5 reflectance in flat and 20° slope classes at 2400m on 2017, February the 25th, 10:40 am.
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2.3 Assimilation of MODIS-like reflectance ratios into

ensemble simulations of the snowpack with a Par-

ticle Filter

Author contribution:

The materials in this section were produced by Youness El-Ouartassy, a 2nd year Mas-

ters student from the African Regional Center for Space Science and Technology in French

Language (CRASTE-LF) in Rabat (Morocco)1. Here, I provide an overview of his method

and results, which are available in his report (written in French).

I was the instigator of this internship, and his main supervisor.

• Definition of the research subject and supervision of the work

• Conception, development and maintenance of the ensemble data assimilation system

• Help with the analysis, writing and preparation for the Masters defense talk

2.3.1 Introduction

Snowpack modelling is key to better anticipate avalanche risks, but it badly captures snow-

pack variability in the mountains. Satellite reflectances from space-borne sensors like MODIS

capture some of this variability and could be assimilated into snowpack models. Reflectances

indeed provide useful informations on the surface properties of the snowpack, such as the

Specific Surface Area, (SSA, m2 kg−1) informative on the snow microstructure and Light

Absorbing Particles content (LAP, g g−1
snow) (see Sec. 1.2.3 for more details). Both control on

the snowpack shortwave (SW) net radiative shortwave, a key component of the snowpack en-

ergy budget in mid-latitude mountains. In a synthetic experiment assimilating reflectances,

Charrois et al. (2016) reduced SWE modelling errors by up to a factor of two.

However, in recent work, Cluzet et al. (2020) showed that reflectance products retrieved from

MODIS are biased and cannot be directly assimilated, an issue already faced by Charrois

(2017) at the point scale. Cluzet et al. (2020) showed that ratios between MODIS spectral

bands (so-called "band ratios") r52 ( band 5 divided by band 2) and r54 (band 5 divided

by band 4) are not biased and therefore could be assimilated. It is not sure whether the

precious information content from the reflectances is preserved after this manipulation (Lya-

pustin et al., 2009). The aim of this Section is to investigate their potential for assimilation.

1Youness will start a PhD at CNRM-IRSN on Novermber 1st, 2020, under the supervision of Matthieu
Plu.
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This work capitalises on efforts from Cluzet et al. (2021) to build an ensemble data as-

similation system of snowpack modelling accounting for modelling errors and uncertainties

and including a Particle Filter. Charrois et al. (2016) evaluated the information content

of MODIS reflectances at the point scale by means of twin experiments. In such a setup,

an open-loop (i.e. without assimilation) ensemble run is performed beforehand. Several

members are extracted from this open-loop, and its reflectance is used as synthetic truth for

assimilation. The remaining state variables can be used for evaluation of the assimilation

runs. One can then measure if the assimilation of the synthetic reflectances brings the sim-

ulation closer to the truth state than the open-loop.

Our aim is to evaluate the information content of band ratio respective t the raw reflectance

products. We perform similar twin experiments over one year (winter 2016-2017) of simula-

tions at Col du Lautaret, in the French Alps. Band ratios are assimilated an their impact

on simulations is compared with the open-loop and results from raw reflectance assimilation

to assess their information content.

Following Sec.2.3.2 briefly introduces the methods and the ensemble setup, Sec. 2.3.3

presents and discusses the results, and final Sec. 2.3.4 concludes and open perspectives.

2.3.2 Methods

Ensemble modelling setup

The ensemble modelling setup is the same as in Cluzet et al. (2020). It uses stochastic

perturbations on SAFRAN forcings (Durand et al., 1993; Charrois et al., 2016) as input to

an ensemble of different ESCROC configurations (Lafaysse et al., 2017).

Study site and synthetic observations

The col du Lautaret (2058 m.a.s.l) is located in the Central French Alps (see Fig. 1 of Cluzet

et al. (2020) for a precise locations), in the Grandes-Rousses massif. Observation dates for

the year 2016-2017 correspond to clear-sky and good acquisition conditions as described in

Cluzet et al. (2020). Three synthetic truths were taken from different members of a 120-

member open-loop simulation. They correspond to different percentiles of yearly average

Snow Water Equivalent (SWE, kg m−2) in the open-loop, (85, 55 and 13 respectively, see

Fig. 2.1), in order to investigate the behaviour of data assimilation facing contrasted snow

conditions and biases compared with the true state.

Evaluation

The assimilation runs are evaluated by comparing their ability to reproduce the SWE of

the synthetic truth. We use the CRPS score, (see Hersbach (2000) for a definition of the
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Figure 2.1: SWE of the open-loop simulation along the considered year
at Col du Lautaret. The elected members are displayed in color, and the

ensemble median in black.

CRPS score, or Cluzet et al. (2021) in Chapter 3 later on) wich is a metric accounting for

the distribution of the ensemble respective to the verification data.

Data assimilation setup

The data assimilation strategy is identical to Charrois et al. (2016), i.e., we use a Parti-

cle Filter with Sequential Importance Resampling (PF)(Gordon et al., 1993; Arulampalam

et al., 2002). Whenever an observation is available, the simulation is stopped, and the mod-

elled reflectance (or band ratio) values are compared with the observations. Each ensemble

member simulation (or "particle") is propagated in time by a single configuration formed by

a perturbated forcing and an ESCROC model configuration. The particles are replicated or

rejected proportionally to their gaussian distance to the observation (relative to the obser-

vation error), following Kitagawa (1996). The simulation restarts on the analysis date with

the replicated particles, until next observation. Three setup questions emerge:

• what should be the value for band ratios observation error?

• how much should be the ensemble size?

• should we mix the particles at each assimilation, in order to break the forcing-model

couples?
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Setting the observation errors for band ratios

This choice of obseration errors controls the performance of the data assimilation. A too

low observation error will likely reduce the ensemble spread until it causes PF degeneracy

(Snyder et al., 2008), while the assimilation will not have any impact if they are too large.

Charrois et al. (2016) used values from Wright et al. (2014) for the assimilation of reflectance.

They lie in the range 10−3 − 10−4 and correspond to observation errors over the Greenland

ice sheet. A wider range of observation errors was tested (10−2 − 10−8), by assimilating

band ratios individually. the values of 10−3 and 10−4 yielded the best results and their

CRPS performance is shown on Fig. 2.2 for r54. Both values yield slightly lower (i.e. better

performance) CRPS values than the open-loop. The value of 10−3 seems to yield lower and

more stable value than 10−4, whose performance is less stable, with analyses often degrading

the performance (CRPS increasing). Similar results were obtained for r52. For this reason

the value of 10−3 was selected for both band ratios in subsequent simulations.

Figure 2.2: CRPS of the analysis (green) and the open-loop (blue) along the
snow season for an observation error variance of 10−3 (left) and 10−4 (right)
with a 120-member ensemble assimilating r54. Vertical cyan lines indicate the

assimilation dates.

Choice of the ensemble size

The choice of the ensemble size is a compromise between the calculation cost (proportional

to the ensemble members) and the risk of PF degeneracy, which decreases with the ensemble

size (Bengtsson et al., 2008). (Charrois et al., 2016) used a 300-member ensemble in a

similar setting, though with only one snow model. This setup likely favoured degeneracy.

We performed assimilation runs with ensemble sizes of 120 and 320. The 320-ensemble run

did not outperform the 120-member ensemble by much (not shown here). Therefore, the

ensemble size was set to 120.
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Mixing of the ensemble members configurations

The analysis only resamples the particle state vector, not the forcings and model used to

subseqently propagate them in time. Therefore, the member in first position is always

propagated by the same couple of forcing-model, while it could be beneficial to explore

different combinations after every analysis, thus bringing more diversity in the ensemble.

However, when evaluating on SWE, it seems that mixing the particles after every analysis

is detrimental to the ensemble spread (not shown here). This under-dispersion did not seem

desirable, and we deactivated ensemble mixing in the following.

2.3.3 Results and Discussion

Experiements assimilating the band ratios (either r52 and r54 individually or both as-

suming independent errors) of the three selected synthetic members were performed

and compared with assimilation experiments assimilating several combinations of

reflectances (assuming also independent errors). Results in terms of CRPS ratio

(CRPSS = CRPSassim/CRPSopen−loop) are depicted in Fig. 2.3. A value of 1 depicts

a neutral performance, above 1 the assimilation degraded the performance compared with

the open-loop, and below 1, the skill was improved. The performance depends a lot on

the selected synthetic member, particularly for the reflectances. For member 1, strong

improvements are obtained assimilating raw reflectances (CRPS ratio around 0.5, consis-

tently with Charrois et al. (2016)), showing that raw reflectances have a strong potential

to improve simulations. However, strong degradations (up to 1.9), probably due to PF

degeneracy on specific dates, are observed for the other assimilation scenarios. This behavior

was not seen by Charrois et al. (2016). Differences with their setup (i.e parameterised

impurities forcings versus light-absorbing particle fluxes from chemistry-transport models

and realistic LAP stratification (Tuzet et al., 2017), and deterministic version of Crocus

ensemble of snow models from ESCROC) are likely to induce different optimal values for

the observation error. It is probable that the reflectance observation errors were too low in

these experiments causing PF degeneracy. Accommodation of observation error, when the

PF sample population is too poor, might be an avenue to prevent that, as suggested by

(Larue et al., 2018).

Meanwhile, the performance for the band ratios is more stable (degradation for only

two out of 9 experiments) but are in the range 0.85-0.9, suggesting that their information

content is much more reduced than for reflectances, at least for the first synthetic member. In

particular, the joint assimilation of r52 and r54 does not significantly improve the simulations,

while one would expect their information content to be complementary in terms of SSA
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Figure 2.3: CRPS Skill of the different assimilation runs.

and LAP, with one variable being purely IR/NIR and the other IR/VIS. To investigate

the relationship between those variables, the daily values of r54 and r52 simulated by the

synthetic member 3 (i.e. the 13th percentile of open-loop SWE) are plotted in Fig. 2.4. The

variables are almost perfectly aligned, a sign that they have a similar information content.

A higher dispersion can only for the lowest ratio values (corresponding to coarse snow). This

result is actually consistent with findings of Lyapustin et al. (2009).
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Figure 2.4: Daily values of r54 as a function of r52 for synthetic member 3.

2.3.4 Conclusion and outlook

This study was the first attempt to assimilate synthetic reflectances and ratios of reflectances

in an ensemble accounting from meteorological and modelling uncertainties. This work pro-

vides insightful recommendations on the optimal setup of the ensemble and on the potential

for assimilation of band ratios and reflectance. Regarding the ensemble setup, our results

seem to indicate that an ensemble size of 120 members might be a good compromise, and

that mixing the ensemble members after the analysis is not desired. Unstable performance

of raw reflectance data assimilation for some synthetic members has been evidenced. This

unstable behaviour, which was not evidenced by Charrois et al. (2016) might be due to

mis-specified observation errors. Specific investigations will be conducted in Revuelto et al.

(2021) to shed the light on this phenomenon and the potential link between the performance

and the SWE percentile of the selected synthetic members.

Regarding the efficiency of data assimilation, band ratios do not seem to have such a high

information content as reflectances as demonstrated in this idealised setting. Leveraging the

information content from satellite reflectance products therefore stems from improvements

of their retrieval in a rugged terrain (Lamare et al., 2020). Our results finally show that

even in this idealised case, the performance is rather unstable likely due to PF degeneracy

on specific dates. An adaptive observation error as proposed by Larue et al. (2018), might

be required whenever reliable retrievals are available.
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3.1 Extended abstract

In the previous Chapter 2, we showed that satellite spectral reflectances provide precious

information on the snowpack surface variability over large mountainous areas (Sec. 2).

However reflectances suffer from a limitation which may last: they are not available under

the clouds and the trees and in mixed terrain, and less accurate in the shadows, and steep

slopes (e.g. Chap. 2, Sirguey, 2009; Lamare et al., 2020). Reducing modelling errors only in

the observed locations would not be satisfactory. We need to assess whether non-observed

areas can be succesfully constrained by distant observations of reflectance.

This issue is investigated in an idealised setting. We work in the same semi-distributed

geometry as in Chap. 2 (see. Fig. 1 of the article), and assimilate synthetic observations

(i.e. observations extracted from a prior model run and used as a true state for evaluation

e.g. Durand and Margulis, 2006) of reflectance and height of snow (HS, (m)) over 4

years. Observations are masked in order to mimic the spatio-temporal coverage of actual

reflectance observations: they are only available on clear-sky dates, above 1800 m, and in

flat and 20o South-West, South, South-East and East topographic classes (e.g. black dots

on Fig. 5 of the article).

Our primary aim is to assess whether the representation of a bulk variable, the snow

water equivalent (SWE (kg m−2)), can be improved by assimilating partial observations

of reflectance. This is indeed a twofold question: whether reflectance information can

be propagated in space and whether the assimilation algorithms successfully propagate

information. To disentangle these questions, we assimilate HS, which is directly related

to the SWE, contrary to reflectances. The assimilation of HS serves as a test for the

assimilation algorithm, and then as a reference to evaluate the performance of reflectance

assimilation.

The ensemble modelling setup is the same as in Sec. 2.2. An open-loop run is performed,

and the members corresponding to the 20th, 40th, 60th and 80th percentiles of SWE are

extracted for each year to serve as synthetic observations, thereby testing the assimilation

against diverse accumulation conditions. Several ensemble sizes are also tested.

The choice of the particle filter (PF) assimilation algorithm has been justified in the

introduction (see Sec. 1.4.3). It was included in the ensemble modelling framework (Fig. 2

of the paper). The most convenient way to propagate information is to do it implicitly, by

looking for a global analysis over the domain, but in such a situation, the PF is likely to

degenerate (see Sec. 1.4.3 and Sec. 2.3.1 of the paper). We developed two approaches to

mitigate degeneracy. The first approach, called inflation, is either applied globally (so-called

"global") or locally (considering only local observation, if any, so-called "rlocal") (see Sec.

2.3.1 of the paper). As we considered that the global approach might be suboptimal, and

that distance localisation might be inappropriate for snow modelling at our modelling
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scale (see Sec. 1.4.3 in the introduction), we implemented a localised strategy based on

background correlation spatial patterns called k-localisation, or "klocal" (see Sec. 2.3.2 of

the paper). This approach selects the observations coming from the locations exhibiting the

strongest ensemble correlations with the considered location. The number of observations

is iteratively decreased until degeneracy is mitigated.

We verified the ability of the inflation to prevent degeneracy by evaluating the behaviour of

the global algorithm assimilating HS, in an unobserved class (Fig. 3). Results showed that

without inflation, the global PF degenerated, while inflation managed to keep the ensemble

close to the verification observation (lower spread, lower error than without inflation

and than the open-loop run): information was successfully propagated, and degeneracy,

mitigated.

The considered variables exhibit contrasted correlation patterns (Fig. 4), with "distant"

locations sometimes more correlated than closer ones (e.g. in band 5 (infra-red)), suggesting

that the klocal approach is more appropriate than a classical domain localisation.

Figs. 5 and 9 show that information from HS is successfully propagated by the klocal and the

global approaches across aspects and slopes, contrary to the rlocal which is of course unable

to correct the simulations in the unobserved areas. Propagation of information towards

lower elevations is present, but more limited. Aggregated results over the assimilation

experiments (all years and quantiles) in Fig. 6 show that the global and klocal approaches

systematically improve the CRPS and Reli performance compared to the open-loop, both

in the observed and unobserved classes.

Fig. 7 shows the same evaluation for the assimilation of reflectance. In general, infor-

mation is succesfully transferred to the non-observed classes. The skill is lower than

for HS but still positive on average. Increasing the ensemble size to 160 significantly

improves the performance of the global and klocal. Results of spatial propagation for a

given experiment (Fig. 8) shows that the spatial behaviour is the same than for HS (infor-

mation is well transferred across aspects and slopes, and to a lower extent, across elevations).

To conclude, this paper proposes two different approaches to tackle PF degeneracy while

propagating information into partially observed domains: inflation and k-localisation. Both

algorithms successfully reach this twofold aim in an idealised setting, inside a domain which

is only partly observed, showing their superiority over a purely local approach.

This study demonstrates that information from HS and reflectance can be propagated across

topographic conditions, which had never been demonstrated for reflectances. This is really

encouraging in the way of assimilating such information provided that their biases will one

day be corrected (Lamare et al., 2020).

No significant skill difference could be found between the global and the klocal approach,
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but this study proves that explicitly exploiting the correlation patterns from an ensemble

is relevant from snowpack modelling. We suspect that the global approach might experi-

ence difficulties to obtain a satisfactory global analysis when dealing with real observations.

Meanwhile, unrealistic ensemble background correlation patterns might be misleading for

the klocal algorithm. Finally, as suggested by Fig. 9 and previous studies (e.g. Magnusson

et al., 2014; Winstral et al., 2019), it seems that some point scale observations of HS could

be used to reduce SWE modelling errors across a whole domain. Assimilation experiments

with real observations are required to confirm this hypothesis, and will be conducted in the

following Chapter 4.

3.2 CrocO_v1.0: a Particle Filter to assimilate snow-

pack observations in a spatialised framework
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Abstract. Monitoring the evolution of snowpack properties
in mountainous areas is crucial for avalanche hazard fore-
casting and water resources management. In situ and re-
motely sensed observations provide precious information on
the state of the snowpack but usually offer limited spatio-
temporal coverage of bulk or surface variables only. In par-
ticular, visible–near-infrared (Vis–NIR) reflectance observa-
tions can provide information about the snowpack surface
properties but are limited by terrain shading and clouds.
Snowpack modelling enables the estimation of any physi-
cal variable virtually anywhere, but it is affected by large
errors and uncertainties. Data assimilation offers a way to
combine both sources of information and to propagate infor-
mation from observed areas to non-observed areas. Here, we
present CrocO (Crocus-Observations), an ensemble data as-
similation system able to ingest any snowpack observation
(applied as a first step to the height of snow (HS) and Vis–
NIR reflectances) in a spatialised geometry. CrocO uses an
ensemble of snowpack simulations to represent modelling
uncertainties and a particle filter (PF) to reduce them. The
PF is prone to collapse when assimilating too many ob-
servations. Two variants of the PF were specifically imple-
mented to ensure that observational information is propa-
gated in space while tackling this issue. The global algo-
rithm ingests all available observations with an iterative in-
flation of observation errors, while the klocal algorithm is
a localised approach performing a selection of the observa-
tions to assimilate based on background correlation patterns.

Feasibility testing experiments are carried out in an identi-
cal twin experiment setup, with synthetic observations of HS
and Vis–NIR reflectances available in only one-sixth of the
simulation domain. Results show that compared against runs
without assimilation, analyses exhibit an average improve-
ment of the snow water equivalent continuous rank probabil-
ity score (CRPS) of 60 % when assimilating HS with a 40-
member ensemble and an average 20 % CRPS improvement
when assimilating reflectance with a 160-member ensemble.
Significant improvements are also obtained outside the ob-
servation domain. These promising results open a possibility
for the assimilation of real observations of reflectance or of
any snowpack observations in a spatialised context.

1 Introduction

Seasonal snowpack is an essential element of mountainous
areas. Monitoring the evolution of its physical properties
is essential to forecasting avalanche hazard (Morin et al.,
2020) and rain-on-snow-related floods (Pomeroy et al., 2016;
Würzer et al., 2016) as well as monitoring water resources
(Mankin et al., 2015). Observations alone are too scarce to
monitor snowpack conditions. In situ observations provide
precise observations of several key variables, but they lack
spatial representativeness and have poor spatial coverage.
Remote sensing of snowpack variables such as the height
of snow (HS; m), snow water equivalent (SWE; kgm−2),

Published by Copernicus Publications on behalf of the European Geosciences Union.
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visible–near-infrared (Vis–NIR) reflectance and surface tem-
perature provides comprehensive information over large ar-
eas but usually has a limited temporal resolution for a small
set of variables. Furthermore, these observations are usu-
ally available in fractions of simulation domains only, even
for spaceborne data (Davaze et al., 2018; Veyssière et al.,
2019; Shaw et al., 2019). For instance, snowpack Vis–NIR
reflectances from moderate-resolution (250–500 m) satellites
such as MODIS and Sentinel-3 can help constrain snowpack
surface properties such as microphysical properties (charac-
terised by specific surface area – SSA; m2 kg−1) and light-
absorbing particle content (LAP; g g−1

snow) (Durand and Mar-
gulis, 2006; Dozier et al., 2009). However, in areas covered
by clouds or forests and/or affected by high sub-pixel vari-
ability (ridges, roughness, fractional snow cover) and shad-
ows, satellite retrievals are less accurate (Masson et al., 2018;
Lamare et al., 2020), and data should be filtered out (Cluzet
et al., 2020a). The higher resolution offered by products from
Landsat and Sentinel-2 might be an avenue to address this is-
sue (e.g. Masson et al., 2018; Aalstad et al., 2020), but at
these resolutions, reflectance retrievals are quite noisy due
to e.g. digital elevation model errors (Cluzet et al., 2020a).
Finally, note that pixel fractional snow cover (snow cover
fraction, SCF) can be accurately retrieved even from noisy
reflectances (Sirguey et al., 2009; Aalstad et al., 2020), but it
inherits spatio-temporal limitations. SCF informativeness is
also limited in deep snowpack conditions (De Lannoy et al.,
2012).

Snowpack models of different complexity offer exhaustive
spatial and temporal coverage (Krinner et al., 2018). They
are applied within several spatial configurations, including
the collection of points on regular or irregular grids (Morin
et al., 2020). In this paper, “spatialised” indistinctly refers to
any of these configurations. Detailed snowpack models are
the only ones able to assess avalanche hazard and monitor
water resources (Morin et al., 2020), but these applications
are limited by their considerable errors and uncertainties (Es-
sery et al., 2013; Lafaysse et al., 2017). In that context, com-
bining remote sensing observations with models through data
assimilation is an appealing solution (Largeron et al., 2020).
Indeed, data assimilation combines the spatial and tempo-
ral coverage of snowpack models with the available infor-
mation from observations in an optimal way. Assimilation
of optical reflectance could reduce modelled SWE errors by
up to a factor of 2 (Durand and Margulis, 2007; Charrois
et al., 2016), and preliminary studies show its potential for
spatialised assimilation (Cluzet et al., 2020a). Assimilation
of HS is very efficient in reducing modelled SWE errors
(Margulis et al., 2019). However, the limited spatial cover-
age of observations stresses the need for data assimilation
algorithms able to propagate snowpack observational infor-
mation into unobserved areas (Winstral et al., 2019; Cantet
et al., 2019; Largeron et al., 2020).

A particle filter with sequential importance resampling
(PF-SIR; Gordon et al., 1993; Van Leeuwen, 2009) is a

Bayesian ensemble data assimilation technique well suited to
snowpack modelling (Dechant and Moradkhani, 2011; Char-
rois et al., 2016; Magnusson et al., 2017; Piazzi et al., 2018;
Larue et al., 2018). PF-SIR is a sequential algorithm rely-
ing on an ensemble of model runs (particles) which repre-
sents the forecast uncertainty. At each observation date, the
prior (or background) composed of the particles is evaluated
against the observations. The analysis of PF-SIR (later on
PF) works in two steps. In a first step, so-called “importance
sampling”, the particles are weighted according to their dis-
tance to the observations (relative to the observation errors).
Then, a resampling of the particles is performed in order to
reduce the variance in the weights. The ensemble Kalman
filter (EnKF Evensen, 2003) has also been widely used for
snow cover data assimilation (e.g. Slater and Clark, 2006;
De Lannoy et al., 2012; Magnusson et al., 2014). However,
the PF is more adapted to models with a variable number of
numerical layers such as detailed snowpack models (Char-
rois et al., 2016).

The PF could be used in a spatialised context to propa-
gate information from observations as suggested by Largeron
et al. (2020) and Winstral et al. (2019). Contrary to the EnKF,
such applications are rare to date (e.g. Thirel et al., 2013;
Baba et al., 2018; Cantet et al., 2019). Indeed, spatialised
data assimilation with the PF is not straightforward because
of the degeneracy issue, i.e. only a few particles are repli-
cated in the analysis, often resulting in a poor representation
of the forecast uncertainties. Degeneracy can be mitigated by
increasing the number of particles, but the required popula-
tion scales exponentially with the number of observations si-
multaneously assimilated (Snyder et al., 2008). Furthermore,
an accurate representation of spatial error statistics by the en-
semble is essential for the success of the assimilation system.
To achieve that, the required ensemble size also scales expo-
nentially with the system dimension, an issue known as the
curse of dimensionality (Bengtsson et al., 2008). These is-
sues are severe drawbacks when considering applications of
the PF to large domains (i.e. implying a large number of ob-
servations and/or simulation points) with a reasonable num-
ber of particles (Stigter et al., 2017).

Several solutions exist to tackle PF degeneracy. A first ap-
proach is to inflate the observation errors in the PF. The tol-
erance of the PF is increased, leading to more particles being
replicated. This approach is based on the fact that observation
error statistics (including sensor, retrieval and representative-
ness errors) are usually poorly known and underestimated. It
can also be used as a safeguard to prevent the PF from de-
generating on specific dates when observations are not com-
patible with the ensemble. PF inflation was successfully im-
plemented in point-scale simulations of the snowpack (Larue
et al., 2018). When dealing with a large number of obser-
vations, inflation might lead to degeneracy or null analysis
(posterior equal to the prior). In this work, we generalise over
space the inflation of Larue et al. (2018), trying to ingest all
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the observations into a single analysis over the domain in a
so-called global approach.

PF localisation is a more widespread alternative, tackling
degeneracy by reducing the number of observations that are
simultaneously assimilated by the PF (Poterjoy, 2016; Poter-
joy and Anderson, 2016; Penny and Miyoshi, 2016; Poter-
joy et al., 2019; italic notations are taken from the review
of Farchi and Bocquet, 2018). In this method, the simulation
domain is divided into blocks whereby different PF analyses
are performed considering a local subset of observations (do-
main) based on a localisation radius. This makes it possible
to constrain the model in locations that are not directly ob-
served but with nearby observations. Contrary to global ap-
proaches, localisation has the disadvantage of producing spa-
tially discontinuous analyses (each point receives a different
analysis). This issue can be mitigated in various ways (Poter-
joy, 2016; Farchi and Bocquet, 2018; Van Leeuwen et al.,
2019).

The underlying hypothesis of localisation is that model
points are independent beyond a certain distance; i.e. con-
straining one point with the observation from a point that is
too distant would be meaningless and likely degrade the anal-
ysis performance (Houtekamer and Mitchell, 1998). How-
ever, in the case of small simulation domains or modelled
systems driven by large-scale coherent causalities, large-
scale correlations (relative to the domain size) may be phys-
ically sound, and defining a localisation radius may be a dif-
ficult task. In order to address this issue, we developed a new
localisation approach called k localisation, whereby localisa-
tion domains are based on background correlation patterns.

These developments were implemented into CrocO
(Crocus-Observations), an ensemble data assimilation sys-
tem able to sequentially assimilate snowpack observations
with a PF in a spatialised context. CrocO can be implemented
in any geometry (e.g. within a distributed (gridded) frame-
work or any irregular spatial discretisation). Here, we ap-
ply CrocO in a semi-distributed framework, which is a con-
ceptual spatialised geometry used operationally by Météo-
France for avalanche hazard forecasting (Lafaysse et al.,
2013; Morin et al., 2020). This framework is similar to many
topographically based discretisations in hydrological models
(e.g. Clark et al., 2015). This setup enables us to account
for the snowpack variability induced by the topography at
the scale of a mountain range through meteorological condi-
tions (elevation controls the air temperature and precipitation
phase) and the snowpack radiative budget (also dependent on
the aspect and slope angle) (Durand et al., 1993).

CrocO uses an ensemble of stochastic perturbations from
the SAFRAN meteorological analysis (Durand et al., 1993;
Charrois et al., 2016) to force ESCROC (Ensemble System
CROCus; Lafaysse et al., 2017), the multi-physical version
of the Crocus snowpack model (Vionnet et al., 2012). The
ensemble setup accounts for the major sources of uncertain-
ties in snowpack modelling (Raleigh et al., 2015) and was

Figure 1. 3-D schematic view of the semi-distributed geometry, for
which the numbers represent the altitudes of the elevation bands
(m). From left to right, the three different mountains represent the
flat, 20 and 40◦ slopes.

formerly described and evaluated in semi-distributed geom-
etry by Cluzet et al. (2020a).

Inflation and k localisation were implemented into CrocO.
Here, we present CrocO and evaluate how it addresses the
issues of reflectance observation sparseness and PF degener-
acy in the context of snowpack modelling. This problem is
divided into two scientific questions. (1) Is CrocO PF able to
efficiently spread the information from sparse observations
in space without degenerating? (2) Is the spatial informa-
tion content of reflectance observations valuable for snow-
pack models? We assess these questions by evaluating the
performance of CrocO in modelling the SWE when assimi-
lating synthetic observations of HS and reflectance covering
only a portion of the domain.

Section 2 presents the CrocO system, i.e. the ensemble
modelling system and the PF algorithms. Section 3 intro-
duces the evaluation methodology. Subsequently, Sect. 4 as-
sesses the performance of CrocO, and Sect. 5 discusses the
results. Finally, Sect. 6 provides perspectives and research
directions.

2 Material and methods

2.1 Modelling geometry

Simulations are performed in semi-distributed geometry.
Mountain ranges such as the Alps are discretised into so-
called massifs of about 1000 km2 to account for regional
variability of meteorological conditions. Within each mas-
sif, topographically induced variability is taken into account
by running the model for a fixed set of topographic classes,
e.g. by 300 m elevation bands, for 0, 20 and 40◦ slopes and
eight aspects (see Fig. 1). This set enables us to reproduce
the main features of snowpack variability (e.g. Mary et al.,
2013).

In this study, we focus on the Grandes Rousses, a sin-
gle massif in the central French Alps. This area of about
500 km2 is represented by Npts = 187 independent topo-
graphic classes (see Fig. 1). In the following, specific topo-
graphic classes are denoted as elevation_aspect_slope; e.g.
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Figure 2. Workflow of CrocO ensemble data assimilation system
with four members. x̂0: initial state at time t0, Fi : forcing, Mi : ES-
CROC member, Xb: background state, xi

b: background particles,

Xa: analysis, xi
a: analysis particles, y: observation, t1 and t2: obser-

vation dates.

1800_N_40 stands for a 40◦ slope with a northern aspect at
1800 m a.s.l.

2.2 CrocO ensemble data assimilation setup

The ensemble data assimilation workflow of CrocO is rep-
resented in Fig. 2. In the following, only a short descrip-
tion of the system and its elements is provided. More de-
tails on the ensemble modelling setup are available in Cluzet
et al. (2020a). Information about its implementation into the
Météo-France high-performance computing (HPC) system
can be found in Appendix B1.

2.2.1 Ensemble of snowpack models

Crocus is a detailed snowpack model coupled with the
ground and atmosphere in the ISBA land surface model
(Interaction Soil–Biosphere–Atmosphere). It is embedded
within the SURFEX_v8.1 modelling platform (SURFace
EXternalisée; Masson et al., 2013). The TARTES opti-
cal scheme (Libois et al., 2013, 2015) represents Vis–NIR
spectral radiative transfer within the snowpack, driven by
snow metamorphism (Carmagnola et al., 2014) and light-
absorbing particle (LAP; g g−1

snow) deposition fluxes (Tuzet
et al., 2017). Moreover, TARTES computes the snowpack re-
flectance with a high spectral resolution, making the model
directly comparable to observations. As such, TARTES is
both a physical component of Crocus and an observation op-
erator.

ESCROC (Ensemble System CROCus; Lafaysse et al.,
2017), the multi-physical ensemble version of Crocus, is
used to account for snowpack modelling uncertainties. A ran-
dom draw among 1944 ESCROC multi-physics configura-
tions was performed and used in all the simulations and de-
noted (Mi)0<i≤Ne , with Ne being the ensemble size (e.g. 40
or 160 members; see Fig. 2). These configurations are con-
sidered equiprobable before any data assimilation.

2.2.2 Ensemble of meteorological forcings

Meteorological forcings are taken from the SAFRAN (Du-
rand et al., 1993) reanalysis, wherein forecasts from the
ARPEGE numerical weather prediction (NWP) model are
downscaled and adjusted with surface observations within
the massif area. They are combined with MOCAGE LAP
fluxes (Josse et al., 2004) interpolated at Col du Lautaret
(2058 m a.s.l., inside the Grandes Rousses) to constitute the
reference forcing dataset. Before the beginning of the simu-
lation, spatially homogeneous stochastic perturbations (e.g.
on a given date, the same perturbation parameter is applied
across the whole domain) with temporal autocorrelations are
applied to this forcing to generate an ensemble of forcings
(Fi)0<i≤Ne with the same procedure as described in Cluzet
et al. (2020a). More details on the perturbation procedure can
be found in Appendix A. At the beginning of the simulation,
each forcing Fi is associated with a random Mi ESCROC
configuration, and this relation is fixed during the whole sim-
ulation.

2.2.3 The particle filter in CrocO

The PF is applied sequentially for each observation date to
the background state vectors (soil and snowpack state vari-
ables, denoted BG in Fig. 2). Its analysis is an ensemble
of initial conditions used to propagate the model forward.
The algorithm is implemented into SODA (SURFEX Offline
Data Assimilation; Albergel et al., 2017), the data assimila-
tion module of SURFEX_v8.1, enabling a continuous execu-
tion sequence between ensemble propagation and analysis,
as depicted in Fig. 2.

2.3 The particle filter equations

On a given observation date, we consider a set of observed
variables available at several locations, totalling Ny different
observations.

– Each member xi
b of the background state Xb is pro-

jected into the observation space using the observation
operator h. In our case, h is just an orthogonal projec-
tion of the Ny observations since HS and reflectance are
diagnosed within Crocus (see Sect. 2.2.1). The projec-
tion x̂i

b = hxi
b = (x̂i

k)0<k≤Ny corresponds to the mod-
elled values at each observed variable and/or point.

– These Ny observations are collected in the vector y =

(yk)0<k≤Ny . The associated observation error covari-
ance matrix R (Eq. 1) is diagonal (e.g. observation er-
rors are assumed independent):

R = diag(σ 2
k ,0 < k ≤ Ny), (1)

where σ 2
k stands for the observation error variance of

observation k and depends only on the type of observa-
tion yk (e.g. HS or reflectance).
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Figure 3. Impact of the inflation (N∗
eff = 7) vs. no inflation (N∗

eff =

1) in the 1800_N_40 topographic class (not observed) when assim-
ilating HS of 2015_q80 with the global PF. (a) SWE minimum–
maximum envelopes as a function of time, (b) spread and (c) AEM.
Dashed lines represent the assimilation dates.

The PF analysis usually works in two steps.

1. Compute the particle weights wi as the normalised ob-
servation likelihood for each particle (Eq. 2):

wi =
e− 1

2 (y−x̂i
b)

T R−1(y−x̂i
b)

∑Ne
k=1e

− 1
2 (y−x̂k

b)
T R−1(y−x̂k

b)
. (2)

2. Resample the particles based on their weights to build
the analysis vector Xa. Here, we apply the PF re-
sampling from Kitagawa (1996), which returns s =

(si)0<i≤Ne (si ∈ [1..Ne]), a sorted vector with duplica-
tions representing the particles to replicate.

A sample reordering step was added for numerical optimi-
sation with no expected influence on the PF behaviour (see
Appendix B2 for more details).

Two simple variants of this algorithm can be identified in
a spatialised context:

– for the global approach, perform one analysis over the
domain, putting all the available observations in y;

– for the rlocal approach, perform one analysis per model
point, assimilating only local observations if any. This
corresponds to a localised PF with a block and domain
size of 1.

2.3.1 Particle filter degeneracy

Degeneracy occurs when only a small fraction of the parti-
cles have non-negligible weights, resulting in a sample s for
which only a few different indices are present. It can be diag-
nosed from the weights using the effective sample size Neff
(Liu and Chen, 1995):

Neff =
1

∑Ne
i=1(w

i)2
. (3)

With a degenerate sample, Neff & 1, and with innocuous
analysis (all particles are replicated) Neff = Ne.

A first approach to mitigate degeneracy is to use inflation.
This heuristic method iteratively inflates R values until the
effective sample size is large enough. Here, we develop a
variant from the Larue et al. (2018) method, which does not
explicitly rely on Neff (Eq. 3). Consider applying an inflation
factor 1

α
to R (0 < α ≤ 1, with α = 1 being the value for no

inflation) and update Neff (Eqs. 2 and 3): Neff is naturally
a decreasing function of α (the more we inflate R the more
different particles will be replicated). The idea of our method
is to ensure that Neff exceeds a target value, N∗

eff. If Neff <

N∗
eff (degenerate case), we reduce α (inflate) until Neff = N∗

eff
using Algorithm 1. In the following, inflation is used in the
global and rlocal PF (see Sect. 2.2.3).

The core of Algorithm 1 is an hybrid bisection–secant
method to find the zero of f : α 7−→ Neff(α)−N∗

eff in [0,1].
It is inspired by the rtsafe algorithm (Press et al., 1992). The
guess function computes a new guess α2 to minimise f . Note
that in the unlikely case in which Algorithm 1 does not con-
verge, all the particles are replicated.
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2.3.2 k localisation

In the k-localisation algorithm, degeneracy is mitigated by
reducing the number of observations that are simultaneously
assimilated. The PF analysis is applied to each simulation
point sequentially. In order to build the analysis at point n,
background correlations Bv are computed for each variable
v (e.g. HS or reflectance) between n and all the observed
points. In a first step, all observations from points exhibit-
ing substantial background correlations (see below for the
select_k_biggest function) are used. If the PF degenerates,
the number of observations is progressively decreased un-
til degeneracy is mitigated. As earlier, degeneracy is consid-
ered mitigated when Neff ≥ N∗

eff. This way, we ensure that a
maximal number of observations has been ingested by the PF
without degenerating.

In the case of degeneracy, the observation point display-
ing the lowest correlation is ruled out. The PF weights are
computed (Eq. 2), and a new effective sample size is derived
(Eq. 3). While the target sample size is not exceeded, this
selection proceeds iteratively. The notation k in k localisa-
tion refers to the number, k, of retained observations for each
variable. This approach is similar to the EnKF localisation
algorithm whereby the localisation domain is based on back-
ground correlations (Hamill et al., 2001).

The detailed k-localisation algorithm is described in Algo-
rithm 2, for which the following points apply.

– For each variable, the select_k_biggest method returns
the domain dv of up to k observed points (named p)
that are the most correlated (in absolute value) with n

and match the following criteria, which were adjusted
in preliminary experiments.

– In xi
v , at least 10 % of members are defined in

both points. As reflectance is not defined when
there is no snow, spuriously high correlation can
be obtained when the computation of correlations
is based on a very low number of pairs.

– |Bv(n,p)| > 0.3. If the absolute correlation is too
low, it is likely that there is poor potential for the
distant observation to constrain the ensemble lo-
cally. In such a situation, it is better to reject the
observation from the local analysis. Negative en-
semble correlations can be physically sound, e.g.
after a rain-on-snow event between the HS of two
points separated by the rain–snow line. In such a sit-
uation, an HS observation of either point can hold
information on precipitation rates at both locations.
At the observed location, the PF will probably se-
lect the members with the most appropriate precip-
itation rates. This sample is likely to perform well
at both locations, so it can be used to constrain the
unobserved location.

– The notation d represents the collection of domains dv .

– The extract_points function extracts d from y, x̂i and
R.
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Table 1. Setup for the height of snow assimilation experiment.

PF algorithm Ne inflation N∗
eff HS σ 2

o (m2)

rlocal 40 on 7 1.0 × 10−2

global 40 on 7 1.0 × 10−2

klocal 40 on (if k = 1) 7 5.0 × 10−2

2.3.3 Particle filter and reflectance observations

Assimilating reflectance with the PF requires some adap-
tations. In Crocus, the TARTES optical scheme (see
Sect. 2.2.1) only provides snow reflectance, not all-surface
reflectance: no value for the surface reflectance is issued in
the absence of snow. Conversely, the weights of the parti-
cles are not defined in Eq. (2) if the members are snow-free.
These issues were roughly accommodated by setting the re-
flectances of snow-free members and observations to 0.2 (the
value of bare soil broadband albedo in the ISBA model) in
the PF for Eq. (2) (Sect. 2.2.3).

3 Evaluation strategy

Our strategy is to assess the performance of the analysis
by means of twin experiments, i.e. using synthetic observa-
tions (e.g. Reichle and Koster, 2003). The assimilation run
is compared to an identical run without assimilation (open-
loop run). Synthetic observations are extracted from a model
run and assimilated without adding any noise. These observa-
tions mimic real observations with perfect knowledge of the
true state. Analysis and open-loop experiments can therefore
be compared with this true state anywhere for any variable.
In a first step, this allows us to get rid of the error and bias
issues inherent in real observations (Cluzet et al., 2020a), a
reason why we did not add any noise to the synthetic obser-
vations as commonly done in twin experiments (Lahoz and
Menard, 2010). This way, we can focus on the following two
questions (see Sect. 1).

– Is CrocO PF able to efficiently spread the information
from sparse observations into space without degenerat-
ing?

– Is the spatial information content of reflectance a valu-
able source of information for snowpack models?

In order to disentangle these questions, we run baseline ex-
periments assimilating synthetic observations of HS, which
is strongly linked to SWE (Margulis et al., 2019). These ex-
periments are used to evaluate the PF algorithm efficiency
and as a baseline for synthetic reflectance assimilation ex-
periments evaluating the information content of reflectance.

Three different algorithms are evaluated: the global algo-
rithm (with inflation), the rlocal algorithm (with inflation)
and the k-localised algorithm klocal.

3.1 Experiments

3.1.1 Twin experiment setup

In our twin experiment setup, an open-loop ensemble is used
as a reference and to generate synthetic observations. Open-
loop simulations are carried out with CrocO for four con-
secutive winters (2013–2017) in the Grandes Rousses (see
Sect. 2.1) with 160 members. For each year, the average
of SWE over time and space is computed from each mem-
ber, and members corresponding to the 20th, 40th, 60th
and 80th percentiles of the ensemble are extracted to be
used as synthetic observations (denoted year_ppercentile,
e.g. 2014_p80). This method enables us to evaluate the ef-
ficiency of data assimilation experiments under contrasting
snow condition scenarios. Before any assimilation experi-
ment, the open-loop member (Fi −Mi couple in Fig. 2) used
as the true state is withdrawn and replaced by a new random
member.

The spatial coverage of synthetic observations was re-
duced, mimicking a typical reflectance mask. Synthetic ob-
servations were only available above an assumed constant
treeline at 1800 m (see Fig. 1) and not available for steep
slopes (over 20◦) and northern aspects (shadows, considering
a daily satellite pass around 10:00–11:00 UTC) for the whole
snow season. As a result, in this case, only 35 (over 187) to-
pographic classes are observed. Observation dates were cho-
sen corresponding to clear-sky days with a MODIS over-
pass, resulting in an approximately weekly frequency (e.g.
Revuelto et al., 2018; Cluzet et al., 2020a).

Reflectance is sensitive to the surface SSA and LAP (see
Sect. 1). A minimal set of two different bands is used, cor-
responding to MODIS sensor bands 4 (555 nm, sensitive to
SSA and LAP) and 5 (1240 nm, usually only sensitive to
SSA) (e.g. Fig. 2 of Cluzet et al., 2020a). Observation er-
ror variances are set to 1.0 × 10−2 m2 for HS and 5.6 × 10−4

and 2.0 × 10−3 for band 4 and band 5 reflectance, respec-
tively (Wright et al., 2014). These values are only initial val-
ues for the inflation in the global and rlocal algorithms. Since
the klocal algorithm only uses inflation if k drops to 1 (see
Sect. 2.3.2), observation error variances are multiplied by a
factor of 5 to enable the klocal algorithm to ingest observa-
tions from several points.

In order to study the ability of the global, klocal and rlocal

algorithms to spread information in space, a first set of exper-
iments is conducted assimilating HS with 40 members (see
the setup in Table 1). In order to evaluate the algorithms’
ability to assimilate reflectance (band 4 and band 5) a second
set of experiments is conducted with other things being equal
(Table 2). The ensemble size is increased from 40 to 160 in
a third set of experiments assimilating reflectance in order to
analyse the influence of a larger ensemble on the algorithm
performance (Table 3). Note in Tables 1–3 that N∗

eff is ad-
justed to the ensemble size in order to preserve Ne/N

∗
eff ≈ 5–

7 following Larue et al. (2018).
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Table 2. Setup for the first reflectance assimilation experiment.

PF algorithm Ne Inflation N∗
eff B4 σ 2

o B5 σ 2
o

rlocal 40 on 7 5.6 × 10−4 2.0 × 10−3

global 40 on 7 5.6 × 10−4 2.0 × 10−3

klocal 40 on (if k = 1) 7 2.8 × 10−3 1.0 × 10−2

Table 3. Setup for the second reflectance assimilation experiment.

PF algorithm Ne Inflation N∗
eff B4 σ 2

o B5 σ 2
o

rlocal 160 on 25 5.6 × 10−4 2.0 × 10−3

global 160 on 25 5.6 × 10−4 2.0 × 10−3

klocal 160 on (if k = 1) 25 2.8 × 10−3 1.0 × 10−2

3.2 Evaluation scores

The performance of the assimilation and open-loop run is
evaluated against the synthetic truth using several scores. The
absolute error of the ensemble mean (AEM) and ensemble
spread σ are two common metrics of ensemble modelling.
Given an ensemble Em,c,t of Ne members m in topographic
class c at time t and the corresponding truth τc,t , the ensem-
ble mean is described by Eq. (4):

Ec,t =
1

Ne

Ne∑

m=1

Em,c,t , (4)

from which we can compute the AEM (Eq. 5) and the
spread (or dispersion) σ (Eq. 6):

AEMc,t = |Ec,t − τc,t | ∀(c, t) ∈ [1,Npts] × [1,Nt ] (5)

σc,t =

√√√√ 1

Ne

Ne∑

m=1

(Em,c,t − Ec,t )
2,

∀(c, t) ∈ [1,Npts] × [1,Nt ], (6)

where Nt is the number of evaluation time steps.
The continuous ranked probability score (CRPS; Eq. 7;

Matheson and Winkler, 1976) evaluates the reliability and
resolution of an ensemble based on a verification dataset. An
ensemble is reliable when events are forecast with the right
probability and has a good resolution when it is able to dis-
criminate distinct observed events. For a reliable system, the
resolution is equivalent to the sharpness, which is the spread
of the produced forecasts.

If we denote Fc,t the cumulative distribution function
(CDF) and Tc,t the corresponding truth CDF (Heaviside
function centred on the truth value), the CRPS is computed
at (c, t) following

CRPSc,t =

∫

R

(Fc,t (x) − Tc,t (x))2dx

∀(c, t) ∈ [1,Npts] × [1,Nt ]. (7)

In this work, the CRPSc,t value is averaged over time alone
or time and space depending on the desired level of aggrega-
tion.

The CRPS can be decomposed into two terms following
Candille et al. (2015):

CRPS = Reli + Resol, (8)

where Reli quantifies the reliability of the ensemble. The
associated skill scores (CRPSS and ReliS) can be used to
compare the performance of an ensemble E to a reference R,
here the open-loop run:

CRPSS(E) = 1 −
CRPS(E)

CRPS(R)
. (9)

A skill score of 1 denotes a perfect score, 0 a neutral per-
formance and −∞ the worst achievable skill score.

4 Results

4.1 Preliminary results

4.1.1 Impact of the inflation

The inflation algorithm was introduced by Larue et al. (2018)
in point-scale simulations, but to the best of our knowledge,
it has never been applied in a spatialised context. Here we
evaluate its impact on the global algorithm by switching it
on and off. As an example, Fig. 3 shows the impact of in-
flation on SWE when assimilating the HS of 2015_p80 (as
defined in Sect. 3.1.1) member with the global algorithm in a
topographic class which is not observed (1800_N_40, as de-
fined in Sect. 2.1). This choice of member and topographic
class is representative of the impact of inflation on the global
algorithm.

In this case, both inflation (N∗
eff = 7) and no inflation

(N∗
eff = 1) lead to a significant reduction of the ensemble

spread compared with the open loop (Fig. 3b). From January
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2015 until the peak of SWE in mid-April 2015 (Fig. 3c), the
simulation with inflation has significantly lower errors than
without inflation and the open loop (10–20 vs. 60–80 and 30–
50 kgm−2, respectively), leading to better agreement with
the synthetic truth in the melting season (Fig. 3a). During the
melting season (mid-April 2015 onwards), the AEM of the
assimilation algorithms reaches a peak, coinciding with an
absence of observations. In comparison, the open-loop AEM
is smaller in the first part of the melting season, but the spread
is 3 times larger, making it almost uninformative. For sev-
eral analyses (21 November 2014 and 30 December 2014,
for example) the ensemble spread without inflation drops to
0, while its AEM strongly increases compared to the open
loop, suggesting that it is prone to degeneracy.

4.1.2 Correlation patterns

The klocal algorithm relies on background correlation pat-
terns to define localisation domains. To illustrate the poten-
tial of using such information in the PF, Fig. 4 shows the
correlation patterns of the 40-member open loop in an unob-
served topographic class (1800_N_40, red dot) in the mid-
winter (20 February 2015), several months after the snow
season onset. The assimilation variables exhibit strong but
contrasting correlation patterns. Band 4 (Fig. 4a) correla-
tions are generally high (0.6–1) and uniform. Many of the
observed classes (black dots) are strongly correlated with
the considered class. Similar results are obtained for HS
(Fig. 4c). Band 5 (Fig. 4b) exhibits substantial correlations,
in particular across slopes. However, they are more restricted
to the northern aspects, and only a few observed classes in the
eastern aspects are substantially correlated with the consid-
ered class. Note that negative correlations are evidenced with
some lower-altitude south-oriented topographic classes (e.g.
1500_S_40 in Fig. 4b). Finally, these patterns vary with time
but remain substantial along the whole season (not shown),
and increasing the ensemble size up to 160 leads to identical
patterns (not shown).

4.2 Results of the experiments

4.2.1 Assimilation of the height of snow

In a first step, assimilation of HS from the different synthetic
observation scenarios was conducted to serve as a refer-
ence for reflectance assimilation. Figure 5 shows the CRPSS
(Eq. 9, aggregated over time only) of the HS assimilation
with the three PF algorithms considering the synthetic mem-
ber 2013_q20 as a reference. Results for this specific syn-
thetic member were chosen here as a representative example
of the algorithm performance.

The rlocal performance compared with the open loop is
high (0.7–1) but limited to the observed classes (black dots)
since there is no spatial propagation in this algorithm. The
global and klocal algorithms have similar overall good per-

Figure 4. 20 February 2015 open-loop (40 members) Pearson corre-
lations between the domain points and the 1800_N_40 topographic
class (red dot) in band 4 (a), band 5 (b) and HS (c). Left bars show
the flat topographic classes in the associated elevation bands, while
pie plots show the 20 and 40◦ slope topographic classes, as depicted
in Fig. 1. Black dots denote the observed classes.

formance, managing to strongly reduce modelling uncertain-
ties except at very low altitudes (600–900 m) (skills of −0.2)
where snow does not usually last for more than a few weeks.

This behaviour may vary with the snow conditions, i.e. be-
tween the different assimilated synthetic observation scenar-
ios and from one year to another. In order to generalise this
result, Fig. 6 shows the CRPS and Reli (aggregated over time
and space) of the different algorithms for the 16 synthetic
observation scenarios and differentiated between observed
and unobserved classes. CRPS and reliability are consider-
ably reduced compared with the open loop (by a factor of
2–3 and 4–5, respectively) for all the algorithms in the ob-
served classes. This suggests that the PF manages to reduce
the spread of the ensemble while reducing its errors. In the
unobserved classes, the gain is almost as good (CRPSS of
0.6) except for the rlocal algorithm, which is identical to the
open loop as expected. No significant difference in skill is
obtained between the global and klocal algorithms.

4.2.2 Assimilation of reflectance

Optical reflectance is a promising assimilation variable due
to its extended availability in satellite observations, but as-
similation of raw reflectance products is not expected to con-
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Figure 5. CRPSS of SWE for the rlocal (a), global (b) and klo-

cal (c) algorithms assimilating the HS of 2013_p20 synthetic obser-
vation scenario. The score is computed for the whole snow season
for each topographic class. Black dots denote the observed classes.

strain bulk variables like SWE or HS as much as HS assim-
ilation. In order to assess this difference, we conduct assim-
ilation of reflectance only in the same setup as in Sect. 4.2.1
with all other things being equal.

Figure 7 shows the performance of the reflectance as-
similation for the 16 synthetic observation scenarios with
40 members (filled boxes). The different algorithms only lead
to moderate improvements in CRPS (median CRPSS of 0–
0.2, median ReliS of 0.2–0.4). Moreover, the global and klo-

cal algorithms frequently degrade the performance, suggest-
ing that this configuration is not robust.

Suspecting that 40 members are insufficient to properly
represent the multivariate probability density function of re-
flectance and other model variables, the ensemble size was
increased to 160 (hatched boxes), leading to marked im-
provements in the performance and robustness of the algo-
rithms (median CRPSS of 0.2, median Reli of 0.4–0.6). The
reliability of the global algorithm is significantly improved
compared to the klocal algorithm.

Figure 8 shows the spatial performance of the different al-
gorithms for member 2016_p60. Spatial patterns similar to
the HS assimilation are found. The rlocal performance is lim-
ited to the observed classes, while global and klocal manage
to improve the simulations across aspects and slopes. How-
ever, skill scores are lower than for HS (0.2–0.5), and the

Figure 6. Box plots of SWE CRPS (a, b) and Reli (e, f) for the
different algorithms for the 16 different synthetic observation sce-
narios, separated between observed (a, c, e, g) and not observed (b,

d, f, h) classes. Panels (c, d) and (g, h) show the associated skill
scores.

performance of all algorithms is poor in the classes that are
farther away from the observations, i.e. at lower elevations
(600–900 m) and in some of the high-altitude steep north-
ern classes (e.g. 2100_N_40 in Fig. 8b and c). Finally, note
that slight degradations of performance can sometimes be ev-
idenced, even in the observed classes, for all the algorithms
(e.g. in flat conditions at 3300 m in Fig. 8a for the rlocal, not
evidenced by this example for the other algorithms).

5 Discussion

In this section, we discuss the performance of CrocO PF al-
gorithms using the assimilation of HS and consider the po-
tential of the assimilation of reflectance in view of assimilat-
ing real data.

5.1 Tackling particle filter degeneracy

Because they assimilate several observations at the same
time, global and klocal approaches could be prone to PF
degeneracy. However, they almost never degrade the per-
formances when assimilating HS in a variety of years and
synthetic observation scenario percentiles (Fig. 6). This sug-
gests that inflating the observation errors (as demonstrated
by Larue et al., 2018, a result we have generalised in space)
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Figure 7. Same as Fig. 6 for reflectance with 40 members (filled)
and 160 members (hatched).

Figure 8. Same as Fig. 5 for the assimilation of the reflectance of
the 2016_p60 synthetic observation scenario.

and exploiting background correlations to reduce the num-
ber of assimilated observations are two efficient approaches
to tackle degeneracy.

In several cases though, strong degradation of the score
occurs when assimilating reflectance (Fig. 7), which could
either be attributed to an algorithmic failure in the PF or an
intrinsic lack of informativeness of reflectance in some sit-
uations. Based on the good behaviour of the algorithm with
HS, and because by construction, the global and klocal algo-
rithms cannot lead to a degenerate PF sample, we consider
this to come from the reflectance itself (this point will be fur-
ther discussed in the following sections).

Beyond tackling degeneracy, the global and klocal algo-
rithms also beat the rlocal approach on Reli and CRPSS
(Figs. 7 and 8). This suggests that assimilating multiple ob-
servations increases the quality of the PF analysis, even lo-
cally. More precisely, most of the improvement is due to the
Reli term of the CRPS. This property is crucial for ensem-
ble modelling because it ensures that events are forecasted
with the right frequency. However, this is not sufficient; e.g.
the climatology has perfect reliability but is not informative
at all. Successful assimilation manages to improve general
metrics such as the CRPS while improving the reliability. For
this aspect, the global and klocal algorithms have a satisfying
performance.

5.2 Propagating the observation information

Having sparse observations is one of the most challenging is-
sues for data assimilation systems of snowpack observations
(Magnusson et al., 2014; Largeron et al., 2020). In our par-
tially observed synthetic setup, the global and klocal PF vari-
ants developed here efficiently propagate the observational
information to the unobserved classes with a generally better
performance than the open-loop and rlocal approach in the
unobserved classes when assimilating HS (Fig. 5).

The algorithms’ performance is particularly good across
aspects and slopes, with only a few steep northern as-
pect slopes exhibiting neutral to poor performances (Figs. 5
and 8). This suggests that southern aspect and flat classes are
informative for the majority of the simulation domain. Con-
versely, considering that there are strong background corre-
lations between the western and eastern sides of the domain,
we can speculate that observing either side could yield over-
all good results.

In these figures, propagation of the information is lim-
ited towards lower elevation (600–1200 m). At such eleva-
tions, the snow cover is usually intermittent and a good
discrimination of the precipitation phase is crucial. The PF
does this indirectly through HS and reflectance observations
because rain causes a decrease in HS through compaction
and melting, while band 4 and band 5 reflectances also de-
crease because of quick isothermal metamorphism (i.e. the
surface SSA decreases). However, in our setup, the lowest
observed elevation is 1800 m; therefore, indirect observation
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of the rain–snow line positioning under this level is not possi-
ble, potentially explaining the moderate performance of the
PF there. In that case, assimilation of snow cover fraction
might be the best solution; since the snowpack is intermittent
there, the informativeness of this variable is maximal (Aal-
stad et al., 2018).

The global and klocal algorithms exhibit strong perfor-
mances when assimilating HS (Fig. 5). HS is closely linked
to the SWE (by the bulk density), and the interest of this
variable for data assimilation is clear (Margulis et al., 2019).
Here, it should be kept in mind that HS assimilation is used
as a baseline experiment to evaluate the algorithms and put
reflectance assimilation into perspective. The prescribed HS
observation errors (σ0 = 0.1 m) are not necessarily realis-
tic. They should be adapted to the nature of the HS sensor.
For example, spaceborne HS observation errors are typically
larger (e.g. Eberhard et al., 2020; Deschamps-Berger et al.,
2020). The assimilation of such observations would proba-
bly yield lower improvements.

Though the performance is lower for reflectance than in
our HS experiments, it remains considerable and in line
with previous results on point simulations (Charrois et al.,
2016), with an average score improvement of 20 %–40 %.
This study quite surprisingly suggests that reflectance infor-
mation can be spread from southern slopes to the northern
ones, although in many situations, the snowpack evolves in
different ways for these two aspects. For example, in sunny
conditions, melt and wet metamorphism will cause a drop
in reflectance on southern slopes, while reflectance will not
evolve much on northern slopes. Such a phenomenon could
explain why low background correlations between south-
ern and northern aspects are exhibited in band 5 (Fig. 4),
which is the most sensitive to surface metamorphism through
SSA. This example shows that band 5 reflectance observa-
tions on southern slopes are not necessarily informative for
band 5 reflectance values in the northern aspect per se on
every date. On average, however, the positive impact of re-
flectance observations suggests that they enable the PF to re-
ject the ensemble members with inadequate meteorological
forcings (snowfall or cloud cover would lead to wrong re-
flectance values) or multi-physical parameterisations (influ-
encing e.g. the surface metamorphism), thus correcting the
ensemble in the whole domain. These insights are consistent
with the study of Winstral et al. (2019), wherein in situ obser-
vations are used to correct meteorological forcing parameters
across large simulation domains.

Regarding the observations, our study has some method-
ological limits, however. Observation errors are very roughly
prescribed, and the assimilated observations are not cor-
rupted as usually done in synthetic experiments (e.g. Du-
rand and Margulis, 2006). These choices were motivated by
the fact that very little is known about the spatial correlation
of reflectance observation errors in a semi-distributed setting
(e.g. Cluzet et al., 2020a). In a recently submitted paper, the
impact of random and systematic errors in reflectance obser-

vations on point-scale assimilation experiments is thoroughly
investigated (Revuelto et al., 2021). Efforts to better charac-
terise the spatial structure of these observation errors should
be conducted in future work.

5.3 Towards the assimilation of real observations of

reflectance

Reflectance is an appealing variable for snowpack mod-
elling because of its sensitivity to snowpack surface prop-
erties (Dozier et al., 2009) and the abundance of moderate-
to high-resolution spaceborne sensors (MODIS, Sentinel-2–
3, VIIRS, Landsat) providing us with a handful of observa-
tions to assimilate, contrary to HS. The potential for assim-
ilation of SCF, which is retrieved from reflectances, is clear
(Margulis et al., 2016; Aalstad et al., 2018; Alonso-Gónzalez
et al., 2020). This study demonstrates the potential of the PF
to spread information and assimilate raw reflectances with
a positive impact (Sect. 5.2). Yet, assimilating real observa-
tions of reflectance is another challenge for two reasons.

First, spaceborne reflectance observations are generally
noisy and biased (e.g. Cluzet et al., 2020a). Satellite retrievals
could be improved in the future (Kokhanovsky et al., 2019;
Lamare et al., 2020), and Cluzet et al. (2020a) showed that
assimilating ratios of reflectance could be a workaround to
tackle this issue. In the near-infrared, the signal-to-noise ra-
tio of reflectance observations might be sufficient to con-
strain the surface microphysical properties (Durand and Mar-
gulis, 2007; Mary et al., 2013), whereas the required accu-
racy for visible reflectance retrievals to remain informative
on snowpack light-absorbing particles content is high (War-
ren, 2013), and it has yet to be proved whether either ap-
proach can achieve this requirement.

Second, in this twin experiment framework, spatial pat-
terns of the synthetic observations are likely compatible with
the ensemble since they come from the same modelling sys-
tem. This may not be the case in reality, therefore making
it more difficult to assimilate, and we refer to this issue as
model or ensemble realism.

We must assess the strengths and weaknesses of the global
and klocal approaches by addressing those two issues. The
global algorithm assumes that a global optimum can be found
across the whole domain; e.g. the information from the dif-
ferent observations is consistent and can be ingested in one
block by the PF. With this strategy, the degeneracy due to
the size of the observation vector is efficiently mitigated by
the inflation algorithm as discussed in Sect. 5.1. The klocal

approach considers only a fraction of the observation infor-
mation to be relevant to constrain the model state at a given
location. This algorithm tries to ingest as much information
as possible while rejecting observations coming from snow-
pack conditions that are too statistically different. As a con-
sequence, because we do not account for the real spatial pat-
terns of observation errors and because we work in a twin
experiment setup, a global optimum for the whole domain
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can exist and can be found by the global algorithm. This
might be a reason why it beats the klocal approach (Figs. 6
and 7). In the real world, from the model point of view, there
might be contradictory information among the observations
that would be difficult to disentangle with a global strategy.
The klocal algorithm could be more suited to this situation
because it looks for local optima based on the assumption
that background correlations are a realistic representation of
modelling errors.

These background correlation structures could be overes-
timated by the ensemble, and tests with real observations are
necessary. Strong band 4 correlations (Fig. 4a) might be due
to the spatially homogeneous perturbations of LAP fluxes
used to force the simulations (see Sect. 2.2.2), a key driver
of this variable, and because the same snow model config-
uration is applied for a given member across the simula-
tion domain. Several studies suggest that LAP fluxes vary
with elevation and other topographic parameters (de Maga-
lhães et al., 2019; Sabatier et al., 2020), but to date no reli-
able model of such processes has been developed for com-
plex terrain. In such a context, assuming uniform LAP forc-
ing seems a reasonable compromise. Strong and almost uni-
form HS correlations (Fig. 4b) might be caused by the spa-
tial homogeneity of precipitation perturbations and because
we do not account for e.g. wind drift, intra-massif hetero-
geneity of meteorological conditions and gravitational redis-
tribution of snow (Wayand et al., 2018). Despite this semi-
distributed framework suffering from obvious limitations, the
potential for high-resolution snowpack modelling (Vionnet
et al., 2020; Fiddes et al., 2019; Marsh et al., 2020) is ham-
pered by large errors of NWP models in mountainous areas
(e.g. Nousu et al., 2019).

In the future, improving the ability of ensemble correla-
tions to represent modelling errors could make the spreading
of information an even more challenging task with the klocal

algorithm. But significant potential should remain for infor-
mation propagation, as suggested by results at larger scales
(Magnusson et al., 2014; Cantet et al., 2019). The potential
decorrelation of topographic classes would also impact the
global algorithm. In an unobserved class, constraining the
state of the snowpack with information from areas that are
not linked to it would likely degrade the forecasting skill,
as suggested by the poor performance of the algorithms at
low altitudes (Figs. 5 and 8). In contrast, applying CrocO
over larger domains (e.g. distributed simulations or a collec-
tion of semi-distributed massifs) would probably see the klo-

cal algorithm outperform the global. The increased domain
size would make it less plausible to find a global optimum
over the domain, whereas spatial flexibility would be an as-
set of the klocal algorithm. Finally, in the case of modelled
coupling between simulation points (e.g. snow drift), which
was not the case here, the spatial discontinuities of the klocal

analyses (see Sect. 1) might be a drawback compared to the
global approach. Spatial discontinuities may also be revealed
as impractical for the interpretation of individual simulation

Figure 9. Same as Fig. 5 for the assimilation of HS of the 2016_p60
synthetic observation scenario in the 1200–2400 m flat classes.

outputs by snow forecasters. The klocal approach is likely
to reduce these discontinuities compared to the rlocal be-
cause similar locations will be treated with similar analyses
(i.e. based on similar sets of observations). This issue could
be partly mitigated by e.g. state–block–domain approaches
(Farchi and Bocquet, 2018).

5.4 Outlook for ensemble modelling and data

assimilation

In the snowpack modelling community, ensemble modelling
is a powerful tool to represent modelling uncertainties (Ver-
nay et al., 2015; Richter et al., 2020) and for data assimilation
(Essery et al., 2013; Lafaysse et al., 2017; Piazzi et al., 2018;
Aalstad et al., 2018). This study offers a novel approach
to extract valuable information on the snowpack spatial be-
haviour from spatial correlation patterns of the ensemble.
These patterns could be used to diagnose links between lo-
cations, transfer information between areas or assess the rep-
resentativeness of point simulations. More broadly, ensem-
ble background correlations have long been exploited in the
NWP and oceanographic communities to refine modelling
error representation, which led to significant improvements
in the data assimilation systems (Evensen, 2003; Buehner,
2005).

Ensembles might open a possibility for the assimilation of
point-scale observations or sparse remotely sensed observa-
tions into spatialised simulations of the snowpack, as sug-
gested by Winstral et al. (2019) and the present work. For in-
stance, there are numerous snow gauges and snow pit obser-
vations at ski resorts in the French Alps. These data could be
assimilated to correct the ensemble in spatialised simulations
(Winstral et al., 2019). The spatial pattern of assimilated ob-
servations in the experiments of Sect. 4 does not correspond
to the real-life spatial coverage of these kinds of observa-
tions. To give insight into their potential, we also applied our
methodology to assimilate only five synthetic HS observa-
tions with the global PF in the 1200 to 2400 m flat classes.
The results are shown in Fig. 9. The assimilation improves
the performance in all aspects and slopes. Naturally, this suf-
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fers from the same limitation as discussed in Sect. 5.3, not to
mention the limited spatial representativeness of in situ ob-
servations, but it shows some potential for this idea.

In that way, a more rational use of the available ob-
servations could be implemented towards a new ensemble
data assimilation system. In the present CrocO system, the
SAFRAN reanalysis only assimilates weather station infor-
mation (precipitation phase, temperature, wind) and makes
no use of the numerous snow observations available. Here,
snow observations are assimilated by the PF but are not used
to correct meteorological forcings (only snow variables; see
Fig. 2). In a new ensemble data assimilation system, within
CrocO, the SAFRAN meteorological analysis could be by-
passed, with the PF directly operating on both the meteoro-
logical and snowpack variables through a more comprehen-
sive and coupled strategy.

6 Conclusions

In this study, we introduced CrocO, a new ensemble data as-
similation system able to reduce the errors of a spatialised
snowpack model in locations that are not observed. The
ensemble is built by a combination of meteorological and
multi-physical ensembles to represent modelling uncertain-
ties. A particle filter assimilates observations of HS and re-
flectance. We developed two variants of the PF using infla-
tion or k localisation in order to spread the information from
partial observations of the system, without degeneracy of
the PF. In the framework of synthetic experiments, we have
shown in particular the following:

1. these variants are able to ingest numerous observations
without degeneracy;

2. an efficient spreading of the observational informa-
tion towards the unobserved areas is achieved with the
global and klocal approaches; and

3. reflectance assimilation leads to an overall 20 % im-
provement in CRPS and 60 % in reliability.

We suggest that this approach could be used in any spa-
tialised framework to assimilate sparse observations from
e.g. networks of in situ snowpack observations. Beyond
the snowpack modelling community, the inflation and k-
localisation strategies could help address the problem of par-
tially observed systems. This work is also a first step to-
wards the operational assimilation of reflectance in a semi-
distributed context. To reach that goal, biases of reflectance
retrievals should be studied and observation error structures
duly quantified. Snow cover fraction would be a good com-
panion variable to jointly assimilate with reflectances, requir-
ing the use of an appropriate observation operator. Extending
the simulation domain to several massifs would allow the ex-
change of information between neighbouring massifs with
the klocal algorithm.
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Appendix A: Stochastic perturbations of the forcings

The stochastic perturbation procedure of the forcings is intro-
duced in Sect. 2.2.2 and is identical to Charrois et al. (2016)
for the meteorological parameters and Cluzet et al. (2020a)
for the light-absorbing particle (LAP) fluxes. For a given date
and forcing variable, perturbation values are the same for
all the points in space (no spatial autocorrelation is consid-
ered), as SAFRAN semi-distributed massifs have a limited
spatial extent (about 1000 km2). Precipitation, incoming ra-
diation, wind speed and air temperature from SAFRAN are
perturbed with temporally autocorrelated stochastic param-
eters. The precipitation, incoming shortwave radiation, and
wind speed are perturbed with multiplicative noise. Long-
wave radiation and air temperature are perturbed with addi-
tive noise.

For meteorological variables, the perturbation vector V is
built as follows:

V (t) = φV (t − 1) + ε(t), (A1)

where φ = e−dt/τ , with dt the forcing time step, τ the decor-
relation time (h) and ε a normal law of mean 0 and vari-
ance σ 2(1 − φ2). Parameter values for each variable are de-
scribed in Table A1. The significantly high autocorrelation
time of precipitation, 1500 h, was tuned to roughly adjust the
ensemble spread to the observed intra-massif variability of
yearly accumulated precipitation. Note that the precipitation
phase is adjusted with the perturbed air temperature to ensure
physical consistency. Further details on the procedure can be
found in Charrois et al. (2016).

Regarding LAP fluxes, dry and wet black carbon and min-
eral dust deposition fluxes from MOCAGE are perturbed
with a random factor which is constant throughout the year.
Each member has a single multiplicative factor following a
log-normal law of mean µ and variance σ (see Table A2).
The mean of black carbon random perturbations was adjusted
based on comparisons between simulations and field obser-
vations at Col du Lautaret, a mountain pass within the con-
sidered SAFRAN massif.

Table A1. Perturbation parameters for the meteorological variables.

Variable Perturbation σ τ (h)

Precipitation (kg m−2 h−1) Multiplicative 0.7 1500
Shortwave radiation (Wm−2) Multiplicative 0.7 3
Wind speed (unitms−1) Multiplicative 0.6 100
Longwave radiation (Wm−2) Additive 24.5 W m−2 30
Air temperature (K) Additive 1.08 K 15

Table A2. Perturbation parameters for the LAP fluxes.

Variable µ σ

BC (wet and dry) (kgm−2 h−1) −2 1
Dust (wet and dry) (kgm−2 h−1) 0 1

Appendix B: Complements on the implementation

B1 Technical implementation and code performance

CrocO is implemented within the Météo-France HPC (high-
performance computing) environment, enabling us to fully
parallelise the ensemble (one core per member) and bridge
the gap with operational applications (Lafaysse et al., 2013;
Morin et al., 2020). This implementation is strongly parallel.
As an example, the execution time of a 1-year assimilation
run of 187 model points with 160 members on four nodes of
40 cores each lasts only 2 h. The PF is a lightweight algo-
rithm, and most of the computational burden is due to the
propagation of the ensemble and input/output (I/O). Also
note that no significant difference in execution time can be
noted between the different PF algorithms.

B2 PF sample reordering

As mentioned in Sect. 2.3, a reordering step was imple-
mented after the PF resampling from Kitagawa (1996) for
practical reasons.

– (3) From s, build s̃ such that all elements of the unique
values of s lie in the position given by their value. Ex-
ample with 16 particles:

s = [1,1,2,3,3,3,8,8,9,9,9,9,9,16,16,16]

⇒ s̃ = [1,2,3,1,3,3,8,8,9,9,9,9,9,16,16,16].

Indeed, I/O represents a bottleneck in the PF. When build-
ing the analysis Xa, the background Xb is already loaded in
memory. Since Xa is just a reordering of Xb columns based
on s, a reordering of s avoids building a copy of Xb. This
way, Xa is built by an online modification of Xb using two
pointers. Reordering is a growing consideration in the PF
community (Farchi and Bocquet, 2018).
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Code availability. The Crocus snowpack model (including all
physical options of the ESCROC system) and the particle filter al-
gorithm are developed in the framework of the open-source SUR-
FEX project. The source files of SURFEX code are provided at
https://doi.org/10.5281/zenodo.3774861 (Cluzet et al., 2020b) to
guarantee the permanent reproducibility of results. However, we
recommend that potential future users and developers access the
code from its Git repository (http://git.umr-cnrm.fr/git/Surfex_Git2.
git, last access: 15 April 2020) to benefit from all tools of code man-
agement (history management, bug fixes, documentation, interface
for technical support, etc.). This requires a quick registration, and
the procedure is described at https://opensource.cnrm-game-meteo.
fr/projects/snowtools/wiki/Procedure_for_new_users (last access:
4 January 2021). The version used in this work is tagged as
CrocO_v1.0.

Python software called CrocO_toolbox was specifically devel-
oped in order to pre-process, post-process and launch CrocO ex-
periments. It is available on GitHub (https://github.com/bertrandcz/
CrocO, release v1.0 of the master branch, last access: 4 May 2020)
along with documentation.

The article version of CrocO_toolbox is archived at
https://doi.org/10.5281/zenodo.3784980 (Cluzet, 2020). This
software strongly relies on two external Python projects ensuring
file management between the different steps of a simulation
and the interface with the Météo-France HPC system (including
parallelisation and data storage): snowtools and vortex. Their
sources are available at https://doi.org/10.5281/zenodo.3774861
(Cluzet et al., 2020b) (same archive as SURFEX) to guar-
antee the permanent reproducibility of results. However, as
for the SURFEX project and for the same reasons, it is rec-
ommended to access snowtools code from its Git repository
(https://git.umr-cnrm.fr/git/snowtools_git.git, last access: 4 May
2020). The version used in this work is also tagged as CrocO_v1.0.
The vortex project gathers all environment-specific codes of
Météo-France modelling systems relative to its HPC system. For
this project, only the sources specific to this article’s simulations are
provided. Common object inheritance is based on vortex version
1.6.1. The version used in this work is also tagged as CrocO_v1.0
in the vortex Git repository.

Because these software programmes could not be applied outside
the Météo-France HPC environment, CrocO Python software offers
the possibility to run CrocO simulations locally. This functionality
was not used here due to the high numerical cost of our simulations,
which required the use of the Météo-France HPC environment.

Data availability. Input and output data necessary to repro-
duce the simulations and figures in this paper are provided
at https://doi.org/10.5281/zenodo.3775007 (Cluzet et al., 2020c).
This archive includes the SAFRAN reanalyses (also available at
https://doi.org/10.25326/37, Vernay et al., 2021), MOCAGE forc-
ings, namelists, configuration files and spin-up files necessary to
reproduce the simulations. Raw model outputs can be provided on
request, but since they can be up to 500+ GB, only post-processed
simulation outputs are provided in this archive, along with scores
and scripts to reproduce the figures in the paper.
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4.1 Extended abstract

In the previous Chapter 3, we introduced two novel PF variants successfully propagating

information from observations of the heigh of snow across topographic conditions, in an

idealised setting. This study suggests (Fig. 9 of Sec. 3.2) that a handful of observations on

flat conditions could be used to constrain ensemble simulations over a whole semi-distributed

massif (representing an area of about 1000 km2). A similar result has been obtained with

real in-situ observations by Magnusson et al. (2014) and Winstral et al. (2019). However,

their studies relied on an exceptionally dense observation network, and it is yet to prove

that assimilation algorithms can take advantage of looser observational networks.

In this chapter, we applied the assimilation methodology proposed in previous Chap. 3 into

a network of 295 in-situ stations covering the French Alps, French Pyrenees, and Andorra,

from 2009 to 2019. This network exhibit strongly contrasted observation densities (Fig. 1

and 10 of the paper). Météo-France operational modelling chain and its open-loop ensemble

counterpart –built for the purpose of this study–, serve as references. A localisation radius

was introduced in the inflation (so-called "rlocal") and k-localisation algorithms (so-called

"klocal") as a way to search for error structures of different spatial scales, ranging from 17

km (the approximate radius of a SAFRAN massif) to 300 km (maximal extent of the Alps

and Pyrenees).

The operational deterministic (oper) and open-loop simulations exhibit contrasted inter-

annual (Tab. 1 and Fig. 6) and spatial performance (Fig. 5). The open-loop is slightly

negatively biased with respect to the oper, and exhibits higher RMSE. The different

assimilation runs succesfully avoid degeneracy, and achieve lower errors (RMSE, biases)

than the open-loop, but do not over-perform the oper run (Fig. 6). They are also

under-dispersive, regardless the localisation radius (Fig. 6). The largest localisation radius,

because it assimilates more observations, exhibit lower spread-skills, both for the rlocal and

the klocal. Intermediate localisation radius of 35 and 50 km seem more appropriate (slightly

lower RMSE).

Focusing on the klocal algorithm with a radius of 35 km, we show that this algorithm

quite efficiently reduces the bias-elevation relation denoted for the reference runs (Fig.

7). Spatially, it seems to particularly over perform the open-loop in the Central-Eastern

Pyrenees and Southern Alps (Fig. 8), while mitigated results are obtained in the Northern

Alps. In Fig. 9 (right), we show that the improvement with respect to the open-loop is

strongly linked to the open-loop bias, with significant improvements for negative open-loop

bias (about 10-15%) and significant degradation for the positive biases. With respect to the

stations elevation (Fig 9, left), results are significantly spread, (about 30% of the stations

have degraded performance), the highest average performance being reached in the range

1500-2000 m.
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The performance did not seem to increase with the density of available observations (Fig.

10). This is probably an artefact, explained in detail in Sec. 5.5.

To conclude with, this study showed that the PF variants we developed were successful

in assimilating potentially large numbers of real in-situ snowpack observations without de-

generating, which is a considerable advance with such an algorithm. Despite the different

assimilation configuration do not yield significant RMSE improvements over the 10 years,

they manage to reduce the open-loop bias, and yield on average, positive CRPSS of about

5-10%. Significant improvements are obtained in the most remote areas, suggesting that

even scarce observations of the snowpack can be beneficial for snowpack modelling. Further

improvements in the representation of snowpack variability factors such as wind drift pro-

cesses may be necessary to take advantage of the information content from observations in

the areas where simulation errors are presently the lowest.
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with CrocO ensemble data assimilation system
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Abstract. The mountainous snow cover is highly variable at all temporal and spatial scales. Snowpack models only imper-

fectly represent this variability, because of uncertain meteorological inputs, physical parameterisations, and unresolved terrain

features. In-situ observations of the height of snow (HS), despite their limited representativeness, could help constrain inter-

mediate and large scale modelling errors by means of data assimilation. In this work, we assimilate HS observations from

an in-situ network of 295 stations covering the French Alps, Pyrenees and Andorra, over the period 2009-2019. In view of5

assimilating such observations into a spatialised snow cover modelling framework, we investigate whether such observations

can be used to correct neighbouring snowpack simulations. We use CrocO, an ensemble data assimilation framework of snow

cover modelling, based on a Particle Filter suited to the propagation of information from observed to unobserved areas. This

ensemble system already benefits from meteorological observations, assimilated within SAFRAN analysis scheme. CrocO also

proposes various localisation strategies to assimilate snow observations. These approaches are evaluated in a Leave-One-Out10

setup against the operational deterministic model and its ensemble open-loop counterpart, both running without HS assimila-

tion. Results show that intermediate localisation radius of 35-50 km yield a slightly lower root mean square error (RMSE), and

a better Spread-Skill than the strategy of assimilating all the observations from a whole mountain range. Significant continuous

ranked probability score (CRPS) improvements of about 13% are obtained in the areas where the open-loop modelling errors

are the largest, e.g. the Haute-Ariège, Andorra and the Extreme Southern Alps. Over these areas, weather station observations15

are generally sparser, resulting in more uncertain meteorological analyses, and therefore snow simulations. In-situ HS observa-

tions thus shows an interesting complementarity with meteorological observations to better constrain snow cover simulations

over large areas.
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1 Introduction

Better monitoring the spatio-temporal variability of the mountainous snow cover is paramount to improve the forecasting of20

snow-related hazards (Morin et al., 2020) and anticipate downstream river flow (Lettenmaier et al., 2015). In mountainous ter-

rain, the snow cover inherits a high spatial variability from several factors. The topography controls on the precipitation phase,

air temperature, wind exposition and radiation fluxes (Durand et al., 1993; Oliphant et al., 2003). Wind drift redistributes snow

at every scale (Mott et al., 2018). Finally, vegetation traps the snow (Sturm et al., 2001) and also affects its net shortwave and

longwave radiation (Qu and Hall, 2014; Malle et al., 2019).25

Snowpack models are commonly used to derive snowpack properties in the mountains. Yet, their ability to represent snow

cover variability over large areas is inherently limited by large errors in their meteorological forcings (Raleigh et al., 2015),

and uncertain physical parameterisations (Essery et al., 2013; Krinner et al., 2018). In addition, explicitly accounting for pro-

cesses such as wind drift and snow-vegetation interaction is not yet affordable at large scales.

In that context, additional sources of information are needed to mitigate snowpack modelling uncertainty in the mountains.30

Observations from weather stations located in the mountains can be used to correct Numerical Weather Prediction (NWP)

model outputs. Dedicated downscaling and analysis schemes such as SAFRAN (Durand et al., 1993) or RhiresD interpolation

in Switzerland (Frei and Schär, 1998) can be used to efficiently reduce the large errors of the NWP models in the mountains,

in particular by the assimilation of local precipitation observations. Such approaches significantly improve snow cover sim-

ulations (Durand et al., 1999; Magnusson et al., 2014). These weather stations, however, are generally located below 1200m35

(Frei and Schär, 1998; Vernay et al., in review), and important errors in precipitations (for example) remain at higher elevations

(Magnusson et al., 2014).

Data assimilation of snowpack observations may help address this issue in complement to these observations. Remotely-sensed

retrieval of snow bulk properties (e.g. the height of snow (HS, m) and the snow water equivalent (SWE, kg m−2)) is a promising

wealth of snowpack observations for data assimilation (e.g. Margulis et al., 2019) but it is inherently limited by spatio-temporal40

gaps (De Lannoy et al., 2012), or only available at coarse resolutions (Andreadis and Lettenmaier, 2006). In-situ observations

of HS and SWE cover large mountainous areas and are operational on a daily basis in numerous countries (e.g. Serreze et al.,

1999; Jonas et al., 2009; Durand et al., 2009b; Cantet et al., 2019). Their potential to improve local simulations is unambiguous

as demonstrated by many studies (e.g. Magnusson et al., 2017; Piazzi et al., 2018; Smyth et al., 2019; Cantet et al., 2019).

However, the representativeness of such observations is limited by the snow cover spatial variability (Grünewald and Lehning,45

2015; Lejeune et al., 2019). The potential to transfer information into neighbouring areas is therefore a key question when

considering their potential added value for snow cover modelling over large domains (e.g. Slater and Clark, 2006; Liston and

Hiemstra, 2008; Gichamo and Tarboton, 2019). This question has long been debated. Cantet et al. (2019) successfully applied

a spatialised Particle Filter (PF) over a very large domain (Southern Quebec), and with a loose observation network, though

not in a rugged terrain, i.e. less spatial variability. In alpine terrain, Magnusson et al. (2014); Winstral et al. (2019) showed50

that enhancing snow cover simulations with in-situ snow observations from a dense network in Switzerland reduced modelling

errors over unobserved locations. It is yet to demonstrate that this approach can be applied over mountainous areas with a
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coarser in-situ observational coverage (Largeron et al., 2020).

Here, we investigate whether the assimilation of in-situ HS observations can improve simulations of the Météo-France opera-

tional modelling chain for snow cover monitoring and avalanche hazard forecasting in the vicinity of the measurement stations,55

and what is the most appropriate assimilation strategy for that purpose. We assess this in a network of in-situ HS observations

over the French Alps, French Pyrenees, and Andorra, with contrasted observation densities. We use CrocO, an ensemble data

assimilation system of snow cover modelling (Cluzet et al., 2021). CrocO is built around an ensemble version of the opera-

tional modelling system of Météo-France (Vionnet et al., 2012; Vernay et al., in review), accounting for modelling uncertainties

from the meteorological forcings (Charrois et al., 2016; Deschamps-Berger et al., in review) and the snowpack model itself60

(Lafaysse et al., 2017; Dumont et al., 2020). CrocO includes several versions of the Particle Filter tailored for the propagation

of information from observed into unobserved areas (Cluzet et al., 2021). These variants are used in a localised framework,

in which only observations coming from a certain radius around the considered location are assimilated (Van Leeuwen, 2009;

Penny and Miyoshi, 2016; Poterjoy, 2016; Farchi and Bocquet, 2018). Domain localisation is commonly used in the Ensemble

Kalman Filter (EnKF, (Evensen, 1994)) and PF communities (Van Leeuwen, 2009; Poterjoy, 2016; Penny and Miyoshi, 2016;65

Farchi and Bocquet, 2018). It is used to remove far-range unrealistic correlations in the EnKF (Houtekamer and Mitchell,

2001) and to circumvent the curse of dimensionality, causing the PF to diverge when too many observations are assimilated

simultaneously (so-called PF degeneracy) (Bengtsson et al., 2008). PF localisation proved to be efficient in several studies (e.g.

Poterjoy and Anderson, 2016; Potthast et al., 2019).

To assess the potential transfer of information, we opt for a leave-one-out approach (e.g. Slater and Clark, 2006), whereby the70

assimilation is performed considering neighbouring observations, but discarding any local observation. The assimilation per-

formance can be then evaluated using these independent local observations. If such potential transfer could be demonstrated, it

would mean that the assimilation method is able to improve simulations at a sufficient distance of available observations to be

efficient over the whole simulation domain. In other words, this network of observations could be used to constrain spatialised

snowpack simulations over the French Alps, Pyrenees and Andorra. Furthermore, the methodology could be applied to other75

areas with similar densities of observations.

To summarize, the following questions will be addressed in this paper:

– What is the performance of data assimilation compared with the operational and ensemble models?

– Can data assimilation manage to propagate information in space?

– What is the best localisation strategy for assimilation?80

– Could an increased observation density yield better results for assimilation?

The study area, observations, modelling chain and data assimilation scheme are described in Sec. 2. In Sec. 3, the evaluation

strategy and scores are presented. The results are presented and discussed in Sec. 4 & 5. We finally conclude and open research

perspectives in Sec. 6.
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2 Material and methods85

2.1 Study area and observations

The study area spans the French sides of the Alps and Pyrenees and Andorra. The French Alps culminate at the Mont-Blanc

(4810 m) and are higher and about two times larger than the French Pyrenees (culminating at Vignemale, 3298 m). Andorra

is a principality located at the center-East of the Pyrenees. In the following, for the sake of simplicity, we will refer to French

Pyrenees and Andorra as "Pyrenees", and to French Alps as "Alps".90

The winter climate of the Alps is contrasted between the North and the South. The Southern Alps are on average drier than

the Northern Alps (Isotta et al., 2014). The Pyrenees are very elongated with a strong longitudinal gradient between the humid

oceanic Western side to the drier Mediterranean Eastern side. The elevation of the winter snow line is around 1500 m in the

Pyrenees (Durand et al., 2012), and about 1200 m in the Northern Alps (Durand et al., 2009a). Finally, the inter-annual vari-

ability of the snow cover is marked in both massifs (Durand et al., 2009a; Gascoin et al., 2015).95

In this work, we perform snowpack simulations in a network of 295 daily HS observations stations. 217 stations are located

in the Alps, and 78 in the Pyrenees (of which 7 are in Andorra). This network is an aggregate of several data sources. Most of

the observations (144 stations) come from ski resorts, where HS is manually observed every morning during the commercial

season (mid-December to April in general). The second source is a network of climatological observations (77 stations) in100

which several meteorological parameters and HS are observed on a daily basis for the whole year. These stations are generally

located around populated areas or in ski resorts. A few sites (19 stations) come from various automated measurements in ski

resorts. Two networks of automated HS sensors were also used: Météo-France’s Nivôses (27 stations) and Électricité de France

(EDF) EDFNIVO stations (28 stations), the latter only from the winter season 2016-2017 on. These networks are located in

remote areas and at generally higher altitudes than the rest of the observations.105

The density of HS observations within each SAFRAN massif (Fig. 1, see Sec. 2.2.2 for more details on SAFRAN) is very

variable, from less than 0.5 daily observations per hundred km2 in the Extremely Southern Alps and Western Pyrenees to more

than ten times higher densities in the Mont-Blanc massif. It is mainly explained by the variable density of ski resorts. Although

the density of observations is generally lower than in the Alps, the Pyrenees exhibit two clusters of dense observations, in the110

Central Western part around Bigorre and in the Central eastern part close to Andorra. In the Alps, the density of observations

is especially high from the Northern to the South Central area. The Southern massifs, as well as the lower altitude western

massifs generally have fewer observations.

Fig. 2a-c shows the number of observation per month for two representative winters. It increases from 3000 during Fall to115

6000 in January-March (when the ski resorts are open), suggesting that the beginning and end of season are less well observed

both in terms of number of observations and spatial coverage. Fig. 2b-d shows the histograms of the available daily observa-

tions per 300 m-elevation bands for the same years. A notable increase in the observations count above 2100 m for the three
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Figure 1. Average daily observation density (per 100 km
2) within each SAFRAN massif, in the French Alps (top panel) and French Pyre-

nees/Andorra (bottom panel).

(a)

(c)

(b)

(d)

Figure 2. Number of daily observations per month (a-c) and per 300 m elevation bands (b-d) for winters 2011 (239 stations, a-b) and 2017

(250 stations, c-d) over the whole domain.
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last years can be explained by the inclusion of the EDFNIVO stations.

120

2.2 Ensemble data assimilation setup

The ensemble system consists in an ensemble of meteorological forcings generated by stochastic perturbations, forcing a mul-

tiphysics ensemble of snow models as described in Cluzet et al. (2020) and Cluzet et al. (2021). The total number of ensemble

members (also named particles in the PF context) was set to 160. An open-loop run (i.e. without assimilation) was performed

to serve as reference. Only a few changes were performed in the ensemble setup, which are described in Secs. 2.2.1 and 2.2.2.125

2.2.1 Ensemble of snowpack models

The simulation setup is based on a multiphysics framework representing the uncertainties of the main physical parameteri-

sations of Crocus (Lafaysse et al., 2017; Cluzet et al., 2020). However, in this paper, the advanced radiative transfer scheme

TARTES (Libois et al., 2013, 2015) was not used contrary to previous studies (Cluzet et al., 2020, 2021) because it requires130

Light Absorbing Particles (LAP) fluxes from chemistry transport models such as MOCAGE, ALADIN or GFDL_AR4 (Josse

et al., 2004; Nabat et al., 2015; Horowitz et al., 2020). To date, such products are not interpolated within SAFRAN geometry

and would require a specific treatment and validation, going much beyond the scope of this study. Instead, we opted for a

single parameterization of the snowpack radiative transfer, the ’B60’ option from Brun et al. (1992) presented in Lafaysse et al.

(2017), whereby the snow albedo of a layer is a function of its age.135

2.2.2 Ensemble of meteorological forcings

Meteorological forcings are taken from SAFRAN (Système D’Analyse Fournissant des Renseignements Adaptés à la Neige,

Durand et al. (1993)) reanalysis over the Alps and Pyrenees. SAFRAN is a surface meteorological analysis system adjust-

ing backgrounds from NWP model ARPEGE (Courtier et al., 1991) with local meteorological observations (air temperature,

pressure, precipitation, humidity) within so-called massifs of about 1000 km2 (see Fig. 1) and further downscaled to the sta-140

tions of our study. Over the considered period of time, 438 observation sites provided precipitation observations to SAFRAN

between November and April. These stations are mostly located at lower elevations (below 1500 m) as presented in Fig.4 of

Vernay et al. (in review). Among them, 164 of these sites correspond to locations with snow depth observations included in the

present study. SAFRAN analysis is issued separately for each massif in a semi-distributed geometry, i.e within 300 m elevation

bands, aspect and slopes, the main topographic parameters controlling the snow cover evolution. This analysis is subsequently145

downscaled into the specific topographic conditions (i.e. elevation, slope, aspect and local topographic mask) of the simulated

station (Vionnet et al., 2016). This means that a same analysis is applied to all the points within a same massif, and interpolated

consistently with their topographic parameters, while analyses for neighbouring stations located in distinct massifs will be
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different.

150

An ensemble of forcings was generated by applying stochastic perturbations in the same spirit as Charrois et al. (2016) but

with slight corrections in the implementation of the perturbations compared with Cluzet et al. (2020, 2021) as described in

Deschamps-Berger et al. (in review). For each member, perturbations are auto-correlated in time following an auto-regressive

process and are spatially homogeneous. The perturbation parameters were taken from Charrois et al. (2016). Precipitation

parameters were adjusted (i.e. multiplicative noise with auto correlation time τ = 1500h, and dispersion σ = 0.5) in order to155

obtain a spread-skill close to 1 for the open-loop run (see Sec. 4.1). We used these perturbed analyses as input for the snowpack

simulations at the stations.

2.2.3 The Particle Filter in CrocO

The Particle Filter used in this work is based on the version described in Cluzet et al. (2021). Only a brief description of the160

procedure is given here. The ensemble is updated sequentially with the PF on each assimilation date and propagated forward

until the following assimilation date. The PF is localised: each point receives a different analysis. Based on the comparison

of neighbouring simulations of HS with their corresponding HS observations, the PF selects a sample of the best ensemble

members. The idea is that if a particle is performing well against nearby observations, it should also be efficient locally (Farchi

and Bocquet, 2018). Different localisation radius are tested in this study ranging from 17 km to 300 km. Note that when a165

particle is selected by the PF, the full local state vector is copied: the local physical consistency of the variables is preserved.

Particle Filter degeneracy (see Sec. 1) may arise even with a reduced local domain size, and approaches to increase the PF tol-

erance may be required to overcome it. The localisation is complemented here by two different strategies described in Cluzet

et al. (2021), inflation and k-localisation, leading to the ’rlocal’ and ’klocal’ algorithms, respectively. If the initial analysis

is degenerated (i.e. the effective sample size Neff is inferior to a target N∗

eff ), the rlocal and klocal iteratively modify the170

assimilation settings to make it more tolerant, so that the PF analysis reaches a sample size of N∗

eff . The rlocal algorithm

performs an inflation of observation errors inspired by Larue et al. (2018). The klocal algorithm discards observations coming

from locations exhibiting the lower ensemble correlations with the considered location. It is important to note that inside a

localisation radius, the rlocal method assimilates all available observation stations whereas the klocal method only selects a

subset of observations from locations where the ensemble members are sufficiently correlated with the simulation members of175

the considered point.

2.2.4 Example

This section presents an illustrative example for the propagation of information with the localised PF. On December 3rd, 2009,

we perform an analysis at an unobserved point ploc (2135 m.a.s.l) using an observation from a nearby point pobs (2293 m.a.s.l,180

7 km away). The top panel of Fig. 3 shows the HS simulated by the 160 ensemble members at the two locations until the
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considered assimilation date. The observed HS at pobs is 0.87 m, above the ensemble median at this location (about 0.5 m).

The PF will likely select the particles that have above average HS at pobs. The bottom panel of Fig. 3 shows the particles’ HS

values at pobs as a function of their value at ploc. A correlation can be noted: the particles predicting the highest HS at ploc

usually also predict higher than average HS at pobs. It means that the ensemble that we constructed (see Sec. 2.2) considers185

that the modelling errors are linked: if there is an underestimated snowfall in early December at pobs, it’s likely that this is also

the case at ploc.

The localised PF performs an analysis for ploc by comparing the values modelled at pobs with the available observation, thereby

selecting the ’best’ particles at pobs, (bottom panel, in green). The marginal distribution of the ensemble at pobs (right of the

bottom panel, in green) is significantly sharpened compared to the background, and is much closer to the observation. At ploc,190

the distribution of the HS values of these particles is also sharper, and exhibits higher HS than before the analysis.

This example shows how the localised PF has used the non-local observation at pobs to infer information about the local unob-

served point ploc. This example can be generalized to the situation where multiple observations are assimilated simultaneously

as done in this study. It also highlights the implicit importance of ensemble correlations with distant locations: in the absence

of correlation, no information can be transferred. In such a situation, the klocal algorithm would discard the observations from195

the least areas, while the rlocal would keep them. Finally, note that if the ensemble correlation is dramatically wrong, (i.e.

positive correlation instead of negative correlation), the analysis will degrade the ensemble performance.

3 Evaluation strategy

This work aims at assessing the potential transfer of information between points in an HS observation network by means of200

localized data assimilation, and more specifically to address the questions presented in the end of Sec. 1. To demonstrate that,

the data assimilation system must over-perform its ensemble counterpart with the assimilation switched off (open-loop) and the

state-of-the-art operational deterministic snow cover modelling system from Météo-France (oper), which consists in a default

Crocus version forced by the unperturbed SAFRAN meteorological forcings (Vernay et al., in review).

3.1 Setup205

Assessing the ability of data assimilation to propagate information requires use independent data for validation. We opted for

a leave-one-out setup in which local observations are removed from the set of observations used in the local PF analysis. Only

weekly observations were assimilated, while all available observations between October 1st and June 30th were kept for evalu-

ation.

There are two key design parameters for the data assimilation system: the value of the localisation radius (large or small) and210

the choice of the PF algorithm (rlocal or klocal). Both exert a direct or indirect control on the number of observations simultane-

ously assimilated by the PF, and therefore, on its potential degeneracy and its ability to transfer information between locations.

Experiments respectively combining the rlocal and klocal algorithm with 4 different localisation radius were conducted: rang-
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(a)

(b)

(c)

Figure 3. Ensemble HS simulation at the observed location pobs (a) and the unobserved point where we want to perform the local PF, ploc (b).

The median (black), assimilation dates (dashed grey lines) and the available observation on December 3rd (red star, and probability density

function (PDF) in red) are also represented. Panel (c) is a scatter plot of the ensemble members at the two locations, for the background

(blue) and analysis (green, superimposed on the blue). Marginal distributions at the individual locations are added at the top and right side of

the plot. The observation PDF is shown on the right side, with a red band showing the ±1σ range around the observation.

ing from 17 km, (the radius of an idealised circular SAFRAN massif of 1000 km2) to 300 km (the maximal distance between

two observations inside the Pyrenees and the Alps) with two intermediate radius of 35 km and 50 km. The standard deviation215

of observation errors was set to 0.1 m, as a way to accommodate for measurement and representativeness errors.

Because the klocal approach does not use inflation (except in the case of degeneracy with only one observation), it is quite
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sensitive to the initial value of observation error. In case of degeneracy, the smaller the observation error, the fewer observa-

tions will be selected by the klocal algorithm. For this reason, the klocal algorithm was run with a multiplication factor of 5

on observation error variance (hence a fixed error standard deviation of 0.22 m) , allowing more observations to be assimilated220

simultaneously.

3.2 Evaluation Scores

Several metrics are used in this work to assess the performance of the oper, open-loop and assimilation runs with respect to HS

observations. From the ensemble Em,p,t of Ne members m at station p and time t, the mean can be computed using Eq. 1:

Ep,t =
1

Ne

Ne
∑

m=1

Em,p,t (1)225

The mean is a convenient way of synthesizing ensemble properties for evaluation, however, some artifacts can be observed with

bounded variables such as HS. On a decaying snow cover for example, the mean will not reach zero until every member has

melted. For this reason, the ensemble median Ẽp,t will be preferred in the following. From Ẽp,t, we can compute the Absolute

Error of the ensemble median compared with the observations op,t (AE):

AEp,t = |Ẽp,t − op,t| ∀(p,t) ∈ [1,Npts]× [1,Nt] (2)230

Where Nt is the number of evaluation time steps.

The ensemble bias is defined as the average difference between the ensemble median and the observations (Eq. 3):

bias =
1

Nt

1

Npts

Nt
∑

t=1

Npts
∑

p=1

Ẽp,t − op,t (3)

The Root Mean Squared Error of the median (RMSE) is computed from the AE, following (Eq. 4):235

RMSE =

√

√

√

√

1

Nt

1

Npts

Nt
∑

t=1

Npts
∑

p=1

AE2

p,t (4)

Bias and RMSE can be computed for the oper run (treating it as a single-member ensemble) in order to evaluate the median

performance, and can be taken over time and/or space by dropping the time/spatial mean in Eqs.3 and 4. These scores are not

sufficient because they reduce an ensemble to its median. The ensemble spread (or dispersion) σ (Eq. 5), defined as the average

variance, is a first metric to assess an ensemble reliability:240

σ =

√

√

√

√

1

Nt

1

Npts

1

Ne

Nt
∑

t=1

Npts
∑

p=1

Ne
∑

m=1

(Em,p,t −Ep,t)2 (5)

Reliability is a desirable property for an ensemble, it means that all events are forecast with the right probability regardless

of the probability value. The pdf of a reliable ensemble matches the actual pdf of observations over a large enough sample. We
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introduce the Spread-Skill (SS) as:

SS =
σ

RMSE
(6)245

Where sigma must be computed only in the dates and locations where the RMSE is computed. For a reliable ensemble, we

have σ ∼ RMSE (Fortin et al., 2015), i.e a spread-skill close to unity (necessary but not sufficient condition). This means that

the spread is on average a good estimate of the modeling error, which is useful to make decisions. Rank diagrams (Hamill,

2001) are the histogram of the position of the observation within the ensemble and enable to verify the reliability of an ensem-

ble more closely (e.g. Bellier et al., 2017). Their flatness is a stronger condition for an ensemble’s reliability than the SS=1.250

The Continuous Ranked Probability Score (CRPS, (Eq. 7) Matheson and Winkler, 1976) is an aggregate, ensemble score

evaluating the reliability and resolution of an ensemble based on a verification dataset. An ensemble has a good resolution

when it is able to issue different forecasts on different events (contrary to the climatology) (Atger, 1999).

If we denote Fp,t the Cumulative Distribution Function (CDF) and Op,t the corresponding observation CDF (Heaviside func-255

tion centered on the truth value), the CRPS is computed at (p,t) following:

CRPSp,t =

∫

R

(Fp,t(x)−Op,t(x))
2dx ∀(p,t) ∈ [1,Npts]× [1,Nt] (7)

The CRPS skill score (CRPSS) is commonly used to compare the performance of an ensemble E to a reference R. Although

CRPS can be computed from a deterministic run, R should be preferably an ensemble because comparing CRPS of determin-

istic and ensemble runs mainly illustrates the obvious fact that an imperfect deterministic run is a poor representation of a260

probability distribution. The following equation is frequently used:

CRPSS*(E,R) = 1−
CRPS(E)
CRPS(R)

(8)

In this formulation, if E is more skillful than R, CRPSS*(E, R) will be positive, with a perfect score of 1., while less skillful

scores range between −∞ and 0, resulting in an asymmetry between positive and negative scores (i.e. CRPSS*(E,R) =
CRPSS*(R,E)

CRPSS*(R,E)−1
). We introduce the new formulation:265







CRPSS(E,R) = 1− CRPS(E)
CRPS(R) if CRPS(E) < CRPS(R)

CRPSS(E,R) = CRPS(R)
CRPS(E) − 1 otherwise

(9)

With such formulation, CRPS(E,R) ∈ [−1,1] and CRPS(E,R) = - CRPS(R,E). These properties are important to visually com-

pare and average improvements (positive CRPSS) and degradations (negative CRPSS) of the CRPS.
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oper mean (m) oper RMSE (m) oper bias (m) open-loop RMSE (m) open-loop sigma (m) open-loop bias (m) openloop SS

2009 0.28 0.27 −0.02 0.28 0.28 −0.04 1.02

2010 0.16 0.22 −0.01 0.21 0.18 −0.03 0.85

2011 0.26 0.26 −0.05 0.28 0.26 −0.10 0.92

2012 0.44 0.37 −0.03 0.39 0.38 −0.11 0.98

2013 0.32 0.31 0.01 0.32 0.29 −0.06 0.92

2014 0.23 0.26 0.01 0.26 0.23 −0.03 0.89

2015 0.24 0.27 0.01 0.27 0.25 −0.01 0.92

2016 0.20 0.27 −0.02 0.27 0.19 −0.07 0.70

2017 0.41 0.41 −0.09 0.45 0.31 −0.16 0.70

2018 0.23 0.31 −0.07 0.33 0.19 −0.12 0.56

Table 1. Yearly performance of the reference runs, in terms of RMSE, bias, spread (sigma), and spread-skill (SS).

4 Results270

4.1 Performance of the reference runs

The operational deterministic run from Météo-France suffers from significant errors (Lafaysse et al., 2013), which we try to

reduce by means of assimilation. The open-loop run is a first step to represent modelling uncertainty using an ensemble. Tab.

1 summarizes the yearly performance of both simulations over the 10 years and the 295 stations. Oper and open-loop simula-

tions exhibit almost identical RMSE scores across all years, with an average error of about 0.2-0.3 m. Their RMSE significantly275

varies (from 0.21 m in 2010 to 0.45 m in 2017 for the open-loop) in proportion with the yearly average snow depth. Oper and

open-loop are slightly negatively biased, especially for the open-loop.

Regarding ensemble metrics, the open-loop exhibits Spread-Skills (SS) around 0.9-1 (SS is obtained by dividing the σ

column by the RMSE column in Tab. 1). SS ranges from a good balance between spread and RMSE in 2009 (SS=1.) to under-280

dispersive values (e.g. SS=0.55 in 2018) in the three last years. In Fig. 4, yearly rank diagrams exhibit higher frequencies in

their right part, meaning that observations lie preferentially in the upper half of the ensemble, consistently with the negative

biases exhibited in Tab. 1.

A map of the open-loop bias for each station is shown in Fig. 5. The bias is significantly negative in most locations, and its

spatial variability is high, with neighbouring stations exhibiting strong biases of opposite signs, e.g. in the Central Alps. Around285

Andorra and in the Southern Alps the bias is mostly negative. Some stations exhibit positive biases in the Central Alps, more

rarely in the Pyrenees.
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Figure 4. Yearly rank diagrams of the open-loop, binned into 20 bins (i.e. for a reliable ensemble, all bars should be on the 0.05 line). Values

on the x-axis correspond to the proportion of ensemble members under the observation.
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Figure 5. Map of the open-loop bias (m) on each station over the ten considered years (same layout as Fig. 1). SAFRAN massifs are outlined

in black. The green circle has a radius of approximately 35 km.
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Figure 6. Yearly scores of RMSE (top panel), bias (middle) and Spread-Skill (SS, bottom), for the assimilation experiments compared with

the oper and open-loop (ol) scores from Tab. 1. On the background are displayed the corresponding boxplots and medians (black bars).

4.2 Overall results of the assimilation experiments

In this work, we want to compare the performance of the rlocal and klocal algorithm, with different localisation radii (rang-290

ing from 17 km to 300 km) with the oper and open-loop runs. Fig. 6 shows the yearly values of RMSE, bias and SS for all

these runs. Results show no significant RMSE improvements for the assimilation runs compared with the references. RMSE

varies more from one year to another than between assimilation configurations (algorithm and localisation radii). The median

RMSE is slightly lower for the intermediate localisation radii of 35 km and 50 km. Compared with the open-loop, assimilation

runs significantly reduce the bias both in terms of median value from around -0.06 to about -0.03 and inter-annual variability.295

Compared with the oper run, the absolute bias of the assimilation runs is higher on average, but in some years, the bias is

significantly reduced (e.g. 2015, 2017, 2018).

In terms of SS, the assimilation runs exhibit values almost twice as small as the open-loop run which has a median value

around 0.85. The SS significantly decreases with an increasing localisation radii both for the rlocal and klocal algorithm.300

The assimilation strategy without localisation (radii of 300 km) appears as most efficient in reducing biases (lower absolute
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Figure 7. Notched boxplots of the daily difference between modelled and observed values (over the 10 years) of the oper (red), open-loop

median (blue) and klocal:35km median (black), by 500 m-wide elevation bands. Occurrences when the three differences are equal to zero

are excluded.

median, lower inter-annual variability) but yields the lowest spread-skills and highest RMSE of all the assimilation runs sug-

gesting that this approach is not the most desirable. The most selective localisation strategies (radii of 17 km) achieve the

highest SS, but their inter-annual performance variability is higher than for the other localisation radii.

305

4.3 Factors of variability of the assimilation skill

In the following, we will investigate the different factors influencing the skill variability of the assimilation runs. As described

in the previous Sec. 4.2, there are only small skill differences between the localised radii of 17-50 km, and between the

rlocal and klocal algorithm. For the sake of illustration, we decided to focus on the assimilation configuration yielding the low-

est median RMSE. This configuration, the klocal with a 35 km localisation radii, is further referred to as ’klocal’ configuration.310

4.3.1 Spatial variability

Fig. 7 shows boxplots of the daily deviation values (difference between the model median Ẽp,t and the observation op,t) for

the klocal and the reference runs grouped per 500 m elevation classes. The bias of the oper varies from slightly positive values

between 1000-1500 m to negative values in the range 1500-2500 m to finally a positive bias at the highest elevations. The315

open-loop exhibits a similar pattern, with a negative shift. The klocal algorithm seems to temper these elevation biases, with

lower biases (in absolute value) than the oper both at higher and intermediate elevations.

Fig. 8 shows the CRPSS of the klocal (using the open-loop as reference) at each station, over the ten years. Overall per-

formance is only slightly positive (blue), but with a non negligible minority of station showing negative CRPSS (red color)320

denoting a degradation of performance. Some "clusters" of good performance also appear, as in the Central-Eastern part of the
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Figure 8. Same as Fig. 5, showing the CRPSS of the klocal against the open-loop over the ten years.

Pyrenees (Andorra and Haute Ariège) or the Southern Alps, while the performance in the Central Alps and Central Western

Pyrenees seems poor.

Fig. 9a represents the CRPSS as a function of the station elevation. On average, the analysis exhibits positive CRPSS (be-325

tween 0. and 0.15) showing that it is more skilful than the open-loop. CRPSS values exhibit a significant spread (of about 0.2)

which results in a number of stations with a degradation of skill by the analysis (negative CRPSS). The average CRPSS varies

with the altitude, increasing from a very low skill (0.-0.03) in the range 1000-1500 m to a significant skill (0.1-0.15) between

1600-2000 m, and finally decreasing to about 0.05 above 2000 m.

Given the strong link between the bias of the open-loop reference and the elevation, the CRPSS was also plotted against the330

bias of the open-loop in Fig. 9b. The CRPSS exhibits significant averaged positive values (0.13-0.2) for strong negative biases,

under -0.1. The CRPSS varies from null performance around null bias to significant negative performance for positive biases

(-0.12).

The density of available observations was identified as an important factor for the success of the assimilation of in-situ335

measurements (Winstral et al., 2019; Largeron et al., 2020). We define the observation density as the average number of ob-
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Figure 9. Scatter plot of the CRPSS of the klocal run compared with the open-loop for each station over the 10 years, as a function of the

station elevation (left panel) and the open-loop bias at each station (right panel). The transparency of the points is related to the proportion of

available observations over the validation period. The black line denotes a 51-stations-wide CRPSS rolling average, with an orange shading

±1σ. This average is weighted proportionally to each station transparency.

servations available on each analysis date, divided by the area of the localisation disk. Fig. 10a shows the values of CRPSS

as a function of the observation density. CRPSS values are rather spread, and do not seem to vary much with the observation

density. On Fig.10 (bottom panel), the open-loop bias is also plotted against the observation density, showing that the highest

biases are obtained for the lowest observation densities, although there cannot be any causal relationship as HS observations340

are not assimilated in the open-loop.

4.3.2 Temporal variability

Timeseries of ensemble bias can also provide information on their nature and origin. Fig. 11 shows the timeseries of domain

wide ensemble median Ẽ against the bias and SS of the several runs in 2009. This year is representative of the different runs345

behaviours over the 10 years. The bias of the oper run is negative except in April during the melting season. During this year,

the bias of the klocal run is centered on zero from mid-January to the end of April. The open-loop is negatively biased for

the whole season. Consistently, the ensemble median is the highest for the klocal run. The most interesting feature here, is

that the biases of all the simulations are increasing (in absolute value) on several drops, coinciding with increases in Ẽ during

solid precipitation events (e.g. early December, first week of February, late March). The bias difference between the klocal350

and the open-loop (in mauve) shows the ability of the former to reduce this bias. This reduction is stepwise, with the strongest

reductions occurring on analyses (dashed vertical lines) during the accumulation period (e.g. early December, and the two first

analyses of January). Between the analyses, and during the melting season, the time evolution of the klocal bias follows the

time evolution of the open-loop bias, and the bias difference remains more or less constant.

The SS is an estimate of the ability of ensemble systems to assess their errors (see Sec. 3). Here, consistently with Sec. 4.2355

and Fig. 6, we note that throughout the season, the SS of the klocal is less than to 1 and significantly lower compared to the
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Figure 10. CRPSS of the klocal PF as a function of the average density of available observations (top), and open-loop bias as a function of

the average density of observations (per 100km2) (bottom)

open-loop. While the SS is similar in both simulations in the early season, klocal analyses seem to coincide with reductions of

SS, suggesting that the ensemble spread is more reduced than its error (RMSE) by the PF. In line with the assessment of the

reliability, Fig. 12 shows the rank diagrams of the klocal over the 10 years. Compared with the results of the open-loop on Fig.

4, these rank diagrams exhibit a U-shape, consistent with the significant under-dispersion of the klocal. Indeed, by summing360

the left and right bin frequencies, we observe that the observations lie about 20% of the time in the extremal bins of the rank

diagram (twice as much as for a reliable ensemble), and preferentially above, which is consistent with the residual negative

bias of the klocal simulation.

5 Discussion

In the following, we analyse the strengths and weaknesses of the operational and open-loop simulations and comment on the365

performance of the data assimilation algorithms in comparison to them.

5.1 On the performance of the reference simulations

The performance of the operational simulation has been regularly assessed until recently (Durand et al., 2009a; Vernay et al.,

in review). Overall, it is an accurate modelling system whose potential has been demonstrated in several recent climate studies

and projections (e.g. López-Moreno et al., 2020; Verfaillie et al., 2018). However, it exhibits a contrasted regional performance370
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(Vernay et al., in review, Fig. 13), and its errors are badly known at high altitude, due to the lack of observations (Fig. 12 of

Vernay et al. (in review)). This is a common issue in mountainous areas (Frei and Schär, 1998) and is detrimental for the use

of the operational chain for all applications (e.g. avalanche hazard forecasting, hydrology etc.).

Results from Tab. 1 shows that the operational version of the system, and its ensemble version, the open-loop, have comparable
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RMSE. The open-loop run is reliably accounting for its modelling uncertainties and errors, since its SS is slightly below unity375

over the ten years. This means that on average, the ensemble spread is almost a reliable estimate of the modelling error. This

feature could be valuable for forecasters (Buizza, 2008).

Tab. 1, and Figs. 6 and 11 show that the open-loop is negatively biased compared to the oper. This could be due to the cen-

tered stochastic perturbations (Charrois et al., 2016; Deschamps-Berger et al., in review), or a bias in the ESCROC multiphysics380

model configurations (Lafaysse et al., 2017). However, the oper model configuration is not expected to be perfectly centered in

the open-loop, as several configurations, such as the parametrization of surface heat fluxes, ground heat capacity or fresh snow

density strongly influence the resulting modelled snow depth. Strong increases in the oper and open-loop biases match with

precipitation events, and they are only partly compensated by the following snow settling period (see Sec. 4.3.2), suggesting

that it is likely that error compensations take place in the oper chain, between solid precipitation amounts, fresh snow density,385

snow compaction, and ablation processes as suggested by results from Quéno et al. (2016). Evaluation with co-located SWE

and HS data would help disentangle this situation (e.g. Smyth et al., 2019).

Biases of the oper and open-loop strongly depend on the altitude (Fig. 7) in a pattern that matches the evaluation from Vernay

et al. (in review), though on a smaller number of stations and considered years. They are unambiguously negative in the range

1500-2500 m, and more variable above, probably due to a higher snow cover variability, and depending on the considered390

region. In the range 1500-2500 m, this bias may be explained by higher wind speeds than at lower elevations, causing an

underestimation of solid precipitation amounts in gauges (Kochendorfer et al., 2017), and consequently in SAFRAN, as evi-

denced by (Quéno et al., 2016) during strong precipitation events.

5.2 On the PF strategies395

In general one of the primary motivations of the domain localisation is to prevent the PF from degenerating (Farchi and Bocquet,

2018). In our case, as evidenced by the reasonable performance of the rlocal with a 300 km localisation radii (e.g. therefore

simultaneously assimilating up to 217 observations in the Alps), domain localisation is not required against PF degeneracy

thanks to the mitigations (i.e. inflation or k-localisation) developed in Cluzet et al. (2021). Here, localisation is rather used to

adapt to the structures of errors of the reference run. From Fig. 5, it seems that open-loop bias is systematic and widespread.400

Then a large localisation radii, averaging a significant number of observations, seems a good option. However, we also see

regional structures in this bias, probably inherited from the oper (Vernay et al., in review). They are likely due to the fact that

SAFRAN analyses are performed at the scale of the massif. To address this type of error, reducing the localisation radii is

probably a better option. Finally, errors structures can depend on other parameters such as the elevation, and vary in time. In

this situation, the klocal approach might be more adapted, since it adjusts the observation selection on the model background405

correlation patterns. However, these background correlation patterns could sometimes be unrealistic, and therefore, misleading

for the algorithm.
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The klocal algorithm, by construction, selects observations from locations that are correlated in the model’s point of view.

However, because we apply spatially homogeneous perturbations to the meteorological forcings, strong large scale background410

correlation patterns are present in the open-loop, even between the Alps and Pyrenees (not shown). These strong, potentially

artificial, large scale correlation patterns could hamper the performance of the klocal PF, leading it to assimilate very distant

observation with no actual link with the considered location. Conversely, a completely random field of perturbations would

prevent the algorithm from propagating any information between locations (Magnusson et al., 2014; Cantet et al., 2019). Using

physically-based meteorological ensemble, such as PEARP (Descamps et al., 2015), used in Vernay et al. (2015) or AROME-415

EPS (Bouttier et al., 2016), or spatially correlated perturbation fields (Magnusson et al., 2014), could lead to more realistic

correlation fields, but this goes much beyond the scope of this study, as actually, domain localisation prevents the klocal from

assimilating too distant observations.

5.3 Overall performance of the assimilation compared with the references

Here, we discuss the ability of the proposed assimilation approaches (with several localisation radii) to succeed in reducing420

the modelling errors from the oper and open-loop shown in Sec. 5.1. Aggregated results from Fig. 6 show that none of the

proposed assimilation configurations enable us to significantly reduce overall modelling errors compared to the operational

run. However, they overcome the significant negative bias of the open-loop they originate from, but at the expense of a strongly

under-dispersive spread-skill. The bias reduction seems more efficient and stable (i.e. less variable from year to year) with the

rlocal than with the klocal, and with a larger localisation radii, which makes sense as the open-loop bias is widespread (e.g.425

Fig. 11) and both tend towards assimilating more observations at the same time. However, the RMSE is slightly larger for the

largest localisation radii, and the spread-skill is strongly reduced too.

There are two reasons why the assimilation could not outperform the operational run in terms of RMSE. First, its error may

be of a same magnitude than the natural variability of point scale observations and in that case, no added value can be extracted430

even from nearby observations, or similarly, there are too few observations to efficiently constrain modelling errors. Increasing

the observation density could be an option to overcome this issue. However, our results do not show a strong relationship

between assimilation skill and density (Fig. 10, see Sec. 5.5 later on). Another explanation could be that there still remain

systematic errors to correct, namely biases (as suggested by Fig. 7) but it is difficult to propagate information between loca-

tions. In an idealised case, (Cluzet et al., 2021) showed that the potential to propagate information from HS observations across435

elevations is limited. Here, modelling errors are not systematic and strongly vary with the altitude (Fig. 7). If the ensemble does

not account for this specific bias structure, an observation at an elevation affected by a positive bias could never help choose

the best member configuration for an elevation affected by a negative bias.
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5.4 On the difficulties faced by assimilation algorithms440

In this part, we comment the performance of the klocal with a localisation radii of 35 km assimilation configuration against

the open-loop. Although it does not outperform other configurations significantly, the klocal seems best suited to solve the

bias-elevation relation in the references and an intermediate localisation radii enables to adapt to local error structures (see Sec.

5.2).

The CRPS improvement is the highest for intermediate elevations coinciding with the highest open-loop negative bias (Fig. 9,445

the latter being consistent with Cluzet et al. (2021) who showed that the largest improvements were obtained in the presence

of systematic biases.

However, the klocal is strongly underdispersive, contrary to the open-loop which achieves a SS around 1, and therefore is

significantly less reliable as evidenced by the U-shaped rank diagrams in Fig. 12. As the CRPS is a measure of both accuracy

and reliability, it seems surprising to see that the klocal is more skilful than the open-loop in terms of CRPS, with average450

positive CRPSS around 0.06 (Fig. 9).

This under-dispersion is not satisfactory because it implies that the assimilation run is too confident about its simulated dis-

tributions. This is a general issue for all the presented assimilation strategies (Fig. 6). In additional experiments (not shown),

the assimilation frequency was reduced to 14 days, in order to let the ensemble spread increase between assimilation dates. It

seems a reasonable value according to e.g. Smyth et al. (2020) and Viallon-Galinier et al. (2020), and resulted in an increased455

spread, but was detrimental to the RMSE. We did not consider increasing the target efficient sample size, N∗

eff , which is set to

100. This value, is much higher than previous studies (Larue et al., 2018; Cluzet et al., 2021) and was chosen as preliminary

experiments (not shown) with values of 25 and 50 which gave an even lower SS. Finally, the spread of the stochastic pertur-

bations on the forcings could be increased, or statistically calibrated distributions of the main forcing variables (e.g. Taillardat

and Mestre, 2020) could be used.460

Nevertheless, obtaining a perfect spread-skill may be a challenging goal for our assimilation system. Under dispersion is

a common issue in the NWP (e.g. Bellier et al., 2017) and snow cover modelling communities (Lafaysse et al., 2017; Nousu

et al., 2019). The spatial scale of our ensemble modelling framework cannot account for two important processes affecting the

observations at the stations: the variability of the meteorological conditions inside SAFRAN massifs, and the snow redistribu-465

tion by wind (Mott et al., 2018). On the one hand, the variability of the meteorological conditions inside SAFRAN massifs is

limited to topographic parameters (including local masks) so that two distant stations with the same topography will receive

the exact same forcing (especially precipitation), and the snow redistribution by wind is not represented (Vionnet et al., 2018).

On the other hand, the spatial representativeness of observations is limited by plot-scale variability.

Data assimilation is known to partly compensate for such scale mismatches via error compensation. Error compensations are470

also possible between physical processes (Klinker and Sardeshmukh, 1992; Rodwell and Palmer, 2007; Wong et al., 2020). For

example, an ablation event in one observation can be compensated in the Particle Filter by selecting some members with a lower

precipitation factor or a compaction scheme with a higher settling (Deschamps-Berger et al., in review). This compensation
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immediately results in lower errors, but implicitly, the model does a wrong assumption, which results in being over confident,

thus with a lower spread. The only way to mitigate for this over confidence is to account for any relevant physical phenomenon,475

which is a desirable goal, but a real challenge when it comes to snowdrift by wind, local meteorology and plot-scale variability.

This goal is to date out of reach at the temporal and spatial scale of this study.

Despite these limitations, the assimilation shows some ability to correct weaknesses of the reference runs. The first one is

the significant bias above 1500 m in the reference run (Fig. 7). This bias probably originates from a lack of meteorological ob-480

servations in SAFRAN analysis at those altitudes (see Sec. 5.1 and Fig. 4 of (Vernay et al., in review)). In the range 1500-2000

m, the klocal has a significantly lower bias than the open-loop. There is a lower benefit at higher elevations, above 2000 m.

(Fig. 9), maybe owing to the fact that snow cover variability is higher, in particular due to stronger winds. There are also less

observations available, and a less clear bias at this altitude (there seems to be a transition from a negative bias to a positive bias),

reducing the odds of a successful assimilation. Unfortunately, such elevations are key for avalanche activity (Eckert et al., 2013;485

Lavigne et al., 2015). Another good feature of the assimilation is to improve the accuracy in areas where the references are less

accurate due to a lack of meteorological observations, namely Andorra and Haute-Ariège in the Pyrenees, and Ubaye, Haut

Verdon and Mercantour in the southern Alps (Fig. 8). Both features underline the complementarity between HS observations

and the meteorological observations already assimilated in SAFRAN.

490

5.5 Performance in relation to the density of observations

The density of in-situ observations has been pointed out as a critical parameter for the success of data assimilation (Largeron

et al., 2020). Winstral et al. (2019) managed to strongly reduce modelling errors with a high observation density, (about 1

observation site every 100 km2). Because of natural variability, they considered detection of systematic errors may be more

difficult with a lower density. Our study case explores a wide range of observation density (Fig. 10), from about 0.1 to 0.8495

observations every 100 km2 (accounting for the availability of observations). Yet, as mentioned in Secs. 4.2 and 5.1, the as-

similation performance relative to the open-loop does not decrease with a lower observation density. It may be due to the

fact that the assimilation is efficient only for strong open-loop negative biases (Fig. 9b), which seems the highest where the

station density is the lowest (Fig. 10b). In other words: the assimilation can not outperform the open-loop in the most densely

observed areas (e.g. in the Northern Alps, where the observation density is similar to the studies of Magnusson et al. (2014)500

and Winstral et al. (2019)) because the open-loop performance is already high there. This behaviour is explained by the fact

that the HS observation density is correlated with the density of precipitation observations used by SAFRAN to analyse the

meteorological forcings (see Fig. 13 and Sec. 2.2.2)). Both (at the exception of the Nivôse and EDF nivo stations for the HS

observations) are actually related to human implantation in the valleys and the presence of ski resorts. A higher weather station

density for SAFRAN is likely to result in more accurate meteorological forcings, thus reducing the bias of the reference runs,505

which finally leaves less room for improvement by the assimilation.
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Figure 13. same as Fig. 4 for the klocal.

This assumption may guide the strategies of definition of snow cover networks, not only in terms of observation density but

also in terms of localisation. Our study suggests that snowpack observations do not yield significant improvements in areas

where a sufficient amount of meteorological observations is already assimilated in the snowpack modelling chain (here, in510

SAFRAN). The assimilation of snow depth observations rather gives significant improvements at higher altitudes, and in areas

where model errors are larger, generally corresponding to areas where less meteorological observations are assimilated. This

result could be verified in future work, in either semi distributed or distributed frameworks, validated by e.g. satellite retrievals

of the snow cover fraction (Magnusson et al., 2014).

515

5.6 Towards the assimilation in a semi-distributed geometry?

The aim of this study was to assess the potential of the assimilation of in-situ HS observations to correct nearby simulations, in

view of applying it in a semi-distributed or distributed framework (Cluzet et al., 2021), in a similar strategy as Magnusson et al.

(2014) and Griessinger et al. (2019). We used CrocO (Cluzet et al., 2021), an ensemble system accounting for meteorological

and snowpack modelling uncertainties, using a Particle Filter to assimilate spatialised snowpack observations.520

The results are mitigated: an added value is observed only when initial modelling errors are large (Fig. 9b), similarly to results

obtained by Winstral et al. (2019). In the Northern Alps, Western Pyrenees and under 1500 m, the added value is null on aver-

age, and seems too insufficient to be of a real use. Over these areas, it seems that there is no room for improvement with data

assimilation of point scale HS only. There, simulation accuracy may be more limited by snow related processes such as wind

drift and uncertain physical processes resulting in snow cover variability, than by meteorological errors. The use of spatialised525

satellite retrievals (Margulis et al., 2019; Cluzet et al., 2020) to better constrain snow cover variability, or a finer correction of

meteorological forcings using radar precipitation data (e.g. Birman et al., 2017; Le Bastard et al., 2019) in combination with
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higher resolution NWP models and their ensemble counterparts, might be a solution.

6 Conclusions530

This study investigates the potential for localised versions of the Particle Filter to spatially propagate information from in-situ

observations of the height of snow (HS) in an ensemble of snowpack simulations. Compared with state-of-the-art deterministic

and ensemble open-loop approaches, over ten years, we demonstrate that substantial improvements are only obtained in loca-

tions and elevation ranges where the reference errors are the highest. These areas correspond to locations where the density

of meteorological observations, which are crucial for the correction of the meteorological forcings within SAFRAN analysis535

scheme, is the lowest. This demonstrates a good complementarity with the meteorological observation analysed by SAFRAN

to reduce the current errors of the operational chain.

Previous studies already demonstrated the added value of in-situ HS observations in a similar setting with a dense observation

coverage (Magnusson et al., 2014; Winstral et al., 2019). It was suspected that lower observation densities would reduce the

potential for assimilation. Here, we exploit data with a wide range of densities, generally lower than these studies, and find no540

sensitivity of the assimilation performance to the observation density. This finding may be specific to the error structures of the

reference simulations, which are correlated with the observation density.

Results also show that intermediate localisation strategies between 35-50 km of radii yielded slightly lower errors than a

strategy addressing large scale errors only (300 km), while lower radii (17 km) may be too small to capture the snow cover

variability where the density of observations is too small.545

Our results finally show a good complementarity between the HS observations and meteorological observations already as-

similated in the modelling chain, in particular in the most remote areas. This result is encouraging in the way of reducing the

weaknesses of the current operational modelling chain, and shows that even scarce in-situ snowpack observations could be

beneficial for snow cover modelling over large areas.

Code availability. The Crocus snowpack model (including all physical options of the ESCROC system) and the Particle Filter algorithm are550

developed inside the opensource SURFEX project. The source files of SURFEX code are provided at 10.5281/zenodo.5111449 to guarantee

the permanent reproducibility of results. However, we recommend potential future users and developers to access to the code from its git

repository (git.umr-cnrm.fr/git/Surfex_Git2.git, tag CrocO_v1.1). Experiments were pre/post-processed using CrocO_toolbox package. It is

available on Github (https://github.com/bertrandcz/CrocO_toolbox, release v1.1) along with a documentation.

However, this software could not be applied outside Météo-France HPC environment, CrocO python software offers the possibility to run555

CrocO simulations locally. This functionality was not used here due to the high numerical cost of our simulations, which required the use of

Météo-France HPC environment.
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5.1 General conclusion

In this manuscript, we assessed the potential for data assimilation of space-borne snowpack

shortwave reflectances and in-situ HS to improve the modelled snowpack variability. We

also investigated the problem of the spatial propagation of information from snowpack

observations in a rugged terrain. This work answers the three main scientific questions

shaping this manuscript:

Can we use observations of snowpack reflectance from satellites to better

constrain snowpack modelling over mountainous areas?

Previous work had already assessed the potential for assimilation of space-borne

shortwave snow reflectances (Mary et al., 2013; Charrois et al., 2016), but remained partly

inconclusive on the ability of such data to constrain snowpack models over large areas.

We considered that unrealistic representation of the LAP stratigraphy and imperfect

representation of modelling error might explain these limitations. We went one step further,

by benefiting from a realistic modelling of the LAP stratigraphy in snow (Tuzet et al., 2017),

and a more comprehensive method to account for modelling errors (Lafaysse et al., 2017).

The ensemble modelling system we built was the first to account for both meteorological

and modelling uncertainty. It seemed successful in representing the modelling error for the

reflectance when compared with in-situ observations. Aggregating reflectances retrieved

from MODIS observations into the modelling semi-distributed geometry seemed to reduce

their noise. However, these observations appeared to be biased. This bias may be caused by

an imperfect retrieval of the reflectance in a rugged terrain. This bias is difficult to evaluate,

and prevents from assimilating such data directly. We showed that ratios of reflectance were

not biased. Assimilation experiments with reflectance ratios were conducted in an idealised

framework. Results showed only slight improvements of the modelled SWE. Band ratios

seem to convey less information than the raw reflectances.

A good agreement between the time-variations of the ensemble and the observations in

a large diversity of topographic conditions was shown, at the exclusion of shadows, steep

slopes, mixed terrain and forested areas, where retrievals are not reliable. We concluded

that reflectance products had potential for a spatialised data assimilation, provided that

their bias would one day be reduced (Lamare et al., 2020). In any case, limitations in their

spatial coverage may last, leading to our second scientific question.

Can we propagate information on the snowpack state from observed areas to

unobserved areas with data assimilation?



158 Chapter 5. Conclusions and outlook

One of the major limitations of satellite and in-situ products is the presence of spatio-

temporal gaps. Because of the high spatial variability of snowpack conditions, it is not

straightforward that information can be propagated from observed to unobserved areas. We

investigated the potential for data assimilation to achieve such a goal in an idealised setting.

The semi-distributed framework accounts for the major sources of snowpack variability, at

the exception of wind drift, vegetation, gravitational redistribution and local meteorological

conditions. Synthetic observations of HS and reflectance were extracted from different

quantiles of SWE of an openloop run (i.e. without assimilation), and over 4 years, in

order to assess the performance of the assimilation under contrasted snow conditions. In

order to emulate the spatial coverage of realistic reflectance observations, observations were

assimilated only above the treeline, in flat and South facing gentle slopes only. Only a 1/6th

of the semi-distributed domain was observed.

Following Charrois et al. (2016), we used the Particle Filter, a sequential assimilation

algorithm well adapted to Crocus, because this model has a variable number of layers

(Magnusson et al., 2017). However, we had to find a solution to tackle PF degeneracy,

an issue arising when a large number of observations is assimilated simultaneously, or

when the prescribed observation errors are too low (Bengtsson et al., 2008). A common

practice with the PF is to mitigate PF degeneracy by reducing the number of observations

simultaneously assimilated. Domain localisation performs separate analyses at each

location, considering only neighbouring observations (Farchi and Bocquet, 2018). The

implicit hypothesis of domain localisation is that the similarity between locations decreases

with the distance. We tested this hypothesis by computing background correlation patterns

over the semi-distributed domain. Strong correlations between locations with distant topo-

graphic conditions, and conversely decorrelation of neighbouring locations, were evidenced.

Moreover, these correlation patterns vary with the date and the considered variable, with

e.g. the rain-snow line or a different metamorphism between shaded and sunny slopes. The

underlining hypothesis of domain localisation is not valid for snowpack modelling at these

modelling scales.

Therefore, we decided to use ensemble background correlation as a metric of similarity

between locations thereby introducing the k-localisation. K-localisation is an original idea

inspired on covariance localisation strategies from the EnKF. This approach mitigates

degeneracy by ensuring that a minimal sample population is produced by the PF analysis.

Iteratively, it rejects the observations coming from locations exhibiting the lowest ensemble

background correlation with the current location, until the sample population is large

enough. Similar locations may receive similar PF samples, but individual analysed members

may exhibit some discontinuities, which might be impractical (Van Leeuwen, 2009).
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For this reason, we also considered finding a global analysis assimilating all the observations

at the same time. To mitigate PF degeneracy in such a situation, we adapted the inflation

of observation errors proposed by Larue et al. (2018), in the spirit of accommodating the

observation errors until the PF sample population is large enough.

K-localisation and inflation were used to assimilate the synthetic observations of HS and

reflectance. We evaluated the different runs against the SWE of the synthetic members.

Results showed that the proposed assimilation strategies successfully mitigated the PF

degeneracy. HS assimilation yielded strong CRPS improvements in a large majority of

observed and non-observed areas, showing that information could be propagated across

different conditions of slopes and aspects. The propagation of information was present, but

more limited, across elevations. Our results also evidenced that propagation of information

on SWE through reflectances was possible. Reflectance assimilation indeed exhibited similar

patterns of improvement than HS assimilation, but with a lower amplitude.

These results were obtained in an idealised setting, whereby synthetic observations probably

followed the ensemble background correlations, since they were extracted from the openloop

run. A global optimum was therefore likely to exist and could be found by the inflation

algorithm. Similarly, the klocal was likely to choose the observations from the appropriate

locations, while in reality, background correlations might be misleading. Experiments with

real data were therefore necessary.

To what extent can we use in-situ observations of HS to improve snowpack

simulations in their neighbourhood?

In-situ observations of HS were a good candidate to constrain the modelled snowpack

variability by means of data assimilation. These observations are frequent, accurate, and

cover large mountainous areas but lack representativeness. Several studies demonstrated

their potential to detect and correct systematic errors in the meteorological forcings, thereby

improving neighbouring snowpack simulations (Magnusson et al., 2014; Winstral et al.,

2019). However, such approaches did not account for snowpack model and observation

uncertainties, and relied on a dense network of HS observations, or were applied in a

smooth topography (Cantet et al., 2019). Whether looser observation network could yield

significant improvements in a mountainous terrain, remained an open question. We applied

the inflation and k-localisation approaches in an HS observation network covering the

French Alps, Pyrenees and Andorra, over ten years. The density of observation ranged from

ten times lower to similar densities than the previous studies in rugged terrain.

This time, we combined inflation and k-localisation with a classical domain localisation
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with four different radius ranging from 17 km to 300 km. The possibility to detect

systematic errors of various spatial scales was thereby left open. Assimilation experiments

were conducted in a Leave-One-Out setup in which the local observation is excluded from

the analysis but kept for the evaluation. Results were mitigated, with an average CRPS

improvement of about 10% with respect to the openloop. The high spatial variability

of performance resulted in negative skill appearing for about a third of the stations.

Assimilation performance relative to the openloop was mostly linked to the openloop bias.

The best improvements were obtained for the highest negative biases of the openloop

simulation. The bias-elevation relationship present in the references was also successfully

mitigated by the assimilation.

Results also showed that observation density was not a dominant factor of the assimilation

performance compared to the openloop, in apparent contradiction with speculations from

Largeron et al. (2020). We suggested that our result is an artefact linked to the fact that

the performance of the reference run strongly decreased with the density of HS observations

(because this density is closely related to the density of meteorological observations already

assimilated in the openloop). This situation leaves more room for improvement to the

assimilation in the lowest density areas. Nevertheless, this experiments showed that HS

observations were a good complement of meteorological observations in the most remote

areas.

While no significant skill difference between the inflation and k-localisation could be

evidenced by these experiments, it seemed that the strategies with intermediate localisation

radius of 35 and 50 km yielded the best results. These scales may be a bit larger than

the spatial scales at which the meteorological analysis is operated by SAFRAN within the

modelling chain. Finally, the assimilation experiments exhibited strongly under-dispersive

Spread-Skills. A likely cause for that is wind drift, which may have impacted some of the

observation whereas it wasn’t taken into account in the snowpack modelling system.

5.2 Perspectives

5.2.1 On the observations

Regardless of their bias, the reflectances retrieved from MODIS observations at 250 m

resolution showed significant levels of noise, owing to intra-pixel variability and retrieval

errors. These noises would make it difficult to assimilate in a distributed model. The

aggregation into topographic classes we performed seemed a good way to overcome this

noise. However, the elected topographic aggregation may encompass a significant amount

of natural variability, an information which may be lost in the aggregation process. We
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could not estimate the relative part of retrieval errors and natural variability inside the

topographic classes. Recent progress in retrieval of reflectances (Lamare et al., 2020),

could make it possible to retrieve reflectance with a higher accuracy. Such methods could

be applied to higher resolution sensors such as Sentinel-2. This higher resolution could

make it possible to reduce retrieval errors by aggregation to 250 m, thereby preserving

most of the snowpack spatial variability while enabling to estimate observation errors (e.g.

Deschamps-Berger et al., 2020).

With our method, an accurate specification of observation errors may not seem crucial.

Indeed, the proposed PF variants can partly accommodate for badly specified observation

errors, thanks to their iterative process. However, when assimilating several observations

simultaneously, the influence of each observation on the PF analysis is determined by

its relative error. Misspecified observation errors make the PF very sensitive to noisy

outliers. Moreover, assuming that observations are independent (i.e. R is diagonal), as

we did, results in sharper analyses than when error covariances are acknowledged, a likely

cause for PF degeneracy. Methods providing full estimates of R, thereby acknowledging

for discrepancies in the quality of the retrieval, and possible correlated observation errors,

would therefore be useful. Lastly, reflectance and HS are bounded variables, and specifying

Gaussian observations likelihoods (Eq. 1.9 in Sec. 1.4.3) may be suboptimal in such a

situation (e.g. Bocquet et al., 2010).

We proposed a way to solve reflectance biases by computing band ratios. The informa-

tion content from band ratios seemed unclear. Efforts should be made to understand their

physical meaning in order to assess if they are worth further investigation. Another solution

would be to use the PF to estimate the reflectance biases, inspiring on other assimilation

algorithms (e.g. Dee, 2005; Eyre, 2016).

Another possibility would be to assimilate Top Of Atmosphere (TOA) radiances rather than

Bottom Of Atmosphere (BOA) reflectances. In other words, bringing the model to the obser-

vations, rather than the opposite. Modelled BOA reflectances would be converted into TOA

radiances using an inverse model of MODImLab, following (Lamare et al., 2020) and many

other studies in the microwave spectrum (e.g. Durand et al., 2009). This option would have

the major theoretical and practical advantage of treating the observation operator (here,

MODImLab’s inverse) as is: an uncertain model used to convert the modelled variables into

observed ones. It might be then possible to determine and mitigate the origin of the bias

between observed and modelled variables within this observation operator. Furthermore,

this would be in line with the strategies of international weather prediction centres such as

ECMWF which aim at a "all-sky, all-reflectance" strategy.



162 Chapter 5. Conclusions and outlook

5.2.2 On the propagation of information with the PF variants

Our work demonstrated that information from HS and reflectance can be propagated across

topographic classes, in an idealised framework. This opens a way to solve the issue of snow

observation scarceness in a rugged terrain. In the snow community, this method could be

applied to other bulk or surface snow observations affected by similar gaps. For example,

space-borne or airborne stereoscopic HS observations which are limited by clouds, or radar

retrievals of SWE or liquid water content, suffering from geometric distortions in a rugged

terrain (Veyssière et al., 2019; Marin et al., 2020). Local studies working with ground

based LIDAR or drone stereo-photometry, generally suffering from topographic masks, may

benefit from such approaches too. Beyond the snow modelling community, such perspectives

apply to any scientific field using spatialised observations in a rugged or complex terrain

(e.g. glaciology (e.g. Dumont et al., 2012; Davaze et al., 2018) , mountain ecology (e.g.

Dedieu et al., 2016) and permafrost (e.g. Zwieback et al., 2019)).

Our work proposed two novel and efficient approaches to tackle PF degeneracy:

inflation and k-localisation. Inflation replaces a parameter, the observation error (only

used as an initial value), by another: the target effective sample size, so-called N∗
eff . This

transformation could be convenient for many fields in the geosciences in which the spatial

and temporal variations of observations errors (including representativeness) are poorly

known. Inflation can be applied at the point scale, on a local or whole domain, however its

underlying assumption is that all the observations in the considered domain are meaningful

for the analysis. K-localisation is suited to problems in which the definition of localisation

domains is not trivial, because correlations are driven by other factors, e.g. topographic

parameters. It might show its usefulness to a wide range of problems in a mountainous

terrain.

K-localisation has some limitations, however. Like any other PF localisation algorithm

–localised inflation algorithm included– it produces discontinuous analyses (e.g. Fig. 3

of Farchi and Bocquet, 2018). The posterior particles are made of the juxtaposition of

potentially very different prior members. This behavior had no consequences in our setup

since points are independent, but future work implementing snow mass transport by wind

between locations might have to account for that. However, we expect the k-localisation to

produce similar analyses (i.e. PF samples) for similar locations (because they are expected

to assimilate a similar set of observations), thereby reducing the odds for discontinuities

to arise. Several solutions exist to reduce the discontinuities, e.g. using optimal transport

theory or a state-block-domain localisation (Farchi and Bocquet, 2018).

K-localisation is also sensitive to the initial value prescribed for observation error: the lower

the value, the lower the number of observations it will keep for the analysis. Hybridization
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with the inflation algorithm might be a convenient way to solve for this problem, by

e.g. first selecting the relevant observations, and then applying inflation on it. Because

K-localisation requires the computation of background covariances (a novelty for the PF,

which could be seen as a breach into the PF non-gaussianity), one could argue that an

imperfect representation of the background correlations in the PF would result in badly

selected observation locations, and therefore, poor analyses. That is true, but indeed, poor

representations of background correlations (equivalently, modelling error) actually affect

every other ensemble or deterministic assimilation algorithms, the standard PF included

(e.g. Sec. 1.4.3).

5.2.3 Representation and reduction of modelling errors

Several perspectives exist in the way of improving the representation of modelling error.

Compared with our stochastic perturbations, using physically-based meteorological ensem-

bles such as PEARP (Descamps et al., 2015), EFS (Molteni et al., 1996), or the higher

resolution PEAROME (Bouttier et al., 2016) would improve the physical consistency

between the forcing variables, and introduce a dynamic modulation of these uncertainties.

More importantly, it would elegantly introduce a realistic representation of spatial corre-

lation of meteorological error, though ways also exist with stochastic perturbations (e.g.

Magnusson et al., 2014; Cantet et al., 2019). However, they seem to date to suffer from

under-dispersion in mountainous area (Nousu et al., 2019), which could be detrimental for

assimilation with the PF. Spread adjustment through statistical post-processing techniques

may be a convenient avenue (e.g. Taillardat and Mestre, 2020).

The representation of several snowpack processes could also be improved. In particular, the

use of spatially distributed LAP fluxes is encouraging in the way of a finer representation

of the snowpack shortwave radiative budget and the associated errors (Réveillet et al., in

prep). Significant efforts should be conducted to improve the parameterization of several

uncertain physical processes (e.g. turbulent fluxes – essential to the mass and energy budget

–, compaction, wet metamorphism, liquid water percolation, soil-vegetation-snow-canopy

coupling, etc.). Since such improvements are limited by a lack of sufficient observations

(Menard et al., 2020), data assimilation will have to cope with such errors for many years.

However, important phenomenon were ignored in our framework and hamper the represen-

tation of modelling error. Accounting for wind drift may come first, and probably requires to

make the leap from the semi-distributed to a higher resolution. Such a progress would also

allow for a better representation of the incoming and outgoing radiative fluxes, accounting

for e.g. terrain shading and re-illumination effects. It would furthermore improve the model

representativeness.
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Other limitations are inherent to the semi-distributed geometry which framed our work.

Meteorological forcings do not account for intra-massif variability, and are discontinuous

at the massifs borders. This discontinuities are unrealistic, and partially prevent from the

propagation of information across them. In the view of jointly assimilating meteorological

and snowpack observations, and given the important information content that in situ

snowpack observations handle on meteorological variables (e.g. Magnusson et al., 2014;

Winstral et al., 2019) breaking such barriers would probably be also a good step forward.

5.2.4 Assimilation strategies

While recent progresses in atmospheric and land surface modelling have been been

substantially driven by data assimilation (Rabier, 2005), data scarcity and intrinsic high

variability stems for the progress of meteorological and snowpack operational modelling

in the mountains. One day, ground-breaking observations such as airborne or satellite HS

observations (e.g. Painter et al., 2016; Deschamps-Berger et al., 2020), or reliable spatialised

reflectance observations (Lamare et al., 2020), may be available operationally over whole

mountain ranges, and would certainly yield significant advances in modelling capability (e.g.

Margulis et al., 2019; Deschamps-Berger et al., in review). Recent work (Li et al., 2017),

also showed that coarse passive microwave products could be used to reliably constrain

distributed snow models in a rugged terrain which could represent a significant advance. In

the meantime, any already available piece of information should be taken advantage of, and

snowpack modelling chains must be prepared to assimilate spatialised information. Both

objectives require to make the leap into a higher resolution, explicitly spatialised modelling

system, assimilating in-situ and spatialised snow and meteorological observations.

Indeed, the distributed geometry is probably the best suited to benefit from radar-derived

precipitation fields (Birman et al., 2017), and satellite-derived SW and LW incoming

radiation fluxes (Quéno et al., 2020b). In a spatialised geometry, these observations

could be directly used to analyse the forcings fields. Of course, subsequent downscaling

meteorological models into a resolution relevant to snowpack modelling, will be a challenge

(e.g. Vionnet et al., 2019).

Meanwhile, in-situ snow observations often handle precious information on the past

meteorological conditions and snowpack modelling errors in remote areas, but are to date

too rarely exploited. A way must be found to spatially exploit it somehow, in the spirit

of Winstral et al. (2019) (i.e. with severe assumptions on the snow physics), or with the

method we proposed in Chap. 4 which may be prone to error compensation (e.g. Smyth

et al., 2019), but lets it possible to reduce both meteorological and snow modelling errors.

Grasping information from SCF information in a distributed modelling framework is also
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definitely an achievable task with the PF (Baba et al., 2018) and would surely benefit to

the simulations. Information from ground-based webcams (Portenier et al., 2020) could be

assimilated as well in a distributed framework. As we see, there are exciting opportunities

at reach.

To conclude, even though the available observations on meteorological and snowpack

variability may seem scarce, data assimilation should be able to improve snowpack models

by comprehensively ingesting it. Considering all available snow observations just as they are

–pure and beautiful– may reveal some of snow’s secrets in a near future. Hopefully not all.
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Conclusion et perspectives en français

Conclusion générale

Dans ce manuscrit, nous avons évalué la capacité de l’assimilation d’observations de

réflectance satellitaires ainsi que de hauteurs de neige (HS) à améliorer la modélisation de

la variabilité du manteau neigeux en montagne. Du fait de la parcellarité des observations

disponibles, cette question nous a amenés à nous intéresser à la propagations spatiale de

l’information sur le manteau neigeux en terrain complexe. Notre travail a répondu aux trois

questions scientifiques présentées en introduction :

• Les observations de réflectances satellites de la neige permettent-elles de

mieux contraindre la modélisation du manteau neigeux en montagne ?

Plusieurs études avaient déjà étudié le potentiel pour l’assimilation de réflectances

satellitaires dans le visible-proche infra-rouge (shortwave, SW), mais des zones d’ombres

demeuraient sur la capacité de telles observations à être assimilées sur de grandes étendues

(Mary et al., 2013; Charrois et al., 2016). Nous avons considéré qu’il était nécessaire de

mieux représenter l’influence des impuretés optiquement actives (LAP) et les incertitudes

de modélisation. Nous avons mis en œuvre de telles avancées, en bénéficiant de la récente

modélisation explicite de la présence de LAP au sein du manteau neigeux (Tuzet et al.,

2017), ainsi que d’une méthode permettant de caractériser les erreurs de modélisation du

manteau neigeux de manière plus complète (Lafaysse et al., 2017). Nous avons ainsi bâti

le premier système de modélisation ensembliste tenant compte des incertitudes liées aux

forçages météorologiques et au modèle de manteau neigeux dans un contexte spatialisé.

Une comparaison avec des observations in-situ de réflectances nous a permis de considérer

que ce système représentait de manière réaliste les erreurs de modélisation pour cette

variable. Nous avons agrégé des réflectances calculées à partir d’observations MODIS dans

la géométrie du modèle, permettant de réduire leur bruit, mais au détriment d’informations

fines sur la variabilité naturelle de cette observation. Un biais de ces réflectances agrégées

vis à vis de l’ensemble et des observations in-situ a été mis en valeur. Ce biais est

très probablement lié à l’algorithme d’inversion MODImLab qui permet de déduire les

réflectances de surface à partir des radiances satellitaires, de la topographie et d’un modèle
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de transfert radiatif atmosphérique. C’est un biais difficile à évaluer, et qui empêche

l’assimilation directe des données MODIS. Nonobstant, nous avons montré que certain

ratios de bandes spectrales MODIS n’étaient pas biaisés, et pourraient donc être assimilés.

Nous avons donc conduit des expériences d’assimilations de ratios de réflectance dans un

cadre idéalisé (observations synthétiques), n’obtenant qu’une amélioration très modérée de

l’équivalent en eau (SWE) modélisé. Les ratios de réflectances semblent contenir moins

d’information que les réflectances brutes.

Nous avons cependant montré un bon accord entre les variations des séries temporelles

MODIS et de l’ensemble, et ce dans une grande variété de conditions topographiques,

à l’exception des ombres, pentes raides, et forêts où les observations étaient peu fiables.

Nous en avons conclu que les observations de réflectance avaient du potentiel pour une

assimilation spatialisée, à condition que leur biais systématique soit réduit (Lamare et al.,

2020). Dans tout les cas, leur couverture spatiale restera limitée, ce qui nous amène à notre

deuxième question.

• Peut-on propager de l’information sur l’état du manteau neigeux depuis

des zones observées vers des zones non-observées ?

Une des principales limitation des observations télédétectées et in-situ est la présence

de "trous" dans leur couverture spatio-temporelle. Du fait de la grande variabilité spatio-

temporelle des conditions d’enneigement, il n’est pas du tout évident qu’il soit possible de

propager de l’information depuis de zones observées vers des zones non observées. Nous

avons évalué la capacité de l’assimilation de données à permettre une telle propagation

de l’information sur le manteau neigeux en nous plaçant dans un contexte idéalisé. La

géométrie semi-distribuée permet de représenter les principales sources de variabilité du

manteau neigeux, à l’exception du transport de neige par le vent, de la redistribution

gravitaire et de l’hétérogénéité spatiale des conditions météorologiques, notamment. Des

observations synthétiques de HS et de réflectance ont été extraites de différents quantiles

d’une simulation open-loop (i.e. sans assimilation) sur quatre années, afin d’évaluer la

performance de l’assimilation dans des conditions variées. Dans le but de simuler la

couverture spatiale d’observations de réflectance, les observations n’ont été assimilées

qu’au dessus de la limite des forêts, à plat ou dans les pentes sud peu raides d’un large

secteur sud. Ainsi, seulement un sixième du domaine semi-distribué disposait d’observations.

Dans la suite de Charrois et al. (2016), nous avons utilisé le filtre particulaire (PF),

un algorithme d’assimilation séquentielle bien adapté à Crocus, modèle ayant un nombre

de coches numériques variable (Magnusson et al., 2017). Cependant, il était nécessaire
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d’affronter la dégénérescence du PF, un problème apparaissant lorsqu’un nombre important

d’observations est assimilé simultanément, ou en cas d’erreurs d’observations trop faibles

(Bengtsson et al., 2008). La solution la plus couramment employée est de réduire le nombre

d’observations assimilées à la fois. La localisation par domaine réalise une analyse séparée

en chaque point, en ne considérant que les observations voisines (Farchi and Bocquet, 2018).

L’hypothèse implicite de cette approche est que la similarité entre deux localisations décroit

avec leur distance. Nous avons testé cette hypothèse en calculant les corrélations d’ébauche

sur le domaine semi-distribué, mettant en valeur de fortes corrélations à travers le domaine,

y compris dans des conditions topographiques très différentes, tandis que des localisations

proches pouvaient être décorrélées. En outre, nous avons noté que ces motifs de corrélation

variaient selon la date et la variable considérée, par exemple avec la limite pluie-neige ou un

métamorphisme différent entre des pentes au soleil et à l’ombre. L’hypothèse sous-tendant

la localisation par domaine n’était pas valide pour la modélisation du manteau neigeux à

cette résolution.

Par conséquent, nous avons décidé d’utiliser les corrélations d’ébauche comme une mesure

de la similarité entre deux endroits en introduisant la k-localisation du PF. Cette approche

s’inspire de la localisation par covariance couramment utilisée pour l’EnKF. Il s’agit d’éviter

la dégénérescence en s’assurant qu’un nombre minimal de membres a été choisi par l’analyse

du PF. De manière itérative, la k-localisation rejette les observations qui viennent de

localisations exhibant les plus faibles corrélations d’ébauche avec l’endroit considéré, jusqu’à

ce que la population de l’échantillon d’analyse soit suffisante. Ainsi, des localisations

similaires recevront probablement des analyses proches, mais des discontinuités peuvent

apparaître au sein de chaque membre, avec des conséquences potentiellement négatives

(Van Leeuwen, 2009).

Pour cette raison, nous avons aussi essayé de construire une analyse globale qui assimile

toutes les observations à la fois. Afin d’empêcher le PF de dégénérer, une éventualité

très probable dans cette situation, nous avons adapté l’approche de Larue et al. (2018)

consistant à augmenter les erreurs d’observation jusqu’à ce que la population de l’analyse

du PF soit suffisante.

Nous avons ensuite utilisé la k-localisation et l’inflation afin d’assimiler les observations

de HS et de réflectance précédemment décrites. La performance des différentes simulations

a été évaluée par comparaison avec les valeurs de SWE des observations synthétiques.

Les résultats ont montré que ces deux stratégies d’assimilation permettaient d’éviter la

dégénérescence du PF. L’assimilation de HS apportait une très forte amélioration de

CRPS quasiment partout, tant dans les zones observées que dans les endroits dépourvus

d’observations. La propagation d’information semblait cependant un peu plus limitée à
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travers des conditions d’altitude sensiblement différentes. Nous avons aussi montré que la

propagation spatiale d’information sur le SWE portée par les réflectances était possible. En

efet, l’assimilation de réflectance montrait des structures d’amélioration du CRPS similaire

que pour HS, avec une amplitude certes plus faible.

Ces résultats ont été obtenus dans un cadre idéalisé, dans lequel les observation synthé-

tiques, provenant de l’open-loop, avaient de grandes chances de respecter les structures de

corrélation spatiales de l’ensemble assimilé. L’existence d’un optimum global était donc

possible, et trouvable par l’algorithme d’inflation. De la même manière, la k-localisation

avait de bonnes chances de choisir les observations provenant de localisations appropriées,

alors qu’en réalité, cet algorithme pourrait être trompé par de mauvais motifs de corrélation.

Il était donc nécessaire de vérifier le comportement de cet algorithme avec des observations

réelles.

• Dans quelle mesure peut-on utiliser les observations in-situ de HN pour

améliorer les simulations du manteau neigeux dans leur voisinage ?

Les observations in-situ de HS sont bien adaptées pour contraindre la représentation

de la variabilité spatiale dans les modèles, car elles sont répandues à travers de nombreux

massifs montagneux, et précises. En revanche, leur représentativité spatiale est limitée.

Plusieurs études ont démontré leur potentiel pour détecter et corriger des erreurs systé-

matiques dans les forçages météorologiques, améliorant par conséquent les simulations du

manteau neigeux dans leur voisinage (Magnusson et al., 2014; Winstral et al., 2019). Cepen-

dant, ces approches ne prenaient pas en compte les incertitudes des modèles de neige et des

observations, et s’appuyaient sur un réseau d’observations in-situ particulièrement dense, ou

bien étaient appliquées sur des étendues peu accidentées (Cantet et al., 2019). Il n’était pas

certain que l’assimilation donne d’aussi bons résultats dans des régions moins densément

observées. Nous avons appliqué l’inflation et la k-localisation à un réseau d’observations de

HS couvrant les Alpes et les Pyrénées françaises, ainsi que sur l’Andorre, sur une période de

dix ans. En comparaison des précédentes études en terrain montagneux, la densité variait

de équivalente à dix fois plus faible, environ.

Cette fois-ci, nous avons combiné l’inflation et la k-localisation avec une approche de locali-

sation par domaine classique, en testant quatre rayons de localisation entre 17 km et 300 km.

Ceci laissait la possibilité aux différents algorithmes de détecter des erreurs systématiques

de plus ou moins grande échelle. Afin d’assurer une évaluation indépendante, les expéri-

ences ont été conduites dans un cadre "Leave-One-Out", où l’observation locale est exclue de

l’analyse mais est conservée pour l’évaluation. Nous avons obtenu des résultats mitigés, avec

une amélioration de CRPS de l’ordre de 10% par rapport à l’open-loop. La grande variabilité
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spatiale de la performance s’est traduite par une dégradation de performance dans environ

un tiers des postes considérés. Il se trouve que la performance de l’assimilation par rapport

à l’open-loop était très liée au biais de celui-ci, les meilleurs améliorations étant obtenues

pour les biais open-loop les plus importants. Une relation entre le biais des références (open-

loop et run opérationnel) a aussi été montrée. Celle-ci était relativement bien corrigée par

l’assimilation.

Les résultats ont aussi montré que la performance de l’assimilation n’était pas liée à la den-

sité d’observations, contrairement aux attentes de Largeron et al. (2020). Nous pensons

qu’il s’agit d’un artefact causé par le fait que la performance de l’open-loop décroissait sen-

siblement avec la densité d’observations de HS (parce que celle-ci est très liée à la densité

d’observations météorologiques déjà assimilées dans l’open-loop). Cette situations laisse plus

de potentiel d’amélioration dans les zones les moins densément observées. Nonobstant, ces

expériences ont montré que les observations de HS complétaient bien les observations météo

dans les zones les plus reculées.

Alors qu’aucune différence significative de performance ne pouvait être mise en évidence

entre l’inflation et la k-localisation, les rayons de localisations intermédiaires (35 et 50 km)

donnaient les meilleurs résultats. Ces échelles spatiales sont un peu plus grandes que l’échelle

à laquelle sont conduites les analyses météorologiques dans SAFRAN. Pour finir, les expéri-

ences d’assimilation étaient significativement sous-dispersives. Ce comportement s’explique

probablement par la non prise en compte du transport de neige par le vent dans le modèle

alors qu’il impacte sûrement certaines observations.

Perspectives

Les observations

Indépendamment de leur biais d’inversion, les réflectances issues d’observations MODIS à

250 m de résolution sont affectées par d’importants bruits, dûs à la variabilité intra-pixel

et à des erreurs d’inversion. Ces bruits rendraient très incertaine l’assimilation dans un

modèle distribué de résolution équivalente. L’agrégation par classes topographiques que

nous avons mis en place semblait une bonne solution pour réduire ce bruit. Cependant,

la résolution topographique choisie est trop frustre pour représenter toute la variabilité

naturelle, ainsi une part de l’information information se perd probablement au cours du

processus d’agrégation. Nous n’avons pas pu estimer la part relative des erreurs d’inversion

et de la variabilité naturelle au sein des classes topographiques. Les avancées récentes

dans l’inversion des réflectances (Lamare et al., 2020) pourraient permettre de réduire

significativement ces erreurs. Ces avancées pourraient être appliquées à des capteurs de plus

haute résolution, comme Sentinel-2 (10-20 m) . De telles résolutions pourraient permettre
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d’agréger les pixels à 250 m, de sorte à réduire les erreurs d’inversion tout en conservant

une part de la variabilité naturelle, voire même en offrant la possibilité d’estimer les erreurs

d’observation (e.g. Deschamps-Berger et al., 2020).

Avec notre méthode, il peut sembler secondaire d’accorder un grand soin à la spécification

des erreurs d’observations. En effet, les variantes du PF que nous proposons peuvent en

partie compenser des erreurs d’observation mal spécifiées, grâce à leur approche itérative.

Cependant, lorsque plusieurs observations sont assimilées simultanément, l’influence de

chaque observation sur l’analyse est en partie déterminée par l’importance de son erreur,

comparativement à celle des autres observations. Une mauvaise spécification des erreurs

d’observation rend le PF très sensible à des observations aberrantes. En outre, le fait de

supposer que les observations sont indépendantes comme nous l’avons fait (i.e. matrice de

covariance d’erreur d’observation R diagonale), se traduit généralement par des analyses

plus fortes que lorsqu’on tient compte des covariances d’erreur. Une méthode permettant

d’estimer complètement R, c’est a dire des corrélations croisées comme de l’inégale qualité

des observations, serait par conséquent très utile. Enfin, la réflectance et la hauteur de

neige sont des variable bornées, et supposer des erreurs gaussiennes dans un tel cas est

sous-optimal (e.g. Bocquet et al., 2010).

Nous avons proposé de résoudre le biais des réflectances en calculant des ratios de

bandes spectrales. Cependant, l’information contenue dans ces ratios de bandes semble

incertaine. Des efforts supplémentaires sont nécessaires pour comprendre leur sens physique

afin d’évaluer si cette piste est pertinente. Une autre solution serait d’utiliser le PF pour

estimer directement le biais des réflectances, en s’inspirant d’autres algorithmes (Dee, 2005;

Eyre, 2016).

Propagation d’information avec les différentes variantes du PF

Dans un cadre idéalisé, notre travail a montré que l’information issue d’observations de HS

et de réflectances pouvait être propagée à travers différentes conditions topographiques. Ce

résultat peut permettre de résoudre le problème de la couverture spatiale partielle dont

les observations souffrent en terrain complexe. Dans la communauté neige, cette méthode

pourrait être employée pour assimiler d’autres observations intégrées ou surfaciques souffrant

des mêmes manques. Par exemple, les observations stéréoscopiques de HS, provenant de

satellites ou de campagnes aéroportées sont limitées par la couverture nuageuse, tandis que

le signal radar, permettant de remonter au SWE ou à la présence d’eau liquide, souffre de

distorsions géométriques en montagne (Veyssière et al., 2019; Marin et al., 2020). Des études

plus localisées, utilisant des lidar au sol ou de la stéréo-photogrammétrie par drone, qui
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souffrent également de masques topographiques, pourraient bénéficier de telles approches

également. Au delà de cette communauté, ces méthodes ouvrent des perspectives dans

tout domaine des géosciences utilisant des observations spatialisées en terrain complexe

(e.g. glaciologie (e.g. Dumont et al., 2012; Davaze et al., 2018) , écologie de montagne (e.g.

Dedieu et al., 2016) et permafrost (e.g. Zwieback et al., 2019)).

Nos travaux ont proposé deux nouvelles approches résolvant efficacement le problème de

dégénérescence: l’inflation, et la k-localisation. L’inflation remplace un paramètre, l’erreur

d’observation (seulement utilisée comme valeur initiale) par un autre : la taille d’échantillon

cible, ou N∗
eff . Cette transformation peut s’avérer pertinente pour les disciplines dans

lesquelles le variations spatiales et temporelles des erreurs d’observation (représentativité

comprise) sont mal maîtrisées. L’inflation peut être appliqué à l’échelle locale comme sur un

domaine localisé ou sur tout le domaine, cependant elle suppose que toutes les observations

considérées sont pertinentes pour l’analyse. La k-localisation est elle adaptée aux problèmes

dans lesquels la définition du domaine de localisation n’est pas triviale car les corrélations

sont liées à d’autres facteurs tels que des paramètres topographiques. Elle pourrait ainsi

s’avérer très pertinente pour toutes sortes de problèmes en terrain montagneux.

Cependant, la k-localisation a plusieurs limitations. Comme toutes les approches localisées

du PF, –inflation localisée comprise– elle produit des analyses discontinues (e.g. Fig. 3 de

Farchi and Bocquet, 2018). Les particules analysées sont constituées d’une juxtaposition de

plusieurs membres d’ébauche potentiellement très différents. Ce comportement était sans

conséquence sur notre système car aucun couplage n’est modélisé entre les points de sim-

ulation, mais cela sera probablement à prendre en compte dans des systèmes simulant le

transport de neige par le vent. On s’attend cependant à ce que la k-localisation produise des

analyses similaires (i.e. des échantillons du PF) pour des localisation similaires (car celles-ci

sont censées assimiler un jeu d’observations similaires), réduisant de la sorte les chances

de voir des discontinuités apparaître. En outre, plusieurs solutions existent pour réduire ces

discontinuités, en s’appuyant sur le transport optimal ou la localisation "state-block-domain"

(Farchi and Bocquet, 2018).

La k-localisation est également sensible à la valeur initiale prescrite pour les erreurs

d’observations. Plus celle-ci est basse, moins il gardera d’observations différentes pour son

analyse. Hybrider cette approche avec l’inflation pourrait résoudre cette difficulté, par ex-

emple en sélectionnant tout d’abord les observations pertinent avec la k-localisation, plus en

appliquant l’inflation dessus (si nécessaire). On pourrait également objecter que l’analyse

de la k-localisation est sensible à une mauvaise représentation des erreurs d’ébauche par la

matrice de corrélation, puisque celle-ci l’utilise pour opérer sa sélection d’observations. Une

mauvaise matrice de corrélation résulterait ainsi en une analyse dégradée. C’est vrai, mais
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de fait, ce problème affecte de manière explicite ou implicite n’importe quel autre algorithme

d’assimilation, qu’il soit déterministe ou ensembliste, y compris le PF "standard" (voir e.g.

Sec. 1.4.3).

Mieux représenter et réduire les erreurs de modélisation

Il existe plusieurs pistes pour améliorer la représentation de l’erreur de modélisation.

L’utilisation d’ensembles à base physique, comme PEARP (Descamps et al., 2015), EFS

(Molteni et al., 1996), ou même l’ensemble à haute résolution PEAROME (Bouttier et al.,

2016) serait plus juste physiquement que les perturbations stochastiques que nous avons

utilisées, et introduirait une estimation dynamique des erreurs de forçage. De plus, cela

permettrait une représentation réaliste des corrélation spatiales d’erreur météorologiques,

bien que des solutions existent également pour en introduire avec les méthodes stochastiques

(e.g. Magnusson et al., 2014; Cantet et al., 2019). Cependant, ces ensembles souffrent

toujours à l’heure actuelle de biais et de sous-dispersion en montagne (Nousu et al.,

2019), avec des conséquences rédhibitoires sur l’assimilation avec le PF. Un ajustement

de la dispersion de certaines variables pourrait être mis en place à l’aide de techniques de

post-traitement statistiques (Taillardat and Mestre, 2020).

La représentation de plusieurs processus physiques du manteau neigeux pourrait également

être améliorée. En particulier, l’utilisation de flux spatialisés d’impuretés absorbantes

permettrait une meilleure représentation spatiale du transfert radiatif dans le manteau

neigeux et des erreurs associées (Réveillet et al., in prep). D’important efforts devraient

également être menés afin d’affiner la paramétrisation de certains processus physiques

particulièrement incertains (e.g. les flux turbulents –très importants pour les bilans de

masse et d’énergie–, le tassement, le métamorphisme de neige humide, la percolation de

l’eau liquide, les interactions sol-végétation-neige- canopée, etc.). De tels progrès sont

malheureusement limités par un manque d’observations à même de mieux contraindre ces

processus (Menard et al., 2020), et l’assimilation devra composer avec de telles erreurs pour

encore de nombreuses années.

Cependant, certains phénomènes importants ont été ignorés dans notre cadre de simulation

et obèrent sa capacité à représenter correctement ses erreurs. La prise en compte du

transport de neige par le vent vient bien sûr en premier, et requiert probablement de

franchir le pas vers une géométrie explicite, distribuée. Une telle avancée permettrait de

plus de mieux représenter les flux radiatifs entrants et sortants, en tenant compte des

ombrages et réilluminations. Cela permettrait en outre d’améliorer la représentativité du

modèle.

D’autres limitations sont inhérentes à la géométrie semi-distribuée dans laquelle nous avons

travaillé. Les forçages météorologiques ne tiennent pas compte de la variabilité intra-massif,
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et sont discontinus entre les différents massifs. Ces discontinuités sont artificielles, et la

propagation d’information a travers elle est plus incertaine. Dans la perspective d’assimiler

conjointement des observations météo et neige, et étant donné l’important contenu en

informations météorologiques porté par les observations in-situ de neige (e.g. Magnusson

et al., 2014), s’affranchir de telles barrières serait probablement bénéfique.

Stratégies d’assimilation

Tandis que la prévision numérique du temps et la modélisation des surfaces continentales

ont progressé sous l’impulsion de l’assimilation de données (Rabier, 2005), un manque

criant d’observations, et la grande variabilité intrinsèque du milieu montagneux ont

grandement limité les avancées de la prévision nivo-météorologique en montagne. Un

jour, nous disposerons d’ observations révolutionnaires, comme les observations satellites

ou aéroportées de hauteur de neige (e.g. Painter et al., 2016; Deschamps-Berger et al.,

2020), ou de fiables observations de réflectance de surface (Lamare et al., 2020), de manière

opérationnelle sur des montagnes entières. Celles-ci amélioreront de manière certaine

les capacités des systèmes de modélisation (e.g. Margulis et al., 2019; Deschamps-Berger

et al., in review). En attendant, la moindre information disponible doit être exploitée,

et les chaines de modélisation du manteau neigeux doivent se préparer à l’assimilation

d’informations spatialisées. Ces deux objectifs impliquent un passage vers une modélisation

à plus haute résolution, explicite, et capable d’assimiler des observations in-situ comme

spatialisées.

La géométrie distribuée est probablement la plus adaptée pour tirer parti d’observations

de champs de précipitations radar (Birman et al., 2017) ou de flux SW et LW déduits

d’observations satellites (Quéno et al., 2020b). Dans une géométrie spatialisée, ces

observations pourraient en effet être directement utilisées pour analyser les champs de

forçages météorologiques. Il faut cependant noter que la descente d’échelle des forçages

météorologiques à une résolution pertinente pour la modélisation du manteau neigeux est

un défi (Vionnet et al., 2019).

En parallèle, les observations d’enneigement in-situ contiennent de précieuses informations

sur les conditions météorologiques passées ainsi que sur les erreurs de modélisation dans

les zones reculées, mais sont à ce jour trop peu exploitées. Il faut trouver une solution

pour les exploiter en domaine spatialisé, suivant l’approche de (Winstral et al., 2019) (i.e.

avec des hypothèses fortes sur la physique de la neige) ou bien avec la méthode que nous

avons proposé en Chap 4 qui peut être soumise à des compensations d’erreurs (e.g. Smyth

et al., 2019), mais laisse la possibilité de corriger également des erreurs de modélisation du

manteau neigeux. Tirer profit des informations de SCF dans un contexte distribué semble
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tout à fait réalisable avec le PF (Baba et al., 2018). Enfin les informations provenant des

nombreuses "webcams" de montagne (Portenier et al., 2020) pourraient également être

assimilées dans un tel contexte. Nous le voyons, des pistes d’améliorations sont à notre

portée.

Pour conclure, bien que les observations nivo-météorologiques en montagne semblent

pauvres, l’assimilation de données pourrait permettre d’améliorer les modèles de manteau

neigeux, si elle parvenait à toutes les intégrer. La neige pourrait alors nous révéler une partie

de ses secrets. En espérant qu’elle en garde quelques uns...
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