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Abstract

We consider the solution of very large systems of linear &goa with direct
multifrontal methods. In this context the size of the fasta an important limitation
for the use of sparse direct solvers. We will thus assumehiegactors have been written
on the local disks of our target multiprocessor machine rauparallel factorization.
Our main focus is the study and the design of efficient apgresidor the forward and
backward substitution phases after a sparse multifromtetiofization. These phases
involve sparse triangular solution and have often beenewggdl in previous works on
sparse direct factorization. In many applications, howee time for the solution can
be the main bottleneck for the performance.

This thesis consists of two parts. The focus of the first gaohi optimizing the out-of-
core performance of the solution phase. The focus of thenskjgart is to further improve
the performance by exploiting the sparsity of the rightdhaide vectors.

In the first part, we describe and compare two approachesdesaaata from the
hard disk. We then show that in a parallel environment thie $abeduling can strongly
influence the performance. We prove that a constraint ardest the tasks is possible;
it does not introduce any deadlock and it improves the peréorce. Experiments on
large real test problems (more than 8 million unknowns) gisin out-of-core version of a
sparse multifrontal code calledJVPS (MUItifrontal Massively Parallel Solver) are used
to analyse the behaviour of our algorithms.

In the second part, we are interested in applications widrsgomultiple right-hand
sides, particularly those with single nonzero entries. fotivating applications arise in
electromagnetism and data assimilation. In such appbicatiwe need either to compute
the null space of a highly rank deficient matrix or to compuigies in the inverse of a
matrix associated with the normal equations of linear lsgstares problems. We cast
both of these problems as linear systems with multiple filtgdinid side vectors, each
containing a single nonzero entry. We describe, implemadt@mment on efficient
algorithms to reduce the input-output cost during an outarke execution. We show how
the sparsity of the right-hand side can be exploited to Iboth the number of operations
and the amount of data accessed.

The work presented in this thesis has been partially supddsy SOLSTICE ANR
project (ANR-06-CIS6-010).

Keyword: Gaussian elimination, multifrontal method, Distributedguting, parallel
computing, sparse matrices, tasks scheduling, multiglg4thand side vectors.






Résumeé

Nous nous intéressons a la résolution de systemes linéages de tres grande taille
par des méthodes directes de factorisation. Dans ce centiextaille de la matrice
des facteurs constitue un des facteurs limitants princigewr I'utilisation de méthodes
directes de résolution. Nous supposons donc que la mag&tadteurs est de trop grande
taille pour étre rangée dans la mémoire principale du nmatiesseur et qu’elle a donc
été écrite sur les disques locaux (hors-mémoire : OOC) d'naehine multiprocesseurs
durant I'étape de factorisation. Nous nous intéressongtade et au développement
de techniques efficaces pour la phase de résolution apréactoezation multifrontale
creuse. La phase de résolution, souvent négligée dansalesuk sur les méthodes
directes de résolution directe creuse, constitue alorsoimt pritique de la performance
de nombreuses applications scientifiques, souvent ménseapitique que I'étape de
factorisation.

Cette thése se compose de deux parties. Dans la premiégeng@ars nous proposons
des algorithmes pour améliorer la performance de la résoludtors-mémoire. Dans
la deuxiéme partie nous pousuivons ce travail en montramimoent exploiter la nature
creuse des seconds membres pour réduire le volume de daantwEees en mémoire.

Dans la premiére partie de cette these nous introduisons algoroches de lecture
des données sur le disque dur. Nous montrons ensuite queudaesvironnement
parallele le séquencement des taches peut fortement infuda performance. Nous
prouvons qu’un ordonnancement contraint des taches peuné&boduit; gu’il n’introduit
pas d’interblocage entre processus et qu’il permet d’ardliles performances. Nous
conduisons nos expériences sur des problemes industeetgathde taille (plus de 8
Millions d’inconnues) et utilisons une version hors-méraal’'un code multifrontal creux
appeléVUMPS (solveur multifrontal parallele).

Dans la deuxiéme partie de ce travail nous nous intéressaresale seconds membres
creux multiples. Ce probleme apparait dans des applicatéon electromagnétisme
et en assimilation de données et résulte du besoin de cal®dpace propre d'une
matrice fortement déficiente, du calcul d’éléments de €nse de la matrice associée
aux équations normales pour les moindres carrés linéairesnoore du traitement de
matrices fortement réductibles en programmation linéai@us décrivons un algorithme
efficace de réduction du volume d’Entrées/Sorties sur lgugisors d’'une résolution hors-
mémoire. Plus généralement nous montrons comment le eesgacteux des seconds
-membres peut étre exploité pour réduire le nombre d’oparatet le nombre d’accés a
la mémoire lors de I'étape de résolution.

Le travail présenté dans cette these a été partiellementtrzar le projet SOLSTICE
de 'ANR (ANR-06-CIS6-010).

Mots-clés: calcul distribué, calcul paralléle, élimination de Gausstrices creuses,
méthode multifrontale, séquencement des taches, secamdbmes multiples
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General introduction



General introduction




Introduction générale

Contexte de 'étude
Nous nous intéressons a la résolution de grands systénéegrén
Az =1 (1)

avec une méthode directe multifrontale, dans un envirommeparallele hors-mémoire
(dans un environnement hors-mémoire le disque dur essé&itlomme extension de la
mémoire centrale, voir Figuié 1).

2
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_—

Required memory Required memory

a) Mémoire nécessaire insuffisante b) Utilisation du disque dur pour
compléter la mémoire nécessaire

Figure 1: Limitation mémoire résolue par I'utilisation derhémoire du disque dur.

A est une matrice carrée creuse de trés grande taille, et b sont des vecteurs
colonnes. La matrice originald est factorisée en un produit de matrices dites matrices
de facteurs. Selon que la structure de la matrice est sygquétiou non on effectuera
respectivement une factorisatioh = LDL” ou A = LU . Les matricesL et U sont
respectivement des matrices triangulaires inférieursggérieures, eD est une matrice
diagonale ou bloc-diagonale avec des bldacg 1 et 2 x 2. Les matrices de facteurs
sont ensuite utilisées pour résoudre le systeme initialuvia séquence de résolution
élémentaires,

LDL™z=b ou LUx =50 (2)

selon que la matrice est symétrique ou non.

Le nombre d’entrées dans les facteurs (pour des problémdaadnsionnels de grande
taille) peut étre beaucoup plus importari(a 100 fois plus grand) que la taille de la
matrice originale. Ainsi la mémoire utilisée pour stockes dacteurs peut constituer un
obstacle dans l'utilisation d’approches directes de tésmi. Pour autant les méthodes
directes, de par leur robustesse numérique sont souvdatées aux méthodes itératives
[35,[66] pour beaucoup d’applications.

Implémenter efficacement les méthodes directes reste vailtdelicat dans le cas
séquentiel comme dans le cas parallele. Prévoir le renagiesslans les matrices de
facteurs, répartir dynamiquement les taches pour éqgeaililer mémoire en fonction des
processeurs utilisés, et beaucoup d’autres subtilitésritigniques tout aussi critiques
pour la performance demandent une expérience forte et wstisgement important en
temps de développement.

La phase de résolution a été souvent négligée dans les xrgréuédents sur la
factorisation directe creuse 44,165, 73] 74,1102,] 104] 1@®jurtant, dans beaucoup
d’applications, le temps de résolution peut constituerrtebj@me principal. Dans un
contexte hors-mémoire ou les facteurs sont stockés suuelidgr, c’est encore plus

3



4 General introduction

critique car le temps de la phase de résolution peut étrertopar I'accés au disque local
(et non pas par le temps de calcul comme c’est normalemeas)e ik faut noter qu’ily a
alors peu d’espoir pour recouvrir, méme partiellementchidsuls avec des entrées/sorties
(E/S). Ceci expligue la forte influence de I'environnemesrshmémoire sur le temps total
de résolution.

Notre principal objectif dans cette these a été I'étude déleeloppement d’approches
efficaces pour la phase de résolution dans un environnemeaallgde a mémoire
distribuée([9] 100, 11] et dans un contexte hors-mémoire sNiwaposons dans cette these
des algorithmes pour améliorer la performance de la résoldlirecte multifrontale hors
mémoire. Notre travail différe et étend le travail d’auteggplications en environnement
hors-mémoire (voirl[ill, 103, 104, 105] €t [114]) selon troes: d’abord, comme décrit
dans[[1] nous considérons un contexte parallele. DeuxiG@ngemous nous concentrons
sur la performance de la phase de résolution. Troisiememeuns mettons en oeuvre des
algorithmes pour exploiter le caractére creux (" sparsié’s seconds membres (quaihnd
dans I'Equation[R) devient une matrice creuse).

Avant 'introduction des notions de base, nous décrivomsd@ paragraphe suivant la
structure de la thése. Dans la premiéere partie de ce tran@ils étudions et comparons
deux mécanismes d’entrées-sorties pour accéder aux dodoéhsque dur. Une couche
logicielle a été écrite en C pour cacher tous les mécanisi#S de bas niveau (gestion
du buffeur, pré-chargement des données, synchronisatidous avons remarqué que
la performance de la phase de résolution est fortement liéefacon dont on accéde
aux données sur le disque dur et au nombre et a la régularitéglaccés. Nous avons
aussi démontré qu’en parallele I'ordre avec lequel lesadddont exécutées influence
d’'une maniére importante la performance de la phase deutéswl Notre travail
sur I'ordonnancement des taches nous a permis de dévelappenouvelle approche
efficace aussi bien en séquentiel qu’en paralléle. Les s sur de nombreuses
matrices, dont certaines de plus de 8 millions d’inconnoesytrent le bon comportement
des approches proposées en utilisant la version parallgétefecore du solveur direct
multifrontal MUMPS.

Dans la deuxieme partie de la thése nous nous intéressogpartaté (nature creuse)
du second membre. Nous étudions différentes techniquegrsérvent la sparsité des
calculs grace aI'exploitation de la nature creuse des skEcarembres. Des applications a
plusieurs seconds membres issues des domaines appliekifgie I'électromagnétisme
et I'assimilation de données sont utilisées pour illuskesrperformances des approches
proposées. Par ailleurs, lorsque le hombre de seconds rasmebt important (dans
certains cas plusieurs dizaines de milliers de seconds meshnbous avons étudié,
implémenté et décrit des techniques efficaces pour rédelivelume d’Entrées/Sorties.
Nous démontrons que l'ordre de traitement des seconds nesnpleut étre utilisé pour
réduire aussi bien le nombre d’opérations que la tailleleoties données a précharger
du disque dur. Nous proposons des permutations de seconaibre®se permettant
d’améliorer I'utilisation de la mémoire et d’optimiser Ipgechargements du disque dur.



Notions de base et définitions

e Graphes

Un graphe est un ensemble fini de noeuds et d’arétes. Uneemiétefinie par une
paire non-ordonnée de sommets. Un graphe est connexe tsfilossible, a partir de
n'importe quel sommet, de rejoindre tout autre sommet ecquaant les arétes du graphe.
En donnant un sens aux arétes d’'un graphe, on obtient une@pnté. Un graphe
orienté sans cycle est dit acycliguag). On utilise les dags pour représenter la structure
de la matrice (voir FigurEl2).

) 0
: diagonal
[ ] £l of the matrix

directed edge <i,j>
[[] non-zero entrya;;

Figure 2: L'entrée non-nulle:; ; correspond a l'aréte orientée ¢, j > dans la representation-graphe.

Propriété 1. Toute matrice triangulaire (supérieure ou inférieure) pétre représentée
par un graphe orienté sans cycle (dag).

La connectivité entre noeuds d'un graphe orienté peut &peésentée de facgon
efficace grace au graphe obtenu par réduction transitivia i8atrice est symeétrique, la
réduction transitive du graphe associé a la matrice desde({L telle queA = LDL")
est un arbre appeléarbre d’élimination (voir par exemple Gilbert et Liu [163]). Si
la matrice est non-symétrique alors la réduction transitiu graphe associé a chacune
des matrices de facteurd.(et U telles queA = LU ) est un graphe orienté acyclique
particulier appelé&-dagpar Gilbert et Liu en [[63].

Les hypergraphes généralisent la notion de graphe dans saren®u les arétes
ne relient plus un ou deux sommets, mais un nombre quelcodgusommets. Un
hypergraphe (défini comme un ensemble de noeuds et un erselablnets") a la
particularité que chaque net est aussi un ensemble de ndeagisoeuds qui ont certaines
propriétés communes sont mis ensemble sous forme de netsoddnl peut faire partie
de plusieurs nets (voir Figuké 3, le noeddait partie des netd et 2).

Figure 3: Exemple d'un hypergraphe contenalrit noeuds (représentés par des cercles)ienets
(représenté par des points). Lhypergraphe est partitioné parties, representées par des ellipses.



6 General introduction

Les hypergraphes sont manipulés dans tous les domainesroutilise la théorie des
graphes : résolution de problemes de satisfaction de dotésa traitement d’'images,
optimisation d’architectures réseaux, modélisation, etc

e Méthodes directes

Les méthodes directes de résolution de systemes linéaeas se déroulent en trois
phases : une phase d'analyse, une phase de factorisatiane githase de résolution.
Une fois la factorisation réaliséed = LU ou A = LDL” dans le cas d'un matrice
symétrique), le systemédax = b se résout en deux étapes : résolution du systéme- b
(phase dite de ‘descente’), puis du systéthe = y (phase de ‘remontée’).

La dépendance des calculs est représentée par le grapmeiiadion (e-dag) qui est
un arbre (I'arbre d’élimination) dans le cas symétrigue. n®aotre approche directe
multifrontale, nous utilisons la matrice symétrisde- A” , ce qui conduit a la substitution
de I'e-dag par un arbre d’élimination. Une particularité¢ Bquelle repose I'efficacité
des méthodes directes est que les colonnes de la matricetqune structure similaire
sont groupées dans des supervariables appsigesnodedb1,[94,98], qui sont ensuite
éliminées simultanément. Les méthodes multifrontaleferiht d’autres méthodes
directes (voir[[78]), telles que les approches dites ledtking et right-looking, qui sont
caractérisées par la facon dont les mises a jour sont faDess une approche right-
looking, les modifications résultant du calcul courant somhédiatement répercutées sur
le reste des données concernées. Dans une approche léftgpce n’est qu'au moment
ou I'on travaille sur une donnée que I'on va prendre en cortqaiées les modifications
résultant des étapes précédentes. Il faut noter que les @igrir correspondent a des
messages dans le cas d’exécution parallele sur archigscdumémoire distribuée. Dans
ce contexte, la structure des communications dépend feriede la méthode choisie.
Le volume et le nombre de messages dépendent aussi de lati@pdtmapping”) des
noeuds sur des processeurs.

e Environnement et matrices de test

Nos tests ont été effectués sur le calculateur paralléleraainé partagée Cray XD1
situé au CERFACS (58 noeuds, 2 processeurs par noeud, 4 Guopad, 2 Go par
processus MPI , systeme de fichregi ser f s, et bande passante pour la lecture des
données de 16 Mo/s au maximum), en utilisant un seul prosédBli par noeud.

Le tablealddl décrit nos matrices de tests, ordonnées paonta@ppa taille de leurs
facteurs. Nous avons aussi fait des expériences sur degcesatte plus petite taille
dont la structure particuliére est orientée vers des agidins de seconds membres creux
multiples. Le tablealll2 représente les matrices utilisés f& calcul du noyau des
matrices déficientes. Dans le tablddu 3 nous décrivons léscescorrespondant a
I'étude de problémes de moindres carrés. Plus précisém@ntje de la variance et de
la covariance conduit a calculer certains éléments dedisw de la matrice des équations
normalesA” A. Certaines de ces matrices sont issues d’'une collabortienle Centre
d’Etude Spatiale du Rayonnement (CESR) de Toulouse etspmmelent a des problemes
d’astrophysique. Cette application requiert un fort votude calcul (14528 secondes) et
nous montrerons que I'exploitation de la structure creeses¢conds membres permet de
réduire ce temps de calcul de fagon tout a fait significative.



Nom de la matrice Ordre Entrées| Facteurs| Nb Noeuds| Description (origine)
(Millions) (MB) | dans l'arbre

QIMONDAQT7* 8613291 66.9 2534 3083998 | Simulation de circuit (Qimonda AG)
CAS4R-L15 2423135 19.5 4832 864 447 | Electromagnétisme 3D (EADS)
CONESHL* 1262212 43.0 5908 113513 | Eléments finis 3D (SAMTECH)
NICE20MC * 715923 28.1 9263 68 134 | Traitement sismque (BRGM)
AUDI * 943 695 39.3 12 202 113 119 | Modélisation d’'un vilebrequin
GRID3.5M 3500 000 37.8 15720 1535044 | Discrétisation 11 points d'un Laplacien 3

5000 000 53.8 17 798 2203 434 | Discrétisation 11 points d’'un Laplacien 3
CORBHZ * 2233031 90.2 21622 268 798 | Traitement sismique (BRGM)

6 994 683 58.5 55 295 871621 | Electromagnétisme 3D (CEA-CESTA)
NICEQHZ * 5140 838 2155 | 64848 603 495 | Traitement sismique (BRGM)

U U

Table 1: Matrices de tests: taille et origine. Les matrices marquéeed* sont publiques.

Nom de la matrice] Ordre | Nb entrées| Nb Noeuds| Globale | Racine | Pivots
dans l'arbre Def. Def. nuls
boxcav_8 5 3 619 3471 319 56 7 49
boxcav_16x10x3 2675 15953 1311 270 10 260
boxcav_20x13x3 4419 26 129 2121 456 10 446
boxcav_30x20x4 | 14 454 89 185 5758 | 1653 103 1550
boxcav_40x27x5 | 33 627 212 883 12948 | 4056 185 3871

Table 2: Matrices de tests pour le calcul de la base du noyau de mattéficientes: taille et déficience.

Nom de la matrice Ordre | Nb entrées| Nb Noeuds
a-1_08M 8999 497 628 1186
a-1 21M 21532 855 866 5207
d-11_25M 25000 249720 12 091
a-1_46M 46799 | 1791242 12 419
a-1_72M 72358 | 3549284 7941
a-1_148M 148 286 | 7388031 12734

Table 3: Matrices de tests pour calculer des entrées dat§ 4) 1 .
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1.1 Context of our study

We are interested in solving large sparse linear systentsediorm
Az =0 3)

with direct methods[[45, 47, 59] in a parallel limited-memenvironment. HereA is

a large, square, sparse matrix ahdand = are column vectors. We are first interested
in case whereA is nonsingular matrix. The case of a singular matrdxis discussed
in Chaptef8.211 where the specific structure of the matrexjgoited for the sparsity of
the computations during the solution phase. In the direlcttiom of this linear system,
the matrix A is first factorized into the factor& DL? (when A is symmetric) or LU
(when A is unsymmetric), wherd, and U are triangular matrices an@) is a diagonal

or block diagonal matrix withl x 1 and 2 x 2 blocks. These factors are then used to
solve the system through the forward and backward sulistitsteps

[LDy=0b and L'z =y| or [Ly=bandUz=y], (4)

depending on whether the matrix is symmetric or not.

In this context, the number of entries in the factors can bémgyortant limitation
for using sparse direct solvers. Indeed, the number of ein the factors (on large
3-dimensional problems) can be much largéf (to 100 times larger) than the size
of the original matrix. This is one reason for users to chobsetive methods (see
for example[[35/ 66]). Time for solution can be another r@asdhe direct solution of
sparse linear systems using Gaussian elimination [59]lcésaa advantage over iterative
methods in terms of numerical robustness, and it remainstbod-of-choice for many
applications. However, it is very challenging to implemsnth methods efficiently on
a single processor. This is even more complicated on maltgssor machines. One of
the main reasons is because of fill-in created during theixatrtorization. Moreover,
if numerical pivoting is necessary this involves dynamic#dacking the fill-ins that are
generated in a somewhat unpredictable way. Handling higtdgular data access and
computation is further compounded by sophisticated coprarchitectures with several
layers of memory hierarchy. Therefore, unlike many iteatlgorithms that users can
often implement reasonably well and quickly by themseldagct solvers require much
more expertise and a longer time to develop.

Working out-of-core (using the storage disks to extend tle@nnmemory), we can
overcome the memory limitation of direct methodsl[44, [65, 78,102 104, 105] and
handle large matrices whose factors do not fit within the nmagmory of the computer.
If the memory required for solving a matrix is larger than thwailable core memory (as
shown in Figurd}4-a), a natural possibility to overcome ghnsblem is to use the hard
disk memory (as shown in Figuké 4-b).

In general, direct methods proceed in the following threagas.
e Analysis phase: The matrix is preprocessed to limit therilknd to improve its

numerical behaviour. The symbolic factorization is pemied and the computational
dependency graph is computed.

e Factorisation phase: The factors are computéd< LU or, in the symmetric case
A=LDL").
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SraSera-ag - Cotememory ik

Required memory

Required memory

b) Use of disk to complete the required
memory

Figure 4: Memory constraint is solved by extending the ma@mrary with the memory on disk.

a) Memory crash

e Solution phase: Forward and backward substitutions (es@dy Ly = b and
Uz =y, ingeneral, orDLTz = y in the symmetric case).

For an unsymmetric matrix, we compute it6U factorization; if the matrix is
symmetric, itsL D LT factorization is computed. Because of numerical stabijtityoting
is required in these cases in contrast to symmetric pogitfimite sparse systems where
pivoting can be avoided.

The solution phase involves sparse triangular solutioddwas often been neglected in
previous work on sparse direct factorization. In many aggtions, the time for solution
is even the main bottleneck for the performance. In an owteoé context (factors stored
on local disk), this is even more critical since the time foe tsolution phase can be
dominated by the time for memory access and not by the timeitimn the arithmetic
operations. It is interesting to notice that running outcofe does not significantly affect
the time performance of the factorization (see for examB)&[[ 102/ 105]). This can be
explained by the fact that the time spent doing computatioing the factorization phase
is generally much larger than the time to perform input/otiyO) on disks. 1/0O access
can then be ‘hidden’ by overlapping I/O with computation. tba other hand, the number
of operations during the solution phase is of the order ofthe of the factors (in the case
of a single right-hand-side), which is equal to the volum#&®f Thus, there is very little
scope for overlapping computation with I/O, which explaihe strong influence of the
out-of-core environment on the time for solution.

Our main focus in this thesis has been the study and desigfi@ést approaches for
the forward and backward substitution phases of a disetbparallel sparse multifrontal
solver [9/10/ 11] in an out-of-core context. Our work dif@nd extends the work of other
out-of-core applications (selel |1, 103, 104,1105] and[1id{hree aspects. First, as done
in [1] we consider a parallel out-of-core context. Second,facus on the performance
of the solution phase. Third, we design algorithms to exploe sparsity of multiple
right-hand side vectors (whel in Equation[[#) is a sparse matrix).

Before providing in the general background section somé&bdsas and theory, we
describe in the following the outline of the thesis.

In the first part of this work, we describe and compare two Ifpraaches to access
data from the hard disk. An input/output (I1/O) software layeitten in C has been
designed to hide all the low level I/O mechanisms (smalldufhanagement, prefetch
and post-store mechanism, synchronisation). Using tliwace layer we have been able
to work at an algorithmic level on the algorithms to desigreéitient solution phase inan
out-of-core (OOC) context. We have observed that the pedioice of the solution phase
is strongly related to the way data on disk is accessed aing taitmber and the regularity

9



10 General introduction

of the accesses. We have then shown that in a parallel emv@ointask scheduling can
also strongly influence the performance. We have provedaltainstrained ordering of
the tasks is possible — it does not introduce any deadlock angroves the performance.
Experiments on large real test problems (more than 8 millisknowns) using an out-of-
core version of a sparse multifrontal code calMdVPS (MUItifrontal Massively Parallel
Solver) have shown the good behaviour of our algorithms.

In the second part of the thesis, we are interested in apigicawith sparse multiple
right-hand sides. Applications in electromagnetism artd dasimilation have been used
to illustrate our discussion. In such applications we nettgeeto compute the null-space
of a highly deficient matrix or to compute entries in the irsgeof a matrix associated with
the normal equations of linear least-squares problems. &Ve tescribed, implemented
and discussed efficient algorithms to reduce 1/0 data whetmngpwith OOC execution.
We have shown how the sparsity of the right-hand sides camjtdeited to limit both the
number of operations and the amount of data accessed.

1.2 General background

Graphs

A given square matrixA can be structurally represented by its associated graph —
G(A). Agraph G = (V,E) is a set ofnodesor verticesV' connected by a set of
edges £. Nodes correspond to rows (columns) of the matrix and edgegspond to
nonzero entries. Any nonzero position i (a;; # 0) corresponds to an edge from node
i to node; inthe graphG(A) which we write as< i, j > (see Figuré&ls).

- 0
: : diagonal
P W of the matrix

directed edge <i,j>
[[] non-zero entrya;,

Figure 5: The non-zero entry; ; corresponds to a directed edges, j > in the graph representation.

A one-way edge is calleddirected edgeand has the property:
a;; # 0 <= I directed edge <1i,j >

Note that as we differentiate entrieg; and a,; , we also distinguish their corresponding
directed edges< j,7 > and < i, 5 >. We say that, there isath from node: to nodek

in the graph, if we can follow directed edges from nad nodek in the graph. In such
a case we say that nodeis reachablefrom node: .

A graph is said to be&onnected in the sense of a topological space, if there is a
path from any vertex to any other vertex in the graph. Anydueble matrix A can be
represented by a connected graphA) .

A graph with directed edges and ngcleis called adirected acyclic graph (or dag)

10



1.2 General background 11

Property 1. Any lower triangular matrix or upper triangular matrix carelrepresented
by a directed acyclic graph (dag).

An economical way to represent path information for a diedcgraph is by its
transitive reduction [[4]). An arbitrary graph may have madransitive reductions, but
Aho, Garey and Ullman_[4] show that a dag has only one. For argimnsymmetric
matrix A which can be factored ad = LU, Gilbert and Liu in [63] define aedagof
L (respectivelyU ) as the unique transitive reduction 6f(L) (respectivelyG(U)).

Example 1. Elimination dag

We consider thd. pattern of a given matrix, as shown in Figlile 6. Its assodatieected
graph G(L) is acyclic, as stated in properfy 1. The edges corresponttingdundant
paths are removed (edge from nodeto node 1) and the reduced elimination dag or
edag is build.

O, G

22

@ ©

Vs | 4 Directed graph G(L) Elimination dag (L)
I 51 l 52 I 53 I 55
pattern of L

Figure 6: Example ofZ pattern with the associated dag and the reduced elimindtigr{iedag) ofL .

Theorem 1(Gilbert and Liu [63]) For a symmetric matrix, the edag() is a tree, the so
calledelimination tree.

Note that for our example in Figufé 6 the edagbfis not a tree, since noda has
two father nodes <4 and 5. From Theoreni]l, the original matrixx was thus not
symmetric. Indeed entryi3, of the U factors of the factorization oA must be zero to
have s, = 0. On our test example, symmetrizing the matrix such thatltthentry ws,
becomes non-zero is enough to make our edag a trge£ 0 implies 54 # 0) as shown
in FigurelT.

11



12 General introduction

) g
o
7w

' 43 ' a4 Directed graph G(L) l
| | | | |

51 52 53 54 55

pattern of L Edag (etree) of L

Figure 7: Modification of the patten of. from Figurel® such that the associated edag is a tree.

Hypergraphs

We give a brief definition of hypergraphs, which will be usedSectior”ID for the
hypergraph based permutation of the right-hand sides. tdygeh use and construction
will be described in Chapt€&rl.2.

A hypergraphH = (V, N) is defined as a set of verticds and a set of netsv . Every
net is a subset of vertices. The size of a netis equal to the number of its vertices, i.e.,
|n;| . The set of nets that contain vertex is denoted byNets(v;) .

Example 2. Hypergraph model: Figure [8 shows a hypergraph with(0 vertices,
represented by circles, andl nets, represented by points. The ngtcontains5 vertices:
vy, Us, U1, V3 and vg , thus its size i$H5 (|ny| =5).

Weights and costs can be associated with vertices and aspeatively. We usev ()
to denote the weight of the vertex , and ¢(:) to denote the cost of the nef .

I={W,...,Vi} is a s-way vertex partition ofH = (V, N) if each part is nonempty,
the parts are pairwise disjoint, and the union of parts eqiial In II, a net is said to
connecta part if it has at least one vertex in that part. Toanectivity setA(i) of a net
n; is the set of parts connected by . TheconnectivityA(i) =|A(i)| of a netn; is the
number of parts connected by . In IT, the weight of a part is the sum of the weights of
vertices in that part.

In the hypergraph partitioning problem, the objective isrtimimize

cutsize(T) = Y e(i).(A(i) — 1) . (5)

n;EN

Example 3. Net's cost and partitioning: In Figure [8, there are four disjoint parts
{V1,...,V4} and their union by definition give¥”. The connectivity of net; is 2
(A(1) = 2), becausen; is connected to part$; and V.

Let suppose that the cost of each net in Fidure 8 i6c(i) = 1). Thus:

4
cutsize(Il) = Zc =

=1

= 1L.2-1D+1.3-1)+1.(3-1)+1.(2—-1)=6

12



1.2 General background 13

Figure 8: Example of hypergraph containiig vertices (represented by circles) addnets (represented
by points). The hypergraph is partitioned irdoparts, represented by ellipses.

Minimizing the cutsize function is widely used in the VLSI (Very-Large-Scale
Integration) community [89] and in the scientific computiogmmunity [17, 27| 115,
11€6], and it is referred to as theonnectivity —1 cutsize metric. The partitioning
objective is to satisfy a balancing constraint on part wisgh

Wmaz - Wavg

—r= 9 Le. 6

Wavg =€ ( )

Here W, Is the largest part weightlV,,, is the average part weight, and is an
allowable imbalance ratio. The problem is NP-hard [89].

Direct methods

As we focus on the multifrontal method, we will comment on goof its main
properties with respect to other methods. For an overviethefmultifrontal method
(although we describe in the next chapter), we refer theenetd[47 [51] 78, 93]; for the
discussion of other direct approaches, we refer the read8Et /7] 81]. The multifrontal
method was initially developed for indefinite sparse symindinear systems [51] and
was then extended to unsymmetric matrices [52]. It belongbe class of approaches
which separates the factorization into two phases. The slimEactorization phase
is not concerned with numerical values. It looks for a pematioh of the matrix that
will reduce the number of operations and memory requiresignthe subsequent phase,
and then computes a dependency graph associated with theZation. Finally, in an
implementation for parallel computers, this phase pdytiakaps the graph onto the target
multiprocessor computer. The numerical factorizationggheomputes the matrix factors
that will then be used during the solution phase to computdwien. The experimental
part and the development performed in this thesis are basdteMUMPS, a MUItifrontal
Massively Parallel Solver[8,10].

Note that on unsymmetric matrices, the computational dégecy graph is the so-
called elimination dag (or edag). This edag is used in theymnsetric multifrontal
approachet)VFPACK [34] andWSMP [75,[76]. In our multifrontal approach, the pattern
of the symmetrized matrixd + AT will be used so that the edag is in fact an elimination
tree. The elimination tree represents the task dependdrbg @omputations, it gives a
partial order in which the columns can be eliminated. Fomaxa the elimination tree
on Figurel®, associated with factors on Figure 10 expressgsrdiency: columi must

13



14 General introduction

wait for the elimination of columnsg and 4. Node 5 of the elimination tree is said to
be the father of node8 and 4. The elimination tree also provides parallelism; column
3 and 4 can be processed in parallel. Note that in a general casdithieaion tree is a
forest (if the matrix is reducible). For the sake of claritg will continue to use the term
elimination tree in the rest of the thesis even when the matreducible.

1 2 3 4 5 6 1 2 3 4 5

6

L+U =

] . .
=33 Fill=in

Figure 9: Pattern of a structurally symmetric matrix andifilin its factors.

An important issue for efficiency is that columns with simikparsity pattern are
grouped into large supernodés|[51] B4, 98]. The resultieg will be referred to athe
assembly tree In Figure[®, column and 3 of the L factors have the same structure
and are processed as a unigue node in the assembly tree dadmpéth the elimination
tree, shown in FigureZ10.

A A

VW v

Figure 10: Elimination tree and assembly tree associatéddtive matrix of Figurglo.

In practice, supernodes are naturally used in direct sslvdnatever the method
is (left-looking, right-looking or multifrontal), as forxample inSuper LU [38, [40],
PaSTi X [80], UMFPACK [34], TAUCS [113], Obl i o [42, [43], PARDI SO [108, [107],
PSPASES|7/], HSL | i br ary [82], SPOOLES [15], WBMP [[/5,[76], MUMPS [9,[1C,[11],
and others. Some of these solvers have been designed fidbutistt memory computers
(see for exampld®aSTi X, Super LU _DI ST, PSPASES and MUMPS. Because of the
difficulty of handling dynamic data structures efficientlyjost distributed memory
approaches do not perform numerical pivoting during theéofazation phase. Instead,
they are based on a static mapping of the tasks and data armt dtdaw task migration
during numerical factorization. In this context one unique original feature of MUMPS
solver is that it enables standard numerical pivoting. Dyitatask creation, scheduling
and data mapping are used to handle numerical issues and\vm@ra very adaptive
approach. Numerical pivoting can clearly be avoided for syatric positive definite
matrices. For unsymmetric matrices, Duff and Koster [48,h8/e designed algorithms
to permute large entries onto the diagonal and have shownthtgcan significantly

14



1.2 General background 15

reduce numerical pivoting. Demmel and LLi.[90] have shown,tifeone preprocesses
the matrix using the code of Duff and Koster, static pivot{mgth possibly modified

diagonal values) followed by iterative refinement can ndiynarovide reasonably
accurate solutions. They have observed that this prepsomesn combination with an
appropriate scaling of the input matrix, is a key issue f@ mlumerical stability of their
approach.

One main difference between multifrontal and other dirggtraaches (seé [78]) such
as left-looking and right-looking, is in the way of doing thpdates for each node in the
elimination tree. In the left-looking approach the updatea node are done just before
the node is factorized. This is also known as a fan-in metdd79]. In the right-looking
approach, the updates to each node are sent just after theiZation. This approach is
also known as a fan-out method. From this point of view, thétifmental method [ 13} 52,
93] can be seen as a combination of left-looking and righkilogp approaches, where all
updates are sent after the factorization of the current botlenly to its father. To do the
update the father must be capable of storing all contrilmstfoom all its descendants. One
can show that a full square matrix (so called frontal mawbgrder the number of nonzero
entries in the column of. is enough to store all contributions. More that one branch of
the tree and multiple associated frontal matrices can begssed simultaneously so that
the method has been named the multifrontal approach.

;\\ / GZ

a) Left-looking: Column 6 is c) Multifrontal : node 5 receives

updated with contributions of updates only from its direct

nodes2,3 and5 just before children —nodes3 and 4, then
processing hodeé . starts to factorize nodé .

b) Right-looking: after processing
node 2 the updates to nod&, 5
and 6 are done.

Figure 11: Updates in left-looking, right-looking and nifstintal approaches. The bold nodes represent
the current node and the arrows refer to updates.

Note that each update corresponds to a communication nmeesgag parallel
distributed memory environment so that each approach waleh a different
communication pattern. The volume and number of messadethem strongly depend
on the mapping of the nodes of the elimination tree onto tbegssors (se€ [78]).

Least-square solution

Linear least-squares problems arise in many important siedl science and
engineering, such as econometry, geodesy, statisticststal analysis, fluid dynamics,
etc. The linear least-squares problem![21] 61, [95,[96,[9F,i®% computational
problem that originally arose from the needs to fit a lineathmamatical model to given
observations. To reduce the influence of errors in the obsens a great number of
measurements are taken. Thus the resulting problem to sohreoverdetermined linear
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16 General introduction

system of equations. In matrix terms, given a veckore R™ and a matrixA €
R™™ m > n, we want to find a vectorx € R", such that Az is the ‘best’
approximation tob. There are many possibilities of defining this ‘best’ appnuation.
Often for statistical reasons, but also to provide a simplegutational problemr is
chosen to minimize the Euclidean vector norm:

ming||Ax —blly , where A€ R™™ beR™ (7)

This is known as the linear least-squares problem. Veet®s the linear least-squares
solution of the systemdx = b. Let r be the residual vector; = b — Ax . Thus to solve
the linear least-squares problem we must mininjizg2 which is the sum of the squared
residuals:||r||3 = >_1", 7. If the rank of matrixA is smaller thann (rank(A) < n),
the solutionz of equation[(F7) is not unique. However, among all least-segiaolutions
there is an unique solution which minimizéls:||> (see Chapterd and 2 of Bjorck,

Numerical Methods for Least-Square Problems [21]).

In linear statistical models the vectdr of observations is related to the unknown
vector = by the linear relation:

Ar =b+ ¢ (8)

where e is a vector of random errors. Letunk(A) = n and e has zero meanf(e) = 0.
Let also the variance-covariance matrix bé) = o%I. Then by the Gauss-Markov
theorem, the least-squares estimatés the linear unbiased estimator of (an estimator
for which there is no difference between an estimator’s etgubvalue and the true value
of the parameterz = z ) with minimum variance equal to

V, = 02C, |, C, = (ATA)' = R'RT 9)

where R is the Cholesky factor of the so calledrmal equations A7 A. An unbiased
estimate ofo? is given by :

2=\l /(m—n) , F=b— Al
In order to assess the accuracy of the computed estimateibfs often required to

compute the minimum variance matrix, or part of it. In particular, the variance of the
componentz; is given by the diagonal entries; in V,, [101].
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1.3 Test environment

Except where stated otherwise, all our runs have been peeion the multiprocessor
Cray XD1 located at CERFACS (58 nodes with 2 processors pee;nand 4 GB per
node, 2 GB per MPI process). Each node is equipped withRihdisk managed by the
rei serf s file system of maximum bandwidth for a read operation closEg®1B/sec

with one MPI process per node.

Performance of the solution phase

Our set of test matrices used for the experiments in the finttqd the thesis — solution
phase performance is described in Tdble 4, sorted by faiz®r The size of the factors is
obtained using &kt i s reordering|[83] of the original matrix. All test matriceseareal
symmetric exceptAs4r-L15 andaAMANDE which are complex symmetric.

Matrix name Order Entries | Factors| Nb Nodes| Description (origin)

(Millions) (MB) | inthe tree
QIMONDAO7* | 8613 291 66.9 2534 | 3083998 Circuit simulation (Qimonda AG company)
CAS4R-L15 2423135 195 4832 864 447 | 3D Electromagnetism (EADS)
CONESHL* 1262 212 43.0| 5908 113 513 | 3D finite element from SAMTECH
NICE20MC * 715923 28.1 9263 68 134 | Seismic processing (BRGM Lab.)
AUDI * 943 695 39.3 | 12202 113 119 | Automotive crankshaft model
GRID3.5M 3500 000 37.8| 15720| 1535044 | 3D 1llpt-discretization of Laplacian operator
GRID5M 5 000 000 53.8 | 17798 | 2203434 | 3D 1llpt-discretization of Laplacian operator
CORBHZ * 2233031 90.2 | 21622 268 798 | Seismic processing (BRGM Lab.)
AMANDE 6 994 683 58.5| 55295 871621 | 3D Electromagnetism (CEA-CESTA)
NICEQHZ * 5140 838 2155 | 64848 603 495 | Seismic processing (BRGM Lab.)

Table 4: Test matrices: size and origin. Matrices marked by * are iplybavailable.

Matrix AuDI from the PARASOL Collectiort or the matrices from our applications
partners that are publicly available can be found on ¢re dtl se.org web
site. CORBHz matrix corresponds to a dynamic analysis of the Corniogltaly()
earthquake (1994) with maximum signal frequency of 5 NzCE20MC and NICE9HZ
correspond to dynamic analysis of the Nice earthquake (R@h maximum signal
frequency of 1.5 Hz and 9 Hz respectivel asMANDE and CAS4R-L15 are problems
from electromagnetism. CONESHL corresponds to 3D computations from structural
engineering an@IMONDAQ7 to circuit simulation.

We show in Tabl€l4 the order and the number of entries for eathixwhich give us
an estimation about the size and the sparsity of the matirre faictor size denotes the
amount of LU factors stored on disk during the factorization phase aad dring the
solution phase. The time performance of the solution phraaa but-of-core environment
is strongly related to this amount of data. We show also thaber of nodes in the
elimination tree which is very useful to estimate the impd¢he scheduling strategy. The
more nodes that are in the tree, the more important will bénthgence of the scheduling.

We note the difficulty in getting very large problems from ursdry. It is also necessary
that the integer description (symbolic representationhef matrix) will fit on a single
processor in order for us to complete the analysis and aactstine data structures for
subsequent numerical factorization and solution.

Iwww.parallab.uib.no/projects/parasol/data
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18 General introduction

During factorizatiorall factors are written to files (local to each MPI process) okslis
In our experimental context (one MPI process per node)@lfiles of each MPI process
are thus associated with local disks. Our approach will hew@aturally work when
disks are shared by more than one MPI process but with a rieduct the average 1/0
bandwidth. Furthermore, factors are not kept in memory atxbginning of the solution
phaseand between the forward and backward steps. So we have no irdeedse of
data, which will help to better understand the behaviouraahestep.

With these assumptions, we will thus have to load all of thedis during the solve
phase. Note thapIMONDAOQ7 is a large and very sparse matrix with more than 3 million
nodes in the assembly tree. Indeed, it is the matrix with &éingelst number of nodes in
our set. 1/0 access might occur for each node of the elinondtiee and thus it is an
interesting matrix to illustrate the behaviour of our algfums. We thus use this example
extensively in our detailed analysis but show relevantitesun all our test problems later
in the thesis.

Exploit the sparsity of the right-hand side vectors

In the second part of the thesis we are interested in apgitatvith sparse multiple
right-hand sides. An application in electromagnetism $etadcomputing the null-space
basis of a matrix with a large deficiency. Another applicaiio astrophysics requires the
computation of the diagonal entries of the inverse of a matri

For null-space basis computations our test matrices (ginefable[%) come from
3D applications in electromagnetism when computing reso@anodes in box cavities
discretization.

Matrix name Order | Nb entries| Nb Nodes| Global | Root | Null
inthe tree| Def. Def. | Pivots
boxcav_8 5 3 619 3471 319 56 7 49
boxcav_16x10x3 2675 15953 1311 270 10 260
boxcav_20x13x3 4419 26 129 2121 456 10 446
boxcav_30x20x4 14 454 89 185 5758 | 1653 | 103 | 1550
boxcav_40x27x5 33 627 212 883 12948 | 4056 | 185 | 3871

Table 5: Test matrices for null-space basis computations: size afidiency.

The matrices are not as large as the matrices for analysmgerformance of the
parallel out-of-core solution. However the main issue \lilasse matrices is the relatively
large deficiency (rank of the null-space basis of the matnih respect to the order
of the matrix (compare column 5 (Global Def) with column 2 gér)). As shown in
Section[8.ZR of Part2, computing the null-space basis ieduire a large number of
backward solutions with highly sparse right-hand-sideesias many solution steps as
the size of the deficiency must be performed. In columns 6 am¢k Andicate how
the deficiency was detected during the factorization. Adampd in Sectioli 8.212 one
part of the deficiency can be detected on the fly of a “quasiad¥factorization phase
(column Null Pivots) with modified pivoting strategies; dner part can be detected
while processing the root of the elimination tree with a raekealing algorithm (column
Root Def.). We will show in Section 8.2.2 that the localitytbe deficient rows in the
elimination tree influences the performance of our algongh

To illustrate the behaviour of our algorithms for computieigtries in A=!, our set
of matrices is based on applications in astrophysics andltsefom a collaboration
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with SPI/INTEGRAL team at CESR (Centre d’Etude Spatiale Bayonnements in
Toulouse). In the context of the INTEGRAL (INTErnational @ma-Ray Astrophysics
Laboratory [119]) mission of ESA (European Space Agencyatial observatory with
high resolution (both in terms of angle and energy) hardwahnology has been
launched on October 2002. SP11118] is one of the main instntranboard INTEGRAL,
a spectrometer with high energy resolution and indirectgimg capabilities. To obtain
a complete sky survey with SPI/INTEGRAL, the processing okgy large amount of
data acquired by the INTEGRAL observatory is needed [23}. éxample, to estimate
the total point-source emission contributions, a lineastesquares problem of about 1
million equations and 100000 unknowns must be solved. Asadly explained in this
chapter (see previous Sectionll1.2 for least-square solytime might want in this case
to compute part of the inverse of the variance (see EquBlioi®do so one must then
compute part of the inverse of the normal equation mattixA where A is the matrix
associated with the original linear least-squares problarfew test matrices associated
with the normal equations built from our application arewhan Table[6.

Matrix name Order | Nb entries| Nb Nodes
a-1_08M 8999 497 628 1186
a-1_21M 21532 855 866 5207
d-11_25M 25000 249 720 12 091
a-1_46M 46799 | 1791 242 12 419
a-1_72M 72 358 | 3549284 7 941
a-1_148M | 148286 7388031 12734

Table 6: Test matrices to compute entries i A)~* .

This application is computationally intensive becausgh@context of the sky survey,
all diagonal entries of the inverse of the normal equatiortrinare required. For
example, on the largest matrix in the test set, solving tmeatete problem requires about
7 seconds for the analysis phade4 seconds to factor the matrix arid 528 seconds to
compute all diagonal entries of the inverse of the matrigifles obtained at CESR with
an incore factorization based on MUMPS solver on an Opter8rGHz with 16 Gbytes
of main memory). We will show in Part 2 of the thesis how we capl@t the sparsity
better in order to reduce the solution time and limit the mgnused.
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General introduction
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Part |

Analysis of the Solution Phase of a
Parallel Multifrontal Approach
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Résumeé de la Partie | : Analyse de la phase de résolution patale
dans une approche multifrontale

Le systéme linéaire de grande taille: = b est résolu en utilisant une méthode directe
de factorisation basée sur une approche multifrontale dansnvironnement paralléle
out-of-core (hors-mémoire). Les méthodes directes sonvestt composées de trois
phases : une phase de prétraitement et d’analyse, une phdsetatrisation A = LU
ou A= LDL si A estsymmeétrique) et une phase de résolution. La phase datiéso
se décompose en une étape de descépte- b suivie d’'une étape de remontéér = y
dans le cas non-symétrique. Dans ce travail nous nous $stame a la phase de résolution
et aux possibilités de I'optimiser, surtout dans un comtddrs-mémoire ou le temps de
résolution est dominé par le temps d’acces et de lecturestjudidur.

Avant d’étudier et présenter des performances dans unxtenters-mémoire, nous
allons présenter certaines propriétés générales de & pleagsolution.

Dans un environnement en mémoire (in-core)

Les méthodes directes utilisent I'arbre d’élimination poeprésenter la dépendance
des calculs. Pour gérer I'ordre dans lequel les taches dmilcabnt effectuées nous
utilisons une structure de données appad®L Elle représente toutes les taches prétes a
étre exécutées a tout moment de la résolution. Au début tipkée descente (forward
substitution, résolution dd.y = b) toutes les taches associées aux feuilles de I'arbre
de I'élimination sont stockées dansrReoL en respectant un post-ordre de parcours de
'arbre. Au début de I'étape de remontée (backward suligtiturésolution delUx = b
dans le cas d’'une matrice symétrique), la seule tache pi@re @xécutée correspond au
noeud associé a la racine de 'arbre. Dans les deux étapasgtante et la remontée) les
taches mises dans#®oL sont extraites en utilisant I'ordonnancement LIFO, ce gunsl
le cas séquentiel correspond a une traversée optimalertbeel’apost-ordre des taches.
Dans le cas paralléle, I'extraction des noeud$dwL est influencée par le mapping des
noeuds sur les processeurs. Dans ce cas, le post-ordre nplpe@tre respecté et on
parle d’ordonnancement topologique des taches (chaquelrmére ne peut étre activé
gu’apres avoir traité tous ses enfants).

Implémenter efficacement les méthodes directes multéitestdans un environnement
paralléle reste un travail difficile au niveau des commutinees entre les processeurs et
la synchronisation des taches a exécuter. Pour la prenugreuine description détaillée
des algorithmes paralléeles utilisés dans la phase de té&sotie la méthode multifrontale
sera faite dans cette these. Des particularités impodanieparallele seront illustrées
(Proprietéd 311314, 3.3 EIB.4) tout en prouvant leur effiéapour la parallélisation
massive de la méthode.

Dans un environnement hors-mémoire (OOC)

Il faut insister sur le fait que le temps de toute la phase deloéion est dominé par le
temps d’acces et de préchargement du disque dur. |l dev@st@imondial d’optimiser
le processus de préchargement des données. Dans ce cohtjectif de notre travail
a été de diminuer le nombre d’acces au disque dur tout en mefedkecture des données
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la plus ‘réguliere’ si possible. Une implémentation simpteefficace, dans le cas ou
la mémoire n’est pas critique, est d’utiliser le cache dué&y® pour le préchargement
des données. Dans le cas ou la mémoire pour résoudre le syd@nent critique, les
mécanismes du cache ne sont plus efficaces, comme indigsdeddablead1]7 - en
diminuant le nombre de processeurs utilisés on observeductién du débit d’acces aux

facteurs sur le disque (du 92.6 MB/s avec 8 processeurs a B/2 &h utilisant un seul
processeur.)

Taille des facteurs Solution Paralléle
Nprocs (perproc)| Fwd Bwd Débit d'acces aux facteurs
MB | (sec) (sec) (MB/s)
In core
8 | 317.5 | 0.9 0.9 —
OO0C (Out-Of-Core)
8 317.5 3.6 4.5 92.6
4 635.0 | 45.9 15.1 83.3
2 1270.1| 129.4 93.1 22.8
1 2534.3| 269.4 282.9 9.2

Table 1.7: Influence de la mémoire utilisée par noeud sur le Cray XD1 fmperformance en paralléle de la phase de résolution
sur la matricedIMONDAO7. Cette approche OOC est basée sur la simple utilisatioméganisme cache {STEM_BASEDapproche).

On propose donc une autre méthode pour lire les données slisdae (méthode
appelée Direct I/O), plus contraignante pour le développeais beaucoup plus efficace
du point de vue du temps d’acces et de la gestion de la ménidéas buffeurs internes
au programme sont destinés a précharger les données dedisgugrand avantage de
cette approche est que leur taille est indépendante ddlé&adaiprobleme et qu’elle peut
étre fixée par l'utilisateur. Le buffeur est divisé en deuxtiea - une partie pour un
préchargement d’'un grand nombre de données en utilisanndésodes sophistiquées
d’optimisation; et une partie de lecture sur un seul blocalenées en urgence (lecture en
mode bloquant) (voir Figule_T.112).

Emg‘ buffer

Prefetching zone Emergency zone

Figure 1.12: Buffeur dont la taille est prédéfinie par I'istiteur.

Une comparaison entre les deux méthodes en terme de tempkdis @t de nombre
d’accées au disque dur est donnée dans le Tahleau 1.8.

Méthode Fwd Bwd Nb_Req Fwd Nb_Req Bwd
(sec) (sec) || Prefetch| Emgzone| Prefetch| Emg zone

DIRECT_IO (Emg+Prefetch)] 171.5| 176.8 541 0 496 0

SYSTEM_BASED 269.4| 2829 — — — —

Table 1.8: Influence du nombre des buffeurs sur &lution sequentiel d@IMONDAO7. Fwd=forward phase. Bwd=backward
phase. Emg zond: MB; Prefetch buffer10 MB.

Apres une comparaison exhaustive, nous avons démontfied@té de la méthode
DIRECT_IO sur I'ensemble de nos matrices.
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Ordonnancement (Scheduling)

Comme nous l'avons déja dit précédemment, l'accés régudierdisque est
extrémement important pour le temps de calcul de la phaséstdution. Par acces
régulier, on sous-entend le préchargement des donnéesaddegtaille d’'une maniere
contigué sur le disque dur. Dans ce contexte, 'ordonnaeo¢mificace des différentes
taches prétes a étre exécutées devient tres important. IPatas séquentiel, I'ordre
optimal pour parcourir I'arbre d’élimination et traiterdgéaches correspond a un post-
ordre. Dans le cas paralléle, les choses se compliguenttienliisant le mapping des
taches sur les différents processeurs, et donc le post-o@mpeut plus étre respecté.
Les stratégies connues jusqu’a présent, LIFO et FIFO, nemamnadaptées non plus
a la résolution parallele du systeme a cause du grand nomdpeals irréguliers au
préchargement des données du disque. (Plugd®00 appels dans I'étape de backward
substitution avec 3 et 4 processeurs).

Nb Fwd Bwd Nb Max requétes par step

Stratégie| of Fwd ) Bwd )
Procs| (sec) (sec) || Prefetch| Emg zone| Prefetch| Emg zone
LIFO 1 1715| 176.8 541 0 496 0
LIFO 3 64.9| 262.1 190 3 169 422 497
LIFO 6 38.0| 186.7 102 6 86 422 498
LIFO 8 249 | 137.6 70 0 64 321871
LIFO 16 13.2 94.4 39 2 32 214 245
LIFO 24 10.9 48.5 42 5 38 119 792
LIFO 32 9.1 53.1 25 1 30 116 209

Table 1.9: Influence de 'ordonnancement LIFO sur la matrime1oNDAO7. Emg=emergency buffer:1 MB; Prefetch buffer:10MB
par processeur;(*) : Max par processeur.

Nous proposons une nouvelle stratégie d’ordonnancemertbdbes, NNS, basée sur
le stockage des taches sur le disque dur. Elle prend en cdenpgdpartition des taches
sur les disques locaux de chaque processeur. En ordonndesafiches maitres afin de
respecter la séquence de chaque processeur, on arriveodu@pria séquence d’'écriture
des facteurs lors de la phase de factorisation. Ainsi orenbtin acces beaucoup plus
régulier en lecture aux données du disque dur et un temps disddution fortement
réduit.

Stratégie| Nbde | T_min | Bwd Nb_Red*
Procs Bwd
(sec) | (sec)|| Prefetch| Emg
NNS 1| 158.4| 177.2 496 0
NNS 3 57.9| 655 174 1
NNS 6 315| 379 93 0
NNS 8 21.8| 452 57 0
NNS 16 11.9| 138 36 0
NNS 24 9.0| 132 38 0
NNS 32 8.2 | 107 34 0

Table 1.10: Influence de I'ordonnancement NNS sur la matkee&1oNDAO7. Emg=buffer d’urgence:1 Mo; Prefetch buffer:10Mo
par processeur;(*) : Max per processor.

Les tableauk”T19 €110 montrent les performances des ddormancements LIFO
et NNS. Dans les deux cas, on compare le temps obténud( et Bwd) avec le
temps minimum pour charger les facteurs du disque durmgin). On montre aussi le
nombre des préchargements du disque. Comme le montre lealBBIID sur la matrice
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QIMONDAQO7 mais aussi sur 'ensemble de nos matrices, I'ordonnaeoeNS s’est

montré plus efficace a réduire le nombre de préchargemerdgsdue et le temps global
de la phase de résolution.
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Chapter 2

Introduction

We are interested in solving large sparse linear systefns = b with direct
methods|[[4b| 47, 78], in a parallel limited-memory envirenmth We suppose that the
original matrix A is first factorized into the factord. DL” (when A is symmetric)
or LU (when A is unsymmetric), wherel. and U are triangular matrices and is
diagonal (or block diagonal with blocks of order 1 or 2 in tlese of numerical pivoting
for indefinite systems). Note that in our factorization eegsions, we have omitted, for
the sake of clarity, the permutations performed to pressparsity and to implement
numerical pivoting. These factors are then used to solveyktem through the forward
and backward substitution steps

[LDy=0b and L'z =y]| or [Ly=bandUz=y], (2.1)

depending on whether the matrix is symmetric or not. In thoskiwwe are concerned with
the case when the matrix is large and sparse [47,159]. The main limitation in the use of
sparse direct methods comes from the need to store the $abtatroften have many (10
to 100 times) more entries than the original matrix.

Usually the most time consuming part of the solution prodgss the initial matrix
factorization and it is this step that most previous work laasiressed. However,
in many applications, the substitution phases can be peddrvery many times for
each factorization so that the accumulated time for thesesgs dominates. This is
true, for example, in some algorithms for nonlinear optiatian and for applications
where solutions with many different right-hand sides argumed (for example, in
electromagnetic or seismic modelling). Furthermore, whelving systems in parallel
or when working out-of-core, the substitution times can beatly increased. We
believe this is the first in depth study of the substitutioragd#s in a parallel and
out-of core environment. Our work differs and extends thekwaof [103, [104,/106]
and [114] because firstly we consider a parallel out-of-caetext, and secondly we
focus on the performance of the solve phase. In this contaxtyut-of-core(OOC)
multifrontal |51,[52] approach is considered. Here thedextare written to disk during
the factorization phase, as a sequence of blocks (that weactdr blocks). Overlapping
communications and I/0O with computations during the fagz#dron phase is an important
issue (seel]2]), but is not the scope of this work. During thlesequent forward and
backward solve phases, that we lve phasewe have to load the factor blocks from
the local disks of the computer to the main memory. In thigextythe cost of the solve
phase can become the dominant phase of the complete sgiutioess. When the solve
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28 Introduction

phase has to be performed for many right-hand sides (simaedtasly or not) then it is
even more critical.

We first discuss in ChaptEl 3 the main aspects of the in-catdldlited memory solve
phase: mono-processor and multi-processor case. Althdeigiis of our solver MUMPS
have described in previous publications[7,[10, 12] thiésfirst time we have considered
the solve phase in detail. We explain why our parallel solvage does not follow the
standard dependency structure of the factorization phadepeove the correctness of
our approach. We then explain how our algorithms have beeptad to the out-of-core
context in Chaptefl4. We show the limitations of a simple dedndriven approach,
that we call §SsTEM_BASED, based on automatic system I/O caching mechanisms. In
Chapter b we show how user buffers can be introduced to ingpthe behaviour of
the solve phase and then describe an approach where the ynesemt is completely
controlled, which we call the RECT_IO. We show that a naive implementation of the
DIRECT_IO based approach is not suitable for parallel implem@naind introduce a
new scheduling scheme that constrains the ordering of 8ieta/Ne first prove that the
new algorithm is correct. We then illustrate in Chapler 6ghi in performance obtained
on a set of large real problems.
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Chapter 3

Main in-core parallel features of the
solver

3.1 Introduction

Direct solvers try to preserve the zero pattern and to ekfiieiindependence of some
computations in parallel environments. So called threesphapproaches have become
very popular:

e Theanalysisphase considers only the pattern of the matrix and buildad¢icessary
data structures for numerical computations.

e Thefactorization phase tries to follow the decision of the analysis and buthes
sparse factors{U for unsymmetric case, of. DL” for the symmetric case).

e Thesolvephase performs forward and backward substitution phasgstonally
performs iterative refinement to improve the solution.

We will start by introducing the factorization phase (See{B.2) and basic notions,
used later during the solve phase (Seckiah 3.3). We assuthisi@hapter that our matrix
has a symmetric structure and thus even when the matrix mmetric Struct(L) =
Struct(U) .

3.2 In-core parallel factorization phase

Multifrontal methods use aglimination tree [92] to represent the dependencies of
the computations. Based on the structure of théactors, we define the elimination tree
as follows: nodei is the father of nodej if and only if ¢ is the first non-zero entry
in column j of L. Each node of this tree is associated witfrantal matrix that is
assembled (summed) based on contributions from the chilaine the entries from the
original matrix. In practice, nodes of the elimination ti@® amalgamated so that more
that one variable can be eliminated at each node of the triee rédsulting amalgamated
tree is referred to as theessembly tree The work associated with an individual node of
the assembly tree corresponds to the factorization of thadf matrix. Frontal matrices
are always considered as dense matrices (see Higure 3.1).
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30 Main in-core parallel features of the solver

Once alleliminations for a node have been performed, the Schur complement matrix
Fyy — Fy F'Fyy is computed. It is used to update later rows and columns afvkeall
matrix which are associated with the parent nodes. We dalBbhur complement matrix
the contribution block (CB) of the node, see FigufeB.1.

FS Partially Summec
columns columns
fully summed columns partially summed colurr ,

-
Q/ \L FS //// %
rows facto %
7
fully summed rows —= = F o /)
11 12 variables cB
partially summed rows —= F " F . Partialrlg V?Summ]ed a

Figure 3.1: Frontal matrix : general structure

If some variables are not eliminated because of numerisakts, they are included in
the contribution block and their elimination is postponedite parent node or later to an
ascendant node (FigureB.2). Thesm-eliminated variables(delayed pivots) increase
the fill-in the factors, the number of the operations and #udrization time, but can be
critical to the accuracy of the solution.

We show in Figurd_3]2 the difference of the factorization ottbcases: with and
without non-eliminated variables. We first show in Figlr&-8) a symmetric matrix
pattern, its associated factors and the correspondingrétgdree. Then the frontal
matrices of all nodes in the assembly tree are presentedirdf§i2-b) shows the case
when there is no delayed pivots. Nodds and B are completely factorized and the
contribution of column5 and 6 are sent to nod€” . Figure[3.2-c) shows the case when
there column2 is not factorized and thus becomes a delayed pivot. The ibatitbn
block of nodeA is thus extended and sent to the parent nédehich frontal matrix size
is also updated.
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3.2 In-core parallel factorization phase 31

12 3 45 6 12 3 45 6 ﬁ
c
F )

Nty

@\ (@
FXFXF A 8
FF O/\©;

original matrix factors matrix assembly tree

o oA~ W NP
o U A W NP
M
M

a) Original matrix, LU structure and corresponding assembly tree

5XF]

|

O T X|:n
0O X X|o
XX | X

) 6 X X|CC } ]
b) Case of non-delayed pivots ¢) Case of delayed pivi@m nodeA to nodeC

Figure 3.2: Data structure of the frontal matrix and the @liations performed between two children and a
father node.X = non-zero positions of the original matrik; = fill-in; C = Contribution Block entry.

During the factorization phase factors associated witth eaade of the elimination
tree are written on disk, as they will be accessed again ontige solution phase. Thus
the amount of needed/active memory for factorizing the sadelower (as shown in
Figure[3:B) and we can benefit of better efficiency. We usedhma active memory to
reference the memory needed to store the current frontafixnatd the contribution
blocks computed to the moment.

Active memory

Figure 3.3: In-core memory needed to factorize a matrixéedrfrom factors.

3.2.1 Parallelism during the factorization phase

Note that, in a sequential environment, we choose to protessnodes of the
elimination tree, using a post-ordering (nodes belongmany subtree are numbered
consecutively). In a sequential environment with a podedng it can be shown than
a simple stack mechanism can be used to manage the working apaociated to the
contribution blocks, as shown in Figure3.4
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32 Main in-core parallel features of the solver

=

Figure 3.4: In-core memory with the current frontal matrmdaa stack with two contribution blocks.

In a parallel environment, the tree nodes are distributdd processors and only a
topological ordering is followed (nodes of any subtree arenhered consecutively, but

are not always processed consecutively. Neverthelessgeatpaode can be process only
after all its children).

The multifrontal MUMPS solver[]7/ 10, 12] provides three fdient types of
parallelism for both factorization and solve phases. Tlasoe for the three types is
to balance the total work and the memory on each processor.

We use the assembly tree, representing the order in whiah#tex will be factorized,
to distribute the nodes over the processors. Depending @si#e of the node and on
which level of the assembly tree the node is situated, we have

Typel node:| sequential processing of a node— essentially for the low levels of the
tree (near the leaves), where the tree parallelism is seiffici

irregular 1D decomposition of the node— for the intermediate levels
when the node is large enough: the contribution blocks argtipaed and each
partition assigned to a different processor with respechéototal amount of data
mapped on each processor. The so caihedter process is in charge of factorizing
the block of fully summed variables and of deciding how maitgve processes

will be used to process this node. Data equilibration is tdaee among the
processes [{Z, 73].

Type3 node:|block cyclic 2D distribution [31] of the frontal matrix — reserved only
or the root node, if it is large enough. In this case, ScaLBRAZ27] is used on the
node.

In Figure[35 the pattern of symmetric factors with a postening of the nodes in
the elimination tree is shown. We show the mapping of the samefour processors.
Each node in the elimination tree has a master processaitedién a box. If a node is of
type 2 or type 3, slave processes are also associated, using dynamicaredisiing the
factorization phase to equilibrate factors among proass$tle show also the distribution
of the L factors of a frontal matrix depending on the type of the ndéta.type 1 node,
the whole frontal matrix is mapped to one processor, as stiowmde 5 . If a node is of
type 2, as node3, the frontal matrix and the contribution block are divideztween the
master and the slave processes in irreglialdecomposition. The frontal matrix on the
root, node7, is divided in block cycli2D decomposition.
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3.3 In-core parallel solve phase 33

Type3 node
P1, P2 P@ P
PO P2 PO
L
Type2 node P1 P1: PO P1
1
' A P2, P3 P
2 2 P3|, 2 PO P2 PO
3 3 P1|L63 P3
P1,P2
4 [X P2|L73
. 5 Typel node
6 6 015
7
7 L65
P1] - - -
L75
Matrix of factors L Elimination tree, with nodes mapped on 4 processors

Figure 3.5: lllustration of node types and mapping of thecpssors on the nodes in the elimination tree. In
box is indicated the master process associated with eadh nod

3.3 In-core parallel solve phase

Our algorithms handle both symmetric and unsymmetric oes$ti For the
unsymmetric or indefinite matrices the algorithms incogter numerical pivoting
(threshold partial pivoting and two-by-two pivots). Noteat although the pivoting is
a part of the factorization phase, the permuted row/coluautofs should have to be
taken into account in the solution phase. For the sake oftlae will focus in the
following on symmetric matrices and will not consider pivat for numerical stability
in the description of our algorithms. Our solve phase fob@multifrontal factorization
and uses the assembly treel[92] to represent the depend@fitiee computations during
the solution phase.

3.3.1 Some notation

During the solve phase, each node of the elimination tredshitble L factor block
computed during factorization. THerward substitution is a bottom-top traversal of the
tree (post-ordering for the sequential case and topolbgrcering for the parallel case).
The backward substitution traverses the tree in the reverse order. The factor block can
be partitioned intdactored variables andinfactored variables as shown in FigureB.6.

In our parallel context, the distribution of the factors depends on the type and the
mapping of the nodes onto the processors as explained inek®ps section.

We first comment on data structure used for task schedulingenTwe describe,
separately, the forward and the backward algorithms, ifjémg the critical issues in
each case.

3.3.2 Algorithm for management of tasks and messages

To handle the task dependency graph, both the forward anavaad algorithms make
use of a distributed pool of tasks, that we call #'®@oL. This pool contains a list of
all ready tasks to be executed and is used to schedule worktintbe sequential and
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34 Main in-core parallel features of the solver

Factored rows

All rows mapped on a master proc I PO
Factored I Unfactored rows
P1
Unfactored
| [T
a) Type 1 Node b) Type 2 Node

Figure 3.6: Partitioning and distribution of the factor tks depends on the type of the node. On the Type 2
node, PO is the master process in charge of factored rowhlasaand P1 and P2 are slave processes in

charge of a partition of the unfactored row variables.

the parallel cases. At the beginning of each step, we iméahe distributed pool with

all tasks ready on each process using a post-order (seeelEigglirfor a description of
the situation on one process). Tasks are then extractedtfrerand of the pool (LIFO

strategy).

POOL - beginning of FWD step Root node
([af2[a ]
e Bwd direction|

end of the pool

POOL - beginning of BWD step
Fwd direction
end of the pool © (5) Leafnodes

Assembly Tree

Figure 3.7: The POOL of tasks at the beginning of the forwaud! lsackward sequential solve steps.

For the forward step, the pool is initialized with the leaties of the assembly tree. A
node will then be placed at the end of the pool as soon as d# ohildren are processed.
Note that in a sequential context this lead to a post-ordeetsal of the tree. At the
beginning of the backward step the pool is initialized onligtwthe root nodes. At the
end of a node process, we add to the end of the pool all of itdrelni. Furthermore,
for both the forward and the backward steps, when a node tishiited over more than
one process (Type 2 or Type 3 nodes) only the master task edaddts local pool. The
slave tasks are processed on the fly. The algorithm for dktganodes from the pool is

described in Algorithni-311.

Note that priority is given to the reception of messages -litbaking or non-blocking
receive. We look at the pool for work only when no message reegdrocessed. The
algorithm for the forward case finishes when all root nodegehiaeen treated. The
backward algorithm finishes when all leaf nodes have beecegszd.

We first describe in Algorithri 32 the parallel forward sutgion (LDy = b) and
later present the algorithm for the backward stég ¢ = v) in Algorithm[3.3.
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3.3 In-core parallel solve phase 35

Algorithm 3.1 : Algorithm for extracting a node frorrooL (LIFO strategy)
Myid - process numbetnode- the current node mapped on proce¥yid ;
1. Step = Fwd or Bwd
2: if (Fwd) InitialiserpooL with the leaf nodes mapped dtyid
3: if ( Bwd) Initialise POOL with root nodes mapped dvlyid
4: while (Not finished)do
5. if (PooOLis not emptythen
6 if anessage is availableProcess_Messadaessage) [See Algorithm§3R and 3.3]
7. else
8
9

Wait for anessage and therProcess_Messadeessage) [See Algorithm$3P2 and3.3]
- endif

10: if (PooLis not empty andProcess_Messageot called)then

11: Extract node, sainodg from the end oPooL

12: if (Fwd) Fwd_Process_nodgnode [See Algorithn 3R]

13: if (Bwd ) Bwd_Process_nodgnode [See Algorithn 3]

14:  endif

15: end while

3.3.3 Algorithm for forward substitution

We first describe in Algorithia 312 the parallel forward sutwion (Ly = b). We then
show in Sectioli-3.314 details of the algorithm used to peesode and add comments
on how messages are processed.

Note that in Algorithn3.2 (and in practice) the same workspgce can be used to
store bothy and b . We will keep two separate vectors in our algorithm only oz sake
of simplicity.

To better understand the distributed memory version of tgorahms, we introduce
a few properties related to the use of the elimination tree.pgfopertie§ 311 and 3.2 note
that the terms factored and unfactored variables were itbestin Figurd-36. We show
(Property[33.R) that our algorithm does not always follow ttependency paths of the
assembly tree which explains why we must reset our workirayal’b to zero.

For the sake of completeness references to BLAS (Basic Liiggbra Subroutines)
kernels GEMM V andTRSM V) have been added to the description of the Algorifhm 3.2
and AlgorithmZ33B (algorithm for the backward substitujioNotations ‘ste@’ refer to
Figure 39 in Sectioh 3.3.4 where we illustrate in detaitsiiain steps of our algorithm.

Without loss of generality we will assume in the remaindetd first part of this
thesis that we have only one right-hand side and thus oné@olio compute since the
extension to multiple right-hand sides is straightforward

Property 3.1. All updates to factored variablesf a node, say Inode, come only from
processes involved in the children of Inode (both mastetawesprocesses).

Proof This property is clearly preserved by the algorithm, siceur algorithm only
processes involved in the children send updates to the mafstae father - message
Cont Vec or direct update of Wb either during Fwd_Process_Nodefor Type 1
nodes or at the reception of messaddSTER2SLAVE for Type 2 nodes. Furthermore
updates to the factored variables of a node can only comeriamas involved in the sub-
tree rooted at that node (main property of the assembly.tiide¥ proves our propertyo
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36 Main in-core parallel features of the solver

Algorithm 3.2 : Algorithm for the forward step LDy = b)
Myid - process numbeitnode- the current node mapped on proceeyid ;
Nb_children -the number of children dhodeand
Pfather- the process on which the masterfather(lInode)s mapped.
Wb - alocal working array, initialized t@ and designed to accumulate modifications of the right-hand
side b;
Use factors ‘will be expanded in later discussion to cases when such usecesss to them is non-
trivial.

Fwd_Process_noddfode {l am the master of nodnode}

1: For factored variables, update with entries of Wb and‘ Use_ fact ors |to compute the partial

solution(trsm v) (ste and
2: if (Inodeis of Type 2 )then
: Send to each slave dfiodethe computed solution and entries @b corresponding to variables
mapped on this slave (messafBSTER2SLAVE) and reset these entries d¥'b to zero 6ee

Property(3D (ste)

4: else if(Inodeis of Type 1)then

5. Update Wb for unfactored variablegemv v)

6: if (Myid # Pfathel) then

7 Send updated entries ofi’b to Pfather (message Cont Vec) and reset them to zercde
Property[3D

8 else

o: Increment updates fd?fatherand if last update add ather(Inode) to the end oPooL

10:  endif

11: else

12:  Type 3root node process based on ScaLAPACK for both forwagidbackward steps on all processes
13: end if

Process_Messad®essage) {l am updatinginodég

1: if (Message £ont Vec) then
2:  Update Wb with contribution received; Increment number of updates
if last update, adthodeto the end ofooL

3: else if (Message MASTER2SLAVE) then
Gather in a smalocal array entries of Wb just received
‘ Use factors ‘and the solution sent by the master to updatddbal array (Gem v)
if (Myid = Pfathel) then

Scatter and add thecal arrayin Wb

Increment number of updates and if last updateladdeto the end ofPooL
else
10: Sendlocal array to Pfather(messageCont Vec)
11:  endif
12: end if

© o N aR

Property 3.2. All updates of descendants of a node Inode, to unfactoradasof a
node are not always sent to processes in charge of that node.

Proof Figure[3:8 will be used to prove our property. All nodes iglie[3.8 are Type 1
nodes. Node 1 (mapped onto P1) sends to node 4 (mapped ontgp&&Xes toWb
(corresponding to entries dib on P1) and resets those entries to zero. Node 2 (mapped
onto PO) update$V’b and sends its updates to P2 (corresponding to entriégioon PO)

and resets those entries to zero. At this point, part of thaatgs of the sub-tree rooted

at node 5 will circulate through node 6 on P2. This is the chBseth node 1 and node 2
have a common row in the factor block of node 7. This updat&tob will then be sent

to P4 by P2 during the processing of node 6. On our test matee fFiguré_318) the
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3.3 In-core parallel solve phase 37

Dotted arrow between nodes 4 and 6 indicates that
~ part of the updates from the sub-tree rooted at node 4
to node 7 are in fact sent by process PO when sending
/ updates from node 2 to node 6.

N o b~ W N P

Figure 3.8: Example used to prove Propé&rfy 3.2: part of thaatgs of node 1 are not sent to process P3 in
charge of node 5.

contribution due to the zero entriés, and [, in row 7 available on processaP0 will
circulate through node 6 o0 .

As a consequence during the processing of node 4, processliRtbtvsend to its
father (node 5) all updates from node 1 to node 7. InsteadePnof3.] says that the
common row updated by node 2 and node 4 could not be elimiretedde 5, but at
node 7. ¢

Note that Propertf/3l1 is one of the main properties of thaiektion tree, exploited
by the multifrontal approach and preserved, on each prodegshe algorithm for
the factored variables. However, contrary to what is expbtbiduring multifrontal
factorization, this elimination tree property is no longespected on each process for
unfactored variables (Propeffy B.2). Propérfy 3.2 alsdagmp the importance of resetting
Wb to zero in AlgorithnT3P.

Property 3.3. At any time a computed update is stored in thé& array of only one
process.

Proof We recall thatiVb is designed to sum update vectord/b is first initialized to
zero on each process at the beginning of the forward steprrig¢gponds to updates to the
right-hand sideb due to solution terms already computed. Each time pait/@f is sent
to a process (messagéont Vec or MASTER2SLAVE) then the corresponding entries
are reset to zero in the procedrerd_Process_node

Let us now check that updates #@'b are never lost. First, during the function
Process Messa@®ASTER2SLAVE), each slave gathers in a local array contributions
sent by its master. This local array is either used to updi&telocally, if the process_id
of the slave is equal tBfather, or is forwarded (messadéont Vec) to procesdfather
without updatingi¥b locally. <

Property 3.4. When starting to process a node (first line of procedure
Fwd_Process_nodgnode)) of Algorithm[3312,5 holds all contributions needed to
compute the solution corresponding to the factored vagallf the node.

Proof Results from Property 3.1 ahdB.2.

Corollary 3.1. Propertyl3.% recursively proves that Algoritiml3.2 comptuitee correct
solution.
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38 Main in-core parallel features of the solver

3.3.4 Detailed illustration of the forward substitution

Figure [39 is used to graphically represent the main stegheofalgorithm of the
parallel forward substitution. A small example is then pded (Examplé-3]1) to further

explain the algorithm.

Inode
Inode I TRSM
B FS
FS /—\ “—’ v H

N

elim

non-elim I

non—elimI ‘Wb
Updatesh with entries ofit’b Cqmputes the_sqlutlon .
corresponding to the eliminated variables

Inode Inode
master
= H Gemmiv

elim e v] elim
':’ E { non—elmI‘

non-elim I

Master2Slave

’ Gemm/v
e re ey
Unfac\ored] |:| y Unfactored
T emw o
Sends the solution and entriesiofh
to the slave Master and slaves compute an updaté to
Inode Master of Ifath(Inode)
o .
/o

nonfellmI

FS
elim v _ . :5
. .~ ContVec

o] [

Send contributions to the Pfather

temp_Wb

Figure 3.9: Communication pattern of procedure Fwd_Pddsde(node) (see Algorithniz3R ) inthe
case of Type2 Node with a single slatemp_Wlrorresponds to the local array referred in Algorithnd 3.2

when processing messayaSTER2 SLAVE.

In Figurel3.® we present the main steps of processing a notgef2, mapped on two
processes: a master with one slave. On the master processapped all factored (fully
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3.3 In-core parallel solve phase 39

summed F'S) variables: eliminatedglim) and non-eliminatednn-elin) variables, as
defined in Figuré€3]1. All unfactored variables are mappetherslave process.

In Figure[3.D we reference each step of Algorithm 3.2. At eiiehm, the concerned
parts are coloured in gray. At st@ node Inode becomes ready and the master process
updatesb with entries of its vector of contribution8/6. At step the master process
uses the eliminated variables and the updaiedector to compute the corresponding
solution. At ste the master sends the computed solution together with srifithe

contribution vectoriVb to the slavesNASTER2SLAVE message). each process
(master or slave) computes an updatebto For the master process it corresponds to
non-eliminated variables which are then storedifb. For the slave, it corresponds of
unfactored rows, stored temporarydamp Wb At|5|the updates are sent to the father’s
master process vi@ont Vec messages. The father's node becomes ready when both
contributions are received.

Note that there are two different ways to send the contrimtiectors to the father of
Inode. The first way (our current proposed scheme) is to have easite sif /node to
sum the contributions and then send them directly to theefadh /node . In this case we
have divided the large messages into many small ones - seeeBdI0 - a). The second
way is to send the contribution vector at once, directly frilv@ master of/node to the
master of its father. Note that in this case the contributomputed by each slave still
need be send by each slave.

In both cases the volume of data transfered is identicalthEumore the master has
anyway to send the computed solution to each slave. This sniberh the number of
messages for both schemes remains the same. The first sottewser{ in our algorithm)
should thus be more efficient because on can expect natuilgliaation of the data
transfer of the known solution stored ivb by the master (‘one to many’ compared with
‘one to one’ of the same total volume of data with the same rermabmessages).

Master Wb Master of the father nod: Master Wb
} 7\ Master of the father nodi
one to ong one to one T

|Wb| = NE [Wb]| = Nfront-Elim
One to many, H b . 5 /
0 not sen

Wh i Whi

Many to one /
y Many to one .~

Slave i D Wb i + Wb i master + Cb i ——> Wb i updated Slave i D Wb i+ Chi--> Whiupdated

a) Current scheme b) Other possibility

Figure 3.10: Different possibilities of sending contritaurt vectors to the master node.

Example 3.1. Node processing during the Fwd stepl{y = b) (see Figur¢-3.11)

Node3 is a type 2 node that has received all contributions from litgdcen and has
been added to the pool.We assume that the master of haslenapped on processor P3
and has slaves mapped on processors P1 and P2. P3 updateth the contributions
to b stored in Wb. P3 computes eliminated variables gf, and sends them together
with part of Wb to each slave processor (stored locally in temporary artayip Wb).
Each slave updatesmp Wb. P2 sends the updated blocke{np 1Wb) to the master of
node6 (P1) viaaCont Vec type message. The slave P1 mapped on r3odan directly
updateWWb, because P1 is the master of the father néde
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40 Main in-core parallel features of the solver

non-eliminated

L y = b variables from the sons Wb
Wb Node 6 /\ .
LEJ y1 bl 1 55 ==
}2% y2 b2 2
131 [L32/ha3 V3 b3 3 ‘
M ya | _ | ba 4 g
LS5 y5 b5 5
7 | | Node 3
L61 | L62L63 |L64 |L65|L) ¥6 b6 6
L71 |L72|L73]L74 |75 L76‘B\Z y7 b7 7 Wb
Symmetric matrix pattern P3 k . 4= “Message Contvec /
P1,P2,P3 maste! 3 . g

non-eliminated
variables of node 3

T Message ContVec

©) ® ©

Elimination tree, with nodes mapped on 4 processors

Figure 3.11: Communication pattern and data computatioimgthe forward step on a node of Type2.

Node6 The master of node& (P1) initialises the number of contribution vectors
to Nb_children(node 6) + > slaves(node 6). For each message of tyg@ont Vec
received, P1 updateB/’b and decrements the number of contribution vectors. When all
contributions are received, nodg is added to the local pool of P1.

3.3.5 Algorithm for backward substitution

The algorithm for the backward substitutioh{z = ) is described in Algorithri313.
As for the forward step, priority is given to message reaapti If no message is
received, a node from the pool is extracted. The backwail rsi@nages three types of
messagesBwd _ MASTER2SLAVE andBwd _Cont Vec are similar toMASTER2SLAVE
andCont Vec of the forward case respectively; a new type of mesdwg# Node is
used to control the activation of the children.

During the backward step, when a Type 2 node is processedsldlie processes
are first involved in the updating of the right-hand sigle(after reception of message
Bwd_Mast er 2Sl ave from the master process of that node). Once the master
process has received all updates to the right-hand side uteahjby the slaves (message
Bwd_Cont Vec), the solution associated with the factored variableses tomputed. A
messagdBwd_Node is then sent to each process on which at least one master hode o
the children is mapped. Note that even if several nodes appetbon the same process,
messageBwd _Node will be sent only once to this process.

Figure 312 will be used to illustrate in more details the msteps of our algorithm
in Sectior:3:316.
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3.3 In-core parallel solve phase 41

Algorithm 3.3 : Algorithm for the backward stepf{"z = y)

Myid - process numbeinode- current node mapped dwyid;

[uy

: Bwd_Process_Nodel[node)

. if (Inodeis of Type 2)then

3:  Master distributes already computed solution correspumntt factored variables between the slaves
of Inode(messageBwd _MASTER2SLAVE, step 1)

4: else if(Inodeis of Type 1)then

‘ Use_factors ‘ associated with unfactored variables to updatédGEMM V) and with factored

variables to compute solutiomRSM V)

6: for each child oinodewhose master process is mappedwyid, add it to the end obooL

7:  Send the solution correspondingab variables oflnodeto processes on which at least one master
of a child node is mapped (messaBed_Node)

8: end if

N

a

Process_MessadMessage)
1: if (Message Bwd_Node) then
2:  Update known solution and addr@oL Inodeand all of its brothers whose master process is mapped
on Myid
. else if (Message Bwd_MASTER2SLAVE) then
‘ Use _factors ‘ mapped on this slave process together with the receiveticolu
to compute a contribution toy (GEMM V, step 2) and send it to the masterlnbde (message
Bwd_Cont Vec, step 3)

w

R

5: else if (Message Bwd_Cont Vec) then

6: Updatey with message and increment number of updates received Jstep 4)

7. if last updatehen

8: ‘ Use factors ‘ associated with factored variables to compute the solii&®&SM V, step 5)

9: for each child ofinodewhose master process is mappedwyid, add it to the end oPooL

10: Send the solution correspondingglh variables olnodeto processes on which at least one master
of a child node is mapped (messaBed_Node, step 6)

11:  endif

12: end if

3.3.6 Detailed illustration of the backward substitution

Figure 312 is used to graphically represent the main stépiseoalgorithm of the
parallel backward substitution. A small example is thervfated in Figuré-3113 to further
explain the algorithm.

As done for the forward substitution, Figure 3.12 is dividetb steps related to the
communication pattern of the processing of a Type 2 node. 88arae that the node is
mapped on 3 processes - a master anslaves.

At the reception of messagéwd_Node, the master process holds the complete
solution sent from its father. The node becomes ready anddsdhinto the pool. Once
extracted from the pool, at step 1 the master distributesateived solution:” between
the slaves involved in the computations on this node. At 2igfiter reception of message
Bwd_MASTER2SLAVE, the slaves use the sent part of the solution to compute eptiat
y. Then, at step 3, the slaves send back the contribution tw the master via message
Bwd_Cont Vec. The master updateg with all received contributions, at step 4. At
step 5, the master computes his contributionyteelated to the non-eliminated variables.
Finally, the master uses the eliminated variables and thiated right-hand side to

41



42

Main in-core parallel features of the solver

compute a part of the solution vectar. The updated known solution is then sent at
step 6 to all processes involved in the master processingleast one son.

master ( m =

7
non-eliminated N
variables S

i

i

Message MasterZSI’a;v'e
L
X2
(= Ly
X1
Distribution of the solution
between the slaves

slaves

slaves

C @

pe.E,

Slaves compute contributionsgo

y=y+yl+y2

3
master[m - ‘ >

]

i
Message UpdateRHS

slaves (l:l g /, /’//l
(mENNA |

Slaves send contributions pf
to the master

S
master y
N

Master computes an updatego
related to non-eliminated variables

master ( w/j\
[

Master computes its part
of the solution vectos

o~ m\-m

master -
Message Node,
\
master of the sol

Sends computed solution to the son

Figure 3.12: Communication pattern of procedure Bwd_PsscBode(node) (see AlgorithnE3B ) in

the case of the Type2 Node with slaves.

To help understanding our algorithm, we will describe in rapée [32 the main
communication steps involved during the processing of a&anod

Example 3.2. Let us consider three consecutive nodes in the eliminatiee t
(j=father(k) and :=father(;j)), mapped on different processors, and focus on the
processing of the central nodewhich is of type 2 (see Figure3113). Nogds added to
the local pool of its master process after the reception ofessage of typBwd_Node
from its father node: (step a in Figurd=3113). The master process of ngde¢hen
sends information, relative to the solution sent by naddo all of its slaves (step b).
Each slave of nodg then sends updates to the right-hand side to the master @& mnod
(step c). Once all messages from the slaves have been mctieemaster can compute
the solution (associated with the column indices of its taibmatrix). Then it sends
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messag®Bwd_Node to the master of its soi (step d).

© L . Message UpdateRHS

aster Slavel Slave2 Slave3

Figure 3.13: Main communication steps during the backwaldstution
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Chapter 4

Out-of-Core (OOC) main features

4.1 Introduction

The out-of-core behaviour of our forward and backward atbars is very critical for
large matrices when memory is limited. Our objective is thiaee good performance
with respect to both run-time and memory effectively usedath sequentisandparallel
cases. The OOC run time is strongly related to the hard dis&sactime. The latency, the
number of disk accesses, and the regularity of the readitigrpaare issues that will have
to be taken into consideration.

In this section, we describe the main OOC features of ourdlgos.

4.2 0OOC factorization phase

During the OOC execution, the computed factors are storetth@mard disk and are
written in the order in which they have been computed. Resilitained by [2] show that
this can be obtained with limited overhead with respect &itiacore factorization.

In a sequential environment, factors are written on the deskifollowing a post-order
traversal of the tree. For the parallel runs only a topolabordering, with unpredictable
dynamic interleaving of slave and master tasks can be daatainin Figure[411 we
show such an interleaving. Figute¥4.1-a) show the elimamatree is mapped on
processors and for each node the factor distribution is shawth respect to the type
of the node. In Figur€-4.1-b) the factors write sequence @vshwhere each block of
factors is written in the order on which it is computed durithg factorization phase.
Post-ordering (processing the parent node just after itdreim) is no longer respected,
and only topological ordering is applied. For example, igufe[4.1-b) processar has
processed nodé before processing nodé which is the direct parent of nodes. Note
also that the write sequence of factors on disk is local oh @agcess. Type 2 tasks are
distributed among several processes - one master and theasthslave with respect to
the current task.

Although one could clearly take advantage of keeping patti@factors in-core at the
end of the factorization, for the sake of clarity we will caex in the following that all
factors data has been written to the disk at the end of therfaation phase.
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PO . P2 . PO

PL. P3 P1 Factor data on the disk of each proce

PO [ 1 mastertask

[ 1 slave task

Type 2

po[ 1] s [5] s[9] ]

P3
PO
P1
P2

prz] s [af of wf |

SENENENE |

P3
a) elimination tree mapped on 4 processors b) Hard disk ohgmocessor

Figure 4.1: Example of interleaving of master and slavedallking the factorization and influence on
the disk usage on each processor. We note that the sequerataiisique because of the non-deterministic
nature of our asynchronous algorithm.

pa[1] 5[ 5] o [ |

4.3 0OOC solve phase

We use the factorization write sequence in order or in reversler, to respectively
prefetch factor blocks during the forward and the backwaeps. Looking at the hard
disk storage area, these two steps can be represented @sodsdor reading data. The
forward step needs factors from the disk in a left-right dil@en. That is why, for the
forward step, we prefetch data in the natural direction (tder in which data has been
written) (see Figure4l2). The backward step needs faaudise reverse order: right-left
direction on the disk. Here, the inverse of the natural nregdirection is used, so that one
could expect the performance of the backward step to betbliglorse than the forward
step.

FWD step BWD step

P1 | 2 5 3 9 10

L Factors Data on the hard disk

Figure 4.2: Reading direction on the disk in the solutiopste

For this OOC implementation we use almost the same algosithsnfor the in-core
case. The only modification (see Algoritiim14.1) for the OO@aestion is to load data
from disk for each occurrence of the sequercbse fact ors| in Algorithms 32
and3.3.

Algorithm 4.1 : Modification of Fwd and Bwd algorithm for OOC execution
if (OOC run)then

Load data lhode from disk
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4.4 System based demand driven approach

A simple way to implement the OOC solve phase is then to usensadé driven
approach. We do not use any explicit prefetching. We let therating system handle
intermediate caches when loading data.

To illustrate the potential and the limitations of a demangeh approach we report
in Table[4.1 its behaviour on our test mat@xMONDAQ7. We analyse the situation when
the matrix fits in the main memory (parallel execution) ancewlithe memory is critical
(uni-processor execution) and also report, as a referehedn-core solution time on 8
processors.

Factor Size Parallel Solve
Nprocs | (perproc)| Fwd Bwd Factor access rate
MB | (sec) (sec) (MB/s)
In core
8 | 3175 09 09 —
OO0C (Out-Of-Core)
8 3175 3.6 45 92.6
4 635.0| 45.9 15.1 83.3
2 1270.1| 129.4  93.1 22.8
1 25343 | 269.4 2829 9.2

Table 4.1: Influence of memory used per node of the Cray XD1 on the pedoma of the parallel solve phase on matrix
QIMONDAO7. The OOC is based on a simplesSTEM_BASEDapproach.

On 8 processors, we see that the extra time required in botvafd and backward
phases for the OOC execution corresponds to copying therfdetta at a rate of 92.6
MB/s so that the copy is not all from the disk but from the sgsteache. Indeed
the SrsTEM_BASED demand driven approach unpredictably affects the behauican
intrusive way. Even if the factors were written to the diskidg the factorization, a
significant part of them still remains in the system cacheghat the cost of accessing
them during the solve phase is the cost of a main-memory scddsee OOC execution
allows us to decrease the number of processes used by img¢ias local factor size per
process. The fewer processes that are used, the fewerdaetoain in the system caches
and, as a consequence, the speed of access to the fact@as#scrO®IMONDAQ7, the
size of the total workspace for sequential in-core factiron (5 GB) is bigger than the
available memory (4 GB). In OOC execution, a working spacgzd 2 GB is still needed
during the factorization so that the system cannot keealactors in the system caches
at the end of the factorization phase. Some factor blockg thes be loaded from the
disk. In this case, increasing the number of disk accesdemurease the execution time.
On one process, the disk access speed is really slow — 9.2 MBfe that the peak speed
of a memory read from the disk is 16 MB/s, so that the minimunetjust to load all the
factor blocks is 158 seconds.

We thus see that, when the memory is critical, the performané the
SYSTEM_BASED approach is far from the optimal. The reason is that the ayst®
mechanism is in conflict with the automatic system swappieghmanismg[33, 69].

As shown in Tabl€4l1, theYSTEM_BASED approach is inefficient on large matrices,
when the volume of data on the disk is larger than the memas. sin this case, we
observe the so callesivapping effectthe system decides when and which data to swap
to the disk. The decision is done by the system and is ofteacbas a variant of a
least recently used strategy. Note that the system has nelédge of the data access
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pattern of the algorithm. Furthermore, the fact that theesyscache grows with each
disk access (reading or writing data) is even more critittalk impossible to control the
actual memory used: either its size or the effective bantiwfiok accessing the disk. So
we do not know how much real memory is used. Moreover, theegsysache management
may lead to user space swaps - on our own or on other user'sataggen other system
processes. Thus, if we consider that OOC is requested wigeméimory is limited, this
unpredictable behaviour is likely to occur very often.

These drawbacks lead us to look for a new mechanism to loadidah the hard disk.
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Chapter 5

DIRECT 10 based method

5.1 Introduction

In this section we present a new approach based on direcdsatwéhe hard disk, that
will be named DRECT_IO. Using the DRECT_IO access, the user has full knowledge
and control of the memory used. This is a specific featuretiegion many operating
systems that can be specified while opening the files. Data Ineualigned in memory
when using DRECT_1O mechanisms: the address and the size of the buffer must be
multiple of the memory page size. The use of this kind of I/@mpion ensures that
a requested I/O operation is effectively performed and tttataching is done by the
operating system. Strategies can then be used to prefei@hTdae inconvenience of this
method is that the cache mechanism exploited by th&T8v_BASED approach is not
available; it is thus more complex to implement and requmese algorithmic effort.

Finally for portability issues we have designed a softwaset (written in C) to hide
the complexity of low level direct I/0O access such as the nrgratignment of data. It is
based on the use of a small (around 1MB) intermediate alignédr through which data
is written (read) to (from) disk. Our code may thus be usedlboperating systems.

5.2 User defined buffer

To solve large problems efficiently, which is the main targetlesigning an OOC
solver, we propose to use smadler buffersto explicitly control how much data is needed
to prefetch from the disk.

Emg‘ buffer
| [ 7]
-~ s
Prefetching zone Emergency zone

Figure 5.1: User defined buffers.

The buffer zone is divided into two areas: a prefetching zameéan emergency one -
as we show in Figured.1. In the prefetching zone, all theejpdlocated to this is used
to load data. We prefetch each time a large enough contigbiogk in the prefetching
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zone is free (1 MB in our experiments). The emergency zoneesd when a block factor
is not prefetched or not ‘on the way’ (part of a prefetch resjuesee Algorithni 5]1). It
has to be as large as the largest factor block. In this zon@akdnly one factor block at
atime and it is used only in so called emergency cases.

The size of the user buffers can influence the performanceeotblve phase. The
size of the emergency buffdngSi ze(p) is defined as the largest block factor mapped
on processorp. Let AvgEngSi ze denote the average dEngSi ze(p) over the
processors. LeFact or Si ze(p) be the size of thel, factors per processor and let
AvgFact or Si ze be its average size. The prefetching buffer zone on eaclepsoc
Pref et chBuf f er Si ze(p) is then defined as

Pref et chBuf fer Si ze(p) =
max (min (10 x AVgEgSi ze, AvgFactorsize - 5, NB) ,EMgSi ze(p), 10 NB) (5.1)

The total size of buffers per processor is then
Si ze of buffers(p) =PrefetchBufferSize(p) + EnmgSi ze(p) (5.2)

In the context of our study we want to control the buffer sizghwespect to
a fixed value (here500 MB) and with respect to the volume of 1/O per processor
(AvgFact or Si ze/4). We thus reduce the buffer size when increasing the number
of processors and limit the difference of the buffer sizestmnprocessors (upper bounds
based on average distributions) and finally to enable soefetghing for our algorithms
(10 x AvgEngSi ze). In the remainder of this thesis, equati@n]5.2) will be duse
define the size of the buffer area for our experiments.

5.3 States of a node

The implemented algorithm reduces the disk access to tice stinimum - each item
of data is loaded only once and kept in memory until it is uSedhandle this, four states
of the node are used to describe these transitions, (seecBd).

For every node the possible states are:

— on disk only - data is not available in the main memory

— on the way- data is not available, but it is being loaded

— ready - data is in the buffer and is ready to be processed

— used - data is in the buffer but has been already used. Correspgrgpace can
be freed.

on disk only

-~

on the wa
used )

ready

Figure 5.2: The 4 possible states of the node
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5.4 Comparison ofSYSTEM_BASED and DIRECT_|O methods 51

The statement ‘on disk only’ means that the factors are nbageessed. If we need
to access data ‘on disk only’, we have to verify that therenisugh free space in the
buffer to load the data. The statement ‘on the way’ corredpdo data that is not yet
in main memory, but we know that it is being loaded. So we mayeha wait until the
data is ‘ready’. After the prefetching process, all loadathdn the user buffers is in the
state ‘ready’.

Here we use again the algorithms presented for the in-careution (see Algorithms
B2 and3B) with some additional functionalities (see Aigpon [5.1). Loading data is
performed each time enough contiguous free space becoraiatd® in the prefetching
zone.

Before processing a node, we check whether it is ‘ready’ orthee way’, or whether

we need to load it in the emergency buffer. The verificatiomata availability is done
each time we haveUse_f act or s | in the algorithms.

Algorithm 5.1 : OOC functionalities for the IRECT_|O approach

1: if (OOC run)then
if (factors oflnodeare ‘on disk only’)then
Load data from disk (emergency loadinglobde
else if ( the factors olnodeare ‘on the way’then
wait until the end of the prefetch
end if
7: end if

oarwN

5.4 Comparison ofSYSTEM_BASED and DIRECT_IO methods

5.4.1 Sequential case

To compare the behaviour of our out-of-core schemes witpe@sto an in-core
execution, we report in Table 5.1 the sequential time neddedboth phases of the
solution step on theubl matrix. For this test we want an architecture with enough
shared main memory. So, for this experiment only, we use aiAlpteron based node
equipped with32 GB of memory and4 high performance disks managed with a RAIDO
scheme. We see that when all data (working arrays and fadtsrén main memory the
SYSTEM_BASED approach is four times faster than theRRCT 1O approach. Note also
that the performance of thelReCT_IO approach is limited by the disk bandwidth (time
needed to read factors for a given phase is neaftseconds, corresponding to an
access rate 0220 MB/ sec).

Time in sec
Methods Fwd | Bwd
in-core 3.8 3.8
out-of-core | SysTEM_Basep | 17.2 | 17.3
| DIRECT_IO | 67.3 ] 729

Table 5.1: Comparison of time (in seconds) needed for sequentialisalstep in both out-of-core and in-core for theDI matrix.

We then compare the performance of thes$EmM_BASED and the DRECT_IO
approaches on the large matgxMoONDAQ7 in a sequential environment and also analyse
the behaviour of our algorithm when using the emergencyebowhd/or the prefetch
buffer. When only the emergency buffer (Emg) is us&u €f et chBuf f er Si ze set
to zero in equation{5l2)), the total number of requests éodisks (Nb_Req Fwd and
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52 DIReECT_IO based method

Nb_Req Bwd) is high (equal to the number of nodes in the eltiam tree) and incurs a
very significant time overhead (see Table 5.2). Using a phfeuffer of small size, our
prefetching mechanism can anticipate and in this case sappine use of the emergency
buffer.

Methods Fwd Bwd Nb_Req Fwd Nb_Req Bwd
(sec) (sec) || Prefetch| Emg zone| Prefetch| Emg zone
DIRECT_IO (Emg) 1160.6 | 1295.8 0 | 3083998 0 | 3083998
DIRECT_IO (Emg+Prefetch)] 171.5| 176.8 541 0 496 0
SYSTEM_BASED 269.4 | 282.9 — — — —

Table 5.2: Influence of the number of buffers on the uni-processor perfmce onQIMONDAO7. Fwd=forward phase.
Bwd=backward phase. Emg zone:MB; Prefetch buffer10 MB.

As the total size of the factors is in this case bigger tharatlaglable memory ¢ GB),
both the SSTEM_BASED and the DRECT_IO approacheeeally load factors from disk.
Thus it becomes possible to compare their execution timé@salve phase. We see that
the DIRECT_IO time is better for both forward and backward steps; tigrbowever, an
even more major reason to favour this approach.

The main advantage is that the memory effectively used ftfetsin the DRECT |10
approach isl0 MB whereas the cache for ther STEM_BASED approach may be as large
as 2.5 @B (the size of the factors). The performance of the solve is #tabilized using
the DIRECT_IO strategy, while controlling the size of the buffers.

5.4.2 Influence of parallelism on the performance

L factor size | Facto Workspace
Matrix Avg Max time | Procs| Methods| per proc Fwd Bwd
name (MB) | (MB) (sec) (MB)
sb * 269.4| 282.9
QIMONDAOQO7 | 2534 | 2534 95.4 1 od 12 171.5| 176.8
sb * 595.3 | 1061.2
CAS4R-L15 | 2416 | 2547 | 509.4 2 od 559 336.3| 270.1
sb * 446.1 | 448.1
CONESHL 5908 | 5908 | 706.8 1 od 709 375.2| 3783
sb * 158.4 | 239.0
NICE20MC 1537 | 1689 | 418.2 6 od 491 148.7| 225.2
sb * 298.6 | 5735
AUDI 2741 | 2872 | 728.9 4 od 676 231.8| 355.2
sb * 680.2 | 808.9
GRID3.5M 7860 | 7900 | 753.8 2 od 639 507.0 | 519.0
sb * 334.8| 507.4
COR5HZ 2702 | 2970 | 797.7 8 od 660 397.1| 476.5
sb * 512.4| 1291.8
AMANDE 1404 | 1625 | 2874.5| 20 od 425 725.9| 964.8
sb * 596.8 | 1299.4
NICE9HZ 3208 | 3651 | 2030.5| 20 od 893 685.9 | 1050.2
sb * 439.8| 6145
GRID5M 4259 | 4356 | 447.4 4 od 699 325.4| 554.0

Table 5.3: Time performance of the RecT_IO (od) and the SSTEM_BASED (sb) methods; Workspace holds the average
working space used by the solve phase (including prefegchirffer defined in equatiod.{3.2)). ((*) It cannot be estietatn the
SysTEM_BASEDapproach because of the system cache).

To illustrate the performance of the two approaches witheesto CPU time, we show
in Table[5.B the parallel behaviour of the solve phase on oonpiete set of test matrices.
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We are interested in the case where factors are written todlising the factorization
phase because memory was limited. For the sake of clarityhue assume that before
each step (forward or backward) the system cache is flushthswe are sure that both
the SrsTEM_BASED and the DReCT_IO approaches will have to read the factors
from disk. For each matrix, the minimum number of processerpiired to run the
factorization phase was used (coluf@nocs in Table[&B). We show for comparison
the factors size and factorization time for each matrix hasaverage working space used
by the solution phase. We then compare the performance dbtheard and backward
substitutions on the YSSTEM_BASED and the DRECT IO strategies. We see that, in
parallel, the SSTEM_BASED approach does not efficiently prefetch thefactors from
the disk.

We note also that the backward step can be much slower thefotvard step,
especially on parallel runs. A possible explanation is thatbackward substitution reads
data from disk in a more irregular way. Since for an alreadycpssed parent node often
there are more then one direct sons, choosing to process betore another one will
impact the order of needing and loading factors data on altgssors. Thus irregular
readings may occur. We remind, that the performance of th&€ @Glution phase is
strongly related to the regularity of disk access.

5.5 Influence of scheduling

In the previous section, we have thus shown that tieT&M_BASED approach is
not efficient in terms of both memory (no control of the effeetmemory used) and
time (automatic system based prefetching is not adaptegtoalel execution). In this
section, we analyse in more detail the parallel behaviouhefDIRECT IO approach
and focus on the influence of task scheduling on the perfotmdhis possible to use any
scheduling algorithm to choose the order in which to procestes in the pool of tasks.
That is, we add nodes only at the end of the pool, but we caaeinem in any order.
A LIFO (Last In First Out) strategy was used in the initial Alithm[3.] because it is an
optimal strategy for sequential execution (in terms of tagty of disk access to block
factors).

5.5.1 Sequential performance

The order in which nodes are extracted from the pool can bg egfical for the
execution time because this will influence the order in whdeka is read from the disk.
Indeed solving a matrix using irregular access to the hastt dould slow down the
time for both forward and backward steps by a factor of moenth0 (see Tabl&€5l4).
Therefore an efficient scheduler has to be implemented toceethe number of disk
accesses and to improve the regularity of accesses.

Scheduling the order of a node’s processing is possiblearptol of tasks. We add
nodes only at the end of the pool, but we can extract them inoadgr. We show the
differences between two strategies - FIFO and LIFO, in tevfrisk access (Figurés®.3
and[5.% respectively). We describe how the factor data aredton the hard disk and
how, by using the assembly tree, we add into the pool all thdyr¢éasks at each step.
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54 DIReECT_IO based method

We use three data structures: the assembly tree (task dapandthe pool of tasks
(only for the ready tasks) and the user buffers (to load data the disk). The structure of
the user defined buffers (prefetching and emergency zorsehéen already described in
Sectior 5P . In this example, we do not differentiate théestoon the way’ and ‘ready’.
All prefetched data are thus ready to be used. In our figunesrrows point to the node
to be processed. The numbers in grey with a diagonal linesagepresent already used
data. Thus the space related to these entries in the prefgtobne can be used for further
load of data. Each time we have to process a node that is natimary, we load it to the
emergency (Emg) buffer. In this example, prefetching igqrered each time half of the
prefetching zone is free (because the associated nodedactoin the state ‘used’). The
second zone (Emg) is used only if the data needed is not gligafetched in the user
buffer.

POOL - beginning of FWD

Pref. Zone EMG | end of the pool
FWD M[2] 34 ] \1d7\6\4\ﬁ 1 |
FIAELI \mv\ewla | @ 1)
51684 (] [w7]el4l' | )
awp | POOL - beginning of BWD (o ) ()
opotsa] [ (11 l |
OEQ7[8] [ ] [9]10 ‘ Post-order numbering
ME ] ‘é“ | of the assembly tree
[5/6[7[8] [ [5]8]

112/ 3 |45/ 6 | 7|8 9 |10 11

Factor block locations on disk

Figure 5.3: Algorithm with a LIFO processing of the tree imgential mode

In Figure [&.B, we present the optimal (for sequential eXealtLIFO (Last In
First Out) strategy for extracting a node from the pool. Hese have no calls to the
emergency zone during both forward and backward steps.

In Figure[5.%4 we use a FIFO (First In First Out) strategy toraott the nodes from
the pool. Starting with the forward step, the leaf nodes a@ed into the local pool
so that the post-ordering is respected (from the end to tggnbmg of the pool). The
prefetching zone loads data in the forward direction from diisk. Nodes 10, 7, and 6
are loaded through the emergency zone. Loading data in tigeZéme often leads to an
irregular access (of relatively small size) to the data anftard disk. This will influence
the execution time of the whole phase.

For the backward step, the prefetching zone has been loamtedirdthe backward
direction from the disk. Firstly, the root node is extractemm the pool and processed.
Nodes 7 and 8 are, in our case, prefetched in place of the astarfblock. This time
we have less emergency calls and more regular access toske Similar effects are
observed on real matrices, which explains the relativetiebé&ehaviour of the backward
step with the FIFO strategy (see Tahlg 5.4).

54



5.5 Influence of scheduling 55

Pref. Zone EMG beginning of FWD
FWD [1]23 4 VLV end of the pool
(11234 (1076 4] 4 i | @ 10)
1234 & o)
BWD | POOL - beginning of BWD Q e 0
[ofoTaq] [ Al T[] \
Qpo7fs] [ \é\iﬁ 1T | Post-order numbering
(9 7] 8] of the assembly tree

112 3 |4 ,5 6 | 7|8 9 10 11

Factor block location on disk

Figure 5.4: Algorithm with a FIFO processing of the tree igsential mode

We present the results of the two strategies in TRhle 5.4. &goare the time for the
forward and for the backward step with the minimum time neleflall factor data could
be loaded at once (T_min). We compare, also, the number okstg per step for the
prefetching zone and the emergency one (Nb_Req). NotehbdtIFO strategy, which
does not respect the node order on the disk, is significalalyes than the LIFO strategy.

Furthermore, as expected, the forward step is even slowerttie backward step in this
case.

Strategy | T_min | T_Fwd | T_Bwd Nb_Req Nb_Req | Nb_Req Nb_Req
Prefetch | Emg zone | Prefetch | Emg zone

(sec) (sec) (sec) Fwd Fwd Bwd Bwd
LIFO 158.4 1715 176.8 541 0 496 0
FIFO 158.4 | 2360.9 | 1480.1 338 | 3054580 30053 | 2877695

Table 5.4: Influence of the scheduling of the tasks@MONDAQ7 in sequential. Emg buffer 2 MB; Prefetching buffer =10 MB

Running sequentially, the FIFO based extraction shows hitiad the scheduling can
be on the performance. LIFO scheduling is optimal for theusetjal case and guarantees
contiguous reading of factors from disk.

In parallel, we cannot guarantee a post-ordering of the siotlleus two leaf nodes can
be processed in parallel at the same time. But the parentwaite for all of its children
before being processed, respecting the topology of the(togmlogical ordering). A
contiguous access to the factors may not be respected asdithiar effects to those
presented here can be expected.

5.5.2 Parallel performance withLIFO scheduler

Here we analyse in more detail the parallel behaviour of ttreRT 10 approach. We
first compare in TableE.5 the time for the forward and backkgeps with the minimum
time (T_min) to load factors from the disk on tkkeMONDAO7 matrix. Note that T_min
depends on the maximum bandwidth (16MB/s) and the facter sizthe most loaded
processor (columiract or Si ze per proc of Table[5F). We also report in the
4 last columns the number and the type of buffer requests ppr €2n one processor, a
LIFO order to extract tasks from the pool leads to a contiguaccess to the hard disk.
In parallel, we cannot guarantee that the order of procgssinthe tasks (and the factor
blocks) will correspond to the order used to write them todreks. We see in Tab[e5.5
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that work needs to be done on the scheduling to reduce the gfagén the minimum
time to load factors and the actual time, particularly far backward substitution.

Nb Factor Size | T_min Fwd Bwd Max Nb Requests per step
Strategy| of per proé*) Fwd ) Bwd )
Procs (MB) (sec) | (sec) (sec) || Prefetch| Emg zone| Prefetch| Emg zone
LIFO 1 2534 | 1584 | 1715| 176.8 541 0 496 0
LIFO 2 1270 79.9 89.6 88.7 274 0 250 0
LIFO 3 846 579 | 64.9| 262.1 190 3 169 422 497
LIFO 4 635 41.3| 47.2 91.6 138 0 127 0
LIFO 6 423 315 38.0 186.7 102 6 86 422 498
LIFO 8 317 21.8| 24.9| 137.6 70 0 64 321871
LIFO 16 159 11.9 13.2 94.4 39 2 32 214 245
LIFO 24 105 9.0 10.9 48.5 42 5 38 119 792
LIFO 32 79 8.2 9.1 53.1 25 1 30 116 209

Table 5.5: Influence of the parallelism cpiIMONDAQ7 using LIFO strategy. Emg=emergency buffer:1 MB; Préfétaffer: 10MB
per processor; *) : Max per processor.

In fact, this gap is correlated with the large number of eraray calls during
the backward step. Note that, in this example, we have mamerfemergency
requests during the forward step than during the backwaap. sDne reason is that the
QIMONDAQ7 matrix has many nodes of relatively small size, so we haetatsively small
number of Type 2 tasks that could require the use of the EmfggbuAnother reason,
illustrated in the following discussion, is that one canestihe backward step to be more
sensitive to scheduling than the forward step. Indeed,eab#ginning of the backward
step, we have in general a small number of root nodes, mapgedew processors. The
other processors have no work and are waiting. During thkwai step, the end of one
task results in the activation of multiple other tasks oreotbrocessors. Furthermore, if
we choose to process a nddede a LIFO strategy will induce the processing of all of its
children before the brother dfode If the factors of this noddnode are not in memory
then the factors of the children @fiodewill not be in memory either. This will lead to
emergency requests.

5.5.3 lllustration of the high number of emergency calls wih LIFO scheduler

We illustrate the limitations of the LIFO scheduler on theatinexample described
in Figure[&.b. For the given assembly tree mapped onto twogssors (P1 and P2), we
show at the beginning of the backward step, the data in tHfetpheng zone and the pool
of tasks. To simplify the illustration of our algorithm, wesume that the root is mapped
on both processors and that all other nodes are mapped oronalprocessor (Type 1
nodes). We will comment on the effect of Type 2 nodes in ouostigm later. Some
data are pre-loaded in the prefetching zone on both processspecting the backward
step direction of needed data. With a LIFO scheduling, aftecessing the root node,
P1 continues with the only node in its POOL (node 3). This nedw®t ‘in memory’ and
requires an emergency access. Furthermore, if node 1 isldaddlee pool after the end of
node 6 on processor P2 (that would add nodes 4 and 5 to the ppaeessor P1), then
accessing the factors of node 1 will lead to another emeygeait

On the other hand, during the forward phase, where we expihatlarge task
independence of the leaves, all processors often havesatdea node to process. In this
case, all processors start working at almost the same morAsrhe work is distributed
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\Location of factors:\
Disk Pref. Zone

P1 [13/4][5] 7] P1

P2

P2 [2[6] 7] P2

POOL LIFO strategy

v \
P1[7] | 7] | P2

{ y
P1[3] [6] P2

P1[4[5[1] |

Figure 5.5: Limitations of LIFO scheduling in parallel ex#ion during the backward step.

regularly among the processors, they will progress in alsgom@ous way. The algorithm
will more naturally process the complete tree respectiegibst-ordering of the nodes in
the tree.

For all these reasons and since we have seen in [able 5.%épetformance of the
backward phase is critical even on a limited number of preaess we describe in the
following chapter a modification of the scheduler.
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Chapter 6

Scheduling to improve performance

6.1 NNS scheduler

6.1.1 Description of the algorithm

One way to limit the number of disk accesses is to follow #irithe write sequence of
the factorization step. By doing so we will always get theaatthe top of the memory.
We hope that this new algorithm will free more contiguouscepia the prefetch buffer,
so that less emergency calls will be needed. We defin&lthe Node in the Sequence
(NNS) to be the next node to be processed with respect to the wadteesee on the disk
(dynamically decided during factorization). During theviard step it will be the next
non-processed master-node whereas during the backwardt stédl correspond to the
previous non-processed master-node.

We will firstly focus on the backward phase.

\ Location of factors:\
Disk Pref. Zone

P1 [13[4[ 5] 7] P1

P2 [2]6] 7] (6] 7] P2
POOL LIFO strategy POOL NNS strategy

\ SN s i R ——
Wait
S N s IR BT s B
—

y \
PL[7] 71

P1 (4051 | p1[3[4[5] | P2
Figure 6.1: Comparison of LIFO and NNS extraction from thelpo

This so called NNS strategy is illustrated in Figlird 6.1 simgva comparison with the
LIFO scheduling. One can see that with a LIFO strategy, nodesadded to the pool
for P1 at the end of the process of the root node 7 mapped orpbatesses. Node 3 was
then treated by P1 before nodes 4 and 5. On the other handtheitNS strategy, node
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3 is not processed. P1 waits for node 5 to be added to the pu #iis the next node in
the sequence after node 7.

Note that slave tasks are not considered in this sequenaeslaie tasks, for Type 2
nodes, are processed on the fly (do not use the pool) and aendry the order in which
the messages are received. Our new algorithm (fully desdrib Algorithm[&.1) thus
consists in respecting the sequence order to process nodegh processor.

In the following, we first describe the new NNS strategy ta@stwork from the pool
and we prove that we can safely wait for the NNS node.

In our NNS algorithm (AlgorithniL&l1), a new ‘blocking recei\at line ) has been
introduced with respect to Algorithin=3.1. The main diffecerbetween the blocking
receive from the original algorithm (at line of Algorithm[6.1) and the one introduced
at line  is that, at line, our blocking receive is performed while we have tasks ready
to be activated in the pool. Since this is done separatelyaoh processor (local pool) we
will have to prove that it does not introduce a deadlock betwerocesses.

Changes made to our scheduling Algoritiml 3.1 are writterhvi@rger font in
Algorithm[&]. All unchanged parts are written in tiny chetexs.

Algorithm 6.1 : SchedulingpooL with next node in the sequence (NNS) strategy

1: Step = Fwd or Bwd
2: if (Fwd)then
3:  Initialise PooLwith the leaf nodes mapped dfyid
Initialise NNS pointer to the first leaf node
: else

4
5
6: Initialise PooLwith root nodes mapped dvlyid
7: Initialise NNS pointer to the first root node
8: end if

9: while (Not finished)do
10: if (PooLis not empty)then
11: if amessage is availableProcess_Messageessage) [See Algorithm§=3P and3.3]
12:  else
13: [ o | Wait for amessage and therProcess_Messadeessage)  [See Algorithm{ZP arid3.3]
14. endif

15: if (PooLis not empty andProcess_Messageot called)then

16: if (NNS inPooL) then

17: Inode= NNS ; Update NNS

18: if (Fwd) Fwd_Process_nod@gnode [See Algorithn[ 3R]
19: if (Bwd) Bwd_Process_nodg@node [See AlgorithnT3.B]
20: else

21 @ Wait for a message and th&mnocess_Messageessage)
22: end if

23: endif

24: end while

To prove the correctness of our new algorithm, we will forateland demonstrate two
more properties, based on the assembly tree and the taskdbasy.

Property 6.1. Forcing the sequence to schedule nodes as in Algorifhin 6e5 dot
introduce deadlock.

Proof First of all, as explained before, Type 2 slave tasks do ndahgough the pool
of tasks and are processed ‘on the fly’ (at the reception of ssagaVASTER2 SLAVE
for both forward and backward steps). Therefore, our blogkieceive will not prevent
us from treating such slaves tasks. Type 3 tasks are onlyecoed with the largest root
node of which only the master task will go through the pool.our proof, we can thus
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6.1 NNS scheduler 61

focus on the master tasks (of any type) since they are theaordy that might be blocked
in the local pool.

Let us focus on the backward case. (The proof for the forwaseas similar and can
be easily deduced from the backward case.)

Let NBps be the number of processes and let us suppose that we havelaakea
betweenr processesi < NBps). On each proces®; (i€ [0..7 —1]),let Np, be
the next node not processed in the sequence of procésses

We first mention/prove a simple intermediate property betweodes ready to be
activated in the local pools.

Property 6.2. During the backward step, if nodg is ready on proces$; , then j is not
an ancestor ofNp, .

Proof Thanks to the main elimination property, jf were an ancestor oNp, then
it would be in the sequence of the backward step befdyie. This contradicts the
definition of Np, . ©

Proof of property &l{continued)

Let Np, ¢ € [0.. — 1] be the nodes in the sequence that proceg3esre waiting for.

If Np, is not ready (not in the pool), then it means that one of iteatws (j; ) has not
been processed. Because of Properdy 6.2¢cannot be ready in the pool af,. Let us
suppose, without loss of generality, that is in the pool of process? . Furthermore,

on processP;, Np, is not in the local pool. (Note thaivp, might be equal toj, ).
Therefore there exists an ancestgr of Np, , ready to be activated on another process
P, . Either Np, is equal toNp, and we have a cycle of dependencies between processes,
or we can continue and will end up with a cycle betweeprocesses.

po | o New
!

ready notready processed

1 [ nl W27

ready  not ready processec

e [Tl el

ready notready processed

Figure 6.2: Local factor sequence on each proceSs, is the next node in the sequence, not processed
and not ready in the local pool or process; j;11 is a ready node, an ancestor dfp,

Let us suppose that we have reached a cycle of sizer > ' > 2. Let

(NP()7jl)7 (NP17j2)7 (NPQaj3)a ~-'(NP7,/>jO)

be such a cycle, wherg, is ready on proces$} and is an ancestor oVp, . In each
couple (Np,, ji+1) Jit1 IS @anancestor ofVp, and is thus processed strictly befolg,,

in the backward sequence. Furthermore, by the definitioWgf, Np, is in the sequence
before any node in the local pool @?,. Let — denote the precedence in the backward
sequencez — y mean thatr is beforey in the backward sequence’ indicates an

61



62 Scheduling to improve performance

ancestor relationg = y indicates thatr is beforey becauser is an ancestor ofj .
(Note thatz = y implies z — y and z # y). We thus have :

. a . a N a . a
Jo— Np, — jo»— Np, , ... ja— Np — j1 — Np, ,

which means thatVp, is not the first ready nodm the sequence of proced%, since
Jjo is ready and is beforéVp, in the sequence. Thug is equal toNp, . Furthermore,
thanks to our cyclej, is beforej; in the sequencej{ # jo ), which contradicts the fact
that j, is an ancestor ofVp, (= jo) located on proces# . We have thus proved that
our algorithm does not introduce any deadlock.

Normally, the next node in the sequence is located at the ettteqrefetch buffer,
and processing this node will free more contiguous spadeaibtiffer. We hope that this
will lead to more regular disk access and will improve thefpenance especially for the
backward step in a parallel environment.

Nb Fwd | Bwd Strategy| Nbof | T_min | Bwd Nb_Reqd"
Strategy of Procs in Bwd step
Procs| (sec) (sec) (sec) | (sec)|| Prefetch| Emg
LIFO 1 171.5| 176.8 NNS 1| 158.4| 177.2 496 0
LIFO 2 89.6 88.7 NNS 2 79.9 | 93.7 250 0
LIFO 3 64.9 | 262.1 NNS 3 579 | 65.5 174 1
LIFO 4 47.2 91.6 NNS 4 41.3| 50.5 117 0
LIFO 6 38.0| 186.7 NNS 6 315| 379 93 0
LIFO 8 249 | 137.6 NNS 8 218 | 45.2 57 0
LIFO 16 13.2 94.4 NNS 16 11.9| 138 36 0
LIFO 24 10.9 48.5 NNS 24 9.0| 132 38 0
LIFO 32 9.1 53.1 NNS 32 8.2 | 10.7 34 0

Table 6.1: Influence of the NNS scheduling @nMoNDAO7. Emg=emergency buffer:1 MB; Prefetch buffer:10MB parqesssor;
(*) : Max per processor.

The results, presented in Tabled6.1 show that using the NN&egy on the
QIMONDAO7 matrix significantly improves the performance in the lveaid step on
parallel runs. The time for the backward substitution hasoaemealistic behaviour and
is reduced by a factor of 5 (compare Tallles 5.5[and 6.1 on @psoes: LIFO strategy —
186.7 sec and NNS strategy — 37.9 sec). As shown, the NN&gyrad much closer
to the minimum time for loading factors from disk. Indeed, wlgtain a performance
only 20% more than the minimum. The only exception is with 8gaissors, when the
performance/ the run-time is twice as slow as the T_min. Thissual behaviour of the
performance with 8 processors shows that the NNS strategptishe optimal way to
schedule tasks in the pool. Until now, we have only focusededncing the emergency
calls. As the NNS strategy uses the factorisation write eaqe, it is related also to the
elimination tree structure computed during analysis amdpidwtial mapping of the tasks
onto the processors as well as the tree traversal resuttngthe dynamic decision taken
during the factorization phase. In some cases, as with 8&psats, choosing to follow
the write sequence obtained during factorization couldipoe the undesirable effect of
stalling a particular node by a blocking receive, while othedes, in the poaind in the
user bufferare ready to be processed.

In our new algorithm the slave tasks of type 2 nodes migHtistiblve requests to the
Emg buffer and/or to be prefetched out of sequence. (Thisescase for the backward
step, when 3 processors are used, in our case.)

62



6.1 NNS scheduler 63

QIMONDAO7 has a large number of relatively small nodes, with a netiti small
number of Type 2 nodes. This explains why our NNS algorithoallg has no emergency
calls in both steps of the solve phase. The influence of tive sésks on the performance
can thus be expected on large 3D matrices for which a largebeuof Type 2 nodes is
requested.

6.1.2 Experiments withLIFO and NNS strategies

In this section the NNS and LIFO schedulings are comparedl@muatest matrices.
One main difference with respect to thgmoONDAO7 matrix used in the detailed analysis
of the previous sections is that for the other matrices th®fablock is on average much
larger and thus results in a large number of type 2 nodes.

The parallel behaviour of each matrix is reported on the mum number of
processors required to run the out-of-core factorizatiblmge with one MPI process
per node of the CRAY XD1. For each matrix and each run with #m®e number of
processes, the same physical processors are used with LhEONBS to guarantee
similar experimental conditions. The workspace size far Hvolve phase is divided
between two buffers Prefetch and Emg (see Figurd8l2). The averagel{g) and
the maximum factor sizeX/ax ) are included in our tables firstly to show that the factors
are well equilibrated among the processors and secondiyntpare the maximum factor
size with the effective maximum workspace used during tHeesphase. Indeed, one
main property of the IRECT_IO strategy is that we explicitly control the size of the
working space used. Increasing the workspace would helplgarithm so that it is
critical to show that our runs are performed in a limited-nogynenvironment. For each
test we report the performance (time and number of accesst®etbuffers) obtained
during forward (Fwd) and backward (Bwd) substitutions.

We first comment on the effect of equatién{5.1) on the sizénefdrefetch zone. On
CONESHL with 1 processor, 709 MB of working space are used 5dr GB of factor
data (209 MB for the emergency buffer and 500 MB for the pafetg zone). For larger
number of processors, the increase in the number of Type Bsledds to a decrease
in the size of the factor blocks which results in a decreagbensize of the buffers. In
Table[6.9, however, we see that with the makiigE9HZz when the size of the emergency
buffer remains relatively large with respect to the maxinfantor size then equatioh(5.1)
limits the size of the prefetch zone to 500 MB which is only7ltEnes the size of the
emergency buffer. This will limit the capacity of the algbm to perform prefetching.

Furthermore, for a given matrix, the decrease in the sizéeffactors often leads to
a decrease in the time for both the forward and the backwakstAs observed in the
previous section, one can see a correlation between therpemce and the number of
accesses to the emergency buffer. However, although assata¢he emergency buffer
will always block the process during the time to load the esponding block factor
from the disk, its effect on the node tasks mapped on otharagses will depend on the
mapping of the tree to the processes. Therefore one shotileixpect that the smallest
number of emergency calls will result in the best perforneafsee, for example, Taldle 6.3
on 8 processors with strategy NNS : 14 Emg calls and 64.3 seegliorward compared
to 2 and 67.0 sec during backward). It is clear, however, tti@backward step is more
sensitive to the accumulation of those time delays eventti thie NNS strategy this is
significantly reduced with respect to the LIFO strategy. @matrices, we see that the
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NNS strategy is better both during forward and backwardsstegimiting such effects
by forcing an order compatible with the order used to write thctor blocks during the
factorization. For both phases, the NNS strategy also essmore regular disk access
and significantly improves the execution time for all out t@sitrices.

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy| of Time || per proc (MB) | per proc (MB) Fwd | Bwd Fwd Bwd
Procs| (sec)|| Avg Max | Prefetch| Emg (sec) | (sec)|| Prefetch| Emg | Prefetch Emg
LIFO 2 509.4 || 2416 | 2547 500 | 59 336.3 | 270.1 11 0 11 3279
NNS 334.0 | 269.7 11 0 10 0
LIFO 4 264.6 || 1200 | 1291 300 | 34 221.0| 356.3 11 10 10 | 133594
NNS 220.0 | 190.6 12 1 14 1
LIFO 8 158.4 596 756 149 | 34 165.5| 203.3 20 68 10 | 74582
NNS 117.7| 99.9 14 8 10 1
LIFO 16 99.5 295 336 74| 10 102.7 | 156.0 25| 129 10 | 37861
NNS 63.9| 84.1 21 28 10 4
LIFO 32 76.2 146 170 36 6 47.0 | 102.3 16 74 13 | 37055
NNS 445 | 69.8 15 10 10 2
Table 6.2: Parallelism orcAs4r-1L15
Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy| of Time || per proc (MB) | per proc (MB) Fwd | Bwd Fwd Bwd
Procs| (sec)|| Avg Max | Prefetch| Emg (sec) | (sec)|| Prefetch| Emg | Prefetch| Emg
LIFO 1 706.8 || 5908 | 5908 500 | 209 || 375.2| 378.3 27 3 26 5
NNS 374.7 | 378.3 27 3 26 5
LIFO 4 220.8 || 1465 | 1481 366 77 || 102.6 | 139.0 9 6 8 2
NNS 102.4| 133.9 9 6 8 1
LIFO 8 134.3 726 987 181 52 63.9| 95.7 15 14 13 12
NNS 64.3| 67.0 13 14 12 2
LIFO 16 80.3 360 393 90 12 36.3| 64.6 12 17 9 | 6488
NNS 33.6| 48.2 10 10 9 2
LIFO 32 76.9 179 221 44 7 248 | 40.2 19 60 11 | 4040
NNS 229 | 336 20 89 20 21
Table 6.3: Parallelism orcONESHL
Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy| of Time || per proc (MB) | per proc (MB) Fwd | Bwd Fwd Bwd
Procs| (sec)|| Avg Max | Prefetch| Emg (sec) | (sec)|| Prefetch| Emg | Prefetch| Emg
LIFO 6 418.2 || 1537 | 1689 384 | 107 || 148.7 | 225.2 10 6 8 | 5602
NNS 134.5| 158.6 10 0 9 0
LIFO 8 351.4 || 1147 | 1232 286 90 || 126.9 | 153.2 10 20 11 | 4570
NNS 120.7 | 135.3 14 9 9 2
LIFO 16 236.3 564 774 141 26 || 116.9 | 116.7 24 | 205 13 | 5042
NNS 92.7| 80.1 18 42 13 27
LIFO 32 162.9 276 399 69 21 67.2| 76.2 37| 214 22 | 2578
NNS 575| 57.1 40 | 114 21 | 607

Table 6.4: Parallelism ornicE20MC
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Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy | of Time || per proc (MB) | per proc (MB) Fwd | Bwd Fwd Bwd
Procs| (sec)|| Avg Max | Prefetch| Emg (sec) | (sec)|| Prefetch| Emg | Prefetch| Emg
LIFO 4 728.9 || 2741 | 2872 500 | 176 || 231.8 | 355.2 3 1 4 | 7179
NNS 218.3 | 2335 14 0 12 1
LIFO 8 407.1 || 1354 | 1480 338 | 216 || 152.5| 215.5 15 45 13 | 12523
NNS 147.8 | 166.2 11 23 10 1
LIFO 16 306.4 664 955 166 81 || 144.8 | 159.0 29 65 16 | 7314
NNS 118.2 | 121.0 22 52 20 452
LIFO 32 202.7 325 573 81 20 73.7 | 101.4 29 86 27 | 4315
NNS 73.3| 804 42 | 151 36 63
Table 6.5: Parallelism omubi
Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy | of Time || per proc (MB) | per proc (MB) Fwd | Bwd Fwd Bwd
Procs| (sec)|| Avg Max | Prefetch| Emg (sec) | (sec)|| Prefetch| Emg | Prefetch Emg
LIFO 2 753.8 || 7860 | 7900 500 | 139 || 507.0 | 519.0 37 0 34 0
NNS 506.0 | 513.6 37 0 34 0
LIFO 4 403.7 || 3919 | 3951 500 | 139 || 273.6 | 383.3 20 0 17 | 191695
NNS 273.2 | 293.0 20 0 17 0
LIFO 8 209.0 || 1948 | 1994 487 | 139 || 174.1| 289.9 14 24 9| 96156
NNS 1449 | 184.9 9 1 8 0
LIFO 16 1315 963 | 1041 240 | 139 || 104.5| 207.0 20 27 9 | 48039
NNS 87.3 | 125.6 21 22 9 1
LIFO 32 131.0 472 593 118 39 95.6 | 149.4 39| 225 23 | 60630
NNS 742 | 833 53 | 100 38 39
Table 6.6: Parallelism orGRID3.5M
Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy | of Time || per proc (MB) | per proc (MB) Fwd | Bwd Fwd Bwd
Procs| (sec)|| Avg Max | Prefetch| Emg (sec) | (sec)|| Prefetch| Emg | Prefetch| Emg
LIFO 8 797.7 || 2702 | 2970 500 | 160 || 397.1| 476.5 20 16 17 | 26981
NNS 298.6 | 351.3 18 12 18 10
LIFO 12 589.6 || 1793 | 2154 448 | 160 || 249.1| 447.8 18 34 15 | 23368
NNS 230.1| 325.3 16 11 13 1
LIFO 16 503.7 || 1340 | 1584 335 | 160 || 261.7 | 353.7 21 52 14 | 14278
NNS 220.1| 303.8 19 28 23| 3675
LIFO 32 329.6 660 820 165 45 || 189.9 | 310.2 30 | 142 39 | 9090
NNS 185.9 | 218.1 22 47 19 10
Table 6.7: Parallelism orcoR5Hz
Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy | of Time || per proc (MB) | per proc (MB) Fwd Bwd Fwd Bwd
Procs (sec) || Avg Max | Prefetch| Emg (sec) (sec) || Prefetch| Emg | Prefetch| Emg
LIFO 20 2874.5 || 1404 | 1625 351 74 || 725.9 | 964.8 31| 114 23 | 40323
NNS 678.0 | 866.1 20 70 14 4
LIFO 24 2132.0|| 1171 | 1364 292 74 || 679.8 | 1071.6 25| 156 27 | 37950
NNS 475.5| 629.5 19 37 16 8
LIFO 32 1677.1| 872 | 1028 218 43 || 358.9| 814.6 19 37 28 | 28334
NNS 350.9| 564.6 15 42 10 6

Table 6.8: Parallelism omMANDE
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Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy| of Time || per proc (MB) | per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) || Avg Max | Prefetch| Emg (sec) (sec) || Prefetch| Emg | Prefetch| Emg
LIFO 20 | 2030.5|| 3208 | 3651 500 | 393 || 685.9 | 1050.2 38 66 30 | 30735
NNS 651.8| 696.7 45 78 28 35
LIFO 24 1724.3|| 2661 | 3048 500 | 228 || 642.9| 8447 39 86 30 | 29098
NNS 571.6| 684.8 32 25 32 | 8765
LIFO 32 1517.7 || 1989 | 2454 497 | 228 || 559.8 | 734.0 52 59 51 | 21501
NNS 4719 | 604.7 45 58 58 | 9293

Table 6.9: Parallelism orNICE9HZ
Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy| of Time || per proc (MB) | per proc (MB) Fwd | Bwd Fwd Bwd

Procs| (sec)|| Avg Max | Prefetch| Emg (sec)| (sec)|| Prefetch| Emg | Prefetch Emg
LIFO 4 447.4 || 4259 | 4356 500 | 199 || 325.4 | 554.0 19 1 19 | 413902
NNS 347.9| 3215 19 15 19 1
LIFO 8 277.6 || 2120 | 2583 500 | 136 || 247.8 | 368.1 15 56 10 | 138017
NNS 186.7 | 223.6 13 3 11 4
LIFO 16 165.8 || 1048 | 1113 262 66 || 122.7 | 236.0 33| 116 9| 71173
NNS 84.5| 133.4 9 0 10 2
LIFO 32 106.4 519 567 129 30 62.6 | 171.6 20| 221 9 | 34909
NNS 452 | 77.1 20 15 9 1

Table 6.10: Parallelism orGRID5M

6.2 BPN scheduler

6.2.1 Description of the algorithm

Our NNS strategy, strictly follows the write sequence orkdi¥hus sometimes we
chose to wait for a specific node (NNS node) even if there dreratodes in the pool
of tasks, ready to be processed. Our motivation was to havestid sequence of factors
follow the write sequence resulting from the factorizatidrhus with the NNS strategy
even if some of the ready nodes in the pool of tasks have alrbadn prefetched in
memory, we will still wait for our NNS-node. Our objective this section is to relax the
NNS strategy to allow ‘out-of-order’ processing of the leddactors.

To illustrate an undesirable effect of waiting when using MNS strategy, we will
take a small example of an elimination tree and an orderinth@ftasks. Note that this
example, although simplified for the purpose of our disaussiesults from our analysis
of matrix Qimonda07 on 8 processors.

We present an elimination tree where every node is assdaoreth some level of the
tree (L0, L1,L2,...). As we said in Section [2.1] the type of parallelism depeads
the size of the node but also on its level in the eliminati@® trWe recall that for level
L0 each subtree is mapped onto a single processor. Above Iaveltype2 nodes are
authorized. The tree of Figure 6.3 is mapped on two proceggar and P17 ) and has the
characteristic of a long chain of nodes, mapped onto the gaowessor -P0 . Nodes13
and 11 have a child at levelL0 of the tree. The static mapping of all nodes is performed
during the analysis phagleat tries to equilibrate the work among the processorsringe
of factors to compute and messages to send. In our exampleytible tree is divided
into two branches that are relatively equal in terms of them of the factor.

We first briefly describe why the proposed order (see Figus #r traversing the
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L3

L2

L1

LO

Figure 6.3: lllustration of a tree mapped onto two processhuring the analysis phase. Node numbers
correspond to the order in which the factor nodes have bedtewronto disk during the factorization
phase. Nodes on levdl0 and all their subtrees are processed on a single processor.

tree in parallel during the factorization phase makes seiiberespect to memory usage
during factorization.

During the factorization stepve use three storage areas - one for the factors, one to
stack the contribution blocks, and another for the curresmithl matrix[3]. During the
tree traversal, the memory required by the stack (contginontribution blocks) varies
depending of the order of the operations. When the part@bfeation of the frontal
matrix is performed, a contribution block (CB) is stackediethincreases the size of the
working memory. When the frontal matrix is formed and asskeahbthe contribution
blocks of the child nodes are discarded and the size of tlo& stecreases.

Factors Active Memory

- =

case a) \\‘S\k d /
- -
Active frontal Contribution
matrix Blocks
Factors Active Memory
-
case b) \t\k d %
- -
Active frontal Contribution

matrix Blocks

Figure 6.4: Stack memory management schemes. Nbdebeing assembled. Case a) nodgs, ¢ have
been already processed. Case b) only nadeshave been already processed.

In Figurel6.4, two possible situations are presented. la aaall leaf nodes, b, c are
processed before the parent natlewhich increases the stack memory for the CB blocks.
In case b) we reduce the peak of the stack memory by followipgst-order traversal of
the tree. The decision to process a node before anothersredaied to the objective of
minimizing the stack memory[8, 53,168]. The eliminationaithm follows a post-order
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traversal of the assembly tree, which ensures minimum stekory use which is critical
for the OOC case [0, Y1, 172,173,174].

In Figure[6.8, the node numbering corresponds to the finabfaation sequence,
(with the assumption that nodes and 6 are processed in parallel by processors
P1 and PO respectively). Note that forP0 other topological orderings that would
require more intermediate working memory are possible éoample with the order
6,7,10,12,8,9,11, 13,14 we have to keep on the stack the contributions produced by
10 and 12 while processing nod8).

Waiting for the NNS node far too long while other nodes arelatsée in the user buffer
can also happen in the backward step. During the backwapg #te tree is traversed
in reverse order with respect to the local numbering (indidan Figure[66) on each
processor. Following the NNS strategy PO will first processt node 14, then node 13
and 12 processing the whole sub-tree on node 12. Then POnadeps node 11 and 10
again with its whole sub-tree. During this period P1 will whir its first NNS node 5
which will be freed after processing node 9. For this paticexample, local scheduling
decisions cannot improve the performance of the backwayl (seduce the waiting time
on processotP; ). Since our strategy of extracting nodes is local, idle pesors do not
communicate with the other processors to influence the stimgddecision and to reduce
their waiting time. This is a limitation of our approach.

@ 1 p
(0 @ =I°

ee o g

Figure 6.5: lllustration of the case when NNS schedulingasthe optimal one for the BWD step. Tree
mapping on 2 processors.

However, as illustrated in the following, one can still imnpe the local scheduling
strategy to reduce the waiting-time of the NNS node. WherNIN& node is not in the
pool of ready-tasks, we can choose to process another rezay/{best with respect to the
write sequence), knowing that each time an NNS node will bexeeady we will process
it and will thus follow the order given by the factor write semnce. Let us illustrate
the situation using the example of Figurel6.5 mapped on twogssors. Factor size
equilibration has driven the local ordering of the factatian per processorl( 2, 3,4, 5, 6
on processor PO and, 8,9, 10, 11, 12 on processor P1). In this case the NNS node at the
beginning of the backward step on processor PO is nbddast node processed during
the forward step on processor PO). However in our example Aqanapped on the same
processor, will be inserted in the pool much earlier (jugtrgbprocessing of the root node
12 on processor P1). If we use the NNS strategy, we will not scede4 and will
wait with a blocking receive until our NNS node (nodg is ready. If we authorize node
4 to be processed as soon as its associated factors are |batedad can process it with
no delay because of disk access.
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Our NNS algorithm has thus been revisited to reduce time tspethe blocking
receive. In our new strategy, we can select a node ready irpdloé that is not the
NNS node. Thus we are not always blocked if the NNS node is eady. However
we also want to preserve regular access to the disk and lmihtimber of emergency
calls. For this reason the prefetching mechanism contitué® related to the factor’s
write sequence. Each time we have to extract a node, when&mdde is not in the
pool, we extract the best node in pool (so caB¥N node, for Best Possible Node) with
respect to its position in the write sequence. Such a nodeusih the pool and has its
associated factors loaded. Note that, since our prefetathamésm always follows the
write sequence, it means thiiie NNS node factors have also been loadddhat is, on
the example in Figure 8.5, when BPN nodés ready, the node factors for NNS node
are also loaded.) To extract the BPN node from the pool we keegool sorted with
respect to the write sequence (the last node in pool is tleestdo the NNS node in terms
of the write sequence). We keep this property each time wertiasnode in the pool.

Furthermore, it is easy to prove that if the factors of the Bfdle have not been
loaded from disk, then all the other nodes in the pool will betin memory either. Thus
this is a good way to limit the number of emergency calls wbdatinuing to work when
the NNS node is not available.

If the NNS node were ready in the pool, then it would be theraste in the pool and
then itis the BPN node. We have thus changed the precondition of tlekiblgp receive
@ of Algorithm[B. With the BPN strategy this blocking receils performed to wait
or the NNS node only if no BPN node is in the pool.

Treating a BPN node earlier on a procesgérmight interact with the work of other
processors only through slave tasks sent by processofince at any rate such Type 2
slave tasks are processes ‘on the fly’ and do not go througpdbkof the destination
processor, Propertiés 6.1 andl6.2 are still valid. This @sahe correctness of our new
scheduling algorithm.
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6.2.2 Experiments withBPN strategy

We report in Tabl€6.11 some preliminary results witlmONDAO7 matrix illustrating
the potential of the BPN scheduling strategy. We focus is thin time performance
and on the backward substitution step since it is the mostithanto the scheduling
strategy. We can see that the BPN strategy is in generar fdste the NNS strategy.
On eight processors the time for backward step (45.2 seb)thit NNS strategy is quite
far from the minimum time to load factors (21.8 sec) and we the¢ with the BPN
strategy the performance (24.5 sec) has been significanglyaved. An important issue
for the performance of the BPN strategy is related to theeaity of the read operations.
Indeed, since it checks the state of the nodes to select thed¥é and since the state of
the nodes is modified at the end of the corresponding I/O tiperat is more critical for
the size of the 1/0 operations to be small (large enough tarers good performance for
the 1/0 operations but not too big to avoid delays).

Strategy| Nbof | T_min | Bwd Nb_Red"
Procs in Bwd step
(sec) | (sec)|| Prefetch| Emg
NNS 1 158.4 | 177.2 496 0
BPN 177.3
NNS 2 79.9| 93.7 250 O
BPN 89.7 370 O
NNS 3 57.9 65.5 174 1
BPN 69.7 178 2
NNS 4 41.3 50.5 117 0
BPN 45.1 127 0
NNS 6 315| 379 93 0
BPN 38.8 93 0
NNS 8 21.8| 45.2 57 0
BPN 24.5 66 1

Table 6.11: Influence of the scheduling BPN of the tasks@moNDAO7. Emg=emergency buffer:1 MB; Prefetch buffer:10MB
per processor; (*) : Max per processor.

Furthermore, it is important to note that the BPN strategy perturb the prefetching
and memory management mechanisms. Indeed, with thisggratieen the NNS node
is not in memory, we may choose to process a node that alreasijtdfactor block in
memory. At the end of the processing of the current BPN nodefree the memory
area corresponding to its factor block. this may then happemore than one BPN
node before returning back to the processing of the NNS nddese memory areas
(corresponding to the BPN nodes) can then to be used to ghefietta. The problem
in this case is that the BPN nodes are not necessarily cantggin memory which may
induce memory management operations (compress to makenrgery contiguous) in
the prefetch buffer that can be costly. To further improve stabilize the behaviour of the
BPN strategy on should thus either modify/adapt the memagpagement mechanism
or limit the activation of BPN nodes when we diverge too mumimfthe NNS sequence.

It is why we feel that those results are preliminary and tlmahe more algorithmic
work is needed on this strategy.
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Concluding remarks

We have described the main steps of a multifrontal algoritbndistributed forward
and backward substitutions. We have shown that our origitgarithms can be easily
adapted for OOC execution. We have then compared two diffexpproaches to read
factors from the hard disk. In this context, a ‘naive’ SSEM_BASED OOC approach is
not suitable mostly because of its large and unpredictaei@aony use.

A DIRECT_IO access to the disk with relatively small prefetch budfeas thus been
introduced to control the memory use. In a sequential enwirent, we have first shown
how critical the task scheduling can be. We have observadotia important issue is
to control the number of hard disk accesses. Another isste @btain ‘regular’ disk
accesses. While controlling the memory used, we then stutie parallel behaviour
of our solver. We have shown that the task scheduling thaptisnal in the sequential
case is not efficient in a parallel context (LIFO schedulin@p obtain more regular
disk access, especially for the backward step, we have reamsti the scheduler to
follow the factorization write sequence of factor blocksidg the solve phase (NNS
scheduling). We have proved the correctness of the algorahd have shown that we
perform consistently better and often significantly redtlee time for solution on a set
of large real problems. Finally we have shown that the stridering resulting from our
NNS scheduling can be relaxed to allow out of order executibnodes with factors
already loaded from disk (BPN scheduling).

71



72

Scheduling to improve performance

72



Part Il

Exploit Sparsity of Sparse Right-Hand
Sides in OOC Environment

73






75

Résume de la Partie 2: Exploitation de la nature creuse des sends
membres dans un environnement hors-mémoire (00c)

Introduction

Jusqu’a présent nous avons exploité la structure creuserdatrice d’origine et celle
des facteurs. On se pose maintenant la question de comnilesgrua structure creuse
du second membre.

Dans le cas ou un grand nombre de seconds membres doit étee tamme
I'espace de travail nécessaire a la résolution croit Ine@aént avec le nombre de seconds
membres, la mémoire n’est pas suffisante pour garder et dés@n une fois tous les
systemes. Dans de telles circonstances, on divise les deooembres par paquets et
chaque paquet est résolu indépendamment des autres. Eone@rment hors-mémoire
(OO0C) les données du disque sont préchargées pour chaquet piegseconds membres.

Souvent les seconds membres sont creux. On peut alors Exptair sparsité pour
diminuer le nombre de calculs, mais surtout pour diminuendenbre de données a
précharger du disque dur. Comme le temps de la phase de tiésokst dominé
par le temps de préchargement des données, réduire la tgudes données a charger
influencera fortement le temps de toute la phase de résolutio

Applications choisies

Nous avons choisi quelques domaines d’applications, apliéation de la structure
creuse des seconds membres peut étre tres utile: électnétisge, astrophysique et
applications avec des matrices réductibles.

En I'électromagnétisme on s’intéresse au calcul d’'une lths@oyau de matrices
déficientes (en d’autres termes au calcul de I'espace ddesurscpropres associé aux
valeurs propres presques nulles). La dimension de cet egmat étre assez importante
(jusqu’a 4000 vecteurs) et, faute de mémoire, I'obtentiercet espace en une seule fois
n’est pas possible.

La deuxiéme application concerne le calcul de la varianceoetariance associé
a un probleme de moindres carrés linéaires, qui se réduits(datre cas) a calculer
certains éléments diagonaux (la variance) ou non-diagof@svariance) de l'inverse
de la matrice d’origine. Si tous les éléments diagonaux seqis (demandés a étre
calculer), cela signifie que le nombre de systemes a résasdrégal a I'ordre de la
matrice.

Finalement, dans toute résolution impliqguant des matriédactibles, nous pourrons
aussi exploiter la structure creuse et réductible des ogstpour diminuer le nombre
de données a accéder du disque dur. La Fifulde 6.6 présemteria t'une matrice de
facteurs associée a une matrice réductible avec un secombmereux. On voit sur
cette figure gqu’une partie des neouds d’'un seul des deuxsafbceuds non barés) est
concernée lors de I'étape de descente (forward step) deaksepte résolution.
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Figure 6.6: Exploitation de la nature creuse des secondshmendans I'étape de descente. Les premieres
entrées nulles ne modifient pas la structure du vecteet ne sont pas utilisées dans les calculs.

Algorithmes d’élimination des données non-utilisables (unning)

La principale propriété que nous utilisons pour prédirdaeseurs utiles pour le calcul
devant étre accédés est basée sur le théoreme de Gilbentddhs leur article [62]. Elle
relie la structure de la matrice des facteurs, et celle dorsenembre, a la structure du
vecteur de solution.

Propriété 2. Pour chaque matriced et sa factorisationA = LU (ou A = LDLT), il
est possible de prédire la structure du vecteur de solutigradir des noeuds associés
aux entrées dans le second membre et suivant des cheminedadag deL” suivi par
des chemins dans le e-dag @€ (ou L).

Cette méme propriété est utilisée dans les méthodes direatéarbre d’élimination
représente un cas particulier du e-dag. L'algorithme decsi@n des données utiles dans
chaque étape de la résolution differe d’'une applicationaatte. On distingue deux
classes, selon la maniére dont les données ont été sétemtimn sélection des branches
et sélection des sous-arbres.

La sélection des branches est utilisée dans les applisadiotype moindres carrés, ou
a partir de(s) noeud(s) associé(s) avec le(s) second(spreésih tout(s) le(s) chemin(s)
jusqu’a la racine de I'arbre est(sont) sélectionné(s)r(vaurel6.5).

L'algorithme de sélection des sous-arbres est utilisé ¢wealcul d'une base d’'une
matrice déficiente. Pour chaque ligne déficiente dans laceates facteurs, on parcourt
tous les noeuds dans le sous-arbre du noeud associé agettévoir Figurd 8]7).

Permutations

Apres avoir identifié les données utiles, la phase de résaoluse déroule
'normalement’, sauf que le préchargement ne concerne guddenées précédemment
sélectionnées. Reste a voir comment les seconds membteati\gsés en blocs et s'il est
possible d’améliorer encore la gestion des données a pgarha

A premiere vue, grouper les entrées de la matrice des facesgociées au méme
noeud pourrait permettre de regrouper les seconds memhbrgsaguets. Mais que ce
passe-t-il si cela ne suffit pas? Une méthode intuitive ad@sA grouper les seconds
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Figure 6.7: Sélection des sous-arbres: a partir d’'un noeudé sous-arbre est sélectionné. lllustration de
la structure du vecteut obtenu apres avoir résolliz =e; (j =6).

membres en suivant un parcours de I'arbre de type post-didagit noter que les noeuds
proches dans I'arbre (du point de vue de leur chemin versciaeaet donc du post-ordre
associé) partagent un grand nombre de noeuds de l'arbrenetdiaccés aux facteurs
associés a ces noeud. Donc, le préchargement explicitectesels pour la résolution
d’'un noeud va implicitement aider a la résolution (au prégbment des données) de
I'autre noeud. Comme indiqué en Figlirel6.8, les élémenfs et a;; ', , dontles noeuds
sont proches dans I'arbre d’élimination, partagent unadgaartie du chemin devant étre
parcouru lors de la résolution. Siles seconds membres deséliéments sont regroupés,
le préchargement supplémentaire de données pour calazglersera d’un seul noeud, le

reste étant déja préchargé pour traidi@{2 .

Figure 6.8: Chemin commun dans la forward substitution pesiglémentsi;', et ajy',

Dans le méme esprit, une permutation inverse du post-orgme-ordre) pour les
seconds membres aidera aussi a recouvrir les chemins estreobuds associés. Une
derniére proposition de permutation, moins évidente gsiplécédentes, est de regrouper
les seconds membres en fonction du poids total de donnéexchgpger. Pour pouvoir
modéliser ce poids, on utilise la notion d’ hypergraphe. bgpergraphes sont un
ensemble de ‘nets’ (ensemble de noeuds) et d’arétes. Gseddb nets pour représenter
les différentes parties de chemin (les noeuds) dans 'adliémination. Ensuite, on
associe des colts a chaque net, correspondant aux donnégaharger du disque dur.
A la fin, en fonction de ces codts, on choisit de grouper les estre eux, en regroupant
ainsi les seconds membres. Minimiser le colt total revidarsa grouper les seconds
membres de sorte que le colt total de préchargement de dosoiéeninimum.
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Chapter 7

Introduction

When solvingAz = b in an out-of-core (OOC) environment, the time for the salnti
phase is dominated by the time for loading factors from didlerefore, the critical issue
for applications using the solution phase intensively isthe flops count but the amount
of factor data loaded. Note that, in our context, factorsleaeled by blocks associated
with nodes of the elimination dags (edags).

When the right-hand sidg is dense there is not much we can do, since all nodes in the
elimination dags are visited during the solution phase artté all factor data are to be
loaded. When the right-hand side is sparse we will show mdhapter that the structure
of the elimination dags can be used to control the amountabbfa loaded.

Of the many possible problems with sparse right-hand sidesyill focus on three of
them:

¢ null-space vector computatioris [55] (with test matricesrfrelectromagnetism),

e computing elements of the inverse of the matrix (with testrio@s coming from
least-squares data-fitting problems][67] 88] and from appbns in astrophysics

[23])),

e use of sparse right-hand sides with reducible matricesh(ajitplications in linear
programming([50]).

In this (second) part of the thesis, we will focus on thesedlproblems. Our objective
is to characterise the dependency graph of the computatt@itake place during the
solution phase Uz = b or LDL"z = b) whenb is very sparse, especially when it has
a single nonzero entry. This graph will then be used to desfigerithms and models to
optimise the load of the needed data from the disk.

In ChapteB we first introduce some background theory, egtab our applications,
and then discuss the important issue of sparse right-hatels.si We show that
processing/pruning the elimination tree is needed. Buagdipon the notions developed
in ChapteiZB, we develop algorithms for tree pruning in Ceeft In the same chapter,
we explain how some standard topological tree ordering ousthi.e., the pre- and post-
orders, can be used to facilitate the partition of the colsimhthe multiple right-hand
sides. In Chaptdr10, we further propose a hypergraph maodeattition the columns
of the right-hand sides for reducing the amount of factoadeaded. In Chaptérll, we
conclude this part of the thesis by discussing experimeasailts on real test problems.
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Chapter 8

Exploiting sparsity of the right-hand
sides: Context and applications

In this chapter, we first introduce some background theorthenelationship between
the graph structure ofi and the sparsity of the solution vector (Section 8. 111) using
the notion and facts from the general introduction (Chafilg¢r We then describe in
Sectio 8. 1R two existing methods from the literature fumputing entries in the inverse
of a matrix and compare the amount of factors to load when cimgp a particular entry
in A~'. Finally in Sectiod 8, for each of our three problems, weplaix why we have
to handle sparse right hand-sides and how this sparsity eaxoited. We also discuss
in the same section the important issue of multiple spaggg-hiand sides.

8.1 Context of our study

8.1.1 Relationship between the matrix graph and the structte of the solution
vector

We provide in this section a summary of the results from Gtllaed Liu ([63]) by
giving them as "Properties”. For a more complete treatmétiiminterplay between the
structures of a given matrix and the results of various camaimns, we refer the reader
also to [64] andl[62].

In [63] the authors provide a relationship between the stinecof the original matrix
A, the right-hand sidé and the solution vecto: . They show that the structure af
can be defined without computing explicitly. The main property used in this section is
stated as Properfy 8.4. This property results mostly fromgets of reasonings: first, the
application of a theorem fronh_[62] (cited as Theorem 2.1 @8]]6second, the use of the
edags introduced in[63] to simplify the paths used in Theo2el of [62]. To follow this
logic, we report a set of intermediate properties. We alsoroent on the simplification
of the properties to the case of symmetric matrices or megngith symmetric pattern,
since they are used in our symmetric pattern multifrontateyo

Let us first consider the equatiohz = b, where L is the structure of the lower
triangular matrix. We study the structure of the solutiortee + as a function of the
structure of the right-hand side and the structure of the lower triangular matrx. In
the following, we use notation presented in the global ihiction of the thesis. Using
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82 Exploiting sparsity of the right-hand sides: Context andapplications

the nonzero pattern of., the graphG(L) is constructed. The next property expresses
the relationship between paths @#(L”) , the structure of the right-hand sideand the
structure of the solution vectar . Note that the graph of.” has the same structure as
the graph of L but with reverse edges.

Property 8.1 (Theorem 2.1 in[[63]) For any lower triangular matrix L, the structure

of the solution vector: to Lz = b is given by the set of nodes, reachable from nodes
associated with right-hand side entries by paths in thead@e graph G(L) of the
matrix LT .

The property above is further developedlini[63] to give theofeing result, liberating
the previous one from the graph d@f’ (in caseL itself is result of a computation, e.g.,
LU factorization, the property specifies the structure with@gorting to the computed
L).

Property 8.2. For any lower triangular matrixZ , the structure of the solution vectar
is given by the set of nodes reachable from nodes associdgfedght-hand side entries
by paths in the edag of” .

This properties says that it is enough to follow paths in ttegs to get the structure of
the solution, as the edag provides a precise representstimaths inG(L”) (as recalled
in Chaptefl) the edag is the unique transitive reductioheficyclic graph ofL”).

The properties of the structure of the solution vectocan be extended to any square
non-singular matrixA . Let A have anLU factorization (A = LU ) without pivoting.

We consider the two substitution steps of the solution pbésel/x = b:

Ly=1>
{ Uz =y (8.1)

From the first line of equatio.(8.1) and Propdryl 8.1, thacttire of the vectow is
given by the set of nodes reachable from the nodes correspptalthe nonzero entries
in b by paths in the directed grapfi(L”) . Similarly, from the second line, the structure
of = is given by the set of nodes reachable from the nodes comelappto the nonzero
entries iny by paths in the directed grap&y(UT). Thus, for any matrixA with an
LU factorization, the structure of the solution vector can jrted as a function of the
structure of its triangular matriced( U ) and the structure of the right-hand side

We state this observation in the next property.

Property 8.3. For any matrix A such thatA = LU , the structure of the solution vector
is given by the set of nodes reachable from the nodes asedardth right-hand side
entries by paths in the directed graph &f , followed by paths in the directed graph of
ur.

Since the edags preserve all paths in the graphd’fand U7, we can express

Property(8.B in terms of edags.

Property 8.4. For any matrix A such thatA = LU , the structure of the solution vector
is given by the set of nodes reachable from nodes associdfedght-hand side entries
by paths in the edag of ™, followed by paths in the edag &f” .
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8.1 Context of our study 83

If the matrix A has a symmetric structure, the directed graphLoind the directed
graph of UT are equal and can be represented by the edad ofIn this case, the
edag becomes a tree (the so called elimination tree) and amgust follow paths in
the elimination tree to compute the values of the solutiarioe

Example 8.1. Consider theL factor given in Figurd_811 of a matrix with a symmetric
pattern. Suppose that the only nonzero entry iis b,. During the forward substitution
step (Ly = b), all nonzero entries iny are obtained fromb, by following paths in the
graph of LT .

|
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I I b, 44
43 ([ 44
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|52 |53 |54 |55 5!
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Figure 8.1: Influence of the structure bfandb on the | Figure 8.2: Influence of the structure bfandy on
solution vectory during the forward step.The arrowsthe solution vector: during the backward step. The
show all reachable entries frobg to the rootG(LT) | arrows show all reachable entries from the root node
inGUT).

During the backward stepl(z = vy ), the structure ofr will depend on the structure
of y and can be obtained by following paths in the directed acygtaph G(U”) as
shown in Figuré8J2.

SOR
OV O

Figure 8.3: The elimination tre&'(A) . The arrows show the path followed from the nonzero ertyyto
construct the vectot: .

The structure ofr can be computed more efficiently from the structurg dhrough
paths in the elimination tree. As shown in Figlirel 8.3, firs #tructure ofy can be
obtained by following the path from nodé (associated withb, ) up to the root node
5 (following upward arrows, in other words, following theges in the edag of.”).
Then the structure of can be obtained by visiting the nodes reachable from the Bode
(following downward arrows, in other words, following théges in the edag of/ ).

Note that if the matrix is irreducible, the unique root isekad during the forward
step so that vector. will be completely full after the backward step [46]. All atfrom
the root will be taken in the backward step, see the backwam shown in Figures8.2
and8.3.

83



84 Exploiting sparsity of the right-hand sides: Context andapplications

For reducible matrices the graph/elimination tree iaot strongly connectedand
consists of the union of several connected components. @hiysa part of x will be
updated during the backward step. We will further develdp ttiea in Sectioh 8.2.1.
Furthermore, on irreducible matrices when we are only egtxd in a specific entry in
the solutionz of Ux = y, then one can easily deduce from Prop€&ry 8.4 that only paths
from the root to this specific entry are needed. This is stased property.

Property 8.5. Let us suppose that we want to computeof Uz = y with y,, # 0. Only
the paths from the root to nodg in the edag ofU” need to be visited.

Note that the paths in the unsymmetric case from the root tala may not be unique,
as shown in Figur€l6 of Chaptér 1. In the context of a matrihvggmmetric pattern
Property(8.b simplifies since the path from the root to ngds unique.

Property 8.6. Let A be a matrix with symmetric pattern. To computeof Uz = y with
yn # 0 then only the path from the root to nodein the elimination tree need be visited.

8.1.2 Background on computing entries in the inverse of a maix

In many applications such as least-squares data-fittiniglgmeos [16/ 20, 6C, 61] and
short circuit study([108, 109, 111] the inverse of the matiixa subset of the inverse
entries are very useful. Usually the inverse of a matrix ieasg matrix, even if the initial
matrix is sparsel[47, 58, 61]. Thus usiag! as an operator is usually much less efficient
than the direct use of the sparéé/ factors.

Our main objective is to be able to efficiently compute somehef entries of the
inverse matrix A=!. If a direct relationship is established between the regligntries
in A~! and the required part of théUU factors then our out-of-core application can be
implemented more efficiently.

Let us suppose that we want to compute a few entried ih. We first describe two
methods to compute the inverse entries, based on the tnaditsolve phase of direct
methods (Sectioh 8.1.2.1), or based on Takahashi's eamqsat®ectioi 8.1.212). Using
Takahashi’s equations and a recursive algorithm, ErisrmahTanney [54] proved that
the subset of entries inl~! corresponding to a nonzero position in thé’ factors may
be computed with only thd.U factors and other entries in the same structure. In this
context, Campbell and Davi5 [25] have shown that a multitkbhke approach can be
introduced to use dense kernels and to show the dependendhes computation. We
focus in Sectiol 8.1.2.3 on computing a few entries4of' . We compare the amount of
factors to load using the traditional multifrontal and titeanative methods and determine
the best method to use for our problems in Sedfion 811.2.4.

8.1.2.1 Computing A~! using traditional solution phase

Using the traditional solution phase of direct methods, aleesthe system
AAT =T
where [ is the identity matrix. Using theL.U factors of A, the previous equation
becomes:

{LY:I

UA =Y (8.2)
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8.1 Context of our study 85

which corresponds to forward and backward substitutione@&olution phase. Note that
in the forward step LY = I') the right-hand side is very sparse and thus Property 8.1 can
be applied to exploit the sparsity.

If all entries in A~! are required, all theLU factors will be accessed. However, one
might have (for memory issues) to compute columns4in' by blocks. In this case
again, exploiting sparsity of the corresponding columnd a#ill be interesting. If only
a few entries ofA~! are needed then only part of thel/ factors will be accessed. We
will further comment on this when comparing the traditionathod with an alternative
approach in Section 8.1.2.3. We will also explain in moreadgethow to exploit the
sparsity of the right-hand sides using Propeifies 8.4[aBH 8.

8.1.2.2 Takahashi equations and alternative methods to cquate entries in A~!

In this section we present an alternative method to comhgenverse entries ol
using an L DU factorization of A, where L and U are respectively unit lower and unit
upper triangular matrices anB is diagonal. Note that to obtain thisDU factorization
from a standard.U factorization of a full rank matrix, it is enough to introdzia diagonal
matrix D from the diagonal entries off and use it as follows:

A= LU =LDD'U = LD(D'U") = LDU

The first direct use of the factors of a matrix to compute thveise entries was done
by Takahashi, Fagan, and Chin[111]. They relate tHeU factors of any nonsingular
matrix A with its inverse entriesZ = A~! in equations which are known as Takahashi’s
equations:

Z=D'L'+({I-U)Z (8.3)
Z=U"'"D1'+Z(I-L) (8.4)

One way to establish the relatibnB.4 is to note that frgm= A~! we obtain
Z = U DL

ZL = U'D'4+2-2Z
Z = U'D'+Z(I-1L)

which corresponds to equatidn(B8.4). Equatianl(8.3) canbb&imed in a similar way.

To compute entries in the upper part &f one can simplify equatiori(8.3), since
D=L~ is lower triangular and(/ — U) is strictly upper triangular matrix (see
Figure[8.4). Equatiori{8.5) is thus derived from equatiad)8

Zij = dZ_JI — Zuikzkj i 7 S] (85)

k>i

The following equation[{816) is derived from equati@n]8rta similar way:

n

Zij = dz_]l - Zziklkj i 1 Z] (86)

k>j
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86 Exploiting sparsity of the right-hand sides: Context andapplications

Takahashi's equations do not uge! or U~! and thus exploit the sparsity of the
computations. Therefore, to compute the upper trianguiiiess of Z , equation[(815) is
used and to compute the lower triangular entriesZof equation[(816) is used. For the
special symmetric case, a single equation can be used:

Z=D'L'+({I-L"Z (8.7)

Some propertiesto note about the dependency of computations of the inverses:

e any off-diagonal entryz;;, (j > ) directly depends omll factors in its row ¢
(u ), and all z; inits columny (for k& > i), as we can see from equati@n_{8.5).

Rij = — E Uik Zkj

k>i

e if a;; is the only entry in row and columni}, then z; = d;.*, sinceu;;, = 0 for all

k in equation[[815) !

-1
Zig = dii - E Uik Zks

k>i

Example 8.2. lllustration of the dependency of the inverse entries

We comment on a matrix with a symmetric pattern shown in Eig. As shown by the
arrows, zs3 directly depends on the inverse entrieg and zs3 in its column and on all
factors in its row (uss and uss). (If us3 were the only entry in row3, us, = 0 and
uss = 0, then 233 = d33 .) Finally, z43 and zs3 directly depends ons, and zs; .

Using Takahashi’s equations recursively, the whole mafrigan thus be computed in
reverse Crout order, starting from,, .

Erisman and Tinney [54] focus on the case when only a subsbeafiverse entries is
needed. They define an adjacency matrixwith the sparsity pattern of. + U . More
formally ¢;; = 1, wheneverl;; # 0 or u;; #0.

Using the definition ofC', we define the subse¥ sparse as the subset of inverse
entries with nonzero positions in the transpose of the mari

2ij € Zsparse & cj; =1
-1 L—l
0 1N 0 1N 0
* .. + .. —
0 \q

Figure 8.4: Takahashi equations: illustration of the sifigaition of equation[{8]3) to obtain equationi8.5.

Z
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Figure 8.5: Pattern of.DU factorization of the matrix. Arrows represent direct degemcy to compute
233 and 253 .

Therefore the structure of the transpose of the adjacendyixnand the structure
of the subset of inverse entries with nonzero positions GA are identical
Structure( Zsparse) = Structure( C71).

Theoreni 811 provides a recursive algorithm to compute avgrge entry inZsparse .

Theorem 8.1(Theorem 1in([54]) Any z;; wherec;; = 1 can be computed as a function
of L ,U and z,, wherec,, =1, (¢g>j,p=>1).

However, for a particular entry;; it may not be necessary to compute all of the entries
in Zsparse, as mentioned ir [34] and illustrated in the next examplesofan{8.1L only
provides a sufficient set of elements to compute entrieg dparse .

Example 8.3.We compute entry,, of a matrix with a symmetric pattern and associated
factors shown in Figur&8l6. Starting from; and working in the reverse Crout order,
all the entries

255y 2445 K544 £33 2435 £53y 222, 252
will be computed. Note that only,, , z5; and z;; are needed:
from equation(85)0, = dyy — 25259

from equation[(86)52 = —l52255
finally, zs5 = ds5

z, U /\
5

VA u
31 71233 3 | 35

Z u e

zg, | %s3 K254 %55 ‘
S~ &~ =
u b) The elimination tree captures the dependency
a) Pattern ofL DU factorization of a matrix with ~ between entries o' in a top down traversal of the
symmetric pattern. tree.

Figure 8.6: Dependency of computationsi,,se -
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88 Exploiting sparsity of the right-hand sides: Context andapplications

Note that for the symmetric cas€ = L” so l; = u;; andcj; = ¢;; = 1. Thus
the structure ofC” becomes the same as that@f (C? = (') and paths inC' can be
represented by paths in the elimination tfBeA) . Finally z;; = z;; and only one of the
equations[(81]5) of(816) will be used to compute all of theense entries.

Campbell and Davis have shown that for symmetric matriceselimination tree
captures the dependency between entriesiof. On our example nodé is a son of
node5, as shownin Figue8.6. The first nonzero entry in @wf U isthusin columrb
so that entries in row8 and 4 of Zsparse need not be involved in computation.

Computing entries outside (L|U)* : To computez;; , using the Takahashi equations
wherec;; = 0, the entryc;; has to be settd . Then one should update all possible fill-in
related to ther;; entry. Theoreri8]1 can thus be applied to the updatephrse matrix.
The modified adjacency matri&”. = captures the structure of all entries, required to

new

compute the entry;; outside the originalZ sparse .

Campbell and Davig [25] focus on the special case of comguimplete Z sparse
on numerically symmetric matrices. They prove that when gotimg Zsparse with
the Takahashi equations, the elimination tree processed fhe root to the leaf nodes
captures the dependency relationships between all thesmemtries inZsparse. Then
they explain how LeveB BLAS can be used in this context. Note that the elimination
tree can then also be used to parallelize the computatiomtoks in Zsparse. The
method proposed by Campbell and Davis differs from othealpgrimplementations of
computing the inverse entried [6], by the use of the denseekefor Level 2 and 3 BLAS
optimization.

8.1.2.3 Computing a few entries inZ,,,rs. Of @ matrix with symmetric pattern

We are interested in characterizing thé/ factors needed to compute a few entries in
Zsparse. Itis an important issue in an out-of-core (OOC) environmemce the time
for loading factors often dominates the computation payteploiting the sparsity of the
right-hand sides, we can determine which factors are neadeédbad only that data from
disk. If only a part of the factors are loaded, we can signififamprove performance.

We will compare two methods: the traditional solution phasd the one based on
Takahashi equations. Each time Propérfy 8.1 will be usech&macterize dependency
between the right-hand side and the solution vector.

We will consider the case of a symmetric matrix, where thecitme of C*' is equal
to the structure ofC'.

a) Using Takahashi equations

In [25] a relationship between the elimination tree a#dparse is established. To
compute a particular entry,; we will have to compute all inverse entries isparse
from the root node to the nodesand j in the associated elimination tree.

We want to go further by proving that the only factors whiclkégo be loaded/used to
compute a particular entry;; are situated on a path from nodésand j up to the root.
Thus the other branches of the elimination tree are not uaand their factors need not
be loaded. The amount of loaded data will thus be signifigaetiuced.
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8.1 Context of our study 89

Without loss of generality, we can assume that . If z;; is needed, them;; # 0.
From the elimination tree properties, noglds an ancestor of nodg, and there is a path
in the elimination tree fromi to the root going throughj. We can thus state this as a

property.
Property 8.7. For any z;; € Zsparse (j > i), nodesi and j are on the same path to
the root of the elimination tree of the symmetric matrx

Note that for anyz;; ¢ Zsparse, the structure of the adjacency matriX will be
modified by settingc;; = 1. Thus node;j becomes an ancestor of node and they
belong to the same path to the root of the resulting elimametiiee.

Property 8.8. To compute a particular entry;; (j > ), in the inverse of a symmetric
irreducible matrix A the only factors that need to be loaded(i®~'U) are on the path
from nodei up to the root node.

Proof We start by computing the inverse of the root nodeand we will use recursion to
prove the property. Node,,,, directly depends only od.! (z,, = d;!). Let m be the
child of the root node on the same branch as nodasd j. Then z,,, depends on the
nonzero factorsu,,, and z,, . Thus z,,, recursively depends on,,,, d;! andd.!.

Thus we have proved for the root node and its chitdthat the only factors which have
to be loaded from(D~'U) are on the path from node: to the root noden .

Suppose that is the first node in this branch which depends on some fagtomnot
belonging to the path from to the root. From Takahashi’s equations we must havei
andt > j. Let nodej be the parent of node. Then z;; recursively depends only on
factors in its path to the root nodé (vas the first node not having the property in this
branch). Since all recursive dependencies come from trenpaiode;, then u,; must
be in the same row as,; , and thuss = 7. Node i directly depends on factou,;; # 0
inits row (i < t, 7). With respect to the elimination tree property, this metirad node
t is an ancestor of nodé and belongs to the same path to the root node. We obtain a
contradiction with the assumption that, does not belong to the path from nodeip to
the root noden . We have thus proved that the only factors which have to bedddor a
particular entryz;; (j>; in (D~'U) are on the path from nodeto the root noden. o

b) Using traditional solution phase

To compute a specific entryz;jl in the inverse of the matrix using direct methods, we
have shown that we can solve equatidd ~! = I using a direct approach:
Cli_jl = (A_1€j>i (88)

where A~ 'e; is columnj of A~ forwhich we are only interested in entiy, (A~ 'e;); .
We show in this section that our general framework can be tesegploit sparsity during
the computation of entries il —! with a direct approach.

Decomposing equatiofi (8.8) into forward and backward stuitistn we obtain:

y; = (L7'e)) (8.9)
a; = (U ) (8.10)

Note that at each solution step either the right-hand sidpasse (equatiof (8.9)) or
only a specific entry i/ 'y, is needed (equatiof(8]10)). In the following we show that
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90 Exploiting sparsity of the right-hand sides: Context andapplications

only part of the factors needs to be accessed and that we egorexdously introduced
pruning algorithms at each step.

Knowing in advance the columns of the required entriestin', we can predict the
factor data needed, by applying Propdriyl 8.4 of Sediionli8idr. the structure of the
solution vector.

nonzer: target
nodej nodei

forward step:from the nonzero entry up to the roof backward step: from root node to a particular entry
Figure 8.7: Nodes that must be visited to compute ertfye Zparse

Applying Propertyf 8} to equatiof(8.9) we can state thatatizero entries in vector
y follow the path from the nonzero entry - node up to the root (see Figuke8.7 - forward
step). Similarly from equatioi.(8.10) and Propdrfyl 8.5 we state that to compute;jl
one must follow paths in the elimination tree with a top-dawaversal (see Figule 8.7
backward step).

We summarize the previous observations in the followingprty.

Property 8.9. To compute a particular entry;; in A~!, the only factors which have
to be loaded are thd. factors on the path from nodg up to the root node, and th&
factors going back from the root to node

Note that, since we use equations]8.9) @]8.10),aqjdrneed not be inZsparse
(i.e. no longer related ta,;; # 0).

8.1.2.4 Conclusion about the method to use

To conclude, let us compare the amount/df factors that have to be accessed with
the proposed approaches — based on Takahashi equatiorsedrdraa traditional solution
phase. The following properties are direct consequencéiseoprevious properties and
can easily be generalized to matrices with unsymmetricepatiwhere the elimination
tree will be replaced by the edags.

Property 8.10. Let A be an unsymmetric irreducible matrix with symmetric pattend
let T" be its corresponding elimination tree (one variable per@pdror both approaches
to computea;;' we need to access all rows 6f and columns of, from nodei of T to
the root.

Property 8.11. Let A be an unsymmetric irreducible matrix with symmetric pattand
let T' be its corresponding elimination tree (one variable per @pdlo compute an off
diagonal entry entrya;jl both the columns of thé factors from node of 7' to the root
and the rows of thd/ factors for node; of 7' to the root need to be loaded with both
approaches.
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8.2 Sparsity of the right hand-sides and applications 91

One should also add that, with both approaches, to compuwgatanin A=! the other
entries of A~! that need be computed are identical. In our OOC contextettsethus
no benefit in terms of access tbU factors between both methods. Furthermore we
would like our approach to address other applications witrse right-hand sides (null-
space computation, solution with reducible matrices) perty[8.4 thus provides a natural
common framework to efficiently exploit sparsity for all aarget applications including
computing entries in the inverse of .

8.2 Sparsity of the right hand-sides and applications

In the previous section, we have shown that it is possibl@toputex by using only
part of the factors when the right-hand sides are sparsep@miose in this section is to
show how the properties introduced in the previous sectonbe used on our application
in the context of a parallel out-of-core multifrontal salveWe then discuss for each
application the issue of processing multiple right-hardksiand comment on memory
issues.

We will assume that our matrix is symmetric in structure amelédag associated with
the factors is a tree, the elimination tree.

8.2.1 Sparse right-hand sides / reducible matrices

The dependency graph of reducible symmetric matrices catrbeturally represented
by disconnected trees (or a forest). Each part of the foeeatdompletely independent
tree, not reachable from other trees (see Figure 8.8).

Figure 8.8: Reducible symmetric matrix pattern and its eisdéed forest

For reducible matrices, exploiting the sparsity leads tokivig on the tree associated
with the nonzero entry in the right-hand sides. The discotetepart of the forest will
not be concerned by the computations, because it is notabb(see Properfy 8.4).

We can also apply Properfy 8.4 during the forward substituto sparse right-hand
sides. As shown in Figufe_8.9), when the first entries fromtdipeof the right-hand side
are zeros they will not modify the zero structure of the solutvector y . The first node
which has to be taken into consideration for computatiortkisstep is the first nonzero
entry in the right-hand sides. Then we follow paths/inor in the edag associated with
L (which is a tree/forest for a symmetric matrix); using thaaability of the nonzero
entries. For example, on our test example shown in FiguiletBede is a single entry in
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92 Exploiting sparsity of the right-hand sides: Context andapplications

the right-hand side ;7 . We need to compute only factors associated with ndded 8
and 19 to complete the whole forward step.

L b

|1

non-zero entry

| —

/

/

Figure 8.9: Exploiting the sparsity of the right-hand sidethe forward substitution. The first zero entries
in the right-hand sides do not modify the structure of themeg and thus are not used in the computations.

We use‘tree pruning’ to refer to the mechanism of suppressing unneeded nodes of
our original elimination forest. In Figuie 8.9 we illustesthe pruning mechanism on our
elimination forest from Figure_8.8, where only some of thele®in the tree are kept and
the other nodes are pruned.

During the forward substitution, for each entry in the rigiaind sides, all the ancestor
nodes of the associated node in the tree need to be considdredinion of all needed
nodes represents branches of the elimination tree (chdimsma@estors up to the root
node). As this functionality selects nodes in the brancimfibe node to the root of
the elimination tree, we will name ‘ibranch detection’.

When a backward substitution follows a forward substitutigth sparse right-hand
sides, all the root nodes reached during forward phase witespond to a nonzero entry
in the right-hand side of the backward step (on our exammerrode 19 has been reached
during the forward step). During the backward step is it ggioto consider all the root
nodes reached during the forward steps to determine thetsteuof the solution (we
follow paths in the in the edag df* which is a tree in our symmetric case). The pruning
mechanism where a whole (sub)tree will be processed willdberred to assubtree
detection’.

Both ‘branch detection’ and ‘subtree detection’ will be ddsed in more detail as
algorithms in Chaptdd9.

8.2.2 Null-space computations

We describe null-space computations in the context of ram&aling LU factorization
code on general unsymmetric matrices. We suppose thatlgal Galill pivot rows’ have
been detected during factorization. In fact to do so we combio approaches. We first
perform a ‘normal’ factorization with modified numericalvpting strategies and detect
small pivots ‘on the fly’. Some of the small pivots will be cahesred as null pivots and
some of them will be postponed potentially up to the root @& élimination tree. At
the root of the elimination tree a more standard rank-remgapproach based o@ R
factorization with column pivoting is used. This work is thigject of a collaborative task
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8.2 Sparsity of the right hand-sides and applications 93

within the SOLSTICE ANR project (ANR-06-CIS6-010) betwe€ERFACS, INRIA-
LIP and IRIT.

The rank-detection performed during factorization phagsel$ to two types of deficient
row entries: null pivots associated with the root of the @hation tree (root-deficiency)
and those detected in the lower level of the tree. We will sethis section that root-
deficient rows provide no scope for exploiting the sparsftthe right-hand-sides during
null-space computation.

By ‘null-space computations’ we mean solving the equation
Az = 0. (8.11)

The solution set is then named as thal-space of A. Using direct methods, this
eguation becomes:

A=LU, LUz=0, det(L)#0
Uz =0 (8.12)

As we can see, only the backward substitution has to be peedr Of coursegx = 0
is always a solution of the equation, but in some cases themare x vectors satisfying
equation [8111). If the matrix has zero (or numerically vergall) entries in a whole
row of U, then the matrix is numericallgleficient and there exists a nonzero vecter
solution to the equation{8.111).

0
U, Y :

% 0l

Uy, X,
o |
L] 0]

Figure 8.10: Case of ‘zeroline’ iV : U is divided into blocks with respect to ‘zero row’ detected.

To simplify our discussion, let us first suppose that the matf has the structure
described in Figure810.

We can thus write the following system of equations:

Unl’l —|—U1jl’j +U12l’2 =0
0z; + Ozy =0 (8.13)
UQQ.Q?Q =0

Here x5 = 0 is a solution of Uz, = 0 (it might not be the only one, it/y; is rank
deficient). From the second line of equatibn (8.13)is free. From the first line, we have
thus to solve:

Ullxl = —UljZEj (814)
We can setz; to 1, and thus
Unl’l = _Ulj . (815)
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94 Exploiting sparsity of the right-hand sides: Context andapplications

The final null-space vector is thus= (z; 1 0)7 .

Note that if the entryu;; of U is settol during the factorization, and if we set the
right-hand side tce; , then by solvingUz = e; we obtain the same set of equations.

| o
Ull UZI :

100 ] 0

UIU[ZL &
|l

Figure 8.11: Case of ‘zero line’ iV with modified factorization

Our final equation for solvingdx = 0 with the described modified factorization is
thus:

Ur = e, (8.16)

In general, the structure d¥ is not so simple and the block,, might itself be rank
deficient (with again null or ‘pseudo null’ rows /5, ). We can easily generalize the
computations associated with one pseudo-null pivot to aergeneral case as described
in the following. Let us suppose that we solter’ = e; for each pseudo null pivof
detected during the factorization. We compute them in tieioin which they have been
detected following the tree from the leaves to the root. Ttmensolution ofUX = F,
where E is the set ofe; columns, andX’ is the j** column of X , solution of U X7 =
e; , Will have by construction a structure as shown in Figuréig.1

Figure 8.12: Structure o

Therefore, by construction, each vector is linearly indefsnt from the others and we
get a basis of the null-space associated with the pseud@ivotts detected during
factorization. If all ‘null’ pivots have been detected (Gacate’ rank revealingLU

factorization) then we have a full basis of the null-spacedaf The number of columns
k of X isthen thadeficiencyof the matrix A or the dimension of its null-space basis.

8.2.2.1 Some properties

The memory needed by our parallel multifrontal solver dgrithe solve phase
includes the number of the solution vectors, the order of thmest frontal
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8.2 Sparsity of the right hand-sides and applications 95

matrix(Size(Max_Frontal_Matriz)), and a working area. Both the working area and
the solution vector are of sizé&/ x deficiency, where N is the order of the matrix, so
that our peak of memory is:

Peak memory =2 N x deficiency + Size(Max_Frontal_Matrizx)

Thus, if all columns of X are computed in one pass then the memory requirement will
be very large on matrices with high deficiency. For examptlepar test matrix from
electromagnetism (see Talile 5 in Secfiod 1.3) the deficientarger than 4 000 on a
matrix of order33 000 ). To address this issue which is common to the general case of
processing multiple right-hand sides, a blocking fachr is introduced so that columns

of the right-hand sides are processed by block of $ize In our case, we thus divid&

into s blocks of size N, :

Xj G{Xl,...,XS}, ‘Xj| :Ns

Then UX = F is solved bys blocks of V, right-hand sides at a time. The working
space for the backward phase becomes a functian af

Peak memory =2 N x Ny + Size(Max_Frontal_Matriz) (8.17)

Property 8.12. Total size of factors to be loaded (without gxoiting the sparsity of
the right-hand sides):

The total size of the factors to be loadeBdctors_loaded) during the solution phase is
equal to the sum of factor§ loaded at each block iteration, i.e.

Factors_loaded = s x |U| (8.18)

If Ng=1: Factors_loaded = |U| X s
If Ny =deficiency : Factors_loaded = |U|

8.2.2.2 Pruning for null-space computations: subtree detgion

The equation to be solved i§x = ¢;, where e; is a sparse right hand-side (the
only nonzero entry corresponds to the null pivptin the original matrix. Node;j of
the elimination tree being the node on which rgwof U was computed during the
factorization.) This nonzero entry becomes the startingt rode for our ‘pruning’
mechanism for the backward step, as it was in the backwapdeteeducible matrices.

Property[84 of the reachability in the elimination tree ¢hns be used; from this
starting node the whole subtree has to be loaded (and nobaelpf the ancestors as was
the case in ‘branch detection’). We state this as a property.

Property 8.13. When solvingUz = e; only the subtree rooted at nodg of the
elimination tree need be processed.

The previous property implies that the complete eliminmatiee need be visited when
a null pivot is located at the root of the elimination tree.
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96 Exploiting sparsity of the right-hand sides: Context andapplications

Example 8.4. To illustrate this we show the pattern of, e; and z, and the
corresponding elimination tree of in Figure[8.13. We suppose that the structure of
U is equal to the structure of.” . The nonzero entry ire; (j; = 6) broadcasts its
nonzero pattern on the solution vector to the whole subimeéad at nodej = 6.

|on

10

X[LITTTTT T

’

Figure 8.13: ‘subtree detection’ for backward step withrspaight-hand sides. lllustration of the structure
of = obtained after solving/z = e¢; (j = 6) and of node traversal during computation.

Complete subtrees are always concerned during null-spao@utations, so that we
will use the ternmsubtree detection’ to refer to this type of tree-pruning algorithm.

Finally, we can define a lower bound to the size of the factore loaded in a
sequential environment. It is related to the size of eachermfdthe elimination tree,
to the number of requests for each noadeé (requests(node) ), and the number of blocks
(s) solved. We definenb_requests(node) as the sum of the number of requests to
this node and the number of requests of its direct parent node. (Exanifplhe root is
requested twice, and its son is requested three timespbheequests(root) = 2 and
nb_requests(son(root)) =2+3=15.)

Property 8.14. Lower bound of the amount of factors to load ina sequential
environment: The lower bound of the size of the factors to be loaded is thedfuthe
products of the size of each node multiplied by the numbés edquests§b_requests),
divided by the numbes of blocks solved:

Z (size(node) * nb_requests(node)/s)

8.2.3 Computing entries in A~!

To compute a specific entrzyl.‘jl in the inverse of the matrix using direct methods, we
have shown that we can either use the Takahashi equation$/ereqjuationAA=! = I
using a traditional solution phase. In the following we shbat only part of the factors
needs to be accessed and that we can use previously intcbguaeing algorithms at
each step.

When solvingLy; = ¢;, as explained in Sectidn 8.2.1, factors bfassociated with
nodes from the starting nodg and all nodes in the path to the root node are needed.
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8.2 Sparsity of the right hand-sides and applications 97

We will thus use here the ‘branch detection’ algorithm torelaterize nodes of the tree
required for this step.

At the end of the forward step, entries iy corresponding to the path from node
j to the root node of the tree to which it belongs are nonzerot ussassume for
the sake of clarity that our matrix is irreducible and hasstlausingle root node in its
associated elimination tree. In this case, as shown in E[§Ul4, the solution vector is
full. However, we are interested in only th& entry, in the solution vector. In this case

] =
1
e @ 7: 7? sj
L L 9
G @9 @@ [ z
NERP I |
ek2 y*2 a_k%

Figure 8.14: lllustration of tree traversal to computgé. a;é corresponds to columr2 of A1,

Filled entries ina_; correspond to entries in columa of A~' while computing agé. agé =
(U 'L es)izs; y2 = L7 ea; agh = (U ya)izs;

pruning can be done. Note that the pruning algorithm herkbeilsimilar to the one in
the forward substitution. We illustrate this complete ms&in Figuré8.14. We have first
to load L factors associated with nod@s3, 7, 14 during the forward step. We then load
U factors associated with noddd, 13,9, 8 during the backward step. Thus, for both
substitution phases only a single path in the tree is corecerNote that while computing
ag all entries on the path from the root to nodewill correspond to entries in columa

of A=! that are computed.

8.2.3.1 Computing multiple entries in A~!

In practice, more then one entry in—! is often requested. For example all diagonal
entries are requested to estimate the variances in leaatesjdata-fitting problems. Thus,
we are also interested in computing a few entriestin' .

In this case during the forward step we consider equation
LY = F (8.19)

where each column of2 is a column if the identity matrix. For example; € E
expresses the fact that at least one entry in colynof A~! (a;jl) is requested. Then
during the backward step we need to solve:

Ua;jl =y (8.20)

and we are only interested in computing part of the solutiectar. Our user interface to
this problem can be very simple and efficient in terms of mgnusage. We use a sparse
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array to characterize all the requested target entried ih. On output, the same array
holds the entries ofA~! requested. However, for larger matrices, computing emirie
A~ need still be divided intos blocks of size N, , for memory issues, as observed for
the null-space basis computations with large deficienay Sactiod 8.2.211).

In the following enumeration, we list simple observatiolissirated on Figuré8.15
that will be used to understand why processing columns ofitité-hand sides in the
same block can be interesting. Those observations will bmdbzed in Chaptefl9 to
guide the design of our algorithms.

1. Several entries in a column of ! are computed at once (as shown in Figures.14:
entriesay), , a3y, agy, ... are computed during the computation of enigy ).

2. When computing a diagonal entries;(l) the same ‘branch’ for both forward and

backward steps is concerned (for exampg will have an ascending path from
node 2 up to root and descending path again to n@de

3. Requested entries with the same row number use the samenpéie backward
step (for example, in Figuie 8115 entrieg; and a5 ; have the same descendant
ascendant path from the root to nog8é.

4. Requested entries with the same column number use thepsdimi@ the elimination

tree in the forward step (for example, in Figlire 8.15 entrigé and a;;', will use
the same path from nod2 to the root).

5. Combining properties of the previous two cases: if retpeesow/column entries
are associated with a common ancestor node in the elimmage, they share the
branch in the elimination tree from the ancestor node to tioé¢ fexample: factors
loaded to computeug% completely include factors needed to comput;%, see

Figure[8.15).
(19
) (13
BN (o) (o) (12
© @ (10

Figure 8.15: Paths in the elimination tree to compute enig} , a;;'y, ags andaj's.

8.2.4 Pruning and concluding remarks

To exploit sparsity in the right-hand sides, we have idegditwo mechanisms of tree
pruning — branch detection and subtree detection to charaetentries in the factors that
need to be loaded in an out-of-core context. For reducibl&ices, branch detection
allows us to follow paths in the forward step, and the subtietection, when used
during the backward step, identifies the tree rooted on tmzero requested entry. For
computing entries inA~! we use branch detection during both forward and backward
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substitution steps. In null-space computation, only sétietection is used during
backward substitution.

In the context of multiple right-hand sides, we have exm@dimvhy we need to split
the right-hand sides by blocks, for memory issues. The diffids then to decide how
to efficiently order the right-hand sides to better explbé branch and subtree detection
algorithms.

In a parallel context, the situation becomes even more cexnph this case we want
to combine the efficiency of exploiting the sparsity of trght-hand sides with balancing
the amount of work among the processors. Thus, the paiititoof the right-hand sides
should also take into account the data mapping of the faottisthe processors.
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Chapter 9

Algorithms to exploit sparsity

9.1 Introduction

In this chapter we describe the algorithm for pruning thenglation tree. ‘Pruning
tree’ algorithms change the tree structure. Almost all tlebgl information is changed -
number of leaf nodes, number of roots (in case of reducibl&#ices), number of sons
per node. Two algorithms are presented, which we name wshere to the final graph,
branch detection and subtree detection. The branch detesttiresponds to a bottom-top
traversal of the tree, starting from a (several) node(s)goidg up to the root node. The
subtree detection corresponds to a top-down traversakdféle where for each local root
node the whole subtree information will be kept. Finally wegise some permutations
of the right-hand sides to better exploit the sparsity winemhultiple right-hand sides are
grouped into blocks for memory issues.

9.2 Pruning algorithms

For each initial nonzero entry in the right-hand sides weawbits node number in
the tree [hode. We call these nodestarting_nodesfor our pruning algorithm. Then
using the dependency relationships (ancestor/descenaantetermine all the needed
data. Note that for both branch and subtree detection altgos, if an already selected
node is encountered, we know that the remaining part of treeify already selected. We
thus cycle to the next entry in the initial set of starting esd

Note also that both algorithms work with single or multipight-hand sides and with
single or multiple entries per right-hand side.

9.2.1 ‘Branch detection’

The ‘branch detection’ refers to the detection of all braeecirom a initial set of nodes
to the root(s) of the elimination tree. We recall that ‘brardetection’ can be involved
during the forward step to exploit sparsity with reduciblatnices or to compute entries
in A=1. It can also be used during the backward step when compugiegted entries in
AL,
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We first mark all nodes as non-visited. Then we mark nodesertrie belonging to
the starting_nodes list associated with nonzero entrigsamight-hand side, as described
in Algorithm[@.1

Algorithm 9.1 : branch detection

for each ‘non-visited’ node in the starting_noaks
mark it and mark all nodes as ‘visited’ on the path to the rgotainext visited node
end for

A detailed algorithm for branch detection is provided as dkithm and is
commented in the following.

The first node is taken from the starting_node set. It is nade ‘visited’ with all
its ancestors up to the root, or up to the first already markmten Then another node is
taken from the starting_node set and, if it is not visiteds marked in a similar way.

The list of selected leaf nodes is defined at the end of theitign, as the subset of the
starting_nodes with no children. The list of selected lezdes will be used later during
the forward substitution to initialize the pool of tasksagdo be processed or during the
backward substitution to count the number of leaves to begased before ending. The
list of roots is set on the fly by the branch detection algonifleach time a node without
a father is encountered).

The number of selected sonsis_sons(Inodedf each node has also to be computed
since it is used during the solution phase to decide when tue itan be activated
(forward substitution) and added to the pool of task readya@rocessed. We initialize
nb_sons(Inodefo zero. It is then incremented during the algorithm eveihéf tather of
the current node has already been visited.

Algorithm 9.2 : detailed branch detection

Input: ELIMINATION _TREE, STARTING_NODES
Output: ELECTED TREE(list_selected_leaves, list_selected_roots)

nb_sons(node - selected sons dhode initialized to 0 .

father(Inode - directed ascendant ¢fiode (setto0 for the root node)
list_starting_nodes-

List Selected_leaveslist of selected leaves nodes, initialized ¢o.

for each non-visitethodefrom starting_nodedo
markInodeas visited
Fnode = father(node
while Fnodenon-visited and-node # 0 do
mark Fnodeas visited
increment nb_sonBfode
Fnode = fatherfFnodg
end while
if (Fnode # 0) increment nb_sonBfodg
end for

for Inode € starting nodeslo
If (nb_sons(Inode}= 0) addinodeto the List_Selected_leaves
end for

The output of the algorithm of branch detection is then usethd the solution phase
as input to the forward and backward substitution steps.
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9.2.2 Subtree detection

The ‘subtree detection’ algorithm is used only during thelveard step for reducible
matrices or for null-space computations. We recall that nie@in objective of this
algorithm is to detect for each target node, the completé&rsalooted at that node. We
first describe the main feature of the subtree detectiorridifgo.

As in the previous case, we start by marking all nodes as msitest. Then we get the
list of starting_nodes, associated with honzero entrighéright-hand sides. We select
the subtree rooted at each node of starting_nodes. Noteéhgd through the elimination
tree at most once to select all the subtrees.

Algorithm 9.3 : subtree detection
for each non-visited node in the list of starting_nodes
mark it and mark all nodes in its subtree down to leaf nodes aeikt visited node
end for

A detailed subtree detection mechanism is described inrklgn[©.4.

Initially, the list of selected leaves is empty, and subtietection begins from one of
the starting_nodes. At this stage, potentially each nodhdrstarting_nodes set can be
a root. A node is marked as not_root_node, if it is a son of ls@ratequested node. We
traverse the elimination tree only once in a top-down trsakrFor each not visited node
in the starting_nodes, its whole subtree is marked. If aaaaly marked son is encountered
then we can skip to the next son or to another entry in theiisgamodes.

Algorithm 9.4 : detailed subtree detection
Input: ELIMINATION _TREE, STARTING_NODES
Output: LECTED TREE(list_selected_leaves, list_selected_roots)
Local : List_Selected_nodes - to manage local subtree traversal

for each non-visited nodaodein the list of starting_nodedo
if Inodeis visitedthen cycle
marklInodeas ‘root_node’
addInodeinto List_Selected_nodes

| Process subtree rooted at Inode:
for each nodeldescendantin List_Selected nodeto
for each sonlson of Idescendantdo
if Isonis non-visitedthen
marklIsonas visited
addlsonto List_Selected nodes
else
marklsonas ‘not_root_node’
end if
if (last_son oldescendantthen removeldescendanfrom List_Selected _nodes
end for
end for

end for

for each nodénodein the list of starting_nodes and marked as ‘root_nafte’
addInodeinto List_selected_roots
end for

During subtree detection the number of sons for selecte@sioeimains unchanged.

103



104 Algorithms to exploit sparsity

The total number of selected leaf nodes is also needed tonatenthe backward step.
For clarity, our algorithm computing the list of selectedfl@odes was not included in
Algorithm[@.4 but this data can easily be updated each tintlesmlgorithm we encounter
a node with no son.

9.3 Topologically-based permutations

We have shown that the sparsity of the right-hand sides caexpmited to reduce
both the amount of factors loaded in an out-of-core envireninand the total number of
operations during the solution phase.

Our objective in this section is to understand how one shpeafthute the right-hand
sides to better exploit their sparsity. As explained in Best[8.221 an@8.2.3.1, for
memory issues multiple right-hand sides are processeddmksblof fixed sizeN,. The
partitioning of the right-hand sides gives scope to furtigorithmic improvement. For
example one might want to group columns with as large as plessverlapping of the
factors to be loaded.

We first recall properties of our applications with sparsdtipie right-hand sides that
can guide our choice of permutations.

Computing entries in A~!. Forward and backward substitution steps exploit a branch
detection algorithm to compute entries in each columniof .

e The right-hand sides are patrtitioned into blocks by columBatries in the same
column are thus always processed together (in a block).idsnitn same rows can
be processed in different blocks since their column indecesdifferent. We can
influence only the grouping of the right-hand sides by omtgdolumns with similar
properties in a single block.

e The column or row index of each entry in the right-hand sideagssociated with
a node in the elimination tree. To compute any inverse em;;&/ we start with
a forward substitution step following ascending path frood@& associated with
column j to the root node, and continue with the backward substitustep
following a descending path from the root to the node assediaith row i .

e From the previous property it results that, if two columnstiod right-hand sides
have indices on the same path to the root are processed aimaalisly. then factors
will be loaded only once during the forward step.

Example 9.1.Let us suppose that we want to computg, and aj;; (see
Figure[@.1). These entries are associated with no2lemnd 7 in the tree and share
the path from nodé (the ancestor of node) up to the root. Thus if columr and

7 of the right-hand side vectors are grouped together, thelotd factors associated
with the nodes in the shared path will be accessed only once.

¢ If two columns that are processed simultaneously, have amdyrow entry that is on
the same path to the root then factors will be loaded only alueang the backward
step.
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Figure 9.1: Common path in the forward substitution for @stia;,’, and a;;';

Example 9.2. Let us suppose that we want to computg, and aj;; (see
Figure[@.2). For both entries the backward substitution fallow the same branch
of the tree — from the root down to nodé and to nodel 1. If the requested entries
are processed in a single block, factors from the root nadewill be loaded and
accessed only once.

Ge gQQ

Figure 9.2: Common path in the backward substitution foriestal‘3172 and a1_1175

Null-Space Computations. Each null or quasi null pivot is associated with one
column of the multiple right-hand sides. The backward stidgin on each column will
benefit from a subtree detection algorithm.

e A node includes in its subtree the subtree of all its descendodes. Thus null
pivots associated with nodes in the same subtree shouldbegsed simultaneously
to load only once factors that are common.

¢ In other words, two null pivots that are not associated toesooh the same path to
the root should be processed in different blocks.

Example 9.3. Let us suppose that we want to compute quasi null pivots egedc
with row indices3, 7,12 and 13 (elimination tree shown in Figude9.3). If pivots
associated with node¥ and 3 are processed simultaneously, the factors in the
subtree rooted at nod& will be loaded only once for computations of both pivots.
Nodes7 and 13, are not on the same path to the root, thus, there is no bewoefit t
process them together.

In the context of a large number of right-hand sides and largerices, we are
interested in finding algorithms to permute and group thatrlgand sides using some
global information/property. From the previous obsemas it results that in both
applications (computingd=! and null-space basis), the branch detection and subtree
detection algorithms can exploit the topology of the tregroup columns of the right-
hand sides.
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Figure 9.3: lllustration of subtrees, rooted on filled nades

With a post-order traversal of the tree all nodes in a subiviiehave consecutive
numbers. For null-space computations it is clear that panguhe null-pivots to follow
a post-order of the tree will enable a simple splitting of teerdered list of right-hand
sides to be efficient. For computing entries ifT!, if one considers the special and
interesting case of computing only diagonal entriesfof' (see Sectiof1l2), then again
permuting columns of the right-hand sides to follow a pasteo will provide a good
locality for factor reuse between consecutive columns efright-hand sides.

9.3.1 Post-order permutation of the right-hand sides

We first describe post-order based permutation of the figintd side vectors. In a
sequential environment, a post-order traversal of theisrased during both factorization
and solution phases. Therefore, with a post-order pernoutaf the columns of right-
hand sides, we can expect good overlapping of factors todmehb for two consecutive
columns. For entries inA~!, permuting the right-hand sides such that the associated
columns of A~! follow a post-order ensures good locality for consecutigitrhand
sides as shown in Figute™®.4. For null-space basis computtprocessing null pivots
with a post-order also gives scope to good locality withia skibtrees.

Figure 9.4: Ancestor nodes selected to be processed in aldaoke

A post-ordering based permutation of the columns of thetfgind sides provides
good reuse of the factor between consecutive columns andhesnbe use to drive a
simple blocked processing.

9.3.2 Pre-order permutation of the right-hand sides

We use the term pre-order to define the inverse of the postrgrérmutation. If the
size of the right-hand sides is a multiple &f, (the size of the block) then there is
no difference between both permutations. When the sizeefitfint-hand sides is not
multiple of N, the last block might contain less columns compared to therdilocks.
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9.4 Permuting columns of the right-hand sides to address paitlelism 107

If post-order permutation is used, the last right-hand smlamns correspond to nodes in
the upper part of the tree (close to the root node). For exitniel ~! , these last nodes will
select shorter ascending paths in the elimination treeq&asi null pivots associated with
nodes from the upper part in the tree, larger subtrees witespond to the last block. In
this case, we may want to have as large as possible the la$t dloight-hand sides to
better exploit the large amount of factors already loaded.

Example 9.4.Let us suppose that we want to compute null-space vectassiassd with
null pivot rows 2, 3,12, 13 and 14 (see Figurd_9J5). Let the block size Be that is 2
right-hand sides can be processed simultaneously. If paldr is used, the pivots will be
processed as shown in Figufe_B.5 a) in the order3) then (12,13) and finally (14) .
Note that in this case, the root node for which the whole tsa@eieded, is not associated
with any other node. If a pre-order is used as shown in Figurd k9 the pivots will be
processed in the order{14, 13) then (12, 3), and finally (2) . When using a pre-order,
the root node is associated with another node from the trakevite last block to process
has less factors to be accessed (since it corresponds toaloagr in the tree).

However note that in this case it would be even better to m®t2 alone and(2, 3) .

a) Post-order processing b) Pre-order processing

Figure 9.5: Null pivots processed in blocks of sizeat a time. Filled nodes represent the requested pivots.
Subtrees associated with the grouped nodes with respde rdlering are shown by lines.

As shown in Exampl€9l4 pre-order can reduce the amount ebriadoaded with
respect to post-order but is however not an optimal solutima sequential environment,
we want within each block of right-hand sides to have a marmawerlapping between
the factors to be loaded and thus to have a large overlappihg mode traversal between
columns belonging to the same block. We have proposed tgjalloorderings of the
columns for which one can expect good overlapping of theofadib be loaded between
consecutive columns. With a regular natural splitting @& thordered columns in blocks
of fixed size Ny, one can thus expect to limit the amount of factors loaded.

9.4 Permuting columns of the right-hand sides to address patlelism

In a parallel environment we now also want within each blo€kight-hand sides
to give work to each processor, since each processor may peradlel access to its
local disk on which factors have been written. We do not psgpm this section a
sophisticated solution/heuristic to this combinatoriadigem. Instead we only describe
an extension/generalization of our sequential algoritbrmddress parallelism.
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We recall that, thanks to the subtree to subcube mapping g&mprmed during
analysis and exploited during factorization, nodes in tiveelr part of the tree are often
mapped on a single processor. Nodes in upper part of theregerast frequently of type 2
and thus are mapped onto more than one processor. For nathesupper part of the tree
almost all processors can be expected to work. When righttisede vectors associated
with nodes in the lower parts of the elimination tree are el& only one processor is
thus active. This observation has motivated the idea ofledeing nodes mapped in a
single subtree with nodes mapped on other subtrees. We itberdeave nodes in the
lower parts of the elimination tree, mapped on differentgessors into the same block of
right-hand sides (see Algorithin®.5).

Algorithm 9.5 : Interleave local lists of ordered nodes on Nprocs proassso
Input: LocalLists(Nprocs) fMocal lists of ordered nodes
Output: GlobalList /fglobal ordered list of nodes, initialized to zero
Local: CurLocPos (Nprocs) fiosition in local lists (initialized to start of list)
CurProc /lcurrent processor (initialized to 1)

while (Size(GlobalList)< total number of right-hand-sidedd
if (CurLocPos(CurProck Size(LocalList(CurProc)then
insert current node from LocalList(CurProc) into Globait.i
CurLocPos(CurProc)=next element in LocalList(CurProc)
if (the node associated with CurLocPos(CurProc) is of typldn
/[ type 1 nodes are mapped on one processor:
change CurProc
else
/I type 2 node are mapped on more than one processor: do naelanrProc
end if
else
// no elements left in LocalList(CurProc)
change CurProc
end if
end while

The input of Algorithm @b is a local ordering of the rightdthsides per processor.
A simple way to build such a local ordering is to first perfornglabal reordering of
the right-hand sides as proposed in the previous sectioan Tie mapping of the nodes
onto the processor can be used to obtain an ordered locaf lrgides per processor. In
practice the situation is slightly more complex since eamlimn of the right-hand sides
is associated with nodes in the elimination tree which arpped either on one process
(master process of a type 1 node) or to a subset of procestes wiaster process and
slave processes (type 2 node). To compute the local ordstedi columns per processor,
we only rely on the master processor mapping of the columagh&rmore type 2 nodes
are then processed differently during Algorithml9.5 sinweassociated factors nodes are
distributed among many processors.

This parallel extension of a global ordering works with anitial global ordering,
including the topological orderings described in the poesi section as well as with the
hypergraph orderings presented in the next chapter.

108



Chapter 10

Hypergraph models to exploit the
sparsity

Recall that we are solvingl X = B in an out-of-core context, wher& represents
a set of sparse right-hand side vectors. For memory issbhegjght-hand side vectors
are processed by blocks. In other words, the solution phaeprecess the right-
hand sides in blocks. Within a block, theU factors are accessed only once for all
computations regarding the right-hand sides-vectorsebthck. Therefore, our aim is to
find a partitioning or a blocking of the right-hand sides westwith similar computational
requirements so as to reduce the cost of loading the fadtgeshow that the partitioning
problem can be cast as a hypergraph partitioning problem.

Hypergraph partitioning was first used in VLSI (Very-Lar§eale Integration)
design [10B]. Later, it found applications in parallel canmipg, starting from[[25, 28,
24,115/ 116] where hypergraph partitioning models are @igedfficient parallelization
of matrix-vector multiplies. Different hypergraph paidming models are used in
parallelizing scientific computing applications such asnpatation of response time
densities in large Markov models ]41], restoration of bdarimages([117], and integer
factorization in the number field sieve algorithm in crypigy [19]. A common setting
in these applications is to model a given matrix with a hypgpg model. There are
other parallel and distributed computing applications rgheypergraph models are used,
for example, workload partitioning in data aggregation][3@age-space-parallel direct
volume renderindg]24], data declustering for multi-diskatzases [87, 91], and scheduling
file-sharing tasks in heterogeneous master-slave congperivironments [84, 85, 86]. We
note also that hypergraph partitioning finds applicatiomsiole of the parallel computing
domain: road network clustering for efficient query procegd36,[37], pattern-based
data clustering[[100], reducing software development aathtenance costs [118], topic
identification in text databases [32], and processing apjaiin operations [110].

In this chapter, we present an alternative method to pamtthie right-hand side vectors
using hypergraph models. We represent certain parts of limenation tree with nets
and associate costs with those nets based on the loadingfdastors associated with
those parts. Our aim is to reduce the cost of loading the factAfter a short review
of hypergraphs and hypergraph partitioning in Seclion1l®b hypergraph models
will be described: a model for enabling efficient computatad the diagonal entries of
A~! in SectiorlIOR, and another one for efficient computationudfspace vectors in
SectiolI0B. The two models differ in the way that the pinthefnets and the cost of
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110 Hypergraph models to exploit the sparsity

the paths in the tree are defined. Both hypergraph modelsveyeparticular structure
where nets (see definition in Sectlon10.1) are defined agsibkother nets and the cost
of a net is strongly related to the cost of the nets in the dubiSeally, the hypergraph
partitioning problem minimises the cost associated witthgan the elimination tree by
grouping right-hand sides vectors with similar propertrea single partition/block.

10.1 Introduction

As introduced in the global introduction, a hypergraph ifirdesl as a set of vertices
V' and a set of netsV. Each net,n;, is a subset of vertices and has a sjzg equal
to the number of its vertices. Weights are associated witvéttices, and costgi) are
associated with the nets. The vertex set can be partitiortedsi nonempty parts where
the union of all parts gives”. We definell to be such a partition]I = {V4, ..., Vi}.
A net is said to be connected to a paft in II if it has at least one vertex in that part.
Thus the connectivity\(i) of the netn; is the number of parts connected by (see the
general introduction for more details and an example on tgypph partitioning).

In the hypergraph partitioning problem, the objective istimimize the cut-size of the
vertex partitionIT .

cutsize(Il) = Z c(i)(Ni) —1) . (10.1)

n;EN

We define the following hypergrapH = (V, N) . The vertex sel’ is equal to the set
of nodes associated with each columnof right-hand sides. (All requested columns for
inverse entries inA~! or all requested columns for null pivots to compute a nulieep
basis of A.) Each netn; in NV corresponds to a path in the elimination tree. For later use
we note that these paths do not necessarily terminate aboheWe define asP(i, j) the
set of vertices on the path from nodeto node j in the elimination tree. For simplicity,
if a path starts from nodeé and goes up to the root we will denote it &%) . We define
Cost(P(i)) to be the cost of loading factors from nodeto the root. To describe the
loading cost between two node€ost(i, j) will be used, corresponding to the sum of
the weights of all nodes in the path(i, j) from nodei to node j, without including
node :

Cost(i,j)= Y w(k).

keP(i,j), k#j

The costc(i) of anetn; corresponding to the nodein the elimination tree will be
defined using the functioost(i, j) defined above for some special(we will define
the appropriatej later). After defining the costs and the structure of the ngraeh, we
will establish an exact correspondence between the cutsimtion (Equatiof10]1) and
the amount of the factors to be loaded.

10.2 Model for entries in A1

Recall that to compute entries in—! we follow paths in the elimination tree in both
substitutions phases. Consider the first ngd¢hat resides in the intersection of paths
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P(i) and P(j) from nodes: and j to the root. Suppose that the solves associated with
nodes: and ;j are performed in two different blocks. Then, the factors ad@s residing

in the pathP(f) have to be loaded twice. In general, if nodds performed ink blocks,
then the factors inP(f) have to be loaded times. Since we have to load those at least
once, the overhead i§'ost(P(f)) (k—1). In the remainder of this chapter we will show
that, if we minimize this overhead, we minimize the cut-ssfequation[(1011).

Let H = (V,N) be a hypergraph where the vertex détis equal to the set of all
nodes associated with each column of the right-hand sidesent least one inverse
entry is requested. Each vertex has unit weight. We define two types of nets. The
first set V; contains a net; for each vectom; in the set of all right-hand sides RHS,
ie. Ny = {n; : b € RHS}. Each netn; € N; contains only a single vertex;
corresponding tob; . We definenode f; to be the first ancestor node of a requested
node: in the intersection of the pat#(:) with a path from another requested node (can
be defined as the least common ancestor![112] or the lowesstmd5] of node: with
another node).

The setN, contains a net for each nodg in the intersection of a number of paths
to the root. Each net; € N, is the union of any net;, where node; is ancestor of
node k in the elimination tree. Note that a node can be requestediandan be at the
intersection of paths to the root. In such cases, a net of fypand another of typeV,
(can happen, for example, when the node and a descendarmoofaspond to requested
entries) are associated with the same node. Since the nitts sét N; each have a pin
list of size one, they can never be in the cut. Thereforey &itdding the hypergraph,
those nets can be deleted from the model for simplicity.

Example 10.1.In Figure[10.1 the filled nodes are associated with requestdédmns in
right-hand sides. The se¥; corresponds to nets associated with each requested node.
Netsnsz, ny and n,4 are defined as nets ifV; , each net contains only a single vertex
(respectivelyvs, v, and vy4). Netn; € N, is associated withv; , because it is in the

Figure 10.1: Nets associated with nodes in the eliminatie® &nd corresponding hypergraph

intersection of pathsP(3) and P(4). Thenn; is the union of node$ and 4, that
is n; = {3,4}. Finally net ny, is associated with a requested node and is also an
intersection point, them; C ny4 .

Thecost of a netis defined according to paths or parts of a path. As seen abauh,
net corresponds to a path that starts at a particular nodeeadlimination tree. The cost
of a netc(n;) is defined as the weighted sum of the size of the nod€s)() in the path
P(i, f) from the netn; associated with nodeé to the net associated with the node.
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112 Hypergraph models to exploit the sparsity

This cost is also noted aSost (i, f;) :

c(ng) = Cost(i, f) = > w(k) (10.2)

keP(i,f), k#Af

Our hypergraph partitioning problem consists in findingtpi@ns such that the cutsize
metric of equation{I0]1) is minimized:

cutsize(Il) = Y~ c(ny) (A(i) — 1) = Y _ Cost(i, f;) (\(i)) — 1)

n; EN n; EN

where \(i) is defined as the connectivity of a net. Minimizing this equation is
equivalent to minimizing the cost of loading factors whitdvéng for at most N, right-
hand side vectors in each block.

Example 10.2.We give an example of the associated agst) on nets associated with
nodes in the elimination tree as shown in Figlire10.2.

c(ng) = Cost(3,7) = w(3), because there is only; in P(3,7) to the next netu, .

c(ny) = Cost(4,7) = w(4) + w(6)

c(n7) = Cost(7,14) = w(7)

c(niy) = Cost(14) = w(14)

Figure 10.2: IerT: Nets associated with the nodes in the elimination treeledrihodes correspond to
requested entries. IBHT: Corresponding hypergraph model, containidgnets and3 vertices. The
hypergraph is partitioned int@ parts, represented by ellipses.

Our hypergraph model in Figure~10.2 is partitioned into twarts. The connectivity of
each net is respectivelyA(4) = 1, becausen, is connected to only one par§(7) = 2,
becausen; is connected to both partsy(14) =2 ; A(3) = 1.

Each part represent a path in the elimination tree. The cgpmnding paths are shown
with line or cut-line arrows that show the ascending path lte toot for each part.
Following the paths, data to be loaded for the first part, assted with nodet is:

w(4) + w(6) + w(7) + w(14).
Data needed to be loaded for the second part are:
w(3)+w(7) +w(14),

where the bold data correspond to repetitive load of alrebrdyded data. Knowing that
in any case all the necessary data is loaded at least oncejgha

w(3) +w(4) + w(6) + w(7) +w(14),
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thus the overhead of loading data with partitioning the hgpaph model in two parts is
equal to:
w(7) +w(14).

Note that the overhead of loading data, correspond to theciipepartition of the
hypergraph model, and it could be easily computed by thedtam

cutsize(Il) = Z c(ng) (A7) —1).

n;EN

Thus the overhead of data load is directly computed by th&zmibf our hypergraph:
cutsize(Il) = c¢(ny) (A7) — 1) +c(n1g) (A(14) = 1)+ 0 ¢(n3) +0 c(ny) = w(14) +w(7)

Nets will be associated with all columns in the right-hardesi even if some columns
are amalgamated in an unique node. In this case, we considenfahe amalgamated
variables as the principal variable, and the others as skargrvariables. The weight of
the nets associated with all secondary variables in amaltgaimodes is zero, since there
is no node between these kind of nets. Since these kind ofloatst add to the cutsize
we drop them from the model.

Example 10.3.Let us change our example by introducing notle amalgamated to
node 3, as shown in FigureZ10.3. Nets and 15 are thus associated with node 15 in
the assembly tree. L&t be the primary variable and5 be the secondary variable in the
amalgamated node. The cost of the secondary variablis thenc(15) = Cost(15,3) =
0. The cost of ne8 has not been changed:(3) = Cost(3,7) = w(3).

Figure 10.3: Netn;5 associated with amalgamated notig in the tree

Remarks on the proposed model:Our hypergraph model for entries id~! has
some properties which should be noted. First, for nets @ssucwith ancestor nodes
in the elimination tree (as nodes and 7 in Figure[I0.B), if the net associated with
the ancestor node is cut into several blocks, then all itsatetants will be cut too (for
example: if netn; is cut, thennz will also be cut). Second, this is a very special
hypergraph, represented as intersecting paths of a trgmrtitioning such a hypergraph,
one may develop specialized algorithms by taking advant@giee particular structure.
We also recall the minimum bin packing problemI[56], givenia &ize N,, and a set
U = {uy,us,...,u,} of n non-negative/positive integers, partitidn into s disjoint
setsU;, Us, ..., U, such that the sum of the elements in edéhis less than or equal to
N, . The objective is to minimize the number of sets,used. Since we have; = 1,
our problem is not exactly the bin packing problem; but angtda up approach that
decides to pack the children of a node has to solve this pmolflehen children have
already been packed, the problem is exactly equivalentedoiin packing one). Finally,
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the cost of the net takes into account this special struafirets that are subsets of
other nets i3 C n; C nyy). A single net thus contributes to the cost of almost all
nets. Furthermore, the cost of each block will change wisipeet to the right-hand sides
vectors included in it; and will also influence the cost of ttieer blocks.

Example 10.4.In the Figure[10.B, if node4 is not requested, net, will not be
associated and net; will not be defined as an intersection betweenand n, . Thus
ns will have a different costc' (3) = Cost(3,14) = w(3) + w(7).

10.3 Model for null-space computations

We recall that to compute the null-space basis of a matrigt &l the null pivots
are detected and are stored in a list during the factoriagiltase. At the beginning of
the solution phase, the nodes associated with null pivatsrhestarting nodesfor our
pruning algorithms. Then the subtrees rooted at the startodes are processed during
the solution phase.

Let H = (V, N) be our hypergraph. In our hypergraph model we use vertices to
represent all nodes associated with requested vectoreaiulrspace basis. As in the
previous hypergraph model, the weights;,( = 1). A net is associated with any node
(starting node) in the tree associated with a null pivot. \% nets to represent subtrees
or parts of subtrees. The cost of a net is thus related to th#emimapped onto the
associated node.

We introduce the terndirectly related nets to refer to nets associated with nodes in
the same branch of the tree, such that in the path betweenttiemare no other nets.
(Example: in Figuré_10l4 the directly related nets areand ns; ns and nyy; ny and
n14 . Netsn; andny, are not directly related becausg is in the path fromn; to n4).
Let S(h) be the subtree rooted at node For our null-space model we define the cost
of a netc(ny,) to be the weighted sum of nodes rooted at the naddf in the subtree
there are nets directly related to net their cost should be subtracted.

Example 10.5.In Figure[10.4 the filled nodes are associated with null-gpgectors.
Nets are associated with each of these nodes: n;, ns and ny4, The costs of the nets

Figure 10.4: LEFT: Nets associated with nodes in the elimination tree. Filedes are associated with
null-space vectors. IRHT: Corresponding hypergraph model for null-space companiati containing
4 nets and4 vertices.

c(n;) are defined according to the subtrees rooted at each net andsfollows:

c(n) = ZkeS(l) Wk c(ng) = ZkeS(4) Wk
c(ng) = Zkes(ii) wy, = c(n1) c(ni) = ZkeS(M) wy, — c(ng) — c(na)
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Note that the cost ofi3 includes the cost of net, , its directly related net. Thus the
cost ofn; is subtracted from the weighted sum of nodes rooted on Bod&milarly, the
cost of netl4 is the weighted sum of its subtree nodes with its directiyneoted nets:3
and ny .

Our hypergraph model in Figure_10.2 is partitioned into twargs: V; = {1,3} and

V, = {4,14} . The connectivity of each net with respect to these panttie: \(1) = 2,
becausen, is connected to both parts\(3) = 2; A\(4) = 1, becausen, is connected
to only to one part;\(14) = 1. Each part represent (sub)tree in the elimination tree,
shown by continuous and dotted line in the left part of Fidllie2. The overhead of
loading data with partitioning the hypergraph model in th@mesponding parts is equal

to: cutsize(Il) =3,y c(ni) (A(1) — 1) = c(n1) + c(n3).

Nets associated with amalgamated nodes in the eliminatem dre treated as in
the previous hypergraph model. Each net associated withnaipal variable in the
amalgamated node is the representative and its cost is ¢ethps the cost of a ordinary
net. Nets associated with secondary variables have zet@andshus are dropped from
the model.

Remarks on the proposed model: The hypergraph model for null-space basis
computations also has a special structure. Nets assoeidtedodes in the upper levels
of the tree are included in the subtree of nets associatddnates in the lower levels.
(Example: in Figuré 1014, C ns3 C n;.) If a node is cut into several blocks, the net
associated with an ancestor node will also be cut(ifis cut, thenn; and n,, are also
cut). The cost of the net takes into account the specialtstreiin the same way as for
the model of entries iM ! . A single net contributes to the cost of most of the nets in the
hypergraph. Then the cost of each block will change witheesfo the right-hand sides
vectors included in it; and will also influence the cost of titleer blocks.

Example 10.6.Consider that node3 is not requested in the FiguleID.4. Then nat
will not be associated. Net; will be defined as the first directly related net tq, .
Net ny4 will have a different coste(ny) = Zkes(u) wr —c(ny) — c(ny) .

10.4 Conclusions

When solving multiple right-hand sides by blocks, we try taler the right-hand
sides efficiently to minimize the amount of data accessed. akernative method for
grouping the vectors is to use a hypergraph partitioningugéethe hypergraph modelling
to describe paths and part of paths in the elimination treee thén associate a cost
for each of these parts with respect to the application i@nin A= or null-space
basis computations). Minimizing the cutsize of each partiis equivalent to ordering
efficiently the right-hand sides into blocks. The obtainggdrgraph has a very special
structure where each net contains other nets and thus teieewatf each part is strongly
related to the cost of almost all nets of the hypergraph model

In many problems, the associated hypergraph is complepgsrant. For example, in
[29] a net corresponds to a row or column of the matrix, or tdeadhared by a number
of tasks [[85]. In such cases, removing a single net from theetgraph usually results
in a hypergraph model of an apparently modified version ofitipait. For example, in
the case of matrix partitioning for hypergraphs, removingearesults in the hypergraph
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116 Hypergraph models to exploit the sparsity

model of a matrix obtained from the original one by deletingirggle row or column.
Nothing else needs to be changed for solving the problenhferésulting matrix. In our
case, however, the cost and the connectivity of the netsdispen other nets. One cannot
always delete a net and obtain in a simple way a modified hygeingmodel. It is also
necessary to modify the costs and the connectivity of the. net
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Chapter 11

Results and performance analysis

11.1 Introduction

We have described in the previous sections, algorithms pio@xhe sparsity of the
right-hand side vectors and algorithms to permute multifght-hand sides in order to
process them efficiently. We have also proposed an adaptatmur algorithm to address
parallelism and improve work balancing among the proces@ae Algorithni 915).

In this chapter we comment on the results obtained in termanudunt of factors
accessed and the computing time during the solution phagefirSV present results for
null-space basis computations in Section111.2. We thenraoniwith the analysis of
the cost of computing multiple entries i~ in Section”ILB. Our set of test matrices,
described in Sectidnl.3, corresponds to applicationsacteimagnetism (for null-space
computations) and to applications in astrophysics (foriesin A~!). All matrices are
symmetric and are available on thei dt | se. or g web site.

11.2 Null-space computations

We analyse the volume of factors accessed to compute thepadle basis of highly
deficient matrices. We compare the performance with andoaitexploiting sparsity of
the right-hand sides. As expected, the amount of factorssseal strongly influences the
computing time of the solution phase.

In a uni-processor environment, we analyse the behaviosirafegies split the right-
hand sides into blocks. In a parallel environment, our dbjeds also to give work to all
processors and we report very preliminary results with atereaving strategy.

11.2.1 Sequential execution

We first present results on a small matrix for null-space cotafion — Box-
cave_8x5x3of order 619 with 3 471 nonzeros. The deficiency of the matrixi6é (the
number of right-hand sides is thus equabi®), and the size of the factors 5144 M B .

We first compare the amount of factors loaded in a sequentiat@ment without
exploiting the sparsity of the right-hand sides for differélock sizes (see TableTll.1
line no ES. Let Nb be the size of the block and’b_Blocks be the number of blocks
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(Nb_Blocks = Def/Nb). Results clearly illustrate the fact that the amount ofadat
loaded without exploiting the sparsity |§/| x Nb_Blocks. When processing all right-
hand sides with a single block (i.eNb_Blocks = 1) all factors are loaded only once
(See columnNb = 56 in Table[IT1). On the other hand, when solving one rightdhan
side at a time, the amount of loaded factors is equaltbx 56 (8.088 M B).

Solve a block of right-hand sides (RHS) at once
Total Factors Loaded Nb=1 RHS| Nb=10 RHS| Nb =16 RHS| Nb =56 RHS
no ES [MB] 8. 088 0.866 0.577 0.144
with ES [MB] 4,276 0.554 0.409 0.144

Table 11.1: Comparing the total size of factors loaded wheahoiting the sparsity (with ES) and without
exploiting the sparsity (no ES) of the right-hand sides or-Bave_8x5x3. The right-hand sides are solved
by blocks of sizeNb.

Line with ES of Table[TT.1l shows results obtained when the sparsity aighé&hand
sides is exploited. When all right-hand sides are solvedhatpthere is no difference
in the amount of data accessed. This is because some of thested ‘null pivots’ are
associated with the root node of the elimination tree sottiftompletgU| factors must
be loaded at least once even when sparsity is exploited. tHateon larger problems
(see next section), memory problems may occur when tryirsphee all right-hand sides
at once. If we process the right-hand sides one by one, treeotal amount of the
loaded factors decreases by a factor of two. However, tladatount of factors accessed
remains important4{M B ) compared to the case where the right-hand sides are peatess
by blocks.

To simplify our study we have decided in the remainder of $leistion to fix the number
of right-hand sides in a block td6 per processor.

On our small problem, we analyse in Table11.2, the influerfddae permutation,
post-order, pre-order and hypergraph (HG) model, on theusrnof factors loaded. We
also report the amount of factors loaded without exploitmgsparsity (column ‘no ES’).
We also indicate (in column ‘Min’) the minimum amount of fact based on the formula
given in Property 814 :

min_size = Z (size(node) * nb_requests(node)/s)

where nb_requests is the number of requests for each node associated with ansiev
entry andsize is its size.

Both orderings combined with sparsity exploitation redtloe total size of factors to
be loaded. The pre-ordering gives better reuse of data Hespdst-ordering. Hypergraph
permutation also shows a competitive behaviour.

Total factors loaded [MB]

Matrix name | Deficiency no ES with ES
min post-order| pre-order| HG
Box-cave_8x5x3 56 0.337| 0.577 0.408 0.337 | 0.354

Table 11.2: Comparison of the total factors loaded with aittlout exploiting the sparsity and using post-
order, pre-order and hypergraph (HG) modelling to permiugeright-hand sides and then process them by
blocks of size16 .
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In Table [II.B, we report the same statistics on our largerblpms from
electromagnetism. For each matrix we recall its order (ilulwm 2), the number of
nonzero entries (column ‘NZ’) and the deficiency (columnfiDg. We recall that the
deficiency corresponds to the total number of right-hand s&ttors to solve.

Total factors loaded [MB]
Matrix name Order NZ Defic no ES with ES

Min Po| Pr| HG
Box-cave 16x10x3 2675| 15953| 270 7 19 8 8 8
Box-cave 20x13x3 4419 | 26129| 456| 18 64| 24| 21| 19
Box-cave_30x20x4 14 454 | 89185| 1653| 170 | 1261 | 208 | 201 | 196
Box-cave_40x27x5 33627 | 212883| 4056 | 803 | 9622 | 901 | 884 | 998

Table 11.3: Comparison of the total factors loaded with aitiaut exploiting the sparsity and using post-
order, pre-order and hypergraph based ordering. The tightd sides are processed by blocks of sige

We first see that the gain that results from exploiting spamcreases with the size of
the problem. We also observe that the larger the deficieheyigger the difference in the
amount of data accessed depending on sparsity exploitAtigh all matrices, pre-order
loads less factors than post-order. Hypergraph modellingiges a competitive ordering
on the medium size matrices. On our largest matrix, the fgrpph approach is less
efficient than pre-order. In this case, following the togpl@f the tree naturally provides
an efficient global ordering of the right-hand sides sineedmount of data accessed is

close to the minimum. Thus there is little scope for hypgubr@ased permutations to
obtain improved performance.

Time [s]
ES
Matrix name Def. | no_es| post-order| pre-order| HG
Box-cave_16x10x3 270 1.6 0.9 08| 0.9
Box-cave_20x13x3 456 5.0 1.9 16| 15
Box-cave_30x20x4 1 653 | 87.6 16.1 16.0| 15.3
Box-cave_40x27x5 4056 | 712.1 67.2 65.8 | 75.7

Table 11.4: Comparing the sequential time performance uaiitth without exploiting the sparsity of the
right-hand sides on larger matrices on null-space comiomist

In Table[I1H, we analyse the influence of the permutatiorhercomputing time in
a sequential out-of-core environment. As expected, weitlsignificant time reduction
when exploiting sparsity of the right-hand sides. The latge deficiency, the larger the
gain - up to11 times faster, obtained on matfBox-cave_40x27x8sing pre-ordering.

We also note that pre-ordering is slightly better than modering. On medium
size matrices, the hypergraph permutation gives the be$brpeance, as it has less
data to access during the solution step. On the largestxmate-order gives the best

performance. This confirms the fact that the time is strongligted to the amount of data
loaded from disk.
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120 Results and performance analysis

11.2.2 Parallel execution

We now show the parallel performance on our two largest medrBox-cave _30x20x4
andBox-cave_40x27x8Ne compare the amount of factors accessed during the @oluti
phase and the time for the solution phase.

We report in column ‘Max" the sum of the amount of factors leadn the most
loaded process during the processing of each block of hght sides. In column ‘Min",
we give the same information as previously but for the leaatiéd process. Finally in
column ‘Total", we report the total amount of factors loaadeer all steps and processes.
More formally :

Nb_Blocks
Mazx = Z mazy<np(local_factors_loaded))
i=1
Nb_Blocks
Min = Z min,<ny(local_factors_loaded,)

i=1
Nb_Blocks Np

Total = Z Z(local_factors_loaded;).

i=1  p=1

We report in Tabl€ZIT]5 and Talle 1.6 a comparative studstithting the interest of
the interleaving described in Algorithm™®.5. Note that far parallel experiments we
force the number of right-hand sides ‘per processor’ to begaktp 16. Therefore the
total number of right-hand sides in a block is equalltox Np. Note that the results are
given for two permutations : post-order (rows ‘Po’) and preer (rows ‘Pr’).

No Interleaving Interleaving
Factors loaded [MB]| Time || Factors loaded [MB]| Time
Np | Strat| Max | Min | Total [s] || Max | Min | Total [s]
1 Po | 208 | 208 208 | 14,8 - - - -
Pr 201 | 201 201 | 14,2 - - - -
2 Po 70| 40 111 8,1 82| 59 141 9,7
Pr 73| 42 116 8,8 99| 73 172 11,2
4 Po 40| 15 98 5,8 44 | 27 143 6,3
Pr 40| 16 97 4,8 46 | 20 126 5,2

Table 11.5: Parallel execution: comparison of factors émhdnd time performance on matrBox-
cave_30x20x4The number of right-hand sides per block is setN@ x 16.

As expected we observe that our parallel interleaving dlgor orders the right-hand
sides in such a way that the total amount of the factors aedassalways greater than
the amount of factors accessed without interleaving. Tbises from the fact that
interleaving is designed to distribute work on all processd herefore, for a fixed size
of block of right-hand sides we will globally have less oegping of factors between
right-hand side columns. Let us illustrate this on two peswes in a worst case. In the
worst case, with interleaving, the total amount of fact@aded with2 processors and
a block size Nb is equal to the size of the factors loaded on one processhraniiock
size of Nb/2. We thus pay for an increase in the amount of factors loadedtalthe
relative decrease per processor of the block size. In pegte see, in TabldsT1.5 and
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018, that although we do have an increase in the total volofhfactors loaded, it is
less than a linear increase in the number of processorshdtarbre, for each processed
block of right-hand sides the time for loading factors fromskds larger than the time to
load factors on the most loaded processor. In this respeelswesee that the interleaving
algorithm behaves correctly. Thus there is scope for tirdecton since parallel accesses
to local disk should also improve the global 1/0O bandwidth.

No Interleaving Interleaving
Factors loaded [MB] Time || Factors loaded [MB]| Time
Np | Strat| Max | Min | Total [s] || Max | Min | Total [s]
1 Po | 897 | 897 897 | 67,2 - - - -
Pr 880 | 880 880 | 68,5 - - - -
2 Po | 374 143 517 | 34,7|| 402 | 239 641 | 36,0
Pr 411 | 155 566 | 38.9| 503 | 231 734 | 46,2
4 Po | 172| 45 380 | 21,5|| 200| 87 522 | 23,7
Pr 168 | 45 370 | 21,0|| 225| 94 589 | 26,0
8 Po 81| 16 323 | 17,6 123| 42 706 | 21,7
Pr 72 9 250 | 14,8| 118| 32 618 | 19,7

Table 11.6: Comparison of factors loaded on parallel exenuwith matrix Box-cave_40x27x5 The
number of right-hand sides per block is setigp x 16

One can see that with both strategies (with or without ietering) the time decreases
with the number of processors. This is mostly due to the dlolaease of the block
size equal toNp x 16. However, on these preliminary results, we see that we do not
benefit enough from parallel 1/0O access to the local diskk witr interleaving approach
to improve the performance. Some additional work is thusdedeto understand the
results provided in this preliminary work to address paiagm.
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122 Results and performance analysis

11.3 Computing elements inA~!

We first analyse the behaviour of our algorithms (exploitsgarsity and ordering
and blocking the columns of the right-hand sides in a sedggieabvironment). We
then comment on very preliminary results in a parallel emwinent. Most of our test
matrices come from applications in astrophysics and areritesl in Sectiof 113. Regular
matrices corresponding to the discretization of the Laplaoperator are also used. As
explained in Section 1.2 and1.3, we suppose that only thyodial element ofA~! need
be computed and will also consider computing part of themallnables, matrices are
ordered by increasing number of the right-hand sides (whsdhus often equal to the
order of the matrix).

11.3.1 Sequential execution

The number of right-hand sides can be very large since itisktp the order of the
matrix. In this case, the hypergraph models discussed ipt&d@ous chapter become
prohibitively large in terms of net size to be useful. To cargthe potential of the
hypergraph modelling with the topological orderings, wdl siippose that only1l0% of
the diagonal entries are requested (diagonal entries bretse randomly). We report in
Table[TTV the size of the factors to be loaded without ekplpsparsity (columns ‘no es’
and with exploiting sparsity (columriwith ES’). To our previous permutations (post-
order (Po), pre-order (Pr) and hypergraph modelling (HG3)atld the natural ordering
(column Nat in Tabl€1117). We also indicate (in column ‘Mjrthe lower bound on the
factors to be loaded based on the formula given in Propefi. 8.

Min Factors to be loaded [MB]

Matrix name | Nb RHS no ES with ES
[MB] Nat Po Pr HG
d11l_20x12x5 120 2 8 5 2 2 2
a-1_08M 899 79 770 116 81 81 79
a-1 21M 2153 | 864 7694 | 2800| 873| 882| 872
a-1_46M 4679|1181 | 13764| 1560| 1185| 1188| 1194
a-1_72M 7235 212| 40664| 682 236 235 | 212
a-1 148M 14828| 736| 191959| 2713| 801| 805| 746

Table 11.7: Influence of column ordering on the amount ofdiaatcessed in a sequential environment.
Only 10% of the diagonal entries ol —! are requested. The right-hand sides are processed by bcks
size 16.

We see in Tabl€11l.7 that the larger the number of right-hadelss the larger the
difference in the amount of factors loaded when exploitingat the sparsity of the right-
hand sides (compare columns ‘no es’ and ‘Nat’). When pemguiine right-hand sides
for better reuse of the loaded factors, all permutationsREHG) reduce the amount of
factors to a value close to the minimum size (compare withurool ‘Min’). We note
that using hypergraph ordering leads to the smallest amaolufatictors to be loaded in
most cases. We finally observe that post-ordering and mterimg have a very similar
behaviour and are also competitive permutations.

For applications in astrophysics and other least-squaais fitting problems, often
all diagonal entries ofA~! need to be computed. We now focus on this application
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in the remainder of this section and thus do not report resuith hypergraph based
permutations and focus on topological based permutatibon3able[I1.B we report the
total amount of factors loaded when computing all diagomaties in A='. We see
that a larger number of right-hand sides (column ‘order'@sloot always lead to a larger
amount of data to load (see column ‘Min’). As in the previoase, exploiting the sparsity
of the right-hand sides with a natural ordering (column °Nestless efficient than using
topological permutations (columns ‘Po’ and ‘Pr’). For exaeon matrixa-1_72Mwith
post-ordering and the pre-ordering we reduce the amountta dccessed by a factor
of 3. In general, both topological orderings have a very sinbketnaviour.

Min Total factors loaded [MB]
Matrix name Order no ES with ES
[MB] Nat Po Pr
dll_20x12x§ 1200 18 75 33 25 25
a-1_08M 8999 714 7 609 931 790 786

a-1_21M 21532 | 16724 76718 | 20214 | 17654 | 17733
a-1_46M 46799| 11105 137407| 12165| 11628 | 11629
a-1_72M 72358 1621 433533| 5800| 1912| 1910
a-1_148M | 148286| 9227 | 1677479| 18143| 9450| 9461

Table 11.8: Influence of column ordering on the amount ofdiaatcessed in a sequential environment.
All diagonal entries ofA~! are requested. The right-hand sides are processed by mbsk= 16 .

In Table[I1.D we report the computing time of the solutiongghalime is very much
related to the total amount of factors loaded reported inleTAA.8. When sparsity
is not exploited, we could not obtain a solution with our Estymatrixa-1_148Min
less than 24 hours. As one could expect from Tdblel11.8, wethsdewe obtain a
large reduction in the solution time on mataxl 72Mwhen permuting the right-hand
sides. Topological orderings (post-ordering and pre-angg halve the solution time with
respect to the natural ordering. However, the amount ofddddctors is not the only issue
for performance since the number of requests in the emeygaare, and the regularity in
the disk access can also influence the computing time. Thislisllustrated by results on
matricesa-1_46Manda-1_72M On matrixa-1_72Mwe load 11 628 MB factors which
is six times less than the factors ©f912 MB with matrix a-1_46Mand the computing

time for the solution phase is only reduced by a factor of tresgectively455.0 sec and
218.4 sec).

Time performance [s]

Matrix name | Order with ES
no ES Nat Po Pr
dl11 20x12x5 1200 4.4 1.4 1.1 1.2
a-1_08M 8 999 126.3 12.1| 10.9| 10.3

a-1_21M 21532 738.0| 270.5| 256.7| 233.4
a-1_46M 46799 | 6944.3| 472.2| 455.0| 449.0
a-1_72M 72358 | 27728.1] 408.2| 218.4| 213.6
a-1_148M | 148 286 >24h| 1391.6| 986.2| 996.8

Table 11.9: Influence of column ordering on the computingetima sequential environment. All diagonal
entries of A~! are requested. The right-hand sides are processed by libsk= 16 .

In the following we discuss the influence of the block size loe performance of the
solution phase (see Tadle_11.10 with results on matrix 72Mand Tabld_TT11 with
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results on matrixa-1_148N). With both matrices, the amount of factors loaded deciease
when we increase the number of right-hand sides per blockenWthe sparsity is not
exploited, on matrixa-1_72Mthe amount of factors decreases frefd3 533 MB using

16 right-hand sides per block t6 370 MB using blocks of sizel 000; and on matrix
a-1 148Mthe reduction is from more thah 677 GB with 16 right-hand sides per block
to 26.9 GB with blocks of sizel 000. The same behaviour is observed with exploiting
sparsity. The amount of factors decreases by a factor oftéimel case of post-ordering
and pre-ordering on matrix-1_148M We observed the same behaviour in the null-space
case (see TableT1.1). The minimum size of factors loade@dses by a factor of5 in

the case of matria-1_72Mand by a factor o229 in the case of matria-1_148M Finally

one should note that the amount of factors using topologieahutations (Po and Pr) is
much closer to the minimum size with a small number of rigathsides per block. This
probably also means that on a very large number of right-tsishels our lower bound is
less accurate.

Min Total factors loaded [MB] Time performance [s]
size no ES with ES no ES with ES
NbRHS | [MB] Nat Po Pr Nat Po Pr

16| 1621 | 433533| 5800 | 1912 | 1910 27728.1| 408.2| 218.4| 213.6
100| 307| 63183|4238| 705| 706| 71975 3759| 172.1| 172.7
1000| 108 6370 2207| 398| 399 | 8544.8| 1293.8| 367.1| 367.8

Table 11.10: Different sizes of the block appliedad_72Mfor requested all diagonal. entries i .

Min Total factors loaded [MB] Time performance [s]
size no ES with ES no ES with ES
NbRHS | [MB] Nat Po Pr Nat Po Pr

16 | 9227 | 1677479| 18143 | 9450 | 9461 >24h| 1391.6| 986.2| 996.8
100 | 1572| 297616 9733| 2335| 2343 || 32758.5| 1167.9| 680.6| 682.6
1000| 317 26969 7328| 927 | 928 | 43940.9| 5193.7| 1321.5| 1328.2

Table 11.11: Different sizes of the block appliedai_148Mfor requested all diagonal. entries i~ .

11.3.2 Parallel execution and permutations

In this section, we report very preliminary results on an@daon of our sequential
algorithm to address parallelism. Our algorithm interkesithe permuted columns of the
right-hand sides on all the processors (see Algorihr 9.5).

To simplify our study we analyse the behaviour of our aldons on symmetric
matrices, corresponding to&D 11point-discretization of Laplacian operator described
in Table[ITIR. We show the order, the number of nonzeros @id)the factor size of
each matrix using METIS and AMD reordering techniques.

As expected on very rectangular grids AMD is more efficienteatucing the factor
size (compare columns 5 and 6 in r&ect-25MN). Since the factor size is critical for OOC
performance both orderings have been considered. In TabI&,1one can see that the
total volume of factors loaded without exploiting sparsgynly related to the factor size
so that AMD ordering behaves better than METISRect-25M However since all paths
to the root are on average significantly longer (6 times) wAMD than with METIS,
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Factors [MB]
matrix Grid order NZ METIS | AMD
Rect-25M| 500,10,5| 25000 | 249 720 15.7| 101
Cub-25M | 50,50,10| 25 000| 264 040 43.5| 75.9

Table 11.12: Test matrices for study the parallel behavidiine algorithm and factor size when different
orderings are used.

the amount of factors loaded when exploiting the sparsityugh larger (3 times) with
AMD than with METIS. We can also see the desastrious effecpenfiormance when
computing all diagonal entries of~! with AMD. Therefore, on both matrices, METIS
is our best ordering in terms of both amount of factors to lzeléml and computing time
while exploiting sparsity. We will thus limit our analysis the remaining of this section
to the METIS ordering.

Total amount of factors loaded [MB]
matrix | Ordering| Tree Depth| Exploit Sparsity| Not Exploit Sparsity| Time with ES [s]
Rect-25M| AMD 11127 9426 24 505 1080
METIS 1914 3423 37429 149
Cub-25M | AMD 2649 64 002 198 017 3817
METIS 985 20 636 61478 1141

Table 11.13: Influence of the orderings on the tree structheeamount of factors loaded and the run-time
for computing all diagonal entries il —! . Statistics obtained ot processor, using post-ordering and
right-hand sides per block.

We first analyse in TableI1114 the performance on our rectangroblem (matrix
Rect-25M for various block sizes and number of processors. We firts timt the amount
of factors loaded decreases when increasing the block ®ieereduce by a factor o
the amount of factors loaded on one processor when incigaisenblock of size from
16 to 64 right-hand sides. This reduction of data accessed dirgdfllyences the time-
performance so that with a block of siz& the run-time is reduced by a factor af5.
We also note that when using an intermediate block siz82ofight-hand sides even if
the amount of factors loaded is still relatively high, we daaptured most of the benefits
in terms of computing time (even in a parallel environmeRt)rthermore, note that, on a
given tree, the total amount of factors loaded is by definitrmlependant of the number of
processors. In the MUMPS solver, the trees used for paetkstution and for sequential
execution are not always identical. We see in Table11.14ieamodification of the tree
has a very strong and unexpected influence on the total ambtattors loaded between
one and two processors. The tree between two and four pasessidentical and we
thus have constant results.

During the factorization phase (dee312.1) we exploit areeltb subcube mapping of
the elimination tree. Complete subtrees are thus mappekleosaime processors. During
the solution step, using a post-ordering of the columnsefittht-hand sides, consecutive
ones are likely to belong to the same subtree and thus mappédtecsame processor.
Furthermore, on this matrix, the top level separators oleiby METIS are very small
so that matrices/nodes at the top of the tree are Type 1 nged by only one processor.
Therefore, without interleaving, most of the factors the¢d to be accessed to process a
block of right-hand sides are mapped onto one and often tine geocessor. This leads
to a strong imbalance of the amount of factor accessed witinberleaving (compare
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No Interleaving Interleaving

Size | Factors/proc loaded [MB] Time || Factors/proc loaded [MB] Time
Np | Block | Max | Min Total [s] Max | Min Total [s]

1 16 | 3423 | 3423 3423 148.7 - - - -
32 | 1982|1982 1982 99.3 - - - -
64 | 1261|1261 1261| 98.8 - - - -
2 16 | 1353| 413 1768| 87.8| 1483| 1102 2585| 91.2
32 865 | 286 1151| 653 884 | 644 1528 | 58.9

64 608 | 235 844 | 61.9 600 | 446 1046| 57.4
4 16 926 97 1768| 82.3| 1201| 668 3722 | 89.3
64 365 79 844 | 50.2 430 | 241 1330| 51.6

Table 11.14: Parallel behaviour of factors loaded and mme-bn matrixRect-25M All diagonal entries
in A= are computed exploiting the sparsity of the right-handsideolumn of the right-hand sides are
permuted with a post-ordering.

columns ‘Max’ and ‘Min’ in Table[I1.74). With interleaving avsee that we have a
better equilibration between least and most loaded process terms of disk accesses.
However, for a fixed value of the block size, the total amourfactors loaded is higher

with interleaving than without. That is because at each, skeppotential for overlapping

factor accesses might have been reduced in the worse cake hymber of processors.
One can see in Table TT114 (compare columns Total with afbwiinterleaving) that we

are far from this worse case. In terms of computing time riating does not however
lead to any significant performance decrease.

No Interleaving Interleaving
Size | Factors/proc loaded [MB]| Time || Factors/proc loaded [MB]|  Time
Np | Block Max Min Total [s] Max Min Total [s]
1 16 | 20636 | 20636| 20636 | 1140,8 - - - -

32| 11323| 11323| 11323 706,3 - - - -
50| 7752 7752 7752| 4848 - - - -
100 | 4343| 4343| 4343| 306,6 - - - -
2 16 | 16837 | 10423 | 27261 | 1008,6| 18037 | 15557| 33615| 1263,8
32| 8722 5927| 11323 565,2|| 9320| 7941| 17261| 686,6
50| 5763| 4112 9875| 405,0|| 6155| 5171| 11326| 477,6
100| 3081| 2327| 5408| 246,3| 3295 2687| 5982| 2784

Table 11.15: Parallel behaviour of factors loaded and mneton matrixCub-25M All diagonal entries
in A= are computed exploiting the sparsity of the right-handsideolumn of the right-hand sides are
permuted with a post-ordering.

We report in Tabl€IT15 results on tBaib-25Mmatrix. Even ifCub-25MandRect-
25M have the same siz€ub-25Mhas a significant larger tree with much larger frontal
matrices (top level separators in METIS) than thRect-25M The relative gains due to
increasing the block size are thus larger w@hb-25Mthan with Rect-25M All nodes
at the top of the tree are then processed in parallel (TypedZlgpe 3 nodes) so that in
parallel the difference between the maximum and the miniraorount of factor loaded
is smaller on matrixCub-25Mthan on matrixRect-25M One can see in Table“IT]115 that
interleaving further improves the balance, the minimum #m& maximum amount of
factors loaded. However again this does not lead to any tadeation.

To conclude this section, we must insist on the fact thatat seliminary study. We
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have shown, that the shape of the tree very strongly influettee performance of the
algorithm. On matrixRect-25M AMD was efficient at reducing the factor size but was
very bad at exploiting sparsity of the right-hand sides bseaof the depth of the tree
and the size of the upper-layers nodes. On both matricesmtbdaaving algorithm is
successful at equilibrating the amount of factor loadedgpecessor but does not lead to
any significant time improvement.
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Chapter 12

General conclusion and future work

The context of our study is the solution of very large systeiffrisiear equations with
direct methods. With direct methods we have to store theicestof factors @ = LU
or A = LDL™) which are often significantly larger (ten to a hundred tirfsger) than
our original matrix. The memory requirement of direct methas thus a major limitation
of the approach. One way to extend memory availability isse parallel distributed
memory computers. Another way to extend the main memory expoit the disk (so
called out-of-core approach). In this work, we combine thve find so study parallel
out-of-core methods. In this context the first difficulty dsefficiently store the matrices
of factors on the local disk of the processors during theodigzation phase. This work
has been the main focus of E. Agullo’s thesis at ENS-LyonIiihn out-of-core context
we have shown that the performance of the solution phase €as ime-consuming as
the performance of the factorization phase. Furthermorenahultiple right-hand sides
are considered or for problems such as null space basis datigpuor computing entries
in the inverse of a matrix then the cost of the solution phaselze even more critical.
Our focus in this thesis has thus been the design of efficigorithms for the solution
phase (UX = B or LDLTX = B where X and B are matrices) assuming that the
matrices of factors are distributed on the local disks offmanallel computers.

Out-of-core parallel solution phase

In the first part of this thesis we have described the paralgbrithms used during
the solution phase and explained how they must be adaptedrtpanallel out-of-core
context. This work was implemented within the parallel nitdntal solver MUMPS. A
careful description of existing (i.e. incore) parallel sixdn phase algorithms has never
been done before and so is also one contribution of this work.

During the solution phase, the amount of floating-point apens is in general three to
four orders of magnitude smaller than for the factorizapiwase so that there is almost no
scope to overlap disk access (I/0) with computations. Is¢bntext, the number and the
regularity of the 1/0 has been shown to be very critical fa #ificiency of the solution
phase in both a sequential and a parallel environment. Evéimei context of multiple
right-hand sides, we have shown that for memory issues ors¢ pnoicess the right-hand
sides by blocks of reasonably small size. To process eadk bloe may have to access
all the factors so that even in this case the ratio of the veloi/O over computation is
still high.
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We have compared in Chaptelr 5 two strategies for readintygridata on disk
(SYsTEM_BASED and DRECT_IO). With a SrsTEM_BASED approach, although we
get full benefit from the system cache mechanisms, we hawerstiat this strategy is not
efficient when memory is limited. We have thus introducedrT_10 access to the disk
with small prefetch buffers and shown that it is more effitigran the SSTEM_BASED
approach both in terms of memory effectively used and comguime.

In a parallel environment, task scheduling can stronglyatice the time performance
of the solution. We have described in Chaplier 6 a constrasecbhdduler that forces the
solution phase to follow the write sequence of the facttiazaphase. We have proved
the correctness of the algorithm and have reported resoles set of large problems to
show the efficiency of our new scheduler.

Sparse multiple right-hand sides

In an out-of-core environment, what is most critical for fegformance of the solution
is the amount of factors loaded. When the right-hand sidpasse it has been shown in
[62] and [64] that sparsity can be exploited to limit the amioof factors that need to be
accessed.

Among many possible problems with multiple sparse rightehaides, we have
focused our attention on three of them (null space basis atatipn, computing entries
in the inverse of a matrix, and sparse right-hand sides amcibte matrices) coming from
applications in electromagnetism, astrophysics and tipeggramming.

We have first described and analysed in Chapter 8 differetihads to compute the
entries in the inverse of the matrix which preserve the spacf the computations.
We have summarized the work based on the Takahashi equatimh®ave compared
the amount of factors to load using the Takahashi equationgitb more a traditional
solution.

We have then shown that each of our three problems on whichave focused
requires sparsity to be exploited in a different way. Formegke to compute a null space
basis we want to solvé/ X = Y with a sparse matrix of right-hand sid&s, whereas
to compute entries in the inverse of a matrix we must salvéX = B where B is a
sparse matrix of right-hand sides and only few entries ohtlagrix X are requested. We
have shown that, in all cases, exploiting the sparsity in ragig-hand side can be seen
as processing a pruned tree. In Chapier 9 we have shown thavéo all our problems
two types of pruning must be introduced - chain detection sutatree detection. In a
multiple right-hand side context, for memory issues, caismeed to be processed by
blocks. Columns “sharing” the same path in the pruned treeilshthen be grouped to
reuse the data. We have identified properties on columnseofigint-hand sides which
share a common path in the forward or backward substituaadgproposed topologically
based permutations to group similar right-hand sides imglsiblock. In Chaptdr10 we
proposed a hypergraph partitioning of the columns of thetrltand sides. We have used
hypergraph models to describe paths and overlapping pattieitree. Our models for
each problem (type of pruning) differ in the way the nets amel ¢ost of the nets are
defined. The models obtained have a very particular streatinets included in other
nets. Thus partitioning the right-hand sides with respedhe cost associated to each
net may become prohibitively expensive when increasingitimeber of right-hand sides
(as in the case of computing all diagonal entries4of' where the number of right-hand
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sides is thus equal to the order of the matrix). To addresallpism and benefit from
parallel access to the local disks, we have proposed iaterig the permuted right-hand
sides.

In ChapteIlL results on null-space basis computations ancbmputing diagonal
entries in A~! are reported. We have shown that exploiting sparsity of ifjet+thand
sides leads to very significant gains in both time and factoessed. Hypergraph based
permutations are very competitive on medium size of madraoced in general all proposed
permutations (topological or hypergraph) of the right-thaides reduce the amount of
data accessed to be close to the minimum. In parallel, oarl@aving algorithm has a
correct behaviour in terms increasing the volume of fackmsessed in parallel; however
more work is needed to analyse the computing time behaviour.

Perspectives

We have shown how critical a scheduler can be in a parallebbabre environment.
We have proposed an efficient local scheduler to improve ¢inpnance of the solution
phase. Even if significant gains have been obtained with tbhpgsed scheduler, there
is in some cases scope for improvement. In Sedfioh 6.2, we &gplored a first track
and have relaxed our scheduler to enable out-of-order tagtepsing. To help its local
decisions our scheduler could also be guided by a globaegtya On a large number
of processors, scheduling the tasks of the slaves of Typed2siocan also be an issue.
One could also influence the factorization phases or evearthd/sis phase to provide
an elimination tree and/or a distribution of the factorsaotfite disks that is more suitable
to our parallel out-of-core solution phase. This is possihiring the factorization phase
because we have quite some freedom to organize 1/0O opesatiom way that is more
suited to the solution step without affecting the perforsgnaignificantly. This is in fact
a more general remark. We have been working in the past mamBblgorithms (during
analysis or during factorization) to improve the perforro@of the factorization. In many
applications, as far as the factorisation is concernednyibst critical issue is the peak of
memory used. Efficient parallel solution phases and aremffisases are then becoming
the most critical issues.

When using sparse multiple right-hand sides, we have shbwah éxploiting the
sparsity significantly improves the time-performance & siolution phase because in an
out-of core context the volume of I/O can be significantlyueed. Our pruning of the tree
will also lead to a reduction of the amount of operations antthwus also impact the in-
core computing time of the solution phase. Although beneéitsbe expected using our
current approach, our models have to be revisited in an ia-environment. In a parallel
environment we have proposed a preliminary study to addgrasslelism. Combining
the right-hand sides in parallel is a challenging combinatg@roblem which should be
further investigated.

Finally, another interesting possibility in an out-of-earontext is to anticipate, when
possible, the forward solution step. In this case one mayt war®ven consider not
writing the associated factors to disk. This is possiblesithe forward step processes
the dependency tree in the same way as the factorizationlstéuis context, processing
multiple sparse right-hand sides can be a complicated.iS9ue may then for example
want to select the most time consuming right-hand sidesradidates for being processed
during factorization. One may also want to exploit an a pkoowledge of the sparsity
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of the right-hand sides and of the required entries in thetsmi to also limit the amount
of factors that are stored on disk.
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Abstract

We consider the solution of very large systems of linear gqoa with direct multifrontal methods. In this context thiee of the
factors is an important limitation for the use of sparse disolvers. We will thus assume that the factors have beettewron the
local disks of our target multiprocessor machine duringafielr factorization. Our main focus is the study and the glesif efficient
approaches for the forward and backward substitution ghaffer a sparse multifrontal factorization. These phasesiie sparse
triangular solution and have often been neglected in pusvigorks on sparse direct factorization. In many applicegjdowever, the
time for the solution can be the main bottleneck for the penémce.

This thesis consists of two parts. The focus of the first gadn optimizing the out-of-core performance of the solufibrase.
The focus of the second part is to further improve the peréoroe by exploiting the sparsity of the right-hand side vecto

In the first part, we describe and compare two approachescesadaata from the hard disk. We then show that in a parallel
environment the task scheduling can strongly influence éropnance. We prove that a constraint ordering of the tasksssible;
it does not introduce any deadlock and it improves the perémce. Experiments on large real test problems (more thaiiliBrm
unknowns) using an out-of-core version of a sparse mulitabcode calledUMPS (MUltifrontal Massively Parallel Solver) are used
to analyse the behaviour of our algorithms.

In the second part, we are interested in applications wilisgpmultiple right-hand sides, particularly those withgé nonzero
entries. The motivating applications arise in electronedigm and data assimilation. In such applications, we nikdreo compute
the null space of a highly rank deficient matrix or to computgies in the inverse of a matrix associated with the normakg¢ions of
linear least-squares problems. We cast both of these pnslédes linear systems with multiple right-hand side vecteash containing
a single nonzero entry. We describe, implement and commesffizient algorithms to reduce the input-output cost dy@m out-
of-core execution. We show how the sparsity of the rightehaitle can be exploited to limit both the number of operatiang the
amount of data accessed.

The work presented in this thesis has been partially suppdiy SOLSTICE ANR project (ANR-06-CIS6-010).

Keyword: Gaussian elimination, multifrontal method, Distributedntputing, parallel computing, sparse matrices, tasks
scheduling, multiple right-hand side vectors.

Résumé

Nous nous intéressons a la résolution de systemes linéages de trés grande taille par des méthodes directes deifation.
Dans ce contexte, la taille de la matrice des facteurs doestin des facteurs limitants principaux pour l'utilisatide méthodes
directes de résolution. Nous supposons donc que la maegdadteurs est de trop grande taille pour étre rangée danérizire
principale du multiprocesseur et qu’elle a donc été éctitdes disques locaux (hors-mémoire : OOC) d’'une machinéipnatesseurs
durant I'étape de factorisation. Nous nous intéressorétiéde et au développement de techniques efficaces pourda gaaésolution
apres une factorization multifrontale creuse. La phaseédelution, souvent négligée dans les travaux sur les méshdidectes de
résolution directe creuse, constitue alors un point aréige la performance de nombreuses applications scieesfigouvent méme
plus critique que I'étape de factorisation.

Cette these se compose de deux parties. Dans la premiére pads nous proposons des algorithmes pour améliorer la
performance de la résolution hors-mémoire. Dans la deuxipartie nous pousuivons ce travail en montrant commenbiepl
la nature creuse des seconds membres pour réduire le volechenthées accédées en mémoire.

Dans la premiére partie de cette thése nous introduisonsagmroches de lecture des données sur le disque dur. Nousom®n
ensuite que dans un environnement paralléle le séquenceleenaches peut fortement influencer la performance. Nous/pns
gu’un ordonnancement contraint des taches peut étre uitragl'il n’introduit pas d'interblocage entre processetsqu’il permet
d’améliorer les performances. Nous conduisons nos expEgtesur des probléemes industriels de grande taille (plu& Mélions
d’inconnues) et utilisons une version hors-mémoire d’udecmultifrontal creux appel®UMPS (solveur multifrontal paralléle).

Dans la deuxiéeme partie de ce travail nous nous intéressonasade seconds membres creux multiples. Ce probléme #ppara
dans des applications en electromagnétisme et en asgimild¢ données et résulte du besoin de calculer I'espaceepripne
matrice fortement déficiente, du calcul d’éléments de €ise de la matrice associée aux équations normales pourdiesines
carrés linéaires ou encore du traitement de matrices feméméductibles en programmation linéaire. Nous décrivanalgorithme
efficace de réduction du volume d’Entrées/Sorties sur lgudidors d'une résolution hors-mémoire. Plus généralemems montrons
comment le caractére creux des seconds -membres peut ploétéyour réduire le nombre d'opérations et le nombre caca la
mémoire lors de I'étape de résolution.

Le travail présenté dans cette thése a été partiellememicéraar le projet SOLSTICE de 'ANR (ANR-06-CIS6-010).

Mots-clés: calcul distribué, calcul paralléle, élimination de Gausstrices creuses, méthode multifrontale, séquencement de
taches, seconds membres multiples

Thése préparée au CERFACS, CERFACS Report Ref: TH-PA-09-59
42, Avenue Gaspard Coriolis. 31057 Toulouse Cedex 01. Eranc
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