
HAL Id: tel-04402962
https://theses.hal.science/tel-04402962v1

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel triangular solution in the out-of-core
multifrontal approach for solving large sparse linear

systems
Tzvetomila Slavova

To cite this version:
Tzvetomila Slavova. Parallel triangular solution in the out-of-core multifrontal approach for solving
large sparse linear systems. Other [cs.OH]. Institut National Polytechnique de Toulouse - INPT, 2009.
English. �NNT : 2009INPT016H�. �tel-04402962�

https://theses.hal.science/tel-04402962v1
https://hal.archives-ouvertes.fr

TTHHÈÈSSEE

En vue de l'obtention du

DDOOCCTTOORRAATT DDEE LL’’UUNNIIVVEERRSSIITTÉÉ DDEE TTOOUULLOOUUSSEE

Délivré par INP Toulouse
Discipline ou spécialité : INFORMATIQUE

JURY

Ecole doctorale : Mathématiques, Informatique et Télécommunications de Toulouse
Unité de recherche : CERFACS

Directeur de Thèse : Amestoy, P. R.

Présentée et soutenue par Tzvetomila Slavova
Le 28 Avril 2009

Titre : Résolution triangulaire de systèmes linéaires creux de grande taille

dans un contexte parallèle multifrontal et hors-mémoire.

 Parallel triangular solution in the out-of-core multifrontal approach
for solving large sparse linear systems.

Amestoy P.R Professeur, INPT,Toulouse Directeur de thèse
Duff,I. Directeur de recherche, CERFACS, Toulouse Co-encadrant
Guermouche, A. LaBRI, Univ. Bordeaux 1 / INRIA Futurs Co-encadrant
L’Excellent,J-Y. Chargé de recherche, INRIA-LIP, Lyon Membre
Ng, E. G. Directeur de recherche, Lawrence Berkeley Lab. Rapporteur
Trystram, D Professeur, INPG, Grenoble Rapporteur
Ucar, B. Chargé de recherche CNRS, LIP, Lyon Membre

THÈSE
présentée pour obtenir

LE TITRE DE DOCTEUR DE L’INSTITUT NATIONAL
POLYTECHNIQUE DE TOULOUSE

Spécialité: INFORMATIQUE

par

Tzvetomila Slavova
CERFACS

Résolution triangulaire de systèmes linéaires creux de
grande taille dans un contexte parallèle multifrontal et

hors-mémoire.

Parallel triangular solution in the out-of-core multifrontal
approach for solving large sparse linear systems

Thèse présentée le 28 Avril 2009 devant le jury composé de:

Amestoy, P. R. Professeur, INPT, Toulouse Directeur de thèse
Duff , I. Directeur de recherche, CERFACS, Toulouse Co-encadrant
Guermouche, A. LaBRI, Univ. Bordeaux 1 / INRIA Futurs Co-encadrant
L’Excellent, J-Y. Chargé de recherche, INRIA-LIP, Lyon Membre
Ng, E. G. Directeur de recherche, Lawrence Berkeley Lab. Rapporteur
Trystram, D. Professeur, INPG, Grenoble Rapporteur
Ucar, B. Chargé de recherche CNRS, LIP, Lyon Membre

Thèse préparée au CERFACS, CERFACS Report Ref: TH-PA-09-59

Résolution triangulaire de systèmes linéaires creux de grande
taille dans un contexte parallèle multifrontal et hors-mémoire.

Parallel triangular solution in the out-of-core multifrontal
approach for solving large sparse linear systems

2

Abstract

We consider the solution of very large systems of linear equations with direct
multifrontal methods. In this context the size of the factors is an important limitation
for the use of sparse direct solvers. We will thus assume thatthe factors have been written
on the local disks of our target multiprocessor machine during parallel factorization.
Our main focus is the study and the design of efficient approaches for the forward and
backward substitution phases after a sparse multifrontal factorization. These phases
involve sparse triangular solution and have often been neglected in previous works on
sparse direct factorization. In many applications, however, the time for the solution can
be the main bottleneck for the performance.

This thesis consists of two parts. The focus of the first part is on optimizing the out-of-
core performance of the solution phase. The focus of the second part is to further improve
the performance by exploiting the sparsity of the right-hand side vectors.

In the first part, we describe and compare two approaches to access data from the
hard disk. We then show that in a parallel environment the task scheduling can strongly
influence the performance. We prove that a constraint ordering of the tasks is possible;
it does not introduce any deadlock and it improves the performance. Experiments on
large real test problems (more than 8 million unknowns) using an out-of-core version of a
sparse multifrontal code calledMUMPS (MUltifrontal Massively Parallel Solver) are used
to analyse the behaviour of our algorithms.

In the second part, we are interested in applications with sparse multiple right-hand
sides, particularly those with single nonzero entries. Themotivating applications arise in
electromagnetism and data assimilation. In such applications, we need either to compute
the null space of a highly rank deficient matrix or to compute entries in the inverse of a
matrix associated with the normal equations of linear least-squares problems. We cast
both of these problems as linear systems with multiple right-hand side vectors, each
containing a single nonzero entry. We describe, implement and comment on efficient
algorithms to reduce the input-output cost during an out-of-core execution. We show how
the sparsity of the right-hand side can be exploited to limitboth the number of operations
and the amount of data accessed.

The work presented in this thesis has been partially supported by SOLSTICE ANR
project (ANR-06-CIS6-010).

Keyword: Gaussian elimination, multifrontal method, Distributed computing, parallel
computing, sparse matrices, tasks scheduling, multiple right-hand side vectors.

ii

Résumé

Nous nous intéressons à la résolution de systèmes linéairescreux de très grande taille
par des méthodes directes de factorisation. Dans ce contexte, la taille de la matrice
des facteurs constitue un des facteurs limitants principaux pour l’utilisation de méthodes
directes de résolution. Nous supposons donc que la matrice des facteurs est de trop grande
taille pour être rangée dans la mémoire principale du multiprocesseur et qu’elle a donc
été écrite sur les disques locaux (hors-mémoire : OOC) d’unemachine multiprocesseurs
durant l’étape de factorisation. Nous nous intéressons à l’étude et au développement
de techniques efficaces pour la phase de résolution après unefactorization multifrontale
creuse. La phase de résolution, souvent négligée dans les travaux sur les méthodes
directes de résolution directe creuse, constitue alors un point critique de la performance
de nombreuses applications scientifiques, souvent même plus critique que l’étape de
factorisation.

Cette thèse se compose de deux parties. Dans la première partie nous nous proposons
des algorithmes pour améliorer la performance de la résolution hors-mémoire. Dans
la deuxième partie nous pousuivons ce travail en montrant comment exploiter la nature
creuse des seconds membres pour réduire le volume de donnéesaccédées en mémoire.

Dans la première partie de cette thèse nous introduisons deux approches de lecture
des données sur le disque dur. Nous montrons ensuite que dansun environnement
parallèle le séquencement des tâches peut fortement influencer la performance. Nous
prouvons qu’un ordonnancement contraint des tâches peut être introduit; qu’il n’introduit
pas d’interblocage entre processus et qu’il permet d’améliorer les performances. Nous
conduisons nos expériences sur des problèmes industriels de grande taille (plus de 8
Millions d’inconnues) et utilisons une version hors-mémoire d’un code multifrontal creux
appeléMUMPS (solveur multifrontal parallèle).

Dans la deuxième partie de ce travail nous nous intéressons au cas de seconds membres
creux multiples. Ce problème apparaît dans des applications en electromagnétisme
et en assimilation de données et résulte du besoin de calculer l’espace propre d’une
matrice fortement déficiente, du calcul d’éléments de l’inverse de la matrice associée
aux équations normales pour les moindres carrés linéaires ou encore du traitement de
matrices fortement réductibles en programmation linéaire. Nous décrivons un algorithme
efficace de réduction du volume d’Entrées/Sorties sur le disque lors d’une résolution hors-
mémoire. Plus généralement nous montrons comment le caractère creux des seconds
-membres peut être exploité pour réduire le nombre d’opérations et le nombre d’accès à
la mémoire lors de l’étape de résolution.

Le travail présenté dans cette thèse a été partiellement financé par le projet SOLSTICE
de l’ANR (ANR-06-CIS6-010).

Mots-clés: calcul distribué, calcul parallèle, élimination de Gauss,matrices creuses,
méthode multifrontale, séquencement des tâches, seconds membres multiples

iv

Contents

Abstract . i

Résumé . iii

1 General introduction 1
1.1 Context of our study . 8

1.2 General background . 10

Graphs . 10

Direct methods . 13

Least-square solution . 15

1.3 Test environment . 17

I Analysis of the Solution Phase of a Parallel Multifrontal Approach 21

2 Introduction 27

3 Main in-core parallel features of the solver 29
3.1 Introduction . 29

3.2 In-core parallel factorization phase 29

3.2.1 Parallelism during the factorization phase 31

3.3 In-core parallel solve phase .. . 33

3.3.1 Some notation . 33

3.3.2 Algorithm for management of tasks and messages 33

3.3.3 Algorithm for forward substitution 35

3.3.4 Detailed illustration of the forward substitution 38

3.3.5 Algorithm for backward substitution 40

3.3.6 Detailed illustration of the backward substitution 41

4 Out-of-Core (OOC) main features 45
4.1 Introduction . 45

4.2 OOC factorization phase . 45

4.3 OOC solve phase . 46

4.4 System based demand driven approach 47

v

vi CONTENTS

5 DIRECT_IO based method 49
5.1 Introduction . 49

5.2 User defined buffer . 49

5.3 States of a node . 50

5.4 Comparison of SYSTEM_BASED and DIRECT_IO methods 51

5.4.1 Sequential case . 51

5.4.2 Influence of parallelism on the performance 52

5.5 Influence of scheduling . 53

5.5.1 Sequential performance . 53

5.5.2 Parallel performance with LIFO scheduler 55

5.5.3 Illustration of the high number of emergency calls with LIFO . . 56

6 Scheduling to improve performance 59
6.1 NNS scheduler . 59

6.1.1 Description of the algorithm . 59

6.1.2 Experiments with LIFO and NNS strategies63

6.2 BPN scheduler . 66

6.2.1 Description of the algorithm . 66

6.2.2 Experiments with BPN strategy 70

II Exploit Sparsity of Sparse Right-Hand Sides in OOC Environment 73

7 Introduction 79

8 Exploiting sparsity of the right-hand sides: Context and applications 81
8.1 Context of our study . 81

8.1.1 Relationship between matrix graph and structure of the solution . 81

8.1.2 Background on computing entries in the inverse of a matrix . . . 84

8.2 Sparsity of the right hand-sides and applications 91

8.2.1 Sparse right-hand sides / reducible matrices 91

8.2.2 Null-space computations . 92

8.2.3 Computing entries inA−1 . 96

8.2.4 Pruning and concluding remarks 98

9 Algorithms to exploit sparsity 101
9.1 Introduction . 101

9.2 Pruning algorithms . 101

9.2.1 ‘Branch detection’ . 101

9.2.2 Subtree detection . 103

9.3 Topologically-based permutations 104

vi

CONTENTS vii

9.3.1 Post-order permutation of the right-hand sides 106

9.3.2 Pre-order permutation of the right-hand sides 106

9.4 Permuting columns of the right-hand sides to address parallelism 107

10 Hypergraph models to exploit the sparsity 109
10.1 Introduction . 110

10.2 Model for entries inA−1 . 110

10.3 Model for null-space computations 114

10.4 Conclusions . 115

11 Results and performance analysis 117
11.1 Introduction . 117

11.2 Null-space computations .. 117

11.2.1 Sequential execution . 117

11.2.2 Parallel execution . 120

11.3 Computing elements inA−1 . 122

11.3.1 Sequential execution . 122

11.3.2 Parallel execution and permutations 124

12 General conclusion and future work 129

Bibliography 133

vii

viii CONTENTS

viii

Chapter 1

General introduction

1

2 General introduction

2

3

Introduction générale

Contexte de l’étude

Nous nous intéressons à la résolution de grands systèmes linéaires

Ax = b (1)

avec une méthode directe multifrontale, dans un environnement parallèle hors-mémoire
(dans un environnement hors-mémoire le disque dur est utilisé comme extension de la
mémoire centrale, voir Figure 1).

�������
�������
�������
�������

�������
�������
�������
�������

Core memory

Required memory

a) Mémoire nécessaire insuffisante

=⇒
�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

Core memory Disk

Required memory

b) Utilisation du disque dur pour
compléter la mémoire nécessaire

Figure 1: Limitation mémoire résolue par l’utilisation de la mémoire du disque dur.

A est une matrice carrée creuse de très grande taille, etx et b sont des vecteurs
colonnes. La matrice originaleA est factorisée en un produit de matrices dites matrices
de facteurs. Selon que la structure de la matrice est symétrique ou non on effectuera
respectivement une factorisationA = LDLT ou A = LU . Les matricesL et U sont
respectivement des matrices triangulaires inférieures etsupérieures, etD est une matrice
diagonale ou bloc-diagonale avec des blocs1 × 1 et 2 × 2 . Les matrices de facteurs
sont ensuite utilisées pour résoudre le système initial viaune séquence de résolution
élémentaires,

LDLT x = b ou LUx = b (2)

selon que la matrice est symétrique ou non.

Le nombre d’entrées dans les facteurs (pour des problèmes tridimensionnels de grande
taille) peut être beaucoup plus important (10 à 100 fois plus grand) que la taille de la
matrice originale. Ainsi la mémoire utilisée pour stocker ces facteurs peut constituer un
obstacle dans l’utilisation d’approches directes de résolution. Pour autant les méthodes
directes, de par leur robustesse numérique sont souvent préférées aux méthodes itératives
[35, 66] pour beaucoup d’applications.

Implémenter efficacement les méthodes directes reste un travail délicat dans le cas
séquentiel comme dans le cas parallèle. Prévoir le remplissage dans les matrices de
facteurs, répartir dynamiquement les tâches pour équilibrer la mémoire en fonction des
processeurs utilisés, et beaucoup d’autres subtilités algorithmiques tout aussi critiques
pour la performance demandent une expérience forte et un investissement important en
temps de développement.

La phase de résolution a été souvent négligée dans les travaux précédents sur la
factorisation directe creuse [44, 65, 73, 74, 102, 104, 105]. Pourtant, dans beaucoup
d’applications, le temps de résolution peut constituer le problème principal. Dans un
contexte hors-mémoire où les facteurs sont stockés sur disque dur, c’est encore plus

3

4 General introduction

critique car le temps de la phase de résolution peut être dominé par l’accès au disque local
(et non pas par le temps de calcul comme c’est normalement le cas). Il faut noter qu’il y a
alors peu d’espoir pour recouvrir, même partiellement, lescalculs avec des entrées/sorties
(E/S). Ceci explique la forte influence de l’environnement hors-mémoire sur le temps total
de résolution.

Notre principal objectif dans cette thèse a été l’étude et ledéveloppement d’approches
efficaces pour la phase de résolution dans un environnement parallèle à mémoire
distribuée [9, 10, 11] et dans un contexte hors-mémoire. Nous proposons dans cette thèse
des algorithmes pour améliorer la performance de la résolution directe multifrontale hors
mémoire. Notre travail diffère et étend le travail d’autresapplications en environnement
hors-mémoire (voir [1, 103, 104, 105] et [114]) selon trois axes : d’abord, comme décrit
dans [1] nous considérons un contexte parallèle. Deuxièmement, nous nous concentrons
sur la performance de la phase de résolution. Troisièmement, nous mettons en oeuvre des
algorithmes pour exploiter le caractère creux (" sparsité") des seconds membres (quandb
dans l’Équation (2) devient une matrice creuse).

Avant l’introduction des notions de base, nous décrivons dans le paragraphe suivant la
structure de la thèse. Dans la première partie de ce travail,nous étudions et comparons
deux mécanismes d’entrées-sorties pour accéder aux données du disque dur. Une couche
logicielle a été écrite en C pour cacher tous les mécanismes d’E/S de bas niveau (gestion
du buffeur, pré-chargement des données, synchronisation). Nous avons remarqué que
la performance de la phase de résolution est fortement liée àla façon dont on accède
aux données sur le disque dur et au nombre et à la régularité deces accès. Nous avons
aussi démontré qu’en parallèle l’ordre avec lequel les tâches sont exécutées influence
d’une manière importante la performance de la phase de résolution. Notre travail
sur l’ordonnancement des tâches nous a permis de développerune nouvelle approche
efficace aussi bien en séquentiel qu’en parallèle. Les expériences sur de nombreuses
matrices, dont certaines de plus de 8 millions d’inconnues,montrent le bon comportement
des approches proposées en utilisant la version parallèle out-of-core du solveur direct
multifrontalMUMPS.

Dans la deuxième partie de la thèse nous nous intéressons à lasparsité (nature creuse)
du second membre. Nous étudions différentes techniques quipréservent la sparsité des
calculs grâce à l’exploitation de la nature creuse des seconds membres. Des applications à
plusieurs seconds membres issues des domaines applicatifstels que l’électromagnétisme
et l’assimilation de données sont utilisées pour illustrerles performances des approches
proposées. Par ailleurs, lorsque le nombre de seconds membres est important (dans
certains cas plusieurs dizaines de milliers de seconds membres) nous avons étudié,
implémenté et décrit des techniques efficaces pour réduire le volume d’Entrées/Sorties.
Nous démontrons que l’ordre de traitement des seconds membres peut être utilisé pour
réduire aussi bien le nombre d’opérations que la taille totale des données à précharger
du disque dur. Nous proposons des permutations de seconds membres permettant
d’améliorer l’utilisation de la mémoire et d’optimiser lespréchargements du disque dur.

4

5

Notions de base et définitions

• Graphes

Un graphe est un ensemble fini de noeuds et d’arêtes. Une arêteest définie par une
paire non-ordonnée de sommets. Un graphe est connexe s’il est possible, à partir de
n’importe quel sommet, de rejoindre tout autre sommet en parcourant les arêtes du graphe.
En donnant un sens aux arêtes d’un graphe, on obtient un graphe orienté. Un graphe
orienté sans cycle est dit acyclique (dag). On utilise les dags pour représenter la structure
de la matrice (voir Figure 2).

i j

i

j

i

j

directed edge <i,j>

of the matrix
diagonal

non-zero entryaij

Figure 2: L’entrée non-nulleai,j correspond à l’arête orientée< i, j > dans la representation-graphe.

Propriété 1. Toute matrice triangulaire (supérieure ou inférieure) peut être représentée
par un graphe orienté sans cycle (dag).

La connectivité entre noeuds d’un graphe orienté peut être représentée de façon
efficace grâce au graphe obtenu par réduction transitive. Sila matrice est symétrique, la
réduction transitive du graphe associé à la matrice des facteurs (L telle queA = LDLT)
est un arbre appelél’arbre d’élimination (voir par exemple Gilbert et Liu [63]). Si
la matrice est non-symétrique alors la réduction transitive du graphe associé à chacune
des matrices de facteurs (L et U telles queA = LU) est un graphe orienté acyclique
particulier appelée-dagpar Gilbert et Liu en [63].

Les hypergraphes généralisent la notion de graphe dans la mesure où les arêtes
ne relient plus un ou deux sommets, mais un nombre quelconquede sommets. Un
hypergraphe (défini comme un ensemble de noeuds et un ensemble de "nets") a la
particularité que chaque net est aussi un ensemble de noeuds. Les noeuds qui ont certaines
propriétés communes sont mis ensemble sous forme de nets. Unnoeud peut faire partie
de plusieurs nets (voir Figure 3, le noeud4 fait partie des nets1 et 2).

5V1

V3
V4

V2

2

1

7

9

10

6

4

n1

8

3

n3

2n

n4

Figure 3: Exemple d’un hypergraphe contenant10 noeuds (représentés par des cercles) et4 nets
(représenté par des points). L’hypergraphe est partitionéen 4 parties, representées par des ellipses.

5

6 General introduction

Les hypergraphes sont manipulés dans tous les domaines où l’on utilise la théorie des
graphes : résolution de problèmes de satisfaction de contraintes, traitement d’images,
optimisation d’architectures réseaux, modélisation, etc.

• Méthodes directes

Les méthodes directes de résolution de systèmes linéaires creux se déroulent en trois
phases : une phase d’analyse, une phase de factorisation, etune phase de résolution.
Une fois la factorisation réalisée (A = LU ou A = LDLT dans le cas d’un matrice
symétrique), le systèmeAx = b se résout en deux étapes : résolution du systèmeLy = b
(phase dite de ‘descente’), puis du systèmeUx = y (phase de ‘remontée’).

La dépendance des calculs est représentée par le graphe d’élimination (e-dag) qui est
un arbre (l’arbre d’élimination) dans le cas symétrique. Dans notre approche directe
multifrontale, nous utilisons la matrice symétriséeA+AT , ce qui conduit à la substitution
de l’e-dag par un arbre d’élimination. Une particularité sur laquelle repose l’efficacité
des méthodes directes est que les colonnes de la matrice qui ont une structure similaire
sont groupées dans des supervariables appeléessupernodes[51, 94, 98], qui sont ensuite
éliminées simultanément. Les méthodes multifrontales diffèrent d’autres méthodes
directes (voir [78]), telles que les approches dites left-looking et right-looking, qui sont
caractérisées par la façon dont les mises à jour sont faites.Dans une approche right-
looking, les modifications résultant du calcul courant sontimmédiatement répercutées sur
le reste des données concernées. Dans une approche left-looking, ce n’est qu’au moment
où l’on travaille sur une donnée que l’on va prendre en comptetoutes les modifications
résultant des étapes précédentes. Il faut noter que les mises à jour correspondent à des
messages dans le cas d’exécution parallèle sur architectures à mémoire distribuée. Dans
ce contexte, la structure des communications dépend fortement de la méthode choisie.
Le volume et le nombre de messages dépendent aussi de la répartition ("mapping") des
noeuds sur des processeurs.

• Environnement et matrices de test

Nos tests ont été effectués sur le calculateur parallèle à mémoire partagée Cray XD1
situé au CERFACS (58 noeuds, 2 processeurs par noeud, 4 Go parnoeud, 2 Go par
processus MPI , système de fichierreiserfs, et bande passante pour la lecture des
données de 16 Mo/s au maximum), en utilisant un seul processus MPI par noeud.

Le tableau 1 décrit nos matrices de tests, ordonnées par rapport à la taille de leurs
facteurs. Nous avons aussi fait des expériences sur des matrices de plus petite taille
dont la structure particulière est orientée vers des applications de seconds membres creux
multiples. Le tableau 2 représente les matrices utilisées pour le calcul du noyau des
matrices déficientes. Dans le tableau 3 nous décrivons les matrices correspondant à
l’étude de problèmes de moindres carrés. Plus précisément,l’étude de la variance et de
la covariance conduit à calculer certains éléments de l’inverse de la matrice des équations
normalesAT A . Certaines de ces matrices sont issues d’une collaborationavec le Centre
d’Etude Spatiale du Rayonnement (CESR) de Toulouse et correspondent à des problèmes
d’astrophysique. Cette application requiert un fort volume de calcul (14528 secondes) et
nous montrerons que l’exploitation de la structure creuse des seconds membres permet de
réduire ce temps de calcul de façon tout a fait significative.

6

7

Nom de la matrice Ordre Entrées Facteurs Nb Noeuds Description (origine)
(Millions) (MB) dans l’arbre

QIMONDA07* 8 613 291 66.9 2 534 3 083 998 Simulation de circuit (Qimonda AG)
CAS4R-L15 2 423 135 19.5 4 832 864 447 Electromagnétisme 3D (EADS)
CONESHL* 1 262 212 43.0 5 908 113 513 Eléments finis 3D (SAMTECH)
NICE20MC * 715 923 28.1 9 263 68 134 Traitement sismque (BRGM)
AUDI * 943 695 39.3 12 202 113 119 Modélisation d’un vilebrequin
GRID3.5M 3 500 000 37.8 15 720 1 535 044 Discrétisation 11 points d’un Laplacien 3D
GRID5M 5 000 000 53.8 17 798 2 203 434 Discrétisation 11 points d’un Laplacien 3D
COR5HZ * 2 233 031 90.2 21 622 268 798 Traitement sismique (BRGM)
AMANDE 6 994 683 58.5 55 295 871 621 Electromagnétisme 3D (CEA-CESTA)
NICE9HZ * 5 140 838 215.5 64 848 603 495 Traitement sismique (BRGM)

Table 1: Matrices de tests: taille et origine. Les matrices marquée d’une * sont publiques.

Nom de la matrice Ordre Nb entrées Nb Noeuds Globale Racine Pivots
dans l’arbre Def. Def. nuls

boxcav_8_5_3 619 3 471 319 56 7 49
boxcav_16x10x3 2 675 15 953 1 311 270 10 260
boxcav_20x13x3 4 419 26 129 2 121 456 10 446
boxcav_30x20x4 14 454 89 185 5 758 1 653 103 1 550
boxcav_40x27x5 33 627 212 883 12 948 4 056 185 3 871

Table 2: Matrices de tests pour le calcul de la base du noyau de matrices déficientes: taille et déficience.

Nom de la matrice Ordre Nb entrées Nb Noeuds
a-1_08M 8 999 497 628 1 186
a-1_21M 21 532 855 866 5 207
d-11_25M 25 000 249 720 12 091
a-1_46M 46 799 1 791 242 12 419
a-1_72M 72 358 3 549 284 7 941
a-1_148M 148 286 7 388 031 12 734

Table 3: Matrices de tests pour calculer des entrées dans(AT A)−1 .

7

8 General introduction

1.1 Context of our study

We are interested in solving large sparse linear systems of the form

Ax = b (3)

with direct methods [45, 47, 59] in a parallel limited-memory environment. HereA is
a large, square, sparse matrix andb and x are column vectors. We are first interested
in case whereA is nonsingular matrix. The case of a singular matrixA is discussed
in Chapter 8.2.1 where the specific structure of the matrix isexploited for the sparsity of
the computations during the solution phase. In the direct solution of this linear system,
the matrix A is first factorized into the factorsLDLT (when A is symmetric) orLU
(when A is unsymmetric), whereL and U are triangular matrices andD is a diagonal
or block diagonal matrix with1 × 1 and 2 × 2 blocks. These factors are then used to
solve the system through the forward and backward substitution steps

[

LDy = b and LT x = y
]

or [Ly = b and Ux = y] , (4)

depending on whether the matrix is symmetric or not.

In this context, the number of entries in the factors can be animportant limitation
for using sparse direct solvers. Indeed, the number of entries in the factors (on large
3-dimensional problems) can be much larger (10 to 100 times larger) than the size
of the original matrix. This is one reason for users to chooseiterative methods (see
for example [35, 66]). Time for solution can be another reason. The direct solution of
sparse linear systems using Gaussian elimination [59]has aclear advantage over iterative
methods in terms of numerical robustness, and it remains themethod-of-choice for many
applications. However, it is very challenging to implementsuch methods efficiently on
a single processor. This is even more complicated on multiprocessor machines. One of
the main reasons is because of fill-in created during the matrix factorization. Moreover,
if numerical pivoting is necessary this involves dynamically tracking the fill-ins that are
generated in a somewhat unpredictable way. Handling highlyirregular data access and
computation is further compounded by sophisticated computer architectures with several
layers of memory hierarchy. Therefore, unlike many iterative algorithms that users can
often implement reasonably well and quickly by themselves,direct solvers require much
more expertise and a longer time to develop.

Working out-of-core (using the storage disks to extend the main memory), we can
overcome the memory limitation of direct methods [44, 65, 73, 74, 102, 104, 105] and
handle large matrices whose factors do not fit within the mainmemory of the computer.
If the memory required for solving a matrix is larger than theavailable core memory (as
shown in Figure 4-a), a natural possibility to overcome thisproblem is to use the hard
disk memory (as shown in Figure 4-b).

In general, direct methods proceed in the following three phases.

• Analysis phase: The matrix is preprocessed to limit the fill-in and to improve its
numerical behaviour. The symbolic factorization is performed and the computational
dependency graph is computed.

• Factorisation phase: The factors are computed (A = LU or, in the symmetric case
A = LDLT).

8

1.1 Context of our study 9

�������
�������
�������
�������

�������
�������
�������
�������

Core memory

Required memory

a) Memory crash

=⇒
�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

Core memory Disk

Required memory

b) Use of disk to complete the required
memory

Figure 4: Memory constraint is solved by extending the main memory with the memory on disk.

• Solution phase: Forward and backward substitutions (respectively Ly = b and
Ux = y , in general, orDLT x = y in the symmetric case).

For an unsymmetric matrix, we compute itsLU factorization; if the matrix is
symmetric, itsLDLT factorization is computed. Because of numerical stability, pivoting
is required in these cases in contrast to symmetric positivedefinite sparse systems where
pivoting can be avoided.

The solution phase involves sparse triangular solutions and has often been neglected in
previous work on sparse direct factorization. In many applications, the time for solution
is even the main bottleneck for the performance. In an out-of-core context (factors stored
on local disk), this is even more critical since the time for the solution phase can be
dominated by the time for memory access and not by the time to perform the arithmetic
operations. It is interesting to notice that running out-of-core does not significantly affect
the time performance of the factorization (see for example [1, 3, 102, 105]). This can be
explained by the fact that the time spent doing computation during the factorization phase
is generally much larger than the time to perform input/output (I/O) on disks. I/O access
can then be ‘hidden’ by overlapping I/O with computation. Onthe other hand, the number
of operations during the solution phase is of the order of thesize of the factors (in the case
of a single right-hand-side), which is equal to the volume ofI/O. Thus, there is very little
scope for overlapping computation with I/O, which explainsthe strong influence of the
out-of-core environment on the time for solution.

Our main focus in this thesis has been the study and design of efficient approaches for
the forward and backward substitution phases of a distributed parallel sparse multifrontal
solver [9, 10, 11] in an out-of-core context. Our work differs and extends the work of other
out-of-core applications (see [1, 103, 104, 105] and [114])in three aspects. First, as done
in [1] we consider a parallel out-of-core context. Second, we focus on the performance
of the solution phase. Third, we design algorithms to exploit the sparsity of multiple
right-hand side vectors (whenb in Equation (4) is a sparse matrix).

Before providing in the general background section some basic ideas and theory, we
describe in the following the outline of the thesis.

In the first part of this work, we describe and compare two I/O approaches to access
data from the hard disk. An input/output (I/O) software layer written in C has been
designed to hide all the low level I/O mechanisms (small buffer management, prefetch
and post-store mechanism, synchronisation). Using this software layer we have been able
to work at an algorithmic level on the algorithms to design anefficient solution phase in an
out-of-core (OOC) context. We have observed that the performance of the solution phase
is strongly related to the way data on disk is accessed and to the number and the regularity

9

10 General introduction

of the accesses. We have then shown that in a parallel environment task scheduling can
also strongly influence the performance. We have proved thata constrained ordering of
the tasks is possible – it does not introduce any deadlock andit improves the performance.
Experiments on large real test problems (more than 8 millionunknowns) using an out-of-
core version of a sparse multifrontal code calledMUMPS (MUltifrontal Massively Parallel
Solver) have shown the good behaviour of our algorithms.

In the second part of the thesis, we are interested in applications with sparse multiple
right-hand sides. Applications in electromagnetism and data assimilation have been used
to illustrate our discussion. In such applications we need either to compute the null-space
of a highly deficient matrix or to compute entries in the inverse of a matrix associated with
the normal equations of linear least-squares problems. We have described, implemented
and discussed efficient algorithms to reduce I/O data when solving with OOC execution.
We have shown how the sparsity of the right-hand sides can be exploited to limit both the
number of operations and the amount of data accessed.

1.2 General background

Graphs

A given square matrixA can be structurally represented by its associated graph –
G(A) . A graph G = (V, E) is a set ofnodesor vertices V connected by a set of
edgesE . Nodes correspond to rows (columns) of the matrix and edges correspond to
nonzero entries. Any nonzero position inA (aij 6= 0) corresponds to an edge from node
i to nodej in the graphG(A) which we write as< i, j > (see Figure 5).

i j

i

j

i

j

directed edge <i,j>

of the matrix
diagonal

non-zero entryaij

Figure 5: The non-zero entryai,j corresponds to a directed edge< i, j > in the graph representation.

A one-way edge is called adirected edgeand has the property:

ai,j 6= 0 ⇐⇒ ∃ directed edge < i, j >

Note that as we differentiate entriesai,j and aj,i , we also distinguish their corresponding
directed edges< j, i > and < i, j > . We say that, there is apath from nodei to nodek
in the graph, if we can follow directed edges from nodei to nodek in the graph. In such
a case we say that nodek is reachablefrom nodei .

A graph is said to beconnected, in the sense of a topological space, if there is a
path from any vertex to any other vertex in the graph. Any irreducible matrixA can be
represented by a connected graphG(A) .

A graph with directed edges and nocycle is called adirected acyclic graph (or dag).

10

1.2 General background 11

Property 1. Any lower triangular matrix or upper triangular matrix can be represented
by a directed acyclic graph (dag).

An economical way to represent path information for a directed graph is by its
transitive reduction ([4]). An arbitrary graph may have many transitive reductions, but
Aho, Garey and Ullman [4] show that a dag has only one. For a given unsymmetric
matrix A which can be factored asA = LU , Gilbert and Liu in [63] define anedagof
L (respectivelyU) as the unique transitive reduction ofG(L) (respectivelyG(U)).

Example 1. Elimination dag
We consider theL pattern of a given matrix, as shown in Figure 6. Its associated directed
graph G(L) is acyclic, as stated in property 1. The edges correspondingto redundant
paths are removed (edge from node5 to node 1) and the reduced elimination dag or
edag is build.

l
11

l
52

l
53

l
55

l
44

l
33

l
22

l
31

l
43

1

43

5 21

3 4

2

l
51

5

Directed graph G(L)

pattern of L

Elimination dag (L)

Figure 6: Example ofL pattern with the associated dag and the reduced eliminationdag (edag) ofL .

Theorem 1(Gilbert and Liu [63]). For a symmetric matrix, the edag(L) is a tree, the so
calledelimination tree.

Note that for our example in Figure 6 the edag ofL is not a tree, since node3 has
two father nodes –4 and 5 . From Theorem 1, the original matrixA was thus not
symmetric. Indeed entryu34 of the U factors of the factorization ofA must be zero to
have l54 = 0 . On our test example, symmetrizing the matrix such that theU entry u34

becomes non-zero is enough to make our edag a tree (u34 6= 0 implies l54 6= 0) as shown
in Figure 7.

11

12 General introduction

l
11

l
52

l
53

l
55

l
44

l
33

l
22

l
31

l
43

1

3

2

l
51

5

l
54

2

3

5

4

1

Directed graph G(L)

pattern of L
Edag (etree) of L

4

Figure 7: Modification of the patten ofL from Figure 6 such that the associated edag is a tree.

Hypergraphs

We give a brief definition of hypergraphs, which will be used in Section 10 for the
hypergraph based permutation of the right-hand sides. Hypergraph use and construction
will be described in Chapter 1.2.

A hypergraphH = (V, N) is defined as a set of verticesV and a set of netsN . Every
net is a subset of vertices. The size of a netni is equal to the number of its vertices, i.e.,
|ni| . The set of nets that contain vertexvj is denoted byNets(vj) .

Example 2. Hypergraph model: Figure 8 shows a hypergraph with10 vertices,
represented by circles, and4 nets, represented by points. The netn1 contains5 vertices:
v4, v5, v1, v2 and v6 , thus its size is5 (|n1| = 5).

Weights and costs can be associated with vertices and nets, respectively. We usew(j)
to denote the weight of the vertexvj , and c(i) to denote the cost of the netni .

Π={V1, . . . , Vs} is a s -way vertex partition ofH =(V, N) if each part is nonempty,
the parts are pairwise disjoint, and the union of parts equals V . In Π , a net is said to
connecta part if it has at least one vertex in that part. Theconnectivity setΛ(i) of a net
ni is the set of parts connected byni . Theconnectivityλ(i)= |Λ(i)| of a net ni is the
number of parts connected byni . In Π , the weight of a part is the sum of the weights of
vertices in that part.

In the hypergraph partitioning problem, the objective is tominimize

cutsize(Π) =
∑

ni∈N

c(i).(λ(i) − 1) . (5)

Example 3. Net’s cost and partitioning: In Figure 8, there are four disjoint parts
{V1, . . . , V4} and their union by definition givesV . The connectivity of netn1 is 2
(λ(1) = 2), becausen1 is connected to partsV1 and V4 .

Let suppose that the cost of each net in Figure 8 is1 (c(i) = 1). Thus:

cutsize(Π) =

4
∑

i=1

c(i).(λ(i) − 1) =

= 1.(2 − 1) + 1.(3 − 1) + 1.(3 − 1) + 1.(2 − 1) = 6

12

1.2 General background 13

5V1

V3
V4

V2

2

1

7

9

10

6

4

n1

8

3

n3

2n

n4

Figure 8: Example of hypergraph containing10 vertices (represented by circles) and4 nets (represented
by points). The hypergraph is partitioned into4 parts, represented by ellipses.

Minimizing the cutsize function is widely used in the VLSI (Very-Large-Scale
Integration) community [89] and in the scientific computingcommunity [17, 27, 115,
116], and it is referred to as theconnectivity −1 cutsize metric. The partitioning
objective is to satisfy a balancing constraint on part weights:

Wmax − Wavg

Wavg

≤ ε . (6)

Here Wmax is the largest part weight,Wavg is the average part weight, andε is an
allowable imbalance ratio. The problem is NP-hard [89].

Direct methods

As we focus on the multifrontal method, we will comment on some of its main
properties with respect to other methods. For an overview ofthe multifrontal method
(although we describe in the next chapter), we refer the reader to [47, 51, 78, 93]; for the
discussion of other direct approaches, we refer the reader to [39, 77, 81]. The multifrontal
method was initially developed for indefinite sparse symmetric linear systems [51] and
was then extended to unsymmetric matrices [52]. It belongs to the class of approaches
which separates the factorization into two phases. The symbolic factorization phase
is not concerned with numerical values. It looks for a permutation of the matrix that
will reduce the number of operations and memory requirements in the subsequent phase,
and then computes a dependency graph associated with the factorization. Finally, in an
implementation for parallel computers, this phase partially maps the graph onto the target
multiprocessor computer. The numerical factorization phase computes the matrix factors
that will then be used during the solution phase to compute a solution. The experimental
part and the development performed in this thesis are based on theMUMPS, a MUltifrontal
Massively Parallel Solver [8, 10].

Note that on unsymmetric matrices, the computational dependency graph is the so-
called elimination dag (or edag). This edag is used in the unsymmetric multifrontal
approachesUMFPACK [34] andWSMP [75, 76]. In our multifrontal approach, the pattern
of the symmetrized matrixA + AT will be used so that the edag is in fact an elimination
tree. The elimination tree represents the task dependency of the computations, it gives a
partial order in which the columns can be eliminated. For example the elimination tree
on Figure 9, associated with factors on Figure 10 expresses dependency: column5 must

13

14 General introduction

wait for the elimination of columns3 and 4 . Node 5 of the elimination tree is said to
be the father of nodes3 and 4 . The elimination tree also provides parallelism; column
3 and 4 can be processed in parallel. Note that in a general case the elimination tree is a
forest (if the matrix is reducible). For the sake of clarity we will continue to use the term
elimination tree in the rest of the thesis even when the matrix is reducible.

1 2 3 4 5 6

1

2

3

4

5

6

A =

0 0 0

00

0

00

00

0

0 0 0

00

00

1 2 3 4 5 6

1

2

3

4

5

6

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
������

���
���
���
���
���

���
���
���
���
���
������

���
���
���
���
���

���
���
���
���
���
������
���
���
���
���
���

���
���
���
���
���
���

L+U =

Fill−in

0 0 0

000

0

0

0 0

0

0

Figure 9: Pattern of a structurally symmetric matrix and fill-in in its factors.

An important issue for efficiency is that columns with similar sparsity pattern are
grouped into large supernodes [51, 94, 98]. The resulting tree will be referred to asthe
assembly tree. In Figure 9, columns2 and 3 of the L factors have the same structure
and are processed as a unique node in the assembly tree compatible with the elimination
tree, shown in Figure 10.

5

3

2

4

1

6

1,4 2,3

5,6

Figure 10: Elimination tree and assembly tree associated with the matrix of Figure 9.

In practice, supernodes are naturally used in direct solvers whatever the method
is (left-looking, right-looking or multifrontal), as for example inSuperLU [38, 40],
PaSTiX [80], UMFPACK [34], TAUCS [113], Oblio [42, 43], PARDISO [106, 107],
PSPASES [77],HSL library [82],SPOOLES [15],WSMP [75, 76],MUMPS [9, 10, 11],
and others. Some of these solvers have been designed for distributed memory computers
(see for examplePaSTiX, SuperLU_DIST, PSPASES andMUMPS. Because of the
difficulty of handling dynamic data structures efficiently,most distributed memory
approaches do not perform numerical pivoting during the factorization phase. Instead,
they are based on a static mapping of the tasks and data and do not allow task migration
during numerical factorization. In this context one uniqueand original feature ofMUMPS
solver is that it enables standard numerical pivoting. Dynamic task creation, scheduling
and data mapping are used to handle numerical issues and to provide a very adaptive
approach. Numerical pivoting can clearly be avoided for symmetric positive definite
matrices. For unsymmetric matrices, Duff and Koster [48, 49] have designed algorithms
to permute large entries onto the diagonal and have shown that this can significantly

14

1.2 General background 15

reduce numerical pivoting. Demmel and Li [90] have shown that, if one preprocesses
the matrix using the code of Duff and Koster, static pivoting(with possibly modified
diagonal values) followed by iterative refinement can normally provide reasonably
accurate solutions. They have observed that this preprocessing, in combination with an
appropriate scaling of the input matrix, is a key issue for the numerical stability of their
approach.

One main difference between multifrontal and other direct approaches (see [78]) such
as left-looking and right-looking, is in the way of doing theupdates for each node in the
elimination tree. In the left-looking approach the updatesto a node are done just before
the node is factorized. This is also known as a fan-in method [14, 79]. In the right-looking
approach, the updates to each node are sent just after the factorization. This approach is
also known as a fan-out method. From this point of view, the multifrontal method [13, 52,
93] can be seen as a combination of left-looking and right looking approaches, where all
updates are sent after the factorization of the current nodebut only to its father. To do the
update the father must be capable of storing all contributions from all its descendants. One
can show that a full square matrix (so called frontal matrix)of order the number of nonzero
entries in the column ofL is enough to store all contributions. More that one branch of
the tree and multiple associated frontal matrices can be processed simultaneously so that
the method has been named the multifrontal approach.

5

3

2

4

1

6

a) Left-looking : column 6 is
updated with contributions of
nodes2 , 3 and 5 just before

processing node6 .

5

34

1

6

2

b) Right-looking: after processing
node 2 the updates to node3 , 5

and 6 are done.

34

1

6

2

5

c) Multifrontal : node 5 receives
updates only from its direct

children – nodes3 and 4 , then
starts to factorize node5 .

Figure 11: Updates in left-looking, right-looking and multifrontal approaches. The bold nodes represent
the current node and the arrows refer to updates.

Note that each update corresponds to a communication message in a parallel
distributed memory environment so that each approach will have a different
communication pattern. The volume and number of messages will then strongly depend
on the mapping of the nodes of the elimination tree onto the processors (see [78]).

Least-square solution

Linear least-squares problems arise in many important fields of science and
engineering, such as econometry, geodesy, statistics, structural analysis, fluid dynamics,
etc. The linear least-squares problem [21, 61, 95, 96, 97, 99] is a computational
problem that originally arose from the needs to fit a linear mathematical model to given
observations. To reduce the influence of errors in the observations a great number of
measurements are taken. Thus the resulting problem to solveis an overdetermined linear

15

16 General introduction

system of equations. In matrix terms, given a vectorb ∈ Rm and a matrixA ∈
Rm×n ,m > n , we want to find a vectorx ∈ Rn , such that Ax is the ‘best’
approximation tob . There are many possibilities of defining this ‘best’ approximation.
Often for statistical reasons, but also to provide a simple computational problemx is
chosen to minimize the Euclidean vector norm:

minx||Ax − b||2 , where A ∈ Rm×n, b ∈ Rm (7)

This is known as the linear least-squares problem. Vectorx is the linear least-squares
solution of the systemAx = b . Let r be the residual vector,r = b− Ax . Thus to solve
the linear least-squares problem we must minimize||r||22 which is the sum of the squared
residuals:||r||22 =

∑m

i=1 r2
i . If the rank of matrixA is smaller thann (rank(A) < n),

the solutionx of equation (7) is not unique. However, among all least-squares solutions
there is an unique solution which minimizes||x||2 (see Chapters1 and 2 of Björck,
Numerical Methods for Least-Square Problems [21]).

In linear statistical models the vectorb of observations is related to the unknown
vector x by the linear relation:

Ax = b + ǫ (8)

where ǫ is a vector of random errors. Letrank(A) = n and ǫ has zero mean,E(ǫ) = 0 .
Let also the variance-covariance matrix beν(ǫ) = σ2I . Then by the Gauss-Markov
theorem, the least-squares estimatex̂ is the linear unbiased estimator ofx (an estimator
for which there is no difference between an estimator’s expected value and the true value
of the parameter,̂x = x) with minimum variance equal to

Vx = σ2Cx , Cx = (AT A)−1 = R−1R−T (9)

where R is the Cholesky factor of the so callednormal equations AT A . An unbiased
estimate ofσ2 is given by :

s2 = ||r̂||22 /(m − n) , r̂ = b − Ax̂.

In order to assess the accuracy of the computed estimate ofx it is often required to
compute the minimum variance matrixVx or part of it. In particular, the variance of the
componentx̂i is given by the diagonal entriesvii in Vx [101].

16

1.3 Test environment 17

1.3 Test environment

Except where stated otherwise, all our runs have been performed on the multiprocessor
Cray XD1 located at CERFACS (58 nodes with 2 processors per node; and 4 GB per
node, 2 GB per MPI process). Each node is equipped with anIDE disk managed by the
reiserfs file system of maximum bandwidth for a read operation close to16 MB/sec
with one MPI process per node.

Performance of the solution phase

Our set of test matrices used for the experiments in the first part of the thesis – solution
phase performance is described in Table 4, sorted by factor size. The size of the factors is
obtained using aMetis reordering [83] of the original matrix. All test matrices are real
symmetric exceptCAS4R-L15 andAMANDE which are complex symmetric.

Matrix name Order Entries Factors Nb Nodes Description (origin)
(Millions) (MB) in the tree

QIMONDA07* 8 613 291 66.9 2 534 3 083 998 Circuit simulation (Qimonda AG company)
CAS4R-L15 2 423 135 19.5 4 832 864 447 3D Electromagnetism (EADS)
CONESHL* 1 262 212 43.0 5 908 113 513 3D finite element from SAMTECH
NICE20MC * 715 923 28.1 9 263 68 134 Seismic processing (BRGM Lab.)
AUDI * 943 695 39.3 12 202 113 119 Automotive crankshaft model
GRID3.5M 3 500 000 37.8 15 720 1 535 044 3D 11pt-discretization of Laplacian operator
GRID5M 5 000 000 53.8 17 798 2 203 434 3D 11pt-discretization of Laplacian operator
COR5HZ * 2 233 031 90.2 21 622 268 798 Seismic processing (BRGM Lab.)
AMANDE 6 994 683 58.5 55 295 871 621 3D Electromagnetism (CEA-CESTA)
NICE9HZ * 5 140 838 215.5 64 848 603 495 Seismic processing (BRGM Lab.)

Table 4: Test matrices: size and origin. Matrices marked by * are publicly available.

Matrix AUDI from the PARASOL Collection1 or the matrices from our applications
partners that are publicly available can be found on thegridtlse.org web
site. COR5HZ matrix corresponds to a dynamic analysis of the Cornioglio (Italy)
earthquake (1994) with maximum signal frequency of 5 Hz.NICE20MC and NICE9HZ

correspond to dynamic analysis of the Nice earthquake (2001) with maximum signal
frequency of 1.5 Hz and 9 Hz respectively.AMANDE and CAS4R-L15 are problems
from electromagnetism. CONESHL corresponds to 3D computations from structural
engineering andQIMONDA07 to circuit simulation.

We show in Table 4 the order and the number of entries for each matrix which give us
an estimation about the size and the sparsity of the matrix. The factor size denotes the
amount ofLU factors stored on disk during the factorization phase and read during the
solution phase. The time performance of the solution phase in an out-of-core environment
is strongly related to this amount of data. We show also the number of nodes in the
elimination tree which is very useful to estimate the impactof the scheduling strategy. The
more nodes that are in the tree, the more important will be theinfluence of the scheduling.

We note the difficulty in getting very large problems from industry. It is also necessary
that the integer description (symbolic representation of the matrix) will fit on a single
processor in order for us to complete the analysis and construct the data structures for
subsequent numerical factorization and solution.

1www.parallab.uib.no/projects/parasol/data

17

18 General introduction

During factorizationall factors are written to files (local to each MPI process) on disks.
In our experimental context (one MPI process per node) all I/O files of each MPI process
are thus associated with local disks. Our approach will however naturally work when
disks are shared by more than one MPI process but with a reduction in the average I/O
bandwidth. Furthermore, factors are not kept in memory at the beginning of the solution
phaseand between the forward and backward steps. So we have no intended reuse of
data, which will help to better understand the behaviour of each step.

With these assumptions, we will thus have to load all of the factors during the solve
phase. Note thatQIMONDA07 is a large and very sparse matrix with more than 3 million
nodes in the assembly tree. Indeed, it is the matrix with the largest number of nodes in
our set. I/O access might occur for each node of the elimination tree and thus it is an
interesting matrix to illustrate the behaviour of our algorithms. We thus use this example
extensively in our detailed analysis but show relevant results on all our test problems later
in the thesis.

Exploit the sparsity of the right-hand side vectors

In the second part of the thesis we are interested in applications with sparse multiple
right-hand sides. An application in electromagnetism leads to computing the null-space
basis of a matrix with a large deficiency. Another application in astrophysics requires the
computation of the diagonal entries of the inverse of a matrix.

For null-space basis computations our test matrices (givenin Table 5) come from
3D applications in electromagnetism when computing resonance modes in box cavities
discretization.

Matrix name Order Nb entries Nb Nodes Global Root Null
in the tree Def. Def. Pivots

boxcav_8_5_3 619 3 471 319 56 7 49
boxcav_16x10x3 2 675 15 953 1 311 270 10 260
boxcav_20x13x3 4 419 26 129 2 121 456 10 446
boxcav_30x20x4 14 454 89 185 5 758 1 653 103 1 550
boxcav_40x27x5 33 627 212 883 12 948 4 056 185 3 871

Table 5: Test matrices for null-space basis computations: size and deficiency.

The matrices are not as large as the matrices for analysing the performance of the
parallel out-of-core solution. However the main issue withthese matrices is the relatively
large deficiency (rank of the null-space basis of the matrix)with respect to the order
of the matrix (compare column 5 (Global Def) with column 2 (Order)). As shown in
Section 8.2.2 of Part2, computing the null-space basis willrequire a large number of
backward solutions with highly sparse right-hand-side since as many solution steps as
the size of the deficiency must be performed. In columns 6 and 7we indicate how
the deficiency was detected during the factorization. As explained in Section 8.2.2 one
part of the deficiency can be detected on the fly of a “quasi-normal" factorization phase
(column Null Pivots) with modified pivoting strategies; another part can be detected
while processing the root of the elimination tree with a rankrevealing algorithm (column
Root Def.). We will show in Section 8.2.2 that the locality ofthe deficient rows in the
elimination tree influences the performance of our algorithms.

To illustrate the behaviour of our algorithms for computingentries in A−1 , our set
of matrices is based on applications in astrophysics and results from a collaboration

18

1.3 Test environment 19

with SPI/INTEGRAL team at CESR (Centre d’Etude Spatiale desRayonnements in
Toulouse). In the context of the INTEGRAL (INTErnational Gamma-Ray Astrophysics
Laboratory [119]) mission of ESA (European Space Agency) a spatial observatory with
high resolution (both in terms of angle and energy) hardwaretechnology has been
launched on October 2002. SPI [118] is one of the main instrument onboard INTEGRAL,
a spectrometer with high energy resolution and indirect imaging capabilities. To obtain
a complete sky survey with SPI/INTEGRAL, the processing of avery large amount of
data acquired by the INTEGRAL observatory is needed [23]. For example, to estimate
the total point-source emission contributions, a linear least-squares problem of about 1
million equations and 100000 unknowns must be solved. As already explained in this
chapter (see previous Section 1.2 for least-square solution), one might want in this case
to compute part of the inverse of the variance (see Equation 9). To do so one must then
compute part of the inverse of the normal equation matrixAT A where A is the matrix
associated with the original linear least-squares problem. A few test matrices associated
with the normal equations built from our application are shown in Table 6.

Matrix name Order Nb entries Nb Nodes
a-1_08M 8 999 497 628 1 186
a-1_21M 21 532 855 866 5 207
d-11_25M 25 000 249 720 12 091
a-1_46M 46 799 1 791 242 12 419
a-1_72M 72 358 3 549 284 7 941
a-1_148M 148 286 7 388 031 12 734

Table 6: Test matrices to compute entries in(AT A)−1 .

This application is computationally intensive because, inthe context of the sky survey,
all diagonal entries of the inverse of the normal equation matrix are required. For
example, on the largest matrix in the test set, solving the complete problem requires about
7 seconds for the analysis phase,1.4 seconds to factor the matrix and14 528 seconds to
compute all diagonal entries of the inverse of the matrix (results obtained at CESR with
an incore factorization based on MUMPS solver on an Opteron 2.8 GHz with 16 Gbytes
of main memory). We will show in Part 2 of the thesis how we can exploit the sparsity
better in order to reduce the solution time and limit the memory used.

19

20 General introduction

20

Part I

Analysis of the Solution Phase of a
Parallel Multifrontal Approach

21

23

Résumé de la Partie I : Analyse de la phase de résolution parallèle
dans une approche multifrontale

Le système linéaire de grande tailleAx = b est résolu en utilisant une méthode directe
de factorisation basée sur une approche multifrontale dansun environnement parallèle
out-of-core (hors-mémoire). Les méthodes directes sont souvent composées de trois
phases : une phase de prétraitement et d’analyse, une phase de factorisation (A = LU
ou A = LDL si A est symmétrique) et une phase de résolution. La phase de résolution
se décompose en une étape de descenteLy = b suivie d’une étape de remontéeUx = y
dans le cas non-symétrique. Dans ce travail nous nous intéressons à la phase de résolution
et aux possibilités de l’optimiser, surtout dans un contexte hors-mémoire où le temps de
résolution est dominé par le temps d’accès et de lecture du disque dur.

Avant d’étudier et présenter des performances dans un contexte hors-mémoire, nous
allons présenter certaines propriétés générales de la phase de résolution.

Dans un environnement en mémoire (in-core)

Les méthodes directes utilisent l’arbre d’élimination pour représenter la dépendance
des calculs. Pour gérer l’ordre dans lequel les tâches de calcul sont effectuées nous
utilisons une structure de données appeléPOOL. Elle représente toutes les tâches prêtes à
être exécutées à tout moment de la résolution. Au début de l’étape de descente (forward
substitution, résolution deLy = b) toutes les tâches associées aux feuilles de l’arbre
de l’élimination sont stockées dans lePOOL en respectant un post-ordre de parcours de
l’arbre. Au début de l’étape de remontée (backward substitution, résolution deUx = b
dans le cas d’une matrice symétrique), la seule tâche prête àêtre exécutée correspond au
noeud associé à la racine de l’arbre. Dans les deux étapes (ladescente et la remontée) les
tâches mises dans lePOOL sont extraites en utilisant l’ordonnancement LIFO, ce qui dans
le cas séquentiel correspond à une traversée optimale de l’arbre - post-ordre des tâches.
Dans le cas parallèle, l’extraction des noeuds duPOOL est influencée par le mapping des
noeuds sur les processeurs. Dans ce cas, le post-ordre ne peut plus être respecté et on
parle d’ordonnancement topologique des tâches (chaque noeud père ne peut être activé
qu’après avoir traité tous ses enfants).

Implémenter efficacement les méthodes directes multifrontales dans un environnement
parallèle reste un travail difficile au niveau des communications entre les processeurs et
la synchronisation des tâches à exécuter. Pour la première fois, une description détaillée
des algorithmes parallèles utilisés dans la phase de résolution de la méthode multifrontale
sera faite dans cette thèse. Des particularités importantes en parallèle seront illustrées
(Propriétés 3.1, 3.2, 3.3 et 3.4) tout en prouvant leur efficacité pour la parallélisation
massive de la méthode.

Dans un environnement hors-mémoire (OOC)

Il faut insister sur le fait que le temps de toute la phase de résolution est dominé par le
temps d’accès et de préchargement du disque dur. Il devient alors primondial d’optimiser
le processus de préchargement des données. Dans ce contexte, l’ objectif de notre travail
a été de diminuer le nombre d’accès au disque dur tout en rendant la lecture des données

23

24

la plus ‘régulière’ si possible. Une implémentation simpleet efficace, dans le cas où
la mémoire n’est pas critique, est d’utiliser le cache du système pour le préchargement
des données. Dans le cas où la mémoire pour résoudre le système devient critique, les
mécanismes du cache ne sont plus efficaces, comme indiqué dans le Tableau 1.7 - en
diminuant le nombre de processeurs utilisés on observe un réduction du débit d’accès aux
facteurs sur le disque (du 92.6 MB/s avec 8 processeurs à 9.2 MB/s en utilisant un seul
processeur.)

Taille des facteurs Solution Parallèle
Nprocs (per proc) Fwd Bwd Débit d’accès aux facteurs

MB (sec) (sec) (MB/s)
In core

8 317.5 0.9 0.9 —
OOC (Out-Of-Core)

8 317.5 3.6 4.5 92.6
4 635.0 45.9 15.1 83.3
2 1 270.1 129.4 93.1 22.8
1 2 534.3 269.4 282.9 9.2

Table 1.7: Influence de la mémoire utilisée par noeud sur le Cray XD1 pourla performance en parallèle de la phase de résolution
sur la matriceQIMONDA07. Cette approche OOC est basée sur la simple utilisation demécanisme cache (SYSTEM_BASEDapproche).

On propose donc une autre méthode pour lire les données sur ledisque (méthode
appelée Direct I/O), plus contraignante pour le développeur, mais beaucoup plus efficace
du point de vue du temps d’accès et de la gestion de la mémoire.Des buffeurs internes
au programme sont destinés à précharger les données du disque. Le grand avantage de
cette approche est que leur taille est indépendante de la taille du problème et qu’elle peut
être fixée par l’utilisateur. Le buffeur est divisé en deux parties - une partie pour un
préchargement d’un grand nombre de données en utilisant desméthodes sophistiquées
d’optimisation; et une partie de lecture sur un seul bloc de données en urgence (lecture en
mode bloquant) (voir Figure 1.12).

Emg buffer

Emergency zone Prefetching zone

Figure 1.12: Buffeur dont la taille est prédéfinie par l’utilisateur.

Une comparaison entre les deux méthodes en terme de temps de calculs et de nombre
d’accès au disque dur est donnée dans le Tableau 1.8.

Méthode Fwd Bwd Nb_Req Fwd Nb_Req Bwd
(sec) (sec) Prefetch Emg zone Prefetch Emg zone

DIRECT_IO (Emg+Prefetch) 171.5 176.8 541 0 496 0
SYSTEM_BASED 269.4 282.9 — — — —

Table 1.8: Influence du nombre des buffeurs sur la rśolution sequentiel deQIMONDA07. Fwd=forward phase. Bwd=backward
phase. Emg zone:1 MB; Prefetch buffer:10 MB.

Après une comparaison exhaustive, nous avons démontré l’efficacité de la méthode
DIRECT_IO sur l’ensemble de nos matrices.

24

25

Ordonnancement (Scheduling)

Comme nous l’avons déjà dit précédemment, l’accès régulierau disque est
extrêmement important pour le temps de calcul de la phase de résolution. Par accès
régulier, on sous-entend le préchargement des données de grande taille d’une manière
contiguë sur le disque dur. Dans ce contexte, l’ordonnancement efficace des différentes
tâches prêtes à être exécutées devient très important. Dansle cas séquentiel, l’ordre
optimal pour parcourir l’arbre d’élimination et traiter les tâches correspond à un post-
ordre. Dans le cas parallèle, les choses se compliquent en introduisant le mapping des
tâches sur les différents processeurs, et donc le post-ordre ne peut plus être respecté.
Les stratégies connues jusqu’à présent, LIFO et FIFO, ne sont pas adaptées non plus
à la résolution parallèle du système à cause du grand nombre d’appels irréguliers au
préchargement des données du disque. (Plus de400 000 appels dans l’étape de backward
substitution avec 3 et 4 processeurs).

Nb Fwd Bwd Nb Max requêtes par step
Stratégie of Fwd (∗) Bwd (∗)

Procs (sec) (sec) Prefetch Emg zone Prefetch Emg zone
LIFO 1 171.5 176.8 541 0 496 0
LIFO 3 64.9 262.1 190 3 169 422 497
LIFO 6 38.0 186.7 102 6 86 422 498
LIFO 8 24.9 137.6 70 0 64 321 871
LIFO 16 13.2 94.4 39 2 32 214 245
LIFO 24 10.9 48.5 42 5 38 119 792
LIFO 32 9.1 53.1 25 1 30 116 209

Table 1.9: Influence de l’ordonnancement LIFO sur la matriceQIMONDA07. Emg=emergency buffer:1 MB; Prefetch buffer:10MB
par processeur;(∗) : Max par processeur.

Nous proposons une nouvelle stratégie d’ordonnancement des tâches, NNS, basée sur
le stockage des tâches sur le disque dur. Elle prend en comptela répartition des tâches
sur les disques locaux de chaque processeur. En ordonnançant les tâches maîtres afin de
respecter la séquence de chaque processeur, on arrive à reproduire la séquence d’écriture
des facteurs lors de la phase de factorisation. Ainsi on obtient un accès beaucoup plus
régulièr en lecture aux données du disque dur et un temps de larésolution fortement
réduit.

Stratégie Nb de T_min Bwd Nb_Req(∗)

Procs Bwd
(sec) (sec) Prefetch Emg

NNS 1 158.4 177.2 496 0
NNS 3 57.9 65.5 174 1
NNS 6 31.5 37.9 93 0
NNS 8 21.8 45.2 57 0
NNS 16 11.9 13.8 36 0
NNS 24 9.0 13.2 38 0
NNS 32 8.2 10.7 34 0

Table 1.10: Influence de l’ordonnancement NNS sur la matriceQIMONDA07. Emg=buffer d’urgence:1 Mo; Prefetch buffer:10Mo
par processeur;(∗) : Max per processor.

Les tableaux 1.9 et 1.10 montrent les performances des deux ordonnancements LIFO
et NNS. Dans les deux cas, on compare le temps obtenu (Fwd et Bwd) avec le
temps minimum pour charger les facteurs du disque dur (T_min). On montre aussi le
nombre des préchargements du disque. Comme le montre le Tableau 1.10 sur la matrice

25

26

QIMONDA07 mais aussi sur l’ensemble de nos matrices, l’ordonnancement NNS s’est
montré plus efficace à réduire le nombre de préchargements dudisque et le temps global
de la phase de résolution.

26

Chapter 2

Introduction

We are interested in solving large sparse linear systemsAx = b with direct
methods [45, 47, 78], in a parallel limited-memory environment. We suppose that the
original matrix A is first factorized into the factorsLDLT (when A is symmetric)
or LU (when A is unsymmetric), whereL and U are triangular matrices andD is
diagonal (or block diagonal with blocks of order 1 or 2 in the case of numerical pivoting
for indefinite systems). Note that in our factorization expressions, we have omitted, for
the sake of clarity, the permutations performed to preservesparsity and to implement
numerical pivoting. These factors are then used to solve thesystem through the forward
and backward substitution steps

[

LDy = b and LT x = y
]

or [Ly = b and Ux = y] , (2.1)

depending on whether the matrix is symmetric or not. In this work, we are concerned with
the case when the matrixA is large and sparse [47, 59]. The main limitation in the use of
sparse direct methods comes from the need to store the factors that often have many (10
to 100 times) more entries than the original matrix.

Usually the most time consuming part of the solution processis in the initial matrix
factorization and it is this step that most previous work hasaddressed. However,
in many applications, the substitution phases can be performed very many times for
each factorization so that the accumulated time for these phases dominates. This is
true, for example, in some algorithms for nonlinear optimization and for applications
where solutions with many different right-hand sides are required (for example, in
electromagnetic or seismic modelling). Furthermore, whensolving systems in parallel
or when working out-of-core, the substitution times can be greatly increased. We
believe this is the first in depth study of the substitution phases in a parallel and
out-of core environment. Our work differs and extends the work of [103, 104, 105]
and [114] because firstly we consider a parallel out-of-corecontext, and secondly we
focus on the performance of the solve phase. In this context,an out-of-core(OOC)
multifrontal [51, 52] approach is considered. Here the factors are written to disk during
the factorization phase, as a sequence of blocks (that we call factor blocks). Overlapping
communications and I/O with computations during the factorization phase is an important
issue (see [2]), but is not the scope of this work. During the subsequent forward and
backward solve phases, that we callsolve phase, we have to load the factor blocks from
the local disks of the computer to the main memory. In this context, the cost of the solve
phase can become the dominant phase of the complete solutionprocess. When the solve

27

28 Introduction

phase has to be performed for many right-hand sides (simultaneously or not) then it is
even more critical.

We first discuss in Chapter 3 the main aspects of the in-core distributed memory solve
phase: mono-processor and multi-processor case. Althoughdetails of our solver MUMPS
have described in previous publications [7, 10, 12] this is the first time we have considered
the solve phase in detail. We explain why our parallel solve phase does not follow the
standard dependency structure of the factorization phase and prove the correctness of
our approach. We then explain how our algorithms have been adapted to the out-of-core
context in Chapter 4. We show the limitations of a simple demand driven approach,
that we call SYSTEM_BASED, based on automatic system I/O caching mechanisms. In
Chapter 5 we show how user buffers can be introduced to improve the behaviour of
the solve phase and then describe an approach where the memory used is completely
controlled, which we call the DIRECT_IO. We show that a naive implementation of the
DIRECT_IO based approach is not suitable for parallel implementation and introduce a
new scheduling scheme that constrains the ordering of the tasks. We first prove that the
new algorithm is correct. We then illustrate in Chapter 6 thegain in performance obtained
on a set of large real problems.

28

Chapter 3

Main in-core parallel features of the
solver

3.1 Introduction

Direct solvers try to preserve the zero pattern and to exploit the independence of some
computations in parallel environments. So called three-phase approaches have become
very popular:

• Theanalysisphase considers only the pattern of the matrix and builds thenecessary
data structures for numerical computations.

• The factorization phase tries to follow the decision of the analysis and buildsthe
sparse factors (LU for unsymmetric case, orLDLT for the symmetric case).

• Thesolvephase performs forward and backward substitution phases and optionally
performs iterative refinement to improve the solution.

We will start by introducing the factorization phase (Section 3.2) and basic notions,
used later during the solve phase (Section 3.3). We assume inthis Chapter that our matrix
has a symmetric structure and thus even when the matrix is unsymmetric Struct(L) =
Struct(U) .

3.2 In-core parallel factorization phase

Multifrontal methods use anelimination tree [92] to represent the dependencies of
the computations. Based on the structure of theL factors, we define the elimination tree
as follows: nodei is the father of nodej if and only if i is the first non-zero entry
in column j of L . Each node of this tree is associated with afrontal matrix that is
assembled (summed) based on contributions from the children and the entries from the
original matrix. In practice, nodes of the elimination treeare amalgamated so that more
that one variable can be eliminated at each node of the tree. The resulting amalgamated
tree is referred to as theassembly tree. The work associated with an individual node of
the assembly tree corresponds to the factorization of the frontal matrix. Frontal matrices
are always considered as dense matrices (see Figure 3.1).

29

30 Main in-core parallel features of the solver

Once alleliminations for a node have been performed, the Schur complement matrix
F22 − F21F

−1
11 F12 is computed. It is used to update later rows and columns of theoverall

matrix which are associated with the parent nodes. We call this Schur complement matrix
thecontribution block (CB) of the node, see Figure 3.1.

����

����

fully summed columns partially summed columns

fully summed rows

partially summed rows

F F

F
11

F
21 22

12

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

factors
FS

non−elim
variables

factors
L

U

CB

columnscolumns
FS Partially Summed

rows

summedPartially
rows

Figure 3.1: Frontal matrix : general structure

If some variables are not eliminated because of numerical issues, they are included in
the contribution block and their elimination is postponed to the parent node or later to an
ascendant node (Figure 3.2). Thesenon-eliminated variables(delayed pivots) increase
the fill-in the factors, the number of the operations and the factorization time, but can be
critical to the accuracy of the solution.

We show in Figure 3.2 the difference of the factorization in both cases: with and
without non-eliminated variables. We first show in Figure 3.2-a) a symmetric matrix
pattern, its associated factors and the corresponding assembly tree. Then the frontal
matrices of all nodes in the assembly tree are presented. Figure 3.2-b) shows the case
when there is no delayed pivots. NodesA and B are completely factorized and the
contribution of column5 and 6 are sent to nodeC . Figure 3.2-c) shows the case when
there column2 is not factorized and thus becomes a delayed pivot. The contribution
block of nodeA is thus extended and sent to the parent nodeC which frontal matrix size
is also updated.

30

3.2 In-core parallel factorization phase 31

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

1 2 3 4 5 6

1

2

3

4

5

6

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

1 2 3 4 5 6

1

2

3

4

5

6

F F F
F F

F F

F

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�

�
�
�
�
�

1

2

5

6

4

3

C

BA

original matrix factors matrix assembly tree

a) Original matrix,LU structure and corresponding assembly tree

1

2
5

2 51

C
FX

F

X XX
X
X C

CC
C

X X
XX X

F X
X

F
X

X
X

5 6

6

5
4
3

3 4

X F
F X

5

6

5 6

B

C

A
A B

C
CC

C

X X
XX X

F X
X

F
X

X
X

3

4

5

6

3 4 5 6

C

X F
F X

0F

0
F
X2
2 5 6

5

6

C
FX

F

X XX

X
X

1

2

5

2 51

b) Case of non-delayed pivots c) Case of delayed pivot2 from nodeA to nodeC

Figure 3.2: Data structure of the frontal matrix and the eliminations performed between two children and a
father node.X = non-zero positions of the original matrix;F = fill-in; C = Contribution Block entry.

During the factorization phase factors associated with each node of the elimination
tree are written on disk, as they will be accessed again only in the solution phase. Thus
the amount of needed/active memory for factorizing the nodes is lower (as shown in
Figure 3.3) and we can benefit of better efficiency. We use the term active memory to
reference the memory needed to store the current frontal matrix and the contribution
blocks computed to the moment.

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

Current

matrix blocks

Contribution
frontalFactors zone

Active memory

Figure 3.3: In-core memory needed to factorize a matrix is freed from factors.

3.2.1 Parallelism during the factorization phase

Note that, in a sequential environment, we choose to processthe nodes of the
elimination tree, using a post-ordering (nodes belonging to any subtree are numbered
consecutively). In a sequential environment with a post-ordering it can be shown than
a simple stack mechanism can be used to manage the working space associated to the
contribution blocks, as shown in Figure 3.4

31

32 Main in-core parallel features of the solver

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

Current

matrix

frontal

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

Contribution

block 2

Stack

Contribution

block 1

Figure 3.4: In-core memory with the current frontal matrix and a stack with two contribution blocks.

In a parallel environment, the tree nodes are distributed onto processors and only a
topological ordering is followed (nodes of any subtree are numbered consecutively, but
are not always processed consecutively. Nevertheless, a parent node can be process only
after all its children).

The multifrontal MUMPS solver [7, 10, 12] provides three different types of
parallelism for both factorization and solve phases. The reason for the three types is
to balance the total work and the memory on each processor.

We use the assembly tree, representing the order in which thematrix will be factorized,
to distribute the nodes over the processors. Depending on the size of the node and on
which level of the assembly tree the node is situated, we have:

Type1 node: sequential processing of a node— essentially for the low levels of the
tree (near the leaves), where the tree parallelism is sufficient.

Type2 node: irregular 1D decomposition of the node— for the intermediate levels
when the node is large enough: the contribution blocks are partitioned and each
partition assigned to a different processor with respect tothe total amount of data
mapped on each processor. The so calledmaster process is in charge of factorizing
the block of fully summed variables and of deciding how manyslave processes
will be used to process this node. Data equilibration is thusdone among the
processes [72, 73].

Type3 node: block cyclic 2D distribution [31] of the frontal matrix — reserved only
for the root node, if it is large enough. In this case, ScaLAPACK [22] is used on the
node.

In Figure 3.5 the pattern of symmetric factors with a post-ordering of the nodes in
the elimination tree is shown. We show the mapping of the nodes on four processors.
Each node in the elimination tree has a master process, indicated in a box. If a node is of
type 2 or type 3 , slave processes are also associated, using dynamic decision during the
factorization phase to equilibrate factors among processors. We show also the distribution
of the L factors of a frontal matrix depending on the type of the node.For type 1 node,
the whole frontal matrix is mapped to one processor, as shownfor node5 . If a node is of
type 2 , as node3 , the frontal matrix and the contribution block are divided between the
master and the slave processes in irregular1D decomposition. The frontal matrix on the
root, node7 , is divided in block cyclic2D decomposition.

32

3.3 In-core parallel solve phase 33

P3

Matrix of factors L

1

3

2

4

5

6

7

1

2

3

4

5

6

7

P3

P1

P2

L33

L63

L73

Type2 node

P0

P1

P2

P0 P0

P0

P2

P1P0

Type3 node

P1
P2,P3,P0

P0P2P1 P3

P0

Elimination tree, with nodes mapped on 4 processors

2 4 5

6

7

3

1

P1,P2,P3

P1,P2

L

P0 L55

L65

L75

Type1 node

Figure 3.5: Illustration of node types and mapping of the processors on the nodes in the elimination tree. In
box is indicated the master process associated with each node.

3.3 In-core parallel solve phase

Our algorithms handle both symmetric and unsymmetric matrices. For the
unsymmetric or indefinite matrices the algorithms incorporate numerical pivoting
(threshold partial pivoting and two-by-two pivots). Note that although the pivoting is
a part of the factorization phase, the permuted row/column factors should have to be
taken into account in the solution phase. For the sake of clarity we will focus in the
following on symmetric matrices and will not consider pivoting for numerical stability
in the description of our algorithms. Our solve phase follows a multifrontal factorization
and uses the assembly tree [92] to represent the dependencies of the computations during
the solution phase.

3.3.1 Some notation

During the solve phase, each node of the elimination tree holds the L factor block
computed during factorization. Theforward substitution is a bottom-top traversal of the
tree (post-ordering for the sequential case and topological ordering for the parallel case).
Thebackward substitution traverses the tree in the reverse order. The factor block can
be partitioned intofactored variables andunfactored variables as shown in Figure 3.6.

In our parallel context, the distribution of theL factors depends on the type and the
mapping of the nodes onto the processors as explained in the previous section.

We first comment on data structure used for task scheduling. Then we describe,
separately, the forward and the backward algorithms, identifying the critical issues in
each case.

3.3.2 Algorithm for management of tasks and messages

To handle the task dependency graph, both the forward and backward algorithms make
use of a distributed pool of tasks, that we call thePOOL. This pool contains a list of
all ready tasks to be executed and is used to schedule work in both the sequential and

33

34 Main in-core parallel features of the solver

All rows mapped on a master processor

Unfactored

Factored

P0

P1

P2

Unfactored rows

Factored rows

a) Type 1 Node b) Type 2 Node

Figure 3.6: Partitioning and distribution of the factor blocks depends on the type of the node. On the Type 2
node, P0 is the master process in charge of factored row variables, and P1 and P2 are slave processes in
charge of a partition of the unfactored row variables.

the parallel cases. At the beginning of each step, we initialize the distributed pool with
all tasks ready on each process using a post-order (see Figure 3.7 for a description of
the situation on one process). Tasks are then extracted fromthe end of the pool (LIFO
strategy).

6

3

5 4 2 1

7

POOL − beginning of BWD step

end of the pool

Assembly Tree

1 2 4 5

7

end of the pool

POOL − beginning of FWD step Root node

Bwd direction

Leaf nodes

Fwd direction

Figure 3.7: The POOL of tasks at the beginning of the forward and backward sequential solve steps.

For the forward step, the pool is initialized with the leaf nodes of the assembly tree. A
node will then be placed at the end of the pool as soon as all of its children are processed.
Note that in a sequential context this lead to a post-order traversal of the tree. At the
beginning of the backward step the pool is initialized only with the root nodes. At the
end of a node process, we add to the end of the pool all of its children. Furthermore,
for both the forward and the backward steps, when a node is distributed over more than
one process (Type 2 or Type 3 nodes) only the master task is added to its local pool. The
slave tasks are processed on the fly. The algorithm for extracting nodes from the pool is
described in Algorithm 3.1.

Note that priority is given to the reception of messages - to ablocking or non-blocking
receive. We look at the pool for work only when no message needbe processed. The
algorithm for the forward case finishes when all root nodes have been treated. The
backward algorithm finishes when all leaf nodes have been processed.

We first describe in Algorithm 3.2 the parallel forward substitution (LDy = b) and
later present the algorithm for the backward step (LT x = y) in Algorithm 3.3.

34

3.3 In-core parallel solve phase 35

Algorithm 3.1 : Algorithm for extracting a node fromPOOL (LIFO strategy)
Myid - process number;Inode- the current node mapped on processMyid ;

1: Step = Fwd or Bwd
2: if (Fwd) InitialisePOOL with the leaf nodes mapped onMyid
3: if (Bwd) InitialisePOOL with root nodes mapped onMyid
4: while (Not finished)do
5: if (POOL is not empty)then
6: if amessage is availableProcess_Message(message) [See Algorithms 3.2 and 3.3]
7: else
8: Wait for amessage and thenProcess_Message(message) [See Algorithms 3.2 and 3.3]
9: end if

10: if (POOL is not empty andProcess_Messagenot called)then
11: Extract node, sayInode, from the end ofPOOL

12: if (Fwd) Fwd_Process_node(Inode) [See Algorithm 3.2]
13: if (Bwd) Bwd_Process_node(Inode) [See Algorithm 3.3]
14: end if
15: end while

3.3.3 Algorithm for forward substitution

We first describe in Algorithm 3.2 the parallel forward substitution (Ly = b). We then
show in Section 3.3.4 details of the algorithm used to process a node and add comments
on how messages are processed.

Note that in Algorithm 3.2 (and in practice) the same workingspace can be used to
store bothy and b . We will keep two separate vectors in our algorithm only for the sake
of simplicity.

To better understand the distributed memory version of our algorithms, we introduce
a few properties related to the use of the elimination tree. For properties 3.1 and 3.2 note
that the terms factored and unfactored variables were described in Figure 3.6. We show
(Property 3.2) that our algorithm does not always follow thedependency paths of the
assembly tree which explains why we must reset our working array Wb to zero.

For the sake of completeness references to BLAS (Basic Linear Algebra Subroutines)
kernels (GEMM/V andTRSM/V) have been added to the description of the Algorithm 3.2
and Algorithm 3.3 (algorithm for the backward substitution). Notations ‘stepi ’ refer to
Figure 3.9 in Section 3.3.4 where we illustrate in details the main steps of our algorithm.

Without loss of generality we will assume in the remainder ofthe first part of this
thesis that we have only one right-hand side and thus one solution to compute since the
extension to multiple right-hand sides is straightforward.

Property 3.1. All updates to factored variablesof a node, say Inode, come only from
processes involved in the children of Inode (both master or slave processes).

Proof: This property is clearly preserved by the algorithm, sincein our algorithm only
processes involved in the children send updates to the master of the father - message
ContVec or direct update ofWb either during Fwd_Process_Nodefor Type 1
nodes or at the reception of messageMASTER2SLAVE for Type 2 nodes. Furthermore
updates to the factored variables of a node can only come fromnodes involved in the sub-
tree rooted at that node (main property of the assembly tree). This proves our property.⋄

35

36 Main in-core parallel features of the solver

Algorithm 3.2 : Algorithm for the forward step (LDy = b)
Myid - process number;Inode- the current node mapped on processMyid ;
Nb_children - the number of children ofInodeand
Pfather- the process on which the master offather(Inode)is mapped.
Wb - a local working array, initialized to0 and designed to accumulate modifications of the right-hand
side b ;
Use_factors will be expanded in later discussion to cases when such use oraccess to them is non-

trivial.

Fwd_Process_node(Inode) {I am the master of nodeInode}

1: For factored variables, updateb with entries of Wb and Use_factors to compute the partial

solution(TRSM/V) (step 1 and 2)
2: if (Inodeis of Type 2)then
3: Send to each slave ofInodethe computed solution and entries ofWb corresponding to variables

mapped on this slave (messageMASTER2SLAVE) and reset these entries ofWb to zero (see
Property 3.2) (step 3)

4: else if(Inodeis of Type 1)then
5: UpdateWb for unfactored variables(GEMM/V)

6: if (Myid 6= Pfather) then
7: Send updated entries ofWb to Pfather (message ContVec) and reset them to zero (see

Property 3.2)
8: else
9: Increment updates forPfatherand if last update addfather(Inode) to the end ofPOOL

10: end if
11: else
12: Type 3 root node process based on ScaLAPACK for both forward and backward steps on all processes
13: end if

Process_Message(Message) {I am updatingInode}

1: if (Message =ContVec) then
2: UpdateWb with contribution received; Increment number of updates

if last update, addInodeto the end ofPOOL

3: else if (Message =MASTER2SLAVE) then
4: Gather in a smalllocal arrayentries ofWb just received
5: Use_factors and the solution sent by the master to update thelocal array (GEMM/V)

6: if (Myid = Pfather) then
7: Scatter and add thelocal array in Wb

8: Increment number of updates and if last update addInodeto the end ofPOOL

9: else
10: Sendlocal array to Pfather(messageContVec)
11: end if
12: end if

Property 3.2. All updates of descendants of a node Inode, to unfactored variablesof a
node are not always sent to processes in charge of that node.

Proof: Figure 3.8 will be used to prove our property. All nodes in Figure 3.8 are Type 1
nodes. Node 1 (mapped onto P1) sends to node 4 (mapped onto P0)updates toWb
(corresponding to entries ofWb on P1) and resets those entries to zero. Node 2 (mapped
onto P0) updatesWb and sends its updates to P2 (corresponding to entries ofWb on P0)
and resets those entries to zero. At this point, part of the updates of the sub-tree rooted
at node 5 will circulate through node 6 on P2. This is the case if both node 1 and node 2
have a common row in the factor block of node 7. This update toWb will then be sent
to P4 by P2 during the processing of node 6. On our test matrix (see Figure 3.8) the

36

3.3 In-core parallel solve phase 37

������������
�������
�������
�������
�������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

7

5

3

P4

4

P0 P1

P0

P3

P0

6
P2

2

1

1

1

2

3

4

5

6

7

2

3

4

5

6

7

Dotted arrow between nodes 4 and 6 indicates that

part of the updates from the sub-tree rooted at node 4

to node 7 are in fact sent by process P0 when sending

updates from node 2 to node 6.

Figure 3.8: Example used to prove Property 3.2: part of the updates of node 1 are not sent to process P3 in
charge of node 5.

contribution due to the zero entriesl71 and l72 in row 7 available on processorP0 will
circulate through node 6 onP0 .

As a consequence during the processing of node 4, process P0 will not send to its
father (node 5) all updates from node 1 to node 7. Instead Property 3.1 says that the
common row updated by node 2 and node 4 could not be eliminatedat node 5, but at
node 7. ⋄

Note that Property 3.1 is one of the main properties of the elimination tree, exploited
by the multifrontal approach and preserved, on each process, by the algorithm for
the factored variables. However, contrary to what is exploited during multifrontal
factorization, this elimination tree property is no longerrespected on each process for
unfactored variables (Property 3.2). Property 3.2 also explains the importance of resetting
Wb to zero in Algorithm 3.2.

Property 3.3. At any time a computed update is stored in theWb array of only one
process.

Proof: We recall thatWb is designed to sum update vectors.Wb is first initialized to
zero on each process at the beginning of the forward step. It corresponds to updates to the
right-hand sideb due to solution terms already computed. Each time part ofWb is sent
to a process (messageContVec or MASTER2SLAVE) then the corresponding entries
are reset to zero in the procedureFwd_Process_node.

Let us now check that updates toWb are never lost. First, during the function
Process_Message(MASTER2SLAVE), each slave gathers in a local array contributions
sent by its master. This local array is either used to updateWb locally, if the process_id
of the slave is equal toPfather, or is forwarded (messageContVec) to processPfather
without updatingWb locally. ⋄

Property 3.4. When starting to process a node (first line of procedure
Fwd_Process_node(Inode)) of Algorithm 3.2, b holds all contributions needed to
compute the solution corresponding to the factored variables of the node.

Proof: Results from Property 3.1 and 3.2.⋄

Corollary 3.1. Property 3.4 recursively proves that Algorithm 3.2 computes the correct
solution.

37

38 Main in-core parallel features of the solver

3.3.4 Detailed illustration of the forward substitution

Figure 3.9 is used to graphically represent the main steps ofthe algorithm of the
parallel forward substitution. A small example is then provided (Example 3.1) to further
explain the algorithm.

Inode

master

1

b

FS

elim

Wbnon−elim

Updatesb with entries ofWb

Inode

master

2

=
y b

FS

elim

TRSM

non−elim

Computes the solution
corresponding to the eliminated variables

Inode

slave

3
master

=
y belim

FS

Wb
non−elim

y

temp_Wb

Master2Slave

Unfactored

Sends the solution and entries ofWb

to the slave

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

Inode

slave

master

4

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

= b

FS

Gemm/v

Gemm/v

y

temp_Wb

y

Wbnon−elim

elim

Unfactored

Master and slaves compute an update tob

Inode

slave

Master of Ifath(Inode)

master

5

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

y

temp_Wb

ContVec

Unfactored

=elim

FS

Wb

y b
ContVec

non−elim

Send contributions to the Pfather

Figure 3.9: Communication pattern of procedure Fwd_Process_Node(Inode) (see Algorithm 3.2) in the
case of Type2 Node with a single slave.temp_Wbcorresponds to the local array referred in Algorithm 3.2
when processing messageMASTER2SLAVE.

In Figure 3.9 we present the main steps of processing a node ofType 2, mapped on two
processes: a master with one slave. On the master process aremapped all factored (fully

38

3.3 In-core parallel solve phase 39

summedFS) variables: eliminated (elim) and non-eliminated (non-elim) variables, as
defined in Figure 3.1. All unfactored variables are mapped onthe slave process.

In Figure 3.9 we reference each step of Algorithm 3.2. At eachstep i , the concerned
parts are coloured in gray. At step1 nodeInode becomes ready and the master process
updatesb with entries of its vector of contributionsWb . At step 2 the master process
uses the eliminated variables and the updatedb vector to compute the corresponding
solution. At step3 the master sends the computed solution together with entries of the
contribution vectorWb to the slaves (MASTER2SLAVE message). At4 each process
(master or slave) computes an update tob . For the master process it corresponds to
non-eliminated variables which are then stored inWb . For the slave, it corresponds of
unfactored rows, stored temporary intemp_Wb At 5 the updates are sent to the father’s
master process viaContVec messages. The father’s node becomes ready when both
contributions are received.

Note that there are two different ways to send the contribution vectors to the father of
Inode . The first way (our current proposed scheme) is to have each slave of Inode to
sum the contributions and then send them directly to the father of Inode . In this case we
have divided the large messages into many small ones - see Figure 3.10 - a). The second
way is to send the contribution vector at once, directly fromthe master ofInode to the
master of its father. Note that in this case the contributioncomputed by each slave still
need be send by each slave.

In both cases the volume of data transfered is identical. Furthermore the master has
anyway to send the computed solution to each slave. This means that the number of
messages for both schemes remains the same. The first scheme (chosen in our algorithm)
should thus be more efficient because on can expect natural parallelisation of the data
transfer of the known solution stored inWb by the master (‘one to many’ compared with
‘one to one’ of the same total volume of data with the same number of messages).

Master Wb

Slave i Wb i + Wb i master + Cb i −−> Wb i updated

one to one

|Wb| = NE

Master of the father node

One to many

Wb i Many to one

Master Wb

Slave i Wb i + Cb i −−> Wb i updated

Master of the father node

one to one

|Wb| = Nfront−Elim

Many to one

Do not send

Wb i

a) Current scheme b) Other possibility

Figure 3.10: Different possibilities of sending contribution vectors to the master node.

Example 3.1. Node processing during the Fwd step (Ly = b) (see Figure 3.11)

Node3 is a type 2 node that has received all contributions from its children and has
been added to the pool.We assume that the master of node3 is mapped on processor P3
and has slaves mapped on processors P1 and P2. P3 updatesb with the contributions
to b stored in Wb . P3 computes eliminated variables ofy3 , and sends them together
with part of Wb to each slave processor (stored locally in temporary arraytemp_Wb).
Each slave updatestemp_Wb . P2 sends the updated block (temp_Wb) to the master of
node6 (P1) via aContVec type message. The slave P1 mapped on node3 can directly
updateWb , because P1 is the master of the father node6 .

39

40 Main in-core parallel features of the solver

Node 3

Node 6
y bL

y1

y2

y3

y4

y5

y6

y7

7

1 42 5

���
���
���

���
���
���

temp_Wb

P2

������

P1
master L66

Wb

Wb

���
���
���

���
���
���

Wb

���
���
���
���

����
����
����
����

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

=

variables from the sons

y6

P1

P2
=

P3
master L33 =

Message ContVecy3

y

b3

b

y3

non−eliminated

b6

L73

L63

Wb

variables of node 3

non−eliminated

Message Master2Slave
Message ContVec

slaves
temp_Wb

P1

2

3

4

5

6

7

1

Wb

Symmetric matrix pattern

=

b1

b2

b3

b4

b5

b6

b7

=

L11

L22

L33L31 L32

L44

L55

L77

L66L65L64L63

L76L75L74L73L72L71

L61 L62

P1

P4P2P1 P3

P1,P2
P3

P4 P1,P2,P3

P2,P3
6

3

Elimination tree, with nodes mapped on 4 processors

Figure 3.11: Communication pattern and data computation during the forward step on a node of Type2.

Node6 The master of node6 (P1) initialises the number of contribution vectors
to Nb_children(node 6) +

∑

slaves(node 6) . For each message of typeContVec
received, P1 updatesWb and decrements the number of contribution vectors. When all
contributions are received, node6 is added to the local pool of P1.

3.3.5 Algorithm for backward substitution

The algorithm for the backward substitution (LT x = y) is described in Algorithm 3.3.
As for the forward step, priority is given to message reception. If no message is
received, a node from the pool is extracted. The backward step manages three types of
messages:Bwd_MASTER2SLAVE andBwd_ContVec are similar toMASTER2SLAVE
andContVec of the forward case respectively; a new type of messageBwd_Node is
used to control the activation of the children.

During the backward step, when a Type 2 node is processed, theslave processes
are first involved in the updating of the right-hand sidey (after reception of message
Bwd_Master2Slave from the master process of that node). Once the master
process has received all updates to the right-hand side computed by the slaves (message
Bwd_ContVec), the solution associated with the factored variables is then computed. A
messageBwd_Node is then sent to each process on which at least one master node of
the children is mapped. Note that even if several nodes are mapped on the same process,
messagesBwd_Node will be sent only once to this process.

Figure 3.12 will be used to illustrate in more details the main steps of our algorithm
in Section 3.3.6.

40

3.3 In-core parallel solve phase 41

Algorithm 3.3 : Algorithm for the backward step (LT x = y)

Myid - process number;Inode- current node mapped onMyid;

1: Bwd_Process_Node(Inode)
2: if (Inodeis of Type 2)then
3: Master distributes already computed solution corresponding to factored variables between the slaves

of Inode(messageBwd_MASTER2SLAVE, step 1)
4: else if(Inodeis of Type 1)then
5: Use_factors associated with unfactored variables to updatey (GEMM/V) and with factored

variables to compute solution (TRSM/V)
6: for each child ofInodewhose master process is mapped onMyid, add it to the end ofPOOL

7: Send the solution corresponding toall variables ofInodeto processes on which at least one master
of a child node is mapped (messageBwd_Node)

8: end if

Process_Message(Message)

1: if (Message =Bwd_Node) then
2: Update known solution and add toPOOL Inodeand all of its brothers whose master process is mapped

on Myid

3: else if (Message =Bwd_MASTER2SLAVE) then
4: Use_factors mapped on this slave process together with the received solution

to compute a contribution toy (GEMM/V, step 2) and send it to the master ofInode (message
Bwd_ContVec, step 3)

5: else if (Message =Bwd_ContVec) then
6: Updatey with message and increment number of updates received (step3 and 4)
7: if last updatethen
8: Use_factors associated with factored variables to compute the solution(TRSM/V, step 5)
9: for each child ofInodewhose master process is mapped onMyid, add it to the end ofPOOL

10: Send the solution corresponding toall variables ofInodeto processes on which at least one master
of a child node is mapped (messageBwd_Node, step 6)

11: end if
12: end if

3.3.6 Detailed illustration of the backward substitution

Figure 3.12 is used to graphically represent the main steps of the algorithm of the
parallel backward substitution. A small example is then provided in Figure 3.13 to further
explain the algorithm.

As done for the forward substitution, Figure 3.12 is dividedinto steps related to the
communication pattern of the processing of a Type 2 node. We assume that the node is
mapped on 3 processes - a master and2 slaves.

At the reception of messageBwd_Node, the master process holds the complete
solution sent from its father. The node becomes ready and is added into the pool. Once
extracted from the pool, at step 1 the master distributes thereceived solutionx

′

between
the slaves involved in the computations on this node. At step2, after reception of message
Bwd_MASTER2SLAVE, the slaves use the sent part of the solution to compute updates to
y . Then, at step 3, the slaves send back the contribution toy to the master via message
Bwd_ContVec. The master updatesy with all received contributions, at step 4. At
step 5, the master computes his contribution toy related to the non-eliminated variables.
Finally, the master uses the eliminated variables and the updated right-hand sidey to

41

42 Main in-core parallel features of the solver

compute a part of the solution vectorx . The updated known solution is then sent at
step 6 to all processes involved in the master processing of at least one son.

y’1

y’2

1

x’2slaves

x’1

=

non−eliminated
variables

y
master

x’

Message Master2Slave

Distribution of the solution
between the slaves

2

x’2

x’1

slaves
y’2

y’1

Slaves compute contributions toy

y’2

y’1

3
=

x’

=

x’

x’2slaves

x’1

y

Message UpdateRHS

y = y+ y’1+ y’2

master

Slaves send contributions ofy

to the master

y4 =

x’

=

x’master

Master computes an update toy

related to non-eliminated variables

5
master ==

x’x’

yx

Master computes its part
of the solution vectorx

master of the son

6
y=x

x’
master

Message Node

Sends computed solution to the son

Figure 3.12: Communication pattern of procedure Bwd_Process_Node(Inode) (see Algorithm 3.3) in
the case of the Type2 Node with2 slaves.

To help understanding our algorithm, we will describe in example 3.2 the main
communication steps involved during the processing of a node.

Example 3.2. Let us consider three consecutive nodes in the elimination tree
(j =father(k) and i =father(j)), mapped on different processors, and focus on the
processing of the central nodej which is of type 2 (see Figure 3.13). Nodej is added to
the local pool of its master process after the reception of a message of typeBwd_Node
from its father nodei (step a in Figure 3.13). The master process of nodej then
sends information, relative to the solution sent by nodei , to all of its slaves (step b).
Each slave of nodej then sends updates to the right-hand side to the master of node j
(step c). Once all messages from the slaves have been received, the master can compute
the solution (associated with the column indices of its frontal matrix). Then it sends

42

3.3 In-core parallel solve phase 43

messageBwd_Node to the master of its sonk (step d).

a

b

d

c

Message Master2Slave

X X X

XX

k

j

i

Master Slave1 Slave2 Slave3

Message Bwd_Node

Message UpdateRHS

Message Bwd_Node

Figure 3.13: Main communication steps during the backward substitution

43

44 Main in-core parallel features of the solver

44

Chapter 4

Out-of-Core (OOC) main features

4.1 Introduction

The out-of-core behaviour of our forward and backward algorithms is very critical for
large matrices when memory is limited. Our objective is to achieve good performance
with respect to both run-time and memory effectively used inboth sequentialandparallel
cases. The OOC run time is strongly related to the hard disk access time. The latency, the
number of disk accesses, and the regularity of the reading pattern are issues that will have
to be taken into consideration.

In this section, we describe the main OOC features of our algorithms.

4.2 OOC factorization phase

During the OOC execution, the computed factors are stored onthe hard disk and are
written in the order in which they have been computed. Results obtained by [2] show that
this can be obtained with limited overhead with respect to the in-core factorization.

In a sequential environment, factors are written on the harddisk following a post-order
traversal of the tree. For the parallel runs only a topological ordering, with unpredictable
dynamic interleaving of slave and master tasks can be obtained. In Figure 4.1 we
show such an interleaving. Figure 4.1-a) show the elimination tree is mapped on4
processors and for each node the factor distribution is shown with respect to the type
of the node. In Figure 4.1-b) the factors write sequence is shown where each block of
factors is written in the order on which it is computed duringthe factorization phase.
Post-ordering (processing the parent node just after its children) is no longer respected,
and only topological ordering is applied. For example, in Figure 4.1-b) processor0 has
processed node5 before processing node6 which is the direct parent of nodes3 . Note
also that the write sequence of factors on disk is local on each process. Type 2 tasks are
distributed among several processes - one master and the other are slave with respect to
the current task.

Although one could clearly take advantage of keeping part ofthe factors in-core at the
end of the factorization, for the sake of clarity we will consider in the following that all
factors data has been written to the disk at the end of the factorization phase.

45

46 Out-of-Core (OOC) main features

10

2 4 7

9

8

3

1

6
P3

P0
P1
P2

P0

P1

P2

P0 P0

P0

P2

P1P3

P0 P1 P3

P0

P0

P1 P3

P0

Type 2
Type 2

Type 1

Type 3

P2 P3

5

P3
P0

P1P1
P2

P0

Type 2

P2

P3

P0

P1

1 3 6 10

52 3

4 3

9 10

9 10

7 58 109

5

Factor data on the disk of each processor

9

 master task

 slave task

a) elimination tree mapped on 4 processors b) Hard disk of each processor

Figure 4.1: Example of interleaving of master and slave tasks during the factorization and influence on
the disk usage on each processor. We note that the sequence isnot unique because of the non-deterministic
nature of our asynchronous algorithm.

4.3 OOC solve phase

We use the factorization write sequence in order or in reverse order, to respectively
prefetch factor blocks during the forward and the backward steps. Looking at the hard
disk storage area, these two steps can be represented as directions for reading data. The
forward step needs factors from the disk in a left-right direction. That is why, for the
forward step, we prefetch data in the natural direction (theorder in which data has been
written) (see Figure 4.2). The backward step needs factors in the reverse order: right-left
direction on the disk. Here, the inverse of the natural reading direction is used, so that one
could expect the performance of the backward step to be slightly worse than the forward
step.

BWD stepFWD step

L Factors Data on the hard disk

P1 52 3 9 10

Figure 4.2: Reading direction on the disk in the solution step.

For this OOC implementation we use almost the same algorithms as for the in-core
case. The only modification (see Algorithm 4.1) for the OOC execution is to load data
from disk for each occurrence of the sequence ‘Use factors ’ in Algorithms 3.2
and 3.3.

Algorithm 4.1 : Modification of Fwd and Bwd algorithm for OOC execution

Use_factors of Inode... =⇒

if (OOC run)then
Load data (Inode) from disk

end if
Use_factors of Inode...

46

4.4 System based demand driven approach 47

4.4 System based demand driven approach

A simple way to implement the OOC solve phase is then to use a demand driven
approach. We do not use any explicit prefetching. We let the operating system handle
intermediate caches when loading data.

To illustrate the potential and the limitations of a demand driven approach we report
in Table 4.1 its behaviour on our test matrixQIMONDA07. We analyse the situation when
the matrix fits in the main memory (parallel execution) and when the memory is critical
(uni-processor execution) and also report, as a reference,the in-core solution time on 8
processors.

Factor Size Parallel Solve
Nprocs (per proc) Fwd Bwd Factor access rate

MB (sec) (sec) (MB/s)
In core

8 317.5 0.9 0.9 —
OOC (Out-Of-Core)

8 317.5 3.6 4.5 92.6
4 635.0 45.9 15.1 83.3
2 1 270.1 129.4 93.1 22.8
1 2 534.3 269.4 282.9 9.2

Table 4.1: Influence of memory used per node of the Cray XD1 on the performance of the parallel solve phase on matrix
QIMONDA07. The OOC is based on a simple SYSTEM_BASEDapproach.

On 8 processors, we see that the extra time required in both forward and backward
phases for the OOC execution corresponds to copying the factor data at a rate of 92.6
MB/s so that the copy is not all from the disk but from the system cache. Indeed
the SYSTEM_BASED demand driven approach unpredictably affects the behaviour in an
intrusive way. Even if the factors were written to the disk during the factorization, a
significant part of them still remains in the system caches, so that the cost of accessing
them during the solve phase is the cost of a main-memory access. The OOC execution
allows us to decrease the number of processes used by increasing the local factor size per
process. The fewer processes that are used, the fewer factors remain in the system caches
and, as a consequence, the speed of access to the factors decreases. OnQIMONDA07, the
size of the total workspace for sequential in-core factorization (5 GB) is bigger than the
available memory (4 GB). In OOC execution, a working space ofsize 2 GB is still needed
during the factorization so that the system cannot keep all the factors in the system caches
at the end of the factorization phase. Some factor blocks must then be loaded from the
disk. In this case, increasing the number of disk accesses will increase the execution time.
On one process, the disk access speed is really slow – 9.2 MB/s. Note that the peak speed
of a memory read from the disk is 16 MB/s, so that the minimum time just to load all the
factor blocks is 158 seconds.

We thus see that, when the memory is critical, the performance of the
SYSTEM_BASED approach is far from the optimal. The reason is that the system I/O
mechanism is in conflict with the automatic system swapping mechanisms [33, 69].

As shown in Table 4.1, the SYSTEM_BASED approach is inefficient on large matrices,
when the volume of data on the disk is larger than the memory size. In this case, we
observe the so calledswapping effect: the system decides when and which data to swap
to the disk. The decision is done by the system and is often based on a variant of a
least recently used strategy. Note that the system has no knowledge of the data access

47

48 Out-of-Core (OOC) main features

pattern of the algorithm. Furthermore, the fact that the system cache grows with each
disk access (reading or writing data) is even more critical.It is impossible to control the
actual memory used: either its size or the effective bandwidth for accessing the disk. So
we do not know how much real memory is used. Moreover, the system cache management
may lead to user space swaps - on our own or on other user’s data, or even other system
processes. Thus, if we consider that OOC is requested when the memory is limited, this
unpredictable behaviour is likely to occur very often.

These drawbacks lead us to look for a new mechanism to load data from the hard disk.

48

Chapter 5

DIRECT_IO based method

5.1 Introduction

In this section we present a new approach based on direct access to the hard disk, that
will be named DIRECT_IO. Using the DIRECT_IO access, the user has full knowledge
and control of the memory used. This is a specific feature existing on many operating
systems that can be specified while opening the files. Data must be aligned in memory
when using DIRECT_IO mechanisms: the address and the size of the buffer must bea
multiple of the memory page size. The use of this kind of I/O operation ensures that
a requested I/O operation is effectively performed and thatno caching is done by the
operating system. Strategies can then be used to prefetch data. The inconvenience of this
method is that the cache mechanism exploited by the SYSTEM_BASED approach is not
available; it is thus more complex to implement and requiresmore algorithmic effort.

Finally for portability issues we have designed a software layer (written in C) to hide
the complexity of low level direct I/O access such as the memory alignment of data. It is
based on the use of a small (around 1MB) intermediate alignedbuffer through which data
is written (read) to (from) disk. Our code may thus be used on all operating systems.

5.2 User defined buffer

To solve large problems efficiently, which is the main targetin designing an OOC
solver, we propose to use smalluser buffers to explicitly control how much data is needed
to prefetch from the disk.

Emg buffer

Emergency zone Prefetching zone

Figure 5.1: User defined buffers.

The buffer zone is divided into two areas: a prefetching zoneand an emergency one -
as we show in Figure 5.1. In the prefetching zone, all the space allocated to this is used
to load data. We prefetch each time a large enough contiguousblock in the prefetching

49

50 DIRECT_IO based method

zone is free (1 MB in our experiments). The emergency zone is used when a block factor
is not prefetched or not ‘on the way’ (part of a prefetch request - see Algorithm 5.1). It
has to be as large as the largest factor block. In this zone we load only one factor block at
a time and it is used only in so called emergency cases.

The size of the user buffers can influence the performance of the solve phase. The
size of the emergency bufferEmgSize(p) is defined as the largest block factor mapped
on processorp . Let AvgEmgSize denote the average ofEmgSize(p) over the
processors. LetFactorSize(p) be the size of theL factors per processor and let
AvgFactorSize be its average size. The prefetching buffer zone on each processor
PrefetchBufferSize(p) is then defined as

PrefetchBufferSize(p) =

max
“

min
“

10 × AvgEmgSize,
AvgFactorSize

4
, 500 MB

”

,EmgSize(p), 10 MB
”

(5.1)

The total size of buffers per processor is then

Size of buffers(p) = PrefetchBufferSize(p) + EmgSize(p) (5.2)

In the context of our study we want to control the buffer size with respect to
a fixed value (here500 MB) and with respect to the volume of I/O per processor
(AvgFactorSize/4). We thus reduce the buffer size when increasing the number
of processors and limit the difference of the buffer sizes onthe processors (upper bounds
based on average distributions) and finally to enable some prefetching for our algorithms
(10 × AvgEmgSize). In the remainder of this thesis, equation (5.2) will be used to
define the size of the buffer area for our experiments.

5.3 States of a node

The implemented algorithm reduces the disk access to the strict minimum - each item
of data is loaded only once and kept in memory until it is used.To handle this, four states
of the node are used to describe these transitions, (see Figure 5.2).
For every node the possible states are:
— on disk only - data is not available in the main memory
— on the way- data is not available, but it is being loaded
— ready - data is in the buffer and is ready to be processed
— used - data is in the buffer but has been already used. Corresponding space can
be freed.

on the way

ready

used

on disk only

Figure 5.2: The 4 possible states of the node

50

5.4 Comparison ofSYSTEM_BASED and DIRECT_IO methods 51

The statement ‘on disk only’ means that the factors are not yet accessed. If we need
to access data ‘on disk only’, we have to verify that there is enough free space in the
buffer to load the data. The statement ‘on the way’ corresponds to data that is not yet
in main memory, but we know that it is being loaded. So we may have to wait until the
data is ‘ready’. After the prefetching process, all loaded data in the user buffers is in the
state ‘ready’.

Here we use again the algorithms presented for the in-core execution (see Algorithms
3.2 and 3.3) with some additional functionalities (see Algorithm 5.1). Loading data is
performed each time enough contiguous free space becomes available in the prefetching
zone.

Before processing a node, we check whether it is ‘ready’ or ‘on the way’, or whether
we need to load it in the emergency buffer. The verification ofdata availability is done
each time we have ‘Use_factors ’ in the algorithms.

Algorithm 5.1 : OOC functionalities for the DIRECT_IO approach
1: if (OOC run)then
2: if (factors ofInodeare ‘on disk only’)then
3: Load data from disk (emergency loading ofInode)
4: else if (the factors ofInodeare ‘on the way’)then
5: wait until the end of the prefetch
6: end if
7: end if
8: Use_factors to do ...

5.4 Comparison ofSYSTEM_BASED and DIRECT_IO methods

5.4.1 Sequential case

To compare the behaviour of our out-of-core schemes with respect to an in-core
execution, we report in Table 5.1 the sequential time neededfor both phases of the
solution step on theAUDI matrix. For this test we want an architecture with enough
shared main memory. So, for this experiment only, we use an AMD Opteron based node
equipped with32 GB of memory and4 high performance disks managed with a RAID0
scheme. We see that when all data (working arrays and factors) fits in main memory the
SYSTEM_BASED approach is four times faster than the DIRECT_IO approach. Note also
that the performance of the DIRECT_IO approach is limited by the disk bandwidth (time
needed to read factors for a given phase is near to55 seconds, corresponding to an
access rate of220 MB/sec).

Time in sec
Methods Fwd Bwd

in-core 3.8 3.8
out-of-core SYSTEM_BASED 17.2 17.3

DIRECT_IO 67.3 72.9

Table 5.1: Comparison of time (in seconds) needed for sequential solution step in both out-of-core and in-core for theAUDI matrix.

We then compare the performance of the SYSTEM_BASED and the DIRECT_IO
approaches on the large matrixQIMONDA07 in a sequential environment and also analyse
the behaviour of our algorithm when using the emergency buffer and/or the prefetch
buffer. When only the emergency buffer (Emg) is used (PrefetchBufferSize set
to zero in equation (5.2)), the total number of requests to the disks (Nb_Req Fwd and

51

52 DIRECT_IO based method

Nb_Req Bwd) is high (equal to the number of nodes in the elimination tree) and incurs a
very significant time overhead (see Table 5.2). Using a prefetch buffer of small size, our
prefetching mechanism can anticipate and in this case suppress the use of the emergency
buffer.

Methods Fwd Bwd Nb_Req Fwd Nb_Req Bwd
(sec) (sec) Prefetch Emg zone Prefetch Emg zone

DIRECT_IO (Emg) 1160.6 1295.8 0 3 083 998 0 3 083 998
DIRECT_IO (Emg+Prefetch) 171.5 176.8 541 0 496 0
SYSTEM_BASED 269.4 282.9 — — — —

Table 5.2: Influence of the number of buffers on the uni-processor performance onQIMONDA07. Fwd=forward phase.
Bwd=backward phase. Emg zone:1 MB; Prefetch buffer:10 MB.

As the total size of the factors is in this case bigger than theavailable memory (2 GB),
both the SYSTEM_BASED and the DIRECT_IO approachesreally load factors from disk.
Thus it becomes possible to compare their execution time on the solve phase. We see that
the DIRECT_IO time is better for both forward and backward steps; thereis, however, an
even more major reason to favour this approach.

The main advantage is that the memory effectively used for buffers in the DIRECT_IO
approach is10 MB whereas the cache for the SYSTEM_BASED approach may be as large
as 2.5 GB (the size of the factors). The performance of the solve is thus stabilized using
the DIRECT_IO strategy, while controlling the size of the buffers.

5.4.2 Influence of parallelism on the performance

L factor size Facto Workspace
Matrix Avg Max time Procs Methods per proc Fwd Bwd
name (MB) (MB) (sec) (MB)

sb (*) 269.4 282.9
QIMONDA07 2534 2534 95.4 1 od 12 171.5 176.8

sb (*) 595.3 1061.2
CAS4R-L15 2416 2547 509.4 2 od 559 336.3 270.1

sb (*) 446.1 448.1
CONESHL 5908 5908 706.8 1 od 709 375.2 378.3

sb (*) 158.4 239.0
NICE20MC 1537 1689 418.2 6 od 491 148.7 225.2

sb (*) 298.6 573.5
AUDI 2741 2872 728.9 4 od 676 231.8 355.2

sb (*) 680.2 808.9
GRID3.5M 7860 7900 753.8 2 od 639 507.0 519.0

sb (*) 334.8 507.4
COR5HZ 2702 2970 797.7 8 od 660 397.1 476.5

sb (*) 512.4 1291.8
AMANDE 1404 1625 2874.5 20 od 425 725.9 964.8

sb (*) 596.8 1299.4
NICE9HZ 3208 3651 2030.5 20 od 893 685.9 1050.2

sb (*) 439.8 614.5
GRID5M 4259 4356 447.4 4 od 699 325.4 554.0

Table 5.3: Time performance of the DIRECT_IO (od) and the SYSTEM_BASED (sb) methods; Workspace holds the average
working space used by the solve phase (including prefetching buffer defined in equation (5.2)). ((*) It cannot be estimated in the
SYSTEM_BASEDapproach because of the system cache).

To illustrate the performance of the two approaches with respect to CPU time, we show
in Table 5.3 the parallel behaviour of the solve phase on our complete set of test matrices.

52

5.5 Influence of scheduling 53

We are interested in the case where factors are written to disk during the factorization
phase because memory was limited. For the sake of clarity we thus assume that before
each step (forward or backward) the system cache is flushed sothat we are sure that both
the SYSTEM_BASED and the DIRECT_IO approaches will have to read theL factors
from disk. For each matrix, the minimum number of processorsrequired to run the
factorization phase was used (columnProcs in Table 5.3). We show for comparison
the factors size and factorization time for each matrix, as the average working space used
by the solution phase. We then compare the performance of theforward and backward
substitutions on the SYSTEM_BASED and the DIRECT_IO strategies. We see that, in
parallel, the SYSTEM_BASED approach does not efficiently prefetch theL factors from
the disk.

We note also that the backward step can be much slower then theforward step,
especially on parallel runs. A possible explanation is thatthe backward substitution reads
data from disk in a more irregular way. Since for an already processed parent node often
there are more then one direct sons, choosing to process a sonbefore another one will
impact the order of needing and loading factors data on all processors. Thus irregular
readings may occur. We remind, that the performance of the OOC solution phase is
strongly related to the regularity of disk access.

5.5 Influence of scheduling

In the previous section, we have thus shown that the SYSTEM_BASED approach is
not efficient in terms of both memory (no control of the effective memory used) and
time (automatic system based prefetching is not adapted to aparallel execution). In this
section, we analyse in more detail the parallel behaviour ofthe DIRECT_IO approach
and focus on the influence of task scheduling on the performance. It is possible to use any
scheduling algorithm to choose the order in which to processnodes in the pool of tasks.
That is, we add nodes only at the end of the pool, but we can extract them in any order.
A LIFO (Last In First Out) strategy was used in the initial Algorithm 3.1 because it is an
optimal strategy for sequential execution (in terms of regularity of disk access to block
factors).

5.5.1 Sequential performance

The order in which nodes are extracted from the pool can be very critical for the
execution time because this will influence the order in whichdata is read from the disk.
Indeed solving a matrix using irregular access to the hard disk could slow down the
time for both forward and backward steps by a factor of more than 10 (see Table 5.4).
Therefore an efficient scheduler has to be implemented to reduce the number of disk
accesses and to improve the regularity of accesses.

Scheduling the order of a node’s processing is possible in the pool of tasks. We add
nodes only at the end of the pool, but we can extract them in anyorder. We show the
differences between two strategies - FIFO and LIFO, in termsof disk access (Figures 5.3
and 5.4 respectively). We describe how the factor data are stored on the hard disk and
how, by using the assembly tree, we add into the pool all the ready tasks at each step.

53

54 DIRECT_IO based method

We use three data structures: the assembly tree (task dependency), the pool of tasks
(only for the ready tasks) and the user buffers (to load data from the disk). The structure of
the user defined buffers (prefetching and emergency zone) has been already described in
Section 5.2 . In this example, we do not differentiate the states ‘on the way’ and ‘ready’.
All prefetched data are thus ready to be used. In our figures, thearrowspoint to the node
to be processed. The numbers in grey with a diagonal line across represent already used
data. Thus the space related to these entries in the prefetching zone can be used for further
load of data. Each time we have to process a node that is not in memory, we load it to the
emergency (Emg) buffer. In this example, prefetching is performed each time half of the
prefetching zone is free (because the associated node factors are in the state ‘used’). The
second zone (Emg) is used only if the data needed is not already prefetched in the user
buffer.

11109

10 7 6 4 2 1

54321 6 7 8 9 10 11

10 7 6 4 3

... POOL − beginning of BWD

Pref. Zone EMG

 1 2

 3 4

 5

 6 7

 8

9 10

 11

Post−order numbering
of the assembly tree

POOL − beginning of FWD

9

5 8

9

11

BWD

FWD

Factor block locations on disk

7 89

810

10

9 7

1 3

1 3

5 3

2

2

6

4

4

4

10

86 75

10 7 6 4 2

end of the pool

Figure 5.3: Algorithm with a LIFO processing of the tree in sequential mode

In Figure 5.3, we present the optimal (for sequential execution) LIFO (Last In
First Out) strategy for extracting a node from the pool. Herewe have no calls to the
emergency zone during both forward and backward steps.

In Figure 5.4 we use a FIFO (First In First Out) strategy to extract the nodes from
the pool. Starting with the forward step, the leaf nodes are added into the local pool
so that the post-ordering is respected (from the end to the beginning of the pool). The
prefetching zone loads data in the forward direction from the disk. Nodes 10, 7, and 6
are loaded through the emergency zone. Loading data in the Emg zone often leads to an
irregular access (of relatively small size) to the data on the hard disk. This will influence
the execution time of the whole phase.

For the backward step, the prefetching zone has been loaded data in the backward
direction from the disk. Firstly, the root node is extractedfrom the pool and processed.
Nodes 7 and 8 are, in our case, prefetched in place of the root factor block. This time
we have less emergency calls and more regular access to the disk. Similar effects are
observed on real matrices, which explains the relatively better behaviour of the backward
step with the FIFO strategy (see Table 5.4).

54

5.5 Influence of scheduling 55

 1 2

 3 4

 5

 6 7

 8

9 10

 11

54321 6 7 8 9 10 11

11

9 10

1 2 3 4

1 2 3 4

1 2 3 4

10 7 6 4 2 1

end of the pool

... POOL − beginning of BWD

EMG

of the assembly tree
Post−order numbering

7

6

10

11109

9 7 810

9 7 810

beginning of FWD

BWD

FWD

Factor block location on disk

Pref. Zone

Figure 5.4: Algorithm with a FIFO processing of the tree in sequential mode

We present the results of the two strategies in Table 5.4. We compare the time for the
forward and for the backward step with the minimum time needed if all factor data could
be loaded at once (T_min). We compare, also, the number of requests per step for the
prefetching zone and the emergency one (Nb_Req). Note that the FIFO strategy, which
does not respect the node order on the disk, is significantly slower than the LIFO strategy.
Furthermore, as expected, the forward step is even slower than the backward step in this
case.

Strategy T_min T_Fwd T_Bwd Nb_Req Nb_Req Nb_Req Nb_Req
Prefetch Emg zone Prefetch Emg zone

(sec) (sec) (sec) Fwd Fwd Bwd Bwd
LIFO 158.4 171.5 176.8 541 0 496 0
FIFO 158.4 2 360.9 1 480.1 338 3 054 580 30 053 2 877 695

Table 5.4: Influence of the scheduling of the tasks onQIMONDA07 in sequential. Emg buffer =1 MB; Prefetching buffer =10 MB

Running sequentially, the FIFO based extraction shows how critical the scheduling can
be on the performance. LIFO scheduling is optimal for the sequential case and guarantees
contiguous reading of factors from disk.

In parallel, we cannot guarantee a post-ordering of the nodes. Thus two leaf nodes can
be processed in parallel at the same time. But the parent nodewaits for all of its children
before being processed, respecting the topology of the tree(topological ordering). A
contiguous access to the factors may not be respected and thus similar effects to those
presented here can be expected.

5.5.2 Parallel performance withLIFO scheduler

Here we analyse in more detail the parallel behaviour of the DIRECT_IO approach. We
first compare in Table 5.5 the time for the forward and backward steps with the minimum
time (T_min) to load factors from the disk on theQIMONDA07 matrix. Note that T_min
depends on the maximum bandwidth (16MB/s) and the factor size on the most loaded
processor (columnFactor Size per proc of Table 5.5). We also report in the
4 last columns the number and the type of buffer requests per step. On one processor, a
LIFO order to extract tasks from the pool leads to a contiguous access to the hard disk.
In parallel, we cannot guarantee that the order of processing of the tasks (and the factor
blocks) will correspond to the order used to write them to thedisks. We see in Table 5.5

55

56 DIRECT_IO based method

that work needs to be done on the scheduling to reduce the gap between the minimum
time to load factors and the actual time, particularly for the backward substitution.

Nb Factor Size T_min Fwd Bwd Max Nb Requests per step
Strategy of per proc(∗) Fwd (∗) Bwd (∗)

Procs (MB) (sec) (sec) (sec) Prefetch Emg zone Prefetch Emg zone
LIFO 1 2 534 158.4 171.5 176.8 541 0 496 0
LIFO 2 1 270 79.9 89.6 88.7 274 0 250 0
LIFO 3 846 57.9 64.9 262.1 190 3 169 422 497
LIFO 4 635 41.3 47.2 91.6 138 0 127 0
LIFO 6 423 31.5 38.0 186.7 102 6 86 422 498
LIFO 8 317 21.8 24.9 137.6 70 0 64 321 871
LIFO 16 159 11.9 13.2 94.4 39 2 32 214 245
LIFO 24 105 9.0 10.9 48.5 42 5 38 119 792
LIFO 32 79 8.2 9.1 53.1 25 1 30 116 209

Table 5.5: Influence of the parallelism onQIMONDA07 using LIFO strategy. Emg=emergency buffer:1 MB; Prefetch buffer:10MB
per processor;(∗) : Max per processor.

In fact, this gap is correlated with the large number of emergency calls during
the backward step. Note that, in this example, we have many fewer emergency
requests during the forward step than during the backward step. One reason is that the
QIMONDA07 matrix has many nodes of relatively small size, so we have arelatively small
number of Type 2 tasks that could require the use of the Emg buffer. Another reason,
illustrated in the following discussion, is that one can expect the backward step to be more
sensitive to scheduling than the forward step. Indeed, at the beginning of the backward
step, we have in general a small number of root nodes, mapped onto few processors. The
other processors have no work and are waiting. During the backward step, the end of one
task results in the activation of multiple other tasks on other processors. Furthermore, if
we choose to process a nodeInode, a LIFO strategy will induce the processing of all of its
children before the brother ofInode. If the factors of this node,Inode, are not in memory
then the factors of the children ofInodewill not be in memory either. This will lead to
emergency requests.

5.5.3 Illustration of the high number of emergency calls with LIFO scheduler

We illustrate the limitations of the LIFO scheduler on the small example described
in Figure 5.5. For the given assembly tree mapped onto two processors (P1 and P2), we
show at the beginning of the backward step, the data in the prefetching zone and the pool
of tasks. To simplify the illustration of our algorithm, we assume that the root is mapped
on both processors and that all other nodes are mapped on onlyone processor (Type 1
nodes). We will comment on the effect of Type 2 nodes in our algorithm later. Some
data are pre-loaded in the prefetching zone on both processors, respecting the backward
step direction of needed data. With a LIFO scheduling, afterprocessing the root node,
P1 continues with the only node in its POOL (node 3). This nodeis not ‘in memory’ and
requires an emergency access. Furthermore, if node 1 is added to the pool after the end of
node 6 on processor P2 (that would add nodes 4 and 5 to the pool of processor P1), then
accessing the factors of node 1 will lead to another emergency call.

On the other hand, during the forward phase, where we exploitthe large task
independence of the leaves, all processors often have at least one node to process. In this
case, all processors start working at almost the same moment. As the work is distributed

56

5.5 Influence of scheduling 57

2 76

4 75

76

3 6

4 5 1

 1 4 5

 3

77P1 P2

P2

P1

P2

P1P2

P2P1

P1

 2

 6

POOL LIFO strategy

Disk
Location of factors:

4 751 3P1

P1P1

P1 P2

P2P1 ,
 7 Pref. Zone

Figure 5.5: Limitations of LIFO scheduling in parallel execution during the backward step.

regularly among the processors, they will progress in a synchronous way. The algorithm
will more naturally process the complete tree respecting the post-ordering of the nodes in
the tree.

For all these reasons and since we have seen in Table 5.5 that the performance of the
backward phase is critical even on a limited number of processors, we describe in the
following chapter a modification of the scheduler.

57

58 DIRECT_IO based method

58

Chapter 6

Scheduling to improve performance

6.1 NNS scheduler

6.1.1 Description of the algorithm

One way to limit the number of disk accesses is to follow strictly the write sequence of
the factorization step. By doing so we will always get the node at the top of the memory.
We hope that this new algorithm will free more contiguous space in the prefetch buffer,
so that less emergency calls will be needed. We define theNext Node in the Sequence
(NNS) to be the next node to be processed with respect to the write sequence on the disk
(dynamically decided during factorization). During the forward step it will be the next
non-processed master-node whereas during the backward step it will correspond to the
previous non-processed master-node.

We will firstly focus on the backward phase.

3 6

77

3 4 5

2 76

4 75

76

3 6

4 5 1

 1 4 5

 3

77P1 P2

P2

P1 P2

P1

P1 P2

POOL NNS strategy

Wait

P2

P1

P2

P1P2

P2P1

P1

 2

 6

POOL LIFO strategy

Disk
Location of factors:

4 751 3P1

P1P1

P1 P2

P2P1 ,
 7 Pref. Zone

Figure 6.1: Comparison of LIFO and NNS extraction from the pool.

This so called NNS strategy is illustrated in Figure 6.1 showing a comparison with the
LIFO scheduling. One can see that with a LIFO strategy, node 3was added to the pool
for P1 at the end of the process of the root node 7 mapped on bothprocesses. Node 3 was
then treated by P1 before nodes 4 and 5. On the other hand, withthe NNS strategy, node

59

60 Scheduling to improve performance

3 is not processed. P1 waits for node 5 to be added to the pool since it is the next node in
the sequence after node 7.

Note that slave tasks are not considered in this sequence. The slave tasks, for Type 2
nodes, are processed on the fly (do not use the pool) and are driven by the order in which
the messages are received. Our new algorithm (fully described in Algorithm 6.1) thus
consists in respecting the sequence order to process nodes on each processor.

In the following, we first describe the new NNS strategy to extract work from the pool
and we prove that we can safely wait for the NNS node.

In our NNS algorithm (Algorithm 6.1), a new ‘blocking receive’ (at line β) has been
introduced with respect to Algorithm 3.1. The main difference between the blocking
receive from the original algorithm (at lineα of Algorithm 6.1) and the one introduced
at line β is that, at lineβ , our blocking receive is performed while we have tasks ready
to be activated in the pool. Since this is done separately on each processor (local pool) we
will have to prove that it does not introduce a deadlock between processes.

Changes made to our scheduling Algorithm 3.1 are written with larger font in
Algorithm 6.1. All unchanged parts are written in tiny characters.

Algorithm 6.1 : SchedulingPOOL with next node in the sequence (NNS) strategy

1: Step = Fwd or Bwd
2: if (Fwd) then

3: Initialise POOLwith the leaf nodes mapped onMyid
4: Initialise NNS pointer to the first leaf node
5: else

6: Initialise POOLwith root nodes mapped onMyid
7: Initialise NNS pointer to the first root node
8: end if
9: while (Not finished)do

10: if (POOL is not empty)then
11: if amessage is availableProcess_Message(message) [See Algorithms 3.2 and 3.3]
12: else
13: α Wait for amessage and thenProcess_Message(message) [See Algorithms 3.2 and 3.3]
14: end if
15: if (POOL is not empty andProcess_Messagenot called)then

16: if (NNS in POOL) then
17: Inode= NNS ; Update NNS
18: if (Fwd) Fwd_Process_node(Inode) [See Algorithm 3.2]
19: if (Bwd) Bwd_Process_node(Inode) [See Algorithm 3.3]
20: else
21: β Wait for a message and thenProcess_Message(message)
22: end if
23: end if
24: end while

To prove the correctness of our new algorithm, we will formulate and demonstrate two
more properties, based on the assembly tree and the task dependency.

Property 6.1. Forcing the sequence to schedule nodes as in Algorithm 6.1 does not
introduce deadlock.

Proof: First of all, as explained before, Type 2 slave tasks do not go through the pool
of tasks and are processed ‘on the fly’ (at the reception of a messageMASTER2SLAVE
for both forward and backward steps). Therefore, our blocking receive will not prevent
us from treating such slaves tasks. Type 3 tasks are only concerned with the largest root
node of which only the master task will go through the pool. Inour proof, we can thus

60

6.1NNS scheduler 61

focus on the master tasks (of any type) since they are the onlyones that might be blocked
in the local pool.

Let us focus on the backward case. (The proof for the forward case is similar and can
be easily deduced from the backward case.)

Let NBps be the number of processes and let us suppose that we have a deadlock
betweenr processes (r ≤ NBps). On each processPi (i ∈ [0 .. r − 1]), let NPi

be
the next node not processed in the sequence of processesPi .

We first mention/prove a simple intermediate property between nodes ready to be
activated in the local pools.

Property 6.2. During the backward step, if nodej is ready on processPi , then j is not
an ancestor ofNPi

.

Proof: Thanks to the main elimination property, ifj were an ancestor ofNPi
then

it would be in the sequence of the backward step beforeNPi
. This contradicts the

definition of NPi
. ⋄

Proof of property 6.1(continued)
Let NPi

i ∈ [0 .. r − 1] be the nodes in the sequence that processesPi are waiting for.
If NP0 is not ready (not in the pool), then it means that one of its ancestors (j1) has not
been processed. Because of Property 6.2,j1 cannot be ready in the pool ofP0 . Let us
suppose, without loss of generality, thatj1 is in the pool of processP1 . Furthermore,
on processP1 , NP1 is not in the local pool. (Note thatNP1 might be equal toj1).
Therefore there exists an ancestorj2 of NP1 , ready to be activated on another process
P2 . Either NP2 is equal toNP0 and we have a cycle of dependencies between processes,
or we can continue and will end up with a cycle betweenr processes.

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

P0

processednot readyready

P1

not ready processedready

P2

processednot readyready

j2 N P2

N Pj0

j1 N P1

0

Figure 6.2: Local factor sequence on each process.NPi
is the next node in the sequence, not processed

and not ready in the local pool or processPi ; ji+1 is a ready node, an ancestor ofNPi

Let us suppose that we have reached a cycle of sizer′ , r ≥ r′ ≥ 2 . Let

(NP0 , j1), (NP1 , j2), (NP2, j3), ...(NPr′
, j0)

be such a cycle, wherej0 is ready on processP0 and is an ancestor ofNPr′
. In each

couple (NPi
, ji+1) ji+1 is an ancestor ofNPi

and is thus processed strictly beforeNPi

in the backward sequence. Furthermore, by the definition ofNPi
, NPi

is in the sequence
before any node in the local pool ofPi . Let → denote the precedence in the backward
sequence.x → y mean thatx is beforey in the backward sequence.

a
→ indicates an

61

62 Scheduling to improve performance

ancestor relation,x
a
→ y indicates thatx is before y becausex is an ancestor ofy .

(Note thatx
a
→ y implies x → y and x 6= y). We thus have :

j0
a
→ NPr′

→ jr′
a
→ NPr′−1

... j2
a
→ NP1 → j1

a
→ NP0 ,

which means thatNP0 is not the first ready nodein the sequence of processP0 , since
j0 is ready and is beforeNP0 in the sequence. Thusj0 is equal toNP0 . Furthermore,
thanks to our cycle,j0 is beforej1 in the sequence (j1 6= j0), which contradicts the fact
that j1 is an ancestor ofNP0(= j0) located on processP1 . We have thus proved that
our algorithm does not introduce any deadlock.⋄

Normally, the next node in the sequence is located at the end of the prefetch buffer,
and processing this node will free more contiguous space in the buffer. We hope that this
will lead to more regular disk access and will improve the performance especially for the
backward step in a parallel environment.

Nb Fwd Bwd
Strategy of

Procs (sec) (sec)
LIFO 1 171.5 176.8
LIFO 2 89.6 88.7
LIFO 3 64.9 262.1
LIFO 4 47.2 91.6
LIFO 6 38.0 186.7
LIFO 8 24.9 137.6
LIFO 16 13.2 94.4
LIFO 24 10.9 48.5
LIFO 32 9.1 53.1

Strategy Nb of T_min Bwd Nb_Req(∗)

Procs in Bwd step
(sec) (sec) Prefetch Emg

NNS 1 158.4 177.2 496 0
NNS 2 79.9 93.7 250 0
NNS 3 57.9 65.5 174 1
NNS 4 41.3 50.5 117 0
NNS 6 31.5 37.9 93 0
NNS 8 21.8 45.2 57 0
NNS 16 11.9 13.8 36 0
NNS 24 9.0 13.2 38 0
NNS 32 8.2 10.7 34 0

Table 6.1: Influence of the NNS scheduling onQIMONDA07. Emg=emergency buffer:1 MB; Prefetch buffer:10MB per processor;
(∗) : Max per processor.

The results, presented in Table 6.1 show that using the NNS strategy on the
QIMONDA07 matrix significantly improves the performance in the backward step on
parallel runs. The time for the backward substitution has a more realistic behaviour and
is reduced by a factor of 5 (compare Tables 5.5 and 6.1 on 6 processors: LIFO strategy –
186.7 sec and NNS strategy – 37.9 sec). As shown, the NNS strategy is much closer
to the minimum time for loading factors from disk. Indeed, weobtain a performance
only 20% more than the minimum. The only exception is with 8 processors, when the
performance/ the run-time is twice as slow as the T_min. Thisunusual behaviour of the
performance with 8 processors shows that the NNS strategy isnot the optimal way to
schedule tasks in the pool. Until now, we have only focused onreducing the emergency
calls. As the NNS strategy uses the factorisation write sequence, it is related also to the
elimination tree structure computed during analysis and the partial mapping of the tasks
onto the processors as well as the tree traversal resulting from the dynamic decision taken
during the factorization phase. In some cases, as with 8 processors, choosing to follow
the write sequence obtained during factorization could produce the undesirable effect of
stalling a particular node by a blocking receive, while other nodes, in the pooland in the
user buffer, are ready to be processed.

In our new algorithm the slave tasks of type 2 nodes might still involve requests to the
Emg buffer and/or to be prefetched out of sequence. (This is the case for the backward
step, when 3 processors are used, in our case.)

62

6.1NNS scheduler 63

QIMONDA07 has a large number of relatively small nodes, with a relatively small
number of Type 2 nodes. This explains why our NNS algorithm usually has no emergency
calls in both steps of the solve phase. The influence of the slave tasks on the performance
can thus be expected on large 3D matrices for which a large number of Type 2 nodes is
requested.

6.1.2 Experiments withLIFO and NNS strategies

In this section the NNS and LIFO schedulings are compared on all our test matrices.
One main difference with respect to theQIMONDA07 matrix used in the detailed analysis
of the previous sections is that for the other matrices the factor block is on average much
larger and thus results in a large number of type 2 nodes.

The parallel behaviour of each matrix is reported on the minimum number of
processors required to run the out-of-core factorization phase with one MPI process
per node of the CRAY XD1. For each matrix and each run with the same number of
processes, the same physical processors are used with LIFO and NNS to guarantee
similar experimental conditions. The workspace size for the solve phase is divided
between two buffers –Prefetch and Emg (see Figure 6.2). The average (Avg) and
the maximum factor size (Max) are included in our tables firstly to show that the factors
are well equilibrated among the processors and secondly to compare the maximum factor
size with the effective maximum workspace used during the solve phase. Indeed, one
main property of the DIRECT_IO strategy is that we explicitly control the size of the
working space used. Increasing the workspace would help ouralgorithm so that it is
critical to show that our runs are performed in a limited-memory environment. For each
test we report the performance (time and number of accesses to the buffers) obtained
during forward (Fwd) and backward (Bwd) substitutions.

We first comment on the effect of equation (5.1) on the size of the prefetch zone. On
CONESHL with 1 processor, 709 MB of working space are used for5.9 GB of factor
data (209 MB for the emergency buffer and 500 MB for the prefetching zone). For larger
number of processors, the increase in the number of Type 2 nodes leads to a decrease
in the size of the factor blocks which results in a decrease inthe size of the buffers. In
Table 6.9, however, we see that with the matrixNICE9HZ when the size of the emergency
buffer remains relatively large with respect to the maximumfactor size then equation (5.1)
limits the size of the prefetch zone to 500 MB which is only 1.27 times the size of the
emergency buffer. This will limit the capacity of the algorithm to perform prefetching.

Furthermore, for a given matrix, the decrease in the size of the factors often leads to
a decrease in the time for both the forward and the backward steps. As observed in the
previous section, one can see a correlation between the performance and the number of
accesses to the emergency buffer. However, although an access to the emergency buffer
will always block the process during the time to load the corresponding block factor
from the disk, its effect on the node tasks mapped on other processes will depend on the
mapping of the tree to the processes. Therefore one should not expect that the smallest
number of emergency calls will result in the best performance (see, for example, Table 6.3
on 8 processors with strategy NNS : 14 Emg calls and 64.3 sec during forward compared
to 2 and 67.0 sec during backward). It is clear, however, thatthe backward step is more
sensitive to the accumulation of those time delays even if with the NNS strategy this is
significantly reduced with respect to the LIFO strategy. On all matrices, we see that the

63

64 Scheduling to improve performance

NNS strategy is better both during forward and backward steps in limiting such effects
by forcing an order compatible with the order used to write the factor blocks during the
factorization. For both phases, the NNS strategy also ensures more regular disk access
and significantly improves the execution time for all our test matrices.

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 2 509.4 2416 2547 500 59 336.3 270.1 11 0 11 3279
NNS 334.0 269.7 11 0 10 0
LIFO 4 264.6 1200 1291 300 34 221.0 356.3 11 10 10 133594
NNS 220.0 190.6 12 1 14 1
LIFO 8 158.4 596 756 149 34 165.5 203.3 20 68 10 74582
NNS 117.7 99.9 14 8 10 1
LIFO 16 99.5 295 336 74 10 102.7 156.0 25 129 10 37861
NNS 63.9 84.1 21 28 10 4
LIFO 32 76.2 146 170 36 6 47.0 102.3 16 74 13 37055
NNS 44.5 69.8 15 10 10 2

Table 6.2: Parallelism onCAS4R-L15

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 1 706.8 5908 5908 500 209 375.2 378.3 27 3 26 5
NNS 374.7 378.3 27 3 26 5
LIFO 4 220.8 1465 1481 366 77 102.6 139.0 9 6 8 2
NNS 102.4 133.9 9 6 8 1
LIFO 8 134.3 726 987 181 52 63.9 95.7 15 14 13 12
NNS 64.3 67.0 13 14 12 2
LIFO 16 80.3 360 393 90 12 36.3 64.6 12 17 9 6488
NNS 33.6 48.2 10 10 9 2
LIFO 32 76.9 179 221 44 7 24.8 40.2 19 60 11 4040
NNS 22.9 33.6 20 89 20 21

Table 6.3: Parallelism onCONESHL

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 6 418.2 1537 1689 384 107 148.7 225.2 10 6 8 5602
NNS 134.5 158.6 10 0 9 0
LIFO 8 351.4 1147 1232 286 90 126.9 153.2 10 20 11 4570
NNS 120.7 135.3 14 9 9 2
LIFO 16 236.3 564 774 141 26 116.9 116.7 24 205 13 5042
NNS 92.7 80.1 18 42 13 27
LIFO 32 162.9 276 399 69 21 67.2 76.2 37 214 22 2578
NNS 57.5 57.1 40 114 21 607

Table 6.4: Parallelism onNICE20MC

64

6.1NNS scheduler 65

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 4 728.9 2741 2872 500 176 231.8 355.2 3 1 4 7179
NNS 218.3 233.5 14 0 12 1
LIFO 8 407.1 1354 1480 338 216 152.5 215.5 15 45 13 12523
NNS 147.8 166.2 11 23 10 1
LIFO 16 306.4 664 955 166 81 144.8 159.0 29 65 16 7314
NNS 118.2 121.0 22 52 20 452
LIFO 32 202.7 325 573 81 20 73.7 101.4 29 86 27 4315
NNS 73.3 80.4 42 151 36 63

Table 6.5: Parallelism onAUDI

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 2 753.8 7860 7900 500 139 507.0 519.0 37 0 34 0
NNS 506.0 513.6 37 0 34 0
LIFO 4 403.7 3919 3951 500 139 273.6 383.3 20 0 17 191695
NNS 273.2 293.0 20 0 17 0
LIFO 8 209.0 1948 1994 487 139 174.1 289.9 14 24 9 96156
NNS 144.9 184.9 9 1 8 0
LIFO 16 131.5 963 1041 240 139 104.5 207.0 20 27 9 48039
NNS 87.3 125.6 21 22 9 1
LIFO 32 131.0 472 593 118 39 95.6 149.4 39 225 23 60630
NNS 74.2 83.3 53 100 38 39

Table 6.6: Parallelism onGRID3.5M

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 8 797.7 2702 2970 500 160 397.1 476.5 20 16 17 26981
NNS 298.6 351.3 18 12 18 10
LIFO 12 589.6 1793 2154 448 160 249.1 447.8 18 34 15 23368
NNS 230.1 325.3 16 11 13 1
LIFO 16 503.7 1340 1584 335 160 261.7 353.7 21 52 14 14278
NNS 220.1 303.8 19 28 23 3675
LIFO 32 329.6 660 820 165 45 189.9 310.2 30 142 39 9090
NNS 185.9 218.1 22 47 19 10

Table 6.7: Parallelism onCOR5HZ

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 20 2874.5 1404 1625 351 74 725.9 964.8 31 114 23 40323
NNS 678.0 866.1 20 70 14 4
LIFO 24 2132.0 1171 1364 292 74 679.8 1071.6 25 156 27 37950
NNS 475.5 629.5 19 37 16 8
LIFO 32 1677.1 872 1028 218 43 358.9 814.6 19 37 28 28334
NNS 350.9 564.6 15 42 10 6

Table 6.8: Parallelism onAMANDE

65

66 Scheduling to improve performance

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 20 2030.5 3208 3651 500 393 685.9 1050.2 38 66 30 30735
NNS 651.8 696.7 45 78 28 35
LIFO 24 1724.3 2661 3048 500 228 642.9 844.7 39 86 30 29098
NNS 571.6 684.8 32 25 32 8765
LIFO 32 1517.7 1989 2454 497 228 559.8 734.0 52 59 51 21501
NNS 471.9 604.7 45 58 58 9293

Table 6.9: Parallelism onNICE9HZ

Nb Facto Factor Size Workspace Solve Time Max Nb Requests per step
Strategy of Time per proc (MB) per proc (MB) Fwd Bwd Fwd Bwd

Procs (sec) Avg Max Prefetch Emg (sec) (sec) Prefetch Emg Prefetch Emg
LIFO 4 447.4 4259 4356 500 199 325.4 554.0 19 1 19 413902
NNS 347.9 321.5 19 15 19 1
LIFO 8 277.6 2120 2583 500 136 247.8 368.1 15 56 10 138017
NNS 186.7 223.6 13 3 11 4
LIFO 16 165.8 1048 1113 262 66 122.7 236.0 33 116 9 71173
NNS 84.5 133.4 9 0 10 2
LIFO 32 106.4 519 567 129 30 62.6 171.6 20 221 9 34909
NNS 45.2 77.1 20 15 9 1

Table 6.10:Parallelism onGRID5M

6.2 BPN scheduler

6.2.1 Description of the algorithm

Our NNS strategy, strictly follows the write sequence on disk. Thus sometimes we
chose to wait for a specific node (NNS node) even if there are other nodes in the pool
of tasks, ready to be processed. Our motivation was to have the read sequence of factors
follow the write sequence resulting from the factorization. Thus with the NNS strategy
even if some of the ready nodes in the pool of tasks have already been prefetched in
memory, we will still wait for our NNS-node. Our objective inthis section is to relax the
NNS strategy to allow ‘out-of-order’ processing of the loaded factors.

To illustrate an undesirable effect of waiting when using the NNS strategy, we will
take a small example of an elimination tree and an ordering ofthe tasks. Note that this
example, although simplified for the purpose of our discussion, results from our analysis
of matrix Qimonda07 on 8 processors.

We present an elimination tree where every node is associated with some level of the
tree (L0 ,L1 ,L2 , ...). As we said in Section [2.1] the type of parallelism dependson
the size of the node but also on its level in the elimination tree. We recall that for level
L0 each subtree is mapped onto a single processor. Above levelL0 , type2 nodes are
authorized. The tree of Figure 6.3 is mapped on two processors (P0 andP1) and has the
characteristic of a long chain of nodes, mapped onto the sameprocessor -P0 . Nodes13
and 11 have a child at levelL0 of the tree. The static mapping of all nodes is performed
during the analysis phasethat tries to equilibrate the work among the processors in terms
of factors to compute and messages to send. In our example, the whole tree is divided
into two branches that are relatively equal in terms of the volume of the factor.

We first briefly describe why the proposed order (see Figure 6.3) for traversing the

66

6.2 BPN scheduler 67

P1

P0

4 123

5

L2

L3

L0

L1

6

13

14

71012

8

9

11

Figure 6.3: Illustration of a tree mapped onto two processors during the analysis phase. Node numbers
correspond to the order in which the factor nodes have been written onto disk during the factorization
phase. Nodes on levelL0 and all their subtrees are processed on a single processor.

tree in parallel during the factorization phase makes sensewith respect to memory usage
during factorization.

During the factorization stepwe use three storage areas - one for the factors, one to
stack the contribution blocks, and another for the current frontal matrix[3]. During the
tree traversal, the memory required by the stack (containing contribution blocks) varies
depending of the order of the operations. When the partial factorization of the frontal
matrix is performed, a contribution block (CB) is stacked which increases the size of the
working memory. When the frontal matrix is formed and assembled, the contribution
blocks of the child nodes are discarded and the size of the stack decreases.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

Active Memory

e

da

b c

b c d bc

Factors

a b abcc d

Active MemoryFactors

e

da

b c

Active frontal
matrix

Contribution
Blocks

Active frontal
matrix

Contribution

Blocks

case a)

case b)

Figure 6.4: Stack memory management schemes. Noded is being assembled. Case a) nodesa, b, c have
been already processed. Case b) only nodesb, c have been already processed.

In Figure 6.4, two possible situations are presented. In case a) all leaf nodesa, b, c are
processed before the parent noded , which increases the stack memory for the CB blocks.
In case b) we reduce the peak of the stack memory by following apost-order traversal of
the tree. The decision to process a node before another one, is related to the objective of
minimizing the stack memory [3, 53, 68]. The elimination algorithm follows a post-order

67

68 Scheduling to improve performance

traversal of the assembly tree, which ensures minimum stackmemory use which is critical
for the OOC case [70, 71, 72, 73, 74].

In Figure 6.3, the node numbering corresponds to the final factorization sequence,
(with the assumption that nodes1 and 6 are processed in parallel by processors
P1 and P0 respectively). Note that forP0 other topological orderings that would
require more intermediate working memory are possible (forexample with the order
6, 7, 10, 12, 8, 9, 11, 13, 14 we have to keep on the stack the contributions produced by
10 and 12 while processing node8).

Waiting for the NNS node far too long while other nodes are available in the user buffer
can also happen in the backward step. During the backward step, the tree is traversed
in reverse order with respect to the local numbering (indicated in Figure 6.5) on each
processor. Following the NNS strategy P0 will first process root node 14, then node 13
and 12 processing the whole sub-tree on node 12. Then P0 will process node 11 and 10
again with its whole sub-tree. During this period P1 will wait for its first NNS node 5
which will be freed after processing node 9. For this particular example, local scheduling
decisions cannot improve the performance of the backward step (reduce the waiting time
on processorP1). Since our strategy of extracting nodes is local, idle processors do not
communicate with the other processors to influence the scheduling decision and to reduce
their waiting time. This is a limitation of our approach.

12

11

10

9

P1

P0

3

4

1 2

6

57 8

Figure 6.5: Illustration of the case when NNS scheduling is not the optimal one for the BWD step. Tree
mapping on 2 processors.

However, as illustrated in the following, one can still improve the local scheduling
strategy to reduce the waiting-time of the NNS node. When theNNS node is not in the
pool of ready-tasks, we can choose to process another ready-node (best with respect to the
write sequence), knowing that each time an NNS node will become ready we will process
it and will thus follow the order given by the factor write sequence. Let us illustrate
the situation using the example of Figure 6.5 mapped on two processors. Factor size
equilibration has driven the local ordering of the factorization per processor (1, 2, 3, 4, 5, 6
on processor P0 and7, 8, 9, 10, 11, 12 on processor P1). In this case the NNS node at the
beginning of the backward step on processor P0 is node6 (last node processed during
the forward step on processor P0). However in our example node 4 , mapped on the same
processor, will be inserted in the pool much earlier (just after processing of the root node
12 on processor P1). If we use the NNS strategy, we will not process node4 and will
wait with a blocking receive until our NNS node (node6) is ready. If we authorize node
4 to be processed as soon as its associated factors are loaded then we can process it with
no delay because of disk access.

68

6.2 BPN scheduler 69

Our NNS algorithm has thus been revisited to reduce time spent in the blocking
receive. In our new strategy, we can select a node ready in thepool that is not the
NNS node. Thus we are not always blocked if the NNS node is not ready. However
we also want to preserve regular access to the disk and limit the number of emergency
calls. For this reason the prefetching mechanism continuesto be related to the factor’s
write sequence. Each time we have to extract a node, when the NNS node is not in the
pool, we extract the best node in pool (so calledBPN node, for Best Possible Node) with
respect to its position in the write sequence. Such a node is thus in the pool and has its
associated factors loaded. Note that, since our prefetch mechanism always follows the
write sequence, it means thatthe NNS node factors have also been loaded. (That is, on
the example in Figure 6.5, when BPN node4 is ready, the node factors for NNS node6
are also loaded.) To extract the BPN node from the pool we keepthe pool sorted with
respect to the write sequence (the last node in pool is the closest to the NNS node in terms
of the write sequence). We keep this property each time we insert a node in the pool.

Furthermore, it is easy to prove that if the factors of the BPNnode have not been
loaded from disk, then all the other nodes in the pool will notbe in memory either. Thus
this is a good way to limit the number of emergency calls whilecontinuing to work when
the NNS node is not available.

If the NNS node were ready in the pool, then it would be the lastnode in the pool and
then it is the BPN node. We have thus changed the precondition of the blocking receive
β of Algorithm 6.1. With the BPN strategy this blocking receive is performed to wait

for the NNS node only if no BPN node is in the pool.

Treating a BPN node earlier on a processorP might interact with the work of other
processors only through slave tasks sent by processorP . Since at any rate such Type 2
slave tasks are processes ‘on the fly’ and do not go through thepool of the destination
processor, Properties 6.1 and 6.2 are still valid. This proves the correctness of our new
scheduling algorithm.

69

70 Scheduling to improve performance

6.2.2 Experiments withBPN strategy

We report in Table 6.11 some preliminary results withQIMONDA07 matrix illustrating
the potential of the BPN scheduling strategy. We focus in this run time performance
and on the backward substitution step since it is the most sensitive to the scheduling
strategy. We can see that the BPN strategy is in general faster than the NNS strategy.
On eight processors the time for backward step (45.2 sec) with the NNS strategy is quite
far from the minimum time to load factors (21.8 sec) and we seethat with the BPN
strategy the performance (24.5 sec) has been significantly improved. An important issue
for the performance of the BPN strategy is related to the granularity of the read operations.
Indeed, since it checks the state of the nodes to select the BPN one and since the state of
the nodes is modified at the end of the corresponding I/O operation, it is more critical for
the size of the I/O operations to be small (large enough to ensure a good performance for
the I/O operations but not too big to avoid delays).

Strategy Nb of T_min Bwd Nb_Req(∗)

Procs in Bwd step
(sec) (sec) Prefetch Emg

NNS 1 158.4 177.2 496 0
BPN 177.3
NNS 2 79.9 93.7 250 0
BPN 89.7 370 0
NNS 3 57.9 65.5 174 1
BPN 69.7 178 2
NNS 4 41.3 50.5 117 0
BPN 45.1 127 0
NNS 6 31.5 37.9 93 0
BPN 38.8 93 0
NNS 8 21.8 45.2 57 0
BPN 24.5 66 1

Table 6.11: Influence of the scheduling BPN of the tasks onQIMONDA07. Emg=emergency buffer:1 MB; Prefetch buffer:10MB
per processor;(∗) : Max per processor.

Furthermore, it is important to note that the BPN strategy may perturb the prefetching
and memory management mechanisms. Indeed, with this strategy when the NNS node
is not in memory, we may choose to process a node that already has its factor block in
memory. At the end of the processing of the current BPN node, we free the memory
area corresponding to its factor block. this may then happenon more than one BPN
node before returning back to the processing of the NNS node.These memory areas
(corresponding to the BPN nodes) can then to be used to prefetch data. The problem
in this case is that the BPN nodes are not necessarily contiguous in memory which may
induce memory management operations (compress to make freememory contiguous) in
the prefetch buffer that can be costly. To further improve and stabilize the behaviour of the
BPN strategy on should thus either modify/adapt the memory management mechanism
or limit the activation of BPN nodes when we diverge too much form the NNS sequence.

It is why we feel that those results are preliminary and that some more algorithmic
work is needed on this strategy.

70

6.2 BPN scheduler 71

Concluding remarks

We have described the main steps of a multifrontal algorithmfor distributed forward
and backward substitutions. We have shown that our originalalgorithms can be easily
adapted for OOC execution. We have then compared two different approaches to read
factors from the hard disk. In this context, a ‘naive’ SYSTEM_BASED OOC approach is
not suitable mostly because of its large and unpredictable memory use.

A D IRECT_IO access to the disk with relatively small prefetch buffers has thus been
introduced to control the memory use. In a sequential environment, we have first shown
how critical the task scheduling can be. We have observed that one important issue is
to control the number of hard disk accesses. Another issue isto obtain ‘regular’ disk
accesses. While controlling the memory used, we then studied the parallel behaviour
of our solver. We have shown that the task scheduling that is optimal in the sequential
case is not efficient in a parallel context (LIFO scheduling). To obtain more regular
disk access, especially for the backward step, we have constrained the scheduler to
follow the factorization write sequence of factor blocks during the solve phase (NNS
scheduling). We have proved the correctness of the algorithm and have shown that we
perform consistently better and often significantly reducethe time for solution on a set
of large real problems. Finally we have shown that the strictordering resulting from our
NNS scheduling can be relaxed to allow out of order executionof nodes with factors
already loaded from disk (BPN scheduling).

71

72 Scheduling to improve performance

72

Part II

Exploit Sparsity of Sparse Right-Hand
Sides in OOC Environment

73

75

Résumé de la Partie 2: Exploitation de la nature creuse des seconds
membres dans un environnement hors-mémoire (ooc)

Introduction

Jusqu’à présent nous avons exploité la structure creuse de la matrice d’origine et celle
des facteurs. On se pose maintenant la question de comment utiliser la structure creuse
du second membre.

Dans le cas où un grand nombre de seconds membres doit être traité, comme
l’espace de travail nécessaire à la résolution croît linéairement avec le nombre de seconds
membres, la mémoire n’est pas suffisante pour garder et résoudre en une fois tous les
systèmes. Dans de telles circonstances, on divise les seconds membres par paquets et
chaque paquet est résolu indépendamment des autres. En environnement hors-mémoire
(OOC) les données du disque sont préchargées pour chaque paquet de seconds membres.

Souvent les seconds membres sont creux. On peut alors exploiter leur sparsité pour
diminuer le nombre de calculs, mais surtout pour diminuer lenombre de données à
précharger du disque dur. Comme le temps de la phase de résolution est dominé
par le temps de préchargement des données, réduire la quantité des données à charger
influencera fortement le temps de toute la phase de résolution.

Applications choisies

Nous avons choisi quelques domaines d’applications, où l’exploitation de la structure
creuse des seconds membres peut être très utile: électromagnétisme, astrophysique et
applications avec des matrices réductibles.

En l’électromagnétisme on s’intéresse au calcul d’une basedu noyau de matrices
déficientes (en d’autres termes au calcul de l’espace des vecteurs propres associé aux
valeurs propres presques nulles). La dimension de cet espace peut être assez importante
(jusqu’à 4000 vecteurs) et, faute de mémoire, l’obtention de cet espace en une seule fois
n’est pas possible.

La deuxième application concerne le calcul de la variance etco-variance associé
à un problème de moindres carrés linéaires, qui se réduit (dans notre cas) à calculer
certains éléments diagonaux (la variance) ou non-diagonaux (co-variance) de l’inverse
de la matrice d’origine. Si tous les éléments diagonaux sontrequis (demandés à être
calculer), cela signifie que le nombre de systèmes à résoudreest égal à l’ordre de la
matrice.

Finalement, dans toute résolution impliquant des matricesréductibles, nous pourrons
aussi exploiter la structure creuse et réductible des matrices pour diminuer le nombre
de données à accéder du disque dur. La Figure 6.6 présente la forme d’une matrice de
facteurs associée à une matrice réductible avec un second membre creux. On voit sur
cette figure qu’une partie des neouds d’un seul des deux arbres (noeuds non barés) est
concernée lors de l’étape de descente (forward step) de la phase de résolution.

75

76

5 11

126

10 15

17

18 16

19

2

3

7

14

13

9

841

1

5

10

14

19

16

non−zero entry
associated with

node i

L b

Figure 6.6: Exploitation de la nature creuse des seconds membres dans l’étape de descente. Les premières
entrées nulles ne modifient pas la structure du vecteury et ne sont pas utilisées dans les calculs.

Algorithmes d’élimination des données non-utilisables (prunning)

La principale propriété que nous utilisons pour prédire lesfacteurs utiles pour le calcul
devant être accédés est basée sur le théorème de Gilbert et Liu dans leur article [62]. Elle
relie la structure de la matrice des facteurs, et celle du second membre, à la structure du
vecteur de solution.

Propriété 2. Pour chaque matriceA et sa factorisationA = LU (ou A = LDLT), il
est possible de prédire la structure du vecteur de solution àpartir des noeuds associés
aux entrées dans le second membre et suivant des chemins dansle e-dag deLT suivi par
des chemins dans le e-dag deUT (ou L).

Cette même propriété est utilisée dans les méthodes directes où l’arbre d’élimination
représente un cas particulier du e-dag. L’algorithme de sélection des données utiles dans
chaque étape de la résolution diffère d’une application à l’autre. On distingue deux
classes, selon la manière dont les données ont été sélectionnées : sélection des branches
et sélection des sous-arbres.

La sélection des branches est utilisée dans les applications de type moindres carrés, ou
à partir de(s) noeud(s) associé(s) avec le(s) second(s) membre(s) tout(s) le(s) chemin(s)
jusqu’à la racine de l’arbre est(sont) sélectionné(s) (voir Figure 6.6).

L’algorithme de sélection des sous-arbres est utilisé dansle calcul d’une base d’une
matrice déficiente. Pour chaque ligne déficiente dans la matrice des facteurs, on parcourt
tous les noeuds dans le sous-arbre du noeud associé à cette ligne (voir Figure 6.7).

Permutations

Après avoir identifié les données utiles, la phase de résolution se déroule
’normalement’, sauf que le préchargement ne concerne que les données précédemment
sélectionnées. Reste à voir comment les seconds membres sont divisés en blocs et s’il est
possible d’améliorer encore la gestion des données à précharger.

A première vue, grouper les entrées de la matrice des facteurs associées au même
noeud pourrait permettre de regrouper les seconds membres par paquets. Mais que ce
passe-t-il si cela ne suffit pas? Une méthode intuitive consiste à grouper les seconds

76

77

5 11

126

10

je

2

3

7

14

13

9

841

1

5

10

14

non−zeroj

x

Figure 6.7: Sélection des sous-arbres: à partir d’un noeud tout le sous-arbre est sélectionné. Illustration de
la structure du vecteurx obtenu après avoir résoluUx = ej (j = 6).

membres en suivant un parcours de l’arbre de type post-ordre. Il faut noter que les noeuds
proches dans l’arbre (du point de vue de leur chemin vers la racine et donc du post-ordre
associé) partagent un grand nombre de noeuds de l’arbre et donc d’accés aux facteurs
associés à ces noeud. Donc, le préchargement explicite des données pour la résolution
d’un noeud va implicitement aider à la résolution (au préchargement des données) de
l’autre noeud. Comme indiqué en Figure 6.8, les élémentsa−1

10,2 et a−1
11,7 , dont les noeuds

sont proches dans l’arbre d’élimination, partagent une grande partie du chemin devant être
parcouru lors de la résolution. Si les seconds membres des deux éléments sont regroupés,
le préchargement supplémentaire de données pour calculera−1

11,7 sera d’un seul noeud, le
reste étant déjà préchargé pour traitera−1

10,2 .

4

126

1 2

3

7

14

13

9

5 11108

Figure 6.8: Chemin commun dans la forward substitution pourles élémentsa−1
10,2 et a−1

11,7

Dans le même esprit, une permutation inverse du post-ordre (pré-ordre) pour les
seconds membres aidera aussi à recouvrir les chemins entre les noeuds associés. Une
dernière proposition de permutation, moins évidente que les précédentes, est de regrouper
les seconds membres en fonction du poids total de données à précharger. Pour pouvoir
modéliser ce poids, on utilise la notion d’ hypergraphe. Leshypergraphes sont un
ensemble de ‘nets’ (ensemble de noeuds) et d’arêtes. On utilise les nets pour représenter
les différentes parties de chemin (les noeuds) dans l’arbred’élimination. Ensuite, on
associe des coûts à chaque net, correspondant aux données à précharger du disque dur.
A la fin, en fonction de ces coûts, on choisit de grouper les nets entre eux, en regroupant
ainsi les seconds membres. Minimiser le coût total revient alors à grouper les seconds
membres de sorte que le coût total de préchargement de données soit minimum.

77

78

78

Chapter 7

Introduction

When solvingAx = b in an out-of-core (OOC) environment, the time for the solution
phase is dominated by the time for loading factors from disk.Therefore, the critical issue
for applications using the solution phase intensively is not the flops count but the amount
of factor data loaded. Note that, in our context, factors areloaded by blocks associated
with nodes of the elimination dags (edags).

When the right-hand sideb is dense there is not much we can do, since all nodes in the
elimination dags are visited during the solution phase and hence all factor data are to be
loaded. When the right-hand side is sparse we will show in this chapter that the structure
of the elimination dags can be used to control the amount of factors loaded.

Of the many possible problems with sparse right-hand sides,we will focus on three of
them:

• null-space vector computations [55] (with test matrices from electromagnetism),

• computing elements of the inverse of the matrix (with test matrices coming from
least-squares data-fitting problems [67, 88] and from applications in astrophysics
[23]),

• use of sparse right-hand sides with reducible matrices (with applications in linear
programming [50]).

In this (second) part of the thesis, we will focus on these three problems. Our objective
is to characterise the dependency graph of the computationsthat take place during the
solution phase (LUx = b or LDLT x = b) when b is very sparse, especially when it has
a single nonzero entry. This graph will then be used to devisealgorithms and models to
optimise the load of the needed data from the disk.

In Chapter 8 we first introduce some background theory, relate it to our applications,
and then discuss the important issue of sparse right-hand sides. We show that
processing/pruning the elimination tree is needed. Building upon the notions developed
in Chapter 8, we develop algorithms for tree pruning in Chapter 9. In the same chapter,
we explain how some standard topological tree ordering methods, i.e., the pre- and post-
orders, can be used to facilitate the partition of the columns of the multiple right-hand
sides. In Chapter 10, we further propose a hypergraph model to partition the columns
of the right-hand sides for reducing the amount of factor data loaded. In Chapter 11, we
conclude this part of the thesis by discussing experimentalresults on real test problems.

79

80 Introduction

80

Chapter 8

Exploiting sparsity of the right-hand
sides: Context and applications

In this chapter, we first introduce some background theory onthe relationship between
the graph structure ofA and the sparsity of the solution vectorx (Section 8.1.1) using
the notion and facts from the general introduction (Chapter1)). We then describe in
Section 8.1.2 two existing methods from the literature for computing entries in the inverse
of a matrix and compare the amount of factors to load when computing a particular entry
in A−1 . Finally in Section 8.2, for each of our three problems, we explain why we have
to handle sparse right hand-sides and how this sparsity can be exploited. We also discuss
in the same section the important issue of multiple sparse right-hand sides.

8.1 Context of our study

8.1.1 Relationship between the matrix graph and the structure of the solution
vector

We provide in this section a summary of the results from Gilbert and Liu ([63]) by
giving them as "Properties". For a more complete treatment of the interplay between the
structures of a given matrix and the results of various computations, we refer the reader
also to [64] and [62].

In [63] the authors provide a relationship between the structure of the original matrix
A , the right-hand sideb and the solution vectorx . They show that the structure ofx
can be defined without computingx explicitly. The main property used in this section is
stated as Property 8.4. This property results mostly from two sets of reasonings: first, the
application of a theorem from [62] (cited as Theorem 2.1 in [63]); second, the use of the
edags introduced in [63] to simplify the paths used in Theorem 2.1 of [62]. To follow this
logic, we report a set of intermediate properties. We also comment on the simplification
of the properties to the case of symmetric matrices or matrices with symmetric pattern,
since they are used in our symmetric pattern multifrontal solver.

Let us first consider the equationLx = b , where L is the structure of the lower
triangular matrix. We study the structure of the solution vector x as a function of the
structure of the right-hand sideb and the structure of the lower triangular matrixL . In
the following, we use notation presented in the global introduction of the thesis. Using

81

82 Exploiting sparsity of the right-hand sides: Context andapplications

the nonzero pattern ofL , the graphG(L) is constructed. The next property expresses
the relationship between paths inG(LT) , the structure of the right-hand sideb and the
structure of the solution vectorx . Note that the graph ofLT has the same structure as
the graph ofL but with reverse edges.

Property 8.1 (Theorem 2.1 in [63]). For any lower triangular matrixL , the structure
of the solution vectorx to Lx = b is given by the set of nodes, reachable from nodes
associated with right-hand side entries by paths in the directed graph G(LT) of the
matrix LT .

The property above is further developed in [63] to give the following result, liberating
the previous one from the graph ofLT (in caseL itself is result of a computation, e.g.,
LU factorization, the property specifies the structure without resorting to the computed
L).

Property 8.2. For any lower triangular matrixL , the structure of the solution vectorx
is given by the set of nodes reachable from nodes associated with right-hand side entries
by paths in the edag ofLT .

This properties says that it is enough to follow paths in the edags to get the structure of
the solution, as the edag provides a precise representationof paths inG(LT) (as recalled
in Chapter 1) the edag is the unique transitive reduction of the acyclic graph ofLT).

The properties of the structure of the solution vectorx can be extended to any square
non-singular matrixA . Let A have anLU factorization (A = LU) without pivoting.

We consider the two substitution steps of the solution phaseof LUx = b :
{

Ly = b
Ux = y

(8.1)

From the first line of equation (8.1) and Property 8.1, the structure of the vectory is
given by the set of nodes reachable from the nodes corresponding to the nonzero entries
in b by paths in the directed graphG(LT) . Similarly, from the second line, the structure
of x is given by the set of nodes reachable from the nodes corresponding to the nonzero
entries in y by paths in the directed graphG(UT) . Thus, for any matrixA with an
LU factorization, the structure of the solution vector can be predicted as a function of the
structure of its triangular matrices (L, U) and the structure of the right-hand sideb .

We state this observation in the next property.

Property 8.3. For any matrixA such thatA = LU , the structure of the solution vector
is given by the set of nodes reachable from the nodes associated with right-hand side
entries by paths in the directed graph ofLT , followed by paths in the directed graph of
UT .

Since the edags preserve all paths in the graphs ofLT and UT , we can express
Property 8.3 in terms of edags.

Property 8.4. For any matrixA such thatA = LU , the structure of the solution vector
is given by the set of nodes reachable from nodes associated with right-hand side entries
by paths in the edag ofLT , followed by paths in the edag ofUT .

82

8.1 Context of our study 83

If the matrix A has a symmetric structure, the directed graph ofL and the directed
graph of UT are equal and can be represented by the edag ofL . In this case, the
edag becomes a tree (the so called elimination tree) and one can just follow paths in
the elimination tree to compute the values of the solution vector.

Example 8.1. Consider theL factor given in Figure 8.1 of a matrix with a symmetric
pattern. Suppose that the only nonzero entry inb is b4 . During the forward substitution
step (Ly = b), all nonzero entries iny are obtained fromb4 by following paths in the
graph of LT .

l
11

l
52

l
53

l
54

l
55

l
44

l
33

l
22

l
31

l
43

b
4

yL b

Figure 8.1: Influence of the structure ofL andb on the
solution vectory during the forward step.The arrows
show all reachable entries fromb4 to the rootG(LT)
.

u
55

u
45

u
44

u
33

u
22

u
11

u
35

u
13

u
25

y x

u
34

U

Figure 8.2: Influence of the structure ofU andy on
the solution vectorx during the backward step. The
arrows show all reachable entries from the root node
in G(UT).

During the backward step (Ux = y), the structure ofx will depend on the structure
of y and can be obtained by following paths in the directed acyclic graph G(UT) as
shown in Figure 8.2.

5

3

4 2

1

Figure 8.3: The elimination treeT (A) . The arrows show the path followed from the nonzero entryb4 to
construct the vectorx .

The structure ofx can be computed more efficiently from the structure ofy through
paths in the elimination tree. As shown in Figure 8.3, first the structure ofy can be
obtained by following the path from node4 (associated withb4) up to the root node
5 (following upward arrows, in other words, following the edges in the edag ofLT).
Then the structure ofx can be obtained by visiting the nodes reachable from the node5
(following downward arrows, in other words, following the edges in the edag ofU).

Note that if the matrix is irreducible, the unique root is reached during the forward
step so that vectorx will be completely full after the backward step [46]. All paths from
the root will be taken in the backward step, see the backward step shown in Figures 8.2
and 8.3.

83

84 Exploiting sparsity of the right-hand sides: Context andapplications

For reducible matrices the graph/elimination tree isnot strongly connectedand
consists of the union of several connected components. Thusonly a part of x will be
updated during the backward step. We will further develop this idea in Section 8.2.1.
Furthermore, on irreducible matrices when we are only interested in a specific entry in
the solutionx of Ux = y , then one can easily deduce from Property 8.4 that only paths
from the root to this specific entry are needed. This is statedas a property.

Property 8.5. Let us suppose that we want to computexj of Ux = y with yn 6= 0 . Only
the paths from the root to nodej in the edag ofUT need to be visited.

Note that the paths in the unsymmetric case from the root to a node may not be unique,
as shown in Figure 6 of Chapter 1. In the context of a matrix with symmetric pattern
Property 8.5 simplifies since the path from the root to nodej is unique.

Property 8.6. Let A be a matrix with symmetric pattern. To computexj of Ux = y with
yn 6= 0 then only the path from the root to nodej in the elimination tree need be visited.

8.1.2 Background on computing entries in the inverse of a matrix

In many applications such as least-squares data-fitting problems [16, 20, 60, 61] and
short circuit study [108, 109, 111] the inverse of the matrixor a subset of the inverse
entries are very useful. Usually the inverse of a matrix is a dense matrix, even if the initial
matrix is sparse [47, 58, 61]. Thus usingA−1 as an operator is usually much less efficient
than the direct use of the sparseLU factors.

Our main objective is to be able to efficiently compute some ofthe entries of the
inverse matrixA−1 . If a direct relationship is established between the required entries
in A−1 and the required part of theLU factors then our out-of-core application can be
implemented more efficiently.

Let us suppose that we want to compute a few entries inA−1 . We first describe two
methods to compute the inverse entries, based on the traditional solve phase of direct
methods (Section 8.1.2.1), or based on Takahashi’s equations (Section 8.1.2.2). Using
Takahashi’s equations and a recursive algorithm, Erisman and Tinney [54] proved that
the subset of entries inA−1 corresponding to a nonzero position in theLU factors may
be computed with only theLU factors and other entries in the same structure. In this
context, Campbell and Davis [25] have shown that a multifrontal like approach can be
introduced to use dense kernels and to show the dependenciesin the computation. We
focus in Section 8.1.2.3 on computing a few entries ofA−1 . We compare the amount of
factors to load using the traditional multifrontal and the alternative methods and determine
the best method to use for our problems in Section 8.1.2.4.

8.1.2.1 ComputingA−1 using traditional solution phase

Using the traditional solution phase of direct methods, we solve the system

AA−1 = I

where I is the identity matrix. Using theLU factors of A , the previous equation
becomes:

{

LY = I
U(A−1) = Y

(8.2)

84

8.1 Context of our study 85

which corresponds to forward and backward substitutions ofthe solution phase. Note that
in the forward step (LY = I) the right-hand side is very sparse and thus Property 8.1 can
be applied to exploit the sparsity.

If all entries in A−1 are required, all theLU factors will be accessed. However, one
might have (for memory issues) to compute columns inA−1 by blocks. In this case
again, exploiting sparsity of the corresponding columns ofI will be interesting. If only
a few entries ofA−1 are needed then only part of theLU factors will be accessed. We
will further comment on this when comparing the traditionalmethod with an alternative
approach in Section 8.1.2.3. We will also explain in more details how to exploit the
sparsity of the right-hand sides using Properties 8.4 and 8.5.

8.1.2.2 Takahashi equations and alternative methods to compute entries in A−1

In this section we present an alternative method to compute the inverse entries ofA
using anLDU factorization ofA , whereL and U are respectively unit lower and unit
upper triangular matrices andD is diagonal. Note that to obtain thisLDU factorization
from a standardLU factorization of a full rank matrix, it is enough to introduce a diagonal
matrix D from the diagonal entries ofU and use it as follows:

A = LU ′ = LDD−1U ′ = LD(D−1U ′) = LDU

The first direct use of the factors of a matrix to compute the inverse entries was done
by Takahashi, Fagan, and Chin [111]. They relate theLDU factors of any nonsingular
matrix A with its inverse entriesZ = A−1 in equations which are known as Takahashi’s
equations:

Z = D−1L−1 + (I − U)Z (8.3)

Z = U−1D−1 + Z(I − L) (8.4)

One way to establish the relation 8.4 is to note that fromZ = A−1 we obtain

Z = U−1D−1L−1

ZL = U−1D−1 + Z − Z

Z = U−1D−1 + Z(I − L)

which corresponds to equation (8.4). Equation (8.3) can be obtained in a similar way.

To compute entries in the upper part ofZ one can simplify equation (8.3), since
D−1L−1 is lower triangular and(I − U) is strictly upper triangular matrix (see
Figure 8.4). Equation (8.5) is thus derived from equation (8.3).

zij = d−1
ij −

n
∑

k>i

uikzkj , i ≤ j (8.5)

The following equation (8.6) is derived from equation (8.4)in a similar way:

zij = d−1
ij −

n
∑

k>j

ziklkj , i ≥ j (8.6)

85

86 Exploiting sparsity of the right-hand sides: Context andapplications

Takahashi’s equations do not useL−1 or U−1 and thus exploit the sparsity of the
computations. Therefore, to compute the upper triangular entries of Z , equation (8.5) is
used and to compute the lower triangular entries ofZ , equation (8.6) is used. For the
special symmetric case, a single equation can be used:

Z = D−1L−1 + (I − LT)Z (8.7)

Some propertiesto note about the dependency of computations of the inverse entries:

• any off-diagonal entryzij , (j > i) directly depends onall factors in its row i
(uik), and all zkj in its column j (for k > i) , as we can see from equation (8.5).

zij = −
∑

k>i

uikzkj

• if aii is the only entry in row and column (i), then zii = d−1
ii , sinceuik = 0 for all

k in equation (8.5)

zii = d−1
ii −

∑

k>i

uikzki

Example 8.2. Illustration of the dependency of the inverse entries
We comment on a matrix with a symmetric pattern shown in Figure 8.5. As shown by the
arrows, z33 directly depends on the inverse entriesz43 and z53 in its column and on all
factors in its row (u34 and u35). (If u33 were the only entry in row3 , u34 = 0 and
u35 = 0 , then z33 = d−1

33 .) Finally, z43 and z53 directly depends onz54 and z55 .

Using Takahashi’s equations recursively, the whole matrixZ can thus be computed in
reverse Crout order, starting fromznn .

Erisman and Tinney [54] focus on the case when only a subset ofthe inverse entries is
needed. They define an adjacency matrixC with the sparsity pattern ofL + U . More
formally cij = 1 , wheneverlij 6= 0 or uij 6= 0 .

Using the definition ofC , we define the subsetZsparse as the subset of inverse
entries with nonzero positions in the transpose of the matrix C .

zij ∈ Zsparse ⇔ cji = 1

0

0

0

01

1

.
.

.

1

1

.
.

.
01

1

.
.

.
0 0

=

0

Z

+ − *

= *

*

+

I U ZL−1D−1

Figure 8.4: Takahashi equations: illustration of the simplification of equation (8.3) to obtain equation 8.5.

86

8.1 Context of our study 87

z
44

z
33

z
22

z
11

u
35

u
13

u
25

u
34z

31

z
54

z
53

z
52

z
55

u
45z

43

U

Figure 8.5: Pattern ofLDU factorization of the matrix. Arrows represent direct dependency to compute
z33 and z53 .

Therefore the structure of the transpose of the adjacency matrix and the structure
of the subset of inverse entries with nonzero positions inCT are identical :
Structure(Zsparse) = Structure(CT).

Theorem 8.1 provides a recursive algorithm to compute any inverse entry inZsparse .

Theorem 8.1(Theorem 1 in [54]). Any zij wherecji = 1 can be computed as a function
of L ,U and zpq where cqp = 1 , (q ≥ j , p ≥ i).

However, for a particular entryzij it may not be necessary to compute all of the entries
in Zsparse , as mentioned in [54] and illustrated in the next example. Theorem 8.1 only
provides a sufficient set of elements to compute entries inZsparse .

Example 8.3.We compute entryz22 of a matrix with a symmetric pattern and associated
factors shown in Figure 8.6. Starting fromz55 and working in the reverse Crout order,
all the entries

z55, z44, z54, z33, z43, z53, z22, z52

will be computed. Note that onlyz22 , z55 and z52 are needed:
from equation (8.5)z22 = d−1

22 − u25z52

from equation (8.6)z52 = −l52z55

finally, z55 = d−1
55 .

z
52

z
53

z
54

z
11

z
22

z
33

z
44

u
13

z
43

z
55

u
45

z
31

u
34

u
35

u
25

U
a) Pattern ofLDU factorization of a matrix with

symmetric pattern.

5

3

4 2

1

b) The elimination tree captures the dependency
between entries ofA−1 in a top down traversal of the

tree.

Figure 8.6: Dependency of computations inZsparse .

87

88 Exploiting sparsity of the right-hand sides: Context andapplications

Note that for the symmetric caseU = LT so lji = uij and cji = cij = 1 . Thus
the structure ofCT becomes the same as that ofC (CT = C) and paths inC can be
represented by paths in the elimination treeT (A) . Finally zij = zji and only one of the
equations (8.5) or (8.6) will be used to compute all of the inverse entries.

Campbell and Davis have shown that for symmetric matrices the elimination tree
captures the dependency between entries ofA−1 . On our example node2 is a son of
node5 , as shown in Figure 8.6. The first nonzero entry in row2 of U is thus in column5
so that entries in rows3 and 4 of Zsparse need not be involved in computation.

Computing entries outside (L|U)T : To computezij , using the Takahashi equations
wherecji = 0 , the entrycji has to be set to1 . Then one should update all possible fill-in
related to thecji entry. Theorem 8.1 can thus be applied to the updatedZsparse matrix.
The modified adjacency matrixCT

new captures the structure of all entrieszpq required to
compute the entryzij outside the originalZsparse .

Campbell and Davis [25] focus on the special case of computing completeZsparse
on numerically symmetric matrices. They prove that when computing Zsparse with
the Takahashi equations, the elimination tree processed from the root to the leaf nodes
captures the dependency relationships between all the inverse entries inZsparse . Then
they explain how Level3 BLAS can be used in this context. Note that the elimination
tree can then also be used to parallelize the computation of entries in Zsparse . The
method proposed by Campbell and Davis differs from other parallel implementations of
computing the inverse entries [6], by the use of the dense kernels for Level 2 and 3 BLAS
optimization.

8.1.2.3 Computing a few entries inZsparse of a matrix with symmetric pattern

We are interested in characterizing theLU factors needed to compute a few entries in
Zsparse . It is an important issue in an out-of-core (OOC) environment, since the time
for loading factors often dominates the computation part. By exploiting the sparsity of the
right-hand sides, we can determine which factors are neededand load only that data from
disk. If only a part of the factors are loaded, we can significantly improve performance.

We will compare two methods: the traditional solution phaseand the one based on
Takahashi equations. Each time Property 8.1 will be used to characterize dependency
between the right-hand side and the solution vector.

We will consider the case of a symmetric matrix, where the structure of CT is equal
to the structure ofC .

a) Using Takahashi equations

In [25] a relationship between the elimination tree andZsparse is established. To
compute a particular entryzij we will have to compute all inverse entries inZsparse
from the root node to the nodesi and j in the associated elimination tree.

We want to go further by proving that the only factors which have to be loaded/used to
compute a particular entryzij are situated on a path from nodesi and j up to the root.
Thus the other branches of the elimination tree are not involved and their factors need not
be loaded. The amount of loaded data will thus be significantly reduced.

88

8.1 Context of our study 89

Without loss of generality, we can assume thatj > i . If zij is needed, thenuij 6= 0 .
From the elimination tree properties, nodej is an ancestor of nodei , and there is a path
in the elimination tree fromi to the root going throughj . We can thus state this as a
property.

Property 8.7. For any zij ∈ Zsparse (j > i), nodesi and j are on the same path to
the root of the elimination tree of the symmetric matrixA .

Note that for anyzij * Zsparse , the structure of the adjacency matrixC will be
modified by settingcij = 1 . Thus nodej becomes an ancestor of nodei , and they
belong to the same path to the root of the resulting elimination tree.

Property 8.8. To compute a particular entryzij (j > i), in the inverse of a symmetric
irreducible matrixA the only factors that need to be loaded in(D−1U) are on the path
from nodei up to the root node.

Proof: We start by computing the inverse of the root noden , and we will use recursion to
prove the property. Nodeznn directly depends only ond−1

nn (znn = d−1
nn). Let m be the

child of the root node on the same branch as nodesi and j . Then zmn depends on the
nonzero factorsumn and znn . Thus zmn recursively depends onumn , d−1

mm and d−1
nn .

Thus we have proved for the root node and its childm that the only factors which have
to be loaded from(D−1U) are on the path from nodem to the root noden .

Suppose thati is the first node in this branch which depends on some factorust not
belonging to the path fromi to the root. From Takahashi’s equations we must haves ≥ i
and t ≥ j . Let nodej be the parent of nodei . Then zjj recursively depends only on
factors in its path to the root node (i was the first node not having the property in this
branch). Since all recursive dependencies come from the parent nodej , then ust must
be in the same row asuij , and thuss = i . Node i directly depends on factoruit 6= 0
in its row (i ≤ t, j). With respect to the elimination tree property, this meansthat node
t is an ancestor of nodei and belongs to the same path to the root node. We obtain a
contradiction with the assumption thatust does not belong to the path from nodei up to
the root noden . We have thus proved that the only factors which have to be loaded for a
particular entryzij, (j≥i) in (D−1U) are on the path from nodei to the root noden . ⋄

b) Using traditional solution phase

To compute a specific entrya−1
ij in the inverse of the matrix using direct methods, we

have shown that we can solve equationAA−1 = I using a direct approach:

a−1
ij = (A−1ej)i (8.8)

whereA−1ej is columnj of A−1 for which we are only interested in entryi , (A−1ej)i .
We show in this section that our general framework can be usedto exploit sparsity during
the computation of entries inA−1 with a direct approach.

Decomposing equation (8.8) into forward and backward substitution we obtain:

yj = (L−1ej) (8.9)

a−1
ij = (U−1yj)i (8.10)

Note that at each solution step either the right-hand side issparse (equation (8.9)) or
only a specific entry inU−1yj is needed (equation (8.10)). In the following we show that

89

90 Exploiting sparsity of the right-hand sides: Context andapplications

only part of the factors needs to be accessed and that we can use previously introduced
pruning algorithms at each step.

Knowing in advance the columns of the required entries inA−1 , we can predict the
factor data needed, by applying Property 8.4 of Section 8.1.1 for the structure of the
solution vector.

j
nonzero
node

forward step:from the nonzero entry up to the root

target
nodei

backward step: from root node to a particular entry

Figure 8.7: Nodes that must be visited to compute entryzij ∈ Zsparse

Applying Property 8.4 to equation (8.9) we can state that allnonzero entries in vector
y follow the path from the nonzero entry - nodej , up to the root (see Figure 8.7 - forward
step). Similarly from equation (8.10) and Property 8.5 we can state that to computea−1

ij

one must follow paths in the elimination tree with a top-downtraversal (see Figure 8.7
backward step).

We summarize the previous observations in the following property.

Property 8.9. To compute a particular entryzij in A−1 , the only factors which have
to be loaded are theL factors on the path from nodej up to the root node, and theU
factors going back from the root to nodei .

Note that, since we use equations (8.9) and (8.10), oura−1
ij need not be inZsparse

(i.e. no longer related touij 6= 0).

8.1.2.4 Conclusion about the method to use

To conclude, let us compare the amount ofLU factors that have to be accessed with
the proposed approaches – based on Takahashi equations or based on a traditional solution
phase. The following properties are direct consequences ofthe previous properties and
can easily be generalized to matrices with unsymmetric pattern, where the elimination
tree will be replaced by the edags.

Property 8.10. Let A be an unsymmetric irreducible matrix with symmetric pattern and
let T be its corresponding elimination tree (one variable per node). For both approaches
to computea−1

ii we need to access all rows ofU and columns ofL from nodei of T to
the root.

Property 8.11. Let A be an unsymmetric irreducible matrix with symmetric pattern and
let T be its corresponding elimination tree (one variable per node). To compute an off
diagonal entry entrya−1

ij both the columns of theL factors from nodei of T to the root
and the rows of theU factors for nodej of T to the root need to be loaded with both
approaches.

90

8.2 Sparsity of the right hand-sides and applications 91

One should also add that, with both approaches, to compute anentry in A−1 the other
entries of A−1 that need be computed are identical. In our OOC context, there is thus
no benefit in terms of access toLU factors between both methods. Furthermore we
would like our approach to address other applications with sparse right-hand sides (null-
space computation, solution with reducible matrices). Property 8.4 thus provides a natural
common framework to efficiently exploit sparsity for all ourtarget applications including
computing entries in the inverse ofA .

8.2 Sparsity of the right hand-sides and applications

In the previous section, we have shown that it is possible to computex by using only
part of the factors when the right-hand sides are sparse. Ourpurpose in this section is to
show how the properties introduced in the previous section can be used on our application
in the context of a parallel out-of-core multifrontal solver. We then discuss for each
application the issue of processing multiple right-hand sides and comment on memory
issues.

We will assume that our matrix is symmetric in structure and the edag associated with
the factors is a tree, the elimination tree.

8.2.1 Sparse right-hand sides / reducible matrices

The dependency graph of reducible symmetric matrices can bestructurally represented
by disconnected trees (or a forest). Each part of the forest is a completely independent
tree, not reachable from other trees (see Figure 8.8).

5 11

126

10 15

17

18 16

19

2

3

7

14

13

9

841

1

5

10

14

19

16

Figure 8.8: Reducible symmetric matrix pattern and its associated forest

For reducible matrices, exploiting the sparsity leads to working on the tree associated
with the nonzero entry in the right-hand sides. The disconnected part of the forest will
not be concerned by the computations, because it is not reachable (see Property 8.4).

We can also apply Property 8.4 during the forward substitution to sparse right-hand
sides. As shown in Figure 8.9), when the first entries from thetop of the right-hand side
are zeros they will not modify the zero structure of the solution vector y . The first node
which has to be taken into consideration for computations inthis step is the first nonzero
entry in the right-hand sides. Then we follow paths inL or in the edag associated with
L (which is a tree/forest for a symmetric matrix); using the reachability of the nonzero
entries. For example, on our test example shown in Figure 8.9, there is a single entry in

91

92 Exploiting sparsity of the right-hand sides: Context andapplications

the right-hand side –b17 . We need to compute only factors associated with nodes17 ,18
and 19 to complete the whole forward step.

5 11

126

10 15

17

18 16

19

2

3

7

14

13

9

841

1

5

10

14

19

16

non−zero entry
associated with

node i

L b

Figure 8.9: Exploiting the sparsity of the right-hand sidesin the forward substitution. The first zero entries
in the right-hand sides do not modify the structure of the vector y and thus are not used in the computations.

We use‘tree pruning’ to refer to the mechanism of suppressing unneeded nodes of
our original elimination forest. In Figure 8.9 we illustrate the pruning mechanism on our
elimination forest from Figure 8.8, where only some of the nodes in the tree are kept and
the other nodes are pruned.

During the forward substitution, for each entry in the right-hand sides, all the ancestor
nodes of the associated node in the tree need to be considered. The union of all needed
nodes represents branches of the elimination tree (chains of ancestors up to the root
node). As this functionality selects nodes in the branch from the node to the root of
the elimination tree, we will name it‘branch detection’.

When a backward substitution follows a forward substitution with sparse right-hand
sides, all the root nodes reached during forward phase will correspond to a nonzero entry
in the right-hand side of the backward step (on our example root node 19 has been reached
during the forward step). During the backward step is it enough to consider all the root
nodes reached during the forward steps to determine the structure of the solution (we
follow paths in the in the edag ofU t which is a tree in our symmetric case). The pruning
mechanism where a whole (sub)tree will be processed will be referred to as‘subtree
detection’.

Both ‘branch detection’ and ‘subtree detection’ will be described in more detail as
algorithms in Chapter 9.

8.2.2 Null-space computations

We describe null-space computations in the context of rank revealing LU factorization
code on general unsymmetric matrices. We suppose that so called ‘null pivot rows’ have
been detected during factorization. In fact to do so we combine two approaches. We first
perform a ‘normal’ factorization with modified numerical pivoting strategies and detect
small pivots ‘on the fly’. Some of the small pivots will be considered as null pivots and
some of them will be postponed potentially up to the root of the elimination tree. At
the root of the elimination tree a more standard rank-revealing approach based onQR
factorization with column pivoting is used. This work is theobject of a collaborative task

92

8.2 Sparsity of the right hand-sides and applications 93

within the SOLSTICE ANR project (ANR-06-CIS6-010) betweenCERFACS, INRIA-
LIP and IRIT.

The rank-detection performed during factorization phase leads to two types of deficient
row entries: null pivots associated with the root of the elimination tree (root-deficiency)
and those detected in the lower level of the tree. We will see in this section that root-
deficient rows provide no scope for exploiting the sparsity of the right-hand-sides during
null-space computation.

By ‘null-space computations’ we mean solving the equation

Ax = 0. (8.11)

The solution set is then named as thenull-space of A . Using direct methods, this
equation becomes:

A = LU, LUx = 0, det(L) 6= 0

Ux = 0 (8.12)

As we can see, only the backward substitution has to be performed. Of course,x = 0
is always a solution of the equation, but in some cases there are morex vectors satisfying
equation (8.11). If the matrix has zero (or numerically verysmall) entries in a whole
row of U , then the matrix is numericallydeficient and there exists a nonzero vectorx
solution to the equation (8.11).

12U

22U
jx

1
x

x
2

0

U
0

0

11U
0

U1j

0

Figure 8.10: Case of ‘zero line’ inU : U is divided into blocks with respect to ‘zero row’ detected.

To simplify our discussion, let us first suppose that the matrix U has the structure
described in Figure 8.10.

We can thus write the following system of equations:

U11x1 +U1jxj +U12x2 = 0
0xj + 0x2 = 0

U22x2 = 0
(8.13)

Here x2 = 0 is a solution ofU22x2 = 0 (it might not be the only one, ifU22 is rank
deficient). From the second line of equation (8.13)xj is free. From the first line, we have
thus to solve:

U11x1 = −U1jxj (8.14)

We can setxj to 1 , and thus

U11x1 = −U1j . (8.15)

93

94 Exploiting sparsity of the right-hand sides: Context andapplications

The final null-space vector is thusx = (x1 1 0)T .

Note that if the entryujj of U is set to1 during the factorization, and if we set the
right-hand side toej , then by solvingUx = ej we obtain the same set of equations.

12U

22U
jx

1
x

x
2

U
0

11U
0

U1j

1 0 0 0

Figure 8.11: Case of ‘zero line’ inU with modified factorization

Our final equation for solvingAx = 0 with the described modified factorization is
thus:

Ux = ej (8.16)

In general, the structure ofU is not so simple and the blockU22 might itself be rank
deficient (with again null or ‘pseudo null’ rows inU22). We can easily generalize the
computations associated with one pseudo-null pivot to a more general case as described
in the following. Let us suppose that we solveUxj = ej for each pseudo null pivotj
detected during the factorization. We compute them in the order in which they have been
detected following the tree from the leaves to the root. Thenthe solution ofUX = E ,
whereE is the set ofej columns, andXj is the jth column of X , solution of UXj =
ej , will have by construction a structure as shown in Figure 8.12.

1

1

1

0

0 0

.

.

.

. . .

X =

x
1
1

x
2
1

x
k
1

Figure 8.12: Structure ofX

Therefore, by construction, each vector is linearly independent from the others and we
get a basis of the null-space associated with the pseudo-null pivots detected during
factorization. If all ‘null’ pivots have been detected (‘accurate’ rank revealingLU
factorization) then we have a full basis of the null-space ofA . The number of columns
k of X is then thedeficiencyof the matrixA or the dimension of its null-space basis.

8.2.2.1 Some properties

The memory needed by our parallel multifrontal solver during the solve phase
includes the number of the solution vectors, the order of thelargest frontal

94

8.2 Sparsity of the right hand-sides and applications 95

matrix(Size(Max_Frontal_Matrix)), and a working area. Both the working area and
the solution vector are of sizeN × deficiency , whereN is the order of the matrix, so
that our peak of memory is:

Peak memory = 2 N × deficiency + Size(Max_Frontal_Matrix)

Thus, if all columns ofX are computed in one pass then the memory requirement will
be very large on matrices with high deficiency. For example, on our test matrix from
electromagnetism (see Table 5 in Section 1.3) the deficiencyis larger than 4 000 on a
matrix of order33 000). To address this issue which is common to the general case of
processing multiple right-hand sides, a blocking factorNs is introduced so that columns
of the right-hand sides are processed by block of sizeNs . In our case, we thus divideX
into s blocks of sizeNs :

Xj ∈ {X1, ..., Xs} , |Xj| = Ns

Then UX = E is solved bys blocks of Ns right-hand sides at a time. The working
space for the backward phase becomes a function ofNs :

Peak memory = 2 N × Ns + Size(Max_Frontal_Matrix) (8.17)

Property 8.12. Total size of factors to be loaded (without exploiting the sparsity of
the right-hand sides):
The total size of the factors to be loaded (Factors_loaded) during the solution phase is
equal to the sum of factorsU loaded at each block iteration, i.e.

Factors_loaded = s × |U | (8.18)

If Ns = 1 : Factors_loaded = |U | × s

If Ns = deficiency : Factors_loaded = |U |

8.2.2.2 Pruning for null-space computations: subtree detection

The equation to be solved isUx = ej , where ej is a sparse right hand-side (the
only nonzero entry corresponds to the null pivotj in the original matrix. Nodej of
the elimination tree being the node on which rowj of U was computed during the
factorization.) This nonzero entry becomes the starting root node for our ‘pruning’
mechanism for the backward step, as it was in the backward step for reducible matrices.

Property 8.4 of the reachability in the elimination tree canthus be used; from this
starting node the whole subtree has to be loaded (and not onlyone of the ancestors as was
the case in ‘branch detection’). We state this as a property.

Property 8.13. When solvingUx = ej only the subtree rooted at nodej of the
elimination tree need be processed.

The previous property implies that the complete elimination tree need be visited when
a null pivot is located at the root of the elimination tree.

95

96 Exploiting sparsity of the right-hand sides: Context andapplications

Example 8.4. To illustrate this we show the pattern ofL , ej and x , and the
corresponding elimination tree ofL in Figure 8.13. We suppose that the structure of
U is equal to the structure ofLT . The nonzero entry inej (j = 6) broadcasts its
nonzero pattern on the solution vector to the whole subtree rooted at nodej = 6 .

5 11

126

10

je

2

3

7

14

13

9

841

1

5

10

14

non−zeroj

x

Figure 8.13: ‘subtree detection’ for backward step with sparse right-hand sides. Illustration of the structure
of x obtained after solvingUx = ej (j = 6) and of node traversal during computation.

Complete subtrees are always concerned during null-space computations, so that we
will use the term‘subtree detection’ to refer to this type of tree-pruning algorithm.

Finally, we can define a lower bound to the size of the factors to be loaded in a
sequential environment. It is related to the size of each node of the elimination tree,
to the number of requests for each node (nb_requests(node)), and the number of blocks
(s) solved. We definenb_requests(node) as the sum of the number of requests to
this node and the number of requests of its direct parent node. (Example: if the root is
requested twice, and its son is requested three times, thenb_requests(root) = 2 and
nb_requests(son(root)) = 2 + 3 = 5 .)

Property 8.14. Lower bound of the amount of factors to load in a sequential
environment: The lower bound of the size of the factors to be loaded is the sum of the
products of the size of each node multiplied by the number of its requests (nb_requests),
divided by the numbers of blocks solved:

∑

(size(node) ∗ nb_requests(node)/s)

8.2.3 Computing entries inA−1

To compute a specific entrya−1
ij in the inverse of the matrix using direct methods, we

have shown that we can either use the Takahashi equations or solve equationAA−1 = I
using a traditional solution phase. In the following we showthat only part of the factors
needs to be accessed and that we can use previously introduced pruning algorithms at
each step.

When solvingLyj = ej , as explained in Section 8.2.1, factors ofL associated with
nodes from the starting nodej and all nodes in the path to the root node are needed.

96

8.2 Sparsity of the right hand-sides and applications 97

We will thus use here the ‘branch detection’ algorithm to characterize nodes of the tree
required for this step.

At the end of the forward step, entries inyj corresponding to the path from node
j to the root node of the tree to which it belongs are nonzero. Let us assume for
the sake of clarity that our matrix is irreducible and has thus a single root node in its
associated elimination tree. In this case, as shown in Figure 8.14, the solution vector is
full. However, we are interested in only theith entry, in the solution vector. In this case

4 5 11

126

101

a*2
−1e*2

y*2

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��

��
��
��

2

7

14 14

2

7

14

3

8

9

13

2

3

7

14

13

9

8

Figure 8.14: Illustration of tree traversal to computea−1

8,2 . a−1

∗,2 corresponds to column2 of A−1 .
Filled entries in a−1

∗,2 correspond to entries in column2 of A−1 while computing a−1
8,2 . a−1

8,2 =

(U−1L−1e2)i=8 ; y2 = L−1e2 ; a−1
8,2 = (U−1y2)i=8 ;

pruning can be done. Note that the pruning algorithm here will be similar to the one in
the forward substitution. We illustrate this complete process in Figure 8.14. We have first
to load L factors associated with nodes2, 3, 7, 14 during the forward step. We then load
U factors associated with nodes14, 13, 9, 8 during the backward step. Thus, for both
substitution phases only a single path in the tree is concerned. Note that while computing
a−1

8,2 all entries on the path from the root to node8 will correspond to entries in column2
of A−1 that are computed.

8.2.3.1 Computing multiple entries in A−1

In practice, more then one entry inA−1 is often requested. For example all diagonal
entries are requested to estimate the variances in least-squares data-fitting problems. Thus,
we are also interested in computing a few entries inA−1 .

In this case during the forward step we consider equation

LY = E (8.19)

where each column ofE is a column if the identity matrix. For example,ej ∈ E
expresses the fact that at least one entry in columnj of A−1 (a−1

∗j) is requested. Then
during the backward step we need to solve:

Ua−1
∗j = yj (8.20)

and we are only interested in computing part of the solution vector. Our user interface to
this problem can be very simple and efficient in terms of memory usage. We use a sparse

97

98 Exploiting sparsity of the right-hand sides: Context andapplications

array to characterize all the requested target entries inA−1 . On output, the same array
holds the entries ofA−1 requested. However, for larger matrices, computing entries in
A−1 need still be divided intos blocks of sizeNs , for memory issues, as observed for
the null-space basis computations with large deficiency (see Section 8.2.2.1).

In the following enumeration, we list simple observations illustrated on Figure 8.15
that will be used to understand why processing columns of theright-hand sides in the
same block can be interesting. Those observations will be formalized in Chapter 9 to
guide the design of our algorithms.

1. Several entries in a column ofA−1 are computed at once (as shown in Figure 8.14:
entriesa−1

14,2 ,a−1
13,2 , a−1

9,2 , ... are computed during the computation of entrya−1
8,2).

2. When computing a diagonal entries (a−1
i,i) the same ‘branch’ for both forward and

backward steps is concerned (for examplea−1
2,2 will have an ascending path from

node2 up to root and descending path again to node2).

3. Requested entries with the same row number use the same path in the backward
step (for example, in Figure 8.15 entriesa−1

8,2 and a−1
8,5 have the same descendant

ascendant path from the root to node8).

4. Requested entries with the same column number use the samepath in the elimination
tree in the forward step (for example, in Figure 8.15 entriesa−1

8,2 and a−1
11,2 will use

the same path from node2 to the root).

5. Combining properties of the previous two cases: if requested row/column entries
are associated with a common ancestor node in the elimination tree, they share the
branch in the elimination tree from the ancestor node to the root (example: factors
loaded to computea−1

8,2 completely include factors needed to computea−1
9,3 , see

Figure 8.15).

126

1 10

3

7

14

13

9

112 4 5 8

Figure 8.15: Paths in the elimination tree to compute entries a−1

8,2 , a−1

11,2 , a−1

8,5 and a−1

11,5 .

8.2.4 Pruning and concluding remarks

To exploit sparsity in the right-hand sides, we have identified two mechanisms of tree
pruning – branch detection and subtree detection to characterize entries in the factors that
need to be loaded in an out-of-core context. For reducible matrices, branch detection
allows us to follow paths in the forward step, and the subtreedetection, when used
during the backward step, identifies the tree rooted on the nonzero requested entry. For
computing entries inA−1 we use branch detection during both forward and backward

98

8.2 Sparsity of the right hand-sides and applications 99

substitution steps. In null-space computation, only subtree detection is used during
backward substitution.

In the context of multiple right-hand sides, we have explained why we need to split
the right-hand sides by blocks, for memory issues. The difficulty is then to decide how
to efficiently order the right-hand sides to better exploit the branch and subtree detection
algorithms.

In a parallel context, the situation becomes even more complex. In this case we want
to combine the efficiency of exploiting the sparsity of the right-hand sides with balancing
the amount of work among the processors. Thus, the partitioning of the right-hand sides
should also take into account the data mapping of the factorsonto the processors.

99

100 Exploiting sparsity of the right-hand sides: Context and applications

100

Chapter 9

Algorithms to exploit sparsity

9.1 Introduction

In this chapter we describe the algorithm for pruning the elimination tree. ‘Pruning
tree’ algorithms change the tree structure. Almost all the global information is changed -
number of leaf nodes, number of roots (in case of reducible matrices), number of sons
per node. Two algorithms are presented, which we name with respect to the final graph,
branch detection and subtree detection. The branch detection corresponds to a bottom-top
traversal of the tree, starting from a (several) node(s) andgoing up to the root node. The
subtree detection corresponds to a top-down traversal of the tree where for each local root
node the whole subtree information will be kept. Finally we propose some permutations
of the right-hand sides to better exploit the sparsity when the multiple right-hand sides are
grouped into blocks for memory issues.

9.2 Pruning algorithms

For each initial nonzero entry in the right-hand sides we obtain its node number in
the tree (Inode). We call these nodesstarting_nodesfor our pruning algorithm. Then
using the dependency relationships (ancestor/descendant), we determine all the needed
data. Note that for both branch and subtree detection algorithms, if an already selected
node is encountered, we know that the remaining part of the tree is already selected. We
thus cycle to the next entry in the initial set of starting nodes.

Note also that both algorithms work with single or multiple right-hand sides and with
single or multiple entries per right-hand side.

9.2.1 ‘Branch detection’

The ‘branch detection’ refers to the detection of all branches from a initial set of nodes
to the root(s) of the elimination tree. We recall that ‘branch detection’ can be involved
during the forward step to exploit sparsity with reducible matrices or to compute entries
in A−1 . It can also be used during the backward step when computing selected entries in
A−1 .

101

102 Algorithms to exploit sparsity

We first mark all nodes as non-visited. Then we mark nodes in the tree belonging to
the starting_nodes list associated with nonzero entries inthe right-hand side, as described
in Algorithm 9.1

Algorithm 9.1 : branch detection

for each ‘non-visited’ node in the starting_nodesdo
mark it and mark all nodes as ‘visited’ on the path to the root up to next visited node

end for

A detailed algorithm for branch detection is provided as Algorithm 9.2 and is
commented in the following.

The first node is taken from the starting_node set. It is marked as ‘visited’ with all
its ancestors up to the root, or up to the first already marked node. Then another node is
taken from the starting_node set and, if it is not visited, itis marked in a similar way.

The list of selected leaf nodes is defined at the end of the algorithm, as the subset of the
starting_nodes with no children. The list of selected leaf nodes will be used later during
the forward substitution to initialize the pool of tasks ready to be processed or during the
backward substitution to count the number of leaves to be processed before ending. The
list of roots is set on the fly by the branch detection algorithm (each time a node without
a father is encountered).

The number of selected sons –nb_sons(Inode)of each node has also to be computed
since it is used during the solution phase to decide when the node can be activated
(forward substitution) and added to the pool of task ready tobe processed. We initialize
nb_sons(Inode)to zero. It is then incremented during the algorithm even if the father of
the current node has already been visited.

Algorithm 9.2 : detailed branch detection

Input: ELIMINATION _TREE, STARTING_NODES.
Output: SELECTED_TREE (list_selected_leaves, list_selected_roots)

nb_sons(Inode) - selected sons ofInode, initialized to 0 .
father(Inode) - directed ascendant ofInode, (set to0 for the root node)
list_starting_nodes-
List_Selected_leaves- list of selected leaves nodes, initialized to⊘ .

for each non-visitedInodefrom starting_nodesdo
markInodeas visited
Fnode= father(Inode)
while Fnodenon-visited andFnode 6= 0 do

markFnodeas visited
increment nb_sons(Fnode)
Fnode= father(Fnode)

end while
if (Fnode 6= 0) increment nb_sons(Fnode)

end for

for Inode ∈ starting nodesdo
If (nb_sons(Inode)= 0) addInodeto the List_Selected_leaves

end for

The output of the algorithm of branch detection is then used during the solution phase
as input to the forward and backward substitution steps.

102

9.2 Pruning algorithms 103

9.2.2 Subtree detection

The ‘subtree detection’ algorithm is used only during the backward step for reducible
matrices or for null-space computations. We recall that themain objective of this
algorithm is to detect for each target node, the complete subtree rooted at that node. We
first describe the main feature of the subtree detection algorithm.

As in the previous case, we start by marking all nodes as non-visited. Then we get the
list of starting_nodes, associated with nonzero entries inthe right-hand sides. We select
the subtree rooted at each node of starting_nodes. Note thatwe go through the elimination
tree at most once to select all the subtrees.

Algorithm 9.3 : subtree detection
for each non-visited node in the list of starting_nodesdo

mark it and mark all nodes in its subtree down to leaf nodes or to next visited node
end for

A detailed subtree detection mechanism is described in Algorithm 9.4.

Initially, the list of selected leaves is empty, and subtreedetection begins from one of
the starting_nodes. At this stage, potentially each node inthe starting_nodes set can be
a root. A node is marked as not_root_node, if it is a son of another requested node. We
traverse the elimination tree only once in a top-down traversal. For each not visited node
in the starting_nodes, its whole subtree is marked. If an already marked son is encountered
then we can skip to the next son or to another entry in the starting_nodes.

Algorithm 9.4 : detailed subtree detection
Input: ELIMINATION _TREE, STARTING_NODES.
Output: SELECTED_TREE (list_selected_leaves, list_selected_roots)
Local : List_Selected_nodes - to manage local subtree traversal

for each non-visited nodeInodein the list of starting_nodesdo
if Inodeis visitedthen cycle
mark Inodeas ‘root_node’
addInodeinto List_Selected_nodes

Process subtree rooted at Inode:
for each node,Idescendant, in List_Selected_nodesdo

for each son,Ison, of Idescendantdo
if Ison is non-visitedthen

mark Isonas visited
addIson to List_Selected_nodes

else
mark Isonas ‘not_root_node’

end if
if (last_son ofIdescendant) then removeIdescendantfrom List_Selected_nodes

end for
end for

end for

for each nodeInodein the list of starting_nodes and marked as ‘root_node’do
addInodeinto List_selected_roots

end for

During subtree detection the number of sons for selected nodes remains unchanged.

103

104 Algorithms to exploit sparsity

The total number of selected leaf nodes is also needed to terminate the backward step.
For clarity, our algorithm computing the list of selected leaf nodes was not included in
Algorithm 9.4 but this data can easily be updated each time inthe algorithm we encounter
a node with no son.

9.3 Topologically-based permutations

We have shown that the sparsity of the right-hand sides can beexploited to reduce
both the amount of factors loaded in an out-of-core environment and the total number of
operations during the solution phase.

Our objective in this section is to understand how one shouldpermute the right-hand
sides to better exploit their sparsity. As explained in Sections 8.2.2.1 and 8.2.3.1, for
memory issues multiple right-hand sides are processed by blocks of fixed sizeNs . The
partitioning of the right-hand sides gives scope to furtheralgorithmic improvement. For
example one might want to group columns with as large as possible overlapping of the
factors to be loaded.

We first recall properties of our applications with sparse multiple right-hand sides that
can guide our choice of permutations.

Computing entries in A−1 . Forward and backward substitution steps exploit a branch
detection algorithm to compute entries in each column ofA−1 .

• The right-hand sides are partitioned into blocks by columns. Entries in the same
column are thus always processed together (in a block). Entries in same rows can
be processed in different blocks since their column indecesare different. We can
influence only the grouping of the right-hand sides by ordering columns with similar
properties in a single block.

• The column or row index of each entry in the right-hand sides is associated with
a node in the elimination tree. To compute any inverse entrya−1

ij we start with
a forward substitution step following ascending path from node associated with
column j to the root node, and continue with the backward substitution step
following a descending path from the root to the node associated with row i .

• From the previous property it results that, if two columns ofthe right-hand sides
have indices on the same path to the root are processed simultaneously. then factors
will be loaded only once during the forward step.

Example 9.1. Let us suppose that we want to computea−1
10,2 and a−1

11,7 (see
Figure 9.1). These entries are associated with nodes2 and 7 in the tree and share
the path from node7 (the ancestor of node2) up to the root. Thus if columns2 and
7 of the right-hand side vectors are grouped together, the block of factors associated
with the nodes in the shared path will be accessed only once.

• If two columns that are processed simultaneously, have onlyone row entry that is on
the same path to the root then factors will be loaded only onceduring the backward
step.

104

9.3 Topologically-based permutations 105

4

126

1 2

3

7

14

13

9

5 11108

Figure 9.1: Common path in the forward substitution for entries a−1
10,2 and a−1

11,7

Example 9.2. Let us suppose that we want to computea−1
13,2 and a−1

11,5 (see
Figure 9.2). For both entries the backward substitution will follow the same branch
of the tree – from the root down to node13 and to node11 . If the requested entries
are processed in a single block, factors from the root node13 will be loaded and
accessed only once.

4

126

1 102

3

7

14

13

9

5 8 11

Figure 9.2: Common path in the backward substitution for entries a−1
13,2 and a−1

11,5

Null-Space Computations. Each null or quasi null pivot is associated with one
column of the multiple right-hand sides. The backward substitution on each column will
benefit from a subtree detection algorithm.

• A node includes in its subtree the subtree of all its descending nodes. Thus null
pivots associated with nodes in the same subtree should be processed simultaneously
to load only once factors that are common.

• In other words, two null pivots that are not associated to nodes on the same path to
the root should be processed in different blocks.

Example 9.3. Let us suppose that we want to compute quasi null pivots associated
with row indices3, 7, 12 and 13 (elimination tree shown in Figure 9.3). If pivots
associated with nodes7 and 3 are processed simultaneously, the factors in the
subtree rooted at node7 will be loaded only once for computations of both pivots.
Nodes7 and 13 , are not on the same path to the root, thus, there is no benefit to
process them together.

In the context of a large number of right-hand sides and largematrices, we are
interested in finding algorithms to permute and group the right-hand sides using some
global information/property. From the previous observations it results that in both
applications (computingA−1 and null-space basis), the branch detection and subtree
detection algorithms can exploit the topology of the tree togroup columns of the right-
hand sides.

105

106 Algorithms to exploit sparsity

6

1 42

3

7

14

13

9

5 11108

12

Figure 9.3: Illustration of subtrees, rooted on filled nodes.

With a post-order traversal of the tree all nodes in a subtreewill have consecutive
numbers. For null-space computations it is clear that permuting the null-pivots to follow
a post-order of the tree will enable a simple splitting of thereordered list of right-hand
sides to be efficient. For computing entries inA−1 , if one considers the special and
interesting case of computing only diagonal entries ofA−1 (see Section 1.2), then again
permuting columns of the right-hand sides to follow a post-order will provide a good
locality for factor reuse between consecutive columns of the right-hand sides.

9.3.1 Post-order permutation of the right-hand sides

We first describe post-order based permutation of the right-hand side vectors. In a
sequential environment, a post-order traversal of the treeis used during both factorization
and solution phases. Therefore, with a post-order permutation of the columns of right-
hand sides, we can expect good overlapping of factors to be loaded for two consecutive
columns. For entries inA−1 , permuting the right-hand sides such that the associated
columns of A−1 follow a post-order ensures good locality for consecutive right-hand
sides as shown in Figure 9.4. For null-space basis computations, processing null pivots
with a post-order also gives scope to good locality within the subtrees.

4

6

1 2

3

7

14

13

9

5 11108

12

Figure 9.4: Ancestor nodes selected to be processed in a sameblock

A post-ordering based permutation of the columns of the right-hand sides provides
good reuse of the factor between consecutive columns and canthus be use to drive a
simple blocked processing.

9.3.2 Pre-order permutation of the right-hand sides

We use the term pre-order to define the inverse of the post-order permutation. If the
size of the right-hand sides is a multiple ofNs (the size of the block) then there is
no difference between both permutations. When the size of the right-hand sides is not
multiple of Ns , the last block might contain less columns compared to the other blocks.

106

9.4 Permuting columns of the right-hand sides to address parallelism 107

If post-order permutation is used, the last right-hand sidecolumns correspond to nodes in
the upper part of the tree (close to the root node). For entries in A−1 , these last nodes will
select shorter ascending paths in the elimination tree. Forquasi null pivots associated with
nodes from the upper part in the tree, larger subtrees will correspond to the last block. In
this case, we may want to have as large as possible the last block of right-hand sides to
better exploit the large amount of factors already loaded.

Example 9.4.Let us suppose that we want to compute null-space vectors associated with
null pivot rows 2, 3, 12, 13 and 14 (see Figure 9.5). Let the block size be2 , that is 2
right-hand sides can be processed simultaneously. If post-order is used, the pivots will be
processed as shown in Figure 9.5 a) in the order〈2, 3〉 then 〈12, 13〉 and finally 〈14〉 .
Note that in this case, the root node for which the whole tree is needed, is not associated
with any other node. If a pre-order is used as shown in Figure 9.5 b) the pivots will be
processed in the order:〈14, 13〉 then 〈12, 3〉 , and finally 〈2〉 . When using a pre-order,
the root node is associated with another node from the tree while the last block to process
has less factors to be accessed (since it corresponds to a node lower in the tree).

However note that in this case it would be even better to process 12 alone and〈2, 3〉 .

2

3

7

14

13

9

5 11108

126

1 4

a) Post-order processing

2

3

7

14

13

9

5 11108

126

1 4

b) Pre-order processing

Figure 9.5: Null pivots processed in blocks of size2 at a time. Filled nodes represent the requested pivots.
Subtrees associated with the grouped nodes with respect to the ordering are shown by lines.

As shown in Example 9.4 pre-order can reduce the amount of factors loaded with
respect to post-order but is however not an optimal solution. In a sequential environment,
we want within each block of right-hand sides to have a maximum overlapping between
the factors to be loaded and thus to have a large overlapping of the node traversal between
columns belonging to the same block. We have proposed topological orderings of the
columns for which one can expect good overlapping of the factors to be loaded between
consecutive columns. With a regular natural splitting of the reordered columns in blocks
of fixed sizeNs one can thus expect to limit the amount of factors loaded.

9.4 Permuting columns of the right-hand sides to address parallelism

In a parallel environment we now also want within each block of right-hand sides
to give work to each processor, since each processor may haveparallel access to its
local disk on which factors have been written. We do not propose in this section a
sophisticated solution/heuristic to this combinatorial problem. Instead we only describe
an extension/generalization of our sequential algorithm to address parallelism.

107

108 Algorithms to exploit sparsity

We recall that, thanks to the subtree to subcube mapping [57]performed during
analysis and exploited during factorization, nodes in the lower part of the tree are often
mapped on a single processor. Nodes in upper part of the tree are most frequently of type 2
and thus are mapped onto more than one processor. For nodes inthe upper part of the tree
almost all processors can be expected to work. When right-hand side vectors associated
with nodes in the lower parts of the elimination tree are selected, only one processor is
thus active. This observation has motivated the idea of interleaving nodes mapped in a
single subtree with nodes mapped on other subtrees. We thus interleave nodes in the
lower parts of the elimination tree, mapped on different processors into the same block of
right-hand sides (see Algorithm 9.5).

Algorithm 9.5 : Interleave local lists of ordered nodes on Nprocs processors
Input: LocalLists(Nprocs) //local lists of ordered nodes
Output: GlobalList //global ordered list of nodes, initialized to zero
Local: CurLocPos (Nprocs) //position in local lists (initialized to start of list)

CurProc //current processor (initialized to 1)

while (Size(GlobalList)< total number of right-hand-sides)do
if (CurLocPos(CurProc)< Size(LocalList(CurProc))then

insert current node from LocalList(CurProc) into GlobalList
CurLocPos(CurProc)=next element in LocalList(CurProc)
if (the node associated with CurLocPos(CurProc) is of type 1)then

// type 1 nodes are mapped on one processor:
change CurProc

else
// type 2 node are mapped on more than one processor: do no change CurProc

end if
else

// no elements left in LocalList(CurProc)
change CurProc

end if
end while

The input of Algorithm 9.5 is a local ordering of the right-hand sides per processor.
A simple way to build such a local ordering is to first perform aglobal reordering of
the right-hand sides as proposed in the previous section. Then the mapping of the nodes
onto the processor can be used to obtain an ordered local listof nodes per processor. In
practice the situation is slightly more complex since each column of the right-hand sides
is associated with nodes in the elimination tree which are mapped either on one process
(master process of a type 1 node) or to a subset of processes with a master process and
slave processes (type 2 node). To compute the local ordered lists of columns per processor,
we only rely on the master processor mapping of the columns. Furthermore type 2 nodes
are then processed differently during Algorithm 9.5 since the associated factors nodes are
distributed among many processors.

This parallel extension of a global ordering works with any initial global ordering,
including the topological orderings described in the previous section as well as with the
hypergraph orderings presented in the next chapter.

108

Chapter 10

Hypergraph models to exploit the
sparsity

Recall that we are solvingAX = B in an out-of-core context, whereB represents
a set of sparse right-hand side vectors. For memory issues, the right-hand side vectors
are processed by blocks. In other words, the solution phase will process the right-
hand sides in blocks. Within a block, theLU factors are accessed only once for all
computations regarding the right-hand sides-vectors of the block. Therefore, our aim is to
find a partitioning or a blocking of the right-hand sides vectors with similar computational
requirements so as to reduce the cost of loading the factors.We show that the partitioning
problem can be cast as a hypergraph partitioning problem.

Hypergraph partitioning was first used in VLSI (Very-Large-Scale Integration)
design [109]. Later, it found applications in parallel computing, starting from [26, 28,
27, 115, 116] where hypergraph partitioning models are usedfor efficient parallelization
of matrix-vector multiplies. Different hypergraph partitioning models are used in
parallelizing scientific computing applications such as computation of response time
densities in large Markov models [41], restoration of blurred images [117], and integer
factorization in the number field sieve algorithm in cryptology [19]. A common setting
in these applications is to model a given matrix with a hypergraph model. There are
other parallel and distributed computing applications where hypergraph models are used,
for example, workload partitioning in data aggregation [30], image-space-parallel direct
volume rendering [24], data declustering for multi-disk databases [87, 91], and scheduling
file-sharing tasks in heterogeneous master-slave computing environments [84, 85, 86]. We
note also that hypergraph partitioning finds applications outside of the parallel computing
domain: road network clustering for efficient query processing [36, 37], pattern-based
data clustering [100], reducing software development and maintenance costs [18], topic
identification in text databases [32], and processing spatial join operations [110].

In this chapter, we present an alternative method to partition the right-hand side vectors
using hypergraph models. We represent certain parts of the elimination tree with nets
and associate costs with those nets based on the loading costof factors associated with
those parts. Our aim is to reduce the cost of loading the factors. After a short review
of hypergraphs and hypergraph partitioning in Section 10.1, two hypergraph models
will be described: a model for enabling efficient computation of the diagonal entries of
A−1 in Section 10.2, and another one for efficient computation ofnull-space vectors in
Section 10.3. The two models differ in the way that the pins ofthe nets and the cost of

109

110 Hypergraph models to exploit the sparsity

the paths in the tree are defined. Both hypergraph models havevery particular structure
where nets (see definition in Section 10.1) are defined as subsets of other nets and the cost
of a net is strongly related to the cost of the nets in the subset. Finally, the hypergraph
partitioning problem minimises the cost associated with paths in the elimination tree by
grouping right-hand sides vectors with similar propertiesin a single partition/block.

10.1 Introduction

As introduced in the global introduction, a hypergraph is defined as a set of vertices
V and a set of netsN . Each net,ni , is a subset of vertices and has a size|ni| equal
to the number of its vertices. Weights are associated with the vertices, and costsc(i) are
associated with the nets. The vertex set can be partitioned into s nonempty parts where
the union of all parts givesV . We defineΠ to be such a partition,Π = {V1, . . . , Vs} .
A net is said to be connected to a partVi in Π if it has at least one vertex in that part.
Thus the connectivityλ(i) of the netni is the number of parts connected byni (see the
general introduction for more details and an example on hypergraph partitioning).

In the hypergraph partitioning problem, the objective is tominimize the cut-size of the
vertex partitionΠ .

cutsize(Π) =
∑

ni∈N

c(i)(λ(i) − 1) . (10.1)

We define the following hypergraphH = (V, N) . The vertex setV is equal to the set
of nodes associated with each columnbi of right-hand sides. (All requested columns for
inverse entries inA−1 or all requested columns for null pivots to compute a null-space
basis ofA .) Each netni in N corresponds to a path in the elimination tree. For later use
we note that these paths do not necessarily terminate at the root. We define asP (i, j) the
set of vertices on the path from nodei to nodej in the elimination tree. For simplicity,
if a path starts from nodei and goes up to the root we will denote it asP (i) . We define
Cost(P (i)) to be the cost of loading factors from nodei to the root. To describe the
loading cost between two nodes,Cost(i, j) will be used, corresponding to the sum of
the weights of all nodes in the pathP (i, j) from node i to node j , without including
node j :

Cost(i, j) =
∑

k∈P (i,j), k 6=j

w(k) .

The costc(i) of a net ni corresponding to the nodei in the elimination tree will be
defined using the functionCost(i, j) defined above for some specialj (we will define
the appropriatej later). After defining the costs and the structure of the hypergraph, we
will establish an exact correspondence between the cutsizefunction (Equation 10.1) and
the amount of the factors to be loaded.

10.2 Model for entries in A−1

Recall that to compute entries inA−1 we follow paths in the elimination tree in both
substitutions phases. Consider the first nodef that resides in the intersection of paths

110

10.2 Model for entries inA−1 111

P (i) and P (j) from nodesi and j to the root. Suppose that the solves associated with
nodesi and j are performed in two different blocks. Then, the factors of nodes residing
in the pathP (f) have to be loaded twice. In general, if nodef is performed ink blocks,
then the factors inP (f) have to be loadedk times. Since we have to load those at least
once, the overhead isCost(P (f)) (k− 1) . In the remainder of this chapter we will show
that, if we minimize this overhead, we minimize the cut-sizeof equation (10.1).

Let H = (V, N) be a hypergraph where the vertex setV is equal to the set of all
nodes associated with each column of the right-hand sides where at least one inverse
entry is requested. Each vertexvi has unit weight. We define two types of nets. The
first set N1 contains a netni for each vectorbi in the set of all right-hand sides RHS,
i.e. N1 = {ni : bi ∈ RHS} . Each netni ∈ N1 contains only a single vertexvi

corresponding tobi . We definenode fi to be the first ancestor node of a requested
node i in the intersection of the pathP (i) with a path from another requested node (can
be defined as the least common ancestor [112] or the lowest ancestor [5] of nodei with
another node).

The setN2 contains a net for each nodefi in the intersection of a number of paths
to the root. Each netnj ∈ N2 is the union of any netnk where nodej is ancestor of
node k in the elimination tree. Note that a node can be requested andalso can be at the
intersection of paths to the root. In such cases, a net of typeN1 and another of typeN2

(can happen, for example, when the node and a descendant of itcorrespond to requested
entries) are associated with the same node. Since the nets ofthe setN1 each have a pin
list of size one, they can never be in the cut. Therefore, after building the hypergraph,
those nets can be deleted from the model for simplicity.

Example 10.1. In Figure 10.1 the filled nodes are associated with requestedcolumns in
right-hand sides. The setN1 corresponds to nets associated with each requested node.
Nets n3 , n4 and n14 are defined as nets inN1 , each net contains only a single vertex
(respectivelyv3 , v4 and v14). Net n7 ∈ N2 is associated withv7 , because it is in the

n
7

n
3

n
4

n
14

n
7

n
14

n
3

n
4

4

3

2

7

14

13

9

5 11108

126

1 144

3

Figure 10.1: Nets associated with nodes in the elimination tree and corresponding hypergraph

intersection of pathsP (3) and P (4) . Then n7 is the union of nodes3 and 4 , that
is n7 = {3, 4} . Finally net n14 is associated with a requested node and is also an
intersection point, thenn7 ⊂ n14 .

Thecost of a netis defined according to paths or parts of a path. As seen above,each
net corresponds to a path that starts at a particular node of the elimination tree. The cost
of a net c(ni) is defined as the weighted sum of the size of the nodes (w(i)) in the path
P (i, f) from the netni associated with nodei to the net associated with the nodefi .

111

112 Hypergraph models to exploit the sparsity

This cost is also noted asCost(i, fi) :

c(ni) = Cost(i, fi) =
∑

k∈P (i,f), k 6=f

w(k) (10.2)

Our hypergraph partitioning problem consists in finding partitions such that the cutsize
metric of equation (10.1) is minimized:

cutsize(Π) =
∑

ni∈N

c(ni) (λ(i) − 1) =
∑

ni∈N

Cost(i, fi) (λ(i) − 1)

where λ(i) is defined as the connectivity of a netni . Minimizing this equation is
equivalent to minimizing the cost of loading factors while solving for at mostNs right-
hand side vectors in each block.

Example 10.2.We give an example of the associated costc(ni) on nets associated with
nodes in the elimination tree as shown in Figure 10.2.
c(n3) = Cost(3, 7) = w(3) , because there is onlyv3 in P (3, 7) to the next netn7 .
c(n4) = Cost(4, 7) = w(4) + w(6)
c(n7) = Cost(7, 14) = w(7)
c(n14) = Cost(14) = w(14)

n
7

n
3

n
4

n
4

n
7
n

14

n
3

14

n
14

V
1

V
2

2

7

14

13

9

5 11108

126

1 4

3

4

3

Figure 10.2: LEFT: Nets associated with the nodes in the elimination tree. Filled nodes correspond to
requested entries. RIGHT: Corresponding hypergraph model, containing4 nets and3 vertices. The
hypergraph is partitioned into2 parts, represented by ellipses.

Our hypergraph model in Figure 10.2 is partitioned into two parts. The connectivity of
each net is respectively:λ(4) = 1 , becausen4 is connected to only one part;λ(7) = 2 ,
becausen7 is connected to both parts;λ(14) = 2 ; λ(3) = 1 .

Each part represent a path in the elimination tree. The corresponding paths are shown
with line or cut-line arrows that show the ascending path to the root for each part.
Following the paths, data to be loaded for the first part, associated with node4 is:

w(4) + w(6) + w(7) + w(14).

Data needed to be loaded for the second part are:

w(3)+w(7) + w(14),

where the bold data correspond to repetitive load of alreadyloaded data. Knowing that
in any case all the necessary data is loaded at least once, that is:

w(3) + w(4) + w(6) + w(7) + w(14),

112

10.2 Model for entries in A−1 113

thus the overhead of loading data with partitioning the hypergraph model in two parts is
equal to:

w(7) + w(14).

Note that the overhead of loading data, correspond to the specific partition of the
hypergraph model, and it could be easily computed by the formula:

cutsize(Π) =
∑

ni∈N

c(ni) (λ(i) − 1).

Thus the overhead of data load is directly computed by the cutsize of our hypergraph:
cutsize(Π) = c(n7) (λ(7)−1)+ c(n14) (λ(14)−1)+0 c(n3)+0 c(n4) = w(14)+w(7)

Nets will be associated with all columns in the right-hand sides, even if some columns
are amalgamated in an unique node. In this case, we consider one of the amalgamated
variables as the principal variable, and the others as secondary variables. The weight of
the nets associated with all secondary variables in amalgamated nodes is zero, since there
is no node between these kind of nets. Since these kind of netsdo not add to the cutsize
we drop them from the model.

Example 10.3. Let us change our example by introducing node15 amalgamated to
node3 , as shown in Figure 10.3. Nets3 and 15 are thus associated with node3, 15 in
the assembly tree. Let3 be the primary variable and15 be the secondary variable in the
amalgamated node. The cost of the secondary variable15 is thenc(15) = Cost(15, 3) =
0 . The cost of net3 has not been changed:c(3) = Cost(3, 7) = w(3) .

n
7

n
4

n
14

n
3

n
15

2

14

13

9

5 11108

12

1 4

3,15

7

6

Figure 10.3: Netn15 associated with amalgamated node15 in the tree

Remarks on the proposed model:Our hypergraph model for entries inA−1 has
some properties which should be noted. First, for nets associated with ancestor nodes
in the elimination tree (as nodes3 and 7 in Figure 10.3), if the net associated with
the ancestor node is cut into several blocks, then all its descendants will be cut too (for
example: if netn7 is cut, thenn3 will also be cut). Second, this is a very special
hypergraph, represented as intersecting paths of a tree. Inpartitioning such a hypergraph,
one may develop specialized algorithms by taking advantageof the particular structure.
We also recall the minimum bin packing problem [56], given a bin size Ns , and a set
U = {u1, u2, . . . , un} of n non-negative/positive integers, partitionU into s disjoint
setsU1, U2, . . . , Us such that the sum of the elements in eachUi is less than or equal to
Ns . The objective is to minimize the number of sets,s , used. Since we haveu1 = 1 ,
our problem is not exactly the bin packing problem; but any bottom up approach that
decides to pack the children of a node has to solve this problem (when children have
already been packed, the problem is exactly equivalent to the bin packing one). Finally,

113

114 Hypergraph models to exploit the sparsity

the cost of the net takes into account this special structureof nets that are subsets of
other nets (n3 ⊂ n7 ⊂ n14). A single net thus contributes to the cost of almost all
nets. Furthermore, the cost of each block will change with respect to the right-hand sides
vectors included in it; and will also influence the cost of theother blocks.

Example 10.4. In the Figure 10.3, if node4 is not requested, netn4 will not be
associated and netn7 will not be defined as an intersection betweenn3 and n4 . Thus
n3 will have a different cost:c

′

(3) = Cost(3, 14) = w(3) + w(7) .

10.3 Model for null-space computations

We recall that to compute the null-space basis of a matrix, first all the null pivots
are detected and are stored in a list during the factorization phase. At the beginning of
the solution phase, the nodes associated with null pivots becomestarting nodesfor our
pruning algorithms. Then the subtrees rooted at the starting nodes are processed during
the solution phase.

Let H = (V, N) be our hypergraph. In our hypergraph model we use vertices to
represent all nodes associated with requested vectors of the null-space basis. As in the
previous hypergraph model, the weights (|vi| = 1). A net is associated with any node
(starting node) in the tree associated with a null pivot. We use nets to represent subtrees
or parts of subtrees. The cost of a net is thus related to the subtree mapped onto the
associated node.

We introduce the termdirectly related nets to refer to nets associated with nodes in
the same branch of the tree, such that in the path between themthere are no other nets.
(Example: in Figure 10.4 the directly related nets aren1 and n3 ; n3 and n14 ; n4 and
n14 . Netsn1 and n14 are not directly related becausen3 is in the path fromn1 to n14).
Let S(h) be the subtree rooted at nodeh . For our null-space model we define the cost
of a net c(nh) to be the weighted sum of nodes rooted at the nodeh . If in the subtree
there are nets directly related to netnh their cost should be subtracted.

Example 10.5. In Figure 10.4 the filled nodes are associated with null-space vectors.
Nets are associated with each of these nodes:n1 , n3 , n4 and n14 , The costs of the nets

n
1

n
4

n
3

n
1

n
3

n
4
n

14

n
14

4

14

3

1

V
1

V
2

2

3

7

14

13

9

5 11108

126

1 4

Figure 10.4: LEFT: Nets associated with nodes in the elimination tree. Fillednodes are associated with
null-space vectors. RIGHT: Corresponding hypergraph model for null-space computations, containing
4 nets and4 vertices.

c(ni) are defined according to the subtrees rooted at each net and are as follows:

c(n1) =
∑

k∈S(1) wk c(n4) =
∑

k∈S(4) wk

c(n3) =
∑

k∈S(3) wk − c(n1) c(n14) =
∑

k∈S(14) wk − c(n3) − c(n4)

114

10.4 Conclusions 115

Note that the cost ofn3 includes the cost of netn1 , its directly related net. Thus the
cost ofn1 is subtracted from the weighted sum of nodes rooted on node3 . Similarly, the
cost of net14 is the weighted sum of its subtree nodes with its directly connected netsn3

and n4 .
Our hypergraph model in Figure 10.2 is partitioned into two parts: V1 = {1, 3} and
V2 = {4, 14} . The connectivity of each net with respect to these partitions is: λ(1) = 2 ,
becausen1 is connected to both parts;λ(3) = 2 ; λ(4) = 1 , becausen4 is connected
to only to one part;λ(14) = 1 . Each part represent (sub)tree in the elimination tree,
shown by continuous and dotted line in the left part of Figure10.2. The overhead of
loading data with partitioning the hypergraph model in the corresponding parts is equal
to: cutsize(Π) =

∑

ni∈N c(ni) (λ(i) − 1) = c(n1) + c(n3).

Nets associated with amalgamated nodes in the elimination tree are treated as in
the previous hypergraph model. Each net associated with a principal variable in the
amalgamated node is the representative and its cost is computed as the cost of a ordinary
net. Nets associated with secondary variables have zero cost and thus are dropped from
the model.

Remarks on the proposed model: The hypergraph model for null-space basis
computations also has a special structure. Nets associatedwith nodes in the upper levels
of the tree are included in the subtree of nets associated with nodes in the lower levels.
(Example: in Figure 10.4n14 ⊂ n3 ⊂ n1 .) If a node is cut into several blocks, the net
associated with an ancestor node will also be cut (ifn1 is cut, thenn3 and n14 are also
cut). The cost of the net takes into account the special structure in the same way as for
the model of entries inA−1 . A single net contributes to the cost of most of the nets in the
hypergraph. Then the cost of each block will change with respect to the right-hand sides
vectors included in it; and will also influence the cost of theother blocks.

Example 10.6.Consider that node3 is not requested in the Figure 10.4. Then netn3

will not be associated. Netn1 will be defined as the first directly related net ton14 .
Net n14 will have a different cost:c(n14) =

∑

k∈S(14) wk − c(n1) − c(n4) .

10.4 Conclusions

When solving multiple right-hand sides by blocks, we try to order the right-hand
sides efficiently to minimize the amount of data accessed. Analternative method for
grouping the vectors is to use a hypergraph partitioning. Weuse the hypergraph modelling
to describe paths and part of paths in the elimination tree. We then associate a cost
for each of these parts with respect to the application (entries in A−1 or null-space
basis computations). Minimizing the cutsize of each partition is equivalent to ordering
efficiently the right-hand sides into blocks. The obtained hypergraph has a very special
structure where each net contains other nets and thus the cutsize of each part is strongly
related to the cost of almost all nets of the hypergraph model.

In many problems, the associated hypergraph is completely apparent. For example, in
[29] a net corresponds to a row or column of the matrix, or to a file shared by a number
of tasks [85]. In such cases, removing a single net from the hypergraph usually results
in a hypergraph model of an apparently modified version of theinput. For example, in
the case of matrix partitioning for hypergraphs, removing anet results in the hypergraph

115

116 Hypergraph models to exploit the sparsity

model of a matrix obtained from the original one by deleting asingle row or column.
Nothing else needs to be changed for solving the problem for this resulting matrix. In our
case, however, the cost and the connectivity of the nets depends on other nets. One cannot
always delete a net and obtain in a simple way a modified hypergraph model. It is also
necessary to modify the costs and the connectivity of the nets.

116

Chapter 11

Results and performance analysis

11.1 Introduction

We have described in the previous sections, algorithms to exploit the sparsity of the
right-hand side vectors and algorithms to permute multipleright-hand sides in order to
process them efficiently. We have also proposed an adaptation of our algorithm to address
parallelism and improve work balancing among the processors (see Algorithm 9.5).

In this chapter we comment on the results obtained in terms ofamount of factors
accessed and the computing time during the solution phase. We first present results for
null-space basis computations in Section 11.2. We then continue with the analysis of
the cost of computing multiple entries inA−1 in Section 11.3. Our set of test matrices,
described in Section 1.3, corresponds to applications in electromagnetism (for null-space
computations) and to applications in astrophysics (for entries in A−1). All matrices are
symmetric and are available on thegridtlse.org web site.

11.2 Null-space computations

We analyse the volume of factors accessed to compute the null-space basis of highly
deficient matrices. We compare the performance with and without exploiting sparsity of
the right-hand sides. As expected, the amount of factors accessed strongly influences the
computing time of the solution phase.

In a uni-processor environment, we analyse the behaviour ofstrategies split the right-
hand sides into blocks. In a parallel environment, our objective is also to give work to all
processors and we report very preliminary results with our interleaving strategy.

11.2.1 Sequential execution

We first present results on a small matrix for null-space computation – Box-
cave_8x5x3, of order 619 with 3 471 nonzeros. The deficiency of the matrix is56 (the
number of right-hand sides is thus equal to56), and the size of the factors is0.144 MB .

We first compare the amount of factors loaded in a sequential environment without
exploiting the sparsity of the right-hand sides for different block sizes (see Table 11.1
line no ES). Let Nb be the size of the block andNb_Blocks be the number of blocks

117

118 Results and performance analysis

(Nb_Blocks = Def/Nb). Results clearly illustrate the fact that the amount of data
loaded without exploiting the sparsity is|U | × Nb_Blocks . When processing all right-
hand sides with a single block (i.e.Nb_Blocks = 1) all factors are loaded only once
(See columnNb = 56 in Table 11.1). On the other hand, when solving one right-hand
side at a time, the amount of loaded factors is equal to|U | × 56 (8.088 MB).

Solve a block of right-hand sides (RHS) at once
Total Factors Loaded Nb = 1 RHS Nb = 10 RHS Nb = 16 RHS Nb = 56 RHS

no ES [MB] 8. 088 0.866 0.577 0.144
with ES [MB] 4. 276 0.554 0.409 0.144

Table 11.1: Comparing the total size of factors loaded when exploiting the sparsity (with ES) and without
exploiting the sparsity (no ES) of the right-hand sides on Box-cave_8x5x3. The right-hand sides are solved
by blocks of sizeNb .

Line with ES of Table 11.1 shows results obtained when the sparsity of theright-hand
sides is exploited. When all right-hand sides are solved at once, there is no difference
in the amount of data accessed. This is because some of the requested ‘null pivots’ are
associated with the root node of the elimination tree so thatthe complete|U | factors must
be loaded at least once even when sparsity is exploited. Notethat, on larger problems
(see next section), memory problems may occur when trying tosolve all right-hand sides
at once. If we process the right-hand sides one by one, then the total amount of the
loaded factors decreases by a factor of two. However, the total amount of factors accessed
remains important (4MB) compared to the case where the right-hand sides are processed
by blocks.

To simplify our study we have decided in the remainder of thissection to fix the number
of right-hand sides in a block to16 per processor.

On our small problem, we analyse in Table 11.2, the influence of the permutation,
post-order, pre-order and hypergraph (HG) model, on the amount of factors loaded. We
also report the amount of factors loaded without exploitingthe sparsity (column ‘no ES’).
We also indicate (in column ‘Min’) the minimum amount of factors based on the formula
given in Property 8.14 :

min_size =
∑

(size(node) ∗ nb_requests(node)/s)

where nb_requests is the number of requests for each node associated with an inverse
entry andsize is its size.

Both orderings combined with sparsity exploitation reducethe total size of factors to
be loaded. The pre-ordering gives better reuse of data than the post-ordering. Hypergraph
permutation also shows a competitive behaviour.

Total factors loaded [MB]
Matrix name Deficiency no ES with ES

min post-order pre-order HG
Box-cave_8x5x3 56 0.337 0.577 0.408 0.337 0.354

Table 11.2: Comparison of the total factors loaded with and without exploiting the sparsity and using post-
order, pre-order and hypergraph (HG) modelling to permute the right-hand sides and then process them by
blocks of size16 .

118

11.2 Null-space computations 119

In Table 11.3, we report the same statistics on our larger problems from
electromagnetism. For each matrix we recall its order (in column 2), the number of
nonzero entries (column ‘NZ’) and the deficiency (column ‘Defic’). We recall that the
deficiency corresponds to the total number of right-hand side vectors to solve.

Total factors loaded [MB]
Matrix name Order NZ Defic no ES with ES

Min Po Pr HG
Box-cave_16x10x3 2 675 15 953 270 7 19 8 8 8
Box-cave_20x13x3 4 419 26 129 456 18 64 24 21 19
Box-cave_30x20x4 14 454 89 185 1 653 170 1 261 208 201 196
Box-cave_40x27x5 33 627 212 883 4 056 803 9 622 901 884 998

Table 11.3: Comparison of the total factors loaded with and without exploiting the sparsity and using post-
order, pre-order and hypergraph based ordering. The right-hand sides are processed by blocks of size16 .

We first see that the gain that results from exploiting sparsity increases with the size of
the problem. We also observe that the larger the deficiency, the bigger the difference in the
amount of data accessed depending on sparsity exploitation. With all matrices, pre-order
loads less factors than post-order. Hypergraph modelling provides a competitive ordering
on the medium size matrices. On our largest matrix, the hypergraph approach is less
efficient than pre-order. In this case, following the topology of the tree naturally provides
an efficient global ordering of the right-hand sides since the amount of data accessed is
close to the minimum. Thus there is little scope for hypergraph based permutations to
obtain improved performance.

Time [s]
ES

Matrix name Def. no_es post-order pre-order HG
Box-cave_16x10x3 270 1.6 0.9 0.8 0.9
Box-cave_20x13x3 456 5.0 1.9 1.6 1.5
Box-cave_30x20x4 1 653 87.6 16.1 16.0 15.3
Box-cave_40x27x5 4 056 712.1 67.2 65.8 75.7

Table 11.4: Comparing the sequential time performance withand without exploiting the sparsity of the
right-hand sides on larger matrices on null-space computations.

In Table 11.4, we analyse the influence of the permutation on the computing time in
a sequential out-of-core environment. As expected, we obtain significant time reduction
when exploiting sparsity of the right-hand sides. The larger the deficiency, the larger the
gain - up to11 times faster, obtained on matrixBox-cave_40x27x5using pre-ordering.

We also note that pre-ordering is slightly better than post-ordering. On medium
size matrices, the hypergraph permutation gives the best performance, as it has less
data to access during the solution step. On the largest matrix, pre-order gives the best
performance. This confirms the fact that the time is stronglyrelated to the amount of data
loaded from disk.

119

120 Results and performance analysis

11.2.2 Parallel execution

We now show the parallel performance on our two largest matrices:Box-cave_30x20x4
andBox-cave_40x27x5. We compare the amount of factors accessed during the solution
phase and the time for the solution phase.

We report in column ‘Max" the sum of the amount of factors loaded on the most
loaded process during the processing of each block of right-hand sides. In column ‘Min",
we give the same information as previously but for the least loaded process. Finally in
column ‘Total", we report the total amount of factors loadedover all steps and processes.
More formally :

Max =
Nb_Blocks

∑

i=1

maxp≤Np(local_factors_loadedi
p)

Min =
Nb_Blocks

∑

i=1

minp≤Np(local_factors_loadedi
p)

Total =

Nb_Blocks
∑

i=1

Np
∑

p=1

(local_factors_loadedi
p).

We report in Table 11.5 and Table 11.6 a comparative study illustrating the interest of
the interleaving described in Algorithm 9.5. Note that for our parallel experiments we
force the number of right-hand sides ‘per processor’ to be equal to 16 . Therefore the
total number of right-hand sides in a block is equal to16 × Np . Note that the results are
given for two permutations : post-order (rows ‘Po’) and pre-order (rows ‘Pr’).

No Interleaving Interleaving
Factors loaded [MB] Time Factors loaded [MB] Time

Np Strat Max Min Total [s] Max Min Total [s]
1 Po 208 208 208 14,8 - - - -

Pr 201 201 201 14,2 - - - -
2 Po 70 40 111 8,1 82 59 141 9,7

Pr 73 42 116 8,8 99 73 172 11,2
4 Po 40 15 98 5,8 44 27 143 6,3

Pr 40 16 97 4,8 46 20 126 5,2

Table 11.5: Parallel execution: comparison of factors loaded and time performance on matrixBox-
cave_30x20x4. The number of right-hand sides per block is set toNp × 16 .

As expected we observe that our parallel interleaving algorithm orders the right-hand
sides in such a way that the total amount of the factors accessed is always greater than
the amount of factors accessed without interleaving. This comes from the fact that
interleaving is designed to distribute work on all processors. Therefore, for a fixed size
of block of right-hand sides we will globally have less overlapping of factors between
right-hand side columns. Let us illustrate this on two processors in a worst case. In the
worst case, with interleaving, the total amount of factors loaded with2 processors and
a block sizeNb is equal to the size of the factors loaded on one processor with a block
size of Nb/2 . We thus pay for an increase in the amount of factors loaded due to the
relative decrease per processor of the block size. In practice we see, in Tables 11.5 and

120

11.2 Null-space computations 121

11.6, that although we do have an increase in the total volumeof factors loaded, it is
less than a linear increase in the number of processors. Furthermore, for each processed
block of right-hand sides the time for loading factors from disk is larger than the time to
load factors on the most loaded processor. In this respect wealso see that the interleaving
algorithm behaves correctly. Thus there is scope for time reduction since parallel accesses
to local disk should also improve the global I/O bandwidth.

No Interleaving Interleaving
Factors loaded [MB] Time Factors loaded [MB] Time

Np Strat Max Min Total [s] Max Min Total [s]
1 Po 897 897 897 67,2 - - - -

Pr 880 880 880 68,5 - - - -
2 Po 374 143 517 34,7 402 239 641 36,0

Pr 411 155 566 38.9 503 231 734 46,2
4 Po 172 45 380 21,5 200 87 522 23,7

Pr 168 45 370 21,0 225 94 589 26,0
8 Po 81 16 323 17,6 123 42 706 21,7

Pr 72 9 250 14,8 118 32 618 19,7

Table 11.6: Comparison of factors loaded on parallel execution with matrix Box-cave_40x27x5. The
number of right-hand sides per block is set toNp × 16

.

One can see that with both strategies (with or without interleaving) the time decreases
with the number of processors. This is mostly due to the global increase of the block
size equal toNp × 16 . However, on these preliminary results, we see that we do not
benefit enough from parallel I/O access to the local disks with our interleaving approach
to improve the performance. Some additional work is thus needed to understand the
results provided in this preliminary work to address parallelism.

121

122 Results and performance analysis

11.3 Computing elements inA−1

We first analyse the behaviour of our algorithms (exploitingsparsity and ordering
and blocking the columns of the right-hand sides in a sequential environment). We
then comment on very preliminary results in a parallel environment. Most of our test
matrices come from applications in astrophysics and are described in Section 1.3. Regular
matrices corresponding to the discretization of the Laplacian operator are also used. As
explained in Section 1.2 and 1.3, we suppose that only the diagonal element ofA−1 need
be computed and will also consider computing part of them. Inall tables, matrices are
ordered by increasing number of the right-hand sides (whichis thus often equal to the
order of the matrix).

11.3.1 Sequential execution

The number of right-hand sides can be very large since it is equal to the order of the
matrix. In this case, the hypergraph models discussed in theprevious chapter become
prohibitively large in terms of net size to be useful. To compare the potential of the
hypergraph modelling with the topological orderings, we will suppose that only10% of
the diagonal entries are requested (diagonal entries are selected randomly). We report in
Table 11.7 the size of the factors to be loaded without exploiting sparsity (columns ‘no es’
and with exploiting sparsity (columns‘with ES’). To our previous permutations (post-
order (Po), pre-order (Pr) and hypergraph modelling (HG)) we add the natural ordering
(column Nat in Table 11.7). We also indicate (in column ‘Min’), the lower bound on the
factors to be loaded based on the formula given in Property 8.14.

Min Factors to be loaded [MB]
Matrix name Nb RHS no ES with ES

[MB] Nat Po Pr HG
d11_20x12x5 120 2 8 5 2 2 2

a-1_08M 899 79 770 116 81 81 79
a-1_21M 2 153 864 7 694 2 800 873 882 872
a-1_46M 4 679 1 181 13 764 1 560 1 185 1 188 1 194
a-1_72M 7 235 212 40 664 682 236 235 212
a-1_148M 14 828 736 191 959 2 713 801 805 746

Table 11.7: Influence of column ordering on the amount of factor accessed in a sequential environment.
Only 10% of the diagonal entries ofA−1 are requested. The right-hand sides are processed by blocksof
size 16 .

We see in Table 11.7 that the larger the number of right-hand sides, the larger the
difference in the amount of factors loaded when exploiting or not the sparsity of the right-
hand sides (compare columns ‘no es’ and ‘Nat’). When permuting the right-hand sides
for better reuse of the loaded factors, all permutations (Po,Pr,HG) reduce the amount of
factors to a value close to the minimum size (compare with column ‘Min’). We note
that using hypergraph ordering leads to the smallest amountof factors to be loaded in
most cases. We finally observe that post-ordering and pre-ordering have a very similar
behaviour and are also competitive permutations.

For applications in astrophysics and other least-squares data fitting problems, often
all diagonal entries ofA−1 need to be computed. We now focus on this application

122

11.3 Computing elements inA−1 123

in the remainder of this section and thus do not report results with hypergraph based
permutations and focus on topological based permutations.In Table 11.8 we report the
total amount of factors loaded when computing all diagonal entries in A−1 . We see
that a larger number of right-hand sides (column ‘order’) does not always lead to a larger
amount of data to load (see column ‘Min’). As in the previous case, exploiting the sparsity
of the right-hand sides with a natural ordering (column ‘Nat’) is less efficient than using
topological permutations (columns ‘Po’ and ‘Pr’). For example on matrixa-1_72Mwith
post-ordering and the pre-ordering we reduce the amount of data accessed by a factor
of 3 . In general, both topological orderings have a very similarbehaviour.

Min Total factors loaded [MB]
Matrix name Order no ES with ES

[MB] Nat Po Pr
d11_20x12x5 1 200 18 75 33 25 25

a-1_08M 8 999 714 7 609 931 790 786
a-1_21M 21 532 16 724 76 718 20 214 17 654 17 733
a-1_46M 46 799 11 105 137 407 12 165 11 628 11 629
a-1_72M 72 358 1 621 433 533 5 800 1 912 1 910
a-1_148M 148 286 9 227 1 677 479 18 143 9 450 9 461

Table 11.8: Influence of column ordering on the amount of factor accessed in a sequential environment.
All diagonal entries ofA−1 are requested. The right-hand sides are processed by blocksof size 16 .

In Table 11.9 we report the computing time of the solution phase. Time is very much
related to the total amount of factors loaded reported in Table 11.8. When sparsity
is not exploited, we could not obtain a solution with our largest matrixa-1_148Min
less than 24 hours. As one could expect from Table 11.8, we seethat we obtain a
large reduction in the solution time on matrixa-1_72Mwhen permuting the right-hand
sides. Topological orderings (post-ordering and pre-ordering) halve the solution time with
respect to the natural ordering. However, the amount of loaded factors is not the only issue
for performance since the number of requests in the emergency zone, and the regularity in
the disk access can also influence the computing time. This iswell illustrated by results on
matricesa-1_46Manda-1_72M. On matrixa-1_72Mwe load 11 628MB factors which
is six times less than the factors of1 912 MB with matrix a-1_46Mand the computing
time for the solution phase is only reduced by a factor of two (respectively455.0 sec and
218.4 sec).

Time performance [s]
Matrix name Order with ES

no ES Nat Po Pr
d11_20x12x5 1 200 4.4 1.4 1.1 1.2

a-1_08M 8 999 126.3 12.1 10.9 10.3
a-1_21M 21 532 738.0 270.5 256.7 233.4
a-1_46M 46 799 6 944.3 472.2 455.0 449.0
a-1_72M 72 358 27 728.1 408.2 218.4 213.6
a-1_148M 148 286 > 24h 1 391.6 986.2 996.8

Table 11.9: Influence of column ordering on the computing time in a sequential environment. All diagonal
entries ofA−1 are requested. The right-hand sides are processed by blocksof size 16 .

In the following we discuss the influence of the block size on the performance of the
solution phase (see Table 11.10 with results on matrixa-1_72Mand Table 11.11 with

123

124 Results and performance analysis

results on matrixa-1_148M). With both matrices, the amount of factors loaded decreases
when we increase the number of right-hand sides per block. When the sparsity is not
exploited, on matrixa-1_72Mthe amount of factors decreases from433 533 MB using
16 right-hand sides per block to6 370 MB using blocks of size1 000 ; and on matrix
a-1_148Mthe reduction is from more than1 677 GB with 16 right-hand sides per block
to 26.9 GB with blocks of size1 000 . The same behaviour is observed with exploiting
sparsity. The amount of factors decreases by a factor of ten in the case of post-ordering
and pre-ordering on matrixa-1_148M. We observed the same behaviour in the null-space
case (see Table 11.1). The minimum size of factors loaded decreases by a factor of15 in
the case of matrixa-1_72Mand by a factor of29 in the case of matrixa-1_148M. Finally
one should note that the amount of factors using topologicalpermutations (Po and Pr) is
much closer to the minimum size with a small number of right-hand sides per block. This
probably also means that on a very large number of right-handsides our lower bound is
less accurate.

Min Total factors loaded [MB] Time performance [s]
size no ES with ES no ES with ES

NbRHS [MB] Nat Po Pr Nat Po Pr
16 1 621 433 533 5 800 1 912 1 910 27 728.1 408.2 218.4 213.6

100 307 63 183 4 238 705 706 7 197.5 375.9 172.1 172.7
1 000 108 6 370 2 207 398 399 8 544.8 1 293.8 367.1 367.8

Table 11.10: Different sizes of the block applied ona-1_72Mfor requested all diagonal. entries inA−1 .

Min Total factors loaded [MB] Time performance [s]
size no ES with ES no ES with ES

NbRHS [MB] Nat Po Pr Nat Po Pr
16 9 227 1 677 479 18 143 9 450 9 461 > 24h 1 391.6 986.2 996.8

100 1 572 297 616 9 733 2 335 2 343 32 758.5 1 167.9 680.6 682.6
1 000 317 26 969 7 328 927 928 43 940.9 5 193.7 1 321.5 1 328.2

Table 11.11: Different sizes of the block applied ona-1_148Mfor requested all diagonal. entries inA−1 .

11.3.2 Parallel execution and permutations

In this section, we report very preliminary results on an adaptation of our sequential
algorithm to address parallelism. Our algorithm interleaves the permuted columns of the
right-hand sides on all the processors (see Algorithm 9.5).

To simplify our study we analyse the behaviour of our algorithms on symmetric
matrices, corresponding to a3D 11point-discretization of Laplacian operator described
in Table 11.12. We show the order, the number of nonzeros (NZ)and the factor size of
each matrix using METIS and AMD reordering techniques.

As expected on very rectangular grids AMD is more efficient atreducing the factor
size (compare columns 5 and 6 in rowRect-25M). Since the factor size is critical for OOC
performance both orderings have been considered. In Table 11.13, one can see that the
total volume of factors loaded without exploiting sparsityis only related to the factor size
so that AMD ordering behaves better than METIS onRect-25M. However since all paths
to the root are on average significantly longer (6 times) withAMD than with METIS,

124

11.3 Computing elements inA−1 125

Factors [MB]
matrix Grid order NZ METIS AMD

Rect-25M 500,10,5 25 000 249 720 15.7 10.1
Cub-25M 50,50,10 25 000 264 040 43.5 75.9

Table 11.12: Test matrices for study the parallel behaviourof the algorithm and factor size when different
orderings are used.

the amount of factors loaded when exploiting the sparsity ismuch larger (3 times) with
AMD than with METIS. We can also see the desastrious effect onperformance when
computing all diagonal entries ofA−1 with AMD. Therefore, on both matrices, METIS
is our best ordering in terms of both amount of factors to be loaded and computing time
while exploiting sparsity. We will thus limit our analysis in the remaining of this section
to the METIS ordering.

Total amount of factors loaded [MB]
matrix Ordering Tree Depth Exploit Sparsity Not Exploit Sparsity Time with ES [s]

Rect-25M AMD 11 127 9 426 24 505 1 080
METIS 1 914 3 423 37 429 149

Cub-25M AMD 2 649 64 002 198 017 3 817
METIS 985 20 636 61 478 1 141

Table 11.13: Influence of the orderings on the tree structure, the amount of factors loaded and the run-time
for computing all diagonal entries inA−1 . Statistics obtained on1 processor, using post-ordering and16
right-hand sides per block.

We first analyse in Table 11.14 the performance on our rectangular problem (matrix
Rect-25M) for various block sizes and number of processors. We first note that the amount
of factors loaded decreases when increasing the block size.We reduce by a factor of2
the amount of factors loaded on one processor when increasing the block of size from
16 to 64 right-hand sides. This reduction of data accessed directlyinfluences the time-
performance so that with a block of size64 the run-time is reduced by a factor of1.5 .
We also note that when using an intermediate block size of32 right-hand sides even if
the amount of factors loaded is still relatively high, we have captured most of the benefits
in terms of computing time (even in a parallel environment).Furthermore, note that, on a
given tree, the total amount of factors loaded is by definition independant of the number of
processors. In the MUMPS solver, the trees used for parallelexecution and for sequential
execution are not always identical. We see in Table 11.14 that this modification of the tree
has a very strong and unexpected influence on the total amountof factors loaded between
one and two processors. The tree between two and four processors is identical and we
thus have constant results.

During the factorization phase (see 3.2.1) we exploit a subtree to subcube mapping of
the elimination tree. Complete subtrees are thus mapped on the same processors. During
the solution step, using a post-ordering of the columns of the right-hand sides, consecutive
ones are likely to belong to the same subtree and thus mapped on the same processor.
Furthermore, on this matrix, the top level separators obtained by METIS are very small
so that matrices/nodes at the top of the tree are Type 1 nodes treated by only one processor.
Therefore, without interleaving, most of the factors that need to be accessed to process a
block of right-hand sides are mapped onto one and often the same processor. This leads
to a strong imbalance of the amount of factor accessed without interleaving (compare

125

126 Results and performance analysis

No Interleaving Interleaving
Size Factors/proc loaded [MB] Time Factors/proc loaded [MB] Time

Np Block Max Min Total [s] Max Min Total [s]
1 16 3 423 3 423 3 423 148.7 – – – –

32 1 982 1 982 1 982 99.3 – – – –
64 1 261 1 261 1 261 98.8 – – – –

2 16 1 353 413 1 768 87.8 1 483 1 102 2 585 91.2
32 865 286 1 151 65.3 884 644 1 528 58.9
64 608 235 844 61.9 600 446 1 046 57.4

4 16 926 97 1 768 82.3 1 201 668 3 722 89.3
64 365 79 844 50.2 430 241 1 330 51.6

Table 11.14: Parallel behaviour of factors loaded and run-time on matrixRect-25M. All diagonal entries
in A−1 are computed exploiting the sparsity of the right-hand sides. Column of the right-hand sides are
permuted with a post-ordering.

columns ‘Max’ and ‘Min’ in Table 11.14). With interleaving we see that we have a
better equilibration between least and most loaded processors in terms of disk accesses.
However, for a fixed value of the block size, the total amount of factors loaded is higher
with interleaving than without. That is because at each step, the potential for overlapping
factor accesses might have been reduced in the worse case by the number of processors.
One can see in Table 11.14 (compare columns Total with and without interleaving) that we
are far from this worse case. In terms of computing time, interleaving does not however
lead to any significant performance decrease.

No Interleaving Interleaving
Size Factors/proc loaded [MB] Time Factors/proc loaded [MB] Time

Np Block Max Min Total [s] Max Min Total [s]
1 16 20 636 20 636 20 636 1 140,8 – – – –

32 11 323 11 323 11 323 706,3 – – – –
50 7 752 7 752 7 752 484,8 – – – –

100 4 343 4 343 4 343 306,6 – – – –
2 16 16 837 10 423 27 261 1 008,6 18 037 15 557 33 615 1 263,8

32 8 722 5 927 11 323 565,2 9 320 7 941 17 261 686,6
50 5 763 4 112 9 875 405,0 6 155 5 171 11 326 477,6

100 3 081 2 327 5 408 246,3 3 295 2 687 5 982 278,4

Table 11.15: Parallel behaviour of factors loaded and run-time on matrixCub-25M. All diagonal entries
in A−1 are computed exploiting the sparsity of the right-hand sides. Column of the right-hand sides are
permuted with a post-ordering.

We report in Table 11.15 results on theCub-25Mmatrix. Even ifCub-25MandRect-
25M have the same size,Cub-25Mhas a significant larger tree with much larger frontal
matrices (top level separators in METIS) than thanRect-25M. The relative gains due to
increasing the block size are thus larger withCub-25Mthan withRect-25M. All nodes
at the top of the tree are then processed in parallel (Type 2 and Type 3 nodes) so that in
parallel the difference between the maximum and the minimumamount of factor loaded
is smaller on matrixCub-25Mthan on matrixRect-25M. One can see in Table 11.15 that
interleaving further improves the balance, the minimum andthe maximum amount of
factors loaded. However again this does not lead to any time reduction.

To conclude this section, we must insist on the fact that it isa preliminary study. We

126

11.3 Computing elements inA−1 127

have shown, that the shape of the tree very strongly influences the performance of the
algorithm. On matrixRect-25M, AMD was efficient at reducing the factor size but was
very bad at exploiting sparsity of the right-hand sides because of the depth of the tree
and the size of the upper-layers nodes. On both matrices the interleaving algorithm is
successful at equilibrating the amount of factor loaded perprocessor but does not lead to
any significant time improvement.

127

128 Results and performance analysis

128

Chapter 12

General conclusion and future work

The context of our study is the solution of very large systemsof linear equations with
direct methods. With direct methods we have to store the matrices of factors (A = LU
or A = LDLT) which are often significantly larger (ten to a hundred timeslarger) than
our original matrix. The memory requirement of direct methods is thus a major limitation
of the approach. One way to extend memory availability is to use parallel distributed
memory computers. Another way to extend the main memory is toexploit the disk (so
called out-of-core approach). In this work, we combine the two and so study parallel
out-of-core methods. In this context the first difficulty is to efficiently store the matrices
of factors on the local disk of the processors during the factorization phase. This work
has been the main focus of E. Agullo’s thesis at ENS-Lyon [1].In an out-of-core context
we have shown that the performance of the solution phase can be as time-consuming as
the performance of the factorization phase. Furthermore when multiple right-hand sides
are considered or for problems such as null space basis computation or computing entries
in the inverse of a matrix then the cost of the solution phase can be even more critical.
Our focus in this thesis has thus been the design of efficient algorithms for the solution
phase (LUX = B or LDLT X = B where X and B are matrices) assuming that the
matrices of factors are distributed on the local disks of ourparallel computers.

Out-of-core parallel solution phase

In the first part of this thesis we have described the parallelalgorithms used during
the solution phase and explained how they must be adapted to our parallel out-of-core
context. This work was implemented within the parallel multifrontal solver MUMPS. A
careful description of existing (i.e. incore) parallel solution phase algorithms has never
been done before and so is also one contribution of this work.

During the solution phase, the amount of floating-point operations is in general three to
four orders of magnitude smaller than for the factorizationphase so that there is almost no
scope to overlap disk access (I/O) with computations. In this context, the number and the
regularity of the I/O has been shown to be very critical for the efficiency of the solution
phase in both a sequential and a parallel environment. Even in the context of multiple
right-hand sides, we have shown that for memory issues one must process the right-hand
sides by blocks of reasonably small size. To process each block one may have to access
all the factors so that even in this case the ratio of the volume of I/O over computation is
still high.

129

130 General conclusion and future work

We have compared in Chapter 5 two strategies for reading/writing data on disk
(SYSTEM_BASED and DIRECT_IO). With a SYSTEM_BASED approach, although we
get full benefit from the system cache mechanisms, we have shown that this strategy is not
efficient when memory is limited. We have thus introduced DIRECT_IO access to the disk
with small prefetch buffers and shown that it is more efficient than the SYSTEM_BASED

approach both in terms of memory effectively used and computing time.

In a parallel environment, task scheduling can strongly influence the time performance
of the solution. We have described in Chapter 6 a constrainedscheduler that forces the
solution phase to follow the write sequence of the factorization phase. We have proved
the correctness of the algorithm and have reported results on a set of large problems to
show the efficiency of our new scheduler.

Sparse multiple right-hand sides

In an out-of-core environment, what is most critical for theperformance of the solution
is the amount of factors loaded. When the right-hand side is sparse it has been shown in
[62] and [64] that sparsity can be exploited to limit the amount of factors that need to be
accessed.

Among many possible problems with multiple sparse right-hand sides, we have
focused our attention on three of them (null space basis computation, computing entries
in the inverse of a matrix, and sparse right-hand sides on reducible matrices) coming from
applications in electromagnetism, astrophysics and linear programming.

We have first described and analysed in Chapter 8 different methods to compute the
entries in the inverse of the matrix which preserve the sparsity of the computations.
We have summarized the work based on the Takahashi equationsand have compared
the amount of factors to load using the Takahashi equations or with more a traditional
solution.

We have then shown that each of our three problems on which we have focused
requires sparsity to be exploited in a different way. For example to compute a null space
basis we want to solveUX = Y with a sparse matrix of right-hand sidesY , whereas
to compute entries in the inverse of a matrix we must solveLUX = B where B is a
sparse matrix of right-hand sides and only few entries of thematrix X are requested. We
have shown that, in all cases, exploiting the sparsity in oneright-hand side can be seen
as processing a pruned tree. In Chapter 9 we have shown that tocover all our problems
two types of pruning must be introduced - chain detection andsubtree detection. In a
multiple right-hand side context, for memory issues, columns need to be processed by
blocks. Columns “sharing” the same path in the pruned tree should then be grouped to
reuse the data. We have identified properties on columns of the right-hand sides which
share a common path in the forward or backward substitutionsand proposed topologically
based permutations to group similar right-hand sides in a single block. In Chapter 10 we
proposed a hypergraph partitioning of the columns of the right-hand sides. We have used
hypergraph models to describe paths and overlapping paths in the tree. Our models for
each problem (type of pruning) differ in the way the nets and the cost of the nets are
defined. The models obtained have a very particular structure of nets included in other
nets. Thus partitioning the right-hand sides with respect to the cost associated to each
net may become prohibitively expensive when increasing thenumber of right-hand sides
(as in the case of computing all diagonal entries ofA−1 where the number of right-hand

130

131

sides is thus equal to the order of the matrix). To address parallelism and benefit from
parallel access to the local disks, we have proposed interleaving the permuted right-hand
sides.

In Chapter 11 results on null-space basis computations and on computing diagonal
entries in A−1 are reported. We have shown that exploiting sparsity of the right-hand
sides leads to very significant gains in both time and factor accessed. Hypergraph based
permutations are very competitive on medium size of matrices and in general all proposed
permutations (topological or hypergraph) of the right-hand sides reduce the amount of
data accessed to be close to the minimum. In parallel, our interleaving algorithm has a
correct behaviour in terms increasing the volume of factorsaccessed in parallel; however
more work is needed to analyse the computing time behaviour.

Perspectives

We have shown how critical a scheduler can be in a parallel out-of-core environment.
We have proposed an efficient local scheduler to improve the performance of the solution
phase. Even if significant gains have been obtained with the proposed scheduler, there
is in some cases scope for improvement. In Section 6.2, we have explored a first track
and have relaxed our scheduler to enable out-of-order task processing. To help its local
decisions our scheduler could also be guided by a global strategy. On a large number
of processors, scheduling the tasks of the slaves of Type 2 nodes can also be an issue.
One could also influence the factorization phases or even theanalysis phase to provide
an elimination tree and/or a distribution of the factors onto the disks that is more suitable
to our parallel out-of-core solution phase. This is possible during the factorization phase
because we have quite some freedom to organize I/O operations in a way that is more
suited to the solution step without affecting the performance significantly. This is in fact
a more general remark. We have been working in the past mainlyon algorithms (during
analysis or during factorization) to improve the performance of the factorization. In many
applications, as far as the factorisation is concerned, themost critical issue is the peak of
memory used. Efficient parallel solution phases and analysis phases are then becoming
the most critical issues.

When using sparse multiple right-hand sides, we have shown that exploiting the
sparsity significantly improves the time-performance of the solution phase because in an
out-of core context the volume of I/O can be significantly reduced. Our pruning of the tree
will also lead to a reduction of the amount of operations and will thus also impact the in-
core computing time of the solution phase. Although benefitscan be expected using our
current approach, our models have to be revisited in an in-core environment. In a parallel
environment we have proposed a preliminary study to addressparallelism. Combining
the right-hand sides in parallel is a challenging combinatorial problem which should be
further investigated.

Finally, another interesting possibility in an out-of-core context is to anticipate, when
possible, the forward solution step. In this case one may want to even consider not
writing the associated factors to disk. This is possible since the forward step processes
the dependency tree in the same way as the factorization step. In this context, processing
multiple sparse right-hand sides can be a complicated issue. One may then for example
want to select the most time consuming right-hand sides as candidates for being processed
during factorization. One may also want to exploit an a priori knowledge of the sparsity

131

132 General conclusion and future work

of the right-hand sides and of the required entries in the solution to also limit the amount
of factors that are stored on disk.

132

Bibliography

[1] E. Agullo. On the Out-of-core Factorization of Large Sparse Matrices. PhD thesis,
École Normale Supérieure de Lyon, Nov. 2008.

[2] E. Agullo, A. Guermouche, and J.-Y. L’Excellent. A preliminary out-of-core
extension of a parallel multifrontal solver. InEuroPar’06 Parallel Processing,
pages 1053–1063, 2006.

[3] E. Agullo, A. Guermouche, and J.-Y. L’Excellent. A parallel out-of-core
multifrontal method: Storage of factors on disk and analysis of models for an
out-of-core active memory.Parallel Computing, Special Issue on Parallel Matrix
Algorithms, 34(6-8):296–317, 2008.

[4] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed
graph.SIAM Journal on Computing, 1:131–137, 1972.

[5] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common ancestors
in trees.SIAM Journal on Computing, 5(1):115–132, 1976.

[6] F. L. Alvarado and R. Betancourt. Parallel inversion of sparse matrices.IEEE
Transactions of Power Systems, PWRS, 1:74–81, 1986.

[7] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications, 23(1):15–41, 2001.

[8] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. MUMPS: A multifrontal
massively parallel solver.ERCIM News, 50:14–15, July 2002. European Research
Consortium for Informatics and Mathematics (ERCIM), http://www.ercim.org.

[9] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Parallélisation de la factorisation
LU de matrices creuses non-symétriques pour des architectures à mémoire
distribuée.Calculateurs Parallèles Réseaux et Systèmes Répartis, 10(5):509–520,
1998.

[10] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers.Comput. Methods Appl. Mech. Eng.,
184:501–520, 2000.

[11] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. Technical Report RAL-
TR-1999-059, Rutherford Appleton Laboratory, 1999. Revised version appeared
in SIAM Journal on Matrix Analysis and Applications.

133

134 BIBLIOGRAPHY

[12] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S.Pralet. Hybrid scheduling
for the parallel solution of linear systems.Parallel Computing, 32(2):136–156,
2006.

[13] P. R. Amestoy and C. Puglisi. An unsymmetrized multifrontal LU factorization.
SIAM Journal on Matrix Analysis and Applications, 24:553–569, 2002.

[14] C. Ashcraft. The fan-both family of column-based distributed Cholesky
factorisation algorithms. In J. R. Gilbert and J. W. H. Liu, editors,Graph Theory
and Sparse Matrix Computations, pages 159–190. Springer-Verlag, NY, 1993.

[15] C. Ashcraft and R. G. Grimes. SPOOLES: An object oriented sparse matrix library.
In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing, San Antonio, Texas, March 22–24, 1999.

[16] J. K. Avila and J. A. Tomlin. Solution of very large leastsquares problems by
nested dissection on a parallel processor. InProceedings of Computer Science and
Statistics: Twelfth Annual Symposium on the Interface, Waterloo, Canada, 1979.
Department of Computer Science.

[17] C. Aykanat, A. Pınar, and Ü. V. Çatalyürek. Permuting sparse rectangular matrices
into block-diagonal form.SIAM Journal of Scientific Computing, 25:1860–1879,
2004.

[18] R. Bisseling, J. Byrka, S. Cerav-Erbas, N. Gvozdenovic, M. Lorenz,
R. Pendavingh, C. Reeves, M. Roger, and A. Verhoeven. Partitioning a call graph,
2005. Second International Workshop on Combinatorial Scientific Computing.

[19] R. Bisseling and I. Flesch. Mondriaan sparse matrix partitioning for attacking
cryptosystems by a parallel block lanczos algorithm: a casestudy. Parallel
Computing, 32:551–567, 2006.

[20] Å. Björck. Methods for sparse least squares problems. In J. R. Bunch and D. J.
Rose, editors,Sparse Matrix Computations, pages 177–199, New York, 1976.
Academic Press.

[21] Å. Björck. Numerical methods for Least Squares Problems. SIAM, Philadelphia,
1996.

[22] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley.ScaLAPACK Users’ Guide. SIAM Press, 1997.

[23] L. Bouchet, J.P.Roques, P.Mandrou, A. Strong, R. Diehl, R. Lebrun, and R. Terrier.
Integral spi observation of the galactic central radian: Contribution of discrete
sources and implication for the diffuse emission.Astrophysical Journal, 635:1103–
1115, 2005.

[24] B. B. Cambazoglu and C. Aykanat. Hypergraph-partitioning-based remapping
models for image-space-parallel direct volume rendering of unstructured grids.
IEEE Transactions on Parallel and Distributed Systems, 18:3–16, 2007.

134

BIBLIOGRAPHY 135

[25] Y. E. Campbell and T. A. Davis. Computing the sparse inverse subset: an inverse
multifrontal approach. Technical Report TR-95-021, CIS Dept., Univ. of Florida,
1995.

[26] Ü. V. Çatalyürek and C. Aykanat. Decomposing irregularly sparse matrices
for parallel matrix-vector multiplication. Lecture Notes in Computer Science,
1117:75–86, 1996.

[27] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition
for parallel sparse matrix-vector multiplication.IEEE Transactions on Parallel
and Distributed Systems, 10:673–693, 1999.

[28] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication.IEEE Transactions on Parallel
and Distributed Systems, 10:673–693, 1999.

[29] Ü. V. Çatalyürek and C. Aykanat. PaToH: A multilevel hypergraph partitioning
tool, version 3.0. Technical Report BU-CE-9915, Computer Engineering
Department, Bilkent University, 1999.

[30] C. Chang, T. Kurc, A. Sussman, Ü. Çatalyürek, and J. Saltz. A hypergraph-
based workload partitioning strategy for parallel data aggregation, 2001. SIAM
Conference on Parallel Processing for Scientific Computing.

[31] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear algebra library for
distributed memory computers - design issues and performance.Computer Physics
Communications, 97:1–15, 1996.

[32] C. Clifton, R. Cooley, and J. Rennie. Topcat: Data mining for topic identification
in a text corpus.IEEE Transactions on Knowledge and Data Engineering, 16:949–
964, 2004.

[33] O. Cozette, A. Guermouche, and G. Utard. Adaptive paging for a multifrontal
solver. In Proceedings of the 18th annual international conference on
Supercomputing, pages 267–276. ACM Press, 2004.

[34] T. A. Davis. Algorithm 832: UMFPACK V4.3 — an unsymmetric-pattern
multifrontal method with a column pre-ordering strategy.ACM Trans. Math. Softw.,
30(2):196–199, 2004.

[35] A. de la Garza. An iterative method for solving systems linear equations. Technical
Report K-731, Union Carbide, 1951.

[36] E. Demir, C. Aykanat, and B. B. Cambazoglu. Clustering spatial networks for
aggregate query processing: a hypergraph approach.Information Systems, 33:1–
17, 2008.

[37] E. Demir, C. Aykanat, and B. B. Cambazoglu. A link-basedstorage scheme
for efficient aggregate query processing on clustered road networks. Information
Systems, 2009. To appear.

135

136 BIBLIOGRAPHY

[38] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, andJ. W. H. Liu. A
supernodal approach to sparse partial pivoting.Appear in SIAM J. Matrix Anal.
Appl., 1995.

[39] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, andJ. W. H. Liu. A
supernodal approach to sparse partial pivoting.SIAM Journal on Matrix Analysis
and Applications, 20(3):720–755, 1999.

[40] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, andJ. W. H. Liu. A
supernodal approach to sparse partial pivoting.SIAM Journal on Matrix Analysis
and Applications, 20(3):720–755, 1999.

[41] N. Dingle, P. Harrison, and W. Knottenbelt. Uniformization and hypergraph
partitioning for the distributed computation of response time densities in very large
markov models. Journal of Parallel and Distributed Computing, 64:908–920,
2004.

[42] F. Dobrian and A. Pothen. Oblio: a sparse direct solver library for serial and parallel
computations. Technical report, Old Dominion University,2000.

[43] F. Dobrian and A. Pothen. The design of I/O-efficient sparse direct solvers. In
Proceedings of SuperComputing, 2001.

[44] I. S. Duff. Design features of a frontal code for solvingsparse unsymmetric linear
systems out-of-core.SIAM Journal on Scientific and Statistical Computing, 5:270–
280, 1984.

[45] I. S. Duff. Sparse numerical linear algebra: direct methods and preconditioning.
Technical Report TR-PA-96-22, CERFACS, 1996.

[46] I. S. Duff, A. M. Erisman, C. W. Gear, and J. K. Reid. Sparsity structure and
Gaussian elimination.SIGNUM Newsletter, 23(2):2–8, Apr. 1988.

[47] I. S. Duff, A. M. Erisman, and J. K. Reid.Direct Methods for Sparse Matrices.
Oxford University Press, London, 1986.

[48] I. S. Duff and J. Koster. The design and use of algorithmsfor permuting large
entries to the diagonal of sparse matrices. Technical Report RAL-TR-97-059,
Rutherford Appleton Laboratory, 1997.

[49] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal
of a sparse matrix. Technical Report RAL-TR-1999-030, Rutherford Appleton
Laboratory, 1999. Also CERFACS Report TR/PA/99/13.

[50] I. S. Duff and J. K. Reid. A comparison of some methods forthe solution of sparse
overdetermined systems of linear equations.J. Inst. Maths. Applics., 17:267–280,
1976.

[51] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear systems.ACM Transactions on Mathematical Software, 9:302–325, 1983.

[52] I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear
systems.SIAM Journal on Scientific and Statistical Computing, 5:633–641, 1984.

136

BIBLIOGRAPHY 137

[53] S. C. Eisenstat and J. W. H. Liu. A tree based dataflow model for the unsymmetric
multifrontal method. Electronic Transaction on Numerical Analysis, 21:1–19,
2005.

[54] A. M. Erisman and W. F. Tinney. On computing certain elements of the inverse of
a sparse matrix.Comm. ACM, 18:177–179, 1975.

[55] L. V. Foster. Rank and nullspace calculations using matrix decompositions without
column interchanges.Linear Algebra and its Applications, 74:47–71, 1986.

[56] M. R. Garey and D. S. Johnson.Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[57] A. Geist and E. G. Ng. Task scheduling for parallel sparse Cholesky factorization.
Int J. Parallel Programming, 18:291–314, 1989.

[58] A. George and J. W. H. Liu. A quotient graph model for symmetric factorization. In
I. S. Duff and G. W. Stewart, editors,Sparse Matrix Proceedings, pages 154–175.
SIAM, 1978.

[59] A. George and J. W. H. Liu.Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ., 1981.

[60] A. George and E. G. Ng. On row and column orderings for sparse least squares
problems.SIAM J. Numer. Anal., 20:326–344, 1981.

[61] J. A. George, M. T. Heath, and E. G. Ng. A comparison of some methods for
solving sparse linear least squares problems.SIAM J. Scient. Statist. Comput.,
4:177–187, 1983.

[62] J. R. Gilbert. Predicting structure in sparse matrix computations.SIAM Journal on
Matrix Analysis and Applications, 15:62–79, 1994.

[63] J. R. Gilbert and J. W. H. Liu. Elimination structures for unsymmetric sparse LU
factors.SIAM Journal on Matrix Analysis and Applications, 14:334–352, 1993.

[64] J. R. Gilbert and E. G. Ng. Predicting structure in nonsymmetric sparse matrix
factorizations. In J. G. A. George and J. Liu, editors,Graph Theory and Sparse
Matrix Computations, pages 107–140. Springer-Verlag NY, 1993.

[65] J. R. Gilbert and S. Toledo. High-performance out-of-core sparse LU factorization.
In Proceedings of the 9th SIAM Conference on Parallel Processing for Scientific
Computing, 1999. (10 pages on CDROM).

[66] L. Giraud, A. Marrocco, and J.-C. Rioual. Iterative versus direct parallel
substructuring methods in semiconductor device modelling. Numerical Linear
Algebra with Applications, 12(1):33–53, 2005.

[67] G. H. Golub and S. G. Nash. Nonorthogonal analysis of variance using a
generalized conjugate-gradient algorithm.J. of the American Stat.Assoc., 77:109–
116, 1982.

[68] A. Guermouche. Étude et optimisation du comportement mémoire dans les
méthodes parallèles de factorisation de matrices creuses. PhD thesis, École
Normale Supérieure de Lyon, July 2004.

137

138 BIBLIOGRAPHY

[69] A. Guermouche, O. Cozette, and G. Utard. Study of the paging activity of the
parallel multifrontal method. In3rd International Workshop on Parallel Matrix
Algorithms and Applications (PMAA’04), CIRM, Marseille, France., Oct. 2004.

[70] A. Guermouche and J.-Y. L’Excellent. Memory-based scheduling for a parallel
multifrontal solver. In18th International Parallel and Distributed Processing
Symposium (IPDPS’04), page 71a (10 pages), 2004.

[71] A. Guermouche and J.-Y. L’Excellent. Optimal memory minimization algorithms
for the multifrontal method. Research report RR2004-26, LIP, 2004. Also INRIA
report RR-5179.

[72] A. Guermouche and J.-Y. L’Excellent. Flexible task allocation for the memory
minimization of the multifrontal approach, June 2005. Second International
Workshop on Combinatorial Scientific Computing (CSC05), CERFACS, Toulouse,
France.

[73] A. Guermouche and J.-Y. L’Excellent. Constructing memory-minimizing schedules
for multifrontal methods.ACM Transactions on Mathematical Software, 32(1):17–
32, 2006.

[74] A. Guermouche, J.-Y. L’Excellent, and G. Utard. Impactof reordering on the
memory of a multifrontal solver.Parallel Computing, 29(9):1191–1218, 2003.

[75] A. Gupta. WSMP: Watson Sparse Matrix Package part i - direct solution of
symmetric sparse systems version 1.0.0. Technical Report TR RC-21886, IBM
research division, T.J. Watson Research Center, Yorktown Heights, 2000.

[76] A. Gupta. WSMP: Watson Sparse Matrix Package part ii - direct solution of general
sparse systems version 1.0.0. Technical Report TR RC-21888, IBM research
division, T.J. Watson Research Center, Yorktown Heights, 2000.

[77] A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar. Pspases: An
efficient and scalable parallel sparse direct solver. Technical report, Department of
Computer Science, University of Minnesota and IBM T.J. Watson Research center,
1999.

[78] M. T. Heath, E. G. Ng, and B. W. Peyton. Parallel algorithms for sparse linear
systems.SIAM Review, 33:420–460, 1991.

[79] P. Hénon, P. Ramet, and J. Roman. A mapping and scheduling algorithm for parallel
sparse fan-in numerical factorization. InEuroPar’99 Parallel Processing, Lecture
Notes in Computer Science, No. 1685, pages 1059–1067, Berlin, Heidelberg, New
York, 1999. Springer-Verlag.

[80] P. Hénon, P. Ramet, and J. Roman. PaStiX: A Parallel Sparse Direct Solver Based
on a Static Scheduling for Mixed 1D/2D Block Distributions.In Proceedings of
Irregular’2000, Cancun, Mexique, number 1800 in Lecture Notes in Computer
Science, pages 519–525. Springer Verlag, May 2000.

[81] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Definite Systems.Parallel Computing, 28(2):301–
321, Jan. 2002.

138

BIBLIOGRAPHY 139

[82] HSL. HSL 2007: A collection of Fortran codes for large scale scientific
computation, 2007.

[83] G. Karypis and V. Kumar. ME T IS – A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices – Version 4.0. University of Minnesota, Sept. 1998.

[84] K. Kaya and C. Aykanat. Iterative-improvement-based heuristics for adaptive
scheduling of tasks sharing files on heterogeneous master-slave environments.
IEEE Transactions on Parallel and Distributed Systems, 17:883–896, 2006.

[85] K. Kaya, B. Uçar, and C. Aykanat. Heuristics for scheduling file-sharing tasks
on heterogeneous systems with distributed repositories.Journal of Parallel and
Distributed Computing, 67:271–285, 2007.

[86] G. Khanna, N. Vydyanathan, T. Kurc, Ü. Çatalyürek, P. Wyckoff, J. Saltz, and
P. Sadayappan. A hypergraph partitioning based approach for scheduling of tasks
with batch-shared io. InCluster Computing and Grid, 2005.

[87] M. Koyuturk and C. Aykanat. Iterative-improvement-based declustering heuristics
for multi-disk databases.Information Systems, 30:47–70, 2005.

[88] C. L. Lawson and R. J. Hanson.Solving Least Squares Problems. Prentice Hall,
Englewood Cliffs, New Jersey, 1974.

[89] T. Lengauer. Combinatorial algorithms for integratedcircuit layout.Wiley-Teubner,
Chichester, U.K., 1990.

[90] X. S. Li and J. W. Demmel. Making sparse Gaussian elimination scalable by static
pivoting. InProceedings of Supercomputing, Orlando, Florida, November 1998.

[91] D. Liu and M. Wu. A hypergraph based approach to declustering problems.
Distributed and Parallel Databases, 10:269–288, 2001.

[92] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matrix Analysis and Applications, 11:134–172, 1990.

[93] J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory and
Practice.SIAM Review, 34:82–109, 1992.

[94] J. W. H. Liu, E. G. Ng, and B. W. Peyton. On finding supernodes for sparse matrix
computations.SIAM Journal on Matrix Analysis and Applications, 14:242–252,
1993.

[95] J. W. Longley. Least Squares Computations Using Orthogonal Methods. Marcel
Dekker, Inc., New York, 1984.

[96] P. Manneback. On Some Numerical Methods for Solving Large Sparse Linear
Least Squares Problems. PhD thesis, Facultés Universitaires Notre-Dame de la
Paix, 1985.

[97] P. Matstoms.The Multifrontal Solution of Sparse Linear Least Squares Problems.
PhD thesis, Linköping University, 1991. licentiat thesis.

139

140 BIBLIOGRAPHY

[98] E. G. Ng and B. W. Peyton. A supernodal Cholesky factorization algorithm
for shared-memory multiprocessors.SIAM Journal on Scientific and Statistical
Computing, 14:761–769, 1993.

[99] E. E. Osborne. On least squares solutions of linear equations. J. ACM, 8:628–636,
1961.

[100] M. Ozdal and C. Aykanat. Hypergraph models and algorithms for data-pattern-
based clustering.Data Mining and Knowledge Discovery, 9:29–57, 2004.

[101] G. Peters and J. H. Wilkinson. The least squares problem and pseudo-inverses.The
Computer Journal, 13:309–316, 1970.

[102] J. K. Reid and J. A. Scott. An out-of-core sparse Cholesky solver. Technical Report
RAL-TR-2006-013, Rutherford Appleton Laboratory, 2006. Revised March 2007.

[103] J. K. Reid and J. A. Scott. HSL_OF01, a virtual memory system in Fortran.
Technical report, Rutherford Appleton Laboratory, 2006.

[104] E. Rothberg and R. Schreiber. Efficient methods for out-of-core sparse Cholesky
factorization.SIAM Journal on Scientific Computing, 21(1):129–144, 1999.

[105] V. Rotkin and S. Toledo. The design and implementationof a new out-of-
Core sparse Cholesky factorization method.ACM Transactions on Mathematical
Software, 30(1):19–46, 2004.

[106] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations
with PARDISO.Journal of Future Generation Computer Systems, 20(3):475–487,
2004.

[107] O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse
symmetric indefinite systems.Electronic Transaction on Numerical Analysis,
23:158–179, 2006.

[108] O. Schenk, S. Röllin, and A. Gupta. The effects of unsymmetric matrix
permutations and scalings in semiconductor device and circuit simulation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
23:400–411, 2004.

[109] D. Schweikert and B. Kernighan. A proper model for the partitioning of electrical
circuits. pages 57–62, 1972. Proceedings of the 9th Workshop on Design
Automation.

[110] S. Shekhar, C.-T. Lu, S. Chawla, and S. Ravada. Efficient join-index-based spatial-
join processing: a clustering approach.IEEE Transactions on Knowledge and Data
Engineering, 14:1400–1421, 2002.

[111] K. Takahashi, J. Fagan, and M.Chin. Formation of a sparse bus impedance
matrix and its application to short circuit study. InProceedings of the 8th PICA
Conference, Minneapolis, pages 177–179. Minneapolis, June 1973.

[112] R. E. Tarjan. Applications of path compression on balanced trees.Journal of the
ACM, 26:690–715, 1979.

140

BIBLIOGRAPHY 141

[113] S. Toledo. TAUCS: A library of sparse linear solvers, version 2.2, 2003. Available
online at http://www.tau.ac.il/˜stoledo/taucs/.

[114] S. Toledo and A. Uchitel. A supernodal out-of-core sparse gaussian elimination
method. InProceedings of PPAM 2007, 2007.

[115] B. Uçar and C. Aykanat. Encapsulating multiple communication-cost metrics in
partitioning sparse rectangular matrices for parallel matrix-vector multiples.SIAM
Journal of Scientific Computing, 25:1837–1859, 2004.

[116] B. Uçar and C. Aykanat. Revisiting hypergraph models for sparse matrix
partitioning.SIAM Review, 49:595–603, 2007.

[117] B. Uçar, C. Aykanat, M. Pınar, and T. Malas. Parallel image restoration using
surrogate constraints methods.Journal of Parallel and Distributed Computing,
67:186–204, 2007.

[118] G. Vedrenne, J.-P. Roques, V. Schönfelder, P. Mandrou, G. G. Lichti, A. von
Kienlin, B. Cordier, S. Schanne, J. Knödlseder, G. Skinner,P. Jean, F. Sanchez,
P. Caraveo, B. Teegarden, von P. Ballmoos, L. Bouchet, P. Paul, J. Matteson,
S. Boggs, C. Wunderer, P. Leleux, G. Weidenspointner, P. Durouchoux, R. Diehl,
A. Strong, M. Cassé, M. A. Clair, and Y. André. Spi: The spectrometer aboard
integral. pages 63–70, 2003.

[119] C. Winkler, T. J.-L. Courvoisier, G. D. Cocco, N. Gehrels, A. Giménez,
S. Grebenev, W. Hermsen, J. M. Mas-Hesse, F. Lebrun, N. Lund,G. G. C. Palumbo,
J. Paul, J.-P. Roques, H. Schnopper, V. Schönfelder, R. Sunyaev, B. Teegarden,
P. Ubertini, G. Vedrenne, and A. J. Dean. The integral mission. In E. J. A. M. G. F.
C. C. U. Press, editor,Populations of High Energy Sources in Galaxies Proceedings
of the 230th Symposium of the International Astronomical Union, pages 59–65,
2003.

141

Abstract

We consider the solution of very large systems of linear equations with direct multifrontal methods. In this context thesize of the
factors is an important limitation for the use of sparse direct solvers. We will thus assume that the factors have been written on the
local disks of our target multiprocessor machine during parallel factorization. Our main focus is the study and the design of efficient
approaches for the forward and backward substitution phases after a sparse multifrontal factorization. These phases involve sparse
triangular solution and have often been neglected in previous works on sparse direct factorization. In many applications, however, the
time for the solution can be the main bottleneck for the performance.

This thesis consists of two parts. The focus of the first part is on optimizing the out-of-core performance of the solutionphase.
The focus of the second part is to further improve the performance by exploiting the sparsity of the right-hand side vectors.

In the first part, we describe and compare two approaches to access data from the hard disk. We then show that in a parallel
environment the task scheduling can strongly influence the performance. We prove that a constraint ordering of the tasksis possible;
it does not introduce any deadlock and it improves the performance. Experiments on large real test problems (more than 8 million
unknowns) using an out-of-core version of a sparse multifrontal code calledMUMPS (MUltifrontal Massively Parallel Solver) are used
to analyse the behaviour of our algorithms.

In the second part, we are interested in applications with sparse multiple right-hand sides, particularly those with single nonzero
entries. The motivating applications arise in electromagnetism and data assimilation. In such applications, we need either to compute
the null space of a highly rank deficient matrix or to compute entries in the inverse of a matrix associated with the normal equations of
linear least-squares problems. We cast both of these problems as linear systems with multiple right-hand side vectors,each containing
a single nonzero entry. We describe, implement and comment on efficient algorithms to reduce the input-output cost during an out-
of-core execution. We show how the sparsity of the right-hand side can be exploited to limit both the number of operationsand the
amount of data accessed.

The work presented in this thesis has been partially supported by SOLSTICE ANR project (ANR-06-CIS6-010).

Keyword: Gaussian elimination, multifrontal method, Distributed computing, parallel computing, sparse matrices, tasks
scheduling, multiple right-hand side vectors.

Résumé

Nous nous intéressons à la résolution de systèmes linéairescreux de très grande taille par des méthodes directes de factorisation.
Dans ce contexte, la taille de la matrice des facteurs constitue un des facteurs limitants principaux pour l’utilisation de méthodes
directes de résolution. Nous supposons donc que la matrice des facteurs est de trop grande taille pour être rangée dans lamémoire
principale du multiprocesseur et qu’elle a donc été écrite sur les disques locaux (hors-mémoire : OOC) d’une machine multiprocesseurs
durant l’étape de factorisation. Nous nous intéressons à l’étude et au développement de techniques efficaces pour la phase de résolution
après une factorization multifrontale creuse. La phase de résolution, souvent négligée dans les travaux sur les méthodes directes de
résolution directe creuse, constitue alors un point critique de la performance de nombreuses applications scientifiques, souvent même
plus critique que l’étape de factorisation.

Cette thèse se compose de deux parties. Dans la première partie nous nous proposons des algorithmes pour améliorer la
performance de la résolution hors-mémoire. Dans la deuxième partie nous pousuivons ce travail en montrant comment exploiter
la nature creuse des seconds membres pour réduire le volume de données accédées en mémoire.

Dans la première partie de cette thèse nous introduisons deux approches de lecture des données sur le disque dur. Nous montrons
ensuite que dans un environnement parallèle le séquencement des tâches peut fortement influencer la performance. Nous prouvons
qu’un ordonnancement contraint des tâches peut être introduit; qu’il n’introduit pas d’interblocage entre processuset qu’il permet
d’améliorer les performances. Nous conduisons nos expériences sur des problèmes industriels de grande taille (plus de8 Millions
d’inconnues) et utilisons une version hors-mémoire d’un code multifrontal creux appeléMUMPS (solveur multifrontal parallèle).

Dans la deuxième partie de ce travail nous nous intéressons au cas de seconds membres creux multiples. Ce problème apparaît
dans des applications en electromagnétisme et en assimilation de données et résulte du besoin de calculer l’espace propre d’une
matrice fortement déficiente, du calcul d’éléments de l’inverse de la matrice associée aux équations normales pour les moindres
carrés linéaires ou encore du traitement de matrices fortement réductibles en programmation linéaire. Nous décrivonsun algorithme
efficace de réduction du volume d’Entrées/Sorties sur le disque lors d’une résolution hors-mémoire. Plus généralementnous montrons
comment le caractère creux des seconds -membres peut être exploité pour réduire le nombre d’opérations et le nombre d’accès à la
mémoire lors de l’étape de résolution.

Le travail présenté dans cette thèse a été partiellement financé par le projet SOLSTICE de l’ANR (ANR-06-CIS6-010).

Mots-clés: calcul distribué, calcul parallèle, élimination de Gauss,matrices creuses, méthode multifrontale, séquencement des
tâches, seconds membres multiples

Thèse préparée au CERFACS, CERFACS Report Ref: TH-PA-09-59
42, Avenue Gaspard Coriolis. 31057 Toulouse Cedex 01. France.

	these.pdf
	Abstract
	Résumé
	Chapter 1 General introduction
	1.1 Context of our study
	1.2 General background
	Graphs
	Direct methods
	Least-square solution

	1.3 Test environment

	Part I Analysis of the Solution Phase of a Parallel Multifrontal Approach
	Chapter 2 Introduction
	Chapter 3 Main in-core parallel features of the solver
	3.1 Introduction
	3.2 In-core parallel factorization phase
	3.2.1 Parallelism during the factorization phase

	3.3 In-core parallel solve phase
	3.3.1 Some notation
	3.3.2 Algorithm for management of tasks and messages
	3.3.3 Algorithm for forward substitution
	3.3.4 Detailed illustration of the forward substitution
	3.3.5 Algorithm for backward substitution
	3.3.6 Detailed illustration of the backward substitution

	Chapter 4 Out-of-Core (OOC) main features
	4.1 Introduction
	4.2 OOC factorization phase
	4.3 OOC solve phase
	4.4 System based demand driven approach

	Chapter 5 Direct_IO based method
	5.1 Introduction
	5.2 User defined buffer
	5.3 States of a node
	5.4 Comparison of System_Based and Direct_IO methods
	5.4.1 Sequential case
	5.4.2 Influence of parallelism on the performance

	5.5 Influence of scheduling
	5.5.1 Sequential performance
	5.5.2 Parallel performance with LIFO scheduler
	5.5.3 Illustration of the high number of emergency calls with LIFO

	Chapter 6 Scheduling to improve performance
	6.1 NNS scheduler
	6.1.1 Description of the algorithm
	6.1.2 Experiments with LIFO and NNS strategies

	6.2 BPN scheduler
	6.2.1 Description of the algorithm
	6.2.2 Experiments with BPN strategy

	Part II Exploit Sparsity of Sparse Right-Hand Sides in OOC Environment
	 Chapter 7 Introduction
	CHapter 8 Exploiting sparsity of the right-hand sides: Context and applications
	8.1 Context of our study
	8.1.1 Relationship between matrix graph and structure of the solution
	8.1.2 Background on computing entries in the inverse of a matrix

	8.2 Sparsity of the right hand-sides and applications
	8.2.1 Sparse right-hand sides / reducible matrices
	8.2.2 Null-space computations
	8.2.3 Computing entries in A-1
	8.2.4 Pruning and concluding remarks

	Chapter 9 Algorithms to exploit sparsity
	9.1 Introduction
	9.2 Pruning algorithms
	9.2.1 `Branch detection'
	9.2.2 Subtree detection

	9.3 Topologically-based permutations
	9.3.1 Post-order permutation of the right-hand sides
	9.3.2 Post-order permutation of the right-hand sides

	9.4 Permuting columns of the right-hand sides to address parallelism

	Chapter 10 Hypergraph models to exploit the sparsity
	10.1 Introduction
	10.2 Model for entries in A-1
	10.3 Model for null-space computations
	10.4 Conclusions

	Chapter 11 Results and performance analysis
	11.1 Introduction
	11.2 Null-space computations
	11.2.1Sequential execution
	11.2.2 Parallel execution

	11.3 Computing elements in A-1
	11.3.1 Sequential execution
	11.3.2 Parallel execution and permutations

	Chapter 12 General conclusion and future work
	Out-of-core parallel solution phase
	Sparse multiple right-hand sides

	Perspectives
	Bibliography
	Abstract

