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Classifier des flots d'Anosov en dimension 3 par des types géométriques Mots clés: Flots d'Anosov, Partitions de Markov, Plan bifeuilleté, 3-variétés Résumé: Dans cette thèse, nous allons décrire une nouvelle approche au problème de la classification des flots d'Anosov transitifs en dimension 3 à équivalence orbitale près.

A un flot d'Anosov quelconque supporté par une 3-variété fermée et connexe M , il est connu qu'on peut naturellement associer (à conjugaison près) une action du groupe fondamental de M sur un plan muni de deux feuilletages transverses, autrement connu comme le plan bifeuilleté du flot. Un résultat de T.Barbot affirme que cette action contient toute l'information du flot initial et permet aussi de le reconstruire à orbite équivalence près. Notre approche consiste à classifier les actions de groupes associées à des flots d'Anosov par des partitions de Markov.

Dans un premier temps, nous allons définir une notion de partition de Markov pour une action de groupe dans un plan qui préserve deux feuilletages transverses. Cet objet sera appelé une famille Markovienne et consistera un objet central de notre étude. Nous allons ensuite démontrer qu'à un flot d'Anosov transitif en dimension 3 on peut associer une infinité de familles Markoviennes.

Une famille Markovienne étant une information combinatoire infinie, dans un second temps, nous allons associer canoniquement à chaque famille Markovienne un objet combinatoire fini, qui s'appellera un type géométrique. Une grande partie de cette thèse sera consacrée à l'étude de cet objet. On va prouver que le type géométrique d'un flot d'Anosov transitif en dimension 3 est un invariant du flot modulo des chirurgies de Dehn-Goodman-Fried sur des orbites périodiques qu'on pourra spécifier. Il va en découler qu'en rajoutant canoniquement une information combinatoire en plus dans le type géométrique, on peut définir un invariant fini du flot initial à équivalence orbitale près. On va appeller cet invariant un type géométrique à cycles.

Enfin, nous allons décrire certaines applications des types géométriques à cycles dans la classification des flots d'Anosov en dimension 3 et certaines questions ouvertes autour de ce sujet.

To any Anosov flow supported by a closed and connected 3-manifold M , it is known that we can naturally associate (up to conjugation) an action of the fundamental group of M on a plane endowed with two transverse foliations, otherwise known as the bifoliated plane of the flow. According to a result of T. Barbot, this action contains all the information and can be used to reconstruct the initial flow up to orbital equivalence. Our approach consists in classifying the group actions associated to Anosov flows using Markov partitions.

First, we are going to define a notion of Markov partition for a group action on the plane preserving a pair of transverse foliations. This object will be called a Markovian family and will constitute a central object of this thesis. We will proceed in showing that to every transitive Anosov flow in dimension 3 we can associate infinitely many Markovian families.

Next, a Markovian family being an infinite-type combinatorial object, we will associate canonically to any Markovian family a finite combinatorial object, called a geometric type. A big part of our study will be devoted to the properties of geometric types. We will show that the geometric type of a transitive Anosov flow in dimension 3 is an invariant of the flow modulo Dehn-Goodman-Fried surgeries on specific periodic orbits. As a consequence of this fact, by adding canonically some combinatorial information to the geometric type it is possible to define a finite invariant of the original Anosov flow up to orbital equivalence. We will call this invariant a geometric type with cycles.

Finally, we will describe some applications of geometric types with cycles in the classification of Anosov flows in dimension 3 and some open questions around this topic.
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Introduction

Anosov flows in dimension 3 constitute archetypes of structurally stable systems. In other words, despite its chaotic behavior (sensibility to the initial conditions, infiniteness of periodic orbits), every Anosov flow describes a rigid dynamical system that resists to small perturbations up to orbital equivalence. Thanks to this rigidity, Anosov flows in any dimension and up to orbital equivalence form an infinite countable set; hence a classification (by finite combinatorial objects) of the elements of this set is a priori possible.

The classification of Anosov flows constitutes one of the oldest problems in the field of Anosov systems. The abundance of examples of Anosov flows in dimension 3, the fact that closed 3-manifolds have been classified and also the numerous connections between the dynamics of an Anosov flow in dimension 3 with the topology of the ambient manifold render the previous problem of classification particularly interesting in dimension 3.

In this chapter, we will briefly describe the historical background of the classification problem and we will present the results proven in this thesis. Often during this introduction our definitions will be incomplete or simplified. In those cases, we will refer the reader to the parts of this text, where he can find the formal definitions of the objects that we present here.

Some historical background

In 1967, D.V.Anosov, inspired by the properties of the geodesic flow of a hyperbolic manifold, a flow that was systematically studied throughout the 20th century, defined in [An] the notion of a U-flow, known also today as an Anosov flow. Anosov proves among others in [An] that any Anosov flow is structurally stable and posesses infinitely many periodic orbits. He also lists all the examples Anosov flows known to him at that time (see Paragraph 2 of Chapter 1 in [An]):

1. Suspension flows of Anosov diffeomorphisms of the n-dimensional torus T n 2. Geodesic flows on closed hyperbolic manifolds with strictly negative curvature or negative curvature everywhere except "small parts of positive curvature" 3. Anosov flows supported by the left quotient of a Lie group G by a cocompact lattice and defined as the right action of a one parameter subgroup of G 4. Smooth reparametrizations and C 1 perturbations of the previous examples 5. Anosov gives a geometric example of a C1 perturbation of a geodesic flow of a hyperbolic surface. Consider S a hyperbolic orientable surface endowed with a metric of negative curvature. Fix k > 0 and consider all curves in S of constant curvature equal to k. A point in T 1 S defines locally (in T 1 S) two such curves. By choosing a constant speed parametrization of the previous curves and under some minor conditions on k, we can define two Anosov flows on T 1 S that are C 1 close to the geodesic flow on T 1 S when k is small. The previous construction can also be carried out for non-orientable surfaces in the space of 2-frames of S.

For several years, the previous examples were considered to form a complete list of all Anosov flows in every dimension. In particular, since all the previous examples are transitive, for a long time Anosov flows were conjectured to be always transitive. In fact, in 1973, A. Verjovsky in his PhD thesis proves that all codimension one Anosov flows in dimension strictly higher than 3 are transitive 1 (see [START_REF] Verjovsky | Codimension one Anosov flows[END_REF]). The hopes for a generalization of Verjovsky's result in dimension 3 were finally shattered in 1979, when J.Franks and R.Williams construct the first examples of non-transitive Anosov flows in dimension 3 (see [FrWi] 2 ).

The construction of Franks and Williams constituted a great surprise in the field of Anosov flows. Thanks to this construction, a new classification conjecture was born: the previous examples of Anosov flows form a complete list of all transitive Anosov flows in every dimension. Several results going in this direction were proven:

• In 1979, E.Ghys proved that an Anosov flow on a circle bundle over a surface is orbitally equivalent to a geodesic flow up to finite covers (this result was published in 1984 in [Gh] 3 )

• In 1980, J.F.Plante submits a paper (see [Pl]) in which he shows that if the weak stable or unstable foliation of an Anosov flow Φ has a transversely affine structure, then Φ is orbitally equivalent to a suspension Anosov flow

• J.F.Plante shows in the same paper that any Anosov flow on a manifold with a solvable fundamental group is orbitally equivalent to a suspension Anosov flow4 

Despite the previous results, the revised classification conjecture was soon after proved wrong by the construction of three large families of counterexamples. Indeed, three different methods for constructing new transitive Anosov flows in dimension 3 were successively introduced in the ensuing years:

1. In 1980, M.Handel and W.Thurston constructed in [HaTh] infinitely many new transitive Anosov flows by performing surgery on the geodesic flow of an orientable surface S endowed with a metric of negative curvature. More precisely, by cutting S along a separating and simple geodesic, we obtain two surfaces with boundary S 1 and S 2 . We endow S 1 , S 2 with the metrics induced by the metric of S. The geodesic flow Φ 1 of S 1 is supported by the unit tangent bundle T 1 S 1 of S 1 , a three manifold with one torus boundary T 1 . Since the boundary of S 1 consists of one geodesic, the torus T 1 is the union of two periodic orbits of Φ 1 and two transverse open annuli. The torus boundary T 2 of T 1 S 2 has similar properties. M. Handel and W.Thurston show that by identifying the periodic orbits on T 1 and T 2 and by glueing the transverse annuli of T 1 and T 2 thanks to Dehn twists, it is possible to construct infinitely many new examples of transitive Anosov flows on graph manifolds.

2. In 1983, S.Goodman, generalizing the construction of M.Handel and W.Thurston, shows in [Go] that it is possible to construct infinitely many new Anosov flows by performing Dehn surgeries along periodic orbits of any Anosov flow. More precisely, close to any periodic orbit of an Anosov flow supported by an orientable 3-manifold M we can find an embedded annulus transverse to the flow. By cutting M along such an annulus and by glueing back together the two annuli thus obtained by a Dehn twist -topologically this procedure has the same effect as a Dehn surgery on M -it is possible to construct new examples of Anosov flows on manifolds that are not necessarily graph manifolds (contrary to the case of the surgery of Handel and Thurston). In particular, S.Goodman constructs in [Go] the first examples of Anosov flows on hyperbolic 3-manifolds.

3. In 1983, D.Fried claims in [Fri] that similarly to Goodman's construction, one can obtain infinitely many new transitive Anosov flows by performing surgeries along periodic orbits of any transitive Anosov flow. More specifically, D.Fried proves that by blowingup a periodic orbit into a torus and recollapsing it in a different way into a circle, it is possible to perform a Dehn surgery on a transitive Anosov flow supported by an orientable 3-manifold in order to obtain infinitely many transitive pseudo-Anosov flows. By adapting our choice of surgery, D.Fried explains that we can assume that the previous pseudo-Anosov flows have no singularities. Using the fact that transitive pseudo-Anosov flows without singularities are (orbitally equivalent to) Anosov flows, D.Fried concludes in [Fri] that one can construct infinitely many new transitive Anosov flows by performing well-chosen surgeries along periodic orbits of any transitive Anosov 

Fried). Every transitive Anosov flow in dimension 3 with transversely orientable foliations up to Fried or Goodman surgery is orbitally equivalent to a suspension Anosov flow

In other words, given two transitive Anosov flows in dimension 3 with transversely orientable foliations, we can go from one to the other by performing Fried or Goodman surgeries. To this day, few things are known concerning this conjecture:

• In 1983, D.Fried proved in [Fri] that any transitive Anosov flow up to Fried surgery is orbitally equivalent to a suspension pseudo-Anosov flow. Furthermore, in the same paper D.Fried proves that geodesic flows on orientable hyperbolic surfaces satisfy Conjecture 9.1.

• In 2019, M.Shannon and P.Dehornoy show in their preprint [DeSh] that all suspension Anosov flows with transversely orientable foliations can be obtained one from the other by Fried surgeries. In the same paper, they also show that geodesic flows on orientable hyperbolic orbifolds satisfy Conjecture 9.1.

• In 2020, M. Shannon shows that (see Theorem B in [Sh]) Fried's and Goodman's surgeries are equivalent for transitive Anosov flows. In other words, the two surgeries lead to orbitally equivalent Anosov flows. This is the reason why in this thesis Fried's surgery will be often called the Dehn-Goodman-Fried surgery and Conjecture 9.1 can be restated in terms of Dehn-Goodman-Fried surgeries.

• Generalizing the previous result of M. 

A few words on our classification method

Following the work of M.Ratner in [Ra], we can associate to any transitive Anosov flow on a closed 3-manifold a Markov partition (see Definition 1.3.12). According to a folklore result, a proof of which will be provided in this thesis, any such Markov partition together with its associated Poincaré return map describe the original Anosov flow up to Dehn-Goodman-Fried surgeries on a finite number of periodic orbits. The previous set of periodic orbits, called the set of boundary periodic orbits of the partition, can be explicitly described as the finite (and always non-empty) set of periodic orbits of the flow that never intersect the interior of some rectangle of the Markov partition. Therefore, a Markov partition of a transitive Anosov flow in dimension 3 is an invariant of the flow up to very specific surgeries.

Furthermore, to any Markov partition we can associate a finite number of canonical combinatorial objects, called geometric types (see Definition 1.3.17), each one encoding the action of the first return map on the set of rectangles of the partition. Once again, any geometric type associated to a Markov partition describes the original Anosov flow up to Dehn-Goodman-Fried surgeries on the boundary periodic orbits. Therefore, to any transitive Anosov flow we can associate at least one finite combinatorial object, describing the flow up to very specific surgeries.

Unfortunately, every Anosov flow admits infinitely many Markov partitions (thus also geometric types) and Ratner's construction of Markov partitions in [Ra] is far from being canonical. Therefore, the two following questions, that constitute central parts for any classification, remain open: Question 0.0.2. Can we canonically associate to any transitive Anosov flow on a closed 3-manifold a (finite) family of geometric types each describing the original flow up to orbital equivalence? Question 0.0.3. Given two geometric types describing two families of Anosov flows. Can we decide algorithmically whether those two families contain two flows that are orbitally equivalent?

Historically, geometric types have been used in order to classify structurally stable diffeomorphisms in dimension 2 (see [BoLa] and [Be]). The previous questions having already been answered in the case of stable diffeomorphisms on surfaces, our aim in this work will be to introduce a method for classifying Anosov flows by geometric types, seeing an Anosov flow not as a diffeomorphism on a surface, but as a group action on a plane. More specifically, 1. First, we will define a notion of Markov partition, that we will call Markovian family (see Definition 2.1.2), for a group action in the bifoliated plane of an Anosov flow (see Paragraph "The space of orbits" in Section 1.2).

2. Next, we will show that it is possible to associate to every Markovian family R a finite number of geometric types 3. We will proceed by proving that a geometric type associated to a Markovian family describes the original Anosov flow up to specific Dehn-Goodman-Fried surgeries 4. Finally, we will complete any geometric type into a finite combinatorial invariant, called the geometric type with cycles, describing the original Anosov flow up to orbital equivalence

Results

In this section, we list the results proven in this thesis. The results shown here have already appeared in our preprint [Ia]. Fix M a closed, orientable, connected manifold of dimension 3, Φ an Anosov flow on M and F s , F u its weak stable and unstable foliations (see Paragraph "The foliations" in Section 1.1).

In [Pa], Palmeira shows that the universal cover of M is homeomorphic to R 3 . Furthermore, in [START_REF] Fenley | Anosov flows in 3-manifolds[END_REF] and [START_REF] Barbot | Caractérisation des flots d'Anosov en dimension 3 par leurs feuilletages faibles[END_REF], Fenley and Barbot show independently that the lift Φ of Φ on the universal cover of M is orbitally equivalent to the flow given by the constant vector field ∂ ∂x on R 3 . The space of orbits of Φ is therefore a plane, endowed with the natural quotient of the lift of the weak stable and unstable manifolds of Φ on R 3 . In other words, we can naturally associate to the flow Φ a plane P endowed with pair of transverse line foliations F s and F u . We call (P, F s , F u ) the bifoliated plane of Φ.

The fundamental group of M acts on M = R 3 by preserving the orbits of the lifted flow, therefore the action of π 1 (M ) on M descends to an action on P. Barbot (see Theorem 1.5.4 in [Ba]) shows that the bifoliated plane (P, F s , F u ) together with the action of π 1 (M ) describes completely the flow Φ up to orbital equivalence. Therefore, when trying to understand an Anosov flow in dimension 3 up to orbital equivalence, we may choose to think of an Anosov flow as a group action on a two dimensional plane.

The previous fact was one of our main motivations for defining a notion of Markov partition for a group action on the bifoliated plane of an Anosov flow. Using as a starting point the projection on P of the lift on M of any Markov partition of Φ, we defined a Markovian family as follows:

Definition. A Markovian family in P is a set of rectangles (see Definition 2.1.1) (R i ) i∈I covering P such that 1. (R i ) i∈I is the union of a finite number of orbits of rectangles of the action by π 1 (M ) 2. For every two rectangles

R i , R j in (R i ) i∈I , if • R i ∩ • R j ̸ = ∅, then R i ∩ R j is a non-trivial horizontal subrectangle of R i (or R j resp.
) and a non-trivial vertical subrectangle of R j (or R i resp.) 3. Take any point x ∈ P and any of its four quadrants defined (locally) by F s (x) and F u (x). For any sufficiently small neighborhood G of x in this quadrant, there exists

R ∈ (R i ) i∈I such that G ⊂ R
For a more detailed definition see Definition 2.1.2. Markov partitions and geometric types (i.e. combinatorial objects encoding the information of a Markov partition) were the key tools for classifying structurally stable diffeomorphisms on surfaces in [BoLa] and [Be]. In view of the previous classification, we strongly believe that Markovian families and their combinatorial behaviours can lead to a classification of transitive Anosov flows in dimension 3. We will therefore begin this thesis by showing that:

Proposition. Any transitive Anosov flow in dimension 3 admits infinitely many Markovian families.

The proof of the above rather elementary result relies on the fact that transitive Anosov flows admit infinitely many Markov partitions (see [Ra]). More specifically, we will show that the projection on P of the lift on M of a reduced Markov partition of Φ (see Definition 1. 3.12) is a Markovian family of Φ. To this day, although it is conjectured to be true, it is not known whether a non-transitive Anosov flow admits Markov partitions. This constitutes the main obstruction to the generalization of our classification approach for non transitive Anosov flows.

Every Markovian family contains an infinite amount of information that can only be encoded by infinite combinatorial objects. However, by using the fact that a Markovian family is invariant by the action of π 1 (M ) and by restricting to a "fundamental domain of this action", it is possible to encode the information of any Markovian family of Φ by a finite combinatorial object, called a geometric type: Definition. Take R 1 , ..., R n a finite number of copies of [0, 1] 2 , endowed with the horizontal and vertical foliations. For every i ∈ 1, n choose h i , v i ∈ N * such that

i h i = i v i
Consider now for every i ∈ 1, n a collection of h i (resp. v i ) mutually disjoint horizontal (resp. vertical) subrectangles of R i : H 1 i , . .., H h 

i i (resp. V 1 i , ..., V v i i ).
Finally, take any bijection ϕ between the two sets H = {H j i |i ∈ 1, n , j ∈ 1, h i } and V = {V j i |i ∈ 1, n , j ∈ 1, v i } and u a function from the set of rectangles H to {-1, +1}.

The data (R 1 , ..., R n , (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) will be called a geometric type. Two geometric types will be called equivalent if there exists a homeomorphism respecting ϕ and u between the two (see Definitions 1.3.17 and 1.3.19 for more details).

The reader may think of a geometric type as a combinatorial analogue of a Markov partition endowed with its Poincaré return map. The R 1 , ..., R n correspond to the rectangles of the partition. The images (resp. inverse images) of the R 1 , ..., R n by the Poincaré return map decompose every R i in vertical (resp. horizontal) subrectangles, which correspond to the elements of V (resp. H). The Poincaré return map sends each of the previous horizontal subrectangles to a unique vertical subrectangle by either preserving or reversing the vertical orientation of the R i . The previous data are encoded in a geometric type by ϕ and u.

As in the case of Markov partitions, it is possible to reduce all the essential information of a Markovian family (number of orbits of rectangles, pattern of intersection of the different rectangle orbits, etc.) into a geometric type:

Theorem-Definition A. Let M be an orientable and closed 3-manifold and Φ a transitive Anosov flow on M . To any Markovian family R of Φ we can canonically associate a finite set of pairwise equivalent geometric types, called the geometric types of R or the geometric types associated to R.

For a more precise statement, see Definition 2.3.1 and Theorem 2. 3.4. In addition to our previous definition, a geometric type associated to some Markovian family of Φ will be called a geometric type associated to the flow Φ.

Notice that by combining the previous proposition and Theorem-Definition A, we can associate to any transitive Anosov flow infinitely many geometric types. Till this day, given a general transitive Anosov flow, it is unknown whether we can algorithmically construct a finite number of canonical geometric types associated to that flow. Hence, in the general case, Question 0.0.2 remains still open. However, there exist large families of Anosov flows for which a finite number of canonical geometric types can be algorithmically constructed. For instance, in [START_REF] Iakovoglou | Markovian families for totally periodic Anosov flows on graph manifolds[END_REF] we construct for any totally periodic and transitive Anosov flow a finite number of canonical geometric types associated to that flow.

Our main goal in this thesis consists in proving that a geometric type associated to a Markovian family R describes (as in the case of Markov partitions) completely the original Anosov flow up to specific Dehn-Goodman-Fried surgeries. In order to do that, we will first establish that:

Proposition. Let M be an orientable and closed 3-manifold, Φ a transitive Anosov flow on M and P its bifoliated plane. Denote by Φ the lift of Φ on the universal cover of M . Consider R any Markovian family of Φ and Γ the set of points x ∈ P with the following two properties:

1. x corresponds to an orbit of Φ that projects to a periodic orbit of Φ in M

x does not intersect the interior of some rectangle in R

We have that Γ is a π 1 (M )-invariant and non-empty set, which is finite up to the action of π 1 (M ).

In other words, to any Markovian family R of Φ we can canonically associate a finite number of periodic orbits of Φ that "never intersect the interiors of the rectangles of R". The previous set of periodic orbits will be called the set of boundary periodic orbits. See Definition 3.0.1 and Proposition 3.0.2 for more details. Once the previous proposition is proved, we will engage the proof of the main result of our thesis:

Theorem B Let Φ 1 , Φ 2 be two transitive Anosov flows on the orientable and closed man- ifolds M 3 1 , M 3 2 , R 1 , R 2 two
Markovian families in their bifoliated planes P 1 , P 2 and Γ 1 , Γ 2 their associated boundary periodic orbits. If the equivalence classes of geometric types associated to R 1 and R 2 are the same, then M 1 -Γ 1 ≈ M 2 -Γ 2 and Φ 1 (up to orbital equivalence) can be obtained from Φ 2 by performing a finite number of Dehn-Goodman-Fried surgeries on Γ 2 .

In the proof of Theorem B the transitivity hypothesis is scarcely used. However, should we drop the transitivity hypothesis, the meaning of a Dehn-Goodman-Fried surgery is no longer clear. Indeed, whether or not Fried surgery on a non-transitive Anosov flow produces a new smooth Anosov flow or whether it coincides with Goodman surgery remain unknown.

The proof of Theorem B is rather long and technical. One of the difficulties of this proof relies on the fact that not only do we need to compare two Anosov flows up to orbital equivalence, but also up to surgeries. In order to do that we will introduce an object generalizing the bifoliated plane of an Anosov flow: given a finite number of periodic orbits of Φ, say Γ, and their lifts on P, say Γ, we define the bifoliated plane P of Φ up to surgeries on Γ as the universal cover of P -Γ together with some points at infinity (see Chapter 5). We then prove the following generalization of Barbot's theorem (Theorem 3.4 of [Ba1]):

Theorem C Let Φ be a transitive Anosov flow on the orientable and closed manifold M 3 and Γ a finite set of periodic orbits of Φ. The bifoliated plane P of Φ up to surgeries on Γ can be endowed with two transverse singular foliations and an action of π 1 (M -Γ) by homeomorphisms. Together with this action and those foliations, P describes completely the flow Φ up to orbital equivalence and up to Dehn-Goodman-Fried surgeries on Γ. See Theorem 5.5.1 for more details. According to Theorem B, a geometric type of Φ gives enough information in order to identify the original Anosov flow with the exception of the tubular neighborhoods of finitely many periodic orbits of the flow. By including in the geometric type some additional information that will allow us to reconstruct the previous neighborhoods, we can transform the geometric type into an invariant up to orbital equivalence: Theorem E Let Φ 1 , Φ 2 be two transitive Anosov flows on the orientable and closed manifolds M 3 1 , M 3 2 and R 1 , R 2 two Markovian families in P 1 , P 2 . If the equivalence classes of geometric types with cycles associated to R 1 , R 2 are the same, then Φ 1 is orbitally equivalent to Φ 2 .

Definition. A geometric type (R 1 , ..., R n , (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) endowed with a finite number of sequences of rectangles in H ∪ V ∪ (R i ) i∈ 1,

On the possible generalizations of our results

The case of non-transitive Anosov flows As we have previously mentioned, a generalization of Theorem B or C in the case of non-transitive Anosov flows would rely on the very hard task of giving a precise meaning to the notion of Dehn-Goodman-Fried surgery on a nontransitive Anosov flow. However, although it is unknown whether Markovian families always exist for non-transitive Anosov flows, we strongly believe that by adapting the proofs of Theorem-Definition D and Theorem E, we can generalize the previous results in the case of non-transitive Anosov flows, thus opening the way for a classification of non-transitive Anosov flows.

The case of Anosov flows on non-orientable manifolds When defining a geometric type for Anosov flows in an orientable manifold there is no need to check how the first return map on the rectangles acts on the orientations of both stable and unstable foliations. Indeed, if the first return map changes the orientation of the unstable foliation, then it will automatically change the orientation of the stable foliation too, when the ambient manifold is orientable. However, should one wish to classify Anosov flows on non-orientable manifolds, a modification of our definition of geometric type is needed in order to allow the first return map to change independently the orientations of the stable and unstable foliations.

The main difficulty of the non-orientable case, relies in the fact that it is impossible to generalize Fried's surgery for non-orientable periodic orbits (see Paragraph "Dehn-Goodman-Fried surgeries" in Section 1.3). Consequently, we believe that Theorem B can be generalized in this case provided that our Markovian families have no non-orientable boundary periodic points. Similarly, we believe that Theorem C can also be generalized provided that Γ contains no non-orientable periodic orbit. Finally, the orientability hypothesis is scarcely used in the proof of Theorems-Definitions A,D or Theorem E. We thus strongly believe that it is possible, by adapting the proofs of the previous results, to generalize the previous theorems in the case of Anosov flows on non-orientable 3-manifolds.

The case of pseudo-Anosov flows

We have no doubt that our classification method can be generalized for transitive pseudo-Anosov flows in dimension 3. In this thesis we have chosen to present all our results in the case of Anosov flows, but the core of our arguments lies in the existence of Markov partitions and of a bifoliated plane which have been proven respectively for pseudo-Anosov flows by Brunella in [Br] and by Fenley and Mosher in [FeMo] (Proposition 4.1).

Ideas and methods

The main results of this thesis rely first of all on a good understanding of our classifying objects: Markovian families and geometric types. We will first show that Markovian families share a lot of properties with Markov partitions of Anosov flows. In particular, even though Markovian families are two dimensional objects, it is possible to canonically define for any rectangle of a Markovian family the set of its successors. More precisely, for any rectangle R of a Markovian family R there exist finitely many rectangles in R, intersecting R along a horizontal subrectangle (of R) and that are "maximal" for this property (see Lemma 2.2.9 for more details)

The previous fact will be crucial for the proof of Theorem-Definition A. Indeed, up to the group action, any Markovian family consists of finitely many rectangles R 1 , ..., R n . By using the fact that being a successor is invariant by the action of π 1 (M ) and by examining the orbits of the different successors of every R i , we will associate a class of geometric types to any Markovian family.

The proof of Theorem B will be divided in three parts. Given Φ 1 , Φ 2 two transitive Anosov flows on M 3 1 , M 3 2 , R 1 , R 2 two Markovian families in their bifoliated planes P 1 , P 2 and Γ 1 , Γ 2 their associated boundary periodic orbits:

1. First, we will show Theorem C, according to which there exists a plane, endowed with two transverse and singular foliations and an action by π 1 (M 1 -Γ 1 ), all together describing Φ 1 up to surgeries on Γ 1 . The same is of course true for Φ 2 .

2. Secondly, under the hypothesis that the classes of geometric types associated to R 1 and R 2 are the same, we will show that the two groups acting on the bifoliated planes up to surgeries of Φ 1 and Φ 2 are isomorphic. In other words,

π 1 (M 1 -Γ 1 ) ∼ = π 1 (M 2 -Γ 2 ).
3. Finally, we will prove under the previous hypothesis that the bifoliated plane of Φ 1 up to surgeries on Γ 1 is equivalent to the bifoliated plane of Φ 2 up to surgeries on Γ 2 , which will give us the desired result, thanks to Theorem C.

An outline of the proof of step 1: Once we define the bifoliated plane up to surgeries, by examining the different ways in which this plane can be transformed (by quotienting by a well chosen group action) into a regular bifoliated plane of some Anosov flow and by relating those quotients to a specific choice of surgery, we will prove that Theorem C is a consequence of Barbot's theorem, according to which the bifoliated plane describes its associated Anosov flow up to orbital equivalence.

An outline of the proof of step 2: Step 2 constitutes the most important step in the proof of Theorem B. The techniques that we will develop in the proof of this step, are going to pave the way for the construction of the equivalence of step 3. One of the major difficulties of this step consists in extracting topological information from a geometric type and a Markovian family.

Let us denote by R 1 and R 2 the lifts of R 1 and R 2 on the bifoliated planes up to surgeries. We will first remark that R 1 and R 2 are Markovian families on which π 1 (M 1 -Γ 1 ) and π 1 (M 2 -Γ 2 ) act respectively and freely. Next, in order to compare those two actions, we will define a combinatorial notion of path from one rectangle of R 1 (resp. R 2 ) to another, which we will call a rectangle path. Our main motivation for defining rectangle paths is to communicate information from one bifoliated plane up to surgeries to the other. In particular, since R 1 and R 2 correspond to the same equivalence class of geometric types, we will show that to any rectangle path in the bifoliated plane of Φ 1 up to surgeries we can associate via the geometric type a unique rectangle path of the bifoliated plane of Φ 2 up to surgeries. Furthermore, if one of the previous rectangle paths starts and ends at the same rectangle, then this also the case for the other. This association of rectangle paths constitutes our main tool for proving steps 2 and 3. By using the previous results and the fact that π 1 (M 1 -Γ 1 ) (resp. π 1 (M 2 -Γ 2 )) acts freely on R 1 (resp. R 2 ), we will construct a group homomorphism between π 1 (M 1 -Γ 1 ) and π 1 (M 2 -Γ 2 ) and we will prove that it is actually an isomorphism.

An outline of the proof of step 3: Having shown in the previous step, that there is a correspondence between rectangle paths in R 1 and rectangle paths in R 2 , we will construct a bijection between the two Markovian families R 1 and R 2 . An infinite intersection of rectangles in R 1 will therefore correspond to an infinite intersection of rectangles in R 2 . This will allow us to construct a map between the two bifoliated planes up to surgeries. We will show that this map is a homeomorphism, preserving the singular foliations and equivariant for the group actions, which will allow us to apply Theorem C and thus finish the proof of Theorem B.

Finally, the proofs of Theorem-Definition D and Theorem E will be based on our proofs of Theorem-Definition A and Theorem B. By canonically adding a rectangle path around every boundary periodic point of a Markovian family, we will define a geometric type with cycles and then we will show that these rectangle paths completely describe the neighborhoods of the boundary periodic orbits that the geometric type "does not see".

Structure of the thesis

Due to the shortage of bibliographic references containing all the recent advances in the theory of Anosov flows, we decided that the first chapter of this thesis will not only cover the definitions and results needed for the presentation of our classification approach, but will also have the form of an (incomplete) review of the state of the art in the theory of Anosov flow. The reader may therefore find in Chapter 1 a short introduction to the theory of Anosov flows and also to the problem of classification of Anosov flows in any dimension.

In Chapter 2, we will introduce the notion of Markovian family in the bifoliated plane of an Anosov flow. We will then analyse and compare the properties of Markovian families with those of Markov partitions for Anosov flows, which will lead us to a proof of Theorem-Definition A.

Starting from Chapter 3, we will shift our attention to the proof of Theorem B. The proof of the previous theorem being rather long, Chapters 3 to 6 will be devoted to the construction of objects and the proof of several lemmas and propositions that are going to be central for the proof of Theorem B, which will be presented in Chapter 7.

More specifically, in Chapter 3, given a Markovian family R, we will show that, up to the action of the fundamental group, there are finitely many points in the bifoliated plane that are not contained in the interior of any rectangle in R. The previous points constitute the only points of the bifoliated plane, whose small neighborhoods are not described by a unique, but multiple rectangles in R. This partially explains the reason why the geometric type does not "see" the neighborhoods of finitely many periodic orbits of the original Anosov flow; and thus constitutes an invariant up to specific surgeries.

In Chapter 4, given a Markovian family R and its associated equivalence class of geometric types G, we describe a way for defining "coordinates" in the bifoliated plane using sequences of rectangles in R. Those coordinates will be called rectangle paths and will later allow us to navigate simultaneously in the bifoliated planes of all Anosov flows to which we can associate the family of geometric types G.

In Chapter 5, we will develop tools that will allow us to compare Anosov flows up to surgeries on a finite number of periodic orbits. We will thus define the bifoliated plane up to surgeries, compare its properties with those of the bifoliated plane of an Anosov flow and finally prove Theorem C.

In Chapter 6, we will explain that Markovian families and rectangle paths can be also defined in the bifoliated plane up to surgeries of an Anosov flow. Even more, we will establish that those Markovian families and rectangle paths have the same properties as their counterparts in the bifoliated plane. In particular, if R is a Markovian family, it can be lifted to a Markovian family R of the bifoliated plane up to surgeries for which Theorem-Definition A remains true and such that the family of geometric types associated to R coincides with the family of geometric types associated to R.

Our main goal in Chapter 6 is to show the following combinatorial and technical result: if R 1 , R 2 are two Markovian families (in the bifoliated planes of two Anosov flows Φ 1 , Φ 2 ) whose associated families of geometric types coincide and R 1 , R 2 are their lifts on the bifoliated planes up to surgeries, then rectangle paths in R 1 and R 2 define compatible systems of coordinates in the bifoliated planes up to surgeries. This means that any rectangle path in R 1 that begins and ends at the same rectangle will correspond to a rectangle path in R 2 that also begins and ends at the same rectangle.

In Chapter 7, we will show that the compatibility of coordinates in the bifoliated planes up to surgeries defines an equivalence between the bifoliated planes up to surgeries and thanks to Theorem C, this will finish the proof of Theorem B, according to which the geometric type is an invariant up to specific surgeries.

In Section 8, by adding some combinatorial data in the geometric type describing the neighborhoods of the periodic orbits that the geometric type does not "see", we will define the notion of geometric type with cycles and we will prove Theorem-Definition D and Theorem E, by relying mainly on the tools that we developed in order to prove Theorem B.

Finally, in the last section of this thesis we will present some of our works in progress describing applications of geometric types in the classification of Anosov flows in dimension 3 and we will state several open problems that are closely related to our approach to the problem of classification.

Chapter 1

General definitions and examples

Preliminaries on Anosov flows

The definition of an Anosov flow Definition 1.1.1. Let X be a C 1 -vector field on a closed and smooth manifold M and X t its associated flow. The flow X t is called an Anosov flow if the tangent bundle T M at every point x ∈ M admits a splitting of the form

T x M = E s (x) ⊕ RX(x) ⊕ E u (x)
, where E s (x), E u (x) are vector spaces satisfying the following properties:

• dim E s (x) and dim E u (x) are non-zero and do not depend on the choice of the point x

• the splitting is invariant under the natural action of the derivative DX t of the flow on T M :

DX t (E s (x)) = E s (X t (x)) and DX t (E u (x)) = E u (X t (x)).
• if ∥ • ∥ is a Riemannian metric on M , there exists C > 0 and 0 < λ < 1 such that for any x ∈ M , any t > 0 and any two vectors u ∈ E s (x) and v ∈ E u (x) one has

∥DX t (u)∥ ≤ Cλ t ∥u∥ and ∥DX -t (v)∥ ≤ Cλ t ∥v∥
We call E s and E u the stable and unstable sub-bundles of X (see Figure 1.1). ♠

Notice that in the above definition we do not assume the sub-bundles E s and E u to be continuous or even unique. In fact, this is a consequence of our definition: in [An] Anosov proves that, following the previous definition, E s and E u are uniquely defined for every Anosov flow and that they are continuous sub-bundles of T M . Even more, when the flow is of class C 2 , Anosov proves in [START_REF] Anosov | On tangent fields of transversal foliations in (U)-systems[END_REF] that E s and E u are Hölder continuous.

Next, we would like to point out that we defined an Anosov flow on a closed and smooth manifold M independently of a choice of a Riemannian metric on M . When M is closed, choosing a different metric on M does not change the Anosov property of the flow (this amounts only to changing our choice of constant C in the above definition). 

Structural stability

Anosov proves in [An] that the vector fields associated to Anosov flows form an open set for the C 1 topology. In other words, a C 1 perturbation of a vector field of some Anosov flow is also the vector field of some Anosov flow. This fact stretches out the importance of the structurally stable character of an Anosov flow, otherwise said the fact that two sufficiently close Anosov flows for the C 1 topology are the same up to a change of coordinates: Definition 1.1.4. Two flows Φ t and Ψ t supported by the manifolds M 1 and M 2 respectively are said to be orbitally equivalent if there exists a homeomorphism h : M 1 → M 2 sending (dynamically) oriented orbits of Φ t to (dynamically) oriented orbits of Ψ t .

Consider a C 1 flow Φ t associated to the vector field Φ. The flow Φ t will be called structurally stable if there exists a neighborhood U of Φ in the space of C 1 vector fields (endowed with the C 1 topology) such that every flow Ψ t associated to a vector field in U is orbitally equivalent to Φ t . ♠

Anosov proves in [An] that:

Theorem 1.1.5. Anosov flows are structurally stable.

One can deduce from Anosov's theorem two very useful facts. First, by approximating a C 1 Anosov vector field by C ∞ vector fields, we have that: Corollary 1.1.6. Any Anosov flow on a smooth manifold M is orbitally equivalent to a smooth Anosov flow on M .

Secondly, thanks to Theorem 1. 1.5, given an Anosov flow Φ, the set of Anosov flows orbitally equivalent to Φ, forms an open set in the space of C 1 vector fields (endowed with the C 1 topology). This space being metrizable and second-countable one can show that: Corollary 1.1.7. Let M n be a smooth and closed manifold of dimension n ≥ 3. The set of classes up to orbital equivalence of Anosov flows on M n is at most infinite countable.

It is therefore a priori possible to classify (up to orbital equivalence) all Anosov flows in any manifold of any dimension by finite combinatorial objects. Furthermore, since there are countably many smooth manifolds in dimension 3 (up to smooth diffeomorphisms), it is also a priori possible to classify (up to orbital equivalence) all Anosov flows in dimension 3 by finite combinatorial objects. Little is known about the previous questions in higher dimensions (≥ 4). A theorem of Plante and Thruston (see [PlTh]) implies that if S n or T n carries an Anosov flow, then n ≥ 5. Some partial answers to the previous questions are also known in dimension 3: Theorem 1. 1.9 ([BaFe2]). Every circle bundle over a surface supports at most two orbital equivalence classes of Anosov flows.

Theorem 1.1.10 ( [Ba], see also Proposition 1.3 in [Fu]). Every a torus bundle over the circle supports at most two orbital equivalence classes of Anosov flows.

Theorem 1. 1.11 ([BeBoYu], [ClPi]). There exist 3-manifolds supporting arbitrarily many Anosov flows up to orbital equivalence.

Examples of Anosov flows

The suspension of a toral automorphism

Consider A ∈ SL n (Z) such that no eigenvalue of A belongs to the complex unit circle. It is easy to see that A preserves the lattice Z n inside R n . Therefore, it projects to a linear diffeomorphism f A of the torus T n := R n / Z n . Denote by λ 1 , . 

T n A := [0, 1] × T n (0, f A (y)) ∼ (1, y)
and the vector field X = ∂ ∂x in T n A , where x is the [0, 1] coordinate (see Figure 1.2). Using the eigenspaces of A associated to the eigenvalues λ 1 , ..., λ k we can foliate R n by affine and pairwise parallel subspaces of dimension k. By naturally projecting this smooth foliation on every {x} × T n , we can define a vector bundle E s in T n A (see Figure 1.2). By repeating the previous argument for the eigenspaces of A associated to λ k+1 , ..., λ n we can define a second vector bundle E u on T n A . It is not hard to show that X t , the flow associated to X, and the bundles E s , E u satisfy the three conditions stated in Definition 1.1.1. We call X t the suspension Anosov flow of the diffeomorphism f A .

The suspension of an Anosov diffeomorphism

Similarly to the previous example, we can construct the suspension Anosov flow associated to any Anosov diffeomorphism: Definition 1.1.12. Let f be a diffeomorphism acting on a closed and smooth M . We will say that f is an Anosov diffeomorphism if the tangent bundle T M at every point x ∈ M admits a splitting of the form T x M = E s (x) ⊕ E u (x), where E s (x), E u (x) are vector spaces satisfying the following properties:

• dim E s (x) and dim E u (x) are non-zero and do not depend on the choice of the point x • the splitting is invariant under the natural action of the derivative of f :

Df (E s (x)) = E s (f (x)) and Df (E u (x)) = E u (f (x)).
• if ∥ • ∥ is a Riemannian metric on M , there exists C > 0 and 0 < λ < 1 such that for any x ∈ M , any n ∈ N * and any two vectors u ∈ E s (x) and v ∈ E u (x) one has

∥Df n (u)∥ ≤ Cλ n ∥u∥ and ∥Df -n (v)∥ ≤ Cλ n ∥v∥ ♠
Consider now an Anosov diffeomorphism f acting on M and the manifold:

T f := [0, 1] × M (0, f (y)) ∼ (1, y)
endowed with the vector field X = ∂ ∂x , where x is the [0, 1] coordinate. Similarly, to the previous example it is not difficult to show that the flow X t associated to X is an Anosov flow, called the suspension Anosov flow of the diffeomorphism f . As Anosov himself remarks, the above theorem does not provide a necessary condition for a geodesic flow to be Anosov. In fact, Eberlein constructed in [Eb] examples of Riemannian manifolds with non-positive sectional curvature and with open sets with zero sectional curvature, whose geodesic flows are Anosov. Moreover, Donnay and Pugh prove in [DoPu] that: Theorem 1.1.14. There exist examples of Riemannian manifolds isometrically embedded in R 3 and whose geodesic flows are Anosov.

Algebraic Anosov flows

Consider G a connected Lie group, K a compact subgroup of G and Γ a uniform lattice in G acting freely on G / K . Denote by G and K ⊂ G the Lie algebras associated to G and K.

Theorem 1. 1.15 (P.Tomter,[To]). Consider α ∈ G such that (exp(tα)) t∈R forms a one parameter subgroup of G centralizing K. The right action of (exp(tα)) t∈R on G / K defines a flow ϕ on Γ \ G / K :

ϕ : R × Γ \ G / K -→ Γ \ G / K (t, ΓgK) -→ Γg • exp(tα)K
The flow ϕ is an algebraic Anosov flows form a rather large family of Anosov flows containing among others the suspensions of toral automorphisms and geodesic flows of manifolds with constant negative sectional curvature (see [Ba] for the case of Anosov flows in dimension 3 and [To] for the general case). In fact, Tomter proves in [To] that in dimension 3 all algebraic Anosov flows are of the form of one of our previous examples: Theorem 1.1. [START_REF]If N finitely covers M and Φ admits a genus 1 Birkhoff section, does any lift of Φ on N also admit a genus 1 Birkhoff section? Bibliography[END_REF]. An algebraic Anosov flow in dimension 3 is up to finite covers: 1. either the suspension of an Anosov diffeomorphism on T 2 or 2. the geodesic flow of a surface of constant negative curvature

Non-algebraic Anosov flows

Even though it is still unknown whether non algebraic examples of Anosov diffeomorphisms exist, there are several examples of Anosov flows that are known to be non-algebraic, even up to orbital equivalence.

First, as an immediate consequence of Tomter's theorem, all non-transitive Anosov flows in dimension 3 are non-algebraic. Therefore, the non-transitive Anosov flow of Franks-Williams (see [FrWi]), but also the non-transitive Anosov flows constructed in [BeBoYu] form an infinite family of non-algebraic Anosov flows in dimension 3.

Next, transitive Anosov flows can also be non-algebraic. The example of Handel and Thurston (see [HaTh]) was historically the first example of non-algebraic and transitive Anosov flow in dimension 3. Several more examples in dimension 3 were later constructed using Goodman's or Fried's surgery (see Paragraph "Dehn-Goodman-Fried surgeries" in Section 1.3). Another family of simple examples of transitive and non-algebraic Anosov flows in dimension 3 consists of the transitive Anosov flows constructed in [BeBoYu], a set of Anosov flows with transverse tori that do not intersect all orbits. A well-known example of flow belonging in the previous family is given by the following result originally due to Bonatti and Langevin and later generalized by Barbot in [Ba2]: Theorem 1. 1.17 ([BoLa1]). There exists a transitive Anosov flow in dimension 3, whose every orbit except exactly one intersects a transverse torus T 2 .

It is not difficult to show that the previous example is neither a suspension of an Anosov diffeomorphism nor a geodesic flow up to finite covers. Therefore, by Tomter's theorem it is non-algebraic.

Finally, higher dimensional transitive and non-transitive examples of non-algebraic Anosov flows were much more recently constructed in [BBGH].

The foliations

Following the notations of Definition 1.1.1, the sub-bundles E s and E u are in general just continuous. This regularity defect can not always be corrected by small perturbations, even when the original Anosov flow is smooth. In order to convince the reader of this fact, we will state two theorems by Plante and Ghys:

Theorem 1. 1.18 ([Pl1]). If a C 2 Anosov flow in dimension 3 has C 1 stable and unstable sub-bundles, then it is transitive.

Theorem 1. 1.19 ([Gh3]). An Anosov flow in dimension 3 with C ∞ stable and unstable bundles is orbitally equivalent to an algebraic Anosov flow.

According to Plante's theorem, every non-transitive C 2 Anosov flow in dimension 3 can never have C 1 stable and unstable bundles. For more examples of Anosov flows with nonsmooth stable/unstable sub-bundles, we refer the reader to [An] and [START_REF] Franklin | Anosov Flows[END_REF].

Due to the non-regularity of the stable/unstable sub-bundles, integrating E s or E u will not be possible via the Frobenius theorem. However, in [An] Anosov proves that: Theorem 1.1.20. Let X t be an Anosov flow on a closed and smooth manifold M and X the vector field associated with X t . Denote by E u and E s the stable and unstable bundles of X. The bundles E u , E s , E u ⊕ RX and E s ⊕ RX are uniquely integrable.

In other words, the bundles E u , E s , E u ⊕ RX and E s ⊕ RX give rise to uniquely defined foliations on M , respectively denoted by F uu , F ss , F u , F s and called the strong unstable foliation, the strong stable foliation, the weak unstable foliation and the weak stable foliation.

Contrary to the previous result, even though the bundles E u , E s , E u ⊕ RX and E s ⊕ RX are uniquely integrable, surprisingly enough, the bundle E s ⊕ E u is rarely integrable for every Anosov flow: Theorem 1.1.21 (Plante, [Pl]). Let X t be an Anosov flow on a closed and smooth manifold M . If E s ⊕ E u is integrable, then X t is orbitally equivalent to a suspension Anosov flow.

Concerning the regularity of the foliations F uu , F ss , F u , F s , naturally, exactly as their tangent fields, they are not in general C 1 even for smooth Anosov flows. Nevertheless, in [HiPS] it is proven that: Theorem 1.1.22. Let X t be a C k (k ∈ N * ) Anosov flow on a closed and smooth manifold M . The leaves of the foliation F uu are C k immersed submanifolds of M . Furthermore, if F uu (w) is the leaf of F uu containing w ∈ M , then F uu (w) depends continuously (for the C k topology) on w.

The same result holds also for F ss , F u , F s .

For more information about the regularity of the previous foliations, we refer the reader to [An], [SS], [Ho], [HiPu] and [Ha].

Strong/weak stable and unstable leaves of Anosov flows in addition to being immersed submanifolds, they have a very specific topology. First, let us remark that as an immediate consequence of the unique integrability of E u and E u ⊕ RX, every leaf of F u is a union of leaves of F uu and also a union of orbits of X. Same for the leaves of F s . Therefore, the topology of the leaves in F uu is going to determine the topology of the leaves in F u . Same for F s . More specifically, Proposition 1.1.23. Consider Φ a C k Anosov flow with dim(E s ) = p and dim(E u ) = q. The leaves of F ss (resp. F uu ) are injective C k immersions of R p (resp. R q ). Moreover, every leaf of F s (resp. F u ):

• is an injective C k immersion of R p+1 (resp. R q+1 )

if and only if it does not contain any periodic orbit of Φ

• is an injective C k immersion of an R p -bundle (resp. R q -bundle) over the circle S 1 if and only if it contains a periodic orbit of Φ. In this case, the previous periodic orbit is unique.

A proof of the above Proposition may be found in [Ba] (Proposition 1.4.3).

Convention 1.1.24. Throughout this thesis, 1. if F is a foliation on M , we will denote its leaf containing x ∈ M by F(x)

2. we will often omit the term weak when referring to the foliations F s and F u , thus calling them the stable and unstable foliations of an Anosov flow.

Finally, the strong/weak stable and unstable foliations provide a lot of information concerning the dynamical behavior of the original Anosov flow. In fact, it is possible define the previous foliations dynamically using the following result proven in [An]: Theorem 1.1.25. Let X t be an Anosov flow on a closed and smooth manifold M and d a distance on M given by some Riemannian metric. We have the following:

F ss (x) = {y ∈ M | d(X t (y), X t (x)) -→ t→+∞ 0} F uu (x) = {y ∈ M | d(X t (y), X t (x)) -→ t→-∞ 0} F s (x) = t∈R F ss (X t (x)) = {y ∈ M | ∃τ ∈ R d(X t+τ (y), X t (x)) -→ t→+∞ 0} F u (x) = t∈R F uu (X t (x)) = {y ∈ M | ∃τ ∈ R d(X t+τ (y), X t (x)) -→ t→-∞

0}

The above theorem is also known as the Hadamard-Perron theorem or the stable manifold theorem. A historical survey and an abundance of interesting references concerning the previous result may be found in [An].

Codimension 1 Anosov flows

Even though relating the dynamical properties of an Anosov flow with the topological properties of the manifold that supports it is generally a hard task, there have been several advances in this direction in the case of codimension one Anosov flows: Definition 1.2.1. Let X t be an Anosov flow and E s , E u its stable and unstable bundles. We will say that X t is a codimension one Anosov flow if dim(E s ) = 1 or dim(E u ) = 1. ♠ Some of the main reasons -which will be explained in detail later in this section-why it was possible to make significant progress in the understanding of codimension one Anosov flows include the facts that: 

Transitivity

Verjovsky proved in his PhD thesis (see [START_REF] Verjovsky | Codimension one Anosov flows[END_REF] 1 ) that one common feature of codimension one Anosov flows is their transitivity:

Theorem 1.2.2. Every codimension one Anosov flow in dimension 4 or higher is transitive.

Once Verjovsky proved this result, he conjectured that codimension one Anosov flows form a rather small family of flows in high dimensions:

Conjecture 1.2.3 (Verjovsky's conjecture). All codimension one Anosov flows in dimension 4 or higher are orbitally equivalent to suspensions of Anosov diffeomorphisms.

Several advances towards this conjecture have been made today. In [As], Asaoka proves that: Theorem 1.2.4. A transitive codimension one Anosov flow is orbitally equivalent to a smooth Anosov flow preserving a smooth volume form.

Using the previous result and a result of Simić (see [Sim]), Asaoka claims in [As] that Verkovsky's conjecture is true. Unfortunately, a mistake in Simic preprint was later found, and thus the proof of Asaoka's claim was incomplete. More recently, another proof of Verjovsky's conjecture was announced by Khadim War.

The foliations of codimension 1 Anosov flows

In [START_REF] Hirsch | Stable manifolds and hyperbolic sets[END_REF], Hirsch and Pugh show that: Theorem 1.2.5. A codimension one C 2 Anosov diffeomorphism with dimE u = 1 admits a stable foliation of regularity C 1 .

An adaptation of Hirsch's and Pugh's proof of the above result is known to yield the same result for flows: Theorem 1.2.6. A codimension one C 2 Anosov flow with dimE u = 1 admits a weak stable foliation of regularity C 1 .

It should be noted that even if the weak stable foliation of a codimension one Anosov flow Φ is C 1 , this does not imply in general that the stable or the unstable bundle of Φ is also C 1 . However, we have the following result: Theorem 1.2.7 ( [Ha]). A codimension one volume preserving Anosov flow with dimE u = 1, admits a strong unstable foliation of regularity C 1 .

Therefore, by Theorem 1.2.4 we get that: Corollary 1.2.8. A codimension one Anosov flow with dimE u = 1, is orbitally equivalent to an Anosov flow with C 1 strong unstable and C 1 weak stable foliations.

Besides the fact that they are C 1 , codimension one Anosov foliations have several topological properties not only dictating the dynamical behavior of the flow, but also restricting the set of manifolds that can support codimension one Anosov flows. For instance, Theorem 1.2.9 (Proposition 4.2 in [Hae]). Let F be a C 2 foliation of codimension one in a manifold V . Assume that F admits a homotopically trivial closed transversal. Then, there exists a closed loop in a leaf of F that has trivial holonomy on one side and non-trivial on the other.

Corollary 1.2.10. Let Φ be a codimension one Anosov flow with dimE u = 1 on a smooth n-dimensional manifold M . Consider Φ (resp. F s , F u , F ss , F uu ) the lift of Φ (resp. F s , F u , F ss , F uu ) on the universal cover M of M . We have that:

1. If L is a leaf of the weak stable foliation of Φ, then the inclusion map i : L → M induces an injective morphism i * : π 1 (L) → π 1 (M ).

Every periodic orbit of Φ is not homotopically trivial in M

3. Every leaf of F s (resp. F u , F ss , F uu ) is closed and is the image of an embedding of

R n-1 (resp. R 2 , R n-2 , R) in M 4.
Every leaf of F s is properly embedded in M and therefore separates M in two connected components 5. Two leafs in F s and F u intersect along at most one orbit of Φ 6. Any orbit of Φ intersects at most once any leaf in F ss or F uu

The previous corollary excludes several manifolds from supporting codimension one Anosov flows. For instance, for every n ≥ 3 the sphere S n or more generally any manifold with finite fundamental group (for instance any lens space) cannot support a codimension one Anosov flow.

Concerning the proof of the above corollary, the proof of point (1) may be found in [START_REF] Verjovsky | Codimension one Anosov flows[END_REF] (Lemma 3.2). Point ( 2) is an immediate consequence of point (1). A proof of (3), ( 5), ( 6) can be found in [Ba] (Proposition 1.4.10). Finally, point (4) results from point (3) and the fact (proven in [Ch]) that in second countable manifolds a closed leaf of a foliation is also proper.

Manifolds supporting codimension 1 Anosov flows

Besides the restrictions imposed by point (2) of Corollary 1.2.10, there are several more necessary conditions for a manifold to support a codimension one Anosov flow.

First, as a consequence of points (3), (4) of Corollary 1.2.10 and of a theorem of Palmeira (see [Pa]) according to which a simply connected manifold of dimension n admitting a codimension one foliation by hyperplanes is diffeomorphic to the euclidian space R n , we have the following result: Theorem 1.2.11. Let M be an n-dimensional manifold supporting a codimension one Anosov flow. We have that the universal cover of M is homeomorphic to R n . In particular, M is aspherical, irreducible and thus prime.

Using the fact that an aspherical manifold has a torsion-free fundamental group (see Lemma 3.1 in [Lu]) we thus obtain: Corollary 1.2.12. If M supports a codimension one Anosov flow, then π 1 (M ) is torsionfree.

Next, the existence of a codimension one Anosov foliation forces the fundamental group to have exponential growth: Definition 1.2.13. Consider G a finitely generated group and S a finite set of generators of G. We will assume without any loss of generality that S is symmetric (i.e. if s ∈ S, then s -1 ∈ S). We will say that G has exponential growth if the cardinal of the following set: Γ S (n) = {g ∈ G|g can be expressed as a word of length at most n in S} grows exponentially with n.

♠

It should be noted that being of exponential growth does not depend on the choice of the generating set S.

Theorem 1.2.14 (Plante, Thurston [PlTh]). If M supports a codimension one Anosov flow, then π 1 (M ) has exponential growth.

We should remark at this point that even if the fundamental group of a manifold supporting a codimension one Anosov flow needs to be "big", the same result does not apply for the first homology group: Remark 1.2.15. There exist codimension one Anosov flows on 3-dimensional rational homology spheres. For instance, the geodesic flow of a genus 0 orbifold with 5 or more cone points is a codimension one Anosov flow on a rational homology 3-sphere (see Lemma 2.1 in [De]).

Finally, if we restrict ourselves to 3-dimensional manifolds (where every Anosov flow is of codimension one), we get two additional results concerning the orderability of the fundamental group: Theorem 1.2. [START_REF]If N finitely covers M and Φ admits a genus 1 Birkhoff section, does any lift of Φ on N also admit a genus 1 Birkhoff section? Bibliography[END_REF] (see [START_REF] Fenley | Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry[END_REF] or [Bo]). If M is a 3-manifold supporting an Anosov flow, then π 1 (M ) admits a free action by homeomorphisms on the circle S 1 . Theorem 1.2.17 ( [Zh]). If M is a 3-manifold supporting an Anosov flow, then there exists a subgroup of π 1 (M ) of index at most 2 that admits a free action by homeomorphisms on R.

The space of orbits

Consider Φ a codimension one Anosov flow on M n . Even though the space of orbits of Φ carries a lot of information about the dynamics of Φ, its non-Hausdorffness and complex topology render it rather hard to study. On the other hand, according to the following theorem, the orbit space of the lift of Φ on the universal cover of M is a topological space that can be endowed with a manifold structure. This justifies the following definition: Definition 1.2.18. Consider Φ a codimension one Anosov flow on M n . The space of orbits of the lift of Φ on the universal cover of M will be called the orbit space of Φ of Φ. ♠

Remark.

By considering the space of orbits of the lift of an Anosov flow on the universal cover, one can define the orbit space for any Anosov flow that is not necessarily of codimension one. Many of the results stated in this section can be generalized for the orbit spaces of general Anosov flows. However, contrary to the codimension one case, it remains still unknown whether or not the orbit space of a general Anosov flow is a Hausdorff topological space. This is one of the main reasons why we chose to define in this thesis the orbit space only for codimension one Anosov flows.

Theorem 1.2.19 (Theorem 1.5.2 in [Ba]). Let Φ be a C k codimension one Anosov flow on the smooth manifold M n . The orbit space P of Φ can be endowed with a structure of C k manifold and is diffeomorphic to R n-1 . Moreover, the projection π : M ≈ R n → P is of class C k and defines a locally trivial line fibration over P.

Since every line bundle over a contractible space is trivial, by the previous theorem, we get that Corollary 1.2.20. The flow Φ is conjugated to the flow associated to the constant vector field ∂ ∂x in R n .

The previous two results have been independently also shown by S.Fenley for Anosov flows in dimension 3 in [START_REF] Fenley | Anosov flows in 3-manifolds[END_REF].

The orbit space of a codimension one Anosov flow (M n , Φ) can be naturally endowed with two transverse foliations. This is the reason why the orbit space of an Anosov flow in dimension 3 is also called the bifoliated plane.

Indeed, consider F s and F u (resp. F ss and F uu ) the weak (resp. strong) stable and unstable foliations of Φ and F s , F u (resp. F ss , F uu ) their lifts on the universal cover M of M . Denote also by Φ the lift of Φ on M . Recall that F s and F u define two transverse foliations on M , every leaf of which is invariant by Φ. Let L s be a leaf of F s and L ss a leaf of F ss such that L ss ⊂ L s . By Corollary 1.2.10, every orbit of Φ intersects L ss at most once and by Theorem 1. 1.25 the orbit of L ss by Φ is equal to L s . Therefore, the projection of L s in P is an embedding of L ss in P and more generally, by the continuity of the projection, F s projects in P to a foliation F s , called the stable foliation of P. We define similarly the unstable foliation of P.

Remark 1.2.21. Even though the weak stable and unstable foliations of Φ may not be orientable or transversely orientable, since P is simply connected and orientable, the foliations F s and F u are always orientable and transversely orientable.

Remark 1.2.22. As a consequence of Corollary 1.2.10 and Theorem 1. 2.19 we have that:

• F s and F u are transverse foliations that have the same regularity as their lifts F s and F u

• a leaf in F s and a leaf in F u intersect at most along a point

• every leaf of F s or F u is properly embedded in P. Therefore, if F s is of codimension one, every leaf of F s separates P in two connected components

Except from a natural bifoliation, the orbit space of a codimension one Anosov flow can be naturally endowed with a natural group action by π 1 (M ). Indeed, π 1 (M ) acts on M by deck transformations that preserve the orbits of Φ and the foliations F s and F u . Consequently, by Theorem 1.2.19 the previous group action induces a group action on P by C k diffeomorphisms that preserve F s and F u . Convention 1.2.23. In order to differentiate between the action of π 1 (M ) on M by deck transformations and its induced action on the orbit space P, throughout this thesis we will use the following notations:

(π 1 (M ), P) → P (g, x) → g(x)

(π 1 (M ), M ) → M (g, x) → g.x
Definition 1.2.24. We will say that the point x ∈ P corresponds to the orbit γ of Φ if there exists a lift of γ on M , whose projection on P is x.

A point x in P will be called periodic if there exist n ∈ N * and g ∈ π 1 (M ) -{id} such that g n (x) = x. We similarly define periodic stable or unstable leaves in P.

♠

Even though the action by π 1 (M ) on P is not well understood globally for most Anosov flows, there several known results concerning the local dynamics around periodic points and periodic stable/unstable leaves: Theorem 1.2.25. Let Φ be a codimension one Anosov flow on M n and P its orbit space. Let x ∈ P be a periodic point and L a periodic stable or unstable leaf in P. We have the following:

1. The leaf L contains a unique periodic point 2. The point x corresponds to a unique periodic orbit γ of Φ. Conversely any periodic orbit of Φ corresponds to an infinite family of periodic points in P 3. The stabilizer of x in π 1 (M ) is isomorphic to Z 4. If g ∈ π 1 (M ) -{id} fixes x, then the differential of g on x is hyperbolic 5. If g fixes L, then the action of g on L is conjugated to a contraction or an expansion

The reader may find the proofs of (1), (4), (5) in Section 1.5 of [Ba]. The proofs of (2) and (3) are easy consequences of the definition of the action of π 1 (M ) on P and of the fact that π 1 (M ) has no torsion (see Corollary 1.2.12).

By theorems 3 and 9 of [An] we deduce from the previous theorem that: Corollary 1.2.26. Let Φ be a transitive codimension 1 Anosov flow on M and P its orbit space. We have that:

1. The set of periodic points (or stable/unstable leaves) in P is dense 2. The orbit by π 1 (M ) of every stable or unstable leaf in P is dense 3. There exists a point in P whose orbit by π 1 (M ) is dense Given a closed and smooth n-manifold M and a smooth action satisfying all the above properties, one could naturally ask whether this action can be associated to a transitive Anosov flow on M . In fact, the following question remains still unanswered: Question 1.2.27. Let ρ be a C k (k ∈ {0, 1, ..., ∞}) action of an n-manifold group π 1 (M n ) on R n-1 preserving a pair of transverse foliations. Give a necessary and sufficient condition for ρ to be realised (up to conjugation or semi-conjugation) as the action of π 1 (M n ) on the orbit space of a codimension one Anosov flow on M n .

Let us remark here that significant progress has been made recently in the direction of the previous question with the definition of the notion of Anosov-like actions on R 2 by T. Barthelmé, K.Mann and S.Frankel in [BaFrMa].

Definition 1.2.28. A C 0 action of a group G on a plane P endowed with a pair (F + , F -) of transverse C 0 line foliations is called Anosov-like if it satisfies the following properties:

1. The action of G preserves both F + and F -.

2. If a non-trivial element g ∈ G fixes a leaf l ∈ F + or l ∈ F -, then it has a fixed point in l.

3. For any non-trivial g ∈ G and any x ∈ P fixed by g, up to changing g to g -1 , we have that g is topologically expanding on F + (x) and topologically contracting on F -(x).

4. The action of G has a dense orbit.

5. The union of the fixed points of all non-trivial elements in G is dense in P.

6. If two leaves l 1 , l 2 in F + or F -are not separated in the corresponding leaf space, then there exists a non-trivial g ∈ G fixing both l 1 and l 2 .

7. Consider [0, 1] 2 with its trivial bifoliation. There does not exist ϕ : [0, 1] 2 -{0, 1} 2 → P a continuous embedding with the following properties:

• the image by ϕ of every horizontal (resp. vertical

) leaf in [0, 1] 2 -{0, 1} 2 is contained in a leaf of F + (resp. F -), • for any sequence (x n ) n∈N of points in [0, 1] 2 -{0, 1} 2 converging to a corner point of [0, 1] 2 , ϕ(x n ) -→ n→+∞ ∞, i.e. (ϕ(x n ))
n∈N exits all compact sets in P.

♠

The authors of [BaFrMa] explain using some previous works of S.Fenley and T.Barbot that given a transitive Anosov flow Φ on a closed 3-manifold M , the action of π 1 (M ) on the orbit space of Φ is an Anosov-like action. Furthermore, they show in the same preprint that Anosov-like actions share many properties with the actions of fundamental groups arising from transitive Anosov flows in dimension 3. For instance, the Theorems 1. 3.2 and 1.3.4, that we are going to state in the next section, remain true for general Anosov-like actions. However, despite their many common features not every Anosov-like action arises from an Anosov flow (see Example 1 in [BaFrMa]) and thus Question 1.2.27 remains still open even for group actions on the plane.

Finally, before finishing this section, let us state a very useful result of T.Barbot according to which together with its natural bifoliation and group action, the orbit space of a codimension one Anosov flow Φ characterises Φ up to orbital equivalence: Theorem 1.2.29 (Theorem 1.5.4 in [Ba]). Consider (M, Φ) and (N, Ψ) two codimension one Anosov flows. Let (P Φ , F s Φ , F u Φ , ρ Φ ) and (P Ψ , F s Ψ , F u Ψ , ρ Ψ ) be the orbits spaces of Φ and Ψ together with their natural bifoliations and group actions. The flows Φ and Ψ are orbitally equivalent if and only if there exists h : P Φ → P Ψ a homeomorphism and α :

π 1 (M ) → π 1 (N ) a group isomorphism such that 1. h(F s Φ ) = F s Ψ and h(F u Φ ) = F u Ψ 2.
for every x ∈ P Φ and every g ∈ π 1 (M )

h • ρ Φ (g)(x) = ρ Ψ (α(g)) • h(x)
According to the previous theorem, the problem of classification of codimension one Anosov flows in dimension n can be reduced to classifying a family of group actions on R n-1 . This remark constitutes the basis of our approach to the problem of classification of Anosov flows in dimension 3.

Anosov flows in dimension 3

The bifoliated plane Starting from this section, we will restrict ourselves to 3-dimensional Anosov flows. In addition to the results stated in the previous section, the bifoliated planes of Anosov flows in dimension 3 satisfy additional properties related either to the periods of their periodic points or the form of the bifoliations arising from Anosov flows.

Theorem 1.3.1. Let Φ be an Anosov flow on the smooth 3-manifold M 3 and P its bifoliated plane.

1. Given n ∈ N * , g ∈ π 1 (M ) -{id} admits a fixed point in P if and only if g n admits a fixed point in P 2. A periodic orbit in P has period either equal to one or two. Furthermore, if the stable and unstable foliations of Φ are transversely orientable, then a periodic point in P is fixed.

A proof of point (1) may be found in [BaFe] (Proposition 2.16). Concerning the proof of point (2), we refer the reader to [START_REF] Fenley | Homotopic indivisibility of closed orbits of 3-dimensional Anosov flows[END_REF] (Lemma 3.1 for the orientable case and Section 4 for the non orientable case).

The bifoliated planes of Anosov flows in dimension 3 can admit 3 different types of bifoliations, each one of which is associated to flows with very specific topological and dynamical properties. The two following theorems proven independently by Barbot in [Ba] and Fenley in [START_REF] Fenley | Anosov flows in 3-manifolds[END_REF] will render our previous remark more precise: Theorem 1.3.2. Consider Φ an Anosov flow in dimension 3 and P its bifoliated plane endowed with its stable and unstable foliations F s and F u . We have that the space of leaves of F s is Hausdorff if and only if the space of leaves of F u is also Hausdorff.

Definition 1.3.3. Following the above notations, an Anosov flow Φ in dimension 3 for which the leaf space of F s (or equivalently of F u ) is Hausdorff will be called R-covered. If the previous hypothesis is not satisfied, we will say that Φ is non-R-covered (see Figure 1.4). ♠ Contrary to what has been claimed in [Ve] or [Pl], not all Anosov flows in dimension 3 are R-covered. Several non-R-covered examples of Anosov flows are known nowadays. For instance, every non-transitive Anosov flow in dimension 3 is non-R-covered (see Theorem 1.3.5).

According to Theorem 1.2.29, the bifoliated plane together with its stable and unstable foliations and natural group action characterizes the original Anosov flow up to orbital equivalence. Even without its associated group action, the form of the bifoliation itself (trivial or skewed R-covered, non-R-covered) has several implications on the dynamics of its associated Anosov flow.

Theorem 1.3.5. Consider Φ an Anosov flow on the 3-manifold M . We have that:

1. If Φ is R-covered, then Φ is transitive 2. If Φ is skewed R-covered, then M is orientable 3. Assume that Φ is skewed R-covered

and has transversely orientable stable and unstable

foliations. There exists an orbital equivalence homotopic to the identity between Φ and its inverse

Under the hypotheses of point (3) and if additionally M is hyperbolic, every free homotopy class of loops in M contains either zero or infinitely many periodic orbits of Φ

A proof of ( 1)-( 3) may be found in [Ba] (see Theorem 1.6.10 and Corollaries 3.2.5, 3.2.8) and a proof of (4) in [START_REF] Fenley | Anosov flows in 3-manifolds[END_REF] (Theorem 4.4).

According to the above theorem, the R-covered (trivial or skewed) or non-R-covered character of an Anosov flow, determines several of its dynamical properties. Being R-covered or not depends on the topological behavior of the stable and unstable foliations on the universal cover. However, it is possible to define the R-covered or non-R-covered character of a flow in dynamical terms.

Theorem 1.3.6 (Solodov). An Anosov flow in dimension 3 is trivially R-covered if and only if it is orbitally equivalent to a suspension Anosov flow.

The previous theorem can be generalized in every dimension. See Section 2.3 of [Ba] for more details.

Definition 1.3.7. Consider M a smooth 3-manifold and α a C 1 differential 1-form such that α ∧ dα is never zero. There exists a unique vector field X on M for which α(X) = 1 and ι X dα = 0. We call the flow associated to X a Reeb-flow. ♠ Theorem 1.

(Barbot, Marty). An Anosov flow in dimension 3 is R-covered skewed if and only if it is orbitally equivalent to a Reeb Anosov flow.

The fact that Reeb Anosov flows are R-covered skewed was proven by Barbot in [Ba3] and more recently the inverse implication was announced by Marty in his preprint [Mar].

Definition 1.3.9. Given a manifold M and a distance d endowed by some Riemannian metric on M , a quasigeodesic in M is a map f : R → M for which there exists A ≥ 1 and B ≥ 0 such that for every x, y ∈ R

1 A • d(f (x), f (y)) -B ≤ |x -y| ≤ A • d(f (x), f (y)) + B
A non-singular flow Φ on a compact Riemannian manifold M is a quasigeodesic flow if every orbit of Φ lifts on the universal cover of M to a quasigeodesic. ♠

Notice that the choice of Riemannian metric on the compact manifold M does not change the quasigeodesic character of a flow (this amounts to changing the choice of constant A in the above definition).

Theorem 1. 3.10 (Fenley). Consider M a hyperbolic 3-manifold and Φ an Anosov flow on M . We have that Φ is non-R-covered if and only if Φ is a quasigeodesic Anosov flow.

The fact that a quasigeodesic Anosov flow is non-R-covered was proven in [START_REF] Fenley | Anosov flows in 3-manifolds[END_REF] (Theorem 5.11). The inverse implication was more recently proven in the preprint [START_REF] Fenley | Non R-covered Anosov flows in hyperbolic 3-manifolds are quasigeodesic[END_REF].

Markov partitions and geometric types

Our classification method was inspired and heavily relies on the notion of Markov partition for an Anosov flow. In this section, we will define the notions of Markov partition for an Anosov flow, but also one of our main classifying objects: the geometric type.

Let M be an orientable and closed 3-manifold carrying a transitive Anosov flow Φ. Let F s and F u be the stable and unstable foliations of Φ.

Definition 1.3.11. Consider [0, 1] 2 endowed with the vertical and horizontal foliations, the trivially bifoliated rectangle. A rectangle R in M is the image of a trivially bifoliated rectangle by a continuous embedding ϕ : [0, 1] 2 → M sending every vertical segment to an unstable segment (i.e. a segment contained in a weak unstable leaf) and every horizontal segment to a stable segment.

We will call ∂

u R := ϕ({0, 1} × [0, 1]) the unstable boundary of R, ∂ s R := ϕ([0, 1] × {0, 1}) its stable boundary and • R = R -(∂ s R ∪ ∂ u R) its interior.
Moreover, any rectangle of the form ϕ([s, t] × [0, 1]), where s, t ∈ [0, 1] and s < t, will be called a vertical subrectangle of R. Similarly, rectangles of the form ϕ(

[0, 1] × [s, t]) will be called horizontal subrectangles of R. ♠ Definition 1.3.12. A Markov partition of Φ is a finite family of rectangles R 1 , ..., R n in M transverse to Φ such that:
1. The rectangles are pairwise disjoint 2. Pushing positively by the flow, the first return on

n ∪ i=1 R i of any point x ∈ n ∪ i=1
R i is well defined and will be denoted by f (x). Furthermore, there exists T > 0 such that for all x ∈ M there exists t ∈ [0, T ] for which Φ

t (x) ∈ n ∪ i=1 R i .

For any two

i, j the closure of each connected component of f ( • R i ) ∩ • R j (the previous set can be empty) is a vertical subrectangle of R j .

For any two

i, j the closure of each connected component of f -1 ( • R i ) ∩ • R j (the previous set can be empty) is a horizontal subrectangle of R j .
Furthermore, we will call the family R 1 , ..., R n a reduced Markov partition if for every i ̸ = j, there doesn't exist a continuous function τ :

R i → R such that Φ τ (R i ) ⊆ R j or Φ τ (R i ) ⊇ R j .
♠ Remark 1.3.13. • In the above definition, it is not hard to see that point (2) implies that the number of connected components of f (

• R i ) ∩ • R j or f -1 ( • R i ) ∩ • R j is finite for any i, j.
• The reason why we consider in point (3) the set f (

• R i ) ∩ • R j instead of f (R i ) ∩ R j is
because for a general Markov, two rectangles when pushed by the flow can intersect along their boundaries first before intersecting along their interiors. More precisely, the set f (R i ) ∩ R j is in general not closed and its closure consists of a finite number of subrectangles of R j (the closures of the connected components of f (

• R i )∩ • R j ) in addition
to a finite number of segments and points in R j .

• Notice that f preserves the stable and unstable segments of the rectangles R 1 , ..., R n .

Therefore, point (3) can be generalized for any Markov partition to the following one: for any i, j and for any V vertical subrectangle of R i , the closure of each connected

component of f ( • V ) ∩ • R j is a vertical subrectangle of R j .
The same applies for property (4).

Using the last point of the previous remark one can show by induction an even more general result:

Lemma 1.3.14. Take R 1 , R 2 , ..

., R n a Markov partition of an Anosov flow Φ and f the first return map on

n ∪R l l=1 . For every i, j ∈ 1, n , N ≥ 0 (resp. N ≤ 0) and V vertical (resp. horizontal) subrectangle of R i the set f N ( • V ) ∩ • R j consists of a finite number of connected components the closure of each one of which is a vertical (resp. horizontal) subrectangle of R j .
The following two results (Theorems 1. 3.15 and 1.3.16) ensure the existence of Markov partitions and reduced Markov partitions for all transitive Anosov flows. It remains still unknown whether non-transitive Anosov flows admit Markov partitions.

Theorem 1.3.15 (Ratner, [Ra]). Let Φ be a transitive Anosov flow on a closed 3-manifold M and F s , F u its weak stable and unstable foliations. For any periodic orbit γ of Φ, there exists a Markov partition of Φ formed by rectangles, whose stable and unstable boundaries are contained respectively in F s (γ) and F u (γ).

Sketch of proof.

Endow M with a metric and fix ϵ > 0. Since Φ is transitive by theorem 9 of [An], F s (γ) and F u (γ) are dense in M . Therefore, two sufficiently large compact subsets of F s (γ) and F u (γ) partition M in flow-boxes of size at most ϵ. More precisely, there exists (B i ) i∈I a finite cover of M such that • For every i ∈ I, there exists a diffeomorphism h

i : [0, 1] 3 → B i such that for every x ∈ [0, 1] 2 h i ({x} × [0, 1]) is an orbit segment of Φ • h i ({0, 1} × [0, 1] 2 ) ⊂ F u (γ) and h i ([0, 1] × {0, 1} × [0, 1]) ⊂ F s (γ)
• For every i ̸ = j we have that

• B i ∩ • B j = ∅
• For every i ∈ I the diameter of B i is less or equal than ϵ.

Denote by

R i the surface h i ([0, 1] 2 × { 1 2 }).
Notice that by the first and second conditions on the h i , every R i is a rectangle in M transverse to Φ. By eventually perturbing a little bit the R i , we may assume that the R i are pairwise disjoint. Furthermore, since the B i partition M and have a bounded size, for every point x ∈ M , the positive and negative orbits of x by Φ intersect ∪ i∈I R i in a uniformly bounded time.

Consider now two compact subsets

K s , K u of F s (γ) and F u (γ) respectively such that K s is positively invariant by Φ, K u is negatively invariant by Φ, ∪ i∈I ∂ s R i ⊂ K s and ∪ i∈I ∂ u R i ⊂ K u .
Notice that since K s is compact and tangent to Φ, it intersects every

• R i along a finite number of segments (s i j ) j∈J(i) . Consider (l i j ) j∈J(i) the connected components of F s (γ) ∩ R i containing the segments (s i j ) j∈J(i) . Cut each R i along the segments (l i j ) j∈J(i) in order to produce |J(i)| new rectangles R i1 , ..., R i|J(i)| .
Repeat the same procedure with K u and the finite family of rectangles

{R ij |i ∈ I, j ∈ 1, |J(i)| }.
At the end of this procedure, we obtain a new finite family of rectangles in M , say (S k ) k∈K , that are transverse to Φ and whose stable and unstable boundaries are contained in F s (γ) and F u (γ) respectively.

Once again, by perturbing a little bit the S k , we may assume that they are pairwise disjoint. Furthermore, since the S k have been obtained by cutting the rectangles R i it remains true that for every point x ∈ M , the positive and negative orbits of x by Φ intersect ∪ k∈K S k in a uniformly bounded time. Therefore, the first return map f :

∪ k∈K S k → ∪ k∈K S k is well defined. Assume now that, for some choice of i, j ∈ K there exists a connected component of f ( • S i ) ∩ • S j
whose closure is not a vertical subrectangle of S j . This would imply that the stable boundary of the closure of the previous connected component intersects the interior of S j . In other words, this would imply that the positive orbit by Φ of the stable boundary of S i intersects the interior of S j . However, this is impossible since ∂ s S i ⊂ K s , K s is positively invariant by Φ and by our construction K s does not intersect the interior of any rectangle in (S k ) k∈K . By repeating the same argument for the connected components of

f -1 ( • S i ) ∩ • S j , we get that (S k ) k∈K is a Markov partition of Φ with the desired properties.
Theorem 1.3. [START_REF]If N finitely covers M and Φ admits a genus 1 Birkhoff section, does any lift of Φ on N also admit a genus 1 Birkhoff section? Bibliography[END_REF]. Let Φ be a transitive Anosov flow on a closed 3-manifold M and F s , F u its weak stable and unstable foliations. For any periodic orbit γ of Φ, there exists a reduced Markov partition of Φ formed by rectangles, whose stable and unstable boundaries are contained respectively in F s (γ) and F u (γ).

Proof. Take γ a periodic orbit of Φ and R 1 , ...R n a Markov partition in M , given by Ratner's theorem, formed by rectangles whose stable and unstable boundaries are contained respectively in F s (γ) and F u (γ). Suppose now, without any loss of generality, that there exists

a continuous function τ : R 1 → R such that Φ τ (R 1 ) ⊆ R 2 . Notice that since R 1 ∩ R 2 = ∅,
we can assume that τ takes values in R + . It suffices to prove that the family of rectangles R 2 , ..., R n is a Markov partition of Φ.

Indeed, the rectangles R 2 , ..., R n are pairwise disjoint by construction; thus they satisfy the first axiom of Definition 1.3.12. Next, since R 1 , ..., R n is a Markov partition for Φ, the positive orbit of any x ∈ M intersects n ∪ i=1 R i in a time uniformly bounded by a constant, say T > 0. Also, by continuity of τ and using the fact that Φ τ (R 1 ) ⊆ R 2 , we get that there exists m > 0 such that τ < m and that any x ∈ M intersects n ∪ i=2 R i in a time uniformly bounded by T + m. Hence, R 2 , ..., R n also satisfy the second axiom of Definition 1.3.12. Now, let us show that R 2 , ...R n satisfy axiom 3 of our definition of a Markov partition. The fact that axiom 4 is also satisfied can be proved in a similar way.

Let us denote by

f : M → n ∪ i=1 R i and f red : M → n ∪ i=2 R i the maps associating to any point x ∈ M the first point of intersection of the positive orbit of x, namely (Φ t (x)) t>0 , with n ∪ i=1 R i and n ∪ i=2
R i respectively. By our arguments in the previous paragraph, those maps are well defined. Fix i ∈ 2, n . We would like to show that for any j ∈ 2, n ,

the closure of every connected component of f red ( • R i ) ∩ • R j is a vertical subrectangle of R j (1.3.1)
Let us begin by remarking that .3.13 and Figure 1.6). In particular, this is the case for

f ( • R 1 ) ∩ • R 1 = ∅ Proof of the statement. Assume that A := f -1 ( • R 1 )∩ • R 1 is non-empty. Since R 1 , ..., R n is a Markov partition, the closure of each connected component of A is a horizontal subrectangle of R 1 . Take H the closure of a connected component of A. By axiom 3 of Definition 1.3.12, Figure 1.6 the closure of f ( • H) ⊂ f ( • R 1 ) ∩ • R 1 is a vertical subrectangle of R 1 . Even more, for every vertical subrectangle V of H, the closure of f ( • V ) is also a vertical subrectangle of R 1 (see Remark 1
V = f ( • H) ∩ • H. So, the closure of f (f ( • H) ∩ • H) ∩ H = f ( • V ) ∩ H ̸ = ∅ is a vertical subrectangle of H.
By repeating the previous argument, we can prove that for any m ∈ N the closure of the set A m , defined recursively as follows, is a non empty vertical subrectangle of

• H:    A 0 = • H A m+1 = f (A m ) ∩ • H, for n ≥ 0 A point x ∈ • A m verifies x ∈ H, f -1 (x) ∈ H, ..., f -m (x) ∈ H.
It follows that for every m ≥ 0 there exists y m ∈ H visiting R 1 for m consecutive times before visiting the rectangles R 2 , ..., R n . However, since R 1 is transverse to the flow, there exists ϵ > 0 such that for all t ∈ (0, ϵ), we have that Φ t (R 1 ) ∩ R 1 = ∅. Hence, it will take a time strictly bigger than (m -1)ϵ in order that the point y m visits any of the rectangles R 2 , ..., R n . The fact that m can be taken arbitrarily big contradicts our hypothesis that the positive orbit of every point of R 1 will visit R 2 in a uniformly bounded time.

Proof of the theorem. Let us now return to the proof of the theorem. Recall that we would like to show (1.3.1). Notice that for any x ∈

• R i , if f (x) / ∈ R 1 , then f (x) = f red (x).
If on the other hand, f (x) ∈

• R 1 , then by the previously proved statement f 2 (x) / ∈ R 1 and

f 2 (x) = f red (x). Therefore, a connected component D of f red ( • R i ) ∩ • R j is • either a connected component of f ( • R i ) ∩ • R j • or a connected component of f (C)∩ • R j , where C is a connected component of f ( • R i )∩ • R 1
The closure of D in the first case is a vertical subrectangle of R j , since R 1 , ..., R n is a Markov partition. The fact that the closure of D in the second case is a vertical subrectangle of R j follows from Remark 1.3.13. This concludes the proof of the theorem.

To every Markov partition R 1 , ...R n we can associate (this association will be explained in a more general and detailed way in Definition 2.3.1) a family of combinatorial objects describing abstractly the way in which the first return map acts on R 1 , ..., R n .

Definition 1.3.17. Take n ∈ N * and (h

i ) i∈ 1,n , (v i ) i∈ 1,n ∈ (N * ) n such that i h i = i v i Consider now for every i ∈ 1, n two finite sets of the form {H j i , j ∈ 1, h i } and {V j i , j ∈ 1, v i }, a bijection ϕ between H = {H j i |i ∈ 1, n , j ∈ 1, h i } and V = {V j i |i ∈ 1, n , j ∈ 1, v i } and u a function from H to {-1, +1}.
The data (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) will be called a geometric type. ♠

A geometric interpretation of the geometric type. In the following pages, even though a geometric type can be thought as an abstract combinatorial object, we will often think of it as a set of rectangles on which the map ϕ acts. More precisely, following the previous notations, consider n copies of [0, 1] 2 , say R 1 , ..., R n , trivially bifoliated by horizontal and vertical segments (oriented from bottom to top and left to right respectively). Consider also inside every R i (see Figure 1.7), h i (resp. v i ) mutually disjoint horizontal (resp. vertical) subrectangles, that we are going to denote by

H 1 i , ..., H h i i (resp. V 1 i , ..., V v i i ). Convention 1.3.18.
Throughout this thesis, we will assume that the subrectangles

H 1 i , ..., H h i i (resp. V 1 i , ..., V v i i ) are ordered inside R i from bottom to top (from left to right).
The reader may think of ϕ, as a homeomorphism ϕ :

∪ i∈ 1,n ∪ j∈ 1,h i H j i → ∪ i∈ 1,n ∪ j∈ 1,v i
V j i sending in an affine way each of the previous horizontal subrectangles to a vertical subrectangle. Finally, we define u : H → {-1, 1} as follows:

• if ϕ respects the orientation of the vertical foliation when restricted on Definition 1. 3.19. Take (n,(h 

H j i , then u(H j i ) = 1 • if not, then u(H j i ) = -1 A geometric
i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) and (n ′ , (h ′ i ) i∈ 1,n ′ , (v ′ i ) i∈ 1,n ′ , H ′ , V ′ , ϕ ′ , u ′ ) two geometric types. Suppose that H = {H j i , i ∈ 1, n , j ∈ 1, h i } and V = {V j i , i ∈ 1, n , j ∈ 1, v i } H ′ = {H ′ i j , i ∈ 1, n ′ , j ∈ 1, h ′ i } and V ′ = {V ′ i j , i ∈ 1, n ′ , j ∈ 1, v ′ i }
We will say that the two previous geometric types are equivalent if

1. n = n ′

up to reindexing h

i = h ′ i and v i = v ′ i 3. there exists a bijection H : H ∪ V → H ′ ∪ V ′ such that
• H(H) = H ′ and H respects the order of the elements in H and H ′ . In other words, for every i ∈ 1, n , H defines a bijection between

{H j i , j ∈ 1, h i } and {H ′ i j ′ , j ′ ∈ 1, h ′ i }
that is monotonous with respect to j. We define ϵ i = +1 if the previous map is increasing and

ϵ i = -1 if not.
• H(V) = V ′ and H respects the order of the elements in V and V ′ . In other words, for every i ∈ 1, n , H defines a bijection between

{V j i , j ∈ 1, v i } and {V ′ i j ′ , j ′ ∈ 1, v ′ i } that is monotonous with respect to j. We define ϵ ′ i = +1 if the previous map is increasing and ϵ ′ i = -1 if not. • either ϵ i • ϵ ′ i = -1 for all i or ϵ i • ϵ ′ i = +1 for all i • H respects ϕ and ϕ ′ .

In other words, for every h ∈ H ϕ ′ (H(h)) = H(ϕ(h))

• H respects u and u ′ . In other words, for every h ∈ H we have u

′ (H(h)) = ϵ i • ϵ j • u(h) = ϵ ′ i • ϵ ′ j • u(h)
, where i, j are such that h and ϕ(h) are respectively of the form

H • i and V • j
If furthermore all the above ϵ i and ϵ ′ i are equal to +1, then we will say that the two geometric types are equal. A geometric interpretation of the relation of equivalence. Using the geometric interpretation of a geometric type, an equivalence H between two geometric types can be thought as a homeomorphism between the rectangles of the two geometric types sending horizontal/vertical subrectangles to horizontal/vertical subrectangles and respecting the maps ϕ and u. Keep in mind, that H can a priori change the orientation of the vertical/horizontal foliations of a rectangle.

For instance, changing the orientation of the stable and unstable foliations of the rectangle R 1 in the example of Figure 1.7 yields an equivalent geometric type. Indeed, recall that the horizontal and vertical subrectangles of

R 1 , namely H 1 1 , H 2 1 and V 1 1 , V 2 1
, are respectively ordered from bottom to top and from left to right. Changing the orientation of the foliations of R 1 amounts to reindexing the H j 1 and the V j 1 and hence leads to a different geometric type, where ϕ and u are no longer the same. It is easy to check that the "identity map" sending trivially R 1 and R 2 to themselves satisfies the axioms of Definition 1. 3.19, thus defining an equivalence between the two geometric types.

In fact, it is possible to show that given a geometric type G = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u), by reindexing the (h i , v i ) or by changing the orientation of the stable or unstable foliation in every rectangle of G or by changing the orientation of both foliations of any rectangle of G, we can obtain all geometric types equivalent to G.

A technical remark. Once again, our definition of equivalence is a purely combinatorial one, but throughout this thesis we will be often thinking of an equivalence between two geometric types in a geometric way. Our previous geometric interpretation explains the reason why we defined the notion of equivalence in this way. There is though one axiom in Definition 1.3.19 that we have not yet thoroughly explained. The reason why we added the condition "either

ϵ i • ϵ ′ i = -1 for all i or ϵ i • ϵ ′ i = +1
for all i" is a technical one and is closely related to the fact that in this thesis we will use geometric types in order to classify Anosov flows on orientable 3-manifolds. Should one wish to generalize our approach for non-orientable manifolds, our definition of a geometric type should be modified and also one should drop the previous axiom from our definition of equivalence.

Dehn-Goodman-Fried surgeries

As we have mentioned in the introduction, by using surgery one can produce numerous large families of non-algebraic Anosov flows in dimension 3. In this section, we will define the notion of Dehn-Goodman-Fried surgery along a periodic orbit γ of a transitive Anosov flow. We are going to consider three cases depending on the signs of the eigenvalues of γ: Definition 1.3.21. Let X be a C 1 flow on a manifold M and γ a periodic orbit of X. Consider Σ a local transverse section of X such that γ ∩ Σ = {x}. Denote by f ret the first return map on Σ. We will say that γ has positive (resp. negative) eigenvalues if d x f ret has only positive (resp. negative) eigenvalues.

♠

Dehn-Goodman-Fried surgeries on periodic orbits with positive eigenvalues

Let X be a smooth and transitive Anosov flow on a oriented closed 3-manifold M and let γ be a periodic orbit of X with positive eigenvalues.

By blowing up M along γ we obtain a manifold M γ with one torus boundary T γ endowed with a continuous map

π γ : M γ → M of M . The map π γ induces a diffeomorphism from the interior of M γ to M \ γ.
Furthermore, for every x ∈ γ the fiber π -1 γ (x) is a circle which is canonically identified with the unit normal bundle N 1 (x) of γ in M at the point x. More specifically, consider two small

C 1 segments σ 1 , σ 2 : [0, 1] → M γ transverse to the boundary T γ at σ 1 (0), σ 2 (0) ∈ ∂M γ .
Then we have σ 1 (0) = σ 2 (0) if and only if 

• π γ (σ 1 (0)) = π γ (σ 2 (0)) = c and • there exists λ ∈ R such that ∂(π γ • σ 1 ) ∂t (0) = λX(c) + ∂(π γ • σ 2 ) ∂t (0)
The vector field π -1 γ (X) is well defined on the interior of M γ and extends by continuity on its boundary T γ by the natural action of the derivative DX t on the normal bundle over γ. We denote by X γ this smooth vector field on M γ .

The flow on T γ is a Morse-Smale flow with 4 periodic orbits, which correspond to the normal vectors to γ tangent to the stable and unstable manifolds of γ. These 4 periodic orbits are freely homotopic one to another and are non trivial in π 1 (T γ ). The homotopy (or homology) class p ∈ Z 2 = π 1 (T γ ) of these periodic orbits is called the parallel.

On the other hand, using the orientation of M we can orient the fibers of π γ : T γ → γ as follows: the normal direction to T γ pointing inside M γ , followed by the direction of the fiber and finally by the direction of the flow define an orientation compatible with our initial orientation on M . The homotopy (or homology) class m ∈ Z 2 = π 1 (T γ ) of a fiber with the previous orientation is called the meridian.

Given any integer n ∈ Z, one easily checks the existence of foliations G n on T γ , transverse to the flow X γ , whose leaves are simple closed curves of homotopy class m + np. By reparametrizing the flow X γ , one gets a new smooth vector field Y γ on M γ that leaves invariant the foliation G n .

Let M γ,n be the manifold obtained from M γ by collapsing the leaves of G n . The flow Y γ passes to the quotient and becomes a topological Anosov flow X γ,n on M γ,n . For a definition or more information about topological Anosov flows we refer to [Sh].

Theorem 1.3.22 (Shannon [Sh]). The flow X γ,n is orbitally equivalent by a homeomorphism isotopic to the identity to a smooth Anosov flow the orbit equivalence class of which depends only on the integer n and not our choice of foliation G n .

We call X γ,n the Anosov flow obtained from X by a Dehn-Goodman-Fried surgery along γ with characteristic number n.

Dehn-Goodman-Fried surgeries on periodic orbits with negative eigenvalues

A Dehn-Goodman-Fried surgery can be also performed along periodic orbits with negative eigenvalues. The procedure of surgery in this case is similar to the one that we described in the last section, but does not follow from the exact same construction.

Let X be a smooth and transitive Anosov flow on an oriented closed 3-manifold M and γ a periodic orbit of X with negative eigenvalues. As in the previous section, by blowing up M along γ, we obtain a manifold M γ with one torus boundary T γ and a continuous map

π γ : M γ → M that induces a diffeomorphism from the interior of M γ to M \ γ.
As before, the intersection of the weak stable (or unstable) manifold of γ with T γ defines a homotopy class P ∈ Z 2 = π 1 (T γ ) and the fibers of π γ (together with our choice of orientation of M ) define a homotopy class m ∈ Z 2 = π 1 (T γ ). The major difference between this case and the case of positive eigenvalues lies on the fact that P and m intersect twice. Hence, they do not form a basis of π 1 (T γ ). In order to complete m into a basis of π 1 (T γ ), we will consider the element p := 1 2 (P + m) ∈ π 1 (T γ ) (see Figure 1.9). Since p and m intersect once, they form a basis of π 1 (T γ ). The homotopy classes p and m will be respectively called the parallel and the meridian of T γ . In order for the foliation to be made from simple closed curves, we need m new to be an indivisible element of π 1 (T γ ). Furthermore, after collapsing T γ along G n we obtain a new periodic orbit γ ′ of some new flow. If we want this flow to be Anosov, then γ ′ must be a regular saddle and not a k-prong singularity. Therefore, (by eventually changing m new to -m new ) i(P, m) = i(P, m new ) = 2, where i is the intersection number of two elements in π 1 (T γ ). We can easily deduce from the two above properties that m new is of the form (2 -2l)p + lm where l is an odd integer. By using the fact that p := 1 2 (P + m), we get that

m new = m + (1 -l)P
Finally, since (1 -l) is even, we can write m new in the form m + 2nP . For any such choice of m new , by eventually reparametrizing X γ , there exists a foliation G n on T γ , transverse to X γ and invariant by X γ , whose leaves are simple closed curves of homotopy class m new = m + 2nP .

By collapsing T γ along the leaves of G n , the flow X γ passes to the quotient and we thus obtain a transitive topological Anosov flow on a closed 3-manifold M γ,n . Once again, by [Sh] the previous flow is orbitally equivalent by a homeomorphism isotopic to identity to a smooth and transitive Anosov flow X γ,n . The flow X γ,n is called the Anosov flow obtained from X by a Dehn-Goodman-Fried surgery along γ with characteristic number n.

Dehn-Goodman-Fried surgeries on periodic orbits with one positive and one negative eigenvalue

Even though it is possible to define Dehn-Goodman-Fried surgeries on periodic orbits with positive or negative eigenvalues in non-orientable 3-manifolds, extending the definition of a Dehn-Goodman-Fried surgery for non-orientable periodic orbits (i.e. periodic orbits with one positive and one negative eigenvalue) is not possible. Indeed, consider X a smooth and transitive Anosov flow on M 3 and γ a non-orientable periodic orbit of X.

Once again, by blowing up M along γ we obtain a manifold M γ with one Klein bottle boundary K γ endowed with a continuous map π γ : M γ → M of M . As in the previous cases, by considering π -1 γ (x) for any x ∈ γ, it is possible to define on K γ a canonical (unoriented) meridian m. Notice that there is no canonical choice of orientation for this meridian, since M is not orientable.

Assume now without any loss of generality that the weak stable manifold of γ is orientable (or equivalently that the positive eigenvalue of γ is smaller than 1). By considering the vectors tangent to the weak stable manifold of γ, we can define on K γ a canonical parallel p. The parallel and the meridian we have thus defined form a basis of K γ .

Following our previous constructions, we would now like to define on K γ a foliation by circles freely homotopic to m + k • p for some k ∈ Z. Contrary to the case of the torus, the only foliation by circles on K γ with no one-sided leaf is the one defined by our original meridian. In other words, a foliation by circles freely homotopic to m + k • p exists on K γ if and only if k = 0.

On the different approaches to the classification problem

To this day different approaches have been used in order to address the question of classification of transitive Anosov flows on a given closed manifold of dimension 3:

1. By examining the action of the fundamental group on the bifoliated plane of the flow and by using the topology of the ambient 3-manifold:

• T. Barbot and S.Fenley show among others in [BaFe] that the only Anosov flow in a manifold with virtually solvable fundamental group is a suspension Anosov flow and that any Anosov flow in a Seifert manifold is up to a finite cover a geodesic flow in the unit tangent bundle of a hyperbolic surface • T. Barbot and S.Fenley classify in [BaFe1] all totally periodic Anosov flows in graph manifolds 2. If an Anosov flow on a 3-manifold admits transverse or quasi-transverse tori, by cutting the manifold along these tori, we can decompose the manifold and the flow into smaller pieces called plugs. By understanding the simpler dynamics inside the plugs and then classifying all possible plug glueings giving rise to Anosov flows (see [BeBoYu], [BeYu] and [Pau] for more details) it would be possible to classify all Anosov flows in dimension 3. As an application of this method, B.Yu and J.Yang prove among others in [YaYu] that the original Franks-Williams Anosov flow is the unique (up to orbital equivalence) non-transitive Anosov flow on the Franks-Williams manifold.

3. By examining the action of the fundamental group on the circle at infinity S ∞ of the bifoliated plane of an Anosov flow, the authors of [BaFrMa] prove in their preprint that the orbit equivalence class of most Anosov flows in dimension 3 -except from those whose bifoliated planes contain a tree of lozenges-is completely determined by the elements of the fundamental group acting on S ∞ with fixed points.

Despite the variety of approaches towards a classification of transitive Anosov flows in dimension 3, the classification problem remains still open. In fact, till this moment little is known about Anosov flows in toroidal manifolds containing simultaneously Seifert and atoroidal pieces. It is for this reason that we would like in this thesis to introduce a classification method that has not yet been thoroughly studied and that is a priori independent from the topology of the ambient manifold, a classification by geometric types.

Chapter 2

Markovian families of rectangles

In this chapter, we will define the notion of a Markovian family as a generalization of the notion of Markov partition in the bifoliated plane of an Anosov flow. Our main goal in the following pages consists in better understanding the properties of a Markovian family, in defining the notion of geometric type of a Markovian family and in proving that the geometric types of a Markovian family are pairwise equivalent (see Theorem-Definition A). In Section 2.1, we will thus prove that to any reduced Markov partition of an Anosov flow we can canonically associate a Markovian family. We will deduce from this fact the existence of infinitely many Markovian families in the bifoliated plane of any transitive Anosov flow. In Section 2.2, we will show that general Markovian families share a lot of properties with Markov partitions, thanks to which in Section 2.3 we will be able to prove Theorem-Definition A.

Reduced Markov partitions correspond to Markovian families

Let M be an orientable, closed, 3-manifold carrying a transitive Anosov flow Φ. We will denote by F s , F u the weak stable and unstable foliations of Φ. Let also P be the bifoliated plane of Φ and F s , F u its stable and unstable line foliations.

Definition 2.1.1. Consider [0, 1] 2 endowed with the vertical and horizontal foliations, the trivially bifoliated rectangle. A rectangle R in P is the image of a trivially bifoliated rectangle by a continuous embedding ϕ : [0, 1] 2 → P sending vertical segments to unstable segments and horizontal segments to stable segments.

We will call

∂ s R := ϕ([0, 1] × {0, 1}) the stable boundary of R and ∂ u R := ϕ({0, 1} × [0, 1]) its unstable boundary.
Furthermore, any rectangle R ′ of the form ϕ([s, t] × [0, 1]) where s, t ∈ [0, 1] and s < t will be called a vertical subrectangle of R. If furthermore R ′ ̸ = R, then we will call R ′ a non-trivial vertical subrectangle of R. We define similarly horizontal subrectangles and non-trivial horizontal subrectangles.

♠

Definition 2.1.2. A Markovian family in P is a π 1 (M )-invariant set rectangles (R i ) i∈I covering P (i.e. ∪ i∈I R i = P) such that 1. (Finiteness axiom) (R i ) i∈I is the union of a finite number of orbits of rectangles of the action by π 1 (M ) (i.e. there exists i 1 , ..., i n ∈ I such that π 1 (M ).(

n ∪ k=1 R i k ) = (R i ) i∈I ) 2. (Markovian intersection axiom) For every two distinct rectangles R i , R j in (R i ) i∈I , if • R i ∩ • R j ̸ = ∅, then R i ∩ R j is a non-trivial horizontal subrectangle of R i (or R j resp.
) and a non-trivial vertical subrectangle of R j (or R i resp.) Proof. We will check that (R i ) i∈I satisfies the axioms of the previous definition. Denote by Φ the lift of Φ on M . First, since the family of rectangles ( R i ) i∈I intersects every orbit of the lifted flow Φ and is π 1 (M )-invariant, we get that the family (R i ) i∈I covers P and is also π 1 (M )-invariant.

The R i are rectangles in P Suppose that an orbit of Φ intersects twice R j along the points x, y (see Figure 2.2). Without any loss of generality, we will assume that x and y do not belong both to the same unstable segment of R j . Let γ be an arc in R j transverse to F u and going from x to y (see Figure 2.2). Since the points x, y belong to the same weak unstable leaf L ∈ F u , γ is an arc transverse to F u , starting and ending at the same leaf L ∈ F u . This is impossible, because a foliation by planes in a simply connected manifold can not admit such an arc (see for instance Corollary 1 of [Pa]). Therefore, since every rectangle R j is compact and transverse to the lifted flow Φ, its projection on the bifoliated plane defines a homeomorphism. We deduce that the R i are rectangles in P. 

Finiteness axiom

The rectangles (R i ) i∈I satisfy the finiteness axiom, since they correspond to projections on P of the lifts on M of a finite number of rectangles in M that form a reduced Markov partition.

Markovian intersection axiom

Take two distinct i, j ∈ I such that

• R i ∩ • R j ̸ = ∅. Consider the lifts R i and R j of • R i and • R j on M .
Denote by A (resp. B) the set of points of R i , whose positive (resp. negative) orbits by Φ intersect R j . Without any loss of generality let us assume that A ̸ = ∅. Let us show that A is a non-trivial horizontal subrectangle of R i and that B = ∅.

Consider the map f : A → R j associating to every point x ∈ A the unique point of intersection of the positive orbit of x by Φ with R j . Since R i and R j are compact and the flow Φ is conjugated to the constant speed vertical flow in R 3 (see Corollary 1.2.20), the positive orbits of all points in A intersect R j in a uniformly bounded time. Hence, for a sufficiently big N ≥ 0, every orbit of A intersects at most N rectangles in ( R l ) l∈I before intersecting R j .

Consider A k the set of points in A whose positive orbits intersect k ≤ N rectangles in ( R l ) l∈I before intersecting R j . Take x ∈ A k whose orbit by Φ intersects 

• R j . Assume that
(f ret ) -(k+1) ( • R j ) ∩ • R i (resp. (f ret ) k+1 ( • R i ) ∩ • R j ) consists
of a finite number of connected components, the closure of each one of which is a horizontal (resp. vertical) subrectangle of R i (resp. R j ). By lifting on the universal cover the connected component of (

f ret ) -(k+1) ( • R j )∩ • R i containing x M , we get that x is contained in a horizontal subrectangle h of R i such that h ⊂ A k .
More generally, we get that A k can be written as the union of finitely many horizontal subrectangles (with pairwise disjoint interiors), whose images by f are vertical subrectangles of R j . Using the fact that by definition the sets A 1 , ..., A N are disjoint, we get that A can written as the union of finitely many horizontal subrectangles h 1 , ..., h s (see Figure 2.3) of R i such that • the sets

• h i are pairwise disjoint • the sets f ( • h i )
are pairwise disjoint and their closures are vertical subrectangles of R j Now, suppose that s > 1. Let u be an unstable segment of R i going from one stable boundary of R i to the other. It is not very hard to see that for each l ∈ 1, s the map f sends h l ∩ u to an unstable segment u l of f (h l ) ⊂ R j going from one stable boundary of R j to the other (see Figure 2.3). Moreover, by definition of f the segments u 1 , ..., u s belong in the positive orbit of u by Φ; hence they are all included in a unique weak unstable leaf L in F u . If s > 1, any stable segment in R j going from u 1 to u 2 forms an arc transverse to F u , starting and ending at the leaf L in F u . We have already established that such an arc can not exist in the part The R i are rectangles in P. Therefore, s = 1 and A consists of a unique horizontal subrectangle of R i . Notice that since R 1 , ..., R n is a reduced Markov partition A ̸ = R i , therefore the previous subrectangle is not trivial.

If B ̸ = ∅, by the same argument, B would be a non-trivial vertical subrectangle of R i . Therefore, A ∩ B ̸ = ∅, which would imply the existence of an orbit of Φ intersecting more than once R j , which is impossible. Finally, by projecting A on the bifoliated plane we get that R i ∩ R j is a non-trivial horizontal subrectangle of R i . By the same argument we can also prove that R i ∩ R j is also a non-trivial vertical subrectangle of R j , which gives us the desired result.

Finite return time axiom

Suppose that there exists a point x ∈ P and a quadrant Q of x such that for any small neighborhood U of x in Q there is no rectangle in (R i ) i∈I containing U . Without any loss of generality assume that U is homeomorphic to a closed disk and consider U a lift of U on R 3 that is also homeomorphic to a closed disk. Since the orbit by Φ of any point in M intersects a rectangle in R 1 , ..., R n in a uniformly bounded time, the orbit by Φ of any point in U also intersects a rectangle in ( R i ) i∈I in a uniformly bounded time. Therefore, we can find a sequence x k ∈ U accumulating to x such that the orbit of each lift x k ∈ U by Φ intersects a rectangle in ( R i ) i∈I , say R k , in a uniformly bounded time. On the one hand, this implies that the R k are contained in a compact set in R 3 . On the other hand, by our initial hypothesis, by eventually considering a subsequence, we can assume that the R k are mutually distinct. Such an infinite family of rectangles cannot be contained in a compact set in R 3 , which leads to a contradiction.

A useful fact proven in the previous proposition (see Paragraph the R i are rectangles) and that will later be used in other occasions is that Remark 2.1.4. Let Φ be a transitive Anosov flow on M . Every orbit of the lifted flow Φ on M = R 3 intersects at most once any rectangle in R 3 transverse to Φ. More generally, by the same exact proof, we can show that any leaf of the lifted weak stable (resp. unstable) foliation F s (resp. F u ) on R 3 intersects at most along one segment any rectangle in R 3 transverse to Φ.

Using Proposition 2.1.3 and Theorem 1.3.15, we conclude that Corollary 2.1.5. There exist infinitely many Markovian families in the bifoliated plane of every transitive Anosov flow.

On the properties of a general Markovian family

Let M be an orientable, closed, 3-manifold, Φ a transitive Anosov flow on M and P its bifoliated plane. We will denote by F s , F u the weak stable and unstable foliations of Φ. Consider F s , F u the stable and unstable line foliations in P endowed with an orientation and R a Markovian family in P.

In this section we will show that a general Markovian family R shares many properties with the Markovian families constructed in Section 2.1: the boundaries of all the rectangles in R belong to stable/unstable leaves with non-trivial stabilizers in π 1 (M ), every point in P belongs to infinitely many rectangles of the family, etc. Because of the abundance of such similarities we conjecture that: Conjecture 2.2.1. Every Markovian family corresponds to the projection on P of the lift on R 3 of a Markov partition of Φ.

All the results that we prove in this section are analogous to well known results on Markov partitions (see Remark 2.2.8), this is why the reader may choose to think of a Markovian family as a Markov partition inside the bifoliated plane of an Anosov flow.

Definition 2.2.2. For any x ∈ P we will call the closure of a connected component of F s (x) -{x} (resp. F u (x) -{x}) a stable (resp. unstable) separatrix of x. We will also call the closure of a connected component of P -

(F s (x) ∪ F u (x)) a quadrant of x.
Using the orientations on F s,u , we will denote by F s,u + (x) (resp. F s,u -(x)) the positive (resp. negative) stable/unstable separatrix of x ∈ P. Also, the quadrant of x delimited by F s ϵ (x) and F u ϵ ′ (x), where ϵ, ϵ ′ ∈ {+, -}, will be referred as the (ϵ, ϵ ′ ) quadrant of x. ♠

For the sake of simplicity, we will assume from now on and until explicitly said otherwise, that the action of π 1 (M ) on P preserves the orientations of the foliations. In other words, we will assume that Φ has transversely oriented foliations. We will explain at the end of this section (see Remark 2.2.13) how to adapt the following proofs in the case of non-transversely orientable foliations.

Lemma 2.2.3. Take R ∈ R, x ∈ R and Q a quadrant of x. If R intersects a germ of x in Q (i.e. there exists G a neighborhood of x inside Q such that G ⊂ R), then there exists R v ∈ R such that R v also intersects a germ of x in Q and R v ∩ R is a non-trivial vertical subrectangle of R.
Proof. Without any loss of generality, let us assume that Q is the (+, +) quadrant of x.

Recall that the action of π 1 (M ) on P and the action of π 1 (M ) on R 3 are equivariant for the projection π : R 3 → P. Recall also that we are using the following notations for the action of π 1 (M ) on P and R 3 :

(π 1 (M ), P) → P (g, x) → g(x) (π 1 (M ), R 3 ) → R 3 (g, x) → g.x
Let us first prove the lemma assuming that x is periodic. Take g ∈ Stab(x) that acts as an expansion on F u (x) and as a contraction on F s (x) (see Theorem 1.2.25). The rectangle g(R) is in R, contains x and since g preserves the quadrants of x, g(R) also contains a germ of the (+, +) quadrant of x. Hence,

• g(R) ∩ • R ̸ = ∅.
By the Markovian intersection axiom and the fact that the unstable boundaries of g(R) are "longer" than the unstable boundaries of R, we have that g(R) ∩ R is a non-trivial vertical subrectangle of R. We thus obtain the desired result.

Assume now that x is not periodic. By the finiteness axiom, R is the union of a finite number of orbits of rectangles by the action of π 1 (M ). Take a representative of each orbit. Let us name those rectangles R 1 , ..., R n . Lift each of those rectangles of P to a C 1 rectangle (with 4 singular corner points) R i in R 3 transverse to the lifted flow Φ. Using the equivariance for the projection of the action of π 1 (M ) on P and the action of π 1 (M ) on R 3 , we can define in a unique way, using the R i , a lift r on R 3 for every rectangle r ∈ R and thus a lift of R on R 3 that we will denote by R. Take x to be the lift of x in R ∈ R, the lift of R on R 3 . It suffices to show that there exist infinitely many rectangles r in R such that 1. the negative orbit of x by Φ intersects r -we will denote this intersection point by r(x) (see Remark 2.1.4)-

and the separatrices

F u + (x) := π -1 (F u + (x)) and F s + (x) := π -1 (F s + (x)) intersect r along non-trivial segments containing r(x)
We will name the existence of infinitely many such rectangles, property (⋆).

Proof that (⋆) suffices

Assume that (⋆) holds. Since the action of π 1 (M ) is properly discontinuous on R 3 , this implies that for every T > 0 there exists t < -T such that Φ t (x) intersects a rectangle r T in R that has a non-trivial intersection with F s + (x) and F u + (x). We will show that for T sufficiently big the projection of r T on P has the desired property.

Take U a compact neighborhood of R in R 3 and let A T be the set of points of R, whose orbits by Φ intersect r T . By taking T sufficiently big, using Remark 2. 1.4 and the fact that the action of π 1 (M ) on R 3 is properly discontinuous, we can assume that r T ∩ U = ∅.

Furthermore, A T is not included in the boundary of R, since the rectangles R and r T intersect F s + (x) and F u + (x) along non-trivial segments containing x and r T (x) respectively. By the Markovian intersection axiom applied for the projections on P of R and r T , the set A T is a non-trivial horizontal or vertical subrectangle of R. Therefore, using Remark 2. 1.4 and the fact that r T ∩ A T = ∅, the negative orbit of every point of A T intersects r T and the positive orbit of A T does not intersect r T . Hence, there exist ϕ T : A T → R -and M T > 0 such that:

• for every z ∈ A T , Φ ϕ T (z) (z) ∈ r T (see Figure 2.4) • ϕ T < -M T
By the same argument as in the previous paragraph, Φ ϕ T ( A T ) is a non-trivial vertical or horizontal subrectangle of r T . Let us show that for T sufficiently big Φ ϕ T ( A T ) cannot be a vertical subrectangle of r T .

Take any Riemannian metric of M and lift it to a metric on R 3 . π 1 (M ) acts on R 3 by isometries for the lifted metric. Also, since R is the union of a finite number of orbits of C 1 rectangles by the action of π 1 (M ), the lengths of the boundaries of all the rectangles in R are uniformly bounded from above and below. By eventually considering a bigger compact neighborhood U of R in R 3 , we can assume once again that for T sufficiently big r T ∩ U = ∅ and also that the negative orbit of R stays inside U for a very long time. In particular, we can assume that M T is big. Therefore, for T sufficiently big Φ ϕ T ( A T ) has a very long stable boundary (with respect to the stable boundary of A T ) and a very small unstable boundary (with respect to the unstable boundary of A T ), which implies that Φ ϕ T ( A T ) cannot be a vertical subrectangle of r T .

Take r T and A T to be respectively the projections of r T and A T on P. We deduce from the previous paragraphs that:

• both R and r T contain x and a neighborhood of x inside its (+, +) quadrant

• R ∩ r T = A T is a non-trivial horizontal subrectangle of r T ; thus a non-trivial vertical subrectangle of R
which gives us the desired result.

Proof of (⋆) By Remark 2. 1.4, if a rectangle r in R intersects the orbit of x along r(x) and also intersects F s + (x) non-trivially (i.e. F s + (x) ∩ r ̸ = {r(x)}), then F s + (x) ∩ r is a stable segment of the rectangle r containing r(x). Let us prove (⋆) by contradiction.

Suppose that the negative orbit of x by Φ intersects finitely many rectangles in R that intersect non-trivially F s + (x) and F u + (x). This implies that there exists T > 0 such that for all t < -T Φ t (x) does not intersect any rectangle r in R intersecting F s + (x) and F u + (x) non-trivially.

Take x M to be the projection of x in M , y ∈ M a point in the α-limit of x M and S a small rectangle in M transverse to Φ containing y in its interior. There exists (t n ) n∈N , an increasing sequence in R + going to infinity such that Φ -tn (x M ) ∈ S and Φ -tn (x M ) → n→+∞ y. Since the orbit of x M is by hypothesis non closed, we can assume that the Φ -tn (x M ) are pairwise distinct.

Let us lift everything on R 3 . Take ỹ to be a lift of y on R 3 and S the lift of S containing ỹ. By Remark 2. 1.4, the unique lifts of the points Φ -tn (x M ) that are contained in S belong to different orbits of Φ. Therefore, there exists a sequence of

g n ∈ π 1 (M ) such that Φ -tn (g n .x) ∈ S and Φ -tn (g n .x) → n→+∞ ỹ.
By projecting everything on P, we have that there exists a sequence of

g n ∈ π 1 (M ), such that g n (x) → n→+∞ Y
, where Y is the projection of ỹ on P. By eventually considering a subsequence, we can assume that all the g n (x) are contained in the interior of a unique quadrant of Y or inside a stable or unstable separatrix of Y . One can check that in every case, by the finite return time axiom and by eventually considering another subsequence, there exists r ∈ R containing all the g n (x) and intersecting non-trivially all F s + (g n (x)) and

F u + (g n (x)).
This implies that the orbits of the points Φ -tn (g n .x) ∈ S cross a rectangle r ∈ R that intersects F s + (g n .x) and F u + (g n .x) non-trivially. Furthermore, since r and S are bounded in R 3 , the orbits of the Φ -tn (g n .x) ∈ S intersect r in a uniformly bounded time. But since the action of the g n preserves the flow Φ, the set of rectangles R and the orientation of the stable and unstable foliations, this would imply that for every n in a uniformly bounded time the point Φ -tn (x) will cross a rectangle in R intersecting F s + (x) and F u + (x) non-trivially. By hypothesis, the t n go to infinity, which contradicts the fact that the negative orbit of x intersects finitely many such rectangles.

Naturally, by symmetry we can also prove that:

Lemma 2.2.4. Take R ∈ R, x ∈ R and Q a quadrant of x. If R intersects a germ of x in Q, then there exists R h ∈ R such that R h also intersects a germ of x in Q and R h ∩ R is a non-trivial horizontal subrectangle of R.
Let us point out that during the proof of the Lemma 2.2.3, we showed that thanks to the third axiom in the definition of a Markovian family (see Definition 2.1.2), the negative orbit by Φ of any point x ∈ R 3 will intersect in finite time a rectangle in R. This is the reason why we called this axiom the finite return time axiom.

Lemma 2.2.5. The boundary of any R ∈ R consists of stable/unstable segments belonging to stable/unstable periodic leaves in P.

Proof. Indeed, take R ∈ R and consider one of its stable boundary segments, say s. Let us denote by S the stable leaf in F s containing s. Take x ∈ s. By Lemma 2.2.4, there exists R ′ ∈ R containing x such that R ′ ∩ R is a non-trivial horizontal subrectangle of R. Therefore, R ′ contains s. By repeatedly applying this argument, we can construct R = r 0 , r 1 , ..., r n , ... a sequence of rectangles containing s and such that r n ∩ r n+1 is a non-trivial horizontal subrectangle of r n .

By the finiteness axiom, there exist i, j two distinct integers and g ∈ π 1 (M ) -{id} such that g(r i ) = r j . Since g preserves the orientations of the stable and unstable foliations, this implies that g(S) = S. We deduce that S is a periodic stable leaf and we get the desired result.

Lemma 2.2.6. Consider a sequence of rectangles (r n ) n∈N in R such that for every k ∈ N,

r k+1 ∩r k is a non-trivial vertical subrectangle of r k . We have that +∞ ∩ k=0 r k is an unstable segment of r 0 .
Proof. It suffices to show the lemma for any subsequence of (r n ) n∈N . Note that thanks to the Markovian intersection property, for any such subsequence (r

k(n) ) n∈N , r k(n+1) ∩ r k(n) remains a vertical subrectangle of r k(n) .
By the finiteness axiom and by eventually considering a subsequence, we can assume that all the rectangles in our sequence belong to the same orbit of rectangles in P. In other words, for any n, m ∈ N there exists

g n,m ∈ π 1 (M ) such that g n,m (r n ) = r m . Notice that g n,m is unique. Indeed, if there is another g ′ n,m ̸ = g n,m in π 1 (M ) such that g ′ n,m (r n ) = r m , then g ′ n,m • g -1 n,m (r m ) = r m and thus the element g ′ n,m • g -1
n,m has a hyperbolic fixed point in r m (see Theorem 1.2.25). This contradicts the fact that g ′ n,m • g -1 n,m (r m ) = r m . Consider now r 0 a smooth disk in R 3 , transverse to the lifted flow Φ, whose projection on P is r 0 . Once again, we will use the following notations for the action of π 1 (M ) on P and R 3 :

(π 1 (M ), P) → P (g, x) → g(x)

(π 1 (M ), R 3 ) → R 3 (g, x) → g.x
By hypothesis, for every n ∈ N there are orbits of Φ intersecting both r 0 and g 0,n . r 0 . Let us denote by A n the intersection of all these orbits with g 0,n . r 0 . The set A n projects to r 0 ∩ r n ⊂ P and by Remark 2. 1.4 this projection is a homeomorphism. Therefore, by the Markovian intersection axiom A n is a horizontal subrectangle of g 0,n . r 0 .

Moreover, there exists t n : A n → R a function such that Φ tn(x) (x) ∈ r 0 for every x ∈ A n . Using Remark 2. 1.4, it is not difficult to see that t n is continuous. Furthermore, if g 0,n . r 0 ∩ r 0 = ∅ then either t n (x) > 0 for all x ∈ A n or t n (x) < 0 for all x ∈ A n . Since the action of π 1 (M ) on R 3 is properly discontinuous, by eventually removing some rectangles from the sequence (r n ) n∈N , we can assume that g 0,n . r 0 ∩ r 0 = ∅ for all n Let us show, that except maybe a finite number of n, we have t n > 0. Suppose the contrary. By choosing any Riemannian metric on M and lifting it on R 3 , we can assume that π 1 (M ) acts by isometries on R 3 ; thus all the rectangles g 0,n . r 0 are isometric. Take c ∈ R - and K any compact neighborhood of r 0 . By hypothesis, we can find n sufficiently big such that g 0,n . r 0 ∩ K = ∅ and t n < 0. If K is taken big enough, we also have t n < c. Therefore, for any c ∈ R -, we can find n such that t n < c. If t n < 0 and |c| is sufficiently big, since the size of ∂ s A n is uniformly bounded from above and below and the size of ∂ u A n is uniformly bounded from above (recall that A n is a horizontal subrectangle of g 0,n . r 0 ), Φ tn (A n ) will be a bifoliated compact disk, thin along the unstable direction and large along the stable one. This implies that for n sufficiently big Φ tn (A n ) can not be a vertical subrectangle of r 0 ; hence, by the Markovian intersection axiom r n ∩ r 0 is a horizontal subrectangle of r 0 , which contradicts the initial hypothesis.

Therefore, there is a finite number of n such that t n < 0 and by removing a finite number of r n from our sequence, we can assume that t n > 0 for all n.

By a similar argument, there exists a sequence n i ∈ N such that min x∈An i t n i (x) is increasing and goes to infinity. Also, by uniform hyperbolicity and the fact that the g 0,n . r 0 are isometric, there exists c n i > 0 a decreasing sequence going to 0 such that any stable segment of the disk Φ tn i (A n i ) has at most length c n i . We conclude that r 0 ∩ +∞ ∩ i=0 Φ tn i (A n i ) is an unstable segment of r 0 and we get the desired result.

Naturally, by symmetry the following is also true:

Lemma 2.2.7. Consider a sequence of rectangles (r n ) n∈N in R such that for every k ∈ N, r k+1 ∩ r k is a non-trivial horizontal subrectangle of r k . We have that +∞ ∩ k=0 r k is a stable segment of r 0 .
Remark 2.2.8. In the previous lemmas, we established a bridge between general Markovian families and Markov partitions. Indeed, statements analogous to the previous ones were already known to be true for Markov partitions. Fix M a Markov partition of an Anosov flow Φ in M :

Markovian families

Markov partitions Lemmas 2. 2.3 and 2.2.4 Every positive or negative orbit (by Φ) in M intersects in bounded time a rectangle of M Lemma 2. 2.5 The boundaries every rectangle in M belong to periodic stable and unstable leaves in M Lemmas 2. 2.6 and 2.2.7 Consider a rectangle R of M. A set of points in R whose positive (resp.negative) orbits intersect the same infinite sequence of rectangles in M forms a stable (resp. unstable) segment of R

The following lemma shows that as for any Markov partition, we can define a notion of first return map for any Markovian family: Lemma 2.2.9. For any rectangle R ∈ R there exists a unique finite collection of rectangles R 1 , ..., R n ∈ R intersecting R along non-trivial vertical subrectangles and such that:

1. R 1 , ..., R n are maximal for this property: any R ′ ∈ R intersecting R along a non-trivial vertical subrectangle satisfies R ′ ∩ R ⊆ R i ∩ R for some i ∈ 1, n 2. R 1 , ..., R n have disjoint interiors 3. The R 1 , ..., R n cover R: n ∪ i=1 R i ∩ R = R
The analogue of the previous lemma for horizontal subrectangles is also true.

Proof. Fix R ∈ R. Let's call the property of intersecting R along a non-trivial vertical subrectangle, property (⋆). Lemma 2.2.3 assures the existence of rectangles satisfying (⋆).

Let us begin by showing that for any point in R there exists at least one rectangle maximal for (⋆) containing it.

Indeed, let us fix x ∈ R. By Lemma 2.2.3, there exists r satisfying (⋆) containing x. Suppose there is no maximal rectangle for (⋆) containing x. Therefore, for any rectangle r ′ containing x and intersecting R along a vertical subrectangle, there exists r 1 satisfying (⋆) such that R ∩ r ′ ⊊ R ∩ r 1 . We can thus construct by induction an infinite sequence r = r 0 , r 1 , r 2 , ...., r n , ... of rectangles in R such that r k ∩ R ⊊ r k+1 ∩ R for all k ∈ N. By the Markovian intersection axiom, r k ∩ r k+1 is a horizontal subrectangle of r k and therefore by Lemma 2.2.7, we get that

+∞ ∩ k=0 r k is a stable segment of r 0 . But r k ∩ R ⊊ r k+1 ∩ R for every k, so r 0 ∩ R ⊂ +∞ ∩ k=0 r k ∩ R, which is impossible, since +∞ ∩ k=0
r k is a segment. We deduce the existence of a maximal rectangle for (⋆) containing x.

Next, let us prove that maximal rectangles for (⋆) are either identical or they have disjoint interiors. This will imply in particular that maximal rectangles for (⋆) are unique. Indeed, by the Markovian intersection axiom, two distinct rectangles R i , R j in R satisfying (⋆) have either disjoint interiors or they satisfy one of the following:

R ∩ R i ⊆ R ∩ R j or R ∩ R i ⊆ R ∩ R j .
One can easily check that the Markovian intersection axiom, according to which, up to interchanging R i and R j , the set R i ∩ R j is a non-trivial vertical subrectangle of R i and a non-trivial horizontal subrectangle of R j , implies that the case R i ∩ R = R j ∩ R is impossible. We thus get the result we wanted.

Finally, let us prove that the set of maximal rectangles for (⋆) is finite. Suppose the contrary. Under this hypothesis, there exists a sequence (r i ) i∈N of maximal rectangles for (⋆) such that the • r i are pairwise disjoint. By compactness, we can assume that the rectangles r i ∩ R converge to an unstable segment of R, say s. Without any loss of generality, assume that the rectangles r i ∩R accumulate to s from the right. Take x ∈ s and suppose that F s -(x) is the stable separatrix on the right of x. By Lemma 2.2.3, there exists R ′ ̸ = R containing x and a germ of the negative stable separatrix of

x such that R ′ ∩ R is a non-trivial vertical subrectangle of R (hence R ′ contains s). Since R ′ intersects F s -(x)
and contains s, it also contains all points of R on the right of s and sufficiently close to s. Therefore, for i sufficiently big, r i ∩ R ⊂ R ′ ∩ R, which contradicts the fact that the r i are maximal. Therefore, the set of maximal rectangles for (⋆) is finite.

Definition 2.2.10. We will say that R ′ is a predecessor (resp. successor) of R if R ′ ∩ R is a non-trivial vertical (resp. horizontal) subrectangle of R and R ′ is maximal for this property in the sense of the previous lemma.

We will say that R ′ is a predecessor of 2-nd generation of R, if R ′ is a predecessor of a predecessor of R. We define similarly a predecessor (resp. successor) of n-th generation for any n ∈ N * .

♠ Remark 2.2.11. If R ∈ R is a predecessor of R ′ ∈ R and g ∈ π 1 (M ), then • g(R) is a predecessor of g(R ′ ) and • R ′ is a successor of R
The first statement is an easy consequence of Definition 2.2.10 and the fact that R is preserved by the action of π 1 (M ). Concerning the second statement, assume that

R ′′ ̸ = R ′ is the successor of R containing R ∩ R ′ . By the Markovian intersection property, since R is a predecessor of R ′ and R ′′ a successor of R, R ∩ R ′ is a non-trivial horizontal subrectangle of R and R ∩ R ′′ is a non-trivial vertical subrectangle of R ′′ (see Figure 2.5). Also, since R ′′ contains R ∩R ′ , we have that R ∩R ′ ⊆ R ′ ∩R ′′ .
In our proof of Lemma 2.2.9, we showed that

R ∩ R ′ = R ′ ∩ R ′′ implies that R = R ′′ , since both R and R ′′ intersect R ′ along a non-trivial vertical subrectangle of R ′ . Since R ′′ is a successor of R, R ′′ ̸ = R and thus R ∩ R ′ ⊊ R ′ ∩ R ′′ , which contradicts the fact that R is a predecessor of R ′ . Figure 2.5 Lemma 2.2.12. Take any two R, R ′ ∈ R such that R ′ ∩ R is a non-trivial vertical subrect- angle of R. We have that R ′ is a predecessor of n-th generation of R for some n ∈ N * .
Proof. By maximality, if R ′ is not one of the predecessors of R, then there exists R 1 a predecessor of R containing R ′ ∩R. Notice that in this case R ′ intersects R 1 along a non-trivial vertical subrectangle. Again, if it is not one of the predecessors of R 1 , then R ′ ∩R 1 is contained in a predecessor of R 1 , say R 2 . We construct in this way a sequence R 0 = R, R 1 , ..., R n , ... such that for every n, the rectangle R n+1 is the predecessor of R n containing R ′ ∩ R n . If there exists no n such that R n = R ′ , the previous sequence is infinite and by Lemma 2.2.6,

+∞ ∩ k=0 R k is an unstable segment of R containing R ′ ∩ R, which is impossible.

The case of non-transversely orientable foliations

Remark 2.2.13. The Lemmas 2. 2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.7, 2.2.9 and 2.2.12 remain true for transitive Anosov flows with non-transversely orientable foliations on orientable manifolds.

Indeed, let Φ be a transitive Anosov flow with non-transversely orientable foliations F s , F u on the orientable manifold M 3 . Let P be the bifoliated plane of Φ. Consider now M ′ the 2-fold cover of M containing the transversely orientable covers of F s and F u . By lifting Φ on M ′ , we obtain Φ ′ an Anosov flow with transversely orientable foliations. Notice that the union of the two lifts on M ′ of any periodic orbit of Φ contains exactly one or two periodic orbits of Φ ′ . Therefore, by Theorem 1.1.3 the flow Φ ′ is transitive.

Next, since Φ ′ is a lift of Φ, the bifoliated plane of Φ ′ coincides with P and the action of π 1 (M ) on P is an extension of the action of π 1 (M ′ ) ≤ π 1 (M ) on P. In particular, using the fact that π 1 (M ′ ) is subgroup of index 2 of π 1 (M ), it is easy to check that:

• a Markovian family of Φ is also a Markovian family of Φ ′

• the periodic points of P for the actions of π 1 (M ′ ) and π 1 (M ) coincide As a consequence of the two previous points, we get that Lemma 2.2.5 remains true for any Markovian family of Φ. All the other lemmas that appear in Remark 2.2.13 concern only the properties of the intersections of the rectangles of a Markovian family. Since any Markovian family for Φ is also a Markovian family for Φ ′ , all of these Lemmas remain true in the case of Anosov flows with non-transversely orientable foliations.

We are now ready to proceed to the proof of Theorem-Definition A. In the next section, we will no longer assume that Φ has transversely orientable foliations.

Geometric types of a Markovian family, Theorem-Definition A

In this section, we will define the set of geometric types of a Markovian family (see Definition 2.3.1), a finite set of geometric types each characterizing the pattern of intersection of the rectangles in R, and we will show that the geometric types of any Markovian family are pairwise equivalent (see Theorem 2.3.4).

Let M be an orientable and closed 3-manifold, Φ a transitive Anosov flow on M and P its bifoliated plane. Fix an orientation of the stable and unstable foliations F s , F u in P (see Remark 1.2.21). Consider R a Markovian family of Φ and {r 1 , ..., r n } ⊂ R a set of representatives of every rectangle orbit in R. We will use R, together with our choice of representatives and orientations, in order to construct a geometric type.

Let h i (resp. v i ) be the number of successors (resp. predecessors) of the rectangle r i . Associate to each r i a copy of [0, 1] 2 trivially bifoliated by horizontal and vertical segments, that we will denote by R i . Inside every

R i consider h i (resp. v i ) pairwise disjoint horizontal (resp. vertical) subrectangles H 1 i , ..., H h i i (resp. V 1 i , ..., V v i i )
ordered from bottom to top (resp. from left to right). Thanks to our choice of orientations of F s,u , we can identify each successor (resp. predecessor) of r i with a rectangle in {H 1 i , . .

., H h

i i } (resp. {V 1 i , ..., V v i i }).
Consider H a successor of r i in the π 1 (M )-orbit of r j (see Figure 2.6). There exists g ∈ π 1 (M ) such that g(H) = r j . By Remark 2.2.11, V := g(r i ) is a predecessor of r j = g(H). Using our previous choices of orientations, if H is the k-th successor of r i (for the bottom to top order) and g(r i ) is the l-th predecessor of r j (for the left to right order), we define ϕ(H k i ) = V l j . We also define u(H k i ) = 1 (resp. u(H k i ) := -1) if g preserves (resp. does not preserve) the orientation of the foliations. ϕ defines a map from 

H := {H j i |i ∈ 1, n , j ∈ 1, h i } to V := {V j i |i ∈ 1, n , j ∈ 1, v i }
G = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u)
a geometric type associated to R or more simply a geometric type of R. Similarly, a geometric type associated to a Markovian family of Φ will be called geometric type associated to Φ or more simply a geometric type of Φ. ♠ 

G = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u)
is a geometric type in the sense of Definition 1.3.17. Furthermore, 1. changing r i to k(r i ) for some k ∈ π 1 (M ) does not change the h i , v i 2. the elements g ∈ π 1 (M ) used in the definition of ϕ and u are uniquely defined, thus G depends only on our choice of representatives r 1 , ..., r n and of orientations of F s,u

Proof. First, the invariance of the h i and v i when replacing r i by another rectangle in its orbit by π 1 (M ), is an immediate consequence of Remark 2.2.11.

Next, notice that in order to show that G is a geometric type it suffices to prove that ϕ defines a bijection (this also proves that

|H| = n i=1 h i = |V| = n i=1 v i ). Suppose that there exist H q p , H k i ∈ H such that H q p ̸ = H k i and ϕ(H q p ) = ϕ(H k i ) = V l j ∈ V.
Let H (resp. H ′ ) be the successor of r i (resp. r p ) associated to H k i (resp. H q p ) for our choice of orientation of F u . By our construction of ϕ, there exists g, g ′ ∈ π 1 (M ) such that g(H) = g ′ (H ′ ) = r j and such that both g(r i ) and g ′ (r p ) correspond to the predecessor of r j associated to V l j (for our choice of orientation of F s ), thus g(r i ) = g ′ (r p ). This implies that i = p and since H q p ̸ = H k i , we also have that g ̸ = g ′ . It follows that there exists h ∈ π 1 (M ) -{id} such that h(r i ) = r i . By the previous property, h must have a fixed point in r i and since h ̸ = id, we can assume (by eventually replacing h by h -1 ) that h acts as an expansion along the stable leaf of this fixed point (see Theorem 1.2.25), which contradicts the fact that h(r i ) = r i . It follows that ϕ is injective. By a similar argument, we can show that ϕ admits an inverse and therefore defines a bijection from H to V.

By our previous arguments, we have that the elements g ∈ π 1 (M ) used in the definitions of ϕ and u are uniquely defined and that G defines indeed a geometric type in the sense of Definition 1.3.17.

Remark 2.3.3. By Definition 2.3.1 and Proposition 2.3.2, any choice of representatives inside every rectangle orbit in R together with any choice of orientation of F s and F u define a unique geometric type of R.

Because of the fact that our construction of a geometric type of R depends on our choices of representatives and orientations, there exist a priori more than one geometric types associated to R. However, since by Definition 2.3.1 the number of rectangles and of horizontal/vertical subrectangles of any geometric type associated to R does not depend on our choice of orientations and representatives, we have that the set of geometric types associated to R is a finite set.

Even more, modifying in Definition 2.3.1 the orientation of F s or F u or changing our initial choice of rectangles r i leads to the construction of equivalent geometric types: Theorem 2.3.4 (Theorem-Definition A). Let M be an orientable, closed and connected 3manifold and Φ a transitive Anosov flow on M . For any Markovian family R of Φ, the set of geometric types associated to R is included in a unique equivalence class of geometric types.

Proof. Let {r 1 , ..., r n } be a set of representatives of every rectangle orbit in R and G be the geometric type associated to R for this choice of representatives and some choice of orientation of the stable and unstable foliations F s and F u (see Remark 2. 3.3). Consider now

G ′ = (n, (h ′ i ) i∈ 1,n , (v ′ i ) i∈ 1,n , H ′ , V ′ , ϕ ′ , u ′
) the geometric type associated to R for the same choice of orientations of F s and F u and a different choice of representatives. More specifically, assume that every r i in our initial set of representatives has been replaced by the rectangle g i (r i ), where g i ∈ π 1 (M ). We will denote by Rep new := {g i (r i )|i ∈ 1, n } and Rep old := {r i |i ∈ 1, n } the set of our old and new representatives. Using the geometric interpretation of a geometric type:

• the integer n corresponds to n rectangles in G ′ , say R ′ 1 , ..., R ′ n • every R ′ i contains h ′ i (resp. v ′ i
) horizontal (resp. vertical) subrectangles pairwise disjoint and ordered from bottom to top (resp. left to right), say

H ′ i 1 , ..., H ′ i h i (resp. V ′ i 1 , ..., V ′ i v i )
We will show that G and G ′ are equivalent. Indeed, up to reindexing the R ′ i , for every i, the rectangles R i and R ′ i correspond to the same orbit of rectangles in R. Therefore, by Proposition 2.3.2, we have that

h i = h ′ i and v i = v ′ i .
We would now like to define a bijection from H ∪ V to H ′ ∪ V ′ . There exists a natural way to associate to any rectangle in H a rectangle in H ′ . Indeed, recall that for every i ∈ 1, n and every j ∈ 1, h i , the rectangle H j i (resp.H ′ i j ) corresponds to a successor of r i (resp. g i (r i )), say R i,j ∈ R (resp. R ′ i,j ). Since the successors of r i and g i (r i ) are ordered from bottom to top, if g i preserves the orientation of the foliations, j) . We can therefore associate in the first case H ′ i j to H j i and in the second

g i (R i,j ) = R ′ i,j . If not, g i (R i,j ) = R ′ i,(v i -
H ′ i (h i -j) to H j i .
By symmetry, the previous map from H to H ′ admits an inverse, it thus defines a bijection H h : H → H ′ . Moreover, notice that for every i we have that

H h ({H j i , j ∈ 1, h i }) = {H ′ i j ′ , j ′ ∈ 1, h i }
and that H h is increasing with respect to j when g i preserves the orientations of the foliations and decreasing when g i reverses the orientations of the foliations. In the exact same way, we can construct a bijection H v from V to V ′ with similar properties. By combining H v and H h , we define a bijection

H eq : H ∪ V → H ′ ∪ V ′ .
Let us now show that H eq is an equivalence between G and G ′ .

Following the notations of Definition 1.3.19, we have that ϵ

(R i ) = ϵ ′ (R i ) = +1 if g i respects the orientation of the foliations and ϵ(R i ) = ϵ ′ (R i ) = -1 otherwise. Notice that for every i we have that ϵ(R i ) • ϵ ′ (R i ) = +1. It therefore suffices to show that for any rectangle h ∈ H such that h ⊂ R i and ϕ(h) ⊂ R j , we have H eq • ϕ(h) = ϕ ′ • H eq (h) and u ′ (H eq (h)) = ϵ(R i )ϵ(R j )u(h).
Let us start by proving the first equality. By construction, the subrectangles in V ′ are bijectively identified with the predecessors of the rectangles in

Rep new = {g k (r k ))|k ∈ 1, n }.
Therefore, in order to show that both H eq • ϕ(h) ∈ V ′ and ϕ ′ • H eq (h) ∈ V ′ correspond to the same vertical subrectangle of R ′ j , it suffices to show that they correspond to the same predecessor of g j (r j ).

Recall that by Definition 2.3.1 and Proposition 2.3.2, Therefore, by our definition of H eq , the rectangle H eq (ϕ(h)) corresponds to the predecessor g j (G(r i )) of g j (r j ).

Similarly, the rectangle H eq (h) corresponds to the successor g i (R) of g i (r i ). Notice also that the element

g j • G • g -1 i ∈ π 1 (M ) sends the rectangle g i (R) to g j (r j ) ∈ Rep new , hence the rectangle ϕ ′ (H eq (h)) corresponds to the predecessor (g j • G • g -1 i )(g i (r i )) = g j (G(r i )) of g j (r j ) ∈ Rep new . This proves that H eq • ϕ(h) = ϕ ′ • H eq (h)
. Recall now that by our construction of u and u ′ , u ′ (H eq (h)) = +1 (resp. u(h) = +1) if and only if g j • G • g -1 i (resp. G) preserves the orientations of the stable and unstable foliations in P. The previous statement is equivalent to

u ′ (H eq (h)) = ϵ(R i )ϵ(R j )u(h).
Our previous arguments show that G and G ′ are equivalent geometric types. By a similar argument, we can show that changing the orientation of F u or F s also leads to geometric types equivalent to G, which concludes the proof of the theorem.

Before finishing this chapter, we would like to show the following technical, but also very useful lemma: Lemma 2.3.5 (Realisability lemma). Consider the unique equivalence class of geometric types containing all the geometric types of R and

G = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u)
a geometric type in this class. When the flow Φ does not have transversely orientable foliations, G is a geometric type associated to R. If we also assume that u |H = 1, the same result is true when the flow Φ has transversely orientable foliations Proof. By Definition 2.3.1 and Remark 2.3.3, it suffices to show that there exists a set of representatives of every π 1 (M )-orbit of rectangles in R and a choice of orientations of F s,u such that G is the geometric type associated to R for this choice of representatives and orientations.

Choose arbitrarily representatives r 1 , ..., r n for all rectangle orbits in R and orientations for F s and F u . By Remark 2.3.3, R together with our previous choices of representatives and orientations defines uniquely a geometric type G ′ equivalent to G. Thanks to Proposition 2.3.2, up to reindexing the (h i , v i ), we can assume that G ′ is of the form (n, (h

i ) i∈ 1,n , (v i ) i∈ 1,n , H ′ , V ′ , ϕ ′ , u ′ ).
Throughout this proof, given a geometric type

K = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H K , V K , ϕ K , u K ),
we will denote by:

• R 1 (K), ..., R n (K) the rectangles associated to K (see Paragraph "A geometric interpretation of the geometric type")

• H j i (K) and V j i (K) the elements of H K and V K respectively Throughout this proof we will assume that Φ does not have transversely orientable foliations.

The transversely orientable case follows from similar arguments. We will now adapt our choices of representatives and orientations in order to produce, thanks to Remark 2.3.3, a geometric type equal to G.

Recall that there exists an equivalence H between G and G ′ . Following the notations of Definition 1. 3.19, consider for every i the integers

ϵ i (G ′ ), ϵ ′ i (G ′ ) ∈ {-1, +1}. Recall that either ϵ i (G ′ ) • ϵ ′ i (G ′ ) = -1 for all i or ϵ i (G ′ ) • ϵ ′ i (G ′ ) = +1 for all i.
We will first show that by eventually changing one of our initial choices of orientations, we can assume that ϵ i (G ′ ) • ϵ ′ i (G ′ ) = +1 for all i. Indeed, changing the orientation of F s without modifying our choice of representatives or of orientation of F u , produces a new geometric type G ′′ = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H ′′ , V ′′ , ϕ ′′ , u ′′ ) associated to R that can be obtained from G ′ by reindexing all the vertical subrectangles in G ′ as follows:

V j i (G ′ ) → V v i -j i (G ′′ )
In more geometric terms, going from left to right, the first element of V ′ inside any rectangle of G ′ , say R k (G ′ ), becomes the last vertical subrectangle of the rectangle R k (G ′′ ) of G ′′ and vice versa (see Figure 2.8 and recall our drawing convention 1.3.18).

By construction of G ′′ and by Theorem 2. 3.4, there exists H * an equivalence between G and G ′′ . Once again following the notations of Definition 1. 3.19, consider for every i the integers ϵ i (G ′′ ), ϵ ′ i (G ′′ ) ∈ {-1, +1}. Since the order of the vertical subrectangles has changed with respect to G ′ , but the order of the horizontal subrectangles remains the same we have that:

ϵ i (G ′′ ) = ϵ i (G ′ ) and ϵ ′ i (G ′′ ) = -ϵ ′ i (G ′ )
Therefore, by eventually changing our initial choice of orientation on F s , we can assume that for every i we have

ϵ i (G ′ ) • ϵ ′ i (G ′ ) = +1.
Suppose that there exists i 0 such that ϵ i 0 (G ′ ) = ϵ ′ i 0 (G ′ ) = -1. Take g ∈ π 1 (M ) any element reversing the orientation of the foliations and replace in our initial choice of representatives r i 0 by g(r i 0 ). Changing our representatives in this way without modifying the orientations of the foliations, produces a new geometric type G ′′′ = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H ′′′ , V ′′′ , ϕ ′′′ , u ′′′ ) associated to R that can be obtained from G ′ by reindexing the horizontal and vertical subrectangles of the rectangle R i 0 (G ′ ) in G ′ as follows:

V j i 0 (G ′ ) → V v i 0 -j i 0 (G ′′′ ) and H j i 0 (G ′ ) → H h i 0 -j i 0 (G ′′′ )
In more geometric terms, going from left to right (resp. bottom to top), the first element of V ′ (resp. H ′ ) inside the rectangle R i 0 (G ′ ) of G ′ becomes the last vertical (resp. horizontal) subrectangle of the rectangle R i 0 (G ′′′ ) of G ′′′ and vice versa (see Figure 2.9 and recall our drawing convention 1.3.18).

By construction of G ′′′ and by Theorem 2. 3.4, there exists H * * an equivalence between G and G ′′′ . Once again following the notations of Definition 1. 3.19, consider for every i the integers ϵ i (G ′′′ ), ϵ ′ i (G ′′′ ) ∈ {-1, +1}. Since the orders of the vertical and horizontal subrectangles in R i 0 (G ′ ) have both changed and the order of the horizontal (or vertical) subrectangles of any other rectangle of G ′ remained the same: By eventually changing our initial choice of representatives, we can thus assume that ϵ i (G ′ ) and ϵ ′ i (G ′ ) are equal to +1. By definition, this implies that G ′ = G which gives us the desired result.

ϵ i (G ′′′ ) = ϵ i (G ′ ) and ϵ ′ i (G ′′′ ) = ϵ ′ i (G ′ ) for i ̸ = i 0 ϵ i 0 (G ′′′ ) = -ϵ i 0 (G ′ ) and ϵ ′ i 0 (G ′′′ ) = -ϵ ′ i 0 (G ′ )

Chapter 3

Boundary periodic points and arc points

A Markovian family does not cover all the points of a bifoliated plane in the same way: for every Markovian family there exist points that do not belong in the interior of any rectangle of the family. Among those points, we can distinguish non-periodic points that we will call boundary arc points and periodic points that we will call boundary periodic points.

The sets of boundary arc and boundary periodic points will be of great importance to us throughout this thesis, since they are the only points of the bifoliated plane that a Markovian family cannot "see". More specifically, according to Theorem B, that we will begin proving in the next chapter, a class of geometric types associated to a Markovian family contains all the information of the original flow, except from the behaviour of the flow around the boundary periodic orbits. In this chapter, our goal is to show that for any Markovian family the set of boundary arc points and also the set of boundary periodic points are non-empty and are the union of the π 1 (M )-orbits of a finite number of points.

As in the previous section, we fix M an orientable closed 3-manifold carrying a transitive Anosov flow Φ endowed with its weak stable and unstable foliations F s , F u . Let P be the bifoliated plane of Φ with its stable and unstable foliations F s , F u and R a Markovian family in P. We will fix for the rest of this chapter an orientation on F s and F u . Definition 3.0.1. Consider x ∈ P that is not contained in the interior of any rectangle of R. If x is a periodic point, we will call x a boundary periodic point. If not, we will call x a boundary arc point.

♠ Proposition 3.0.2. The set of boundary periodic points of R is non-empty and is the union of a finite number of orbits by the action of π 1 (M ).

Proof. By Lemma 2.2.5, the stable and unstable boundary segments of any rectangle in R belong to periodic leaves. By the finiteness axiom, we have that the set A of periodic leaves containing a stable or an unstable boundary component of some rectangle in R corresponds to the union of the π 1 (M )-orbits of a finite number of leaves. Therefore, the π 1 (M )-invariant set B of periodic points belonging to a leaf in A is also finite up to the action of π 1 (M ). By definition, the set of boundary periodic points is a subset of B. We have therefore shown the second part of the proposition.

In order to show that there exists at least one boundary periodic point, it suffices to show that every point of B is a boundary periodic orbit. Take p ∈ B.

Suppose p is contained in the interior of some rectangle R ∈ R. Since p ∈ B, we can assume without any loss of generality that F s (p) contains a stable boundary component, say

s, of some rectangle R ′ ∈ R. Let g ∈ Stab(p) ⊂ π 1 (M ) such that g(s) ⊂ • R (the existence
of such a g is guaranteed by Theorem 1.2.25). The intersection of g(R ′ ) and R does not satisfy the Markovian intersection axiom. Therefore p is not contained in the interior of any rectangle in R and is a boundary periodic point.

Proposition 3.0.3. The set of boundary arc points of R is non-empty and is the union of a finite number of orbits by the action of π 1 (M ).

In order to prove the above proposition, we will use the following lemma that resembles closely Lemma 2.2.9. Lemma 3.0.4. Take a rectangle R ∈ R and s one of its stable boundaries. Suppose that s contains no periodic point, then there exists a unique family of rectangles R 1 , ..., R n ∈ R such that: .., R n are maximal for the previous property: any R ′ ∈ R intersecting R along a non-trivial vertical subrectangle and such that

1. for every i ∈ 1, n ∂ s R i ∩ s = ∅ and R ∩ R i is a non-trivial vertical subrectangle of R 2. R 1 , .
∂ s R ′ ∩ s = ∅ verifies R ′ ∩ R ⊆ R i ∩ R for some i ∈ 1, n 3. R 1 , ..., R n have disjoint interiors 4. R 1 , ..., R n cover R: n ∪ i=1 R i ∩ R = R Proof.
The proof of this lemma is an adaptation of the proof of Lemma 2.2.9. Let us call the property of "intersecting R along a non-trivial vertical subrectangle and having stable boundaries disjoint from s" property (⋆). Fix x ∈ s such that the separatrix F s + (x) intersects s along a non-trivial segment. We will show that there exists r ∈ R satisfying (⋆) and intersecting F s + (x) along a non-trivial segment containing x. Assume the opposite. By Lemma 2.2.9, x belongs to exactly one predecessor of R intersecting non-trivially F s + (x), say R 1 . By our assumption, R 1 does not verify (⋆), hence x belongs to the stable boundary of R 1 . By the same argument, x belongs to exactly one predecessor of R 1 intersecting non-trivially F s + (x), say R 2 . Again, by our assumption R 2 does not verify (⋆). By induction, we can construct R = R 0 , R 1 , ..., R n ... such that R n+1 is a predecessor of R n , every R n contains x in its stable boundary and intersects non-trivially

F s + (x).
By the finiteness axiom, there exists (R i(n) ) n∈N a subsequence of (R n ) n∈N containing rectangles in the same π 1 (M )-orbit. By eventually considering another subsequence, we can assume that if g n is the unique (see our proof of Lemma 2.2.6) element in π 1 (M ) for which g n (R i(n) ) = R i(n+1) , then g n preserves the orientations of the foliations. Hence, every g n preserves F s (x) and g n ∈ Stab(p), where p is the unique periodic point in F s (x) (see Lemma 2.2.5 and Theorem 1.2.25). Let us denote by s ′ ⊂ s the stable boundary of R i(0) containing x. For every n we have that x ∈ g n • g n-1 • ...g 0 (s ′ ) ⊂ g n-1 • ...g 0 (s ′ ) ⊂ ... ⊂ s ′ ⊂ s (see Figure 3.1). We deduce from the previous inclusions and Theorem 1.2.25 that p is also in g n • g n-1 • ...g 0 (s ′ ) for every n. However, by Lemma 2.2.6, the segment g n • g n-1 • ...g 0 (s ′ ) tends to become a point; hence x = p, which contradicts the fact that by hypothesis s does not contain periodic points. Finally, by repeating our proof of Lemma 2.2.9, one can easily prove that:

• for every x ∈ s such that F s + (x) (resp. F s -(x)) intersects s along a non-trivial segment, there exists a maximal rectangle for (⋆) containing x ∈ s and intersecting F s + (x) (resp. F s -(x)) along a non-trivial segment. This proves in particular that the maximal rectangles for (⋆) cover R.

• two maximal rectangles for (⋆) are either equal or have disjoint interiors.

• the set of maximal rectangles for (⋆) is finite.

We remind the reader that in our proof of Lemma 2.2.9, thanks to the Markovian intersection axiom, the non-existence of a maximal rectangle for (⋆) satisfying the properties of the first point implied the existence of an infinite sequence of rectangles in R that contradicted Lemma 2.2.7. Next, the second point was a consequence of the Markovian intersection axiom and finally, our proof of the third point relied on the first two points and the fact that any sequence of maximal rectangles for (⋆), up to taking a subsequence, is eventually constant.

Of course the analogue of the previous lemma for horizontal subrectangles is also true. By a similar argument and by restricting to a fundamental domain, we can also prove the following: Lemma 3.0.5. Take a rectangle R ∈ R and s one of its stable boundary components. Suppose that s contains a periodic point p. There exists a family of rectangles R 1 , ..., R n ∈ R such that:

1. for every i ∈ 1, n ∂ s R i ∩ s = ∅ and R i ∩ R is a non-trivial vertical subrectangle of R 2.
the R 1 , ..., R n are "maximal" for the previous property: any R ′ ∈ R intersecting R along a non-trivial vertical subrectangle and whose stable boundary is disjoint from 

s verifies R ′ ∩ R ⊆ g(R i ) ∩ R for some i ∈ 1,
reindexing R ′ 1 = g 1 (R 1 ),...,R ′ n = g n (R n ),
where g 1 , ..., g n ∈ Stab(p) Definition 3.0.6. Take a rectangle R ∈ R and s one of its stable boundary components. We will call R ′ an s-crossing predecessor of R if it is maximal for the following property (in the sense of the previous lemmas): it intersects R along a non-trivial vertical subrectangle and s ∩ ∂ s R ′ = ∅. We define similarly an s-crossing successor when s in an unstable boundary component of R.

♠ Remark 3.0.7. Consider R ∈ R, s, s ′ the two stable boundary components of R and R ′ a predecessor of R.

• The rectangle R ′ is not necessarily an s-crossing predecessor of R. However, since R∩R ′ is a non-trivial horizontal subrectangle of R ′ , we have that if R ′ is not an s-crossing predecessor of R, then it is necessarily an s ′ -crossing predecessor of R (see Figure 3.2).

• For simplicity purposes, we will often call an s-crossing or s ′ -crossing predecessor of R, a crossing predecessor of R. Same for successors.

• Contrary to the case of predecessors/successors, if R ′′ is a crossing predecessor of R, then R is not necessarily a crossing successor of R ′′ (see Figure 3.2). Moreover, a crossing successor/predecessor of R can in general be a successor/predecessor of R of an arbitrarily big generation. points in s is finite up to the action of the stabilizer of the periodic point. Therefore, since the number of rectangles of any Markovian family is finite up to the action of π 1 (M ), the number of boundary arc points up to the action of π 1 (M ) is also finite.

We will now show that the set of boundary arc points is not empty. It suffices to show that for every R ∈ R, if s is a stable (resp. unstable) boundary component of R, then the intersection of s with the unstable (resp. stable) boundary of one s-crossing predecessor (resp. successor ) of R consists of two boundary arc points. Indeed if this is the case, by Lemmas 3.0.4 and 3.0.5, we get the desired result.

Take a rectangle R ∈ R, s a stable boundary component of R, R ′ a s-crossing predecessor of R and x ∈ ∂ u R ′ ∩ s. Let us show that x is a boundary arc point. Notice first that thanks to Lemmas 3.0.4 and 3.0.5, x cannot be a periodic point. Hence, it suffices to show that x is not in the interior of some rectangle in R. Suppose that x is contained in the interior of

R ′′ ∈ R (see Figure 3.3(b)). In this case, • R ′ ∩ • R ′′ ̸ = ∅ and also • R ∩ • R ′′ ̸ = ∅. It is not difficult to see that the Markovian intersection axiom implies that R ′ ∩ R ′′ is a vertical subrectangle of R ′′ and R ∩ R ′′ is
also a vertical subrectangle of R. This contradicts the maximality of the s-crossing predecessor R ′ and finishes the proof of our initial claim.

Remark 3.0.8. In the proofs of Propositions 3.0.2 and 3.0.3 we established that:

• A periodic point that is contained in the boundary of one rectangle in R is a boundary periodic point.

• More generally, a periodic point in P is a boundary periodic point if and only if its stable or unstable leaf contain a stable or unstable boundary component of some rectangle in • Consider R ∈ R and s a stable (resp. unstable) boundary component of R. A point in the intersection of s with the unstable (resp. stable) boundary of one s-crossing predecessor (resp. successor ) of R is a boundary arc point. The converse is also true.

Chapter 4

Two useful tools for the proof of Theorem B

Rectangle paths in a bifoliated plane

We fix M an orientable closed 3-manifold carrying a transitive Anosov flow Φ endowed with its weak stable and unstable foliations F s , F u . Let P be the bifoliated plane of Φ with its stable and unstable foliations F s , F u and R a Markovian family in P.

In view of Theorem B, we would like to develop tools that will allow us to compare bifoliated planes when they contain Markovian families corresponding to the same equivalence classes of geometric types. Our idea is to use a Markovian family R as a coordinate system: we can travel inside the bifoliated plane using sequences of rectangles in R, that we will call rectangle paths and we can also describe points of the bifoliated plane as an infinite intersection of rectangles in R. Our goal in this chapter is to define the notion of rectangle path for any Markovian family, to show that all rectangles in a Markovian family can be reached via rectangle paths and finally to establish a correspondence between arcs in a bifoliated plane and rectangle paths. Definition 4.1.1. A finite sequence of rectangles in R of the form R 0 ,R 1 ,...,R n will be called a rectangle path going from R 0 to R n if for every i ∈ 0, n -1 the rectangle R i+1 is either a successor or predecessor of R i . The length of the sequence defining the rectangle path will be called length of the rectangle path. We will say that the rectangle path R Proof. Indeed, we can locally deform γ to a finite juxtaposition of alternating stable and unstable segments. By compactness, γ is homotopic relatively to its boundary to a polygonal curve γ ′ in P. Without any loss of generality, we can assume that γ ′ is the juxtaposition of a stable segment s 1 , followed by an unstable segment u 1 ,..., ending with an unstable segment u n .

0 ,R 1 ,...,R n is • trivial if it is of length one • closed if it also verifies R n = R 0 • increasing (resp.
Suppose that one of the stable segments in γ ′ belongs to a stable leaf of a boundary periodic point of R. Those points are finite up to the action of π 1 (M ), therefore the stable leaves of those points are only countable in P. This stable segment cannot be s 1 because of our initial hypothesis. Let us denote this segment by s k . By changing a little bit the "lengths" of the segments u k-1 and u k , we can replace s k by another stable segment in s k 's neighborhood that does not belong to the countable set of stable leaves of boundary periodic points. By a repeated application of the previous argument, γ ′ is homotopic relatively to its boundary to a polygonal curve satisfying the first axiom of Definition 4. 1.3. By the exact same procedure, we can show that γ ′ is homotopic relatively to its boundary to a polygonal curve satisfying also the second axiom of Definition 4. 1.3, which gives us the desired result. Now that we have defined the two main objects of this section, rectangle paths and good polygonal curves, our goal in the next few pages consists in establishing a bridge between the two by defining the notion of rectangle path associated to a good polygonal curve γ. The first step in doing so consists in proving the following lemma: Lemma 4.1.6. Consider s a closed stable segment in P that does not belong to the stable leaf of any boundary periodic point of R. There does not exist a sequence (R (i) ) i∈N of rectangles in R such that 1. R (i+1) is a crossing successor of R (i) for every i ∈ N 2. an extremity of s lies in the interior of R (0) 3.

( • R (i+1) \ R (i) ) ∩ s ̸ = ∅ for every i ∈ N Proof.
Assume that a sequence of rectangles with the above properties exists. Denote by s 0 the extremity of s in • R (0) and by s 1 the other extremity of s (see Figure 4.1). Since the sequence of closed segments R (i) ∩ s is strictly increasing, there exists x a first point of s that is not contained in any of the R (i) . Suppose that the R (i) ∩ s approach x from the left and consider [t, x] a small stable segment in s on the left of x. By the finite return time axiom, there exists R ∈ R containing [t, x]. Notice that since s does not belong to the stable leaf of a boundary periodic orbit, thanks to Lemma 2. On the other hand, for every i, R (i+1) ∩ R (i) is a non-trivial horizontal subrectangle of R (i) , therefore by Lemma 2.2.7, for n sufficiently big, R (n) will be a very thin along the vertical direction and a very long along the horizontal direction rectangle approaching x from the left. Hence, for n big Naturally, a similar lemma holds for unstable segments in P too.

• R (n) ∩ • R ̸ = ∅,
Consider γ : [0, 1] → P a good polygonal curve in P and r 0 ∈ R such that γ(0) ∈ • r 0 . Assume without any loss of generality that γ is the juxtaposition of the stable segment s, followed by the unstable segment u, ..., followed at the end by the segment f . Suppose now that s crosses the unstable boundary component U of r 0 . Because of Definition 4.1.3, Lemma 2.2.5 and Remark 3.0.8, s does not belong to the stable leaf of a boundary arc or boundary periodic point. Therefore, by Lemmas 3.0.4, 3.0.5, there exists a unique U -crossing successor of r 0 , say R (1) , containing r 0 ∩ s. If s exits R (1) , by applying the same argument, s will enter a unique crossing successor of R (1) , say R (2) . Thanks to Lemma 4. 1.6, by applying a finite number of times the previous procedure, we will eventually obtain a rectangle R (n) , a successor of some generation of r 0 , for which s ⊂ R (n) . By Lemma 2.2.12 and the fact that the successors of a rectangle have disjoint interiors, there exists a unique increasing rectangle path R 0 = r 0 , R 1 , ..., R m = R (n) going from R 0 to R (n) . Definition 4.1.7. We will call the rectangle path R 0 = r 0 , R 1 , ..., R m = R (n) , the rectangle path associated to s starting from r 0 . One defines similarly the rectangle path associated to an unstable segment starting from a rectangle in R.

We now define recursively the rectangle path associated to γ starting from r 0 , say path r 0 (γ), as follows:

• when γ has length one, path r 0 (γ) is defined as the rectangle path associated to s starting from r 0

• when γ has length n > 1, consider c 0 = 0 < c 1 < ... < c n = 1 such that the γ([c i , c i+1 ]) are alternating stable and unstable segments (the c i are uniquely defined by the previous properties). Denote by γ ′ := γ |[c 1 ,1] the polygonal curve of length n -1 obtained by removing from γ its first segment, namely the segment s. We define path r 0 (γ) as the concatenation of path r 0 (s) followed by path R (n) (γ ′ ).

♠

Following our previous notations, let us remark here that in the case where the length of γ is greater than 1, path r 0 (γ) is well defined, since by Definition 4. 1.3 and Remark 3.0.8 both γ ′ : [c 1 , 1] → P and s : [0, c 1 ] → P are good polygonal curves and γ(c 1 ) ∈

• R (n) .
Proposition 4.1.8. For every two rectangles R 0 , R ∈ R there exists a rectangle path starting from R 0 and ending at R.

Proof. We consider a smooth curve γ : [0, 1] → P such that γ(0) 1) don't belong to the stable or unstable leaf of a boundary periodic point. We can deform γ to a good polygonal curve γ ′ by Lemma 4.1.5. Consider R 0 , R 1 , ...R n a rectangle path associated to γ ′ (see Definition 4.1.7). Notice that R n is not necessarily equal to R. However, since γ(1) does not belong to the stable or unstable leaf of a boundary periodic point, γ(1) ∈

∈ • R 0 , γ(1) ∈ • R and γ(0), γ(
• R∩ • R n and by Lemma 2.2.12 R n is a k-th successor or predecessor of R for some k ∈ N. Assume without any loss of generality that R n is a k-th predecessor of R. In this case, since the successors of a rectangle have disjoint interiors, there exists a unique sequence of rectangles R n , ..., R n+k = R such that R l+1 is a successor of R l for every l ∈ n, n + k -1 . The rectangle path R 0 , ..., R n+k = R is the desired rectangle path.

Of course the rectangle path of the previous corollary is not unique; it depends on the choice of the original curve γ and on how we deformed it into a good polygonal curve γ ′ . In fact, for any rectangle R ∈ R there exist infinitely many distinct rectangle paths going from R 0 to R: if R 0 , R 1 , ..., R is one such rectangle path, then R 0 , R 1 , R 0 , R 1 , ..., R is also a rectangle path from R 0 to R.

As we have previously explained, it is possible to associate a set of rectangle paths to any good polygonal curve in P. The inverse association is also possible: Proposition 4.1.9. Fix a rectangle path R 0 , ..., R n . There exists a good polygonal curve γ such that R 0 , ..., R n is the rectangle path starting from R 0 associated to γ. Furthermore, if R 0 , ..., R n is closed we can choose γ to be also closed.

Proof. Consider R 0 , ..., R n a rectangle path and x ∈ • R 0 that does not belong to the stable or unstable leaf of a boundary periodic point. Consider now a polygonal path starting from x ∈ R 0 , exiting R 0 in order to enter R 1 , then exiting R 1 in order to enter R 2 and so on until we reach R n . If R n = R 0 , we will also ask that our polygonal path ends at x.

By the same arguments as in the proof of Lemma 4.1.5, using the fact that x does not belong in the stable or unstable leaf of a boundary periodic point, it is possible to prove that the previous (resp. closed when R 0 = R n ) polygonal curve can be deformed to a good (resp. and closed) polygonal curve γ starting from x, exiting R 0 in order to enter R 1 , then exiting R 1 in order to enter R 2 and so on until we reach R n .

It is now easy to check, using our construction of the rectangle paths associated to a good polygonal curve (see Definition 4.1.7), that the rectangle path starting from R 0 associated to γ is exactly R 0 , ..., R n .

Remark 4.1.10. • The construction of γ in Proposition 4.1.9 is not unique.

• If r 0 , ..., r n is a rectangle path associated to γ : [0, 1] → P, then there exist 0 = c 0 < c 1 < ... < c n+1 = 1 such that γ([c i , c i+1 ]) ⊂ r i . The c i are not unique. Using our choice of c i , we define Rect γ,r 0 : [0, 1] → {r 0 , ..., r n } as the function sending every interval of the form [c i , c i+1 ) to r i and such that Rect γ,r 0 (1) = r n . The function Rect γ,r 0 associates to every point of γ a rectangle that contains it and to every interval in [0, 1] a rectangle path.

In the following pages, we will often define the function Rect γ,r 0 as in the following lemma:

Lemma 4.1.11. Let γ : [0, 1] → P be a good polygonal curve and r 0 , ..., r n its associated rectangle path starting from r 0 . We can choose 0 = c 0 < c 1 < ... < c n+1 = 1 and define Rect γ,r 0 so that:

• γ([c i , c i+1 ]) ⊂ r i for every i
• for any stable (resp. unstable) segment S of γ the rectangle path Rect γ,r 0 (γ -1 (S)) is either trivial or increasing (resp. decreasing)

Proof. Indeed, assume without any loss of generality, that γ is the juxtaposition of the stable segment s 1 , followed by the unstable segment u 1 ,..., ending with the unstable segment u n .

Let

t s 1 ∈ [0, 1] such that γ([0, t s 1 ]) = s 1 .
If s 1 does not exit r 0 , then we define c 1 = t s 1 . If s 1 exits r 0 in order to visit a crossing successor of r 0 , say r k (see Figure 4.2), consider ([0, t]) ⊂ r 0 }. By Definition 4. 1.7, every time that γ leaves a rectangle R in order to visit R ′ , a crossing successor of R, we add to the rectangle path associated to γ the unique increasing rectangle path from R to R ′ . Therefore, for every i ∈ 0, k -1 the rectangle r i+1 is a successor of r i containing γ([0, t r 0 ]). Choose now arbitrarily c 1 , . .., c 

t r 0 = max{t ∈ [0, 1] | γ
k-1 ∈ [0, 1] such that 0 < c 1 < c 2 < c 3 < ... < c k := t r 0 .
Notice that by our previous arguments for every i ∈ 0, k -1 we have γ([c i , c i+1 ]) ⊂ r i . Next, if s 1 exits r k in order to visit a crossing successor of r k , by the same exact argument we can extend our previous choice of c i so that γ([c i , c i+1 ]) ⊂ r i . If s 1 does not exit r k , we define c k+1 = t s 1 . Notice that for the previous choice of c k+1 we have that γ([c k , c k+1 ]) ⊂ r k and that c k+1 = t s 1 > c k = t r 0 . The latter statement results from Lemma 2.2.5, the fact that γ(t r 0 ) ∈ ∂ u r 0 and the fact that u 1 cannot be contained in the unstable leaf of a boundary periodic point. By Lemma 4. 1.6, eventually some c i will be equal to t s 1 and thus the previous procedure is going to end for s 1 . By construction of the c i , for every stable segment s ⊂ s 1 , the rectangle path Rect γ,r 0 (γ -1 (s)) is either trivial or increasing. Once the previous procedure ends for s 1 , we will repeat it for u 1 ,s 2 ,..., till we finally reach u n . The previous construction provides the desired c i .

Singularities of polygonal curves

Rectangle paths and good polygonal curves, as it was proved in the previous section, are two objects that are very closely related. Understanding the behaviour of a polygonal curve will give us information about its associated rectangle path and vice versa. In this section, we will define the notion of tangency for a good polygonal curve and we will prove a combinatorial result linking the number of different tangencies of a simple good polygonal curve.

We fix once again (M 3 , Φ) a transitive Anosov flow, P its bifoliated plane endowed with an orientation and F s,u the stable/unstable foliations in P.

Definition 4.2.1. A closed polygonal curve γ : [0, 1] → P will be called simple if the function γ restricted on [0, 1) is injective. By Jordan's theorem, a simple closed polygonal curve γ defines in the plane P two complementary regions: a bounded region that we will name the interior of γ and an unbounded Endow the foliations F s,u with an orientation. Using the previous orientations, we will define 4 types of tangencies of the simple closed polygonal curve γ to the foliation F s . Definition 4.2.2. Consider γ as a function from S 1 (endowed with an orientation) to P. Fix s a stable segment of γ. We will denote by u -the unstable segment in γ coming right before s (for our choice of orientation of S 1 ) and by u + the unstable segment in γ coming right after s. Using the orientation on S 1 , we can naturally orient u -and u + . We will say that s is a stable tangency of γ if one of the two previous segments is negatively oriented and the other is positively oriented with respect to the orientation of F u . Furthermore, we will say that a stable tangency s of γ is a tangency of type (a) (resp. (d)) if for any small positive unstable segment u starting from a point in s we have that u ⊂ D and if any stable leaf of F s intersecting u intersects also (resp. does not intersect) u -and u + .

By changing the positive segment u to a negative segment, we can similarly define a tangency of type (b) or (c). We define in an analogous way unstable tangencies of type (a), (b), (c) or (d) for γ.

♠

Perturb D a little bit in U so that its boundary becomes smooth and is in general position with respect to F s . Let us name D ′ this disc. ∂D ′ has a finite number of tangencies with F s . Take x a point of tangency between ∂D ′ and F s . We will say that x is an interior (resp. exterior) tangency if any vector based at x and tangent to F s (x) points towards the interior (resp. exterior) of D ′ .

By considering any vector field X on U tangent to F s and with no zeros (such a vector field exists, since F s is orientable) and by applying the Poincaré Index theorem for the vector field X and the disk D ′ , we get that:

(number of exterior tangencies of ∂D ′ ) -(number of interior tangencies of ∂D ′ ) = 2 Therefore, there are always more exterior tangencies in ∂D ′ than interior ones.

By eventually changing our initial perturbation D ′ , we may assume that: This is why, the previous lemma remains true independently from our choices of orientation.

Naturally, the above lemma is also true for unstable tangencies. Let us finish this section with the following result: Lemma 4.2.5. Let γ be a simple closed polygonal curve, s a stable tangency of type (a) or (b) and D the interior of γ. There exists a unique rectangle R contained in D ∪ γ such that

• s is a stable boundary component of R • the unstable boundaries of R are contained in γ
• R is maximal for the previous properties Proof. Denote by I -(resp. I + ) the set of points x in u -(resp. u + ) for which there exists a stable segment inside D ∪ γ going from x to u + (resp. u -). Denote also by x - 0 (resp. x + 0 ) the unique point in s ∩ u -(resp. s ∩ u + ). Notice that I -(resp. I + ) contains a neighbordhood of x - 0 (resp. x + 0 ) in u -(resp. u + ), since s intersects both u -and u + transversely. Let us also remark that if x ∈ I -, then all points of u -between x and x - 0 belong in I -. Indeed, since x ∈ I -, there exists a stable segment s x inside D ∪ γ going from x ∈ u -to u + . Since s x is contained in D ∪ γ, its interior (i.e. the segment minus its extremities) can not intersect the interior of any unstable segment of γ. Hence, since γ is simple, the region delimited by the segments u -, u + , s x and s defines a rectangle r whose interior is disjoint from γ. This implies that r is contained in D ∪ γ and since every stable leaf crossing one unstable boundary of r must also cross the other, we have that the unstable segment [x, x - 0 ] ⊂ u -is contained in I -. This proves that I -is a segment. By the same argument, I + is also a segment.

Next, by the definitions of I -and I + , for every x ∈ I -the stable segment s x ⊂ D ∪ γ going from x to u + intersects u + along a point of I + and vice versa. Let us now show that I -is a closed segment in u -. Assume that I -is of the form [x - 0 , X -) ⊂ u -. By our previous arguments, this implies that I + is also of the form [x + 0 , X + ). If the stable leaf of X -intersects u + , since it can be accumulated by stable segments in D ∪ γ going from u -to u + , then there exists a stable segment in D ∪ γ going from X -to u + and thus X -∈ I -. We deduce that the stable leaf of X -(resp. X + ) does not intersect u + (resp. u -). Hence, the stable leaves of X -and X + are different and can be accumulated from one side by segments going from u -to u + . This implies that the stable leaves of X - and X + are non separated stable leaves.

Denote by s x the stable segment going from x ∈ I -to u + . By Corollary 4.4 of [Fe], there exists an unstable leaf L such that the set L ∩ ∪ x∈I -s x ⊂ D ∪ γ is an unbounded segment of L contained in the compact set D ∪ γ, which contradicts Remark 1.2.22 and leads to an absurd. We deduce that I -and I + are closed. The segments in D ∪ γ going from I -to I + form the rectangle with the desired properties.

The rectangle constructed in the previous lemma forms a canonical neighborhood of the tangency s inside D ∪ γ. We will call this neighborhood the domain of s. Furthermore, if the domain of s covers completely either u -or u + (we follow here the notations of the proof of Lemma 4.2.5), we will call it a complete domain (see Figure 4.4(a)). In any other case, we will call it an incomplete domain (see Figure 4.4(b)).

By our proof of Lemma 4.2.5 we can deduce that: Remark 4.2.6. If the domain D of s is incomplete, there exists a stable segment of γ intersecting the interior of the stable boundary component of D that is not s. 

The bifoliated plane up to surgeries

Let Φ 1 , Φ 2 be two transitive Anosov flows on the closed, orientable manifolds M 1 , M 2 , P 1 , P 2 their bifoliated planes, R 1 , R 2 two Markovian families in P 1 and P 2 respectively and Γ 1 , Γ 2 their boundary periodic points. Denote by Γ M 1 1 , Γ M 2 2 the periodic orbits of Φ 1 , Φ 2 associated to Γ 1 , Γ 2 . In view of Theorem B, we would like to know whether the two previous Anosov flows are orbitally equivalent up to surgeries along Γ M 1 1 and Γ M 2 2 . This is the reason why in this chapter, we will present our main tool for comparing Anosov flows up to surgeries: the bifoliated plane up to surgeries.

More specifically, instead of comparing the bifoliated planes P 1 and P 2 that depend greatly on the choice of surgery on the boundary periodic orbits (see for instance [BoIa]), we will compare the universal covers of P 1 -Γ 1 and P 2 -Γ 2 , denoted by P 1 and P 2 that have the advantage of being unaffected from any surgery along the boundary periodic orbits. Even though the previous spaces define two planes that are invariant by surgeries along Γ M 1 1 and Γ M 2 2 , they do not behave well the rectangles in R 1 or R 2 : the lifts of the rectangles in R 1 , R 2 on P 1 , P 2 do not always correspond to rectangles in the sense of Definition 2.1.1; some rectangles lift to "rectangles" with corners at infinity and thus cease being compact.

In order to avoid this difficulty, by adding some points at infinity, in Sections 5.1 and 5.2 we will complete P 1 , P 2 to "branched" cover spaces of P 1 , P 2 that we will denote by P 1 , P 2 . The "ramification points" of these covers will correspond to Γ 1 , Γ 2 and their "ramification indexes" will be infinite. The spaces P 1 , P 2 will be called the bifoliated planes of Φ 1 , Φ 2 up to surgeries along Γ M 1 1 , Γ M 2 2 . In Sections 5.3 and 5.4 we will establish that the bifoliated plane up to surgeries has many points in common with the bifoliated plane of an Anosov flow: it is endowed with two singular transverse foliations F s,u and one transitive group action that preserves F s,u . Our main goal in this chapter consists in proving Theorem C according to which P 1 , P 2 describe the flows Φ 1 , Φ 2 up to surgeries along Γ M 1 1 and Γ M 2 2 .

The bifoliated plane up to surgeries: the construction

Fix Φ a transitive Anosov flow, on an orientable 3-manifold M , P its bifoliated plane endowed with an orientation, R a Markovian family on P and Γ ⊂ P the set of boundary periodic points of R. We will denote by Γ M the periodic orbits of Φ corresponding to Γ and by Γ the lifts of Γ M on R 3 .

The construction of P is very similar to the construction of the universal cover P of P -Γ. Let us first recall the latter one. Fix x 0 ∈ P -Γ and curv 1 = {γ : [0, 1]

C 0 → P| γ(0) = x 0 , γ[0, 1] ∩ Γ = ∅}. For any γ 1 , γ 2 ∈ curv 1 , we will say that γ 1 ∼ 1 γ 2 if there exists H : [0, 1] 2 C 0 → P such that H(0, •) = γ 1 , H(1, •) = γ 2 , H(•, 1
) is constant and for every t ∈ [0, 1] we have H(t, •) ∈ curv 1 . By a classical result of covering space theory, we have that

P = curv 1 ∼ 1
Any point x ∈ P corresponds to a class of arcs of curv 1 starting from x 0 and ending at the same point of P -Γ, say x. We define the projection π from P on P -Γ as the function associating to x the point x. It is well known that π is continuous. Now let us define the space P. Take curv 2 = {γ : [0, 1]

C 0 → P| γ(0) = x 0 , γ[0, 1) ∩ Γ = ∅}.
For any γ 1 , γ 2 ∈ curv 2 , we will say that γ 1 ∼ 2 γ 2 if there exists H(•,1) is constant and for every t ∈ [0, 1] we have H(t, •) ∈ curv 2 . We define

H : [0, 1] 2 C 0 → P such that H(0, •) = γ 1 , H(1, •) = γ 2 ,
P := curv 2 ∼ 2
We are going to call P the bifoliated plane of Φ up to surgeries on Γ M . Any point x ∈ P corresponds to a class of arcs of curv 2 starting from x 0 and ending at the same point of P, say x. We define the projection π from P on P as the function associating to x the point x. The function π is clearly a surjection.

In order to define a topology on P, let us construct P in a different way. Recall that since Γ M consists of a finite number of periodic orbits of Φ, the set Γ ⊂ P is discrete. Blow-up every point in Γ ⊂ P to a circle and denote this new space by P Γ,blowup (see Figure 5.1). Formally speaking, since the bifoliated plane P can be endowed with a C 1 manifold structure (see Theorem 1.2.19), we can identify the boundary circles of P Γ,blowup with the set of unit tangent vectors of the points in Γ for an arbitrary choice of Riemannian metric on P.

The space P Γ,blowup is homeomorphic to a plane minus countably many open disks, forming a discrete set. Its universal cover P Γ,blowup is a plane with countably many line boundaries. By identifying each of those lines to a point, it is not hard to check that the resulting space can be identified with P. Using the previous identification, we will endow P with the quotient topology for the previous projection. 

The relation between P and P

As an immediate result of our second construction of P and the fact that P embeds continuously in P Γ,blowup we get the following proposition: Proposition 5.2.1. There exists a continuous embedding ϕ of P in P. Furthermore, Pϕ( P) is a discrete (countable) set of points Using the embedding ϕ, by a small abuse of language, we will assume from now on that P ⊂ P. Notice that by our first construction of P, we have P -P = π -1 (Γ). Furthermore, going around a point in Γ, changes the class in ∼ 2 of a curve whose endpoints are not in Γ (see Figure 5.2a). However, doing so for a curve going from x 0 to a point in Γ does not change the class of the curve in ∼ 2 . This justifies the fact that we can visualize P as a branched cover of P, whose branching points have infinite index and are exactly Γ := π -1 (Γ) (see Figure 5.2b). We would also like to point out at this point that: Remark 5.2.2. The projection π : P → P is continuous.

Indeed, by our first definition of P, we have that π | P ≡ π. Therefore, π is continuous on 

P as the bifoliated plane of a flow

The space P is the universal cover of a plane minus a countable number of points forming a discrete set; it is therefore a plane. Furthermore, by lifting on P the stable and unstable foliations of P -Γ, we obtain two transverse foliations F s and F u that we will respectively call stable and unstable foliations in P. Notice that for any x ∈ Γ any of the connected components of F s (x) -{x} (resp. F u (x) -{x}) lifts to a leaf of F s (resp. F u ). Notice also that, as for F s and F u , any two leaves s ∈ F s and u ∈ F s , intersect at most at one point.

Not only is the space P endowed with two transverse foliations, but also a natural group action: Proposition 5.3.1. The space P is the orbit space of the lift on R 3 of the flow (Φ, M ) minus the boundary periodic orbits Γ M . Consequently, P is naturally endowed with a faithful action of π 1 (M -Γ M ).

Proof. Let us denote by Φ the lift of Φ on M = R 3 . We will first show that the universal cover of M -Γ M is homeomorphic to R 3 . Indeed, since M -Γ is a covering space of M -Γ M , the universal cover of M -Γ M , denoted by M -Γ M , coincides with the universal cover of M -Γ. Moreover, the universal cover of R 3 minus a countable and transversely discrete set of lines is homeomorphic to R 3 , therefore M -Γ M is homeomorphic to R 3 .

Similarly, the lift on M -Γ M , that will be denoted by Φ Γ M , of the flow Φ minus the orbits Γ M can be identified with the lift of Φ minus the orbits Γ on the universal cover of M -Γ. We will now prove that P can be seen as the bifoliated plane of Φ Γ M .

Recall that Φ is conjugated to the constant vertical flow on R 3 (see Corollary 1.2.20). Take P a topological plane intersecting once every orbit of Φ. P can be identified with the bifoliated plane P of Φ. Consider P the lift of P -Γ ≃ P -Γ on the universal cover of M -Γ. P is a topological plane, where the punctures of P have now become "points at infinity".

From one side, the plane P intersects once every orbit of Φ Γ M ; it can therefore be identified with the bifoliated plane of the flow Φ -Γ M . From the other side, P corresponds to the universal cover of P -Γ ≃ P -Γ, which gives us the desired result.

Finally, the fact that P admits a faithful action by π 1 (M -Γ M ) follows from the same construction as for the action of the action of π 1 (M ) on the bifoliated plane (see Paragraph "The space of orbits" in Section 1.2).

Using the above proposition, it is possible to show, in the same exact way as for the bifoliated plane of an Anosov flow (see for instance [Ba]) that • if Φ is of class C k , then the bifoliated plane of Φ minus Γ M can be given a structure of C k manifold.

• π 1 (M -Γ M ) acts on P by preserving the foliations F s and F u

• the orbit by π 1 (M -Γ M ) of any stable or unstable leaf in F s,u is dense in P A major difference between the bifoliated plane of an Anosov flow and P resides in the following remark:

• if g ∈ π 1 (M -Γ M )
Remark 5.3.2. If g ∈ π 1 (M -Γ M ) preserves a leaf f ∈ F s ,
then g fixes a point in f if and only if f does not project to a stable separatrix of some point in Γ.

The following proposition makes the link between the action of π 1 (M ) on P and the action of π 1 (M -Γ M ) on P.

Proposition 5.3.3. Denote by ψ the morphism π 1 (M -Γ M ) → Homeo( P), by ψ the morphism π 1 (M ) → Homeo(P) and by ρ the natural surjective morphism π 1 (M -Γ M ) → π 1 (M ) (i.e. the morphism defined by the inclusion of M -Γ M in M ). We have that

P / ker(ρ) ≈ P -Γ Furthermore, for every element g ∈ π 1 (M -Γ M ) π • ψ(g) = ψ(ρ(g)) • π Proof.
Let M be the universal cover of M and Γ the lift of Γ M on M . Let us first show that π 1 ( M -Γ) = ker(ρ). Indeed, consider O a point in M -Γ and its projection O M in M -Γ M . Take γ a non-homotopically trivial loop in M -Γ starting and ending at O. Its projection γ M in M -Γ M is also non-homotopically trivial. However, by adding back the lines Γ in M -Γ and the circles Γ M in M -Γ M , the loop γ becomes homotopically trivial ( M is simply connected) and so does its projection γ M . Hence, the map γ → γ M defines a morphism i :

π 1 ( M -Γ, O) → ker π 1 (M -Γ M , O M ) → π 1 (M, O M ) .
Conversely, consider a loop

γ M ∈ ker π 1 (M -Γ M , O M ) → π 1 (M, O M ) .
Take the lift γ of γ M that starts at O. By definition, if we add Γ M in M -Γ M , then γ M becomes homotopically trivial. Therefore, if we add Γ in M -Γ the curve γ must also become homotopically trivial. We deduce that γ is a loop that starts and ends at O. The map γ M → γ defines a morphism

j : ker π 1 (M -Γ M , O M ) → π 1 (M, O M ) → π 1 ( M -Γ, O).
It is easy to check that i and j are inverses of each other and therefore π 1 ( M -Γ) = ker(ρ). where ρ(g) can be identified with the image of g by the natural morphism

π 1 (M -Γ M ) → π 1 (M -Γ M ) / ker(ρ) = π 1 (M ).
Since the action of g (resp. ρ(g)) sends orbits of Φ -Γ M (resp. Φ -Γ) to orbits of Φ -Γ M (resp. Φ -Γ) and p sends orbits of Φ -Γ M to orbits of Φ -Γ, by projecting on the orbit spaces we get that π • ψ(g) = ψ(ρ(g)) • π which finishes the proof of the proposition.

An important consequence of the fact that the action by π 1 (M ) on M -Γ is the quotient by ker(ρ) of the action by π 1 (M -Γ M ) on M -Γ M is that two points in M -Γ M are in the same π 1 (M -Γ M )-orbit if and only if their projections on M -Γ are in the same π 1 (M )-orbit. Therefore, by projecting on the orbit spaces we get that: Remark 5.3.4. Two points in P are in the same π 1 (M -Γ M )-orbit if and only if their projections on P are in the same π 1 (M )-orbit.

Extending the structure of bifoliated plane to P

Even though P is not the bifoliated plane of some Anosov flow, it shares many properties with both P and P.

Proposition 5.4.1. There exists a unique faithful action of π 1 (M -Γ M ) on P that extends continuously the action of π 1 (M -Γ M ) on P.

Proof. Indeed, by Proposition 5.2.1, if the faithful action of π 1 (M -Γ M ) on P extends continuously on P, then this extension is unique and the action on P is also faithful. Recall now that P can be given a structure of C 1 manifold, where the action by π 1 (M ) can be seen as an action by diffeomorphisms (see Theorem 1.2.19). Consider the diffeomorphism g ∈ π 1 (M ) acting on P. By identifying the boundaries of P Γ,blowup with the set of unit tangent vectors on Γ for some choice of Riemannian metric on P and by using the action of the differential of g on the tangent bundle of the points in Γ, g corresponds to a unique homeomoprhism on P Γ,blowup . Take g a lift of this homeomorphism on P Γ,blowup . By our choice of topology on P the homeomorphism g projects to a homeomorphism on P and the previous construction yields a C 0 action of π 1 (M -Γ M ) on P.

Using the relation between the actions of π 1 (M ) on P and of π 1 (M -Γ M ) on P (see Proposition 5. 3.3) and the fact that P is naturally identified with the interior of P Γ,blowup , by our construction, g | P corresponds to a unique element of π 1 (M -Γ M ) that acts on P.

We therefore get that the action of π 1 (M -Γ M ) on P Γ,blowup and thus also the action of π 1 (M -Γ M ) on P extend continuously the action of π 1 (M -Γ M ) on P, which gives us the desired result.

Furthermore, using the previous result, together with Proposition 5.2.1 and Remark 5. 3.4 it is easy to prove that: Remark 5.4.2. Two points in P are in the same π 1 (M -Γ M )-orbit if and only if their projections on P are in the same π 1 (M )-orbit.

Moreover, by extending the foliations F s,u , it is possible to endow P with two singular foliations F s , F u , called respectively the stable and unstable foliations. More precisely, F will be a leaf of F s,u if and only if 1. F projects on P to a stable/unstable leaf in F s,u disjoint from Γ, or 2. F projects on P to a stable/unstable separatrix of a point in Γ Since F s and F u are transverse in P, the two foliations F s and F u are transverse everywhere, except at their singularities, namely the points of Γ = P -P. More particularly, we have • for all k, l ∈ Z such that (k -l) is even there exists g k,l ∈ π 1 (M -Γ M ) such that g k,l (s k ) = s l . If furthermore γ projects on M to a periodic orbit with negative eigenvalues the previous stands for all k, l ∈ Z

• for all k ∈ Z s k ∩ Γ = {γ}
• for all k, m ∈ Z s k is not separated from s m in P (i.e. s k -{γ} and s m -{γ} are non-separated stable leaves in P ) if and only if |k -m| = 1

Proof. Indeed, let us go back to our second construction of P. Take γ ∈ Γ. After blowing up the point γ, we obtain a circle C in P Γ,blowup intersecting once every stable/unstable separatrix of γ. Notice that the only leaf of the stable foliation in P that intersects C after blowing up γ is F s (γ) (see Figure 5.1). Hence, by lifting C on P Γ,blowup , we obtain a line visiting alternatively the lifts of the positive and negative stable separatrices of γ (see Figure 5.3). By projecting the previous line on P, we obtain that the stable leaves in F s containing any point γ ∈ Γ form a countable set ordered along Z. Now, the first point of the above proposition is an immediate consequence of Remark 5.4.2. The second point is a consequence of the fact that any stable leaf of a point in P intersects at most one point point in Γ. Finally, the third point can be relatively easily seen in Figure 5.3.

The space P endowed with the action of π 1 (M -Γ M ) together with its two foliations F s,u resembles closely a bifoliated plane of some Anosov flow. By our previous discussion:

• The action of π 1 (M -Γ M ) preserves the singular foliations F s and F u .

• The action action of π 1 (M -Γ M ) on P is closely related to the action of π 1 (M ) on P.

Denote by ψ the morphism π 1 (M -Γ M ) → Homeo(P), by ψ the morphism π 1 (M ) → Homeo(P) and by ρ the natural surjective morphism π 1 (M -Γ M ) → π 1 (M ). In view of Proposition 5. 3.3, by quotienting P by the action of ker(ρ), we obtain the bifoliated plane P of Φ and for every element g ∈ π 1 (M -Γ M ) we have that

π • ψ(g) = ψ(ρ(g)) • π
• Any two leaves s ∈ F s and u ∈ F u intersect at most at one point • For any point x ∈ P -Γ = P we have that Stab(x) = Z if and only if x is periodic (i.e. corresponds to a periodic orbit in M ). If x ∈ P -Γ is not periodic then Stab(x) = {id}

• If g ∈ π 1 (M -Γ M ) preserves a leaf f ∈ F s , then f carries a periodic point • If g ∈ π 1 (M -Γ M )
acts trivially on a stable or unstable leaf then g = id

• The orbit of every leaf in F s,u by π 1 (M -Γ M ) is dense One major difference between P and the bifoliated plane of some Anosov flow is given by the following proposition: Proposition 5.4.4. The stabilizer in π 1 (M -Γ M ) of any point in Γ is isomorphic to Z 2 Proof. Take γ ∈ Γ. By Proposition 5.4.3, the set of stable leaves in F s intersecting γ is countable and ordered along Z. We will denote the previous set of leaves by ...s -2 , s -1 , s 0 , s 1 , s 2 ... (see Figure 5.3). Since the elements of π 1 (M -Γ M ) preserve F s,u , then any element in Stab(γ) permutes the set of leaves {s k |k ∈ Z} and even more associates non-separated leaves to nonseparated leaves. Therefore, by Proposition 5.4.3 any element g ∈ Stab(γ) acts on the set {s k |k ∈ Z} ≡ Z as the composition of some symmetry on Z and some translation. But since M -Γ M is orientable, by Propositions 5.3.1 and 5.4.1, π 1 (M -Γ M ) acts on P by orientation preserving homeomorphisms. Hence, g can only act as a translation on {s k |k ∈ Z}.

Let us first consider the elements of π 1 (M -Γ M ) that act as zero translations on {s k |k ∈ Z}; otherwise said the elements that preserve every s i . By our discussion at the end of Section 5.3 and Proposition 5.4.1, Stab(s 0 ) = Z. Take s the generator of Stab(s 0 ) acting on s 0 as an expansion.

Next, by Proposition 5.4.3, the smallest possible non-trivial translation on {s k |k ∈ Z} is a translation by ±1 or ±2. Take t ∈ π 1 (M -Γ M ) acting as a translation by +1 or +2 on {s k |k ∈ Z}, depending on whether γ has respectively negative or positive eigenvalues. Recall now that any element of π 1 (M -Γ M ) that fixes one non-periodic point in P is the identity. Hence, we have that Stab(γ) =< s, t >. It therefore suffices to show that s and t commute. Indeed, by the definition of t and s we have tst -1 ∈ Stab(s 0 ). Since tst -1 is a conjugate of s, it also acts as an expansion on s 0 . Furthermore, if ρ is the natural morphism from π 1 (M -Γ M ) to π 1 (M ), then

• ρ(t) and ρ(s) stabilize π(γ) ∈ P (see our discussion prior to this proposition)

• ρ(tst -1 ) = ρ(t)ρ(s)ρ(t) -1 = ρ(s), since Stab(π(γ)) = Z
By our previous arguments, both s and tst -1 act as expansions on s 0 and since they project to the same element in π 1 (M ) they move all points of s 0 in the exact same way. This implies that tst -1 s -1 acts as the identity on s 0 and therefore tst -1 = s. Finally, since M -Γ is aspherical (its universal cover is homeomorphic to R 3 , see Proposition 5.3.1), < s, t > has no torsion. It follows that, < t, s >= Z 2 .

In addition to our previous arguments, another way of proving that < s, t >= Z 2 is by understanding the homotopy classes in M -Γ M corresponding to s and t.

Consider an orientation on M . By using the flow Φ, we can canonically orient any transverse (local) section of Φ. This defines a canonical orientation on P. By Proposition 5.3.3, the previous orientation induces an orientation on P and P. For the previous choice of orientation, let ..., s -1 , s 0 , s 1 , s 2 , ... be the stable leaves in F s containing γ ∈ Γ and listed in a counterclockwise order. We defined in the previous proof s to be an element in π 1 (M -Γ) fixing s 0 , generating Stab(s 0 ) and acting as an expansion on s 0 . We also defined t as an element sending every s i to s i+1 when γ corresponds to a periodic orbit with negative eigenvalues and sending s i to s i+2 in the case of positive eigenvalues. Suppose additionally, by eventually replacing t by ts k for some k ∈ Z, that:

• when γ has positive eigenvalues, t ∈ ker(ρ), where ρ is the natural morphism from

π 1 (M -Γ M ) to π 1 (M ) • when γ has negative eigenvalues, ρ(t) is a generator of Stab F s (π(γ)) ≤ π 1 (M )
Since any element in π 1 (M -Γ M ) acting trivially on a stable leaf in F s is the identity, it is not hard to check that s, t are uniquely defined by the previous properties. Notice that our previous definition of t changes significantly depending on whether γ has positive or negative eigenvalues. This is because, when γ has negative eigenvalues, for any element g of Stab(γ) sending every s i to s i+1 , we have that ρ(g) exchanges the stable separatrices of π(γ), thus g / ∈ ker(ρ) and even more, since Stab(π(γ)) = Z, for any k ∈ Z * we have that g k / ∈ ker(ρ).

The point γ ∈ P corresponds to a periodic orbit γ in M . Take T the torus boundary of a tubular neighborhood of γ (recall that M was assumed to be orientable). In Paragraph "Dehn-Goodman-Fried surgeries" in Section 1.3, we defined a meridian and a parallel in T , denoted by m and p, forming a basis of the fundamental group of T . We also defined the class P = 2p -m that is given by the intersection of the weak stable/unstable manifold of γ with T , when γ has negative eigenvalues.

We define an origin point in T , say X 0 . By eventually perturbing m, p, P , we can assume that X 0 belongs to the three previous curves. By an abuse of language, we are going to denote by m, p, P the homotopy classes in π 1 (T, X 0 ) ≤ π 1 (M -Γ M , X 0 ) associated to the previous curves. We are going to show that < s, t >= π 1 (T, X 0 ) = Z 2 , which will give us a second proof of Proposition 5. Proof. Assume first that γ has positive eigenvalues. By proposition 5.4.1, it suffices to understand how the elements p, m act on P. The curve p is contained in F s (γ). Therefore, p acts on M -Γ M by preserving every lift of a stable leaf in M -Γ M . Hence, p preserves every s i -γ ⊂ P. Finally, since p follows once the periodic orbit γ (positively), p acts as an expansion on the s i -γ and it is not hard to see that p generates Stab(s i -γ) for every i.

Concerning m, notice first that if we add Γ M back to M -Γ M the curve m becomes homotopically trivial. Hence, m ∈ ker(ρ). Also, m intersects once every stable and unstable separatrix of γ and by definition it turns around γ in the counterclockwise direction. As a consequence of this m acts as a translation by +2 on the {s k |k ∈ Z}. We thus get that in this case s = p and t = m.

Assume now that γ has negative eigenvalues. Let (M ′ , Φ ′ ) be the orientation cover of (M, Φ) -this is a cover of degree 2-and Γ M ′ the lifts of Γ M on M ′ . The orbit γ lifts to unique periodic orbit of Φ ′ that has a period equal to two times the period of Γ. Similarly, the torus boundary T of a tubular neighborhood of γ lifts to a torus boundary T ′ of a tubular neighborhood of γ ′ . It is easy to see that the meridian m in T lifts to a meridian m ′ in T ′ and that the curve P in T going twice around T lifts to a parallel p ′ of T ′ . Since M ′ -Γ M ′ is a lift of M -Γ M and m, P can be seen as elements of π 1 (M ′ -Γ M ′ ) their actions on P can be identified with the actions of m ′ and p ′ . Therefore, by our previous arguments m sends every s i to s i+2 , ρ(m) = id ∈ π 1 (M ) and P stabilizes every s i , acts as an expansion on every s i and generates Stab(s 0 ). This shows that in this case s = P . Using the fact that P = 2p -m, we finally have that p sends every s i to s i+1 and since ρ(P ) = 2ρ(p), ρ(p) is a generator of Stab F s (π(γ)) ≤ π 1 (M ), which proves that t = p.

Proof of Theorem C

Theorem 5.5.1 (Theorem C). Let (Φ 1 , M 1 ), (Φ 2 , M 2 ) be two transitive Anosov flows on two closed, orientable 3-manifolds, Γ 1 , Γ 2 two finite sets of periodic orbits of Φ 1 , Φ 2 and P 1 , P 2 the bifoliated planes of Φ 1 , Φ 2 up to surgeries on Γ 1 , Γ 2 . We can perform Dehn-Goodman-Fried surgeries on the orbits Γ 1 of (Φ 1 , M 1 ) such that the flow obtained after surgery is orbitally equivalent to (Φ 2 , M 2 ) and such that Γ 2 are the orbits of Φ 2 corresponding to Γ 1 after surgery if and only if there exists a homeomorphism h : P 1 → P 2 such that:

the image by h of any stable (resp. unstable) leaf in

F s 1 (resp. F u 1 ) is a stable (resp. unstable) leaf in F s 2 (resp. F u 2 ) 2. there exists an isomorphism α : π 1 (M 1 -Γ 1 ) → π 1 (M 2 -Γ 2 ) such that for every g ∈ π 1 (M 1 -Γ 1 )
and every x ∈ P 1 we have

h(g(x)) = α(g)(h(x))
Proof. Suppose that after performing surgeries on (Φ 1 , M 1 ) along the orbits Γ 1 , we obtain a flow that is orbitally equivalent to (Φ 2 , M 2 ) and that Γ 2 is the set of periodic orbits of Φ 2 corresponding to Γ 1 after surgery. A Dehn-Goodman-Fried surgery along a periodic orbit of an Anosov flow does not modify the flow outside this periodic orbit, hence the flows

(Φ 1 -Γ 1 , M 1 -Γ 1 ) and (Φ 2 -Γ 2 , M 2 -Γ 2 ) are orbitally equivalent. The orbital equivalence, say H, between Φ 1 -Γ 1 and Φ 2 -Γ 2 defines an isomorphism α : π 1 (M 1 -Γ 1 ) → π 1 (M 2 -Γ 2 )
and lifts to an orbital equivalence H between the two flows lifted respectively on M 1 -Γ 1 and M 2 -Γ 2 , the universal covers of M 1 -Γ 1 and M 2 -Γ 2 , such that:

1. H sends the lift of a stable (resp. unstable) leaf to the lift of a stable (resp. unstable) leaf 2. for every g ∈ π 1 (M 1 -Γ 1 ) and every x ∈ M 1 -Γ 1 we have

H(g.x) = α(g). H(x)
H induces a homeomorphism h : P 1 → P 2 between the orbit spaces of the lifted flows, P 1 and P 2 (see Proposition 5.3.1), such that 1. the image by h of any stable/unstable leaf in F s,u 1 is a stable/unstable leaf in F s,u 2 2. for every g ∈ π 1 (M 1 -Γ 1 ) and every x ∈ P 1 we have

h(g(x)) = α(g)(h(x))
Seeing P 1 and P 2 as subsets of P 1 and P 2 , since H sends a neighborhood of an orbit in Γ 1 to the neighborhood of a unique orbit in Γ 2 , the homeomorphism h sends a punctured neighborhood of any point in Γ 1 to a punctured neighborhood of a unique point in Γ 2 . Therefore, h can be extended to a homeomorphism from P 1 to P 2 , which gives us the desired result.

Let us now show the converse. Assume that there exists a homeomorphism h : P 1 → P 2 with the above properties. Fix an orientation on P 1 and P 2 , so that h is orientation preserving. First, notice that the number of orbits in Γ 1 is equal to the one in Γ 2 . Indeed, using the Proposition 5.4.4, the number of orbits in Γ 1 (resp. Γ 2 ) is equal to the number of orbits -for the action of π 1 (M 1 -Γ 1 ) (resp. π 1 (M 2 -Γ 2 ))-of points in P 1 (resp. P 2 ), whose stabilizers are isomorphic to Z 2 . By hypothesis, h is equivariant for the action of the fundamental groups and sends points with Z 2 stabilizers to points with Z 2 stabilizers. We conclude that Γ 1 and Γ 2 contain the same number of orbits.

In our discussion prior to this proposition, for every element γ in Γ 1 (resp. Γ 2 ), by using our choice of orientation on P 1 (resp. P 2 ) and by labelling the stable leaves of γ in a counterclockwise order, we constructed a basis s

M 1 γ , t M 1 γ (resp. s M 2 γ , t M 2 γ ) of Stab(γ), where s M 1 γ (resp.s M 2
γ ) fixes all the stable (or unstable) leaves intersecting γ and t M 1 γ (resp.t M 2 γ ) acts as a translation by either +1 or +2 on the previous (ordered) set of leaves depending on whether γ has respectively negative or positive eigenvalues. Recall that for any γ in Γ 1 (resp. Γ 2 ), the element s M 1 γ (resp. s M 2 γ ) acts as an expansion on every stable leaf containing γ and is generating the stabilizer of the stable leaves containing γ. As we have also previously mentioned, the elements s M 1 γ , s M 2 γ are uniquely defined in π 1 (M 1 -Γ 1 ) and π 1 (M 2 -Γ 2 ) by the above properties. Therefore, by the equivariance of h

α(s M 1 γ ) = s M 2 h(γ)
(5.5.1)

Let us now remark that h sends periodic points of Γ 1 with positive (resp. negative) eigenvalues to periodic orbits of Γ 2 with positive (resp. negative) eigenvalues. Indeed, let γ ∈ Γ 1 . By Proposition 5.4.3, γ has positive eigenvalues if and only if the smallest possible translation in Stab(γ) on the set of stable leaves intersecting γ is a translation by ±2. By using the equivariance of h, we have that the previous condition stands for γ if and only if it it stands for h(γ). Therefore, γ has positive eigenvalues if and only if h(γ) has positive eigenvalues.

We deduce from the above and from the fact that h is orientation preserving -thus it sends the counterclockwise ordered set of stable leaves of γ to the counterclockwise ordered set of stable leaves of h(γ)-that the element α(t M 1 γ ) corresponds to a translation by +1 or +2 (this depends on the eigenvalues of γ) acting on the (ordered) set of stable leaves intersecting h(γ). Therefore, there exists k ∈ Z such that

α(t M 1 γ ) = t M 2 h(γ) + k • s M 2 h(γ)
(5.5.2)

Let γ ∈ Γ 1 be the periodic orbit in M 1 that is associated to γ. Notice that k does not depend on the choice of lift of γ in P. Indeed, take g ∈ π 1 (M 1 -Γ 1 ), we have that

• s M 1 g(γ) = gs M 1 γ g -1 , t M 1 g(γ) = gt M 1 γ g -1 • s M 2 h(g(γ)) = α(g)s M 2 h(γ) α(g) -1 , t M 2 h(g(γ)) = α(g)t M 2 h(γ) α(g) -1
Therefore,

α(t M 1 g(γ) ) = t M 2 h(g(γ)) + k • s M 2 h(g(γ))
By the above, to every γ ∈ Γ 1 we can associate an integer k(γ). Consider (M 3 , Φ 3 ) the Anosov flow obtained from (M 1 , Φ 1 ) by performing a surgery of coefficient -k(γ) for every γ ∈ Γ 1 . Let us show that (M 3 , Φ 3 ) is orbitally equivalent to (M 2 , Φ 2 ).

Denote by Γ 3 ⊂ M 3 the periodic orbits corresponding to Γ 1 after surgery. By the first part of this proof, there exists a homeomorphism H : P 1 → P 3 satisfying the following: 1. the image by H of any stable (resp. unstable) leaf in F s 1 (resp. F u 1 ) is a stable (resp. unstable) leaf in F s 3 (resp. F u 3 ) 2. there exists l : π 1 (M 1 -Γ 1 ) → π 1 (M 3 -Γ 3 ) a group isomorphism such that for every g ∈ π 1 (M 1 -Γ 1 ) and every x ∈ P 1 , we have

H(g(x)) = l(g)(H(x))
Furthermore, for any γ ∈ Γ 1 we will prove that

l(s M 1 γ ) = s M 3 H(γ)
(5.5.3)

l -1 (t M 3 H(γ) ) = t M 1 γ -k • s M 1 γ (5.5.4)
Indeed, let us first consider the case where γ has positive eigenvalues. By Proposition 5.4.5,

s M 1 γ (resp. t M 1 γ ) coincides with p 1 (resp. m 1 ), where p 1 , m 1 is a canonical basis of T 1 ⊂ M 1 , the torus boundary of a tubular neighborhood of γ ∈ Γ 1 . The elements s M 3 H(γ) and t M 3 H(γ)
are similarly defined. After performing surgery, the natural parallel on T 1 didn't change, therefore l(p 1 ) = p 3 . However, the natural meridian of

T 1 satisfies l -1 (m 3 ) = m 1 -k • p 1 .
This proves the above relations.

Consider now the case where γ has negative eigenvalues. Again by Proposition 5.4.5,

s M 1 γ (resp. t M 1 γ ) coincides with P 1 = 2p 1 -m 1 (resp. p 1 ,
where p 1 , m 1 is a canonical basis of T 1 , the torus boundary of a tubular neighborhood of γ ∈ Γ 1 . The elements s M 3 H(γ) and t M 3 H(γ) are similarly defined. By performing a surgery with coefficient -k on γ, we leave P 1 intact and we add -2k copies of P 1 to the meridian, hence l(P 1 ) = P 3 and l -1 (m 3 ) = m 1 -2k • P 1 . Therefore, l -1 (2p 3 ) = l -1 (P 3 + m 3 ) = P 1 + m 1 -2k • P 1 = 2p 1 -2k • P 1 . This implies that p 3 = p 1 -k • P 1 , which proves the above relations. Consider now the homeomorphism K = H • h -1 : P 2 → P 3 . Using (5.5.1), (5.5.2), (5. 5.3) and (5.5.4) we have that K satisfies the following: 1. the image by K of any stable (resp. unstable) leaf in

F s 2 (resp. F u 2 ) is a stable (resp. unstable) leaf in F s 3 (resp. F u 3 ) 2. there exists an isomorphism β : π 1 (M 2 -Γ 2 ) → π 1 (M 3 -Γ 3 ) such that for every g ∈ π 1 (M 2 -Γ 2 ), γ ∈ Γ 2 and x ∈ P 2 we have K(g(x)) = β(g)(K(x)) β(s M 2 γ ) = s M 3 K(γ)
(5.5.5)

β(t M 2 γ ) = l(t M 1 h -1 (γ) -k • s M 1 h -1 (γ) ) = t M 3 K(γ)
(5. 5.6) Take δ an element of Γ 2 (resp. Γ 3 ) and its associated orbit

δ in M 2 (resp. M 3 ). Define m M 2 δ = t M 2 δ (m M 3 δ = t M 3 δ ) if δ has positive eigenvalues and m M 2 δ = 2t M 2 δ -s M 2 δ (resp. m M 3 δ = 2t M 3 δ -s M 3 δ ) if not. Notice that by Proposition 5.4.5 the homotopy class m M 2 δ (resp. m M 3 δ )
corresponds to a meridian of the torus boundary of a tubular neighborhood of δ. Consider now γ 1 , ..., γ n a representative of each π 1 (M 2 -Γ 2 )-orbit in Γ 2 . By the equivariance of K and the fact that K(Γ 2 ) = Γ 3 , K(γ 1 ), ..., K(γ n ) are representatives of each π 1 (M 3 -Γ 3 )-orbit in Γ 3 . Therefore, by the Seifert-Van Kampen theorem,

ker(π 1 (M 2 -Γ 2 ) → π 1 (M 2 )) =< m M 2 γ 1 , ..., m M 2 γn > π 1 (M 2 -Γ 2 ) ker(π 1 (M 3 -Γ 3 ) → π 1 (M 3 )) =< m M 3 K(γ 1 ) , ..., m M 3 K(γn) > π 1 (M 3 -Γ 3 ) where < A > π 1 (M 2 -Γ 2 ) (resp. < A > π 1 (M 3 -Γ 3 ) ) stands for the normal subgroup of π 1 (M 2 -Γ 2 ) (resp. π 1 (M 3 -Γ 3 )) generated by A.
Using the two previous equalities together with (5.5.5) and ( 5.5.6), we get that

β(ker(π 1 (M 2 -Γ 2 ) → π 1 (M 2 ))) = ker(π 1 (M 3 -Γ 3 ) → π 1 (M 3 ))
(5.5.7) Also, by Proposition 5.3.3

P 2/ ker(π 1 (M 2 -Γ 2 ) → π 1 (M 2 )) = P 2
(5.5.8)

P 3/ ker(π 1 (M 3 -Γ 3 ) → π 1 (M 3 )) = P 3 (5.5.9) 
Finally, by (5.5.7), (5.5.8), (5.5.9) and since K is equivariant with respect to the group actions on P 2 and P 3 , K projects to a homeomorphism k : P 2 → P 3 that satisfies the following:

1. the image by k of any stable (resp. unstable) leaf in F s 2 (resp. F u 2 ) is a stable (resp. unstable) leaf in F s 3 (resp. F u 3 ) 2. there exists an isomorphism µ : π 1 (M 2 ) → π 1 (M 3 ) such that for every g ∈ π 1 (M 2 ) and

x ∈ P 2 we have k

(g(x)) = µ(g)(k(x))
By Theorem 1.2.29, we deduce that Φ 2 and Φ 3 are orbitally equivalent and we get the desired result.

Chapter 6

Rectangle paths in the bifoliated plane up to surgeries

Thanks to Theorem C, in order to prove Theorem B, it suffices to show that the geometric type of a Markovian family R characterizes the bifoliated plane up to surgeries along the boundary periodic points of R. In order to do so, in Section 6.1 we will lift Markovian families on the bifoliated plane up to surgeries and we will show that the set of geometric types associated to the lifted Markovian family (see our discussion prior to Proposition 6. 1.5 for a definition of this set) coincides with the set of geometric types associated to its projection on P (see Proposition 6.1.5). Next, in Section 6.2, we will use rectangle paths in order to navigate simultaneously into two bifoliated planes up to surgeries that contain Markovian families whose associated classes of geometric types are the same.

The main goal of this chapter is to use Markovian families as coordinate systems of the bifoliated plane up to surgeries and to show that two Markovian families whose associated classes of geometric types coincide, correspond to two compatible coordinate systems in the bifoliated plane up to surgeries (see Theorem 6.2.4). The proof of this result is rather technical, but also the most important step in the proof of Theorem B.

Lifting Markovian families on the bifoliated plane up to surgeries

Let M be a closed, oriented 3-manifold carrying a transitive Anosov flow Φ. Let P be the bifoliated plane of Φ, carrying a Markovian family R. Denote by Γ the boundary periodic points of R, by P the bifoliated plane of Φ up to surgeries on Γ, by Γ the lifts of the elements of Γ on P and by π the projection from P to P. Using as a starting point our definition of Markovian family in P, we can extend the notion of Markovian family in P. This allows us to define rectangle paths in P and use them later as coordinate systems for comparing bifoliated planes up to surgeries.

We define rectangles in P in the exact same way as for P (see Definition 2.1.1). Notice that a rectangle in P whose interior does not contain any point of Γ lifts to a rectangle in P. This is why, we will define a Markovian family in P as the lift on P of a Markovian family in P, whose boundary periodic points are exactly Γ. The definitions of the notions k-th successor/predecessor and s-crossing predecessor can also be extended for Markovian families on P: Definition 6.1.1. Let R be a Markovian family in P. For any two rectangles R 1 , R 2 ∈ R, we will say that R 1 is a predecessor

(resp. successor) of R 2 if • R 1 ∩ • R 2 ̸ = ∅ and the π(R 1 ) ⊂ P is a predecessor (resp. successor) of π(R 2 ).
We similarly define predecessors/successors of generation k ≥ 2 and s-crossing predecessors/successors on P.

We define a rectangle path in P in the same way as in P (see Definition 4. 1.1).

♠ Remark 6.1.2. Consider R 1 , R 2 ∈ R. Analogously to the case of rectangles in R (see Definition 2.2.10), R 1 is a predecessor of R 2 if and only if R 1 ∩ R 2 is a maximal non-trivial vertical subrectangle of R 2 (i.e. if there exists a rectangle R ′ 1 ∈ R intersecting R 2 along a non-trivial vertical subrectangle that contains R 1 ∩ R 2 , then R ′ 1 = R 1 ).
Naturally, an analogous statement is true for successors in R.

Indeed, take R 1 , R 2 ∈ R such that • R 1 ∩ • R 2 ̸ = ∅. Recall that R is the lift of R on P. Since π(F s,u ) = F s,u and • R 1 ∩ • R 2 ̸ = ∅, we have that π(R 1 ∩ R 2 ) is a non-trivial vertical subrectangle of π(R 2 ) ∈ R if and only if R 1 ∩ R 2 is a non-trivial vertical subrectangle of R 2 .
Assume now that R 1 intersects R 2 along a non-trivial vertical subrectangle. We have that there exists a rectangle in R intersecting π(R 2 ) along a non-trivial vertical subrectangle containing π(R 1 ∩ R 2 ) if and only if there exists a rectangle in R intersecting R 2 along a non-trivial vertical subrectangle containing R 1 ∩ R 2 . By combining the previous statements, we get that R 1 intersects R 2 along a maximal non-trivial vertical subrectangle of R 2 if and only if the same is true for π(R 1 ) and π(R 2 ). We thus get the desired result thanks to the Definitions 2.2.10 and 6.1.1.

Similarly, one could show that defining in R the notions of predecessor/successor of generation k ≥ 2 or crossing predecessor/successor by following our definitions of the previous notions in R (see Definitions 2.2.10 and 3.0.6) would result to a definition equivalent to Definition 6.1.1. Definition 6.1.3. A point in P will be called periodic (resp. boundary arc, boundary periodic) if its projection on P is a periodic (resp. boundary arc, boundary periodic) point.

A stable/unstable leaf f of P will be called periodic if there exists g ∈ π 1 (M -Γ) -{id} such that g(f ) = f ♠ We also define a simple/polygonal/closed polygonal/good polygonal curve in P in the same way as in P (see Definitions 4. 1.2, 4.1.3 and 4.2.1). Remark 6.1.4. Contrary to the case of P, there exist simple closed curves γ in P, such that P -γ contains more than two connected components. Indeed, take s an arc in P connecting two different points in Γ. Notice that since P is topologically a plane to which we have added a countable set of points at infinity, namely the points Γ, the arc s disconnects P. Consider now an arc s ′ close to s, having the same extremities as s and intersecting nowhere else s. By parametrizing s ∪ s ′ , we can obtain a simple, closed curve γ in P such that P -γ consists of two unbounded connected components and one bounded connected component.

Despite the existence of such curves, Jordan's theorem applies for simple, closed curves in P that do not intersect Γ and we can thus define as in Definition 4.2.1 the interior and exterior of a simple, closed curve in P that does not contain any point of Γ.

Next, by repeating the same construction as in Definition 2.3.1, we can associate to any Markovian family R in P a finite number of geometric types, that we will call once again the geometric types of R or the geometric types associated to R. Furthermore, by the same arguments as in the proof of Theorem 2.3.4, we can show that the geometric types of R are pairwise equivalent and that Remark 2.3.3 remains true for Markovian families in P. In fact, we have the following result: Proposition 6.1.5. Let R be a Markovian family in P and R its projection on P. The set of geometric types associated to the Markovian families R and R coincide.

Proof. Choose an orientation of the stable and unstable foliations F s , F u in P. This orientation canonically defines an orientation on F s,u . Consider also a choice of representatives r 1 , ..., r n of every rectangle orbit in R and a lift r i ∈ R of every r i . Thanks to Remark 5.4.2, the rectangles r i are representatives of every rectangle orbit in R. According to Remark 2.3.3, together with this choice of representatives and orientations, the Markovian families R and R uniquely define two geometric types G = (n, (h

i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) and G = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) respectively.
Let us now go back to the construction of G and G (see Definition 2.3.1). The number n (resp. n) in G (resp. G) is equal to the number of distinct orbits of rectangles in R (resp. R) by the action of π 1 (M ) (resp. π 1 (M -Γ)). By our arguments in the previous paragraph, n = n.

Next, the number h i (resp. v i ) corresponds to the number of successors (resp. predecessors) of r i . Same for h i and v i . By Definition 6.1.1, r i and r i have the same number of predecessors and successors. In other words, h i = h i and v i = v i . Now, let us order the successors (resp. predecessors) of every r i from bottom to top (resp. from left to right) using the orientations of F u (resp. F s ). We will denote the k-th successor (resp.predecessor) of r i for this order by

H k i (resp. V k i ). Recall that H = {H k i , i ∈ 1, n , k ∈ 1, h i } and V = {V k i , i ∈ 1, n , k ∈ 1, v i }.
We similarly define V k i , H k i , H, V for the rectangles r i . By our choice of orientations on F s,u we have that π(

H k i ) = H k i and π(V k i ) = V k i .
Therefore, we can canonically identify H with H and V with V. Also, ϕ(H k i ) = V l j if and only if there exists g ∈ π 1 (M ) such that g(H k i ) = r j and g(r i ) is the l-th predecessor (from left to right) of r j . Recall that the previous g (when it exists) is unique and that u(H k i ) = +1 if g preserves the orientations of the stable/unstable foliations in P and u(H k i ) = -1 if not. The functions ϕ and u are similarly defined. Thanks to Remark 5.4.2, we deduce that ϕ(H k i ) = V l j if and only if ϕ(H k i ) = V l j . Moreover, take h ∈ H, h = π(h) ∈ H and g (resp. g) the unique element in π 1 (M ) (resp. π 1 (M -Γ)) such that g(h) = r j (resp. g(h) = r j ). Notice that π • g = g • π. It is not difficult to see that g preserves the orientation of the foliations F s,u if and only if g preserves the orientation of the foliations F s,u . Hence, u(h) = u(h). Finally, using the identifications between H and H, V and V, we have that ϕ and ϕ (resp. u and u) define the same functions from H to V, which proves the desired result.

Rectangle paths as coordinate systems

Let (M 1 , Φ 1 ) and (M 2 , Φ 2 ) be two transitive Anosov flows, P 1 and P 2 their bifoliated planes, F s 1 ,F u 1 (resp. F s 2 ,F u 2 ) the stable and unstable foliations in P 1 (resp. P 2 ). Assume that P 1 and P 2 carry two Markovian families R 1 and R 2 whose associated classes of geometric types coincide.

By appropriately choosing representatives for every rectangle orbit in R 1 and R 2 , and orientations for the foliations F s,u 1 ,F s,u 2 , we may assume that R 1 and R 2 correspond to the same geometric type (R 1 , ..., R n , (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u), thanks to Remark 2.3.3 and Lemma 2.3.5.

For every i ∈ {1, 2}, let us denote Γ i (resp. Γ M i i ) the boundary periodic points (resp. orbits) associated to R i in P i (resp. in M i ), P i the bifoliated plane of Φ i up to surgeries on Γ i , F s i , F u i the stable and unstable singular foliations in P i , R i the lift of R i on P i and Γ i the lift of Γ i on P i . We would like to associate to any rectangle path in P 1 a rectangle path in P 2 .

By our proof of Proposition 6.1.5,

• since the classes of geometric types associated to R 1 and R 2 are the same, we can endow F s,u 1 , F s,u 2 with orientations and choose representatives in every rectangle orbit of R 1 , R 2 so that R 1 and R 2 correspond to the same geometric type (R 1 , . .., R n 

, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u).
Fix such a choice of orientations and representatives.

• every π 1 (M 1 -Γ M 1 1 )-orbit of rectangles in R 1 corresponds to a unique rectangle of the geometric type. Same for R 2 . Definition 6.2.1. We will say that

R 1 ∈ R 1 (resp. R 2 ∈ R 2 ) is of type i if the π 1 (M 1 -Γ M 1 1 )- orbit (resp. π 1 (M 2 -Γ M 2
2 )-orbit) of R 1 (resp. R 2 ) in P 1 (resp. P 2 ) corresponds to the i-th rectangle of the geometric type. ♠

Fix r 1 0 ∈ R 1 and r 2 0 ∈ R 2 a rectangle of the same type as r 1 0 . From now on, we will call r 1 0 , r 2 0 the origin rectangles in P 1 , P 2 and we will also call any rectangle path in P 1 , P 2 starting from r 1 0 , r 2 0 a centered rectangle path. To any centered rectangle path r 1 0 , ..., r 1 N in P 1 it is possible to canonically associate a unique centered rectangle path r 2 0 , ..., r 2 N in P 2 such that for every i ∈ 0, N r 1 i and r 2 i are 2. in showing that a rectangle path that can be deformed to the trivial one is necessarily closed 3. in proving that a rectangle path in P 1 can be deformed to a trivial one if and only if its associated rectangle path in P 2 can be deformed to a trivial one

Three types of homotopies of rectangle paths

Take (M, Φ) a transitive Anosov flow, P its bifoliated plane, F s , F u the stable and unstable foliations in P, R a Markovian family on P, Γ ⊂ P the set of boundary points of R, P the bifoliated plane of Φ up to surgeries on Γ, R and Γ the lifts of R and Γ on P, and F s , F u the singular stable and unstable foliations in P.

By repeating the arguments used in Section 4.1, we can prove the analogues of Lemmas 4. 1.5 and 4.1.6 and of Proposition 4.1.9 for good polygonal curves and rectangle paths in P. It therefore remains true that we can associate rectangle paths in R to good polygonal curves in P and vice versa. In the following lines, we will use this association in order to define the notion of homotopy for rectangle paths.

We will fix for the rest of this section R 0 , ..., R n a rectangle path in R. Definition 6.3.1. We will say that two rectangle paths are homotopic by a homotopy of type A if they are equal.

Two good polygonal curves γ, δ : [0, 1] → P associated to the rectangle path R 0 , ..., R n (by Proposition 4.1.9) will be called homotopic by a homotopy of type A (relatively to R 0 , ..., R n ).

♠

Notice that the notion of homotopy of type A for good polygonal curves depends on the rectangle path relatively to which we perform it. Indeed, take γ a good polygonal curve contained inside R ∈ R such that γ(0) ∈ R 1 and γ(1) ∈ R 2 , where R 1 , R 2 are predecessors of R. We can associate to γ a non-trivial rectangle path starting from R 1 and also the trivial rectangle path R. Notice that relatively to R the curve γ is homotopic by a homotopy of type A to a point. Relatively to the non-trivial rectangle path starting from R 1 , this is not the case. Convention 6.3.2. By an abuse of language, whenever the context makes it clear, we will omit the rectangle paths relatively to which we will perform homotopies of good polygonal curves.

Definition 6.3.3. Consider R 0 , ..., R n a rectangle path such that there exists k ∈ 0, n -2 for which R k = R k+2 . We are going to say that the rectangle paths R 0 , .., R k , R k+3 , R k+4 , ... and R 0 , ..., R n are homotopic by a homotopy of type B.

Consider γ, δ two good polygonal curves associated to the rectangle paths R 0 , ..., R n and R 0 , .., R k , R k+3 , R k+4 , ..., R n respectively (see Figure 6.1). We will say that γ and δ are homotopic by a homotopy of type B (relatively to R 0 , ..., R n and R 0 , .., R k , R k+3 , R k+4 , ..., R n ). ♠ Homotopies of type A or type B correspond to "movements" of good polygonal curves in the interior of the rectangles of R. More specifically, it can be proved that if two good polygonal curves are homotopic by a homotopy of type A or B, then we can deform one to the other without ever crossing a boundary arc or a boundary periodic point of R.

Notice that, contrary to the case of P, by construction of P (see also Figure 5.2b), it is not possible to define a continuous deformation between two curves in P crossing a boundary periodic point in R. We would therefore like at this point to define a homotopy allowing good polygonal curves to cross boundary arc points in P. We will name this homotopy, homotopy of type C. In order to introduce this homotopy, we will first need to introduce the notion of cycle around a boundary arc point: Definition 6.3.4. Take p ∈ P a boundary arc point and L 0 ∈ R such that L 0 contains p and two germs of quadrants of p (i.e. very small neighborhoods of p inside two quadrants of p). Assume without any loss of generality that p ∈ ∂ s L 0 (see Figure 6.2). Consider r the stable boundary component of L 0 containing p. By Remark 3.0.8, there exists L 1 an r-crossing predecessor of L such that p ∈ ∂L 0 ∩ ∂L 1 .

Consider r 1 the unstable boundary component of L 1 containing p. By Lemmas 3.0.4 and 3.0.5, there exists L 2 an r 1 -crossing successor of L 1 such that p ∈ ∂L 2 ∩ ∂L 1 and

• L 2 ∩ • L 0 = ∅.
By the same exact procedure, we construct L 3 and L 4 such that

• L 3 ∩ • L 1 = ∅ and • L 4 ∩ • L 2 = ∅.
We are going to call (L 0 , L 1 , L 2 , L 3 , L 4 ) a cycle around p starting from L 0 . ♠ Remark 6.3.5. For any boundary arc point p ∈ P, there exists a cycle around p.

Indeed, by Definition 6. 3.4, it suffices to show that there exists L ∈ R containing p and the germs of two quadrants of p. Take L ∈ R containing p. Since p is a boundary arc point, it is contained in the boundary of L. If p is not a corner point of L, then L contains the germs of two quadrants of p. If p is a corner point of L, let us name s the stable boundary of L in which it is contained. Consider L ′ the s-crossing predecessor of L that contains p. The rectangle L ′ contains the germs of two quadrants of p.

Boundary arc points, by definition, are not periodic points, they are therefore regular points of the foliations F s and F u . Take p a boundary arc point and (L 0 , L 1 , L 2 , L 3 , L 4 ) a 

• L 0 ∩ G (-,-) ̸ = ∅, • L 0 ∩ G (+,-) ̸ = ∅ • • L 1 ∩ G (+,-) ̸ = ∅, • L 1 ∩ G (+,+) ̸ = ∅ • • L 2 ∩ G (+,+) ̸ = ∅, • L 2 ∩ G (-,+) ̸ = ∅ • • L 3 ∩ G (-,+) ̸ = ∅, • L 3 ∩ G (-,-) ̸ = ∅ • • L 4 ∩ G (-,-) ̸ = ∅, • L 4 ∩ G (+,-) ̸ = ∅ Negative cycle • • L 0 ∩ G (+,-) ̸ = ∅, • L 0 ∩ G (-,-) ̸ = ∅ • • L 1 ∩ G (-,-) ̸ = ∅, • L 1 ∩ G (-,+) ̸ = ∅ • • L 2 ∩ G (-,+) ̸ = ∅, • L 2 ∩ G (+,+) ̸ = ∅ • • L 3 ∩ G (+,+) ̸ = ∅, • L 3 ∩ G (+,-) ̸ = ∅ • • L 4 ∩ G (+,-) ̸ = ∅, • L 4 ∩ G (-,-) ̸ = ∅
In the first case, we will call the cycle positive and in the second one negative. Notice in particular, that for every cycle (L 0 , L 1 , L 2 , L 3 , L 4 ) around p, we have that

• L 4 ∩ • L 0 ̸ = ∅.
Lemma 6.3.6. Take p ∈ P a boundary arc point and L 0 ∈ R such that L 0 contains p and the germs of two quadrants of p. There exist exactly two cycles around p starting from L 0 : one positive and one negative.

Proof. Without any loss of generality, we can assume that p is contained in a stable boundary component of L 0 , say s, and that a germ of the (-, -) and (+, -) quadrants of p is contained in L 0 . By Remark 3.0.8 and Lemmas 3.0.4, 3.0.5, since p is a boundary arc point and any two distinct s-crossing predecessors of L 0 intersect only along their boundaries, there exist exactly two s-crossing predecessors L 1 , L ′ 1 of L 0 containing p: L 1 contains a germ of the (+, +) and (+, -) quadrants of p and L ′ 1 a germ of the (-, +) and (-, -) quadrants of p. Since L 1 is an s-crossing predecessor of L 0 , the point p is contained in the interior of some unstable boundary component of L 1 . Therefore, by our previous argument the rectangle L 2 of Definition 6.3.4 is uniquely defined. Similarly, the rectangles L 3 and L 4 of Definition 6. 3.4 are uniquely defined. The same argument applies for L ′ 1 . We thus obtain exactly two cycles around p starting from L 0 : one positive and one negative. Lemma 6.3.7. Take p ∈ P a boundary arc point and L 0 ∈ R containing the germs of two quadrants of p. If (L 0 , L 1 , L 2 , L 3 , L 4 ) is a cycle around p, then (L 0 , L 3 , L 2 , L 1 , L 4 ) is the other cycle around p starting from L 0 .

Proof. Let us assume without any loss of generality that p ∈ ∂ s L 0 . Denote by s the stable boundary component of L 0 containing p. Assuming that (L 0 , L 1 , L 2 , L 3 , L 4 ) is a cycle around p, let us show that L 3 is an s-crossing predecessor of L 0 .

If s ′ is the stable boundary component of L 2 containing p, then by construction L 3 is a s ′ -crossing predecessor of L 2 . By Remark 3.0.8, the unstable boundary of L 3 intersects s ′ along boundary arc points. By the Markovian intersection property, L 3 ∩ L 0 is a vertical subrectangle of L 0 (see Figure 6.2). Since ∂ u L 3 ∩ s consists of two boundary arc points, we deduce from Remark 3.0.8 that L 3 is an s-crossing predecessor of L 0 . We show in the exact same way, that L 2 is a crossing successor of L 3 , that L 1 is a crossing predecessor of L 2 and that L 4 is a crossing successor of L 1 . Finally, since (L 0 , L 1 , L 2 , L 3 , L 4 ) is a cycle, we have that

• L 2 ∩ • L 0 = ∅, • L 3 ∩ • L 1 = ∅ and • L 4 ∩ • L 2 = ∅.
By Lemma 6.3.6, we conclude that (L 0 , L 3 , L 2 , L 1 , L 4 ) is the second cycle around p starting from L 0 . Lemma 6.3.8. Take p ∈ P a boundary arc point and L 0 , L ′ 0 ∈ R two rectangles containing the germs of the same two quadrants of p. If (L 0 , L 1 , L 2 , L 3 , L 4 ) is a positive (resp. negative) cycle around p, then (L ′ 0 , L 1 , L 2 , L 3 , L 4 ) is also a positive (resp. negative) cycle around p.

Proof. Indeed, assume without any loss of generality that (L 0 , L 1 , L 2 , L 3 , L 4 ) is a positive cycle around p and that L 0 , L ′ 0 contain the germs of the (-, -) and (+, -) quadrants of p. Denote by r and r ′ the stable boundary components of L 0 and L ′ 0 containing p. By definition of a positive cycle, L 1 contains the germs of the (+, -) and (+, +) quadrants of p and is an r-crossing predecessor of L 0 . By the Markovian intersection axiom, L 1 ∩ r = L 1 ∩ r ′ and L 1 ∩ L ′ 0 is a non-trivial vertical subrectangle of L ′ 0 ; hence by Lemma 2.2.12 L 1 is a predecessor of some generation of L ′ 0 . Even more, the two extremities of L 1 ∩ r consist of two boundary arc points by Remark 3.0.8 and thanks to the same remark applied to L 1 ∩ r ′ we get that L 1 is an r ′ -crossing predecessor of L ′ 0 . By using our construction in Definition 6. 3.4, we get that (L ′ 0 , L 1 , L 2 , L 3 , L 4 ) is a cycle around p visiting the quadrants of p in the same order as (L 0 , L 1 , L 2 , L 3 , L 4 ), which gives us the desired result. Remark 6.3.9. • Notice that by the above lemma, the rectangles L 1 , L 2 , L 3 , L 4 are canonically associated to p independently of the choice of L 0 . In particular, this means that (L 4 , L 1 , L 2 , L 3 , L 4 ), (L 1 , L 2 , L 3 , L 4 , L 1 ), (L 2 , L 3 , L 4 , L 1 , L 2 ) and (L 3 , L 4 , L 1 , L 2 , L 3 ) define four cycles around p.

• The reason why there exist cycles (L 0 , L 1 , L 2 , L 3 , L 4 ) around p for which L 0 ̸ = L 4 , is because contrary to the case of successors/predecessors, if L 1 is a s-crossing predecessor of L 0 , then L 0 is not necessarily a u-crossing successor of L 1 (see Figure 6.2).

3.0.5 and Remark 3.0.8, the number of boundary arc points in the closure of the interior of γ is finite except if a point of Γ lies in the interior of γ. This is impossible, since γ is good and no loop in P can go around a point in Γ.

Let l(γ) be the length of the good polygonal curve γ. We will apply an induction on the well ordered set of couples (M, n) ∈ N × N endowed with the lexicographic order: (M 1 , n 1 ) < (M 2 , n 2 ) if and only if M 1 < M 2 or M 1 = M 2 and n 1 < n 2 . At every step of our induction, we will perform a finite sequence of homotopies of type A, B or C on γ -therefore also on its associated rectangle path-, that will produce a new simple, good and closed polygonal curve γ ′ such that (M (γ ′ ), l(γ ′ )) < (M (γ), l(γ))

Notice that any simple and good polygonal curve has length at least equal to 4. Hence, the smallest such curves have the form of a rectangle. We will therefore initialize our induction by considering the case where γ is a rectangle containing no boundary arc points in its interior.

Let us first fix some notations. By Remark 4.1.10, there exists 0 = c 0 < c 1 < ...c n+1 = 1 a (n + 2)-uple such that γ(c i , c i+1 ) ⊂ R i and a function Rect γ,R 0 : [0, 1] → {R 0 , ..., R n } associated to c 0 < c 1 < . ..c n+1 sending points of γ to rectangles. Fix such a collection of c i . We will assume that we have chosen the c i as in Lemma 4. 1.11. Also, for the sake of simplicity for any interval I ⊂ [0, 1] if A = γ(I), then we will denote Rect γ,R 0 (I) also by Rect γ,R 0 (A). By following the rectangles associated to the different points in I, in the following lines, we will think of Rect γ,R 0 (A) = Rect γ,R 0 (I) as a rectangle path, instead of just a set of rectangles.

Initializing the induction

Assume that (M (γ), l(γ)) = (0, 4). Otherwise said, assume that the simple and good polygonal curve γ is a rectangle in P containing no boundary arc points in its interior. We will show that under this hypothesis, the associated rectangle path of γ has the desired form.

By Remark 4. 1.4, γ(0) is a corner of the rectangle γ. Let us denote by u ′ , s, u, s ′ , following the order in which γ visits them, the four segments forming γ.

We will associate to one of the previous segments of γ, say S, the number 0 if the rectangle path Rect γ,R 0 (S) is trivial and the number 1 if not. We write S → 0 in the first case and S → 1 in the latter. In this way, we can associate to γ a unique element of {0, 1} 4 . Our method for associating rectangle paths to curves (see Definition 4.1.7) restricts the elements of {0, 1} 4 that can be associated to γ. Lemma 6.4.2. If γ is a rectangle, then the only elements of {0, 1} 4 that can be associated to γ are (0, 0, 0, 0), (0, 1, 1, 1), (0, 1, 0, 0), (1, 0, 0, 0) and (1, 1, 1, 1). If furthermore, the interior of γ contains no boundary arc points, (1, 1, 1, 1) and (0, 1, 1, 1) are impossible.

Proof. Without any loss of generality, let us assume that u, u ′ are unstable segments and s, s ′ are stable segments.

If (u ′ , s) → (0, 0), then by our choice of c i , the segments u ′ and s do not exit R 0 . Hence, since R 0 is trivially bifoliated and γ is a rectangle, we have that s ′ , u ⊂ R 0 . Therefore, in We treat the case where γ corresponds to (0, 1, 1, 1) in a similar way.

Induction step in the general case

We will assume here that γ is not a rectangle. In this case, our algorithm begins by choosing one stable or unstable tangency s such that :

• s is of type (a) or (b) and has a complete domain Dom (see Lemma 4.2.5)

• γ(0) / ∈ Dom or γ(0) is a corner point of the rectangle Dom that is not in s

• the interior of one side of ∂Dom is disjoint from γ

The existence of such a tangency is proven in the following lemma. We will call a tangency with the above properties, a tangency with property (⋆). If furthermore γ(0) / ∈ Dom, we will say that the tangency satisfies the strong (⋆) property. Lemma 6.4.3. Let γ be a good, simple and closed polygonal curve of length strictly greater than 4. There exists s a stable or unstable tangency of γ with property (⋆).

Proof. Indeed, take s to be a stable tangency of γ of type (a) or (b) (the existence of at least 2 of such tangencies is assured by Lemma 4.2.3). Suppose that the domain of s, that we will denote by Dom, is not complete. In that case, by Remark 4.2.6, there exists a stable segment s ′ of γ intersecting the interior of the stable boundary component of Dom that is not s. Since

• Dom ∩ γ = ∅ and Dom is incomplete, s ′ is a stable tangency of γ of type (c) or (d). Therefore, to every tangency of γ of type (a) or (b) with an incomplete domain we can injectively associate a tangency of type (c) or (d). We deduce by Lemma 4.2.3 that there exist at least two stable tangencies of type (a) or (b) for γ, whose domains are complete.

Consider now s a stable tangency of γ of type (a) or (b) with a complete domain Dom. The function γ : S 1 → P induces a cyclic order on the stable/unstable segments forming γ. Denote by u (resp. u ′ ) the unstable segment of γ after (resp. before) s and s ′ the stable boundary component of Dom that is not s (see Figure 6.6). By definition, the domain of s satisfies,

• Dom ∩ γ = ∅, hence if γ(0) ∈ Dom then γ(0) ∈ ∂Dom.
If γ(0) ∈ Dom, then by Remark 4. 1.4, γ(0) cannot belong to the interior of s, u or u ′ . Therefore, γ(0) ∈ s ′ or γ(0) ∈ ∂s. Since there are at least 2 stable tangencies of γ of type (a) or (b) with a complete domain, we can assume without any loss of generality that γ(0) / ∈ s.

Assume now that the interior of s ′ intersects γ. We can assume without any loss of generality that u ⊂ Dom (since Dom is complete). Since γ is good, any two stable segments of γ do not belong to the same stable leaf of F s . Therefore, we have necessarily that the stable segment of γ after u, say S, is contained in s ′ . Since γ is not a rectangle S ⊊ s ′ ; we are therefore in the situation of Figure 6.6. Hence, u is an unstable tangency of type (a) or (b) with a complete domain. If γ(0) / ∈ u, then u has property (⋆). If γ(0) ∈ u, then take s f in ̸ = s to be another stable tangency of γ of type (a) or (b) with a complete domain (we showed previously that there are at least 2 such tangencies) and notice that γ(0) / ∈ s f in . If s f in does not satisfy (⋆), then by repeating the arguments of this paragraph, either the unstable segment of γ before or after s f in is an unstable tangency of γ with property (⋆). Even when γ is not a rectangle, it is not always possible to find a tangency with strong property (⋆). However, there exist cases where this is possible: Lemma 6.4.4. Let γ be a simple, closed and good polygonal curve that is not a rectangle. Assume that γ(0) belongs to a stable or unstable tangency of γ of type (a) or (b). Then there exists a stable or unstable tangency of γ with strong property (⋆).

Proof. Indeed, assume without any loss of generality that γ(0) ∈ S, where S is a stable tangency of γ of type (a) or (b). By our proof of Lemma 6.4.3, there exists s a stable tangency of γ of type (a) or (b) with a complete domain Dom such that γ(0) / ∈ s. Notice that Dom cannot contain γ(0), since the domain of a stable tangency of type (a) or (b) cannot intersect another stable tangency of type (a) or (b), except when γ is a rectangle. By our proof Lemma 6.4.3, either s has strong property (⋆) and we get the desired result or we are in the case of Figure 6.6. In this case, using the notations of Figure 6.6, the segment u has property (⋆) and its domain D ′ ⊂ Dom does not contain γ(0); hence u has strong property (⋆).

We will now describe our induction step in the following two subcases:

1. there exists s a tangency in γ with strong property (⋆)

no such tangency exists

Induction step in the case where a tangency with strong (⋆) property exists Assume without any loss of generality that the stable tangency s of γ has strong property (⋆). The function γ : [0, 1] → P endows the segments forming γ with a total order, for which s is neither the first nor the last segment (since γ(0) / ∈ s). Let us denote by U ′ (resp. U ) the unstable segment of γ before (resp. after) s and by s ′ the stable side of the domain Dom of s that is not s. We define u ′ := U ′ ∩ Dom and u := U ∩ Dom. We are therefore -up to a change of orientation and up to interchanging u ′ and u-in the case of Figure 6.7. As in the previous case, we will associate to a stable or unstable segment of γ, say S, the number 0 if Rect γ,R 0 (S) consists of one rectangle and the number 1 if not. We will write S → 0 in the first case and S → 1 in the latter. We can therefore associate to U ′ , s, U a unique element of {0, 1} 3 .

We are now ready to describe the induction step in this case:

(1 ′ ) If (U ′ , s, U ) → (0, 0, 0), then Rect γ,R 0 (U ′ ) = Rect γ,R 0 (U ) = Rect γ,R 0 (s) = {R}.
In other words, the segments U ′ , s, U of γ are all contained in a rectangle R that is part of the rectangle path associated to γ. We deduce that Dom ⊂ R and by pushing s along Dom ⊂ R in order that s be identified with s ′ (see Figure 6.7), we obtain a new simple, closed, good polygonal curve γ ′ of strictly smaller length. It is easy to check that γ and γ ′ are homotopic by a homotopy of type A.

(2 ′ ) If (U ′ , s, U ) → (1, 0, 1), then Rect γ,R 0 (U ′ ) corresponds to a non-trivial decreasing rectangle path, say R l , ..., R N , s does not exit R N and U exits R N in order to visit a crossing predecessor of R N . We are therefore in the case of case of Figure 6.8b, thus u ′ = U ′ . By pushing γ along Dom so that s be identified with s ′ , we can construct a simple, good and closed polygonal curve γ ′ of strictly smaller length. (6 ′ ) Assume now that (U ′ , s, U ) → (1, 1, 1). Denote by x su (resp. x su ′ , x s ′ u ′ ) the unique point of intersection of s and u (resp. s and u ′ , s ′ and u ′ ). Denote also by R u ′ and R s the rectangles Rect γ,R 0 (x su ′ ) and Rect γ,R 0 (x su ) respectively (see Figure 6.10). Notice that

• since Rect γ,R 0 (s) is not trivial, R s ̸ = R u ′ • since Rect γ,R 0 (U ) is not trivial, U will exit R s in order to enter a crossing predecessor of R s , say R u • since Rect γ,R 0 (U ′ ) is not trivial, following U ′ negatively starting from x su ′ , U ′ must exit R u ′ .
In particular, U ′ will exit R s .

We are therefore in the case of Figure 6.10. Hence, there exists a point in ∂ u R u ∩ ∂ s R s inside Dom. By Remark 3.0.8, this point is a boundary arc point in the interior of γ.

Finally, as in the case described in Induction step: the case where γ is a rectangle with M (γ) > 0, by performing a homotopy of type C inside Dom, we get that γ is homotopic to a simple, good and closed polygonal curve with strictly less boundary arc points in its interior.

(7 ′ ) If (U ′ , s, U ) → (0, 1, 1), then following the notations of the previous case, we have that

Rect γ,R 0 (U ′ ) = Rect γ,R 0 (x su ′ ) or equivalently U ′ ⊂ R u ′ . • If U ′ ̸ ⊂ R s := Rect γ,R 0 (x su )
, by the exact same argument as in case (6 ′ ), both U ′ and U exit R s . We are therefore in the case of Figure 6.10 (with U ′ ⊂ R u ′ ). Once again, by performing a homotopy of type C inside Dom, we get that γ is homotopic to a simple, good and closed polygonal curve with strictly less boundary arc points in its interior. • If U ′ ⊂ R s , then we are in the case of Figure 6.11, where

{R u ′ , R u ′ +1 , ..., R s } = Rect γ,R 0 (s) and {R s , R s+1 , ..., R m } = Rect γ,R 0 (U ).
Notice that since U exits R s but U ′ does not, we have u ′ = U ′ . As in case (1 ′ ), by pushing γ along Dom ⊂ R s so that we erase U ′ and thus performing a homotopy of type A, we get that γ is homotopic to a simple, good and closed polygonal curve of strictly smaller length. In this case, by pushing γ along Dom so that s be identified with s ′ (see Figure 6.8a), we obtain a simple, good and closed polygonal curve γ ′ of strictly smaller length. Let us show that the previous movement corresponds to a sequence of homotopies of type B.

Without any loss of generality, assume that U = u. As in the case (2 ′ ), our movement pushes the segments u ′ , s, u of γ to the segment s ′ of γ ′ , while keeping γ-(u ′ ∪s∪u) fixed. By eventually reparametrizing γ ′ , we can assume that γ Since 

′ ([a, b]) = u bef ∪ s ′ , where u bef := U ′ -u ′ ⊂ γ ′ . Therefore, γ ≡ γ ′ on [0, a] ∪ [b, 1]
u bef ∪ s ′ ⊂ N ∪ i=l R i and γ |[b,1] ≡ γ ′ |[b,1] , both γ([a, 1]) and γ ′ ([a, 1]) remain in N ∪ i=l R i until
) associated to γ |[a,1] is R l , w A , R k , R, W • the rectangle path (starting from R l ) associated to γ ′ |[a,1] is R l , w ′ A , R k , R, W ′ Since γ |[b,1] ≡ γ ′ |[b,
that γ([a, 1]) ⊂ N ∪ i=l R i .
In this case, we will show directly that the rectangle path associated to γ is homotopic to a trivial or monotonous rectangle path.

Consider γ ′ the curve obtained by pushing γ along Dom so that s be identified with s ′ . The curve γ ′ is simple, good, closed and of strictly smaller length than γ. By eventually reparametrizing γ ′ , assume once again that γ

≡ γ ′ on [0, a] ∪ [b, 1]; hence the rectangle paths (starting from R 0 ) associated to γ |[0,a] ≡ γ ′ |[0,a] are identical. Recall that the last rectangle of the previous rectangle paths is R l . Since γ([a, 1]), γ ′ ([a, 1]) ⊂ N ∪ i=l R i , there exist R k , R k ′ ∈ {R l , ..., R N } and w A , w ′ A rectangle paths formed by rectangles in {R l , ..., R N } such that the rectangle paths (starting from R l ) associated to γ ′ |[a,1] and γ |[a,1] are respectively R l , w ′ A , R k ′ and R l , w A , R k . Notice that • R k ∩ • R k ′ ̸ = ∅, since γ(1) = γ ′ (1).
Assume without any loss of generality that R k ′ is a predecessor of some generation of R 0 (recall that γ(0) = γ(1) ∈ • R 0 , see also Lemma 2.2.12) and apply (6 ′′ ) If (U ′ , s, U ) → (1, 1, 1), then we are in the case of Figure 6.10. In this case, we can apply in the exact same way the homotopy performed in (6 ′ ).

(7 ′′ ) Assume that (U ′ , s, U ) → (0, 1, 1). Denote by x su the unique point of intersection of s and u. As we have shown in case (7 ′ ):

• If U ′ ̸ ⊂ Rect γ,R 0 (x su ), we are in the case of Figure 6.10. In this case, we can apply in the exact same way the homotopy performed in (7 ′ ).

• If U ′ ⊂ Rect γ,R 0 (x su ), then we are in the case of Figure 6.11. In this case, u ′ = U ′ and therefore γ(0) ∈ u ′ . Once again, we can push γ by a homotopy of type A along Dom so that s comes arbitrarily close to s ′ . By Lemma 6.4.6, up to a homotopy of type A, γ has a tangency with strong property (⋆). We deduce the induction step by applying cases (1 ′ ) -(8 ′ ).

(8 ′′ ) If (U ′ , s, U ) → (1, 0, 0), we are in the case of case of Figure 6.8a, where {R

l , ..., R N } = Rect γ,R 0 (U ′ ). Let a, b ∈ [0, 1] such that γ([a, b]) = U ′ ∪ s ∪ U . Assume first that γ(0) ∈ U ′ ∩ s ′ . (a) As in case (8 ′ ), if γ |[b,1] eventually exits N ∪ i=l R i in order to visit a crossing predecessor (or successor) of R k ∈ {R l , ..., R N }.
By our argument in case (8 ′ a), we can push γ along Dom by a sequence of homotopies of type A and B so that s comes arbitrarily close to s ′ . Hence, by Lemma 6.4.6 up to a homotopy, γ has a tangency with strong property (⋆). We obtain the induction step by applying the cases (1

′ ) -(8 ′ ). (b) If now γ([a, 1]) ⊂ N ∪ i=l R i , since γ(0) ∈ U ′ ∩ s ′ , we get that γ([0, 1]) ⊂ N ∪ i=l R i .
Therefore, the rectangle path associated to γ is a formed by rectangles in {R l , ..., R N }. The previous rectangle path is homotopic to an increasing or decreasing or trivial rectangle path, thanks to Lemma 6.4.5.

(c) Assume now that γ(0) ∈ s ′ ∩ u. Notice that in this case, since γ is a good polygonal curve, we have that U ⊂ Dom. Push γ along Dom so that s comes very close to s ′ . By Lemma 6.4.6, up to a homotopy of type A, we can assume that this new simple, closed, good polygonal curve, say γ ′ , has a tangency with strong property (⋆). By applying our algorithm (cases (1 ′ ) -(8 ′ )), γ ′ is homotopic to a simple, good, closed polygonal curve γ ′′ of strictly smaller length or with less boundary arc points in its interior. By the induction hypothesis the rectangle path associated to γ ′′ is homotopic to a monotonous or trivial path. Hence, the same applies to the rectangle path associated to γ ′ . By the exact same argument as in case (8 ′ b) we can now conclude that the rectangle path associated to γ is homotopic to a monotonous or trivial rectangle path.

This finishes the description of our induction step. In all the previous cases, we have either defined a homotopy producing a simple, closed and good polygonal curve γ ′ such that (M (γ ′ ), l(γ ′ )) < (M (γ), l(γ)) or we have shown that γ satisfies the desired result. This finishes the proof by induction of Proposition 6.4.1. r 0 , ..., r k-1 , r k , r k-1 ..., r 0 , which is homotopic to a trivial rectangle path by a sequence of homotopies of type B.

Assume now without any loss of generality that r k = R 0 , R 1 ..., R s = r l is a decreasing rectangle path; hence r l is a predecessor of some generation of r k . We deduce that r l = R ′ 0 , R ′ 1 ..., R ′ m = r k is an increasing rectangle path. Furthermore, since the predecessors (resp. successors) of any rectangle have disjoint interiors, we have that there exists a unique decreasing (resp. increasing) rectangle path from r k to r l (resp. from r l to r k ). We deduce that the rectangle paths

r k = R 0 , R 1 ..., R s = r l and r k = R ′ m , R ′ m-1 ..., R ′ 1 , R ′ 0 = r l
are exactly the same. Therefore, by a sequence of homotopies of type B the rectangle path (6.4.1) is homotopic to: r 0 , ...r k , r k-1 , .., r 0 Finally, the above rectangle path is homotopic to the trivial rectangle path by a sequence of homotopies of type B; we thus get the desired result.

Proof of Theorem 6.2.4

We would now like to show that when to two Markovian families is associated the same class of geometric types, rectangle paths in those Markovian families provide two compatible coordinate systems in the bifoliated plane up to surgeries. More precisely, following the notations introduced in the beginning of Section 6, Theorem. Take P 1 , P 2 two bifoliated planes up to surgeries on Γ M 1 1 and Γ M 2 2 of two transitive Anosov flows (M 1 , Φ 1 ) and (M 2 , Φ 2 ). Assume that P 1 , P 2 contain two Markovian families R 1 , R 2 that (together with a choice of representatives of every rectangle orbit in R 1 , R 2 and a choice of orientation of the stable and unstable foliations in P 1 , P 2 ) correspond to the same geometric type

G = (R 1 , ..., R n , (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u)
We have that to any closed centered rectangle path in R 1 is associated (see Definition 6.2.2) a closed centered rectangle path in R 2 .

Proof. It suffices to prove that two centered and homotopic rectangle paths in P 1 correspond to centered and homotopic rectangle paths in P 2 . Indeed, let r 1 0 , ..., r 1 n be a closed and centered rectangle path in P 1 . By Theorem 6.3.13, the previous rectangle path is homotopic to the trivial rectangle path r 1 0 . If homotopic rectangle paths in P 1 correspond to homotopic rectangle paths in P 2 , then r 2 0 , ..., r 2 n is homotopic to r 2 0 . By our discussion, prior to Theorem 6. 3.13, this implies that r 2 0 , ..., r 2 n is closed, which gives us the desired result. Let us now show that homotopic rectangle paths in P 1 correspond to homotopic rectangle paths in P 2 .

Since any homotopy of rectangle paths can be described as a sequence of homotopies of type A, B or C, it suffices to show that homotopies of type A (resp. B, C) in P 1 correspond to homotopies of type A (resp. B, C) in P 2 . The result is trivially true for homotopies of type A. ) G associated to L 1 0i ∩ L 1 0(i-1) (where L 1 00 = L 1 0 ). Using the geometric interpretation of the geometric type, orient the unstable foliation of each rectangle in G from bottom to top. Thanks to our choice of orientation of the unstable foliation in P 1 (resp. G), the predecessors of L 1 0 (resp. the horizontal subrectangles of (L 1 0 ) G ) are ordered. We will assume without any loss of generality that the association of predecessors of L 1 0 to horizontal subrectangles of (L 1 0 ) G respects the previous two orders and thus we will associate s 1 0 to the upper stable boundary component of (L 1 0 ) G , say S. Depending on our choice of representatives of each rectangle orbit in R 1 , by Definition 2.3.1, for every i ∈ 0, s(0) , H i is either the lowermost or the uppermost horizontal subrectangle of (L 1 0i ) G (see Figure 6.12). More specifically, since S is the uppermost stable boundary component of (L 1 0 ) G , by Definition 2.3.1, H 1 is the uppermost (resp. lowermost) horizontal subrectangle of (L 1 01 ) G if and only if the unique element in π 1 (M 1 -Γ M 1 1 ) sending L 1 01 to the representative of its orbit (fixed in statement of the theorem) preserves (resp. does not preserve) the orientation of the foliations in P 1 or equivalently if and only if u(H 1 ) = +1 (resp. u(H 1 ) = -1). Using the previous argument, one can prove by induction that, if g k is the element in π 1 (M 1 -Γ M 1 1 ) sending L 1 0k to its orbit representative, for every i ∈ 1, s(0) , H i is the uppermost (resp. lowermost) horizontal subrectangle of (L 1 0i ) G if and only if there exists an even (resp. odd) number of elements among g 1 , ..., g i that do not respect the orientation of the foliations in P 1 (see Figure 6.12) or equivalently if and only if

i k=1 u(H k ) = +1 (resp. i k=1 u(H k ) = -1). Moreover, since L 1
1 crosses both stable boundary components of L 1 0 , the intersection L 1 1 ∩ L 1 0s(0) corresponds to a horizontal subrectangle of (L 1 1 ) G , say H, that is not the uppermost nor the lowermost subrectangle of (L 1 1 ) G . Since L 2 0 , L 2 01 , ..., L 2 0s(0) , L 2 1 is the rectangle path in P 2 associated to L 1 0 , L 1 01 , ..., L 1 0s(0) , L 1 1 ,

• for every i, R Q i contains a neighborhood of x in Q Indeed, by the definition of a Markovian family there exists one rectangle R Q 0 containing a neighborhood of x in the quadrant Q. By Lemma 2.2.9, there exists a unique predecessor and a unique successor of R Q 0 containing a neighborhood of x in Q. We will denote the previous rectangles by R Q 1 and R Q -1 respectively. By a repeated application of this argument, we can construct a bi-infinite sequence of rectangles in R 1 with the desired properties. Furthermore, by Lemma 2.2.12 any rectangle in R 1 containing a neighborhood of x in Q is a predecessor or a successor of some generation of R Q 0 . In other words, any such rectangle appears in our previously constructed bi-infinite sequence. It follows that . H(R Q k ) corresponds to a unique point in P 2 . We would now like to show that this point does not depend on the initial choice of quadrant for x.

..R Q -1 , R Q 0 , R Q 1 , .
∩ k=-∞ R Q k . We now define h(x) := +∞ ∩ k=-∞ H(R Q k ) ∈ P 2 . Notice that by definition of H as a map from R 1 to R 2 , for every k ∈ Z H(R Q k ) is a predecessor of H(R Q k-1 ).
Independence from the choice of quadrant Assume first that x is not a boundary periodic point of R 1 and that the previous quadrant Q was the (ϵ, ϵ ′ ) quadrant of x (i.e. the quadrant defined by the separatrices (F s 1 ) ϵ (x) and (F u 1 ) ϵ ′ (x) for our initial choice of orientations on F s 1 and F u 1 ), where ϵ, ϵ ′ ∈ {+, -}. Consider the quadrant (ϵ, -ϵ ′ ) of x and

i := inf{k ∈ Z|∀j ≥ k R (ϵ,ϵ ′ ) j
contains a germ of the (ϵ, ϵ ′ ) and (ϵ, -ϵ ′ ) quadrants of x } Let us first show that i belongs in Z ∪ {-∞}. Indeed, suppose that R (ϵ,ϵ ′ ) 0 contains a germ of the (ϵ, ϵ ′ ) quadrant of x, but not of the (ϵ, -ϵ ′ ) quadrant of x. This implies that x belongs to a stable boundary component of R (ϵ,ϵ ′ ) 0 , say s. By Lemmas 3.0.4, 3.0.5 there exists a unique s-crossing predecessor of R (ϵ,ϵ ′ ) 0 that contains a germ of the (ϵ, ϵ ′ ) and (ϵ, -ϵ ′ ) quadrants of x. By Lemma 2.2.12, there exists k 0 ∈ N such that the previous s-crossing predecessor is of the form R (ϵ,ϵ ′ ) k 0 . By the Markovian intersection property, for every k ≥ k 0 , R (ϵ,ϵ ′ ) k also contains a germ of the (ϵ, ϵ ′ ) and (ϵ, -ϵ ′ ) quadrants of x. We thus get that i ∈ Z ∪ {-∞}.

If i = -∞, then the sequence associated to the quadrant (ϵ, -ϵ ′ ) is the exact same sequence as for (ϵ, ϵ ′ ). This can happen for instance when x does not belong to the stable or unstable leaf of some boundary periodic point. Therefore, in this case we get

+∞ ∩ k=-∞ H(R (ϵ,ϵ ′ ) k ) = +∞ ∩ k=-∞ H(R (ϵ,-ϵ ′ ) k ).
If i ∈ Z, then for every j ≥ i the rectangle R (ϵ,ϵ ′ ) j is contained in the bi-infinite sequence associated to the quadrant (ϵ, -ϵ ′ ). We therefore get up to changing our initial choice of indexes, R

(ϵ,-ϵ ′ ) i = R (ϵ,ϵ ′ ) i , R (ϵ,-ϵ ′ ) i+1 = R (ϵ,ϵ ′ ) i+1 , ..., R (ϵ,-ϵ ′ ) n = R (ϵ,ϵ ′ ) n , .... The rectan- Figure 7.1 gle R (ϵ,-ϵ ′ ) i-1 is the unique successor of R (ϵ,-ϵ ′ ) i = R (ϵ,ϵ ′ ) i that contains x and that is not R (ϵ,ϵ ′ ) i-1 . Since any two distinct successors of R (ϵ,-ϵ ′ ) i = R (ϵ,ϵ ′ ) i have disjoint interiors, we have that x ∈ ∂ s R (ϵ,ϵ ′ ) i-1 ∩ ∂ s R (ϵ,-ϵ ′ ) i-1 . Assume without any loss of generality that R (ϵ,-ϵ ′ ) i-1 is the successor of R (ϵ,ϵ ′ ) i that is right above R (ϵ,ϵ ′ )
i-1 (see Figure 7.1). In this case, H will send R

(ϵ,-ϵ ′ ) i-1 to the successor of H(R (ϵ,-ϵ ′ ) i ) that is right above H(R (ϵ,ϵ ′ ) i-1 ). Furthermore, since R (ϵ,-ϵ ′ ) i-2 contains x and a germ of its (ϵ, -ϵ ′ ) quadrant, R (ϵ,-ϵ ′ ) i-2 is the unique successor of R (ϵ,-ϵ ′ ) i-1 that contain x, which corresponds to the lowermost successor of R (ϵ,-ϵ ′ ) i-1 . There- fore, H(R (ϵ,-ϵ ′ ) i-2 ) will correspond to the lowermost successor of H(R (ϵ,-ϵ ′ ) i-1 ), the successor of H(R (ϵ,-ϵ ′ ) i-1 ) that intersects h(x). Thanks to Lemma 2.2.7 i-1 ∩ k=-∞ H(R (ϵ,-ϵ ′ ) k ) corresponds to a stable segment in F s (h(x)) crossing H(R (ϵ,-ϵ ′ )
i-1 ). We also know thanks to Lemma 2.2.6 that

+∞ ∩ k=i H(R (ϵ,-ϵ ′ ) k ) = +∞ ∩ k=i H(R (ϵ,ϵ ′ ) k ) corresponds to an unstable segment in F u (h(x)) crossing H(R (ϵ,-ϵ ′ ) i ). We conclude that ∞ ∩ k=-∞ H(R (ϵ,-ϵ ′ ) k ) = {h(x)}. By a similar argument we can show that ∞ ∩ k=-∞ H(R (-ϵ,-ϵ ′ ) k ) = ∞ ∩ k=-∞ H(R (-ϵ,ϵ ′ ) k ) = {h(x)},
which gives us the desired result.

Assume now that x is a boundary periodic point. In this case, we can define h(x) by the same exact argument for some choice of quadrant Q of x (x has infinitely many quadrants in P 1 ). Consider now Q ′ ̸ = Q the quadrant of x that intersects Q along a stable leaf of x.

By a similar argument, we can show that for every N ,

N ∩ k=-∞ H(R Q ′ k ) corresponds to a stable segment in F s (h(x)).
Furthermore, if t is the generator of the stabilizer of a stable or unstable leaf of x, then for any quadrant q of x, we have that t k (R q 0 ) intersects a neighborhood of x in q and therefore (t k (R q 0 )) k∈Z is a subsequence of (R q k ) k∈Z . Therefore, α(t) k (H(R q 0 )) k∈Z is also a subsequence of (H(R q k )) k∈Z . Our previous arguments imply that both

+∞ ∩ k=-∞ H(R Q ′ k ) and +∞ ∩ k=-∞ H(R Q k )
are fixed by α(t) and belong to the same stable leaf in F s . They thus correspond to the same point h(x), which gives us the desired result.

h(Γ 1 ) ⊂ Γ 2 and h(P 1 -Γ 1 ) ⊂ P 2 -Γ 2 Indeed, assume that x ∈ Γ 1 and h(x) ∈ P 2 -Γ 2 . There are infinitely many quadrants around x, therefore there exists an infinite family of rectangles (R i ) i∈N of R 1 intersecting x and having pairwise disjoint interiors. For every i the rectangle H(R i ) intersects h(x) that has only finitely many quadrants. Therefore, there exist i ̸ = j such that

• H(R i ) ∩ • H(R j ) ̸ = ∅. Therefore, H(R i
) is a predecessor or successor of some generation of H(R j ). This contradicts that the fact that H defines a bijection from R 1 to R 2 that respects the relations of predecessor/successor.

By a similar argument we can show that h(P

1 -Γ 1 ) ⊂ P 2 -Γ 2 . For all R ∈ R 1 we have h(R) = H(R)
By changing the roles of P 1 and P 2 and using the fact that H is a bijection between R 1 and R 2 , we can show that h admits a right and left inverse, therefore h is a bijection.

Next, for every x ∈ R there exists a quadrant Q of x such that R contains a neighborhood of x in Q. Therefore, R belongs in the sequence of rectangles (R Q k (x)) k∈Z defined in the previous paragraphs and by definition of h, we get that h(x) ∈ H(R) and by extension that h(R) ⊂ H(R). By a similar argument, we can show that h -1 (H(R)) ⊂ R. By combining the two previous results, we get that h

(R) = H(R).
h is a homeomorphism Recall that by our previous arguments h is a bijection. Consider now x ∈ P 1 -Γ 1 . Denote by (R (ϵ,ϵ ′ ) k (x)) k∈Z the sequence of rectangles defined in the previous paragraphs for the quadrant (ϵ, ϵ ′ ) of x. In order to show that h is continuous on x, it suffices to show that for every (ϵ, ϵ ′ ) ∈ {+, -} 2 and for any sequence x n converging to x in the (ϵ, ϵ ′ ) quadrant of x, h(x n ) converges to h(x). Fix ϵ, ϵ ′ ∈ {+, -} and consider a sequence x n in the (ϵ, ϵ ′ ) quadrant of x converging to x. For any N ∈ N, if n is sufficiently big 

x n ∈ N ∩ k=-N R (ϵ,ϵ ′ ) k (x), hence h(x n ) ∈ N ∩ k=-N H(R (ϵ,ϵ ′ ) k (x)).
∩ k=-N H(R (ϵ,ϵ ′ ) k (x)) converges
when N → +∞ to h(x) for the Hausdorff topology. We thus get that h(x n ) converges to h(x).

Consider now x ∈ Γ 1 . Recall that x has infinitely many quadrants. By an argument similar to the one we used in the previous paragraph, if (x n ) n∈N converges to x and (x n ) n∈N visits only a finite number of quadrants of x, then (h(x n )) n∈N converges to h(x). In order to show that h is continuous on x, it suffices to show that if (x n ) n∈N visits an infinite number of quadrants of x, then (x n ) n∈N can not converge to x. Indeed, take (x n ) n∈N such a sequence. By eventually considering a subsequence, we can assume that for every n, x n belongs in a different quadrant of x, say q n . For every quadrant q of x that belongs in {q n |n ∈ N}, take U q a neighborhood of x in q that does not contain x n . For every quadrant q of x such that q / ∈ {q n |n ∈ N}, take U q any neighborhood of x in q. By our choice of topology on P 1 (see Section 5.1) the union of the U q contains an open set of x that by construction does not intersect x n . Hence, x n does not converge to x.

successor or predecessor of R of some generation. Denote by t the generator of Stab + (p), the subgroup of Stab(p) acting on P by preserving the orientation of the foliations, that acts as an expansion on F u (p). Notice that t(R) is a predecessor of some generation, say n (with n ∈ N * ), of R containing a germ of p in q. By eventually changing R ′ by t k (R ′ ) for some k ∈ Z, we can assume that R ′ is a predecessor of some generation of R and a successor of some generation of t(R). It follows that R ′ is a predecessor of generation m of R, where m < n and since the predecessors of R of generation less than n form a finite set by Lemma 2.2.9, we get the desired result.

Take p ∈ P a boundary periodic point and L 0 ∈ R containing p. Assume without any loss of generality that L 0 contains a germ of the (+, +) quadrant of p (there exist finitely many such rectangles up to the action of Stab(p) by Lemma 8.0.2). Consider now the set Q (-,+) of rectangles r ∈ R containing the germ of the (-, +) quadrant of p and such that

L 0 ∩ F u + (p) ⊆ r ∩ F u + (p). Consider also L 1 ∈ Q (-,+) such that for all r ∈ Q (-,+) L 1 ∩ F u (p) ⊆ r ∩ F u (p)
Claim : Such a rectangle L 1 exists, L 1 is uniquely defined by the above property, that we will call the minimality condition, and finally either

L 1 = L 0 or • L 1 ∩ • L 0 = ∅.
Proof of the claim. Indeed, thanks to Lemma 8.0.1, we have exactly one of the following three cases:

1. The rectangles of Q (-,+) contain the germs of the (-, +) and (+, +) quadrants of p 2. The rectangles of Q (-,+) contain the germs of the (-, +) and (-, -) quadrants of p 3. The rectangles of Q (-,+) contain only the germ of the (-, +) quadrant of p Using this fact together with the Markovian intersection axiom, we have that for any r, r ′ ∈ Q

(-,+) r ∩ F u (p) ⊆ r ′ ∩ F u (p) or r ′ ∩ F u (p) ⊆ r ∩ F u (p).
Moreover, even though the set Q (-,+) is not stable under the action of Stab(p), it is contained by Lemma 8.0.2 in the union of a finite number of Stab(p)-orbits of rectangles. By combining the previous facts, it follows that there exists at least one rectangle in Q (-,+) satisfying the minimality condition.

If there exist two rectangles

L 1 , L ′ 1 ∈ Q (-,+) satisfying the minimality condition, then L 1 ∩ F u (p) = L ′ 1 ∩ F u (p).
In any of the above three cases, this implies by the Markovian intersection property that either

∂ s L 1 ⊆ ∂ s L ′ 1 or ∂ s L ′ 1 ⊆ ∂ s L 1 . Equivalently, the existence of two distinct rectangles L 1 , L ′ 1 ∈ Q (-,+) satisfying the minimality condition, would imply that L 1 ∩ L ′ 1 = L 1 or L 1 ∩ L ′ 1 = L ′ 1 . This is impossible, since L 1 ∩ L ′ 1 is, by the Markovian intersection axiom, a non-trivial horizontal or vertical subrectangle of L 1 (resp. L ′ 1 .). Finally, if • L 1 ∩ • L 0 ̸ = ∅,
then by Lemma 8.0.1, all the rectangles of Q (-,+) contain the germs of the (-, +) and (+, +) quadrants of p. This implies by Lemma 8.0.1 that L 0 ∈ Q (-,+) and since L 0 clearly satisfies the minimality condition, by the uniqueness of L 1 , we have that L 1 = L 0 . 

L 2 ∩ F s (p) ⊆ r ∩ F s (p)
Finally, if the rectangle L 0 intersects a germ of the (+, -) quadrant of p, we take L 3 = L 0 . Otherwise, we define analogously Q (+,-) and we also define L 3 as the unique rectangle in Q (+,-) for which all r ∈ Q (+,-) satisfy

L 3 ∩ F u (p) ⊆ r ∩ F u (p)
By Lemma 8.0.1 and our previous arguments, we have that any two rectangles among L 0 , L 1 , L 2 , L 3 have either disjoint interiors or are equal (see Figure 8.1).

Denote by k the number of pairwise distinct rectangles in {L 0 , L 1 , L 2 , L 3 }. Notice that k ∈ {2, 3, 4}, since p is a boundary periodic point. Define recursively L ′ 0 = L 0 and L ′ i for i ∈ {1, ..., k -1} as the rectangle with minimum index in {L 0 , L 1 , L 2 , L 3 } that is not equal to any of the rectangles L ′ 0 , ..., L ′ i-1 . Definition 8.0.3. We will call (L ′ 0 , ..., L ′ k-1 ) the positive pre-cycle around p starting from L 0 . By changing the cyclic order in which we visit the quadrants around p, we define similarly the negative pre-cycle around p starting from L 0 . ♠ Remark 8.0.4. We will now associate to any pre-cycle around p a closed rectangle path of P that we will call a cycle.

Consider L 0 ∈ R containing p. Assume without any loss of generality that L 0 contains a germ of the (+, +) quadrant of p and that its associated positive pre-cycle is of the from (L 0 , L 1 , L 2 , L 3 ), where the L i have pairwise disjoint interiors.

Let s 0 = L 0 ∩ F u + (p) and r 0 be the s 0 -crossing successor of L 0 containing the endpoint of s 0 that is not p (this rectangle exists by Lemma 3.0.5). By construction of L 1 (see Definition 8.0.3), r 0 is a successor of L 1 of some generation (see Figure 8.1). Similarly, we define s 1 := L 1 ∩ F s -(p), s 2 := L 2 ∩ F u -(p), r 1 as the s 1 -crossing predecessor of L 1 containing the endpoint of s 1 that is not p and r 2 as the s 2 -crossing successor of L 2 containing the endpoint of s 2 that is not p. Again, r 1 (resp. r 2 ) is a predecessor (resp. successor) of L 2 (resp. L 3 ) of some generation.

Finally, if L 0 ∩ F s + (p) ⊂ L 3 ∩ F s + (p) we define s 3 := L 0 ∩ F s + (p) and r 3 as the s 3 -crossing predecessor of L 0 intersecting the endpoint of s 3 that is not p. If instead, L 3 ∩ F s + (p) ⊂ L 0 ∩ F s + (p) we define s 3 := L 3 ∩ F s + (p) and r 3 as the s 3 -crossing predecessor of L 3 intersecting the endpoint of s 3 that is not p. In any case, r 3 is a predecessor of some generation of L 0 and also L 3 .

Notice that (L 0 , r 0 , L 1 , r 1 , L 2 , r 2 , L 3 , r 3 , L 0 ) is a generalized rectangle path in P.

Definition 8.0.5. The closed rectangle path associated to the generalized rectangle path (L 0 , r 0 , L 1 , r 1 , L 2 , r 2 , L 3 , r 3 , L 0 ) (see Definition 6.3.10) is called the cycle associated to the positive pre-cycle (L 0 , L 1 , L 2 , L 3 ). We define similarly the cycle associated to a positive pre-cycle with two or three rectangles or the cycle associated to a negative pre-cycle.

The set of cycles associated to all pre-cycles around p will be called the set of cycles of p and will be denoted by Cycl(p). ). Therefore, the set of all cycles around any boundary periodic point in the π 1 (M )-orbit of p, consists of a finite number of rectangle paths up to the action of π 1 (M ).

We will now prove that each of the previous orbits of rectangle paths can be described as a closed rectangle path in any geometric type associated to R. Definition 8.0.8. Consider a geometric type G = (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u), where H = {H j i , i ∈ 1, n , j ∈ 1, h i } and V = {V j i , i ∈ 1, n , j ∈ 1, v i }. We define a rectangle path in G as a finite sequence of the form i 0 , s 0 , i 1 , s 1 , i 2 , ..., s m , i m+1 where • for all k ∈ 0, m + 1 , i k ∈ 1, n

• for all k ∈ 0, m , s k is of the form V

• i k or H • i k .
• for all k ∈ 0, m , if s k ∈ V (resp. s k ∈ H) then it is the image by ϕ (resp. ϕ -1 ) of an element of H (resp. V) of the form

H • i k+1 (resp. V • i k+1 ).
Furthermore, the rectangle path i 0 , s 0 , i 1 , s 1 , i 2 , ..., s m , i m+1 will be called closed when i 0 = i m+1 ♠

Recall that, using its geometric interpretation, a geometric type G is a set of rectangles R 1 , ..., R n , endowed each with a collection of horizontal and vertical subrectangles identified by the map (ϕ, u). In these terms, a rectangle path i 0 , s 0 , i 1 , s 1 , i 2 , ..., s m , i m+1 in G, by identifying every i l ∈ 1, n with R i l , can be thought as a sequence of rectangles and subrectangles of the form R 0 , s 0 , ..., R m , s m , R m+1 , where for every k ∈ 0, m , s k corresponds to a vertical (resp. or horizontal) subrectangle of R k and ϕ -1 (s k ) (resp. ϕ(s k )) to a horizontal (resp. or vertical) subrectangle of R k+1 .

Proposition 8.0.9. Choose r 1 , ..., r n representatives of every rectangle orbit in R and choose also an orientation on F s and F u . Let G = (R 1 , ..., R n , (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) be the geometric type associated to R by Remark 2. 3.3 for the previous choices of representatives and orientations. We have that:

• any rectangle path in P corresponds to a unique rectangle path in G

• conversely, any rectangle path in G corresponds to a unique π 1 (M )-orbit of rectangle paths in P Proof. Consider l 0 , l 1 , ..., l k a rectangle path in P. By Definition 2.3.1, every representative r i corresponds to a unique rectangle, say R i , of the geometric type G. Hence, by examining its π 1 (M )-orbit, every l i corresponds to a unique rectangle R l i of the geometric type G. Furthermore, once again by Definition 2.3.1, the vertical (resp. horizontal) subrectangles of the rectangles R 1 , ..., R n (in other words the sets V and H) correspond to the predecessors (resp. successors) of the rectangles r 1 , ..., r n . Hence, as for every i ∈ 1, k l i is a successor or predecessor of l i-1 , the rectangle l i corresponds to a unique horizontal or vertical subrectangle s l i of R l i-1 . We therefore associate to the rectangle path l 0 , ..., l k the sequence R l 0 , s l 1 , ...., R l k-1 , s l k , R l k . It is easy to check that the previous sequence is a rectangle path in G.

Consider now R 0 , s 0 , R 1 , s 1 ...., R k-1 , s k-1 , R k a rectangle path in G. As before, the rectangle R 0 corresponds to a unique π 1 (M )-orbit of rectangles in R. Let l 0 be an element of the previous orbit of rectangles. Next, s 1 corresponds to a unique successor or predecessor of l 0 , say l 1 , whose π 1 (M )-orbit corresponds to the rectangle R 1 in G. By repeating the previous procedure, we can associate to R 0 , s 0 , R 1 , s 1 ...., R k-1 , s k-1 , R k a rectangle path l 0 , ..., l k in P. The previous rectangle path depends on our choice of l 0 . If we replace l 0 by g(l 0 ), where g ∈ π 1 (M ), it is easy to check using Definition 2.3.1 that the resulting rectangle path will be the image by g of l 0 , ..., l k . We conclude that to the rectangle path R 0 , s 0 , R 1 , s 1 ...., R k-1 , s k-1 , R k is associated a unique π 1 (M ) orbit of rectangle paths in P.

Remark 8.0.10. One can check, using our previous proof, that if R 0 , s 0 , R 1 , s 1 ...., R k-1 , s k-1 , R k is the rectangle path in G associated to the rectangle path l 0 , ..., l k in P, then the π 1 (M )orbit of rectangle paths in P associated to R 0 , s 0 , R 1 , s 1 ...., R k-1 , s k-1 , R k coincides with the π 1 (M )-orbit of l 0 , ..., l k .

According to Theorem B, an equivalence class of geometric types describes an Anosov flow up to surgeries along boundary periodic orbits. We would like at this point to define a combinatorial object describing an Anosov flow up to just orbital equivalence. Definition 8.0.11. Let G be a geometric type and A a finite set of closed rectangle paths in G. We will call (G, A) a geometric type with cycles.

Two geometric types with cycles (G, A) and (G ′ , A ′ ) will be called equivalent if there exists an equivalence h between G and G ′ (see Definition 1.3.19) that bijectively associates closed rectangle paths in A to closed rectangle paths in A ′ . ♠ Remark 8.0.12. Using Remark 1.3.20, we can show that any equivalence class of geometric types with cycles contains only a finite number of geometric types with cycles.

Choose a representative for every rectangle orbit in R and an orientation of F s and F u . By Remark 2.3.3, together with this choice of representatives and orientations we can associate to R a unique geometric type G.

Recall that to every boundary periodic point p ∈ P of R we can associate the infinite set of cycles around p, namely the set of closed rectangle paths Cycl(p) (see Definition 8.0.5). Denote by BP the set of all boundary periodic points of R and by A the projection in G of the infinite set of closed rectangle paths ∪ p∈BP Cycl(p). Definition 8.0.13. We will call (G, A) a geometric type with cycles associated to R or more simply a geometric type with cycles of R. We will also call a geometric type with cycles of some Markovian family of Φ, a geometric type with cycles associated to Φ or a geometric type with cycles of Φ. ♠

A geometric type with cycles of R is a geometric type with cycles in the sense of Definition 8.0.11. Indeed, using our previous notations, since BP consists of a finite number of π 1 (M )orbits of points in P (see Proposition 3.0.2), by Remark 8.0.7 we have that ∪ p∈BP Cycl(p) consists of finitely many closed rectangle paths in P up to the action of π 1 (M ). Hence, by Proposition 8.0.9 and Remark 8.0.10, we get that A is a finite set of closed rectangle paths in G.

Moreover, as in the case of geometric types: Remark 8.0.14. By our previous construction, any choice of representatives inside every rectangle orbit in R together with any choice of orientation of F s and F u define a unique geometric type with cycles of R.

If p is a boundary periodic point in R, the construction of Cycl(p) (see Definition 8.0.5) does not depend on our choice of representatives of rectangle orbits in R, but also it does not depend on our choice of orientation of F s and F u . Indeed, changing the orientation of F s , while keeping the orientation of F u the same, only changes positive cycles around to p to negative ones and vice versa. Hence, ∪ p∈BP Cycl(p) is an infinite set of closed rectangle paths canonically associated to R. It follows that by changing our choices of representatives and orientations, we produce (G ′ , A ′ ) a new geometric type with cycles associated to R, such that the rectangle paths in A ′ and in A lift to the exact same set of rectangle paths in P (see Proposition 8.0.9). By repeating our proof of Theorem 2. 3.4, it is now not hard to show that associates to periodic points with positive eigenvalues in P 1 , periodic points with positive eigenvalues in P 2 . Therefore, by our previous argument, we also have t M 2 h(γ) (h(r 0 )) = h(r k ) or (t M 2 h(γ) ) -1 (h(r 0 )) = h(r k ). On the other hand, by definition of h, α(t M 1 γ )(h(r 0 )) = h(r k ), where α(t M 1 γ ) is of the form t M 2 h(γ) + k(γ M 1 ) • s M 2 h(γ) . We deduce from Proposition 5.4.4 that if γ has positive eigenvalues, then k(γ M 1 ) = 0.

Assume finally that γ has negative eigenvalues and corresponds to the periodic orbit γ M 1 of Φ 1 . Once again there exists g ∈ π 1 (M 1 -Γ M 1 1 ) such that g(r 0 ) = r k , g ∈ ker(ρ 1 ) and g acts as a translation of ±2 on the set of stable leaves intersecting γ. Notice now that thanks to Proposition 5.4.5, after adding Γ M 1 1 in M 1 -Γ M 1 1 the loops in M 1 -Γ M 1 1 corresponding to the homotopy classes 2t M 1 γ and s M 1 γ become homotopic (see Figure 1.9). In other words, ρ 1 (2t M 1 γ ) = ρ 1 (s M 1 γ ). This implies that g = 2t M 1 γ -s M 1 γ or g = -2t M 1 γ + s M 1 γ . As before, by eventually changing our choice of cycle around γ, we will assume without any loss of generality that g = 2t M 1 γ -s M 1 γ . By our proof of Theorem 5.5.1, the map h associates to periodic points with negative eigenvalues in P 1 , periodic points with negative eigenvalues in P 2 . Therefore, by our previous argument, we also have (2t

M 1 γ -s M 1 γ )(h(r 0 )) = h(r k ) or (-2t M 1 γ + s M 1 γ )(h(r 0 )) = h(r k ).
On the other hand, by definition of h, α(2t

M 1 γ -s M 1 γ )(h(r 0 )) = h(r k ), where α(2t M 1 γ -s M 1 γ ) is of the form 2t M 2 h(γ) + k(γ M 1 ) • s M 2 h(γ) -s M 2 h(γ)
. We deduce that if γ has negative eigenvalues, then k(γ M 1 ) = 0.

Chapter 9

Works in progress and open questions

Despite the variety of approaches to the problem of classification of Anosov flows in dimension 3, including the approach by geometric types developed in this thesis, the classification problem remains to this day open. In view of Theorem-Definition D and Theorem E, in order to completely classify Anosov flows in dimension 3 up to orbital equivalence using geometric types with cycles, it suffices to: Even though we do not provide in this thesis an answer to the previous problems, we strongly believe that geometric types with cycles can lead to a complete classification of Anosov flows in dimension 3. In this chapter, we will discuss some works in progress in which we answer partially or completely some of the above problems or in which we provide other applications of geometric types for the study of Anosov flows (see Section 9.1). We will also seize this opportunity in order to state several interesting open questions or problems in the answer of which we believe that geometric types can be useful (see Section 9.2). 150

Some works in progress

A complete classification of a family of transitive Anosov flows in dimension 3

As we have previously mentioned, geometric types with cycles have not been shown yet to completely classify Anosov flows in dimension 3. However, the author of this thesis claims in his work in progress [START_REF] Iakovoglou | Markovian families for totally periodic Anosov flows on graph manifolds[END_REF] that there exists a large family of transitive Anosov flows on orientable 3-manifolds (those hypotheses coincide with the framework of this thesis) that can be completely classified using geometric types. We will call the flows in the previous family BL-type Anosov flows: Definition. Let Φ be an Anosov flow on an orientable 3-manifold and P its bifoliated plane endowed with the stable and unstable foliations F s and F u . We will say that a point x in P has four complete quadrants if for any stable leaf s in F s and any unstable leaf u in F u ,

s ∩ F u (x) ̸ = ∅, u ∩ F s (x) ̸ = ∅ ⇒ s ∩ u ̸ = ∅
We will call Φ a BL-type Anosov flow, if Φ is non-R-covered (see Definition 1.3.3) and every pivot point of Φ in P (for a definition of a pivot point see [Fe]) has four complete quadrants.

We would like at this point to announce the following result:

Theorem [START_REF] Iakovoglou | Markovian families for totally periodic Anosov flows on graph manifolds[END_REF]). According to the previous result, even though the association and equivalence problems (for the realisation problem see Section Realisable geometric types) are still open for general transitive Anosov flows, it is possible to solve them in the case of a large family of Anosov flows in dimension 3.

It is a priori not clear why the family of BL-type Anosov flows is indeed quite large. In order to illustrate this, in addition to the previous result, we prove in [START_REF] Iakovoglou | Markovian families for totally periodic Anosov flows on graph manifolds[END_REF] that the class of BL-type Anosov flows coincides with a family of flows that has already been studied by Barbot and Fenley in [BaFe1], namely totally periodic Anosov flows in graph manifolds (for a definition see [START_REF] Barbot | Classification and rigidity of totally periodic pseudo-Anosov flows in graph manifolds[END_REF]).

Theorem [START_REF] Iakovoglou | Markovian families for totally periodic Anosov flows on graph manifolds[END_REF]). The class of BL-type Anosov flows coincides with the set of totally periodic Anosov flows in graph manifolds. Barbot and Fenley provide in [BaFe1] an almost complete classification of the set of totally periodic Anosov flows. Should Theorem-Definition D and Theorem E be generalized for non-transitive Anosov flows, we claim that geometric types can provide an alternative classification of the above class of Anosov flows. An advantage of this second classification by geometric types is that it can be generalized for even larger families of Anosov flows (this is the object of a work in progress with C.Bonatti). In fact, we conjecture that: Conjecture. All transitive Anosov flows on toroidal 3-manifolds can be completely classified by geometric types.

Realisable geometric types with cycles

Not every geometric type with cycles can be realised as a geometric type with cycles associated to a Markovian family of some Anosov flow on a 3-manifold. A necessary condition for an abstract geometric type with cycles G to be associated to some Anosov flow in dimension 3 is that G must give rise to a Markovian family inside a bifoliated plane.

More precisely, following an inverse process from the one described in the Definitions 2.3.1 and 8.0.13, given any geometric type with cycles G, we can produce an infinite family of rectangles (resembling a lot a Markovian family) glued one to the other, whose intersections are dictated by G. The union of those rectangles forms a topological space that is not necessarily a plane. When this is the case, the geometric type with cycles G can not be associated to any Anosov flow in dimension 3.

In a work in progress with C.Bonatti (see [START_REF] Bonatti | Markov partitions and Anosov flows[END_REF]) we consider the problem of deciding whether or not an abstract geometric type with cycles can be associated to some transitive Anosov flow on an orientable 3-manifold (those hypotheses coincide with the framework of this thesis). In this case, we claim that the previously described condition is not only necessary, but also sufficient. More specifically, Theorem. There exists a necessary and sufficient condition for an abstract geometric type with cycles to be realised as a geometric type with cycles associated to a transitive Anosov flow on an orientable 3-manifold. Moreover, the previous condition can be checked algorithmically.

In addition to the previous result, given a realisable geometric type with cycles, we explain in [START_REF] Bonatti | Markov partitions and Anosov flows[END_REF] how one can construct its associated Anosov flow up to orbital equivalence.

Our results in [START_REF] Bonatti | Markov partitions and Anosov flows[END_REF] not only provide a solution to the realisation problem in the case of transitive Anosov flows on orientable 3-manifolds, but also establish a connection between a geometric type of an Anosov flow and the topology of its supporting manifold (see also the next section). Finally, despite our answer to the realisation problem, the association and equivalence problems remain still open for general transitive Anosov flows on orientable 3-manifolds.

3-Manifolds carrying transitive Anosov flows

Despite the abundance of examples of Anosov flows in dimension 3, little is known about the following question:

Question. Given a closed, orientable 3-manifold M , does M carry an Anosov flow?

In our current work in progress [Ia2], we show that Theorem. To every geometric type with cycles we can canonically associate a finite presentation of some group G. Moreover, when the geometric type with cycles is associated to a transitive Anosov flow on an orientable 3-manifold M , the group G is isomorphic to π 1 (M ).

Recall now that it is possible to algorithmically decide whether or not an abstract geometric type with cycles can be associated to a transitive Anosov flow on an orientable 3-manifold (see Section Realisable geometric types with cycles). Therefore, by enumerating all realisable geometric types with cycles, thanks to the previous result, it is possible to recursively produce arbitrarily large lists of fundamental groups of orientable 3-manifolds supporting transitive Anosov flows. Using this method, one could construct in an infinite time all fundamental groups of orientable 3-manifolds supporting transitive Anosov flows. One could therefore ask: Question. Given a finite presentation of the fundamental group of an orientable 3-manifold M , can we algorithmically decide whether or not M supports a transitive Anosov flow? A consequence of the above result is that the classification approach developed in this thesis is in fact, in the case of transitive Anosov flows in dimension 3, a classification by Markov partitions and their associated geometric types.

Markovian families, Markov partitions and Birkhoff sections

Furthermore, except from Markov partitions, Markovian families and their geometric types are also closely related to another tool for classifying transitive Anosov flows, namely Birkhoff sections. More precisely, it is known that an Anosov flow admits a global transverse section if and only if it is the suspension of a hyperbolic toral automorphism. Even though not all Anosov flows admit global transverse sections, by a result of Fried (see [Fri]) every transitive Anosov flow admits a global section that is transverse to the flow everywhere except a finite number of periodic orbits. We call this section a Birkhoff section.

Definition.

Let Φ be an Anosov flow on M 3 . An orientable surface S is called a Birkhoff section of Φ if:

1. The interior of S is embedded in M and is transverse to Φ 2. The boundary of S (which can be empty) is tangent to the flow and is immersed in M 3. There exists T > 0 such that for every x ∈ M there exists t ∈ [0, T ] such that Φ t (x) ∈ S According to [Fri], every transitive Anosov flow Φ admits Birkhoff sections and the first return map on any of its Birkhoff sections defines a pseudo-Anosov map. Moreover, by constructing Markov partitions for the previous pseudo-Anosov maps, one can construct infinitely many Markov partitions for Φ. Therefore, each Birkhoff section inside a transitive Anosov flow produces a Markov partition and thus (by our proof of Proposition 2.1.3) a Markovian family. Conversely, we have recently shown that:

Theorem. Let Φ be a transitive Anosov flow. We can algorithmically decide whether or not a Markovian family of Φ originates from a Markov partition associated to the first return map on a Birkhoff section of Φ.

Thanks to the previous fact, the two classification approaches by geometric types and Birkhoff sections are closely related. However, despite their similarities, the two approaches are not equivalent for the following two reasons:

• not every Markovian family originates from a Markov partition associated to some Birkhoff section

• contrary to Birkhoff sections that have been proven to exist only for transitive Anosov flows, we strongly believe that there exist many non-transitive Anosov flows that admit Markovian families

On the classification of Anosov flows up to Dehn-Goodman-Fried surgeries

As we have mentioned in the beginning of this thesis, the following conjecture of Ghys 12. Let G be a geometric type with cycles associated to some R-covered Anosov flow Φ. Given a point in G corresponding to a periodic orbit γ of Φ, find algorithmically all points in G corresponding to periodic orbits of Φ that are freely homotopic to γ.

13. Classify all non-R-covered transitive Anosov flows that are orbitally equivalent to their inverses. 

flow. 5

 5 Thanks to the three previous constructions the number of examples of Anosov flows in dimension 3 exploded tremendously fast in just a few years and the old classification conjecture gave its place to a new conjecture formulated by E.Ghys: Conjecture 0.0.1 (Conjecture of E.Ghys, a question of D.

  n will be called a geometric type with cycles. See Definition 8.0.11 for more details. Using geometric types with cycles and our proofs of Theorem-Definition A and Theorem B, we will show the following refined versions of the previous theorems: Theorem-Definition D Let M be an orientable, closed and connected 3-manifold and Φ a transitive Anosov flow on M . To any Markovian family R of Φ we can associate canonically a finite set of pairwise equivalent geometric types with cycles, called the geometric types with cycles of R or the geometric types with cycles associated to R. See Definition 8.0.13 and Theorem 8.0.15 for more details.
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 1 Figure 1.1: The neighborhood of an orbit of an Anosov flow

  Except from the general problem of classification of Anosov flows which remains nowadays open in every dimension, several questions concerning the orbital equivalence classes of Anosov flows remain still unanswered. For instance: Question 1.1.8. 1. Does there exist n ∈ N for which S n or T n supports an Anosov flow? 2. Does there exist a manifold M supporting infinitely many orbital equivalence classes of Anosov flows? 3. Provide a necessary and sufficient condition for a manifold M to support an Anosov flow. 4. Is it possible, using the topology of M , to give an upper bound of the total number of orbital equivalence classes of Anosov flows supported by M ?
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 1 Figure 1.2: The stable and unstable bundles of a suspension Anosov flow

  The geodesic flow of a Riemannian manifold with negative curvature Geodesic flows are sources of many examples of Anosov flows. Anosov proves in [An] that: Theorem 1.1.13. Consider (M, g) a Riemannian manifold with negative sectional curvature. The geodesic flow of (M, g) is an Anosov flow.
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 1 Figure 1.3: An example of a geodesic on a genus two surface

  1. codimension one Anosov flows admit C 1 foliations 2. they are transitive in all dimensions except dimension 3 3. whenever they are transitive, up to orbital equivalence, they preserve a smooth volume form 4. and most importantly, with the exception of the suspension flows and the geodesic flows, up to this day, we have constructed few examples of Anosov flows that are not of codimension one. On the other hand, the family of codimension one Anosov flows contains a plethora of known examples, including all Anosov flows in dimensions 3 and 4 (see Section 1.3)
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 1 Figure 1.4: The bifoliated plane of a non-R-covered Anosov flow Theorem 1.3.4. Consider Φ an R-covered Anosov flow on a 3-dimensional manifold M and P its bifoliated plane endowed with its stable and unstable foliations F s and F u . The bifoliated plane of Φ together with its foliations has one of the two following forms up to conjugation:1. R 2 endowed with the two foliations by parallel horizontal and vertical lines (see Figure1.5a). We say in this case that Φ is a trivially R-covered Anosov flow.2. the restriction of the trivial horizontal/vertical foliations of R 2 to the strip {(x, y) ∈ R 2 , |x -y| < 1} (see Figure1.5b). We say in this case that Φ is a skewed R-covered Anosov flow.

Figure

  Figure 1.5

  type is a purely combinatorial version of a Markov partition, where the function ϕ plays the role of the first return map and the function u indicates whether the first return map preserves or changes the orientation of the vertical foliation (see Figure 1.7).

Figure 1

 1 Figure 1.7: In the above example the "first return map" sends a horizontal rectangle to a vertical rectangle of the same color. The arrows represent how the "first return map" acts on the orientation of the vertical foliation.

Figure 1

 1 Figure 1.8: Blowing up a periodic orbit of an Anosov flow

Figure 1

 1 Figure 1.9: In the previous figure, since γ has negative eigenvalues, the torus T γ is obtained by glueing the upper and lower boundaries of the above cylinder by a rotation of angle π. The curves 1 2 (P + m) and m correspond respectively to the canonical parallel and meridian on T γ

  Figure 2.1: A Markovian family associated to the suspension of the cat map A = 2 1 1 1

Figure 2

 2 Figure 2.2: An orbit of Φ can not intersect twice a rectangle

Figure 2

 2 Figure 2.3: An impossible intersection

Figure
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  and u defines a function from H to {-1, 1}. Definition 2.3.1 (Geometric type of a Markovian family). We will call

Figure 2 . 6 :

 26 Figure 2.6: Associating to a Markovian family a geometric type

Figure 2. 7 •

 7 Figure 2.7

Figure 2

 2 Figure 2.8: The effect on a geometric type of changing the orientation of the stable foliation. A rectangle and its image by ϕ ′ or ϕ ′′ are represented by the same color. The arrows indicate the way in which ϕ ′ or ϕ ′′ act on the orientations of the unstable foliations.

Figure 2 . 9 :

 29 Figure 2.9: The effect on a geometric type of changing the representative of one orbit of rectangles by an element reversing the orientations of the foliations. A rectangle and its image by ϕ ′ or ϕ ′′′ are represented by the same color. The arrows indicate the way in which ϕ ′ or ϕ ′′′ act on the orientations of the unstable foliations.
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Figure 3 . 2 :

 32 Figure 3.2: The rectangle R ′′ is an s-crossing predecessor of R and the rectangle R ′ is a crossing successor of R ′′ .

  Figure 3.3: (a) This configuration does not satisfy the Markovian intersection property (b) This is the only possible configuration for which x ∈

  2.5 and Remark 3.0.8, [t, x] -{x} ⊂ • R.

  which contradicts the Markovian intersection axiom and leads to an absurd.
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 43 Figure 4.3: Types of singularities for γ

  1. every stable tangency of type (a) or (b) (resp. (c) or (d)) of γ becomes after perturbation an exterior (resp. interior) tangency of ∂D ′ 2. every stable segment of γ that is not a tangency becomes after perturbation transverse to F s 3. the tangencies of ∂D ′ are bijectively associated to stable tangencies of γAs a consequence of this, we obtain the following result: Lemma 4.2.3. Consider the set of stable tangencies of any simple closed polygonal curve γ in P. We have that: (number of tangencies of type (a) or (b)) -(number of tangencies of type (c) or (d)) = 2 Remark 4.2.4. Notice that by definition the type ((a),(b),(c) or (d)) of a stable tangency of γ, depends on our choice of orientation of F u . By changing our choice of orientation, tangencies of type (a) (resp. (b), (c), (d)) become tangencies of type (b) (resp. (a), (d), (c)).

  Figure 4.4: On the left figure we have a stable tangency of γ with a complete domain and on the right one a stable tangency of γ with an incomplete domain

Figure 5

 5 Figure 5.1: Blowing-up a point in Γ

  Figure 5.2: (a) The classes of curves γ, γ ′ modulo ∼ 2 belong in the neighborhood of γ x . When x ∈ Γ we have that γ ̸ = γ ′ (b) We can picture P as a branched cover over P, where the points of Γ correspond to points with infinite branching index

P .

 . Consider now, any open set of P around a unique point in Γ. The previous open can be naturally associated with an open set in P Γ,blowup and lifts to an open neighborhood of some boundary line in P Γ,blowup . By definition of the quotient topology, the previous open set projects to an open neighborhood of some point in Γ, which gives us the desired result.

  We are now ready to prove the above proposition. Notice first that the space M -Γ covers M -Γ M and verifiesM -Γ M / ker(ρ) = M -Γ Next,denote by Φ -Γ M (resp. Φ -Γ) the lift of the flow Φ minus the periodic orbits Γ M on M -Γ M (resp. M -Γ) and by p the projection from M -Γ M to M -Γ M / ker(ρ) = M -Γ. Since p sends orbits of Φ -Γ M to orbits of Φ -Γ and since P (resp. P -Γ) corresponds to the orbit space of Φ -Γ M (resp. Φ -Γ), we have that P / ker(ρ) ≈ P -Γ Furthermore, the action by π 1 (M ) (the deck transformation group of the covering M -Γ → M -Γ M ) on M -Γ is the quotient by ker(ρ) of the action by π 1 (M -Γ M ) (the deck transformation group of the covering M -Γ M → M -Γ M ) on M -Γ M . More precisely, for every g ∈ π 1 (M -Γ M ) and for any orbit O of Φ -Γ M we have that p(g.O) = ρ(g). p(O)
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  When γ has positive eigenvalues s = p and t = m. When γ has negative eigenvalues s = P and t = p.
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 6 Figure 6.1: γ and δ are homotopic by a homotopy of type B
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 2 Figure 6.2
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 5 Figure 6.5
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 9610 Figure 6.9

Figure 6. 11 ( 8 ′

 118 Figure 6.11

  and the rectangle paths (starting from R 0 ) associated to γ |[0,a] ≡ γ ′ |[0,a] are identical. In particular, both rectangle paths end by R l . It therefore suffices to show that the rectangle paths (starting from R l ) associated to γ |[a,1] and γ ′ |[a,1] are homotopic by a sequence of homotopies of type B.

  1] , the curves γ and γ ′ after exiting N ∪ i=l R i are exactly the same. It follows that the rectangle paths associated to the curves γ |[b,1] and γ ′ |[b,1] after the previous ones reach R, the first rectangle outside {R l , ..., R N }, are also exactly the same; hence W = W ′ . We thus get the desired result by remarking that R l , w A , R k and R l , w ′ A , R k are homotopic by a sequence of homotopies of type B, thanks to Lemma 6.4.5. (b) Assume finally

Figure 6 .

 6 Figure 6.12: A sequence of predecessors inside the geometric type. The colored arrows indicate the action of ϕ on the orientation of the unstable foliation

Figure 8 . 1 :

 81 Figure 8.1: Some examples of positive pre-cycles starting from L 0

  If c is a pre-cycle around p and g ∈ Stab(p). The image by g of the cycle associated to c, is the cycle associated to the pre-cycle g(c). Therefore, by Remark 8.0.4, the set of cycles around any boundary periodic orbit p consists of a finite number of orbits by the action of Stab(p). For any g ∈ π 1 (M ) and any boundary periodic point p, g(Cycl(p)) = Cycl(g(p)

  1. Generalize Theorem-Definition D and Theorem E for non-transitive Anosov flows in dimension 3 and for Anosov flows on non-orientable 3-manifolds 2. (Association problem) Associate canonically to any Anosov flow in dimension 3 a finite number of geometric types with cycles each characterizing up to orbital equivalence the initial Anosov flow 3. (Equivalence problem) If the previous canonical association is possible, decide algorithmically given two geometric types with cycles canonically associated to two Anosov flows in dimension 3, say Φ 1 and Φ 2 , whether or not the flows Φ 1 and Φ 2 are orbitally equivalent 4. (Realisation problem) Decide algorithmically whether or not an abstract geometric type with cycles can be realised as a geometric type with cycles associated to some Anosov flow in dimension 3

  As we have previously established in Chapter 2, Markovian families share a lot of properties with Markov partitions. In fact, not only each Markov partition of a transitive Anosov flow gives rise to a Markovian family (see Proposition 2.1.3), but conversely we have recently shown that:Theorem. Let Φ be a transitive Anosov flow on M 3 , P its bifoliated plane and R a Markovian family in P. The Markovian family R corresponds to the projection on P of the lift on the universal cover of M of a Markov partition of Φ in M .

  unifying all transitive Anosov flows in dimension 3 remains to this day open: Conjecture (Conjecture of E.Ghys, a question of D.Fried). Every transitive Anosov flow in dimension 3 with transversely orientable foliations, up to Dehn-Goodman-Fried surgeries, is orbitally equivalent to a suspension Anosov flow.

3 . (

 . Equivalence problem) Is it possible to decide algorithmically whether two geometric types with cycles define two orbitally equivalent Anosov flows? 4. Consider a finite presentation of the fundamental group of a 3-manifold. Is it possible to algorithmically decide whether or not this presentation can be realised as the canonical group presentation associated to a geometric type with cycles? (see Section 3-Manifolds carrying transitive Anosov flows)5. Let G be a geometric type with cycles associated to a transitive Anosov flow supported by the orientable 3-manifold M . By our discussion in Section 3-Manifolds carrying transitive Anosov flows, we can associate to G a finite presentation of π 1 (M ). Can we solve algorithmically the word or conjugacy problem in π 1 (M ) using G?6. (T.Barthelmé) Consider N ∈ N and the set A N of all the geometric types (n, (h i ) i∈ 1,n , (v i ) i∈ 1,n , H, V, ϕ, u) :• that can be associated to a transitive Anosov flow on an orientable 3-manifold • and that verify n ≤ N , h i ≤ N and v i ≤ N for every i ∈ 1, n Let f N be the percentage of geometric types in A N associated to some Anosov flow on a hyperbolic manifold. What is the behavior of f N when N goes to infinity? 7. Does there exist a non-transitive Anosov flow that does not admit a Markov partition? 8. (D.Fried, E.Ghys) Do all transitive totally periodic Anosov flows with transversely orientable foliations admit genus 1 Birkhoff sections? 9. Is it possible to algorithmically decide whether a geometric type (without or with cycles) is associated to a suspension Anosov flow? 10. Let G be a geometric type with cycles associated to a transitive Anosov flow Φ. Is it possible to algorithmically decide whether Φ is R-covered or not? 11. (C.Bonatti) Let G be a geometric type with cycles associated to some non-R-covered Anosov flow Φ. Decide algorithmically whether or not a point in G corresponds to a pivot point in the bifoliated plane of Φ. Is it possible to find algorithmically all points in G corresponding to pivot points in the bifoliated plane of Φ?

  14. (P.Dehornoy) Classify all transitive Anosov flows admitting a Markov partition with two rectangles.15. Let G be a geometric type with cycles associated to some transitive Anosov flow Φ on an orientable 3-manifold M . If N finitely covers M , construct the geometric types with cycles associated to the lifts of Φ on N .

  

  

  .., λ n the eigenvalues of A (with multiplicity) and assume that |λ 1 |, ..., |λ k | ∈ (0, 1) and that |λ k+1 |, ..., |λ n | ∈ (1, +∞)

	Consider now the manifold

  Under the above hypotheses, we call the Anosov flow ϕ an algebraic Anosov flow.

	Anosov flow on Γ \ G / K if and only if
	1. The adjoint of α, ad(α) : G → G has no non-zero imaginary eigenvalues
	2. ker(ad(α)) = Rα ⊕ K

  decreasing) if it also verifies that R i+1 is a successor (resp. predecessor) of R → P that is a finite juxtaposition of alternating stable and unstable segments will be called a polygonal curve in P. Furthermore, if the curve γ is closed, we will call it a closed polygonal curve.♠ By definition, for any polygonal curve γ there exist c 0 = 0 < c 1 < ... < c n = 1 dividing γ in alternating stable and unstable segments. The number n will be called the length of the polygonal curve. Also, a polygonal curve γ will be called good if 1. none of its stable or unstable segments belongs to the stable or unstable leaf of a boundary periodic point of R 2. there do not exist i ̸ = j ∈ 0, n -1 such that γ([c i , c i+1 ]) and γ([c j , c j+1 ]) belong to the same stable or unstable leaf of P

	Definition 4.1.3.

i for every i • monotonous if it is increasing or decreasing ♠ Definition 4.1.2. A continuous curve γ : [0, 1] ♠ Remark 4.1.4. Notice that by our above definition if γ is a closed and good polygonal curve, then γ(

0

) is necessarily a corner point of γ (i.e. not in the interior of any stable or unstable segment in γ).

Lemma 4.1.5. Any smooth curve γ : [0, 1] → P for which γ(0) and γ(1) do not belong to a stable or unstable leaf of a boundary periodic point of R is homotopic relatively to its boundary to a good polygonal curve in P

  acts trivially on a stable or unstable leaf then g = id • for any point x ∈ P we have that Stab(x) = Z if and only if x is periodic (i.e. corresponds to a periodic orbit in M ) and Stab(x) = {id} in all the other cases

• for any stable/unstable leaf f in F s,u we have that Stab

(f ) = Z or Stab(f ) = {id}.

More specifically, Stab(f ) = Z if and only if f contains a periodic point or f projects to a stable/unstable separatrix of a point in Γ

  We will show the desired result in the case where p ′ > p. The other cases can be similarly treated. If L p , w B , L p ′ is not decreasing, we can find a non-monotonous rectangle path in L p , w B , L p ′ of length 3. The previous rectangle path is of the form L k , L k+1 , L k and can be "erased" by a homotopy of type B. This reduces the length of w B and thus by a finite number of homotopies of type B we get the desired result.

.., L k be a decreasing rectangle path. Consider any rectangle path of the form L p , w B , L p ′ , where p, p ′ ∈ 1, k and w B is a rectangle path formed by rectangles in B. If p ′ > p (resp. p > p ′ , p = p ′ ), the previous rectangle path is homotopic by a sequence of homotopies of type B to a decreasing (resp. increasing, trivial) rectangle path. Proof. (a) Assume first that γ |[a,1] eventually exits N ∪ i=l R i in order to visit a crossing predecessor

L (or successor) of R k ∈ {R l , ..., R N }.

By eventually changing R k , we will assume that if L is a crossing predecessor (resp. successor) of R k , then there is no predecessor (resp. successor) of R k in {R l , ..., R N }, say R p , such that L is a crossing predecessor (resp. successor) of R p .

  they exit this region in order to enter the crossing predecessor (or successor) L of R k . Therefore, there exist R / ∈ {R l , ..., R N } a predecessor (resp. successor) of R k , w A , w ′ A two rectangle paths formed by rectangles in {R l , ..., R N } and W, W ′ two rectangle paths such that • the rectangle path (starting from R l

  .. is uniquely defined by the above properties up to a reindexation of the rectangles. By Lemmas 2.2.6 and 2.2.7, we have that {x} =

	+∞

  Therefore by the Lemmas 2.2.6 and 2.2.7, the set

+∞ ∩ k=-∞

  By Lemmas 2.2.6 and 2.2.7, the set

	N

  To every rectangle containing p we associate a positive and a negative precycle around p. The image of a pre-cycle around p by an element of Stab(p) is a pre-cycle around p. Therefore, by Lemma 8.0.2 there exist only a finite number of pre-cycles around p up to the action of Stab(p).

  The family of transitive BL-type Anosov flows can be completely classified by geometric types. More specifically, 1. To every transitive BL-type Anosov flow we can canonically associate a finite number of geometric types endowed each with a finite set of integers 2. Any of the above geometric types together with its associated set of integers describes the initial flow up to orbital equivalence 3. Deciding whether or not a geometric type can be realised as one of the canonical geometric types associated to a transitive BL-type Anosov flow is algorithmic 4. Consider two geometric types G 1 , G 2 endowed each with a finite set of integers I 1 , I 2 and assume that (G 1 , I 1 ), (G 2 , I 2 ) are canonically associated to two transitive BL-type Anosov flows Φ 1 , Φ 2 . Deciding whether or not Φ 1 and Φ 2 are orbitally equivalent is algorithmic.

It should be noted that in his PhD thesis A.Verjovsky claimed that this statement remains true in dimension 3, but the proof of this result was erroneous

The reader should be warned in this paper the authors construct higher dimensional non-transitive Anosov flows, the construction of which was found to be deficient. See[BBGH] for more details.

E.Ghys recites the story of this publication and explains the reasons why it took time for this result to be published in his very pedagogical talk in IMPA in 2014 (see[START_REF] Ghys | Conferências Magnas: Etienne Ghys -Towards a "classification" of transitive[END_REF])

Although this result is true, Plante's proof relied on an erroneous theorem of Verjovsky according to which every transitive codimension one Anosov flow is R-covered. The proof of Plante was corrected in dimension 3 by T.Barbot in his PhD thesis[Ba]. An alternative proof of this result in all dimensions was suggested by S.Matsumoto in[Ma] 

Fried's proof in[Fri] of the fact that transitive pseudo-Anosov flows without singularities are (orbitally equivalent to) Anosov flows is incomplete. This non-trivial fact was proven by M.Shannon in his PhD thesis[Sh]. It remains still unknown whether or not non-transitive pseudo-Anosov flows without singularities are (orbitally equivalent to) Anosov flows. Hence, contrary to Goodman's surgery, Fried's surgery is known to provide new Anosov flows only when it is performed on a transitive Anosov flow.

The reader should be warned that Verjovsky claimed in his PhD thesis that all Anosov flows in dimension 3 are transitive. Verjovsky's proof of this fact is erroneous. Several counterexamples to this claim are known nowadays.
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of the same type.

Indeed, take r 1 0 , ..., r 1 N a centered rectangle path in P 1 . Let us start by constructing r 2 1 . Since r 1 0 , ..., r 1 N is a rectangle path r 1 1 is a predecessor or a successor of r 1 0 . Assume without any loss of generality that it is a successor. Using our choice of orientation on F u 1 , assume that r 1 1 is the k-th successor of r 1 0 from bottom to top. Take r 2 1 to be the k-th successor of r 2 0 from bottom to top (we use here our choice of orientation on F u 2 ). Since R 1 and R 2 correspond to the same geometric type and r 1 0 , r 2 0 are of the same type, we have that r 2 1 is of the same type as r 1 1 . We construct in the exact same way r 2 2 , ..., r 2 N by induction. Definition 6.2.2. We will call the rectangle path r 2 0 , ..., r 2 N the rectangle path in P 2 associated to r 1 0 , ..., r 1 N . ♠

In the next pages, we will use rectangle paths and associated rectangle paths as coordinate systems that will allow us to compare P 1 and P 2 . The main goal of this chapter is to prove that those coordinate systems are compatible: Theorem 6.2.3. Fix any two centered rectangle paths in P 1 ending by the same rectangle. Their associated centered rectangle paths in P 2 also end by the same rectangle.

The previous theorem is equivalent to the following: Theorem 6.2.4. Fix any closed centered rectangle path in P 1 . Its associated centered rectangle path in P 2 is also closed.

Proof of the equivalence of theorems 6.2.3 and 6.2.4. (6.2.3 ⇒ 6.2.4): Take r 1 0 the trivial rectangle path and p any closed centered rectangle path in P 1 . Since p is closed, it also ends at r 1 0 . By Theorem 6.2.3, the rectangle paths in P 2 associated to p and r 1 0 end by the same rectangle. But the trivial rectangle path r 1 0 is associated (see Definition 6.2.2) with the trivial rectangle path r 2 0 . Therefore, the rectangle path in P 2 associated to p is closed. (6. 2.4 ⇒ 6.2.3): Take two centered rectangle paths r 1 0 , ...r 1 N and R 1 0 , R 1 1 , ..., R 1 m in P 1 such that r 1 0 = R 1 0 and R 1 m = r 1 N . The rectangle path r 1 0 , ...r 1 N , R 1 m-1 , R 1 m-2 , ..., R 1 1 , r 1 0 is a closed centered rectangle path in P 1 . Therefore, by Theorem 6.2.4 its associated rectangle path in P 2 is also closed. Denote the previous rectangle path by r 2 0 , ...r 2 N , R 2 m-1 , R 2 m-2 , ..., R 2 1 , r 2 0 . It is not difficult to see, that r 2 0 , ...r 2 N is the associated rectangle path of r 1 0 , ...r 1 N and that r 2 0 , R 2 1 , ..., R 2 m-1 , r 2 N is the associated rectangle path of R 1 0 , R 1 1 , ..., R 1 m . We deduce that the rectangle paths P 2 associated to r 1 0 , ...r 1 N and R 1 0 , R 1 1 , ..., R 1 m end by the same rectangle.

Our goal from now on will be to prove Theorem 6. 2.4, which is the most important step in the proof of Theorem B. Our proof of Theorem 6.2.4 consists in:

1. deforming a closed rectangle path in P 1 to a trivial one, by the use of three combinatorial operations that we call homotopies Definition 6.3.10. Consider L 0 , ..., L n a sequence of rectangles in R such that for every i, the rectangle L i+1 is a successor or predecessor of some generation of L i . We will call L 0 , ..., L n a generalised rectangle path. By Proposition 2.2.12 and Lemma 2.2.9, for every i there exist a unique monotonous rectangle path (see Definition 4.1.1) L i = L i0 , L i1 , . ..L i(s(i)+1) = L i+1 going from L i to L i+1 . We are going to call L 0 , L 01 , . .., L 0s(0) , L 1 , L 11 , . .., L 1s(1) , L 2 , . ..., L n-1 , L (n-1)1 , ..., L (n-1)s(n-1) , L n the rectangle path associated to L 0 , ..., L n . ♠ Definition 6.3.11. Consider R 0 , ..., R n a rectangle path, p ∈ P a boundary arc point, L 0 ∈ R such that L 0 contains p and the germs of two quadrants of p. Denote by (L 0 , L 1 , L 2 , L 3 , L 4 ) and (L 0 , L 3 , L 2 , L 1 , L 4 ) the two cycles around p starting from L 0 . Consider (L 0 , L 1 ..., L k ) the first k + 1 terms of the first cycle with k ∈ 1, 4 and (L 0 , L 3 ..., L k ) the part of the second cycle starting from L 0 and ending at L k .

Following the notations of Definition 6.3.10, we can associate to L 0 , L 1 , ..., L k and L 0 , L 3 , ..., L k the rectangle paths L 0 , L 01 , . .., L 0s(0) , L 1 , L 11 , . .., L 1s(1) , ..., L k and L 0 , L ′ 01 , ..., L ′ 0s ′ (0) , L 3 , L ′ 31 , ..., L ′ 3s ′ (3) , ..., L k respectively. Assume that the first rectangle path is contained in R 0 , ..., R n . In other words, assume that R 0 , . .., R n 

We are going to say that the rectangle paths R 0 , ..., R n and R ′ 0 , ..., R ′ n ′ are homotopic by a homotopy of type C.

Take γ and δ two good polygonal curves associated to the rectangle paths R 0 , ..., R n and R ′ 0 , ..., R ′ n ′ respectively (see Figure 6.3). We will say that γ is homotopic to δ by a homotopy of type C (relatively to R 0 , ..., R n and R ′ 0 , . Definition 6.3.12. Take P := r 0 , r 1 , ..., r n and P ′ := r 0 , r ′ 1 , ..., r ′ m two centered rectangle paths. We are going to say that P and P ′ are homotopic if there exists P 0 := P, P 1 , ..., P s := P ′ a sequence of rectangle paths such that P i is homotopic to P i+1 by a homotopy of type A, B or C. ♠

Let us remark that thanks to our definition of homotopies of type A, B and C, a closed rectangle path in R is only homotopic to closed rectangle paths. Therefore, a rectangle path homotopic to the trivial rectangle path is necessarily closed. It turns out that the converse is also true: Theorem 6.3.13. Any centered closed rectangle path r 0 , r 1 , ..., r n in P is homotopic to the trivial rectangle path r 0

In other words, according to the above theorem for our combinatorial homotopy theory for rectangle paths, the plane P is simply connected. As we have previously mentioned, the above theorem constitutes the key argument in the proof of Theorem 6.2.4, which we will later show that it implies Theorem B.

Proof of Theorem 6.3.13

The proof of the above theorem will be split in two parts:

1. Proving Theorem 6. 3.13 in the case of rectangle paths that can be associated to simple closed polygonal curves: Proposition 6.4.1. Let γ be a simple closed good polygonal curve and R 0 , .., R n one of its associated rectangle paths.

Proposition 6.4.1 implies the general case

Proof of Proposition 6.4.1

We will prove Proposition 6.4.1 by induction.

Let γ be a simple good closed polygonal curve, R 0 , ..., R n one of its associated rectangle paths and M be the number of boundary arc points of R in the interior of γ (i.e. the bounded connected component of P -γ, see Remark 6. 1.4). Notice that since γ is good, by Remark 3.0.8, it can not contain any boundary arc or boundary periodic points; hence, the number of boundary arc points in the closure of the interior of γ is also equal to M .

Let us show that M < ∞. Indeed, by compactness, we can cover the closure of the interior of γ by a finite number of rectangles of our Markovian family R. By Lemmas 3.0.4, this case, γ does not exit R 0 at all and its associated element in {0, 1} 4 is (0, 0, 0, 0) (recall that the rectangle path associated to γ starting from R 0 is not trivial if and only if γ exits R 0 ). Suppose now that (u ′ , s) → (1, 1). We can assume without any loss of generality that the (oriented by γ) segments u ′ and s are positively oriented for our choice of orientations of F s,u . In the following lines, for any rectangle R ∈ R, using the orientations of F s,u , we will denote by ∂ s + R (resp. ∂ s -R) its upper (resp. lower) stable boundary. We similarly define

, and so on, until it exits R u N -1 and visits

Notice that thanks to our choice of c i (see Lemma 4. 1.11)

, and so on until it exits R u m-1 and visits R um := Rect γ,R 0 (u ∩ s) (see Figure 6.4). Once again by Lemma 4. 1.11, R um 

Notice that since u ′ exits R u N -1 , thanks to Lemma 2.2.12 we have that R u N +1 and R u N -1 correspond two successors (of some generation) of R u N with disjoint interiors. Also, R um (resp. R 0 ) is a successor of some generation of R u N +1 (resp. R u N -1 ). By the previous facts,

Consequently, if u does not exit R um , then the curve γ cannot be a rectangle. Hence, as before, u exits R um in order to visit R u m+1 , a ∂ s -R um -crossing predecessor of R um , next u exits R u m+1 in order to visit a crossing predecessor of R u m+1 and so on until it exits R u k-1 and visits R u k := Rect γ,R 0 (u ∩ s ′ ). By the same arguments as before,

We conclude that if (u ′ , s) → (1, 1), then the element of {0, 1} 4 associated to (u ′ , s, u, s ′ ) is (1, 1, 1, 1). If (u ′ , s) → (1, 0), then as before u ′ exits R 0 in order to visit R u 1 , a crossing predecessor of R 0 , next u ′ exits R u 1 in order to visit a crossing predecessor of R u 1 and so on until it exits R u N -1 and visits R u N := Rect γ,R 0 (u ′ ∩ s) a predecessor of some generation of R 0 that contains completely u ′ . Since s by hypothesis also does not exit R u N and R u N is trivially bifoliated, u, s ′ do not exit R u N either. Therefore, if (u ′ , s) → (1, 0), then the element of {0, 1} 4 associated to (u ′ , s, u, s ′ ) is (1, 0, 0, 0).

We show in a similar way that if (u ′ , s) → (0, 1), then the element of {0, 1} 4 associated to (u ′ , s, u, s ′ ) is either (0, 1, 0, 0) or (0, 1, 1, 1).

Finally, let us show that if the element of {0, 1} 4 associated to γ has three consecutive 1s, then the interior of γ contains boundary arc points. Assume that (u ′ , s, u, s ′ ) → (1, 1, 1, 1) (the case (0, 1, 1, 1) follows by the same argument). Following our previous notations (see the case (u ′ , s) 6.4), which is a boundary arc point according to Remark 3.0.8.

We are now ready to describe the initialization of our induction. Recall that R 0 , ..., R n is the rectangle path associated to γ. Since γ is a rectangle and contains no boundary arc points in its interior, by the previous lemma we will consider the following 3 cases:

1. If γ corresponds to (0, 0, 0, 0) by our proof of Lemma 6.4.2, we have that γ never exits R 0 ; its associated rectangle path is therefore trivial.

2. If γ corresponds to (1, 0, 0, 0), following the notations of Lemma 6. 4.2 (see the case where (u ′ , s) → (1, 0)), u ′ exits R 0 in order to visit R u 1 , a crossing predecessor of R 0 , next u ′ exits R u 1 in order to visit a crossing predecessor of R u 1 and so on until it exits R u N -1 and visits R u N := Rect γ,R 0 (u ′ ∩ s) a predecessor of some generation of R 0 that, as we have previously shown, contains completely u ′ , s, u, s ′ . It follows that the rectangle path (starting from R 0 ) associated to γ is decreasing.

3. Similarly, if γ corresponds to (0, 1, 0, 0), then its associated rectangle path starting from R 0 is increasing.

We deduce that if (M (γ), l(γ)) = (0, 4), then Proposition 6.4.1 is true. Let us now describe the step of our induction.

Induction step: the case where γ is a rectangle with M (γ) > 0

Following our previous notations, by our proof of Lemma 6.4.2, the element of {0, 1} 4 associated to γ is either (1, 1, 1, 1) or (0, 1, 1, 1). Suppose first that γ corresponds to (1, 1, 1, 1). Assume once again that the (oriented by γ) segments u ′ and s are positively oriented for our choice of orientation of F s,u .

During our proof of Lemma 6.4.2, we associated to u ′ ∪ s a generalized rectangle path (see Definition 6.3.10) R u ′ ,s := R 0 , R u 1 , ..., R u N , R u N +1 , ..., R um . Notice that by construction, the rectangle path associated to the generalized path R u ′ ,s corresponds to the first part of the rectangle path associated to γ. Also, we showed that u ′ ⊂ R u N , s exits R u N in Let us show that the previous movement corresponds to a homotopy of type A. Indeed, our movement pushes the segments u ′ , s, u of γ to the segment s ′ of γ ′ , while keeping 

in order to visit R l+2 and so on till it exits R N in order to visit a crossing predecessor of R N . It follows that the rectangle path

Finally, since γ and γ ′ coincide on [b, 1], we deduce that the rectangle paths (starting from R 0 ) associated to γ ′ and γ are the same and thus our movement corresponds indeed to a homotopy of type A.

(

We are therefore in the case of Figure 6.8b, where

As in case (1 ′ ), by pushing γ along Dom ⊂ R l so that we erase U ′ and thus performing a homotopy of type A, we get that γ is homotopic to a simple, good and closed polygonal curve of strictly smaller length.

(

We are therefore in the case of Figure 6.9, thus u = U . By pushing γ along Dom ⊂ R m so that we erase U and thus performing as in case (1 ′ ) a homotopy of type A, we obtain that γ is homotopic to a simple, good and closed polygonal curve of strictly smaller length.

the induction hypothesis for γ ′ , which verifies (M (γ ′ ), l(γ ′ )) < (M (γ), l(γ)). We have that the rectangle path associated to γ ′ is homotopic to the decreasing path

Consider the rectangle path associated to γ, which is of the form: R 0 , R 1 , ..., R l , w A , R k By Lemma 6.4.5, the previous rectangle path is homotopic by a sequence of homotopies of type B to the rectangle path

A is the rectangle path w ′ A followed from its end to its beginning. The first part of this rectangle path is by hypothesis homotopic to the decreasing rectangle path

We deduce that the rectangle path associated to γ is homotopic to the decreasing rectangle path R 0 = r ′ 0 , r ′ 1 , ..., r ′ p , r ′ p+1 , ..., r ′ p+s = R k , which gives us the desired result. Finally, assume that R k is a successor of some generation of R k ′ . By the same argument, the rectangle path associated to γ is homotopic to the concatenation of the decreasing rectangle path R 0 , r ′ 1 , ..., r ′ p = R k ′ and of an increasing rectangle path of the form r

Therefore, by a homotopy of type B, we can decrease the length of the path

and keep doing this until we obtain an increasing, decreasing or trivial rectangle path, which gives us the desired result.

Induction step in the case where no tangency with strong (⋆) property exists

Assume that the domains of all stable and unstable tangencies of γ with property (⋆) contain γ(0). The reason why we consider this case separately from the previous one, is because the deformations of γ used in the case where there exists a tangency with strong property (⋆) might in this case put γ(0) in the interior of a stable or unstable segment. In other words, due to Remark 4. 1.4, the deformations described in the previous case do not always produce in this case good polygonal curves. Nevertheless, we will show in the following lines that this case can be most of the times reduced to the previous one.

Consider s a tangency with property (⋆) and Dom its domain (its existence is ensured by Lemma 6.4.3). We will assume without any loss of generality that s is a stable tangency. The function γ : [0, 1] → P induces a cyclic order on the stable and unstable segments forming γ. Let us denote once again by U ′ (resp. U ) the unstable segment of γ before (resp. after) s, by s ′ the stable side of Dom that is not s, u ′ := U ′ ∩ Dom and u := U ∩ Dom. Recall that by definition of property (⋆), γ( 0

Lemma 6.4.6. Let R 0 and R n be the first and last rectangles of the rectangle path associated to γ.

, then γ is homotopic by a homotopy of type A to a simple, closed and good polygonal curve having at least one tangency with strong property (⋆).

By definition since γ is simple, closed and good, then γ ′ is also simple, closed and good. Notice that since

) and U ′ ⊂ R n , the rectangle paths (starting from R 0 ) associated to the good polygonal curves γ and γ ′ coincide; hence γ and γ ′ are homotopic by a homotopy of type A, which gives us the desired result.

We are now ready to describe the induction step in this final case.

(1 ′′ ) If (U ′ , s, U ) → (0, 0, 0), by our argument in case (1 ′ ) we can push γ by a homotopy of type A along Dom so that s comes arbitrarily close to s ′ . By Lemma 6.4.6, up to a homotopy of type A, γ has a tangency with strong property (⋆). We deduce the induction step by applying cases (1 ′ ) -(8 ′ ).

(2 ′′ ) If (U ′ , s, U ) → (1, 0, 1), as we have showed in case (2 ′ ), we are in the case of Figure 6.8b, with u ′ = U ′ and therefore γ(0) ∈ u ′ . By our argument in (2 ′ ), we can push γ by a homotopy of type A along Dom so that s comes arbitrarily close to s ′ . By doing so Rect γ,R 0 (u ′ ) becomes trivial and therefore by Lemma 6.4.6 up to a homotopy of type A, γ has a tangency with strong property (⋆). We deduce the induction step by applying cases (1 ′ ) -(8 ′ ).

(3 ′′ ) If (U ′ , s, U ) → (0, 0, 1), we are in the case of Figure 6.8b, with

We apply in this case the same argument as in case (2 ′′ ).

(4 ′′ ) If (U ′ , s, U ) → (1, 1, 0), then we are in the case of Figure 6.9, where {R l , ...,

By the same arguments as before, up to a homotopy of type A, γ has a tangency with strong property (⋆). We deduce the induction step by applying cases (1 ′ ) -(8 ′ ).

(5 ′′ ) If (U ′ , s, U ) → (0, 1, 0), then we are in the case of Figure 6.9 with R l = R l+1 = ... = R N .

In this case either γ(0) ∈ u ∩ s ′ or γ(0) ∈ u ′ ∩ s ′ . In both cases, by the same arguments as before, up to a homotopy of type A, γ has a tangency with strong property (⋆). We deduce the induction step by applying cases (1 ′ ) -(8 ′ ).

Proposition 6.4.1 implies Theorem 6.3.13

Consider r 0 , ..., r n a closed rectangle path in P and γ a closed and good polygonal curve associated to the previous rectangle path (the existence of such a γ is guaranteed by Lemma 4.1.9). We will show that r 0 , ..., r n is homotopic to a trivial rectangle path.

By our definition of good polygonal curve (see Definition 4.1.2), no two stable (resp. unstable) segments of γ belong to the same leaf in F s (resp. F u ). Consequently, every self-intersection of γ is contained in the intersection of a stable and an unstable segment of γ. Since γ is compact, this shows that γ has only a finite number, say M , of self-intersections that are also topologically transverse. We will prove Theorem 6.3.13 by induction on M . If M = 0, then we obtain the desired result from Proposition 6.4.1. Suppose now that M > 0 and that the result holds for all n ∈ 0, M -1 .

Let us remark that γ(x 0 ) = γ(y) lies in the intersection of a stable and unstable segment of γ, therefore it is not contained in the stable or unstable leaf of a boundary periodic point. Consider

• r 0 , ..., r k the rectangle path (starting from r 0 ) associated to the simple and good polygonal curve γ |[0,y]

• r k , ..., r l the rectangle path (starting from r k ) associated to the simple and good polygonal curve γ |[y,x 0 ]

• r l , ..., r n the rectangle path (starting from r l ) associated to the good polygonal curve

Notice that by our construction of the rectangle path associated to a good polygonal curve (see Definition 4.1.7), the juxtaposition of the previous rectangle paths gives the rectangle path (starting from r 0 ) associated to γ.

Since γ |[y,x 0 ] is simple and closed, by Proposition 6.4.1 its associated rectangle path r k , ..., r l is homotopic to an increasing, decreasing or trivial rectangle path,

Similarly, consider γ ′ the good, closed polygonal curve formed by γ([x 0 , 1]) followed by γ([0, y]). Notice that γ ′ has at most M -1 self-intersections and therefore by our induction hypothesis its associated rectangle path (starting from r l ) r l , ..., r n = r 0 , ..., r k is homotopic to an increasing, decreasing or trivial rectangle path

Consider now the rectangle path associated to γ: r 0 , ..., r n . By a sequence of homotopies of type B the previous rectangle path is homotopic to r 0 , ..r k , ...r l , .., r n = r 0 , r 1 , ..., r k-1 , r k , r k-1 , ..., r 0 By our previous discussion the above rectangle path is homotopic to

is also the trivial rectangle path. In this case, r 0 , . .., r Finally, consider C 1 , C 2 two centered rectangle paths in P 1 that are homotopic by a homotopy of type C. Following the notations of Definition 6. 3.11, we may assume that C 1 and C 2 are respectively of the form:

k is the rectangle path associated to the generalized rectangle path (L 1 0 , L 1 3 , ..., L 1 k ). Assume without any loss of generality that L 1 0 contains a germ of the (-, -) and (+, -) quadrants of p 1 and that (L

) is a positive cycle around p 1 (see Figure 6.2). Denote by r 2 0 , . ) is a positive cycle in P 2 (starting from L 2 0 ) around some boundary arc point in L 2 0 . In order to do so, let us first show that L 2 1 is a crossing predecessor of L 2 0 . More specifically, let s 1 0 be the uppermost stable boundary component of L 1 0 (we use here our choice of orientation of the unstable foliation in P 1 fixed in the statement of the theorem). Notice that by our previous hypotheses p 1 ∈ s 1 0 and also by using our definition of a positive cycle (see Definition 6.3.4 and our discussion prior to Lemma 6.3.6), L 1 1 corresponds to the s 1 0 -crossing predecessor of L 1 0 containing p 1 in its leftmost unstable boundary. We will show that L 2 1 is an s 2 0 -crossing predecessor of L 2 0 , where s 2 0 is the uppermost stable boundary component of L 2 0 (once again we use here our choice of orientation of the unstable foliation in P 2 fixed in the statement of the theorem).

Proof that L 2 1 is an s 2 0 -crossing predecessor of L 2 0 Assume that L 1 1 is not a predecessor of L 1 0 (the case where L 1 1 is a predecessor of L 1 0 follows from similar arguments). Since by its definition L 1 1 is an s 1 0 -crossing predecessor of L 1 0 , for every i ∈ 1, s(0) the rectangle L 1 0i is a predecessor of some generation of L 1 0 that does not cross s 1 0 . By Remark 3.0.7, the rectangles L 1 0i cross the lowermost stable boundary component of L 1 0 and therefore L 1 1 crosses both stable boundary components of L 1 0 (see Figure 6.12).

Recall that

Denote by H i the by our definition of the associated rectangle path and since the geometric types associated to R 1 and R 2 coincide,

• the rectangles L 2 0k and L 2 1 are predecessors of some generation of L 2 0

u(H k ) = -1), we get that none of the L 2 0i cross s 2 0 . Also, using the fact that H is neither the lowermost nor the uppermost horizontal subrectangle of (L 2 1 ) G , we get that L 2 1 crosses s 2 0 and thus is an s 2 0 -crossing predecessor of L 2 0 , which gives us the desired result.

) corresponds to a positive cycle in P 2 We will associate to p 1 the unique point of intersection, say p 2 ∈ P 2 , of s 2 0 with the leftmost unstable boundary component of L 2 1 . Notice that, since L 1 1 is not the leftmost s 1 0 -crossing predecessor of L 1 0 (L 1 3 is an s 1 0 -crossing predecessor of L 1 0 at the left of L 1 1 , see Figure 6.2), neither is L 2 1 . Hence, p 2 is not a corner point of L 2 0 and L 2 0 contains a germ of the (-, -) and (+, -) quadrants of p 2 . By a similar argument, one can prove that L 2 2 is a crossing successor of L 2 1 in P 2 , such that p 2 ∈ ∂L 2 1 ∩ ∂L 2 2 and

Finally, by repeating the same argument for L 2 3 and L 2 4 , we can prove that to the positive cycle (L 1

End of the proof of the theorem

We conclude that to the rectangle paths C 1 and C 2 are respectively associated two rectangle paths in P 2 of the form: 

Chapter 7

Proof of Theorem B

Let Φ 1 and Φ 2 be two transitive Anosov flows on the closed, orientable 3-manifolds M 1 , M 2 , P 1 and P 2 their bifoliated planes and F s,u 1 ,F s,u 2 the stable and unstable foliations in P 1 , P 2 . Assume that P 1 and P 2 carry two Markovian families R 1 and R 2 whose associated classes of geometric types coincide. By choosing appropriately orientations on F s,u 1 ,F s,u 2 and also representatives of every rectangle orbit in R 1 and R 2 , thanks to Lemma 2.3.5, we may assume that to R 1 and R 2 is associated the same geometric type (R 1 , . .

., R n , (h

2 ) the boundary periodic points (resp. orbits) associated to R 1 , R 2 in P 1 , P 2 (resp. in M 1 , M 2 ), P 1 , P 2 the bifoliated planes of Φ 1 , Φ 2 up to surgeries on Γ M 1 1 , Γ M 2 2 and F s,u 1 , F s,u 2 their stable and unstable singular foliations. We will also denote by R 1 , R 2 (resp. Γ 1 , Γ 2 ) the lifts of R 1 , R 2 (resp. Γ 1 , Γ 2 ) on P 1 , P 2 and r 1 0 , r 2 0 the origin rectangles in P 1 , P 2 .

In Chapter 4, we established that rectangle paths allow us to freely navigate the bifoliated plane and thus endow the bifoliated plane with a "system of coordinates". Any centered rectangle path in P 1 can be naturally associated to a centered rectangle path in P 2 and vice versa (see Definition 6.2.2). Furthermore, by Theorem 6.2.4 this correspondence of rectangle paths gives birth to a compatible system of coordinates in P 1 and P 1 : closed and centered rectangle paths in P 1 correspond to closed and centered rectangle paths in P 2 and vice versa. We would now like to show that: Theorem (Theorem B). Under the previous hypotheses, the flow Φ 1 (up to orbital equivalence) can be obtained from Φ 2 by performing a finite number of Dehn-Goodman-Fried surgeries on Γ M 2 2 In order to do so, by Theorem C (Theorem 5.5.1) it suffices to show that there exists a homeomorphism h : P 1 → P 2 and an isomorphism α :

2 ) such that:

• the image by h of any stable (resp. unstable) leaf in F s 1 (resp. F u 1 ) is a stable (resp. unstable) leaf in F s 2 (resp. F u 2 )

• for every g ∈ π 1 (M 1 -Γ M 1 1 ) and every x ∈ P 1 we have

We will split the proof of the previous statement in two parts:

1. the construction of an isomorphism α :

2 ) 2. the construction of a homeomoprhism h : P 1 → P 2 with the desired properties Let us begin with the construction of α.

) be a rectangle path in R 1 going from r 1 0 to g 1 (r 1 0 ) (such a rectangle path exists thanks to Proposition 4. 1.8) and

n are by definition of the associated rectangle path (see Definition 6.2.2) of the same type, there exists

. The map α does not depend on our initial choices of rectangle paths and defines an isomorphism between π

Proof. Let us begin by showing that the map α is well defined. Recall that if g ∈ π 1 (M 1 -Γ M 1 1 ) fixes one rectangle R in O(r 1 0 ), then g = id. Indeed, if g ̸ = id and g(R) = R, then g has a fixed point in R and therefore it acts as an expansion or contraction on its stable leaf (see Theorem 1.2.25), which contradicts the fact that g(R) = R. Consequently, following our previous notations, g 1 (resp. g 2 ) is the unique element in π

Furthermore, thanks to Theorem 6.2.3, the rectangle R 2 n does not depend on our initial choice of rectangle path going from r 1 0 to R 1 n = g 1 (r 1 0 ). It follows that g 2 also does not depend on our initial choice of rectangle path and thus α is well defined. Let us now show that α defines an isomorphism.

2 ), we can produce by the same exact procedure a morphism α ′ :

1 ) such that α and α ′ are inverses of each other. Consequently, α defines an isomorphism from π

2 ) and we get the desired result.

We are now ready to proceed to the construction of the homeomorphism h : P 1 → P 2 . We are first going to define a bijection H from R 1 to R 2 that is equivariant for the group actions and then we are going to show that a map h : P 1 → P 2 such that h(R) = H(R) for every rectangle R ∈ R 1 defines a unique homeomorphism from P 1 to P 2 equivariant for the group actions.

Indeed, let R ∈ R 1 . Consider a centered rectangle path in P 1 ending at R and its corresponding centered rectangle path in P 2 ending at R ′ ∈ R 2 . We define H(R) = R ′ . Notice that R ′ does not depend on our initial choice of rectangle path thanks to Theorem 6. 2.3 and that H sends predecessors (resp. successors) to predecessors (resp. successors). Also, by our proof of Proposition 7.0.1, we have that for any g ∈ π 1 (M 1 -Γ M 1 1 ) and R ∈ R 1 :

Finally, by changing the roles of R 1 , R 2 and by applying the same arguments as before we can construct a right and left inverse for H. It follows that H : R 1 → R 2 is a bijection that is equivariant with respect to the actions of the fundamental groups.

Thanks to Theorem C, Theorem B follows from the next proposition:

Proposition 7.0.2. There exists a unique homeomorphism h from P 1 to P 2 such that:

• the image by h of any stable (resp. unstable) leaf in

1 ) and every x ∈ P 1 we have

Proof. Consider a choice of representatives of every rectangle orbit in R 1 , R 2 and of orientations on F s,u 1 , F s,u 2 such that the geometric types associated (by Remark 2.3.3) to R 1 , R 2 for the previous choices of representatives and orientations are the same. Such a choice of representatives and orientations exists by Lemma 2.3.5 and Proposition 6.1.5.

Let x ∈ P 1 . Recall that a quadrant of x is the closure of a connected component of P 1 minus the union of the stable and unstable leaves crossing x. For any quadrant Q of x, there exists a unique (up to reindexation) bi-infinite sequence .

The above prove that h is continuous. By applying the same arguments to h -1 , we get that h is a homeomorphism.

h is equivariant with respect to the actions of the fundamental groups Consider x ∈ P 1 and g ∈ π 1 (M 1 -Γ 1 ). For any quadrant q of x, using our previous notations, we have that:

h sends oriented stable/unstable leaves to oriented stable/unstable leaves Consider p a periodic point in P 1 -Γ 1 , x ∈ F s 1 (p) and g ∈ Stab(p) such that g n (x) → p when n → +∞. Without any loss of generality, assume that g preserves the orientations of the foliations F s,u 1 . Since h is a homeomorphism that is equivariant for the actions of the fundamental groups, α(g) ∈ Stab(h(p)) and α(g) n (h(x)) → h(p) when n → +∞. Furthermore, for any rectangle R ∈ R 1 containing p, we get by the definition of g and Lemma 2.2.12 that g(R) is a predecessor of some generation of R. Since H and thus also h sends predecessors to predecessors, this implies that α(g)(h(R)) is a predecessor of some generation of h(R) and therefore α(g) ∈ Stab(h(p)) acts as a contraction on F s 2 (h(p)). Finally, since α(g) n (h(x)) → h(p) when n → +∞, we get that h(x) ∈ F s 2 (h(p)). By using the same argument for h -1 , we deduce that h(F s 1 (p)) = F s 2 (h(p)). By similar arguments one can prove that h(F u 1 (p)) = F u 2 (h(p)) and also that h sends a stable (resp. unstable) leaf of a point p ′ ∈ Γ 1 to a stable (resp. unstable) leaf of the point h(p ′ ) ∈ Γ 2 . Moreover, since Φ 1 is transitive, the periodic stable (resp. unstable) leaves form a dense set in the leaf space of F s 1 (resp. F u 1 ). Using the fact that h is a homeomorphism, our previous arguments imply that h(F s 1 ) = F s 2 and h(F u 1 ) = F u 2 . Finally, recall that F s,u 1 and F s,u 2 have been endowed with orientations for which the map H sends the predecessors of any rectangle r ∈ R 1 ordered from left to right, to the predecessors of H(r) ordered from left to right. Same for the successors of any rectangle in R 1 . We deduce that h respects the orientations of F s,u 1 and F s,u 2 .

Chapter 8

An invariant up to orbital equivalence

Fix Φ a transitive Anosov flow on a closed, orientable 3-manifold M , P its bifoliated plane endowed with an orientation, F s , F u the stable and unstable foliations in P endowed with an orientation, R a Markovian family on P and Γ ⊂ P the set of boundary periodic points of R.

In Chapter 6, we introduced the notion of cycle around a boundary arc point of P. We would like in this section to adapt this notion of cycle for boundary periodic points in P, in order to obtain information about the neighborhood of these orbits in M . This will allow us to prove Theorem-Definition D and Theorem E. Proof. Assume that the germ of the (+, +)-quadrant of p is contained in R, but not in R ′ .

Since

by the Markovian intersection axiom, both R and R ′ contain the germ of some quadrant Q ̸ = (-, -) of p. Assume without any loss of generality that Q = (+, -). Since R ′ does not contain the germ of the (+, +)-quadrant of p, we have that p ∈ ∂ s R ′ . Denote by s be the stable boundary component of R ′ containing p. By Lemma 2.2.12 and our hypotheses, we have that R is a predecessor of some generation of R ′ , for which ∂ s R ∩ s = ∅. Consider now g ∈ Stab(p) such that the stable boundaries of g(R ′ ) become very thin and the unstable ones very long. The intersection of the rectangles g(R ′ ) and R is not Markovian. Absurd.

According to the previous lemma, we can not extend Definition 6.3.4 for boundary periodic points in P.

Lemma 8.0.2. Take p be a boundary periodic point in P and q one of its quadrants. The set of rectangles in R containing a neighborhood of p in q are finite up to the action of Stab(p).

Proof. Indeed, fix R a rectangle in R containing a germ of p in q. Take R ′ a rectangle in R with the same properties that is not in the π 1 (M )-orbit of R. By Lemma 2.2.12, R ′ is a Theorem 8.0.15 (Theorem-Definition D). Let M be an orientable, closed and connected 3-manifold, Φ a transitive Anosov flow on M and R a Markovian family of Φ. The set of geometric types with cycles associated to R is included in a unique class of equivalent geometric types with cycles.

We would like now to prove Theorem E according to which any equivalence class of geometric types with cycles associated to some Anosov flow describes the flow up to orbital equivalence. More precisely, Theorem E Let Φ 1 , Φ 2 be two transitive Anosov flows on two closed, orientable manifolds M 1 , M 2 and R 1 , R 2 two Markovian families in P 1 , P 2 . If the equivalence classes of the set of geometric types with cycles associated to R 1 , R 2 are the same, then Φ 1 is orbitally equivalent to Φ 2 .

Proof. Let Γ 1 , Γ 2 be the boundary periodic points of R 1 , R 2 in P 1 , P 2 , corresponding to the set of periodic orbits Γ

and Γ 1 , Γ 2 the lifts of Γ 1 , Γ 2 on P 1 , P 2 . Using Lemma 2.3.5, it is not hard to show that by choosing properly orientations on F s,u 1 , F s,u 2 and representatives for every rectangle orbit in R 1 and R 2 , we may assume that the Markovian families R 1 and R 2 correspond to the same geometric type with cycles that we will denote by (G, A). Our choice of orientation on F s,u 1 , F s,u 2 induces an orientation on the stable and unstable foliations F s,u 1 , F s,u 2 in P 1 , P 2 . By Theorem B and Theorem 5.5.1, there exist an isomorphism α : π

2 ) and a homeomorphism h : P 1 → P 2 such that:

• the image by h of any oriented stable/unstable leaf in F s,u 1 is an oriented stable/unstable leaf in F s,u 2 • for every g ∈ π 1 (M 1 -Γ M 1 1 ) and every x ∈ P 1 we have h(g(x)) = α(g)(h(x))

Let us now go back to our proof of Theorem 5.5.1 and show that under the additional hypothesis on the cycles of R 1 and R 2 , the flows Φ 1 and Φ 2 are orbitally equivalent.

Indeed, in the proof of Theorem 5.5.1, by choosing an appropriate orientation on P 1 and P 2 , we defined for every boundary periodic point

) of its stabilizer group, that is uniquely defined by the following properties

) fixes all the stable (or unstable) leaves intersecting γ and acts as an expansion on every unstable leaf crossing γ

γ ) acts as a translation by +2 on the (counterclockwise ordered) set of stable leaves of γ and ρ

γ ) acts as a translation by +1 on the (counterclockwise ordered) set of stable leaves of γ and ρ

) is a generator of the stabilizer of the stable leaf of γ, the projection on P 1 (resp. P 2 ) of γ Next, in our proof of Theorem 5.5.1, we proved that for every boundary periodic orbit γ

where k belongs in Z and only depends on the periodic orbit γ ∈ Γ M 1 1 associated to γ. We thus associated to every γ ∈ Γ M 1 1 an integer k(γ) and we finally showed that Φ 2 is orbitally equivalent to the flow obtained by performing a surgery on Φ 1 of coefficient -k(γ) along every periodic orbit γ in Γ M 1 1 . Therefore, in order to show that Φ 1 and Φ 2 are orbitally equivalent, it suffices to show that for every γ ∈ Γ 1 we have k(γ) = 0.

Fix γ ∈ Γ 1 and γ its projection on P 1 . Consider a cycle around γ, say r 0 , ..., r k = r 0 . Lift the previous cycle to a rectangle path r 0 , ..., r k in P 1 intersecting γ. Notice that r 0 , ..., r k is not closed, since r 0 , ..., r k goes once around γ and there exists no loop in P 1 going around γ. Taking the image by h, h(r 0 ), ..., h(r k ) is a rectangle path in P 2 , whose projection on P 2 will be denoted by r ′ 0 , ..., r ′ k . Let us show that r ′ 0 , ..., r ′ k is a closed rectangle path. Recall that

• we associated G to R 1 thanks to a choice of representatives of every rectangle orbit in R 1 and a choice of orientations on F s,u 1 . By taking a lift of each of these representatives on P 1 and by considering the orientation on F s,u 1 that is induced by our choice of orientation on F s,u 1 , we showed in Proposition 6.1.5 that the geometric type associated to R 1 , the lift of R 1 on P 1 , is exactly G. In particular, by our proof of Proposition 6.1.5, for every i the rectangles r i and r i also correspond to the same rectangle of G (i.e. they are of the same type)

• similarly, for every i the rectangles r ′ i and h(r i ) correspond to the same rectangle of G • by our construction of h in Chapter 7, for every i the rectangles r i and h(r i ) also correspond to the same rectangle of G It follows that r i and r ′ i correspond to the same rectangles in G for every i. Even more, since h preserves the orientation of the foliations F s,u 1 and F s,u 2 and also preserves the relations of successor/predecessor, the rectangle paths r 0 , ..., r k and r ′ 0 , ..., r ′ k project to the exact same rectangle path in G. By Proposition 8.0.9 and by Definition 8.0.13, every cycle in A is the projection on G of a π 1 (M 1 )-orbit (resp. π 1 (M 2 )-orbit) of cycles around boundary periodic orbits in P 1 (resp. P 2 ) and conversely all cycles around boundary periodic orbits in P 1 (resp. P 2 ) project to cycles in A. Hence, as r 0 , ..., r k is a cycle around γ ∈ Γ 1 , it projects to a cycle in A and since r ′ 0 , ..., r ′ k projects to the same cycle in A, we have that r ′ 0 , ..., r ′ k is a cycle around a boundary periodic orbit in P 2 , therefore also a closed rectangle path in P 2 .

Assume first that γ has positive eigenvalues and corresponds to the periodic orbit γ M 1 of Φ 1 . We will show that k(γ M 1 ) = 0. Since r 0 , ..., r k = r 0 goes once around γ, there exists g ∈ π 1 (M 1 -Γ M 1 1 ) such that g(r 0 ) = r k , g ∈ ker(ρ 1 ) (see our discussion prior to Proposition 5. 4.4) and g acts as a translation of ±2 on the set of stable leaves intersecting γ. Hence, g = t M 1 γ or g = (t M 1 γ ) -1 . By eventually changing our choice of cycle around γ, we will assume without any loss of generality that g = t M 1 γ . By our proof of Theorem 5.5.1, the map h According to Fried (see [Fri]), the previous conjecture is equivalent to the following one:

Conjecture. Every transitive Anosov flow in dimension 3 with transversely orientable foliations admits a Birkhoff section of genus 1.

Moreover, since the first return map on a genus 1 Birkhoff section is associated to some Markov partition, it is also not difficult to prove that the conjecture of Ghys can also be translated in terms of geometric types:

Conjecture. Let Φ be a transitive Anosov flow with transversely orientable foliations. There exists a Markov partition of Φ whose geometric type (which is an invariant of Φ up to specific surgeries, see Theorem B) can be associated to a suspension Anosov flow.

Despite the abundance of examples of transitive Anosov flows in dimension 3, the conjecture of Ghys has been verified only for a small number of Anosov flows and it remains still unknown whether all known examples of Anosov flows satisfy Ghys' conjecture. In their preprint [DeSh], Dehornoy and Shannon prove that geodesic flows on hyperbolic surfaces or orbifolds satisfy Ghys' conjecture and using an argument of Minakawa they also establish that any two suspension Anosov flows with transversely orientable foliations are orbitally equivalent up to Dehn-Goodman-Fried surgeries.

In a work in progress with P.Dehornoy, we construct genus 1 Birkhoff sections for all finite lifts of the geodesic flow of a hyperbolic surface and for a family of BL-type Anosov flows (see for a definition Section A complete classification of a family of transitive Anosov flows in dimension 3 ). Our goal in this work is to show that Ghys' conjecture is satisfied by all algebraic and BL-type Anosov flows.

Some open questions and problems

1. Let R 1 , ..., R n be a finite collection of rectangles in the bifoliated plane P of an Anosov flow on M 3 . We define the set of rectangles R(R 1 , ..., R n ) as the union of the orbits of R 1 , ..., R n for the action of π 1 (M ). Assume that the rectangles in R(R 1 , .