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ADAS systems

In the automotive industry, the terms advanced driver-assistance systems (ADAS) refer to technologies that assist the driver in driving or parking and differ from driver-assistance systems (DAS) by their use of outside data coming from different sensors [START_REF] Galvani | History and future of driver assistance[END_REF]. As most road collisions are due to human errors [START_REF] Brookhuis | Behavioural impacts of advanced driver assistance systems-an overview[END_REF], the primary goal of ADAS is to automate and enhance the driving safety. These features are designed to avoid crashes and are enabled by multiples sensors and communications systems that allow applications to alert the user of potential danger or even take control of the vehicle in dangerous situations. These systems have demonstrated their capabilities to reduce human error and thus road fatalities [START_REF] Hamid | Autonomous emergency braking system with potential field risk assessment for frontal collision mitigation[END_REF][START_REF] Shaout | Advanced driver assistance systems -past, present and future[END_REF].

ADAS systems include but are not limited to:

-Driver drowsiness detection, by using facial, steering, driving patterns to detect when a driver behaviour corresponds to drowsy driving. The driver is then notified via a sound alert signal. [START_REF] Sahayadhas | Detecting driver drowsiness based on sensors: A review[END_REF] -Electric vehicle warning sounds to notify pedestrians and cyclists when an electric vehicle is approaching, notifying them with sound [START_REF]Electric Vehicle Warning Sound System[END_REF].

-Intelligent speed advice that notify driver if they are not respecting the speed limit by gathering the position of the car via the GPS signal and checking the speed limit in the area [START_REF]Intelligent Speed Adaptation (ISA)[END_REF].

-Forward collision warning, that notifies the driver of a potential collision by monitoring the speed of the vehicle and the relative speed of a target in front of it.

-Parking sensors, that scan the surroundings of the vehicle when parking and indicates the distance between the vehicle and surrounding obstacles.
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-Blind spot monitor involving cameras or radars that monitor the driver's blind spots and notify him when something is present.

-Adaptive cruise control that maintain a chosen velocity and distance to the vehicle ahead.

Application such as forward collision warning, parking sensor, blind sport detection or adaptive cruise control require the capability to detect obstacles surrounding the vehicle. This detection can be performed using different kind of sensors, notably cameras, LIDARS, ultrasonic and radars.

Automotive radars for ADAS systems

Radars are a good candidate for such application as they allow robust detection in all weather condition compared to cameras or LIDARS that work in the visible light domain. On the other hand, with the advancement of image recognition, cameras allow easier classification of the targets, but research is being done to use machine learning to allow target classification using radars [START_REF] Decourt | A deep automotive radar object detector on range-doppler maps[END_REF].

The demand for such systems is increasing and is expected to continue its growth in the coming years. Indeed, multiples market studies such as [START_REF]Automotive radar market size, share trends analysis report by range(long range, medium short range), by vehicle type (passenger cars, commercial vehicles), by application, by frequency, by region, and segment forecasts[END_REF] and [119] predict a growth of the radar automotive market to reach 25 billion USD in 2030 as illustrated in Figure 1.1. [START_REF]Automotive radar market size, share trends analysis report by range(long range, medium short range), by vehicle type (passenger cars, commercial vehicles), by application, by frequency, by region, and segment forecasts[END_REF] suggests that by 2030, 50% of cars will be equipped with radars. 

Automotive Radar principles 1.2.1 Radar principle

Radars (RAdio Detection and Ranging) are devices that detect objects in their field-of-view (fov) by using electromagnetic signals. They work by sending a radio-1.2. Automotive Radar principles 3 frequency (RF) signal and listening to the echos of this signal that reflected on potential targets in the fov as illustrated in Figure 1.2. Depending on the differences between the emitted signal and the received one, multiple information can be extracted depending on the type of radar and post-processing. Such information usually include the range of the target, its speed or azimuth. The capabilities of a radar to detect a target depends on the power of the radar but also on a characteristic from the target called the radar cross section (RCS). The RCS is a measure of how detectable an object is by a radar and is expressed in m 2 . For example, a car might have a RCS of around 10m 2 [START_REF] Buddendick | Acceleration of ray-based radar cross section predictions using monostatic-bistatic equivalence[END_REF] where a pedestrian go be as low as 0.1m 2 [START_REF] Yasugi | ghz-band radar cross section measurement for pedestrian detection[END_REF]. 

Radar equations

For brevity, the following equations do not take into account the atmospheric losses or the influence of the Earth's surface, and they are based on free space path loss equation.

In the case of isotropic radiator, the formula for the Non-directional power density S n d [W/m 2 ] at distance R 1 [m] from an emitter of P e [W] is as follow:

S nd = P e 4πR 2 1 (1.1)
In the case of radars, the emission is performed in one direction with a certain fov resulting in an increase in power density given by the antenna gain G:

S d = S nd * G (1.2)
Once the signal hits the target, the amount of power reflected P t [W] depends on the RCS σ [m 2 ], as large, more reflective target will reflect more power from the incoming signal:

P t = S d * σ (1.
3)

The target can now be considered as a emitter with power P t , and following the same formula as equation 1.1, power density S t [W/m 2 ] at distance R 2 [m] after reflection of the signal on the target is given by:

S t = P t 4πR 2 2 (1.4)
Then, similar to the target RCS, antennas have an effective aperture A W [m 2 ], yielding a received power P r [W] by the radar following:

P r = S t * A W = P e Gσ (4π) 2 R 2 1 R 2 2 A W (1.5)
In the case of target detection, R 1 = R 2 = R giving us:

P r = P e Gσ (4π) 2 R 4 A W (1.6)
Finally, the antenna gain can be expressed as a function of the antenna effective aperture and the wavelength λ [m] by the formula:

G = 4πA W λ 2 (1.7)
This allows to simplify equation 1.2.2:

P r = P e G 2 λ 2 σ (4π) 3 R 4 (1.8)
For automotive radars, the antenna gain G, the wavelength λ the power P e vary very little, the power received from a target will depend essentially on its RCS σ and will decrease with the power of 4 of its distance from the radar R.

By rearranging equation 1.8, we can express the maximum range R max [m] of our radar for a given target RCS with: R max = 4 P e G 2 λ 2 σ P r min (4π) 3 (1.9)

where P r min [W] is the smallest perceivable power. Its value is typically 5 dB above the noise floor. -300/+200 -300/+200 -300/+200 Velocity resolution (km/h) 0.3 0.3 0.6 Table 1.1: Typical radar characteristics depending on its type.

Automotive radars

In the case of automotive radars, radars are separated into categories based on their application and their type of signal. As illustrated by Figure 1.3, different radars will cover different part of the car's surroundings, leading to a 360 • coverage when all the applications are in place. The application of the radar will determine its placement on the car and its FoV to detect target in particular directions. Depending on the application, the radar's characteristics will be different. These characteristics include:

-Range: The maximum distance to a detectable target. The maximum range is determined by the power of the radar, but also by the post-processing.

-Range resolution: The minimum difference in range of two objects of equal strength where they can still be detected as two different objects.

-Maximum speed: The maximum non ambiguous relative speed detectable. By design, target whose relative speed is above this limit will still be detected, but their speed will be interpreted incorrectly.

-Speed resolution: The minimum difference in speed of two objets of equal strength where they can still be detected as two different objects.

These characteristics allow distinction between short range radars (SRR), medium range radars (MRR) and long range radars (LRR). Indeed, applications such as park assist require a shorter range than front collision warning, but require a better precision. The typical characteristics of a radar depend on its type are presented in Table 1.1. Short range radars have higher requirements for the range resolution as they try to detect target close to the car where a difference of 1m is important, but their maximum range is lower than long range one's. However, even if SRR's applications do not require a huge maximum range, they need to detect smaller targets (with a lower RCS) so their maximum range for cars is still around 200m. Radars are also differentiated through the type of signal they use. Indeed, multiple waveforms are adapted for detection using RF signals. The three main types of radars used in the automotive setting are the Frequency Modulated Continuous Wave radar (FMCW), the Phase Modulated Continuous Wave radar (PMCW) [START_REF] Bourdoux | Pmcw waveform and mimo technique for a 79 ghz cmos automotive radar[END_REF], and the Orthogonal Frequency-Division Multiplexing radar (OFDM) [START_REF] Sturm | A novel approach to ofdm radar processing[END_REF]. As described in figure 1.4, FMCW radars are sending sinewaves whose frequency varies linearly with time, PMCW has the phase of its sinewave jump following a binary coding, and OFDM is sending multiple orthogonal frequencies (sub-carriers) depending on a coding activating or not some of them.

Each type of radar has its hardware and post-processing adapted on the type of signal they emit. One of the most expensive piece of hardware in radars is the analogue-to-digital converter (ADC). Depending on the frequencies that will need to be detected by the ADC, its sampling rate (f s ) will have to be double that of the desired detectable frequency band (B) as per the Nyquist-Shannon theorem.

B < f s 2 (1.10)
The higher the band of detectable frequency is, the higher the cost of the ADC. This gives a big advantage to the narrow band FMCW radar as after filtering, its required sampling rate can be as low as around 80 MHz (for LRRs) compared to PMCW and OFDM radars whose sampling rates must be much higher to scan the entire band. This is why FMCW are quite appreciated in the automotive industry as they also provide good range and velocity detection performances. These are the reasons why this thesis focuses on automotive radar interference regarding FMCW radars.

Frequency band allocation

The current state of the frequency band allocation for automotive radars in presented in figure 1.5. Currently, multiple frequency bands are available: the 21-26 GHz and 76-81 GHz bands. The 76-81 GHz band is currently preferred for automotive application as it allows way better range and speed resolution compared to the 21-26 GHz one [START_REF] Shaffer | Why are automotive radar systems moving from 24GHz to 77GHz?[END_REF]. A new band is being investigated for automotive radar applications between 141 and 148.5 GHz [START_REF] Filippi | Spectrum for automotive radar in the 140 ghz band in europe[END_REF] and research is done to enable the cohabitation of automotive radars and radio astronomy, already present in this band.

Within the 76-81 GHz band, standardisation bodies (e.g., ETSI) provide requirements for the maximum transmit power [41], as well as different maximum mean power for the 76-77 GHz [39] and 77-81 GHz [START_REF]Standard, European Telecommunications Standards Institute[END_REF] bands to encourage long range radars to be in the 76-77 GHz band and short range radars to be in the [START_REF] Kumari | Investigating the ieee 802.11ad standard for millimeter wave automotive radar[END_REF][START_REF] Kunert | The EU project MOSARIM: A general overview of project objectives and conducted work[END_REF][START_REF] Kunert | MOre Safety for All by Radar Interference Mitigation -Final report[END_REF][START_REF] Laghezza | Enhanced interference detection method in automotive fmcw radar systems[END_REF][START_REF] Lajiness | Interference rejection method for an automotive radar CW/ICC system[END_REF] GHz one because of their different power requirement. No regulation is in place regarding the type of waveform used or the channel access, leading to no inherent interference mitigation system within the frequency band. 

FMCW radars and interference 1.3.1 FMCW signal

Frequency Modulated Continuous Wave or FMCW radar is a type of radar that detects its targets by sending a sine-wave modulated in frequency linearly with time. FMCW radars have been around for decades [START_REF] Stove | Linear FMCW radar techniques[END_REF][START_REF] Luck | Frequency Modulated Radar. Frequency Modulated Radar[END_REF][START_REF] Griffiths | New ideas in fm radar[END_REF] and their good performances made them applicable for the automotive environment.

FMCW radars work by sending a sine-wave whose frequency varies linearly from a frequency f 0 to f 0 + B, with f 0 being the start frequency and B the bandwidth of the signal 1 . The signal generated by this process is called a chirp. This chirp is then repeated multiple times. The resulting frequency/time profile of the chirps is illustrated in figure 1.6, and the resulting radar frame formed by this series of chirp in figure 1.7. After emitting, a processing time is required to process the data gathered, defined by the duty-cycle. Overall, the different parameters that define a FMCW are described in Table 1.2.

Processing chain

The processing chain of a FMCW radar is described in figure 1.8. The chirps are generated by the Phase-Locked Loop (PLL) control system and are amplified with a Power Amplifier (PA) before being emitted through the antenna. The signal then reflects on the different targets in line-of-sight of the radar and return to the receiver antenna. The signal is amplified with a Low Noise Amplifier (LNA).

The mixer then multiples together the sent and receive signal in order to generate the new frequency components necessary for range and velocity estimation. A Low Pass Filter (LPF) is used to filter out the resulting higher frequencies that are not useful for the measurements.

The ADC samples the signal at the regular intervals during each chirp as illustrated in figure 1.9. A windowing operation is then performed to increase the 1 It can also be defined with the centre frequency instead of the starting one by sweeping from fc -B 2 to fc + B 2 with fc the centre frequency the total duration of a radar frame (tens of ms) duty-cycle the ratio between the emission time and the frame time (usually around 0.5) Table 1.2: FMCW parameters.

measurements accuracy [START_REF] Enggar | Performance comparison of various windowing on fmcw radar signal processing[END_REF]. Then, the 2D FFT can be performed to extract the range and velocity information.

Range and velocity measurements

As a FMCW chirp is sent, it reflects on a target and returns to the receiver antenna with a slight delay as illustrated in figure 1. [START_REF] Aydogdu | Spectrum sharing for automotive radar interference mitigation[END_REF]. The sent and the received signal are multiplied together using a mixer. As multiplying to sine-waves together results in two new sine-waves whose frequency are respectively their difference in frequency, and their sum in frequency, the output of the mixer includes a frequency component of ∆f and another component at a higher frequency that will be filtered out.

Because of the linearity of the frequency variation of the chirp, this difference in frequency ∆f is constant and directly proportional to the delay τ between emission are reception of the signal.

∆f can be measured precisely using a Fast Fourier Transform (FFT) on the mixed signal. A potential results of this first FFT is presented in figure 1.11 and correspond to a line-wise FFT (called short time FFT) on the matrix of sample in figure 1.9. The maximum frequency difference measurable depends on the sampling rate of the ADC and will affect the maximum range of the radar. Indeed, a target too far away will delay the echo of the signal so that it will arrive outside of the receiver bandwidth (dotted lines in the figure 1.10, making its difference in frequency too big for the ADC to detect.

To measure the speed of a target, multiple chirps are necessary. From one chirp to another, the change in distance due to the relative speed of the target isn't noticeable on the frequency of the mixed signal. However, this small variation has an impact on the phase of the signal from a chirp to the next. The variation of the phase in time is mainly proportional to the relative speed of the target. This allows to use a second FFT (called long time FFT) corresponding to a column-wise FFT on the matrix of samples in figure 1.9.

By performing the two FFTs one after the other, the results can be shown as a picture where the axes represent the range and velocity, and bright spots are the targets. An example of such range/doppler picture is presented in figure 1.12.

The range and velocity measurement capabilities for an FMCW radar are defined by multiple formulas. The maximum range (m) is given by:

R max = c * t ramp * ADC f s 4 * B (1.11)
where c is the speed of light, and ADC f s the sampling frequency of the radar's ADC. The range resolution (m) is given by: R res = c * t ramp 2 * B * t f f t

(1.12)

The maximum velocity (km/h) is given by:

V max = 3.6 * λ 4 * t chirp (1.13)
where λ is the wavelength of the signal.

The velocity resolution (km/h) is given by: 

V res = 3.6 * c 2 * f 0 * n chirp * tchirp (1.14)

Interference

This work focuses on FMCW-FMCW interference as this technology is the only one on the market today. Interference for an FMCW happens when the signal from another radar is detected by the receiver antenna. In the case of FMCW-FMCW interference, this happens when the chirp of another radar is crossing the impacted receiver bandwidth. This is illustrated in figure 1. [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF]. The effect that the interference will have on the radar's operation depends on multiple factors.

First, the power of the interferer signal itself. It is a function of the interferer radar emitting power, but also the path taken by the signal before it reached the impacted radar. Two situations can occur illustrated in figure 1.14. If the two radars are in direct line-of-sight (LOS), then the power received by the impacted 

P int = P e int G 4πR 2 A W (1.15)
with P e int the power of the emitted signal from the interferer, G its antenna gain, R the distance between the two radars and A W the antenna effective aperture of the impacted radar.

In the case of a non-line-of-sight indirect connection, also referred as indirect line-of-sight (ILOS), where the signal first reflected on another surface before reaching the impacted radar, the formula followed is similar to equation 1.2.2:

P int = P e int Gσ (4π) 2 R 2 1 R 2 2 A W (1.16)
where σ is the RCS of the object on which the signal got reflected, R1 and R2 are respectively the distances interferer to object and object to impacted radar.

The distinction between these two cases is important as in one case, the power decreases with the square of the distance, and in the other one, with the power of four of the distance (like with target detection). This means that the intensity of an interference in LOS will almost always be magnitude above the power received from a target the radar is trying to detect, leading to a potential saturation of the ADC. If the ADC isn't saturated, then multiple effects can still happen depending on the correlation between the two signals.

When the correlation between the interfere signal and the impacted one is low, the interferer signal will cross the entire receiver bandwidth generating the equivalent of noise for the impacted radar. This translates into a rise of the noise floor. The more correlated the two signals are, and the more time the interferer spend in the receiver bandwidth, the more the noise floor will be risen, leading to a potential blindness of the radar as target will appear below the new noise floor.

Finally, in the case of extremely correlated signals, the interference can be interpreted as target as it resembles an echo of the impacted radar. Since this target does not actually exist, it is referred as a false target. These false target can also appear whenever the same samples are interfered in a periodic manner from chirp to chirp as it generates frequencies detectable by the 2nd FFT. False targets can be filtered during the tracking phase as a false target might have its position and speed randomly changing from frame to frame. 

V2X Technology

Introduction to V2X

Cooperative intelligent transport systems (C-ITS) provides a framework for vehicles, infrastructures, and other road users such as pedestrians or cyclists to exchange information. Vehicle-to-Everything (V2X) is a specific case of ITS and refers to the communications between the vehicles and every other entity of the road that can be affected by it. This communication network is organised in different layers including the Access layer, the Facilities layer and the Applications layer as described in figure 1.15. These stacks define the triggering conditions as well as the content of V2X messages sent. V2X applications can be classified into different categories such as: -Traffic efficiency: by coordinating vehicles together or with infrastructures, it is possible to make the flow of road traffic more efficient. This can include vehicle-vehicle timing coordination at intersection, route planning, automatic rerouting or platooning where cars or trucks are all driving close to each other in a line to reduce fuel consumption by reducing air friction;

-Traffic safety: focused on reducing the frequency and severity of road accident. This can include critical decision making by sensing abnormal vehicle behaviour or sudden changes in their speed. In situation where a crash is unavoidable, coordination between vehicles can occur to mitigate the severity of the crash. These applications have the most stringent requirements as high precision and very low latency are required to make decision in time.

For example, ETSI requires for pre-sense crash warnings to have a round-trip latency of 50ms maximum, with a 10 Hz broadcast frequency [START_REF]Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications[END_REF];

-Infotainment: (a fusion term of information and entertainment) focused on non-driving related application and provide informative or entertaining services for the driver and passengers.

Multiple types of messages can be exchanged with V2X such as Cooperative Awareness Messages (CAM) which communicate information about the traffic flow, or De-centralised Environmental Notification Messages (DENM) which are alert messages in case of particular events.

Agnostic to the access layer technology used, V2X communication have these key characteristics:

-Distributed Scheduling: there is no orchestrator for V2X communication, nodes coordinate their own message without needing an infrastructure;

-Broadcasting transmission: V2X messages are sent in a broadcast mode to reach every entity in range;

-Omni-directional: the antenna patterns provide omni-directional coverage in order to communicate efficiently with every other entity in range.

One main advantage of V2X communication compared to other sensors is its ability to "see around corners". As illustrated in picture 1.16. Both technologies use OFDM with different numerology to communicate their data, with different OFDM symbol durations and sub-carriers numbers leading to different characteristics and performances. Many studies and field tests have been done to compare the two technologies such as [START_REF] Filippi | IEEE802.11p ahead of LTE-V2V for safety applications[END_REF][START_REF]V2X Functional and Performance Test Report[END_REF][START_REF] Shimizu | Comparison of dsrc and lte-v2x pc5 mode 4 performance in high vehicle density scenarios[END_REF][START_REF]C-V2X Performance Assessment Project[END_REF]. As the two technologies are in competition to be the main access layer for V2X, these studies have different conclusions depending on which entity conducted them. Overall, IEEE 802.11p/bd seems to still have lower latency and better robustness and efficiency in the absence of a network compared to C-V2X, which is critical for safety and life-saving applications.

IEEE 802.11p vs C-V2X

CAM messages

Cooperative Aware Messages (CAM) are a type of message exchanged with V2X. They are used to communicate status information about the traffic flow. They convey information such as cars' coordinates, speed and heading as well as their type or their priority in case of a public service vehicle. A CAM container is presented in figure 1.17. The size of the CAM payload also varies depending on the environment and is usually between 200 and 700 bytes [START_REF]Survey on ITS-G5 CAM statistics[END_REF]. In addition to the information regarding the car dynamics, the CAM payload also contains an additional custom container which can be used to transfer other kind of data. This containers can be used to communicate information regarding radars equipped on the car (position, orientation, fov, power) as well as the parameters of their waveform (frequency and timings).

Conclusion

The number of automotive radar on the road is expected to increase in the next years with an estimated 50% of cars being equipped with them by the year 2030. This rise in number of radars comes with higher risk of mutual interference as very little regulation is currently in place to coordinate the radar band usage. Radars can be manufactured to use any kind of waveform making their coordination a difficult task. This thesis focuses on FMCW radars as they represent the majority of current automotive radar because of their good range and velocity detection performances. FMCW radars can interfere with each other when their respective frequencies land into the receiver bandwidth of each other, leading to degradation of the radar performances by either raising the noise floor and generating false targets (when the interfere is correlated).

V2X technology is a communication network allowing cars to communicate with each other. Two technologies are competing for its access layer, IEEE 802.11p and C-V2X. The first one is based on the WiFi standard to create an ad-hoc network, whereas the other uses the cellular network to communicate. V2X is currently used to transfer data such has the speed, position and heading of the vehicle, but it can be adapted to transfer data regarding the automotive radars present on the car as well as the kind of signal they are using, allowing new method for interference mitigation.
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In the next chapter, the state of the art on interference mitigation will be presented, as well as the different domains that can be explored to solve the problem of minimising the amount of interference.

Chapter 2

State of the art

Introduction

This chapter presents the current state of the art on interference mitigation for automotive radars. It first presents the different domains that can be acted upon to reduce interference probability or to repair a signal after interference. The conclusions regarding the most promising strategies for future interference mitigation of the two publicly funded projects MOSARIM and IMIKO are then presented. As V2X isn't widely spread today, few investigations have been conducted on its potential for interference mitigation. A presentation of two projects, Radar-MAC and RadChat are made as they use V2X-like technologies. Finally, different domains such as distributed optimisation, machine learning and optimisation methods are explained as they are good candidates to solve the problem of minimising interference in automotive radars.

Interference Mitigation in Automotive Radar

Introduction

The problem of interference is present in every wireless applications as soon as they are sharing a common or overlapping frequency band. Automotive radars are no exceptions to this rule as they are exposed to various potential sources of interference coming from other users whether they are other automotive radars on other cars or roadside radars for traffic or speed surveillance. Each of these radars must follow the transmitting limits imposed by ETSI standards ([39], [START_REF]Standard, European Telecommunications Standards Institute[END_REF]) regarding mean and peak power or out-of-band emission, but depending on the context and the nature of theses radars, performance degrading interferences can occur.

Because interference is inherently linked to wireless application, some mitigation techniques have been investigated in the past. Some obvious techniques consist in reducing the signal's power, beam width, bandwidth or duty cycle, but these strategies are conflicting with the objective of optimal application performance that are desired in ADAS systems. Indeed, reducing power, bandwidth or duty cycle can Chapter 2. State of the art have impact of the radar's resolution or its repetition period, generating data less often.

More sophisticated mitigation techniques are investigated in order to achieve the desired performances even in such an environment where all user would profit from emitting more powerful signal, more often. Theses mitigation techniques can be classified into different categories depending on the domain they are using to mitigate interference, and the strategic approach used.

Interference mitigation can then be performed using:

- Mitigation strategies can be implemented to act upon any combination of these domains, with any strategic approach. The next sections will described what each of these domain and approaches entail.

Time domain

To measure the distance between a radar and its target, radars will usually modulate their frequency in time. Interference occurs when an interferer signal is crossing the receiver bandwidth within the time window where its scanning for echos of its own signal. In order to mitigate interferences using the time domain, it is interesting to reduce as much as possible the length of time during which the radar is vulnerable to interference by reducing either its duty cycle, or its measuring time directly (by reducing the length or the number of its chirps in the case FMCW). Randomly altering the timings parameters (starting emitting at random times, or modifying the time between pulses or chirps) is also interesting as it reduces the probabilities of receiving periodic interference. These alterations of the signal's timing parameters can be done from a frame to another, or directly within a radar frame. These techniques are illustrated in Figure 2.1 Some techniques implement this principle by randomising the time between each radar pulse such as in [START_REF] Norouzian | Automotive radar waveform parameters randomisation for interference level reduction[END_REF]. This allows for the echo signal to maintain the coherence between emitted signal and received echo while broadening the spectral width of any other interfering signal, allowing detection of interference while spreading their power onto a broader part of the spectrum. [START_REF] Wintermantel | Method for the suppression of disturbances in systems for detecting objects[END_REF], [START_REF] Brosche | Radar device and methods for suppression of disturbance of a radar device[END_REF] and [START_REF] Mu | Research on key tchnologies for collision avoidance automotive radar[END_REF] are making use of pseudo-noise (PN) sequences to code the timings at which each pulse repetition starts, [START_REF] Mu | Research on key tchnologies for collision avoidance automotive radar[END_REF] requires for every radar to select theses codes from the same set of codes in order to guarantee orthogonality between them. Reference [START_REF] Machowski | Novel pulse-sequences design enables multi-user collision-avoidance vehicular radar[END_REF] proposes a chaotic pulse-sequence radar that randomised pulse emission timings to generate long non deterministic pulse train, allowing better performances when increase the sequence length. Some techniques such as [41] and [START_REF] Gu | Design and analysis of frequency hopping-aided fmcw-based integrated radar and communication systems[END_REF] not only randomise the timings of their emission but also other parameters such as their frequency. [START_REF] Klein | Wavelet domain communication system (wdcs) interference avoidance capability: analytic, modeling and simulation results[END_REF] uses an estimation of the electromagnetic spectrum into different wavelet, and by scanning every wavelet sub-bands can rule out the ones whose noise if above a certain threshold. In turn allowing to chose which sub-band is safe at what time.

Frequency domain

Mitigation strategies in the frequency domain involves avoiding that other radars emit within the reception bandwidth of our radar. To achieve this, the reception and transmission bandwidth of the radar need to be shifted to another part of the available radar band in order to separate both radar in the frequency domain. This, for example, can be achieved by randomly changing the centre frequency of a chirp in hope of arriving in a new unused sub-band, analysing the interference properties to decide which shift in frequency is more promising, or introducing predefined subbands. The latter option requires every radar to have similar bandwidth in order for the sub-bands to make sense and help interference mitigation. These techniques are illustrated in Figure 2.2 Some techniques such as [41] or [START_REF] Gu | Design and analysis of frequency hopping-aided fmcw-based integrated radar and communication systems[END_REF] simply randomise the emitting centre frequency as well as timings parameters. Similar to techniques in time domain, the use of pseudo-noise code can be used but to code the frequency shifting of the signal such as in [START_REF] Mu | Research on key tchnologies for collision avoidance automotive radar[END_REF] and [START_REF] Mu | A novel pn-coded fmcw radar design and implementation[END_REF]. [START_REF] Sanmartin-Jara | Ss-fh signals used for very low interference in vehicular cruising control systems[END_REF] proposes to shift the frequency in a deterministic way. It would depend on a code associated to each car, in a way that each car has a different code, and that the number of possible code and their length reduces the risk of relevant, long and correlated interference.

Like time domain techniques, some will first gather useful information from the electromagnetic environment before choosing how to modify the signal's frequency. [START_REF] Klein | Wavelet domain communication system (wdcs) interference avoidance capability: analytic, modeling and simulation results[END_REF] uses wavelets to scan the different sub-bands, but other techniques such as [START_REF] Bechter | Bats-inspired frequency hopping for mitigation of interference between automotive radars[END_REF] will detect which samples of a chirp are interfered, and depending on if they are located in the higher frequencies of the used bandwidth or in the lower frequencies, it will shift the frequency in the opposite direction.

Coding domain

The definition of coding within the telecommunication domain refers to any techniques used to adapt the information rate within a given channel. It focuses on improving the data transfer performances by reducing the bit error rate in noisy channel. Even though coding techniques in the telecommunication domain do not focus on mitigating the impact of other users on the channel, the techniques employed can be translated into the automotive radar domain. These techniques are usually referred as Code Division Multiple Access (CMDA) techniques.

Coding techniques are used as they enable for multiple users to access a common resource. In the context of automotive radars, the common resource is the available frequency band, and the coding refers to a user specific code used to modulated the radar waveform whether it is in time, frequency, or any other domain as illustrated in Figure 2.3. The code is used in the modulation phase, to encode its signal, but also in the reception stage where the demodulation is done by using the same code. This allows to extract from radar measurement the data corresponding only to its own code. In order to minimise the amount of interference between the different codes, it is important for them to satisfy an orthogonality relation. Some techniques such as [START_REF] Lewis | Frequency-phase coding device[END_REF] and [START_REF] Jian-Hui | A novel transmit signal based on high range-resolution concept for flar or aicc system applications[END_REF] use a coding to define the length of the time-sequences used in the step-approximation of linear FM chirps, illustrated in Figure 2.4. [START_REF] Werner Kleinhempel | Pulse Doppler radar interference reduction method for vehicle anticollision or building security system[END_REF] codes the phase of its pulse doppler radar. [START_REF] Elsehely | Reduction of interference in microwave automotive radars[END_REF] proposes a Figure 2.4: Coding of step-approximation of a linear FM chirp scheme based on wavelet analysis which uses its code to change the pulses width and repetition timings. [START_REF] Sanmartin-Jara | Ss-fh signals used for very low interference in vehicular cruising control systems[END_REF] and [START_REF] Mu | A novel pn-coded fmcw radar design and implementation[END_REF] cited previously use a PN-code to vary the frequency of their signal. Reference [START_REF] Sakkila | A real time signal processing for an anticollision road radar system[END_REF] uses orthogonal codes to spread its radar coded waveform within the 76-77 GHz band and computes the cross-correlation at the receiver to filter out other interfering codes as much as possible.

Reference [START_REF] Garmatyuk | Conceptual design of a dual-use radar/communication system based on ofdm[END_REF] uses Orthogonal Frequency-Division Multiplexing (OFDM) where the code is used to send a combination of orthogonal frequencies using multiple subcarriers. OFDM is already widely used in broadband communications but it can be adapted to sensing in automotive radars with minimum modifications. OFDM signals are known to be robust to jamming and interference which makes them a good candidate for automotive radars despite their requirement for a large ADC.

Polarisation domain

Electromagnetic waves have a property called polarisation. This polarisation is describing how the wave's oscillations are oriented. This polarisation depends on the relative amplitude and phase of the two components of the complex electromagnetic vector. The polarisation can be in the following three different states, illustrated in Figure 2.5:

-elliptical: the two components of the electromagnetic vector are not in phase and have a different amplitude or are not exactly out of phase of 90 For the elliptical and circular polarisation, the rotation of the electromagnetic vector depends on the relative phases of the two components and can turn either clockwise or counterclockwise. Depending on the polarisation desired, the antenna type may vary.

In the automotive radar, almost all devices use linear polarisation, either horizontally or vertically oriented. The reason is that with circular or elliptical polarisation, decoupling signal and interference is not possible. This can done easily with linear polarisation. By having a difference of 90 • between the victim and interferer polarisation, it is possible to decouple the two signal by more than 20 dB in case of direct line-of-sight. This is important to note that polarisation can be changed after reflecting on the surfaces of different target.

Using the polarisation domain for interference mitigation has a lot of limitation as it depends on the antenna hardware as well as the interferer's one, so few works focus on it as a reliable mitigation domain as it would require harmonisation among all radars on the road. This is what proposes [START_REF] Rebhan | Vehicular distance-warning radar[END_REF] by having 45 • polarisation difference for transmitter and receiver antenna, and different polarisation for front and rear radars. By having all radars on the road using the same polarisation, then every front radar would have a mitigation of the interference coming from the rear radar of the car in front of it.

Space domain

Mitigation in the space domain is specific to radar that use an electronically scanned beam. Interference mitigation can happen by scanning certain parts of the elevation and azimuth range in order to avoid scanning sources of interference or reducing their importance, as described in Figure 2.6. Space-Time Adaptive Processing (STAP) [START_REF] Hale | Airborne radar interference suppression using adaptive threedimensional techniques[END_REF][START_REF] Melvin | A stap overview[END_REF] uses the capabilities of antennas with multiple spatial channels to filter out specific part of the space/time domain and improve target detection. [START_REF] Brooker | Mutual interference of millimeter-wave radar systems[END_REF] proposes a combination of narrow antenna beams, scanning and jitter added to both the scan and sweep times as well as jitter to the time emissions to reduce the probability of periodic interference.

Detect

Detecting an interference is a key step for interference mitigation. As the power of an interference is usually higher than the power received from a target (cf Section 1.3.4), interference detection can be done in the temporal domain by marking as interfered every sample whose power is above a certain threshold as illustrated in figure 2.7. All techniques that use the difference in power from the interference are prone to miss weak interferers whose impact on radar performance are not negligible. This is why some methods will make use of other characteristics of an interfered signal such as its variance compared to usual non-interfered signal [START_REF] Misra | Agile digital detector for rfi mitigation[END_REF], or its difference in frequency [START_REF] Laghezza | Enhanced interference detection method in automotive fmcw radar systems[END_REF]. Once the interference is detected, multiple approachs are possible.

Detect and omit

The first way to deal with interfered samples is to completely dismiss the entire signal. This strategy, used for example in [START_REF] Elsehely | Reduction of interference in automotive radars using multiscale wavelet transform[END_REF], avoids all possible wrong interpretation of the radar data that could have come from the interference or the processing used to mitigate its effect. Of course, omitting a signal because it has been interfered with has some strong limitation as with the increase of radar on the road will come an increase in probability of interference and thus an increase in samples omitted.

Detect and repair

The goal of repairing an interference is to remove it from the received signal and getting as close as possible to what the signal should be without any interference. The way to repair an interfered signal depends a lot on ow the interference was detected and what are the characteristics from this interference that have been identified. [START_REF] Murali | Interference detection in fmcw radar using a complex baseband oversampled receiver[END_REF] is checking the slope of the mixed signal, and since the slope should be close to zero for a target, a thresholding is performed. [START_REF] Shimura | An advanced wideband interference suppression technique using envelope detection and sorting for automotive fmcw radar[END_REF] apply its thresholding on the voltage difference between two consecutive samples. These techniques will provide the list of samples that are interfered, and from them, the signal can be extrapolated, or simply put to zero for the given samples such as in [START_REF] Lajiness | Interference rejection method for an automotive radar CW/ICC system[END_REF][START_REF] Tullsson | Procedure for the elimination of interference in a radar unit of the FMCW type[END_REF][START_REF] Gao | A novel adaptive nulling of interference method for array radar[END_REF].

By having an interference detection methods that extract more information from the interference, it is possible to more precisely remove the interference and reconstruct the signal. Once the interference is detected, [START_REF] Bechter | Estimation and cancellation of interferences in automotive radar signals[END_REF] will make a series of computation to determine the phase, frequency and amplitude of the interference, making it possible to remove it from the mixed signal by subtraction. [START_REF] Chetwani | Time-varying interference suppression in communication systems using time-frequency signal transforms[END_REF] and [START_REF] Neemat | An interference mitigation technique for fmcw radar using beat-frequencies interpolation in the stft domain[END_REF] are using respectively a Fourier transform generalisation and a short time Fourier transform to analyse the mixed signal in a new basis, from which the interference can be found with threshold. These components can then be removed, and recovering the signal is done by using the inverse transform on the remaining components.

Detect and avoid

Avoiding the interference consists in changing the waveform parameters in order for the interference not to cross the radar receiver bandwidth. All the techniques that change their parameters randomly such as [START_REF] Masahiro Watanabe | Doppler Radar[END_REF][START_REF] Sherry | Interference Avoidance System for Vehicular Radar System[END_REF] and [START_REF] Glocker | Method for operation of a radar device[END_REF] or the ones cited in the different mitigation domains, fall into that category. Some strategy will take more informed decision for their choice of parameters such as [START_REF] Okai | Automotive radar system with anti-interference means2007-08-29[END_REF] and [START_REF] Somayazulu | Detect and avoid (daa) mechanisms for uwb interference mitigation[END_REF] that scan the available radar band before selecting a new sub-band to emit in or [START_REF] Bechter | Bats-inspired frequency hopping for mitigation of interference between automotive radars[END_REF], discussed previously, that shifts its frequency depending on which samples of a chirp are interfered.

Communicate and avoid

In automotive, the combination of radar and communication has been considered in various form ( [START_REF] Takeda | Spread spectrum joint communication and ranging system using interference cancellation between a roadside and a vehicle[END_REF][START_REF] Dou | Radar-communication integration based on msk-lfm spread spectrum signal[END_REF][START_REF] Sturm | Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[END_REF]). This combination can be implemented in a cooperative way, where both sensing and communication are using different waveforms, but efforts must be made to avoid interference between the two, whether it is for pulsed [START_REF] Chiriyath | Inner bounds on performance of radar and communications co-existence[END_REF] or FMCW radars [START_REF] Paul | Extending joint radar-communications bounds for fmcw radar with doppler estimation[END_REF]. One way to avoid these interferences is proposed by [START_REF] Han | Optimal spectrum utilization in joint automotive radar and communication networks[END_REF] which uses the same hardware for sensing and communication, with different waveforms but using TDMA to separate the two systems in time.

On the other hand, it is possible to design a radar whose waveform is compatible with both sensing and communication [START_REF] Dou | Radar-communication integration based on msk-lfm spread spectrum signal[END_REF], allowing the two to be performed simultaneously. Some investigation has been done on the IEEE 802.11ad standard [START_REF] Kumari | Investigating the ieee 802.11ad standard for millimeter wave automotive radar[END_REF] which is a kind of WiFi, to use it also for radar sensing. Other techniques will in-Chapter 2. State of the art clude information within the frequency shifts of their signals such as [START_REF] Yattoun | A millimetre communication system for ivc[END_REF] and [START_REF] Dou | Radar-communication integration based on msk-lfm spread spectrum signal[END_REF]. The kind of radar being the most investigated for this purpose is the OFDM radar ( [START_REF] Donnet | Combining mimo radar with ofdm communications[END_REF][START_REF] Garmatyuk | Multifunctional software-defined radar sensor and data communication system[END_REF][START_REF] Choi | Millimeter-wave vehicular communication to support massive automotive sensing[END_REF][START_REF] Wang | Poster: Multi-carrier modulation on fmcw radar for joint automotive radar and communication[END_REF]). OFDM is already used in telecommunications, and some minor modifications can adapt it to radar sensing. The good performances of OFDM radars in different propagation conditions [START_REF] Sit | On mutual interference cancellation in a mimo ofdm multiuser radar-communication network[END_REF][START_REF] Sit | Demonstration of interference cancellation in a multiple-user access ofdm mimo radarcommunication network using usrps[END_REF] make it a good candidate for a co-design between radar and communication.

Once the communication is established between multiple agents, it is possible to send information about the frequency slots used by each radar, and select the frequency slots whose nobody is using such as [START_REF] Okai | Automotive radar system with anti-interference means2007-08-29[END_REF], or coordinate the use of the bandwidth to reduce the probability of long correlated interference such as [START_REF] Norouzian | Automotive radar waveform parameters randomisation for interference level reduction[END_REF].

Listen before talk

Listen before talk (LbT) techniques consist in transmitting a signal only if no other device is currently transmitting in the channel. This is a strategy commonly used in wireless ad-hoc networks where a lot of units are communicating with a common access point. LbT is very effective as long as the number of access attempts is low [START_REF] Zhao | Spectrum opportunity detection: How good is listen-before-talk?[END_REF]; it also benefits from a low transmission time. In the case of automotive radars, such a technique could work in very simple scenarios where very few radar are trying to access the band, but as soon as the number of radar increases, the 50% duty cycle desired by radar manufacturer will be hard to achieve.

AI repair

Convolutional Neural Network have demonstrated their potential for image classification, segmentation, modification or generation [START_REF] Elngar | Image classification based on cnn: A survey[END_REF][START_REF] Li | A survey of convolutional neural networks: Analysis, applications, and prospects[END_REF]. As the resulting data from radar sensing can be interpreted as a picture (either range/doppler or range/azimuth), AI models based on CNN have been researched for interference mitigation.

Most of these models try to remove the interference from the 2D map which is the ouput of the signal processing part of the radar, as illustrated in Figure 2.8. [START_REF] Li | Deep learning for interference mitigation in time-frequency maps of fmcw radars[END_REF][START_REF] Rock | Resource-efficient deep neural networks for automotive radar interference mitigation[END_REF][START_REF] Rock | Complex signal denoising and interference mitigation for automotive radar using convolutional neural networks[END_REF] are examples of such models that try to remove interferences from the map as well as reducing the noise, improving the detection capabilities of the radar. 

Publicly funded projects 2.3.1 MOSARIM

The project MOre Safety for All by Radar Interference Mitigation (MOSARIM) [START_REF] Kunert | MOre Safety for All by Radar Interference Mitigation -Final report[END_REF][START_REF] Kunert | The EU project MOSARIM: A general overview of project objectives and conducted work[END_REF] is a European funding project started in January 2010 with the objective to investigate possible automotive radar interference techniques using simulations and real-world tests. The project investigated more than 20 mitigation strategies, and selected 9 as the most promising.

In order from most promising to least promising with their potential mitigation estimated by MOSARIM, the 9 strategies selected are the following:

-Constant False Alarm Rate (CFAR, the threshold for target detection is adapted so that the false alarm rate stays at a certain value) for interference mitigation [START_REF] Aydogdu | Spectrum sharing for automotive radar interference mitigation[END_REF][START_REF] Aydogdu | Synchronization-free radchat for automotive radar interference mitigation[END_REF][START_REF] Bartoletti | Impact of the generation interval on the performance of sidelink c-v2x autonomous mode[END_REF][START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF][START_REF] Bazzi | Co-channel Coexistence: Let ITS-G5 and Sidelink C-V2X Make Peace[END_REF][START_REF] Bechter | Estimation and cancellation of interferences in automotive radar signals[END_REF][START_REF] Bechter | Bats-inspired frequency hopping for mitigation of interference between automotive radars[END_REF][START_REF] Bellman | Dynamic Programming[END_REF][START_REF] Bellman | The Theory of Dynamic Programming[END_REF][START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF][START_REF] Bourdoux | Pmcw waveform and mimo technique for a 79 ghz cmos automotive radar[END_REF] 

Strategies using V2X-like technologies

Some research has already been done on the potential of V2X communication for interference mitigation. [START_REF] Huang | V2x-communication assisted interference minimization for automotive radars[END_REF] proposes a centralised framework where vehicles are connected to base stations and communicate their information regarding equipped radars. A greedy algorithm situated within the base station then allocate a subband of the available radar band to each radar, prioritising sub-bands that generate the least amount of interference. This computation also depends on the radars relative coordinates and orientations. Radar-MAC and RadChat described in more detail in the next sections are also strategies using communication between radars, respectively centralised with base station and integrated in the radar hardware.

Radar-MAC

RadarMAC [START_REF] Khoury | Mitigating radar interference in self-driving cars[END_REF] uses a parameter assignment algorithm to mitigate radar interference in self-driving cars. They characterise the degrees of freedom radars param-eters, and model the parameter assignment problem as a problem of dynamically colouring the time-varying interference graph.

Each car is connected via a dedicated LTE link to a dispatch centre in the "cloud". The car continuously stream its position, orientation and route to the dispatch centre. The RadarMAC algorithm resides within the dispatch centre and assigns radar parameters to every radar using a graph-colouring approach. The overall system is described in Figure 2.9. Each radar is a node, edges represent interference, and node colours are point in the parameter space. Even if V2X isn't Figure 2.9: System overview from [START_REF] Khoury | Mitigating radar interference in self-driving cars[END_REF]. mentioned in their paper, the system describe by RadarMAC would be possible with a LTE-V2X network. The metric used to measure the signal quality is the Signalto-Interference Ratio (SIR). It is required to be higher than a certain threshold Ψ for a robust target detection. If a radar's SIR falls below that threshold, it is considered to be blind. The SIR at a victim radar i due to a single Radio Frequency Interferer (RFI) j is:

SIR ij ≈ ( σT p f adc 4π )( ĜR ĜT r 4 t )( r 2 ij R ij Q(θ ij ) G R (θ ij )G T (θ ij ) ) (2.1)
And due to k interferers:

SIR ij ≈ ( σT p f adc 4π )( ĜR ĜT r 4 t )( 1 k j=1 G R (θ ij )G T (θ ij ) r 2 ij R ij Q(θ ij ) ) (2.2)
where r t is the range from the victim radar to the target object, ĜR and ĜT are the radar receiver and transmitter gains, r ij is the range from the victim i to the interferer j, G R (θ) and G T (θ) are the receive and transmit gain of the antenna as a function of boresight angle with θ ij the boresight angle from radar j to i.R and Q are the antenna rejection capabilities due to frequency separation and physical occlusion.

Instead of using the "protocol model" [START_REF] Gupta | The capacity of wireless networks[END_REF] where an edge is drawn between two radars iff they interfere (usually used in traditional graph-theoretic modelling of interference [START_REF] Ramanathan | A unified framework and algorithm for channel assignment in wireless networks[END_REF]), RadarMAC uses its own "physical model" which considers the cumulative effects of far-field interferers. To generate edges, for each radar i they compute the contribution to the SIR of every other radar and sort them by decreasing order. Looping on these interferer j while the SIR is above the desired threshold, create an edge between the two radars i and j and remove the radar j contribution to the SIR. This in turn will create edges to the most dangerous interferers such as the sum of their contribution just pass the SIR threshold as described in Figure 2.10. To colour this graph, RadarMAC uses a polynomial time Figure 2.10: Addition of pairwise interference edges at radar A 0 from [START_REF] Khoury | Mitigating radar interference in self-driving cars[END_REF]. The edges are added in decreasing order of importance until a certain threshold is achieved.

In this example, the four edges B3, C3, B2 and C2 have been summed before the threshold is met. The other edges (B0, B1, C0, C1) are then not taken into account.

greedy colouring algorithm called Progressive Minimum Neighbour First (PMNF) for eliminating conflicts. PMNF doesn't use too much colours and has a running time in O(|V ||E|) [START_REF] Ramanathan | A unified framework and algorithm for channel assignment in wireless networks[END_REF]. Once the colouring is done, the assignment algorithm convert colours to actual radar ramp parameters based on available degrees of freedom and the cost function (favours wider ramp due to range resolution loss, disfavours time-offsetting ramps due to ramp crossing cost).

These previous algorithms have been described in a static context. They are all combine at the control centre to allow dynamic parameter assignment. Since each car is sending its position and trajectory to the control centre, it can anticipate the future cars positions to generate snapshots of what the traffic will look like. RadarMAC samples the time horizon into Q epochs, generates snapshot at the start of each epoch and the corresponding interference graph. This correspond to a time-varying graph, a formalism that has been previously studied in [START_REF] Ferreira | Building a reference combinatorial model for manets[END_REF][START_REF] Yu | Algorithms for channel assignment in mobile wireless networks using temporal coloring[END_REF]. Borrowing the concept from [START_REF] Yu | Algorithms for channel assignment in mobile wireless networks using temporal coloring[END_REF], RadarMAC creates a smashed graph from the union of all the graph snapshots. Thus, multiple graphs are smashed into one containing the union of all nodes and edges. The PMNF colouring is then applied on this smashed graph. The idea behind this smash-then-colour algorithm is to generate a less efficient colouring for a certain snapshot, but avoid reassignment as the node colours will be valid for longer period of time.

From the results presents in the reference [START_REF] Khoury | Mitigating radar interference in self-driving cars[END_REF], RadarMAC provides an effective algorithm to fix interference using a LTE-V2X network. However, the formula (2.2) used to generate the edges of the graph (potential interferers) does not take into account the potential interferers from indirect line-of-sight. The ILOS from the signal bouncing on cars could be approximated by the control centre, but for a more robust estimation of impactful interferers, knowledge of the environment might be needed. This algorithm would also seize to function in areas with a low LTE coverage, something that a decentralised approach wouldn't be impacted by.

RadChat

Rad-Chat is a distributed networking protocol introduced in [START_REF] Aydogdu | Spectrum sharing for automotive radar interference mitigation[END_REF][START_REF] Aydogdu | Synchronization-free radchat for automotive radar interference mitigation[END_REF] that aims to mitigate interferences among FMCW-based automotive radars (including selfinterference). It is a joint radar and communication system [START_REF] Paul | Survey of rf communications and sensing convergence research[END_REF] operating in the 77GHz radar band. Its purpose is to coordinate automotive radars in order to avoid interference. The system reuses a big part of the radar hardware for its communications as illustrated in 2.11, which makes it easier and cheaper to implement. In addition to investigating the different type of interference when using RadChat (R2R, C2R and R2C), the paper proposes a protocol for the physical (PHY) and medium access (MAC) layers. The input to the conventional FMCW transmitter and receiver can be switched between the radar and communication. Every radar on the road must be equipped with such a system, and the waveforms used by the radars must be identical (same frame time, frequency sweep, start frequency, communication bandwidth, ...). The RadChat protocol is described in Figure 2.12 and operates by FDM/rTDMA/cCSMA. The communication and radar signals are using different frequency bands (B c and B r respectively) to avoid R2C and C2R interferences: Frequency Division Multiplexing (FDM). The radars transmission are using Time Division Multiple Access (rTDMA) to avoid R2R interference. The communication is using a Carrier Sens Multiple Access (cCSMA). The vehicles using RadChat are supposed to have synchronised clocks, and the transmit powers for radar and communication are supposed to be equal to ensure similar ranges for both. Time is separated into multiple timeslots that are used by radars alternatively to first communicate via CSMA which timings they are booking for the next timeslot, then send their FMCW signal using the communicated timings (TDMA). Other than the TDMA slot index, radars are also communicating their identifier of the time reference, a radar start time as well as a strength indicator to give more or less priority.

The main advantage of using a common hardware for communication and radar transmission is that is alleviated completely the problem of identifying which radars could be in LOS (potential interferer). Indeed, with the same hardware and power, the radar range and the communication range would be similar as well as their respective FoV. Thus, it is possible to communicate with any potential interferer and book different TDMA to avoid interfering. However, such a system requires standardisation of the automotive radar market as only units equipped with Rad-Chat will be able to communicate / book time slots. It also poses a problem with legacy vehicle that might be already equipped with radars without RadChat units. The system must be able to adapt to interferers that are not part of the RadChat network.

Previous sections focused on interference mitigation methods that have been investigated, the following sections present different domains and methods that have the potential to help solving the interference problem.

Distributed Optimisation

Introduction to distributed optimisation

The problem of global interference mitigation between automotive radars can be translated into a distributed optimisation problem. Indeed, in a multi-agent system, distributed optimisation's goal is to minimise a global function which is the sum of the individual local objective functions of each agent of the system. These agents are interconnected and are required to cooperate in order to reach there common objective.

These multi-agent interconnected systems find application in smart manufacturing, sensor networks, power systems and smart driving to name a few of them ([31, 34, 50, 82, 97, 124]). Problems such can usually be posed as convex optimisation problems, but the distributed nature of these networked systems makes the traditional centralised strategies unsuitable to solve them. A centralised approach would also induce other limitation such as single points of failure, computation load, huge amount of communication and limited flexibility, making distributed optimisation an imperative to solve these problems.

The distributed optimisation problem can be traced back to the works of Bertsekas and Tsitsiklis [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF], [START_REF] Tsitsiklis | Problems in decentralized decision making and computation[END_REF] and consists in a system of N agents where each of them has an objective function f i (x) with x ∈ R the optimisation variable. Distributed optimisation aims at minimising the global objective function 2.3 given by the sum of the local objective functions of each agent:

min x∈R n N i=1 f i (x) (2.3)
Distributed optimisation already has various application in multiple domains such as sensors networks [START_REF] Rabbat | Distributed optimization in sensor networks[END_REF], edge computing [START_REF] Peng | Distributed collaboration and anti-interference optimization in edge computing for iot[END_REF] or machine learning [START_REF] Sayed | [END_REF].

Chapter 2. State of the art

Most of the distributed algorithms are using a discrete-time settings (see [START_REF] Nedic | Distributed optimization for control[END_REF], [START_REF] Sayed | [END_REF]), with much attention on first-order algorithms based on (sub)gradient method and consensus theory. A simple distributed first-order (sub)gradient descent algorithm is proposed in [START_REF] Nedic | Distributed subgradient methods for multiagent optimization[END_REF] where; at each time step, each agent performs a consensus step and a descent along their local (sub)gradient direction of their own objective function. For example, at step k, each agent i performs the following update:

x i (k + 1) = N j=1 w ij (k)x j (k) -α(k)s i (k) (2.4)
with x i (k) the estimate from agent i of the optimal solution at time k, w ij (k) the edge weight of the communication link between agent i and j, s i (k) the (sub)gradient of agent i's local objective function f i and α(k) the diminishing step size.

Applied to automotive radar interference mitigation, a solution would be expressed as x ∈ R P where P is the total number of controllable parameters among all wave-forms used by all the different radars within a scenario. The local objective function f i would be the amount of interference received by the radar i and s i its (sub)gradient.

One of the conditions for an algorithm such as 2.4 to be applicable, is that the local objective function must be convex. In the context of automotive radar using FMCW signals, the objective function would not satisfy this condition as the periodic nature of FMCW radar frames would prevent it from being convex. Indeed, as shown by the example in Figure 2.13, shifting the interferer's signal in time can reduce interferences as it leaves the victim's receiver bandwidth, then increase again as it reenters it (shifted by one chirp). The resulting ratio of interference oscillates as shown in the example Figure 2.14. Figure 2.13: Periodic nature of the objective function for FMCW: by increasing the offset time of the interferer (red), the victim radar (black) will perceive maximum interference, then no interference when the interferer signal is outside the receiver bandwidth, then maximum interference again when it reenters it, shifted by one chirp time.

Figure 2.14: Periodic ratio of interference for FMCW: the ratio of interference between two identical FMCW signals as the offset time varies between the two of them, leading to periodic increase and decrease of the ratio of interference (f start =76 GHz, B=300 MHz, n chirp =512, t ramp =20 µs, t reset =2 µs, t dwell =2 µs, duty_cycle=0.5, b receiver =40 Mhz, t start =0 µs).

Algorithms constraints

Most of the distributed algorithms in the literature require the cost function to be convex [START_REF] Yang | A survey of distributed optimization[END_REF] making them inapplicable to our automotive radar problem. Some algorithms such as the ones presented in [START_REF] Pilloni | A discontinuous algorithm for distributed convex optimization[END_REF], [START_REF] Feng | Finite-time distributed optimization with quadratic objective functions under uncertain information[END_REF], [START_REF] Tang | A novel consensus-based economic dispatch for microgrids[END_REF] or [START_REF] Zhao | Analysis of consensus-based economic dispatch algorithm under time delays[END_REF] do not require a convex objective function, but a quadratic one, which is not satisfied either by our objective function.

Reference [START_REF] Tatarenko | Non-convex distributed optimization[END_REF] proposes a variant of the push-sum algorithm [START_REF] Kempe | Gossip-based computation of aggregate information[END_REF] that handles non-convex objective function, but the algorithm doesn't handle constraints, which is an important part of our problem since radar waveform parameters have to stay within certain boundaries for the radar performance to keep its desired performances. Moreover, the algorithm iterates over the entire state x, which in our case must contain every waveform parameter of every radar in the system. This is problematic as the limited range of the V2X communication makes it possible for two agents on the road to have different interpretation of the state x since some agent could be in range of only one of them.

The thesis [START_REF] Mota | Communication-Efficient Algorithms For Distributed Optimization[END_REF] proposes an algorithm that converges faster than classical ones, that works for any king of network topology, and with non-connected variables (each agent has its own subset of variables). Unfortunately, it requires the network to be invariant with time which is not the case in our problem.

To conclude, even though the problem of automotive radar interference mitigation can be interpreted as a distributed optimisation problem, most of the existing algorithms if not all [START_REF] Yang | A survey of distributed optimization[END_REF] cannot be applied to it as it would need to be compatible 

Machine Learning methods

Reinforcement Learning

A Markov Decision Process (MDP) is a discrete-time stochastic control process that provides a framework to model situation with decision making. This concept has been known at least since the 1950s with [START_REF] Bellman | The Theory of Dynamic Programming[END_REF], [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF]. A MDP is a tuple of 4 elements (S, A, P a , R a ) where:

-S is a set of states (state space); -A is a set of actions (action space); -P a (s, s ) = P r(s t+1 = s |s t = s, a t = a) is the probability that the action a in the state s at time t will lead to the state s at time t + 1;

-R a (s, s ) is the expected immediate reward from transitioning from state s to s .

An example of such a process is shown in Figure 2.15.

This framework is used in Reinforcement Learning as even if the transition probabilities are not known for a given MDP, they can be learned by trying actions in different states and recording the results. The goal being to find an approximation to the Q(s, a) function, which gives us the expected reward when taking an action a at state s. The MDP has found a lot of applications in the industry [START_REF] White | Real applications of markov decision processes[END_REF], but is limited by its lack of scalability. Indeed, learning this Q function becomes very difficult when the number of possible states becomes too large as enumerating all of them would take to much Using deep learning for reinforcement learning (or Deep Reinforcement learning, DRL) has been made famous especially with their applications in video games, with AlphaGo [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF] and Atari games [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF], but other applications have been found in robotics [START_REF] Lenz | Deep learning for detecting robotic grasps[END_REF] but also in automotive. Notably, DRL has been used to optimise sensing-communication coexistence [START_REF] Xu | A deep reinforcement learning approach for integrated automotive radar sensing and communication[END_REF][START_REF] Fan | Resource allocation for v2x assisted automotive radar system based on reinforcement learning[END_REF][START_REF] Lee | Learning to schedule joint radar-communication with deep multi-agent reinforcement learning[END_REF], car-following strategy [START_REF] Zhang | Safe car-following strategy with multi-constraints based on deep reinforcement learning for autonomous driving vehicles[END_REF] or energy optimisation [START_REF] Hou | Reinforcement learning-based energy optimization for a fuel cell electric vehicle[END_REF].

Multiple kind of RL algorithms exist and the way they are classified is described by OpenAI with Figure 2.16. During this thesis, we focused on Model-Free reinforcement learning and implemented three different algorithms, DDQN, DDPG and SAC, described in the following sections.

Double DQN

The Deep Q Network algorithm (DQN) [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] combines the Q-learning with deep neural networks, but is known to commonly overestimate action values under certain conditions. To solve this problem, the Double DQN (DDQN) was proposed by [START_REF] Hasselt | Deep reinforcement learning with double q-learning[END_REF] as a generalisation of the double Q-learning algorithm [START_REF] Van Hasselt | Double q-learning[END_REF] for deep neural networks.

The Double Q-learning algorithm is presented in the pseudo-code 1. The way the network learns can be explained with the step:

Q * (s t , a t ) ≈ r t + γQ θ (s t+1 , argmax a Q θ (s t+1 , a )) (2.5)
For an given (state,action) tuple (s t , a t ), the expected reward corresponds to Q(s t , a t ). The reward can be separated into two parts, the immediate reward, and the delayed one. With each experience (s t , a t ), r t , s t+1 ) the immediate reward is known and corresponds to r t . The delayed reward on the other hand isn't known, so it is approximated using the current Q function with γQ θ (s t+1 , argmax a Q θ (s t+1 , a )). This part of the equation corresponds to the reward expected in the next state (s t+1 ) if the optimal action a is taken, it being chosen with our Q function argmax a Q θ (s t+1 , a ). γ is a discount factor between 0 and 1 that gives more importance to immediate reward than future ones.

The particularity of the Double-DQN comes from the use of two different Q functions, denoted by the different weights θ and θ , to avoid using the same Q function to estimate the reward as well as the action to take in state s t+1 .

Gradient descent is performed to slowly modify the weights θ to correct the predictions of Q θ (s, a). Q θ (s, a) is catching up with the primary network with the step θ ← τ * θ +(1-τ ) * θ where its weights are updated to converge slowly towards θ.

Algorithm 1 Double Q-learning [START_REF] Hasselt | Deep reinforcement learning with double q-learning[END_REF]. 

Initialise primary network Q θ , target network Q θ ,
) ∼ D Compute target Q value: Q * (s t , a t ) ≈ r t + γQ θ (s t+1 , argmax a Q θ (s t+1 , a )) Perform gradient descent step on (Q * (s t , a t ) -Q θ (s t , a t )) 2 Update target network parameters: θ ← τ * θ + (1 -τ ) * θ 2.6.1.2 DDPG
Deep Deterministic Policy Gradient (DDPG) [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] is an algorithm that learns the Q-function as well as a policy. It uses off-policy data (can be data where the actions were taken at random) to learn the Q-function, then uses the Q-function to learn the best policy. The approach of DDPG is similar to DDQN but instead of having the learned Q-function estimating the reward and choosing the action (same architectures, with weights converging together), DDPG uses different networks for the reward estimation (Q-function) and the best action estimation (policy). This way, it is possible to have two completely different networks estimating the state and choosing the action.

The algorithm for DDPG is described in algorithm 2.

This version of the DDPG algorithm implements a principle similar to the one seen in DDQN where different set of weights are used to computes the targets y(r, s ) (φ targ and θ targ ) and the loss (φ and θ) for the same reason as for DDQN. The weights for the targets networks are then updated in the last two lines of the algorithm.

SAC

The Soft Actor-Critic (SAC) algorithm, presented in [START_REF] Haarnoja | Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[END_REF], is an algorithm that learns a stochastic policy in an off-policy approach. It serves as a bridge between DDPGstyle and stochastic policy optimisation approaches. The main feature of SAC is the entropy regularisation. Indeed, the policy is trained to maximise a trade-off between 

y(r, s ) = r + γ * Q φtarg (s , µ θtarg (s )) Perform gradient descent step on (Q φ (s, a) -y(r, s )) 2 Perform gradient ascent step on Q φ (s, µ θ (s)) Update target network parameters: φ targ ← ρφ targ + (1 -ρ)φ θ targ ← ρθ targ + (1 -ρ)θ
entropy (which measures the randomness in the policy decisions) and the expected return. This trade-off directly correlates with the exploration versus exploitation trade-off, where a policy needs to take good actions, but also needs to explore by taking non optimal actions, to find new promising strategies.

Similarly to DDPG, SAC has two main networks, the Actor network which learns a policy, and the Critic which learns the Q-function. On top of that, SAC has a few particularities. First, it uses an entropy regularisation coefficient α to enforce the entropy constraint to different degree. This coefficient can be constant, but some variants of SAC make it vary during training. SAC also has two Critic networks Q φ 1 , Q φ 2 and takes the minimum of the output value for the computation of Q(s, a), in order to lower the over estimation bias. Finally, the stochastic nature of the SAC algorithm resides within the Actor network. Instead of outputting directly a value corresponding to a specific action, it first generates parameters for a Gaussian distribution, and then sample from this distribution the action to take. As a result, such an implementation only allows continuous action space.

The SAC algorithm is described in the pseudo-code 3

Graph Neural Networks

Graphs are a particular data structure which models objects (nodes) and their relationship with each other (edges). A lot of research has been conducted to 

Q φ i (s , ã ) -α log π θ (ã , s ) , ã ∼ π θ (•|s ) Perform gradient descent step on Q φ i (s, a) -y(r, s ) 2 , for i = 1, 2 Perform gradient ascent step on min i=1,2 Q φ i (s, ã θ (s)) -α log π θ (ã θ (s)|s)
apply machine learning to graphs as they can model a variety of systems in various domains such as social science [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF], natural science [START_REF] Sanchez-Gonzalez | Graph networks as learnable physics engines for inference and control[END_REF][START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF], protein interactions [START_REF] Fout | Protein interface prediction using graph convolutional networks[END_REF] or knowledge graph [START_REF] Hamaguchi | Knowledge transfer for out-of-knowledge-base entities : A graph neural network approach[END_REF] to name a few of them.

Learning from the different objects, while taking into account the relation between each of them is a challenge. In Euclidean space, where the relation between two objects (or pixel in the case of images) is the distance between each other, this can be done using Convolutional Neural Networks (CNN) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. But these are not applicable for non-Euclidean spaces such as graphs, which motivated the creation of Graph Neural Networks (GNN) [START_REF] Scarselli | The graph neural network model[END_REF].

In a graph, each node is defined by its features and its related nodes. The goal of a GNN is to learn for each node v a state embedding h v ∈ R s , which contains the information of v's neighbourhood. This embedding is a s-dimension vector and can be used to produce an output o v such as the label of the node. By letting f be the local transition function and g the local output function, h v and o v are defined as follow:

h v = f (x v , x co[v] , h ne[v] , x ne[v] ) (2.6) o v = g(h v , x v ) (2.7)
where:
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-x v are the features of v; -x co[v]
are the features of v edges;

h ne [v] are the states of the neighbours of v;

-x ne[v]
are the features of the neighbours of v.

By letting H, O, X and X N be vectors obtained by stacking the states, outputs, features and node features respectively, we can write 2.6 and 2.7 in the compact form:

H = F (H, X) (2.8) O = G(H, X N ) (2.9)
where F and G are stacked version of f and g. With the assumption that F is a contraction map, then the value of H is the fixed point of Eq. 2.8. Following the Banach's fixed point theorem [START_REF]An Introduction to Metric Spaces and Fixed Point Theory[END_REF], GNNs iterates using the following formula:

H t+1 = F (H t , X) (2.10)
where H t is the t-th iteration of H. This equation converges exponentially fast to the solution of 2.8, giving a stable state embedding for all nodes of the graphs, depending on their respective neighbourhood. The functions f and g can be implemented using neural networks that can learn from the loss given by the difference between the targeted output and the one obtained.

As powerful as the original GNN architecture can be it has certain limitations. First, the iterations of Eq. 2.10 is inefficient, and relaxing the assumption of a fixed point allows to replace the iterations of Eq. 2.10 by multiple layers of neural networks, allowing hierarchical feature extraction. There are also limitations regarding the edge information. Using the original GNN architecture, it is not possible to apply different networks to two different neighbours depending on the nature of their edges.

Because of its limitation, the GNN architecture has been extended in a lot of different variants, represented in Figure 2.17. In this thesis, three variants have been implemented, the GCN, PointNet and GraphSAGE. These are different implementations of the concept of Message Passing Networks (MPN) described in [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF].

Message Passing Networks

Message Passing Networks are generalising the concept of message passing scheme in irregular domains. They can be described in Figure 2.18 and with the following Figure 2.17: Types of Graph Neural Networks, from [START_REF] Zhou | Graph neural networks: A review of methods and applications[END_REF]. operations:

x i = θ x i , j∈N (i) φ x i , x j , e j,i (2.11) 
where x i and x i are the features and updated features of node i, e j,i the edge weight from j to i; θ and φ denotes respectively a global and local differentiable function (which can be a neural network); φ encodes the relation between two adjacent nodes depending on their features. Then, the aggregator , a differentiable, permutation invariant function (such as sum, mean or max) aggregates the output of φ for each neighbour. θ then maps these aggregated node features to output the new node features for i. 

Graph Convolutional Networks

A Graph Convolutional Network (GCN) uses a graph convolutional operator described in [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] to encode neighbourhood information into new state for each node.

The operator is as follow:

X = D-1/2 Â D-1/2 XΘ (2.12)
where  = A + I is the adjacency matrix with self loops, and D is the diagonal degree matrix and Θ the weight matrix that can be replaced by a neural network.

The adjacency matrix can contain different values than ones and zeros in order to represent edge weights.

From the point of view of a node, the computation to update its features is described by the following formula:

x i = θ j∈N (i)∪{i} e j,i dj di x j (2.13)
where x i , x i are respectively the features and updated features of node i, N (i) is the set of neighbour of node i, e j,i is the edge weight from node j to node i, and di = 1 + j∈N (i) e j,i is a ormalisation term to avoid exploding/vanishing gradients when too many or too few neighbours are present. θ denotes here the neural network.

PointNet

PointNet presented in [START_REF] Charles | Deep learning on point sets for 3d classification and segmentation[END_REF] and its variant PointNet++ [START_REF] Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF] are adapted to systems where nodes have positions in addition to their features. In its implementation of the MPN, PointNet takes into account the relative positions of each node when computing the updated features of a node. From the point of view of node i, the local network φ takes as input the feature of node j as well as the relative position of the two p j -p i . The aggregator used is the max aggregator, which selects for each dimension of the output of φ the maximum value among all the neighbours. This way of updating the node feature is described with the following formula:

x i = θ max j∈N (i)∪{i} φ x j , p j -p i (2.14)
Compared to the MPN, the edge weight isn't present, but it can easily be added to the input of the local network φ.

GraphSAGE

GraphSAGE presented in [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF] focuses on learning on a small sample of the neighbourhood of each node instead of taking the entire graph. The goal of this approach is to enable the network to easily generalise to unseen nodes by training it to encode node feature efficiently without needing all of the information of all the neighbours. The update step describer by GraphSAGE is as follow:

x i = W 1 x i + W 2 • mean j∈N (i) x j (2.15)
where W 1 and W 2 are the weight matrices, and N (i) is the set of neighbours of node i after re-sampling.

Optimisation Methods

Introduction to optimisation methods

Optimisation methods are used to find optimal (or near optimal) solutions to complex problems. These problems aim at minimising (or maximising) a certain objective function associated to a given problem. Optimisation algorithms can be classified into deterministic methods, and stochastic methods.

Global deterministic methods aim to find the global optimum of the problem by providing theoretical proofs that returned results is indeed the optimal one. To reach this goal, deterministic methods use specific features from a given problem to avoid exploring certain parts of the solution space. Deterministic algorithms include for example Linear Programming (LP) that translates a problem into a system of linear inequalities to solve [START_REF] Sierksma | Linear and Integer Optimization[END_REF], the branching algorithms (branch-and-bound [START_REF] Land | An Automatic Method for Solving Discrete Programming Problems[END_REF] and branch-and-cut [START_REF] Padberg | A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems[END_REF]) that recursively split the solution space into smaller spaces that can then be eliminated entirely by proving that they can't contain a better solution that one already found. Dynamic Programming [START_REF] Bellman | Dynamic Programming[END_REF] is also part of deterministic methods, by solving overlapping subproblems and using the associated results to solve the main problem. Deterministic methods struggle when dealing with large scale combinatorial problems. In these situations, if finding a near optimal solution is good enough, stochastic methods might be preferred.

Stochastic optimisation aims to find proper and near-optimal solution to a given problem by including random processes during the exploration of the solution space. Due to the randomness of the stochastic methods, finding the global optimum isn't guaranteed, and the quality of the solution found depends on the algorithm but also the allocated computing time. The main advantage of such a method is that the execution time is tunable and depends on the trade-off desired between time and solution quality. Among stochastic methods are heuristics and metaheuristics. Heuristics are used to solve very specific problem whereas metaheuristics are more generic and can be applied to solve multiple problems.

Metaheuristics can be split into two categories depending if they are trajectorybased or population-based. Trajectory-based algorithm such has tabu-search [START_REF] Glover | Tabu search-part i[END_REF] or simulated annealing [START_REF] Van Laarhoven | Simulated annealing : theory and applications[END_REF] focus on exploring the solution space by jumping from solution to solution using different methods, whereas population-based algorithms such as genetic algorithms [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF] or swarm intelligence algorithms [START_REF] Lones | Metaheuristics in nature-inspired algorithms[END_REF] focus on making a population of solutions evolve together towards better solutions. In this thesis, two implementations of metaheuristics have been done, one of simulated annealing and one of genetic algorithm whose principles will be detailed in the next sections.

Simulated Annealing

Simulated Annealing (SA) [START_REF] Van Laarhoven | Simulated annealing : theory and applications[END_REF] is a trajectory-based metaheuristic algorithm that finds a near optimal solution to a given problem by exploring the solution space. Its name come from the annealing method used in metallurgy where heating and controlled cooling of a material allow to alter its properties. This algorithm explores the solution space by first selecting a solution from the neighbour of the current solution, evaluating it and comparing it to the current one. Depending on the score of the new found solution and a parameter called "temperature", the new solution will either be selected or be discarded. The higher the temperature is, the higher the chances of selecting a new solution even if its performance is lower than the current one. A correct handling of the temperature decrease allows for the exploration not to be stuck in local minima and slowly converge to a global optimum of the problem. This principle is illustrated in Figure 2.19. A typical SA algorithm is described in the pseudo-code 4.

SA can be adapted to any kind of problem by modifying the way solutions, solu- tion evaluations, neighbourhood and temperature control are designed. The initial temperature is usually found by making a heat-up phase where the temperature is increased slowly until a certain ratio of neighbour acceptance is reached. This is necessary to avoid starting with a too low temperature that wouldn't allow worse solutions to be accepted at the beginning of the cooling phase, leading to the search converging to a local optimum instead of a more global one.

Genetic Algorithm

Genetic algorithms (GA) [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF] are part of the population-based methods. Inspired by natural selection, they use a population of solutions and make it evolve towards a global optimum.

To achieve this goal, GAs select the best candidates within a population, mix them together to generate "children" solutions, and add random mutation to them to favour exploration of the solution space. This process is then repeated with the new generation made up of the previous best candidates and the children, mimicking the natural evolution process. This principle is illustrated in Figure 2.20. A typical GA is described in the pseudo-code 5. What determines the efficacy of a genetic algorithm for a given problem lies in the way each of the functions are implemented. The selection of the best candidate can be done simply by ordering them by the performances and selecting only the best ones, but the risk of such a method is to end up with a population with too much similarities, preventing proper exploration of the solution space. Instead, other techniques are usually used that include a part of randomness in the selection process. For example, the roulette wheel selection weights the probability of selecting a certain solution based on its score, the tournament selection method generates matches between randomly selected tuples of solution and picks the bests of them.

The generation of children from the crossover of parent solutions can also be implemented very differently and depends on how solutions are expressed in the problem. In the case of solutions represented by vectors, children can be generated by splitting parent vectors in different parts and recombining them in new ways. The generation of children acts like the neighbouring operator in simulated annealing, it must be designed to generate new solutions far enough from the original ones to favour exploration, but not too much as to be almost random.

The mutation of children is there to allow the system to explore solution far away from the current population. The mutation must appear randomly on children solutions and modify them to bring more diversity to the current population. For example, in the case of permutation vectors where the order of values matters, the mutation could consist in swapping different part of the vector with each other, or reversing their order. Multiple kind of mutation can be implemented, with different probabilities depending if they modify a solution drastically or not.

Conclusion

In this Chapter, the state of the art on interference mitigation for automotive radars has been presented. Interference mitigation can be done by acting upon a multitude of domains such as time, frequency, coding, polarisation or space. Different strategies have been investigated on these domains. Randomisation of certain parameters of the radar (in time, frequency or coding) is often used as it reduces the probability of interference. As identified by the two projects MOSARIM and IMIKO, being able to properly detect interferences to change the radar parameters accordingly has a great potential for interference mitigation. Some strategies involve standardisation of all radars such using specific polarisation depending on the radar location on the car, or specific frequency band separation based on the driving direction. Some V2X like-technologies have been presented. Radar-MAC uses a dedicated LTE-link to a dispatch centre in the "cloud" to communicate cars and radars positions and orchestrate the radar band usage from this centralised control centre. RadChat, on the other hand, has a more decentralised approach where radars have builtin communications systems using the same radar hardware to communicate with other radars. They can communicate and book certain time-frequency resources so that other radars avoid taking the same ones.

Even though the problem of interference mitigation can be translated into a distributed optimisation problem, the amount of constraints the problem has makes most distributed optimisation algorithms unfit to solve it. Two of the most hindering constraints being the non-convexity of the problem's cost function and the very limited amount of communication before the problem needs to be solved.

Machine Learning methods also have some potential, especially reinforcement learning. RL has been used in a multitude of domain with the most well-known one being video games. By learning from the performances induces by its actions, an agent can learn strategies in order to maximise its reward. In the case of automotive radar interference mitigation, radars could use reinforcement learning to learn optimal parameters depending on its environment. Graph Neural Network are another form of machine learning whose characteristics are interesting for the interference mitigation problem. Indeed, contrary to regular MLP where the input dimension is fixed, GNNs can handle any number of inputs making them a good candidate for interference mitigation as vehicles are constantly going in or out of range, making the number of vehicles to feed to our algorithm constantly changing.

Finally, two metaheuristic algorithms have been presented, simulated annealing and genetic algorithms. Depending on the size of the problem, finding the optimal dynamic sharing of the radar band between tens of radars can be practically impossible because of the computation time it would take. SA and GAs are algorithms capable of searching the solution space in a stochastic yet controlled manner allowing to find near-optimal solution to the problem in reasonable amount of time.

In the next chapter, different models are presented. These models are translations of the automotive radar interference mitigation problem with different assumptions and objectives.

Chapter 3

Math Modeling

Introduction

In this chapter, three different models are presented. First, a multi-agent approach of the interference mitigation problem where radars can use any kind of waveforms and where the goal is for each agent to reduce the amonut of interference perceived. This model translates the current state of the automotive radars as no regulation is in place to force them to use similar waveforms. Second, by introducing some regulation forcing radars to use certain predefined orthogonal resources, the interference problem can be translated into a dynamic K-coloring problem. And finally, this model is extended to include the resource usage stability into the objective function by adding a cost to the action of a radar changing the resource it's using.

A Multi-Agent System

The problem of automotive radar interference mitigation can be represented with a Multi-Agent System where every agent (corresponding to each radar instance) has its own view of the environment through the information gathered via V2X and sensing.

Input data

Let R be a set of radars. At time t, each radar has a set of physical parameters (position, orientation, FoV, power) denoted as p r (t). It is attached to a vehicle which has its own physical parameters (position, orientation, speed) denoted as v r (t). Let x r (t) be the waveform parameters used by the radar r at time t.

Each radar can emit CAMs (it is actually the vehicle to which the radar belongs to that emits CAMs, but to simplify the wording, radars are said to emit CAMs). A CAM emitted at time t by radar r 1 will be correctly received by radar r 2 with a probability P (v r 1 (t), v r 2 (t)) that depends on the position of the two vehicles, and with a delay d(v r 1 (t), v r 2 (t)).

Each CAM sent by r 2 and correctly received by radar r 1 updates its context C xt about r 2 noted C xt [r 2 ] with the new information included in the CAM message: [x r 2 (t CAM ), p r 2 (t CAM ), v r 2 (t CAM )] with t CAM being the time at which the CAM message was emitted. Figure 3.1: Illustration of the multi-agent system with communications. At a given time t (top part of the picture), each radar r 1 has physical properties (position, orientation, FoV and power) given by p r 1 (t) and waveform parameters x r 1 (t). The vehicle its attached to has its own position, orientation and speed denoted with v r 1 (t). Depending on radars' positions and the environment, two radars r 1 and r 2 can be in LOS with each other, which is represented by the corresponding value in the adjacency matrix (A r 1 ,r 2 (t)) being equal to one. While all these parameters change through time, V2X communications occur (bottom part of the picture). Whenever a V2X message is sent by a vehicle v r 1 , is it received by another vehicle v r 2 after a delay d(v r 1 (t), v r 2 (t)) with a probability P (v r 1 (t), v r 2 (t)).

Let Ċr 1 (C xt [r 2 ], x r 1 (t))(t) be the cost function that radar r 1 uses to estimate the amount of interference it might receive from another radar r 2 if its own parameters
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are x r 1 . Finally Ȧr 1 ,r 2 (C xt )(t) is thz r 1 's estimation of the (I)LOS between itself and radar r 2 depending on all the data it gathered in its context. Ȧr 1 ,r 2 (C xt , t) = 0 when the two radars shouldn't see each other, and above zero otherwise.

Let C r 1 (x r 2 (t), x r 1 (t))(t) be the actual impact (amount of interference) that r 2 can have on radar r 1 , and A r 1 ,r 2 (t) the true (I)LOS between r 1 and r 2 .

The overall system is described in Figure 3.1.

Decision variables and Constraints

The only variable that each radar r can act upon is its waveform parameters x r (t). This includes the waveform parameters themselves, but also the time at which the decision to change parameters is made. The time at which the decision is taken influences the knowledge available to the radar (as waiting before taking the decision can let time for new V2X messages to arrive) but also the knowledge that other radars will have (depending on the delay between the decision and the next V2X messages emission). An example of this impact is illustrated in Figure 3.2. In the case of FMCW parameters, the parameters included in x r (t) are the one cited in section 1.3.1. Each of these parameters have limited ranges that are dependent on the desired performances of the radar in maximum range and resolution, and maximum speed and resolution.

Let x r [n] be the n-th out of the N parameters of the set of waveform parameters x r . lim min [n] and lim max [n] represent respectively the minimum and maximum values that parameter x r [n] can have. The overall constraints on the choice of waveform parameters for radar r is then given by:

lim r_min [n] <= x r [n] <= lim r_max [n] f or n ∈ [1, .., N ] (3.1)
These limits are not all independent. Indeed, the constraint on a given parameters depend on the choice made for another parameter. For example, the starting frequency limits of a chirp depend on the chirp bandwidth. In the band 77-81 GHz, a signal with a bandwidth B of 1 GHz cannot have its starting frequency f 0 above 80 GHz as the end of the chirp would be above the 81 GHz limits. The maximum limit of the starting frequency for such a radar would be 81x10 9 -B.

The starting time t start has also a dynamic constraint dependent on the previous signal to ensure the starting of the new signal isn't too far from the end of the previous one.

Objective

The objective for a radar r 1 is to choose its waveform parameters in order to avoid interfering with other radars. This is given by: min

xr 1 (t) r 2 ∈R,r 1 =r 2 Ċ(C xt [r 2 ], x r (t))(t) * Ȧr 1 ,r 2 (C xt , t) (3.2)
This objective is one of competition and not cooperation. Every radar on the road tries to pick the best parameters for itself based on its context. Focusing on a cooperation approach, the goal of reducing overall interference can be expressed with: min

X(t) r 1 ∈R r 2 ∈R,r 1 =r 2 C(x r 1 (t), x r 2 (t))(t) * A r 1 ,r 2 (t) (3.3)
where X(t) is the concatenation of all waveform parameters for all radars in R.

Theses two objectives can sometimes be in line with one another, but it is possible that in certain situations, radars should not settle on their best parameters to reduce the overall amount of interference across all radars. The common channel access policy also allows for a discretisation of time. Indeed, by having the orthogonal resources synchronised in time and forbidding the change of resource in the middle of its usage, no change can occur between the start and finish of a resource time-window. The design of these resources depends a lot on factors such as the flexibility desired by radar companies, the maximum round-trip of the radar signal or the desired range and velocity for the radars.

By introducing such concepts, independently of the resource design, the problem can be rewritten as a dynamic graph K-colouring problem.

Input data

Let T = {t 0 , ..., t T } be the set of timestep in a given scenario. These timesteps correspond to the different time-windows. Let K be the set of available resources. Let R be the set of radars.

From these elements, we can build a dynamic graph G composed of |R| nodes, corresponding to the different radars. At each timestep, each nodes can have one colour from the |K| available, corresponding to the resource used by the radar. Let x r,k,t ∈ {0, 1} equal to 1 when node r is using the colour k at timestep t, and 0 otherwise. For the rest of the model descriptions, colours and resource are used interchangeably, as well as radars and nodes.

The edges in our graph correspond to the LOS between each radars, so two radars that can "see" each other and would interfere if using the same resource, are linked by an edge. Edges are given by the temporal adjacency matrix A, where A r 1 ,r 2 ,t ∈ {0, 1} is equal to 1 when radars r 1 and r 2 are in LOS, and 0 otherwise.

An example of resulting dynamic graph can be seen in Figure 3.4 

Decision variables and Constraints

Like without common channel access policy or orthogonal resources, radars have to chose their waveform parameters. The process is simplified by the discretisation of time and the use of the predefined available resources at each timestep: x r,k,t . Like previously, the time at which the decision is taken will impact the state of a radar The constraints on x r,k,t are as follow:

x r,k,t ∈ {0, 1} ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (3.4)
This constraint indicates that a resource can't be partially chosen. It is either used or not.

k∈K x r,k,t = 1 ∀r ∈ R, ∀t ∈ T (3.5)
This constraint ensures that radars use one, and only one resource at each timestep.

Objective

Like without common channel access policy, for each timestep t ∈ T the objective for a radar r 1 is to select a resource that no other radar in LOS is using (or minimising the amount of radar in LOS with the same resource):

min x r 2 ∈R,r 1 =r 2 k∈K x r 1 ,k,t * ẋr 2 ,k,t * Ȧr 1 ,r 2 ,t (3.6) 
where ẋr 2 ,k,t is the estimation by r 1 of x r 2 ,k,t via the V2X communication, and Ȧr 1 ,r 2 ,t is its estimation of A r 1 ,r 2 ,t via the V2X data.

Again, a more cooperative objective is to reduce the overall interference, given by: min

x r 1 ∈R r 2 ∈R,r 1 =r 2 k∈K x r 1 ,k,t * x r 2 ,k,t * A r 1 ,r 2 ,t (3.7)

System stability

Principle

The main goal of this optimisation problem is to reduce the amount of interference, but two strategies that allow avoidance of all interference are not equivalent. Indeed, for the same interference mitigation potential, a strategy that changes waveform parameters less often is preferred as it will be more predictable and will be less vulnerable to malfunction of the V2X network. To take into account this stability criterion, we modify slightly the model using common channel access policy.

Input data & Decision variable

Similar to the model using a common channel access policy, let T = {t 0 , ..., t T } be the set of timesteps of a scenario, let K be the set of colours and R the set of radars. The (I)LOS between radars r 1 and r 2 at each timestep t are described with the adjacency matrix A r 1 ,r 2 ,t , where A r 1 ,r 2 ,t = 1 if they are in (I)LOS at timestep t, and 0 otherwise. The resulting dynamical graph G(R, A) represents the scenario.

The decision variable x r,k,t ∈ {0, 1} equals to 1 when radar r is choosing resource k at timestep t.

Objective & Constraints

The model taking into account the system stability is as follow:

min x t∈T r∈R k∈K |x r,k,t+1 -x r,k,t | * 0.5 (3.8) s.t. k∈K x r,k,t = 1 ∀r ∈ R, ∀t ∈ T (3.9) r i ∈R r j ∈R k∈K t∈T A r i ,r j ,t * x r i ,k,t * x r j ,k,t = 0 (3.10) x r,k,t ∈ {0, 1} ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (3.11) A r i ,r j ,t ∈ {0, 1} ∀(r i , r j ) ∈ R 2 , ∀t ∈ T (3.
12)

The constraint (3.10) could be replaced by:

A r i ,r j ,t * x r i ,k,t * x r j ,k,t = 0 ∀(r i , r j ) ∈ R 2 , ∀k ∈ K, ∀t ∈ T (3.13)
where T = {1, ..., t T -1 }

The objective (3.8) is to minimise the number of colour changes across time. Indeed, if a node r changes its colour from k to k between timestep t and t+1, then x r,k,t = 1 and x r,k,t+1 = 0 making |x r,k,t+1 -x r,k,t | = 1. Similarly, |x r,k ,t+1 -x r,k ,t | = 1, as x r,k ,t = 0 and x r,k ,t+1 = 1, thus every colour changes generates a increase of 2 of the sum of |x r,k,t+1 -x r,k,t |. The multiplication by 0.5 is here so that the objective value is exactly the number of colour changes during the scenario.

The constraint (3.9) ensures that at any time, a radar uses one and only one colour. Constraint (3.10) ensures that no two radars in (I)LOS use the same resource and thus interfere with each other, which was the objective of previous models.

As all colours are equivalent, removing part of the symmetry of the problem can
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be done by introducing the following constraint:

t∈T v∈V x v,k,t ≥ t∈T v∈V x v,k+1,t ∀k ∈ K (3.14)
where K = {0, ..., k K-1 }. This constraint forces the colour number k to always be used less often (or the same) than colour number k + 1.

Conclusion

In this chapter, three different models have been presented. The first one translates the automotive radar environment into a multi-agent system where each radar has its own constraints based on its waveform and desired range-velocity measurements characteristics. Each radar is capable, via the vehicle it's attached to, to communicate its physical parameters as well as its waveform parameters to other radars. The data gathered by a radar through V2X is used to estimate line-of-sights with other radars and to make a choice of new parameters that minimises the amount of interference.

The second model introduces a common channel access policy in the form of predefined orthogonal resources to share among the different radars. By doing so, the automotive radar interference mitigation problem is translated into a dynamic K-colouring problem where nodes are radars, colours are resources, and edges are line-of-sights.

Finally, an extension of the second model has been presented where the stability of the system is also taken into account by adding a cost when radars are changing resources. Minimising the total cost while maintaining a correct dynamic K-colouring ensures the avoidance of all interference while having a colouring that doesn't change much through time.

The next chapter details the architecture of the large scale Radar-V2X simulator that has been developed in order to compensate the lack of real world data.

Chapter 4

Large scale Radar-V2X simulator

Introduction

This chapter presents the large scale Radar-V2X simulator that has been developed during the thesis in order to compensate for the lack of real world data. This simulator is programmed in Python and its different components are described in the following sections. It is composed of the SUMO software used to generate realistic traffic scenarios, a RoadChannel to translate this data into Python objects onto which can be added radars, a Side Communication channel to handle V2X communications between vehicles, a Radar channel to compute (I)LOSs between radars at each timestep, and an Evaluator that extract metrics such as the noise floor increase or the interference ratio. A multitude of assumption have been taken throughout the programming of the simulator in order to achieve realistic results while keeping a computation time low enough to perform large scale simulations involving dozens of radars.

Motivations for a simulator

Currently, only around 10% of cars are equipped with radars [START_REF]Huge opportunity as only 10% of the 1 billion cars in use have ADAS features[END_REF]. Even fewer car are equipped with V2X technology (only around 0.4% of European cars [START_REF]Additional Investigation of ITS-G5 and Sidelink LTE-V2X Co-Channel Coexistence Methods[END_REF]). This situation is at the same time beneficial and detrimental to solving the interference mitigation problem. It is beneficial because a low number of radars currently on the road (also called legacy radars) means that mitigation strategies for upcoming radars wont have to adapt to too many already existing radars with their own strategies and behaviour. On the other hand, few radars and V2X on the road also means a lack of real world data to investigate mitigation strategies requiring medium to large scale coordination between radars. For this reason, the first step of the thesis was to built a simulator able to simulate scenarios with multiples cars, various amount of radars and V2X communications in order to implement and test diverse mitigation strategies and extract data and performances from these. The simulator has been developed in Python. Even though Python isn't as fast as other programming language, it has been chosen for the set of powerful libraries that are available with it such as Pandas for dataframe generation and processing, Pytorch and Tensorflow for artificial neural networks implementations and Numpy and Scipy for more general computation on vectors and matrices. The ≈12500 lines of Python codes of the simulator have been organised following a Object-Oriented Programming (OOP) architecture. The global architecture of the simulator is presented in Figure 4.1.

The goal of the developed simulator to achieve a trade-off between a realism high enough to capture the intricate interactions that can occur between radars, V2X communications and the environment, and the computation time which needs to be low enough to allow lots of testing and data extraction. To achieve this trade-off, some assumptions and models have been used throughout the simulator to fasten the computation time. All of them are explained in the following sections, describing the main parts of the simulator.

At each timestep of the simulation, the main process triggers updates for every objects/channels in the simulation. Each aspect of automotive radar (cars dynamics, V2X communication, radar signals) work on different time scales. For example, radar signal waveform in the frequency/time domain needs to be simulated at the microsecond scale (for FMCW) to extract interference data, whereas V2X communication performances are closer to the millisecond scale, and cars dynamics do not require such a precision and could be at the 100 millisecond scale. For this reason, the simulator updates every t simulator_granularity = 1 ms, but each aspect will have a different granularity.

SUMO software & Road Channel

Simulation of Urban MObility (SUMO)

SUMO is an open-source, highly portable and continuous multi-modal traffic simulation package designed to handle large road networks. It is used in many V2X studies for its capabilities to generate realistic traffic scenarios with modifiable parameters to adjust driver behaviours. 

RoadChannel object

The files generated by SUMO are then read by what we call the RoadChannel object, that converts all the XML data into Python objects to be used by the rest of the simulator. For each timestep of a given scenario, a first step of LOS computation is done by the RoadChannel. This LOS computation checks if vehicles are in LOS with each other by making sure that no obstacle are intersecting the line between the centre of two different vehicles as illustrated in or placement of radars and thus can be reused between simulations. This reduces the amount of computation necessary later for radar-to-radar LOS by taking the following assumption:

Assumption 1: Two radars can be in direct LOS only if the centre point of their respective vehicles are also in LOS.

In the simulator, every object is approximated by a convex quadrilateral. Cars are modelled as rectangles with certain length and width, and buildings are composed of multiple convex quadrilaterals. To check if any obstacle is intersecting a LOS, instead of checking for each side of the quadrilateral, only checking for the intersections with the diagonals is enough as illustrated in Figure 4.5. This simplification reduces the computation time and is possible because of the convexity of each quadrilateral, and because radars can't be inside obstacles. Table 4.1 provides the typical SUMO parameters used for most simulations. The Car accel and Car decel are the maximum acceleration rate and deceleration rate for the car model used in the simulations. The Driver σ parameters denotes the drivers imperfections (a σ of 0 means that the driver is perfect, above 0 means that he sometimes does no respect the safety distance while driving). Car-Car minGap is the minimum space between two cars.

Side Communication channel

The goal of the Side Communication (SC) channel is to handle the communication between cars during the simulation. In our implementation, it handles ad-hoc V2X communication but it can be easily changed to implement cellular communications As their is only two diagonals compared to the four sides, it is better to check intersection with each diagonals to reduce computation time. such as 4G or 5G. Whenever a vehicle is broadcasting a CAM it will check the position of every other vehicle relative to the sender and compute the probability of it receiving the message and with what amount of delay. Whenever a CAM isn't lost, a reception event is created with the sender vehicle v send , the receiver vehicle v recv , the time it was emitted t emitted and the associated reception time t received . At each update of the simulation, the SC channel checks which reception event has its t received above the current time, and triggers the CAM reception for the receiver vehicle before deleting the event.

In order to avoid simulating the different layers involved in the V2X communication (physical layer, packets, CSMA/CA, ...) which would greatly increase the simulator complexity and increase computation times, the simulator uses look-up tables. Performances of a V2X network are measured with the Packet Reception Ratio (PRR) versus distance and the End-to-End Delay (EED) statistical distribution. Numerical simulations have been conducted for 4G LTE-V2X release-14 and IEEE 802.11p access layers, using the LTEV2Vsim version 5.2.5 1 . The results of these simulations are presented in Figure 4.6. 1 LTEV2Vsim is an open-source simulator developed by the Italian CNIT, CNR-IEIIT institute and the University of Bologna [START_REF] Cecchini | Ltev2vsim: An lte-v2v simulator for the investigation of resource allocation for cooperative awareness[END_REF] and used in various technical studies such as [START_REF] Bazzi | Co-channel Coexistence: Let ITS-G5 and Sidelink C-V2X Make Peace[END_REF]. CAM message length of 350 bytes is used, according to average CAM size observed in real-life recorded traces [START_REF] Martinez | Survey on ITS-G5 CAM statistics[END_REF] Parameter 
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Field tests [START_REF] Moerman | On the 5GAA comparison between LTE-V2X and DSRC/IEEE 802[END_REF] have been conducted using two cars equipped with DSRC/IEEE802.11p in line-of-sight and non line-of-sight scenarios, and the results obtained in the non-LOS situation are presented in Figure 4.7. The PRR reported during these field tests are way above the one yielded by the simulations or the one reported by the 5GAA. Indeed, the PRR is dropping below 90% only after 1000 m in non-LOS compared to the 300 m simulated with the LTEV2Vsim (the curve going above 100% between 1300 m and 1400 m in the field test is an artefact of the interpolation function between the data points). After discussing with V2X experts, it was decided to use the look-up table from the LTEV2Vsim, but shifting it by 400 m to have a PRR of 90% for 700 m and achieving a trade-off between simulated and tested performances. 

Radar channel

The goal of the RadarChannel is to compute everything related to the interaction between radars. Whenever the RoadChannel updates the vehicles positions, it computes the new positions for every radar based on where they are placed on each car. As cars are approximated by rectangles, the position of a radar on a car is given by a couple (f, s r ) where f ∈ [-1, 1] indicates where it is positioned on the longitudinal axis (1 is on the front, -1 on the back), and s r ∈ [-1, 1] on the width axis (1 is on the right, -1 on the left). At every timestep, after updating the positions and orientations of all radars, the RadarChannel computes the (I)LOSs between each of them. The (I)LOS results are saved and reused during simulation with the same radar physical parameters.

LOS computation

To compute LOS between radars, the RadarChannel will iterate over every pair of radars. The resulting complexity is then at least O(n 2 ) with n the number of radars. For this reason it is important to reduce computations to the minimum. Following our second assumption:

Assumption 2: Two radars can interfere with each other only if they are in (I)LOS of one another;

the computation of LOS between two radars r 1 and r 2 is done in 3 steps:

-Check if the two radars can see each other with a 360 • FoV;

-Check if r 1 sees r 2 with the correct FoV;

-Check if r 2 sees r 1 with the correct FoV.

If a pair of radars validates these three tests, then they are considered to be in LOS.

Even though the radars position are not in the centre of the car, assumption 1 is used for the first step. So, there is no need to check again for obstacles intersecting the LOS.

For tests 2 and 3, the computation used is illustrated in Figure 4.8. The angle α t from radar r 1 to a radar r 2 (or a target) needs to validate:

α 1 -f ov 2 <= α t <= α 1 + f ov
2 . This ensures that the line linking the two radars is indeed within the FoV of radar r 1 . The same computation is done for the LOS from r 2 to r 1 .

Figure 4.8: Computation for Radar-to-target LOS. The orientation of the radar is denoted by α r (black angle) with a FoV of f ov. The angle to the target is denoted α t (red angle). The target beeing in the FoV of the radar means that α t is between α r -f ov 2 (lower limit of the field-of-view, in blue) and α r + f ov 2 (upper limit of the field-of-view).

Most of the computation have been made into matrix operations using Numpy library instead of nested loops to greatly speed up the computation time. In case of LOS, the RadarChannel also stores the distance between the two radars.

ILOS computation

ILOSs require more computations than LOS. Indeed, the RadarChannel will iterate over every radar-obstacle pairs to check for source of echo for the radar signal, then will check again for every echo-radar pairs. ILOS is computed with the following steps:

-Check the obstacles in LOS of a radar r 1 ; -For each obstacle, find where the signal bounces; -Interpret this bounce of the signal as a new source of signal;

-Check LOS between this secondary source and every other radar.

Because of the way the software was implemented and because of the late addition of buildings handling, only cars are sources of reflection. Indeed, the point of reflection of a signal on an object is computed by creating a line between the radar and the centre of the obstacle and checking where it intersects the obstacle. In the case of a large building, the centre can be far away from the sides, making the results of this computation unrealistic as illustrated in Figure 4.9. Because of this, Figure 4.9: The problem of reflections on buildings. The method used to compute the point of reflection of signals on cars work because car are relatively small objects. When dealing with bigger objects such as buildings, this methods doesn't work. In this example, the line drawn from the radar to the centre of the building is out of the actual FoV of the radar, and generate a reflection point far away from where it could be (in the green area). assumption 1 can be used for the first step of ILOS computation. For the second step, once the radar-obstacle LOS is established, the intersection point between the LOS and the obstacles surface is found, and an echo is generated in its place.

For the third step, the way the signal bounces on a surface has been modelled with the following assumption: Assumption 3: All surfaces are diffusive-reflective towards the normal of the surface.

This assumption means that a radar signal hitting a surface will bounce in all direction towards the normal of the surface with no extra back-scattering loss. This is illustrated in Figure 4.10. This assumption is simple but having more realistic signal reflections would require too much computation and knowing the real geometry of the target. Moreover, the radar cross section of cars is considered constant and equal to 10 m 2 .

Finally, the last step is using the same computation as in subsection 4.5.1 for LOS as the echo is similar to a radar itself. The overall principle for ILOS computation is described in Figure 4.11. In case of ILOS between two radars, the 

Power

An assumption that has been taken to simplify the power computation for radar signal is to make every radar have the same antenna effective aperture.

Assumption 4: Every radar has the same antenna effective aperture A w

This assumption is reasonable for most of the scenarios where only long range radar are involved as there aperture should be similar. In case where multiple types of radars are involved (LRR and SRR), the following simplifications would probably not hold.

In the case of LOS, from equations in section 1.2.2, the power received by a victim radar (name given to radars receiving interferences) vct from an interferer radar int can be computed with the following formula:

P int LOS = G int P int e 4πR 2 A vct w (4.1)
with G int , P int e being respectively the antenna gain and power of the interferer radar, A vct w the effective antenna aperture of the victim radar and R the distance between the two radars.
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On the other hand, the power received in case of ILOS is derived from equation 1.5 and is given by:

P int ILOS = G int P int e σ o (4π) 2 r 2 1 r 2 2 A vct w (4.2)
with σ o the radar cross section of the target the signal bounced off, and r 1 and r 2 respectively the distance interferer-target and target-victim.

With assumption 4, we can introduce what is called in the simulator a power constant C for each radar. As the name suggest, C is a constant for each radar and is given by:

C = GP e A w 4π (4.3)
Then, the interference power equation can be simplified by:

P int LOS = C int R 2 (4.4)
and:

P int ILOS = C int 4πr 2 1 r 2 2 σ o (4.5)
By introducing these simplifications, the simulator doesn't require realistic values for the emitting power, antenna gain and antenna effective aperture, as all equations will only depend on C, and the power constant can be computed based on the desired maximum range from the equation:

C = R 4 max P e_min 4π σ o (4.6)

Evaluator

Principle

The Evaluator is the part where the different metrics are computed. Through the RadarChannel, the Evaluator knows the (I)LOSs between each and every radar at every timestep as well as the waveform parameters used during the corresponding time-window.

From this data, multiple metrics can be extracted. First the ratio of interference, which represents the amount of ADC samples that are corrupted by an interference. As the ADC sampling isn't simulated, it is approximate with the ratio between the interference time and the total emitting time. This metric does not give information on the intensity of the interference.

Second, the noise floor increase (nfi) (dBm), is an estimation of the impact of the interference on the noise floor. It is a function of the ratio of interference and its power. For this reason, it is the metric used in most simulation to compare strategies compared to the interference ratio.

Third, the SNR to the front target (dB) corresponds to the ratio between the power received from the echo on the first target in front of a radar and the noise floor (impacted by interference). This metric is interesting when dealing with strategies that act upon the radar power.

Multiple data on the interference length (total length, maximum continuous interference, overall distribution) are also computed in order to see how fast each strategy can find non-interfering parameters. The maximum continuous interference is measured by looking at the time between two interference-free evaluator timesteps.

Finally, the range loss (m) or range ratio (%) are metrics used to illustrate the loss of performance for the victim radar.

Noise floor increase model

As stated in section 1.3.4, interference can have multiple effects on the resulting range/doppler map of a radar. Interference can be interpreted as false target or they can increase the noise floor, covering targets whose power isn't high enough to stay above the new noise floor. Knowing exactly the impact an interference has on the final range/doppler map from a radar, requires the simulation of the radar's signal processing chain which isn't possible in our simulator as it would greatly increase the computation time. Instead, a model is used to estimate the noise floor increase based on interference ratio and power of the interference.

At any timestep, the noise floor increase in dBm (nf i dBm ) is then given by:

nf i dBm = to_dBm( P int * int ratio + nf mW nf mW ) (4.7) 
with P int the power of the interference for the victim radar, int ratio the ratio of interference and nf mW the noise floor interference-free in mW, equivalent to -120 dBm.

For FMCW, the ratio of interference is computed by making difference in frequency between the victim signal and the interferer signal, and thresholding for value below the receiver bandwidth. This yields all the time intervals where the interference is within the receiver bandwidth which can then be divided by the total victim emission time (the time during which the signal can be interfered with) to obtained the interference ratio. This model doesn't allow to identify false targets. More complex model could be used involving estimation of 1st and 2nd FFT gains to allow false target estimations, but the additional computation time introduced Generating the frequency/time signal from the signal parameters is a costly operation as it needs to be at the microsecond scale. This is why the current state of the simulator, the following assumption is taken: In reality, the radar signals would travel at the speed of light which corresponds to approximately 300 m/µs. Assuming the speed of light to be infinite allows to compute the signal generated by a radar only once for all potential victim radars, otherwise, it would need to be recomputed again depending on the delay from the distance between the two radars. Even though this assumption seems strong, all these strategies that do not rely on microsecond scale coordination between radars wont be impacted, and strategies that need this coordination would be able to estimate the delay from the distance between the two radars given by the V2X data.

Interference mitigation process

Each vehicle is considered to have a central computer being able to run interference mitigation strategies. These strategies, referred as models within the simulator, are triggered whenever a change of radar parameters is desired. The overall principle of theses models is illustrated in Figure 4.12.

The first step of every mitigation strategy is to gather valuable data from the vehicle's context. This data includes the list of vehicles and radars in the surrounding area with their respective physical properties (position, speed, angle, FoV, ...) and waveform parameters communicated via the SC channel. It also includes data about the amount of interference received during the last radar frames.

This data can then be used to estimate (I)LOSs between other radars and estimate the amount of interference they would generate using other radar waveform parameters. Each method will use the available data differently, but all of them end up outputting a new set of waveform parameters for the radar to use as soon as the current radar frame is over. Some strategies might require additional data, such as a more precise interference data, memorisation of past parameters used by other radars or prior knowledge of different nature to guide the parameter selection.

The search for better radar parameters isn't done at all times. Indeed, it can be triggered following some timing rules and conditions. Timing-wise, mitigation strategies can be triggered periodically, at every frame, or synchronised with V2X communications. For some strategies, the condition for them to trigger is that the amount of interference currently experienced is above a given threshold.

Finally, even though the computation time varies from a mitigation method to another, they are not taken into account and are supposed to be instantaneous. This assumption has been taken because all of these mitigation methods would go through extensive optimisation before being deployed on a car computer, and the level of quality / optimisation of the simulator's code is not representative to what a real implementation of the method would look like. This is summarized by the following assumption: Assumption 6: Interference mitigation methods take no time to run

Scenarios descriptions

In every of the following scenarios, the cars are equipped with a LRR on front with a FoV of 20 • and maximum range of 300m. Equipping cars with only one LRR radar has been decided for multiple reasons:

-LRR front radar are the most common type of radar today, particularly for adaptive cruise control applications;

-Computing (I)LOS between radars has a complexity of O(n 2 ) with n being the number of radar; adding more radars to the simulation greatly increases the computation time;

-Most mitigation strategies are also in O(n 2 ) as each radar will usually take into account every other radars in their decision;

-Following ETSI recommendations, separating LRR (76-77 GHz) from SRR/MRR (77-81 GHz) means that adding SRR/MRR side radars would not generate additional interference for LRR while greatly increasing computation time.

2-km highway

The first scenario used is a 2 kilometres highway with 6 lanes presented in It is also interesting to see the maximum amount of (I)LOS a single radar can experience during the simulation. This is displayed in Figure 4.16. The highest number of radars in LOS for a single radar is 17 at around 86s, and 36 for ILOS at around 106s. The highest amount of (I)LOS is reached at 105s with 42 for one of the radars.

Even though the number of ILOS is consistently higher than the number of LOS, because LOSs come from radar going the opposite direction, lot more unique interferers are meet. Indeed, the average number of unique LOS is 55.6 whereas the average number of unique ILOS is 34.9. This is due to the relative speed of radars. Cars going the same direction will stay close to each other longer than cars going opposite directions, so in the case of LRR, less unique ILOS will be experienced compared to LOS. 

1-km looping highway

This scenario presented in Figure 4.17 is an highway of 1 kilometre with loops at each end. This scenario differs from the first one by the fact that it only contains 10 cars going 90 km/h, but they are looping around when reaching the end of the highway. The white squares represent buildings that have been manually added to avoid LOS from vehicles that are on the looping part of the highway. This scenario is particularly useful when dealing with mitigation strategies with so high computation time that running them with the previous 151-vehicles scenario is virtually impossible. Indeed, as most mitigation methods have a time-complexity in O(n) (n being the number of other radars), the complexity of computing mitigation methods behaviour for all radars becomes O(n 2 ) (n times a method in O(n)). Thus, running computation methods in this scenario takes way times less time than in the 2-km highway one. With a lower number of vehicles, this scenario is also much simpler, allowing to compare method in situations that should be handled without too much trouble.

As shown in Figure 4.18, the amount of (I)LOS is on average lower in this scenario, and the proportion of LOS/ILOS stays around 50% for the whole 180s simulation.

'1v1' and '1v2' scenarios

These two scenarios have been designed to serve as very simplified scenarios for reinforcement learning. They consist in a non-moving vehicle, facing either one (for 1v1 scenario) or two (for 1v2 scenario) other non-moving vehicles equipped with radar. These two scenarios are illustrated in Figure 4.19. These vehicle are spaced Theses scenarios are extremely simple in order to facilitate the learning of reinforcement learning algorithm. As data such as radars' position, FoV, orientation are constant throughout the whole simulation, they don't need to be part of the reinforcement learning input data, simplifying greatly the strategy that a reinforcement learning algorithm will have to learn.

Conclusion

In this chapter, the large scale Radar-V2X simulator developed has been presented. In has been developed to compensate for the lack of real world data regarding automotive radar interference on large scales. This simulator is programmed in Python and is comprised of more than 15000 lines of codes separated in different modules.

First the Road channel that translates the output of the SUMO software, a open source realistic traffic simulator, into a list of vehicles with their corresponding positions, orientations and speeds. Each vehicle can have one or multiples radars that each have their own waveform specifications depending on their type and their own interference mitigation strategy.

Second, each vehicle is connected to the Side Communication channel, allowing them to communicate with each other via V2X. The PRR and EED of these communications are implemented using lookup-tables to reduce computation time.

Third, the radar channel gathers all the information regarding radars during the simulation. It computes the (I)LOSs between each of them and stores the signals that are sent by them at every moment.

Finally, the Evaluator gathers all the data stored by the radar channel and computes multiple metrics such as the noise floor increase or the interference ratio and save them into a dataset that can then be visualised.

Multiple assumptions have been taken throughout the simulator programming in order to reduce the computation time, while keeping the simulator as realistic as possible.

The next chapter investigates multiples strategies that are not using common channel access policies. Baseline strategies are presented, and new methods making use of V2X to anticipate interference are proposed. All strategies are tested with the simulator to compare their performances.

Chapter 5

Methods without common channel access policies

Introduction

This chapter focuses on interference mitigation strategies in the absence of common channel access policies which corresponds to the current state of the radar band. First, the baseline methods are introduced, corresponding to the behaviour of today's radar. Then, new methods making use of V2X are introduced and compared to these baselines. Strategies using the orientation of the radar as input are also considered. All these mitigation strategies are also used in the case of a regulation, forcing every radar to adopt the same waveform. Every strategy has been tested on the same scenarios to have fair performance comparison between each of them.

Parameters

We first consider the case without a Common Channel Access Policy (CCAP). This corresponds to the current state of the radar band, as no regulations are in place for the sharing of the available band. In this situation, every radar can use any waveform as long as it respects the limitation of peak and average power imposed by standardisation bodies. This is implemented by allowing all the interference mitigation strategies presented in this chapter to output any combination of FMCW waveform parameters as long as they respect certain boundaries. These boundaries are here to ensure that the FMCW parameters are close to what they should be in reality. Depending on the chosen parameters, the characteristics of the radar will vary. Some parameters can be modified by the mitigation strategies, and some can't as they depend on the hardware capability.

For front-facing LRR, the non-modifiable parameters are the following, expressed with their values, or their possible values in the form of [ The t start parameter isn't present in the list since it can be any value. Instead, t start will always have its value equal to the end time of the previous frame. To delay the start of the new frame, the parameter t of f set is used. Only a maximum offset of 100 µs is possible. Allowing a too big offset would lead to mitigation strategies always privileging a very big offset reducing overall interference by reducing the emission time. Reducing the overall emission time means that the radar is scanning the environment less frequently (offsetting the start of emission by one second means that no interference will be present during the next second, reducing overall interference but degrading radars detection performances). To take this aspect into consideration, new metrics would need to be designed that take into account the radars detection performances (frequency or precision for example).

The simulation results presented in this chapter use the metrics introduced in the previous chapter. As some assumptions have been made to reduce the complexity of the simulation, the numerical values output by the evaluator might not match exactly with real-life experiments. However, as the evaluation process does not vary between simulations, mitigation strategies can be compared to each other using the different metrics, and their improvements/deteriorations will be observable in real scenarios.

Most of the results presented in this chapter use the 1-km highway scenario as it contains only ten vehicles. Indeed, without orthogonal waveforms, computing or anticipating interferences requires simulation of the signal in time, which increases a lot the computation time.

Vehicles are equipped with V2X whose emission frequency is determined beforehand and constant throughout the simulation, as SUMO timesteps are not precise enough to generate CAM following the dynamics of each car. The frequency is adjusted depending on the typical vehicle speed during the scenario (10 Hz for 1km-highway, 4 Hz for 2km-highway). CAM messages exchanged in the absence of CCAP contain the data described in section 4.4.

Baseline methods

Principle

Baseline methods are very simple mitigation strategies that serve as comparison for the other more complex strategies. They correspond to what we can expect today's radar to act in the absence of communication channels to gather data about surrounding radars. Thus, these methods do not adapt to the contextual data other than the presence or the absence of interference which should be data always available with or without communication channels.

NoBehaviour

The NoBehaviour method is the absence of any mitigation strategy. It doesn't modify the initial waveform parameters of the radar. Following the rules in Section 5.2, the randomly initialised waveform parameters are kept throughout the whole simulation. This strategy aims to represent legacy radars that do not have any mitigation process regarding waveforms. Vehicles using this method can still communicate information via V2X about the waveform parameters that their radar is using.

RandomSignal

Whenever the RandomSignal method is called, it will randomise all the modifiable parameters of the current waveform. Like every mitigation method, it can be called for every frame, periodically or synchronised with V2X communication.

RandomSignalIfInt

The RandomSignalIfInt strategy is identical to the RandomSignal one. However, when it is called, it will first ask the Evaluator how much interferences the radar experienced in its last frame. If any interference has been detected, then the method randomises the waveform parameters. Interference is detected by checking the interference ratio of the last radar frame.

Results

Setup

All the following results are obtained by averaging the evaluated metrics over a hundred simulations. A first average is performed for each individual vehicle across all simulations. Then, another average is done across all vehicles. Finally, a 1-second moving average is performed on the results to ease the graph comprehension.

1km-highway

The nfi over time for the different baseline methods are displayed in Figure 5.1. With an average of 9.34 dBm of nfi, the worst performing strategy is the NoBehaviour. It is followed by the RandomSignal strategy with an average of 9.11 dBm. This small difference is due to the limited amount of simulation. The difference between NoBehaviour and RandomSignal gets smaller when averaging more simulations. The RandomSignalifInt method is performing slightly better than the two others with a nfi of 6.68 dBm.

Looking at RandomSignalIfInt, we can notice that there are multiple time windows, such as the 88-95 s window, where the amount of interference is decreasing steadily, almost reaching 0 dBm, whereas other methods have their nfi constant or increasing. This occurs when (I)LOS do not change too much, and radars end up randomly choosing parameters that do not interfere with others. But this stops as soon as (I)LOSs change, forcing parameters changes in a cascading effect across all radars.

Even though NoBehaviour and RandomSignal have similar results in average nfi, there is a significant difference regarding continuous interference length. Interferences for NoBehaviour last on average 3s, against 2.4s for RandomSignal. Thus, randomising the waveform parameters is preferred to not changing anything as it will reduce the average length of consecutive interferences, avoiding radar blinding or false targets for long periods of time.

Since these methods do not rely on external data from other radars to operate, they can be called as often as possible until no interference are detected. Indeed, if they depended on external data (via V2X for example), it could be interesting to call them less often to give time to new data to be gathered. In the case of RandomSignalIfInt, increasing the time between each call increases the amount of nfi as shown by 

2km-highway

As NoBehaviour, RandomSignal and RandomSignalIfInt do not require computation, it is possible to evaluate them on the 2km-highway scenario, which is more complex than the 1km-highway one with 151 vehicles against ten vehicles. As 15 times more vehicles are present, only ten simulations are performed for each configuration.

Since the amount of (I)LOS is much higher in this scenario, picking a set of waveform parameters that do not interfere becomes improbable and RandomSig-nalIfInt should end up having its performances getting closer to RandomSignal's performances. This is indeed what we can observe in Figure 5.3 where the complexity of the scenario made RandomSignal and RandomSignalIfInt have a difference of only 0.29 dBm of average nfi (11.76 and 11.47 respectively), with NoBehaviour at 12.03 dBm.

Remarks

The currently used methods to mitigate interference consisting in randomising some parameters, such as the starting frequency, are better than doing nothing but are very limited in their mitigation potential. They first need to randomise their parameters only when interferences are detected, to see noticeable improvements. But this is only useful as the number of radars in (I)LOS stays low. In more complex situations where the amount of radars in (I)LOS rises a lot, all the baseline methods perform the same as the sets of parameters that do not interfere at all with anyone are complicated to find.

Anticipation methods

Principle

Anticipation methods are the methods that rely on V2X data about other cars and radars to choose their waveform parameters. With the parameters used by other radars, they can simulate the amount of interference they would receive by using different sets of parameters and pick the one with the best performances. The overall process of these methods is described in Figure 5.4.

Since there is no common channel access policy, or predefined allowed waveforms,

Anticipation methods
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anticipating the amount of interference that two signals will experience just by looking at the parameters is quite complicated. For this reason, from the V2X data, the anticipation strategies simulate the frequency/time profile that the radar will receive. Then, it then simulates its own signal with different sets of new parameters, computes the interference and selects the one with the best performances. In the case where no radars are in the V2X range, but interferences are still present, a new set of parameters is automatically randomly generated.

The anticipation of the amount of interference is done for the next 150 ms after the method call, which corresponds to around four radar frames. The anticipation methods differ from each other by the amount of sets of parameters they test before selecting the best one and how they generate these sets of parameters. 

BestRandom

The first anticipation strategy is called BestRandom. It successively simulates multiple randomly generated sets of parameters until either one is found that fulfils the interference goal or enough sets of parameters have been tested. Its pseudo-code is displayed in algorithm 6. The hyper-parameters of this method are the followings:

-intf objectif : The interference ratio objective. The set of parameters that reaches this objective is returned.

nb max : The maximum amount of sets of parameters to be tested. This is important in situations where the objective is hard to achieve (or impossible) to limit the computation time. Once the limit is reached, the best set of parameters found so far is returned.

Algorithm 6 BestRandom

1: procedure getNewParameters(context, params current )

*Initialisation* return params best 19: end procedure

BestRandomGA

Similarly to BestRandom, BestRandomGA also simulates generated sets of parameters, but instead of generating them randomly, they are generated following a simple genetic algorithm. This method first generates a population of randomly generated sets of parameters. It then evaluates every one of them by simulation. The worst performing half of the population is dropped, and the remainders are paired together. Each pair of "parent" sets of parameters is then mixed together to generate "children" parameters. The child's parameters inherit from the parents such that 3 of them are from one of the parent and the rest from the other one. The second child inherits the other parameters that didn't get inherited by the first child. Finally, children have a probability of receiving a mutation, modifying randomly one of their parameters. A new population is then built from the parents and the children, and the process is repeated for multiple generations. The pseudo-code for this method is presented in algorithm 7.

The hyper-parameters of the method are the following:

-intf objectif : the interference ratio objective; a set of parameters that reaches this objective is returned;

pop size : the size of the population of sets of parameters;

max generation : the maximum number of generations to limit the computation time when the objective cannot be reached;

mutation prob : the probability of mutation on a child;

mutation size : the amount of parameters that are randomised by the mutation.

BestOfAll

Compared to BestRandom and BestRandomGA, the BestOfAll method does not include randomness in its tested sets of parameters. Its goal is to find the best possible set of parameters by simulating every possible value for each parameter. Simulating every combination of parameters isn't feasible in a reasonable amount of time (there are more than a billion possible combinations of [start frequency, bandwidth, offset time, dwell time, duty cycle, ramp time]). Instead, BestOfAll iterates over all the possible values of the first parameter (start frequency). For each of them, it simulates multiple times the result of this value for the first parameter with randomised values for the other ones. The value that resulted in the lowest average ratio of interference is then selected and won't be modified during the next simulations. The process repeats for the next parameter and its possible values, with the previous parameter fixed to the value selected beforehand until all parameters have been fixed. The pseudo-code of this method is displayed in algorithm 8. The only hyper-parameter for this method is nb randomized , which determines the amount of simulation done for a certain value of a parameter before averaging the results. return params f ixed 27: end procedure

Results

Setup

All the results shown in this section have been simulated with a CAM message frequency of 10 Hz, and calls to the mitigation methods are made right before CAM emission in order to minimize the amount of time between parameter changes and communication of this change to other cars. Results for BestRandom and BestRan-domGA are averaged over 100 simulations each, whereas results for BestOfAll are averaged over only 20 simulations as its computing time is much higher. The scenario used for these results is the 1km-highway one. As previously, a 1-second moving average is applied.

Without (I)LOS prediction

These first results have been generated without particular (I)LOS prediction schemes. Indeed, instead of predicting which radars can be in (I)LOS, the mitigation methods consider every radar in V2X range to be potentially in (I)LOS. In the 1km-highway scenario, this means that each radar is considering the nine other radars to be in (I)LOS as they are almost always in V2X range. The results of these simulations are presented in Figure 5.5. The figure also includes the results for the RandomSignalIfInt method for comparison.

The configurations for BestRandom and BestRandomGA hyper-parameters are presented in Table 5 Every method tested ends up yielding better nfi than the baseline method Ran-domSignalIfInt. BestRandom improves upon the baseline but only slightly, with an average nfi of 6.30 dBm against 6.68 dBm for the baseline. There is a big improvement when using BestRandomGA with only 1.75 dBm of nfi, and even better by using BestOfAll with 0.32 dBm. BestOfAll being the best method is not surprising as it tests way more sets of parameters than the two other methods, but with a big increase of the computation time. In the case of BestRandom and BestRandomGA, a big gap in performance is observed while the amount of tested set of parameters is quite close. Indeed, BestRandom tests a maximum of 60 sets of parameters, while BestRandomGA will test only 36 (12 for the first generation, then only the new six children are tested for the next four generations). Despite this difference in the number of tested sets of parameters, BestRandomGA performs way better, as using a genetic algorithm allows to focus on better-performing sets of parameters from generation to generation.

The results from BestRandom are interesting in the most conflicting part of the simulation. In the 40s-80s and 110-140s time windows, BestRandom is performing worse than the baseline RandomSignalIfInt. This is due to the fact that even though BestRandom is anticipating interference because it doesn't predict (I)LOS, its choice is made taking into account all radars in range, making it sub-optimal as only a few of these radars are actually in (I)LOS. RandomSignalIfInt on the other hand, even though it is not using V2X data to anticipate interference, only randomises its parameters until no interference is detected anymore. In situations where the set of parameters needed to avoid all interference from radars in (I)LOS is a set of parameters already used by another radar (not in (I)LOS), BestRandom won't select it, but RandomSignalIfInt has a probability of doing so. These results would be lower in reality. Because of assumption 5 that states that radar signals are travelling instantly, the anticipated signals received are actually correct. But in reality, not predicting (I)LOS means that the delays to receiving the different signals aren't taken into account, and the anticipation of interference would suffer from inaccuracies.

With (I)LOS prediction

By using V2X data to predict (I)LOS, the different anticipation methods can filter out radars that cannot represent a source of interference. Results displayed in Figure 5.6 have been obtained using the same parameters presented in Table 5.1, but mitigation methods first estimate the radars that are in (I)LOS. To do this estimation, they perform the exact same (I)LOS computations as the simulator itself, but they use V2X data that they gathered to do so. Similar to the results without (I)LOS computation, BestOfAll performs the best with an average nfi of 0.67 dBm. However, this value is higher than without (I)LOS computation which is 0.32 dBm. This is the only anticipation method that performs worse with (I)LOS computation as BestRandom and BestRandomGA both Figure 5.5: Noise floor increase (dBm) over time (s) for anticipation methods on 1km-highway scenario, without (I)LOS prediction. BestOfAll outperforms every other strategies with an average nfi of 0.32 dBm. BestRandomGA is the second best with 1.75 dBm. BestRandom slightly improves upon the baseline RandomSig-nalIfInt, with an average nfi of 6.30 dBm against 6.68 dBm yielded better results going from 1.75 dBm to 1.65 dBm and 6.30 dBm to 4.94 dBm, respectively. This decrease in performance is due to the capacity of BestOfAll to find a good set of parameters even when taking into account nine other radars. By filtering out radars not in (I)LOS, the set of parameters chosen avoids interfering with the ones that are in (I)LOS, but as soon as the others enter (I)LOS, the chosen set of parameters are not adapted anymore, forcing a new set of parameters to be found. This can be seen in Figure 5.7, which compares the average amount of set of parameter changes per 0.1-second timesteps per radar (a moving average of 1s has been applied). The average amount of parameters changes is almost doubled when using (I)LOS prediction by going from 0.047 changes per radar per 0.1 s to 0.091. This difference mainly happens during the most complex parts of the simulation in the 40s-80s and 110-140s time windows when (I)LOS are quite dynamic.

BestRandom and BestRandomGA, on the other hand, benefit from (I)LOS prediction as they do not have the capability of finding a set of parameters adapted for nine other radars. This is mainly due to the fact that they do not explore the parameter space as thoroughly as BestOfAll. During the complex parts of the simulation, BestRandom is now on par with the baseline.

Remarks

Anticipation methods perform better than the baselines in this 1km-highway scenario. The performances yielded by these methods depend mainly on two aspects. First, the way they explore the space of the radar parameters. Even though Be- stRandomGA tries less set of parameters than BestRandom, it performs better as its exploration technique is based on a genetic algorithm, better suited to find good sets of parameters than generating them randomly. Similarly, BestOfAll performs the best as it tried over a thousand different sets of parameters, which allows it to find a very good combination of frequency/time parameters. Unfortunately, as the amount of set of parameters to test gets higher, so does the computation time. In real applications, a trade-off needs to be found between the number of tests performed and the computation time.

A second important aspect is the (I)LOS predictions. Even in a simple scenario with ten radars, the impact of filtering out non (I)LOS radars is very high. The impact that these predictions have on the mitigation method performance is usually beneficial, but in certain cases, such as with BestOfAll, taking more radars into account can help the system stability. This can also be done by predicting in advance future (I)LOSs.

Overall, these methods improve the radar performances while being compatible with any radar. The only requirement of these are the V2X communications and the knowledge to interpret other radars' signals and how they generate interference. 

Directional methods

Principle

The idea behind Directional methods is to use GPS data to determine the orientation of the radar and adapt its parameters to avoid interfering with other radars in LOS, as they are more powerful interference than ILOS ones. In order to be in LOS, two radars need to be facing each other (more or less depending on their FoV), which corresponds to a difference in orientation of around 180 • . By dynamically sharing the available radar band depending on the orientation of the radars, it is possible to ensure that two radars in LOS will never have waveform parameters that will interfere with each other.

Depending on which waveform parameters are decided to be orientationdependent, more or fewer degrees of freedom are left to deal with ILOS interferer. In the mitigation methods presented in this section, the parameter used to separate radars in LOS is the starting frequency. The other parameters can then be used to mitigate interference from radars in ILOS.

DirectionBasedFrequency

The first method, DirectionBasedFrequency, is inspired by the compass method described in the MOSARIM report [START_REF] Kunert | The EU project MOSARIM: A general overview of project objectives and conducted work[END_REF]. It separates radars that are in LOS by adjusting their starting frequencies f start according to the following formula: The main drawback of this mitigation strategy is that the starting frequency (or any chosen orientation-dependent parameter) is fully determined by the orientation of the radar. In a situation where a legacy radar is in LOS and is using the same frequency as a victim radar using DirectionBasedFrequency, there is no option for the victim radar to adapt its frequency. Thus, to avoid these drawbacks, Direction-BasedFrequency needs to be used by the majority, if not by all the radars on the road.

f start = f min + orientation radar 360 * (f max -f min ) ( 5 

DirectionBasedClustering

DirectionBasedClustering is a method similar to the DirectionBasedFrequency. Its goal is to address the shortcomings of DirectionBasedFrequency regarding its lack of adaptability to legacy radars. This method is inspired by the "Boids" artificial life program [START_REF] Reynolds | herds and schools: A distributed behavioral model[END_REF], where the flocking behaviour of birds is simulated with a set of simple rules that each simulated bird follows. The three rules are separation (birds avoid being too close to each other), alignment (birds steer towards the average heading of the flock) and cohesion (birds move toward the average position of the flock).

Inspired by these three simple rules, DirectionBasedClustering aims at clustering radars' starting frequencies (like flocks of birds) depending on their orientation while keeping a frequency difference with other clusters with opposite orientations.

The implementation of the DirectionBasedClustering method is done in multiple steps:

-Clustering: The radars are grouped into different clusters depending on their orientation. This is implemented using a Gaussian Mixture model onto the orientations of every radar, then fusing clusters that are too close together into a single one;

-Attraction: Once each radar is part of a cluster, its starting frequency will be attracted to the average starting frequency of the cluster they belong to.

In order not to have every radar of the same cluster chose the exact same starting frequency, the attraction towards the average stops when reaching a small enough difference. This attraction is translated into a "pulling force" applied to the starting frequency towards a certain value and makes clusters converge toward the same starting frequency;

-Repulsion: Once each cluster is defined, each radar will be repulsed by clusters different from its own cluster if they have an average orientation that's different from roughly 180 • from the average orientation of its own cluster. This repulsion is translated into a "pushing force" applied to the starting frequency, away from the average starting frequency of harmful clusters;

-Other parameters handling: Once a new starting frequency is determined, the rest of the parameters can be modified following other mitigation strategies. They can be randomised, or an anticipation strategy can be used to better select parameters taking into account only radar within the same cluster.

The different steps to change the starting frequency are displayed in Figure 5.9 and the overall pseudo-code is available in algorithm 9. This process is not centralised, as every radar generates its own clusters and applies the rules to itself only. The modifiable hyper-parameters of this method are the following:

th same : The orientation difference threshold below which two clusters are fused together;

th pull : The frequency difference threshold below which the pulling force toward the average frequency of the cluster isn't applied;

intensity pull : A factor to adjust the intensity of the pulling force;

intensity push : A factor to adjust the intensity of the pushing force;

danger margin : Margin around 180 • orientation difference to consider a cluster potentially harmful and generate pushing forces.

Figure 5.9: DirectionBasedClustering process. First the cluster are defined by the radars orientation. Three clusters have been defined in this example (red, blue and green). Then, a "pulling" force is computed toward the centre of each cluster. As clusters red and green are opposed by 180 • , a "pushing" force is generated between the two clusters to separate their average starting frequencies. The blue cluster in the middle doesn't have harmful cluster present at 180 • , so there are no pushing forces applied to it, its average starting frequency remains the same. After multiple iterations, each cluster converges to a given starting frequency value, far enough from other harmful clusters to avoid interfering with them.

Results

Setup

Similarly to the setup for anticipation methods, CAMs frequency is 10 Hz, with method calls being right before V2X emissions. All results have been averaged over 100 simulations on the 1km-highway scenario and a 1-second moving average has been applied.

Frequency only

First, we consider the case where radars are applying the direction-based mitigation method to modify their starting frequencies, but every other parameter is fixed. The results are presented in gm ← gaussianMixture(radars,my_radar)

9:
for each r ∈ other radars do 10:

r.c ← getCluster(gm,r) As previously, BestRandomGA has an average nfi of 1.65 dBm. By changing its frequency based on the radar's orientation and not changing any other parameters, the simple method DirectionBasedFrequency achieves an average nfi of 1.72 dBm which is extremely close to BestRandomGA while having a fraction of its computation time. DirectionBasedClustering, however is performing better than both of them with only a 1.39 dBm average nfi. It is important to note that compared to BestRandomGA, DirectionBasedFrequency and DirectionBasedClustering do not have their maximum nfi reached during the previously considered complex part of the simulation (the 40s-80s and 110-140s time windows). Instead, their worst nfi happens in the part where BestRandomGA manages to reach almost 0 nfi. By using an orientation-based method, the complexity of a given scenario changes as LOSs are handled easily by design, but ILOSs become way harder to deal with. Indeed, since the starting frequency is locked by the orientation to deal with LOSs, in an environment where ILOSs are the most prevalent, the oriented methods perform worse as they have one less degree of freedom to find a good set of parameters to avoid interference. Looking at the timing at which oriented methods get worse, they happen when the amount of ILOSs is relatively high compared to LOSs, which are close to 0 (see Figure 4.18).

f push -= (my_f -c.f ) *

Frequency and randomization

Previously, only the starting frequency was modified when using DirectionBasedFrequency and DirectionBasedClustering. By randomising the other parameters, both oriented methods manage to reduce even further their respective nfi as illustrated in Figure 5.11. DirectionBasedClustering is still the best with an average of only 1.36 dBm, and DirectionBasedFrequency manages to be better than BestRandomGA at 1.56 dBm. 

Frequency and anticipation

One advantage of orientation methods is that they only use a fraction of available waveform parameters to remove LOS-interferers. The other parameters can then be modified using any other method. In the results presented in Figure 5.12, the BestRandom method has been used to select the waveform parameters, except for the starting frequency defined by the oriented methods. The BestRandom was using a maximum number of iterations of 10 for both oriented methods.

Introducing anticipation to DirectionBasedClustering greatly increased its interference mitigation capabilities, especially in the time windows where it would struggle previously. Its nfi went from 1.36 dBm with randomization to 0.65 dBm using the anticipation method. DirectionBasedFrequency, on the other hand, did not improve and stayed around 1.58 dBm compared to 1.56 dBm with randomization. This is mainly due to the fact that using DirectionBasedFrequency, every radar facing the same direction have the exact same starting frequency, making it harder to find time parameters that avoid all interferences. DirectionBasedClustering, on the other hand, uses th pull to ensure a spread in frequencies for radars facing the same direction, and with a threshold at 40 MHz, two radars facing the same direction can be spaced by up to 80 MHz in frequency, allowing better mitigation using other parameters.

Impact of legacy radars on directional methods

One advantage of DirectionBasedClustering compared to DirectionBasedFrequency is its capability to better adapt to radars not using the same mitigation method. Indeed, DirectionBasedFrequency has fixed starting frequency values depending on the radar's orientation. This can be problematic when facing radars that do not follow the same strategies. Indeed, if a NoBehaviour radar is interfering with a Di-rectionBasedFrequency radar, the DirectionBasedFrequency can't change its starting frequency to adapt to it. On the other hand, DirectionBasedClustering is able to do it as its starting frequency is not predefined by its orientation. Figure 5.13 presents the results of the oriented methods (with randomization of other parameters) in situations where 20% of radars are actually using the NoBehaviour method and not changing their parameters. These radars are still connected to the V2X network to communicate their parameters. With an average of 4.98 dBm nfi for DirectionBasedClustering against 6.44 dBm for DirectionBased-Frequency, the dynamic orientation sharing of the band performs better than a predefined one against radar not using this method. 

Using the same waveform for all radars

Principle

An advantage of narrow-band FMCW radar is that they only scan a small part of the radar band around their emitted chirps. This allows to interleave chirps of different radars together in such a way that they do not interfere with each other, as illustrated in Figure 5.14. Unfortunately, this interleaving of chirps is only possible with identical chirp periodicity. Indeed, as many chirps are present within a radar frame, even a small difference in t chirp will result in some parts of the frame not being interleaved correctly and interfering. Interleaving of chirps is still possible even between chirps of different slops, but having the same slope allows to maximise the amount of chirps that can be interleaved.

Randomly ending up with the same periodicity for every radar is quite improbable. For this reason, we focus on this section on the results yielded by the previously mitigation method in the case where the waveform is predefined and the same for every radar.

The fixed FMCW waveform parameters used for these simulations are as follow:

-B: 300 MHz;

n chirp : 1024; t ramp : 20 µs; The only parameters that mitigation strategies can act upon is then the starting frequency and the starting time of the signal. This makes the search for goods set of parameters way simpler.

Results

Figure 5.15: Without channel access policy mitigation methods using the same waveforms for all radars. Anticipation strategies performs the best with BestRan-domGA and BestRandom both having 0.06 dBm of average nfi. RandomSignalIfInt, the baseline also performs very well with only 0.25 dBm. However, directional methods DirectionBasedFrequency and DirectionBasedClustering did not benefit from using same waveforms from all radars and stayed around 1.5 dBm.

The results shown in Figure 5.15 are extracted from the 1km-highway scenario with the same hyper-parameters as presented in previous sections (with (I)LOS predictions). Oriented methods use the version with randomized parameters outside of the starting frequency. By using the same waveforms, avoiding all interferences becomes easy for the anticipation strategies BestRandom and BestRandomGA with both 0.06 dBm of nfi. RandomSignalIfInt also performs very well with 0.25 dBm. These results are consistently better than simulations where more freedom is given to the waveform parameters. However, no benefits are noticeable for oriented methods as their nfi went up a little bit. Using the starting frequency to separate radars based on their orientation works well when sharing the available band is complicated, but when this sharing becomes simpler by introducing identical waveforms for every radar, this separation by frequency ends up restricting radars to a smaller part of the available band without much benefit. Even using anticipation, Direc-tionBasedFrequency yields a nfi of 0.95 dBm, and DirectionBasedClustering a nfi of 0.07 dBm, both above BestRandom and BestRandomGA.

Conclusion

In this chapter, multiple non-CCAP methods have been investigated. Not using a CCAP allows each radar to have a total freedom as to which set of parameters to use, as long as they match with its range and velocity requirements. The different results of this chapter are presented in Table 5.3.

Baseline methods have been designed. These methods do not use V2X data nor do they use environmental data other than the amount of interference the radar perceives. They are the methods with the worst noise floor increase.

The first improvement over baseline methods comes with the introduction of V2X to help waveform parameters selection. Three factors affects their performances. First, the amount of set of parameters that have been tried. Trying more sets of parameters increases the probability of finding a good set of parameters avoiding interfering with every other radars. Second, the quality of the search. Simply generating sets of parameters at random isn't optimal and using smarter search algorithm such as genetic algorithms increases the performances. Finally, estimating (I)LOS using V2X data allows to simplify the parameter selection by focusing on radars that could potentially interfere. However, in situation where finding good set of parameters is easy, taking more radars than just the ones in (I)LOS is beneficial.

Methods taking into account the orientation of the radar have overall good performances, especially when combined with regular anticipation methods for other parameters than the starting frequency. This splitting of the radar band based on orientation allows to avoid all interference from radars in LOS by sacrificing a degree of freedom.

Finally, using identical waveforms (in the case of FMCW) reduces the probability of interference and simplifies the search for waveform parameters. Even simple methods such as RandomSignalIfInt, when using identical waveforms, outperformed every other methods when they weren't using the same ones.

The next chapter investigates multiples strategies using a common channel access policy. Baseline strategies are presented, and new methods making use of V2X to anticipate interference are proposed. A metaheuristic is presented to find a near optimal dynamic radar band sharing among the radars. Finally, a new mitigation strategy inspired by the results of the metaheuristic is proposed. 

Chapter 6

Methods with common channel access policies

Introduction

This chapter focuses on interference mitigation strategies in the presence of common channel access policies allowing to establish orthogonal resources. The baseline methods are redefined to work with orthogonal resources and a new anticipation strategy Recolour is introduced.

With the use of orthogonal resources, the interference mitigation problem can be translated into a dynamic graph K-colouring, and thus, a metaheuristic is proposed to find near optimal dynamic radar band sharing to the 2-km highway scenario.

Finally, the metaheuristic results are used to propose the new mitigation strategy 'Orientation-Based Band Sharing' that uses the radar orientations to dynamically share the available resources, outperforming every other mitigation strategies so far.

Common channel access policy implementation

Common Channel Access Policies (CCAP) are very common in wireless data communication. They allow different terminals to communicate through the same channel by sharing its capacity. This sharing of the channel can be implemented in different ways. For example, WiFi is a famous protocol making use of the Carrier Sense Multiple Access (CSMA) scheme. This asynchronous scheme is referred to as listen-before-talk, as terminals will listen to the channel and start communicating only if the channel isn't already being used by someone else. A preamble is present on every message to signal the length of the message, allowing other terminals to know when to try again to communicate. This scheme uses time as its mean of sharing the channel capacity. On the other hand, some CCAPs also make use of frequency; C-V2X (cellular V2X, a.k.a. LTE-V2X or NR-V2X) is one of them. grid, with time and frequency divisions, defining orthogonal resources. A GPS signal with high precision is required for synchronous schemes to work as it provides the reference for time.

For automotive radars, a CCAP implementation such as WiFi would be complicated as FMCW radars cannot listen to the entire radar band all the time. The implementation of the CCAP in the simulator has been done similarly to what C-V2X is doing. The radar band has been organised into a time/frequency paving, where every resource is orthogonal to each other. This paving repeats to infinity in time and has been designed to fit a specific radar frame corresponding to typical parameters for a front long-range radar. The goal is to facilitate the search for available resources (predefined sets of parameters) as the number of different choices is limited, and to optimise the radar band use. This access policy can take multiple forms, but in essence, it organises (or divides) the band into multiple sections that are distinct and orthogonal to each other. For example, a simple split would be a split in time and frequencies. It would divide the time-frequency bandwidth into boxes where radars could emit anything they want as long as they stay within the boundaries of the box, ensuring to avoid interfering with other radars using different time-frequencies combinations. Since time is involved, radars on the road would need a way to synchronise their clocks to a sufficient precision in order for the bandwidth split to be common to every radar.

In our simulator, this common channel access policy and its orthogonal resources have been implemented using a FMCW signal with the parameters described in Table 6.1. With these parameters, 36 different resources can be fitted into the 76-77 GHz band. This is done by forcing the starting frequency to one of 3 values (76 GHz, 76.33 GHz or 76.66 GHz) and the starting time in µs to a value respecting the following constraint: t start mod 12288 ∈ {0; 2; 4; 6; 8; 10} (6.1)

The 12288 µs value comes from the frame time divided by two because of the duty-cycle. By spacing two starting times by this value, one starts when the other one starts its processing cycle. The {0;2;4;6;8;10} values correspond to different chirp interleaving values, illustrated in Figure 6.1. This way of sharing the available band requires synchronisation between all radars to the micro-second scale. In the simulator, we assume the synchronisation to be possible with a GPS signal. Any other orthogonal sharing of the radar band could be implemented. The difference between each implementation is the trade-off between the number of available resources K (K=36 in our case) and the waveform freedom within the boundaries defined by the resource. A finer sharing of the band allows for more resources while restricting the waveform possibilities. A coarser sharing (just using frequency and duty-cycle, for example) would allow way more waveforms but reduces the number of resources.

By using predefined orthogonal resources, multiple aspects of interference mitigation become easier to deal with. First, the amount of information to transmit through V2X is reduced as instead of communicating all waveform parameters, only the resource used must be included in the message. Moreover, anticipating interference becomes as simple as comparing the resource used instead of simulating the frequency/time signal received.

Baseline methods

Description

The baseline methods in the case of orthogonal resources are the same as the ones without any common channel access policy. The difference lies in the fact that instead of selecting all parameters at random, the methods only have to select a number at random between 1 and K corresponding to one of the K available resources. These methods include:

-NoBehaviour: never changing the resource used throughout the whole simulation;

-RandomSignal: randomising the resource used;

-RandomSignalIfInt: randomising the resource used only if interference are detected;

-BestRandom(FMCW): the anticipation method presented in section 5.4.2, with 10 iterations and an objective of 0 interference; -BestRandom(same waveform): the anticipation method presented in section 5.4.2, with 10 iterations and an objective of 0 interference and the waveform fixed for everyone as in section 5.6.

Results

The results of the baseline methods using orthogonal resources are presented in Figure 6.2 and Table 6.2. They are the average over 100 simulations each on the 2-km highway scenario with a 1 s moving average applied. Non-CCAP methods are also included for comparison. A significant improvement is noticed when using a CCAP with orthogonal resources. Even NoBehaviour and RandomSignal have significant improvement by switching to orthogonal resources. The main difference with their non-CCAP counterparts is that the entire radar band is used thanks to the interleaving capabilities allowed by a CCAP. The anticipation method performs quite well with only 2.67 and 4.15 dBm of nfi for BestRandom with and without identical waveform, respectively. However, the biggest improvement comes from RandomSignalIfInt which reduces its average nfi to only 0.20 dBm by using a CCAP. As finding a resource not used by radars in (I)LOS is way simpler than finding a non-interfering set of random parameters, RandomSignalIfInt manages to quickly find unused resources.

However, these results depend a lot on the amount of available resources K. By artificially reducing K, the results obtained are worse but still perform better than without a CCAP until a certain threshold. The results obtained in Table 6.3 have been achieved by reducing K. Until K=18, RandomSignal still has better performances by using a CCAP. On the other hand, RandomSignalIfInt still performs way better even after lowering K to only 12. Defining even a few orthogonal resources allows to drastically reduce interference in the case of RandomSignalIfInt, and this doesn't take into account the fact that by reducing the amount of resources available, some parameter randomisation could be implemented (while staying within the resource boundaries) to reduce the amount of interference even further.

Recolour method 6.4.1 Description

The Recolour method is the equivalent of the anticipation methods for CCAP and orthogonal resources. Like anticipation methods, Recolour needs V2X to estimate radars that are in (I)LOS and the resources they are using. However, because of the orthogonality of the different resources, estimating the amount of interferences received is much easier. Its pseudo-code is presented in algorithm 10. When called, the method first estimates (I)LOSs with other radars and initialises the danger score for every available resource to 0. If interferences were detected, the current resource's danger score gets incremented. Then, for each radar estimated to be in (I)LOS, their resource also gets incremented. The resource that ends up being chosen is then selected at random among the ones that have the lowest value of danger score. initialize resources danger as a vector of size K filled with 0 return arg min res (resources danger [res]) 15: end procedure

Algorithm 10 Recolour

Results

The setup used for this simulation is the same as for the baseline method. The V2X emission frequency is 4 Hz, and method calls to Recolour are synchronised to happen right before a V2X emission to minimise the time during which other agents use wrong belief.

Optimal share of the band 121

The average nfi obtained using Recolour is 0.16 dBm, which is an improvement of 0.20 dBm over the RandomSignalIfInt baseline. This score can be improved by anticipating (I)LOS more. Indeed, instead of estimating (I)LOS with the current V2X data, one can estimate the future positions of all vehicles for the next few seconds. By doing so, the resource choice becomes valid for a longer period of time, reducing even further the overall amount of interferences. By conducting simulations where the (I)LOS estimations are considered perfect and looking at 10 seconds in the future, the average nfi decreases to only 0.1 dBm.

Optimal share of the band

A version of this section has been published in MDPI-Sensors 2023.

Optimization model

The goal of this approach is to find an optimal solution for the mathematical model described in section 3.4. The solution would give a dynamic share of the available resources that minimises the amount of resources changes while avoiding all interference. In order to find a dynamic sharing close to the optimum, a metaheuristic has been designed. This metaheuristic views radars as agents that, one by one, pick the best possible resource choices (with their limited knowledge of other radars' choices) at every timesteps. The resources chosen by a given radar will impact the resources picked by radars going after it, as they will try to avoid conflicting with it. This process can be translated into the following framework.

Consider a set of colours K corresponding to the different resources, a set of radar identifiers R, a set of timestamps T = {t 1 ..t end } and the temporal adjacency matrix A describing the line-of-sight between radars through time. Consider also the oriented graph G = (V, E changes , E conf licts ), where each node represents a possible state for a radar during the simulation. V = S ∪ E ∪ C with:

-S = {S r |r ∈ R} the individual starting state of each radar r. This state is not associated to any colour. It corresponds to the start of the simulation where the first colours used by each radar are not determined yet.

-E = {E r |r ∈ R} the individual ending state of each radar r. Like the starting state, it is not associated to any colour and represents the end of the simulation.

-I = {I r,t,k |r ∈ R, t ∈ T , k ∈ K} the set of intermediary possible states for each radar r other than starting and ending states. At timestep t, a radar r using colour k will be in the state represented by the node I r,t,k . . By using the order [R 1 ,R 2 ,R 3 ] at the start, the shortest path for R 1 is choosing colour 1 and keeping it as there is no conflict. The shortest path for R 2 is then to pick colour 2 to avoid conflicting with R 1 at timesteps 1 and 2. Finally, the shortest path for R 3 is to chose colour 2 until timestep 2 to avoid conflicts with R 1 , then change to colour 1 to avoid conflicting with R 2 . These paths are denoted by the thick red arrows. In total, this solution yield 0 conflict and 1 colour change.

The set of edges E changes represents the possible changes of state for a radar during the simulation:

E changes = {(I r,t,k 1 , I r,t+1,k 2 ) | r ∈ R, t ∈ T -{t end } , k ∈ K, ∀(k 1 , k 2 ) ∈ K 2 } ∪ {(S r , I r,t 1 ,k ) | r ∈ R, k ∈ K} ∪ {(I r,t end ,k , E r ) | r ∈ R, k ∈ K} (6.2)
As our goal is to minimise the number of changes necessary to keep our K-colouring, the weight of an edge is determined as follows: 

Cost((v 1 , v 2 ) ∈ E changes ) =        1 if v 1 = I r,t,k 1 , v 2 = I r,t+1,k 2 , k 1 = k 2 0 else. (6.3)
Let P r = (S r , I r,t 1 ,k 1 , I r,t 2 ,k 2 , ..., I r,t end ,k end , E r ) be the path taken by radar r across the graph, describing at each time what colour it took, and let L r be its cost. The cost of the path will be impacted by the edges taken but also by the nodes that are in conflict.

We can define the set of conflicting nodes of a radar r 1 at time t with colour k by:

V conf (r 1 , t, k) = {I r 2 ,t,k | A r 1 ,r 2 ,t = 1} (6.4)
Let β be the cost of a conflict, we have the following cost for each node:

Cost(I r 1 ,t,k ) = I r 2 ,t,k ∈V conf (r 1 ,t,k) β * p(I r 2 ,t,k ) (6.5) 
where:

p(I r,t,k ) = 1 if I r,t,k ∈ P r 0 else. ( 6.6) 
Minimising the amount of colour changes by the radars while avoiding conflicts corresponds to the following objective:

min r∈R L r (6.7)
with L r being the cumulative cost of all the edges and nodes in the taken path P r with β > |R||T |. Indeed, with β > |R||T |, a conflict costs more than a colour change by every radar at every timestep. A solution with a lower amount of conflicts will always have a lower total cost compared to a solution with a higher number of conflicts, and this, whatever the number of re-colourations needed. Having β <= |R||T | is a way to allow conflicts in the case where avoiding them would require too many re-colourations. Fig. 6.3 is an example of what the resulting colouring graph looks like.

Metaheuristic

Principle

Using the previously defined metaheuristic graph, finding a solution to our dynamic K-colouring problem for one of the radar r i is as simple as "dropping a marble" on its sub-graph and letting it fall from S i to E i , following the shortest path through the sub-graph. It will trigger an increase in cost for nodes that are in conflict with the ones belonging to its path. Repeat this operation for every sub-graph to obtain a first solution to our problem.

The marble-dropping mechanic is implemented by solving a shortest path problem within each sub-graph, one by one. Because of the sub-graphs structure, the Bellman-Ford algorithm is particularly efficient to compute the shortest path. Indeed, because of the absence of cycle or loop (edges only go from a timestep t to t + 1), this is the best-case scenario for the Bellman-Ford algorithm, with a time complexity in O(|E|), with |E| the number of edges ran through.

The solution found at the end depends on the order in which the different subgraphs' shortest path are computed. Once a shortest path is found, the path is checked again to update the cost of conflicting neighbours nodes within the other sub-graphs. The presence of conflicting neighbours depends on the temporal adjacency matrix A. Increasing the cost of certain nodes in other sub-graphs will impact their shortest path computation, hence the importance of the computation order. The increase in cost is known a posteriori. It is possible for a sub-graph to generate cost on nodes that are already being used within another sub-graph's path. This is why the length of each path (not the path itself) needs to be computed again at the end to take into account these changes.

Changing the order of "marble drop" will lend many different solutions, but some solutions cannot be reached. Indeed, the solution will always have a radar that never changes its colour. The first sub-graph to compute its path won't have any cost increase on its nodes. It will then choose one colour, and keep it until the end as the cost will remain 0. To increase the amount of possible solution found by the metaheuristic and include solution with at least one colour change for every radar, it is necessary to introduce Gates.

Gates can be placed at any timestep and act as a stopping point for the marbles. Each gate has its own permutation order. Instead of computing the shortest path for the entire sub-graph in one shoot, the shortest path between a gate and the next one is computed, before starting again from the new gate but with a new order permutation. An example of a gate effect on the solution is shown in Fig. 6.4

In a scenario with R radars, T timesteps and K colours, the total number of Figure 6.4: Small example graph to illustrate the necessity of gates. Without adding the second gate, the 1st sub-graph to compute its shortest path picks the red colour and keeps it till the end, the 2nd sub-graph picks the green colour to avoid conflict with the 1st one. The 3rd will have a conflict when it's adjacent to the two others. By adding a gate in position 2, it is possible to reshuffle the order of shortest path computation, forcing another sub-graph to change its colour. In this example, the first gate has the order [1,2,3] and the second one has the order [3,1,2]. The temporal adjacency matrix is illustrated by the small graphs, left of the colouring graph. edges in our colouring graph is R * ((T -1) * K 2 + 2K). The time complexity for computing a solution is then in O(RK 2 T ).

To optimise the computation time, it is recommended to smash the input graph in some places. For example, if during multiple timesteps there are no new edges, then the K-colouring found for the first of these timesteps will be valid for all of them. Thus, it is interesting to smash these timesteps into one to shorten the computation time. However, it is necessary to add a multiplying factor to the cost of this smashed timestep as a conflict on it represents a conflict for multiple timesteps.

Sliding window adaptation

When computing the shortest path across an entire sub-graph, the algorithm simulates the fact that a radar knows exactly what will be the future line-of-sights with other radars and the colours they'll be using (depending on the permutation order). It is useful to find the optimal colour sharing amongst radars, but limiting this knowledge of the future can yield results that would be easier to replicate in real-life scenarios.

To achieve that, the time window adaptation of the colouring graph limits the amount of timesteps to be considered when solving the shortest paths. To determine colours used at timestep t, a new graph is extracted from the main one, containing all the timesteps from t to t + W , with W being the time window size. The previous timestep t -1 is also included but won't be modified, it is used to keep track of the colour of each radar before reaching timestep t.

The metaheuristic can then be performed on this new smaller graph to find the best colour sharing. Once it is done, the colour chosen at timestep t is locked, and the process repeats for the timesteps t+1 to t+1+W and so on until every timestep has been locked. This variant doesn't require the use of gates as the permutation order can already be different from one timestep to another. Indeed, performing the metaheuristic of the time window [t, t + W ] with a certain permutation order only locks the colour chosen at timestep t. When performing the metaheuristic on the next time window [t + 1, t + 1 + W ], the permutation can be different for timestep t + 1.

The addition of the window increases the complexity compared to the nonwindowed one. Solving the small graph has a complexity of O(RK 2 W ), but it must be done for every timestep for a final time complexity of O(RK 2 W T ).

The two variants are functionally different as they do not explore the same solution space. The first one explores solutions to the entire scenario, whereas the windowed variant explores solutions for smaller problems, but end up combining them to generate a single final solution to the entire problem.

Simulated Annealing

The first implementation of the metaheuristic uses Simulated Annealing to explore the solution space. The different aspects of this metaheuristic implementation are as follows:

• Solution: A solution for our simulated annealing implementation is a list of size T containing or not a gate for each timestep as illustrated in Fig. 6.5.

Only the first timestep always has a gate that cannot be removed. As the Bellman-Ford algorithm is deterministic, the same list of gates will yield the same result (if the edge and conflict costs are the same).

Figure 6.5: Solutions are in the form of a list of gates. In this example, the list is empty except for timesteps 0 and k which contain gates with different permutation.

• Evaluation: For each gate, the Bellman-Ford algorithm is applied to each sub-graph in the order of the gate to find the shortest path to the next gate (or to the end). Costs of conflicting nodes are updated once the shortest path is found for a sub-graph. The cost of a solution is the sum of the cost of all the sub-graphs. As the cost of a conflict is changing, it is important to keep track of the number of conflicts of a solution so not to have to re-evaluate it entirely when the cost of a conflict is lowered. It allows to fairly compare two solutions without being biased by the lower cost of a conflict for one of them.

• Neighbourhood operator: To select a neighbouring solution, multiple modifications can be done as illustrated in Fig. 6.6. First, adding or removing a random gate. This will completely remix the sub-graph running order. By extracting the cost of each timestep, it is possible to weigh the random generation of gates to focus more on high-cost timesteps.

Second, switching the position of two "gates". This is done by selecting a gate at random (weighted by the timestep costs following it) and moving it to another timestep. If a gate is already present in this timestep, then both gate switch.

Finally, changing the order of a gate. It is done by selecting a sub-graph at random (weighted by its cost), and moving it earlier in the order. The earlier is a sub-graph in the permutation order, the fewer constraints it will have for its shortest path. Since the node's cost within a sub-graph depends on the path taken by other sub-graphs before it, going early means that less sub-graph have already chosen a path and thus affected the nodes' cost. When the cost of a conflict is equal to T * R * cost edge , a solution having fewer conflicts than another is ensured to have a lower cost, whatever the number of colour changes. Having a low cost for a conflict at the beginning of the simulated annealing favours the exploration of the solution space by avoiding local optima with a low amount of conflicts and a high amount of colour changes. The conflict cost is then increased as the goal is to find a solution with the minimum amount of colour change while still avoiding every conflict.

The pseudo-code of this version is available in Appendix A. The main limitation of this implementation is that it cannot be parallelised. Indeed, since the shortest path of a sub-graph depends on the shortest path of the previous sub-graph, it is not possible to apply the Bellman-Ford algorithm in parallel to all sub-graph to speed up the solution evaluation. This can be an issue when performing the windowed simulated annealing as its complexity can be orders of magnitude higher than the non-windowed one, depending on the window size. This is why the windowed simulated annealing hasn't been implemented. With a computation time of 1.5 weeks for the non-windowed simulated annealing, running it with a sliding window of size ten would have required around 3.5 months (ten times 1.5 weeks) of computation. Instead, another algorithm using a genetic approach is used for the sliding window colouring graph as it can be parallelised.

Genetic Algorithm

This second implementation of the algorithm uses a genetic approach to explore the solution space. The different aspects of this metaheuristic implementation are as follows:

• Solution: A solution for our genetic algorithm is a permutation order for the first gate. Since this genetic algorithm is to be used on the sliding window colouring graph, it doesn't require the use of additional gates for the reason mentioned in Section 6.5.2.2.

• Evaluation: Evaluation of a solution is the same as for the simulated annealing version. Following the order of the starting gate, each small sub-graph computes its shortest path using the Bellman-Ford algorithm. The cost of the solution is the sum of the conflict cost and colour change cost of each small sub-graph.

• Selection: The selection is made by a deterministic tournament of size 2 without replacement. Each solution is paired randomly with another one, and the one with the lower cost is the winner.

• Crossover: Crossover is done by using the Position-based Crossover Operator (POS). It functions by randomly selecting a subset of the permutation order of the parent P1 and copying it into the child order. Then, the blanks in the child permutation order are filled in the order of the permutation of the second parent P2. This is described in Figure 6.7. This is then repeated again, but copying from P2 first and filling in the blank following the order of P1 to generate a second child solution. • Mutation: each children solution has a probability p mutation to mutate to favour exploration of the solution space. This mutation is implemented with the Reverse Sequence Mutation (RSM) as it is a well-performing mutation operator on the Travelling Salesman Problem [START_REF] Otman | Analyzing the performance of mutation operators to solve the travelling salesman problem[END_REF] (and the TSP uses the same solution formulation of a permutation order). This mutation takes a random section of the order and reverses it, as illustrated in Figure 6.8. The pseudo-code of this version is available in Appendix B. Unlike the simulated annealing version, this genetic algorithm can be parallelised by simply evaluating the different solutions in parallel as they are independent of one another. This greatly speeds up the computation and is particularly useful for the windowed version of the metaheuristic. However, depending on the implementation, it might require the different processes to access the same graph, which would lead to an overhead when accessing the memory. This overhead might not be negligible as the Bellman-Ford algorithm is already fast due to our graph structure. To avoid this, each process is given its own copy of the graph, eliminating this overhead, but multiplying the memory usage. This is why the genetic algorithm hasn't been applied to the non-windowed version as not enough memory was available to store the entire graph multiple times.

Results

Colour Changes Lower Bound

A lower bound for the number of changes necessary to correctly K-colour the entire temporal graph can be determined with its smashed graph. The smashed graph of our temporal graph is the graph containing all of its nodes and all of its edges as long as they are present in at least one of the timesteps. The resulting adjacency matrix is A (R, R) where:

a i,j = 1 if ∃ t ∈ T /a i,j,t = 1 0 else. (6.8) 
If there is an edge between radars i and j in this smashed graph, it means that there is at least one timestep where they are adjacent. Finding the correct colouring of this smashed graph results in zero colour changes needed in the temporal version. Let the chromatic number of this smashed graph be X ; this means that with K ≥ X , we can find a starting configuration that results in zero colour changes in the temporal graph. However, when K < X , the smashed graph cannot be coloured properly. If two adjacent vertices v and v in the smashed graph have the same colour, they will be in conflict at least once, and to avoid this conflict, at least one colour change is necessary.

If vertex v changes its colour and is able to avoid every potential conflict, it can be removed from the smashed graph. The remaining smashed graph's chromatic number is now at least X = X -1. If K < X , the previous operation is repeated until K is equal to the lower bound of the smashed graph chromatic number.

By supposing that only one colour change is necessary at every steps, and that removing the associated vertex is enough to lower the chromatic number by one, the lower bound for the number of colour changes is X -K. As finding the chromatic number of a graph is itself an NP-hard problem, X can be replaced by its lower bound. The size of the largest clique can be used as a lower bound for X . As cliques are fully connected, a clique of a size S requires S colours to be coloured properly. If our smashed graph includes a clique of size S, then X is greater than or equal to S.

In the case of the smashed graph extracted from the 2km-highway simulation, the largest clique has a size of 39, resulting in a lower bound for the number of colour changes of 39 -K with K available colours.

Metaheuristics Results

The metaheuristics have been applied to the graph extracted from the 2km-highway scenario. Simulated annealing has been applied with the parameters presented in Table 6 With these parameters, a total of one million solutions are tested, yielding the results presented in Table 6.5 and Figure 6.9 with 16 ≥ K ≥ 36. Overall, 16 is the lowest value tested as there is a timestep with a max clique of 16, making it impossible to avoid all conflicts with less than 16 colours. The results are compared with a method that changes colours right before a conflict happens and chooses the colour that maximises the amount of time before the next conflict. If every colour is already taken, it picks a random one.

The number of changes of the best solution found increases exponentially when lowering the amount of available colour K, which can be observed in Figure 6.9 as the results tend to follow a linear line in the log-scale plot. As the lower bound for the number of colours needed to avoid all conflicts is 16, the number of colour changes associated with the values of K close to this value increase, but the number of conflicts is non-zero. With the windowed variant and the genetic algorithm approach, the results are presented in Table 6.6. These results have been achieved with the parameters presented in Table 6.7.

As expected, the number of changes found with the windowed variant is much higher than the non-windowed one. Because of the limited knowledge of the future, it is impossible for a long-term strategy or pattern to emerge. The choice of colour at timestep t is independent of what is happening after the timestep t + W . 

Data extraction from optimum

One piece of interesting data that can be extracted from these solutions concerns how the different colours are distributed among the different radars. For each radar, by looking at the relative position of radars using the same colour and displaying it as a distribution (weighted by the distribution of radar itself), we obtain Figure 6.10.

The simulation is on a highway with 2 × 3 lanes, and the different lines seen in the pictures correspond to different lanes relative to the vehicle. The image on the left represents the distribution of same colour radar in the opposite lanes, whereas the one on the right represents the distribution for radars in the lanes going the same way.

From the difference between the two, radars with identical colours are more often in lanes going in the same direction. The dark area surrounding the centre point means that two radars close to each other (below ≈150 m) are very rarely using the same colour as they are often in indirect line-of-sight. Figure 6.10: Distribution of radars using the same resource in the best solution found, depending on their relative position and orientation. This distribution is found by dividing, at each position, the average number of radars using the same colour by the average number of radars at this position and multiplying this value by the number of available colours. The resulting value at each position is the ratio of radars with the same colour over the expect number of radars with the same colour (when colours are random). For example, with the colour scale in this figure, an area in yellow is an area where radars are three times more likely to have the same colour compared to a random colour assignment. Radars use the same resources more often when they are oriented in the same direction (right picture) than in opposite one (left picture). Sharing resources with radars in the opposite direction still happens when they are either far away (>500 m) or multiple lanes to the side. An area of ≈150 m (forward and backward) around a radar will contain very few radars using the same resource.

For lanes going the opposite way, the further away the lane is, the higher the density of same colour radars. This is particularly noticeable as the first lane to the left does not have a single same-colour radar until ≈500 m away. These results indicate that to avoid interference while not changing radar parameters too often, it is necessary to share the available radar band in a way that takes into account the orientation of the radars (or the traffic).

Oriented methods have been shown to perform well by completely separating radars with different orientations, but the optimal radar band sharing method seems to require a less strict separation to allow two radars facing in the opposite direction to still use the same waveform, as shown by the non-zero distribution of the picture on the left.

Orientation-Based Band Sharing

Principle

The solution found by the metaheuristic and its patterns presented in section 6.5.3.3 suggest that the optimal strategy in our 2-km highway scenario implements a separation of available resources based on radar orientation while still allowing some overlapping usage in certain situation.

Inspired by this, the Orientation-Based Band Sharing (OBBS) method is introduced. This method adapts the principle of oriented methods to orthogonal resources while allowing resource availability overlap even for opposite-direction radars. To achieve this, let's associate a number from 1 to K to each available resource. Each resource k is associated to the range of direction [k 360 K ; (k + 1) 360 K ] degrees. This way, each possible direction from 0 • to 360 • is associated to a specific resource. Instead of simply using the resource a certain radar's orientation is pointing to, radars have a choice margin defined by a margin value β between 0 • and 360 • . When a radar is oriented at α • , its available resources are the ones whose middle of range of direction is included within [αβ

2 ; α + β 2 ]
. With a margin of 180 • , two radars facing each other (with a difference of orientation of 180 • ) will not share any of their available resources. They will each have a distinct half of the resource available, ensuring that they will not interfere. For two radars whose difference of direction is 90 • , they will again have half of the resources available, but half of them will be in common. Figure 6.11 illustrates the available resources for two radars with different orientations in the case where K is 24 and the margin is 180 • . On top of this, OBBS also implements (I)LOS prediction to better pick its resource among the ones that are available. 

Results

Setup

The following results have been obtained on the 2-km highway scenario and averaged over 100 simulations for each method/hyper-parameters. The emission frequency for V2X is 4 Hz with method calls synchronised with them. The default β margin is used for OBBS (180 • ).

OBBS

The results of the 100 simulations are displayed in Figure 6.12. By introducing the dynamic band sharing based on orientation, OBBS manages to lower even further the average nfi to only 0.12 dBm. However, during the first part of the simulation, where mostly ILOSs are present, the average nfi of OBBS is twice as high as the Recolour's one (0.13 dBm against 0.07). Indeed, when only ILOSs are present, similarly to oriented methods, splitting the available band in two is counterproductive and increases the probability of interference. Indeed, as the scenario has two distinct phases, one with mainly ILOSs (0-80 Figure 6.12: Noise floor increase (dBm) over time (s) for OBBS and Recolour methods on 2km-highway scenario. s) and one with a mix of ILOSs and LOSs (80-180 s), it is possible to observe the average nfi on both phases depending on the β margin used. The results are shown in Figure 6.13. As predicted, in the first part of the simulation where almost only ILOSs are present, the optimal β margin is 360 • whereas during the part where more LOSs are present, it is 180 • to split in half the available radar band. Figure 6.13: Noise floor increase (dBm) over β margin for OBBS on different scenario phases. The optimal margin for the first phase (0-80s) is around 360 • as most of interferers are in ILOS. On the other hand, the optimal margin is around 180 • for the second phase, more heavy in LOSs.

To optimise even further the results obtained by OBBS, it is then important to adapt β to the environment accordingly. By manually forcing the margin to 360 • for the first phase, then 180 • between 80 s and 180 s, and going back to 360 • afterwards, the results obtained further decrease the amount of interference with an average nfi of 0.09 dBm as shown in Figure 6.14. In future works, the optimal margin could be determined in real-time by looking at the density of traffic and radars in different directions. For a constant traffic density, the probability of two radars being in ILOS goes down the further they are from each other as more vehicles are situated between the two, serving as obstacles for the signal. Instead of trying to predict ILOSs using the regular ILOS computations and V2X data, the following method is only based on the relative distance and orientation of radars. This method is based on an ellipsoid centred on the radar. This ellipsoid is defined by the following equation:

x 2 a 2 + y 2 b 2 + α 2 c 2 = 1 (6.9)
where x and y are the relative positions of other radars, and α their relative orientation. The parameters (a, b, c) define the initial size of the ellipsoid. These values should be quite large. In order to choose a resource, the method then performs the following step:

-Every radar whose coordinates lies within the ellipsoid is considered to be in ILOS and its resource is forbidden;

-If no resource is allowed, reduce the parameters (a, b, c) by a factor γ and repeat the first step;

-If at least one resource is still allowed, select it.

In essence, this method starts by considering a lot of radar in an ellipsoid surrounding the radar, and reduces the size of this ellipsoid until at least one resource is available. This process is illustrated in Figure 6.15 with four resources represented by the four colours (red, purple, green and blue) using only the x and y coordinates.

Figure 6.15: Ellipsoidal ILOS prediction principle. In the first step, the ellipse is big enough to forbid all resources as all of the four resources (represented by the four colours, blue, red, green and purple) are used by radars within the ellipse. After reducing the size of the ellipse by a factor γ, the red resource is no longer present within the ellipse, making it the resource that will be chosen.

Results

The following results have been obtained with the same setup as for OBBS in section 6.6.2.1, but instead of predicting ILOSs with V2X data, the ellipsoidal ILOS prediction has been used with parameters in Table 6 The results obtained after 100 simulations are displayed in Figure 6.16 as well as the results of OBBS with the classic ILOS prediction. The classic method of ILOS prediction yields an average nfi of 0.12 dBm. However, the ellipsoidal method yields slightly better results with 0.11 dBm of nfi. This method is less precise in its ILOS computations, but manages to yield better results. This can be explained by the fact that what really matters is to actually correctly classify radars that are in ILOS. Wrongly classifying radars that are not in ILOS isn't important, as long as some resources are still available (which is ensured by reducing the size of the ellipsoid gradually). 

Conclusion

In this chapter, the impact of a CCAP allowing a sharing of the radar band into orthogonal resources has been investigated. Using this kind of organisation of the radar band, allowed even very simple strategies (such as randomising the resource used if interference were detected) to outperform the most complex strategies that were not using a CCAP. The performance of the CCAP will depend on how many resources are defined. The more resource there is, the more important will be the interference mitigation. This is particularly interesting when a lot of bandwidth is available (such as with the new radar band at 140 GHz) as more resources can be fitted into the radar band.

Similar to the case where no CCAP are implemented, V2X facilitates the resource selection by allowing radars to know what resources are already used by others. V2X communications and interpretations are also simplified. Since resources are predefined, they can be communicated using a single number corresponding to the resource. Compared to the case without CCAP, it is also way easier to anticipate the amount of interferences that other radars can generate as resources are orthogonal.

Using a CCAP and orthogonal resources also allowed the translation of the problem into a dynamic graph K-coloring problem whose optimum can be approximated with the proposed metaheuristics. The solution found by these algorithms yields results without any interference and maximum stability, and patterns were extracted, showing that splitting the available resources based on the radars' orientation seemed to be the best strategy. Inspired by these results, a new method (OBBS) was implemented, taking into account radars' orientations. This method outperformed the others, especially when dynamically changing its hyper-parameters to split the radar band depending on the respective radar density in different orientations.

Finally, an extension to the OBBS method was introduced to remove the need for complex ILOS estimations using ray tracing-like computations with V2X data. Instead, by considering every surrounding radar in ascending order of their distance to the agent, until only one resource is available, the results yielded were better than with the complex ILOS computation. The different results of this chapter are presented in Table 6.9, with the methods sorted by their average nfi on the 2-km highway scenario. The average computation time of each method has also been added. It shows that using a CCAP allows the Recolour method to have a computation time an order of magnitude lower than BestRandom, for which realtime computation would be complicated at 100 ms per method call.

The next chapter presents the different machine learning investigations that were conducted to solve the interference mitigation problem. First, by using reinforcement learning to learn good parameters selection strategies, and then graph neural networks to anticipate line-of-sights.

Chapter 7

Machine Learning investigations

Introduction

This chapter focuses of the investigations on machine learning methods for the mitigation of automotive radar interference. Two varieties of machine learning techniques have been investigated. The first one consists in the use of reinforcement learning to learn optimal waveform parameters selection using parts of the V2X data as input for the neural networks. Reinforcement learning has been chosen for this task as the optimal strategy isn't known, making supervised learning methods inapplicable.

The second implementation of machine learning presented in this chapter is the use of GNNs for the prediction of (I)LOSs. As the amount of cars in the V2X range in constantly changing, GNNs are good candidate for such an environment as they can support any number of cars.

Reinforcement Learning for parameters selection 7.2.1 Setups

Structure

The overall structure of the reinforcement learning implementation is summarised in Figure 7.1. The simulator runs as usual, but whenever a radar chooses its parameters (using the reinforcement learning networks, or randomly during the exploration phase), it stores the state before (s) and after (s ) the decision was taken, as well as the action chosen by the radar (a). Once the evaluator has computed the amount of interference received after this action, it adds it to the replay buffer to complete the (s, a, r, s ) tuple. The implementation of states, actions and rewards are detailed in the following sections. This replay buffer can then be sampled by the radar to train the different networks involved in its reinforcement learning algorithm.

The different algorithm implemented were DDQN, DDPG and SAC whose pseudo-codes are presented in Section 2.6.1. DDQN trains one Q-function network with two different sets of weights (Q θ and Q θ ). DDPG trains two different networks, the Q-function estimator network Q with two sets of weights (φ and φ ), and the policy network µ, also with two sets of weights (θ and θ ). Finally, SAC trains three different networks, two Q-function estimator networks Q φ 1 and Q φ 2 as well as the policy network π θ . Figure 7.1: Reinforcement Learning structure. The simulator stores (s, a, r, s ) tuple into the replay buffer, which is then used by the radars to train their networks.

States

The first step towards implementing reinforcement learning is to define the different parts of the replay buffer elements (state, action, reward, next state).

In video games, time is often discrete, with multiple agents being allowed to take actions at the same time, with a common environment to observe. In our case, most of these elements do not hold. Time is continuous, with the environment constantly changing as cars move around, but some aspects of it are discrete such as V2X communications that happen at periodic intervals, or radar actions that can only be applied between radar frames and not during one.

States can be implemented in different ways because of this. As illustrated in Figure 7.2, the first state of a replay buffer is sampled from the context at the moment the action needs to be taken. However, the results from the action taken will be available only at the end of the radar frame with the new parameters. In this situation, either the next state of our experience can be sampled right after the action of the agent, or it can be sampled at the end on the radar frame.

In the first case, the only difference between the first and next state is the parameters of the radar. New data coming from the V2X communications during the radar frame would not appear anywhere in the states. If the amount of interference is actually impacted by one of the changes communicated, then the algorithm wouldn't be able to learn from them. Sampling the next state like this, should encourage the algorithm to learn the optimal parameters at a given time, without trying to anticipate the action of other radars.

In the second case, the next state includes the new V2X data gathered since the beginning of the radar frame. This additional information can help the algorithm learning other agents' behaviours and explain the amount of interference received. However, because the variations from a first state to the next state are, in the majority, not the direct consequence of the agent action, the algorithm could struggle to extract the important information from the states. Figure 7.2: State-Action-Reward for radars. The environment is constantly changing as new V2X messages are received. Whenever the radar runs its mitigation strategy, it retrieves the current state from the context and uses it to chose an action. The amount of interference resulting from this action is only known after the radar frame is finished and serves as the reward. Two possibilities exist for the end state, either it is sample right after the action is taken, or right after the radar frame ends.

In the simulator, the two options of next state implementation have been tested. The states include all the context data at a given time, whether it is right after taking an action, or at the end of the radar frame. Some of the data is then processed and transformed into an array to be included in the input of our neural networks (Q, π or µ depending on the RL algorithm used). For each other radar to be included in the input, the following parameters are included with some preprocessing to keep their values between 0 and 1 as detailed in Table 7.1.

The data from the radars are then concatenated into a large vector that contains the above parameters for each radar, as well as the current parameters of the agent (minus relative parameters, as they would always be 0).

Different implementations have been coded:

-10FMCW: The input vector can fit the complete data of 10 radars, ordered by distances from the agent;

-10FMCW-frequency-only: The input vector can fit the data of 10 radars (ordered by distance from the agent), but only the starting frequency of the waveform parameters is included (forcing the network to focus on this parameter); -2FMCW-frequency-only: Same as previous, but the input vector can only fit the data of 2 radars (used for the 1v2 scenario).

Actions

Depending on the type of algorithm used (DDPG, SAC or DDQN), different types of actions have been implemented and tested, all related to the control of the starting frequency (or resource). The different implementations tested are as follows:

a ∈ [0, 1]: The action space is continuous, where values between 0 and 1 are mapped to the possible start frequency values;

a ∈ [-1, 1]: The action space is continuous, where values between -1 and 1 are mapped to decrease and increase of starting frequency between -100 MHz and +100 MHz;

a ∈ [0, 1] 3 : The action space is discrete, three actions are possible: lowering the starting frequency, not changing the frequency, increasing the frequency;

a ∈ [0, 1] K : The action space is discrete, K actions are possible with each action corresponding to a resource (only for CCAP);

a ∈ N (µ, σ 2 ): The action space is continuous and the action is taken from a Gaussian distribution. The network actually outputs the parameters of the Gaussian distribution.

DDQN has been tested using the different discrete action spaces, DDPG and SAC have been tested using the continuous action spaces.

Rewards

Two types of rewards have been tested. The first reward directly correlates to the amount of interference received by the radar with the formula r = 1 -intf ratio . Other similar rewards where implemented but using the maximum range lost (r = range actual rangemax ) or the noise floor increase (r = 1 -nf i nf imax ) since they are functions of the ratio of interference and the power of the interferer.

The second type of reward was the one based on improvements from frame to frame. The reward was given by the difference in interference ratio between a frame and the one before it. The goal behind this reward was to focus on the effect of changing parameters. Indeed, changing from bad to good parameters gives a good reward, but keeping these parameters afterwards doesn't bring more rewards.

Hyper-parameters

For the different networks involved (actor, critic, Q, etc.), MLP has been used with different numbers of layers and nodes. The number of hidden layers ranged from 0 to 10, with a number of nodes either staying the same with values between 2 and 256 or decreasing from layer to layer to mimic an encoder architecture.

The activation functions used were either the ReLu function or the Tanh function. The learning rates used were between 0.1 and 10 -4 , and batch sizes were always a power of 2 between 8 and 256. The exploration phase was done by either forcing random action for the first ten thousand to million epochs or by randomly selecting an action with probability ε, with ε decreasing slowly to reach 0 after ten thousand to a million epochs. The optimisers used were either the Adam, the RMSpop or the SGD optimisers.

Training

Because it is not possible to generate infinitely many different simulations using the simulator, the training was done on either the 2-km highway scenario, the 1v1 or the 1v2, with the scenario restarting at the end without interrupting the training, each simulation being an experience for the reinforcement learning algorithm. From simulations to simulations, every parameter was saved and loaded again for the next one.

Because the same scenarios were used in a loop, the positions of cars and radars wouldn't vary from experience to experience. Thus, two approaches were tested. First, an approach was tested where each radar gathers its own data and has its own network to train, and another approach where the trained network is the same for every radar.

Results

The implementation of these reinforcement learning algorithms was made using the Pytorch library. For every combination of hyper-parameters, the results of the training were similar. The loss would converge to a certain value and the score would overall improve compared to randomly taken action, but the end strategy would always end up performing the same action, whatever the input. Indeed, even in the 1v1 and 1v2 scenarios, where the interferers are randomly changing their waveform parameters every second, giving plenty of time to the agent to receive the V2X messages that serve as input, the action taken through time would look like the Figure 7.3. After the exploration phase ends, the strategy would always converge to always take a single action. By looking at the network weights after convergence, it is noticed that the biases values would always be much higher than the rest of the weights, leading to the output not depending on the input data. In most cases, the training would converge to a state where the starting frequency of the signal would always be either the maximum or the minimum allowed. As soon as the exploration phase ends, every network converges towards always using the same action (around 0.5 for the light blue run, 1 for the others). This makes the radar always pick the same starting frequency whatever the parameters of other radars in the V2X range.
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This behaviour can be explained by the fact that when facing randomly generated FMCW signals, having either the minimum or maximum starting frequency lowers the expected amount of interference received. This can be shown by performing Monte Carlo simulations. Five FMCW signals are randomly generated, representing five interferers. One victim radar generates ten different random sets of parameters, and for each one of them stores the resulting amount of interference when facing these interferers. By repeating multiple times this process (with new interferers every time), it is possible to extract the expected ratio of interference for each starting frequency. The results in Figure 7.4 have been obtained by averaging the resulting interference for each starting frequency after a million couples (victim parameters, resulting interference ratio) have been gathered. The average ratio of interference is slightly lower for minimum and maximum starting frequencies, which explains why the network would learn to select these values. Unfortunately, even with millions of exploration epochs, with different sizes of networks, different hyper-parameters and in the simplest of scenarios (1v1), the networks always converged to such a behaviour. This local minimum of always selecting an extreme starting frequency seems to be an important attractor that the network struggles not to fall into.

Graph Neural Networks for line-of-sight prediction 7.3.1 Data generation

Instead of focusing on learning a strategy to share the available resources, GNNs have been implemented to learn (I)LOS predictions. (I)LOS prediction is an in-Chapter 7. Machine Learning investigations termediary step to interference mitigation that is important whether a CCAP is present or not.

Learning (I)LOSs has the advantage of being part of supervised learning as they can be manually computed. This problem then comes down to a classification problem where the GNN need to learn to classify each radar into one of two categories, in (I)LOS or not in (I)LOS.

To perform this task, each snapshot of a simulation is a source of data, as it can provide a list of radars, with the list of other radars in (I)LOS with all their parameters (position, orientation, FoV, ...) and the obstacles (cars).

Two SUMO scenarios have been created to generate datasets for (I)LOS predictions. The first one uses the same road network as the 2-km highway scenario, but instead of having a finite number of vehicles generated, it continuously generates vehicles for many simulated seconds. Snapshots are taken every 100 s instead of every 0.1 seconds in order to have timesteps different enough from each other. All these snapshots then go through the simulator to compute the (I)LOSs. The second scenario is exactly the same, but only one stream of vehicles is present, making only ILOSs (and not LOSs) present.

Datasets

Nodes

The nodes in our GNN implementation each represent a radar with certain features corresponding to their positions, directions and FoVs.

From the snapshots and their (I)LOSs, we can extract multiple data points. Indeed, as the goal is to compute (I)LOSs from the point of view of a radar, a snapshot that contains a hundred radars can provide a hundred different points of view of the same situation, each with different relative positions and orientations compared to the radar focused on. In total, more than a million different data points have been generated. In order to avoid edge cases at the end of the highway, only radars situated in the centre 1-km part of the highway are used to generate data points as illustrated in Figure 7.5, and only radars whose relative distance to the focused-on radar are below 500 meters are added to its view.

The resulting data point is a graph whose nodes are the focused-on radar with coordinates (0,0) and orientation 0 • , and all the other nodes represent the other radars with their relative positions and orientations. From all of this, multiple datasets are derived, yielding different features for each node:

-(I)LOS dataset (both traffic direction) with Cartesian coordinates; -ILOS dataset (single traffic direction) with polar coordinates.

Edges

Edges in GNNs serve as the connections through which messages pass. In our case, these edges have been generated using two different methods:

-K-nearest neighbour algorithm: each node is linked between itself and its K nearest neighbours (K has been varied between 1 and 10); -Randomised edges: each possible edge has a certain probability of being generated (the probability has been varied from 0.01 to 0.2).

Message passing networks

Now that the different graphs have been defined, with different nodes (one or both traffic directions), features (cartesian or polar), and edges (KNN or randomised), the way of implementing the message passing network (MPN) or convolutional, can be defined.

In each of the following MPN implementations, the Multi-Layer Perceptrons (MLP) have been tested with different hyper-parameters. The number of layers varied between 1 and 10, and the number of nodes per layer was a power of two between 4 and 1024. Each MPN has been tested by layering it 1 to 3 times. The implementation of all these has been done using Pytorch and the torch_geometric library.

The first tested network used GCN layers, each node updates its states following equation 2.13, with θ being the MLP whose weights are learned during training.

The second tested network is implemented with GraphSAGE layers, following equation 2.15, with the weights W 1 and W 2 being replaced by two different MLPs.

Finally, the last implementation used PointNet layers, following equation 2.14 for node state updates, with φ and θ being implemented with two different MLPs.

The final state of each node is a vector of size 2, corresponding to the two classes (in (I)LOS, not in (I)LOS), to which a softmax function is applied to select the final class.

Results

(I)LOS prediction

In total, 1440 different combinations of network and hyper-parameters have been tested on the dataset containing both LOSs and ILOSs. The combination that yielded the best Area Under the ROC Curve (AUC) after convergence is a simple GCN with edges generated with a KNN algorithm of size 2, a single layer of 64 nodes, the Adam optimiser and polar coordinates for the nodes. Its results are presented in Figure 7.6. The 'precision' corresponds to the accuracy of the network when predicting if a radar is in (I)LOS or not. The 'recall' is the proportion of targets (radar in (I)LOS) identified over the total amount of targets. A good network is characterised by its precision staying high even for recall values close to one. The F1-score, computed with the formula 2 1/recall+1/precision , combines precision and recall into a single metric. The closer it is to one, the better the network is.

The Precision/Recall curve indicates that even the best GNN found struggles to easily identify (I)LOSs as even for a low value of recall, the precision is not 100%. Indeed, when looking at a sample from the 2-km highway scenario in Figure 7.7, a pattern emerges where every radar around the focused-on radar is considered to be in (I)LOS, as well as radars in a section in front of it to the left. Figure 7.8 is a heatmap of the relative positions of (I)LOS radars obtained by adding the positions of every radar in (I)LOS to a list, and plotting the final density of radars. The pattern that the GNN learned can be found in this heatmap as the area around the focused-on radar is indeed where the highest density of (I)LOS is found, followed by radars going the opposite direction (in the front-left of the focused-on radar). It can be observed that the GNN didn't manage to learn the specifics of (I)LOS generation, but it learned the global distribution of interferers.

The classes imbalance in the dataset (on average 13.6% of all radars are in (I)LOS, making radars not in (I)LOS six times more common than radar in (I)LOS) could be a reason why GNN are struggling to learn. 

ILOS prediction

Similar to the (I)LOS predictions, 1440 combinations of hyper-parameters have been trained and tested on the dataset with only ILOSs. This has been done to simplify the learning process. Indeed, LOSs and ILOSs are governed by two different types of computations, as ILOSs involve a bounce of the signal on a surface, where LOSs don't. Focusing only on ILOSs removes this problem, and LOSs predictions could be done using another network.

The best performing GNN was the same as for (I)LOSs predictions, and the results were similar as illustrated with a sample from the 2-km highway scenario in Figure 7.9. The GNN learned that surrounding radars were always in ILOS. Each period where the loss stagnates corresponds to different behaviours of the GNN: considering every radar to be in ILOS, then none of them, then only the ones that are nearby.

Custom dataset for classes imbalance

Dataset generation

Class imbalance is often a reason why neural networks can struggle to learn. To reduce this imbalance in the simulated scenario, it is possible to reduce the maximum relative distance between nodes from 500 meters to a lower value until a balance is reached (radars that are close by are way more likely to be in (I)LOS compared to radar hundred of meters away). However, by doing that, there is a risk that some nodes are deleted when they actually are important, either because they are in (I)LOS, or because they are generating an ILOS by acting as the obstacle on which the signal is bouncing.

Instead, a new randomly generated dataset has been created. This dataset simply generates one victim radar (and its car) with coordinates (0, 0), and six other radars (and their cars) with random coordinates (x ∈ [-250, 250], y ∈ [-3.5, 3.5] ). If a car is generated too close to another one and is colliding with it, new coordinates are generated for that car. Every car is facing the same direction and all radars have 20 • of FoV. One of the 10 million datapoints that have been generated using this process is displayed in Figure 7.11. This dataset manages to have 36.3% of the radars in ILOS. Compared to other datasets that used the K-NN algorithm to generate edges, this one has all its nodes connected to each other. 

Results

On this new dataset, the best-performing GNN was a PointNet network. The local network is a MLP with four layers of 256 nodes each, and the global network is a MLP with two layers of 256 each. The results are presented in Figure 7.12. The Precision/Recall curve is way better than with the dataset from the simulator, as the precision stays relatively high even as the recall gets close to one. From the F1score, the best classification threshold isn't one anymore, but somewhere between 0.5 and 0.7. Figure 7.13 presents six samples of the GNN predictions on the custom dataset. Compared to previous results, the GNN isn't simply predicting that nearby radars are in ILOS, but it seems to have learned how ILOSs are computed. Figure 7.12: Results of the GNN for ILOS prediction on custom dataset, with the ROC curve (top left), the precision/recall curve (top right) and the F1 score (bottom). The Precision/Recall curve is way better than with the dataset from the simulator with the precision staying relatively high even as the recall gets close to one. From the F1-score, the best classification threshold isn't one anymore, but somewhere between 0.5 and 0.7. 

Conclusion

In this chapter, machine learning has been applied to try solving parts of the interference problem, parameters selection and (I)LOS estimation. First, reinforcement learning was used on the simulator environment to learn optimal parameter selection for the radar waveform depending on the V2X data gathered. Every combination of hyper-parameters tested yielded similar results. The algorithm struggled to learn any meaningful strategy, and it always ended up converging to a state where the same set of parameters was always selected. This set of parameters being the one that statistically performs the best when facing a random interferer. However, as V2X data was available and containing information about the interferer's parameters, the network should have been able to learn better parameters. Unfortunately, this local optimum of always selecting the lowest or highest starting frequency seemed to act as a powerful attractor into which the network falls despite the long exploration phases. Pre-training the network with specific simple strategies (for example, always picking a starting frequency as far away as possible from the interferer's one) could be a way to guide the learning process for the network.

GNNs have also been investigated as they possess multiple characteristics that are interesting in our multi-agent system as they can deal with dynamic size inputs of different natures. Their capabilities to estimate (I)LOSs between radars have been investigated. Similarly to the experiments with reinforcement learning, GNNs were able to learn the distribution of interferers around the radar very efficiently, always categorising radar around the car as potentially dangerous, as well as radars facing the opposite direction in front of it. However, learning the rules behind the (I)LOSs computations couldn't be done using the simulator dataset. Generating a custom dataset with a better balance of classes was the key for training GNNs to ILOSs. With this custom dataset, GNNs are able to learn more efficiently and yield way better results and might be studied in more details in the future.

Conclusion

As the number of vehicles equipped with ADAS is increasing, so is the number of automotive radars necessary for their applications. The current radar penetration rate is low enough to allow mutual interference mitigation with a mix of waveform parameters randomisation and signal processing techniques. However, in environments with a lot more radars, these techniques might not be enough and the lack of regulation from the standardisation bodies regarding waveform and channel access will make coordination of the radar band usage a challenge.

Contributions

This research had multiple objectives, including studying the potential of current mitigation methods in situations with higher automotive radar penetration rates, developing and studying new methods based on V2X technology as well as methods making use of AI. More precisely, the following methods, models and algorithms have been elaborated and implemented for these purposes.

Simulation framework for interference investigations.

A comprehensive Python framework has been developed capable of simulating the different aspects of automotive radar interference mitigation. It comprises more than 12500 lines of code. The simulator can handle realistic traffic scenarios through the SUMO software, add any type of radar anywhere on any car, make vehicles communicate with each other using V2X technology and extract a multitude of metrics useful to study the performances of interference mitigation strategies. The simulator has been optimised thanks to multiple assumptions, allowing to compute in reasonable time the large-scale simulations that are needed to study future road traffic with a high radar penetration rate. These assumptions impact how realistic the simulator is, but have minimal impact on the comparison between different mitigation methods.

New mitigation methods using V2X data.

Multiple new mitigation methods have been implemented, tested and compared to baseline methods that are used today and between themselves. One remarkable result is that baseline methods were outperformed by every method using V2X data as an input for waveform parameters selection. These methods use V2X data to estimate line-of-sights between radars and select a new set of parameters according to the one used by other radars. The complexity of these methods resides in their Chapter 7. Machine Learning investigations capabilities to quickly find a set of parameters that would not interfere with others. To facilitate this search, a genetic algorithm has been implemented. Methods using the orientation of the radar also have been investigated, and they were revealed to perform extremely well despite their low complexity. A method inspired by the boids algorithm has been developed to compensate for the lack of adaptability that a classic compass method has. However, all these techniques struggle when facing more complex scenarios, as coordinating the radar band usage is a challenge.

The solution was first, to introduce a common waveform for every radar, which greatly helped to reduce interferences, but ultimately was also not enough. However, the introduction of the common channel access policy (CCAP) helped to greatly reduce interference even in the more complex scenario using very simple mitigation strategies. This CCAP assumes synchronisation among radars through GPS signal in order to divide the radar band into orthogonal resources. These resources are then shared among the different radars following different mitigation strategies, allowing for near-zero interference even with 151 radars on a busy road.

Two metaheuristics algorithms to find optimal dynamic sharing of the radar band.

Due to the complexity of the interference mitigation problem, mainly caused by the large amount of radars and their dynamics, two metaheuristics have been developed to find the optimal sharing of the radar band. The problem of interference mitigation has been translated into a dynamic graph K-coloring problem to which the two metaheuristics have been applied. The first one uses a simulated annealing algorithm and found a near-optimal solution solving the whole scenario at once. The second one uses a genetic algorithm to find solutions, not using the whole dynamic graph at once, but time-window by time-window to obtain solutions that could be applied in the real world, with limited knowledge of the future. Patterns have been extracted from the solutions found, indicating that the optimal sharing of the available resource was based on the radar orientation, leading to a new mitigation strategy, Orientation-Based Band Sharing, that outperformed every other mitigation strategy with also a new way of detecting ILOSs using a diminishing ellipsoidal danger zone.

Investigations on Artificial Intelligence applied to interference mitigation.

Investigations on AI have been conducted in two different ways. First, multiple reinforcement learning algorithms have been implemented and trained on the framework offered by the simulator. The goal was to learn what set of parameters to choose depending on the data gathered via V2X. This task seemed too complicated for the different reinforcement learning algorithm (DDQN, DDPG, SAC) to learn as even in a very simple environment with a single interferer, the networks kept converging into the same behaviour of always selecting the same parameters. Similarly, investigations on line-of-sight prediction using Graph Neural Networks were conducted. GNNs are well adapted to automotive radar interference mitigation and learned meaningful statistical patterns within (I)LOSs distributions very quickly. The intricate rules behind line-of-sights (obstacles and reflections) could be learned only using a custom made dataset where the balance of classes wasn't as important as in the simulator's datasets.

Perspectives

To extend the work presented in this thesis, the following recommendations could be be followed.

Simulator realism and scenario design.

The simulator can be improved further by adding more elements than cars and buildings. Indeed, many elements on the road could impact line-of-sights in non negligible ways such as signs or road railings. The ground also has an impact as radar signal can reflect on it, creating situations where a radar signal can go under a car. Adding more realism to the simulator must be done by conserving the desired trade-off between scalability and realism. As line-of-sights just have to be computed once per simulation, a more advance way of computing them could involve ray-tracing technology.

In addition, the scenarios used in this thesis are highway scenarios. These are well adapted when dealing solely with front radars but future work could focus on designing a multitude of new large scale scenarios to serve as reference for all future interference mitigation strategy research.

Guiding regulation.

This thesis showed the potential of having a common channel access policy with orthogonal resources. However, standardising the waveforms completely isn't something that radar manufacturers desire as there would be no way for them to distinguish themselves from competitors. Future work could investigate what would be the best trade-off between the number of resources and the freedom given to the radar manufacturers for waveform design.

Machine learning approaches.

As demonstrated in this thesis, graph neural networks have a great potential to deal with the multi-agent system that is the automotive radar environment. With the help of customised dataset, it was possible to teach GNNs more than just the distribution of (I)LOSs. Future work could focus on using transfer learning to use the network trained on the custom dataset onto larger scale dataset with more complex environment. Real world data also needs to be gathered as the way (I)LOSs are computed in the simulator doesn't take into account ground or building reflections. Moreover, as GNNs demonstrated their capabilities, a mix of reinforcement learning and GNNs could be investigated to learn resources selection.

Abstract:

As the number of vehicles using Advanced Driver Assistance Systems (ADAS) is increasing, so does the number of vehicles equipped with automotive radars. Indeed, market studies estimate that by 2030, 50% of vehicles will be equipped with automotive radars. This rapid growth in radar numbers will likely increase the risk of harmful interference as specifications from standardisation bodies (e.g., ETSI) provide requirements in terms of maximum and mean power, but do not mandate specific radar waveforms nor Common Channel Access Policies (CCAP). Nowadays, automotive radar interference mitigation is done primarily with signal processing techniques and parameter randomisation. These techniques work well today, as the number of radars is low, but they won't suffice in a situation where the majority of cars are equipped with radars. New interference mitigation techniques are becoming important to ensure the long-term correct operation of radars and upper-layer ADAS systems that depend on them in this complex environment. This thesis is devoted to studying the mitigation capabilities of today's methods in future environments with a lot more radars, and investigating new methods making use of the Vehicle-To-Everything (V2X) technology as a side communication channel and Artificial Intelligence (AI) to minimise the amount of interference and optimise the automotive radar band usage.

As no data is available to study large-scale road traffic situations with automotive radars and V2X communications, the first part of this thesis focuses on the Python-based simulator that has been built to generate this data and investigate different mitigation techniques. The proposed simulator aims at reproducing what will happen with different mitigation methods in realistic future scenarios. This goal is achieved by simulating realistic scenarios using the Simulation of Urban MObility (SUMO) software, while making reasonable assumptions to lower the computation time.

The lack of specifications regarding radar waveforms and CCAP makes optimisation of the radar band more complicated in complex environments. The aim of the second part of the thesis is to investigate the potential of current mitigation techniques in such an environment without CCAP. In addition, new methods using V2X data have been proposed. These methods based on radar orientation, or based on Genetic Algorithms (GA) have been implemented to improve the waveform parameters selection process.

In the situation where a CCAP is implemented, the avoidance of interference becomes easier to deal with. The third part of this thesis investigates simple interference mitigation strategies in case of a CCAP where the radar is organised in orthogonal resources that radars must share. By introducing orthogonal resources, the problem is also translated into a dynamic graph K-coloring problem whose optimal solution is approximated with two proposed metaheuristics based on Simulated Annealing (SA) and GA. From these results is then proposed a new mitigation strategy, based on V2X and radar orientation to minimise the amount of interference in case of CCAP.

Finally, the complexity of such a multi-agent problem makes AI an interesting candidate for interference mitigation. In the last part of the thesis, Reinforcement Learning (RL) using Artificial Neural Network (ANN) is investigated for radar waveform parameters selection based on V2X data, and Graph Neural Networks (GNN) are used for radar line-of-sights estimations. Keywords: AI, Channel access policy, Cooperation, Genetic algorithm, Graph Neural Networks, Interference mitigation, Metaheuristic, Optimisation, Radar, Reinforcement Learning, Simulated annealing, V2X Résumé : À mesure que le nombre de véhicules équipés de systèmes avancés d'aide à la conduite (ADAS) augmente, il en va de même pour le nombre de véhicules équipés de radars automobiles. En effet, les études de marché estiment qu'en 2030, 50 % des véhicules seront équipés de radars automobiles. Cette croissance rapide du nombre de radars risque d'augmenter le risque d'interférences nuisibles. En effet, les spécifications des organismes de régulation (par exemple, l'ETSI) établissent des exigences en termes de puissance maximale et moyenne, mais ne prescrivent ni de formes d'onde radar spécifiques ni de politiques d'accès au canal commun (CCAP), rendant la coordination de l'utilisation de la bande de fréquence difficile. Actuellement, la réduction des interférences des radars automobiles repose principalement sur des techniques de traitement du signal et de randomisation des paramètres. Ces techniques fonctionnent bien aujourd'hui, en raison du faible nombre de radars, mais elles ne seront pas suffisantes dans une situation où la majorité des voitures seront équipées de radars. De nouvelles techniques de réduction des interférences deviennent importantes pour garantir le bon fonctionnement à long terme des radars et des systèmes ADAS de couche supérieure qui en dépendent dans cet environnement complexe. Cette thèse est consacrée à l'étude des capacités de réduction des interférences des méthodes actuelles dans de futurs environnements comportant beaucoup plus de radars, et à l'exploration de nouvelles méthodes utilisant la technologie Vehicle-To-Everything (V2X) comme canal de communication et l'intelligence artificielle (IA) pour minimiser les interférences et optimiser l'utilisation de la bande de fréquence. Comme aucune donnée n'est disponible pour étudier des situations de trafic routier à grande échelle avec des radars automobiles et des communications V2X, la première partie de cette thèse se concentre sur le simulateur en Python qui a été développé pour générer ces données. Le simulateur proposé vise à reproduire ce qui se produira avec différentes méthodes de réduction des interférences dans des scénarios réalistes. Cet objectif est atteint en utilisant des scénarios réalistes générés à l'aide du logiciel Simulation of Urban MObility (SUMO), tout en émettant des hypothèses raisonnables pour réduire le temps de calcul. L'objectif de la deuxième partie de la thèse est d'étudier le potentiel des techniques actuelles de réduction d' interférences dans un environnement sans CCAP. De plus, de nouvelles méthodes utilisant des données V2X ont été proposées. Ces méthodes basées sur l'orientation radar, ou basées sur des algorithmes génétiques (GA), ont été mises en oeuvre pour améliorer le processus de sélection des paramètres des formes d'onde radar. Dans la situation où un CCAP est mis en oeuvre, l'évitement des interférences devient plus facile à gérer. La troisième partie de cette thèse explore des stratégies simples de réduction des interférences en cas de CCAP et où la bande de fréquence est organisé en ressources orthogonales que les radars doivent se partager. En introduisant des ressources orthogonales, le problème est également traduit en un problème de K-coloration de graphe dynamique dont la solution optimale est approximée avec deux métaheuristiques proposées basées sur le recuit simulé (SA) et le GA. À partir de ces résultats, une nouvelle stratégie de réduction des interférences est proposée, basée sur le V2X et l'orientation des radars, afin de minimiser la quantité d'interférence en cas de CCAP. Enfin, la complexité d'un tel problème multi-agents fait de l'IA un candidat intéressant. Dans la dernière partie de la thèse, l'apprentissage par renforcement (RL) utilisant un réseau neuronal artificiel (ANN) est étudié pour la sélection des paramètres des formes d'onde radar basée sur les données V2X, et les réseaux neuronaux graphiques (GNN) sont utilisés pour les estimations de ligne de vue entre radars.
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 11 Figure 1.1: Growth estimation of the automotive radar market 2021-2030 from [119]
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 12 Figure 1.2: Radar principle
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 13 Figure 1.3: Car's automotive radars. Blind Spot Detection (BSD); Park Assist (PA); Rear Cross Traffic Alert (RCTA); Lane Change Assist (LCA); Rear Collision Avoidance (RCA); 360 • Assist (360 • ); Front Collision Warning (FCW); Auto Emergency Braking Pedestrian/Cyclist (AEB P/C); Adaptive Cruise Control (ACC); Auto Emergency Braking (AEB); Auto Emergency Steering (AES); Front Cross Traffic Alert (FCTA)
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 14 Figure 1.4: FMCW/PMCW/OFDM radar waveforms
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 15 Figure 1.5: Current state of the frequency allocation for automotive radars in Europe.
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 116 Figure 1.6: FMCW chirp frequency/time profile and parameters.
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 17 Figure 1.7: FMCW frame frequency/time profile and parameters.
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 18 Figure 1.8: Processing chain of a FMCW radar
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 119 Figure 1.9: ADC sampling of FMCW signal.
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 110 Figure 1.10: Range measurements from a FMCW chirp.
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 111 Figure 1.11: Example of 1st FFT result.
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 1112 Figure 1.12: Example of 2D FFT result. Target appear as a spot on the 2D image where the y-axis coordinate corresponds to the range on the target, and the x-axis coordinate corresponds to its speed. The vertical and horizontal lines crossing the spot are artifacts from the FFTs.
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 1 Figure 1.13: Different FMCW-FMCW interference effect. A low correlated interferer (left) produces a rise in the noise floor. The more correlated it is (mid), the more noise is added. In case of perfect correlation (right), interference and signal are indistinguishable, creating a false target.
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 114 Figure 1.14: Illustration of direct line-of-sight (LOS) (left) and indirect line-of-sight (ILOS) (right).
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 1 Figure 1.15: ETSI ITS Architecture. The access layer corresponds to the protocols used for wireless communications. The network & transport layer handles congestion control and other aspect of routing such dissemination and relay. Facilities correspond to the different types of messages that are generated (CAMs, alert messages such as DENM, Local Dynamic Map messages, ...). The applications levels correspond to the applications such as Lane Change Warning, that use the different types of messages.
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 1 Figure 1.16: See-around-corners capability of V2X.
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 117 Figure 1.17: CAM container.
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 21 Figure 2.1: Example of time domain mitigation: changing starting time, changing pulse timings, changing slope.
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 22 Figure 2.2: Example of frequency domain mitigation: changing the centre frequency of the signal.
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 23 Figure 2.3: Example of CDMA technique on frequency.

  ; -circular: the two components have the same amplitude and are out of phase by 90 • ; -linear: the two components are in phase and have the same amplitude.
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 25 Figure 2.5: The three states of polarisation, depending on the relative phase and amplitude of the magnetic field B and the electric field E.
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 26 Figure 2.6: Space domain mitigation by omitting certain scan range. If radar R1 is detecting interference from R2, it omits any signal coming from the direction where R2 is (the red area) to avoid interfering.
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 27 Figure 2.7: Thresholding of the signal to detect interference.
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 28 Figure 2.8: AI removing of interference on a range/doppler map.
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 211 Figure 2.11: Illustration of the hardware of a RadChat unit from [10].
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 212 Figure 2.12: RadChat Scheduling Radars scheme: FDM / rTDMA / cCSMA from [10].
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 402 State of the art with all the following characteristics: -Non convex objective function; -Non quadratic objective function; -Constrained objective function; -Communication graph not fully connected (only locally); -Communications are not synchronised; -Every agent has a different state variable x; -Convergence in few iteration.
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 215 Figure 2.15: Example of Markov Decision Process. Three states are represented by the three nodes S1, S2 and S3. The transitions to go from a state to another are represented by the edges, and the probability of the transition occurring is written on the edge. For example, from state S3, there is a 90% chance to stay in state S3, a 10% chance of transitioning to state S2, and reaching state S1 is impossible as there are no edges connecting S1 and S3.
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 2 Figure 2.16: OpenAI's taxonomy of reinforcement learning.
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 218 Figure 2.18: Message Passing Networks.
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 219 Figure 2.19: Principle of temperature in simulated annealing.
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 2205 Figure 2.20: Principle of Genetic Algorithms.
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 32 Figure 3.2: Example of the impact the decision time has on radars' context. r 1 's vehicle is communicating via V2X r 1 's parameters (represented by the blue area) at a given time (red line). The message is received by r 2 's vehicle (black arrow) which stores this information represented by the area of same blue colour). Shortly after (blue line), r 1 changes its parameters for new ones (yellow area). As this change has been communicated to r 2 , it still considers r 1 to be using the old parameters (hashed area) until the next V2X communication.
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 3593 Common channel access policy and orthogonal resources Common channel access policy and orthogonal resources3.3.1 PrincipleIntroducing a common channel access policy (CCAP) and orthogonal resources allows to translate the problem into a dynamic graph K-colouring problem. Orthogonal resources can be achieved by splitting the available radar band into multiple zones (in time and frequency) designed so that radars using one of these zones cannot interfere with radars using another zone. They will, however, surely interfere with radars using the same resource if they are in (I)LOS. An example of such band organisation is described in Figure3.3.
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 33 Figure 3.3: Example of radar band organisation into orthogonal resources. The radar band is split in 9 different resources of 333 MHz in frequency and 22 ms in time. Each resource can fit a radar frame whose bandwidth is lower than 333 MHz (to fit three resources in 1 GHz) , and frame time equal to 66 ms with a duty-cycle of 33.33% (to fit three resources in time).
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 34 Figure 3.4: Example of dynamic graph for interference mitigation. From timestep 1 (top) to timestep 2 (bottom), a new edge has appeared between nodes 2 and 4, forcing node 4 to change its color to keep a valid 3-coloring of the graph.
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 4 System stability 61 context and its estimation of others choice of resources and estimation of LOS.
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 41 Figure 4.1: Global architecture of the developed simulator. SUMO generates traces of its traffic simulations. This traces are loaded by the simulator and translated into a Python object (Road channel). From this object, Vehicle objects are generate as well as radars that are attached to them. Depending on the configuration file, each vehicle can have different radars, and each radar can use different kind of radar signal (waveform) or mitigation method. At each timestep, the simulator triggers updates for the road channel and the vehicles. These updates might include: changing the vehicles and radars' positions via the road channel, vehicles emitting or receiving CAMs via the Side Communication (SC) channel, radars running their mitigation method and changing their parameters. At every timestep, the Evaluator gathers data from the Radar channel, where all the data regarding radars (positions, angles, signals, (I)LOSs) is stored, and computes different metrics that are then saved into a dataset to be visualised.

  Figure 4.2 is a screen grab of a SUMO simulation where multiple cars are approaching an intersection. There are already existing scenarios available on the SUMO website, but custom scenario can be designed using the NetEdit app. Once a simulation is run in SUMO, the results are saved into an XML file. An extract of such a SUMO simulation results is presented in Figure 4.3. This file contains all the data about the different cars at each timestep of the simulation, the

Figure 4 . 2 :

 42 Figure 4.2: SUMO software. An intersection of four two-by-two lanes is displayed with different vehicles. The vehicles are simulated individually, with each of them having different desired speeds depending on the simulation's configuration file. At the end of the simulation, the vehicles' data (position, speed, angle, type, ...) through time is saved into a XML file.
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 43 Figure 4.3: Extract of XML file output from SUMO.

  Figure 4.4. The result gives us for each vehicle a list of other vehicles visible by the first one. As this computation is checking vehicle-to-vehicle LOS, it doesn't change with the number
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 44 Figure 4.4: LOS computation between vehicles. The direct line-of-sights between vehicles is computed by checking if the line connecting the centres of two vehicles is intercepted by any obstacle. In this example, V1 and V2 are in LOS, V2 and V3 too, but the LOS between V1 and V3 is interrupted V2.
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 45 Figure 4.5: LOS intersection with a convex quadrilateral. If a LOS is intersected by a convex quadrilateral (which is how cars are modeled in the simulator), it always intersects with one of the diagonals (blue dots) as well as the sides (red dots).As their is only two diagonals compared to the four sides, it is better to check intersection with each diagonals to reduce computation time.
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 46 Figure 4.6: Packet Reception Ratio (PRR, top) and End-to-end delay (EED, bottom) curves for LTE-V2X and IEEE 802.11p. The PRR curve gives the probability of a packet being received as a function of the distance between the emitter and the receiver. The EED curve gives the delay between emission and reception of the packet as a function of the distance between the emitter and the receiver. Performances for ITS-G5 (blue) are better than LTE-V2X (orange) in terms of PRR and EED.
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 47 Figure 4.7: IEEE802.11p PRR curves from field tests [101]. The PRR stays around 100% until the emitter and receiver are separated by 1 km, which is much higher than the simulation yielded in Figure 4.6.
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 410 Figure 4.10: Principle of reflection on surface for the simulator.

Figure 4 . 11 :

 411 Figure 4.11: Principle of Radar-to-Radar ILOS. V1's radar emits a signal, it bounces on the back of V3 at 180 • and is visible by V2's radar, making V1's radar and V2's radar in ILOS.
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 7 Interference mitigation process 79 by such models would greatly increase the simulation time.

Assumption 5 :

 5 The radar signals travel instantly.
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 412 Figure 4.12: Mitigation strategy principle. The V2X data gathered by the vehicle as well as interference data from the radar are stored in the context of the vehicle.When the model is called, it retrieve all the data that it needs from the context before computing new set of waveform parameters to send to the radar.

  . Highways are commonly used scenarios in V2X studies[START_REF] Bazzi | Co-channel Coexistence: Let ITS-G5 and Sidelink C-V2X Make Peace[END_REF][START_REF] Bartoletti | Impact of the generation interval on the performance of sidelink c-v2x autonomous mode[END_REF]. At the beginning of the simulation, two clusters of cars are slowly appearing at each end of the highway, totalling 151 vehicles. The cars are moving slowly (around 50 km/h), and the two clusters meet in the middle of the highway around 90 second after the beginning of the simulation. The slow car speed has been chosen to allow a higher traffic density.
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 4 Figure 4.13: 2-km highway scenario. Two flow of ≈75 vehicles starts at each end (cf left and right red rectangles). They meet in the middle after ≈80 s (cf middle red rectangles).

Figure 4 .

 4 Figure 4.14 is displaying the total number of vehicles and (I)LOS. Even though LOS are more dangerous as their interference power can be much higher, ILOSs represent the vast majority of all possible (I)LOSs.
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 4 Figure 4.14: 2-km highway scenario (I)LOS and number of vehicles through time.
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 4 Figure 4.15 shows the proportion of LOS/ILOS through time. When the two clusters are crossing, ILOS still represent 80% of all (I)LOSs.
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 4 Figure 4.15: 2-km highway scenario LOS/ILOS proportions trough time. The peak at the beginning is due to the low number of cars for the first seconds of the simulation. As more cars appear, signals have more opportunities to bounce around and create ILOSs.
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 4 Figure 4.16: 2-km highway scenario maximum amount of (I)LOS for a single radar.
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 4 Figure 4.17: 1-km looping highway scenario
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 4 Figure 4.18: 1-km looping highway scenario (I)LOS and number of vehicle through time.
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 4 Figure 4.19: 1v1 & 1v2 scenarios (not to scale). The upper left car is only present one the 1v2 scenario. All cars are motionless.
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 51 Figure 5.1: Noise floor increase (dBm) over time (s) for the baseline methods on 1km-highway scenario. NoBehaviour and RandomSignal have similar performances throughout the 3 min simulation with an average of 9.34 and 9.11 dBm nfi respectively. RandomSignalIfInt performs better with 6.68 dBm, and often reaches 0 dBm during the simulation.
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 5253 Figure 5.2: RandomSignalIfInt average nfi depending on the time between each mitigation method call
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 54 Figure 5.4: Principle of anticipation methods for mitigation interference. Data about other radars is used to simulated the frequency/time profile of the signals that will be received in the future. It is then used to test multiple new sets of parameters and select the one that leads to fewer interference.

estimate A from context 4 :* 18 :end for 21 :*

 41821 signals ← simulate signals received from radar in estimated (I)LOS Iterating over every possible value* 11: for each value ∈ getPossibleValues(param, params f ixed ) do 12: params tested ← copy(params f ixed ) for i = 0 to nb randomized do 17: *Randomizing all parameters that are not fixed or being currently tested* params tested ← randomizeOtherParams(param,params f ixed ) 19: add getInterference(params tested , signals) to intf ratios 20: add average(intf ratios ) to values int 22: Selecting the value with the best result for tested parameter* 24: params f ixed [param] ← selectBest(values int )

Figure 5 . 6 :

 56 Figure 5.6: Noise floor increase (dBm) over time (s) for anticipation methods on 1km-highway scenario, with (I)LOS prediction. BestOfAll still outperforms every other strategies with only 0.67 dBm of nfi, followed by BestRandomGA with 4.94 dBm, BestRandom with 1.75 dBm and the baseline RandomSignalIfInt with 6.68 dBm.

Figure 5 . 7 :

 57 Figure 5.7: Number of parameter changes over time for BestOfAll on the 1kmhighway scenario with (red) and without (blue) (I)LOS predictions.
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 155 Directional methods 103 with f min being the smallest starting frequency allowed and f max the maximum one (taking into account the signal bandwidth). As illustrated in Figure 5.8, with f min = 76 GHz and f max = 76.7 GHz, two radars facing each other with an orientation difference of 180 • would have starting frequency spaced by 350 MHz, which is enough to avoid interference in the case of LRR with a bandwidth of 300 MHz.

Figure 5 . 8 :

 58 Figure 5.8: DirectionBasedFrequency function for f min =76 GHz and f max =76.7 GHz. Having an orientation difference of 180 • leads to a difference in starting frequency of 350 MHz which is enough to avoid interference for 300 MHz bandwidth FMCW signals.

Figure 5 .Chapter 5 . Methods without common channel access policies Algorithm 9 1 :

 5591 10 as well as the BestRandomGA method with 106 DirectionBasedClustering procedure getNewParameters(context,my_radar)

Figure 5 . 10 :

 510 Figure 5.10: Noise floor increase (dBm) over time (s) for oriented methods on 1km-highway scenario. Only starting frequency is changed by the method. Direc-tionBasedClustering performs the best with 1.39 dBm of nfi, followed by BestRan-domGA with 1.65 dBm and finally DirectionBasedFrequency with 1.72 dBm.

Figure 5 . 11 :

 511 Figure 5.11: Noise floor increase (dBm) over time (s) for oriented methods on 1kmhighway scenario. Other parameters are randomised. DirectionBasedClustering is the best performing with 1.36 dBm of average nfi, followed by DirectionBasedFrequency with 1.56 dBm and BestRandomGA with 1.65 dBm.

Figure 5 . 12 :

 512 Figure 5.12: Noise floor increase (dBm) over time (s) for oriented methods on 1kmhighway scenario. Other parameters are chosen by anticipation method.

Figure 5 . 13 :

 513 Figure 5.13: Noise floor increase (dBm) over time (s) for oriented methods (other parameters randomized) on 1km-highway scenario with 20% NoBehaviour radars.

Figure 5 . 14 :

 514 Figure 5.14: Chirp interleaving principle. Different radars (represented by different colors) can use the same part of the radar band and still not interfere as their chirps are interleaving with each other.

Figure 6 . 1 :

 61 Figure 6.1: Radar band sharing for FMCW36. The different colours correspond to different resources.

Figure 6 . 2 :

 62 Figure 6.2: Noise floor increase (dBm) over time (s) for the baseline methods on 2km-highway scenario.

1 :estimate A from context 4 :

 14 procedure getNewParameters(context, res current ) get radars in (I)LOS from A: r (I)LOS 5:

Figure 6 . 3 :

 63 Figure 6.3: Example of colouring graph with 3 radars, 2 colours and 3 timesteps with the following adjacency matrices (denoted with the dotted lines):A 0 = [[0, 1, 0], [1, 0, 0], [0, 0, 0]] A 1 = [[0, 1, 1], [1, 0, 0], [1, 0, 0]] A 2 = [[0, 0, 0], [0, 0, 1], [0, 1, 0]]. By using the order [R 1 ,R 2 ,R 3 ] at the start, the shortest path for R 1 is choosing colour 1 and keeping it as there is no conflict. The shortest path for R 2 is then to pick colour 2 to avoid conflicting with R 1 at timesteps 1 and 2. Finally, the shortest path for R 3 is to chose colour 2 until timestep 2 to avoid conflicts with R 1 , then change to colour 1 to avoid conflicting with R 2 . These paths are denoted by the thick red arrows. In total, this solution yield 0 conflict and 1 colour change.
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 5 Optimal share of the band 123

Figure 6 . 6 :

 66 Figure 6.6: A neighbour of a solution is found by applying randomly one of 4 different actions. From left to right: changing the order of a gate by selecting a radar and moving it earlier in the order; deleting a gate; adding a random gate; swapping a gate to another timestep.

Figure 6 . 7 :

 67 Figure 6.7: Example of Position-based Crossover Operator (POS). C1 is built by copying a random set from P1 into C1, and filling the blanks following the order of P2.

Figure 6 . 8 :

 68 Figure 6.8: Example of Reverse Sequence Mutation (RSM). A random section of the order is reversed.

Figure 6 .

 6 Figure 6.11: OBBS principle. The two radars (red and blue) are facing different directions allowing them different sets of resources from the 24 existing ones. With a 180 • margin, both radars have access to 12 resources, overlapping for 3 of them.

Figure 6 . 14 :

 614 Figure 6.14: Noise floor increase (dBm) over time (s) for OBBS with and without adapted margin on 2km-highway scenario

Figure 6 . 16 :

 616 Figure 6.16: Noise floor increase (dBm) over time (s) for OBBS with ellipsoidal ILOS prediction

Figure 7 . 3 :

 73 Figure 7.3: Actions taken sampled through time for three different runs. The first part represents 100000 random actions for the exploration phase.As soon as the exploration phase ends, every network converges towards always using the same action (around 0.5 for the light blue run, 1 for the others). This makes the radar always pick the same starting frequency whatever the parameters of other radars in the V2X range.

Figure 7 . 4 :

 74 Figure 7.4: Average interference ratio for different starting frequencies yielded by Monte Carlo simulation. The blue curve is the actual results, the red curve is its moving average. The expected amount of interference reduces slightly for starting frequency values nearing the extremes.

Figure 7 . 5 :

 75 Figure 7.5: Extraction of data-point for GNN. First, only radars in the centre 1-km are selected. Then, each radar generates nodes made from itself and other radars in a radius of 500m.

Figure 7 . 6 :

 76 Figure 7.6: Results of the best GNN for (I)LOS prediction, with the ROC curve (top left), the precision/recall curve (top right) and the F1 score (bottom). The Precision/Recall curve indicates that the network struggles to identify (I)LOSs as the precision is only 70% with the low recall, and quickly drops when the recall is increased. The F1-score curve also shows that the best classification threshold is one, which would just classify all radars as being in (I)LOS.

Figure 7 . 7 :

 77 Figure 7.7: GNN (I)LOS prediction on a 2-km highway scenario sample. The radar represented by the black square is doing the prediction. Circle are radars not in (I)LOS, crosses are radar in (I)LOS, radars in green are predicted not to be in ILOS, and the one in red are predicted to be in (I)LOS. The radar predicts that every other radar surrounding it, and in front of it in opposite lanes are in (I)LOS.

Figure 7 .

 7 Figure 7.8: (I)LOS distribution in 2-km highway scenario. The picture is obtained by gathering the relative positions of every radar whenever they are in (I)LOS, and plotting the resulting density. A red area means that there are quite often radars in (I)LOS in this area. Radars in (I)LOS are in majority present around the victim radar and in front on the opposite lanes.

Figure 7 . 9 :

 79 Figure 7.9: GNN ILOS prediction on a 2-km highway scenario sample. The radar represented by the black square is doing the prediction. Circle are radars not in (I)LOS, crosses are radar in (I)LOS, radars in green are predicted not to be in ILOS, and the one in red are predicted to be in (I)LOS. Similar to results predicting (I)LOSs, the network considers that every surrounding radar is in ILOS.

Figure 7 . 10 :

 710 Figure 7.10: Loss curve during GNN training. Throughout the training, the loss spends long periods of time not decreasing, with some sharp decreases sometimes.Each period where the loss stagnates corresponds to different behaviours of the GNN: considering every radar to be in ILOS, then none of them, then only the ones that are nearby.

Figure 7 . 11 :

 711 Figure 7.11: One sample of the custom dataset. One victim radar is placed at (0, 0) (red rectangle), 6 other cars/radars (light blue) are randomly generated and ILOSs (red lines) are generated to compute radars in ILOS (red outlined rectangles).

Figure 7 .

 7 Figure 7.13: GNN ILOS prediction on six custom dataset samples. Compared to the GNN on the simulator dataset, no clear pattern is emerging such as predicting all nearby radars as being in ILOS. This can be seen by looking at the top right sample for which the three closest radar are correctly identified as not being in ILOS.

  

  

  

  

  

  

  

  

  

  

  = t reset + t dwell : the time during which no signal is emitted t chirp = t ramp + t of f : the total time of a chirp n chirp the number of chirps emitted within a frame (usually a power of 2 e.g. 512 or 1024) t f rame

	Parameter Description
	f 0	the starting frequency of the chirp (76-81 GHz)
	B	the bandwidth of the chirp (hundreds of MHz)
	t start	the starting time of the signal
	t settle	the time necessary for the ramp to be in its linear state, no
		samples from the ADC are done during this phase (few µs)
	t f f t	the time during which samples are drown by the ADC (tens
		of µs)
	t ramp	= t settle + t f f t , the total time of a ramp
	t dwell	idle time between chirps (few µs)
	t reset	the time needed for the ramp generator to reset before the
		next chirp (few µs)
	t of f	

Introduction to automotive radar interference mitigation networks

  , with better range, reliability, spectral efficiency and backward compatibility with IEEE 802.11p already deployed. The outcome of such study is the new IEEE 802.11bd standard.

	The alternative technology to IEEE 802.11 is C-V2X (Cellular V2X). Contrary
	to 802.11 based on WLAN technology, C-V2X is based on the 3GPP cellular network
	technology (C-V2X is a generic term designating 4G LTE-V2X sidelink release 14
	or 5G NR-V2X). It has been promoted by the 5G Automotive Association (5GAA).
	It is designed to operate in different modes: Device-to-Device (V2V / V2I) and
	Device-to-Network (V2N).

Two technologies are currently competing for the V2X access layer, IEEE 802.11p and C-V2X. The IEEE 802.11p standard is an evolution of the well known and used WiFi IEEE 802.11a standard. It enables direct Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications as a WLAN (Wireless Local Area Network). The work surrounding this standard started in 2004 with its first draft and was officially completed in 2010. Since 2018, the Next Generation V2X group was set up by IEEE with the goal of providing evolution paths for IEEE-based IEEE 18Chapter 1.
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	-Specific polarisation following the Radar location (frontal, rear, side) (15 dB).
	2.3.2 IMIKO
	The Interference Mitigation by Cooperation in Radar for Autonomous Electric Cars
	(IMIKO-Radar) project [112, 106] is a publicly funded project by the German Fed-
	eral Ministry of Education and Research, started in 2018. The goal of this project
	is to investigate the mutual interference potential between automotive and road
	infrastructure radars as well as cooperative methods and solutions for interference
	mitigation.
	The mitigation strategies selected by the IMIKO project after their research
	were the following, ordered from the highest potential mitigation to the lowest:
	-Modified Radar Mac with central control;
	-Radar network with central server;
	-Compass method in world coordinates;
	-Cognitive radars with communication skills;
	-Analyse before measure;
	-Random timings;
	-Instant Chirp interruption.
	dB);
	-Detect interference and change transmit frequency range of chirps (up to
	infinity dB);
	-Using pauses of random length between chirps or pulses (few dB);
	-Application of driving direction specific pre-defined frequency band separation
	(up to infinity dB for same driving direction, nothing for crossing traffic);
	-Detect interference and repair Rx results (20 dB);
	-Using random sequence of chirp types (Up, Down, Cw chirps) (few dB);
	-Digital Beam Forming (few dB);
	-Detect interference and change timing of transmit chirp or pulses (large num-
	ber of dB);

  replay buffer D, τ << 1 for each iteration do for each environment step do Playing and entire 'game' and recording in memory Observe state s t and select a t ∼ π(s t ) Execute a t and observe next state s t+1 and reward r t = R(s t , a t ) Store (s t , a t , r t , s t+1 ) in replay buffer D for each update step do Can be done in batches sample e t = (s t , a t , r t , s t+1

Chapter 2. State of the art Algorithm 2

  Deep Deterministic Policy Gradient. initialize policy network parameters θ, Q-function parameters φ, replay buffer D Set target parameters equal to main parameters θ targ ← θ, φ targ ← φ for each iteration do for each environment step do Playing and entire 'game' and recording in memory Observe state s t and select a t ∼ π(s t ) Execute a t and observe next state s t+1 and reward r t = R(s t , a t ) Store (s t , a t , r t , s t+1 ) in replay buffer D for each update step do Can be done in batches sample e = (s, a, r, s ) ∼ D Compute targets:

Algorithm 3

 3 Soft Actor-Critic. initialise policy network parameters θ, Q-functions parameters φ 1 and φ 2 , replay buffer D Set target parameters equal to main parameters θ targ ← θ, φ targ ← φ for each iteration do for each environment step do Playing and entire 'game' and recording in memory Observe state s t and select a t ∼ π θ (•|s t ) Execute a t and observe next state s t+1 and reward r t = R(s t , a t ) Store (s t , a t , r

t , s t+1 ) in replay buffer D for each update step do Can be done in batches sample e = (s, a, r, s ) ∼ D Compute targets: y(r, s ) = r + γ min i=1,2

Table 4 .

 4 1: SUMO parameters common to every scenario.

		Value
	Car width	1.8 m
	Car length	5 m
	Timestep size	0.1 s
	Car accel	2.6 m/s 2
	Car decel	4.5 m/s 2
	Driver σ	0.4
	Car-Car minGap	2.5 m
	Lane width	3.12 m

Table 4 .

 4 2: Data contained in CAM messages CAM's radar data contains the information summarised in Table 4.3.

	4.5. Radar channel

Table 4 .

 4 3: Data contained in the "Radar data" part of the CAM messages
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  while nb generation < max generation and intf best < intf objectif do child 1 ← half of its parameters from parent 1 , the rest from parent 2 params best , intf best ← selectBest(pop, intf pop )

		5.4. Anticipation methods	97
	1: procedure getNewParameters(context,params current )
	2:	*Initialisation*
	3:	estimate A from context Algorithm 8 BestOfAll
	4:	signals ← simulate signals received from radar in estimated (I)LOS 1: procedure getNewParameters(context)
	5:	params best ← params current
	6:	intf best ← getInterference(signals, params best )
	7:	nb generation ← 0
	8:	pop ← generateRandomPopulation()
	9:	intf pop ← getInterferenceForPop(signals, pop)
	10:	
	11:	parents ← selectBestParentsPop(pop) // Selecting the best parents
	12:	pairs ← pairingParents(parents) // Pairing them randomly
	13:	children ← []
	15:	*Generating children from each pair*
	16:	
	17:	child 2 ← the opposite
	18:	*Introducing mutations*
	19:	if random < mutation prob then
	20:	child 1 ← randomise mutation size parameters
	21:	end if
	22:	if random < mutation prob then
	23:	child 2 ← randomise mutation size parameters
	24:	end if
	25:	add child 1 and child 2 to children
	26:	end for
	27:	pop ← parents + children
	28:	*Simulating the new parameters*
	29:	intf pop ← getInterferenceForPop(signals, pop)
	30:	*Always keep track of the best*
	31:	
	32:	end while
	33:	return params best
	34: end procedure

14:

for (parent 1 , parent 2 ) ∈ pairs do

  .1.

	Parameter Value
	BestRandom	
	intf objectif	0
	nb max	60
	BestRandomGA
	intf objectif	0
	pop size	12
	max generation	5
	mutation prob	0.3
	mutation size	2
	Table 5.1: Hyper-parameters used for anticipation methods results without (I)LOS
	prediction.	

Table 5 .

 5 LOS prediction for comparison (using the same hyper-parameters as before). The parameters used for DirectionBasedClustering are as follow: 2: Hyper-parameters used for DirectionBasedClustering method.

	intensity push

  Compared to WiFi, C-V2X is synchronous and divides the channel into a discrete

	Parameter	Value
	B	300 MHz
	ADC f s	60 MHz
	t ramp	20 µs
	t dwell	2 µs
	t reset	2 µs
	n chirp	512
	duty_cycle	0.5
	Table 6.1: Parameters used for FMCW36.

6.4. Recolour method 119

  

	Method	same waveform CCAP average nfi (dBm)
	NoBehaviour	12.03
	RandomSignal	11.76
	RandomSignalIfInt	11.47
	BestRandom	4.15
	BestRandom	2.67
	NoBehaviour	7.22
	RandomSignal	6.82
	RandomSignalIfInt	0.20

Table 6 .

 6 2: Noise floor increase (dBm) over time (s) for the baseline methods on 2kmhighway scenario. Using a CCAP allows even simple baselines such as NoBehaviour and RandomSignal to almost half their average nfi, but they are still worse than anticipation methods without CCAP. However, the RandomSignalIfInt baseline is outperforming every other method with only 0.2 dBm of nfi as the CCAP facilitate the search for a resource without interference.
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	RandomSignal RandomSignalIfInt
	K nfi (dBm) K	nfi (dBm)
	30	8.07	30	0.29
	24	9.73	24	0.60
	18	12.57	18	1.58
	12	17.25	12	4.98

Table 6 .

 6 3: Noise floor increase (dBm) over time (s) for the baseline methods on 2km-highway scenario with different values of K.

Table 6 .

 6 .[START_REF]An Introduction to Metric Spaces and Fixed Point Theory[END_REF], with α c being computed so that cost conf reaches cost end conf by the end of the cool-down phase. 4: Parameters used for the simulated annealing.

	Parameter	Value
	α	0.993
	cost edge	1
	cost end conf	2 * T
	cost init conf	0.001
	n iter	1000
	T end	0.001 * T start

6.5. Optimal share of the band

  

				133
	SA Results	Benchmark Method
	K Conflicts Changes Conflicts Changes
	0	6	179	159
	0	12	190	166
	0	14	203	177
	0	18	214	184
	0	23	226	196
	0	28	245	208
	0	38	263	219
	0	42	288	241
	0	53	307	252
	0	69	333	266
	0	84	368	292
	0	106	405	317
	0	126	449	352
	0	141	491	373
	0	165	554	416
	0	213	655	477
	0	293	767	536
	0	524	916	610
	0	1190	1148	707
	10	1086	1709	898
	22	2357	2664	1165

Table 6 . 5 :

 65 Results from the simulated annealing with the parameters described in Table6.4 for different numbers of available colours. The amount of recolouration in the solutions found by the metaheuristic increases exponentially when lowering the number of available colours K. Solutions found have no conflict except with K = 16 and K = 17.The best solution found for K = 36 has 699 colour changes, which represents an average of ≈4.6 colour changes per radar, or a colour change every 39 s.

	K Nb of Conflicts Nb of Changes
	36	0	699
	34	0	684
	32	0	770
	30	0	845
	28	0	811
	26	0	944
	24	0	1123
	22	0	1060
	20	0	1287
	18	123	1403
	16	1773	1679

Figure 6.9: Number of colour changes (log scale) in the best solution for different values of K (does not include solutions with conflicts).

Table 6 .

 6 6: Results from the genetic algorithm on the sliding window version with the parameters described in Table6.7 for different numbers of available colours. The solutions found have more re-colourations and more conflicts than the nonwindowed. The amount of re-colouration in the solutions found by the metaheuristic increases exponentially when lowering the number of available colours K. Most solutions found have no conflict until K <= 18

	Parameter Value
	W	10
	P op size	100
	p mutation	0.1
	cost edge	1
	cost end conf	2 * W
	cost init conf	0.001
	n iter	1000

Table 6 .

 6 7: Parameters used for the genetic algorithm.

  .8.

	Parameter Value
	a	200
	b	15
	c	40
	γ	0.9
	Table 6.8: Parameters of the ellipsoidal ILOS prediction

Table 6 .

 6 

	-6

9: Noise floor increase (dBm) over time (s) for methods presented in Chapter 6 on 2km-highway scenario.

Table 7 .

 7 1: Parameters pre-processing for reinforcement learning. Each parameters is scaled so that its value stays between -1 and 1.

	Parameter Pre-processing on the value v
	f start	mapped from [76e9,77e9] to [0,1]
	B	v[M Hz]/300
	n chirp	v/1024
	t ramp	v[µs]/100
	t reset , t dwell v[µs]/10
	t start	in seconds, relative to the starting time of the agent's frame
	speed	v[km.h -1 ]/300
	Position	relative position in meters, divided by a 1000
	FoV	v[ • ]/360

Chapter 2. State of the art
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end for

24:

S best ←getBest(listS)