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Modélisation du problème de Stefan instationnaire par la méthode des frontières
décalées: application au dégivrage

Résumé : Ce manuscrit présente une version enrichie de la méthode des frontières décalées (SBM)
appliquée aux simulations par éléments finis sur des problèmes à frontières libres et mobiles. Le modèle
étudié est le problème de Stefan, un modèle académique complexe pour la simulation de problèmes avec
fronts de fusion. Plus précisément, le problème physique étudié dans ce manuscrit est le problème de
fusion intervenant lors du dégivrage des avions. L’objectif est de développer des systèmes de dégivrage
électrique plus efficaces, un défi majeur pour l’industrie aéronautique. Dans le cadre du développement
de systèmes de dégivrage à résistance thermique, la modélisation par méthode à frontières immergées
est une alternative qui apporte de nombreux avantages. Dans cette catégorie de méthodes, la méthode
aux frontières décalées permet l’utilisation d’un seul maillage non conforme à la géomètrie où l’interface
physique est remplacée par une interface numérique dont la définition dépend des éléments du maillage
traversé par la véritable interface. La version d’ordre élevé proposée consiste à l’enrichissement de
la formulation faible discrétisée du problème dans sa formulation mixte, permettant une précision
d’ordre deux en espace sur la variable primale et son gradient, en temps et sur la position d’interface.
Le lien entre les fonctions tests P1 et P2, ainsi que les développements de Taylor sur les conditions
d’interface, du front physique à l’interface numérique, permettent d’obtenir une méthode précise sur
un maillage non conforme. Sans précautions, l’utilisation de la méthode des frontières décalées avec
fronts mobiles peut conduire à des instabilités qui peuvent se propager ou s’amplifier. Pour comprendre
ces phénomènes, une étude de stabilité est effectuée sur une linéarisation du modèle autour d’un état
stationnaire. Le modèle linéarisé est utilisé pour obtenir une relation de dispersion caractérisant les
modes de dispersion du modèle en fonction du choix de conditions aux bords. Des tests numériques
sont effectués pour démontrer la performance, la robustesse, la précision de la méthode ainsi que la
stabilité du modèle par rapport aux perturbations de l’interface et sur le champ de température.

Mots-clés : Méthode des Frontières Décalées, Interface Mobile, Problème de Stefan, Enrichissement
de Température, Analyse de Stabilité, Méthode des Éléments Finis
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Modeling of the unsteady Stefan Problem using the Shifted Boundary Method :
Application to de-icing systems

Abstract: This manuscript introduces an expanded version of the Shifted Boundary Method (SBM)
applied to a Finite Element Method designed to address problems with free and moving boundaries.
The method is applied to the Stefan model, an academic challenge employed to simulate phase tran-
sitions. More precisely, the physical phenomena studied in this manuscript is the melting problem
arising from the de-icing of aircraft. The objective is to get a better comprehension of these phenom-
ena and to develop more efficient electric de-icing systems using thermal energy, a major challenge for
the aeronautic industry. One of the main difficulties in the numerical simulation of the Stefan model
is the treatment of the moving interface, the phase-change front between solid and liquid water. The
moving boundary is defined using the Shifted Boundary Method (SBM), an embedded method that
enables the use of non-body-fitted meshes, preventing the need for remeshing steps at each displace-
ment of the interface and thus avoiding any problems that could arise from sharp geometries. The
expanded method consists of improving the finite weak formulation to be at least second-order accurate
by solving a mixed problem where both variables, the primal variable, and the flux, are solved. The
link between the test functions P1 and P2 and the proper utilization of Taylor expansions allows us to
achieve a fully second-order scheme in time, space, and for the interface position. Regarding the model
study, the heat flux is responsible for moving the phase-change front, and the motion of the interface
is derived from the Stefan condition. Since the interface is moving, some mesh nodes can switch from
one part of the domain to another. The discontinuous aspect of the thermal flux at the interface makes
the problem particularly delicate and can become a source of instabilities that can impact the solution
on the entire domain. To understand this, a linear stability analysis of the numerical scheme and of
the Stefan model is performed. The linear stability analysis provides an understanding of the behavior
of the model depending on the choice made for its boundary conditions. The linearization is used
to define a dispersion relation, which tells us about the stability or the dispersive nature of the wave
components of the equations and characterizes the dynamics of spatially oscillating modes. Numerical
tests are performed to demonstrate the performance, robustness, and accuracy of the method, as well
as its stability regarding perturbations in both the primal variable and the interface location.

Keywords: Shifted Boundary Method, Moving Interface, Stefan Model, Temperature Enrichment,
Stability Analysis, Finite Element Method
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Résumé en français

1 Contexte général et application

L’une des menaces les plus importantes pour la sécurité d’un avion en vol est la formation de
givre sur les parois de l’appareil ou sur ses composantes mécaniques. La formation de ce givre
est due à la solidification de l’eau en surfusion présente dans l’atmosphère, une eau liquide à
une température inférieure à la température de fusion. Cette eau est présente dans certaines
zones de l’atmosphère et se solidifie sous conditions givrantes (ex: condition de température
vérifiée sous le point de congélation) une fois en contact avec la surface de l’appareil [1]. Cet
état intermédiaire particulier entre liquide et solide est dû à la pureté de l’eau présente dans
l’atmosphère et à sa structure moléculaire, incapable d’achever le processus de nucléation pour
devenir solide. Pour assurer la sécurité en vol, les avions sont munis de systèmes de protection
contre le givre. Deux paradigmes existent:

1. Empêcher complétement la formation de givre en utilisant un système d’anti-givrage,

2. Autoriser la formation d’une fine couche de givre ensuite éliminée par un système de
dégivrage.

Dans le contexte d’étude de système de dégivrage, la conception de systèmes électriques,
basés sur l’utilisation de résistances chauffantes, permet un meilleur contrôle de la distribu-
tion des sources de chaleur et permet de réduire l’empreinte énergétique de ces dispositifs.
L’optimisation de systèmes de dégivrage, pour laquelle le recours à la simulation numérique est
essentielle, est un domaine de recherche actif pour les entreprises du secteur aéronautique. Il
s’agit d’un problème multi-physique instationnaire très complexe qui fait intervenir la présence
de fronts mobiles, comme le front de fusion par exemple, ce qui pose des difficultés majeures
pour la résolution numérique.

Dans ce manuscrit de thèse, les systèmes thermiques sont étudiés d’un point de vue académique
en explorant une méthode de frontières immergées récente : la méthode des frontières
décalées introduite par Main et Scovazzi dans [2, 3]. Le modèle mathématique étudié est le
modèle de Stefan [4], qui traite du changement de phase glace/eau liquide et du suivi du
front de fusion mobile. Les objectifs de cette thèse sont d’étendre la méthode des frontières
décalées à la simulation de problèmes avec interface mobile et d’étudier le problème de Stefan
en formulation mixte de manière à proposer une simulation d’ordre élevé à la fois pour la tem-
pérature et son gradient. La méthode de Nitsche est utilisée pour permettre l’imposition des
conditions aux limites dans la formulation faible. La formulation est également stabilisée par
l’ajout de termes de stabilisation, en utilisant approche standard, voir par exemple [5, 6, 7, 8,
9]. Le travail réalisé sur le suivi explicite de l’interface, la précision de la méthode et la stabilité
du front de fusion sont détaillés dans ce manuscrit de thèse.



2 Challenge numérique: une extension de la méthode des
frontières décalées

Les simulations numériques permettent de prendre en compte un grand nombre de scénar-
ios possibles de manière rapide et moins coûteuse que des tests en soufflerie [10] et sans les
risques associés aux essais en vol. Néanmoins, l’une des principales difficultés de ces simula-
tions numériques, en givrage/dégivrage, réside dans la conception du maillage de la géométrie
qui va présenter des fronts mobiles soit par l’apparition de formes de glace irrégulières ou soit
par l’apparition d’un front de fusion. Les méthodes dont le maillage épouse la géométrie né-
cessitent de l’adaptation de maillage et du remaillage (méthodes conformes) pour faire face
aux déplacements de frontières mobiles et permettre une imposition correcte des conditions de
bords. Ces méthodes ne sont pas complètement automatisées à ce jour. Dans la littérature, il
existe également des méthodes aux frontières immergées pour lesquelles le maillage est fixe et
ne suit pas la géométrie. Tout l’enjeu de ces méthodes est de proposer une prise en compte
suffisamment précise des conditions aux bords. Les différentes méthodes de frontière immergée
diffèrent par leur traitement des conditions de bord ainsi que par le traitement des éléments
intersectés par la frontière physique.

Dans ce travail, la méthode de frontières immergées utilisée est la méthode des frontières
décalées (Shifted Boundary Method - SBM) [2, 3]. L’idée de base est d’imposer faiblement les
conditions aux limites en utilisant la méthode de Nitsche [11] via des développements de Tay-
lor sur une frontière de substitution, définie par des arêtes/faces du maillage, issue d’éléments
intersectés par la véritable interface. Le modèle de Stefan, qui regroupe les problèmes à
frontière libre (où la position de la frontière est inconnue) et mobile, est le modèle de support
de cette étude. Il a été nommé d’après le physicien Joseph Stefan (1835-1893) et son travail sur
la formation de la glace dans les mers polaires [12]. L’équation de la chaleur est résolue dans
chacune des phases de l’eau. La condition de Stefan [4] relie la vitesse locale de l’interface à la
discontinuité du flux de chaleur. De plus, le modèle de Stefan est résolu dans sa forme mixte,
c’est à dire que le gradient de température est aussi défini comme une inconnue du problème,
et fait donc partie du système à résoudre. Cette formulation permet de définir une méthode
d’ordre 2 sur la température et son gradient.

Plus précisément, une méthode d’enrichissement sur la température est proposée de manière à
obtenir l’ordre 2 sur la variable primale et son gradient à partir d’une méthode éléments finis P1

tout en conservant un système linéaire de même taille. Sur un domaîne discrétisé les fonctions
de bases P2 dénotées tϕP2

i pxquiPN1 sont définies en fonction des fonctions de bases P1 dénotées
tϕP1

i pxquiPN2 , et des développements de Taylor sont utilisés pour récupérer une approximation
de la valeur milieux des nœuds originellement présent sur les éléments finis P2. Pour résumer,
l’enrichissement de la température consiste à définir une approximation de la température T
d’ordre 2 de la forme Th:

Thpxq “ Σ
i,sommet

Tiϕ
P2

i pxq ` Σ
k,milieu

Tkϕ
P2

k pxq . (1)

où k est un nœud milieu entre les nœuds de sommets i et j.

L’approximation (1) est remplacée par une définition où les fonctions de bases P2 “ tϕP2

i pxquiPN2

sont remplacées par une combinaisons linéaires de fonctions de bases P1 “ tϕP1

i pxquiPN1 . Les
valeurs milieux aux nœuds k sont remplacées par un développement de Taylor des nœuds aux
extrémités d’indices i et j.



Le résultat est une approximation de la température qui dépend aussi de la définition du flux
dénoté ici β. La définition suivante est ainsi obtenue:

Thpxq “ Σ
i,sommet

Tiϕ
P1

i pxq ` Σ
k,milieu de ri,js

1{2 pλ´1βj ´ λ´1βiq ¨ pxj ´ xiq ϕ
P1

i pxqϕP1

j pxq , (2)

ou λ désigne la variable de conductivité thermique.
La définition (2) est rendue possible grâce au choix de résoudre le problème de Stefan dans sa
formulation mixte, ce qui permet d’obtenir la valeur de β pour les degrés de liberté associés
aux éléments de maillage.

Un des principaux problèmes avec l’interface mobile présente dans le modèle de Stefan est
l’expansion d’une des phases du modèle, zone solide devenant liquide pour un modèle de dé-
givrage. Des nœuds présents dans la zone solide peuvent donc changer de zone à l’itération
suivante, et les solutions des pas de temps précédents ne sont donc pas disponibles pour cette
zone, bien que leurs valeurs soient nécessaires pour les schémas en temps. Dans ce manuscrit,
ces valeurs sont extrapolées en utilisant une résolution des moindres carrés par factorisation QR.
Cette méthode utilise un stencil de points défini en chaque nœud où une valeur est manquante,
et est composé des nœuds voisins les plus proches du nœud ou la valeur est reconstruite. Les
résultats numériques présentés dans le Chapitre 3 prouvent que cette méthode de reconstruction
permet de conserver l’ordre 2 défini par le schéma. Dans un premier temps, le Chapitre 3 pro-
pose des résultats pour des interfaces mobiles non discrétisées, concernant une interface plane
sur des domaines rectangulaires. Un cas test académique est également présenté, représentant
un bloc de glace semi-infini avec un déplacement du front dans la direction horizontale. La
méthode est également testée sur un domaine circulaire pour une interface définie par une
valeur de rayon pour permettre l’étude d’un cas avec déplacement bidirectionnel. La méthode
est étendue par la suite à des interfaces discrétisées dans le Chapitre 4.

Un second problème est engendré par le déplacement de l’interface: l’approximation de la vitesse
de déplacement du front de fusion. La condition de fermeture du modèle, appelée condition de
Stefan est discrétisée pour obtenir un schéma sur la position d’interface. Cependant, la vitesse
calculée doit aussi être approximée sur l’interface physique et non sur l’interface numérique,
l’interface numérique étant celle utilisée dans la résolution et où la solution est disponible. Une
autre méthode de reconstruction est utilisée pour obtenir une approximation du saut du flux sur
le véritable front de fusion, approximation qui elle aussi ne détériore pas l’ordre de convergence
de la méthode établi par l’enrichissement de la température. Pour ce faire, une valeur de part
et d’autre de l’interface est calculée dans chaque phase du modèle.

Le dernier point numérique concernant le modèle de Stefan est le type de conditions imposées
à l’interface, une zone commune à deux sous-domaines représentant des éléments physiques dif-
férents (eau et glace). Numériquement, des conditions de sauts et de moyennes sont employées.
Ces conditions sont imposées dans la matrice du système linéaire en dédoublant les nœuds de
maillage présents le long de l’interface de substitution. Cette approche est réinitialisée lorsque
le front de fusion se déplace et rencontre de nouveaux éléments du maillage. Il est impor-
tant de prendre des précautions, car le déplacement du front de fusion peut modifier l’ordre
d’identification des éléments traversés par l’interface physique. Lorsque de nouveaux éléments
sont ajoutés à la zone définissant les éléments coupés par l’interface physique, ces nouveaux
éléments peuvent apparaître n’importe où le long de l’interface.

La position des nœuds à l’interface lors de l’itération précédente doit être conservée pour per-
mettre, si ces nœuds sont toujours présents, la redistribution de leurs valeurs sur la nouvelle
position de l’interface numérique. En cas de nouveaux nœuds le long de l’interface de substitu-
tion, la méthode précédemment expliquée est utilisée pour reconstruire les valeurs manquantes.



3 Discontinuité à l’interface et stabilité

La formulation mixte est choisie pour fournir une meilleure précision sur le saut de flux utilisé
pour déterminer la vitesse de déplacement de l’interface. Dans ce manuscrit de thèse, la stabil-
ité des simulations représentant un changement de phase de solide à liquide et la configuration
dans laquelle elles sont stables ou non est étudiée. Lorsque l’interface est discrétisée comme un
ensemble de nœuds, le calcul de la vitesse sur ces nœuds peut engendrer des oscillations sur la
position de l’interface et potentiellement impacter tous le domaine de résolution. D’un point
de vue numérique, la stabilité de la méthode exprimée dans [13], article publié issu des travaux
de cette thèse, est étudiée pour la méthode e-SBM appliquée aux fronts mobiles. Plus précisé-
ment, une étude sur le déplacement d’un front perturbé ainsi qu’une perturbation sur le champ
de température est menée. L’analyse est effectuée sur les équations du problème de Stefan
(approche continue) ainsi que sur la formulation variationnelle proposée (approche numérique).
La linéarisation du modèle de Stefan est utilisée pour définir une relation de dispersion, qui
caractérise la stabilité et la nature dispersive ou non des composantes d’onde du modèle autour
d’un état stationnaire. L’idée principale de cette étude est d’examiner l’opérateur linéaire issu
de l’équation autour d’un état stationnaire connu.

Une fois que l’EDP est linéarisée, il est alors possible d’obtenir une relation de dispersion.
Plus précisément, cette relation de dispersion caractérise les modes d’oscillation spatiale du
problème linéaire à partir d’un état stationnaire. L’analyse de stabilité est effectuée sur des
configurations 2D, et sur le modèle de Stefan adimensionné pour permettre une meilleure in-
terprétation des résultats. Le processus d’adimensionnement du modèle de Stefan ainsi que
celui des conditions aux limites est développé comme étape préliminaire essentielle à l’étude de
stabilité.

L’étude réalisée en Chapitre 4 a démontré que la méthode e-SBM développée et appliquée au
modèle de Stefan dans un contexte de fusion de l’eau est stable, et qu’une perturbation à
l’interface ou sur le champ de température ne se propage pas dans le domaine et se dissipe
au cours du temps. La même conclusion a été faite sur les équations du modèle continu
montrant que le schéma numérique utilisé conserve les propriétés du modèle continu. Plusieurs
cas tests avec différentes géométries d’interface démontrent ces résultats dans le dernier chapitre
de cette thèse. Un front perturbé avec une géométrie complexe et sur un domaine circulaire
retourne à un état stationnaire sous la forme d’une interface circulaire après un certain nombre
d’itérations. Ce cas permet de démontrer le caractére stable et robuste de la méthode pour une
variété de géométries d’interface. Dans le cas de l’étude de stabilité sur la méthode numérique
l’ordre de convergence du modèle sur la décroissance de la perturbation a aussi été étudié. Les
résultats présentés en Chapitre 4 montre que l’ordre 2 est conservé.

Les travaux présentés dans ce manuscrit de thèse ont fait l’objet de plusieurs présentations lors
de conférences internationales. Un article a été publié et un autre est en cours de production
et sa finalisation et soumission sont prévues très prochainement. Ses différentes contributions
sont présentées ci-dessous.
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Normality is a paved road: It’s comfortable to walk, but no flowers grow on it,

Vincent Van Gogh.
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Introduction

1 Context

1.1 Icing threats and ice formation

One of the most important threats to the safety of an aircraft is the formation of ice, a
phenomenon called icing or icing threat. The formation of ice is due to the solidification of
supercooled water on the surface of the aircraft [1]. Supercooled water is water present in the
atmosphere at a physical state between liquid and solid. The temperature of the water is below
the freezing point (0°C) but the water stays liquid due to the lack of formation of ice crystals.
This particular state is due to the purity of the water present in the atmosphere and its lack of
ability to complete the nucleation process to become solid. When a supercooled water droplet
touches the aircraft’s surface, and when the surface is below freezing temperature the molecules
composing the droplet interact with each other (through the wave created at the impact with
the surface) allowing the formation of ice crystals and the solidification of the water droplet on
the aircraft. It is important to note that some droplets of water can get swept away along the
aircraft surface and freeze further than their point of impact with the aircraft.

Figure 1: Ice hazard zones in the atmosphere1

Two conditions are necessary for the formation of ice on an aircraft, [1]. They are called icing
conditions and are as stated as below:

1https://www.weather.gov/source/zhu/ZHU_Training_Page/icing_stuff/icing/icing.htm.
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1. The air temperature needs to be at 0°C or colder. Moreover an aircraft which has
passed in an area below freezing point can still have its surface below freezing point even
after moving to a hotter area. The most dangerous zone for an aircraft to flight in, is a
temperature zone between ´15°C and 0°C, see Figure 1.

2. The presence of supercooled water droplets in the atmosphere, quantity and size
being the main factors. The purer the droplets are the lower their freezing point is,
making an area between ´40°C and ´15°C still a potential zone of risk, see Figure 1.
Below ´40°C even pure water would solidify, due to the phenomenon of homogeneous
nucleation.

1.2 Adverse effects in flight

Figure 2: Adverse effects of icing on an aircraft2

Icing can cause multiple threats to an aircraft and they can be categorized into four main
categories [14], visible in Figure 2:

1. Increased drag

The drag is the force opposite to the motion of the aircraft that resists to the
forces imposed by the surrounding fluid, here being the air. When it comes to aircraft,
this type of drag is commonly referred to as aerodynamic drag. Aerodynamic drag is
a result of the interaction between the aircraft and the air molecules through which it is
moving. An increase in drag can impact fuel consumption and the overall performance of
the aircraft.

2. Decreased lift

Lift is the upward force that holds the aircraft in the air. It is mostly generated by
the wings. When an aircraft’s wing moves through the air, the specific shape of the wing
and the angle at which it meets the incoming airflow (angle of attack) cause the air above
the wing to move faster than the air below it. This difference in airspeed leads to lower
pressure above the wing and higher pressure below the wing, resulting in an upward force

2https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/lift1.html
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called lift. A decrease in lift can result in a loss of altitude or the inability to maintain
level flight.

3. Increased weight

The accumulation of ice on the surface of the aircraft can increase the weight of the
aircraft which can have multiple effects. The most dangerous ones are the ability to
increase altitude or to maintain it. Depending on the distribution of ice on the aircraft
surface it can also modify the center of gravity and impact the overall stability.

4. Reduced thrust

Thrust is the mechanical force created by the engines of the aircraft. It is the necessary
force used to move the aircraft forward, maintain its altitude, accelerate, change direction
and to take off. In the case of reduced thrust, it can lead to a loss of engine efficiency, a
reduction in the ability to climb to higher altitudes, such as the takeoff moment, and a
decrease in speed. All of these factors can ultimately affect the aircraft’s maneuverability.

Some of those adverse effects can cause minor problems such as an increase in fuel consumption
or loss of performance but in the worse cases it could lead to a loss of control and cause an
aircraft crash. One notorious tragic accident is the American Eagle Flight 4184, a domestic
flight between Indiana to Chicago in the USA on October 31, 1994. The aircraft encountered
severed icing conditions and due to the build up of ice, lost controlled and crashed into a field,
which caused the death of all the people on board, [15].

As referenced in the manual of aircraft ground de-icing/anti-icing operations of the International
Civil Aviation Organization in 2018 "Wind tunnel and flight tests indicate that ice, frost or
snow formations on the leading edge and upper surface of a wing, having a thickness and surface
roughness similar to medium or coarse sandpaper, can reduce wing lift by as much as 30 per
cent and increase drag by up to 40 per cent", meaning that icing threat is a high potential
threat for the safety of an aircraft and its passengers, [16].

1.3 Ice Protection Systems

Aircraft are required to obtain certification confirming their suitability for safe flight in icing
conditions. This certification depends on the airspace in which the flight would take place. For
instance, in the United States and for aircraft operating in European airspace, being FIKI
certified (Flight Into Known Icing) is a mandatory requirement for flights conducted in icing
conditions, and is even considered only as a minimum requirement. There are two types of
paradigms to be able to flight into icing conditions. One consists in preventing the formation
of ice and the use of anti-icing systems. Those systems prevent the formation of ice by the
generation of heat keeping the temperature of the surface above the freezing temperature. The
heat can be originated from electrical heaters, the engines’ bleed air or a chemical reaction
through a fluid-based system. The second option is to let the accretion of ice happen and to
remove it afterwards before it creates a problem for the aircraft (see Section 1.2) using de-icing
systems such as thermal systems, pneumatic boots systems or liquid based systems, see Figure
3. Four main categories of anti-icing/de-icing systems can be defined:

• Pneumatic systems

Pneumatic systems are de-icing systems which can be used only on the edge of the aircraft’
wings to remove the forming ice. On the leading edge of the airfoil pneumatic rubber
boots are inflates and deflates to break the ice, which then falls from the surface where it
was attached, see Figure 3(a).
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(a) Pneumatic de-icing systems (b) Bleed air anti-icing/de-icing
systems

(c) Thermal anti-icing/de-icing systems

Figure 3: Examples of anti-icing and de-icing systems3,4,5

• Bleed air systems

Bleed air systems consist in the redirection of the air coming from the aircraft’s hot
engines to the critical areas where we want to prevent the accretion of ice. Those type of
systems are used for the larger aircraft which possess turbine power. On smaller aircraft
it could affect the temperature of the aircraft’s engines (generally piston-powered), which
make those systems suitable only for bigger aircraft, see Figure 3(b).

• Thermal systems

Thermal systems use electrical heaters embedded in the plane’s structure to generate
heat. They can both be used as an anti-icing system and as a de-icing system and use
electricity as a source of energy, see Figure 3(c). De-icing thermal systems cost less energy
than anti-icing systems as they are not used constantly allowing the accumulation of a
small amount of ice on the surface of the aircraft.

• Liquid based systems

Fluid based systems use fluids called Freezing Point Depressant (FPD) fluids, [17]. In the
case of an anti-icing system an antifreeze liquid solution is used to prevent the formation
of ice. For a de-icing system the high pressure of the spray equipment (used for de-icing
while the aircraft is on the ground) and the de-icing fluid allow to remove ice. De-icing
fluids are based on ethylene glycol, diethylene glycol or propylene glycol which contain
water, corrosion inhibitors, wetting agent and dye (the color is used to differentiate the
fluid’s types). Anti-icing fluids have a similar composition but with the addition of a
thickener to stay longer on the surface and to have a longer period of time coverage.
There are four types of fluids categorized as follow:

– Type I : De-icing/Anti-icing fluids with a limited time of coverage

– Type II : Anti-icing fluids designed to stay on the aircraft during ground operation

– Type III : Anti-icing fluids similar to type II with shorter period of time coverage

– Type IV : Anti-icing fluids similar to type II with longer period of time coverage.

3https://www.aircraftsystemstech.com/2017/05/wing-and-stabilizer-deicing-systems.html
4Thomas Filburn, Anti-ice and Deice Systems for Wings, Nacelles, and Instruments, Springer, 2019.
5M. Pourbagian, W.G. Habashi, Aero-thermal optimization of in-flight electro-thermal ice protection systems

in transient de-icing mode, International Journal of Heat and Fluid Flow, 2015.
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Liquid based systems are a useful solution but do not guarantee full protection especially
under bad weather conditions like heavy rain or active frost.

In the context of more electric aircraft, thermal ice protection systems or Electro-Thermal
Ice Protection Systems (ETIPS) are a huge source of research and development. The use of
self-regulating heater elements allows more control and can be tailored to specific areas of the
aircraft.

In this thesis manuscript, thermal systems from a more academic perspective will be inves-
tigated, exploring recent methods for embedded simulations applied to the specific case of
ice/water simulations and the explicit tracking of mobile interfaces, such as a phase-change
front. The mathematical model studied is the Stefan Problem, describing phase-transition
models for free and moving boundaries. The problem is solved with an embedded method:
the Shifted Boundary Method introduced in [2, 3] and expanded in this manuscript
to the simulation of moving interfaces. Results on the explicit tracking of the interface,
the accuracy of the method, the stability of the model, and capacity of the scheme to handle
discontinuities at the interface will be presented.

2 Methods and Numerical challenges

(a) Body-fitted approach (b) Embedded approach

Figure 4: Body-fitted approach and embedded approach on the ice accretion on an airfoil6

Numerical simulations allow for the consideration of a multitude of possible scenarios without
the expenses associated with wind tunnel testing used to assess the effects of airflow on scale
models [10], and without the risks associated with real-life flight testing. Nevertheless, one
of the main difficulties of numerical simulations is the precision of the mesh on the sharp ice
geometry and its adaptation to the moving boundary, the melting front between ice and water.
Those method are referred to as body-fitted approaches, which require robustness and time
in the generation of the mesh to fit to the geometry properly. In Figure 4(a) the mesh has been
generated around the ice formed on an airfoil and edges of the mesh, which matches exactly
the geometry of the ice accretion. There exists different approaches that allow the use of non
body-fitted meshes, see Figure 4(b). Those methods are referred to as Immersed Boundary
Methods (IBM) or Embedded Boundary Methods (EMB).

6Pierre LAVOIE, Méthode de frontières immergées pour la modélisation du givrage en vol des aéronefs,
Thèse de l’Université de Toulouse, 2021
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In this manuscript, to avoid confusions, Embedded Boundary Methods (EBM) refers to any
methods associated with direct or continuous forcing techniques on non body fitted meshes.
The different EBM techniques differ by their treatment of the boundary conditions. After
reviewing some of the available methods on both body-fitted and embedded approaches used
for icing and/or moving boundaries problems, a description of the method considered in this
manuscript will be presented: the Shifted Boundary Method.

2.1 Body-fitted approach

Concerning the simulation of problems with moving boundaries some body fitted methods have
proven their robustness in the Lagrangian framework [18, 19, 20, 21], or in the Arbitrary La-
grangian Eulerian formalism [22, 23, 24, 25, 26, 27]. These body-fitted methods use mesh
deformations to match the interface displacement and require remeshing to handle large defor-
mations. Another approach developed in [28, 29, 30] consists of an anisotropic mesh adaptions
methods, which takes into account the anisotropic nature (non-uniform structural property) of
the problem. In the same range of idea the overset grid method presented in [31, 32] can also be
mentioned and has been applied to the unsteady Stefan problem in [33]. The method involves
multiple grids overlapping each other, moving with time, and covering the entire domain of
resolution to create a composite grid. resolution to create a composite grid.

In the specific area of icing simulations most of the numerical methods follow a sequential mode
referred to as a multi-step method:

1. Mesh generation

2. Solvers (airflow, droplets, accretion,...)

3. Geometry update (moving boundaries)

Step 1 and 3 require time to ensure a precise description of the new domain geometry and can not
be fully automated when large deformations arise. This process of adapting/moving/refining
the mesh can be time consuming, especially regarding highly parallel computations and complex
geometries, such as those found in ice accretion.

In the next section, we present a category of methods that enable the use of non-conforming
mesh discretization. This category provides an attractive approach for solving problems with
moving boundaries.

2.2 Embedded approach

Performing numerical simulations on systems with boundaries requires a precise definition of
the physical domain geometry and the tessellation of that domain can be a tedious task, es-
pecially when boundaries are moving. In this direction, Immersed and Embedded boundary
methods became a popular and active field of research, since Charles S. Peskin’s work in 1972
on simulating blood flow in the heart [34, 35]. The concept of immersed/embedded resolution
developed by Peskin in [34] that he adapted to the muscular heart wall in [36], involves embed-
ding the heart geometry within a cartesian meshed box, see Figure 5. The region outside the
heart is considered as a fluid region, allowing for the deformation of the heart to incoming and
outgoing blood flow. The boundary presented in his work is an internal boundary representing
the valves and heart muscle in a Lagrangian framework. A stencil of points txkukPN is used to
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discretized the boundary and is updated using an equation of motion. The equation of motion
is formulated to minimize the differentiation between fluid and non-fluid zones.

(a) Relaxation of the ventricle (b) Contraction of the atrium

Figure 5: Simulations of blood flow in the heart on an embedded cartesian grid from the work
of Peskin in [36]

The main advantage of any immersed/embedded method is to avoid explicit meshing of the
moving boundary or interface. They only require a fixed mesh on which the moving inter-
face/boundary must be considered. The main challenge is then to correctly and accurately
compute the moving interface or boundary conditions. Exhaustive reviews on EBM have been
proposed by Mittal and Iaccarino [37], Sotiropoulos and Yang [38] and Griffith and Patankar
[39]. EBM can be used on both structured or unstructured grids. Boundary conditions are
treated using either a continuous forcing technique [40, 41, 42, 43, 44], a discrete forcing
technique [25, 45, 46] or a cut-cells technique [47, 48, 49, 50, 51, 52].
These three techniques are detailed below :

1. The continuous forcing technique is mainly used for fluid-structure interactions, for
a body immersed in a fluid environment. The fluid equation is solved on a background
mesh, not conform to the immersed domain. The forces (pressure, viscosity, gravity,
thermal effects,...) exerted by the domain on the surrounding fluid are integrated into
the continuous fluid equation (ex: Navier-Stokes equations). These forces are updated at
every time step to incorporate the new position of the immersed boundary.

2. The discrete forcing technique has the same applications and concepts than the con-
tinuous forcing technique but differs from its imposition of boundary conditions on the
immersed body. In that context, the boundary conditions are imposed locally on mesh
nodes close to the immersed boundary using ghost cells. This technique is computation-
ally more efficient, with a simpler implementation and a more straightforward approach.
However, the accuracy of the method depends on the distribution of the nodes and stencil
chosen to impose the boundary conditions.

3. The cut-cell technique consists in the treatment of the mesh elements cut by the bound-
ary of the immersed body. The differentiation between the various cut-cell techniques lies
in the resolution of the PDEs within the cut elements and the imposition of boundary
conditions on them. A cut-cell method recovers the optimal accuracy of the underlying
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numerical scheme but, in practice, it is complex to implement and suffers from the so-
called "small cut-cell problems", particularly problematic in three dimensions. It provides
bad-conditioning and requires specific stabilisation, see for instance [53, 54, 55]. Strate-
gies have been proposed within the cutFEM context for embedded interface problems in
[50] and immersed interface method for elliptic equations, see [56].

Innovative methods have been proposed as alternatives, to avoid the need of intersecting the
embedded geometry and the mesh. Among those methods, one can find the ϕ-FEM based on
level-set (see [57] for Dirichlet conditions and [58] for Neumann conditions), the aggregated
unfitted FEM [59, 60], an immersed method for curved domains in [61] based on the
work in [62, 63], and the Shifted Boundary Method [2, 64, 65, 66, 67]. The Shifted Boundary
Method is expanded in this thesis and will be explained more in detailed in the next section of
this Introduction and in Chapter 1. A description of the other methods is available below:

(a) ϕ-FEM approach7 (b) Aggregated unfitted FEM8 (c) ROD method (FVM
approach)9

Figure 6: Visualization of various immersed methods and their approaches on handling the
immersed boundary

• The ϕ-FEM method is a finite element method using a level set function ϕ to represent
the boundary of the immersed body, see Figure 6(a). A good candidate is the signed
distance function defined as null along the boundary of the immersed body and positive
or negative inside the domain of resolution. The function ϕ is then integrated in the
definition of the PDE and the weak formulation obtained is also depending on ϕ. The
formulation to be solved is naturally ill-posed and need to be stabilized, with terms
depending once again of ϕ (ex: ghost penalization).

• The aggregated unfitted FEM is an enhanced FEM based on a cell aggregation tech-
nique originally designed for elliptic problems. The idea is to eliminate problematic De-
grees Of Freedom (DOF) by imposing constraints on the definition of the FE spaces. Two

7Seminario De EDP E Matematica aplicada, ϕ-FEM: A fictitious domain method for finite element metim-
mersed boundaryhods on domains defined by level-sets, M. Duprez, V. Lleras and A. Lozinski, 2023

8S. Badia, F. Verdugo, A. F. Martín, The aggregated unfitted finite element method for elliptic problems,
Computer Methods in Applied Mechanics and Engineering, 2018, https://doi.org/10.1016/j.cma.2018.03.022.

9SHARK-FV 2018 Conference, Gaspar J. Machado Presentation slides,
http://loubere.free.fr/SHARK_PRESENTATIONS/2018/Machado_SHARK18.pdf
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distinct FE spaces are defined. The first consists of interior nodes (blue nodes in Figure
6(b)) where none of the nodes belong to mesh elements cut by the immersed boundary.
The second one is constituted of outer nodes (red nodes in Figure 6(b)) where an ex-
tension operator is applied to incorporate the properties of the cut elements (aggregated
cells) into the numerical scheme. These properties can include forces, constraints, veloc-
ity, pressure, density, and more. This method was developed to overcome conditioning
problems in the matrix of the linear system associated with standard unfitted FEM.

• Immersed method for curved domains are a wide range of methods for curved do-
mains. One can cite the Reconstruction for Off-Site Data method (ROD) in [68].
It consists in considering a computational polygonal domain different from the physical
domain where the PDE takes place, see Figure 6(c). It is a Finite Volume Method (FVM)
using a polynomial reconstructions in a Least Square context on collocation nodes located
on the physical domain. The reconstructions are carried out on the mesh using data out-
side the computation domain, using information on the physical domain of resolution
instead. The method has been expanded for moving boundaries with the AROD method
in [63] (Adaptive Reconstruction for Off-site Data) by adding fitting conditions to the
formulation. One can also find the AROD-xy method, which combines fitting conditions
and least-square constraints of different types, as detailed in reference [63].

In the specific context of de-icing simulations, embedded methods have been proposed. A
common method involves combining an embedded grid technique with the level-set approach.
In reference [69], the level-set method is employed to model the evolving ice/air interface in
a 3D ice accretion code. The no-slip boundary condition (fluid velocity null at the solid-fluid
boundary) is imposed using a penalty term. The combination of the Level-Set method and
penalization imposition has also been developed in [70] to study ice-wall interactions. This
approach uses a linear spring collision model, and the velocity inside the solid is enforced
through penalization. Another example can be found in [71], where an ice shedding trajectory
model is discussed. In this case, a penalization term is once again employed to enforce the
no-slip boundary condition, and the Level-Set method is used to capture the interface of the
solid bodies.

For solid-liquid interactions, an embedded method applied to ice flurry flows has been developed
by Kosuke et al. proposing a Thermal Immersed Boundary-Lattice Boltzmann Method
(TIB-LBM) in [72]. The embedded method is used to satisfy the thermal boundary conditions.
It was introduced by Feng and Michaelides for fluid-particles interactions in [73, 74]. The
TIB-LBM has also showed its ability for the sedimentation of hot/cold particles in [75, 76].
Concerning the resolution of the Stefan problem itself some embedded methods have been
tested, for instance with the immersed interface/boundary method in [44, 77, 78, 79].

In the next section, the Shifted Boundary Method is discussed. The method will be expanded in
this manuscript to moving interfaces and will be referred as e-SBM (enriched Shifted Boundary
Method).

2.3 The Shifted Boundary Method

In this manuscript the embedded method used to deal with the moving interface is the
Shifted Boundary Method (SBM), introduced by Main and Scovazzi for Laplace and Stokes
equations in [2]. The method is modified to account for the moving interface representing the
phase-change front between liquid and solid water. The idea described in [2] is to weakly enforce
the boundary conditions using the Nitsche’s method [80] on a surrogate boundary Γ̃, defined
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Γ

Ω` Ω´

Γ̃

(a) Structured Mesh

Γ̃ Γ

Ω` Ω´

(b) Unstructured Mesh

Figure 7: Interface Γ and its surrogate interface Γ̃

by edges/faces of the background mesh, see Figure 7 for an example in 2D.
The SBM is derived from the work of Bramble et al. on the Boundary Value Correction
Method (BVCM) in [81]. The BVCM uses the projection method introduced by Nitsche in [11]
to define a finite weak formulation with a penalty coefficient to impose boundary conditions,
and verify the criteria of coercivity of the weak formulation. The domain of resolution Ω is
approximated by Ωh “ 8Ω Y BΩh, where BΩh is a piece-wise linear approximation of BΩ. A
Taylor expansion is then used to approximate the boundary conditions on the new boundary
BΩh. The idea of the imposition of boundary conditions via Taylor expansions was taken over
by Main and Scovazzi in [2] for the imposition of the boundary conditions on their surrogate
boundary.
As a matter of example, an arbitrary function f with sufficient regularity on a domain Ω,
and which possesses at least a derivative of order one, is chosen. If f satisfies the following
conditions (see Figure 7) on Γ :

JfKΓ “ f`
pxq ´ f´

pxq “ jT , (1)

with jT a given data and where J¨K is the jump operator on Γ (f` P Ω` and f´ P Ω´, see Figure
8), then an approximation of that condition can be deduced on Γ̃ using a Taylor expansion from
x P Γ to x̃ P Γ̃ as follows

JfpxqKΓ “ Jfpx̃q ` ∇ ¨ fpx̃qpx ´ x̃qKΓ̃ ` Op|x ´ x̃|
2
q,

ùñ Jfpx̃qKΓ̃ “ jT ´ J∇ ¨ fpx̃qpx ´ x̃qKΓ̃ ´ Op|x ´ x̃|
2
q.

(2)

The differences with the imposition of the two conditions are displayed below, conform with
Equation (1) in Figure 8.a), and embedded with Equation (2) in Figure 8.b).
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Physical Interface Γ

Ω` Ω´

f`pxq´f´pxq“ JfpxqKΓ “ jT
•

•

•

•

•

•

•

•

(a) Conform Imposition

Surrogate interface Γ̃ Physical Interface Γ

Ω` Ω´

Jfpx̃qKΓ̃ “ jT ´ J∇fpx̃q ¨ px ´ x̃qKΓ̃ ` Op|x ´ x̃|2q

•

•

•

•

•

•

•

•

(b) Embedded Imposition (SBM)

Figure 8: Differences between conform imposition and embedded imposition

An important difference between the SBM and the BVCM in [81] is the ability of the method
to be used for any type of boundary geometry. Indeed, the BVCM is developed for domain with
polygonal boundaries only. Nevertheless, one can cite the recent expansion of the method on
unfitted meshes with the CutFEM method by Burman et al. in [82]. The boundary value correc-
tion method and the SBM are both falling into the category of approximate domain methods.
As a non exhaustive list in the same category one can find the ϕ-FEM method [57, 58, 83],
the fictitious domain method [54, 84, 85], the Fat Boundary Method [86, 87] and meth-
ods with extensions of subdomains [88, 89].
In this manuscript, the SBM was the choice made to deal with the moving front. This choice
comes from the ability of the method to define numerical interfaces easily even for complicated
geometry. The principle of the method, applied to a moving interface (Stefan model) is to
recover an optimal accuracy of the interface conditions using Taylor expansions, where the ac-
curacy depends on the order in the development of the Taylor expansion, see Equation (2).

Concerning the definition of the surrogate interface, it is defined as one of the boundary of the
area created by the mesh elements cut by the physical interface. In Figure 9 an example in
2D for two different shapes of interface Γ is available. The surrogate is then a set of edges,
where only two options are possible, the right and left side of the cut elements area. For 3D
simulations the surrogate interface is a set of faces, and offer a wider range of choices for the
definition of the surrogate interface.
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(a) Flat interface (b) cos/sin shape in-
terface

Figure 9: Example in 2D of the identification of the elements cut by the physical interface

This strategy of shifting conditions has proven its robustness and accuracy for a variety of
problems, including Navier-Stokes [3], free surface flows [90], and solid mechanics [91], with
thorough analysis in [66] and [92] and mathematical analysis of the high-order version of the
SBM in [67]. The method has not been tested on problems with phase-change transitions and
is very recent in its development to moving boundaries, which is a computational challenge.
Nevertheless, one can mention the recent work done on the incompressible Navier-Stokes flows
with moving free-surfaces, where the nodes of the interface are moved using the flow velocity
[90], the method is called Weighted SBM or W-SBM.

Considering the Stefan model the interface is defined by a discontinuity in the heat coefficients
(specific heat, heat conductivity,...) and flux jump conditions. A formulation has been proposed
in [80] for the steady heat equation whereas, in this work it is the unsteady problem which is
considered, in which the front velocity is linked to the flux jump. The computation of this
velocity requires accurate computation of the temperature gradient. To improve the accuracy,
this gradient is considered as an unknown and the problem is proposed to be solved in its mixed
form. This allows, as proposed in [93, 94], to perform an enrichment of the temperature leading
to a quadratic approximation for both the temperature and the flux. In [95], the strategy has
been employed with the SBM for the steady Darcy problem to recover at least a second-order
accuracy for the primal quantity and its gradient.

Because of the discontinuity in flux at the interface (Stefan condition) and the moving front,
instabilities could appear that could propagate in the whole domain. To study, the behavior of
a perturbation at the interface (and on the temperature field), a linear stability analysis of the
e-SBM and the analytical model is performed in the last Chapter of this thesis. Such study,
has not been developed on the Stefan model yet for a melting configuration, but one can find
material on the subject for faceted growth with application to horizontal ribbon growth in [96,
97, 98], in [99] for a three dimensional solitary waves model, or in [100] for a high order 3D
method for the acoustic wave equation.

In this work, a new formulation for the unsteady Stefan model is provided that embeds the
jump conditions defined at the interface. The method solves the temperature field and the
gradient of temperature using a mixed formulation, and deals with the moving front and the
imposition of the boundary conditions with the Shifted Boundary Method (SBM). The stability
and robustness of the method are also detailed thoroughly. In the next section, the different
chapters and sections of this manuscript are outlined.
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3 Outline of the manuscript

In the first chapter of this manuscript all the elements necessary to implement the Shifted
Boundary Method are introduced. In the first place, the development of the finite element
method from both a mathematical and a numerical perspective is detailed. It enables the intro-
duction of the Galerkin method, used to discretize the equations of the model into their finite
weak formulation. In the following section, the distinction between a conform and an embed-
ded resolution is introduced, along with all the required definitions to impose conditions using
the Shifted Boundary Method. In the last section of this chapter, the Nitsche’s imposition
is defined, which allows to impose conditions weakly in the finite weak formulation.

In Chapter 2, a physical and mathematical description of the Stefan model is provided, which
serves as the model used to test the enriched SBM (e-SBM). The conform and embedded
schemes are compared in their construction to allow the reader a better understanding of the
differences between the two approaches. Two types of interface conditions are compared to
demonstrate their consequences in the resolution of the model and to determine the better-
suited choice. In the following section, the method employed to achieve a global second-order
accuracy in space, time, and for the interface location is introduced. The motion of the interface
creates an area with missing values in the expanding phase (for melting: water) which needs
to be handle with care. Handling this situation carefully is crucial to preserve the accuracy of
the method built within the scheme and will be addressed in the last section of this chapter.

In Chapter 3, numerical results demonstrating the accuracy of the method described in Chap-
ter 2 will be presented. Validation tests will emphasize the benefits gained through the enrich-
ment of the primal variable and the enhancement of the accuracy of the associated flux. The
method will also be tested for different types of interface shape to show the diversity of appli-
cation of the e-SBM. To demonstrate the ability of the method to track the position of the
front a simulation on a semi-infinite ice block is performed, that will show the preservation of
the accuracy with the reconstruction techniques introduced in Chapter 2.

In Chapter 4, a stability analysis on the Stefan model is performed to express the stable
modes of the model and the dispersive character of a perturbation at the interface and on
the temperature field with the use of the e-SBM. The interface is now discretized and more
complex geometries of interfaces can be handled. Only the case of a melting configuration will
be discussed. The stability analysis will be performed with a fully unstructured 2D motion, on
the dimensionless form of the model to allow a better interpretation of the results. It will
also demonstrate that the shape of the interface does not impact the resolution, emphasizing
the stability of the method.

Finally, a Conclusion Chapter will summarize the contributions of this work and its appli-
cations. Future work and perspective will also be discussed.
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Chapter 1

The Shifted Boundary Method : A
Finite Element Method

In this manuscript, numerical simulations are performed using the Finite Element Method
(FEM), a numerical method used for the resolution of systems of equations called PDE (Partial
Differential Equation). This method is an essential tool for all the work presented here. In order
to make the following content more accessible to a wider audience, the first section of Chapter
1 will cover fundamental concepts and key aspects of any FEM simulation. The development
of the method from its beginning to its industrial use will be addressed, making of the FEM a
huge source of research by its still recent development. The next section will be dedicated to the
principle of the method itself and its mathematical formulation. Then, the Shifted Boundary
Method (SBM) used to deal with non conforming mesh boundaries will be introduced. The
Chapter will end on the definition of the weak imposition and the method used to impose
conditions in the scheme : the Nitsche’s imposition.

1.1 The Finite Element Method

The FEM is a numerical method designed to compute an approximation of the solution of a
mathematical problem expressed by a system of Partial Differential Equations (PDEs). It
converts the initial system of PDEs into a finite weak form (or finite weak formulation) where
functions are defined in finite dimensional spaces.

1.1.1 Numerical development

The FEM was first developed for engineering purposes in the 1950’s for the Aerospace industry
by Boeing, following the development of new computers capable of solving more complex struc-
tural problems. The company has played an important role in the development of numerical
applications of the FEA (Finite Element Analysis), the mathematical aspect behind the
FEM. This advancement started by modeling airplane wings using triangular elements. How-
ever, the true numerical establishment of the method was done later on in the 1960’s, when
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analog computers were replaced by digital computers, which had the capacity to make thou-
sands of operations simultaneously compared to their analog counterpart, only able to store
a limited amount of data and which required specific knowledge to use them. At their time,
analog computers were not suitable to a large scale development to the industry, see Figure 1.1.

Figure 1.1: Vizualization analog computer VS digital computer10

When digital computers made their appearance allowing the visualization of results, more com-
plex problems were able to be solved, and the FEM became an accessible method to researchers
and engineers. The enthusiasm behind FEM simulations were so important that NASA un-
der United States government funding established a cooperative project to develop a unified
structural analysis program based on the FEA. Other companies were involved such as the
MacNeal-Schwendler Corporation (MSC), the Computer Science Corporation (CSC), the Mar-
tin Company (Martin Baltimore) and Bell Aerosystems in developing the FEA software known
today as NASTRAN (NAsa STructural ANalysis), see [101]. This software is considered as
the first full software dedicated to FEM and its applications.

It has later on been redeveloped by MSC for public usage, under the name
MSC/NASTRAN, to cover the lack of user support and error bug corrections initially present
within the original version of NASTRAN maintained by NASA. This version written in For-
tran is the one used nowadays, and is one of the reasons why most of FEM codes are still
largely developed in FORTRAN (FORmula TRANslation) as software translation is a very
long and difficult task.

The general development of the method to the industry is finally out in the 1980’s following
the development of graphic processing which enabled engineers to study colored stress contours
instead of looking at tabular outputs. Thanks to this advancement, the FEM became a tool
used for general product design, allowing engineers to visualize physical prototypes and simu-
late their structural behavior subject to outside physical events. Two main advantages are seen
by industries to choose FEM over other numerical techniques.

1. Being able to reduce physical prototypes;

2. Being able to consider multiple scenarios for the validity of a product or a system.
10https://guidancecorner.com/difference-between-analog-and-digital-computer/
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These two advantages are mainly coming from the visualization properties of the FEM, which
localizes element per element the behavior of the solution of the equations solved over a physical
domain.

1.1.2 Mathematical development

Figure 1.2: From left to right : John Argyris (1913 - 2004, Greece) - Ray W. Clough (1920
- 2016, USA) - Richard Courant (1888 - 1972, Germany/USA) - Alexander Hrennikoff (1896-
1984, Russia/Canada)

The development of the FEM is largely linked to the emergence of digital computations. Back
in 1950, only the biggest companies were able to afford computers robust enough to perform
these simulations, explaining why the FEM has such a big history in its development within
spatial and aerospace engineering, see [102].

The origin of the modern FEM is attributed to numerous researchers back in the 1950’s.
Professor John Argyris from both Imperial College, London, and the University of Stuttgart
formulated the classical force method for stress analysis, using matrix format notations.
The classical force method was developed to analyze the behavior of structures and can be
summarized as follow:

1. Discretization of the domain of resolution into smaller elements;

2. Definition of an equilibrium equation for each node of the discretization based on the
forces acting on the nodes;

3. Definition of compatibility equations to ensure that the displacement of each node is
compatible with the deformation of the elements of the mesh discretization;

4. Resolution of the system of equations (equilibrium and compatibility). The unknowns of
the system are the forces acting on the nodes and their displacement.

Argyris used matrices to explain the relationship between the forces and the deformation of
the material for selected nodes in the structure, see [103]. Subsequently, the resulting system
described the displacement as unknown values at designated nodes. This principle was named
matrix displacement method. John Argyris’s work is regarded as a foundational step in the
development of the finite element method, see [104].
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The idea of Argyris was presented by engineer Jon Turner [105], for a conference meeting
at Boeing, where the idea was to generalize Argyris work to a two dimensional problem with
elements being characterized by three nodes (current P1 FEM with linear triangular elements
in 2D).

Considering the development of the theoretical aspect, it is under the guidance of Professor
Ray W.Clough from the University of Berkeley that the idea was developed with a first paper
published in 1956 and entitled "Stiffness and Deflection Analysis of Complex Structures", see
[105]. Nevertheless, the term of "Finite Element Method" is only used four years later in his
next paper entitled "The Finite Element Method in Plane Stress Analysis", see [106], which
quickly became a reference. The concept was to allow the subdivision of a 2D structure into
individual elements where the solution is solved independently on each of them, to be assembled
later on, step by step into an overall structure preserving the initial conditions of the system.

Even if the overall method has been recently developed (compared to the History of Mathemat-
ics), it is important to note that some of the concepts present in the FEM can be associated
to researchers that have taken place long before the 1950’s. The FEM is considered a special
formulation of the mathematics-based Ritz method (1909), which has been later on studied by
Richard Courant (1943), but where his work could not expand further due to the lack of meth-
ods to solve large systems of equations, see [107]. The Russian-Canadian engineer, Alexander
Hrennikoff (1941) is often associated alongside Courant as a pionner in the development of
the FEM for his work on the lattice analogy (theory of elasticity) to model membranes and the
plate bending of structures, see [108] (see Figure 1.2 for portraits, no picture of Jon Turner is
available to the public). Important names such as Galerkin, Rayleigh, Trefftz and Liebniz
can be added to the list of people who worked on such variational methods, and which has their
names in some of the principle itself of the FEM. Even further back in time, the idea of solving
problems on a split surface was already present such as in ancient Greece. Archimedes of
Syracuse (287-2212 B.C) calculated the ratio of the circumference of a circle to its diameter by
approximating the shape of a circle using straight lines. The more straight lines were used, the
better the approximation was. This simple example shows that the development of computers
helped mathematicians to contextualize concepts already known before their time.

Then, it is important to acknowledge that the development of the FEM was possible, only
because its development happened alongside the development of computers and their capacity
to solve bigger systems of equations, and to store more data [101]. These problems of power
and storage are still a big issue for complex simulations, leading nowadays to the use of parallel
calculus and the emergence of quantum computers. In the next section, the principle of the
FEM is introduced and its concepts of local description, core idea of the method is described.

1.1.3 Principles

PDEs can be solved using numerical methods or analytical methods. Analytical methods are
only relevant for academic purposes and mathematical analysis, while numerical methods are
considered for engineering applications. FEM falls into the category of numerical methods. For
any PDE where the solution is wanted on a bounded domain Ω the principle is to approximate
the solution on a subdivision of that domain called mesh. The components of the mesh are
referred as elements, while the subdivision is called tessellation. The tessellation does not
have to be homogeneous i.e., that all of the elements of the mesh do not have necessarily the
same characteristic length. For example in Figure 1.3(a) using triangles for a 2D domain,
one can see that all the elements composing the mesh are of the same shape and size with
a well organized structures, while in Figure 1.3(b) all the elements are of different sizes and
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(a) Structured Mesh (b) Unstructured Mesh

Figure 1.3: Mesh Visualization - Comparison between an unstructured and structured mesh -
2D Simulation

with no specific organization in the structure. The solution of the considered problem is then
approximated on points defined independently on each of the elements composing the mesh.
The shape of the elements characterizes the simulation by the choice made for the position of
the nodes where the approximated solution will be calculated. Moreover, the number of points
defined the accuracy of the method.

The main idea of the FEM is to start from a local description, element per element with local
matrices which are then assembled into the global matrix describing the system of equations.
The first step consists of transforming the problem into its weak form also called weak
formulation and to associate a finite weak form defined on a space of approximation. To this
end, the finite dimensional approximated space needs to be determined first. The functions
spanning this space are called basis functions or shape functions. For a 2D triangular
resolution a classical choice is polynomial functions. The degree of the polynomial will depend
on the desired accuracy.

•
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• •

• •

•

• •
•
•
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•

•

P0 :“ t1u P1 :“ t1, X, Y u P2 :“ t1, X, Y,

XY,X2, Y 2u

P3 :“ t1, X, Y,XY,X2,

Y 2, XY 2, X2Y,X3, Y 3u

Figure 1.4: Basis functions and degrees of freedom for triangular elements - 2D simulation

As presented in Figure 1.4, triangular elements are a classical choice for a 2D simulation. The
number of nodes on each element is the same as the dimension of the space of approximation
Pk. Another frequent option for 2D simulations is the family of cubic elements, where their
version is presented in Figure 1.5 for Qk approximation spaces.

For 3D simulations, the most popular elements are prismatic, tetrahedral, pyramidal and
hexahedral elements. In Figure 1.6, the second-order Lagrange elements are presented. Black
nodes are degree of freedom naturally present within the mesh definition, white nodes are degree
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Figure 1.5: Basis functions and degrees of freedom for cubic elements - 2D simulation

of freedom associated to mid-point edges, and blue nodes are nodes located in the middle of the
cubic surfaces. When the grey nodes are not taken into account the elements are referred to as
serendipity elements, and only the nodes associated to the edge inter-connectivity between the
elements of the mesh are considered, see [109].

Figure 1.6: 3D Elements Lagrange, from left to right : Tetrahedral, Pyramidal, Hexahedral
and Prismatic element and their associated degree of freedom

Elements presented in Figures 1.4, 1.5 and 1.6, with test functions from a Pk space or Qk space
(k P N), are referred to as Lagrange elements i.e., only the properties of the basis functions
are considered. Other type of finite elements exist, Hermite elements are one of them. In
contrast to Lagrange elements the basis functions of Hermite elements also satisfy properties
for different orders of their derivatives, with the highest order of derivatives characterizing the
type of Hermite element being considered.

The characterization of an element besides the choice of the space defining the basis functions
is the position of the nodes within the element. Two elements with the same geometry will
not correspond to the same FEM if the position of the nodes is not the same, even with an
identical number of nodes. This number of Degree of Freedom (nbDoF) is characterized
by the size of the finite element space, see Definition (1.1) for an example of Pk and Definition
(1.2) for an example of Qk polynomials.

Lagrange polynomial elements, Pk :

Line nbDoF “ k ` 1 1D

Triangle nbDoF “
pk ` 1qpk ` 2q

2!
2D

Tetrahedral nbDoF “
pk ` 1qpk ` 2qpk ` 3q

3!
3D

(1.1)

where n! “
n

Π
i“1

i.
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Lagrange polynomial elements, Qk :

Line nbDoF “ pk ` 1q 1D

Square nbDoF “ pk ` 1q
2 2D

Hexahedral nbDoF “ pk ` 1q
3 3D

(1.2)

The basis functions of a Lagrange element are designed to satisfy the following properties.
Their numbers need to match the dimension of the considered space, see Equations 1.1 and
1.2 for an example. Then, each Lagrange basis function is associated to one of the degrees of
freedom of the element such that the following property takes place.

Let N be the dimension of the space of approximation considered, xi, i P t1, Nu, the set of
degrees of freedom of an element of the mesh and ϕi, i P t1, Nu, the set of functions generating
the space of approximation on that element. Then the functions ϕi, i P t1, Nu are called basis
functions for that element if they satisfy

#

ϕipxkq “ 1 if k “ i

ϕipxkq “ 0 if k ‰ i
. (1.3)

Computationally, the basis Lagrange functions are defined in two stages. First they are defined
on a reference element. This step is only performed once as the reference element is the same
for all elements of the standard mesh (mesh composed of only one type of element’s shape.).
For a 2D simulation and on a triangular mesh the reference element is the unitary triangle
{p0, 0q, p1, 0q, p0, 1q}. To obtain the basis functions on any element of the mesh, the basis
functions defined on the reference element are modified by affine transformation to correspond
to the position of any other element of the mesh, see Figure 1.7.

Figure 1.7: Affine transformation from the reference triangle to a mesh element, [110]

1.1.4 Variational formulation

Different methods exist to transform a continuous model into a discrete one. In this manuscript,
the most classical option and the one used in the following chapters is explained : the Galerkin
method. Instead of looking for an exact solution in an infinite dimensional space, an approx-
imated solution is defined in a finite dimensional space. For the sake of clarity, the method
is applied on an example, with Problem (1.4). For the formalism and the definition of the
inner-product between functions see Section 1.3.2.

The domain of resolution Ω is an open, bounded set of Rd (d P N˚), and the right-hand
side is a function g of L2pΩq. The problem to be solved consists of looking for a solution
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u P H1
0 pΩq :“ tu P L2pΩq,∇u P pL2pΩqqd| u “ 0 on BΩu such that

´∆upxq “ gpxq in Ω,

upxq “ 0 on BΩ.
(1.4)

To obtain the variational problem associated to Problem (1.4), v a test function is chosen in
H1

0 pΩq. The Problem (1.4) is then multiplied by the function v on both side of the equal sign
and integrated,

´

ż

Ω

v∆upxq dx “

ż

Ω

gpxqvpxq dx . (1.5)

The second step to obtain a valid variational problem consists of imposing the remaining bound-
ary conditions and in reducing the order of the differential operators of the integrated problem
(1.5), see [111]. Boundary conditions can be applied in two different ways. A strong im-
position is referred to a method where the test function v is chosen to satisfy the boundary
conditions of the system. On the opposite, the weak imposition is referred to conditions being
imposed through the variational form. This can refer to terms coming naturally from the
integration by parts (Green’s theorem), the Nitsche’s imposition (see Section 1.3), the addition
of penalty terms, and other techniques.

To properly modify Equation (1.5), the Green’s theorem is introduced. Different variations
of its definition are possible depending on the regularity of the functions and the domain of
resolution at stake. In the context of application of this thesis, Theorem 1 describes the rela-
tionship between a line integral (integral on a boundary) and a surface integral. The Green’s
theorem in (1.6) is defined for the case where the dimension d ě 2, and where one of the func-
tions (u or v) is taken with a compact support in Ω̄. This criterion ensures that the integrals
are defined even when Ω is not a bounded domain, see [112].

Theorem 1 (Green’s Theorem). Let Ω be an open set of class C1 of dimension d, and u, v P

C1pΩ̄q with u or v a function compactly supported in Ω̄. For j P J1, dK one has
ż

Ω

Bju v dx “ ´

ż

Ω

u Bjv dx `

ż

BΩ

u v nj dσ. (1.6)

The parameter nj “ n ¨ ej is the j-th coordinate of n, the outward unit normal vector on BΩ
in the canonical basis of Rd. The designation dσ is the measure used for the integration on the
boundary BΩ.

Remark 1. The idea behind the Green’s theorem is to observe than if a curve C represents an
oriented closed curve, then the integral of a function F on C represents the circulation of F
around C, see Figure 1.8(a).

C C

ą

D

(a) Visualization of the closed curve C (b) Visualization of the surface area D

Figure 1.8: Domain of resolution
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Theorem 1 allows to transform the line integral into a surface integral over the region inside C,
the surface D in Figure 1.8(b). On a physical approach, the Green’s theorem states that the
macroscopic circulation around the curve C is equal to the sum of the microscopic circulation
that is inside C i.e., the surface D in Figure 1.8, see [111] for more information.

The variational problem associated with Problem (1.4) is obtained using Theorem 1 on the
integrated problem (1.5) and is stated as follows :

Find u P H1
0 pΩq such that

@v P H1
0 pΩq,

ż

Ω

∇upxq ¨ ∇vpxq dx “

ż

Ω

gpxqvpxq dx, (1.7)

where the boundary term vanished as v P H1
0 pΩq.

A variational problem is often denoted through an abstract form.

Let

• apu, vq be a continuous bilinear form on H1
0 pΩq ˆ H1

0 pΩq such that

apu, vq “

ż

Ω

∇upxq ¨ ∇vpxq dx,

• fpvq be a continuous linear form on H1
0 pΩq such that

fpvq “

ż

Ω

gpxqvpxq dx.

Then, Problem (1.7) can be rewritten as follows

Find u P H1
0 pΩq such that

apu, vq “ fpvq, @v P H1
0 pΩq. (1.8)

Now that a valid variational problem has been defined, the Galerkin method which consists
of the approximation of Problem (1.8). The space of infinite dimension H1

0 pΩq denoted V
is approximated by a space a finite dimension Vh. More precisely, the standard Galerkin
method also called continuous Galerkin method consists of an approximation where the
space of approximation Vh satisfies Vh Ă V .

Find uh P Vh such that
apuh, vhq “ fpvhq, @v P Vh. (1.9)

Let N “ dim Vh be the dimension of the space of finite dimension Vh and tζiu1ďiďN a base
of functions such that Vh “ tζ1, ζ2, ..., ζNu. Then, Formulation (1.9) corresponds to a linear
system of equations of the form AU “ F . The matrix A, and second member F of the linear
system associated to (1.9) are defined by

Ai,j “ apζi, ζjq 1 ď i ď N, 1 ď j ď N,

Fi “ fpζiq 1 ď i ď N.
(1.10)

The approximation uh of the solution u to Problem (1.4) can be decomposed on the basis
tζiu1ďiďN as follow:

uh “

N
ÿ

i“1

uiζi (1.11)
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where the vector U “ puiq1ďiďN is composed of the value of uh on the DOF of each element of
the mesh discretization. For more details on the Galerkin method and the theory of application
of the FEM see [113].

So far, the concept of the Finite Element Method and how it allows to obtain an approximated
solution to a system of equations has been discussed. The order of the method has also been
introduced and Chapter 2 will expand this aspect by proposing a method allowing a second
order accuracy for both the primal variable and its gradient.

The FEM is a versatile tool, applicable to a lot of physical situations and which allows simula-
tions on complex geometries. An important aspect of the method is the choice made to impose
boundary conditions. In the next section, the method used to impose boundary conditions in
the context of non-conforming mesh boundaries is expressed. The proposed method falls into
the category of embedded approaches: the Shifted Boundary Method.

1.2 The Shifted Boundary Method

Performing numerical simulations on systems with boundaries requires a precise definition of
the physical domain’s geometry and the tessellation of that domain can be a tedious task,
especially when boundaries are moving. In this direction, Immersed and Embedded boundary
methods are a popular and active field of research, since Charles S. Peskin’s work in 1972 [34].
In this work, to avoid confusions, Embedded Boundary Methods (EBM) is referred to any
methods associated with direct or continuous forcing techniques on non body fitted
meshes. The main advantage of these methods is to avoid explicit meshing of the moving
boundaries or interfaces [34, 114, 115, 116, 117, 40]. Some body fitted methods have proven
their robustness in the Lagrangian framework [18, 19, 20, 21], or in the Arbitrary Lagrangian
Eulerian formalism [22, 23, 24, 25, 26, 27]. These methods use mesh deformations to match
the interface displacement and require remeshing procedures to handle large deformations.
This process can be time consuming, especially regarding highly parallel computations. In
contrast, EBM only requires a fixed mesh on which the moving boundary must be considered.
The main challenge of EBM is then to correctly and accurately compute the moving boundary
position and/or the boundary conditions. In Section 1.2 of this chapter, the Shifted Boundary
Method introduced by Main and Scovazzi for Laplace and Stokes equations [2] is described.
The method will be adapted in Chapter 2 to account for the moving interface present in the
Stefan model. The Shifted boundary Method will also be compared to the classical cut-cell
method, one of the most popular EBM used.

1.2.1 Principles

In the field of FEM, the mesh description appears as an essential part of any model. The choice
of the elements making the mesh will be used to define the type of basis/test functions employed,
which will also determine the accuracy of the method. One possibility for complex geometries
is to perform mesh adaptations around the areas where it is most needed. But, performing
mesh adaptations on a complex geometry can lead to the deformation of the elements in sharp
areas, as it can appear with the use of the cut cell method in Figure 1.9.

11https://www.karalit.com/docs/brochures/IBCFD_230915.pdf
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(a) Before Adaptation (b) After Adaptation

Figure 1.9: Cut-cell method applied around the geometry of an airplane wing11

The cut-cell method consists of solving the problem on a Cartesian grid for the majority of
the domain, and in the application of a specific treatment for the cells cut by the boundary
of the immersed body (interface, subdomain, phase-change front, shock, solid body,...). Those
cells are deformed to take into account the geometry of the boundary, see Figure 1.9. It is
precisely the adaptation process which can lead to issues in the resolution, especially in 3D.
The elements cut are changed into new ones, where only the part of the element outside of the
body is kept, meaning that the geometry of the considered body will defined the geometry of
the mesh elements in this area. It is often necessary to refine these elements after adaptation
to the boundary, which is referred to as the "cut-cell issue". The cut-cell method is a repre-
sentative example of the different problems that can occur when adapting a mesh to a specific
geometry. These problems include loss of accuracy, deformation of elements, time-consuming
post-processing methods, remeshing for time-dependent problems, and a loss of accuracy in
the geometry description. This problem becomes even more challenging when the considered
boundary is moving, especially in higher-dimensional problems. Even if countermeasures have
been found to solve those issues new areas of research are focusing on a different approach :
immersed/embedded resolution.

The choice of doing an embedded resolution appears as an interesting option to prevent those
types of problems in the first place. An embedded resolution consists of adapting the definition
of the boundary conditions instead of adapting the mesh to the geometry of the boundary. In
this range of methods, and for the work presented in this manuscript the Shifted Bound-
ary Method also called SB method or SBM is considered. The SBM consists of imposing
boundary conditions not as they are defined in the initial system on the physical boundary,
but by shifting the values to a surrogate boundary defined as edges in 2D or faces in 3D of
the considered mesh (see Figure 1.10 for an example in 2D). The method is a valuable asset
for solving time dependent problems with moving boundaries, which prevents to perform any
remeshing step at each displacement of the physical boundary.
The main concern to apply correctly the method is to prevent any reduction of the convergence
rate by doing a modification of the boundary conditions, which without adjustment are only
first order accurate. The other preoccupation is to define the surrogate boundary, a numer-
ical boundary that is conformed to the mesh discretization. There are different ways to define
the surrogate especially in 3D, and one of them is to use the closest boundary to the physical
boundary, using a closest-point projection algorithm, or a level set description of the boundary,
see [80].
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Figure 1.10: Visualization of a true/physical boundary Γ (red) and its associated surrogate Γ̃
(blue) conform to the mesh discretization12

1.2.2 Definition

The SBM can be summarized into two steps explained in details in [2]. In this section, the
method is explained in a context of problems with interfaces which are boundaries embedded
inside the domain of resolution, see Figure 1.11.

Γptq

Γ̃1ptq

First choice

Γ̃2ptq

Second choice

Figure 1.11: Surrogate definition associated to an interface embedded inside the domain of
resolution

• The first step in the SBM consists of the definition of an approximated interface, con-
formed to the grid, called the surrogate interface (usually referred to as Γ̃), on which
the interface conditions will be imposed. The surrogate interface can be seen as a numer-
ical interface replacing the physical interface in the method of resolution. A mapping is
employed to link the physical interface to its surrogate and is used to modify the imposed
conditions to account for the discrepancy between the two interfaces.

• The second step is to enforce weakly, by adding terms in the weak formulation, the
interface conditions using the Nitsche’s method, see Section 1.3.

12workshop IMB, 27/01-28/01 2020, High order immersed boundary method: Shifted Boundary Method
(SBM), H. Beaugendre, M. Colin, L. Nouveau, M. Ricchiuto
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To visualize the method the focus is on the specific case of a 2D domain, but the SBM remains
suitable for any higher dimensional problems.
Let the physical interface Γ be an embedded grid that does not conform to the mesh discretiza-
tion. Its surrogate Γ̃, is composed of the edges (or faces if the dimension of the problem is
greater than 2) that are the closest to the physical interface. The choice has been made to
identify all the elements intersected by the physical interface (blue area in Figure 1.11) and to
regard Γ̃ as one of the possible combinations of the outer edges of these elements, with only
two possible combinations in 2D, as shown in Figure 1.11.

Remark 2. The position of the physical interface in the domain needs to be taken into account
to define its surrogate, especially if the method is applied for any outer boundaries. Through
this work the main focus is to model problems with interfaces. If the SBM is applied for
the outer boundary of a domain, then the outside geometry will not be respected. When the
boundary get deformed through time, a larger meshed area should be considered. An option
would be to mesh a box surrounding the initial domain, a box that could also move with time,
if the considered boundary is moving. A similar method was employed by Peskin in [36], in
which the heart geometry is embedded in a meshed box and where the outside of the domain
of resolution is considered as a fluid to accommodate the displacement of the boundary, see
Figure 5.

Numerically, to identify the blue area in Figure 1.11 and define a corresponding surrogate
interface a signed distance function is used (see Figure 1.12) and defined on every vertex of
each triangle in the mesh.

`

`

´´ `

Γ

•

•

•

Ω1 Ω2

Figure 1.12: Convention of the signed distance function for a 2D case

The distance function is used to define a specific status for every triangle in the mesh, as
indicated in Table 1.1. A negative node belongs to Ω1, while a positive node belongs to Ω2, see
Figure 1.12.
A status is associated to each element by counting the number of vertices with a positive
distance to the physical interface, see Table 1.1. A point that falls exactly on the physical
interface is associated with the same case as a node with a negative distance, belonging to
Ω1, as depicted in Figure 1.12. This approach is going to be detailed in this section for 2D
simulations but the distance sign function exists for higher dimension problems as well.

In Figure 1.12 a status of ´1 defines an element that belongs to Ω1, while a status of 2 means
that the considered element belongs to Ω2, see Figure 1.12. Elements of status 0 and 1 are the
ones intersected by the physical interface.
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Number of Positive node Status of the element
0 -1
1 0
2 1
3 2

Table 1.1: Identification of the position of a triangular element in regards to the physical
interface Γ

Two types of interface shapes were examined and implemented for 2D simulations in this work:

1. flat interfaces or circular interfaces defined by a radius value;

2. interfaces discretized by a set of nodes.

In the first case, the position of a node is easier to obtain as the projection is made onto
a straight line or a circle. On the contrary, for the second case it is more difficult, as the
identification of the area in which the node is present required more work. Multiple techniques
have been tested throughout this work. The method of projection stays similar for all of them
but they differ in their procedure for defining the sign associated to the distance function. The
method presented in this Chapter 1 has been used for the results presented in Chapter 3. The
stability analysis presented in Chapter 4 required a more flexible approach especially on circular
domains. The method used for discretized interfaces is presented in Section 4.7.4.a of Chapter
4 with corresponding results. To represent the versatility and the various options available in
this part of the SBM definition process, more than one method is detailed in this work. These
methods are covered both in this current section and in Section 4.7.4.a. This choice is purely
a numerical choice and does not impact the definition of the method.

In the following a method applied to the first type of interface geometry is presented. A flat
interface is considered on a rectangular domain. In the case of a circular interface the method
of identification of the position of an element is trivial; the coordinates of a node are compared
to the radius that defines the physical interface.

Γ

A ?

A ?

papAq•

•

•

•

•

• •

••

Figure 1.13: Visualisation of the problem of identification of domain

Let pa be the projection of a mesh node A onto the physical interface Γ. The coordinates of
the node A are known as well as the coordinates of papAq which is its projection.
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(a) Node belonging to domain T

T3

T1

T4

T2

•

T Q

•

•

• •

••

(b) Node belonging to domain Q

Figure 1.14: Identification of the position of a node compared to its projection

The projection papAq is defined on the physical interface. The straight line associated the
interface cuts the domain of resolution into two subdomains. To know if a node A is defined in
one domain or the other one can look at the sum of the areas between A and the boundaries of
one of the subdomain (T or Q in 1.14). For example in Figure 1.14.a the sum of the areas of
the triangles T1,T2,T3 and T4 is equal to the area of domain T (green domain in Figure 1.14),
meaning that the considered point belongs to the domain T. In Figure 1.14.b the sum of the
areas of the triangles T1,T2,T3 and T4 is not equal to the area of T and the considered node
belongs to the domain Q. This method allows to associate a sign to the distance function, it is
an easy method to implement.

Remark 3. The method presented uses area-based arguments detailed for 2D simulations. How-
ever, while no 3D simulations are available at this stage for the presented work in this thesis
there is potential for the development of this procedure using volume-based arguments.

•

•

•

Γ

Status = ´1

•

•

•

Γ

Status = ´1

•

•

•

Γ

Status = ´1

•
•

•
Γ

Status = 0

•

••

Γ

Status = 0

•
•

•

Γ

Status = 1

•

•

•
Γ

Status = 2

•

•

•

Γ

Status = 1

Figure 1.15: Possible configuration of a mesh element in regard to the physical interface position
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Once a sign has been assigned to the distance function, the next step in any method of definition
of the surrogate interface is to update the reference of the elements in terms of their status to the
physical interface. This procedure allows to distinguish the two areas present in the domain. All
the elements with status 1 and 0 are considered as being intersected by the physical interface,
making elements with status 2 and ´1 associated to two different sides of the boundary (blue
area in Figure 1.11). Then, the definition of the surrogate consists of the treatment of the cut
elements (see Figure 1.11) with status 1 or 0 (see Figure 1.15), and in which area Ω1 or Ω2 they
are put into. For a 2D simulation, placing the cut elements with elements of status 2 defines
Γ̃1ptq as the surrogate interface, while elements with the status of ´1 make Γ̃2ptq the surrogate
interface, see Figure 1.11. Taking Γ̃1ptq or Γ̃2ptq as the surrogate interface does not impact the
resolution. Nevertheless, a convention should be established at the beginning of the simulation
to ensure that the same definition is used for every new definition of the surrogate boundary
when it is moving.

The following convention is now defined. Γ will be the standard notation to refer to the physical
interface, while Γ̃ will always be its associated surrogate, see Figure 1.11. Moreover, the use of
the symbol x̃ over a notation will always refer to a quantity defined on the surrogate Γ̃, while
the same notation without x̃ will refer to the same quantity on the physical interface Γ. In
order to connect the two interfaces, a mapping M is introduced to link the surrogate interface
Γ̃ to its physical interface Γ

M : Γ̃ Ñ Γ

x̃ ÞÑ x .
(1.12)

The mapping M is used to deduce boundary conditions on Γ̃ from the boundary conditions
on Γ, via Taylor expansions. In this work, the orthogonal projection operator is chosen. Even
if the uniqueness of the projection is not ensured in a non-convex space, it should be noted
that from a numerical perspective, one can introduce various criteria that allow the use of
the orthogonal projection. The numerical precision (double precision) is often sufficient to
prevent the definition of multiple projections for the same node. In cases where the problem
arises, remeshing around the interface area is usually enough to ensure the uniqueness of the
projection.

To maintain generality, a specific situation may arise where a node has no projection at all,
as depicted in Figure 1.16. This situation occurs when the interface discretization includes
sharp areas (see Perturbed interfaces in Chapter 4). In this situation the projection is defined
using vector relationships to identify the two edges where the problem has appeared. Then, the
projection is defined as the common node between these two edges. In that case, the projection
becomes a node of the physical interface discretization.

•

•

•

•

•

• C

B

A

x

Figure 1.16: Node without orthogonal projection on the boundary

Numerically, it consists of looking at the projection on every edges that define the physical
interface. If the projection is on one of the edges no problem arises. If the projection is on none
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of them, then for every edge the information about the position of the projection in relation to
the two nodes defining the edge is retained. If the situation arises where on the previous edge
(from the loop on the edges of the interface discretization) the projection was defined ahead of
the point B of an edge

#   »

AB, and on the next edge the projection is defined before the point B of
the edge

#   »

BC, it indicates that the node is between the two edges. This is exactly the situation
described in Figure 1.16. In this particular case the point B defines the projection of x onto
the physical interface Γ.

Ω´ptq

Γptq

Γ̃ptq

x̃
x

Figure 1.17: Definition of the mapping by orthogonal projection onto Ω´

With the definition of the projection it is now possible to introduce the distance vector function
(see Figure 1.17), measuring the distance between Γ and Γ̃

dM px̃q “ x´ x̃ “ rM ´ Ispx̃q . (1.13)

As a consequence of Definition (1.13), the distance vector d is aligned with the normal vector
on Γ such that

d “ ||d|| n, (1.14)

where ||d|| denotes the euclidean norm in Rd. Owning these definitions, it is possible to define
any functions on Γ as a function of Γ̃ by doing an extension of the original function. Indeed, if
ψ is a function initially defined on Γ, then its extension ψ̃ on Γ̃ is given by

ψ̃px̃q “ ψpMpx̃qq . (1.15)

In the next Section, the last step concerning the definition of the SBM is introduced. More
precisely, the imposition of the interface conditions on the surrogate interface Γ̃ will be explained
in detail.

1.2.3 Treatment of the Boundary Conditions

In this section, the method of imposition of the interface conditions on the surrogate interface
is discussed. Initially, the interface conditions are only valid on Γ and not on the surrogate Γ̃.
The idea of the Shifted Boundary Method is to determine the interface conditions on Γ̃ which
are compatible with the interface conditions of the original PDE on Γ. For that purpose, Taylor
expansions between Γ and Γ̃ are used, the order of the development in the Taylor expansion
characterizes the accuracy of the imposed conditions on the surrogate interface Γ̃.

If one assumes that on the physical interface Γ the unknown upxq has to satisfy the Dirichlet
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condition upxq “ gpxq, where g is a given function with sufficient regularity. Then, using Taylor
expansion from a point x P Γ to a point x̃ P Γ̃ one gets

gpxq “ upx̃q ` ∇upx̃q ¨ px´ x̃q ` Op||x´ x̃||
2
q, (1.16)

which in the case of the development (1.16) characterizes a second order accuracy in the defini-
tion of the interface conditions on Γ̃. Using the characterization of map M defined by Equation
(1.12) in Condition (1.16) it leads to

gpM px̃qq “ upx̃q ` ∇upx̃q ¨ pMpx̃q ´ x̃q ` Op||M px̃q ´ x̃||
2
q .

By introducing the distance vector d defined by Equation (1.13) one now obtains

gpM px̃qq “ upx̃q ` ∇upx̃q ¨ dpx̃q ` Op||dpx̃q||
2
q,

which with Equation (1.15) finally gives

gpx̃q “ upx̃q ` ∇upx̃q ¨ dpx̃q ` Op||dpx̃q||
2
q

upx̃q « gpx̃q ´ ∇upx̃q ¨ dpx̃q
(1.17)

The expression (1.17) is used to impose interface conditions in the context of an embedded
resolution. In this context, the process of imposing boundary conditions has been introduced for
Dirichlet conditions, but the same method is applicable to any type of conditions, a description
for a Neumann condition is available in Appendix [A].

1.3 Weak imposition : The Nitsche’s method

1.3.1 Principles

In this section, the Nitsche’s method which allows to impose weakly boundary conditions for
a system of PDEs is described. It consists of including the boundary conditions in the weak
formulation of the system of PDEs rather than in the finite functional element space. It is
useful to shift the value of boundary conditions of a domain to a surrogate boundary, see [2].
The Nitsche’s imposition coupled with the SBM prevents problems such as "hanging nodes"
which often appear during mesh adaptation [118], as mentioned in Section 1.2 for the cut-cell
method.

Figure 1.18: Illustration of an hanging node in 2D13

A hanging node is a node which is only connected to some of the other nodes of its direct
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neighbours, see Figure 1.18, making the mesh unsuited for a conform simulation. It means that
after the adaptation of the mesh to the new domain it is necessary to perform once again a
new mesh adaption to cut the elements where hanging nodes have emerged. Thus, it is easily
understandable that the task can be long and not straightforward.

The SBM is formulated on a Finite Element Method (FEM) and some boundary conditions can
disappear during the process of definition of the weak problem. Some of the conditions can not
be defined in the space of definition of the functions or imposed on the mesh through the scheme,
after the different stages of the integration by parts. The SBM and the Nitsche’s method are
intrinsically linked together and the missing conditions are imposed with the Nitsche’s method.
In fact, the imposition of conditions can only be done if the boundary is a part of the mesh,
which is not the case since no adaptation is performed on the mesh regarding the embedded
boundary. To develop a robust method it is essential to simultaneously use the SBM with the
Nitsche’s imposition. But, one can note that the Nitsche’s method can be used for a variety
of problems and does not require the SBM.

The Nitsche’s imposition is a method which consists of modifying the standard weak formulation
by adding bilinear forms used to ensure the missing conditions. Some examples are available
in the followings sections 1.3.3 and 1.3.4. Before looking at these examples, Section 1.3.2
introduces all the necessary notations and formalism to correctly establish any weak formulation
presented in this work.

1.3.2 Formalism and notations

Let DpΩq (resp. DpΩqd) be the space of C8 (resp. pC8qd) functions with compact support in
Ω and D

1

pΩq (resp. D1

pΩqd) be the dual space associated. As usual, L2pΩq denotes the space
of measurable and square-integrable functions from Rd into R endowed with the inner-product

pT, qqΩ “

ż

Ω

Tq dx,

and pL2pΩqqd denotes the space of measurable and square-integrable function from Rd into Rd

endowed with the inner product

pβ,wqΩ “

ż

Ω

β ¨w dx.

In a similar way, the space L2pΓq and pL2pΓqqd are introduced for functions defined on Γ and
are associated with the following inner-products

ă T, q ąΓ “

ż

Γ

Tq dγ and ă β,w ąΓ “

ż

Γ

β ¨w dγ.

The classical Sobolev spaces H1pΩq and Hpdiv,Ωq are also introduced such that

H1
pΩq “

␣

T P L2
pΩq | ∇T P pL2

pΩqq
d
(

,

associated to the norm
}T }

2
H1pΩq “

ż

Ω

p|T |
2

` |∇T |
2
qdx,

13https://www.researchgate.net/post/Hanging-nodes-in-finite-element
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and
Hpdiv,Ωq “

␣

β P pL2
pΩqq

d
| divpβq P L2

pΩq
(

,

associated to the norm
}β}

2
Hpdiv,pΩqq “

ż

Ω

p|β|
2

` |∇ ¨ β|
2
qdx.

Similar spaces are defined if one replaces Ω by Ω` or Ω´, when Ω is composed of the two
subdomains Ω` and Ω´ (Ω` Y Ω´ “ Ω).

1.3.3 Dirichlet conditions

In this manuscript, a conform or conformal case refers to a simulation where the physical
boundary matches the mesh discretization, and where the SBM is not required to impose
boundary conditions (the distance d in Equation (1.13) being null). In Figure 1.19 one can see
the differences between a conform resolution where the physical interface matches exactly the
edges of the grid in Figure 1.19(a), while in Figure 1.19(b) the physical interface is intersected
the elements of the background mesh and the surrogate interface is required, see Figure 1.19.

Γ

(a) Interface Γ con-
form to the mesh

ΓΓ̃

(b) Interface Γ non
conform to the mesh
and its surrogate in-
terface Γ̃

Figure 1.19: Comparison between conform resolution on Γ and an embedded resolution on Γ̃

1.3.3.a Conformal Resolution

To explain the Nitsche’s imposition, the Poisson problem is chosen as example in its primal
form with a Dirichlet boundary condition imposed on Γ “ BΩ. For the moment, the physical
boundary is conform to the mesh discretization. All the different steps in the Nitsche’s method
will be explained in detail in this section and can be used as a reference on how to apply the
technique to any type of problems.

The strong primal form of the Poisson problem with non-homogeneous Dirichlet boundary
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conditions is characterized by

Find a solution u P V pΩq :“ tu P L2pΩq,∇u P pL2pΩqqd, upxq “ gpxq on Γu such that

´∆upxq “ fpxq on Ω,

upxq “ gpxq on Γ,
(1.18)

where Ω is the domain of resolution, Γ the outer boundary i.e., Γ “ BΩ, and with f and g as
given functions on Ω. An arbitrary initial condition is considered.

Let wpxq be the test function associated to upxq. Then, the conformal weak formulation for
the Poisson problem can be written as

Step 1 : Weak Formulation on the physical boundary

Find u P V pΩq such that @w P V pΩq one has
ż

Ω

∇upxq ¨ ∇wpxq dx ´

ż

Γ

∇upxq ¨ npxq wpxq dγ “

ż

Ω

fpxqwpxq dx.

The next step is to use the Nitsche’s method to impose the condition upxq “ gpxq on Γ,
which is cut into two stages. The first stage is called symmetrization and the second one
is called stabilization [2]. The symmetrization gives the possibility to add the boundary
condition in the formulation while the stabilization ensures the coercivity, which is essential
for the uniqueness of the solution. It is a mandatory condition to satisfy the Lax-Milgram
theorem which states the existence and the uniqueness of a solution to variational problems,
see Theorem 5.

Step 2 : Symmetrization

Find u P V pΩq such that @w P V pΩq one has
ż

Ω

∇u ¨ ∇w dx ´

ż

Γ

∇u ¨ n w dγ ´

ż

Γ

∇w ¨ n pu ´ gq dγ “

ż

Ω

fw dx.

Step 3 : Stabilization

Find u P V pΩq such that @w P V pΩq one has
ż

Ω

∇u ¨ ∇w dx´

ż

Γ

∇u.n w dγ´

ż

Γ

∇w.n pu´gq dγ`

ż

Γ

α

h
wpu ´ gqdγ “

ż

Ω

fw dx (1.19)

The coefficient α
h

is considered as a penalty coefficient used to satisfy the coercivity condition.
The parameter α has to be chosen following the problem, while h is the characteristic length
of the considered mesh element. The parameter α can be determined by doing a dimensional
analysis of the equations of the problem. Note that steps 2 and 3 preserve the consistency of
the weak formulation.

1.3.3.b Embedded Resolution

In this section, the process of how to transform the weak formulation (1.19) in order to impose
boundary conditions in the context of an embedded resolution is presented. A term to enforce
a matching condition between tangential derivatives on Γ̃ (blue term in (1.20)) is also added to
the weak formulation following reference [2]. The domain Ω̃ will denote the surrogate domain
where the definition of the surrogate boundary Γ̃ “ B̃Ω modifies the geometry of the considered
domain.
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Step 4 : Weak Formulation on the surrogate domain

Find u P V pΩ̃q :“ tu P L2pΩ̃q,∇u P pL2pΩ̃qqd, upxq “ gpxq on Γ̃u such that @w P V pΩ̃q one has
ż

Ω̃

∇u ¨ ∇w dx ´

ż

Γ̃

∇u ¨ ñ w dγ ´

ż

Γ̃

∇w ¨ ñ pu ` ∇u ¨ d´ gq dγ

`

ż

Γ̃

α

h
pw ` ∇w ¨ dq pu ` ∇u ¨ d´ gqdγ ` δ h

ż

Γ̃

wpu ´ gτ q dγ “

ż

Ω̃

fw dx,

(1.20)

where δ is a positive scalar, and u “ gτ is the value of u in the tangential direction τ on Γ̃.
The blue term is often omitted if the geometry is not complex and is not considered in this
work, see [2]. The green terms in (1.20) correspond to the Taylor expansion of the boundary
conditions, where the development is also done on the test function to keep the property of
symmetry in the weak formulation. After these different steps, the formulation is now taking
place within the surrogate domain. Nevertheless, it is usually easier to work with a bilinear
symmetric formulation. For that purpose, the term with the δ parameter is removed in (1.20),
as it is considered as non essential for non complex geometries. A term in the variable w (the
symmetric of ă ∇w.ñ,∇u.d ąΓ̃) which conserves the property of consistency is added in the
formulation in order to bring symmetry in Formulation (1.20). Then, the embedded problem
can be rewritten as

Find u P V pΩ̃q such that

aupu,wq “ lupwq @w P V pΩ̃q, (1.21)

where

aupu,wq “ p∇u,∇wqΩ̃ ´ ă w ` ∇w ¨ d ,∇u ¨ ñ ąΓ̃ ´ ă ∇w ¨ ñ, u ` ∇u ¨ d ąΓ̃ +
ă ∇w ¨ d,∇u ¨ ñ ąΓ̃ `α

h
ă pw ` ∇w ¨ dq, u ` ∇u ¨ d ąΓ̃,

and
lupwq “ pw, fqΩ̃´ ă ∇w ¨ ñ, g ąΓ̃ `

α

h
ă pw ` ∇w ¨ dq, g ąΓ̃ .

A symmetric formulation is almost obtained with formulation (1.21). To this end, a last trans-
formation is done which consists of a decomposition for ∇u ¨ ñ and ∇u ¨d introduced in (1.22)
as follows

aq ñ “ pñ ¨ nqn` pñ ¨ τ qτ ,

bq ∇u ¨ ñ “ pp∇u ¨ nqn` p∇u ¨ τ qτ q ¨ ñ,

cq ∇u ¨ d “ ∇u ¨ n||d||.

(1.22)

Plugging transformation (1.22) into the term ă ∇w ¨ d,∇u ¨ ñ ąΓ̃ in formulation (1.21), one
obtains

∇u ¨ ñ “
pn ¨ ñq

||d||
∇u ¨ d` p∇u ¨ τ qτ ¨ ñ , (1.23)

which brings the expected symmetry in the weak formulation (1.21) i.e., that aupu,wq “

aupw, uq. Finally the Nitsche’s method with Dirichlet conditions applied to Problem (1.18)
and in the context of an embedded simulation can be summarized by

Find u P V pΩ̃q s.t.

aupu,wq “ lupwq @w P V pΩ̃q,

with
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aupu,wq “ p∇u,∇wqΩ̃´ ă w ` ∇w ¨ d,∇u ¨ ñ ąΓ̃ ´ ă ∇w ¨ ñ, u ` ∇u ¨ d ąΓ̃

` ă ∇w ¨ d,
pn ¨ ñq

||d||
∇u ¨ d ąΓ̃ `

α

h
ă pw ` ∇w ¨ dq, u ` ∇u ¨ d ąΓ̃,

and

lupwq “ pw, fqΩ̃´ ă ∇w ¨ ñ, g ąΓ̃ ` ă
α

h
pw ` ∇w ¨ dq, g ąΓ̃ ´ ă ∇w ¨ d, p∇g ¨ τ qτ ¨ ñ ąΓ̃ .

Remark 4. Working with a symmetric weak formulation is not required but ensures more
stability and is in fact a stabilisation procedure by itself. In this case, the symmetric formulation
is easier to implement. For moving fronts the tangential components have to be updated at
each time step, see [80].

Remark 5. It is not always possible, nor is it easy to define a weak formulation that is com-
pletely symmetric, but it is always possible to make some of the terms in the weak formulation
symmetric.

The Lax-Milgram theorem has briefly been introduced to justify in Step 3 the presence of the
coefficient α

h
. Here, the general statement of this theorem is recalled and the definitions of the

properties which need to be satisfied are expressed, see [119].

Theorem 2 (Bilinearity). A bilinear form on a space V is a function b : V ˆ V Ñ R which
assigns a number to each pair of elements of V in such a way that b is linear in each variable.

bpv1 ` v2, wq “ bpv1, wq ` bpv2, wq, @ v1, v2, w P V
bpv, w1 ` w2q “ bpv, w1q ` bpv, w2q, @ v, w1, w2 P V
bpav, wq “ a bpv, wq, @ v, w P V , a P R
bpv, awq “ a bpv, wq, @ v, w P V , a P R

Theorem 3 (Coercivity). Let bpu, vq be a bilinear form of a Hilbert space pV , || ¨ ||Vq, then the
bilinear form bp¨, ¨q is said to be coercive if there exists γ ą 0 such that

|bpu, uq| ě γ||u||
2
V @u P V .

Theorem 4 (Continuity). Let bpu, vq be a bilinear form of a Hilbert space pV , || ¨ ||Vq, then the
bilinear form bp¨, ¨q is said to be continuous if D α ě 0 such that @u, v P V the form b satisfies

|bpu, vq| ď α||u||V ||v||V

Theorem 5 (Lax-Milgram). Let bpu, vq be a bilinear form of a Hilbert space pV , || ¨ ||Vq, and
F be a linear form on V. Consider the variational problem :
Find u P V such that

bpu, vq “ F pvq, @v P V .

If b is a continuous and coercive bilinear form of pV , || ¨ ||Vq, and F is a continuous linear
form of V, then there exists a unique solution u P V to the linear variational problem with

||u||V ď
1

γ
||F ||V 1 .

where γ is the coefficient satisfying the coercivity argument.
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Ω` Ω´

Γ

Γ´Γ`

BΩ

Figure 1.20: Visualization of a domain Ω for the definition of the interface conditions

1.3.4 Jump conditions and surrogate interface

For convenience, the jump operator J¨KΓ and average operator t¨uΓ are now introduced. For any
scalar f or vector quantity g on the interface Γ one has

JfKΓ “ f`
´ f´, JgKΓ “ g`

´ g´,

tfuΓ “
1

2
pf`

` f´
q, tguΓ “

1

2
pg`

` g´
q.

(1.24)

where the values of f` (respectively g`) and f´ (respectively g´) are defined by (1.25), see
Figure 1.20.

f`
“ lim

xPΩ`ÑxPΓ
fpt,xq,

f´
“ lim

xPΩ´ÑxPΓ
fpt,xq.

(1.25)

Moreover, for any functions f and h one has

JfhKΓ “ JfKΓthuΓ ` tfuΓrrhssΓ. (1.26)

In this section, the mixed form of the Poisson equation is considered, where the flux is also
defined as an unknown. In this example the surrogate boundary is a surrogate interface em-
bedded inside the domain Ω. Let Ω be a domain composed of two subdomains Ω` and Ω´,
which are separated by an interface denoted Γ “ Ω̄` X Ω̄´, and with an outside boundary de-
noted BΩ, see Figure 1.20. Then, the mixed form of the Poisson problem with jump conditions
states as below

a.1.27q ∇ ¨ βpxq “ fpxq on Ω,

b.1.27q βpxq “ ´k∇upxq on Ω,

c.1.27q upxq “ uD on BΩ,

d.1.27q JupxqKΓ “ J1 on Γ,

e.1.27q JβpxqKΓ ¨ n “ ´J2 on Γ.

(1.27)

which is equivalent to its primal form

∇.p´k∇upxqq “ f on Ω,

upxq “ uD on BΩ,

JupxqKΓ “ J1 on Γ,

Jk∇upxqKΓ ¨ n “ ´J2 on Γ.

(1.28)
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The normal n corresponds to the normal at the interface Γ, oriented from Ω` towards Ω´,
see Figure 1.20. The mention of Γ in the jump operator specifies which interface the operator
refers to, and simplifies the differentiation between the jump on the physical interface Γ and
its surrogate Γ̃.
For this example, the subject of interest is the treatment made on the jump conditions. To
achieve this, a strong enforcement of the Dirichlet conditions defined on BΩ, the external
boundary is considered. Let (ϕ,ψ) be the test functions associated to the unknowns (u,β).
Then the problem (1.27) can be written into its weak formulation as

Find pu,βq P SupΩq ˆ SβpΩq such that @ pϕ,ψq P SϕpΩq ˆ SψpΩq one has

1.29.aq pϕ,∇.βqΩ “ pf, ϕqΩ

1.29.bq pψ, k´1β ` ∇uqΩ “ 0
(1.29)

where
SupΩq “ tu P H2

pΩ`q Y H2
pΩ´q| u “ uD on BΩu,

SψpΩq “ SβpΩq “ tψ P pH2
pΩ`qq

d
Y pH2

pΩ´qq
d
u,

SϕpΩq “ tϕ P H2
pΩ`q Y H2

pΩ´q | ϕ “ 0 on BΩu.

The next step consists of incorporating the jump conditions into the weak formulation. The
domain Ω is decomposed into its two subdomains, and an integration by parts is performed on
Equation p1.29.aq

@ϕ P SϕpΩq,

pϕ,∇ ¨ βqΩ “ pϕ,∇ ¨ βqΩ´
` pϕ,∇ ¨ βqΩ`

,

“ ´ p∇ϕ,βqΩ`
` ă β`ϕ`,n` ąΓ` ` ă βϕ,n ąBΩXΩ`

´p∇ϕ,βqΩ´

` ă β´ϕ´,n´ ąΓ´ ` ă βϕ,n ąBΩXΩ´
,

“ ´ p∇ϕ,βqΩ` ă β`ϕ`
´ β´ϕ´,n ąΓ,

“ ´ p∇ϕ,βqΩ` ă rrβϕss,n ąΓ“ pϕ, fqΩ,

(1.30)

since ϕ is equal to 0 on BΩ.
Equation (1.30) needs to be modified in order to take into account the Condition (1.27.e) and
impose the condition in the definition of the finite element scheme. Equation (1.30) can be
rewritten using the decomposition (1.26) which leads to
@ϕ P SϕpΩq,

´p∇ϕ,βqΩ` ă rrϕss, tβu.n ąΓ ` ă tϕu, rrβss ¨ n ąΓ“ pϕ, fqΩ . (1.31)

Then the following problem is obtained

Find pu,βq P SupΩq ˆ SβpΩq such that @ pϕ,ψq P SϕpΩq ˆ SψpΩq one has

1.32.aq ´ p∇ϕ,βqΩ` ă JϕK, tβu.n ąΓ `α ă JϕK, JuK ąΓ“ pϕ, fqΩ

` ă tϕu, J2 ąΓ `α ă JϕK, J1 ąΓ,

1.32.bq pψ, k´1β ` ∇uqΩ´ ă tψu, JuK.n ąΓ“ ´ ă tψu, J1 ¨ n ąΓ,

(1.32)

where α is a coefficient to be determined and which depends on the characteristic length of the
elements of the mesh.

The weak imposition is done following the same steps that described in Section 1.3.3, the
only difference is the use of the jump operator, which is a linear operator and does not bring
any complexity. As with the Dirichlet condition in Section 1.3.3, the formulation (1.32) is
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not symmetric, but it is possible to transform it into one for more stability. Moreover, the
formulation has been rewritten for a conformal resolution as a preliminary step. In order to
use the SBM for a non conformal interface the formulation needs to be adapted. First, the
interface conditions are introduced on the surrogate boundary Γ̃. For the flux jump 1.27.e) a
Taylor expansion is performed

Jβ ` ∇ ¨ β ¨ dKΓ̃.ñ “ JβKΓ ¨ n

ùñ JβKΓ̃ ¨ ñ “ JβKΓ ¨ n´ J∇ ¨ β ¨ dKΓ̃ ¨ ñ

ùñ JβKΓ̃ ¨ ñ “ ´J2 ´ J∇ ¨ β ¨ dKΓ̃ ¨ ñ

(1.33)

The same work is done for the primal variable u

Ju ` ∇u ¨ dKΓ̃ “ JuKΓ
ùñ JuKΓ̃ “ JuKΓ ´ J∇u ¨ dKΓ̃
ùñ JuKΓ̃ “ J1 ´ J∇u ¨ dKΓ̃ .

(1.34)

Conditions (1.33) and (1.34) are then plugged into Formulation (1.32). To obtain the de-
sired formulation the operators and the normal vector are considered on Γ̃ instead of Γ, where
Ω “ Ω̃` Y Ω̃´.

Find pu,βq P SupΩq ˆ SβpΩq such that @ pϕ,ψq P SϕpΩq ˆ SψpΩq one has

1.35.aq ´ p∇ϕ,βqΩ` ă JϕKΓ̃, tβuΓ̃.ñ ąΓ̃ `α ă JϕKΓ̃, JuKΓ̃ ąΓ̃“ pϕ, fqΩ

` ă tϕuΓ̃, J2 ´ J∇.β ¨ dKΓ̃ ¨ ñ ąΓ̃ `α ă JϕKΓ̃, J1 ´ J∇u ¨ dKΓ̃ ąΓ̃,

1.35.bq pψ, k´1β ` ∇uqΩ´ ă tψuΓ̃, JuKΓ̃.ñ ąΓ̃“ ´ ă tψuΓ̃, pJ1 ´ J∇u ¨ dKΓ̃q ¨ ñ ąΓ̃ .
(1.35)

The next step consists of bringing more symmetry in Formulation (1.35) by developing the test
functions to the same order as the Taylor expansions of the interface conditions, see Conditions
(1.33) and (1.34).

Find pu,βq P SupΩq ˆ SβpΩq such that @ pϕ,ψq P SϕpΩq ˆ SψpΩq one has

1.36.aq ´ p∇ϕ,βqΩ` ă Jϕ ` ∇ϕ ¨ dKΓ̃, tβuΓ̃.ñ ąΓ̃ `α ă Jϕ ` ∇ϕ ¨ dKΓ̃, JuKΓ̃ ąΓ̃“ pϕ, fqΩ

` ă tϕ ` ∇ϕ ¨ duΓ̃, J2 ´ J∇.β ¨ dKΓ̃ ¨ ñ ąΓ̃ `α ă Jϕ ` ∇ϕ ¨ dKΓ̃, J1 ´ J∇u ¨ dKΓ̃ ąΓ̃,

1.36.bq pψ,
β

k
` ∇uqΩ´ ă tψ ` ∇.ψ ¨ duΓ̃, JuKΓ̃.ñ ąΓ̃“ ´ ă tψ ` ∇.ψ ¨ duΓ̃, pJ1 ´ J∇u ¨ dKΓ̃q ¨ ñ ąΓ̃ .

(1.36)
The last transformation is to rearrange the terms concerning the bilinear part to the left hand
side. This step is not necessary but brings more clarity in the definition of the weak formulation
and will be a convention in the rest of the following Chapters.

Find pu,βq P SupΩq ˆ SβpΩq such as @ pϕ,ψq P SϕpΩq ˆ SψpΩq one that

1.37.aq ´ p∇ϕ,βqΩ` ă Jϕ ` ∇ϕ ¨ dKΓ̃, tβuΓ̃.ñ ąΓ̃ `α ă Jϕ ` ∇ϕ ¨ dKΓ̃, Ju ` ∇u ¨ dKΓ̃ ąΓ̃

´ ă tϕ ` ∇ϕ ¨ duΓ̃, J∇.β ¨ dKΓ̃ ¨ ñ ąΓ̃“ pϕ, fqΩ` ă tϕ ` ∇ϕ ¨ duΓ̃, J2 ąΓ̃

` α ă Jϕ ` ∇ϕ ¨ dKΓ̃, J1 ąΓ̃,

1.37.bq pψ, k´1β ` ∇uqΩ´ ă tψ ` ∇ ¨ψ ¨ duΓ̃, Ju ` ∇u ¨ dKΓ̃.ñ ąΓ̃“ ´ ă tψ ` ∇.ψ ¨ duΓ̃, J1 ¨ ñ ąΓ̃ .
(1.37)
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1.4 Conclusion on Chapter 1

In this first Chapter, the necessary elements to understand the principle of the Finite Element
Method (FEM) for the resolution of a system of equations, referred to as PDEs has been
introduced. The focus was placed on the Galerkin approach, and the weak imposition
of missing boundary conditions through the Nitsche’s method was discussed in detailed.
This chapter has also presented the choice made to handle moving boundaries without a need
for mesh adaptation with the use of the Shifted Boundary Method (SBM), an embedded
method for non conforming mesh boundaries. In the next chapter, the application of the SBM
to the Stefan model will be discussed and adapted to handle moving interfaces.
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Chapter 2

The Stefan Model

2.1 Description

The Stefan model is a category of problems which regroups free and moving boundary prob-
lems. They are named after Joseph Stefan (1835-1893) and his work on the formation of ice in
the polar seas. The physicist’s most important work concerns his discovery on heat radiation
leading to the well-known Stefan-Boltzmann law of radiation, stating that heat radiation (en-
ergy travelling in all direction at the speed of light from its point of absorption) is proportional
to the fourth power of the absolute temperature (measured in Kelvin where 0 is the absolute
zero, i.e. with no motion of particles and no heat) [12].

In this Chapter, mathematical models describing phase change transitions are studied. A phase
is a region in which the solution is continuous and differentiable up to the order of the PDE [4].
The considered model is composed of two sub-domains (Ω “ Ω´ Y Ω`), one filled with ice and
the other one filled with water. The zone filled with water is called the liquid phase while the
zone filled with ice is referred to as the solid phase. The system is a solid to liquid phase-change
transition problem where the boundary moves from the liquid phase to the solid phase. At the
interface the material coexists in both state; liquid and solid. Its thickness is usually between
a few Angstroms (10´10m) and a few centimeters (10´2m), but the assumptions is made that
the interface has zero thickness [4]. The initial position of the interface is part of the initial
conditions of the considered problem. On a mathematical perspective the formulation relates
the relationships between the variables of the melting process, defined in their primal form
by the temperature field, the interface position, the thermo-physical properties of the material
(heat conductivity, specific heat, density) and the interface conditions. Those relationships can
be described independently on each of the phase composing the model.

Since phase transition models are free boundary problems, where the boundary position is also
unknown, a closure condition is required to obtain a valid model. This condition is called the
Stefan condition [4]. In heat transfer problems with phase changes, the physical constraint and
closure condition states that the conservation of energy and the local velocity at the interface
depend on the heat flux discontinuity at the interface. At the phase change area latent heat is
released or absorbed, with latent heat characterizing the release or absorption of energy by the
thermodynamic system.
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In summary, for a classical Stefan formulation there are two unknowns

1. the temperature;

2. the position of the interface Γptq.

The temperature diffuses inside the domain, while the flux at the interface moves the boundary.
The position of the moving boundary is a function of time and space and needs to be determined
as a part of the solution. Then, resolving the partial differential equation (PDE) necessitates
solving the heat equation in all of the phases, with the moving boundary determined by the
Stefan condition.

Analytically, it is difficult to find a solution to a Stefan problem. Cases where it is possible
are characterized a high degree of symmetry in the geometry of the domain and by a judicious
choice of boundary conditions, see [4].

2.1.1 Mathematical Formulation

Consider a domain Ω, a bounded and connected open set in Rd (d ě 2), with Lipschitz
boundary BΩ. The boundary BΩ is decomposed in several parts ΓD and ΓN such that ΓD Y

ΓN “ BΩ and ΓD X ΓN “ H. At time t ą 0, the domain Ω is composed of two subdomains
Ω`ptq and Ω´ptq separated by an interface Γptq “ Ω`ptq XΩ´ptq (see Figure 2.1). Let Γ`ptq be
the designation of the interface from the liquid phase Ω`ptq , defined as Ω`ptq XΓptq. Similarly,
let Γ´ptq be the designation of the interface from the solid phase of the problem Ω´ptq, defined
as Ω´ptq X Γptq. Using the fact that at the interface Γ the outward normal vectors n` and n´

are equals up to a sign the following convention is introduced

n “ n` “ ´n´ (2.1)

where n` is the normal vector oriented from Ω` to Ω´.

Liquid Phase
Ω`ptq

Solid Phase
Ω´ptq

Γptq

Γ´ptqΓ`ptq

ΓDΓD

ΓN

ΓN

ÝÑ
n`

Figure 2.1: Configuration of the domain Ω and its different phases

The classical Stefan problem for a two-phase melting process is considered with one phase-
change front, where the domain Ω` represents a liquid phase while the domain Ω´ is the solid
phase, see Figure 2.1. The distribution of the temperature T px, tq in Ω is studied, correspond-
ing to a material of density ρ, taken constant in each of the domains. The variable λ denotes
its thermal conductivity, i.e., the ability of the material to conduct heat. In general, the
thermal conductivity is a tensor, but here the isotropic case is being considered where the con-
duction is independent of the direction. In a multi-phase situation, the conductivity can be
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discontinuous: λ´ represents the value inside the solid phase Ω´, which is usually higher than
λ`, the value in the liquid phase Ω`. The specific heat of the material is denoted by c, a
phase dependent coefficient (c` and c´) which characterizes the necessary amount of heat to
increase one unit of mass of the material by one unit of temperature.
Those discontinuities in conductivity and specific heat, located at the interface Γ, can lead to
discontinuities in the solution. To maintain mathematical generality, at this stage, discontinu-
ities in T and its gradients are considered. Later on, for physical tests, the temperature will be
taken continuous and equal to the melting temperature denoted Tm at the moving interface.
The variables T` and T´ denote the values of T respectively on Γ` and Γ´:

T`
“ lim

xPΩ`ÑxPΓ
T px, tq ; T´

“ lim
xPΩ´ÑxPΓ

T px, tq. (2.2)

In the next section, the system of equations characterizing the Stefan model is presented. It
will present the primal form of the model, where the temperature field T and the interface
position Γ are the parameters to be determined.

2.1.2 Primal form

In this section, the classical formulation of the Stefan model referred to as the primal form is
introduced. Given an initial temperature T0, an initial interface position Γp0q and a final time
tf , the Stefan problem consists of solving the following set of PDEs

2.3.aq ρcBtT pt,xq ´ ∇ ¨ pλ∇T pt,xqq “ fpt,xq in s0, tf rˆΩ,

2.3.bq T pt,xq “ TD on s0, tf rˆΓD,

2.3.cq λ∇T pt,xq ¨ n “ ´hN on s0, tf rˆΓN ,

2.3.dq T p0,xq “ T0 in Ω,

(2.3)

where TD and hN are given data. In order to close the System (2.3), a boundary conditions
on Γ is required because Γ is a moving interface. Two sets of boundary conditions are
proposed.

Physical Interface Γ

Ω` Ω´

λ`∇T`´ λ´∇T´“ Jλ∇T KΓ “ ´σ
T`´T´ “ JT KΓ “ jT

•

•

•

•

•

•

•

•

(a) Conform Resolution

Γ̃ Physical Interface Γ

Ω` Ω´

Jλ∇T KΓ̃ “ ´σ ´ Jdt∇ ¨ pλ∇T qdKΓ̃ ` Opd2q

JT KΓ̃ “ jT ´ J∇T ¨ dKΓ̃ ` Opd2q

•

•

•

•

•

•

•

•

(b) Embedded Resolution

Figure 2.2: Set 1 : Visualization of the imposition of the boundary conditions

The first set of interface conditions consists of imposing the jump of temperature and the
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jump of normal heat flux across the interface:

JT pt,xqKΓ “ jT ,

Jλ∇T pt,xqKΓ ¨ n “ ´ σ,
(2.4)

where jT and σ are given data.

In Figure (2.2.a) the imposition of the conditions (2.4) for a conform resolution is presented.
The conditions are imposed on the physical interface Γ. For an embedded resolution in Figure
(2.2.b) the conditions (2.4) are extrapolated with Taylor expansions to be imposed on Γ̃.

The second set of interface conditions prescribes the value of the temperature at the interface,
as a Dirichlet conditions:

#

T`
“ TL,

T´
“ TR,

(2.5)

where TL and TR are given data. In the latter case, the normal interface velocity can be derived
from the recovered flux jump at the interface, through the Stefan condition:

ρLmΓ
1
ptq ¨ n “ ´Jλ∇T KΓ ¨ n, (2.6)

with Γ1ptq the velocity associated to the interface position Γ and Lm the latent heat.
The interface condition (2.5) can also be expressed as a condition on the temperature jump
and temperature average. Indeed, Conditions (2.5) are applied on Γ from both subdomains
of Ω (Ω “ Ω` Y Ω´). Another option is to combine them and apply directly the conditions
on the interface Γ without considering the subdomains. Moreover, Definition (2.7) allows
for simulations satisfying the physics of the Stefan model, to impose the continuity of the
temperature field T (JT K “ 0) and the melting temperature Tm (tT u “ Tm) on Γ. Keeping
once again all generality the Conditions (2.5) can be rewritten as follow

JT KΓ “ TL ´ TR “ jT ,

tT uΓ “
TL ` TR

2
“ aT ,

(2.7)

where jT and aT are given data.

Physical Interface Γ

Ω`

T`

2
`T´

2
“ tT uΓ “ aT

T`´T´ “ JT KΓ “ jT

•

•

•

•

•

•

•

•

(a) Conform Resolution

Γ̃ Physical Interface Γ

Ω` Ω´

tT uΓ̃ “ aT ´ t∇T ¨ duΓ̃ ` Opd2q

JT KΓ̃ “ jT ´ J∇T ¨ dKΓ̃ ` Opd2q

•

•

•

•

•

•

•

•

(b) Embedded Resolution

Figure 2.3: Set 2 : Visualization of the imposition of the boundary conditions

44



In Figure (2.3.a) the imposition of the conditions (2.7) for a conform resolution is presented.
They are imposed on the physical interface Γ. For an embedded resolution in Figure (2.3.b)
the conditions (2.7) are extrapolated with Taylor expansions to be imposed on Γ̃.

The primal form can bring advantages depending on the context of application. Nevertheless,
in this work, considering the Stefan condition (2.6) where the front motion is driven by the
heat flux, it is necessary to accurately describe the gradient of the temperature to update
the interface location. This can be achieved by using the mixed formulation of the problem,
which, when combined with a temperature enrichment (see Section 2.4), can provide a better
accuracy of the front velocity and then its position. Furthermore, in [5] the disadvantages of
the primal formulation are mentioned where additional references are available. The primal
form can expose to a loss of accuracy, and mass conservation is not guaranteed even when the
flux is reconstructed afterwards.

2.1.3 Mixed form

The mixed formulation of the Stefan problem is obtained by decoupling the original Sys-
tem (2.3). The local heat flux β is introduced, corresponding to the amount of energy that
flows through one unit of area per time unit. The expression of β can be interpreted as the
Fourier’s law, which is a classical relation in the theory of heat conduction [120].

Theorem 6 (Fourier’s Law). The Fourier’s law of thermal conductivity expresses that the rate
of heat transfer through a medium is proportional to the negative gradient of temperature and
the surface area through which the heat flows, see Figure 2.4. Then, the flux is linked to the
gradient of temperature and the thermal conductivity of the surface as follows

β :“ ´λ∇T ,

where

• β is the vector of the local heat flux [W.m´2]

• λ is the thermal conductivity of the surface [W.m´1.K´1]

• ∇T is the gradient of temperature [K.m´1]

Figure 2.4: Transfers from hot to cold surface by thermal conduction14

14https://rogerscorp.com/blog/2021/thermal-management-for-laminated-busbars
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The mixed formulation of problem (2.3) can be written into the form

2.8.aq ρcBtT pt,xq ` ∇ ¨ βpt,xq “ fpt,xq in s0, tf rˆΩ,

2.8.bq βpt,xq “ ´λ∇T pt,xq in s0, tf rˆΩ,

2.8.cq T pt,xq “ TD on s0, tf rˆΓD,

2.8.dq βpt,xq ¨ n “ hN on s0, tf rˆΓN ,

2.8.eq T p0,xq “ T0 in Ω,

(2.8)

where the unknowns are the temperature field T px, tq, the heat flux βpx, tq and the interface
position Γptq.

For the first set of interface conditions (2.4) the following conditions are imposed
#

JT pt,xqKΓ “ jT pt,xq,

Jβ ¨ nKΓ “ σpt,xq,
(2.9)

with the Stefan condition defined by

ρLmΓ
1
ptq ¨ n “ Jβpt,xqKΓ ¨ n. (2.10)

In Figure (2.5), the imposition of the conditions for both conform and embedded resolutions
are displayed taking into account the definition of the flux β.

Physical Interface Γ

Ω` Ω´

β`´ β´ “ JβKΓ “ σ
T`´T´ “ JT KΓ “ jT

•

•

•

•

•

•

•

•

(a) Conform Resolution

Γ̃ Physical Interface Γ

Ω` Ω´

JβKΓ̃ “ σ ´ Jdt∇ ¨ βdKΓ̃ ` Opd2q

JT KΓ̃ “ jT ` Jλ´1β ¨ dKΓ̃ ` Opd2q

•

•

•

•

•

•

•

•

(b) Embedded Resolution

Figure 2.5: Set 1 : Visualization of the imposition of the boundary conditions considering
β “ ´λ∇T

where dt is the notation used to refer to the transpose of the vector d.
For the second set of interface conditions (2.7) the differences with the primal form of the Stefan
model are for embedded resolutions only (see Figure (2.6).b). The definition of the conditions
(2.7) is still valid for the mixed Problem (2.8) The difference is that β is now used in the Taylor
developments of the condition on Γ for an imposition on Γ̃. Definition (2.10) is also used for
the treatment of the Stefan condition for the second set of interface conditions (2.7).
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Physical Interface Γ

Ω`

T`

2
`T´

2
“ tT uΓ “ aT

T`´T´ “ JT KΓ “ jT

•

•

•

•

•

•

•

•

(a) Conform Resolution

Γ̃ Physical Interface Γ

Ω` Ω´

tT uΓ̃ “ aT ` tλ´1β ¨ duΓ̃ ` Opd2q

JT KΓ̃ “ jT ` Jλ´1β ¨ dKΓ̃ ` Opd2q

•

•

•

•

•

•

•

•

(b) Embedded Resolution

Figure 2.6: Set 2 : Visualization of the imposition of the boundary conditions considering
β “ ´λ∇T

In the proceeding sections, only the mixed formulation is considered.

2.1.4 Matrix resolution approach

The finite weak formulation is the weak form associated to the space of approximation used to
approximate the space of infinite dimension of the initial system of PDEs. The weak formulation
can be associated to a matrix resolution approach where all the terms in the model are associated
to a specific matrix or vector. Let the vector U “ pβx, βy, T q1 be the vector of unknowns, such
that 9U “ pBtβx, Btβy, BtT q1, then the quasi-weak formulation, i.e., the weak formulation without
the application of any time discretization schemes, consists of solving the following matrix
system

M 9U ` AU “ F ` S (2.11)

where

• U is the the vector of unknowns such that U=pβx, βy, T q,

• 9U is the derivative of U with respect to time t,

• A is the matrix of the steady problem,

• M is the matrix of the time dependent terms,

• F is the vector taking into account the source term fpx, tq,

• S is the vector taking into account the boundary conditions.

There are specific methods called "time-space" FEM, see [121], which use test functions de-
pending explicitly on the time variable. In this work, the proposed method is not one of them.
The choice made for the treatment of the time dependent terms will be addressed in Section
2.4.4 of this Chapter.
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2.2 Conformal case

In order to decouple the complexity of the problem, the case where the mesh is grid conformed
to the geometry is first considered, i.e., where the use of the Shifted Boundary Method is not
required, see Figure 2.7. It is a good starting point to understand the construction of the weak
formulation and its properties, especially with the particularities brought by the presence of
the moving interface. The construction and analysis of the proposed stabilized Finite Element
scheme is based on the stabilized Continuous Galerkin (CG) and Discontinuous Galerkin (DG)
schemes introduced by Hughes, Masud and co-authors (see e.g. [5, 6, 7]), and extended in some
recent articles, see for instance [8, 9, 122].

Γ

Ω` Ω´

(a) Structured Mesh

Γ

Ω` Ω´

(b) Unstructured Mesh

Figure 2.7: Conform resolution - Interface Γ conform to the mesh geometry

2.2.1 Notations

In order to derive properly the variational formulation of System (2.8), one can define

WT pΩq “ tT P H1
pΩ`q Y H1

pΩ´qu,

WβpΩq “ tβ P pHpdiv,Ω`q Y Hpdiv,Ω´qqu,
(2.12)

endowed with the norms
}T }

2
WT

“ }T }
2
H1pΩ`q ` }T }

2
H1pΩ´q,

and
}β}

2
Wβ

“ }β}
2
Hpdiv,Ω`q ` }β}

2
Hpdiv,Ω´q.

For any time t ą 0, L2ps0, tf r,WT pΩqq is the set of measurable functions T : s0, tf rˆΩ ÝÑ R
such that

ż tf

0

}T psq}
2
WT
ds ă `8,

and L2ps0, tf r,Wβq is the set of measurable functions β : s0, tf rˆΩ ÝÑ R such that
ż tf

0

}βpsq}
2
Wβ
ds ă `8.

48



Finally, one can define

W ps0, tf r,Ωq “ L2
ps0, tf r,WT pΩqq ˆ L2

ps0, tf r,WBpΩqq, (2.13)

and
W pΩq “ WT pΩq ˆ WBpΩq. (2.14)

The classical weak formulation is obtained by taking the L2 scalar product of the first-two
equations of System (2.8) with test functions. The function q will denote the test function
associated to the temperature field T , and w the test function associated to the flux β. The
two test functions are not of the same dimension, q being of dimension 1, whilew is of dimension
d (d being the number of components of the flux β).
It can be formulated in the following way :

Find pT,βq P W ps0, tf r,Ωq such that @ pq,wq P W pΩq one has

2.15.aq pλ´1β,wqΩ ` p∇T,wqΩ “ 0,

2.15.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ “ pf, qqΩ.
(2.15)

Note that, for the sake of clarity, at this step no time discretization is used on the variables.
The latter formulation (2.15), which is for infinite-dimensional spaces, is now considered in its
discrete spatial version.

Let Th be a tessellation of the domain Ω, in which elements are denoted byK and the boundaries
by BK. Let h be the measure of an element, and Nv and Ne the number of nodes and elements
of the mesh Th.

which correspond to sets of piece-wise polynomials of order l for the temperature, and of order
p for the flux, which are continuous on each subdomain Ω` and Ω´. Note that in this present
work, the focus is on piece-wise linear approximations of the variables, i.e., where l = p = 1.

2.2.2 First Set of Interface Conditions

In this section, the imposition of the flux jump and temperature jump into the weak formulation
are discussed according to Conditions (2.9).

2.2.2.a Weak formulation

The Galerkin weak formulation of Problem (2.15) consists of looking for a solution pT,βq

belonging to W l,p
ps0, tf r,Ωq such that @ pq,wq P W l,p

pΩq one has

2.16.aq pλ´1β,wqΩ ` p∇T,wqΩ “ 0 ,

2.16.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ “ pf, qqΩ .
(2.16)

Using the decomposition Ω “ Ω` Y Ω´ and Green’s formula (1.6) separately on Ω` and Ω´

one obtains

2.17.aq pλ´1β,wqΩ ´ pT,∇.wqΩ` ă T , w ¨ n ąBΩ ` ă JwT KΓ,n ąΓ“ 0,

2.17.bq pρcBtT, qqΩ ´ pβ,∇qqΩ` ă β ¨ n, q ąBΩ ` ă JqβKΓ,n ąΓ“ pf, qqΩ.
(2.17)
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The outer boundary BΩ is decomposed into ΓD and ΓN on which Dirichlet and Neumann
conditions, leading to

2.18.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T,w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

` ă JwT KΓ,n ąΓ“ 0,

2.18.bq pρcBtT, qqΩ ´ pβ,∇qqΩ` ă β ¨ n, q ąΓD
` ă hN , q ąΓN

` ă JqβKΓ,n ąΓ“ pf, qqΩ.

(2.18)

Using the jump decomposition (1.26) for the terms depending on Γ and using the interface
conditions (2.9), one gets

2.19.aq ă JwT KΓ,n ąΓ“ă tT uΓ, JwKΓ ¨ n ąΓ ` ă jT px, tq, twuΓ ¨ n ąΓ,

2.19.bq ă JqβKΓ,n ąΓ “ă tβuΓ ¨ n, JqKΓ ąΓ ` ă σpx, tq, tquΓ ąΓ .
(2.19)

Plugging (2.19) into (2.18), and performing again in (2.18.b) a Green’s formula on Ω` and Ω´,
one can derive the final weak formulation.

Find pT,βq P W l,p
ps0, tf r,Ωq such that @ pq,wq P W l,p

pΩq one has

2.20.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T,w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

` ă tT uΓ, JwKΓ ¨ n ąΓ ` ă jT , twuΓ ¨ n ąΓ“ 0,

2.20.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
´ ă JβKΓ ¨ n´ σ, tquΓ ąΓ“ pf, qqΩ.

(2.20)
Any solution (T ,β) of (2.20) with T P L2ps0, tf r,W l

T pΩqq, β P L2ps0, tf r,Wp
βpΩqq, BtT P

L2ps0, tf r,H´1pΩqq is called a weak solution of System (2.8,2.9) or (2.8,2.7).

2.2.2.b Stabilization

The previous formulation (2.20) is known to be stable for only certain choices of polynomial
order of approximation. Following [5, 6, 7, 8, 9] two different kinds of stabilization terms are
added to the proposed method. The first one is called the div-div stabilization and is equal
to

ζdivh
2

2λ
pρcBtT ` ∇ ¨ β ´ f , ∇ ¨wqΩ , (2.21)

where ζdiv is a coefficient satisfying ζdiv “ Op1q. This div-div stabilization term (2.21) coun-
terbalances the error induced by the discretization of the divergence operator. The other
stabilization used is the so-called momentum stabilization and is equal to

´1{2pβ ` λ∇T , λ´1w ´ ∇qqΩ. (2.22)

It can be seen as a correction term using the residual of the equation β ` λ∇T “ 0, called the
momentum equation. For convenience, the following terms Astab, Bstab and Lstab are introduced

AstabppT,βq, qq :“
1

2
pβ ` λ∇T , ∇qqΩ,

BstabppT,βq,wq :“
ζdivh

2

2λ
pρcBtT ` ∇ ¨ β , ∇ ¨wqΩ ´ 1{2 pβ ` λ∇T , λ´1wqΩ,

Lstabpwq :“
ζdivh

2

2λ
pf , ∇ ¨wqΩ.

(2.23)

Plugging the different stabilization terms into (2.20), one obtains the following new formulation:
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Find pT,βq P W l,p
ps0, tf r,Ωq such that @ pq,wq P W l,p

pΩq

2.24.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă tT uΓ, JwKΓ ¨ n ąΓ ` ă T,w ¨ n ąΓN

` BstabppT,βq,wq “ Lstabpwq´ ă TD,w ¨ n ąΓD
´ ă jT , twuΓ ¨ n ąΓ,

2.24.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n, q ąΓN
´ ă JβKΓ ¨ n, tqu ąΓ

` AstabppT,βq, qq “ pf, qqΩ´ ă hN , q ąΓN
´ ă σ, tqu ąΓ,

(2.24)

Remark 6. The stabilization terms are independent of the use of the SBM.
Moreover, these stabilization terms are local, with h defined as the square root of the element’s
area. The temperature enrichment, explained later in Section 2.4, guarantees second-order
accuracy in the flux, regardless of the choice of stabilization weight. Rather than proposing a
new stabilization, the decision has been made to use one that has already been established and
proven effective. For further information on the stabilization, please refer to references [5, 6].

2.2.2.c Nitsche penalty terms

In order to enforce the Dirichlet condition on ΓD (see [123]) and the temperature jump on
Γ (see [50]), Nitsche penalty terms which are the consistent terms ă

α

h
pT ´ TDq, q ąΓD

and

ă
α

h
pJT KΓ ´ jT q, JqKΓ ąΓ are added to Equations (2.24). In addition, it has been shown in [6, 8,

9] that the jump penalty terms provide the theoretical stability of the weak formulation, using
coercivity arguments. To lighten the definition of the weak formulation the following terms are
introduced

NA1pT, qq :“
α

h
ă JT KΓ, JqKΓ ąΓ `

α

h
ă T, q ąΓD

,

NL1pqq :“
α

h
ă jT , JqKΓ ąΓ `

α

h
ă TD, q ąΓD

,
(2.25)

The terms in (2.25) are added to formulation (2.20). The Nitsche terms are separated into two
distinct terms, one part is added to the bilinear formulation (NA1), while the other is added
to the linear form of the weak formulation (NL1), terms added in the right-hand side of the
system to be solved.

2.26.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă tT uΓ, JwKΓ ¨ n ąΓ ` ă T,w ¨ n ąΓN

` BstabppT,βq,wq “ Lstabpwq´ ă TD,w ¨ n ąΓD
´ ă jT , twuΓ ¨ n ąΓ,

2.26.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n, q ąΓN
´ ă JβKΓ ¨ n, tqu ąΓ

` AstabppT,βq, qq ` NA1pT, qq “ pf, qqΩ´ ă hN , q ąΓN
´ ă σ, tqu ąΓ `NL1pqq,

(2.26)

Remark 7. In [6, 7, 8, 9], the questions of stability and convergence for the steady version of
(2.8) are addressed. If pT,βq P W l,p

ps0, tf r,Ωq, the scheme provides approximations of order
r :“ minpp`1, lq for the flux and of order r`1 for the temperature. As a consequence, dealing
with piecewise linear approximations provides respectively a first order accuracy for the flux
and a second order accuracy for the temperature. In Section 2.4 a method to increase the order
of accuracy of the flux while keeping piecewise linear test functions will be presented.

2.2.3 Second Set of interface conditions

The aim of this section is to present the finite weak formulation derived from (2.8) using the
second set of interfaces conditions according to (2.7).
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2.2.3.a Weak formulation

The Galerkin weak formulation of Problem (2.15) can be written as:

Find pT,βq P W l,p
ps0, tf r,Ωq such that @ pq,wq P W l,p

pΩq one has

2.27.aq pλ´1β,wqΩ ` p∇T,wqΩ “ 0 ,

2.27.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ “ pf, qqΩ .
(2.27)

In a similar way that the work performed for the first set of interface conditions (2.9) (see
Section 2.2.2.a), the Green’s formula (1) is used separately on Ω` and Ω´ for (2.27.a) and on
Ω for (2.27.b). This provides

2.28.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T,w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

` ă JwT KΓ,n ąΓ“ 0,

2.28.bq pρcBtT, qqΩ ´ pβ,∇qqΩ` ă β ¨ n, q ąΓD
` ă hN , q ąΓN

“ pf, qqΩ.

(2.28)

Using the relation (1.26) with the interface conditions (2.7), one obtains

ă JwT KΓ,n ąΓ“ă jT , twuΓ ¨ n ąΓ ` ă aT , JwKΓ ¨ n ąΓ . (2.29)

Plugging (2.29) into (2.28.a) and performing again Green’s formula on Ω in (2.28.b), the fol-
lowing weak formulation is obtained:

Find pT,βq P W l,p
ps0, tf r,Ωq such that @ pq,wq P W l,p

pΩq one has

2.30.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T,w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

` ă aT , JwKΓ ¨ n ąΓ ` ă jT , twuΓ ¨ n ąΓ“ 0,

2.30.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
“ pf, qqΩ.

(2.30)

Any solution (T ,β) of (2.30) with T P L2ps0, tf r,W l
T pΩqq, β P L2ps0, tf r,Wp

βpΩqq, BtT P

L2ps0, tf r,H´1pΩqq is called a weak solution of System (2.8-2.9) or (2.8-2.7).

2.2.3.b Stabilization

The formulation (2.30) is stabilized using the div-div and the momentum stabilizations intro-
duced for the first set of interface condition in (2.23). Plugging (2.23) into (2.30) the following
stabilized formulation can be defined:

Find pT,βq P W l,p
ps0, tf r,Ωq such that @ pq,wq P W l,p

pΩq

2.31.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T,w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

`BstabppT,βq,wq

` ă aT , JwKΓ ¨ n ąΓ ` ă jT , twuΓ ¨ n ąΓ“ Lstabpwq,

2.31.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
`AstabppT,βq, qq “ pf, qqΩ.

(2.31)

2.2.3.c The Nitche’s penalty terms

In order to enforce the Dirichlet condition on ΓD (see [123]) and the temperature jump on Γ (see
[50]), the penalization of Nitsche is used by adding the consistent terms ă

α

h
pT ´ TDq, q ąΓD

,

ă
α

h
pJT KΓ ´ jT q, JqKΓ ąΓ and ă

α

h
ptT uΓ ´ aT q, tquΓ ąΓ to Equation (2.31). To lighten the
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definition of the weak formulation the following terms are introduced

NA2pT, qq :“
α

h
ă JT KΓ, JqKΓ ąΓ `

α

h
ă tT uΓ, tquΓ ąΓ `

α

h
ă T, q ąΓD

,

NL2pqq :“
α

h
ă jT , JqKΓ ąΓ `

α

h
ă aT , tquΓ ąΓ `

α

h
ă TD, q ąΓD

.
(2.32)

The Nitsche terms are separated into two distinct terms, one part is added to the bilinear for-
mulation (NA2), while the other part is added to the linear form of the weak formulation (NL2).

2.33.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T,w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

`BstabppT,βq,wq

` ă aT , JwKΓ ¨ n ąΓ ` ă jT , twuΓ ¨ n ąΓ “ Lstabpwq,

2.33.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
`NA2pT, qq ` AstabppT,βq, qq

“ pf, qqΩ ` NL2pqq.
(2.33)

In this section, the results of a conform resolution have been presented to facilitate the initial
understanding of the proposed method. In the next section, results for an embedded resolution
will be introduced which will be discussed later on in Chapter 3 with a chapter results. The
embedded approach allows to handle the moving interface without the need to adapt the mesh.

2.3 Embedded case

Γ

Ω` Ω´

Γ̃

(a) Structured Mesh

Γ̃ Γ

Ω` Ω´

(b) Unstructured Mesh

Figure 2.8: Embedded resolution - Interface Γ non conform to the mesh geometry and its
surrogate interface Γ̃

In this section, the situation described in Section 2.2 is considered, and the Shifted Boundary
Method is included for the treatment of the boundary conditions, see Figure 2.8. A configuration
where the interface is non-fitted to the mesh of the domain is considered. The first step consists
in rewriting Equations (2.4) and (2.7) using Taylor expansions between Γ and Γ̃

4.121.aq JT KΓ “ jT “ JT ` ∇T ¨ dKΓ̃ ` Op||dpx̃q||
2
q,

4.121.bq JβKΓ ¨ n “ σ “ Jβ ` ∇β dKΓ̃ ¨ n ` Op||dpx̃q||
2
q,

4.121.cq tT uΓ “ aT “ tT ` ∇T ¨ duΓ̃ ` Op||dpx̃q||
2
q,

(2.34)
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where d is the distance vector, see Equation (1.13).
The normal ñ to Γ̃ oriented from Ω` to Ω´ (see Figure 2.1) is decomposed on the basis pτ ,nq,
where n is the outward normal on Γ and τ its associated tangential vector.

ñ “ pñ ¨ nqn` pñ ¨ τ qτ . (2.35)

Considering Γ̃ptq the mutual boundary between Ω̃` and Ω̃´ the following spaces are introduced

QT pΩq “ tT P H1
pΩ̃`q Y H1

pΩ̃´qu,

QβpΩq “ tβ P pHpdiv, Ω̃`q Y Hpdiv, Ω̃´qqu,
(2.36)

and their finite-dimensional versions

Ql
T pΩq “ tT P QT pΩq |T |K P Pl

pKq, @K P Thu X pC0
pΩ̃`

q Y C0
pΩ̃´

qq ,

Qp
βpΩq “ tβ P QβpΩq |β|K P pPp

pKqq
d, @K P Thu X ppC0

pΩ̃`
qq

d
Y pC0

pΩ̃´
qq

d
q .

(2.37)

Finally one can consider

Ql,p
ps0, tf r,Ωq “ L2

ps0, tf r,Ql
T pΩqq ˆ L2

ps0, tf r,Qp
BpΩqq , (2.38)

Ql,p
pΩq “ Ql

T pΩq ˆ Qp
BpΩq . (2.39)

All the information necessary to derive the weak formulations corresponding to an embedded
situation has been introduced.

2.3.1 First set of interface conditions

In this section, the imposition of the first set of interface conditions (2.9) and its imposition in
the context of an embedded resolution is discussed. The comparison with the conform approach
is displayed in Figure 2.5.

Repeating the arguments of Section (2.2.1), that is applying Green’s formula (1) on (2.27.a-
2.27.b) and recalling that Ω “ Ω̃` Y Ω̃´, one obtains

2.40.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T , w ¨ n ąBΩ ` ă JwT KΓ̃, ñ ąΓ̃“ 0,

2.40.bq pρcBtT, qqΩ ´ pβ,∇qqΩ` ă β ¨ n, q ąBΩ ` ă JqβKΓ̃, ñ ąΓ̃“ pf, qqΩ.
(2.40)

The jump term in (2.40.a) is handled combining (1.26) and (4.121.a), where the terms of order
2 with respect to d are neglected.

ă JwT KΓ̃, ñ ąΓ̃“ă tT uΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă jT ´ J∇T ¨ dKΓ̃, twuΓ̃ ¨ ñ ąΓ̃ . (2.41)

The treatment of the jump term in (2.40.b) is more delicate and requires the decomposition
of the interface normal ñ (2.35). Indeed, the extrapolation of the flux is known in the normal
direction of the physical interface n. Thus, when applying the jump decomposition (1.26),
one needs to project the normal ñ to the surrogate interface onto n and τ , before using the
truncated extrapolation (4.121.b), providing:

ă JqβKΓ, ñ ąΓ̃“ă tβuΓ̃ ¨ ñ, JqKΓ̃ ąΓ̃ ` ă JβKΓ̃ ¨ τ pτ ¨ ñq, tquΓ̃ ąΓ̃

` ă pσ ´ J∇β dKΓ̃ ¨ nqpn ¨ ñq, tquΓ̃ ąΓ̃ .
(2.42)
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Plugging (2.41-2.42) into (2.40) the formulation becomes

2.43.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T , w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

` ă tT uΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă jT ´ J∇T ¨ dKΓ̃, twu ¨ ñ ąΓ̃“ 0,

2.43.bq pρcBtT, qqΩ ´ pβ,∇qqΩ` ă β ¨ n, q ąΓD
` ă hN , q ąΓN

` ă tβuΓ̃ ¨ ñ, JqKΓ̃ ąΓ̃

` ă JβKΓ̃ ¨ τ pτ ¨ ñq, tquΓ̃ ąΓ̃ ` ă pσ ´ J∇β dKΓ̃ ¨ nqpn ¨ ñq, tquΓ̃ ąΓ̃“ pf, qqΩ.

(2.43)

Now, performing again a Green’s formula in (2.43.b), using the decomposition Ω “ Ω̃` Y Ω̃´,
one obtains, after a straightforward calculation, the following weak formulation:

Find pT,βq P Q1,1
ps0, tf r,Ωq such that @pq,wq P Q1,1

pΩq one has

2.44.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T , w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

` ă tT uΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă jT ´ J∇T ¨ dKΓ̃, twu ¨ ñ ąΓ̃“ 0,

2.44.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
` ă tβuΓ̃ ¨ ñ, JqKΓ̃ ąΓ̃

` ă pσ ´ Jβ ` ∇β dKΓ̃ ¨ nqpn ¨ ñq, tquΓ̃ ąΓ̃“ pf, qqΩ.

(2.44)

Before adding the Nitsche’s penalty terms in (2.44), Taylor expansions are performed. As
presented in [2, 95], the extrapolation can also be applied on the test functions to provide
symmetry in the weak formulation. This gives

N̄A1pT, qq :“
α

h
ă JT ` ∇T ¨ dKΓ̃, Jq ` ∇q ¨ dKΓ̃ ąΓ̃ `

a

h
ă T, q ąΓD

,

N̄L1pqq :“
α

h
ă jT , Jq ` ∇q ¨ dKΓ̃ ąΓ̃ `

a

h
ă TD, q ąΓD

.
(2.45)

Then the stabilized formulation can be written as below :

Find pT,βq P Q1,1
ps0, tf r,Ωq such that @pq,wq P Q1,1

pΩq one has

2.46.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă T , w ¨ n ąΓN
` ă TD,w ¨ n ąΓD

`BstabppT,β,wq

` ă tT uΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă jT ´ J∇T ¨ dKΓ̃, twu ¨ ñ ąΓ̃“ Lstabpwq,

2.46.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
` ă tβuΓ̃ ¨ ñ, JqKΓ̃ ąΓ̃

` ă pσ ´ Jβ ` ∇β dKΓ̃ ¨ nqpn ¨ ñq, tquΓ̃ ąΓ̃ `N̄A1pT, qq ` AstabppT,βq, qq “ pf, qqΩ ` N̄L1pqq.

(2.46)

2.3.2 Second set of interface conditions

For the second set of interface condition (2.7), where the temperature is imposed on each side
of the interface, only the momentum equation (2.27.a) needs to be modified. Using Green’s
formula (1), Equation (2.27.a) becomes

pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă TD,w ¨ n ąΓD
` ă T,w ¨ n ąΓN

` ă JwT KΓ̃, ñ ąΓ̃“ 0. (2.47)

Combining (1.26), (4.121.a) and (4.121.c), one obtains, at leading order,

ă JTwKΓ̃, ñ ąΓ̃“ă aT ´ t∇T ¨ duΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă jT ´ J∇T ¨ dKΓ̃, twuΓ̃ ¨ ñ ąΓ . (2.48)

As mentioned above, nothing has to be done on (2.27.b) regardless to the moving interface Γ̃.
Thus, by plugging (2.48) into (2.47), the following weak formulation is directly obtained:
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Find pT,βq P Q1,1
ps0, tf r,Ωq such that @pq,wq P Q1,1

pΩq one has

2.74.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă TD,w ¨ n ąΓD
` ă T,w ¨ n ąΓN

` ă aT ´ t∇T ¨ duΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă jT ´ J∇T ¨ dKΓ̃, twuΓ̃ ¨ ñ ąΓ̃“ 0,

2.74.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
“ pf, qqΩ.

(2.49)

Similar to the procedure explained for the first set of interface conditions, Taylor expansions
need to be performed before being able to add the Nitsche’s terms in the formulation to ensure
that the accuracy of the method is not reduced. These Nitsche’s terms are denoted by N̄A2pT, qq
and N̄L2pqq:

N̄A2pT, qq :“
α

h
ă JT ` ∇T ¨ dKΓ̃, Jq ` ∇q ¨ dKΓ̃ ąΓ̃ `

α

h
ă tT ` ∇T ¨ duΓ̃, tq ` ∇q ¨ duΓ̃ ąΓ̃

`
a

h
ă T, q ąΓD

,

N̄L2pqq :“
α

h
ă jT , Jq ` ∇q ¨ dKΓ̃ ąΓ̃ `

α

h
ă aT , tq ` ∇q ¨ duΓ̃ ąΓ̃ `

a

h
ă TD, q ąΓD

.

(2.50)
This leads to the following stabilized formulation

Find pT,βq P Q1,1
ps0, tf r,Ωq such that @pq,wq P Q1,1

pΩq one has

2.74.aq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă TD,w ¨ n ąΓD
` ă T,w ¨ n ąΓN

`BstabppT,βq,wq

` ă aT ´ t∇T ¨ duΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă jT ´ J∇T ¨ dKΓ̃, twuΓ̃ ¨ ñ ąΓ̃“ Lstabpwq,

2.74.bq pρcBtT, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
`AstabppT,βq, qq ` N̄A2pT, qq

“ pf, qqΩ ` N̄L2pqq.
(2.51)

So far, for both set of interface conditions a stabilized finite weak formulation ((2.46) and
(2.74)) has been developed. In the next section of this chapter, a method to obtain a second
order accuracy in space for both variables is detailed. The method only requires P1 basis/test
functions, but allows a second order accuracy on both the primal variable and its gradient.
This method will be referred as temperature enrichment.

2.4 Enrichment procedure

2.4.1 Explanations

In this work, to provide a fully second order scheme in space for the temperature, the heat flux
and the interface location, one needs to ensure a second order flux. To this end, the strategy
proposed in [95] is followed and an enrichment procedure for the primal variable is considered.
It consists of improving the weak formulation to be at least second order accurate for both
variables using the link between the basis functions P1 and P2, and by a proper utilization
of Taylor expansions for both variables. More precisely the key idea is to define a quadratic
polynomial temperature in each element of the mesh using values associated to new degrees
of freedom at each edge midpoint as it is shown in Figure 2.9. Only the definition of the P1

basis functions and their associated nodes are used, with the values of the edge midpoints being
extrapolated.
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Figure 2.9: Extrapolation of midPoints values - Comparison of a P1 element with a P2 element

Let Th denotes the approximation of the temperature decomposed with respect to the basis
tϕP2

i u1ďiďN , a basis of P2pΩq of dimension N . The parameter h in the definition Th represents
the discretization in space of the domain Ω, which intends to vanish at convergence.
Then, the approximation Th on the basis tϕP2

i u1ďiďN is defined by

Thpxq “ Σ
i,node

Tiϕ
P2

i pxq ` Σ
j,edge

Tjϕ
P2

j pxq . (2.52)

The approximation (2.52) is the one expected but without having to built the P2 basis functions
or adding new points to the resolution (those necessary to transform a P1 element into a P2

element, see Figure 2.9). Let tϕP1

i u1ďiďK be a basis of P1pΩq of dimension N “ 2K. To define
the basis functions in the approximation Th in (2.52), the relations (2.53) are introduced, where
for both two and three dimensions, the basis functions of a P2 element (ϕP2

i ) and the basis
functions of a P1 element (ϕP1

i ) satisfy

ϕP2

i pxq “ ϕP1

i pxqp2ϕP1

i pxq ´ 1q if i a vertex,

ϕP2

k pxq “ 4ϕP1

i pxqϕP1

j pxq if k is the midpoint of the edge [i,j].
(2.53)

In Figure 2.10 the 2D version of Definition (2.53) is presented, where they can be expressed on
the reference triangle TK “ tp0, 0q, p1, 0q, p0, 1qu by combination of linear equations. The red
nodes correspond to the nodes of a P1 finite element while the green nodes are those added to
transform a P1 finite element into a P2 finite element, see Figure 2.10.
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Figure 2.10: Link between the P1 and P2 basis functions on the reference triangle

Let tγiu1ďiď3 be a basis of P1pTKq on the reference element TK . Then the elements of tγiu1ďiď3

are defined by
γ1px, yq “ 1 ´ x ´ y

γ2px, yq “ x ; 0 ď x ď 1

γ3px, yq “ y ; 0 ď y ď 1 ´ x

(2.54)

while the elements of tϕiu1ďiď6 basis of P2pTKq are defined by

ϕ1px, yq “ 1 ´ 3x ´ 3y ` 4xy ` 4x2 ` 4y2

ϕ2px, yq “ ´x ` 2x2

ϕ3px, yq “ ´y ` 2y2

ϕ4px, yq “ 4x ´ 4xy ´ 4x2

ϕ5px, yq “ 4xy ; 0 ď x ď 1

ϕ6px, yq “ 4y ´ 4xy ´ 4y2 ; 0 ď y ď 1 ´ x

(2.55)

By representing some of the linear equations on the reference triangle (see Figure 2.10), asso-
ciated to the basis functions (2.54) which are passing by the nodes of a P2 element (denoted
taiu1ďiď6), one can see that the basis functions tϕiu1ďiď6 can be defined by linear combinations
of P1 basis functions. Let a1 be a node of a P2 element. In order to define ϕ1 element of the
base tϕiu1ďiď6 as a basis function ϕ1 needs to satisfy

1. ϕ1pa1q “ 1

2. ϕ1paiq “ 0, 2 ď i ď 6
(2.56)

By definition of γ1pa1q “ 1 the basis function ϕ1 can be defined by

ϕ1px, yq “ kpx, yqγ1px, yq, (2.57)

such that kpx, yq is a real function that needs to be determined. The next step is to determine
kpx, yq such that ϕ1paiq “ 0, @i P rr2, 6ss. If one looks at Figure 2.10 then γ1px, yq “ 0 for the
nodes a2, a5 and a3. Moreover, γ1px, yq “ 1

2
for the nodes a4 and a6. Then kpx, yq is defined by

kpx, yq “ δpγ1px, yq ´ 1
2
q, where δ P R is used to satisfy kpa1q “ 1. Then ϕ1px, yq is defined by

ϕ1px, yq “ 2pγ1px, yq ´ 1
2
qγ1px, yq .
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The same work is done for every element of the basis tϕiu1ďiďN . In Figure 2.10 one can see
that each P2 basis function is a combination of P1 basis functions. Then, the elements of the
basis tϕiu1ďiďN are of the form

ϕ1px, yq “ 2pγ1px, yq ´
1

2
qγ1px, yq,

ϕ2px, yq “ 2pγ2px, yq ´
1

2
qγ2px, yq,

ϕ3px, yq “ 2pγ3px, yq ´
1

2
qγ3px, yq,

ϕ4px, yq “ 4γ1px, yqγ2px, yq,

ϕ5px, yq “ 4γ2px, yqγ3px, yq,

ϕ6px, yq “ 4γ1px, yqγ3px, yq.

(2.58)

The definition (2.53) has been verified in the case of a 2D simulations.
Remark 8. We recall that the basis functions are defined on the reference element before being
adapted to any element of the mesh by affine transformation, see Section 1.1.3.

The next step to define the temperature enrichment is to exclude the addition of the edge
midpoints, which correspond to the green nodes in Figure 2.10, in order to avoid creating a
larger system to solve. The main idea is to replace those values using only the information
known for the nodes of a P1 element, the red nodes in Figure 2.10. To achieve this, a third-
order truncated Taylor expansion of the temperature along the edge is considered, along with
a second order Taylor expansion of the flux; i.e.,

2.59.aq T px ` δxq “ T pxq ` ∇T pxq ¨ δx` 1{2 δxtHpT qδx` Op||δx||
3
q

2.59.bq βpx ` δxq “ βpxq ` ∇. βpxqδx ` Op||δx||
2
q

(2.59)

Then Conditions (2.59) are modified to use the particularity of the mixed formulation where
the expression of the flux is linked to the temperature. In order to replace HpT q in (2.59.a) the
definition ∇T “ ´ 1

λ
β is used (by definition of the problem in (2.8)) which leads to HpT q “

´∇ ¨ pλ´1βq. Then the Taylor expansions (2.59) is defined by the following approximation

2.60.aq T px ` δxq « T pxq ´ λ´1β ¨ δx ´
1

2
δxt∇pλ´1βqδx,

2.60.bq pλ´1βqpx ` δxq « pλ´1βqpxq ` ∇pλ´1βqpxqδx .
(2.60)

Remark 9. The operator HpT q is the Hessian of T , while ∇ ¨ p´λ´1βq is the Hessian tensor
of p´λ´1βq i.e.

HpT q “

ˆ

Bx2T BxByT
ByBxT By2T

˙

“ ∇ ¨ p´λ´1βq “ ´λ´1

ˆ

Bxβx Bxβy
Byβx Byβy

˙

. (2.61)

Remark 10. In this work, only simulations conducted on triangular meshes using P1 basis
functions are presented. It means that the Hessian associated to the temperature is not defined
if T is used as the only variable to be solved, thus equation (2.60) is always preferred.

Let ei,j “ xj ´ xi be the edge vector, with xi, xj P Rd, and xk the edge midpoint of the edge
rxi, xjs, see Figure 2.11. As xk is the midpoint of the edge rxi, xjs one has

ei,k “ ´ej,k “
1

2
ei,j. (2.62)
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The Taylor expansion of λ´1βpxjq “ λ´1βj and λ´1βpxiq “ λ´1βi in the direction of the point
xk leads to the following approximation of ∇.pλ´1βqpxqei,j in (2.63).

1. λ´1βpxjq “ λ´1βpxkq ` ∇ ¨ pλ´1βpxkqq ¨ pxj ´ xkq ` Op||xj ´ xk||
2
q

2. λ´1βpxiq “ λ´1βpxkq ` ∇ ¨ pλ´1βpxkqq ¨ pxi ´ xkq ` Op||xi ´ xk||
2
q

ùñ ∇ ¨ pλ´1βpxkqqpxj ´ xiq “ ∇ ¨ pλ´1βkqei,j « λ´1βj ´ λ´1βi

(2.63)

•

•

•

xi

xk

xj

ei,k

ej,k

Figure 2.11: Approximation at a point xk

Using Equation (2.63) and by performing Taylor expansions of Tk in the directions of the nodes
xi and xj, two approximations of Tk :“ T pxkq are obtained.

First in the direction of the node xi the Equation (2.64) is obtained

Tk “ Ti ´ λ´1βi ¨ ei,k ´
1

2
∇ ¨ pλ´1βiqei,k ` Op||xk ´ xi||

3
q,

« Ti ´ λ´1βi ¨ ei,k ´
1

2
pλ´1βk ´ λ´1βiq ¨ ei,k ,

(2.64)

while in the direction of the node xj the Equation (2.65) is defined

Tk “ Tj ´ λ´1βj ¨ ej,k ´
1

2
∇ ¨ pλ´1βjqej,k ` Op||xk ´ xj||

3
q,

« Tj ´ λ´1βj ¨ ej,k ´
1

2
pλ´1βk ´ λ´1βjq ¨ ej,k.

(2.65)

By adding the Formula (2.64) and (2.65) and by taking the average value, an approximation
of Tk denoted T h

k is given by

T h
k “

1

2
pTi`Tj´λ´1βi ¨ei,k´λ´1βj ¨ej,k´

1

2
pλ´1βk´λ´1βiq¨ei,k´

1

2
pλ´1βk´λ´1βjq¨ej,kq . (2.66)

Using Definition (2.62) an approximation of Tk is obtained independent of the node xk.

T h
k “ 1{2 pTi ` Tj ´ λ´1βi ¨

ei,j
2

` λ´1βj ¨
ei,j
2

` 1{2pλ´1βk ´ λ´1βjq ¨
ei,j
2

´ 1{2 pλ´1βk ´ λ´1βiq ¨
ei,j
2

q

“ 1{2 pTi ` Tjq ` 1{8 pλ´1βj ´ λ´1βiq ¨ ei,j .

(2.67)

In the following ∆pλ´1βqe denotes ∆pλ´1βqe “ pλ´1βj ´ λ´1βiq and ∆xe “ ei,j.

The last step consists in plugging Expression (2.67) into (2.52), and by changing the definition
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of the P2 basis functions by their relations with the P1 defined by Equation (2.53).

Thpxq “ Σ
i,node

Tiϕ
P2

i pxq ` Σ
k,edge

Tkϕ
P2

k pxq

« Σ
i,node

Tiϕ
P1

i pxqp2ϕP1

i pxq ´ 1q ` Σ
k,edge

p
1

2
pTi ` Tjq `

1

8
pλ´1βj ´ λ´1βiq ¨ ei,jq4ϕ

P1

i pxqϕP1

j pxq

« Σ
i,node

Tiϕ
P1

i pxqp2ϕP1

i pxq ´ 1q ` Σ
k,edge

2pTi ` Tjqϕ
P1

i pxqϕP1

j pxq ` Σ
k,edge

1

2
∆pλ´1βqe ¨ ∆xeϕ

P1

i pxqϕP1

j pxq

« Σ
i,node

2Tiϕ
P1

i pxqp Σ
j,node

ϕP1

j pxq ´ 1q ` Σ
i,node

Tiϕ
P1

i pxq ` Σ
k,edge

1

2
∆pλ´1βqe ¨ ∆xeϕ

P1

i pxqϕP1

j pxq

« Σ
i,node

Tiϕ
P1

i pxq ` Σ
k,edge

1
2
∆pλ´1βqe ¨ ∆xeϕ

P1

i pxqϕP1

j pxq

(2.68)
since Σ

j,node
ϕP1

j pxq “ 1. Thus, the enriched temperature is build using only the P1 basis functions

and without having to calculate the midpoint values of each edge. The terminology enrich-
ment comes from its definition (2.68) where only new terms have been added to the usual P1

approximation.
Remark 11. The enrichment method allows to improve the space accuracy on both variables
(T ,β) without increasing the size of the linear system associated to the finite weak formulation.
For the example of a 2D-simulation the mixed form requires the treatment of two additional
unknowns βx and βy compared to its primal form, where only T would be considered. An
important step in the FEM is to solve a linear system, where the matrix depends on several
parameters such as the number of unknowns, the mesh discretization, and the choice of the
space of approximation. This step is time-consuming and one always wants to decrease the size
of the matrix.

Let Nv be the number of vertices, associated to a standard triangular mesh discretization Th,
then the size of the final system for a 2D simulation (2 components for β) is equal to

• p3p3Nvqq2, for a standard P 1 simulation solved in mixed form,

• p3p3Nvqq2, for an enriched P 1 simulation solved in mixed form,

• p3p6Nvqq2, for a standard P 2 simulation solved in mixed form,

• p6Nvq2, for a standard P 2 simulation solved in primal form.

The standard P2 simulation in primal form requires to solve a bigger system than the enriched
P1 simulation in its mixed form, which gives the same accuracy than a P 2 simulation, as
demonstrated in this section. For time-dependent problems, the mixed form imposes fewer
constraints on the time step (for explicit schemes), and as previously mentioned in Section
2.1.2, it is more stable than the primal form.

For the Stefan problem, the flux needs to be known at the interface. If the primal form was
considered, a flux reconstruction method would still be required. Reconstruction methods, such
as the Green-Gauss method, are largely sensitive to numerical quadrature, discontinuities in
the primal variable, changes in flow direction and the mesh quality. For example, the accuracy
at the boundary can be impacted by the shape of the elements, especially for complex boundary
shapes and can lead to singularities in the gradient. For this reason, the use of the mixed form
provides an interesting alternative to handle two-phases situations.

In the following, the usual SBM is extended to increase the order of accuracy (see [95]), using
Definition (2.68). Results for both set of interface conditions (2.9) and (2.7) are presented. To
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this end, the spaces of resolution associated to the enrichment procedure defined in (2.68) are
first introduced.

2.4.2 Enrichment of the primal variable

Considering the mutual boundary Γ̃ptq between Ω̃` and Ω̃´ and for the sake of clarity the
following spaces are once again introduced

QT pΩq “ tT P H1
pΩ̃`q Y H1

pΩ̃´qu,

QβpΩq “ tβ P pHpdiv, Ω̃`q Y Hpdiv, Ω̃´qqu,

which with Definition (2.68) allows to introduce the finite-dimensional spaces (2.69) associated
with an enriched temperature version.

Q2˚
T pΩq “ tT P QT pΩq |T |K “

ÿ

i,node

Tiϕ
P1pKq

i pxq `
ÿ

k,edge

1

2
∆pλ´1βqe∆xeϕ

P1pKq

i pxqϕ
P1pKq

j pxq,

such that tϕ
P1pKq

i u1ďiď3 basis of P1
pKq, @K P Thu X pC0

pΩ̃`
q Y C0

pΩ̃´
qq ,

Q1
βpΩq “ tβ P QβpΩq |β|K P pP1

pKqq
d, @K P Thu X ppC0

pΩ̃`
qq

d
Y pC0

pΩ̃´
qq

d
q .

(2.69)
Finally the following spaces are considered

Q2˚,1
ps0, tf r,Ωq “ L2

ps0, tf r,Q2˚
T pΩqq ˆ L2

ps0, tf r,Q1
BpΩqq ,

Q2˚,1
pΩq “ Q2˚

T pΩq ˆ Q1
BpΩq .

(2.70)

The method to transform an embedded scheme into an enriched embedded scheme is as follow.

1. The definition (2.68) defined for the temperature field T is also used for its test function
q to define more symmetry in the definition of the finite weak formulation.

2. Higher order Taylor approximations for the impositions of the interface conditions on the
surrogate Γ̃ are necessary to keep the second order accuracy obtained by the enrichment
(2.68). This means that, at the very least, a second-order expansion for the temperature
field and its test function are employed to maintain symmetry, (see Equation (2.64) and
Equation (2.65)).

3. To differentiate an enriched variable from the other variables in the scheme, the notation ˚

is used to denote an enriched variable. For example T ˚ refers to the enriched temperature
field and q˚ refers to the associated enriched test function.

It is also possible to look at a non-symmetric enrichment by taking a non enriched test function.
However, a symmetric formulation is also a form of stabilization by bringing symmetry to the
matrix of the linear system. It is then advised to use both the enrichment on the temperature
T ˚ and on its test function q˚. In the next section, the enriched scheme for both set of interface
conditions (2.9) and (2.7) is introduced.

2.4.3 First set of interface conditions

The enriched version consists in replacing T by T ˚ and q by q˚ in (2.46), where T ˚ and q˚ are
given by Definition (2.68).
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Finding pT ˚,βq P Q2˚,1
p s0, tf r ,Ωq, such that @pq˚,wq P Q2˚,1

pΩq one has

2.71.aq pλ´1β,wqΩ ´ pT ˚,∇ ¨wqΩ` ă Jλ´1β ¨ d` 1{2dt∇pλ´1βqdKΓ̃ , twu ¨ ñ ąΓ̃

` ă tT ˚
u, JwKΓ̃ ¨ ñ ąΓ̃ `BstabppT ˚,βq,wq` ă T ˚,w ¨ n ąΓN

“ ´ ă jT , twu ¨ ñ ąΓ̃

´ ă TD,w ¨ n ąΓD
`Lstabpwq;

2.71.bq pρcBtT
˚, qqΩ´ ă Jβ ` ∇ ¨ β dKΓ̃ ¨ npn ¨ ñq, tq˚

u ąΓ̃ `p∇ ¨ β, q˚
qΩ ` AstabppT ˚,βq, q˚

q

´ ă β ¨ n´ hN , q
˚

ąΓN
“ pf, q˚

qΩ´ ă σpn ¨ ñq, tq˚
u ąΓ̃ .

(2.71)
Accordingly to formulation (2.71) the Nitsche penalty terms defined in (2.45) need to be modi-
fied to match the Taylor developments of the enrichment method, see Section 2.4.2. The Taylor
developments are done at a higher order and are modified on both the temperature and its test
function:

ÑA1pT ˚, q˚
q :“

α

h
ă JT ˚

` ∇T ˚
¨ d`

1

2
dtHpT ˚

qdKΓ̃, Jq
˚

` ∇q˚
¨ d`

1

2
dtHpq˚

qdKΓ̃ ąΓ̃

ÑL1pq˚
q :“

α

h
ă jT , Jq˚

` ∇q˚
¨ d`

1

2
dtHpq˚

qdKΓ̃ ąΓ̃

(2.72)

Using the definition of the flux β “ ´λ∇T , the Nitsche’s penalty terms (2.72) can be rewritten
as follow

ÑA1pT ˚, q˚
q :“

α

h
ă JT ˚

´ λ´1β ¨ d´
1

2
dt

pλ´1∇βqdKΓ̃, Jq
˚

´ λ´1w ¨ d´
1

2
dt

pλ´1∇wqdKΓ̃ ąΓ̃

ÑL1pq˚
q :“

α

h
ă jT , Jq˚

´ λ´1w ¨ d´
1

2
dt

p´λ´1∇wqqdKΓ̃ ąΓ̃ .

(2.73)
The Nitsche penalty terms (2.73) are then added to formulation (2.71) to obtain the scheme
associated with an enriched embedded simulation, corresponding to the first set of interface
condition (2.9). The same procedure is done for the second set of interface conditions (2.7) in
the next section.

2.4.4 Second set of interface conditions

In this section, the method explained in Section 2.4.2 is applied to the second set of interface
conditions (2.7). Then, from formulation (2.74) one is able to obtain the following enriched
scheme.

Finding pT ˚,βq P Q2˚,1
p s0, tf r ,Ωq, such that @pq˚,wq P Q2˚,1

pΩq one has

2.74.aq pλ´1β,wqΩ ´ pT ˚,∇ ¨wqΩ` ă TD,w ¨ n ąΓD
` ă T ˚,w ¨ n ąΓN

`BstabppT ˚,βq,wq

´ ă t∇T ˚
¨ d` 1{2dtHpT ˚

qduΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ´ ă J∇T ¨ d` 1{2dtHpT ˚
qdKΓ̃, twuΓ̃ ¨ ñ ąΓ̃

“ ´ ă aT , JwKΓ̃ ¨ ñ ąΓ̃ ´ ă jT , twuΓ̃ ¨ ñ ąΓ̃ `Lstabpwq,

2.74.bq pρcBtT
˚, q˚

qΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
`AstabppT ˚,βq, q˚

q “ pf, q˚
qΩ.

(2.74)
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To the enriched weak formulation (2.74) the Nitsche penalty terms (2.75) are also added in the
scheme :

ÑA2pT ˚, q˚
q :“

α

h
ă JT ˚

` ∇T ˚
¨ d`

1

2
dtHpT ˚

qdKΓ̃, Jq
˚

` ∇q˚
¨ d`

1

2
dtHpq˚

qdKΓ̃ ąΓ̃

`
α

h
ă tT ˚

` ∇T ˚
¨ d`

1

2
dtHpT ˚

qduΓ̃, tq
˚

` ∇q˚
¨ d`

1

2
dtHpq˚

qduΓ̃ ąΓ̃,

ÑL2pq˚
q :“

α

h
ă jT , Jq˚

` ∇q˚
¨ d`

1

2
dtHpq˚

qdKΓ̃ ąΓ̃ `
α

h
ă aT , tq

˚
` ∇q˚

¨ d`
1

2
dtHpq˚

qduΓ̃ ąΓ̃ .

(2.75)
Following Remark 9, the Nitsche penalty terms (2.75) and the weak formulation (2.74) can be
rewritten using the information known from the mixed form. To reduce the computational cost
∇T ˚ is replaced by ´λ´1β and HpT ˚q by ´∇ ¨ pλ´1βq in Definition (2.75). The same work is
done on the test function q˚. This allows to reduce the number of additional terms which leads
to the following finite weak formulation

Finding pT ˚,βq P Q2˚,1
p s0, tf r ,Ωq, such that @pq˚,wq P Q2˚,1

pΩq the following equations hold

2.74.aq pλ´1β,wqΩ ´ pT ˚,∇ ¨wqΩ` ă TD,w ¨ n ąΓD
` ă T ˚,w ¨ n ąΓN

`BstabppT ˚,βq,wq

` ă tλ´1β ¨ d` 1{2dt∇ ¨ pλ´1βqduΓ̃, JwKΓ̃ ¨ ñ ąΓ̃ ` ă Jλ´1β ¨ d` 1{2dt∇ ¨ pλ´1βqdKΓ̃, twuΓ̃ ¨ ñ ąΓ̃

“ ´ ă aT , JwKΓ̃ ¨ ñ ąΓ̃ ´ ă jT , twuΓ̃ ¨ ñ ąΓ̃ `Lstabpwq,

2.74.bq pρcBtT
˚, q˚

qΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n´ hN , q ąΓN
`AstabppT ˚,βq, q˚

q “ pf, q˚
qΩ,

(2.76)

and where the Nitsche’s penalty terms (4.123) are added to Formulation (2.76).

ÑA2pT ˚, q˚
q :“

α

h
ă JT ˚

´ λ´1β ¨ d´ 1{2dt∇ ¨ pλ´1βqdKΓ̃, Jq
˚

´ λ´1w ¨ d´ 1{2dt∇ ¨ pλ´1wqdKΓ̃ ąΓ̃

`
α

h
ă tT ˚

´ λ´1β ¨ d´ 1{2dt∇ ¨ pλ´1βqduΓ̃, tq
˚

´ λ´1w ¨ d´
1

2
dt∇ ¨ pλ´1wqduΓ̃ ąΓ̃

ÑL2pq˚
q :“

α

h
ă jT , Jq˚

´ λ´1w ¨ d´ 1{2dt∇ ¨ pλ´1wqdKΓ̃ ąΓ̃

`
α

h
ă aT , tq

˚
´ λ´1w ¨ d´

1

2
dt∇ ¨ pλ´1wqduΓ̃ ąΓ̃ .

(2.77)
In the next section, the treatment applied to the moving interface is introduced. The sec-

tion will detail the procedures used to maintain the spatial second-order accuracy brought by
the enrichment of the temperature field as well as the necessary reconstruction procedures to
facilitate the expansion of the liquid phase in the melting configuration.

2.5 Moving the interface

In this Section, the focus is put on the challenges brought by the moving interface and the
use simultaneously of the SBM. Dealing with these two particular aspects is a delicate part of
the problem. Since the interface is moving, some mesh nodes can switch from one part of the
domain to the other one, separated by the surrogate interface Γ̃. This problem is particularly
emphasized by the discontinuous aspect of the variables at the surrogate interface.

Some techniques described here are related to the particular study of the Stefan problem ex-
plained in this Chapter 2 (Stefan Condition), while some methods can be applicable to any
type of systems (reconstruction procedures). We will look more precisely at techniques used
to get at least a second order accuracy in time and space for all variables of the model. The
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method will be expressed with examples for 2D simulations but the principles presented here
can be generalized to 3D simulations as well.

Three different aspects will be studied

1. Moving the surrogate interface,

2. Dealing with time dependent terms,

3. Solving the Stefan condition for the interface motion.

In the proceeding section, a time interval r0, tf s is considered. Let Nt be the number of points
of the time discretization. For any 1 ď k ď Nt, we set ∆tk “ tk`1 ´ tk, a non constant time
step such that ∆t0 ă ∆t1 ă ∆t2 ă ... ă ∆tNt . For any generic quantity f , the notation fk

denotes the approximation of f at time tk.

2.5.1 Variables initialization

As illustrated in Figure 2.12, each node located on the surrogate interface is duplicated. This
construction allows to implement more easily the jump conditions at the interface. This enables
to define a variable independently on each phase for nodes located on the surrogate interface.

Γ̃ Γ

•

•

•

•

Initial DoF
•

•

•

•

Complementary DoF

Figure 2.12: Interface structure

The left DoF (Degree Of Freedom) in Figure 2.12 is associated with the initial mesh numbering
and is called Initial DoF (purple nodes in Figure 2.12), while the right DoF is called Com-
plementary DoF (green nodes in Figure 2.12). If from the original mesh generation (only
the vertices are taking into account as P1 simulations are the ones being considered) there are
Nv nodes, then to prevent the modification of the initial numbering, the Complementary DoF
gets a reference number starting from the number Nv ` 1. Computationally it prevents the
reallocation of the matrix and vectors structures by initializing them with a maximum size of
complementary nodes. Since the interface is moving, the duplication of the DoF has to be per-
formed at each time step when the surrogate changes. Indeed, if no new elements are crossed
by the physical interface, then the definition of the surrogate remains the same. If the surro-
gate interface Γ̃ moves alongside the physical interface, then for a same node, its numbering
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can change from one time iteration to the next. When the surrogate interface Γ̃ moves, two
configurations can appear.

1. A node located on the surrogate interface at the previous iteration can now be in one
phase only Ω̃` or Ω̃´.

2. A node located in one phase only (Ω̃` or Ω̃´) at the previous iteration can now be at the
phase-change area on Γ̃.

More precisely, some points of Γ̃k at time tk do not belong to Γ̃k`1 and lies in Ω̃k
` or Ω̃k

´, while
conversely some points of Ω̃k

` or Ω̃k
´ can move to Γ̃k`1. The points leaving the surrogate at time k

are treated easily. Indeed, the values of pT`,k,β`,k
q and pT´,k,β´,k

q on both side of the interface
are known, see Figure 2.12. Then if the node now belongs to Ω̃k

`, pT k,βk
q “ pT`,k,β`,k

q while
if it belongs to Ω̃k

´, pT k,βk
q “ pT´,k,β´,k

q.

Γ̃k Γk

•

•

•

•

•

•

•

•

T`,k
i T´,k

i

•T k
j

Ω̃`ptkq Ω̃´ptkq

(a) Interface at time tk

Γ̃k`1 Γk`1

•

•

•

•

•

•

•

•

•

•

•
T k
i “ T`,k

i

T´,k
j “ T k

j

T`,k
j “ extrapolation

Ω̃`ptk`1q Ω̃´ptk`1q

(b) Interface at time tk`1

Figure 2.13: Adaptation of the solution vector at time tk for the new surrogate interface struc-
ture at time tk`1

For example, in Figure 2.13.b, the interface is moving to the right, and the left value is con-
served. The treatment of the entering nodes in the surrogate Γ̃k`1 is more delicate, since it
requires a duplicated DoF, which was not present at the previous iteration and now needs to
be initialized. If the node belongs to Ω̃`, then we set pT`,k,β`,k

q “ pT k,βk
q whereas if the

node belongs to Ω̃´, then pT´,k,β´,k
q “ pT k,βk

q. For example, in Figure 2.13.b the right
value, i.e., the green DoF, is initialized. However, the other side of the interface needs to be
defined for time tk, and the value of T`,k

j is missing as in Figure 2.13. The missing value comes
from the expansion of the liquid phase Ω̃` between time tk and time tk`1. Missing values are
reconstructed using polynomial extrapolation. This part must be done carefully in order to
preserve the accuracy of the approximation and the improvement brought by the enrichment
definition, see next Section with Figure 2.14.

Let us summarize by visualizing the structure of the vector of the right-hand side of the linear
system. Let Ns be the number of nodes at the interface at time k` 1 and Ns_prec the number
of nodes at the interface at time k.
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For a displacement from the liquid phase to the solid phase we have the following steps:

ùñ

• If a point is not on the surrogate
interface anymore only the value
in the liquid phase is conserved,

• If a new point is detected on the
surrogate interface, the solid value is
known and the liquid value is recon-
structed. The liquid value is a part of
the mesh construction t1, Nvu, while
the solid value, which was previously
not on the surrogate is stored in area
tNv ` 1, Nv ` Nsu,

• Modification of the numbering :
The points still present at the surro-
gate interface are not always associ-
ated with the same numbering and
need to be re-localized.

For the missing values the temperature is being approximated quadratically and the flux lin-
early, i.e., a second order polynomial extrapolation for T and a first order polynomial
extrapolation for βββ are employed. A quadratic approximation for T is chosen to keep the
accuracy brought by the temperature enrichment defined in Section 2.4.

A2D “

¨

˚

˚

˚

˚

˚

˚

˝

1 x1 y1 x1y1 x21 y21
1 x2 y2 x2y2 x22 y22
1 x3 y3 x3y3 x23 y23
1 x4 y4 x4y4 x24 y24
1 x5 y5 x5y5 x25 y25
1 x6 y6 x6y6 x26 y26

˛

‹

‹

‹

‹

‹

‹

‚

; A3D “

¨

˚

˚

˚

˚

˚

˚

˝

1 x1 y1 z1 x1y1 x1z1 z1y1 x21 y21 z21
1 x2 y2 z2 x2y2 x2z2 z2y2 x22 y22 z22
1 x3 y3 z3 x3y3 x3z3 z3y3 x23 y23 z23
1 x4 y4 z4 x4y4 x4z4 z4y4 x24 y24 z24
1 x5 y5 z5 x5y5 x5z5 z5y5 x25 y25 z25
1 x6 y6 z6 x6y6 x6z6 z6y6 x26 y26 z26

˛

‹

‹

‹

‹

‹

‹

‚

(2.78)
Let A and b be respectively the matrix and right-hand-side vector of the least square recon-
struction, where A is defined in 2D by A2D in (2.78) and in 3D by A3D in (2.78). Two strategies
are investigated to solve the problem.

1. The first strategy is to solve the least square problem which requires to solve the system
AtAx “ Atb (normal equations). The matrix AtA has more regularity than its counter-
part A and is easier to solve. We can see with the Definition of A in (2.78) that if the
coordinates of the stencil are too similar, some of the columns would be a linear combi-
nation of each other. For example in 2D solving the problem by normal equation means
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that for a stencil tpxi, yiquiďs, the system studied consists in solving
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

s
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i“1

1
s
ř
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xiyi
s
ř

i“1

x2i
s
ř

i“1

y2i
s
ř

i“1

xi
s
ř

i“1

x2i
s
ř

i“1

xiyi
s
ř

i“1

x2i yi
s
ř

i“1

x3i
s
ř

i“1

xiy
2
i

s
ř

i“1

yi
s
ř

i“1

xiyi
s
ř

i“1

y2i
s
ř

i“1

xiy
2
i

s
ř

i“1

x2i yi
s
ř

i“1

y3i
s
ř

i“1

xiyi
s
ř

i“1

x2i yi
s
ř

i“1

xiy
2
i

s
ř

i“1

x2i y
2
i

s
ř

i“1

x3i yi
s
ř

i“1

xiy
3
i

s
ř

i“1

x2i
s
ř

i“1

x3i
s
ř

i“1

x2i yi
s
ř

i“1

x3i yi
s
ř

i“1

x4i
s
ř

i“1

x2i y
2
i

s
ř

i“1

y2i
s
ř

i“1

xiy
2
i

s
ř

i“1

y3i
s
ř

i“1

xiy
3
i

s
ř

i“1

x2i y
2
i

s
ř

i“1

y4i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

a1
a2
a3
a4
a5
a6

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

s
ř

i“1

bi
s
ř

i“1

bixi
s
ř

i“1

biyi
s
ř

i“1

bixiyi
s
ř

i“1

bix
2
i

s
ř

i“1

biy
2
i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.79)

where a1, a2, a3, a4, a5 and a6 are the coefficient of the polynomial reconstruction (P2

reconstruction).

2. The second strategy is to use the QR decomposition of A. It means that minimizing ||Ax´

b||22 is equivalent to the minimization of ||Rx´Qtb||22, where no inversion or convergence
method is needed by definition of R, which is an upper triangular matrix.

The test cases in Section 3.3 of Chapter 3, will demonstrate that the QR decomposition, using
the Householder transformations, is more stable and accurate. Comparing two methods for
the node reconstruction is essential to show how sensitive the method is to the choice made to
initialize values at the surrogate interface.

2.5.2 QR factorization and Householder transformations

In this Section, the QR factorization of the matrix A defined in (2.78) is presented. The QR
factorization is a tool used for a variety of applications and one of them is to solve linear
systems, using the principle of back substitution (the initial linear system is replaced by
an equivalent system). One of the most reliable method to compute the matrices Q and
R is through the Householder matrices. The matrix A of the original system is multiplied
by orthogonal matrices until A becomes a superior triangular matrix (matrix R of the QR
factorization). The orthogonal matrices used in the process are called the Householder matrices
which are often used in matrix reduction method. In the proposed algorithm, the Householder
matrices are defined through the columns of the matrix A.

Let v be a non null vector of Rd, then the Householder matrix of v, Hpvq is defined as follows

Hpvq “ I ´ 2
vvT

||v||22
, (2.80)

where Hpvqi,j “ δi,j ´ 2
vivj

d
ř

k“1

|vk|2
and Hp0q “ I.
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Algorithm of the QR factorization

Let A P Mn,ppRq, such that n ě p, and let the matrices Hk be defined by Hk P MnpRq (see
Definition (2.82)) and Ak`1 P Mn,ppRq such that 1 ď k ď p, where A1 “ A, Ak`1 “ HkAk and
Ap`1 “ R the matrix of the QR factorization.

The QR factorization algorithm is as follows:

• Step 1 : Initialization

Let us define A1 “ A and a1 the vector defined through the first column of A1. Then, if
a1 is of the form

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

a11,1
0
0
0
.
.
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

no other action is required, meaning than H1 “ I. In the other case A2 “ H1A1, with
H1 “ Hpa1 ´ ||a1||e1q, and where e1 is the first vector of the canonical basis of Rn.

• Step k+1 :

The pk ´ 1q first columns of Ak have now 0 below their diagonal. Let ak be the vector
of size pn ` 1 ´ kq, composed of the coefficients of the column k of Ak such as ak “

pakk,k, a
k
k`1,k, ..., a

k
n,kq. Note that they are the last pn` 1´ kq components of the column k

of Ak. If ak is of the form
¨

˚

˚

˚

˚

˚

˚

˝

akk,k
0
0
.
.
0

˛

‹

‹

‹

‹

‹

‹

‚

(2.81)

then Hk “ I. In the other case Ak`1 becomes Ak`1 “ HkAk such that

Hk
“

ˆ

Ik´1 0
0 Hpak ´ ||ak||e1q ,

˙

(2.82)

where this time e1 is the first vector of the canonical basis of Rn`1´k

• Step p ` 1 : A “ QR such that R “ Ap`1 “ HpAp and Q “ H1 ˚ H2 ˚ ... ˚ Hp

An important notion of the QR factorization is that the decomposition is unique and nu-
merically stable, meaning that small perturbations in the original matrix will not impact the
behavior of the factorization. This holds a crucial significance within numerical analysis, where
small errors have the potential to accumulate and give rise to substantial inaccuracies in the
final solution.
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2.5.3 Approximation of the flux jump

•

•

•

•

•

•

•
xi•

β`pxiq

x̃i
˝

Surrogate

Physical Interface

Liquid Phase

Ω̃` Ω̃´

(a) Extrapolation

xix̃i
˝ • •β´pxiq

•

•

•

Surrogate

Physical Interface

Solid Phase

Ω̃` Ω̃´

(b) Interpolation

Figure 2.14: Visualization of the jump reconstruction method

Since the interface is moving, the duplication of the DoF has to be performed each time the
surrogate interface moves. The motion of the physical interface Γ is driven by the flux jump
JβKΓ ¨ n. However, it is clear that in this configuration, one can compute this jump on the
surrogate interface. As a consequence, the flux jump needs to be recovered on the physical
interface.

For the numerical tests presented in this thesis, the following method is used:

For each node x̃i on the surrogate interface, liquid and solid values of each variables are known.
Using the mapping M , to every node x̃i a corresponding node xi is associated on the physical
interface Γ. Then any value on the physical interface at a node xi can be recovered by extrap-
olation or interpolation, depending on its location inside the domain Ω̃` or Ω̃´ (here Ω̃´ in
Figure 2.14(b)).

In order to obtain an approximated value of β´
pxiq (value in the solid phase) a linear interpo-

lation is performed using the values in Ω̃´ in the element in which the node xi is located. For
β`

pxiq, the same strategy as the one used for variable initialization is employed, see Section
2.5.1. An extrapolation using the solution in Ω`, at specific points of a stencil (black dots in
figure 2.14(a)), allows to recover the value of β`

pxiq. Since the flux is represented by a piece-
wise linear polynomial, a linear interpolation/extrapolation is sufficient. Then, we are able to
define, for each node and for both side of the surrogate, a corresponding value of the flux on
the physical interface.

In the next section, the choices made on the discretization of the time dependent terms will
be introduced for the formulation proposed in Section 2.4. The discretization of the Stefan
condition will also be discussed.
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2.6 Time discretization

For the time dependent terms present in our weak formulation a BDF2 scheme is proposed.
For the condition expressing the interface motion (Stefan condition) a second order scheme has
been tested, referred to as an extrapolated BDF2 scheme (exBDF2) .

2.6.1 Second order time scheme for the interface motion

In this section, we discuss the resolution of the Stefan condition (2.10). This part has to
be handled carefully if one wants to avoid extra computational costs. Indeed, even though
(2.10) is an ordinary differential equation (ODE), the right hand side depends on the solution
of System (2.8). Note that an implicit scheme requires to know Jβk`1KΓ̃k`1 and the surrogate
interface position Γ̃k`1 at time tk`1 and thus necessitating the imposition of a Newton procedure.
Moreover, the use of a first order scheme will degrade the temperature/flux accuracy. In order
to solve the Stefan condition (2.10) a second order explicit scheme is proposed. In this Section,
the extrapolated BDF2 strategy is chosen. Considering a generic equation y1ptq “ fpt, yptqq,
the BDF2 scheme can be written under the form

γk`1u
k`1

` γku
k

` γk´1u
k´1

“ fptk`1, yk`1
q, (2.83)

where

γk`1 “
2∆tk ` ∆tk´1

∆tkp∆tk ` ∆tk´1q
, γk “ ´

∆tk ` ∆tk´1

∆tk∆tk´1
, γk´1 “

∆tk

∆tk´1p∆tk ` ∆tk´1q
. (2.84)

Equation (2.84) defines the coefficient γk`1, γk and γk´1 for a non constant time step, ∆tk.
Here, since an explicit scheme is used, the right-hand-side of Equation (2.83) is extrapolated
with a second order accuracy using times tk and tk´1. This leads to the second order ex-
trapolated BDF2 scheme (BDF2exp):

γk`1u
k`1

` γku
k

` γk´1u
k´1

“
∆tk ` ∆tk´1

∆tk´1
fptk, ykq ´

∆tk

∆tk´1
fptk´1, yk´1

q. (2.85)

For the interface position, one has to solve

Γ1
ptq “ vptq , (2.86)

where Γptq “ Γptq¨n is the coordinate of the interface in the normal direction and vptq “ vptq¨n

is the normal velocity, defined as vptq ¨ n “
1

ρLm
JβKΓ ¨ n. Knowing the normal flux and the

interface positions at times tk´1 and tk (see Section 2.5.3), the position at time tk`1 can be
evaluated without the use of a Newton process

Γk`1
“ ´

γk
γk`1

Γk
´
γk´1

γk`1

Γk´1
`

1

γk`1

ˆ

∆tk ` ∆tk´1

∆tk´1
vk ´

∆tk

∆tk´1
vk´1

˙

, (2.87)

vk “
1

ρLm
JβkKΓk ¨ nk, vk´1

“
1

ρLm
Jβk´1KΓk´1 ¨ nk´1. (2.88)

Note that as v depends directly on the flux jump JβKΓ, a high order resolution of the flux will
preserve the accuracy of the exBDF2 scheme.
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2.6.2 Second order time scheme

This section is devoted to the time discretization of the variational problem, where a term
concerning the derivation of T with respect to time takes place in the original system of equation
of the Stefan model and its associated div-div stabilization term, see Section 2.2.3.b. Once again
a BDF2 scheme is proposed. The main advantage is that the finite weak formulation and the
computation of the location of the interface can be written at time tk`1. As the procedure is
the same for both sets of interface conditions in this section the procedure is presented with
the second set of interface conditions (2.7).

Finding pT ˚,βq P Q2˚,1
ps0, tf r,Ωq, such that @pq˚,wq P Q2˚,1

pΩq we have

2.74.aq pλ´1βk`1,wqΩk`1 ´ pT ˚,k`1,∇ ¨wqΩk`1` ă TD,w ¨ n ąΓD
` ă T ˚,k`1,w ¨ n ąΓN

`

BstabppT ˚,k`1,βk`1
q,wq` ă tλ´1βk`1

¨ dk`1
` 1{2dt,k`1∇ ¨ pλ´1βk`1

qdk`1
uΓ̃k`1 , JwKΓ̃k`1 ¨ ñ ąΓ̃k`1

` ă Jλ´1βk`1
¨ dk`1

` 1{2dt,k`1∇ ¨ pλ´1βk`1
qdk`1KΓ̃k`1 , twuΓ̃k`1 ¨ ñ ąΓ̃k`1 `ÑA2pT ˚, q˚

q

“ ´ ă aT , JwKΓ̃k`1 ¨ ñ ąΓ̃k`1 ´ ă jT , twuΓ̃k`1 ¨ ñ ąΓ̃k`1 `Lstabpwq,

2.74.bq pρcpγk`1T ˚,k`1
` γkT ˚,k

` γk´1T ˚,k´1
q, q˚

qΩk`1 ` p∇ ¨ βk`1, qqΩk`1´ ă βk`1
¨ n´ hN , q ąΓN

` AstabppT ˚,k`1,βk`1
q, q˚

q “ pfk`1, q˚
qΩk`1 ` ÑL2pq˚

q,

(2.89)

As a reminder, for a melting problem the values of aT and jT are constant with respect to the
time variable t. Indeed, aT is the melting temperature and depends on the material property
which does not change through the simulation, while jT characterizes the continuity of the
primal variable. The boundaries ΓD and ΓN and the conditions imposed on them are also
independent of time. The only issue in (2.89) is the definition of T ˚,k and T ˚,k´1 for the nodes
that change domains at time tk`1. In such situations, according to their previous location,
extrapolations or interpolations as presented in Section 2.5.1 need to be performed to obtain a
consistent value for the previous time steps.

2.7 Conclusion on Chapter 2

In this chapter, an extension of the Shifted Boundary Method has been presented to handle
moving interfaces in the context of a melting front. A second-order accurate method
has been proposed, which effectively achieves second-order accuracy on the primal variable
and its gradient. Judicious choices of time discretization schemes allow for the same level of
accuracy in both the time variable and interface location. The different procedures proposed
in this chapter to update the surrogate interface are tested in the following chapter of this
manuscript, and the question of accuracy will be discussed and demonstrated.
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Chapter 3

Numerical tests on the Mixed Stefan
Model

In this Chapter, some results for polynomial analytical functions are presented to highlight
the second order accuracy obtained by the enrichment of the primal variable and the efficiency
of the constructions used to move the interface using the methods presented in Chapter 2.
For the tests presented in Section 3.1, all generality are considered, and a discontinuity at the
interface for the primal variable is also investigated. The examples will show the behavior of
the method when the variables are continuous or not between the two phases. In Section 3.2
a self-made solution on a circular domain and for a circular interface will show the result on
the accuracy of the method for a full 2D motion. Finally in Section 3.3 results for a physical
example modeling the melting of a semi infinite ice block is presented, a test defined in [4] which
possesses an analytical solution for the temperature field and the interface motion. Concerning
that particular test, numerical results concerning the front motion, which can be compared to
an analytical solution will be investigated more closely, to express the accuracy of the method
on the tracking of the interface position.

3.1 Numerical results on polynomial analytical functions

In this section, validations are done using continuous and discontinuous variables. The two sets
of interface conditions presented in (2.9) and (2.7) are being applied with the BDF2 scheme
which will prove its robustness for the physical tests presented later on in Section 3.3. For
simplification in the caption of the figures presented in this section, we will refer to Set 1 to
results associated with the first set of interface conditions defined in (2.9) and to Set 2 to
results associated with the second set of interface conditions defined in (2.7).

For the different test cases in this section, the time step ∆t is defined by ∆t “ h CFL
2v

, where v
is a constant velocity used to move the interface, and CFL a constant number used to control
the size of the time step. This definition allows to define a time step which ensures that not
more than one element is crossed at a time by the physical interface. This condition will always
be mandatory in all the numerical tests presented in this thesis manuscript. Indeed, in Chapter
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2 we have introduced in Section 2.5 that some nodes need to be initialized when the physical
interface moves. If more than one row of elements is crossed at a time then it is not possible to
define a stencil of nodes to reconstruct a value for these nodes as all the values around them
also need to be initialized, see Section 2.5.

For the following sub-sections the accuracy of the method is tested with a uniform velocity,
and the model will be extended, later on, in Chapter 4 to any types of interface structures and
interface motions. In Section 3.1, the physical interface is modeled by a set of nodes defined
by the same x coordinate for resolution on rectangular domains (flat interface). A similar
configuration will be used in Section 3.2 where the points at the interface are defined by the
same radius value. Moreover, the initial interface position is used to initialize the structure of
the two domains Ω` and Ω´ which, with the use of the exact solutions is made possible. The
initial interface position xinit is chosen for all the meshes and test cases such that xinit “ 0.5.
The L2 error is displayed for the final time tf , identical for all test cases such that tf “ 2.
The exact functions defining the different tests will be used to imposed Dirichlet boundary
conditions on the left and right sides of the domain of resolution, Neumann conditions on the
top and bottom boundaries of the domain (see Figure 3.0) and to define the initial conditions.

3.1.1 Meshes

The different meshes used in Section 3.1 for the various simulations are presented. The variable
h in Figure 3.0 represents the characteristic length of the elements of the considered mesh, Ne
the number of elements and Nv the number of vertices, which is the same as the number of
DoF for a P1 simulation. The variable h is the value used to define the CFL variable in the
definition of the time step ∆t, such that ∆tˆv ă h, which satisfies that not more than one row
of elements is crossed at a time by the moving interface. All meshes are unstructured triangular
meshes.

(a) Mesh 1 / h “ 0.2 / Ne “ 136 / Nv “ 84 (b) Mesh 2 / h “ 0.1 / Ne “ 492 / Nv “ 277

(c) Mesh 3 / h “ 0.05 / Ne “ 2090 / Nv “ 1106 (d) Mesh 4 / h “ 0.025/ Ne “ 8504 / Nv “ 4373
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(e) Mesh 5 / h “ 0.0125 / Ne “ 52966 / Nv “ 26784

Figure 3.0: Meshes For the Second Order accuracy verification

3.1.2 Machine precision

Machine precision is obtained for self-made tests defined by polynomial analytical solutions
of degree less or equal to two, i.e., when T P P2pΩq. The results is obtained for both sets
of interface conditions (2.9) and (2.7), using the BDF2 scheme. L2 Errors on T and β are
available in Tables 3.1 and 3.2 for the first set of interface conditions defined in (2.9) (Set 1),
while for the second set of interface conditions defined in (2.7) (Set 2) results are displayed in
Tables 3.3 and 3.4.

In order to compare different types of simulations the following abbreviations are defined:

• sym enriched : resolution with a symmetric enrichment, both the primal variable T and
its associated test function are enriched using Definition (2.68),

• non-sym enriched : resolution with an enrichment of the primal variable T only using
Definition (2.68).

The domain is rectangular Ω “ r0, 2s ˆ r0, 1s. Triangular elements of characteristic length
h “ 0.05 are used to mesh the domain, see Figure 3.0.c. CFL “ 1, λ` “ 0.6, λ´ “ 2.1, v “ 0.5,
ζdiv “ 0.5, t ą 0. Three tests are performed, where the exact functions for T are chosen such
that

Test 01 Ñ T pt, x, yq :“

#

7t ` 1 if px, yq P Ω`

3t ` 3 if px, yq P Ω´

; Test 02 Ñ T pt, x, yq :“

#

x ` t if px, yq P Ω`

xyt if px, yq P Ω´

(3.1)

Test 03 Ñ T pt, x, yq :“

#

4 ` 33xy ` 21y2 ` 11t ` 6t2 if px, yq P Ω`

77 ` x2 ` 2t ´ 8t2 if px, yq P Ω´ .
(3.2)

T Polynomial eT sym enriched eT non-sym enriched eT non enriched
Test 01 8.69037675694078E-013 1.07246296107150E-012 5.77492039596584E-013
Test 02 1.98905839613197E-012 3.29073939077805E-013 8.17679869657093E-005
Test 03 9.87454293814777E-013 3.88923825456129E-012 9.24537618134559E-003

Table 3.1: L2 Errors on T for polynomials of different degrees - Set 1
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T Polynomial eβ sym enriched eβ non-sym enriched eβ non enriched
Test 01 5.87760006006547E-012 1.17309095334435E-011 6.34466424474283E-012
Test 02 7.34523157516188E-012 5.49049321486107E-012 7.10842777209640E-003
Test 03 4.70098442382738E-012 1.24055486419729E-011 0.182914290803606

Table 3.2: L2 Errors on β for polynomials of different degrees - Set 1

As can be seen in Table 3.1 and Table 3.2, doing a symmetric enrichment (sym enriched) or
a non symmetric enrichment (non-sym enriched) does not change the accuracy of the method
and both approaches give the expected machine precision. The non-enriched approach (non
enriched) does not allow to achieve second order accuracy, as expected with the standard P1

FEM which is only first order accurate for β. The machine precision is not obtained for Test
02 and Test 03 functions in Equation (3.1) and (3.2), and the error on the flux β is higher.

T Polynomial eT sym enriched eT non-sym enriched eT non enriched
Test 01 6.45889120732631E-013 5.56607024070457E-013 1.28224367945556E-012
Test 02 3.41553121024897E-013 4.34799948808748E-013 4.00045558192290E-005
Test 03 5.28262199105204E-013 5.12808329455716E-013 5.63157166009521E-003

Table 3.3: L2 Errors on T for polynomials of different degrees - Set 2

T Polynomial eβ sym enriched eβ non-sym enriched eβ non enriched
Test 01 3.29044974771348E-012 3.71568549940826E-012 4.97683492500090E-012
Test 02 4.54975964210432E-012 6.40200226600249E-012 5.49640705908567E-003
Test 03 6.35716917005916E-012 4.66651583565093E-012 4.10827076797471E-002

Table 3.4: L2 Errors β for polynomials of different degrees - Set 2

Similar results are obtained with the second set of interface conditions (Set 2) in Table 3.3
and 3.4. By comparing Tables 3.1 and 3.2 with Tables 3.3 and 3.4 we globally notice a better
precision with the second set of interface conditions, see Equation (2.7). Moreover, depending
on the choice made for the imposition of conditions at the interface, both options are still
suitable. In the following, the results for both sets of interface conditions are investigated,
where the front displacement is not related to the flux jump, but to a known velocity value.
More precisely, the impact of the continuity or not of the functions at the interface on the
accuracy of the method is studied.

3.1.3 Accuracy verification and Discontinuities

The previous section has demonstrated than the symmetry in the enrichment does not impact
the accuracy of the method. For the following tests only a symmetric enrichment is considered,
as symmetry in the weak formulation also brings stability in the scheme. From now on, both the
primal variable T and its test function are enriched using Definition (2.68), when the enriched
approach is considered. The interface is moving at a constant speed v “ 0.5.

3.1.3.a Influence of the time reconstruction

On the same computational domain given in Section 3.1.2, a discontinuous solution in the
primal variable T and independent of the space variables px, yq is investigated. This test case
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is referred to as Test 1. The particular situation where T depends only on t and βββ “ 0 is
studied to access the temporal discretization independently of the enrichment approach,
and see if it has an impact on the accuracy of the method.

For Test 1, the function T is defined by

Test 1 Ñ T pt, x, yq “

#

3t2 ` 7t ` 1 ` 11t3 if px, yq P Ω`,

3t ` 3 ` 11t2 ` t3{2 if px, yq P Ω´ .
(3.3)

As can be seen in Figure 3.1, the proposed reconstruction at the interface allows to achieve a
second order accuracy on both T and βββ. It shows that the reconstruction is indeed appropriate
to conserve the second order accuracy brought by the enrichment. Moreover, the two sets of
interface conditions give similar results.

(f) β continuous and null - Error in log scale (g) T discontinuous - Error in log scale

Figure 3.1: Test 1 : Comparison between the enriched and non enriched method for the study
of the time parameter influence - CFL “ 1., v “ 0.5, ζdiv “ 0.5

3.1.3.b Flux discontinuity

For Test 2 defined in (3.4) a continuous solution in the primal variable T and a discontinuous
solution in flux β is studied. For this purpose, λ is chosen discontinuous between the two
phases such that, λ` “ 0.6 and λ´ “ 2.1.

T is then defined by

Test 2 Ñ T pt, x, yq “ logpt ` 1q{2 ` y2 if px, yq P Ω`, Ω´. (3.4)

A grid convergence study is performed. Figure 3.2 compares L2 errors on βββ and T to the the-
oretical second order (dotted line). As expected, Figure 3.2.b shows a second order accuracy
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for T with the enriched approach. For the first set of interface conditions (2.9) the order is
decreasing at convergence and is not of second order anymore. Moreover, both figures in Figure
3.2 show that the errors are significantly lower using the enrichment of the primal variable (en-
riched approach). For the flux β, without enrichment, second order is not achieved for both sets
of interface conditions (Set 1 in (2.9) and Set 2 in (2.7)), while it is obtained with enrichment
in Figure 3.2(a) for both sets of interface conditions.

(a) β discontinuous - Error in log scale (b) T continuous - Error in log scale

Figure 3.2: Test 2 : Comparison between the enriched and non enriched method for a discon-
tinuity in β - CFL “ 1., v “ 0.5, ζdiv “ 0.5

In Test 3, the situation where T and βββ are both discontinuous is investigated. The perme-
ability variable λ is defined such that λ` “ 0.6, λ´ “ 2.1 and T is defined by

Test 3 Ñ T pt, x, yq “

#

x4 ` 3xyt ` 7 if px, yq P Ω`,

logpx ` 1q ` t3 ` y if px, yq P Ω´ .
(3.5)

Second order accuracy is obtained for T and for both sets of interface conditions (Set 1 in (2.9)
and Set 2 in (2.7)), see Figure 3.3(b). Moreover, on all meshes, the error is always smaller
using the enrichment of the temperature. On the flux, in Figure 3.3(a), the enrichment allows
to achieve second order accuracy on β, which was not the case without enrichment for Set 1
and Set 2, where the differences are largely visible. The errors are also globally reduced on all
meshes with the enrichment of the primal variable using Definition (2.68).

Like the results observed in Figure 3.2.b , in Figure 3.3.b a second order accuracy is observed
and verified with both sets of interface conditions on T , where for Test 3 the precision on T is
approximately the same with or without enrichment.
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(a) β discontinuous - Error in log scale (b) T discontinuous - Error in log scale

Figure 3.3: Test 3 : Comparison between the enriched and non enriched method for a discon-
tinuity in T and β - CFL “ 1., v “ 0.5, ζdiv “ 0.5

In Figure 3.3.a the non enriched method is not second order accurate and the difference in order
of accuracy is even more observable in this example compared to Test 1 (see Figure 3.2.a), and
only a first order accuracy is observed on β. Moreover, a better precision for the flux with the
enriched method is obtained for both sets of interface conditions.

3.1.3.c Identical permeability values

Test 4 is devoted to the continuity at the interface of the two functions T and βββ. The
permeability variable is chosen identical on both phases such that λ` “ λ´ “ 0.6 and T is
defined by

Test 4 Ñ T pt, x, yq “ 7 ` 7xy ` 7y3 ` 7t ´ 3t2 ` 12t3 if px, yq P Ω`, Ω´ . (3.6)

Using the enrichment process defined in Equation (2.68), a second order accuracy is achieved
on the flux βββ, see Figure 3.4(a). On the variable T , second order of accuracy is obtained by
both approaches (the two sets of interface conditions) with or without enrichment of the primal
variable, see Figure 3.4(b). For the two sets of interface conditions, the behavior of the enriched
or non enriched simulation is sensibly the same. Moreover, Set 2, as for all the previous test
cases always provides errors smaller than that for Set 1. For this test, in Figure 3.4.a it is
observable that the enriched method has stabilized the error curve on βββ, and that the method
is indeed second order accurate.
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(a) β continuous - Error in log scale (b) T continuous - Error in log scale

Figure 3.4: Test 4 : Comparison between the enriched and non enriched method for continuity
in T and β - CFL “ 1., v “ 0.5, ζdiv “ 0.5

For 3.4.b its effect is even more noticeable, the curve representing the enrichment has a slope
higher than 2, which is visible by comparing with the reference curve (dotted line) in Figure 3.4.
The improvement brought by the enrichment is significant even for T , which is by definition
already second order accurate.

3.1.3.d Discontinuity of the primal variable

The last test case, Test 5 deals with a continuous flux β and a discontinuous variable T ,
λ is chosen such that λ` “ λ´ “ 2.1, and T is defined by

Test 5 Ñ T pt, x, yq “

#

expp3xyq ` logpt ` 1q{2 ` t3 if px, yq P Ω`,

expp3xyq ` 2
?
t if px, yq P Ω´ .

(3.7)

Without enrichment, the approximation on β is of first order (see Figure 3.5(a)), while using
the enrichment provides second order accuracy. Note also that the two enriched curves for Set
1 and 2 are mingled. As for T , the second order accuracy is achieved using both approaches
(enriched and non enriched) for Set 2. However, for Set 1, the second order is not preserved on
all meshes on the curve representing the non enriched simulation, see blue curve Figure 3.5(b).
For each variable, the enrichment decreases the error on all meshes.
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(a) β continuous - Error in log scale (b) T discontinuous - Error in log scale

Figure 3.5: Test 5 : Comparison between the enriched and non enriched method for a discon-
tinuity in T - CFL “ 1., v “ 0.5, ζdiv “ 0.5

Whatever the combination continuous/discontinuous T and/or β at the interface, the en-
richment and proposed reconstruction at the interface ensure a second order accuracy for T
and β. For all cases and for all the meshes, the enrichment approach decreases the L2 errors
on T and β.

3.1.4 Conclusion

Both sets of interface conditions give the expected accuracy (second order). However, the
second set of interface conditions gives a better approximation for every tests performed so
far. The throwback of the first set of boundary conditions comes from the coupling of the
Stefan conditions in the definition of the weak formulation and its use to move the physical
interface. In the case of physical applications where the interface motion is also an unknown a
Newton procedure is mandatory to recover the flux jump at the physical interface. The results
of the current convergence tests performed in this section showed us that the precision is not
better for the first set of interface conditions, and that additional work with this set of interface
conditions should not be considered, and does not seem relevant to be considered an option as
it would add more complexity in the resolution. In what follows, the second set of interface
conditions is considered as the most efficient option and is used for all the other tests. The
comparison made in this section has demonstrated that the imposition of conditions at the
interface has an impact on the precision of the model. It has also indicated the best choice of
interface conditions for the considered problem at stake. For the results presented in Chapter 4,
only the second set of interface conditions (jump and average conditions on T at the interface)
will be investigated in the study of stability.
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3.2 Tests on a circular domain

In this Section, a simulation on a circular domain is performed, where the physical interface is a
circle represented by a radius value. In this situation, shifting the values of the conditions at the
physical interface to a surrogate interface is an appealing idea to prevent the definition of small
elements around the interface that would have to capture the interface geometry and adapt to its
displacement. To present the improvements defined by the enriched Shifted Boundary Method
(e-SBM), a convergence study is performed on a self-made test where the primal variable is
defined continuous on the physical interface and where the moving interface operates in a full
2D mode. After the results presented in Section 3.1, only the second set of interface conditions
(2.7) is now being considered.

3.2.1 Moving interface

In this Section, a simulation over an increasing circular interface in a full embedded situation is
presented. The test is used to demonstrate the ability of the method when the moving interface
expands in both directions, in the context of a 2D simulation.

The considered domain is a hollow cylinder in 2D, with inner radius Rin and outer radius Rout.
Uniform heating of the inner surface Rin will result in a symmetric front r “ Rptq propagating
from Rin to Rout, and separating the two phases, see Figure 4.22.

Rptq

Rin

Ω`

Ω´

Rout

(a) Domain Definition

TmT0 T2

Liquid

Solid

heating

(b) Temperature Data

Figure 3.6: Illustration of the test case for an inner melting configuration

To show the accuracy obtained with the enrichment method on a cylinder domain, a self-made
function which allows to verify the order of convergence of the method is defined. For this
test, the definition of the functions is given in polar coordinates. The exact solution for the
temperature field T is defined by

T pt, r, θq “

$

’

’

’

’

&

’

’

’

’

%

Tm ` pT0 ´ Tmq
lnp r

Rptq
q

lnp
Rin

Rptq
q

if r ď Rptq, t ą 0,

Tm ` pT2 ´ Tmq
lnp r

Rptq
q

lnpRout

Rptq
q

if r ą Rptq, t ą 0 ,

(3.8)
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where Rptq, the equation of the interface position, is chosen as follow

Rptq “ Rinit ` pt ´ tinitq ˆ vI , (3.9)

with vI a constant velocity. The definition (3.9) allows to define a uniform velocity for the
interface displacement and allows the study of the behavior of the surrogate interface during
the evolution of the physical front.

Definition (3.8) on the temperature field defines the following exact solution for the flux β:

βpt, r, θq “

$

’

’

’

&

’

’

’

%

´ λ1p
pT0 ´ Tmq

lnp
Rin

Rptq
q
cospθq ˆ

1

r
q

´ λ1p
pT0 ´ Tmq

lnp
Rin

Rptq
q
sinpθq ˆ

1

r
q

if r ď Rptq,

and

βpt, r, θq “

$

’

’

’

&

’

’

’

%

´ λ2p
pT2 ´ Tmq

lnpRout

Rptq
q
cospθq ˆ

1

r
q

´ λ2p
pT2 ´ Tmq

lnpRout

Rptq
q
sinpθq ˆ

1

r
q

if r ą Rptq, (3.10)

and the source term of Equation (2.8) is defined by

fpt, r, θq “

$

’

’

’

’

&

’

’

’

’

%

vI

Rptq
pT0 ´ Tmq

lnp r
Rin

q

lnp
Rin

Rptq
q2

if r ď Rptq,

vI

Rptq
pT2 ´ Tmq

lnp r
Rout

q

lnpRout

Rptq
q2

if r ą Rptq.

The analytical solutions defined in (3.8) and (3.10) are used to defined initial conditions.
In Table 3.5, the parameters used to specify the circular test case are defined. Any other
variables used for this test are taken from Table 3.8, used for the definition of the last test
presented in this Chapter 3. The velocity vI is chosen to satisfy ∆t ˆ vI ă h, meaning that
only one row of mesh elements at a time can be crossed per iteration.

Symbol Value Physical Variable
T0 263.15pKq Inner temperature on Rin

T2 283.15pKq Outer temperature on Rout

∆t h2{minpλWater, λIceq Time step
vI 0.1pm.s´1q Interface velocity
Rin 0.01pmq Interior radius
Rout 0.03pmq Outer radius
Rinit 0.015pmq Initial front position

Table 3.5: Physical parameters for the circular test
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3.2.2 Meshes and configuration of the domain of resolution

In Figure 3.7, the different meshes used for the convergence test defined in Figure 3.9 and
Tables 3.6 and 3.7 are presented. All the meshes are unstructured and defined with triangular
elements. The variable h defines the characteristic length of the elements of the considered
mesh, Ne the number of elements and Nv the number of vertices, equals to the number of
DoF.

(a) h “ 0.2 / Ne “ 1790 / Nv “ 944 (b) h “ 0.1 / Ne “ 3480 / Nv “ 6706

(c) h “ 0.05 / Ne “ 26334 / Nv “ 13419 (d) h “ 0.025 / Ne “ 107730 / Nv “ 54368

Figure 3.7: Meshes for the convergence study of the circular test

3.2.3 Numerical results

Results associated with the simulation of the test defined in Equation (3.8) are now presented.
In Figure 3.8, the expansion of the inner phase and the modification of the surrogate interface
at two instances of time are shown. The white circle represents the physical interface, the green
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elements are the elements intersected by the physical interface and used to define the surrogate
interface. In this situation, the surrogate interface is chosen as the inward boundary of the area
defined by the cut elements in Figure 3.8. In Figure 3.9, the second order of accuracy is achieved
for both variables with the temperature enrichment defined in Section 2.4 by Definition (2.68).
Third order accuracy is even achieved (grey dotted line as a comparison) on the temperature,
as shown in Figure 3.9.b The values used in Figure 3.9 are available in Tables 3.6 and 3.7,
where the improvement on the flux by the temperature enrichment is more visible. The third
accuracy achieved on T can be explained by the regularity of the analytical solutions defining
the presented test. The temperature enrichment mimics the results of a standard P2 simulation,
which would provide a third-order accuracy on T . In the code implemented for this thesis work,
the Taylor expansion on T is conducted using the Hessian of T , allowing tests with a high degree
of regularity to achieve third-order accuracy on the temperature field.

(a) Time t = 1(s) (b) Time t = 8.5(s)

Figure 3.8: Visualization of the surrogate and interface displacement

h eT Enriched Slope Enriched eT Non Enriched Slope Non-Enriched
0.2 8.41E-03 9.33E-02
0.1 9.02E-04 3.21 1.85E-02 2.33
0.05 1.10E-04 3.04 4.02E-03 2.20
0.025 1.14E-05 3.26 9.29E-04 2.11

Table 3.6: L2 Errors on T for enriched and non enriched simulation with associated slope

h eβ Enriched Slope Enriched eβ Non Enriched Slope Non-Enriched
0.2 4.02E-01 5.69E-01
0.1 9.37E-02 2.11 1.32E-01 2.08
0.05 2.36E-02 1.99 3.70E-02 1.83
0.025 5.38E-03 2.14 1.05E-02 1.81

Table 3.7: L2 Errors on β for enriched and non enriched simulation with associated slope
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As a last result for this test, Figure 3.10 and Figure 3.11 illustrate snapshots of the solution at
time t “ 1psq and t “ 8.5psq , where the surrogate interface configuration is shown in Figure
3.8. The temperature is increasing from the heat source located at r “ Rin, the inner radius
and the the behavior of the flux follows the position of the front properly. No discontinuities are
visible on the calculated temperature. This test has demonstrated the accuracy of the method
on an interface moving with a 2D motion, and the ability of the e-SBM to impose properly
interfaces conditions in the context of moving boundaries.

(a) β - Error in log scale (b) T - Error in log scale

Figure 3.9: Comparison between the enriched and non enriched method - Circular Test

(a) Temperature (b) βx (c) βy

Figure 3.10: Snapshots of the temperature field T and flux β at Time t = 1(s)
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(a) Temperature (b) βx (c) βy

Figure 3.11: Snapshots of the temperature field T and flux β at Time t = 8.5(s)

3.3 Physical test : Ice block Melting

This test simulates the melting of a semi-infinite ice block, for which analytical solutions for
the temperature and the front position have been derived in reference [4].

3.3.1 Test case definition

Figure 3.12: Illustration of the test case

The computational domain in Figure 3.12 is a rectangular box Ω “ r0m, 0.5msˆr0m, 0.025ms,
for the simulation of a semi-infinite ice block. A Dirichlet boundary condition is imposed
on the left side of the domain with a temperature Twall ą Tm, where Tm is the ice melting
temperature. The melting front moves in the direction from left (water) to right (ice). Adiabatic
wall boundary conditions are imposed on top and bottom of the domain. The right boundary
condition models the convective heat transfer with ambient air and the length of the domain
is chosen sufficiently large that the condition does not affect the position of the front. The
physical parameters of the problem are summarized in Table 3.8.
In this work, the density is chosen constant, s.t. ρice “ ρwater “ 1000pKg.m´3q. The assumption
is made in [4], for the definition of the analytical test case too. In order to define the analytical
position of the interface, the Stefan numbers for liquid water and ice are introduced in (3.11).
The Stefan number characterizes the rate of phase change, and is characterized by the ratio
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Symbol Value Physical Variable
TWall 283.15pKq Heat source temperature
Tr 263.15pKq Exterior temperature
Tinit 263.15pKq Initial temperature of the ice block
Tm 273.15pKq Phase change temperature
hte 300pw.m´2.K´1q Heat transfer coefficient
ρ 1000pKg.m´3q Material density
Lm 333000pJ.Kg´1q Latent heat
λIce 2.1pW.m´1.K´1q Thermal conductivity / Ice phase
λWater 0.6pW.m´1.K´1q Thermal conductivity / Water phase
cIce 2060pJ.Kg´1.K´1q Specific heat / Ice phase
cWater 4185pJ.Kg´1.K´1q Specific heat / Water phase

Table 3.8: Physical parameters

between the sensible heat (heat exchanged) and the latent heat (energy released or absorbed)

StW :“
cWaterpTWall ´ Tmq

Lm
, StI :“

cIcepTm ´ Trq

Lm
. (3.11)

In this study, the creation of an interface addressing the process of ice melting starting from
a unique solid/ice configuration, has not been explored due to time constraints. This remains
a potential area for future research and extension of the method. For this reason, the initial
position of the interface depends on the initial time of the simulation and is given by the initial
conditions of the Problem (2.8). Multiple unstructured triangular meshes with a refined zone
in the area of the front motion are generated, where h is the characteristic size of the smallest
elements of each mesh, which is refined around the initial interface position (see Figure 3.13
and Table 3.9). This allows for a quicker simulation than an homogeneous space discretization
and provides the needed precision to move the interface, see Section 2.5.

h Number of Nodes Number of elements
0.00008 15569 30463
0.00005 25576 50264
0.00004 32577 964117
0.00003 45515 89762
0.00002 73015 144314

Table 3.9: Mesh characteristic following h for results in Figure 3.15

For the different simulations the time step is given by ∆t :“
h

2χ1ptminq
and the final time tf “ 5.

The function χptq in (3.12) is the analytical position of the interface and is used to validate the
results obtained by the simulations.

χptq :“ 2χ
?
αLt , ν :“

c

αL

αS

, αL :“
λWater

ρcWater

, αS :“
λIce
ρcIce

, (3.12)

with χ as a solution of (3.13)

StL
exppχ2qerfpχq

´
StS

νexppν2χ2qerfcpνχq
´ χ

?
π “ 0 . (3.13)
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Figure 3.13: Discretization of the domain of resolution - ice block test

Equation (3.13) is solved using a Newton algorithm. Here, the value of χ found is χ « 0.2018, for
the variables defined as in Table 3.8. For the convergence tests in Section 3.3.3 the value of the
calculated temperature field and the associated flux will be compared to the analytical solutions
(3.14) and (3.15) for T and (3.16) and (3.17) for β, defined for their respective phase. The source
term f in Problem (2.8) is null for both phases such that fpt, x, yq “ 0, @px, yq P Ω`,Ω´.

Analytical temperature in the liquid region (water) :

T pt, x, yq “ TWall ´ pTWall ´ Tmq
erfp x

2
?
αlt

q

erfpχq
. (3.14)

Analytical temperature in the solid region (ice) :

T pt, x, yq “ Tinit ` pTm ´ Tinitq
erfcp x

2
?
αst

q

erfcpχ
b

αl

αt
q
. (3.15)

Definitions (3.14) and (3.15) are used to defined the analytical flux as follow:

Analytical flux in the liquid region (water) :

βpt, x, yq “

$

&

%

βxpt, x, yq “ λWater
pTWall ´ Tmq

erfpχq
?
παlt

expp
´x2

4αlt
q

βypt, x, yq “ 0

. (3.16)

Analytical flux in the solid region (ice) :

βpt, x, yq “

$

’

’

&

’

’

%

βxpt, x, yq “ λIce
pTm ´ Tinitq

erfcpχ
b

αl

αs
q
?
παst

expp
´x2

4αst
q

βypt, x, yq “ 0

. (3.17)
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Remark 12. The function erf is the error function, while erfc is the complementary error
function. There are defined in Equation (3.18) using the leading factor 2?

π
which is sometimes

omitted by some authors.

erfpxq “
2

?
π

ż x

0

expp´t2q dt ,

erfcpxq “
2

?
π

ż 8

x

expp´t2q dt .

(3.18)

The two functions satisfy
erfpxq ` erfcpxq “ 1 .

Remark 13. The test presented in this section for the simulation of a semi-infinite ice-block is
performed over a 2D domain (see Figure 3.12), but with a uniform front motion in one direction
only, see Equation (3.13). Then, a single velocity value is used to update the front position,
and all the points at the physical interface are moved at the same speed (flat interface). For the
computation of this test, the nodes at the surrogate interface from the mesh discretization are
used to retrieve positions of nodes on the physical interface where the flux jump is calculated,
using the mapping function (1.12) that links the two interfaces together.

The methods described in Section 2.5 are used to approximate values of JβKΓ, which through
the Stefan condition (2.10) gives an approximation of the front velocity. The average of those
values is then used as a single velocity value to update the front position. Taking the average
value can be seen as a smoothing technique on the calculation of the speed of the physical
interface. The stability analysis in Chapter 4 will develop the discretization of the interface to
a full 2D motion (both in the x and y direction) and every point at the physical interface will
be moved independently of each other.

3.3.2 Observations

Iteration 1 Iteration 6 Iteration 12

Figure 3.14: 2D View from the top of the domain (h=0.00008) and the displacement of the
surrogate at different time step
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In Figure 3.14, the results on the surrogate interface identification is shown for three different
times. In blue, in Figure 3.14, the liquid phase is expanding while in the red area, the solid
phase is getting smaller. The elements in light and dark green are those that are intersected
by the physical interface on both Ω` and Ω´.
It is important to examine the impact of node reconstruction, which can potentially deterio-
rate the exact front position. Following the two approaches described in Section 2.5.1, for the
reconstruction, the position of the interface for different element sizes in Figure 3.15 is stud-
ied. The problem solved is a least square minimization problem and three methods and their

(a) h = 0.00003 (b) h = 0.00002

Figure 3.15: Comparison between the exact interface position and the numerical positions

results on the front position are compared to the analytical front position (orange curve). The
exact values method (purple curve) involves initializing the missing values with the analytical
solutions defined in (3.14),(3.15),(3.16) and (3.17).

The curve is mingled with the analytical solution curve (see Equation (3.12)) in Figure 3.15. The
reconstruction with normal equations consists in solving the equivalent system AtAX “ AtB
of the initial system AX “ B, green curve in Figure 3.15. The QR factorization method (blue
curve) shows the interface position when the missing values are reconstructed by solving system
RX “ QtB, equivalent to AX “ B by property of the QR factorization, see Section 2.5.2. One
can observe that the type of reconstruction used to solve the least squares problem can make
the numerical position of the front diverging from the analytical position. The phenomenon
is even more amplified with smaller elements, see Figure 3.15(b). We can see that the QR
factorization is giving better results than the normal equations method. The main advantage
of the QR factorization is that no inversion is required and that the QR factorization is known
to be stable under small perturbations. The R matrix of the QR factorization is a triangular
matrix, while the matrix AtA need to be inverted using a direct or iterative solver. The Figure
3.15(b) shows that the condition number of the matrix AtA is bigger for refined mesh, which
makes the QR procedure a more pertinent method. Another approach could have considered a
bigger stencil of points for the resolution of AtAX “ AtB, but a detailed analysis would have
been required to determine a rule allowing an efficient use of this method on any types of mesh.
The QR factorization has been preferred instead.
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3.3.3 Numerical results

In order to investigate properly the accuracy of the e-SBM for this particular test the simulations
are restrained to meshes with a constant characteristic length.

h eT eβ Order on T Order on β
8E-05 5.09E-07 2.90E-03
6E-05 2.03E-07 1.56E-03 3.195 2.159
4E-05 6.62E-08 7.50E-04 2.763 1.805
3E-05 3.61E-08 4.42E-04 2.113 1.837
2E-05 1.37E-08 1.91E-04 2.394 2.073
1E-05 2.96E-09 5.07E-05 2.206 1.912

Table 3.10: Enriched Simulation - L2 Errors obtained on variable β and T at final time Tf “ 5
seconds

h eT eβ Order on T Order on β
8E-05 5.49E-06 1.92E-02
6E-05 2.59E-06 9.87E-03 2.606 2.323
4E-05 1.04E-06 5.48E-03 2.251 1.451
3E-05 7.07E-07 5.50E-03 1.348 -0.012
2E-05 2.76E-07 1.98E-03 2.320 2.521
1E-05 7.06E-08 7.72E-04 1.965 1.357

Table 3.11: Non Enriched Simulation- L2 Errors obtained on variable β and T at final time
Tf “ 5 seconds

(a) Error on T (b) Error on β

Figure 3.16: Convergence study - Error at final time Tf = 5 seconds
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In Table 3.10, the errors obtained from the simulations performed over different meshes are
displayed. The order of accuracy obtained is indeed 2 for both variables T and β, using the
enrichment of temperature defined in (2.68). The values in Table 3.10 are used in Figure 3.16
and compared to two reference curves, one for the first order accuracy (blue curve in Figure
3.16) and one for the second order accuracy (green curve in Figure 3.16).

(a) Error on T (b) Error on β

Figure 3.17: Convergence study on the accuracy of an enriched and non enriched simulation

Figure 3.18: Comparison between the numerical and analytical front position

In Figure 3.17, results presented in Tables 3.10 and 3.11 are used to compare the differences
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between the enriched (symmetric enrichment) and non enriched simulation, where all schemes
used are second order accurate. The BDF2 scheme is used on the time discretization and the
extrapolated BDF2 (BDF2exp) is used on the discretization of the Stefan condition for the
update of the interface position, see Section 2.6.1. A degradation of the order of convergence is
observable when the enrichment of the temperature is deactivated, see Figure 3.17 and Table
3.11.

In Figure 3.18, the e-SBM is able to correctly track the position of the front, which is also an
unknown of the problem, the more refined the mesh is, the more the numerical front position
matches the analytical position. These results show the ability of the method on the tracking
of the front position. For this test, once again the e-SBM is an effective procedure to obtain
and maintain an overall second order accuracy for problems with a moving interface.

3.4 Conclusion on Chapter 3

In this Chapter 3, we have demonstrated that the e-SBM defined in Chapter 2 and the schemes
developed in (2.71) and (2.76) are efficient for the modeling of the unsteady Stefan problem.
The expected accuracy has been verified and the enrichment of the method has proven its
benefits in all the tests presented in this Chapter. The second set of interface conditions (2.7)
exhibited better results and precision than the first set of interface conditions (2.9), making it
the preferred choice for the resolution of the Stefan model. Therefore, it will be the only set of
interface conditions used in Chapter 4 for the stability analysis.

In the next chapter, which is the last one of this manuscript, the stability of the method will
be explored. More complicated interface geometry will be used, and perturbations on the front
position and the temperature field will be investigated in a melting configuration to study the
behavior of the method in regards to perturbations
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Chapter 4

Stability Analysis of the unsteady
Stefan model

Classical finite element methods used to model problems with internal boundaries rely on body
fitted computational grids. However, those methods encounter computational challenges when
the boundaries are deformed or moved substantially through time. In this direction, embedded
methods do not require the use of boundary-fitted grids; instead, they involve immersing the
boundary within a pre-existing fixed grid. This ability justifies the choice made in this thesis
to operate within the embedded framework and be able to deal with the moving front of
the Stefan model. In the first two chapters an extension of the Shifted Boundary Method
(e-SBM) to moving internal boundaries has been presented. The method has been applied
in Chapter 3 for non discretized interface on the Stefan model and its phase-change front,
showing the accuracy of the method and its ability to track moving interfaces. In the context
of modeling more complex structures the interface is discretized as a set of nodes. The recovery
of the velocity of those nodes allows for the movement of the physical interface position within
the mesh discretization. Without a proper analysis, this displacement of the interface and
the stability of the model remain unknown, especially within the embedded framework. The
question of stability of the e-SBM and the Stefan model is the subject of discussion of this
chapter. More precisely, a linear stability analysis is performed on the analytical Stefan model
for a melting configuration and on the numerical problem solved by the e-SBM. Such studies
have been applied to different physical problems such as in [96, 97, 98, 99, 100] but to the
best of the author’s knowledge, no study of this nature has been conducted on the Stefan
model within the framework of embedded simulations. On a numerical side, the stability of the
method expressed in Chapter 2 and the scheme developed in Equation (2.89) will be studied.
The subject of discussion will be the displacement of a perturbed front where the velocity
is recovered through the Stefan condition and the behavior of this perturbation through the
simulation. The temperature field is also studied to look in a similar way into the growth or
decay in time of a perturbation on the primal variable and its impact on the definition of the
flux, present explicitly in the numerical scheme by the use of the mixed formulation, and used
to move the interface through the Stefan condition.

95



4.1 Stability Analysis

In order to introduce the stability analysis of the unsteady Stefan model, the stability analysis
procedure is initially expressed for simple problems. A preliminary example is detailed with
the Fisher equation which possesses both a stable and an unstable mode.

4.1.1 Principle & Concept

Suppose that upx, tq is a function defined on a domain t´8 ă x ă `8, t ą 0 u, which satisfies
a linear PDE with constant parameters such as the wave or diffusion equation.

Let k P R be a wavenumber, s P C the associated frequency, x P R the space variable,
t P R` the time variable and i the standard notation for the imaginary number i2 “ ´1. In this
chapter, the variable i as a number will always refer to the complex number. Then, Equation
(4.1) characterizes a solution to a linear PDE with a growth or decay in time behavior, see
[124].

upx, tq “ exppikx ` stq (4.1)

Plugging a solution of the form (4.1) into a linear PDE results in a relationship of the form
s :“ spkq called the dispersion relation. The dispersion relation characterizes the dynamics
of spatially oscillating modes relating the wavelength or wavenumber k of a wave to its
frequency s. In the cases where s is independent of k, the system is characterized by no
dispersion.
The coefficient s being a complex number, and the sign of the real part of s, denoted Repsq
(Impsq denotes its imaginary part) characterizes whether a solution of the form (4.1) has a
growth or decay in time behavior. Indeed, the value of x in the solution (4.1) depends on the
complex number i, defining the exponential part on x as a sum of trigonometric functions.
Using Euler’s formula (4.4) on Equation (4.1) the following development exists

exppikx ` stq “ exppikxqexppstq “ pcospkxq ` i sinpkxqqexppstq. (4.2)

For the exponential part depending on the variable s in Equation (4.2), once again as s P C
Euler’s formula (4.4) can be used. It expresses that the behavior of the solution (4.1) depends
only on Repsq.

exppstq “ expppRepsq ` i Impsqqtq

“ pcospImpsqtq ` i sinpImpsqtqq exppRepsqtq
(4.3)

In Equation (4.3) if Repsq ď 0, the term exppRepsqtq is a bounded function, otherwise its limit
tends to infinity and Equation 4.1 characterizes a growth in time behavior.

Remark 14. The wavelength (denoted λ in Figure 4.1), is a parameter describing the spatial
period of a periodic wave. It represents the distance over which the wave’s shape repeats itself.
The wavenumber k in Equation (4.1) is the spatial frequency of a wave, it represents the number
of wavelengths per unit distance. Longer wavelengths characterize low frequencies while smaller
wavelengths characterize high frequencies, see Figure 4.1.
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Figure 4.1: Example of wavelengths for a high and low frequency profile λ15

Remark 15. Euler’s formula is a relationship describing the link between trigonometric func-
tions and a complex exponential function. Let x P R and i be the complex number. The Euler’s
formula states as below:

exppixq “ cospxq ` i sinpxq. (4.4)

4.1.2 Linearization

To study the properties of a non-linear PDE, a linear approximation is a useful way to get
information about the original problem. It is the first step in the study of stability presented in
this chapter. The main idea of such approximation is to look at the first order Taylor expansion
of the function around a chosen point of interest. Geometrically, a local linear approximation
is often referred to as a tangent line approximation. If one zooms in on a point on a graph, the
curve will look similar to a straight line. The tangent line which is the closest line to that point
can then be used to approximate other values along the curve. The tangent line approximation
of a function f at a point of interest a can be expressed as a function Lpxq defined by

Lpxq “ fpaq `
Bf

Bx
paqpx ´ aq . (4.5)

For non-linear PDEs, the first step involves finding a steady state u0pxq, called the leading
order solution or equilibrium state. Let u be the solution of a PDE of the form

Bu

Bt
“ Rpu,

Bu

Bx
,

B2u

Bx2
, ...q . (4.6)

A steady state of (4.6) is a function u0pxq, independent of the time variable t which satisfies

Rpu0,
Bu0
Bx

,
B2u0
Bx2

, ...q “ 0 . (4.7)

15https://bramblechemistry.weebly.com/4b1-electromagnetic-radiation.html
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The linearization process involves examining a solution upx, tq of the form

upx, tq “ u0pxq ` ϵwpx, tq , (4.8)

where ϵ is taken as a small parameter. It can usually be expressed in terms of physical
variables associated with the considered PDE.

Plugging a solution of the form (4.8) in Problem (4.6) gives the linearized version of the PDE,
referred to as the linearization of (4.6) around u0, where only the terms of order ϵ are kept
from the development of (4.8) in (4.6). Non-linear PDEs often possess more than one steady
state. It is important to denote that the linearization process described by (4.8) is not unique,
and depends on the choice of the steady state u0. The next section 4.1.3 presents an example
of such PDE: the Fisher equation.

4.1.3 Application to an example: the Fisher Equation

The linearization process explained in Section 4.1.2 and the definition of the dispersion relation
detailed in Section 4.1.1 are applied in this Section to a steady state of the Fisher Equation.
The criteria of stability associated to the study of the dispersion relation will be expressed in
the next section of this chapter.

Let u be the unknown of the single equation (4.9) defining the Fisher Equation

Bu

Bt
px, tq “

B2u

Bx2
px, tq ` upx, tqp1 ´ upx, tqq ; ´8 ă x ă `8 , t ą 0, (4.9)

and which satisfies unspecified initial and boundary conditions.

A linear solution of (4.9) of the form (4.10) is considered

upx, tq “ u0pxq ` ϵwpx, tq. (4.10)

A steady state solution of (4.9) denoted u0pxq is used to construct the linear solution (4.10).
By plugging (4.10) into (4.9) one gets

ϵ
Bw

Bt
px, tq “

B2u0
Bx2

px, tq ` ϵ
B2w

Bx2
px, tq ` pu0pxq ` ϵwpx, tqqp1 ´ u0pxq ´ ϵwpx, tqq,

ϵ
Bw

Bt
px, tq “ ϵ

B2w

Bx2
px, tq ` ϵwpx, tqp1 ´ ϵwpx, tqq ´ 2u0pxqϵwpx, tq,

Bw

Bt
px, tq “

B2w

Bx2
px, tq ` wpx, tqp1 ´ ϵwpx, tqq ´ 2u0pxqwpx, tq,

ùñ Bw
Bt

px, tq “ B2w
Bx2 px, tq ` wpx, tqp1 ´ 2u0pxqq .

(4.11)

Equation (4.11) is the linearization of (4.9) around u0pxq.
From the linearized Fisher equation (4.11) a dispersion relation can be defined as expressed
in Section 4.1.1. Let wpx, tq “ exppikx` stq, where k is a constant coefficient. Then, plugging
the definition of wpx, tq into Equation (4.11) one obtains

s exppikx ` stq “ exppikx ` stqp1 ´ 2u0pxqq ´ k2exppikx ` stq,

ùñ s “ 1 ´ k2 ´ 2u0pxq.
(4.12)
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Equation (4.12) leads to the following dispersion relation

spkq “ 1 ´ k2 ´ 2u0 , (4.13)

where u0 is a steady state of Equation (4.9). The dispersion relation is then a relationship that
links s and k together through the choice of a steady state u0.

4.1.4 Stability

The study of the sign of the real part of spkq (see reference [124]), denoted Repspkqq gives the
necessary information to characterize the stability of the associated system of equations, as
expressed in Section 4.1.1.

Four situations are possible:

1. Repspkqq ă 0 @k, then the system is called stable;

2. There exists some values of k for which Repspkqq ą 0, then the system is called unstable;

3. If Repspkqq ă 0 and Repspkqq “ 0 for some k, which means that the maximum of Repspkqq

is 0, the system is called marginally stable. This state is often referred as an interme-
diate state;

4. If Repspkqq “ 0 @k, i.e., that spkq is purely imaginary or is constant and equals to zero,
no conclusion can be drawn regarding the stability of the considered steady state.

As previously mentioned, the result of the stability is dependent on the choice made for the
steady state used during the linearization process. If an equation possesses more than one
steady state, it is important to look at the results for all possible choices of u0. To illustrate
this argument, once again the Fisher equation is considered.

The Fisher equation (4.9) has two steady states denoted here u0 and ū0 such that u0 “ 0 and
ū0 “ 1. For the study of the first steady state u0 “ 0 the linearization process in Section 4.1.2
with Equation (4.13) gives a dispersion relation of the form

spkq “ 1 ´ k2. (4.14)

The sign of Equation (4.14) depends on the choice made for k. It results that if |k| ă 1 then
spkq ą 0, @k P R, and the Fisher equation (4.9) is unstable around the steady state u0 following
criteria 2 in Section 4.1.4.

For the study of the second steady state ū0 “ 1, the results of the linearization process is
different and following Definition (4.13) the dispersion relation around ū0 is of the form

spkq “ ´1 ´ k2. (4.15)

The dispersion relation (4.15) is negative for all values of k, and the Fisher equation is linearly
stable around ū0 following criteria 1 in Section 4.1.4.

In the next section, the Stefan model and its configuration for which the stability analysis is
performed are described.
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4.2 The Stefan model

Incoming flux Outgoing flux

Liquid Phase
Ω1

Solid Phase
Ω2

h

ΓN2ΓN1

x2x1 ΓN

ΓN

Figure 4.2: Domain of resolution for the stability analysis

The Stefan model regroups free and moving boundaries problems. In this Chapter, once again
the mathematical model describing a phase change transition from solid water (ice) to liquid
water is investigated. The model is composed of two sub-domains (Ω “ Ω1 Y Ω2), one filled
with water (Ω1) and the other one filled with ice (Ω2), see Figure 4.2. The material coexists at
the interface region (Ω1 X Ω2) in both states, liquid and solid, see [4].

Since phase transition models are free boundary problems where the boundary position is also
an unknown, to obtain a valid model a closure condition is required: the Stefan condition. In
heat transfer problems with phase-change, the physical constraint and closure condition state
that

1. Energy conservation at the interfaces and a jump in flux ùñ latent heat release,

2. The temperature is known at the interface: the melting temperature Tm.

These physical data will be used to define the mode in which the Stefan model is either stable
or unstable. Numerically, the Stefan condition is discretized to obtain an approximation of the
velocity of the nodes defining the physical interface. In this Chapter, the physical interface is
defined as a set of points to be moved. In order to match the numerical model defined in Chapter
2 and implemented for the work presented in this manuscript in a 2D code, the stability analysis
on the continuous model is presented in two dimensions px, yq as well. Moreover, the stable
motion of the interface is considered uni-dimensional. This configuration allows the study of a
perturbation at the interface in a reference frame where any instability is easily identifiable.

In the next section, the model used for the analysis is described. Some information on the
Stefan model are also recalled, for more details on the Stefan model see Chapter 2.

A rectangular domain of length r´L,Ls is considered (see Figure 4.2), denoted as Ω, where
x1 “ ´L and x2 “ L. The initial interface position is denoted by h0. For the stability analysis
the classical formulation of the Stefan model is considered, i.e., its primal formulation. The
mixed form and primal form are equivalent on a continuous level for the study of stability of
the PDEs associated to the Stefan model. On the other hand the mixed formulation will be
studied for the numerical analysis, see Section 4.7.
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Find a temperature field T px, y, tq and an interface location hpy, tq satisfying :

ρcj
BT px, y, tq

Bt
`

B

Bx

ˆ

´λj
BT px, y, tq

Bx

˙

`
B

By

ˆ

´λj
BT px, y, tq

By

˙

“ 0. (4.16)

In the following, the index j will always refer to a component phase-depend, j “ 1 for the
liquid phase, j “ 2 for the solid phase, such that λj represents the thermal conductivity of
the material and cj the heat capacity for their respective phase. For simplicity the thermal
diffusivity αj “

λj

ρcj
is also defined. The parameter ρ in Equation (4.16) is the density of the

material, and is considered equal in both the liquid and solid water phases. This is a common
assumption for ice melting situations, see [4].

Equation (4.16) states that the temperature diffuses inside the domain, while the flux jump
at the interface drives the boundary motion. The position of the moving boundary is a time
dependent function and needs to be determined as a part of the solution. Then, the resolution
of the PDE requires to solve the heat equation in all of the phases, while the moving boundary is
determined by the Stefan condition, through the determination of the flux jump at the interface.
For the analysis of the Stefan model, the Stefan condition is also considered in its primal form
and the following definition is used

J´λ∇T Kh ¨ n “ ρLm
Bhpy, tq

Bt
. (4.17)

The definition of the interface in this analysis is defined such that any point px, yq at the physical
interface corresponds to coordinates of the form px, yq “ phpy, tq, yq. It leads that any point at
the interface has a velocity v defined by:

v “
dx

dt
i⃗ ` 0⃗j “

dhpy, tq

dt
i⃗ ` 0⃗j. (4.18)

The unit vectors p⃗i, j⃗q characterizes the cartesian coordinate system along the x-axis and the
y-axis. Definition (4.18) defines a configuration in which the interface motion is uni-dimensional
which simplifies the problem for the stability analysis.

Equation (4.16) is the standard primal formulation of the Stefan model defined by the heat
equation in both phases of the domain, see Figure 4.2. In Equation (4.16), only a heat diffusion
term (diffusive flux) is present for the moment, i.e. with the presence of

∇ ¨ p´λj∇T q “
B

Bx

ˆ

´λj
BT px, y, tq

Bx

˙

`
B

By

ˆ

´λj
BT px, y, tq

By

˙

.

Nevertheless, the configuration in which the stability analysis is performed requires imposing
the movement in which the physical interface is moving. It can be interpreted as a change in
reference frame of the problem in which the problem is situated.

1. Over time the interface is moving in such a way that the solid (ice) is receding from one
of the boundaries of the domain in the x-direction only, see Figure 4.2. This specific
configuration allows to study the behavior of a perturbation at the interface in a configu-
ration where its displacement should be uniform and in one direction. More precisely, its
behavior is compared to a reference displacement, i.e., whether the perturbation flattens
or not through the simulation.

2. The initial interface position at time t “ 0 is defined by h0 (non perturbed interface),
where @y P Ω the coordinate of a point at the interface h0 is px0, yq, i.e., that h0 is a flat
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interface, and with x0 a chosen position.

3. A convective flux term in the x direction is added to formulation (4.16). This term
comes from a change in the reference frame where the solution is studied. It allows
the introduction of the velocity of the solid u that is receding from the domain at the
boundary x “ x2, see Figure 4.2.

Remark 16. To illustrate the introduction of the convective flux term in Equation (4.16)
a simplified problem (some coefficients are taken equal to 1) is chosen to detail the pro-
cedure. First, the heat equation is recalled for a two dimensional problem of unknown
T

BT px, y, tq

Bt
“ α

B2T px, y, tq

Bx2
` α

B2T px, y, tq

By2
. (4.19)

In order to introduce a convective term in the x direction in Equation (4.19), a change
in coordinate is performed. The time variable t remains invariant in the new coordinate
system.
Let

sx “
?
2x ´ 2ut,

sy “
?
2y,

(4.20)

where u is the velocity of the solid pulled away. The transformation (4.20) represents
a characteristic curve in the x direction along which the temperature remains constant.
Transformation (4.20) allows to modify the terms of Equation (4.19) as follow

1.
BT

Bt
“

BT

Bsx

Bsx
Bt

`
BT

Bsy

Bsy
Bt

“ ´2u
BT

Bsx
,

2. α
B2T

Bx2
“ α

B

Bx

ˆ

BT

Bsx

Bsx
Bx

˙

` α
B

Bx

ˆ

BT

Bsy

Bsy
Bx

˙

“ α
B

Bsx

Bsx
Bx

ˆ

BT

Bsx

Bsx
Bx

˙

“ 2α
B2T

Bs2x
,

3. α
B2T

By2
“ α

B

By

ˆ

BT

Bsx

Bsx
By

˙

` α
B

By

ˆ

BT

Bsy

Bsy
By

˙

“ α
B

Bsy

Bsy
By

ˆ

BT

Bsy

Bsy
By

˙

“ 2α
B2T

Bs2y
.

(4.21)

Using the results from the change of variables (4.21) the following equations hold

1.
BT

Bt
“ ´2u

BT

Bsx
,

2.
BT

Bt
“ 2α

B2T

Bs2x
` 2α

B2T

Bs2y
,

(4.22)

and the heat equation (4.19) can be rewritten by

2
BT

Bt
“ ´2u

BT

Bsx
` 2α

B2T

Bs2x
` 2α

B2T

Bs2y
.

ùñ
BT

Bt
“ ´u

BT

Bsx
` α

B2T

Bs2x
` α

B2T

Bs2y
.

(4.23)

Equation (4.23) can be written using different notations where psx, syq and px, yq can
be used instead, and the convective flux term has been added to the initial formulation
(4.19).

Remark 17. In the case of a stable model a perturbation at the interface should flatten and go
back to its initial interface shape.

102



The problem at stake for the stability analysis is the following :

Find a temperature field T px, y, tq and an interface location hpy, tq satisfying :

ρcj
BT px, y, tq

Bt
`

B

Bx

ˆ

ρcjuT px, y, tq ´ λj
BT px, y, tq

Bx

˙

`
B

By

ˆ

´λj
BT px, y, tq

By

˙

“ 0. (4.24)

Equation (4.24) is associated with the following boundary conditions:

f1 “ ´λ1∇T px1, y, tq ¨ n ` ρc1uT px1, y, tq on ΓN1 ,

f2 “ ´λ2∇T px2, y, tq ¨ n ` ρc2uT px2, y, tq on ΓN2 ,

´ λj∇T px, y, tq ¨ n “ 0 on ΓN ,

T phpy, tq, y, tq “ Tm on hpy, tq ,

J´λj∇T phpy, tq, y, tqKh ¨ n “ ρLmug on hpy, tq ,

(4.25)

with ug “ pp
Bhpy,tq

Bt
´ uq⃗i ` 0 j⃗q ¨ n within the cartesian coordinate system, see Figure 4.3 for a

visualization of the boundary conditions on the domain of resolution Ω.

Total flux
f1

Total flux
f2

Ω1 Ω2

´λ∇T ¨ n “ 0

´λ∇T ¨ n “ 0

ΓN

ΓN

ΓN1 ΓN2

T “ Tm

interface velocity
Bh
Bt

solid velocity
u

Figure 4.3: Visualization of the boundary conditions (4.25) for the stability analysis

The constant variable u in Equation (4.24) and Conditions (4.25) represents the velocity of
the solid pulled away (from the addition of the convective flux term in Equation (4.24)),
while Bhpy,tq

Bt
is the velocity associated to the displacement of the physical interface.

The variables f1 and f2 in (4.25) represent the total flux for their respective phases on the
boundaries ΓN1 and ΓN2 , see Figures 4.2 and 4.3. The term total flux characterizes the
amount of heat passing through a unit surface area per unit time. It is defined as the sum of
the convective flux (mass transfer due to the bulk motion of a fluid) and the diffusive flux
(flow of matter from a region of high concentration to a region of low concentration).
In Equation (4.24) the diffusive flux is defined by the terms

B

Bx
p´λj

BT px, y, tq

Bx
q `

B

By
p´λj

BT px, y, tq

By
q,

while the convective flux is present only in the x direction

ρcju
BT px, y, tq

Bx
.
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Remark 18. The definition of total flux often refers to the sum of all the fluxes associated with
the considered system. More generally, it represents the cumulative transfer or flow of any
quantity through a region or boundary within the domain of resolution. It can account for
various types of flux, depending on the nature of the problem at hand.

The solid and the liquid phases are assumed to be incompressible, with equal and constant
density ρ, Tm being the melting temperature and Lm the latent heat.

For the stability analysis of Equation (4.24) the first step consists of defining the temperature
field T and the interface position h as linear solutions, of a linear system of PDE, see Section
4.1.2. The linearization of the temperature field is defined around a steady state Tj,0pxq that
needs to be identified. The same procedure is applied for the interface position hpy, tq for a
steady state denoted h0, chosen at the initial time t “ 0, corresponding to the initial interface
position.

In the next section, the identification of the steady state Tj,0 is the subject of discussion. As
the temperature is phase dependent, the steady state will also be defined independently for
each phase.

The linear solutions examined in the following sections are of the form

Tjpx, y, tq “ Tj,0pxq ` ϵTj,1px, y, tq,

x :“ hpy, tq “ h0 ` ϵh1py, tq,
(4.26)

where the index j refers to the corresponding phase of the solution and belongs to either Ω1 or
Ω2, see Figure 4.2.

4.3 Leading Order Solution

Tj,0pxq as defined in Equation (4.26) is a steady state solution of Equation (4.24) and satisfies

BTj,0pxq

Bt
“ 0. (4.27)

The definition of Tj,0pxq expressed in (4.27) and the definition of the problem at stake in
Equation (4.24) lead to

u
BTj,0
Bx

´ αj
B2Tj,0
Bx2

“ 0 . (4.28)

To define Tj,0pxq the next step consists in the resolution of Problem (4.28). To generalize the
approach expressed in this section the resolution of (4.28) is detailed thoughtfully.

To prevent the division by BTj,0

Bx
in the resolution of (4.28), which without further information

could be null for some points of the domain, the ODE (4.28) is solved by looking at the
associated second order equation (4.29) of unknown X

uX ´ αjX
2

“ 0 , (4.29)

which has the associated phase-dependent discriminant number ∆j

∆j “ u2 ´ 4 ˆ p´αjq ˆ 0 “ u2 ě 0. (4.30)

The sign of the discriminant number (4.30) gives the information on the number of square
roots associated to the resolution of the ODE (4.29). Let rj,1 and rj,2 be the phase dependent
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square-roots associated to Problem (4.29). Then they are defined by

rj,1 “
´u ´

a

∆j

´2αj

“
u

αj

,

rj,2 “
´u `

a

∆j

´2αj

“ 0.

(4.31)

By assuming that the solution of (4.29) is of the form Aje
rj,1x `Bje

rj,2x, with Aj, Bj P R, phase
dependent coefficients, one can write Tj,0pxq the solution of (4.28) as follows

Tj,0pxq “ Aje
ux
αj ` Bj, Aj, Bj P R. (4.32)

The four constants A1, A2, B1, B2 are specified using the boundary conditions (4.25). For the
configuration in which the problem has been defined, see Figures 4.2 and 4.3, the heat flows
from the boundary of the liquid phase in a single direction (x direction) and exits through the
boundary of the solid phase in the same direction. It allows to consider that the total flux
is constant along the y-axis in both phases. This information allows to look at the value of
the total flux at the interface for both phases for the definition of the coefficients Aj. From
Conditions (4.25) the total flux fj can be expressed at the interface h0 by

fj “ ´λj∇T ph0, y, tq ¨ n ` ρcjuT ph0, y, tq. (4.33)

Let Tj,0pxq satisfies condition (4.33) then

´ λj
BTj,0ph0q

Bx
` ρcjuTj,0ph0q “ fj,

´ λj
u

αj

Aje
uh0
αj ` ρcjuTm “ fj,

Aj “ ´pfj ´ ρcjuTmqe
´

uh0
αj ˆ

αj

uλj
,

ùñ Aj “ ´qj
αj

uλj
e

´uh0
αj ,

(4.34)

with qj “ pfj ´ ρcjuTmq. The definition of coefficient Aj in (4.34) leads for the moment to the
following definition of Tj,0pxq

Tj,0pxq “ ´qj
αj

uλj
e

upx´h0q

αj ` Bj, (4.35)

where Bj needs to be determined.
For the definition of the coefficient Bj in (4.35), Tj,0ph0q is defined such that the condition of
melting at the interface is satisfied. Using Definition (4.35) one gets

Tj,0ph0q “ ´qj
αj

uλj
` Bj, (4.36)

and from Condition (4.25)
Tj,0ph0q “ Tm. (4.37)

105



Combining (4.35) and (4.36) together

Bj “ Tm ` qj
αj

uλj
. (4.38)

Finally the leading order solution is defined by

Tj,0pxq “
αj

uλj
qj

ˆ

1 ´ e
u

px´h0q

αj

˙

` Tm . (4.39)

However, a last step is necessary to get the value of Tj,0pxq: the definition of the solid velocity
u. The last condition in (4.25) which has not been used yet is the Stefan condition, recalled
below:

J´λj∇T phpy, tq, y, tqKh ¨ n “ ρLmug (4.40)

For the steady state solution, as the function Tj,0pxq is independent of the time variable, the
coefficient ug “ p

Bhpy,tq
Bt

´ uq⃗i` 0 j⃗q ¨ n in Conditions (4.40) can be simplified into ug “ ´u, and
allows to define u as

´ λ1
BT1,0
Bx

ph0q ´

ˆ

´λ2
BT2,0
Bx

ph0q

˙

“ ´ρLmu,

ðñ ´ λ1
α1

uλ1
q1

ˆ

´
u

α1

˙

` λ2
α2

uλ2
q2

ˆ

´
u

α2

˙

“ ´ρLmu,

ðñ pf1 ´ ρc1uTmq ´ pf2 ´ ρc2uTmq “ ´ρLmu,

ùñ u “
f1´f2

ρpTmpc1´c2q´Lmq
,

(4.41)

where qj “ pfj ´ ρcjuTmq.
In the case of a melting simulation, the latent heat Lm is positive, as heat is added in
the system through the liquid phase. The specific heat satisfies c1 ą c2 , and the melting
temperature are known values, and the total flux is defined such that f1 ą f2. This specificity
makes the solid velocity u being a negative variable. For a solidification problem the sign of
the velocity is opposite.

4.4 First Order Solution

To obtain the first order solution in the development around the steady state Tj,0pxq, the
solution Tj,1px, y, tq and the interface location hpx, y, tq are assumed to be of the form

Tj,1px, y, tq “ Tj,1pxqexppiky ` stq,

h1py, tq “ h1exppiky ` stq,
(4.42)

where k defines a perturbation wavenumber, and s a prediction of the temporal behavior
of the system, which is determined as a function of k, see Section 4.1.1.

The first step in the determination of the first order solution is to obtain an equation in terms of
Tj,1pxq. To achieve this, Definition (4.26) is inserted in Equation (4.24) to obtain the linearized
form of Equation (4.24), leading to

ρcj
BTj
Bt

px, y, tq `
B

Bx

ˆ

ρcjuTjpx, y, tq ´ λj
BTj
Bx

px, y, tq

˙

`
B

By

ˆ

´λj
BTj
By

px, y, tq

˙

“ 0. (4.43)
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Then, the development of Tjpx, y, tq defined in Equation (4.26) can be done to make Tj,0pxq, the
steady state disappear in Equation (4.43). Then, one obtains the following Equation depending
on Tj,1px, y, tq only

ρcj
BTj,1

Bt
px, y, tq`

B

Bx

ˆ

ρcjuTj,1px, y, tq ´ λj
BTj,1
Bx

px, y, tq

˙

`
B

By

ˆ

´λj
BTj,1
By

px, y, tq

˙

“ 0, (4.44)

which can be developed using the definition of Tj,1px, y, tq in Equation (4.42)

ρcjTj,1pxqseiky`st
` ρcju

BTj,1
Bx

pxqeiky`st
´ λj

B2Tj,1
Bx2

pxqeiky`st
´ λjpikq

2Tj,1pxqeiky`st
“ 0,

ùñ Tj,1pxqps ` αjk
2q ` u

BTj,1pxq

Bx
´ αj

B2Tj,1pxq

Bx2 “ 0 .

(4.45)
Before being able to express a definition for Tj,1pxq, the conditions satisfied by Tj,1pxq need to
be expressed. This step is referred to as the linearization of the boundary conditions.
Some of the conditions of the problem at stake (4.24) are already satisfied by the leading order
solution Tj,0pxq. The next part of this section addresses the definition of the conditions satisfied
by Tj,1px, y, tq, and the construction of a solution Tjpxq (see Equation (4.26)) conformed with
the initial system of equations (4.24) and its conditions (4.25).

First, the conditions that the leading order solution Tj,0pxq satisfies are recalled with the fol-
lowing system of equations (4.46)

´ λj
BTj,0ph0q

Bx
¨ nx “ fj ´ ρcjuT ph0q,

Tj,0ph0q “ Tm,

J´λj
BTj,0ph0q

Bx
K “ ´ρLmu.

(4.46)

where h0 is the initial interface position. The Neumann conditions on ΓN are satisfied naturally
as Tj,0pxq is independent of the coordinate y.

From the original system of conditions (4.25) and the conditions satisfied by Tj,0pxq in (4.46)
one can easily define that Tj,1pxq satisfies

ρcjuTj,1pxjq ´ λj
BTj,1
Bx

pxjq “ 0,

Tj,1ph0q “
h1
λj

pfj ´ ρcjuTmq,
(4.47)

where x1 “ ´L and x2 “ L, see Figure 4.2.
The first condition in (4.47) is trivial using that the boundary condition is already satisfied by
Tj,0 and that the total flux fj (sum of the convective and diffusive flux) is constant through
each of its respective phases, see conditions (4.46).

For the second condition in (4.47), the approach consists of doing a Taylor development around
the initial interface position h0 and to use the information known about Tj,0ph0q to get a
definition of Tj,1ph0q. One can find that at the interface hpy, tq “ h0 ` ϵh1py, tq the function
Tjpx, y, tq satisfies

Tjphpy, tq, y, tq “ Tjph0 ` ϵh1py, tq, y, tq » Tjph0, y, tq ` ϵh1py, tq
BTjph0, y, tq

Bx
“ Tm, (4.48)
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which leads to

Tjph0 ` ϵh1, y, tq » Tj,0ph0q ` ϵTj,1ph0, y, tq ` ϵh1
BTj,0
Bx

ph0q ` ϵ2h1
BTj,1
Bx

ph0, y, tq “ Tm . (4.49)

By conserving only the terms of order ϵ in Equation (4.49) one finally gets

Tj,1ph0, y, tq ` h1
BTj,0
Bx

ph0q “ Tm ´ Tj,0ph0q “ 0,

ùñ Tj,1ph0, y, tq “ h1

λj
pfj ´ ρcjuTmq “

h1qj
λj

.

The last condition to work with is the Stefan condition, which requires to modify the definition
of the normal n, oriented from the liquid to the solid phase, see Figure 4.2. To achieve this, a
change of variable is performed to get a decomposition of the normal at the interface depending
on the interface velocity, where it is recalled that its motion is restricted to the horizontal
direction only (convective term in the x-direction). The change of variable presented in this
section will only be used for the decomposition of the interface normal. This procedure
is used to separate the space variable px, yq in the definition of the Stefan condition.

One can describe the interface position as a function depending on curvilinear coordinates
pζ, tq, t being invariant in the new coordinates system.
Let xs be defined by

xspζ, tq “ px0 ` ϵx1pζ, tq, ζ∆yq, (4.50)

where ∆y represents the mesh-discretization in the y-direction, x0 an initial position and
ϵx1pζ, tq a small displacement from x0.

One can define
rpζq “ px0 ` ϵx1pζ, tqq⃗i ` ζ∆yj⃗, (4.51)

such that
r1

pζq “ ϵ
Bx1
Bζ

i⃗ ` ∆yj⃗, (4.52)

with ||r1|| “

b

∆y2 ` ϵ2 Bx1

Bζ

2.
Then, the tangent vector τ⃗ associated to rpζq is defined by

τ⃗ “
ϵBx1

Bζ
i⃗ ` ∆yj⃗

||r1||
. (4.53)

The definition of the tangential vector τ in (4.53) allows to deduct the normal vector

n⃗ “
∆y⃗i ´ ϵBx1

Bζ
j⃗

||r1||
, (4.54)

where the sign of the normal verifies the convention defined previously from liquid to solid
phase.

The interface velocity Bhpy,tq
Bt

can be defined using the temporal derivative of xspζ, tq defined in
(4.50) such that

Bh

Bt
py, tq “

Bxspζ, tq

Bt
“ ϵ

Bx1pζ, tq

Bt
i⃗ ` 0⃗j, (4.55)

Definition (4.55) can be used to characterize the velocity ug defined in conditions (4.25), which
takes into account both the interface velocity Bhpy,tq

Bt
and the velocity of the ice pulled away u.
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Then ug is defined by

ug “

ˆˆ

Bxs
Bt

´ u

˙

i⃗ ` 0⃗j

˙

¨ n . (4.56)

The velocity of the solid u can be decomposed as u “ u1nx ` u2ny, where u1 is the horizontal
velocity and u2 the vertical velocity.

Following the conditions of the original system (4.24), Tjpx, y, tq (where Tjpx, y, tq :“ Tj,0pxq `

ϵTj,1px, y, tq) needs to satisfy

J´λj∇Tjph0 ` ϵh1py, tq, y, tqK ¨ n “ ρLmug,

ùñ J´λj∇Tjph0, y, tqK ¨ n ` ϵh1py, tq
B

Bx
pJ´λj∇Tjph0, y, tqK ¨ nq “ ρLmug,

ùñ

s
´λj

BTj,1ph0, y, tq

Bx

{
∆y

||r1||
` h1py, tqJ´λjB

2
x2Tj,0ph0qK

∆y

||r1||
“ ρLm

Bx1
Bt

∆y

||r1||
,

ùñ

s
´λj

BTj,1
Bx

ph0q

{
“ expp´piky ` stqq

ˆ

ρLm
Bx1
Bt

´ h1py, tq

s
u

αj

pfj ´ ρcjuTmq

{˙
.

(4.57)

In (4.42) the interface location is defined by hpy, tq “ h0 ` ϵh1 e
iky`st. By identification with

(4.57) the interface velocity Bx1

Bt
is associated with the time derivative of hpy, tq, and the following

equation holds
Bx1
Bt

pζ, tq “ sh1e
iky`st. (4.58)

Then, Equation (4.57) can be simplified into

r
´λj

BTj,1

Bx
ph0q

z
“ ´h1pJ u

αj
pfj ´ ρcjuTmqK ´ ρLmsq . (4.59)

Finally, the conditions that Tj,1pxq needs to satisfy are the following

1. ρcjuTj,1pxjq ´ λj
BTj,1
Bx

pxjq “ 0,

2. Tj,1ph0q “
h1
λj

pfj ´ ρcjuTmq,

3.

s
´λj

BTj,1
Bx

ph0q

{
“ ´h1pJ

u

αj

pfj ´ ρcjuTmqK ´ ρLmsq,

(4.60)

where h1 is an unknown to be determined.

In the next section, using the ODE (4.45) and the associated boundary conditions (4.60) a
definition of Tj,1px, y, tq is expressed. From the definition of Tj,1pxq a dispersion relation is
defined. Its definition is detailed in the next section.

4.5 Dispersion Relation

To simplify the definition of the dispersion relation of Problem (4.24) calculated in this section,
the initial interface position is now defined at h0 “ 0. This procedure is always possible by
the use of an appropriate change of variable, and will significantly simplify the definition of
the dispersion relation presented in this section. This choice was not proposed earlier in the
analysis to keep most of the generalities and provide an approach more easily adaptable to
different applications and configurations.
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From Conditions (4.60) and the ODE (4.45) it is assumed that Tj,1pxq is of the form

Tj,1pxq “ exp

ˆ

ux

2αj

˙

pAjcoshpLjxq ` BjsinhpLjxqq, (4.61)

corresponding to a solution of an ODE using the hyperbolic trigonometric functions cosh defined
in (4.62) and sinh defined in (4.63).

Remark 19. The hyperbolic cosine function coshp¨q is defined by

coshpxq “
ex ` e´x

2
. (4.62)

The hyperbolic sine function sinhp¨q is defined by

sinhpxq “
ex ´ e´x

2
. (4.63)

The coefficients Aj and Bj in (4.61) are phase dependent constants which need to be determined.
The phase-dependent variable Lj in (4.61) is defined by

Lj “

b

∆̃j

´2αj

, (4.64)

and associated to the discriminant number ∆̃j of the ODE (4.45), also phase-dependent

∆̃j “ u2 ` 4αjps ` αjk
2
q . (4.65)

From the development of (4.61) in the first condition of (4.60) one gets

ρcju exp

ˆ

uxj
2αj

˙

pAjcoshpLjxjq ` BjsinhpLjxjqq ´ λj
u

2αj

exp

ˆ

uxj
2αj

˙

pAjcoshpLjxjq ` BjsinhpLjxjqq

´ λjexp

ˆ

uxj
2αj

˙

pAjLjsinhpLjxjq ` BjLjcoshpLjxjqq “ 0,

(4.66)

ùñ Bj “ Aj

αjLjsinhpLjxjq ´ u
2
coshpLjxjq

u
2
sinhpLjxjq ´ αjLjcoshpLjxjq

“ Ajcs,j,

where cs,j is defined by

cs,j “
αjLjsinhpLjxjq ´ u

2
coshpLjxjq

u
2
sinhpLjxjq ´ αjLjcoshpLjxjq

. (4.67)

Knowing the value of the temperature at h0 “ 0 from the second condition of (4.60) recalled
below

Tj,1ph0q “
h1
λj

pfj ´ ρcjuTmq, (4.68)

one gets

exp

ˆ

0 ˆ u

2αj

˙

pAjcoshpLj ˆ 0q ` BjsinhpLj ˆ 0qq “
h1
λj

pfj ´ ρcjuTmq, (4.69)

which leads to
Aj “

h1
λj

pfj ´ ρcjuTmq “
h1
λj
qj. (4.70)
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Finally, from the Stefan condition in (4.60) (third condition) and the initial interface position
at h0 “ 0, the following equation holds

´ λ1

ˆ

u

2α1

pA1coshp0q ` B1sinhp0qq ` A1L1sinhp0q ` B1L1coshp0q

˙

` λ2

ˆ

u

2α2

pA2coshp0q ` B2sinhp0qq ` A2L2sinhp0q ` B2L2coshp0q

˙

´ λ1

ˆ

A1
u

2α1

` B1L1

˙

` λ2

ˆ

A2
u

2α2

` B2L2

˙

“ ´h1

ˆs
u

αj

pfj ´ ρcjuTmq

{
´ ρLms

˙

,

ðñ ´ λ1

ˆ

A1
u

2α1

` B1L1

˙

` λ2

ˆ

A2
u

2α2

` B2L2

˙

“ ´h1

ˆs
u

αj

pfj ´ ρcjuTmq

{
´ ρLms

˙

,

(4.71)
using the definition of Bj from (4.66), one gets

´
pf1 ´ ρc1uTmq

α1

˜

´
u

2
` L1α1

α1L1 ´ u
2
coshpL1x1q

sinhpL1x1q

u
2

´ α1L1
coshpL1x1q

sinhpL1x1q

¸

`

pf2 ´ ρc2uTmq

α2

˜

´
u

2
` L2α2

α2L2 ´ u
2
coshpL2x2q

sinhpL2x2q

u
2

´ α2L2
coshpL2x2q

sinhpL2x2q

¸

´ ρLms “ 0

(4.72)

Finally, the dispersion relation associated to Problem (4.24) consists in the resolution of Equa-
tion (4.72) which can be defined as the zero of the function fpsq expressed below

fpsq “ ´
q1
α1

˜

´
u

2
` L1α1

α1L1 ´ u
2
coshpL1x1q

sinhpL1x1q

u
2

´ α1L1
coshpL1x1q

sinhpL1x1q

¸

`
q2
α2

˜

´
u

2
` L2α2

α2L2 ´ u
2
coshpL2x2q

sinhpL2x2q

u
2

´ α2L2
coshpL2x2q

sinhpL2x2q

¸

´ ρLms

(4.73)
where

qj “ fj ´ ρcjuTm (4.74)

As both s and k are values to be determined, a value of k is chosen and s is determined in terms
of k. The value of s is determined by finding the zero of the function fpsq in Equation (4.73)
using a Newton procedure. The dependency in s of the function f in (4.73) is nonlinear as the
variable s is present in the definitions of the coefficients L1 and L2, see Definition (4.64).

In this section, the general process to obtain the dispersion relation associated with the Problem
(4.24) is detailed. The analysis of the dispersion relation (4.73) defined by the function fpsq
characterizes the stability of the Stefan model in its primal form defined in Equation (4.24).
However, the dimensions of the different physical components of the Stefan model, especially
for a melting configuration make it hard to analyze the results associated to the study of the
dispersion relation (4.73) (e.g., the latent heat is of the order of 105). Section 4.4 and 4.5 have
detailed a procedure that can be applied to other physical problem easily. In the next section,
the focus is on the dimensionless Stefan model and its conditions. The associated dispersion
relation is presented and the result of stability will be discussed. The process of defining a
dimensionless system allows a better interpretation of the results concerning the stability of the
model, and will show its benefits in the numerical scheme and the study of its stability.
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4.6 Dimensionless Stefan model and its stability analysis

4.6.1 Dimensionless System

To simplify the analysis of the dispersion relation of Problem (4.24), the dimensionless form
of the Stefan model is presented in this section with its corresponding conditions. The dimen-
sionless system will enable to get a diffusive flux of order 1. In this case, if q1 “ 0.5 (where
qj “ fj ´ ρcjuTm and fj the total flux) it means that half of the heat present in the system
is removed through the liquid phase, at contrary if q1 ą 1 then heat is added to the system
through the liquid phase which corresponds physically to a melting configuration.

The dimensionless variables are defined as follows:

T̂ “
c

Lm

T ; x̂ “
|u|

αs

x ; ŷ “
|u|

αs

y ; t̂ “
u2

αs

t (4.75)

where T̂ , x̂, ŷ, t̂ are the dimensionless variables, and αs can either be α1 or α2 (the thermal
diffusivity). The symbol ĉ over a variable will be used to refer to the dimensionless variables.
As a reminder it is recalled that for a melting simulation the velocity u is a negative number.
The sign of the solid velocity needs to be handled carefully to get the correct dimensionless
linear system and a correct definition of Tjpx, y, tq and h1py, tq.
Remark 20. The change in variables (4.75) allows to get variables without dimensions, this
property is detailed below using Table 4.1. The notation r¨s will be used to define that the
dimension of a variable is the value looked at.

solomonSymbolsolomon solomonDefinitionsolomon
solomon Jsolomon solomonJoulesolomon
solomonKgsolomon solomonKilogramsolomon
solomonKsolomon solomonKelvin solomon
solomonmsolomon solomonmeter solomon
solomonWsolomon solomonWatt solomon
solomonssolomon solomonsecond solomon

Table 4.1: Symbols used for the verification of the dimension of the change of variables (4.75)

• Concerning the dimensionless temperature T̂ :

rT̂ s “

„

c

Lm

T

ȷ

“ rcsrL´1
m srT s

“ pJ.Kg´1.K´1
qpJ´1.KgqpKq

“ 1.

(4.76)

• Concerning the dimensionless time variable t̂:

rt̂s “

„

u2

αs

t

ȷ

“ ru2srρsrcsrλ´1
srts

“ pm2.s´2
qpKg.m´3

qpJ.Kg´1.K´1
qpW´1.m.Kqpsq

“ s´1.J.W´1

“ s´1.J.pJ´1.sq

“ 1.

(4.77)
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The equality 1.W “ 1.J.s´1 has been used to simplify the calculation.

• Concerning the space variables x̂ and ŷ :

rx̂s “

„

|u|

αs

x

ȷ

“ rusrα´1
s srxs

“ rusrρsrcsrλ´1
srxs

“ pm.s´1
qpKg.m´3

qpJ.Kg´1.K´1
qpW´1.m.Kqpmq

“ s´1.J.W´1

“ s´1.J.pJ´1.sq

“ 1.

(4.78)

The same goes for the variable ŷ. Once again, the equality 1.W “ 1.J.s´1 has been used
to simplify the calculation.

The first step for the dimensionless stability analysis is to express the dimensionless system of
equation associated to the Stefan model. The differential operators are modified according to
the change of variables (4.75). According to (4.24) the problem at stake in its dimensional form
is

ρc
BT

Bt
`

B

Bx

ˆ

ρcuT ´ λj
BT

Bx

˙

`
B

By

ˆ

´λj
BT

By

˙

“ 0, (4.79)

using the change of variable (4.75), Equation (4.79) becomes

ρc
u2

αs

BT̂

Bt̂
`

|u|

αs

B

Bx̂

˜

ρcuT̂ ´
|u|

αs

λj
BT̂

Bx̂

¸

´
|u|2

α2
s

B

Bŷ

˜

λj
BT̂

Bŷ

¸

“ 0,

ðñ ρc|u|
BT̂

Bt̂
` |u|

B

Bx̂

˜

´ρcT̂ ´
λj
λs
ρc

BT̂

Bx̂

¸

´ |u|
B

Bŷ

˜

λj
λs
ρc

BT̂

Bŷ

¸

“ 0,

ùñ BT̂
Bt̂

´ BT̂
Bx̂

` B

Bx̂
p´λ̂j

BT̂
Bx̂

q ` B

Bŷ
p´λ̂j

BT̂
Bŷ

q “ 0 ,

(4.80)

with λ̂j “
λj

λs
and λs chosen as λ1 or λ2 depending on the choice made for αs. All the parameters

of the model a parameters constant by phase.

To the dimensionless equation (4.80), one needs to associate the corresponding boundary con-
ditions. The first three conditions of the dimensional model defined in (4.25) lead to:

1.q ´ λ̂j∇̂T̂ “ f̂j ` T̂m on ĥpŷ, t̂q,

2.q q̂1 ´ q̂2 “ 1 on ĥpŷ, t̂q,

3.q ´ λ̂j∇̂T̂ px̂, ŷ, t̂q ¨ n̂ “ 0 on ΓN .

(4.81)

where f̂j “
fj

ρLm|u|
, T̂m “ cTm

Lm
and q̂j “ f̂j ` T̂m.

To remove additional difficulties which do not impact the study of stability of the considered
model, the thermal diffusivity is considered equal on both phases, i.e., c1 “ c2 “ c. This
simplification allows to treat the jump operator in the Stefan Condition with more ease. The
dimensional form of the Stefan condition from Conditions (4.25) is recalled below:

J´λj∇Tj ¨ nK “ ρLm

ˆ

Bh

Bt
´ u

˙

¨ n, (4.82)
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using the change of variables (4.75) one gets

´ λ1∇T1 ¨ n ` λ2∇T2 ¨ n “ ρLm

ˆ

Bh

Bt
´ u

˙

¨ n,

ðñ ´ λ1
|u|

αs

∇̂T1 ¨ n ` λ2
|u|

αs

∇̂T2 ¨ n “ ρLm

ˆ

u2

αs

Bh

Bt̂
´ u

˙

¨ n,

ðñ ´
λ1
αs

∇̂
ˆ

Lm

cs
T̂1

˙

¨ n `
λ2
αs

∇̂
ˆ

Lm

cs
T̂2

˙

¨ n “ ρLm

ˆ

|u|

αs

Bh

Bt̂
` 1

˙

¨ n,

ùñ

r
´λ̂j∇̂T̂j ¨ n

z
“

´

Bĥ
Bt̂

` 1
¯

¨ n .

(4.83)

To summarize, the dimensionless problem consists in :

Find T̂ px̂, ŷ, t̂q and an interface location ĥpŷ, t̂q satisfying

Bt̂T̂ `
B

Bx̂

ˆ

´T̂ ´ λ̂j
B

Bx̂
T̂

˙

`
B

Bŷ

ˆ

´λ̂j
B

Bŷ
T̂

˙

“ 0, (4.84)

where the following boundary conditions are satisfied

1. ´ λ̂j∇̂T̂ px̂jq “ f̂j ` T̂ px̂jq on ΓNj

2. T̂ px̂q “ T̂m on ĥpŷ, t̂q,

3. Jq̂jK “ q̂1 ´ q̂2 “ 1 on ĥpŷ, t̂q,

4. ´ λ̂j∇̂T̂ px̂, ŷ, t̂q ¨ n̂ “ 0 on ΓN .

5. J´λ̂j∇̂T̂ K ¨ n “ pBt̂ĥ ` 1q ¨ n on ĥpŷ, t̂q.

(4.85)

4.6.2 Dimensionless Linearization Process

The process of linearization is the same as expressed in Section 4.3 and Section 4.4 for the
dimensional Stefan model. For more details on the different calculation steps the reader is
referred to these sections.

Definition (4.26) of Tjpxq needs to be adjusted to correspond to the dimensionless system (4.84)
and its conditions (4.85). The ODE associated with the calculation of the leading order solution
T̂j,0px̂q is as follows:

´
BT̂j,0
Bx̂

px̂q ´ λ̂j
B2T̂j,0
Bx̂2

px̂q “ 0, (4.86)

which possesses two square roots; 0 and ´1

λ̂j
. Using the same method as in Section 4.3 for the

identification of the constants one gets

T̂j,0px̂q “ T̂m ` q̂j

ˆ

e
´px̂´ĥ0q

λ̂j ´ 1

˙

, (4.87)

where ĥ0 is the initial interface position.

Now, the interest is reported on the initialization of the perturbed solution T̂j,1px̂, ŷ, t̂q. As a
reminder, it is recalled that the approximation T̂jpx̂, ŷ, t̂q is defined by the leading order solution
T̂j,0px̂q and the perturbed solution T̂j,1px̂, ŷ, t̂q also called first order solution where

T̂jpx̂, ŷ, t̂q “ T̂j,0px̂q ` ϵT̂j,1px̂, ŷ, t̂q. (4.88)
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with ϵ a small perturbation.
To get the dimensionless form of the perturbed solution T̂j,1px̂, ŷ, t̂q, the first step consists in
defining the dimensionless conditions that T̂j,1px̂q has to satisfy. For the dimensional model the
conditions were

1. ´ λj∇Tj,1pxjq ` ρcuTj,1pxjq “ 0,

2. Tj,1ph0q “
h1
λj

pfj ´ ρcuTmq,

3. J´λj∇Tj,1ph0qK “ ´h1

ˆs
u

αj

pfj ´ ρcuTmq

{
´ ρLms

˙

.

(4.89)

From the first condition of (4.89) and the change of variables (4.75) one gets

´ λj
B

αs

|u|
Bx̂

Lm

c
T̂j,1 ` ρcu

Lm

c
T̂j,1 “ 0,

ùñ ´λ̂j∇̂T̂j,1 ´ T̂j,1 “ 0 .

(4.90)

From the second condition of (4.89) and the change of variables (4.75) the condition becomes

Lm

c
T̂j,1ph0q “

h1
λj

pρLm|u|f̂j ´ ρuLmT̂mq,

ðñ T̂j,1ph0q “
h1

λ̂j

|u|

αs

q̂j,

ùñ T̂j,1ph0q “ ĥ1

λ̂j
q̂j ,

(4.91)

where ĥ1 “
|u|h1

αs
.

Finally, for the last condition of (4.89) and the change of variables (4.75) the dimensionless
Stefan condition is defined as follows

s
´λ̂j

ρc|u|

c
Lm∇̂T̂

{
“ ´h1

ˆs
u

αj

ρLm|u|q̂j

{
´ ρLms

˙

ðñ

r
´λ̂j∇̂T̂

z
“ ĥ1

αs

u

ˆs
u

αj

q̂j

{
´

s

|u|

˙

ùñ J´λ̂j∇̂T̂ K “ ĥ1

´r
1

λ̂j
q̂j

z
` ŝ

¯

(4.92)

where ŝ “ sαs

u2 .
A change of variables is also necessary for the value of s and k which are variables with
dimension. The wavenumber k is replaced by its dimensionless form k̂ “ k αs

|u|
.

All the information necessary to characterize the perturbation on the temperature and the
interface position is now available. In their dimensionless form T̂j,1px̂, ŷ, t̂q and ĥpŷ, t̂q are
defined by

T̂j,1px̂, ŷ, t̂q “ T̂j,1px̂qexppik̂ŷ ` ŝt̂q

ĥ1pŷ, t̂q “ ĥ1exppik̂ŷ ` ŝt̂q
(4.93)
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Plugging Equation (4.93) for the definition of T̂j,1px̂, ŷ, t̂q in Equation (4.80) one obtains the
following ODE :

T̂j,1px̂qpŝ ` λ̂j k̂
2
q ´

BT̂j,1
Bx̂

px̂q ´ λ̂j
B2T̂j,1
B2x̂2

px̂q “ 0, (4.94)

which has a solution of the form

T̂j,1px̂q “ expp
´x̂

2λ̂j
qpÂjcoshpL̂jx̂q ` B̂jsinhpL̂jx̂qq, (4.95)

and where
∆̂j “ 1 ` 4λ̂jpŝ ` λ̂j k̂

2
q ,

L̂j “

b

∆̂j

´2λ̂j
.

(4.96)

In order to express the parameters Âj and B̂j, the definition of T̂j,1px̂q is plugged in Condition
(4.90). Then one gets

B̂j “

1
2
coshpL̂jx̂jq ` λ̂jL̂jsinhpL̂jx̂jq

´1
2
sinhpL̂jx̂jq ´ λ̂jL̂jcoshpL̂jx̂jq

Âj “ ĉs,jÂj , (4.97)

where

ĉs,j “

1
2
coshpL̂jx̂jq ` λ̂jL̂jsinhpL̂jx̂jq

´1
2
sinhpL̂jx̂jq ´ λ̂jL̂jcoshpL̂jx̂jq

. (4.98)

For the definition of the phase-change parameters Âj one gets from condition (4.91)

Âj “ ĥ1
q̂j

λ̂j
. (4.99)

The last step consists in defining the dispersion relation using the Stefan condition (4.92),
defined at the interface position ĥ0 “ 0. In a similar way than in Section 4.5 the following
equation holds

ùñ ´
q̂1
λ̂1

´

1
2

` L̂1ĉs,1λ̂1

¯

`
q̂2
λ̂2

´

1
2

` L̂2ĉs,2λ̂2

¯

´ ŝ “ 0 (4.100)

Then, the dispersion relation associated to the dimensionless Stefan model (4.84) is f̂pŝq defined
as follows

f̂pŝq “ ´
q̂1

λ̂1
p
1

2
`λ̂1L̂1

λ̂1L̂1tanhpL̂1x̂1q ` 1
2

´1
2
tanhpL̂1x̂1q ´ λ̂1L̂1

q`
q̂2

λ̂2
p
1

2
`λ̂2L̂2

λ̂2L̂2tanhpL̂2x̂2q ` 1
2

´1
2
tanhpL̂2x̂2q ´ λ̂2L̂2

q´ŝ , (4.101)

where
tanhpxq “

sinhpxq

coshpxq
, (4.102)

see Equation (4.62) and Equation (4.63) for the definition of cosh and sinh.
Remark 21. The dependency in ŝ of the function fpŝq in Equation (4.101) is nonlinear. Indeed,
the variable ŝ is present in the definition of L̂j defined in (4.96). Following a choice of value k̂,
a Newton procedure is used to get the corresponding ŝ value.

The study of the dimensionless dispersion relation (4.101) of the dimensionless Stefan model
(4.84) is presented in Figure 4.4. If q̂1 ă 0.5 (the liquid phase) the system is unstable, as ŝ is
a positive real number for all values of k̂. For the study of the Stefan model, the value of ŝ
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Figure 4.4: Analysis of the behavior of ŝ in terms of k̂ and flux q̂1 from the liquid phase

calculated from the choice of k̂ in Equation (4.101) is always a real number, i.e., Repŝq “ ŝ.
Nevertheless for a melting simulation, the physical properties of the problem gives us that q̂1
satisfies q̂1 ą 1.0, as heat is added to the domain through the liquid phase. By analysis of Figure
4.4, the values of ŝ in that scenario are always negative for all values of k̂, and the conclusion
can be made that the Stefan model presented in its dimensionless form in (4.84) is a stable
model around the steady state T̂j,0px̂q defined in Equation (4.87). In this section the theoretical
stability analysis of the Stefan model has shown a stable model under the correct choice of flux
imposition, which in the case of a melting simulation is always stable pq̂1 ą 1 ; q̂2 “ q̂1 ´ 1q.

4.6.3 Dissipation of the perturbation at the boundaries

An important part of the stability analysis is to verify that the perturbation added to the
steady state T̂j,0px̂q, i.e. the first order solution T̂j,1px̂, ŷ, t̂q converges to 0 at the left and right
boundary of the domain, see Figure 4.2. In this Section this criterion is verified. The behavior
of T̂1,1px̂q is studied when x̂1 Ñ ´8. The same procedure is done for T̂2,1px̂q when x̂2 Ñ `8,
see Figure 4.2. The first step in the study of convergence consists in expressing the value of
the coefficient B̂j by developing the hyperbolic functions in its definition to obtain a definition
where the calculation of the limit is easier to obtain, see Equation (4.97).

B̂j “
0.5p eL̂j x̂j `e´L̂j x̂j

2
q ` λ̂jL̂jp

eL̂j x̂j ´e´L̂j x̂j

2
q

´0.5p eL̂j x̂j ´e´L̂j x̂j

2
q ´ λ̂jL̂jp

eL̂j x̂j `e´L̂j x̂j

2
q

Âj

“
eL̂j x̂jp0.5 ` λ̂jL̂jq ` e´L̂j x̂jp0.5 ´ λ̂jL̂jq

eL̂j x̂jp´0.5 ´ λ̂jL̂jq ` e´L̂j x̂jp0.5 ´ λ̂jL̂jq
Âj

(4.103)
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For the coefficient B̂1 from the liquid phase, using that L̂1 is a negative number, see Equation
(4.96), the limit of B̂1px̂1q when x̂1 Ñ ´8 is defined by

B̂1px̂1q “
p0.5 ` λ̂1L̂1q ` e´2L̂1x̂1p0.5 ´ λ̂1L̂1q

p´0.5 ´ λ̂1L̂1q ` e´2L̂1x̂1p0.5 ´ λ̂1L̂1q
Â1,

ùñ B̂1px̂1 Ñ ´8q “
p0.5 ` λ̂1L̂1q

p´0.5 ´ λ̂1L̂1q
“ ´Â1.

(4.104)

For the coefficient B̂2 for the solid phase, the limit of B̂2px̂2q when x̂2 Ñ `8 is equal to

B̂2px̂2q “
e2L̂2x̂2p0.5 ` λ̂2L̂2q ` p0.5 ´ λ̂2L̂2q

e2L̂2x̂2p´0.5 ´ λ̂2L̂2q ` p0.5 ´ λ̂2L̂2q
Â2,

ùñ B̂2px̂2 Ñ `8q “
p0.5 ´ λ̂2L̂2q

p0.5 ´ λ̂2L̂2q
“ Â2.

(4.105)

Using Equation (4.104) and Equation (4.105), at convergence of the boundary to infinity, i.e.,
considering a domain infinite in the x-direction the functions T̂1,1px̂q and T̂2,1px̂q can be rewritten
as

T̂1,1px̂q “ exp

ˆ

x̂

2λ̂1

ˆ
b

∆̂1 ´ 1

˙˙

Â1,

T̂2,1px̂q “ exp

ˆ

´x̂

2λ̂2

ˆ
b

∆̂2 ` 1

˙˙

Â2.

(4.106)

Since
a

∆̂1 ´ 1 ą 0 and
a

∆̂2 ` 1 ą 0, both functions are converging to 0 at their boundaries
x̂1 and x̂2.

4.6.4 Examples of perturbation

In Figure 4.5 one can observe an example of a wavelength associated to a wavenumber k “ 10
on a domain of height Ly “ 2π

k̂
. This perturbation at the interface can be associated with a

perturbed temperature shown in Figure 4.6. The perturbed temperature is continuous at the
interface for T̂j,0, but the definition of T̂j,1 creates a discontinuity that disappears with time as
the model is stable, as shown in Figure 4.4 for a melting configuration.
Figure 4.7 shows the perturbed interface for ϵ “ 1e´3, k̂ “ 20, q̂1 “ 1.5 and for a domain
of height 2π

10
. Figure 4.8 shows the contour of the perturbed temperature T̂1 using the same

parameters and with ρ̂ “ 1, L̂m “ 1, T̂m “ 1.6898, ĉ1 “ ĉ2 “ 1, λ̂1 “ 0.6
2.1

and λ̂2 “ 1. Different
types of perturbations can be chosen to assess numerically the stability of the complete model.
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Figure 4.5: Example of Perturbed Interface - ϵ “ 1e´3 , k̂ “ 10 , q̂1 “ 1.5

Figure 4.6: Visualization of the perturbed temperature T̂1 on both phases for Figure 4.5 with
isolines, ρ̂ “ 1 , L̂m “ 1 ,T̂m “ 1.6898 , ĉ1 “ ĉ2 “ 1 , λ̂1 “ 0.6{2.1 , λ̂2 “ 1

Figure 4.7: Example of Perturbed Interface - ϵ “ 1e´3 , k̂ “ 20 , q̂1 “ 1.5
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Figure 4.8: Visualization of perturbation temperature T̂1 on both phases for Figure 4.7 with
isolines, ρ̂ “ 1 , L̂m “ 1 ,T̂m “ 1.6898 , ĉ1 “ ĉ2 “ 1 , λ̂1 “ 0.6{2.1 , λ̂2 “ 1

4.6.5 Definition of a real solution

By definition T̂j,1px̂, ŷ, t̂q in (4.88) is a complex function. In order to deal with only real numbers
in the numerical stability analysis the initial condition and perturbation are constructed using
the solution associated with a pair of wavenumber values pk̂,´k̂q. Indeed, conditions (4.89)
define an eigen value problem of the form

MV “ γV, (4.107)

where the vector of unknown is tÂ1, B̂1, Â2, B̂2, ĥ1u.
If System (4.107) is associated with the wavenumber k̂, then the wavenumber ´k̂ is associated
with the complex conjugate system

M̄V̄ “ γ̄V̄ . (4.108)

Then, using a pair of wavenumber pk̂,´k̂q it is possible to construct a solution T̂j,1px̂q such as

T̂j,1px̂, ŷ, t̂q “ ψ1T̂j,1px̂qexppik̂ŷ ` ŝt̂q ` ψ2
ˆ̄Tj,1px̂qexpp´ik̂ŷ ` ŝt̂q, (4.109)

where ψ1 and ψ2 are complex conjugate numbers

ψ1 “ a ` ib,

ψ2 “ a ´ ib,
(4.110)

where a, b P R.
At t̂ “ 0, when Euler’s formula (4.4) is employed and the following equality holds

T̂j,1px̂q “ ψ1T̂j,1px̂qpcospk̂ŷq ` isinpk̂ŷqq ` ψ2
ˆ̄Tj,1px̂qpcospk̂ŷq ´ isinpk̂ŷqq. (4.111)

Let TR be the real part of T̂j,1px̂q and TI be the imaginary part of T̂j,1px̂q, Equation (4.111)
becomes

T̂j,1 “ 2TRpacospk̂ŷq ´ bsinpk̂ŷqq ´ 2TIpasinpk̂ŷq ` bcospk̂ŷqq. (4.112)

The choice of a and b is arbitrary. In the following a “ 1 and b “ 0, i.e. that T̂j,1px̂, ŷ, t̂q is of
the form

T̂j,1 “ 2TRcospk̂ŷq ´ 2TIsinpk̂ŷq, (4.113)

and Equation (4.113) defines a real solution.
The same procedure is done on the interface perturbation ĥ1pŷ, t̂q which leads to the real
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solution
ĥ1pŷ, t̂q “ 2h1,Rcospk̂ŷq ´ 2h1,Isinpk̂ŷq. (4.114)

In the next section, the stability of the numerical scheme presented in Chapter 2 and in Equation
(2.89) will be discussed. Results on the convergence of the method will be presented and the
method of reconstruction of the interface velocity will be adapted to the stability analysis on
grids composed of triangular elements.

4.7 Numerical Model & Stability

In this Section, the stability analysis is studied for the e-SBM, numerical method implemented
to solve the Stefan problem. Some details presented in Chapter 2 will be briefly recalled to
allow a faster and easier comprehension of the work presented in this Section.
Contrary to the stability analysis conducted on the continuous Stefan model, the numerical
study is performed using the mixed formulation. Results will be presented once again for
dimensionless variables. The section will end by some results on the stability of the method
and its convergence. To simplify the comprehension of this section the notation pg will be
dropped but the dimensionless variables presented in Section 4.6 are considered.

4.7.1 Brief overview of the Shifted Boundary Method

hpx, y, tq

h̃1pt, x, yq

First choice

h̃2pt, x, yq

Second choice

Figure 4.9: Definition of the surrogate interface associated to hpx, y, tq

The Shifted Boundary Method (SBM) is a method coupled with a finite element resolution
that involves imposing boundary conditions differently from how they are defined in the initial
system for the physical boundary. Instead, these conditions are shifted to a surrogate boundary,
which is defined as edges in 2D or faces in 3D of the considered mesh. The first step in the
method consists of defining the surrogate interface h̃px, y, tq, conform to the grid, on which the
interface conditions are imposed instead of on the physical interface hpx, y, tq. Numerically, the
elements crossed by the physical interface create a domain of elements where the interface is
not grid conformed (see blue area in Figure 4.9). The surrogate interface becomes one of the
boundaries of this identified domain, h̃1 and h̃2 in Figure 4.9. In Figure 4.10 the identification
of the surrogate interface is shown before and after a perturbation of the interface for a per-
turbation ϵ “ 2e´2. The list of elements of the mesh cut by the interface is updated and the
choice of the surrogate interface becomes different as the area identified by the cut elements
has changed between Figure 4.10(a) and Figure 4.10(b). In this chapter, the physical interface
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(a) Interface without pertur-
bation

(b) Perturbed interface -
ϵ “ 2e´2

Figure 4.10: Identification of the Surrogate before and After Perturbation

is discretized and represented as a set of points defining a set of edges. The position of the
points is moved independently to update the interface position.

In order to connect the physical and surrogate boundary to each other a mapping M is intro-
duced to deduce boundary conditions on h̃px, y, tq from the boundary conditions on hpx, y, tq

M : h̃px, y, tq Ñ hpx, y, tq

px̃, ỹq ÞÑ px, yq .
(4.115)

With the definition of the mapping M the distance vector function d can be defined and
measures the distance between hpx, y, tq and h̃px, y, tq, as follows

dpx̃q “ x´ x̃ “ rM ´ Ispx̃q . (4.116)

Ω´ptq

hpx, y, tq

h̃px, y, tq

x̃
x

Figure 4.11: Numerical analysis: definition of the mapping M
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Even if the uniqueness of the projection defined by the map M in (4.115) is defined for closed
convex spaces only, numerically different criteria are added to make the projection suitable to
all domains of resolution, see Section 1.2 of Chapter 1 for more details.

The second step in the SBM is to enforce weakly the boundary conditions using the Nitsche’s
method (see [48]), by replacing the conditions taking place on the physical boundary by
an extrapolation by Taylor expansions to the surrogate boundary h̃px, y, tq. The order of
accuracy of the method depends on the order of the development in the Taylor expansion

JT Kh “ JT ` ∇T ¨ dKh̃ ` Op||dpx̃q||
2
q,

ùñ JT Kh̃ “ JT Kh ´ J∇T ¨ dKh̃,
(4.117)

where d is defined in (4.116).
In Equation (4.117) the accuracy of JT Kh̃ is of order 2 as the Taylor development is performed
to the second order. For additional information on the SBM see Chapter 1 of this manuscript
and references [2, 80, 3, 90, 92, 66, 67, 95].

4.7.2 Mixed Formulation

For the numerical stability analysis of the Stefan model the mixed formulation is the one
considered. The mixed formulation refers to a formulation where both the temperature T
and the gradient of temperature ´λ∇T are explicit unknowns to be solved. This choice was
made to prevent any gradient reconstruction, where the value of the flux is necessary to update
numerically the physical interface position. The problem presented in this section is also solved
in its dimensionless form, see (4.75) for the definition of the change of variables.

4.7.2.a Problem definition

Given an initial temperature T0, a flux β0 and an initial interface position h0, the mixed Stefan
model in its dimensionless form consists in finding pT, βq and the interface position hpx, y, tq
such that

BT

Bt
` ∇ ¨ β “ 0 on Ω,

β “ ´λ∇T on Ω,
(4.118)

where pT, βq satisfy the boundary conditions (4.119).

1. βpxjq “ qj on ΓNj
,

2. T pxq “ Tm on hpx, y, tq,

3. JqjK “ q1 ´ q2 “ 1 on hpx, y, tq,

4. βpx, y, tq ¨ n “ 0 on ΓN .

5. JβK ¨ n “

ˆ

Bh

Bt
` 1

˙

¨ n on hpx, y, tq.

(4.119)

The convective term presents in Equation (4.84) for the stability analysis of the continuous
model, is not considered in the definition of Problem (4.118) used to study the numerical
stability of the Stefan model and the e-SBM. This choice was made to study the same model
as established in Chapter 2 and 3. We recall that the e-SBM presented in Chapter 2 is an
enriched P1 FEM allowing a second order accuracy on both the temperature field and the flux
for moving boundaries.
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The convective term is only used in the definition of the linearized system to initialize the
interface position a t “ 0 as a flat interface, and defined a reference model where the solid
is pulled away of the domain. The addition of that term does not impact the resolution and
the same linearization than proposed in Section (4.6) can be used as initial condition. The
choice of a mixed formulation in (4.118) leads to the following steady state couple pTj,0, βj,0q
and interface position h0 used at the initialization:

Tj,0pxq “ Tm ` qjpe
´px´h0q

λj ´ 1q,

βj,0|xpxq “ qj e
´

px´h0q

λj ,

βj,0|ypxq “ 0,

h0 “ 0.

(4.120)

In order to study the stability, the temperature needs to be perturbed (Tj,1) and Definition
(4.114) is used to define a real perturbed solution.
In the next section the weak formulation used to solve system (4.118) and associated to condi-
tions (4.119) is recalled. For details in the calculation of the weak formulation and its different
steps, see Chapter 2 and Section (2.89).

4.7.2.b Weak Formulation

In order to apply the SBM to the weak formulation of Problem (4.118) one needs first to
rewrite the Conditions (4.119) on the surrogate interface h̃px, y, tq using Taylor expansions. The
conditions in (4.119) concerning the melting temperature at the interface is treated through
the average operator (see Definition (1.24)) stating that the temperature at the interface has
to be the melting temperature using information from both sides of the interface. In this case
the melting temperature is the dimensionless melting temperature, see Equation (4.75).

4.121.aq JT Kh “ 0 “

s
T ` ∇T ¨ d`

1

2
dtHpT qd

{

h̃

` Op||dpx̃q||
3
q,

4.121.bq JβKh ¨ n “

ˆ

Bh

Bt
` 1

˙

¨ n “ Jβ ` ∇β dKh̃ ¨ n` Op||dpx̃q||
2
q,

4.121.cq tT uh “ Tm “

"

T ` ∇T ¨ d`
1

2
dtHpT qd

*

h̃

` Op||dpx̃q||
3
q.

(4.121)

The definition of the flux β “ ´λ∇T allows to replace the value of ∇T and HpT q by a term
depending on β in the Taylor developments (4.121).

The scheme studied for the numerical analysis is the following:

Finding pT,βq P Q2,1
p s0, tf r ,Ωq, s.t. @pq,wq P Q2,1

pΩq

2.76.aq p
BT

Bt
, qqΩ ` p∇ ¨ β, qqΩ´ ă β ¨ n, q ąΓN

`AstabppT,βq, qq “ 0,

2.76.bq pλ´1β,wqΩ ´ pT,∇ ¨wqΩ` ă qj,w ¨ n ąΓNj
` ă T,w ¨ n ąΓN

`BstabppT,βq,wq

` ă tλ´1β ¨ d` 1{2dt∇ ¨ pλ´1βqduh̃, JwKh̃ ¨ ñ ąh̃ ` ă Jλ´1β ¨ d` 1{2dt∇ ¨ pλ´1βqdKh̃, twuh̃ ¨ ñ ąh̃

` NApT, qq “ ´ ă Tm, JwKh̃ ¨ ñ ąh̃ `NLpqq
(4.122)
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where JT Kh “ 0 and tT uh “ Tm. As part of the SBM, conditions are enforced weakly in the
weak formulation using the Nitche’s method. The terms NApT, qq and NLpqq in (4.122) are
defined as follows:

NApT, qq :“
α

h
ă JT ´ λ´1β ¨ d´ 1{2dt∇ ¨ pλ´1βqdKh̃, Jq ´ λ´1w ¨ d´ 1{2dt∇ ¨ pλ´1wqdKh̃ ąh̃

`
α

h
ă tT ´ λ´1β ¨ d´ 1{2dt∇ ¨ pλ´1βqduh̃, tq ´ λ´1w ¨ d´ 1{2dt∇ ¨ pλ´1wqduh̃ ąh̃,

NLpqq :“
α

h
ă Tm, tq ´ λ´1w ¨ d´ 1{2dt∇ ¨ pλ´1wqduh̃ ąh̃ .

(4.123)
Astab and Bstab in (4.122) are the stabilisation terms presented in Equation (2.23). Concerning
the spaces of approximations in which the weak formulation (4.122) takes place they are the
same as defined in Section 2.2.3.b of Chapter 2. They are recalled below

QT pΩq “ tT P H1
pΩ̃`q Y H1

pΩ̃´qu,

QβpΩq “ tβ P pHpdiv, Ω̃`q Y Hpdiv, Ω̃´qqu,

such that

Q2
T pΩq “ tT P QT pΩq |T |K P P2

pKq, @K P Thu X pC0
pΩ̃`

q Y C0
pΩ̃´

qq ,

Q1
βpΩq “ tβ P QβpΩq |β|K P pP1

pKqq
d, @K P Thu X ppC0

pΩ̃`
qq

d
Y pC0

pΩ̃´
qq

d
q.

Finally, the following spaces are considered

Q2,1
ps0, tf r,Ωq “ L2

ps0, tf r,Q2
T pΩqq ˆ L2

ps0, tf r,Q1
BpΩqq ,

Q2,1
pΩq “ Q2

T pΩq ˆ Q1
BpΩq . (4.124)

For more details on the process of definition of the weak formulation (4.122), see Chapter 2.
Remark 22. The numerical results presented in the following sections will be presented with the
enrichment of the temperature. The global method is called e-SBM. The procedure to define
an enriched scheme has been detailed in Section 2.4 of Chapter 2.

4.7.3 Calculation of the interface velocity

A numerical specificity of the Stefan problem is the necessity to express the interface velocity
through the calculation of JβKh, which is also an unknown of the problem. The use of the mixed
formulation allows to get an approximation of the flux on mesh nodes, which do not correspond
necessarily to nodes on the physical interface, as the interface is not grid conformed to the
geometry. To prevent any errors that could come from the mesh generation in the presented
stability analysis the focus is made on uniform meshes. A symmetric stencil reconstruction
method is proposed to recover β in each phase, see Figures 4.12, 4.13 and 4.14. The method is
the same on both sides of the interface. A stencil of nodes is used to reconstruct a polynomial
approximation of βj by solving a system of the form MX “ v. As an example, for a stencil of
6 nodes and for a P2 approximation the system MX “ v corresponds to :

M “

¨

˚

˚

˚

˚

˚

˚

˝

1 x1 y1 x1y1 x21 y21
1 x2 y2 x2y2 x22 y22
1 x3 y3 x3y3 x23 y23
1 x4 y4 x4y4 x24 y24
1 x5 y5 x5y5 x25 y25
1 x6 y6 x6y6 x26 y26

˛

‹

‹

‹

‹

‹

‹

‚

; v “

¨

˚

˚

˚

˚

˚

˚

˝

β1
β2
β3
β4
β5
β6

˛

‹

‹

‹

‹

‹

‹

‚

; X “

¨

˚

˚

˚

˚

˚

˚

˝

a1
a2
a3
a4
a5
a6

˛

‹

‹

‹

‹

‹

‹

‚

. (4.125)
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A value is calculated independently for each direction of the flux (x direction and y direction in
2D). The physical interface is numerically discretized as a set of nodes, where the flux jump JβKh
is used to update the position of each node. The method to obtain a value for β1 (value in the
liquid phase) and β2 (value in the solid phase) at any nodes of the physical interface is divided
into four steps. The size of the stencil depends on the order of the polynomial approximation
wanted (at least 6 for P2), Nevertheless an over-determined system is more stable as refined
meshes tend to give matrices with a high condition number as nodes close to each other have
similar coordinates. Another specificity of the method is the configuration of the mesh node at
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(a) Reference stencil for β1
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(b) Reference stencil for β2

Figure 4.12: Definition of the reference stencil for the reconstruction of the flux at the interface
the interface, as defined in Section 2.5 of Chapter 2. As the surrogate interface is on both part
of the liquid and solid phase, the mesh nodes at the surrogate interface are associated with two
values to allow the definition of JβKh̃, JT Kh̃ or tT uh̃. For more information on the procedure see
Section 2.5.

The method of reconstruction for JβKh is decomposed as follows

1. Selection of a reference stencil using a node located in the middle of the domain along
the physical interface position, called reference node, see Figure 4.12

2. Displacement of the reference stencil along the surrogate interface in two stages. To
the top of the domain for the nodes with a y coordinate higher than the reference node
used in step 1, and then displacement to the bottom of the domain for the other nodes,
see Figure 4.13

3. Near the top and bottom boundaries of the domain the stencil will have nodes outside of
the domain of resolution, which is not meshed. The problematic nodes are treated using
the coordinates outside of the domain (see matrix M in 4.125) but using the value of
β associated to their mirror values inside the domain (see vector v in 4.125), see Figure
4.14.
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(b) To the bottom of the domain

Figure 4.13: Visualization of the stencil displacement
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Figure 4.14: Symmetric Stencil - Mirror image reconstruction
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4. Calculation of a polynomial approximation solving system (4.125) for each node defining
the physical interface, using the QR factorization. This configuration allows to mimic
the definition of symmetric boundary conditions. In comparison with the stability of the
continuous model, it is similar to considering a domain infinite in the y-direction.

In the next section, the numerical stability associated to the resolution of the mixed formulation
of the Stefan model is presented.

4.7.4 Numerical Stability Analysis

Symbol Value Definition
Tm 273.15pKq Melting temperature
ρ 1000pKg.m´3q Density of the material
Lm 333000pJ.Kg´1q Latent heat
λ1 0.6pW.m´1.K´1q Thermal conductivity - liquid phase
λ2 2.1pW.m´1.K´1q Thermal conductivity - solid phase
c 2060pJ.Kg´1.K´1q Heat capacity
k 10pmq Wavenumber
u 1e´4pm.s´1q Velocity of the solid

∆t
∆x∆y

2

4
Time step defined through the space discretization ∆x,∆y

Table 4.2: Definition of the physical parameters for variables with dimensions

For the results presented in this section the variables of the model are defined in Table 4.2 and
in their dimensionless form using the change of variables (4.75) in Table 4.3. The parameters
are shown both in dimensional and dimensionless forms to facilitate the comprehension of the
reader on the meaning of the different parameters. The parameters are chosen to represent
to a configuration between liquid and solid water. However, all of the figures in this section
are displayed with the dimensionless parameters from Table 4.3. The definition of the flux qj
is only expressed in its dimensionless form, as it is chosen to satisfy condition (4.119) where
q1 ´ q2 “ 1.

Symbol Value Definition
T̂m 1.6898 Dimensionless melting temperature
ρ̂ 1 Dimensionless density cccccccccccccccccccccccccccccccccccccccccccc
L̂m 1 Dimensionless latent heat
λ̂1 0.2857 Dimensionless thermal conductivity - liquid phase
λ̂2 1 Dimensionless thermal conductivity - solid phase
ĉ 1 Dimensionless heat capacity
k̂ 0.1019 Dimensionless wavenumber
û 1 Dimensionless velocity of the solid
q̂1 1.5 Incoming flux - dimensionless value
q̂2 0.5 Outgoing flux - dimensionless value

Table 4.3: Dimensionless parameters associated to Table 4.2

A flux q1 greater than 1 in the liquid phase represents the addition of heat into the system
through the liquid phase. This choice has demonstrated to be stable for the stability analysis of
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the continuous model in Section 4.6 as, displayed in Figure 4.4. A non uniform discretization in
x and y is considered, i.e., that ∆x ‰ ∆y such that the time step ∆t is defined by ∆t “

∆x∆y
2

{4.
∆x is chosen larger than ∆y to define more mesh nodes further away from the interface location
used for the definition of the different stencils used for reconstruction procedures.

4.7.4.a Interface Perturbation

Some improvements in the interface displacement method are made compared to results pre-
sented in Chapter 3. Previously the method allowed the displacement of the interface only
through a homogeneous motion using a smoothing method and the average speed velocity at
the physical interface. Taking into account the shape of the perturbed interface for the pre-
sented stability analysis (combinations of cosine and sine waves), this method was not usable
by itself and some improvements have been made in the identifications process of the elements
cut by the physical interface, allowing to get a full unstructured motion.

The procedure now states as below :

• The physical interfaces are discretized as a set of nodes. On rectangular domains the
number of nodes is at least equal to the number of elements in the y-direction.

• The projection is performed on all of the edges defining the physical interface, if the
projection is not unique the one minimizing the distance is chosen; the numerical precision
is often enough to define a unique minimizer. In the case of multiple minimizer the first
one identified by the algorithm is chosen .

• In the case of no projection, the common node between the two edges where the projection
was identified is chosen, see Section 1.2.2 and Figure 1.16 for more details.

• A mesh element is defined cut by the physical interface if the value of the distance between
the vertices of the mesh element and their respective projection have a different signs.
Here the distance function is a sign distance function. If the distance to the interface is
a positive number then a node is located in the liquid phase while if the distance is a
negative number the node is located in the solid phase .

Remark 23. The projection of a point into the physical interface stays the same as defined in
Chapter 1, see Section 1.2.2. The improvement of the method involves in a different procedure
for the assignation of a sign to the distance between a node and its projection. The sign distance
function is calculated using the cross product between the vector representing the edge of the
interface where the projection has been found and the vector of the projection onto that edge.
The cross product of these two vectors result in a scalar value.

If that value is

1. positive : the two vectors have a counter-clockwise relationship,

2. negative: the two vectors have a clockwise relationship,

3. zero : the two vectors are collinear.

This method allows to treat more complex interface geometries and will show its robustness in
the results presented in this Chapter.
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In Figure 4.15 the identification of the elements cut by the interface is presented for two different
times t. Comparing Figure 4.15.a and 4.15.b one can see that the perturbation ϵ at the interface
is decreasing in amplitude and that the geometry of the two surrogate interfaces is different.

(a) Initial
Interface Pertur-
bation, t “ 0

(b) Position of the
interface at time
t “ 2.8e ´ 4

Figure 4.15: Identification of the Surrogate through the simulation - ϵ “ 1e ´ 2

Figure 4.16: Comparison of the interface position at different iterations - ϵ “ 2e´3, ∆t “ 1.7e´3
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In Figure 4.16 the position of the perturbation at the interface is compared for different times t.
All the curves have been translated to match the x coordinate of the initial amplitude position
(purple curve in Figure 4.16). This allows us to see more clearly the change in shape occurring
at the interface. In Figure 4.16 the same results as in Figure 4.15 can be observed and a decrease
in amplitude in the interface perturbation is visible, without any instability. This result shows
the robustness of the method proposed in this manuscript for moving interfaces (e-SBM, see
Chapter 2).

4.7.4.b Temperature Perturbation

(a) Initial perturbed temperature, t “ 0

(b) Perturbed temperature after 10 time steps, ∆t “ 1.7e ´ 3, t “ 0.0170

Figure 4.17: Evolution of the profile of the perturbed temperature for different iterations Figure
1/2

In Figures 4.17 and 4.18 the dissipation of the perturbation added to the temperature is pre-
sented for the interface defined in Figure 4.15. The perturbation of the temperature follows the
behavior observed in Figure 4.15 and 4.16 concerning the interface position. Isolines are used
to follow the behavior of the solution, where no growth in the perturbation is visible through
the simulation. In Figure 4.18.b) the isolines are now parallel to each other and the pertur-
bation added on the temperature field is not visible anymore. Figures 4.17 and 4.18 show the
temperature calculated by the scheme (4.122) minus the initial temperature field at time t “ 0,
see Figure 4.17.a). On the left side of figures 4.17.b), 4.18.a) and 4.18.b) the error visible is
coming from the position of the physical interface which is used in the condition imposed on
the left boundary of the domain of resolution. The interface position being different from the
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initialization at time t “ 0. As the physical boundary is moving an error is created in the rep-
resentation of the perturbed temperature. However, Figures 4.17 and 4.18 allow us to visualize
properly the dissipation of the perturbation at the interface, addressing the concerning point
and once again demonstrating the stability of the e-SBM.

(a) Perturbed temperature after 50 time steps, ∆t “ 1.7e ´ 3, t “ 0.085

(b) Perturbed temperature after 340 time steps, ∆t “ 1.7e ´ 3, t “ 0.578

Figure 4.18: Evolution of the profile of the perturbed temperature for different iterations Figure
2/2

(a) tinit (b) t ` 20∆t (c) t ` 30∆t (d) t ` 50∆t

Figure 4.19: Identification of the mesh elements cut by the physical interface

In Figure 4.19 the different configurations of the surrogate interface for the simulation presented
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in Figures 4.17 and 4.18 are displayed. It allows for visualizing the decrease in amplitude of the
perturbation added to the interface position in the definition of the surrogate interface. It also
shows that the surrogate definition goes back to a flat interface structure, see Figure 4.19.d.

4.7.4.c Convergence Study

The perturbed temperature Tj,1px, y, tq is defined in terms of an exponential function rep-
resenting a decreasing perturbation to 0 at the left and right boundaries of the domain,
see Section 4.6.3. The definition of Tj,1px, y, tq gives a criterion on the accuracy of the nu-
merical method. The curve representing the amplitude of the interface position, defined by
|minphpy, tqq ´ maxphpy, tqq| decreases with a slope equals to the value of s, the frequency
associated to the chosen wavenumber k and its complex conjugate ´k for the definition of a
real function, see Section 4.6.5.

To look at the accuracy of the e-SBM applied to the Stefan model a convergence study on the
slope associated to the amplitude of the interface position is performed.
A domain of height 2π

k
and of length 8 ˆ 2π

k
is considered, where k “ 10 and q1 “ 1.5. For the

discretization of the domain nDx denotes the number of elements in the x-direction, nDy the
number of elements in the y-direction, nbE the number of elements of the considered mesh,
sCal the calculated value of s and erS the relative error between the calculated value and the
analytical value of s, here s “ ´16.8858 (see Figure 4.4 for the corresponding value of s in
term of k and q1).

nDx nDy nbE ∆x ∆y sCal L2 erS

100 12 1200 0.05026 0.05236 -12.126 0.28186
125 15 1875 0.04021 0.04188 -14.221 0.15784
150 18 2700 0.03351 0.03491 -14.947 0.11480
200 25 5000 0.02513 0.02513 -15.986 0.05328
250 30 7500 0.02011 0.02094 -16.314 0.03388
300 36 10080 0.01675 0.01745 -16.507 0.02243

Table 4.4: Convergence study on the frequency s

Figure 4.20 shows the relative error between the calculated value of s expressed in Table 4.4 and
the analytical value of s “ ´16.8858 in term of ∆x and ∆y (non homogeneous discretization).
The curves are defined using the values associated to the convergence study on the amplitude
of the interface position. The values are displayed in Table 4.4 and showed in Figure 4.21 in
standard and log scale. The slope on the error on s in Figure 4.20 is calculated through the
polyfit function in Matlab and gives a slope of 2.2989 for the blue curve and 2.2834 for
the red curve, allowing the conclusion that once again the e-SBM is a second order accurate
method.

In Figure 4.21 one can see the comparison between the evolution of the amplitude of the interface
position through time for different mesh discretizations. Some oscillations are visible on the
curves representing the case (nDx “ 100,nDy “ 12) and the case (nDx “ 125,nDy “ 15).
Those small oscillations correspond to the displacement of the surrogate interface and the
reconstructions used to update the previous solution vectors when new elements of the mesh
are crossed. Nevertheless, this phenomenon disappears at convergence and the curves are
converging towards the analytical solution of s (the red curve in Figure 4.20 corresponds to the
function fpxq “ 0.008exppsxq). The standard scaling in Figure 4.21(a) is displayed to observe
the exponential decay of the amplitude of the perturbed interface.
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Figure 4.20: Error in log scale on the calculation s - for the discretization following the x-
coordinate in blue and y-coordinate in red

(a) Convergence study on the amplitude of the interface
position - Standard scaling

(b) Convergence study on the amplitude of the inter-
face position - Log scale

Figure 4.21: Visualization of the convergence study for the calculation s for two different scaling
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The results presented in this section have shown that the numerical model used to solve the
Stefan model in the context of a melting simulation is stable and allows to deal with complex
interface geometries. The stability analysis on the numerical model is in adequacy with the
stability analysis performed in Section 4.6 for the continuous model. Moreover, the expected
accuracy brought by the e-SBM is conserved, i.e., the second order accuracy.

In the next section, a self-made steady solution is defined on a circular domain. The non
perturbed interface is a single radius value. The interface position will then be perturbed and
updated through the simulation using the flux jump JβKh. The test case will show the ability of
the method to converge to a steady position and the dissipation of the perturbation introduced
at the interface.

4.8 Application Test

In this section, results on a perturbed interface for a circular configuration are presented. A
steady self-made solution in polar coordinates is defined and the velocity at the interface is
recovered through the flux jump at the interface. The points from the discretization of the
interface are moved independently using the numerical solution of the Stefan condition, see
Section 2.6.1. The different results presented in this section will show that the perturbed front
converge to a steady position where the interface is a circle.

4.8.1 Test Case Definition

For the definition of the test presented in this Section 4.8 polar coordinates are used, i.e.,

px, yq “ prcospθq, rsinpθqq, (4.126)

such that
r “

a

x2 ` y2, (4.127)

and
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x

¯

` 2π if x ą 0 ; y ă 0,

arctan
´y

x

¯

` π if x ă 0,

π

2
if x “ 0 ; y ą 0,

3π

2
if x “ 0 ; y ă 0.

(4.128)

The domain of resolution is a circle (see Figure 4.22), the interface is denoted by Rpr, θq, the
inner circle by R1 and the outer circle by R2. The circular domain in Figure 4.22 is defined
with a hole inside to allow the imposition of a Dirichlet condition for the liquid phase. The
mesh used to show the evolution of the perturbed front is defined in Figure 4.22.b).
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R1 R2T0T2

Rpr, θq

Liquid

Solid

(a) Domain of resolution without perturbation at the
interface and the imposition of the Dirichlet condi-
tions

(b) Mesh Discretization / Ne “ 3480 / Nv “ 6706

Figure 4.22: Illustration of the test case

In Figure 4.22.b Ne represents the number of elements of the mesh and Nv the number of
vertices. The initial non perturbed interface is defined as a circle of radius equals to 1.2
(Rpr, θq in Figure 4.22). The discretization of the physical interface leads to a set of nodes.
Those nodes are associated with a position pr, θq. The initial interface is then perturbed using
the following algorithm:

1. Initialization:

sp θ “ 0
sp n “ Number of nodes of the discretization of the physical interface
sp dθ “ 2π

n
sp Interface%Coorpn, 1 : 2q = Structure containing the points of the
discretization of the physical interface in cartesian coordinates

2. Perturbation of the Interface:

sp DO i “ 1, n
space r “ 0.1sinp10θq ` 1.2
space Interface%Coorpi, 1q “ rcospθq
space Interface%Coorpi, 2q “ rsinpθq
space θ “ θ ` dθ
sp END DO
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(a) Interface Position before Perturbation (b) Interface Position after Perturbation

Figure 4.23: Position of the interface before and after perturbation using the algorithm of
Section 4.8.1

The self-made solution presented in Equation (4.129) is used to initialize the solution on the
domain of resolution shown in Figure 4.22.a). The primal variable T is defined by:

T “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

T1pr, θq “ Tm ` pT0 ´ Tmq

ln
´

r
0.1sinp10θq`1.2

¯

ln
´

R1

0.1sinp10θq`1.2

¯ , Liquid Phase

T2pr, θq “ Tm ` pT2 ´ Tmq

ln
´

r
0.1sinp10θq`1.2

¯

ln
´

R2

0.1sinp10θq`1.2

¯ , Solid Phase.

(4.129)

For the flux, its definition depends on the definition used for θ (see Equation (4.128)) and is
defined by calculating the gradient of T, the temperature field defined in Equation (4.129). We
recall that β is defined by two components in the x and y directions. Both of them are modified
using the change of variables (4.126).

If
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; Solid Phase (4.130)
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where

Dux “
cospθq

r
` sinpθq

cosp10θq

rp0.1sinp10θq ` 1.2q
; Duy “

sinpθq

r
´ cospθq

cosp10θq

rp0.1sinp10θq ` 1.2q
,

Dvx “ cosp10θq
sinpθq

rp0.1sinp10θq ` 1.2q
; Dvy “ ´cosp10θq

cospθq

rp0.1sinp10θq ` 1.2q
.

(4.132)

Before presenting some results associated to the analytical solutions (4.129), (4.130) and (4.131),
the parameters of the simulation are defined in Table 4.5.

The time step in this simulation is the same as defined in Chapter 3, where ∆t “ h2

minpλ1,λ2q
, and

where the value of h associated to the mesh discretization defined in Figure 4.22.b is h “ 0.1.

Symbol Value Definition
R1 1 Inner circle
R2 2.1 Outer circle
L1 4185 Heat capacity - Liquid phase
L2 2060 Heat capacity - Solid phase
ρ 1 Density
Lm 3000 Latent Heat
T0 268.15 Boundary condition - Temperature imposed on the inner circle R1

T2 278.15 Boundary condition - Temperature imposed on the outer circle R2

Tm 273.15 Melting temperature
λ1 0.6 Thermal conductivity - Liquid phase
λ2 2.1 Thermal conductivity - Solid phase ccccccccccccccccccccccc
∆t 0.67 Time Step
Tinit 0 Initial time of the simulation

Table 4.5: Parameters for the simulation of a perturbed front on a circular domain

At the initialization the profile of the perturbed temperature Tj,0 ` ϵTj,1 defined in Equation
4.129, is used as an initial condition and is displayed in Figure 4.24.
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Figure 4.24: Profile of the temperature at the initialization, non dimensionless form

The results are presented for variables with dimensions, as the purpose of this section is not to
analyse the numerical method but to show numerically the stability of the e-SBM.

In Figure 4.25(a) the red area represents the liquid phase while the blue area is the solid
phase. The common interface between the two phases is the set of edges defining the surrogate
interface.

(a) Identifications of the liquid and solid zone (b) Identification of the surrogate interface

Figure 4.25: Visualization of the initial configuration of the domain and the definition of the
surrogate interface within the mesh

In Figure 4.25(b), on can see a zoom around the inner circle of the domain presented in Figure
4.25(a). The surrogate interface is defined as the inner option of the area created by the elements
cut by the physical interface (in 2D two options are possible for the surrogate definition, see
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Section 1.2.2). In the next section, the behavior of the perturbed front (see Figure 4.23.b)) is
studied, only the interface position is perturbed.

4.8.2 Results on the evolution of a perturbed front

Figure 4.26: Evolution of the physical interface profile

In Figure 4.26 the position of the front is displayed at different times. The purple curve is the
initial perturbed interface position introduced in Figure 4.22.b). The velocity at the interface
is recovered from the Stefan condition and calculated for every points of the discretization.
The interface is discretized as a set of nodes, here 400 nodes are used. Neither instabilities
nor a growth of the initial perturbation is visible for the different iterations displayed in Figure
4.26. The last iteration (tinit ` 600∆t, the red curve) is also displayed on the temperature
field in Figure 4.27 and for the profile of the flux in x in 4.28.a) and in y in 4.28.b). Figures
4.27 and 4.28 show the robustness of the method in the calculation of the temperature and
flux with a moving front, no instabilities are visible in the different figures. In this section
the ability of the method to disperse perturbations, and more generally the stability regarding
large perturbations have been demonstrated. The results presented have also shown the ability
to move the interface with a complete unstructured motion compared to results presented in
Chapter 3. The method of reconstruction used for the expansion of one of the phases (liquid
phase for a melting configuration) showed once again that the method does not impact the
resolution and has no impact on the stability of the method.
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Figure 4.27: Profile of the temperature and the interface position at initialization and after 600
iterations

(a) x component of the flux (b) y component of the flux

Figure 4.28: Profile of the flux and the interface position at initialization and after 600 iterations

4.9 Conclusion on Chapter 4

In this Chapter 4, a linear stability analysis has been performed on the Stefan model and
the scheme associated with its resolution using the e-SBM. Both the continuous model and
the scheme proposed for its resolution have shown to be stable for a melting configuration,
i.e., with the addition of heat into the system. Complete unstructured motion was tested for
different interface geometries, and stability was consistently demonstrated. This chapter has
demonstrated the robustness and stability of the Shifted Boundary method in the context of
its application to moving interfaces tested in this manuscript on the Stefan model.

141



Manuscript Conclusion

1 Contributions

In this manuscript, the Shifted Boundary Method (SBM), a Finite Element Method
(FEM) used for the resolution of problems with embedded boundaries has been extended

to simulations involving moving boundaries. The SBM is a method allowing the imposition
of conditions on a numerical boundary composed of mesh edges (or faces) of mesh elements
crossed by the physical boundary on a background fixed mesh. Taylor expansions are used to
modify the initial boundary conditions according to the choice of the numerical boundary called
surrogate boundary. The Nitsche’s method is used within the SBM approach to impose the
boundary conditions weakly into the FEM scheme.

The proposed method, referred to as e-SBM for enriched Shifted Boundary Method, has
been applied in the context of the Stefan model for two-phase situations where the moving
boundary is a moving interface which evolves according to the simulation and the computation
of the Stefan condition. In this context, the interface represents a melting front moving with
the expansion of the liquid phase. The mixed formulation of the Stefan problem has been
proposed to improve the accuracy of the gradients computation.

The mixed formulation consists in the introduction of the gradient of temperature as an ex-
plicit unknown solved by the linear system associated with the resolution of the Finite Element
Method. The enriched SBM (e-SBM) has demonstrated its ability to solve these types of prob-
lems with a second-order accuracy in space for both the temperature field and its flux, in
time and for the interface motion. The mixed formulation has been chosen to enable the use
of an enriched P1 Lagrange FEM allowing an enhancement of the accuracy without increasing
the size of the linear system to be solved. It has consisted in an approximation of P2 Lagrange
FEM using only P1 basis/test functions and P1 degrees of freedom. Two sets of interface con-
ditions for the moving interface and their corresponding finite weak formulations have been
described and verified through analytical test cases in this thesis manuscript. This work has
helped to identify a better-suited choice in terms of precision and ease of implementation for the
imposition of interface conditions in the scheme. The most favorable set of interface conditions
involves imposing the melting temperature at the interface, with a temperature jump equal to
zero and an average temperature equal to the melting temperature.

The enriched SBM (e-SBM) has demonstrated, on a realistic in-flight melting configuration,
its ability to solve Stefan problems with a second-order accuracy in space, time and for the
interface motion from the discretization of the Stefan condition. Procedures for reconstructing
missing values due to the phase expansion and the moving front have been tested to ensure
that they have no impact on the accuracy of the method. A stability analysis of the continuous
Stefan model and of the numerical e-SBM have been studied in the context where the front
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position and the temperature field are both perturbed following a linearization of the
problem around a steady state. A change in the referential, in the primal form of the contin-
uous Stefan model, has been made to introduce a term of advection. This term allows for the
definition of the solid velocity pulled away from the domain in the system of equations. This
particular form allowed to define a linear perturbed solution used as initial condition for the
stability analysis of the numerical model. For a melting configuration, the continuous Stefan
model has been shown to be stable.

Results presented in this manuscript have demonstrated that the e-SBM conserves the stability
property of the continuous model, indicating the robustness of the method and its ability to
handle perturbations. This property is highly valuable as it suggests that the model will natu-
rally tend to stabilize spurious oscillations that might occur with the moving nodes discretizing
the melting front.

2 Perspectives of evolution

In this work, the choice of discretizing the interface position as a set of nodes has al-
lowed for the definition of an easy way to update the interface position. The use of a Level-Set

method to identify the interface position was not investigated to avoid adding complexity to
the method’s development. However, developing the e-SBM with the Level-Set approach is a
possible subject of development. It will be necessary to find a way to expand the definition of
the velocity field outside the interface region, which, for the moment, has not been investigated.
Many methods used for solving melting problems incorporate a Level-Set approach [125, 126,
127, 128, 129] and could potentially integrate the reconstructions and enrichment proposed
in this manuscript into their own methods, which as demonstrated by the stability analysis
conducted with this work, has shown great potential.

Even though the e-SBM has been tested with the Stefan model only, its application is quite
versatile, and it can be applied to a variety of models with moving boundaries and/or for
mixed formulations (thermo-mechanics, Navier Stokes, Free Surface Flow, acoustic, Shallow
water, fracture mechanics,...). Concerning the subject of the order of accuracy, the e-SBM has
demonstrated to be of second order for all of its variables. In order to increase the order of
accuracy it would involve choosing a different polynomial approximation and parallelizing the
code. In terms of order in the Taylor development, to avoid reducing the order of accuracy
resulting from the imposition of boundary conditions, recent developments in the SBM have
introduced new methods for calculating high-order derivatives. The method involves extrapo-
lating the boundary conditions with a specific level of accuracy to match the overall accuracy
of the method and compute the derivatives in the different Taylor developments [67].

The Shifted Boundary Method has already demonstrated its capability for 3D problems in vari-
ous domains of applications [65, 90, 91, 130]. In this work, the focus was put on 2D simulations
due to time constraints and the current absence of 3D resources in the code where the e-SBM
has been implemented. Nevertheless, the work presented in this manuscript aims to generalize
the implementation of the different procedures for 3D models as well. The main challenge when
dealing with a moving interface in 3D is to determine the sign of the distance function associated
with the definition of the surrogate interface. However, this issue is purely computational and
does not affect the procedures proposed in the different chapters of this thesis. Another subject
of expansion for the method is the parallelization of the code used for the results presented in
this work. It would optimize the computation time and make the method even more suitable
for larger systems of resolution due to the use of more refined meshes.
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This work has been added to the DAFFEM code, a FORTRAN 90 code originally created by
Léo Nouveau a former member of the CARDAMOM team at INRIA Bordeaux. The work
presented with this manuscript has been integrated to this code initially designed for the
resolution of the Darcy equations in their mixed form where the Shifted Method was applied in
the context of a steady problem without a moving boundary. The objective with this code is to
continue its evolution alongside other applications, with the intention of facilitating its adoption
by other researchers to develop the proposed method and expand its domain of applications.

One aspect that has not been studied in this work is the creation of a phase starting from a
model with only one phase, i.e., in the context of a melting simulation where initially, only a
solid phase is present. The problem arising from this situation is the absence of nodes in the
liquid phase, which does not exist at initialization, but are necessary for the reconstruction
procedures used to calculate the velocity of the interface and update its position. Due to the
computational complexity of this problem, further investigations are necessary to establish a
solid baseline appropriate for this method.

Another source of development could involve incorporating external physical phenomena into
the resolution of the Stefan model which would allow the method to move away from academic
models. For in-flight aircraft and de-icing applications, it is necessary to set up more realistic
test cases that take into account the presence of heating resistors. The difficulty with this type
of setup is, as previously mentioned, the creation of a melting front, which is not present at the
start of the simulation where only a solid phase is present. For more complex configurations,
testing the e-SBM for multiple phase-change fronts would be an interesting subject of research,
especially within the SBM approach. Fronts could merge or detach from each other, creating
numerical challenges that would require time to be studied and a significant implementation
effort.

3 Conclusion

In conclusion, the Shifted Boundary Method is a promising approach for handling
moving interfaces and boundaries. This work aimed to demonstrate that it is an effective

method for addressing the remeshing constraints associated with the movement of boundaries in
the considered model. The method has proven to be stable even under significant perturbations,
enabling its use in a variety of applications. However, the complexity of the SBM and its
application to moving boundaries is associated with questions of accuracy, and one needs to
be careful with the imposition of boundary conditions. Nevertheless, all methods dealing with
moving boundaries have their own drawbacks, and the SBM has been a significant source of
development for a few years now. This aspect has been studied by others [65], and theoretical
analyses exist, showing the existence of convergence theorems concerning the method [67].
Therefore, one should continue to explore this method, which will likely expand its applications
in future research in the computational field.
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Appendix A

Shifted Boundary Method and Neu-
mann conditions

In this Appendix, an example of imposition of a Neumann condition on a surrogate boundary
is proposed. The Poisson problem with Neumann boundary conditions is considered as a model
for the example. The method detailed in Chapter 1 is applied for this example (see Section
1.3.3).

Neumann conditions are naturally applied in the variational formulation, but the ones applied
are the conditions from the physical boundary, which do not correspond to the mesh discretiza-
tion in the context of an embedded resolution. The work presented in this Appendix consists
in the modification of the value of the condition to adapt it to an imposition on a surrogate
boundary using the Shifted Boundary Method.

The following Poisson problem of unknown u is considered as an example

Find u P H1pΩq such that

´∆upxq “ fpxq on Ω,

∇upxq ¨ n “ g2pxq on Γ :“ BΩ,

where Ω is the domain of resolution and Γ :“ BΩ the embedded boundary. An arbitrary
initial condition is being considered. By denoting v as a test function one can write the weak
formulation as follows

Find u P V pΩq “ tv | v P H1pΩqu such that @ v P V pΩq one has

p∇u,∇vqΩ´ ă ∇u ¨ n, v ąΓ“ pf, vqΩ ,

which leads on the surrogate domain Ω̃ to

Find u P V pΩ̃q “ tv | v P H1pΩ̃qu such that @ v P V pΩ̃q one has

ă ∇u,∇v ąΩ̃ ´ ă ∇u ¨ ñ, v ąΓ̃“ă f, v ąΩ̃ .
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The modifications on the boundary condition are the same as the ones presented for the Dirichlet
conditions in Section 1.3.3, but in this case a Taylor expansion of ∇u is performed.
The term ∇u can be decomposed using the normal n and the tangential vectors τ on BΩ (see
Chapter 1 and Definition (1.22)) such that

∇u “ p∇u ¨ nqn` p∇u ¨ τ qτ ,

ùñ ∇u ¨ ñ “ p∇u ¨ nqn ¨ ñ` p∇u ¨ τ qτ ¨ ñ.
(A.1)

Using Equation (A.1) the Taylor expansion of ∇u at a point x̃ P Γ̃ gives

∇upxq “ ∇upx̃q ` ∇ ¨ p∇upx̃qq ¨ px´ x̃q ` Op||x´ x̃||
2
q,

which leads to the following approximation

∇upxq ¨ n « ∇upx̃q ¨ n` p∇ ¨ p∇upx̃qq ¨ dq ¨ n

ùñ g2 « ∇upx̃q ¨ n` p∇ ¨ p∇upx̃qq ¨ dq ¨ n

ùñ ∇upx̃q ¨ n « g2 ´ p∇ ¨ p∇upx̃qq ¨ dq ¨ n.

(A.2)

Finally, using Equation (A.2) and Definition (A.1), the value of the Neumann condition on Γ̃
can be interpreted as

∇u ¨ ñ “ pg2 ´ p∇ ¨ p∇upx̃qq ¨ dq ¨ nqn ¨ ñ` p∇u ¨ τ qτ ¨ ñ

and the weak formulation verified on the surrogate domain is

Find u P V pΩ̃q “ tv | v P H1pΩ̃qu such that @ v P V pΩ̃q one has

ă ∇u,∇v ąΩ̃ ` ă pp∇ ¨ p∇upx̃qq ¨ dq ¨ nqn ¨ ñ, v ąΓ̃ ´ ă p∇u ¨ τ qτ ¨ ñ, v ąΓ̃

“ă f, v ąΩ̃ ` ă g2pn ¨ ñq, v ąΓ̃ .
(A.3)

One of the difficulties of Formulation (A.3) and more generally of embedded Neumann con-
ditions is to be able to compute the value of ∇ ¨ p∇uq. A possible approach is to consider a
gradient recovering technique, for example a Green Gauss method.
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