
HAL Id: tel-04403632
https://theses.hal.science/tel-04403632

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning and interpretable convolutional
networks for supervised and unsupervised image
denoising with application to satellite imagery

Sébastien Herbreteau

To cite this version:
Sébastien Herbreteau. Machine learning and interpretable convolutional networks for supervised and
unsupervised image denoising with application to satellite imagery. Signal and Image processing.
Université de Rennes, 2023. English. �NNT : 2023URENS058�. �tel-04403632�

https://theses.hal.science/tel-04403632
https://hal.archives-ouvertes.fr

·

·

· ·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·

·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·

· ··

·
·

·

·

·

·

·

·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·

·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·

·

·

·

·

·

·

······
·

·

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
·

·
·

·

·
·

·

·

·

·

·

· ·

·

··

·

·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601

Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique

Spécialité : Signal, Image, Vision

Par

Sébastien HERBRETEAU
Apprentissage machine et réseaux de convolution interprétables
pour le débruitage supervisé et non-supervisé d’images : applica-
tion à l’imagerie satellitaire

Thèse présentée et soutenue à Rennes, le 5 décembre 2023.
Unité de recherche : Centre Inria de l’Université de Rennes

Rapporteurs avant soutenance :

Jean-Michel MOREL Professeur, City University of Hong Kong
Joseph SALMON Professeur, Université de Montpellier

Composition du Jury :

Présidente : Christine GUILLEMOT Directrice de Recherche, Centre Inria de l’Université de Rennes
Examinateurs : Yann GOUSSEAU Professeur, Télécom Paris

Jean-Michel MOREL Professeur, City University of Hong Kong
Nicolas PAPADAKIS Directeur de Recherche, Institut de Mathématiques de Bordeaux
Joseph SALMON Professeur, Université de Montpellier

Dir. de thèse : Charles KERVRANN Directeur de Recherche, Centre Inria de l’Université de Rennes

Invité :

Renaud FRAISSE Partenaire industriel, Airbus Defense and Space

ACKNOWLEDGMENTS

I am deeply indebted to numerous individuals and institutions whose unswerving support made the
completion of this thesis possible. With deepest gratitude, I extend my heartfelt acknowledgments to the
following:

My profound appreciation goes to my thesis supervisor, Charles Kervrann. It has been an absolute
pleasure and honor to work with you throughout this research journey. I sincerely thank you for your
trust, kindness, optimism and dedication to my academic growth. Your insightful guidance and constant
encouragement have pushed me to strive for excellence, and I am truly grateful for the invaluable lessons
I have learned under your tutelage. I was very lucky to find you.

I express my sincere gratitude to my rapporteurs, Jean-Michel Morel and Joseph Salmon, and my
examiners, Christine Guillemot, Yann Gousseau and Nicolas Papadakis, for their valuable time, attention
and constructive criticism in evaluating my work. I am truly honored to have you on my jury.

Special thanks are due to Renaud Fraisse (Airbus Defense and Space) for providing satellite imagery
data and for the stimulating discussions and knowledgeable feedback during our regular video meetings,
which have been essential in refining the ideas presented in this thesis.

I would like to thank Aline Roumy and Frédéric Lavancier for being part of my doctoral monitoring
committee and for their sound advice on my academic career.

I extend my appreciation to my colleagues, many of whom have become friends, who have been part of
thought-provoking discussions and academic exchanges, which have enriched my perspectives and shaped
my ideas. I would also like to thank them for their support, daily good humour and the warm welcome
they gave me during these three years.

I am grateful to Centre Inria de l’Université de Rennes for providing me with the necessary resources
and infrastructure, including the computing grid facilities partly funded by France-BioImaging (French
National Research Agency - ANR-10-INBS-04-07, “Investments for the future”), and access to litera-
ture that facilitated my research process. Moreover, I acknowledge the support of Bpifrance agency for
providing financial assistance through the LiChIE contract.

My heartfelt thanks go to my darling, my family and my friends for their unwavering love, under-
standing, and encouragement. Your constant support and belief in me have been the driving force behind
my pursuit of academic excellence. I could not have accomplished this without you.

To everyone who played a role, big or small, in the completion of this thesis, I am genuinely thankful.

3

TABLE OF CONTENTS

Résumé en français 15
Motivation . 15
Formulation mathématique du problème . 16
Challenges et contributions de cette thèse . 17
Plan de la thèse . 20
Publications and communications . 23

Introduction 25
Motivation . 25
Mathematical formulation of the problem . 26
Challenges and contributions of this thesis . 27
Thesis outline . 29
Publications and communications . 32

I Related work on image denoising 33

1 Supervised learning 35
1.1 Principle of supervised learning . 35
1.2 Classes of parameterized functions . 36

1.2.1 Multi-layer perceptron (MLP) . 37
1.2.2 Convolutional neural networks (CNN) . 39
1.2.3 Transformers . 43

1.3 Parameter optimization . 46
1.3.1 Back-propagation . 47
1.3.2 Stochastic gradient descent . 48
1.3.3 Adam optimization algorithm . 49

1.4 Weakly supervised learning . 49
1.4.1 Learning from noisy image pairs . 50
1.4.2 Learning single noisy images . 51

2 Unsupervised learning 57
2.1 Weighted averaging methods . 57
2.2 Sparsity methods . 59

2.2.1 Sparsity in a fixed basis . 60
2.2.2 Sparsity on a learned dictionary . 62

4

TABLE OF CONTENTS

2.3 Bayesian methods coupled with a Gaussian model . 66
2.4 Deep learning-based methods . 68

II Towards interpretable and better conditioned supervised neural net-
works for image denoising 71

3 DCT2net: an interpretable shallow CNN for image denoising 73
3.1 Introduction . 73
3.2 From popular DCT denoising to DCT2net . 74

3.2.1 Traditional DCT denoiser . 74
3.2.2 DCT2net: a CNN representation of a DCT denoiser 75
3.2.3 Improvement of the transform . 76

3.3 A non-intuitive learned transform . 79
3.3.1 On the orthonormality of the learned transform . 79
3.3.2 DCT2net does not denoise patches . 81
3.3.3 Constraining DCT2net to effectively denoise patches is an unsuccessful strategy . . 81

3.4 Strategies to reduce unpleasant visual artifacts . 83
3.4.1 DCT2net mixed with DCT . 85
3.4.2 Internal adaptation . 88

3.5 Experiments . 89
3.5.1 Training settings . 89
3.5.2 Results on test datasets . 92
3.5.3 Complexity and low-cost training . 93

3.6 Discussion and conclusion . 95

4 Normalization-equivariant neural networks with application to image denoising 97
4.1 Introduction . 97
4.2 Related work . 98
4.3 Overview of normalization equivariance . 99

4.3.1 Definitions and properties of three types of fundamental equivariances 99
4.3.2 Examples of normalization-equivariant conventional denoisers 99
4.3.3 The case of neural networks . 101
4.3.4 Categorizing image denoisers . 102

4.4 Design of normalization-equivariant networks . 102
4.4.1 Affine convolutions . 102
4.4.2 Channel-wise sort pooling as a normalization-equivariant alternative to ReLU . . . 103
4.4.3 Encoding adaptive affine filters . 104

4.5 Experimental results . 105
4.5.1 The proposed architectural modifications do not degrade performance 106
4.5.2 Increased robustness across noise levels . 107

4.6 Conclusion and perspectives . 109

5

TABLE OF CONTENTS

III Fast and efficient unsupervised denoising via linear combinations of
patches 111

5 Towards a unified view of non-local methods: the NL-Ridge approach 113
5.1 Introduction . 113
5.2 NL-Ridge for image denoising . 114

5.2.1 Parametric linear patch combinations . 114
5.2.2 Parameter optimization . 115
5.2.3 Step 1: Unbiased risk estimate (URE) . 116
5.2.4 Step 2: Internal adaptation . 118
5.2.5 Weighted average reprojection . 120

5.3 A unified view of non-local denoisers . 120
5.3.1 Analysis of NL-Bayes algorithm . 121
5.3.2 Analysis of BM3D algorithm . 122

5.4 Experimental results . 124
5.4.1 Setting of algorithm parameters . 124
5.4.2 Results on test datasets . 125
5.4.3 Complexity . 129

5.5 Conclusion . 129

6 LIChI: boosting denoising performance via a novel chaining rule 131
6.1 Introduction . 131
6.2 An extended parametric view of unsupervised two-step non-local methods 132

6.2.1 A unified framework for non-local denoisers . 132
6.2.2 Parameter optimization . 134
6.2.3 Principle of internal adaptation . 134

6.3 LIChI: linear and iterative combinations of patches for image denoising 135
6.3.1 A novel chaining rule for generalization . 135
6.3.2 A progressive scheme for parameter optimization 136
6.3.3 Resolution when the true image is available . 137
6.3.4 Use of multiple cost-efficient pilots for unsupervised estimation 137
6.3.5 Weighted average reprojection . 138

6.4 Building an initial pilot . 139
6.4.1 Stein’s unbiased risk estimate (SURE) . 140
6.4.2 Noisier2Noise . 140
6.4.3 Two additional extreme pilots . 141
6.4.4 Comparison of the pilots . 141
6.4.5 The crucial role of the aggregation stage . 143

6.5 Experimental results . 144
6.5.1 Setting of algorithm parameters . 145
6.5.2 Results on artificially noisy images . 145
6.5.3 Results on real-world noisy images . 147

6

TABLE OF CONTENTS

6.5.4 Complexity . 150
6.6 Conclusion . 152

Conclusion and perspectives 153

Appendix 157

A Application to satellite imagery 158
A.1 Data description . 158
A.2 Comparison of denoising algorithms . 159

B Supplementary material for DCT2net 167
B.1 Why is taking multiple thresholds useless? . 167
B.2 Direct technique to derive an orthonormal matrix for DCT2net 167
B.3 Link between orthonormal matrices and orthogonal ones in DCT2net 168

C Supplementary material for normalization-equivariant neural networks 170
C.1 Description of the denoising architectures and implementation 170

C.1.1 Description of models . 170
C.1.2 Description of variants . 170
C.1.3 Practical implementation of normalization-equivariant networks 171

C.2 Description of datasets and training details . 171
C.3 Mathematical proofs for normalization-equivariant neural networks 173

C.3.1 Proofs of Propositions . 173
C.3.2 Examples of normalization-equivariant conventional denoisers 176

C.4 Additional results . 177

D Supplementary material for NL-Ridge 181
D.1 Mathematical proofs for NL-Ridge . 181

D.1.1 Minimization of the quadratic risk . 181
D.1.2 Unbiased risk estimates (URE) . 183
D.1.3 Optimal combination weights are not necessary non-negative 186

D.2 Mathematical proofs for NL-Bayes . 187
D.2.1 Minimization of the quadratic risk . 187
D.2.2 Unbiased risk estimate (URE) . 188

D.3 Mathematical proofs for BM3D . 189
D.3.1 Minimization of the quadratic risk . 189
D.3.2 Unbiased risk estimate (URE) . 190

D.4 A sequential coordinate descent algorithm for quadratic programming under conical and
convex constraints . 192

7

TABLE OF CONTENTS

E Supplementary material for LIChI 193
E.1 Minimization of the quadratic risk . 193
E.2 Building an initial pilot . 194

F Mathematical proofs of useful results 196
F.1 Unbiased risk estimators for image denoising . 196
F.2 Some useful results in convex optimization . 200
F.3 Tweedie’s formula . 202
F.4 Product of two Gaussian probability density functions . 203

Bibliography 205

8

LIST OF FIGURES

1 Problème du débruitage d’images . 16
2 Base DCT vs base DCT2net . 17
3 Méthodologie proposée pour le design de réseaux de neurones équivariants par normalisation 18
4 Cadre paramétrique unificateur proposé pour les débruiteurs non locaux non supervisés . 19
5 Comparaison qualitative de méthodes de débruitage d’images pour le bruit blanc gaussien 20
6 Image denoising problem . 26
7 DCT basis vs DCT2net basis . 27
8 Proposed methodology for designing normalization-equivariant neural networks 28
9 Proposed unifying parametric framework for unsupervised non-local denoisers 29
10 Qualitative comparison of image denoising methods for synthetic white Gaussian noise . . 30

1.1 Multi-Layer Perceptron (MLP). 38
1.2 Standard 2D convolution . 40
1.3 The architecture of DnCNN denoising network . 41
1.4 The architecture of DRUNet denoising network . 43
1.5 The architecture of SCUNet denoising network . 45
1.6 Performance evolution of models with the number of parameters and execution time . . . 46
1.7 A decade of supervised deep learning-based image denoising 47

2.1 DCT vs Karhunen–Loève transform . 61
2.2 Haar DWT basis vectors . 62
2.3 Grouping technique for image denoising . 63
2.4 Data-driven dictionary by KSVD vs overcomplete DCT/Haar dictionaries 64
2.5 Sparse coding vs simultaneous sparse coding . 65

3.1 Notation for patches in DCT2net . 75
3.2 Architecture of DCT2net . 76
3.3 Approximation of the hard thresholding function by a sequence of differentiable functions 77
3.4 Different bases in which patches are decomposed and thresholded for image denoising. . . 78
3.5 Orthonormal bases learned by DCT2net by addition of a regularization term 79
3.6 Matrix P⊤P where P denotes the transform learned by DCT2net 80
3.7 Correlation matrices of the residual noise vector for two different transforms 82
3.8 Comparison of patch denoising performance for DCT and DCT2net 83
3.9 Proposed hybrid solution for dealing with remaining artifacts induced by DCT2net 84
3.10 DCT2net vs hybrid solution DCT/DCT2net . 85
3.11 Some examples of the classifications based on Canny edge detector and Total Variation (TV) 86

9

LIST OF FIGURES

3.12 Proposed hybrid denoising scheme . 87
3.13 Denoising with the “internal adaptation” step for dealing with unpleasant artifacts 89
3.14 Qualitative comparison of image denoising results with synthetic white Gaussian noise . . 90
3.15 Generalization capabilities of homogeneous functions such as DCT2net 94

4.1 Influence of normalization for deep-learning-based image denoising 101
4.2 Proposed methodology for designing normalization-equivariant neural networks 103
4.3 Visual comparison of generalization capabilities of scale and normalization-equivariant net-

works . 105
4.4 Qualitative comparison of image denoising results for different variants of the same models 107
4.5 Comparison of the performance of our normalization-equivariant alternative with its scale-

equivariant and ordinary counterparts . 108
4.6 Robustness of normalization-equivariant networks . 109

5.1 Grouping technique for image denoising . 115
5.2 Proposed unifying parametric framework for unsupervised non-local denoisers 124
5.3 Qualitative comparison of image denoising results with synthetic white Gaussian noise . . 125
5.4 Qualitative comparison of image denoising results on real-world noisy images 128

6.1 Proposed unifying parametric framework for unsupervised non-local denoisers 133
6.2 The curse of the second stage for non-local methods . 135
6.3 Proposed optimization scheme based on multiple pilots for LIChI 138
6.4 Average PSNR results at different stages of LIChI algorithm 142
6.5 Colormap indicating the denoising performance on similarity matrices 142
6.6 Single estimate per pixel vs aggregation by averaging . 143
6.7 Bias-variance tradeoff between different estimators . 144
6.8 Qualitative comparison of image denoising results with synthetic white Gaussian noise . . 148
6.9 Qualitative comparison of image denoising results on real-world noisy images 149
6.10 Qualitative comparison of image denoising results on FED images 151

A.1 Representative raw images from the remote sensing dataset (RSD) 159
A.2 Empirical point spread function (PSF) for the remote sensing dataset (RSD) 159
A.3 The execution time v.s the total number of parameters of different methods 160
A.4 Denoising results for satellite imagery (Brest) . 161
A.5 Denoising results for satellite imagery (Brest bis) . 162
A.6 Denoising results for satellite imagery (Lyon) . 163
A.7 Denoising results for satellite imagery (Lyon bis) . 164
A.8 Denoising results for satellite imagery (Toulouse Airport) 165
A.9 Denoising results for satellite imagery (Toulouse Airport bis) 166

C.1 Comparison of the performance of our normalization-equivariant alternative with its scale-
equivariant and ordinary counterparts with FDnCNN architecture 178

10

LIST OF FIGURES

C.2 Comparison of the performance of our normalization-equivariant alternative with its scale-
equivariant and ordinary counterparts with FDnCNN architecture for other noise types . 178

C.3 Visual comparison of generalization capabilities of scale and normalization-equivariant net-
works with FDnCNN architecture . 179

C.4 Robustness of normalization-equivariant networks with FDnCNN architecture 180

11

LIST OF TABLES

3.1 The average PSNR results of two different transforms on patches of size 15× 15. 85
3.2 The average PSNR results of DCT/DCT2net for different sizes of dilation kernel. 88
3.3 DCT2net/DCT2net vs DCT/DCT2net according to the segmentation map 89
3.4 The average PSNR results of different methods on BSD68 dataset with Gaussian noise . . 90
3.5 The average PSNR results of different methods on Set12 dataset with Gaussian noise . . . 91
3.6 Running time of different methods for image denoising . 92
3.7 Model complexities . 92

4.1 Equivariance properties of several image denoisers . 102
4.2 The average PSNR results of different variants of “non-blind” methods 106

5.1 Recommended hyperparameters for NL-Ridge . 125
5.2 The PSNR results of different methods on datasets corrupted by Gaussian noise 126
5.3 The PSNR results of different methods on Darmstadt Noise Dataset (DND) 126
5.4 Running time of different methods for image denoising . 129

6.1 Recommended hyperparameters for LIChI . 145
6.2 The PSNR results of different methods on datasets corrupted by Gaussian noise 146
6.3 The PSNR results of different methods on Darmstadt Noise Dataset (DND) 146
6.4 Running time of different methods for image denoising . 152

C.1 Training parameters for normalization-equivariant FDnCNN and DRUNet models 172
C.2 Execution time comparison for different variants of DRUNet architecture 172
C.3 The PSNR results of different variants on Darmstadt Noise Dataset (DND) 179
C.4 Test errors of different variants for image classification . 179

12

LIST OF SYMBOLS

The following list describes several symbols that will be later used within the body of this manuscript:

R Set of all real numbers

N Set of all natural numbers

K+ Set of non-negative elements of K

K∗ Set of all non-zero elements of K

K+
∗ Set of all positive elements of K

Kn Set of vectors of size n with entries in K

Kn×k Set of matrices of size n× k with entries in K

Ai,· ith row of a matrix A

A·,j jth column of a matrix A

Ai,j Entry in the ith row and jth column of a matrix A

0k k-dimensional all-zeros vector

1k k-dimensional all-ones vector

ek kth canonical basis vector of Rn

Ik Identity matrix of size k × k

⊤ Transpose operator

tr(·) Trace operator

⟨·, ·⟩ Dot product

⟨·, ·⟩F Frobenius inner product

|| · ||p p-norm (also called ℓp norm)

|| · ||F Frobenius norm

∇θ Gradient with respect to θ

Jf Jacobian matrix of a function f : Rn 7→ Rm

Hess Hessian operator

diag(·) Vector-to-matrix / matrix-to-vector diagonal operator

div(·) Divergence operator

13

LIST OF SYMBOLS

◦ Function composition

⊗ Two-dimensional convolution

⊙ Hadamard product (element-wise product)
⊙2 Element-wise square

E(·) Expected value

V(·) Variance

std(·) Standard deviation

N (µ,Σ) Multivariate normal distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n

P(λ) Poisson distribution with mean λ ∈ R

δi,j Kronecker delta: δi,j = 1 if i = j, and δi,j = 0 otherwise

1E Indicator function of the subset E: 1E(x) = 1 if x ∈ E, and 1E(x) = 0 otherwise

⪯ or ⪰ Component-wise inequality: a ⪯ b if every entry of the vector a is less than or equal to the
corresponding entry of the vector b

14

RÉSUMÉ EN FRANÇAIS

Motivation

Dans le domaine de l’acquisition des images numériques, deux types de bruit significatifs et indépen-
dants peuvent dégrader la qualité des images capturées [13, 50, 61, 145, 192].

Le bruit de grenaille, également appelé bruit de Schottky, découle de la nature quantique à la lumière.
Les capteurs d’images mesurent l’irradiation de la scène en comptant indirectement le nombre de photons
discrets sur un intervalle de temps donné grâce à l’effet photoélectrique qui assure l’émission d’électrons
lorsque des particules de lumière frappent un matériau. Pour un capteur d’image donné et dans l’hypothèse
d’une scène statique, le nombre de photons détectés suit classiquement une distribution de Poisson de
paramètre λt, où λ est le nombre moyen attendu de photons par unité d’intervalle de temps, proportionnel
à la valeur réelle du signal, et t est le temps d’exposition. Par conséquent, plus le temps d’exposition t est
long, plus le nombre de photons collectés est important. Mais comme les valeurs de comptage présentent
des fluctuations, l’image obtenue peut parfois sembler granuleuse, ce qui la rend difficile à interpréter.
Étant donné que le rapport signal sur bruit augmente avec la racine carrée du nombre attendu de photons
capturés [61],

√
λt, le bruit quantique est plus prononcé dans des conditions de faible luminosité (lorsque

λ est faible) ou lorsque le capteur d’image est sous-exposé (lorsque t est faible). L’augmentation du temps
d’exposition ou l’utilisation d’une ouverture plus grande pour capter plus de lumière sont deux techniques
courantes pour réduire la quantité de bruit de grenaille, mais elles ont toutes deux leurs limites. Le bruit
de grenaille ne peut être de toute façon totalement éliminé en raison de la nature quantique de la lumière
qui rend le comptage de photons aléatoire.

Le bruit de lecture, quant à lui, est introduit au cours du processus de conversion du signal analogique
du capteur en une représentation numérique. Le bruit de lecture est causé par divers facteurs, et no-
tamment par les composants et les cuircuits électroniques du capteur assurant la conversion analogique-
numérique. Le bruit de lecture est généralement indépendant de l’intensité lumineuse qui frappe le capteur
et peut être considéré comme un bruit de fond inhérent au système d’acquisition d’images. Tradition-
nellement, ce type de bruit est modélisé mathématiquement par un bruit blanc additif gaussien, justifié
par l’application du théorème central limite.

Bien que les capteurs d’images soient continuellement améliorées notamment en matière de sensibilité
au bruit, la réduction du bruit de l’image ne peut pas être entièrement basée sur le matériel puisque
celle-ci est en partie inhérente à la nature quantique de la lumière. Le développement d’algorithmes
de débruitage, visant à post-traiter l’image brute afin de minimiser l’impact du bruit et d’améliorer la
qualité de l’image, est un domaine de recherche logicielle en plein essor qui attire l’attention depuis
plusieurs décennies. La prédominance du débruitage d’images dans le domaine du traitement d’images
est en partie due au fait que les algorithmes de débruitage efficaces doivent être capables d’encoder ou
d’apprendre des a priori d’images réalistes, propriété directement exploitée par les méthodes “plug-and-

15

Résumé en français

Image propre, x ∈ Rn Observation bruitée, y ∈ Rn Image débruitée, x̂ ∈ Rn

Figure 1 – Problème du débruitage d’images. L’objectif est d’estimer l’image propre (à gauche) à partir de
l’image bruitée observée (au milieu). À cette fin, un débruiteur, représenté ici par un aspirateur, traite l’image
bruitée pour produire une estimation (à droite). Le bruit, représenté par des grains de poivre (en référence au
bruit poivre et sel), peut être soit réel, auquel cas l’image propre est inaccessible, soit ajouté artificiellement à des
fins de test. Source : E. Simoncelli [168].

play” [36, 48, 76, 77, 82, 93, 95, 152, 181, 194], et donc de répondre à la question suivante : qu’est-ce qui
fait qu’une image est naturelle pour l’œil humain ? Au-delà de leur utilité pratique, les algorithmes de
débruitage constituent donc un banc d’essai pour répondre à une question métaphysique plus générale,
qui est essentielle pour la résolution de nombreuses autres tâches de vision par ordinateur, telles que le
défloutage, la super-résolution ou plus récemment la génération d’images réalistes.

Formulation mathématique du problème

Selon le modèle traditionnel des capteurs numériques [13, 50, 61, 145, 192], le bruit dans les images
contient à la fois une composante de Poisson dépendante du signal (bruit de grenaille) et une composante
gaussienne additive indépendante du signal (bruit de lecture). Par conséquent, le bruit est généralement
décrit par un modèle mixte Poisson-Gaussien. Plus précisément, en représentant une image en niveaux
de gris de n pixels par un vecteur de Rn où chaque entrée code l’intensité du pixel, le modèle de bruit
est le suivant :

y ∼ aP(x/a) +N (0n, bIn) , (1)

où y ∈ Rn est l’image bruitée observée, x ∈ Rn est l’image sans bruit (vrai signal), et a, b ∈ R+
∗ sont les

paramètres relatifs au bruit de grenaille et au bruit de lecture, respectivement, dépendant en particulier
du système d’acquisition et du temps d’exposition. Une alternative plus simple au modèle mixte Poisson-
Gaussien (1) est le modèle de bruit blanc gaussien additif (AWGN) :

y ∼ N (x, σ2In) , (2)

16

Résumé en français

(a) Base DCT (b) Base DCT2net apprise

Figure 2 – Base DCT vs base DCT2net pour des patchs de taille 9 × 9.

où σ2 est la variance du bruit, indépendante du signal. La formulation (2) peut être considérée comme
une approximation de (1) où le bruit de grenaille dépendant du signal est négligé. Bien que cela puisse
sembler être une limitation de ce modèle, la formulation (1) se transpose en fait à (2) lorsqu’on utilise une
transformation de stabilisation de la variance telle que la tranformée d’Anscombe [171], ce qui revient
à appliquer des non-linéarités par pixel qui réduisent efficacement la dépendance du bruit au signal. In
fine, en raison de sa commodité mathématique, le modèle AWGN est le plus largement utilisé.

À partir de l’observation bruitée y, qui suit (1) ou (2), mais aussi toute autre distribution de bruit,
éventuellement inconnue, l’objectif du débruitage d’images est de concevoir une méthode d’estimer le
signal inconnu d’origine x, aussi fidèlement que possible. Cela revient à identifier une fonction f : Rn 7→ Rn

telle qu’une observation bruitée y peut être associée à une estimation satisfaisante de x, i.e. f(y) ≈ x

(voir Figure 1).

Contributions de la thèse

Au fil du temps, une grande variété de stratégies, d’outils et de théories sont apparus pour traiter le
problème du débruitage d’images à l’interface des statistiques, du traitement du signal, de l’optimisation et
de l’analyse fonctionnelle. Mais ce sujet a récemment été immensément influencé par le développement des
techniques d’apprentissage automatique et de l’intelligence artificielle. Si on considère le débruitage comme
un simple problème de régression, la tâche revient finalement à apprendre à mettre en correspondance
l’image corrompue avec sa source. Les méthodes de débruitage d’images les plus performantes à ce jour
s’appuient sur des réseaux de neurones profonds qui sont entraînés sur de vastes jeux de données externes
constitués de paires d’images sans bruit et corrompues par un bruit.

Cependant, bien que rapides et efficaces, ces réseaux supervisés souffrent d’un manque d’interpréta-
bilité et ont généralement de moins bonnes propriétés mathématiques que leurs homologues convention-
nels. Agissant comme des “boîtes noires”, il peut être très difficile de comprendre précisément comment
ils produisent un résultat, ce qui peut être problématique dans des applications critiques (e.g. imagerie

17

Résumé en français

Figure 3 – Illustration de l’alternative proposée pour remplacer le schéma traditionnel “convolution + fonc-
tion d’activation” dans les réseaux de neurones convolutifs. Les convolutions affines remplacent les convolutions
ordinaires en contraignant la somme des coefficients de chaque noyau d’être égal à un et les non-linéarités sont
uniquement introduites en triant deux par deux les neurones pré-activés le long des canaux.

biomédicale). La première partie de la thèse vise à traiter cette question. Notre première contribution
répond partiellement à cette question. L’idée est de revisiter les algorithmes traditionnels avec des notions
d’apprentissage profond, tout en conservant l’intuition originale. Nous nous concentrons spécifiquement
sur le célèbre débruiteur DCT [189] (Discrete Cosine Transform) et montrons qu’il peut être considéré
comme un réseau neuronal convolutionnel (CNN) peu profond avec des poids correspondant au noyau de
projection DCT et une fonction de seuillage comme fonction d’activation. En entraînant ce CNN parti-
culier sur un ensemble de données externes, nous montrons que nous pouvons affiner la transformation
résultante et améliorer considérablement les performances du débruiteur classique DCT. Cela donne nais-
sance à un CNN entièrement interprétable appelé DCT2net. À la fin du processus d’optimisation, il est
possible de vérifier ce que le réseau vient d’apprendre en affichant directement la transformation apprise
(voir Fig. 2). Certes, les performances de DCT2net restent inférieures à celles des méthodes état de l’art
basées sur l’apprentissage profond, mais il est aussi beaucoup moins gourmand en ressources et beaucoup
plus facile à manipuler et à comprendre.

Parallèlement à ce travail, nous cherchons à adapter les architectures de réseaux de neurones profonds
existantes pour garantir une propriété mathématique hautement souhaitable en débruitage d’images, à
savoir l’équivariance à la normalisation. Cette propriété assure que tout changement sur l’image à traiter,
que ce soit via l’ajout d’une constante ou mise à l’échelle des valeurs d’intensité des pixels, entraîne un
changement correspondant dans la réponse de débruitage. En fait, les réseaux de neurones profonds actuels
ne garantissent étonnamment pas une telle propriété, ce qui peut être préjudiciable dans de nombreuses
situations (source de confusion et d’interprétation erronée dans des applications critiques). Pour résoudre
ce problème, nous proposons une méthodologie permettant d’adapter les réseaux de neurones existants de
manière à ce que l’équivariance à la normalisation soit assurée dès la conception (voir Fig. 3). Notre prin-
cipal argument est que non seulement les couches convolutives ordinaires, mais aussi toutes les fonctions
d’activation, y compris la fonction ReLU (Rectified Linear Unit), qui sont appliquées indépendamment à
chaque neurone préactivé, devraient être complètement supprimées des réseaux de neurones et remplacées
par des alternatives mieux conditionnées. Pour ce faire, nous introduisons des convolutions à contrainte
affine et des couches de tris deux à deux le long des canaux comme substituts et nous montrons que ces

18

Résumé en français

<latexit sha1_base64="V2A1l/zhpiPMtE5rpXIuVWOYu+o=">AAAEZniclVNNb9NAEJ20BkqAfoAQBy4WKRKnyKmqwrGCSw89FClpq6ZRtXY26aq21/KugSjKv+AKl/4q/kH7L3g72SDSKi1s5Hj2zXtvd2a9cZEqY6PoV21pOXjw8NHK4/qTp89W19Y3nh8aXZWJ7CQ61eVxLIxMVS47VtlUHhelFFmcyqP44pPLH32RpVE6b9tRIXuZGOZqoBJhAZ1sDs5O2+fSis2z9UbUjHiEt4OWDxrkx4HeqF3SKfVJU0IVZSQpJ4s4JUEGvy61KKICWI/GwEpEivOSJlSHtgJLgiGAXuB/iFnXoznmztOwOsEqKZ4SypDeQqPBKxG71ULOV+zs0EXeY/Z0exvhHXuvDKilc6D36WbMf9cZMDKufYSn/x/KPtABqnI9nVfd1TkLzQfumIKyYMT1MvEeFZ+B61P4Vw8tHApgLu4jXyJOWDk71ZA1hjvtqhGcv2KmQ9088dyKrrmyxbW5Klz/NX3zX0IO/Cvjkk/Zrdylfa5kyp4gas/lJ2AYv1PFneot9Brz/jPuodNNPZ37ARiae2HgMnOa3Ll/Abche6s/u7uPXXCu8vdF4y39KnXcvNbNe3Y7ONxqtnaa25+3Grsf/R1codf0ht7hnr2nXdpDLR145/SdftDP5atgNXgZvJpSl2pe84LmRhD+Bu7S4co=</latexit>

f⇥

<latexit sha1_base64="RDDHYb0iO2KFBQXDqOztyX+uI+M=">AAAEaniclVNNbxMxEJ20Cy3hqy0n1MuKgMSFaFOhwrFqLxw4FKlpK4WAvI6bWtldr9ZeIIryP7gWfhX/ACR+BM8TBxGqtOBos+M37z17xuu0zLR1SfKtsbIa3bi5tn6refvO3Xv3Nza3jq2pK6m60mSmOk2FVZkuVNdpl6nTslIiTzN1ko4OfP7kg6qsNsWRG5eqn4thoc+0FA7Qu/3MyNGzXDh5rovh+41W0k54xJeDTghaFMah2Wx8pbc0IEOSaspJUUEOcUaCLH496lBCJbA+TYBViDTnFU2pCW0NlgJDAB3hf4hZL6AF5t7TslpilQxPBWVMT6Ax4FWI/Wox52t29ugy7wl7+r2N8U6DVw7U0TnQ63Rz5r/rLBg51z7GM/gP5QDoGaryPV1UXdU5B81L7piGsmTE91IGj5rPwPcp/qOHDg4lMB8PkK8QS1bOTzVmjeVO+2oE578z06N+LgO3ph9c2fLafBW+/4Y+hS+hAP6RccWn7Ffu0WuuZMaeIjpayE/BsGGnmjvVX+o14f3n3EOvm3l690MwDPfCwmXuNL1y/wJuQ/bWv3d3HbvkXB3ui8FbhVWauHmdv+/Z5eB4p93ZbT9/s9Pa2w93cJ226RE9xT17QXv0CrV04V3RZ7qgL6s/o63oYbQ9o640guYBLYzo8S+hxeP2</latexit>

Block-matching
<latexit sha1_base64="n2v+ACpR7l71pZfkzSVBBXbyr7A=">AAAEd3iclVNNbxMxEJ20C5TwlcIJcWBFBOop2q0QcKzgwoFDQU1bKY2qXccNVnfXK9sLRFHEj0Fc4ffwD+AncON54iBClRYcbXb85r1nz3id14WyLkm+tdbWo0uXr2xcbV+7fuPmrc7m7X2rGyNkX+hCm8M8s7JQlew75Qp5WBuZlXkhD/LTFz5/8E4aq3S15ya1HJbZuFInSmQO0HHn7pGQlZNGVeP2G1lrqzyOWXzc6Sa9hEd8NkhD0KUwdvVm6xMd0Yg0CWqoJEkVOcQFZWTxG1BKCdXAhjQFZhApzkuaURvaBiwJRgb0FP9jzAYBrTD3npbVAqsUeAyUMT2ERoNnEPvVYs437OzRVd5T9vR7m+CdB68SqKO3QC/SLZj/rrNglFz7BM/oP5QjoCeoyvd0WXVe5xw0z7hjCsqaEd9LETwaPgPfp/iPHjo41MB8PELeIBasXJxqzBrLnfbVZJz/zkyP+rkI3IZ+cGWra/NV+P5r+hC+hAr4e8Yln7JfeUCvuJI5e4Zobyk/A8OGnSru1HCl15T3X3IPvW7u6d13wdDcCwuXhdPs3P1ncBuzt/q9u4vYNeeacF803jKs0sbNS/++Z2eD/e1e+qT3+PV2d+d5uIMbdI8e0Bbu2VPaoZeopQ/vj/SZvtDX9Z/R/ehRtDWnrrWC5g4tjSj9BYAt6OE=</latexit>

Repositioning

<latexit sha1_base64="Pwac7BjiIXY+7afQNJeeS3E/Fms=">AAADDXicjVLLSsNAFD2Nr1pfVZe6CBbBVUlF1GXRjQsXFWwrWCnJdKyDaSZMJqKIG3/A33Cr4E7c+g3+gS78B++MKahFdEKSM+fec2fOnQniUCTa815yztDwyOhYfrwwMTk1PVOcnWskMlWM15kMpToI/ISHIuJ1LXTID2LF/V4Q8mZwum3izTOuEiGjfX0R86Oe343EsWC+JqpdXGwxHmmuRNQt7Ermh26r1eGRFAkx7WLJK3t2uIOgkoESslGTxXe00IEEQ4oeOCJowiF8JPQcogIPMXFHuCROERI2znGFAmlTyuKU4RN7St8uzQ4zNqK5qZlYNaNVQnoVKV0sk0ZSniJsVnNtPLWVDftb7Utb0+ztgv5BVqtHrMYJsX/p+pn/1RkvGsfYtB4EeYotY9yxrEpqu2J27n5xpalCTJzBHYorwswq+312rSax3k1vfRt/tZmGNXOW5aZ4s7v83Z/xYToicW7PpkCXofLz6AdBY7VcWS+v7a2WqlvZtchjAUtYobPfQBU7qKFOK13jFne4d26cB+fRefpMdXKZZh7fhvP8AWzLpAI=</latexit>

Local
denoising

<latexit sha1_base64="OcI3g6F865/BxA9e22lgKmds8vc=">AAAC+XicjVLLSsNAFD2Nr1pfVZdugq3gqiQi6rLoxmUF+8C2SJJOa2iaxMlELKF/4VbBnbj1a/wDXfgP3hlTUEvRCUnOnHvPnTl3xg49NxKG8ZrRZmbn5heyi7ml5ZXVtfz6Ri0KYu6wqhN4AW/YVsQ812dV4QqPNULOrIHtsbrdP5Hx+g3jkRv452IYsvbA6vlu13UsQdRFsRVdc5H4o+JlvmCUDDX0SWCmoIB0VIL8B1roIICDGAMw+BCEPViI6GnChIGQuDYS4jghV8UZRsiRNqYsRhkWsX369mjWTFmf5rJmpNQOreLRy0mpY4c0AeVxwnI1XcVjVVmy02onqqbc25D+dlprQKzAFbF/6caZ/9VJLwJdHCkPLnkKFSPdOWmVWHVF7lz/5kpQhZA4iTsU54QdpRz3WVeaSHmXvbVU/E1lSlbOnTQ3xrva5XR/0ofsSIBbdTY5ugzm76OfBLW9knlQ2j/bK5SP02uRxRa2sUtnf4gyTlFBlVbycYd7PGiJ9qg9ac9fqVom1Wzix9BePgFDsZxJ</latexit>p
n

<latexit sha1_base64="OcI3g6F865/BxA9e22lgKmds8vc=">AAAC+XicjVLLSsNAFD2Nr1pfVZdugq3gqiQi6rLoxmUF+8C2SJJOa2iaxMlELKF/4VbBnbj1a/wDXfgP3hlTUEvRCUnOnHvPnTl3xg49NxKG8ZrRZmbn5heyi7ml5ZXVtfz6Ri0KYu6wqhN4AW/YVsQ812dV4QqPNULOrIHtsbrdP5Hx+g3jkRv452IYsvbA6vlu13UsQdRFsRVdc5H4o+JlvmCUDDX0SWCmoIB0VIL8B1roIICDGAMw+BCEPViI6GnChIGQuDYS4jghV8UZRsiRNqYsRhkWsX369mjWTFmf5rJmpNQOreLRy0mpY4c0AeVxwnI1XcVjVVmy02onqqbc25D+dlprQKzAFbF/6caZ/9VJLwJdHCkPLnkKFSPdOWmVWHVF7lz/5kpQhZA4iTsU54QdpRz3WVeaSHmXvbVU/E1lSlbOnTQ3xrva5XR/0ofsSIBbdTY5ugzm76OfBLW9knlQ2j/bK5SP02uRxRa2sUtnf4gyTlFBlVbycYd7PGiJ9qg9ac9fqVom1Wzix9BePgFDsZxJ</latexit>p
n

<latexit sha1_base64="M/7JhzhFliMLbJplLQVIGBLFDdg=">AAAC+HicjVLLTsJAFD3UF+ILdemmEUxckUKMuiS6cYmJPAwQ05YBJvSVdmpEwle41cSdcevf+Ae68B+8M5ZEJUSnaXvm3HvuzLkzVuDwSBjGa0qbm19YXEovZ1ZW19Y3sptbtciPQ5tVbd/xw4ZlRszhHqsKLhzWCEJmupbD6tbgVMbr1yyMuO9diGHA2q7Z83iX26Yg6jLf6pti1Bjnr7I5o2CooU+DYgJySEbFz36ghQ582IjhgsGDIOzARERPE0UYCIhrY0RcSIirOMMYGdLGlMUowyR2QN8ezZoJ69Fc1oyU2qZVHHpDUurYI41PeSFhuZqu4rGqLNlZtUeqptzbkP5WUsslVqBP7F+6SeZ/ddKLQBfHygMnT4FipDs7qRKrrsid699cCaoQECdxh+IhYVspJ33WlSZS3mVvTRV/U5mSlXM7yY3xrnY525/0ITvi40adTYYuQ/H30U+DWqlQPCwcnJdy5ZPkWqSxg13s09kfoYwzVFCllVzc4R4P2q32qD1pz1+pWirRbOPH0F4+AXoXm5w=</latexit>

X̂

<latexit sha1_base64="JjGP/UIIz4tYNz1ZjCfYb1aTOi8=">AAAC8nicjVLLSsNAFD2Nr1pfVZdugq3gqiRF1GXRjcuK9gG1SJJOa2iahMlELMVPcKvgTtz6Q/6BLvwH74xTUEvRCUnOnHvPnTl3xo0DPxGW9ZoxZmbn5heyi7ml5ZXVtfz6Rj2JUu6xmhcFEW+6TsICP2Q14YuANWPOnIEbsIbbP5bxxjXjiR+F52IYs/bA6YV+1/ccQdRZsV+8zBeskqWGOQlsDQrQoxrlP3CBDiJ4SDEAQwhBOICDhJ4WbFiIiWtjRBwn5Ks4wy1ypE0pi1GGQ2yfvj2atTQb0lzWTJTao1UCejkpTeyQJqI8TliuZqp4qipLdlrtkaop9zakv6trDYgVuCL2L90487866UWgi0PlwSdPsWKkO09XSVVX5M7Nb64EVYiJk7hDcU7YU8pxn02lSZR32VtHxd9UpmTl3NO5Kd7VLqf7kz5kRyLcqLPJ0WWwfx/9JKiXS/Z+ae+0XKgc6WuRxRa2sUtnf4AKTlBFjVbq4Q73eDCE8Wg8Gc9fqUZGazbxYxgvnzFUmOI=</latexit>

k

<latexit sha1_base64="b3wPqC1+Y4xaN8Twrz/1RF++Pvc=">AAADEHicjVLLSsNAFD3GV62vqEsXBqvgqqRF1GXRjcsq1lbaKkk66tC8SCZiCV36A/6GWwV34tY/8A904T94Z0zBB6ITkpw59547c+6MHbo8Fqb5PKQNj4yOjecm8pNT0zOz+tz8YRwkkcNqTuAGUcO2YuZyn9UEFy5rhBGzPNtldbu7I+P1CxbFPPAPRC9kbc868/kpdyxB1Im+tHJktLhvtDxLnNt2ut8/TmkmuMdio9tfOdELZtFUw/gJShkoIBvVQH9DCx0EcJDAA4MPQdiFhZieJkowERLXRkpcRIirOEMfedImlMUowyK2S98zmjUz1qe5rBkrtUOruPRGpDSwSpqA8iLCcjVDxRNVWbK/1U5VTbm3Hv3trJZHrMA5sX/pBpn/1UkvAqfYUh44eQoVI905WZVEdUXu3PjkSlCFkDiJOxSPCDtKOeizoTSx8i57a6n4i8qUrJw7WW6CV7XL3/1JH7IjAS7V2eTpMpS+H/1PcFguljaK63vlQmU7uxY5LGIZa3T2m6hgF1XUaKUr3OAWd9q1dq89aI8fqdpQplnAl6E9vQMIMaSN</latexit>

Y 2 Rn⇥k

BM3D [35] suppose une représen-
tation sparse dans un domaine de
transformation :

NL-Bayes [96] a été établi à l’origine
dans un cadre bayésien :

NL-Ridge [65] exploite les combi-
naisons linéaires de patchs bruités :

fΘ(Y) = P⊤(Θ⊙ (PY Q))Q⊤ , fΘ,β(Y) = ΘY + β1⊤
k , fΘ(Y) = YΘ .

P, Q: matrices orthogonales. 1k: vecteur de 1 de taille k.

Figure 4 – Illustration du cadre paramétrique unificateur proposé pour plusieurs débruiteurs non locaux pop-
ulaires. Des exemples de fonctions paramétrées identifiant sans équivoque le débruiteur sont donnés, dont les
paramètres optimaux sont finalement sélectionnés pour chaque groupe de patchs par optimisation via “adapta-
tion interne”.

deux modifications architecturales préservent formellement l’équivariance à la normalisation.

Enfin, dans certains contextes, la collecte d’un jeu de données de haute qualité suffisamment diversifié
pour l’entraînement des modèles de débruitage peut être extrêmement chronophage, voire même impos-
sible. Par conséquent, les seules méthodes applicables sont les méthodes non supervisées, qui s’appuient
uniquement sur l’image d’entrée bruitée pour l’apprentissage. Historiquement, ces méthodes ont été
étudiées avant leurs équivalents supervisés, en partie à cause des limitations des puissances de calcul
des ordinateurs de l’époque. Dans la deuxième partie de la thèse, nous proposons un cadre général
d’estimation basé sur la minimisation du risque quadratique pour unifier les méthodes non locales non
supervisées. Ces dernières opèrent en rassemblant les patchs bruités de l’image en fonction de leurs sim-
ilarités afin de les débruiter de manière collaborative. Cette famille de méthode est considérée jusqu’à
présent comme les plus performantes dans le contexte du débruitage non supervisé. En s’appuyant sur une
estimation sans biais du risque pour la première étape et sur l’“adaptation interne”, un concept emprunté
à la théorie de l’apprentissage profond, pour la seconde étape, nous montrons que notre formulation per-
met de réconcilier plusieurs méthodes d’agrégation de patchs pour le débruitage d’images (voir Fig. 4).
Dans ce cadre, nous proposons un nouveau débruiteur appelé NL-Ridge qui exploite des combinaisons
linéaires de patchs. Tout en étant plus simple sur le plan conceptuel, nous montrons que NL-Ridge peut
être plus performant que les autres débruiteurs non supervisés de l’état de l’art. Par la suite, nous éten-
dons la formulation NL-Ridge en proposant une nouvelle technique de chaînage, impliquant l’estimation
d’un nombre encore plus important de paramètres de manière non supervisée. L’algorithme en plusieurs
étapes qui en résulte, appelé LIChI, supprime un grand nombre d’artefacts de débruitage par rapport à
son homologue à deux étapes (voir Fig. 5). Des expériences sur des images artificiellement bruitées et sur
des images bruitées réelles, supposées être corrompues par un bruit mixte Poisson-Gaussien, démontrent

19

Résumé en français

(a)

Image bruitée / 22.09 dB

Vérité terrain BM3D [35] / 36.76 dB NL-Ridge (nôtre) / 36.82 dB

DnCNN [195] / 37.06 dB WNNM [57] / 36.95 dB LIChI (nôtre) / 37.18 dB

(b)

Image bruitée / 22.09 dB

Vérité terrain BM3D [35] / 29.50 dB NL-Ridge (nôtre) / 29.99 dB

DnCNN [195] / 30.06 dB WNNM [57] / 30.94 dB LIChI (nôtre) / 30.99 dB

Figure 5 – Comparaison qualitative des résultats de débruitage d’images pour différents algorithmes avec un
bruit blanc gaussien synthétique (σ = 20). Le PSNR (en dB) est indiqué pour chaque méthode.

que notre méthode se compare favorablement aux meilleurs débruiteurs non supervisés, surpassant les
récentes approches non supervisées basées sur l’apprentissage profond, tout en étant beaucoup plus rapide
et plus simple à interpréter.

Plan de la thèse

Cette thèse est organisée en trois parties, chacune étant subdivisée en deux chapitres. Les Chapitres
3, 4, 5 et 6 correspondent aux articles [64] [67], [65] et [66], respectivement. Les méthodes et algorithmes
proposés dans cette thèse, qui ne sont pas spécifiques à un type d’imagerie particulier, sont appliqués
et évalués sur des données d’imagerie satellitaire simulées et mises à disposition par Airbus Defense and
Space. Les résultats correspondant sont reportés dans l’Annexe A à la fin du manuscrit.

Partie I : État de l’art en débruitage d’images

Chapitre 1 : Apprentissage supervisé

Dans ce chapitre, nous proposons au lecteur une visite guidée des méthodes d’apprentissage supervisé
pour le débruitage d’images. En partant d’un cadre général basé sur la minimisation du risque empirique,
nous présentons les trois principales classes de fonctions paramétrées, aussi appelées architectures de
réseaux de neurones en intelligence artificielle. Pour chaque architecture, nous étudions un représentant
populaire de l’état de l’art pour le débruitage d’images. Ensuite, nous abordons la question de la recherche
de la meilleure fonction pour le débruitage parmi une famille de fonctions paramétrique donnée, plus com-

20

Résumé en français

munément appelé entraînement des paramètres. Enfin, nous étudions le cas particulier de l’apprentissage
faiblement supervisé, qui ne nécessite pas d’images sans bruit pour l’entraînement.

Chapitre 2 : Apprentissage non supervisé

Les stratégies d’apprentissage supervisé et faiblement supervisé sont extrêmement dépendantes de la
qualité des données (bien qu’elles ne reposent pas sur le même type de paires d’images), ce qui constitue
une faiblesse bien établie. Dans certaines situations, il peut être difficile de constituer un ensemble de don-
nées suffisamment important pour l’apprentissage. Seules les méthodes non supervisées - pour lesquelles
seule l’image bruitée d’entrée est utilisée pour l’apprentissage - sont disponibles sur le plan opérationnel.
Historiquement, ces méthodes ont été étudiées avant leurs équivalents supervisés, en partie à cause des
limitations informatiques de l’époque rendant inenvisageable l’apprentissage supervisé, très gourmand en
ressources. Dans ce chapitre, nous présentons une liste non exhaustive d’algorithmes non supervisés bien
connus, classés selon quatre grands principes différents. Comme nous le verrons, les meilleurs débruiteurs
non supervisés partagent des éléments clés, en particulier la propriété d’auto-similarité observée dans les
images, quelle que soit leur catégorie.

Partie II : Vers des réseaux de neurones supervisés interprétables et mieux
conditionnés pour le débruitage d’images

Chapitre 3 : DCT2net: un CNN interprétable et peu profond pour le débruitage d’images

Ce chapitre aborde la question de l’élimination du bruit dans les images de manière interprétable, en focal-
isant notre attention sur l’algorithme DCT [189] (Discrete Cosine Transform). Ce dernier, bien connu du
traitement du signal, a été très étudié au fil des années. Bien que très simple, il est toujours un composant
essentiel des algorithmes de débruitage traditionnels état de l’art tels que BM3D [35]. Cependant, ces
dernières années, les réseaux de neurones profonds supervisés ont surpassé leurs homologues traditionnels,
rendant les méthodes de traitement du signal moins attrayantes. Dans ce chapitre, nous montrons qu’un
débruiteur DCT peut être considéré comme un réseau de neurones convolutionnel (CNN) peu profond et
que sa transformée linéaire d’origine peut être apprise par descente de gradient de manière supervisée,
ce qui améliore considérablement ses performances. Cela donne naissance à un CNN entièrement inter-
prétable appelé DCT2net. Pour traiter les artefacts restants induits par DCT2net, une solution hybride
originale entre DCT et DCT2net est proposée, tirant profit des avantages de chacune des deux bases de
débruitage ; DCT2net est sélectionné pour traiter les régions d’image non stationnaires tandis que DCT
est optimal pour les régions lisses par morceaux. Des expériences sur des images artificiellement bruitées
démontrent que DCT2net donne des résultats comparables à ceux produits par BM3D, mais de manière
plus rapide.

Chapitre 4 : Réseaux de neurones équivariants à la normalisation avec application au
débruitage d’images

Dans de nombreux systèmes de traitement de l’information, il peut être souhaitable de s’assurer que toute
modification de l’entrée, que ce soit via l’ajout d’une constante ou mise à l’échelle des valeurs d’intensité

21

Résumé en français

des pixels, entraîne une modification correspondante de la réponse du système. Bien que les réseaux
de neurones profonds remplacent progressivement toutes les méthodes traditionnelles de traitement au-
tomatique, il est surprenant de constater qu’ils ne garantissent pas cette propriété d’équivariance à la
normalisation (décalage et changement d’échelle), ce qui peut être préjudiciable dans de nombreuses ap-
plications. Pour résoudre ce problème, nous proposons une méthodologie permettant d’adapter les réseaux
de neurones existants de manière à ce que l’équivariance à la normalisation soit garantie dès la conception.
Notre principal argument est que non seulement les couches convolutives ordinaires, mais aussi toutes les
fonctions d’activation, y compris la fonction ReLU (Rectified Linear Unit), qui sont appliquées indépen-
damment à chaque neurone préactivé, devraient être complètement supprimées des réseaux de neurones
et remplacées par des alternatives mieux conditionnées. Pour ce faire, nous introduisons des convolutions
à contrainte affine et des couches de tris deux à deux le long des canaux comme substituts et nous mon-
trons que ces deux modifications architecturales préservent l’équivariance à la normalisation sans perte
de performance. Les résultats expérimentaux dans le domaine du débruitage d’images montrent que les
réseaux de neurones équivariants à la normalisation, en plus de leur meilleur conditionnement, induisent
également une bien meilleure généralisation à tous les niveaux de bruit.

Partie III : Débruitage rapide et efficace non supervisé via des combinaisons
linéaires de patchs

Chapitre 5 : Vers une vue unifiée des méthodes non locales : l’approche NL-Ridge

Dans ce chapitre, nous proposons une vue unifiée des méthodes non locales non supervisées pour le
débruitage des images, dont BM3D [35] est un représentant majeur, qui regroupent des patchs bruités en
fonction de leurs similitudes afin de les traiter de manière collaborative. Notre cadre général d’estimation
est basé sur la minimisation du risque quadratique, en procédant en deux étapes. En nous appuyant sur
une estimation non biaisée du risque lors de première étape puis sur l’“adaptation interne”, un concept
emprunté à la théorie de l’apprentissage profond, lors de la seconde, nous montrons que notre approche
permet de réinterpréter et de réconcilier plusieurs méthodes non locales de l’état de l’art. Dans ce cadre,
nous proposons un nouveau débruiteur appelé NL-Ridge qui exploite des combinaisons linéaires de patchs.
Bien que conceptuellement plus simple, nous montrons que NL-Ridge peut surpasser les débruiteurs non
supervisés parmi les plus performants.

Chapitre 6 : LIChI : améliorer le débruitage grâce à une nouvelle règle de chaînage

Dans ce chapitre, nous repensons la vue paramétrique des débruiteurs non locaux qui procèdent en deux
étapes. Nous proposons d’étendre la formulation mathématique paramétrique sous-jacente par itération,
en améliorant la qualité des images à chaque itération. Assez naturel, il s’avère qu’itérer au-delà de deux
itérations dégrade les images avec la plupart des méthodes [35, 96]. La formulation résultante implique
l’estimation d’un nombre très important de paramètres de manière non supervisée. En partant de la forme
paramétrée de NL-Ridge, nous proposons un schéma progressif pour estimer les paramètres en minimisant
le risque quadratique. En fin de compte, les images débruitées sont constituées de combinaisons linéaires
itératives de patchs. Des expériences sur des images artificiellement bruitées mais aussi sur des images

22

Résumé en français

bruitées du monde réel démontrent que notre méthode se compare favorablement aux meilleurs débrui-
teurs non supervisés tels que WNNM [57], surpassant les approches récentes basées sur l’apprentissage
profond, tout en étant beaucoup plus rapide.

Publications et communications

Cette thèse a donné lieu à plusieurs publications:
⋄ S. Herbreteau, E. Moebel, and C. Kervrann, “Normalization-Equivariant Neural Networks with

Application to Image Denoising,” arXiv preprint arXiv:2306.05037, 2023. (accepté par NeurIPS’23)
⋄ S. Herbreteau and C. Kervrann, “DCT2net: An Interpretable Shallow CNN for Image Denoising,”

IEEE Transactions on Image Processing, vol. 31, pp. 4292-4305, 2022.
⋄ S. Herbreteau and C. Kervrann, “Towards a Unified View of Unsupervised Non-Local Methods

for Image Denoising: The NL-Ridge Approach,” in IEEE International Conference on Image Pro-
cessing (ICIP), pp. 3376-3380, Bordeaux, France, 2022.
⋄ S. Herbreteau and C. Kervrann, “Unsupervised Linear and Iterative Combinations of Patches for

Image Denoising,” arXiv preprint arXiv:2212.00422, 2022. (en cours de révision)
et communications:
⋄ S. Herbreteau and C. Kervrann, “NL-Ridge: a novel statistical patch-based approach for image

denoising,” in 10th International Conference on Curves and Surfaces, Arcachon, France, 2022.
⋄ S. Herbreteau and C. Kervrann, “DCT2net: a DCT-based interpretable shallow CNN method

for efficient and fast image denoising,” in SIAM Conference on Imaging Science (IS22), virtual
conference, 2022.

23

INTRODUCTION

Motivation

In the realm of digital image acquisition, two significant independent types of noise can degrade the
quality of captured images [13, 50, 61, 145, 192].

Shot noise, also referred to as photon noise, stems from the inherent random nature of light. Image
sensors measure scene irradiance by counting indirectly the number of discrete photons over a given time
interval thanks to the the photoelectic effect that ensures the emission of electrons when light particles
hit a material. For a given image sensor and assuming a static scene, the number of photons detected
follows classically a Poisson distribution with parameter λt, where λ is the expected number of photons
per unit time interval, proportional to the true signal value, and t is the time exposure. Consequently,
the longer the exposure time t, the greater the number of photons collected. But as count values exhibit
fluctuations, it may cause the resulting image to appear grainy, making it difficult to interpret. Since the
signal-to-noise ratio (SNR) grows with the square root of the expected number of photons captured [61],√
λt, shot noise is more pronounced in low-light conditions (when λ is low) or when the image sensor is

underexposed (when t is low). Increasing the exposure time or the use of an opened aperture to capture
more light are two common techniques for reducing the amount of shot noise, both having their limits.
Shot noise cannot anyhow be totally eliminated due to its inherent nature in light measurement.

Read noise, on the other hand, is introduced during the process of converting the analog signal from
the camera sensor into a digital representation. Read noise is caused by various factors, including the
electronic components of the sensor, circuitry, and analog-to-digital conversion process. Read noise is
typically independent of the light intensity hitting the sensor and can be considered as an inherent noise
floor in the image acquisition system. Traditionally, this type of noise is mathematically modeled by an
additive white Gaussian noise, justified by the application of the central limit theorem.

While advanced image sensors with improved noise performance are continuously being developed,
the reduction of image noise cannot be entirely hardware-based since noise is inherent to the quantum
nature of light. The development of denoising algorithms, aimed at post-processing the raw image in
order to minimize the impact of the noise and enhance image quality, is a fast-growing line of software
research that has been attracting attention for several decades. The predominance of image denoising
in computational imaging is due, in part, to the fact that efficient denoising algorithms must be able
to encode or learn realistic image priors, a property directly exploited by “plug-and-play” methods [36,
48, 76, 77, 82, 93, 95, 152, 181, 194], and therefore answer the following question: what makes an image
natural to the human eye? Beyond their practical utility, denoising algorithms are thus a test bed to
respond to a more general metaphysical question, which is key in the resolution of many other computer
vision tasks, such as deblurring, super-resolution or more recently photo-realistic image generation.

25

Introduction

Clean image, x ∈ Rn Noisy observation, y ∈ Rn Denoised image, x̂ ∈ Rn

Figure 6 – Visual example of the problem of image denoising. The goal is to estimate the clean image (left) from
the observed noisy one (middle). To that end, a denoiser, here embodied by a vaccum cleaner, processes the noisy
image to output an estimation (right). The noise, represented by peppercorns (in reference to the salt-and-pepper
noise), can be either real, in which case the clean image is inaccessible, or artificially added for testing purposes.
Source: E. Simoncelli [168].

Mathematical formulation of the problem

According to the traditional model for digital sensors [13, 50, 61, 145, 192], image noise contains both
the signal-dependent Poisson component (the shot noise), and the signal-independent additive Gaussian
component (the read noise). Therefore, image noise is commonly described by a mixed Poisson-Gaussian
model. Specifically, representing a grayscale image with n pixels by a vector of Rn where each entry
encodes the pixel intensity, the noise model is:

y ∼ aP(x/a) +N (0n, bIn) , (3)

where y ∈ Rn is the observed noisy image, x ∈ Rn is the noise-free image (true signal), and a, b ∈ R+
∗ are

the parameters relative to shot and read noise, respectively, depending in particular on the acquisition
system and on the exposure time. A widespread simpler alternative to the mixed Poisson-Gaussian model
(3) is the additive white Gaussian noise (AWGN) model:

y ∼ N (x, σ2In) , (4)

where σ2 is the signal-independent variance of the noise. The formulation (4) can be seen as an approxi-
mation of (3) where the signal-dependent shot noise is neglected. Although it may seem to be a limitation
of this model, formulation (3) actually transposes to (4) when using a variance-stabilizing transforma-
tion (VST) such as the Anscombe transform [171] that amounts to applying per-pixel nonlinearities that
effectively reduce the signal dependence. Ultimately, due to its mathematical convenience, the AWGN

26

Introduction

(a) Original DCT basis (b) DCT2net learned basis

Figure 7 – DCT basis vs DCT2net basis for patches of size 9 × 9.

model is the most widely-used one.
From the noisy observation y, which follows either (3) or (4) but also any other, possibly unknown,

noise distribution, the aim of image denoising is to design a method for estimating the original unknown
signal x as faithfully as possible. This amounts to identifying a function f : Rn 7→ Rn such that a noisy
observation y can be mapped to a satisfactory estimate of x, i.e. f(y) ≈ x (see Figure 6).

Contributions of the thesis

Over the years, a rich variety of strategies, tools and theories have emerged to address the issue of
image denoising at the intersection of statistics, signal processing, optimization and functional analysis.
But this field has been recently immensely influenced by the development of machine learning techniques
and artificial intelligence. Viewing denoising as a simple regression problem, this task ultimately amounts
to learn to match the corrupted image to its source. The very best methods in image denoising leverage
deep neural networks which are trained on large external datasets consisting of clean/noisy image pairs.

However, though fast and efficient, these supervised networks suffer from their lack of interpretability
and usually have fewer good mathematical properties than their conventional counterparts. Acting as
“black boxes”, it can be very challenging to thoroughly understand how they produce a result, which can
be prohibitive for critical applications such as biomedical imaging. The first part of the thesis is dedicated
to this issue. Our first work contributes to the recent trend, which builds on traditional algorithms and
revisits them with a dose of deep learning, while keeping the original intuition. We focus specifically on
the popular DCT (Discrete Cosine Transform) denoiser [189] and show that it can be seen as a shallow
convolutional neural network (CNN) with weights corresponding to the DCT projection kernel and a
hard shrinkage function as activation function. By training this particular CNN on an external dataset,
we show that we can refine the resulting transform and improve considerably its performance. This gives
birth to a fully interpretable CNN called DCT2net. At the end of the optimization process, it is possible
to check what the network has just learned by directly displaying the learned transform (see Fig. 7). Sure
enough, the performance of DCT2net still falls short in comparison to state-of-the-art deep learning-based
methods but it is also much less computationally intensive and much easier to handle and understand.

27

Introduction

Figure 8 – Illustration of the proposed alternative for replacing the traditional scheme “convolution + element-
wise activation function” in convolutional neural networks: affine convolutions supersede ordinary ones by restrict-
ing the coefficients of each kernel to sum to one and the proposed sort pooling patterns introduce nonlinearities
by sorting two by two the pre-activated neurons along the channels.

Parallel to this work, we seek to adapt the existing state-of-the-art deep neural network architectures
to guarantee a mathematical property which is highly desirable in image denoising, namely normalization-
equivariance, which ensures that any change of the input noisy image, whether by shifting or scaling,
results in a corresponding change in the denoising response. Indeed, current deep neural networks sur-
prisingly do not guarantee such a property, which can be detrimental in many situations (source of
confusion and misinterpretation in critical applications). To address this issue, we propose a methodol-
ogy for adapting existing neural networks so that normalization-equivariance holds by design (see Fig. 8).
Our main claim is that not only ordinary convolutional layers, but also all activation functions, including
the ReLU (Rectified Linear Unit), which are applied element-wise to the pre-activated neurons, should
be completely removed from neural networks and replaced by better conditioned alternatives. To this
end, we introduce affine-constrained convolutions and channel-wise sort pooling layers as surrogates and
show that these two architectural modifications do preserve normalization-equivariance. Despite these
two important architectural changes, the performance of these alternative networks is not affected in any
way. On the contrary, thanks to their better-conditioning, they benefit, in the context of image denoising,
from an increased interpretability and especially robustness to variable noise levels both in practice and
in theory.

Finally, in some contexts, collecting a large enough high-quality dataset for training denoising models
is too much time consuming or even impossible. In these cases, the only applicable methods are the
unsupervised methods, which rely solely on the noisy input image for training. Historically, such methods
were investigated before their supervised counterparts, in part because of computational limitations of
the time. In the second part of the thesis, we propose a general estimation framework based on quadratic
risk minimization for unifying unsupervised non-local methods. The latter operate by gathering noisy
patches together according to their similarities in order to denoise them collaboratively, and so far rep-
resent the best unsupervised image denoising methods. Leveraging an unbiased risk estimate for the first
step and the “internal adaptation”, a concept borrowed from deep learning theory, for the second one,
we show that our approach enables to reconcile several patch aggregation methods for image denois-
ing (see Fig. 9). Based on this framework, we propose a novel denoiser called NL-Ridge which exploits
linear combinations of patches. While being simpler conceptually, we show that NL-Ridge may outper-

28

Introduction

<latexit sha1_base64="V2A1l/zhpiPMtE5rpXIuVWOYu+o=">AAAEZniclVNNb9NAEJ20BkqAfoAQBy4WKRKnyKmqwrGCSw89FClpq6ZRtXY26aq21/KugSjKv+AKl/4q/kH7L3g72SDSKi1s5Hj2zXtvd2a9cZEqY6PoV21pOXjw8NHK4/qTp89W19Y3nh8aXZWJ7CQ61eVxLIxMVS47VtlUHhelFFmcyqP44pPLH32RpVE6b9tRIXuZGOZqoBJhAZ1sDs5O2+fSis2z9UbUjHiEt4OWDxrkx4HeqF3SKfVJU0IVZSQpJ4s4JUEGvy61KKICWI/GwEpEivOSJlSHtgJLgiGAXuB/iFnXoznmztOwOsEqKZ4SypDeQqPBKxG71ULOV+zs0EXeY/Z0exvhHXuvDKilc6D36WbMf9cZMDKufYSn/x/KPtABqnI9nVfd1TkLzQfumIKyYMT1MvEeFZ+B61P4Vw8tHApgLu4jXyJOWDk71ZA1hjvtqhGcv2KmQ9088dyKrrmyxbW5Klz/NX3zX0IO/Cvjkk/Zrdylfa5kyp4gas/lJ2AYv1PFneot9Brz/jPuodNNPZ37ARiae2HgMnOa3Ll/Abche6s/u7uPXXCu8vdF4y39KnXcvNbNe3Y7ONxqtnaa25+3Grsf/R1codf0ht7hnr2nXdpDLR145/SdftDP5atgNXgZvJpSl2pe84LmRhD+Bu7S4co=</latexit>

f⇥

<latexit sha1_base64="RDDHYb0iO2KFBQXDqOztyX+uI+M=">AAAEaniclVNNbxMxEJ20Cy3hqy0n1MuKgMSFaFOhwrFqLxw4FKlpK4WAvI6bWtldr9ZeIIryP7gWfhX/ACR+BM8TBxGqtOBos+M37z17xuu0zLR1SfKtsbIa3bi5tn6refvO3Xv3Nza3jq2pK6m60mSmOk2FVZkuVNdpl6nTslIiTzN1ko4OfP7kg6qsNsWRG5eqn4thoc+0FA7Qu/3MyNGzXDh5rovh+41W0k54xJeDTghaFMah2Wx8pbc0IEOSaspJUUEOcUaCLH496lBCJbA+TYBViDTnFU2pCW0NlgJDAB3hf4hZL6AF5t7TslpilQxPBWVMT6Ax4FWI/Wox52t29ugy7wl7+r2N8U6DVw7U0TnQ63Rz5r/rLBg51z7GM/gP5QDoGaryPV1UXdU5B81L7piGsmTE91IGj5rPwPcp/qOHDg4lMB8PkK8QS1bOTzVmjeVO+2oE578z06N+LgO3ph9c2fLafBW+/4Y+hS+hAP6RccWn7Ffu0WuuZMaeIjpayE/BsGGnmjvVX+o14f3n3EOvm3l690MwDPfCwmXuNL1y/wJuQ/bWv3d3HbvkXB3ui8FbhVWauHmdv+/Z5eB4p93ZbT9/s9Pa2w93cJ226RE9xT17QXv0CrV04V3RZ7qgL6s/o63oYbQ9o640guYBLYzo8S+hxeP2</latexit>

Block-matching
<latexit sha1_base64="n2v+ACpR7l71pZfkzSVBBXbyr7A=">AAAEd3iclVNNbxMxEJ20C5TwlcIJcWBFBOop2q0QcKzgwoFDQU1bKY2qXccNVnfXK9sLRFHEj0Fc4ffwD+AncON54iBClRYcbXb85r1nz3id14WyLkm+tdbWo0uXr2xcbV+7fuPmrc7m7X2rGyNkX+hCm8M8s7JQlew75Qp5WBuZlXkhD/LTFz5/8E4aq3S15ya1HJbZuFInSmQO0HHn7pGQlZNGVeP2G1lrqzyOWXzc6Sa9hEd8NkhD0KUwdvVm6xMd0Yg0CWqoJEkVOcQFZWTxG1BKCdXAhjQFZhApzkuaURvaBiwJRgb0FP9jzAYBrTD3npbVAqsUeAyUMT2ERoNnEPvVYs437OzRVd5T9vR7m+CdB68SqKO3QC/SLZj/rrNglFz7BM/oP5QjoCeoyvd0WXVe5xw0z7hjCsqaEd9LETwaPgPfp/iPHjo41MB8PELeIBasXJxqzBrLnfbVZJz/zkyP+rkI3IZ+cGWra/NV+P5r+hC+hAr4e8Yln7JfeUCvuJI5e4Zobyk/A8OGnSru1HCl15T3X3IPvW7u6d13wdDcCwuXhdPs3P1ncBuzt/q9u4vYNeeacF803jKs0sbNS/++Z2eD/e1e+qT3+PV2d+d5uIMbdI8e0Bbu2VPaoZeopQ/vj/SZvtDX9Z/R/ehRtDWnrrWC5g4tjSj9BYAt6OE=</latexit>

Repositioning

<latexit sha1_base64="Pwac7BjiIXY+7afQNJeeS3E/Fms=">AAADDXicjVLLSsNAFD2Nr1pfVZe6CBbBVUlF1GXRjQsXFWwrWCnJdKyDaSZMJqKIG3/A33Cr4E7c+g3+gS78B++MKahFdEKSM+fec2fOnQniUCTa815yztDwyOhYfrwwMTk1PVOcnWskMlWM15kMpToI/ISHIuJ1LXTID2LF/V4Q8mZwum3izTOuEiGjfX0R86Oe343EsWC+JqpdXGwxHmmuRNQt7Ermh26r1eGRFAkx7WLJK3t2uIOgkoESslGTxXe00IEEQ4oeOCJowiF8JPQcogIPMXFHuCROERI2znGFAmlTyuKU4RN7St8uzQ4zNqK5qZlYNaNVQnoVKV0sk0ZSniJsVnNtPLWVDftb7Utb0+ztgv5BVqtHrMYJsX/p+pn/1RkvGsfYtB4EeYotY9yxrEpqu2J27n5xpalCTJzBHYorwswq+312rSax3k1vfRt/tZmGNXOW5aZ4s7v83Z/xYToicW7PpkCXofLz6AdBY7VcWS+v7a2WqlvZtchjAUtYobPfQBU7qKFOK13jFne4d26cB+fRefpMdXKZZh7fhvP8AWzLpAI=</latexit>

Local
denoising

<latexit sha1_base64="OcI3g6F865/BxA9e22lgKmds8vc=">AAAC+XicjVLLSsNAFD2Nr1pfVZdugq3gqiQi6rLoxmUF+8C2SJJOa2iaxMlELKF/4VbBnbj1a/wDXfgP3hlTUEvRCUnOnHvPnTl3xg49NxKG8ZrRZmbn5heyi7ml5ZXVtfz6Ri0KYu6wqhN4AW/YVsQ812dV4QqPNULOrIHtsbrdP5Hx+g3jkRv452IYsvbA6vlu13UsQdRFsRVdc5H4o+JlvmCUDDX0SWCmoIB0VIL8B1roIICDGAMw+BCEPViI6GnChIGQuDYS4jghV8UZRsiRNqYsRhkWsX369mjWTFmf5rJmpNQOreLRy0mpY4c0AeVxwnI1XcVjVVmy02onqqbc25D+dlprQKzAFbF/6caZ/9VJLwJdHCkPLnkKFSPdOWmVWHVF7lz/5kpQhZA4iTsU54QdpRz3WVeaSHmXvbVU/E1lSlbOnTQ3xrva5XR/0ofsSIBbdTY5ugzm76OfBLW9knlQ2j/bK5SP02uRxRa2sUtnf4gyTlFBlVbycYd7PGiJ9qg9ac9fqVom1Wzix9BePgFDsZxJ</latexit>p
n

<latexit sha1_base64="OcI3g6F865/BxA9e22lgKmds8vc=">AAAC+XicjVLLSsNAFD2Nr1pfVZdugq3gqiQi6rLoxmUF+8C2SJJOa2iaxMlELKF/4VbBnbj1a/wDXfgP3hlTUEvRCUnOnHvPnTl3xg49NxKG8ZrRZmbn5heyi7ml5ZXVtfz6Ri0KYu6wqhN4AW/YVsQ812dV4QqPNULOrIHtsbrdP5Hx+g3jkRv452IYsvbA6vlu13UsQdRFsRVdc5H4o+JlvmCUDDX0SWCmoIB0VIL8B1roIICDGAMw+BCEPViI6GnChIGQuDYS4jghV8UZRsiRNqYsRhkWsX369mjWTFmf5rJmpNQOreLRy0mpY4c0AeVxwnI1XcVjVVmy02onqqbc25D+dlprQKzAFbF/6caZ/9VJLwJdHCkPLnkKFSPdOWmVWHVF7lz/5kpQhZA4iTsU54QdpRz3WVeaSHmXvbVU/E1lSlbOnTQ3xrva5XR/0ofsSIBbdTY5ugzm76OfBLW9knlQ2j/bK5SP02uRxRa2sUtnf4gyTlFBlVbycYd7PGiJ9qg9ac9fqVom1Wzix9BePgFDsZxJ</latexit>p
n

<latexit sha1_base64="M/7JhzhFliMLbJplLQVIGBLFDdg=">AAAC+HicjVLLTsJAFD3UF+ILdemmEUxckUKMuiS6cYmJPAwQ05YBJvSVdmpEwle41cSdcevf+Ae68B+8M5ZEJUSnaXvm3HvuzLkzVuDwSBjGa0qbm19YXEovZ1ZW19Y3sptbtciPQ5tVbd/xw4ZlRszhHqsKLhzWCEJmupbD6tbgVMbr1yyMuO9diGHA2q7Z83iX26Yg6jLf6pti1Bjnr7I5o2CooU+DYgJySEbFz36ghQ582IjhgsGDIOzARERPE0UYCIhrY0RcSIirOMMYGdLGlMUowyR2QN8ezZoJ69Fc1oyU2qZVHHpDUurYI41PeSFhuZqu4rGqLNlZtUeqptzbkP5WUsslVqBP7F+6SeZ/ddKLQBfHygMnT4FipDs7qRKrrsid699cCaoQECdxh+IhYVspJ33WlSZS3mVvTRV/U5mSlXM7yY3xrnY525/0ITvi40adTYYuQ/H30U+DWqlQPCwcnJdy5ZPkWqSxg13s09kfoYwzVFCllVzc4R4P2q32qD1pz1+pWirRbOPH0F4+AXoXm5w=</latexit>

X̂

<latexit sha1_base64="JjGP/UIIz4tYNz1ZjCfYb1aTOi8=">AAAC8nicjVLLSsNAFD2Nr1pfVZdugq3gqiRF1GXRjcuK9gG1SJJOa2iahMlELMVPcKvgTtz6Q/6BLvwH74xTUEvRCUnOnHvPnTl3xo0DPxGW9ZoxZmbn5heyi7ml5ZXVtfz6Rj2JUu6xmhcFEW+6TsICP2Q14YuANWPOnIEbsIbbP5bxxjXjiR+F52IYs/bA6YV+1/ccQdRZsV+8zBeskqWGOQlsDQrQoxrlP3CBDiJ4SDEAQwhBOICDhJ4WbFiIiWtjRBwn5Ks4wy1ypE0pi1GGQ2yfvj2atTQb0lzWTJTao1UCejkpTeyQJqI8TliuZqp4qipLdlrtkaop9zakv6trDYgVuCL2L90487866UWgi0PlwSdPsWKkO09XSVVX5M7Nb64EVYiJk7hDcU7YU8pxn02lSZR32VtHxd9UpmTl3NO5Kd7VLqf7kz5kRyLcqLPJ0WWwfx/9JKiXS/Z+ae+0XKgc6WuRxRa2sUtnf4AKTlBFjVbq4Q73eDCE8Wg8Gc9fqUZGazbxYxgvnzFUmOI=</latexit>

k

<latexit sha1_base64="b3wPqC1+Y4xaN8Twrz/1RF++Pvc=">AAADEHicjVLLSsNAFD3GV62vqEsXBqvgqqRF1GXRjcsq1lbaKkk66tC8SCZiCV36A/6GWwV34tY/8A904T94Z0zBB6ITkpw59547c+6MHbo8Fqb5PKQNj4yOjecm8pNT0zOz+tz8YRwkkcNqTuAGUcO2YuZyn9UEFy5rhBGzPNtldbu7I+P1CxbFPPAPRC9kbc868/kpdyxB1Im+tHJktLhvtDxLnNt2ut8/TmkmuMdio9tfOdELZtFUw/gJShkoIBvVQH9DCx0EcJDAA4MPQdiFhZieJkowERLXRkpcRIirOEMfedImlMUowyK2S98zmjUz1qe5rBkrtUOruPRGpDSwSpqA8iLCcjVDxRNVWbK/1U5VTbm3Hv3trJZHrMA5sX/pBpn/1UkvAqfYUh44eQoVI905WZVEdUXu3PjkSlCFkDiJOxSPCDtKOeizoTSx8i57a6n4i8qUrJw7WW6CV7XL3/1JH7IjAS7V2eTpMpS+H/1PcFguljaK63vlQmU7uxY5LGIZa3T2m6hgF1XUaKUr3OAWd9q1dq89aI8fqdpQplnAl6E9vQMIMaSN</latexit>

Y 2 Rn⇥k

BM3D [35] assumes a sparse repre-
sentation in a transform domain:

NL-Bayes [96] was originally estab-
lished in the Bayesian setting:

NL-Ridge [65] (ours) leverages lin-
ear combinations of noisy patches:

fΘ(Y) = P⊤(Θ⊙ (PY Q))Q⊤ , fΘ,β(Y) = ΘY + β1⊤
k , fΘ(Y) = YΘ .

P, Q: orthogonal matrices. 1k: k-dimensional all-ones vector.

Figure 9 – Illustration of the parametric view of several popular non-local denoisers. Examples of parameterized
functions unequivocally identifying the denoiser are given, whose optimal parameters are eventually selected for
each group of patches by “internal adaptation” optimization.

form well established state-of-the-art unsupervised denoisers. Later, we extend the NL-Ridge formulation
by proposing a novel chaining technique, involving estimating an even larger amount of parameters in
an unsupervised manner. The resulting multi-step algorithm called LIChI removes a large amount of
denoising artifacts compared to its two-step counterpart, resulting in a nicer final image (see Fig. 10).
Experiments on artificially noisy images and on real-world noisy images, assumed to be corrupted by
mixed Poisson-Gaussian noise, demonstrate that our method compares favorably with the very best un-
supervised denoisers, outperforming the recent unsupervised deep learning based approaches, while being
much faster and fully interpretable.

Thesis outline

This thesis is organized into three parts, each subdivided into two chapters. Chapters 3, 4, 5 and
6 correspond to the articles [64] [67], [65] and [66], respectively. The methods and algorithms proposed
in this thesis, which are not specific to any particular type of imagery, are applied and evaluated on
simulated satellite imagery data made available by Airbus Defense and Space. The corresponding results
are reported in Appendix A at the end of the manuscript.

Part I: Related work on image denoising

Chapter 1: Supervised learning

In this chapter, we take the reader on a guided tour of supervised learning methods for image denoising.
Starting from a general framework based on empirical risk minimization, we present the three main classes
of parameterized functions, also known as neural network architectures in artificial intelligence. For each
architecture, we study a popular state-of-the-art representative for image denoising. Next, we address

29

Introduction

(a)

Noisy / 22.09 dB

Ground truth BM3D [35] / 36.76 dB NL-Ridge (ours) / 36.82 dB

DnCNN [195] / 37.06 dB WNNM [57] / 36.95 dB LIChI (ours) / 37.18 dB

(b)

Noisy / 22.09 dB

Ground truth BM3D [35] / 29.50 dB NL-Ridge (ours) / 29.99 dB

DnCNN [195] / 30.06 dB WNNM [57] / 30.94 dB LIChI (ours) / 30.99 dB

Figure 10 – Qualitative comparison of image denoising results for different algorithms with synthetic white
Gaussian noise (σ = 20). PSNR (in dB) is indicated for each method.

the issue of finding the best function for denoising among a given family of parametric functions, more
commonly known as parameter training. Finally, we study the special case of weakly supervised learning,
which does not require noise-free images for training.

Chapter 2: Unsupervised learning

Both supervised and weakly supervised learning strategies are extremely dependent on data quality
(although they do not rely on the same type of image pairs), which is a well-established weakness. In some
situations, it may be challenging to gather a large enough dataset for learning. Only unsupervised methods
- in which only the noisy input image is used for training - are operationally available. Historically, these
methods were studied before their supervised counterparts, partly due to the computational limitations
of the time that made resource-intensive supervised learning unthinkable. In this chapter, we present
a non-exhaustive list of well-known unsupervised algorithms, classified according to four different main
principles. As we shall see, the best unsupervised denoisers share key elements, in particular the property
of self-similarity observed in images, whatever their category.

Part II: Towards interpretable and better conditioned supervised neural net-
works for image denoising

Chapter 3: DCT2net: an interpretable shallow CNN for image denoising

This chapter addresses the issue of interpretable noise removal in images, focusing our attention on
the DCT algorithm [189] (Discrete Cosine Transform). The latter, well known in signal processing,

30

Introduction

has been extensively studied over the years. Although very simple, it is still an essential component of
traditional state-of-the-art denoising algorithms such as BM3D [35]. However, in recent years, supervised
deep neural networks have outperformed their traditional counterparts, making signal processing methods
less attractive. In this chapter, we show that a DCT denoiser can be considered as a shallow convolutional
neural network (CNN) and that its original linear transform can be tuned by gradient descent in a
supervised way, which significantly improves its performance. The result is a fully interpretable CNN
called DCT2net. To deal with the remaining artifacts induced by DCT2net, an original hybrid solution
between DCT and DCT2net is proposed, taking advantage of the benefits of each of the two denoising
bases; DCT2net is selected to deal with non-stationary image patches while DCT is optimal for piecewise
smooth patches. Experiments on artificially noisy images demonstrate that two-layer DCT2net delivers
results comparable to BM3D, but more rapidly.

Chapter 4: Normalization-equivariant neural networks with application to image denoising

In many information processing systems, it may be desirable to ensure that any change of the input,
whether by shifting or scaling, results in a corresponding change in the system response. While deep
neural networks are gradually replacing all traditional automatic processing methods, they surprisingly
do not guarantee such normalization-equivariance (scale and shift) property, which can be detrimental
in many applications. To address this issue, we propose a methodology for adapting existing neural
networks so that normalization-equivariance holds by design. Our main claim is that not only ordinary
convolutional layers, but also all activation functions, including the ReLU (Rectified Linear Unit), which
are applied element-wise to the pre-activated neurons, should be completely removed from neural networks
and replaced by better conditioned alternatives. To this end, we introduce affine-constrained convolutions
and channel-wise sort pooling layers as surrogates and show that these two architectural modifications do
preserve normalization-equivariance without loss of performance. Experimental results in image denoising
show that normalization-equivariant neural networks, in addition to their better conditioning, also provide
much better generalization across noise levels.

Part III: Fast and efficient unsupervised denoising via linear combinations of
patches

Chapter 5: Towards a unified view of non-local methods: the NL-Ridge approach

In this chapter, we propose a unified view of unsupervised non-local methods for image denoising, for
which BM3D [35] is a major representative, that operate by gathering noisy patches together according
to their similarities in order to process them collaboratively. Our general estimation framework is based
on quadratic risk minimization, proceeding in two steps. Relying on unbiased risk estimation (URE)
for the first step and on “internal adaptation”, a concept borrowed from deep learning theory, for the
second, we show that our approach enables to reinterpret and reconcile previous state-of-the-art non-
local methods. Within this framework, we propose a novel denoiser called NL-Ridge that exploits linear
combinations of patches. Although conceptually simpler, we show that NL-Ridge can outperform some
of the best-performing unsupervised denoisers.

31

Introduction

Chapter 6: LIChI: boosting denoising performance via a novel chaining rule

In this chapter, we rethink the parametric view of non-local denoisers, which proceed in two stages.
We propose to extend the underlying parametric mathematical formulation iteratively, improving image
quality with each iteration. Although natural, it turns out that iterating beyond two iterations degrades
images with most methods [35, 96]. The resulting formulation involves estimating a very large number of
parameters in an unsupervised way. Starting from the parameterized form of NL-Ridge [65], we propose a
progressive scheme to estimate the parameters by minimizing the quadratic risk. Ultimately, the denoised
images consist of iterative linear combinations of patches. Experiments on both artificially noisy and real-
world noisy images demonstrate that our method compares favorably with the best unsupervised denoisers
such as WNNM [57], outperforming recent deep learning-based approaches, while being much faster.

Publications and communications

This thesis has led to several publications:
⋄ S. Herbreteau, E. Moebel, and C. Kervrann, “Normalization-Equivariant Neural Networks with

Application to Image Denoising,” arXiv preprint arXiv:2306.05037, 2023. (accepted by NeurIPS’23)
⋄ S. Herbreteau and C. Kervrann, “DCT2net: An Interpretable Shallow CNN for Image Denoising,”

IEEE Transactions on Image Processing, vol. 31, pp. 4292-4305, 2022.
⋄ S. Herbreteau and C. Kervrann, “Towards a Unified View of Unsupervised Non-Local Methods

for Image Denoising: The NL-Ridge Approach,” in IEEE International Conference on Image Pro-
cessing (ICIP), pp. 3376-3380, Bordeaux, France, 2022.

⋄ S. Herbreteau and C. Kervrann, “Unsupervised Linear and Iterative Combinations of Patches for
Image Denoising,” arXiv preprint arXiv:2212.00422, 2022. (under review)

and communications:
⋄ S. Herbreteau and C. Kervrann, “NL-Ridge: a novel statistical patch-based approach for image

denoising,” in 10th International Conference on Curves and Surfaces, Arcachon, France, 2022.
⋄ S. Herbreteau and C. Kervrann, “DCT2net: a DCT-based interpretable shallow CNN method

for efficient and fast image denoising,” in SIAM Conference on Imaging Science (IS22), virtual
conference, 2022.

32

Part I

Related work on image denoising

33

Chapter 1

SUPERVISED LEARNING

In this chapter, we take the reader on a guided tour of supervised learning
methods for image denoising. Starting from a general framework based on em-
pirical risk minimization, we present the three main classes of parameterized
functions, also known as neural network architectures in artificial intelligence.
For each architecture, we study a popular state-of-the-art representative for
image denoising. Next, we address the issue of finding the best function for de-
noising among a given family of parametric functions, more commonly known
as parameter training. Finally, we study the special case of weakly supervised
learning, which does not require noise-free images for training.

1.1 Principle of supervised learning

The holy grail in image denoising is to find a universal function f that, given a noisy observation y ∈ Y,
maps the corresponding noise-free image x ∈ X . Unfortunately, such a function is purely hypothetical as
image denoising is an ill-posed inverse problem in the sense that the mere experimental observation of a
noisy image is not enough to perfectly determine the unknown true image. In order to narrow down the
space of possibilities and arrive at a unique solution, a risk minimization point of view has been widely
adopted in past years. More precisely, let us define the risk of function f as:

R(f) = Ex,y∥f(y)− x∥ , (1.1)

where (x, y) ∈ X × Y model all possible pairs of clean/noisy natural images, with the associated joint
probability distribution p(x, y). One wants ideally to find:

f∗ ∈ arg min
f
R(f). (1.2)

Usually the squared ℓ2 norm or the ℓ1 norm are used to measure closeness in (1.1) and are examples
of so-called loss functions. In the case of the squared ℓ2 norm, f∗(y) is nothing else than the mini-
mum mean square error (MMSE) estimator. Restricting f to be a member of a sufficiently general class
of parameterized functions (fθ), the problem (1.2) transposes to the following parameter optimization
problem:

θ∗ ∈ arg min
θ
R(fθ) . (1.3)

In general, as the joint distribution p(x, y) is unknown, an empirical sample consisting of a finite
number S of pairs of clean/noisy images, called training set, is used as a surrogate. The empirical risk is

35

Chapter 1 – Supervised learning

then defined as:

Remp(fθ) = 1
S

S∑
s=1
∥fθ(ys)− xs∥ . (1.4)

Note that, depending on the standard chosen to measure proximity, minimizing the empirical risk (1.4)
with respect to θ actually amounts to minimizing the mean square error (MSE) or the mean absolute
error (MAE), in most cases, over a finite set of image pairs. This approach is said to be supervised in the
sense that it relies on an external dataset of clean/noisy pairs of images on which the model is optimized.
However, minimizing the risk on a finite subset of X × Y, designating all possible pairs of clean/noisy
images, cannot guarantee that the model will provide also good performance on unseen samples. Indeed,
a function fθ that presents a low empirical risk (1.4) may sometimes be far from optimality with regard to
the true risk defined in (1.1). This well-known phenomenon is called overfitting and may basically occur
either when the training set is not enough representative of the true distribution p(x, y) of data in X ×Y,
or when (fθ) is over-parameterized such that it may match too closely or even exactly the training set
(in this latter case, we say that the function interpolates the data points). In that respect, optimization
needs to be differentiated from machine learning which is precisely concerned with minimizing the loss
on samples outside the training set.

Machine learning theory states that a necessary condition for good generalization beyond the training
set, is that this latter must provide sufficiently diverse, abundant and representative examples of X ×Y.
Collecting high-quality training sets may be very challenging in some situations, but the success of
supervised learning depends on it, and image denoising is no exception [1, 13, 20, 192, 193]. In order to
assess the generalization capabilities of the learned model, a so-called test set is used, consisting of a finite
subset drawn randomly from X × Y and strictly disjoint from the training set on which optimization is
done. The performance of the model on the test set is of course an imperfect measure of its generalization
as there exists no finite subset of X × Y that represents perfectly the true distribution p(x, y) but it is
the only reasonable metric at our disposal.

From this very general paradigm, several issues need be addressed. First of all, the choice of the class
of parameterized functions (fθ) is an important part of the success of supervised machine learning. The
chosen class must indeed be sufficiently large for a chance to contain high-performance functions for
the denoising task; but at the same time, oversized classes may lead to an overfitted model. Then, once
the parameterized class of functions has been chosen, solving the inherent optimization problem defined
in (1.3) can be particularly cumbersome and one would like to be able to rely on efficient and general
heuristics to deal with it. Finally, the quality of the training set is crucial but, in numerous contexts,
sufficiently many diverse and abundant noise-free images are unfortunately not available. A recent line of
research proposes to relax the need for clean images by adopting a so-called weakly supervised learning
approach. In the following sections, we show how all these issues are commonly addressed in the case of
image denoising.

1.2 Classes of parameterized functions

In this section, we review the most three major classes of parameterized functions (fθ) that were
successfully experimented in image denoising. All of them are in fact subcategories of the general class of

36

1.2. Classes of parameterized functions

parameterized functions that are called (improperly?) “artificial neural networks”.

1.2.1 Multi-layer perceptron (MLP)

Historically, the first class of parameterized functions used in supervised machine learning is the
multi-layer perceptron (MLP) proposed by F. Rosenblatt [154]. The seminal work from H. C. Burger
et al. [17] constitutes the first successful attempt of learning the mapping from a noisy image to its
corresponding noise-free one with such an artificial neural network. For the first time in the field of image
denoising, learning approaches have been compared favorably with unsupervised (a.k.a non-learning)
methods, without making any assumptions about natural images or about noise type.

Mathematical description

Formally, a multi-layer perceptron with L ≥ 1 hidden layers is a nonlinear function fθ : y ∈ Rn0 7→
RnL+1 of the following form:

fθ(y) =
[
φΘL+1,bL+1 ◦ ξL ◦ φΘL,bL

◦ . . . ◦ ξ1 ◦ φΘ1,b1

]
(y) , (1.5)

composed of:
— L + 1 parameterized affine functions φΘl,bl

: z ∈ Rnl−1 7→ Θlz + bl, where Θl ∈ Rnl×nl−1 and
bl ∈ Rnl are the weight matrices and bias vectors, respectively, that parameterize the MLP:
θ =

⋃L+1
l=1 {Θl, bl},

— L nonlinear functions ξl that operate component-wise.
Interestingly, any function fθ belonging to the MLP class in (1.5) can be viewed as a neural network.

Indeed, by definition, the L intermediate vectors

h(l) = [ξl ◦ φΘl,bl
◦ . . . ◦ ξ1 ◦ φΘ1,b1] (y) ∈ Rnl (1.6)

are called hidden layers and their components are referred to as hidden neurons. In the same way, vectors
h(0) = y and h(L+1) = fθ(y) are called input layer and output layer, respectively, and their components
are named neurons as well, for the sake of consistency. Moreover, the components of matrices Θl can be
viewed as neural connections since the ith row of Θl basically maps all the neurons from the layer h(l)

to the ith neuron of the following layer h(l+1). Finally, the nonlinear functions ξl are called activation
functions because they aim to mimic the frequency of action potentials, or “firing”, of real biological
neurons. Figure 1.1 shows the common representation of a MLP which justifies its vocabulary borrowed
from the terminology of the human brain.

Historically, the first activation functions that were investigated are the sigmoid functions, character-
ized by their “S”-shaped curves. In particular the hyperbolic tangent:

tanh : t 7→ et − e−t

et + e−t
= 1− e−2t

1 + e−2t
, (1.7)

ranging from −1 to 1, and its variants such as the standard logistic function were favored because they are
mathematically convenient (easily computable and differentiable as tanh′(t) = 1− tanh2(t)) and are close

37

Chapter 1 – Supervised learning

h
(0)
1

h
(0)
2

h
(0)
3

h
(0)
4

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(2)
5

h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
4

h
(3)
5

h
(4)
1

h
(4)
2

h
(4)
3

input
layer

hidden layers

output
layer

Figure 1.1 – A Multi-Layer Perceptron (MLP) composed of an input layer with four neurons, three hidden
layers with five neurons each, and an output layer with three neurons.

to linear near origin while saturating rather quickly when getting away from it. In recent developments of
deep learning the rectified linear unit (ReLU) is more frequently used as an even simpler and cost-efficient
alternative:

ReLU : t 7→ max(0, t) . (1.8)

A particularly important result [33, 54, 72] states that any continuous function f : Rn 7→ Rm can
be approximated to any given accuracy by a MLP on any compact subspace of Rn, provided that suffi-
ciently many neurons are available. This result and its derivatives were subsequently named “universal
approximation theorems”. They all imply that neural networks can represent a wide variety of interesting
functions when given appropriate weights. On the other hand, they typically do not provide a construction
for the weights, but merely state that such a construction is possible.

MLP applied on patches for image denoising

Given the strong mathematical guaranties provided by the “universal approximation theorems”, the
parameterized functions (fθ) belonging to the MLP class are particularly suitable for approximating the
ideal function f minimizing the risk defined in (1.1). H. C. Burger et al. [17] were among the first to
investigate the potential of such functions in the field of image denoising. They proposed to use a MLP
to denoise the overlapping patches of noisy images, assuming that noise removal is a local issue in the
images. This choice is supported by two technical observations. First of all, if MLPs were used on the
entire image instead, they would be dependent on the image size which is unintended. Second, and not
least, MLPs applied on the complete image would require an intractable number of parameters. Indeed,
since a transition from one layer to the next requires a matrix Θl of parameters, the total number of
parameters of a MLP is of the order of the square of the input size, in the case of constant width MLP.
Transposed to images, this represents as many parameters as the square of the number of pixels! This
large number of parameters makes its use prohibitive in most cases.

38

1.2. Classes of parameterized functions

The retained architecture is made up of 4 hidden layers of size 2047 each and is intended to be applied
to patches of size 17× 17 = 289. Formally, the resulting parameterized function is of the form:

fMLP
θ : y ∈ R289 7→

[
φΘL+1,bL+1 ◦ ξ ◦ φΘL,bL

◦ . . . ◦ ξ ◦ φΘ1,b1

]
(y) , (1.9)

where L = 4, the nonlinear activation function ξ is the hyperbolic tangent (1.7), and the dimensions of
the weights and biases are Θ1 ∈ R2047×289, Θl ∈ R2047×2047 for 2 ≤ l ≤ 4, Θ5 ∈ R289×2047, bl ∈ R2047 for
l ≤ 4 and b5 ∈ R289. The total number of trainable parameters for this MLP is then:

dim(θ) = 2× 2047× 289 + 3× 2047× 2047 + 4× 2047 + 289 = 13, 762, 270 .

For training, H. C. Burger et al. [17] used a large training set of pairs of clean/noisy flattened patches
(362 million training samples in their experiments of size 17 × 17 taken from the union of the LabelMe
dataset [158], containing approximately 150, 000 images, and the Berkeley Segmentation Dataset [129]
composed of 400 images) on which the empirical quadratic risk (1.4) is minimized. At inference, a given
noisy image is decomposed into its overlapping flattened patches and each patch is denoised separately
with the learned MLP. The final denoised image is obtained by averaging the numerous estimates available
for each pixel.

H. C. Burger et al. [17] achieved state-of-the-art results on homoscedastic Gaussian noise that com-
pared favorably with BM3D [35], the most cited unsupervised denoiser, at the cost of a full month of
training on a GPU at the time. While promising, the resulting denoiser was not yet competitive in terms
of inference time and flexibility, as the model handled a single noise level and did not generalize well
to other noise levels compared to other denoising methods (although solutions were proposed [183]).
Moreover, the multiple artifacts inherently induced by the method as well as its lack of interpretability
definitely made it less usable in practice than its conventional counterparts.

1.2.2 Convolutional neural networks (CNN)

Convolutional neural networks is a class of parameterized functions (fθ) that can be described essen-
tially as a sparse version of multi-layer perceptrons dedicated to two-dimensional inputs. This architecture
is widely used in all areas of image processing for its lightness compared to MLPs and its increased per-
formance, image denoising being no exception [6, 28, 114, 127, 194–197].

Mathematical description

The 2D convolution, or 2D cross-correlation, of an image y ∈ RH×W ×C , or feature map, of size H×W
composed of C channels (color components for instance but also any abstract embedding of the input
pixels) with a weight kernel Θ ∈ Rk1×k2×C (restricted to be smaller than the dimensions of the feature
map: k1 ≤ H and k2 ≤ W), denoted y ⊗Θ, is defined as a sliding dot product between Θ and the local
features of y. This operation produces a single-channel output feature map of size (H−k1+1)×(W−k2+1).
More precisely, a 2D convolution y ⊗Θ consists in splitting the input feature map y into its overlapping
3D blocks of the same size as the kernel Θ – there are (H − k1 + 1) × (W − k2 + 1) overlapping blocks
– and computing the dot product with kernel Θ for all of them: each dot product creates a pre-activated

39

Chapter 1 – Supervised learning

Figure 1.2 – A 3 × 3 2D convolution without padding which produces four output neurons.

neuron. Figure 1.2 illustrates the process of a 2D convolution. In practice, numerous 2D convolutions are
performed successively, involving a different weight kernel Θi each time, and their results are concatenated
along channels to produce a multi-channel output, or layer. Note that the channel size C ′ of the output
layer is strictly equal to the number of 2D convolutions that were performed. For the sake of notation
simplicity, the C ′ convolutional kernels relative to a same layer are gathered together into a unique 4D
kernel, denoted by the same symbol Θ ∈ Rk1×k2×C×C′ . Finally, a trainable vector (“bias”) b ∈ RC′ is
generally added channel-wisely, leading to the general form of function for 2D convolutions:

ψΘ,b(y) = y ⊗Θ + b , (1.10)

where addition applies along channels.

In some cases, it is desirable that the size H × W of the input image y stays unchanged after a
convolutional operation (which is generally not the case, unless k1 = k2 = 1). A common trick to ensure
size preservation is to artificially extend the size of the input image both horizontally and vertically
beforehand. This operation is called padding, and the most commonly used padding strategy is simply
to add zero-intensity pixels around the edges of the image: zero-padding.

Formally, a (feed-forward) convolutional neural network with L ≥ 1 hidden layers is a nonlinear
function fθ : y ∈ RH0×W0×C0 7→ RHL+1×WL+1×CL+1 that chains 2D convolutions interspersed with
nonlinear element-wise operations:

fθ(y) =
[
ψΘL+1,bL+1 ◦ ξL ◦ ψΘL,bL

◦ . . . ◦ ξ1 ◦ ψΘ1,b1

]
(y) , (1.11)

composed of:

— L + 1 parameterized convolutional functions ψΘl,bl
: z 7→ z ⊗ Θl + bl, where Θl and bl are the

weight kernels and bias, respectively, that parameterize the CNN: θ =
⋃L+1

l=1 {Θl, bl},
— L nonlinear functions ξl that operate component-wise.

Just like MLPs, the L intermediate vectors:

h(l) = [ξl ◦ ψΘl,bl
◦ . . . ◦ ξ1 ◦ ψΘ1,b1] (y) ∈ RHl×Wl×Cl (1.12)

40

1.2. Classes of parameterized functions

X 15

Denoised Image

<latexit sha1_base64="T1FUT+BdC1WQH3WclpVoVasIjpY=">AAAEzniclVNNb9NAEJ0UAyV8tXDkYpEicYqcFDfkVsGFA4cgNW2kNEK2sy1Wba+1uy5EUcSVM1f4YfAP4F/wdrIGckgKtmzPvpn3vPN2Ny6zVJsg+N7YuuZdv3Fz+1bz9p279+7v7D441rJSiRgmMpNqFEdaZGkhhiY1mRiVSkR5nImT+OKlzZ9cCqVTWRyZWSkmeXRepGdpEhlAo71TWWaV3nu70wra3YN+GPb9oP2sH4T9HoLefi8I9/1OO+CrRe4ayN3GNzqlKUlKqKKcBBVkEGcUkcY9pg4FVAKb0ByYQpRyXtCCmuBWqBKoiIBe4H2O0dihBcZWUzM7wV8yPApMn56AI1GnENu/+ZyvWNmi67TnrGnnNsM3dlo5UEPvgF7Fqyv/nadRkXPvMzzT/2BOgZ6hK+vpKmuTcwac5+xYCmbJiPUycRoVr4H1yf/LQwOFEpiNp8grxAkz61X1maPZadtNxPkfXGlRO05cbUU/N3Zm35KVDfvypzuFnJ33em7BO0g4LxRGHzbspTn7ZVda/q4rgL9nXPB+slpjes2eLasXiI5W8gtUaOdJymsyWas1Z6dynqHlLTWt+gAVkl3XUKmV7Kw27bsMkeRO69ldVV1yrnInU+Ir3F+aOOP1QfbXB8fdduegHb7ptg5fuNO+TY/oMT3Fie7RIb1CL0M+yZ/pC331Bt6lt/A+Lku3Go7zkFYu79MvE4z4HQ==</latexit>�

Residual connection

Figure 1.3 – The architecture of DnCNN denoising network. Source: K. Zhang et al. [195].

are called hidden layers and their components are referred to as hidden neurons. Essentially, a CNN is
a MLP where affine functions are replaced with convolutional ones. A direct advantage of CNNs over
MLPs is that the number of parameters is generally much smaller, as neural connections are local and
identical, whatever the pixel position in the image.

Note that the basic parameterized form (1.11) of CNNs can be made more complex by adding, amongst
others, strided or dilated convolutions [188], skip or residual connections [63], downscaling operations via
pooling layers (e.g. max pooling, average pooling...) and upscaling operations via bilinear or bicubic
interpolation. A general architecture possibly incorporating all of theses features is the famous U-Net
architecture [153], widely used in computer vision.

Receptive field

In a convolutional layer as shown in Fig. 1.2, each neuron receives input from only a restricted area
of the previous layer called the neuron’s receptive field. The receptive field has typically a 3D rectangle
shape. When the network processes the input data through multiple convolutional layers, the receptive
field of a neuron in deeper layers becomes larger as it incorporates information from a broader area of
the input. For instance, the receptive field of a network chaining two successive 3× 3 convolutional layers
is the same as the receptive field of a 5 × 5 convolution. The receptive field of a CNN is determined by
its architectural characteristics, such as the size of the convolutional filters or the downscaling pooling
operations. As moving deeper into the network, each neuron’s receptive field expands due to the cascading
effect of the multiple layers. Consequently, neurons in the deeper layers capture more global and complex
features that encompass larger regions of the input image. Understanding the receptive field is crucial in
CNNs, as it determines the spatial context that a network can capture, which is particularly essential in
image denoising. Indeed, the spatial context may potentially be very useful to detect repeated patterns
and denoise them properly. This is why deep CNNs with small convolutional kernels (typically 3× 3) are
widely used in computer vision: the receptive field is directly proportional to the width of the network,
while the number of parameters is contained with small kernels.

41

Chapter 1 – Supervised learning

Focus on DnCNN architecture

DnCNN [195] (Denoising Convolutional Neural Network) is the most cited artificial neural network
for image denoising so far. Its widespread popularity is due to both its simplicity and its effectiveness.
Although it was developed in the early years of deep learning for image denoising, it is still considered
a reference today. DnCNN is basically a feed-forward denoising convolutional neural network that chains
“conv+ReLU” blocks, and where residual learning [63] and batch normalization [78] are utilized to speed
up the training process as well as boost the denoising performance. Its architecture is illustrated in Figure
1.3. Formally, DnCNN encodes the following parameterized function for grayscale images:

fDnCNN
θ : y ∈ RH×W ×1 7→

[
ψΘL+1,bL+1 ◦ ξ ◦ ψΘL,bL

◦ . . . ◦ ξ ◦ ψΘ1,b1

]
(y) + y , (1.13)

where L = 16, the nonlinear activation function ξ is the ReLU function (1.8), and the dimensions of the
kernels and biases are Θ1 ∈ R3×3×1×64, Θl ∈ R3×3×64×64 for 2 ≤ l ≤ 16, Θ17 ∈ R3×3×64×1, bl ∈ R64 for
l ≤ 16 and b17 ∈ R. Note that the width of the hidden layers (number of channels) is arbitrarily set to 64
for each and neither spatial upscaling, nor downscaling is used (zero-padding is leveraged all along the
layers to preserve the spatial input size H ×W). The total number of trainable parameters for DnCNN
is then:

dim(θ) = 3× 3× 64× 64× 15 + 3× 3× 64× 2 + 64× 16 + 1 = 555, 137 ,

making it much lighter than the MLP proposed by H. C. Burger et al. [17]. For training, the authors
[195] used the 400 clean images from the Berkeley Segmentation Dataset [129] (BSD400) that they
corrupted artificially with additive white Gaussian noise (AWGN) to create pairs of clean/noisy images
on which the MSE is minimized. Unlike existing denoising models, which typically trained a specific set
of parameters for AWGN for each noise level, DnCNN is also able, at the cost of a relatively small drop
in terms of performance, to handle Gaussian denoising with an unknown noise level using a single set of
parameters. This characteristic is generally referred to as “blind” Gaussian denoising, since the network
has no knowledge of the input noise level. Moreover, the authors showed that this architecture is actually
much more versatile, and can be efficiently used beyond Gaussian denoising to tackle several other inverse
problems close to Gaussian image denoising. In particular, they trained a single model for three general
tasks at once, namely blind Gaussian denoising, single image super-resolution (SISR) and JPEG image
deblocking. For SISR, a high-resolution image is generated by first applying the bicubic upscaling on
the low resolution image and then treating the inherent remaining “error noise” with DnCNN. Likewise,
the unavoidable JPEG artifacts produced by a JPEG encoder during lossy compression are viewed as a
particular type of additive noise and treated as such with the general model. Note that treating JPEG
deblocking with a denoiser dedicated to Gaussian noise was already studied in [49].

Focus on DRUNet architecture

More recently, DRUNet [194] (Denoising Residual U-Net) is an architecture that was proposed as an
even more competitive alternative to DnCNN [195], at the price of an increased number of parameters and
a longer training on a larger dataset. It achieves state-of-the-art performances for Gaussian noise removal.
Contrary to DnCNN, DRUNet adopts a U-Net architecture [153], and as such has an encoder-decoder

42

1.2. Classes of parameterized functions

Residual	connection

Figure 1.4 – The architecture of DRUNet denoising network. It takes an additional noise level map as input
and combines both U-Net [153] and ResNet [63]. “SConv” and “TConv” represent 2 × 2 strided convolution and
transposed convolution, respectively. Source: K. Zhang et al. [194].

type pathway, with residual connections [63] all along the network. Spatial downscaling is performed
using 2 × 2 convolutions with stride 2 (“SConv”), while spatial upscaling leverages 2 × 2 transposed
convolutions with stride 2 (“TConv”) (which is equivalent to a 1 × 1 sub-pixel convolution [167]). The
number of channels in each layer from the first scale to the fourth scale are 64, 128, 256 and 512,
respectively and each scale is composed of 4 successive residual blocks “3×3 conv + ReLU + 3×3 conv”.
In total, the retained architecture presents 32, 638, 656 parameters, which is approximately 60 times more
than the number of parameters of DnCNN [195], but thanks to the spatial downscaling operations, the
computational complexity is contained. DRUNet architecture is illustrated in Figure 1.4. Contrary to
DnCNN, DRUNet is a “non-blind” denoiser and thus achieve increased performance over ‘blind” models
[195, 196], by passing an additional noisemap as input. In the case of additive white Gaussian noise of
variance σ2, the noisemap is constant equal to σ. Note that this feature was first proposed by FFDNet
[197], which is more or less the flexible “non-blind” variant of DnCNN [195].

Training plays a major role in the success of DRUNet. Indeed, it is widely acknowledged that con-
volutional neural networks generally benefit from the availability of large training data. Therefore, the
training dataset BSD400 [129] has been considerably enriched with the addition of many high-definition
images, namely 4, 744 images from the Waterloo Exploration Database [121], 900 images from the DIV2K
dataset [3], and 2, 750 images from the Flick2K dataset [109]. Moreover, the authors recommend to train
it by minimizing the ℓ1 loss instead of the mean squared error (MSE), supposedly due to its outlier
robustness properties. DRUNet was trained to deal with noisy images corrupted with noise levels up to
σ = 50.

1.2.3 Transformers

Originally stemming from the field of natural language processing (NLP), where their introduction
have led to significant improvements over convolutional neural networks, transformer-based models [179]
have recently been investigated in image denoising [25, 108, 111, 144, 191, 193, 198]. This type of artificial
neural network is based on the mechanism of self-attention, which allows a model to decide how important
each part of an input sequence is, making it possible to find dependencies and connections in the data.

43

Chapter 1 – Supervised learning

Mathematical description

From a multi-channel input Y ∈ Rn×m, where n denotes the number of pixels, in the case of image
denoising, and m denotes the channel-size (color components for instance but also any abstract embedding
of input pixels), a self-attention module produces at first three different embeddings of Y :

— queries Q ∈ Rn×l,
— keys K ∈ Rn×l,
— values V ∈ Rn×k.

Traditionally, matrices Q, K and V are learned via three projection matrices ΘQ ∈ Rm×l, ΘK ∈ Rm×l

and ΘV ∈ Rm×k, such that Q = YΘQ, K = YΘK and V = YΘV ; but any transformation that produces
the desired output shapes from Y is actually suitable. Then, the self-attention is defined as:

Attention(Q,K, V) = softmax(QK⊤)V (1.14)

where softmax : Rn 7→ Rn is such that softmax(z)i = ezi/
∑n

j=1 e
zj and is applied over the horizontal

axis in (1.14). Note that softmax(QK⊤) is nothing else than a right stochastic matrix of size n, which
aims at encoding the attention weights. In others words, a self-attention module processes each entry, or
“token”, by a convex combination of all the values Vi,·, weighted by the degree of attention or similarity.
Moreover, it is worth noticing that the fact that Q and K are a priori different matrices allows attention
matrix softmax(QK⊤) to be non-symmetric: token i may be strongly related to token j and, at the same
time, token j may be weakly related to token i on the contrary.

The self-attention operation can actually be viewed as a general learned version of the popular NL-
means [15] denoiser, when rewritten as follows:

Attention(Q,K, V)i,· = 1
Wi

n∑
j=1

e−d(Qi,·,Kj,·)Vj,· with Wi =
n∑

j=1
e−d(Qi,·,Kj,·) , (1.15)

where the pseudo distance metric d between Qi,· and Kj,· is defined as d(Qi,·,Kj,·) = −⟨Qi,·,Kj,·⟩.
Indeed, as observed by [111], the NL-Means denoiser [15] is basically a transformer from the matrix
of noisy patches Y ∈ Rn×m (m = p × p where p denotes the patch size), with identity embeddings
Q = K = Y and values V = Y e⌈m/2⌉ = y ∈ Rn×1 equal to the input noisy image, and with d replaced
by the squared Euclidean distance: d(Qi,·,Kj,·) = ∥Qi,· − Kj,·∥2

2/h
2, with the hyperparameter h, often

chosen to be proportional to the noise level σ [14, 43, 126]. As a matter of fact, even if the distance
metric d was originally chosen as the opposite of the dot product between two embedded vectors for the
sake of computational efficiency, the squared Euclidean distance yields comparable performance in image
denoising as shown in [111].

In practice, self-attention operations cannot be applied on the entire image for the reason that the
attention matrix softmax(QK⊤) in (1.14) has as many entries as the squared of the input size n, which is
in general intractable. That is why, just like MLPs (1.5), self-attention modules are deployed on subparts
of the image. In general, it is used to process non-overlapping groups of neighboring embedded patches of
the image [108, 191, 193]. Finally, self-attention modules are usually combined with convolutional layers
(1.10) to get the best of both worlds in image denoising [108, 111, 144, 191, 193, 198].

44

1.2. Classes of parameterized functions

Focus on SCUNet architecture

<latexit sha1_base64="rxM/R2fNTrCstbLXdE+x00F0IWM=">AAAE3niclVNNb9NAEJ0UAyV8pSBx4WKRInGKbBOScqvgwoFDkZq2UhIVx9kWq7bX2l0DUciVG+LKmSv8IPgH8C94O9kAOSQFW7Zn38x73nm7OyqzVJsg+F7buOBdvHR580r96rXrN242tm4daFmpRPQSmUl1NIq1yNJC9ExqMnFUKhHno0wcjs6e2vzha6F0Kot9MynFMI9Pi/QkTWID6LhxZ8AaUyXGM397YNJcaL+9fdxoBq3HO52o3fGDVhB0wyi0QdRtP2z7IRB7Nclde3Kr9o0GNCZJCVWUk6CCDOKMYtK4+xRSQCWwIU2BKUQp5wXNqA5uhSqBihjoGd6nGPUdWmBsNTWzE/wlw6PA9Ok+OBJ1CrH9m8/5ipUtukp7ypp2bhN8R04rB2roFdDzeIvKf+dpVOTc+wTP+D+YY6An6Mp6usxa55wBZ4cdS8EsGbFeJk6j4jWwPvl/eWigUAKz8Rh5hThh5mJVfeZodtp2E3P+B1da1I4TV1vRz7Wd2bdkZcO+/OlOIWfnvZpb8A4SzguF0ds1e2nKftmVlr/rCuBvGBe8n6xWn56zZ/PqGaL9pfwMFdp5kvKaDFdqTdmpnGdoeXNNq76HCsmua6gslOys1u27DJHkThezO6+65FzlTqbEV7i/1HHGFwfZXx0cRK2w03r0ImruPnGnfZPu0j16gBPdpV16hl560H5Hn+kLffVeeu+9D97HeelGzXFu09LlffoFIlf9zg==</latexit>⇥4

Figure 1.5 – The architecture of SCUNet denoising network. “SConv”, “TConv”, “RConv” and “SwinT” repre-
sent 2 × 2 strided convolution, 2 × 2 strided transposed convolution, residual “3 × 3 conv + ReLU + 3 × 3 conv”
block and swin transformer block, respectively. Source: K. Zhang et al. [193].

Relying heavily on the DRUNet architecture (see Fig. 1.4), the Swin-Conv-UNet (SCUNet) denoising
network [193] has recently been proposed as a successful attempt to incorporate self-attention modules
into a convolutional neural network in order to achieve state-of-the-art performances in supervised image
denoising. SCUNet basically adopts the same U-Net backbone of DRUNet and replaces the residual
convolutional blocks “3 × 3 conv + ReLU + 3 × 3 conv” by Swin-Conv (SC) hybrid blocks. Figure 1.5
summarizes the overall architecture. As illustrated, a Swin-Conv (SC) block divides in half along the
channels the feature map of a 1× 1 convolution to feed two independent branches, namely the “RConv”
branch and the “SwinT” branch. The “RConv” branch is simply a residual convolutional block “3 × 3
conv + ReLU + 3× 3 conv”, already used in DRUNet [194], with twice less parameters as in the original
network, since the channel size has been halved due to the split of the feature map. As for the “SwinT”
branch, it implements the swin transformer block described in [108], in turn based on the standard multi-
head self-attention of the original Transformer layer [179]. Essentially, it consists in partitioning the input
feature map of size H×W ×C into multiple non-overlapping groups, or windows, of equal size (h×w)×c,
with h < H, w < W and c < C, and processing them independently by leveraging self-attention (see
formula (1.14)), with shared projection matrices across different windows. In the retained architecture,
all windows are of equal size (8 × 8) × 32, involving self-attention matrices of size 64 × 64. Finally,
in order to enable cross-window connections, regular and shifted window (swin) partitioning are used
alternately [115], where shifted window partitioning means shifting the feature map by (⌊h

2 ⌋, ⌊
w
2 ⌋) pixels

before partitioning. In the end, the outputs of the two branches “RConv” and “SwinT” are concatenated
channel-wisely and then passed through a 1× 1 convolution to produce the final residual of the input.

Although the number of parameters of SCUNet is approximately reduced by half compared to DRUNet
[194], since the number of parameters of “SwinT” blocks is negligible in relation to “RConv” blocks, the
complexity is slightly increased, though contained. Training basically follows the instructions of DRUNet
[194]. Note however that, contrary to DRUNet, SCUNet was not trained as a ”non-blind” denoiser (i.e.
with an additional noise level map as input), and requires instead a specific set of parameters for each
noise level in the case of AWGN.

45

Chapter 1 – Supervised learning

0 10 20 30

30

30.5

31

MLP (2012)

DnCNN (2017)

TNRD (2016)

DRUNet (2022)

RIDNet (2019)

MWCNN (2018)

SCUNet (2023)

BM3D (2007)

Number of parameters (in millions)

Av
er

ag
e

PS
N

R
(in

dB
)

0.5 1 1.5 2 2.5 3 3.5 4

30

30.5

31

MLP (2012)

DnCNN (2017)

TNRD (2016)

DRUNet (2022)

RIDNet (2019)

MWCNN (2018)

SCUNet (2023)

BM3D (2007)

Execution time (in seconds on CPU for a 256× 256 image)

Av
er

ag
e

PS
N

R
(in

dB
)

Figure 1.6 – Performance evolution of supervised models [6, 17, 28, 114, 193–195] with the number of parameters
(left) and execution time at inference (right), respectively, for grayscale Gaussian denoising on the Set12 dataset
at σ = 25 (CPU: 2,3 GHz Intel Core i7). A general trend can be observed: increased performance is achieved
at the cost of an increase in the number of parameters and execution time (the linear trend, in dashed line, is
estimated with Theil-Sen method).

Conclusion

Within a decade of research in supervised image denoising, the quality has been considerably enhanced,
at the price of an increased number of parameters and increased execution time (see Fig. 1.6). The very
best methods [193, 194] are now capable of recovering details barely perceptible to the human eye. Figure
1.7 displays a qualitative comparison of the denoising of synthetically corrupted images by the four neural
network architectures [17, 193–195] presented in this section. Note in particular the impressive recovering
of the tablecloth stripes on image Fig. 1.7d by SCUNet [193], without generating any eye-catchy artifacts.
It is now clear that supervised artificial intelligence-based models outperform traditional methods, here
represented by WNNM [57]. The question is which architecture will prevail over the next ten years.
Transformer-based methods show great promise for image denoising and are likely to play an important
role in the future. Meanwhile, let us not bury too quickly the other architectures as comebacks are still
possible [116, 176]. Finally, in view of the recent spectacular results, it is legitimate to wonder whether
we are approaching the theoretical limit of denoising performance, which could reopen the debate on
whether image denoising is close to death [24, 106, 107].

1.3 Parameter optimization

Once the class of parameterized functions (fθ) – that is the architecture of the neural network –
has been chosen, it still remains to select the best member of this class for the task of image denoising.
As explained in section 1.1, a proven heuristic consists in finding the optimal parameters θ∗ that best
minimize the empirical risk (1.4), for want of knowing the true risk (1.1). In this section, we present
the technique commonly adopted to solve this optimization problem, which is essentially based on the
gradient descent algorithm.

46

1.3. Parameter optimization

(a)

σ
=

25

Noisy / 20.17 dB

Ground truth MLP (2012) / 30.02 dB DnCNN (2017) / 30.18 dB

WNNM (2014) / 29.79 dB DRUNet (2022) / 30.46 dB SCUNet (2023) / 30.50 dB

(b)

σ
=

25

Noisy / 20.17 dB

Ground truth MLP (2012) / 28.75 dB DnCNN (2017) / 29.35 dB

WNNM (2014) / 28.94 dB DRUNet (2022) / 29.99 dB SCUNet (2023) / 30.16 dB

(c)

σ
=

50

Noisy / 14.15 dB

Ground truth MLP (2012) / 26.27 dB DnCNN (2017) / 26.81 dB

WNNM (2014) / 26.36 dB DRUNet (2022) / 27.22 dB SCUNet (2023) / 27.40 dB

(d)

σ
=

50

Noisy / 14.15 dB

Ground truth MLP (2012) / 25.25 dB DnCNN (2017) / 26.23 dB

WNNM (2014) / 27.79 dB DRUNet (2022) / 28.08 dB SCUNet (2023) / 28.51 dB

Figure 1.7 – A decade of supervised deep learning-based image denoising. Qualitative comparison of image
denoising results with synthetic white Gaussian noise. Denoising results of the state-of-the-art unsupervised con-
ventional denoiser WNNM [57] are also provided for comparison. PSNR values are indicated in dB.

1.3.1 Back-propagation

In most of cases, the minimization of the empirical risk (1.4) cannot be performed analytically for the
reason that the chosen class of parameterized functions is in general very complex. Indeed, the resulting

47

Chapter 1 – Supervised learning

optimization problem (1.3) is usually highly non-convex and the only fast and efficient algorithms that
remain at our disposal to solve it are first-order gradient-based optimization algorithms. Calculating the
gradient ∇θRemp(fθ), or at least an approximation of this gradient, then becomes essential.

The practical computation of the gradient of any weakly differentiable function at a given point θ has
recently been considerably facilitated by the advent of modern machine learning libraries such as Pytorch
[141]. Indeed, these novel frameworks are equipped with an automatic differentiation engine that powers
the computation of partial derivatives. Automatic differentiation exploits the fact that the computation
of a scalar value – in particular the empirical risk defined in (1.4) – executes, no matter how complicated,
a sequence of elementary arithmetic operations (addition, multiplication, etc) and elementary functions
(exp, square, etc). By keeping a record of data and all executed operations, partial derivatives can be
computed automatically, accurately to working precision, by applying the chain rule repeatedly to these
operations. This automatic pipeline is based on the creation of a computational graph in the case of
Pytorch.

Note that automatic differentiation is sometimes referred to as back-propagation in reference to the
seminal work from Rumelhart et al. [157]. At the times, they proposed a simple scheme based on the chain
rule to specifically update the weights of a multi-layer neural networks in the case of mean squared error
minimization. But back-propagation actually goes beyond the computation of the gradient of the cost
function with respect to the parameters. Indeed, many machine learning tasks involve computing other
derivatives, either as part of the learning process, or to analyze the learned models [132]. Automatic
differentiation can be applied to these tasks as well and can be used to compute values such as the
Jacobian of a function [132].

1.3.2 Stochastic gradient descent

Provided with the gradient of the empirical risk with respect to the parameters ∇θRemp(fθ), the most
basic first-order gradient-based optimization algorithm to solve (1.3) is the gradient descent algorithm.
However, it is in practice computationally very expensive, especially for large training sets. Indeed, each
update of the parameters requires beforehand a forward pass on the entire training set in order to
create the updated computational graph, which is cumbersome. An alternative method for more frequent
updating is then the stochastic gradient descent (SGD) [151]. Its principle is simple: an approximation
of the gradient is computed using a different random subset of the entire training set at each step. This
subset is sometimes referred to as mini-batch. Formally, with the same notations as (1.4), Remp(fθ) can
be approximated by:

RB
emp(fθ) = 1

|B|
∑
s∈B
∥fθ(ys)− xs∥ , (1.16)

where B denotes a random subset of {1, . . . , S}, so that ∇θRB
emp(fθ) ≈ ∇θRemp(fθ). Then, ∇θRB

emp(fθ)
can be viewed as a noisy version of the true gradient ∇θRemp(fθ). Note that, computing the gradient
over a single pair of clean/noisy images (xs, ys), can still be computationally expensive when dealing with
high resolution images. This is why, RB

emp(fθ) is usually further approximated by replacing the image
pairs (xs, ys) in (1.16) by pairs of small image patches, typically of size 128 × 128, randomly cropped
from the same images. The resulting procedure is summarized in Algorithm 1.

48

1.4. Weakly supervised learning

Algorithm 1 Stochastic Gradient Descent (SGD) algorithm
Input: Initial parameters θ0, learning rate λ, batch size b, number of iterations T .
Output: Updated parameters θT

for t = 1, . . . , T do
Select a random subset B ⊂ {1, . . . , S} of size b.
Compute gradient at point θt−1: gt ← ∇θRB

emp(fθt−1).
Update parameters: θt ← θt−1 − λgt.

end for

Beyond the computational aspect, calculating a stochastic, or noisy, version of the true gradient at
each iteration to perform gradient descent can actually be beneficial for model performance. Indeed,
practitioners have observed that when using a larger batch size there is a degradation in the quality of
the model, as measured by its ability to generalize beyond the training set [102]. Some authors [86] explain
this phenomenon with the help of the concept of flat minima [71]: a flat minimizer θ∗ is informally one
for which the training function varies slowly in a relatively large neighborhood of θ∗, contrary to a sharp
minimizer. Studies [86] tend to show that large-batch gradient descents converge to sharp minimizers,
and are unable to escape basins of attraction of these minimizers, while small-batch gradient descents
consistently converge to flat minimizers. The high sensitivity of the training function at a sharp minimizer
may negatively impact the ability of the trained model to generalize on new data, that is why they
recommend small-batch gradient descents.

1.3.3 Adam optimization algorithm

Adam [88] (Adaptive Moment Estimation) is a popular extension of the stochastic gradient descent
algorithm [151], widely used in the field of image denoising [111, 144, 193–195, 197] for its computational
efficiency and little memory requirements. Adam combines the concepts of adaptive learning rates and
momentum to provide faster convergence compared to traditional gradient descent methods, while making
it less sensitive to the choice of initial learning rate. To do so, the algorithm keeps track of statistics of
the first and second moment vectors, that is the gradient and its per-element square, via an exponentially
decaying average. The first order moment incorporates the momentum and helps in maintaining the
direction of the gradients, while the second order moment captures the magnitudes of the gradients for
better adjusting the learning rates. The algorithm provides an update rule similar to SGD [151]. The
whole procedure is summarized in Algorithm 2.

Unfortunately, the best neural network architecture for image denoising, combined with the best
optimization procedure, is powerless if high-quality clean/noisy image pairs are lacking for learning in
some respects. A recent line of research tries to relax the need for clean images by adopting a so-called
weakly supervised learning approach.

1.4 Weakly supervised learning

In numerous contexts, the availability of sufficiently many noise-free images is not guaranteed and
supervised learning cannot be applied effectively. To circumvent this problem, attempts have been made

49

Chapter 1 – Supervised learning

Algorithm 2 Adam algorithm
Input: Initial parameters θ0, learning rate λ, batch size b, number of iterations T , running average

parameters (β1, β2) = (0.9, 0.999), additional term for numerical stability ε = 10−8.
Output: Updated parameters θT

Initialize first and second moment vectors: m0 ← 0 and v0 ← 0.
for t = 1, . . . , T do

Select a random subset B ⊂ {1, . . . , S} of size b.
Compute gradient at point θt−1: gt ← ∇θRB

emp(fθt−1).
Update running averages: mt ← β1mt−1 + (1− β1)gt and vt ← β2vt−1 + (1− β2)g⊙2

t .
Compute bias-corrected moments: m̂t ← mt/(1− βt

1) and v̂t ← vt/(1− βt
2).

Update parameters: θt ← θt−1 − λm̂t/(
√
v̂t + ε)

end for

recently to adapt empirical risk minimization (1.4) with neural networks without ground truth. Note
that, in the following, we make the arbitrary distinction between a supervised approach – for which the
training set consists in a subset of X × Y, designating all possible pairs of clean/noisy images, whether
it is physically acquired or synthetically generated (approximated) – and a weakly supervised approach,
for which the training set present solely representative images from Y.

1.4.1 Learning from noisy image pairs

A pioneer work in this spirit is Noise2Noise [104] that assumes that, for the same underlying ground
truth image xs, two independent noisy observations ys and ȳs are available. It was observed that replacing
the clean/noisy pairs (xs, ys) by the noisy/noisy ones (ȳs, ys) in the empirical quadratic risk (1.4) enables
comparable performance to be achieved without the need for ground truths, provided that the noise is
zero-mean.

A typical use case is for example fluorescence microscopy where biological cells can be fixed using a
fixative agent which causes cell death, while maintaining cellular structure. By taking two successive shots
of the same scene, assuming that the noise realizations are independent between them and zero-mean,
it is possible to constitute a dataset composed of noisy/noisy pairs (ȳs, ys) to train a neural network fθ.
Once optimized for specifically denoising fluorescence microscopy images, the network can be deployed
in a complete image processing pipeline, where noisy image pairs are no longer required (in particular,
cells no longer need to be fixed).

Formally, let fθ be a parameterized function, x following the distribution of natural images, and
y and ȳ two independent random vectors following the same noise distribution from x (for instance
y ∼ N (x, σ2In) or y ∼ P(x)). Assuming that Ey|x(y) = Eȳ|x(ȳ) = x, we have, by developing the squared
ℓ2 norm:

∥fθ(y)− ȳ∥2
2 = ∥(fθ(y)− x)− (ȳ − x)∥2

2 = ∥fθ(y)− x∥2
2 + ∥ȳ − x∥2

2 − 2⟨fθ(y)− x, ȳ − x⟩ . (1.17)

50

1.4. Weakly supervised learning

Therefore, by taking the expected value over x, y and ȳ:

N2N(fθ) := Ey,ȳ∥fθ(y)− ȳ∥2
2

= Ex,y∥fθ(y)− x∥2
2 + Ex,ȳ∥ȳ − x∥2

2 − 2Ex(Ey,ȳ|x⟨fθ(y)− x, ȳ − x⟩)

= R(fθ) + const ,

(1.18)

where R(fθ) := Ex,y∥fθ(y) − x∥2
2 is the quadratic risk already defined in (1.1). Note that the expected

value of the dot product cancels out since the components of y and ȳ are independent, and the noise is
assumed to be zero-mean. In the end, minimizing the risk R(fθ) amounts to minimizing the surrogate
N2N(fθ) insofar as they differ by a constant value. The advantage of using N2N(fθ) is that this expression
depends only on the observations (y, ȳ) and does not involve the clean images x anymore. Consequently,
minimizing the Noise2Noise loss is formally equivalent to minimizing the usual supervised quadratic risk.
For a given neural network fθ, assuming ideal optimization, the Noise2Noise approach leads to the exact
same weights θ∗ as the supervised approach and so yields exact same performances even if it is trained
without ground truths.

However, the above reasoning assumes that an infinite amount of noisy training data is provided. In
practice, for want of knowing the true risk (1.1), the empirical risk (1.4) is minimized instead, and the
equality (1.18) does not hold for finite samples. Indeed, the average of dot product in (1.17) is as close to
zero as the number of noisy data increases. Consequently, the performance of Noise2Noise drops when the
amount of training data is reduced, limiting its capability in practical scenarios. In order to get the best
out of Noise2Noise potential with limited noisy data, A. F. Calvarons [21] recently proposed to exploit
the duplicity of information in the noisy pairs to generate some sort of data augmentation.

1.4.2 Learning single noisy images

In certain denoising tasks, however, the acquisition of two or more noisy copies per image can be
very expensive or impractical, in particular in medical imaging where patients are moving during the
acquisition, or in videos with moving objects, etc. An even more remarkable line of research focuses on
the possibility to train neural networks on datasets composed only of single noisy observations ys.

SURE: Assuming an additive white Gaussian noise model of variance σ2, a classical result from estima-
tion theory – Stein’s unbiased risk estimate (SURE) [172] – was investigated for training neural networks
on datasets composed only of single noisy observations (ys) [169]. Formally, let x follow the distribution
of natural images and y ∼ N (x, σ2In). According to [172] (see proof in Appendix F.1), we have:

SURE(fθ) := Ey∥fθ(y)− y∥2
2 + 2σ2 div(fθ)(y)− nσ2

= Ex,y∥fθ(y)− x∥2
2 = R(fθ) ,

(1.19)

where n is the dimension of images y (i.e. number of pixels). The advantage of using SURE is that the
risk is expressed in such a way that it depends only on the observations y. Nevertheless, the SURE loss
requires the computation of the divergence of fθ at points y which is cumbersome. To overcome this
difficulty, the use of a fast Monte-Carlo approximation to compute the divergence term defined in [150]

51

Chapter 1 – Supervised learning

is leveraged in [169]:

div(fθ)(y) ≈ ε⊤ fθ(y + hε)− fθ(y)
h

, (1.20)

where ε is one single realization of the standard normal distribution N (0, In) and h is a fixed small
positive value.

As in the case of the N2N loss (1.18), minimizing the SURE loss is strictly equivalent to minimizing the
usual supervised quadratic risk only if an infinite amount of training data is provided, which in practice
does not happen. Indeed, the equality (1.19) does not hold for finite samples for similar reasons. For a
sufficiently large number of data samples however, it is possible to obtain performances close to those of
networks trained with ground truths.

Blind-spot networks: A radical way to get rid of the divergence term is to force fθ to be divergence-
free, i.e div(fθ)(y) = 0 for all y. To that end, Noise2Self [8] introduces the concept of J -invariance.
Namely, a function fθ is said to be J -invariant if for each subset of pixels J ∈ J , the pixel values of
fθ(y) at J are computed such that they do not depend on the values of y at J . Note that such functions
are in particular divergence-free since ∂fi

θ

∂yi
(y) = 0 for all y, where f i

θ denotes the ith component of fθ. In
the literature, divergence-free networks are more often referred to as blind-spot networks [90], as they are
constrained to estimate the pixel value based on the neighboring pixels only.

Contrary to SURE loss which is limited to additive white Gaussian noise, blind-spot networks can be
leveraged in a more general context. Indeed, provided that the noise is independent between pixels and
is zero-mean, the minimizer the so-called self-supervised loss N2S(fθ) := Ey∥fθ(y) − y∥2

2 is exactly the
minimizer of the quadratic risk (1.1) [8]. Formally, let x follow the distribution of natural images and let
y follow a noise distribution from x which is independent between pixels (for example y ∼ N (x, σ2In) or
y ∼ P(x)). Assuming that Ey|x(y) = x, we have, by developing the squared ℓ2 norm:

∥fθ(y)− y∥2
2 = ∥(fθ(y)− x)− (y − x)∥2

2 = ∥fθ(y)− x∥2
2 + ∥y − x∥2

2 − 2⟨fθ(y)− x, y − x⟩ . (1.21)

Therefore, by taking the expected value over x and y:

N2S(fθ) := Ey∥fθ(y)− y∥2
2

= Ex,y∥fθ(y)− x∥2
2 + Ex,y∥y − x∥2

2 − 2Ex(Ey|x⟨fθ(y)− x, y − x⟩)

= R(fθ) + const ,

(1.22)

where R(fθ) := Ex,y∥fθ(y) − x∥2
2 is the quadratic risk already defined in (1.1). Note that the expected

value of the dot product cancels out since fθ is blind-spot, the components of y are independent between
pixels, and the noise is assumed to be zero-mean. Therefore, minimizing the risk R(fθ) amounts to
minimizing the surrogate N2S(fθ) insofar as they differ by a constant value. An ingenious example of a
divergence-free network is proposed by Noise2Kernel [103] that exploits donut kernels for the first layer
and dilated convolutional kernels for the next layers. Finally, note that Noise2Void [90] proposed before
Noise2Self [8] the idea of using the self-supervised loss with a blind-spot network, although the theoretical
justification provided was not as strong as that of [8].

Nevertheless, the performance of divergence-free functions is considerably limited by the constraint

52

1.4. Weakly supervised learning

of not voluntarily using the information of key pixels. Indeed, except from the parts of the signal that
are easily predictable (for example uniform regions), counting exclusively on the information provided by
the neighborhood to denoise the pixels is an inefficient strategy. Think for example of the extreme case
of a uniform black image with a single white pixel on its center. With a blind-spot network, the central
white pixel will be lost and wrongly replaced by a black one.

Probabilistic blind-spot networks: To improve the performance of blind-spot networks, several
authors [91, 92, 147] propose to refine the predictions during inference when the noise model is known.
For this purpose, they adopt a Bayesian point of view, different from the risk minimization point of view
(1.1), used until now. Following this paradigm, a network fθ is trained so that, given exclusively the noisy
surroundings Ωy of a noisy pixel y (the central noisy pixel y is excluded), it outputs a (parameterized)
probability distribution pθ(x|Ωy) of the central clean pixel. In other words, fθ is such that fθ(Ωy) predicts
a learned prior probability distribution of the expected central clean value, instead of just predicting a
value without taking uncertainty into account, as in the risk minimization paradigm. Equipped with such
a function fθ, Bayes’ rule can be applied to update the prior with new information of the noisy central
pixel y, provided that the noise model is known, to obtain the posterior probability distribution:

p(x|y,Ωy)︸ ︷︷ ︸
posterior

∝ p(y|x,Ωy)︸ ︷︷ ︸
likelihood

p(x|Ωy)︸ ︷︷ ︸
prior

≈ p(y|x)︸ ︷︷ ︸
noise
model

pθ(x|Ωy)︸ ︷︷ ︸
learned

prior

. (1.23)

From the posterior, the Minimum Mean Squared Error (MMSE) estimate (i.e. the conditional expecta-
tion) or the Maximum A Posteriori (MAP) is produced, which can be considered as an improved version
of the prediction given by Noise2Self [8], since it is refined with the information of the central pixel.
Note that the adopted Bayesian point of view enables to efficiently combine the knowledge learned on an
external dataset composed of noisy images and the information of the input noisy image, which would
not have been possible with a risk minimization paradigm.

The remaining questions are now how to construct fθ and how to train it. First of all, an arbitrary
parametric model for the prior pθ(x|Ωy) needs to be chosen. In [91], fθ is built in such a way that
fθ(Ωy) outputs a vector of the size of the number of different intensities of the image (a 256-dimensional
vector when images are coded on 8 bits for example) where all entries are non-negative and sum to one,
interpreted as the histogram of a discrete probability distribution. In [92], fθ(Ωy) is constrained to follow
a Gaussian model and so the output simply consists in a two-dimensional vector, encoding the mean
fθ(Ωy)1 and standard deviation fθ(Ωy)2 of a Gaussian distribution. As for training, they both use the
method of Maximum Likelihood Estimation (MLE). For a data sample {ys}s∈{1,...,S} of S noisy central
pixels surrounded by neighborhoods {Ωys}s∈{1,...,S}, the log-likelihood function reads (using the formula
of total probability):

lnL(θ; {ys}) =
S∑

s=1
ln pθ(ys|Ωys

) =
S∑

s=1
ln
∫ +∞

−∞
p(ys|x)pθ(x|Ωys

)dx . (1.24)

Example for AWGN: In the case of an additive white Gaussian noise model of variance σ2 and when

53

Chapter 1 – Supervised learning

fθ(Ωy) is constrained to output a Gaussian model [92], we have:

p(ys|x) = N (ys;x, σ2) and pθ(x|Ωys
) = N (x; fθ(Ωys

)1, fθ(Ωys
)2
2) (1.25)

hence (see proof in Appendix F.4)

pθ(ys|Ωys) =
∫ +∞

−∞
p(ys|x)pθ(x|Ωys)dx

=
∫ +∞

−∞
N (x; ys, σ

2)N (x; fθ(Ωys
)1, fθ(Ωys

)2
2)dx

= N (ys; fθ(Ωys)1, σ
2 + fθ(Ωys)2

2) .

(1.26)

Finally, the resulting optimization problem reads:

θ∗ ∈ arg max
θ

lnL(θ; {ys}) = arg min
θ

S∑
s=1

ln(σ2 + fθ(Ωys)2
2) + (ys − fθ(Ωys

)1)2

σ2 + fθ(Ωys)2
2
, (1.27)

which is solved using Adam algorithm [88].
Experiments on artificially noisy images [92] but also on real-world noisy images [91] tend to show

that weakly supervised probabilistic approaches are almost on par with their supervised counterparts.

Noisier2Noise: An ingenious way of dispensing with the probabilistic approach, while making full use
of the central pixel, was proposed by Noisier2Noise [135] and Recorrupted-to-Recorrupted [140]. Their
approach is based on adding more noise to single noisy images in the dataset, although this may seem
counter-intuitive. The idea of Noisier2Noise [135] is to train a network fθ that maps the original noisy
images y from noisier versions z synthetically generated by adding extra noise. The authors argue that,
with this strategy, the network is encouraged to predict E(y|z); and E(x|z) can be estimated thereafter
during the inference step via a linear combination of E(y|z) ≈ fθ∗(z) and z. For example, in the most
simple case where y = x+ε with ε ∼ N (0, σ2In) and z = y+ε′ with ε′ ∼ N (0, σ2In) with ε′ independent
from ε , we have, by linearity of expectation and by noticing that E(ε|z) = E(ε′|z):

2E(y|z) = E(x|z) + (E(x|z) + E(ε|z) + E(ε′|z)) = E(x|z) + E(z|z) = E(x|z) + z , (1.28)

hence E(x|z) = 2E(y|z) − z. Therefore, at inference, for a noisy observation y, the denoised image is
finally estimated by 2fθ∗(y + ε′)− (y + ε′) where ε′ is a realization of N (0, σ2In).

More recently, still in the setting of additive white Gaussian noise (AWGN) of variance σ2, i.e.
y ∼ N (x, σ2In), Recorrupted-to-recorrupted [140] showed that it is possible, from a noisy image y, to
construct an artificial pair of independent noisier images (z, z̄), centered in x, that can be exploited to
train a neural network, just like in [104] (see equation (1.18)). In the end, a Noise2Noise-like equality
holds:

R2R(fθ) := Ez,z̄∥fθ(z)− z̄∥2
2 = Ex,z∥fθ(z)− x∥2

2 + const , (1.29)

where Ex,z∥fθ(z) − x∥2
2 is a “noisier” risk close to the target risk R(fθ) defined in (1.1). Minimizing

54

1.4. Weakly supervised learning

the R2R loss is then equivalent to minimizing the “noisier” risk. To denoise an input noisy image y

at inference, it is first renoised according to the recorruption model z to get the final estimate fθ∗(z).
Provided that the artificial z is not much noisier than y, this strategy achieves performances close to
those of networks trained with ground truths.

Interestingly, among the different possible recorruption models, there is the straightforward setting
z = y + αε and z̄ = y − ε/α, with ε ∼ N (0, σ2In) and α ∈ R∗. Indeed,(

z

z̄

)
=
(
In αIn

In −In/α

)
︸ ︷︷ ︸

A

(
y

ε

)
with

(
y

ε

)
∼ N

((
x

0n

)
,

(
σ2In 0n×n

0n×n σ2In

))
, (1.30)

hence, according to the property of affine transformation of Gaussian vectors, we have:(
z

z̄

)
∼ N

(
A

(
x

0n

)
, A

(
σ2In 0n×n

0n×n σ2In

)
A⊤

)
= N

((
x

x

)
,

(
(1 + α2)σ2In 0n×n

0n×n (1 + 1/α2)σ2In

))
,

(1.31)
meaning that z and z̄ are independent from each other. In practice, α = 0.5 is recommended for training
to balance the noise of z and z̄ [140].

Noise2Score: Finally, another original and versatile method for learning without ground truths was
proposed by Noise2Score [87]. In this novel approach, the conditional mean of the posterior distribution
E(x|y) (posterior expectation of x given noisy observation y) is calculated leveraging a classical result from
Bayesian statistics, namely Tweedie’s formula [45], which involves the so-called score function. Formally,
assuming that the likelihood p(y|x) can written under the form p(y|x) = a(x)b(y) exp(x⊤T (y)) with
a : Rn 7→ R, b : Rn 7→ R and T : Rn 7→ Rn (subset of the exponential family which covers a large
class of important distributions such as the Gaussian, binomial, multinomial, Poisson, gamma, and beta
distributions, as well as many others), then the following equality holds (see proof in Appendix F.3):

JT (y)⊤E(x|y) = ∇y ln(p(y))−∇y ln(b(y)) , (1.32)

where JT denotes the Jacobian matrix of function T . In particular, when T has the simple form T (y) = cy,
with c ∈ R∗, JT (y)⊤ = cIn and finally the conditional mean of the posterior distribution is:

E(x|y) = (∇y ln(p(y))−∇y ln(b(y))) /c , (1.33)

where ∇y ln(p(y)) is referred to as the score (gradient of the marginal distribution of y).
As it stands, the formula (1.33) is purely theoretical since the distribution of natural noisy images

p(y) is at least as difficult to know as the distribution of natural images p(x). However, capitalizing on the
recent finding that the score function can be stably estimated from the noisy images [110], Noise2Score
[87] suggests to use a residual denoising autoencoder fθ for approximating the score:

∇y ln(p(y)) ≈ fθ∗(y) with θ∗ ∈ arg min E
y∼p(y)

ε∼N (0,1)
α∼N (0,δ2)

∥fθ(y + αε) + ε/α∥2
2 (1.34)

55

Chapter 1 – Supervised learning

with δ → 0 (note the similarity with Recorrupted-to-recorrupted [140] for recorrupted images y + αε).
The advantage of Noise2Score [87] is that, provided that the noise model belongs to the exponential
family distribution, the problem comes down to estimating the score function always approximated by
the same universal training (1.34).
Example for AWGN: In the case of an additive white Gaussian noise model of variance σ2, we have:

p(y|x) =
(

1
σ
√

2π

)n

exp
(
− 1

2σ2 ∥y − x∥
2
2

)
= a(x)b(y) exp(x⊤T (y)) , (1.35)

with a(x) =
(

1
σ

√
2π

)n

exp
(
− 1

2σ2 ∥x∥2
2
)
, b(y) = exp

(
− 1

2σ2 ∥y∥2
2
)

and T (y) = y/σ2. As ∇y ln(b(y)) =
−y/σ2, Tweedie’s formula then reads:

E(x|y) = y + σ2∇y ln(p(y)) ≈ y + σ2fθ∗(y) . (1.36)

Discussion and conclusion

In spite of their great theoretical interest, weakly supervised approaches for image denoising, which
are designed to learn without ground truths, are unfortunately of limited practical value. Indeed, if
collecting a dataset of noisy image pairs is assumed to be possible as in Noise2Noise [104], why not
collect several n-tuples of noisy images instead which, once averaged, would constitute ground truth
images for use in a supervised framework (approach retained for the datasets of [147] for example). As for
learning from datasets of single noisy images, the proposed approaches are either disappointing in terms
of performance [8, 90] due to strong architectural constraints, or, require the noise model to be known
[87, 91, 92, 135, 140, 169] in order to achieve performance comparable to that of supervised models. As a
consequence, weakly supervised learning is far from being the preferred strategy for tackling challenging
benchmarks such as the Darmstadt Noise Dataset [145] where only single real-world noisy images are
available, for which the real noise can only be roughly approximated mathematically by a mixed Poisson-
Gaussian model. Instead, the best-performing methods [13, 20, 192, 193] simulate a large amount of
realistic noisy images from clean ones by carefully considering the noise properties of image sensors, on
which any denoising neural network can be trained on. The same observation can be made in fluorescence
microscopy, where the most popular denoising neural network [184] was trained in a supervised way,
whether on physically acquired or synthetic training data.

56

Chapter 2

UNSUPERVISED LEARNING

Both supervised and weakly supervised learning strategies are extremely de-
pendent on data quality (although they do not rely on the same type of image
pairs), which is a well-established weakness. In some situations, it may be
challenging to gather a large enough dataset for learning. Only unsupervised
methods - in which only the noisy input image is used for training - are op-
erationally available. Historically, these methods were studied before their su-
pervised counterparts, partly due to the computational limitations of the time
that made resource-intensive supervised learning unthinkable. In this chap-
ter, we present a non-exhaustive list of well-known unsupervised algorithms,
classified according to four different main principles. As we shall see, the best
unsupervised denoisers share key elements, in particular the property of self-
similarity observed in images, whatever their category.

2.1 Weighted averaging methods

The most basic unsupervised methods for image denoising are without a doubt the smoothing filters,
among which we can mention the averaging filter or the Gaussian filter for the linear filters and the
median filter for the nonlinear ones. Interestingly, the linear smoothing filters can actually be viewed
formally as elementary convolutional neural networks fΘ(y) = y ⊗Θ already defined in subsection 1.2.2
with no bias, no hidden layer and no activation function, and with unique convolutional kernel Θ. In
contrast to supervised CNNs, the kernel is non-trainable. Note that symmetric padding is applied on the
noisy image y beforehand to ensure size preservation.

In practice, the smoothing filters act by replacing each intensity value of noisy pixels with a convex
combination of those of its neighboring noisy pixels. Denoising is made possible, at the cost of edge blur,
by reducing the variation in intensity between neighboring pixels. Although these filters are extremely
rudimentary, they are sometimes used as pre-processing steps in some popular algorithms where perfor-
mance is not at stake such as the Canny edge detector [22] due to their unbeatable speed. Building on
the idea of convex combinations of noisy pixels, numerous extensions were proposed by better adapting
to the local structure of the images [15, 79, 131, 160, 164, 175]. In what follows, we review three major
unsupervised denoisers [15, 79, 175] processing images via convex combinations of noisy pixels.

Formally, we denote by y a vectorized noisy image patch of size n whose central pixel is yc (the
value of index c is ⌈n/2⌉). Each method of this subsection implements a denoising function of the form
fθ(y) = y⊤θ aimed at estimating the noise-free central pixel xc, and where the weights θ ∈ Rn are
patch-dependent and are such that 1⊤

n θ = 1 and θ ⪰ 0.

57

Chapter 2 – Unsupervised learning

Bilateral filter: A bilateral filter [175] is a popular extension of linear smoothing filter for image
denoising, aimed at preserving the edges and fine details of an image while reducing noise. The filter
achieves this by taking into account both spatial proximity but also intensity similarity of pixels. Formally,
the convex weights of a bilateral filter can be defined as:

θ = Ks ⊙Kr(y − yc)
1⊤

n (Ks ⊙Kr(y − yc)) (2.1)

where Ks ∈ Rn
+ is a spatial kernel used to give more weight to pixels closer to the central pixel (based

on the distance between the pixel coordinates) and where the non-negative real-valued function Kr that
applies element-wise is the intensity range kernel. This latter function can be Gaussian for example,
Kr : x 7→ exp(−x2/h2), where h is the range smoothing hyperparameter. As h increases, Kr approaches
the constant function and the bilateral filter has a behavior close to a Gaussian smoothing filter. On
the contrary, as h decreases, Kr reinforces the weighting of pixels with high intensity similarity and the
resulting filter becomes nonlinear and more edge-preserving.

NLM: While the bilateral filter [175] evaluates the similarity between two pixels based on the radio-
metric difference (intensity range difference), the seminal work from A. Buades et al. [15] adopts a more
robust approach by exploiting the similarity of patches instead. More precisely, for each pixel, an aver-
age of the neighboring noisy pixels, weighted by the degree of similarity of patches they belong to, is
leveraged for edge-preserving denoising. Formally, in the most general setting, the convex weights of the
N(on)-L(ocal) Means can be defined as:

θi = Ks
i K

r(∥p(yi)− p(yc)∥)/
n∑

j=1
Ks

jK
r(∥p(yj)− p(yc)∥) (2.2)

where p(yi) represents the vectorized patch centered at yi (whose size can be different from the size of the
image patch y), and where Kr and Ks are defined the same way as in (2.1). Note that the only difference
with the expression of the weights of a bilateral filter (2.1) and the ones of the NLM filter (2.2) lies in
the input vector of function Kr.

The resulting N(on)-L(ocal) Means [15] algorithm has had a tremendous influence on the denoising
field and above for the reason that it is capable of effectively process redundant information in images
with the help of patches. In particular, it has paved the way for a brand new class of denoising algorithms
that exploits the self-similarity assumption: the idea that, in a natural image, a patch rarely appears alone
and that almost perfect copies can be found in its surroundings [200]. It has inspired a lot of methods
afterward that manage several groups of similar noisy patches [35, 38, 41, 42, 57, 73, 85, 96, 124].

OWF: Choosing the optimal weights θ of convex combinations for image denoising remains an open
question, although patch self-similarity appears to be a key element for obtaining competitive results. In
the case of additive white Gaussian noise of variance σ2, OWF [79] achieves state-of-the-art performances
among methods restricted to convex combinations of pixels via the establishment of an upper bound for
the optimal weights θ. Formally, let y ∼ N (x, σ2In) be a noisy patch of size n corrupted by Gaussian noise.
Adopting a risk minimization approach and constraining the weights θ to encode a convex combination

58

2.2. Sparsity methods

of pixels, the optimal weights, in the ℓ2 sense, are:

θ∗ = arg min
θ∈Rn

R(fθ) s.t. 1⊤
n θ = 1 and θ ⪰ 0 , (2.3)

where R(fθ) := Ey((fθ(y)−xc)2) is the quadratic risk. By leveraging a bias–variance decomposition, the
statistical risk, under convex constraints, has a closed-form expression which can be upper bounded using
the triangle inequality:

R(fθ) = (Ey(fθ(y)− xc))2 + Vy(fθ(y)− xc) = fθ(x− xc)2 + σ2∥θ∥2
2

≤ fθ(|x− xc|)2 + σ2∥θ∥2
2

= θ⊤Qθ ,

(2.4)

where the subtraction applies element-wise and Q := |x − xc||x − xc|⊤ + σ2In is a symmetric positive
definite matrix. Finally, OWF [79] proposes to approximate the optimal weights θ∗ defined in (2.3) by the
ones minimizing the upper bound (2.4) under convex constraints. This amounts to solving a quadratic
program and the resulting weights have a closed-form expression (see proof in [79]):

K∆(|x−xc|
hj∗)

1⊤
nK∆(|x−xc|

hj∗)
= arg min

θ∈Rn
θ⊤Qθ s.t. 1⊤

n θ = 1 and θ ⪰ 0 , (2.5)

where division applies element-wise, K∆ : z ∈ R 7→ max(1 − |z|, 0) is the triangular range kernel, and
the optimal bandwidth is hj∗ =

(
σ2 +

∑j∗

i=1 |xϕ(i) − xc|2
)
/
∑j∗

i=1 |xϕ(i) − xc|, where ϕ is a permutation
of {1, . . . , n} such that |xϕ(i) − xc| ≤ |xϕ(i+1) − xc| and j∗ = max{j ∈ {1, . . . n};hj ≥ |xϕ(j) − xc|}.

This remarkable result shows, firstly, that triangular kernels are in fact preferable to the commonly
used Gaussian kernels and, secondly, that the bandwidth hj∗ must be patch-dependent to achieve optimal
performance. However, the optimal weights (2.5) involve the radiometric differences |xi − xc| between
two clean pixels in its expression, which is unknown in practice. To circumvent this problem, OWF [79]
robustly estimates these quantities by exploiting the similarity of patches as in NLM [15]. Namely, |xi−xc|
is approximated by max(∥Ks ⊙ (p(yi) − p(yc))∥2 −

√
2σ, 0), where p(yi) represents the vectorized patch

centered at yi and Ks is a kernel used to take into account the distance between the central pixel and
other pixels in the patch, as in (2.1) and (2.2).

2.2 Sparsity methods

Sparsity methods have emerged as powerful tools for image denoising, offering effective ways to restore
images corrupted by noise while preserving important structural information. These methods exploit the
inherent sparsity of natural images, which implies that most image patches can be efficiently represented
by a small number of non-zero coefficients in a suitable transform domain.

59

Chapter 2 – Unsupervised learning

2.2.1 Sparsity in a fixed basis

Sparsity of patches in a fixed basis refers to the property that most image patches can be efficiently
represented using only a small number of non-zero coefficients in a predetermined basis. A basis is a set
of linearly independent vectors, or patches, that spans the entire signal space. It should be distinguished
from the term dictionary, for which the vectors are not necessarily linearly independent.

Formally, we denote by x ∈ Rn a vectorized clean natural image patch of size n. According to the
sparsity assumption, there exists a fixed basis of vectors {bi}i∈{1,...,n}, where bi ∈ Rn, such that each
clean patch x of a noise-free image can be exactly represented by a linear combination involving only a
few basis vectors. Adopting the matrix notation where B ∈ Rn×n is the matrix formed by stacking the
basis vectors {bi}i∈{1,...,n} along columns, the sparsity assumption reads:

∀x ∈ Rn, x is a natural patch ⇔ ∥B−1x∥0 ≤ t0 , (2.6)

where ∥·∥0 is the ℓ0 pseudo norm counting the non-zero elements of a vector, t0 ≤ n is an hyperparameter
controlling the sparsity and the entries of vector B−1x are the unique coefficients of the linear combination
which generate patch x in basis B.

A general strategy for denoising a noisy patch y under the sparsity paradigm is then to find its closest
sparse representation. The resulting optimization problem is as follows:

arg min
x∈Rn

∥y − x∥ s.t. ∥B−1x∥0 ≤ t0 , (2.7)

which is equivalent, thanks to the change of variable x = Bθ, to:

arg min
θ∈Rn

∥y −Bθ∥ s.t. ∥θ∥0 ≤ t0 . (2.8)

Note that denoising under the sparsity assumption involves several poorly defined quantities, namely the
number of non-zero coefficients t0 for being considered sparse, the norm ∥ · ∥ to choose for assessing the
patch proximity and especially the fixed basis B. Common choices for the basis B include the discrete
cosine transform (DCT) or wavelets [31, 119, 189] as discussed below.

Finally, note that solving (2.8) exactly in the general case where B is a dictionary can be done in a finite
amount of computation but this is a NP-hard problem. The algorithms designed to find an approximate
solution of (2.8) are called pursuit algorithms and include basis pursuit, FOCUSS, or matching pursuit
methods [26, 55, 125].

DCT denoiser: The discrete cosine transform (DCT) algorithm [189] is a simple and efficient sparsity-
based method for image denoising. It relies on the 2D-DCT basis for which a representation is given on
Fig. 2.1. The DCT is closely related to the discrete Fourier transform, but involves only real numbers.
This basis is widely used in image processing and compression, notably used at the core of the JPEG
coding format [142]. The predominance of this transform is explained by two reasons. Firstly, this basis
yields several pleasant mathematical properties; in particular it is orthogonal, meaning that B−1 = B⊤,
and there exists a fast algorithm [27] for computing the decomposition of any vector in this basis, just like
the FFT algorithm (Fast Fourier Transform). Secondly, and not the least important, the DCT basis is

60

2.2. Sparsity methods

Figure 2.1 – DCT basis vectors for patches of size 8 × 8 (left) and left-singular vectors of the matrix composed
of all non-overlapping patches of the natural images of BSD400 [129] stacked along columns (right).

experimentally near optimal to approximate natural patches in the sense that it ensures maximum energy
compression of data in the first components. Specifically, the left-singular vectors of a matrix composed
of random vectorized natural patches along its columns are usually very similar to the DCT basis (see
Fig. 2.1).

In order to solve the sparsity optimization problem (2.8), a simple procedure [189] consists in com-
puting the DCT of the noisy patch, that is B−1y, and setting to zero all small coefficients. Indeed,
B−1y would be the solution of (2.8) if no constraint were imposed. However, to cope with the sparsity
constraint, canceling all small coefficients provides a reasonable balance between coefficient sparsity and
proximity to the noisy patch y (since the small coefficients marginally affect the signal but are likely
to be associated with noise). In the case of additive white Gaussian noise of variance σ2, a fixed rule
based on statistical considerations is to cancel all coefficients below 3σ in absolute value. The choice of
the threshold value is a trade-off between noise removal and preservation of important image details. A
higher threshold will remove more noise but may also result in the loss of some fine details, while a lower
threshold may preserve more details but leave more noise in the denoised image. At the end, all denoised
patches are repositioned at their initial locations and averaged to produce the final denoised image.

DWT denoiser: The discrete wavelet transform (DWT) is another example of set of orthogonal bases
B that has been successfully utilized for image denoising [23, 31, 119, 146] but also for compression,
notably in JPEG 2000 coding format. Contrary to the DCT, these bases are itself sparse, in the sense
that a majority of coefficients of the basis vectors are zero. This property makes decomposition calcu-
lations particularly fast. Interestingly, the DWT has the ability to decompose an image into different
frequency subbands at different scales. The high-frequency subbands capture the local details and fine
structures, while the low-frequency subbands represent the global structures and smooth regions. The
wavelet coefficients of a noisy image y corresponding to the high-frequency subbands contain both noise
and important image details. By applying a thresholding operation on these coefficients, the noise can be
attenuated while preserving the essential details. Since the wavelet transform separates the image into
different scales, the thresholding operation can be tailored to each scale, allowing for a more localized

61

Chapter 2 – Unsupervised learning

Figure 2.2 – Haar DWT basis vectors for patches of size 8×8 (left) and wavelet decomposition of entire example
image with it (right).

treatment of noise. Figure 2.2 displays the 2D discrete Haar wavelet transform on an example image,
highlighting its scaling properties. Finally, we can mention the BLS-GSM [146] denoising method which
was a state-of-the-art method at the time, combining both wavelet decomposition and Bayesian modeling.

BM3D: BM3D (Block Matching 3D) [35] is a powerful and widely acclaimed algorithm that has
achieved remarkable success in image denoising. BM3D considerably improves the performance of pure
sparsity methods such as [31, 119, 189] by adding another key element, namely the grouping technique,
exploiting the redundancy present in natural images. Figure 2.3 illustrates this popular technique in
image denoising [35, 41, 42, 57, 73, 96, 124]. It basically consists in grouping image patches based on
patch resemblance into 3D blocks, also referred to as similarity matrices, in order to perform collaborative
filtering. During the first stage of BM3D, the denoising of the independent 3D blocks is performed by
assuming a local sparse representation in a transform domain. Essentially, BM3D solves the same opti-
mization problem as (2.8) with the only difference that it involves groups of patches instead of processing
each patch separately. Among the possible bases of decomposition for processing the groups, 3D-DCT is
frequently used and the same fast procedure as [189] that consists in canceling all coefficients below a
given threshold is adopted for fast resolution. As for the second stage, Wiener filtering is leveraged for
collaborative denoising. The reader is referred to Chapter 5 for a more detailed description and reinter-
pretation of this stage. Overall, the remarkable denoising performance of BM3D algorithm has made it
a widely adopted and benchmark denoising method in various image processing applications.

2.2.2 Sparsity on a learned dictionary

The use of a fixed basis such as the DCT or the DWT for sparsity-based image denoising has the
advantage of being both general and fast. However, it is not easy to know in advance which basis to choose
for achieving the best denoising results on a given image, although some attempts have been made in this
direction [11, 118]. A more flexible approach is to directly adapt the decomposition to the input image
by unsupervised learning.

62

2.2. Sparsity methods

<latexit sha1_base64="8yMD1KIiPtSpeBudGQmJ+y26TT0=">AAAEz3iclVNNb9NAEJ0UAyV8tXDkYpEicYqcCgHHCi4cEGqlpi0KEbKdbVnV9lredVsrCuLKmSv8L/gH8C94M9kAoUoKtmzPvpn3vPN2NykzbV0UfWutXAouX7m6eq19/cbNW7fX1u/sWVNXqeqnJjPVQRJblelC9Z12mTooKxXnSab2k+PnnN8/UZXVpth1TamGeXxU6EOdxg7Q61dG2ybcaDbernWibiRXeD7o+aBD/to2662v9IZGZCilmnJSVJBDnFFMFveAehRRCWxIY2AVIi15RRNqg1ujSqEiBnqM9xFGA48WGLOmFXaKv2R4KjBDegCOQV2FmP8WSr4WZUYXaY9Fk+fW4Jt4rRyoo3dAL+LNKv+dZ1GRS+8NntF/MEdAD9EVezrPWuacA+epOKbBLAVhL1OvUcsasE/hHx46KJTAOB4hXyFOhTlb1VA4VpzmbmLJf5dKRnmc+tqafiztjN9GlJ348ru7Cjme92JuITtIeS8qjM6W7KWx+MUrbX7VFcBPBVeyn1hrQC/Fs2n1BNHuXH6CCus90bImw4VaY3Eqlxkyb6rJ6tuoMOK6hcpMiWe1bN9liIx0OpvdRdWl5Gp/Mg2+yv+ljTPe+/tEnw/2Nru9x91HO5udrWf+tK/SPbpPD3Gin9AWvUAvfWjn9Ik+05dgJzgN3gcfpqUrLc+5S3NX8PEnHr/34w==</latexit>

Noisy y <latexit sha1_base64="GTZijsgkwK6DKlpq8xLkiNo80Ns=">AAAE2niclVNNb9NAEJ0UAyV8peXIxSJF4hQ5VQUcK+DAgUORmrZSElW2s21Xtb3W7hoSWblwQ1w5c4WfBP8A/gVvJxsgVEnBlu3ZN/Oed97uJmUmjY2ib421K8HVa9fXbzRv3rp9525rY/PAqEqnopeqTOmjJDYik4XoWWkzcVRqEedJJg6T8+cuf/hGaCNVsW8npRjm8WkhT2QaW0DHrc0XolDSiFG4NTiLbT2ebh232lEn4iu8GHR90CZ/7amNxlca0IgUpVRRToIKsogzisng7lOXIiqBDakGphFJzguaUhPcClUCFTHQc7xPMep7tMDYaRpmp/hLhkeDGdJDcBTqNGL3t5DzFSs7dJl2zZpubhN8E6+VA7V0BvQy3rzy33kGFTn3PsEz+g/mCOgJunKeLrJWOWfBecqOSTBLRpyXqdeoeA2cT+EfHloolMBcPEJeI06ZOV/VkDmGnXbdxJz/zpUOdePU11b0Y2Vn7q1Y2bIvv7vTyLl5L+cWvIOE90JjNF6xl2r2y620+lVXAH/LuOD95LT69Io9m1VPEe0v5KeoMN4TyWsyXKpVs1M5z9DxZppOfQ8Vil03UJkruVmt2ncZIsWdzmd3WXXJucqfTIWv8H9p4ox3/z7RF4OD7U73cWfn9XZ795k/7et0nx7QI5zoJ7RLL9FLD9pj+kSf6UswCN4F74MPs9K1hufco4Ur+PgTkNL8Fw==</latexit>

Denoised x̂
<latexit sha1_base64="PB9Nhh37j3vFG1+QLfeUQltqkvs=">AAAEzniclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5VQUcK7hw4BCkpo2URsh2tsWq7bV21ylRFHHlzBV+GPwD+Be8mWyAUCUFW7Zn38x73nm7m1R5Zl0UfWtsXAuu39jcutm8dfvO3XvbO/ePrK5NqnqpzrXpJ7FVeVaqnstcrvqVUXGR5Oo4OX/J+eOxMjbT5aGbVGpYxGdldpqlsQPU3z0Zj7Szu2+3W1E7kiu8HHR80CJ/dfVO4yud0Ig0pVRTQYpKcohzisniHlCHIqqADWkKzCDKJK9oRk1wa1QpVMRAz/E+w2jg0RJj1rTCTvGXHI8BM6TH4GjUGcT8t1DytSgzukp7Kpo8twm+idcqgDp6B/Qq3qLy33kWFYX0PsEz+g/mCOgpumJPl1nrnHPgPBfHMjArQdjL1GvUsgbsU/iHhw4KFTCOR8gbxKkwF6saCseK09xNLPnvUskoj1NfW9OPtZ3xW4uyE19+d2eQ43mv5payg5T3wmD0fs1emopfvNL6V10J/EJwJfuJtQb0WjybV88QHS7lZ6iw3pNM1mS4UmsqThUyQ+bNNVm9iwotrluoLJR4Vuv2XY5IS6eL2V1VXUmu9idT46v8X5o4452/T/Tl4Giv3Xna3n+z1zp44U/7Fj2kR/QEJ/oZHdAr9NKTk/yJPtOXoBuMg1nwYV660fCcB7R0BR9/AmtZ97o=</latexit>...

<latexit sha1_base64="PB9Nhh37j3vFG1+QLfeUQltqkvs=">AAAEzniclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5VQUcK7hw4BCkpo2URsh2tsWq7bV21ylRFHHlzBV+GPwD+Be8mWyAUCUFW7Zn38x73nm7m1R5Zl0UfWtsXAuu39jcutm8dfvO3XvbO/ePrK5NqnqpzrXpJ7FVeVaqnstcrvqVUXGR5Oo4OX/J+eOxMjbT5aGbVGpYxGdldpqlsQPU3z0Zj7Szu2+3W1E7kiu8HHR80CJ/dfVO4yud0Ig0pVRTQYpKcohzisniHlCHIqqADWkKzCDKJK9oRk1wa1QpVMRAz/E+w2jg0RJj1rTCTvGXHI8BM6TH4GjUGcT8t1DytSgzukp7Kpo8twm+idcqgDp6B/Qq3qLy33kWFYX0PsEz+g/mCOgpumJPl1nrnHPgPBfHMjArQdjL1GvUsgbsU/iHhw4KFTCOR8gbxKkwF6saCseK09xNLPnvUskoj1NfW9OPtZ3xW4uyE19+d2eQ43mv5payg5T3wmD0fs1emopfvNL6V10J/EJwJfuJtQb0WjybV88QHS7lZ6iw3pNM1mS4UmsqThUyQ+bNNVm9iwotrluoLJR4Vuv2XY5IS6eL2V1VXUmu9idT46v8X5o4452/T/Tl4Giv3Xna3n+z1zp44U/7Fj2kR/QEJ/oZHdAr9NKTk/yJPtOXoBuMg1nwYV660fCcB7R0BR9/AmtZ97o=</latexit>...

<latexit sha1_base64="kpREcfXsQCoHJH84DoZSU9tGCqM=">AAAE6HiclVNNb9NAEJ0UA8V8pXDkYhEhcYqcChWOFRzgwKFITVspiSp7sw2mttfaXbeNolw5c0NcOXOF3wL/AP4FbycbIFRJwZbt2Tfznnfe7qZVnhkbx98aa5eCy1eurl8Lr9+4eet2c+POnlG1FrIrVK70QZoYmWel7NrM5vKg0jIp0lzup8fPXH7/RGqTqXLXjis5KJJRmR1lIrGADptRX8jSSp2Vo/C5VnUV9fuhPLM6Ea4gig6brbgd8xWdDzo+aJG/dtRG4yv1aUiKBNVUkKSSLOKcEjK4e9ShmCpgA5oA04gyzkuaUghujSqJigToMd4jjHoeLTF2mobZAn/J8WgwI3oAjkKdRuz+FnG+ZmWHLtOesKab2xjf1GsVQC29BnoRb1757zyDioJ7H+MZ/gdzCPQIXTlPF1mrnLPgPGHHMjArRpyXwmvUvAbOp+gPDy0UKmAuHiKvEQtmzlc1Yo5hp103Cee/c6VD3Vj42pp+rOzMvRUrW/bld3caOTfv5dySd5D0XmiMzlbspQn75VZa/aorgZ8yLnk/Oa0evWTPZtVTRLsL+SkqjPck4zUZLNWasFMFz9DxZppOfQcVil03UJkruVmt2nc5IsWdzmd3UXXFudqfTIWv9H8JccY7f5/o88HeZruz1X70arO1/dSf9nW6R/fpIU70Y9qmF+ilC+239Ik+05fgTfAueB98mJWuNTznLi1cwcefFR4Bqw==</latexit>

Group
extraction

<latexit sha1_base64="7FtQ6f27dbP33E/b+EbaKKdMBjA=">AAAE3niclVNNb9NAEJ0UAyV8tSBx4WIRIXGKnAoBxwIXDhyK1LSV0ghsZ2tWtXet3TUQhVy5Ia6cucIPgn8A/4K3kw0QqqRgy/bsm3nPO293s7qU1iXJt9bamejsufPrF9oXL12+cnVj89qe1Y3JRT/XpTYHWWpFKZXoO+lKcVAbkVZZKfaz48c+v/9KGCu12nXjWgyrtFDySOapA/R848ZhLpQTRqqi/bAojChCopN0E77ik0EvBB0K147ebH2lQxqRppwaqkiQIoe4pJQs7gH1KKEa2JAmwAwiyXlBU2qD26BKoCIFeox3gdEgoApjr2mZneMvJR4DZky3wdGoM4j932LON6zs0WXaE9b0cxvjmwWtCqijl0BP480r/51nUVFx72M8o/9gjoAeoSvv6SJrlXMOnAfsmASzZsR7mQeNhtfA+xT/4aGDQg3MxyPkDeKcmfNVjZlj2WnfTcr571zpUT/OQ21DP1Z25t+alR378rs7g5yf93Ku4h0kghcGozcr9tKE/fIrrX/VKeCvGRe8n7zWgJ6yZ7PqKaLdhfwUFTZ4InlNhku1JuxUxTP0vJmmV99BhWbXLVTmSn5Wq/ZdiUhzp/PZnVZdc64JJ1PjK8Jf2jjjvb9P9Mlgb6vbu9e9+2yrs/0onPZ1ukm36A5O9H3apifopQ/tt/SJPtOX6EX0LnoffZiVrrUC5zotXNHHn9Zd/jA=</latexit>

Aggregation

<latexit sha1_base64="rZdBkTVAF5CTy+f7jHm1bBYgpFg=">AAAEyXiclVNNb9NAEJ0UAyV8tXDkYpEicYrsqgKOFVyQ4FBE01YKEbKdbbBqe83uGhqinDhzhb8G/wD+BW8mGyBUScGW7dk385533u6mdZFbF0XfWmsXgouXLq9faV+9dv3GzY3NWwdWNyZTvUwX2hyliVVFXqmey12hjmqjkjIt1GF68oTzh++Usbmu9t24VoMyGVX5cZ4lDtDLrXjr9UYn6kZyhWeD2Acd8tee3mx9pVc0JE0ZNVSSoooc4oISsrj7FFNENbABTYAZRLnkFU2pDW6DKoWKBOgJ3iOM+h6tMGZNK+wMfynwGDBDugeORp1BzH8LJd+IMqPLtCeiyXMb45t6rRKoozdAz+PNK/+dZ1FRSu9jPMP/YA6BHqMr9nSRtco5B84jcSwHsxaEvcy8RiNrwD6Ff3jooFAD43iIvEGcCXO+qqFwrDjN3SSS/y6VjPI487UN/VjZGb+1KDvx5Xd3Bjme93JuJTtIeS8MRqcr9tJE/OKV1r/qKuDvBVeyn1irT8/Fs1n1FNH+Qn6KCus9yWVNBku1JuJUKTNk3kyT1fdQocV1C5W5Es9q1b4rEGnpdD6786pryTX+ZGp8lf9LG2c8/vtEnw0Otrvxg+7Oi+3O7mN/2tfpDt2l+zjRD2mXnqKXHrRH9Ik+05fgWfA2OA0+zErXWp5zmxau4ONPRVv1LQ==</latexit>

1

<latexit sha1_base64="vvq17NTNqJRgt4wKz4oecSyVHPc=">AAAEyXiclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5lQo9VnBBgkMRTVspRMh2NsGq7TW7a2iIcuLMFf4a/AP4F7yZbIBQJQVbtmffzHveebubVHlmXRR9a6xdCi5fWd+42rx2/cbNW5tbt4+srk2quqnOtTlJYqvyrFRdl7lcnVRGxUWSq+Pk9Annj98pYzNdHrpxpfpFPCqzYZbGDtDL7eH2681W1I7kCs8HHR+0yF8HeqvxlV7RgDSlVFNBikpyiHOKyeLuUYciqoD1aQLMIMokr2hKTXBrVClUxEBP8R5h1PNoiTFrWmGn+EuOx4AZ0n1wNOoMYv5bKPlalBldpj0RTZ7bGN/EaxVAHb0BehFvXvnvPIuKQnof4xn8B3MAdIiu2NNF1irnHDh74lgGZiUIe5l6jVrWgH0K//DQQaECxvEAeYM4FeZ8VUPhWHGau4kl/10qGeVx6mtr+rGyM35rUXbiy+/uDHI87+XcUnaQ8l4YjM5W7KWJ+MUrrX/VlcDfC65kP7FWj56LZ7PqKaLDhfwUFdZ7ksma9JdqTcSpQmbIvJkmqx+gQovrFipzJZ7Vqn2XI9LS6Xx2F1VXkqv9ydT4Kv+XJs545+8TfT442ml3HrZ3X+y09h/7075Bd+kePcCJfkT79BS9dKE9ok/0mb4Ez4K3wVnwYVa61vCcO7RwBR9/Ai5w9WM=</latexit>

f

<latexit sha1_base64="i5nP1IRTV0MbtizPjkzV76zhj+k=">AAAE23iclVNNb9NAEJ0UAyV8pfTIxSJF4hQ5ISTlVsGFA4ciNW2lJKpsZ1us2F5rbQORlRM3xJUzV/hH8A/gX/BmsgFySAq2bM++mfe883Y3yOIoLzzve23rinP12vXtG/Wbt27fudvYuXec69KEahDqWJvTwM9VHKVqUERFrE4zo/wkiNVJMH3O+ZM3yuSRTo+KWabGiX+RRudR6BeAzhq7I9GojJrM90ZTP8v8vbNG02s93e91uj3Xa3lev91pc9Dpdx933TYQvppkr0O9U/tGI5qQppBKSkhRSgXimHzKcQ+pTR5lwMZUATOIIskrmlMd3BJVChU+0CneFxgNLZpizJq5sEP8JcZjwHTpITgadQYx/82VfCnKjK7TrkST5zbDN7BaCdCCXgO9jLes/HdejopEep/hmfwHcwL0HF2xp6usTc4V4OyLYxGYmSDsZWg1SlkD9sn9y8MCChkwjifIG8ShMJer6gonF6e5G1/yP6SSUR6Htraknxs747cW5UJ8+dOdQY7nvZ6byg5S1guD0bsNe6kSv3il9e+6FPhbwZXsJ9Ya0kvxbFE9R3S0kp+jIreeRLIm47ValTiVyAyZt9Bk9UNUaHE9h8pSiWe1ad/FiLR0upzdZdWZ5Ep7MjW+yv6ljjO+PMju+uC402r3Wk9edZoHz+xp36b79IAe4UT36YBeoJcBtGf0mb7QV2fsvHc+OB8XpVs1y9mllcv59As71f0n</latexit>

<latexit sha1_base64="H4XI9w3Pgz8i5u2ye7EuoZ46mkg=">AAAE6XiclVNNb9NAEJ0UAyV8pXDkYkiROEVJpUKPFVw4cCioaYuSENnONl3F9lredSGyfObMDXHlzBX+CvwD+Be8nWyAUCUFW7Zn38x73nm7G2ax1Kbd/lZbu+BdvHR5/Ur96rXrN242Nm4daFXkkehGKlb5URhoEctUdI00sTjKchEkYSwOw8kTmz88FbmWKt0300wMkmCcymMZBQbQsHF38+Vw7Pdl6veTwJyEYfmielViZGQitD+pNoeNZrvV5ss/G3Rc0CR37amN2lfq04gURVRQQoJSMohjCkjj7lGH2pQBG1AJLEckOS+oojq4BaoEKgKgE7zHGPUcmmJsNTWzI/wlxpOD6dN9cBTqcsT2bz7nC1a26DLtkjXt3Kb4hk4rAWroBOh5vHnlv/M0KhLufYpn9B/MEdBjdGU9XWStcs6As8OOSTAzRqyXkdMoeA2sT/4fHhooZMBsPEI+Rxwxc76qPnM0O227CTj/nSstaseRqy3ox8rO7FuxsmFffneXI2fnvZyb8g4Szoscozcr9lLJftmVVr/qUuCvGRe8n6xWj56xZ7PqCtH+Qr5ChXaeSF6TwVKtkp1KeIaWN9O06nuoUOy6hspcyc5q1b6LESnudD6786ozzhXuZCp8hftLHWe88/eJPhscbLU6D1vbz7eau4/daV+nO3SPHuBEP6JdeopeutB+S5/oM33xJt477733YVa6VnOc27RweR9/AnAMAfw=</latexit>

Yg 2 Rn⇥k
<latexit sha1_base64="VvlGCXDK4tU6g2WsdMy1E+zdw4A=">AAAE0XiclVNNb9NAEJ0UAyV8tXDkYpEicYqcSnwcK7hw4FBE00ZKo8pxtqlV22vtrlsiKxLiypkr/C34B/AveDPZAKFKCrZsz76Z97zzdndYZql1UfStsXYluHrt+vqN5s1bt+/c3di8t291ZRLVTXSmTW8YW5Wlheq61GWqVxoV58NMHQxPX3L+4EwZm+piz01KNcjjcZEep0nsAPW3Dk9iV/emR+Oto41W1I7kCi8GHR+0yF+7erPxlQ5pRJoSqignRQU5xBnFZHH3qUMRlcAGVAMziFLJK5pSE9wKVQoVMdBTvMcY9T1aYMyaVtgJ/pLhMWCG9AgcjTqDmP8WSr4SZUaXadeiyXOb4Dv0WjlQRydAL+PNK/+dZ1GRS+8TPKP/YI6AHqMr9nSRtco5B85zcSwFsxSEvUy8RiVrwD6Ff3jooFAC43iEvEGcCHO+qqFwrDjN3cSS/y6VjPI48bUV/VjZGb+1KDvx5Xd3Bjme93JuITtIeS8MRu9W7KVa/OKV1r/qCuDngivZT6zVp9fi2ax6imhvIT9FhfWepLImg6VatTiVywyZN9Nk9V1UaHHdQmWuxLNate8yRFo6nc/usupScpU/mRpf5f/SxBnv/H2iLwb72+3O0/aTN9utnRf+tK/TA3pIj3Gin9EOvUIvXdH+RJ/pS/A2mATvgw+z0rWG59ynhSv4+BPp9Pj8</latexit>

X̂g

<latexit sha1_base64="7Ym+kv4Nk4HxargMSFgePrdd1BU=">AAAE1HiclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5lQocK7hw4FCkJq2UBuSPbVjV9lq760JkckJcOXOFXwX/AP4FbycbIFRJwZbt2Tfznnfe7iZVLo2Nom+ttUvB5SvrG1fb167fuHlrc+v2wKhap6KfqlzpoyQ2Ipel6Ftpc3FUaREXSS4Ok9OnLn94JrSRqjywk0qMinhcyhOZxhbQy2NWaLTIptvj7Vebnagb8RWeD3o+6JC/9tVW6ysdU0aKUqqpIEElWcQ5xWRwD6lHEVXARtQA04gk5wVNqQ1ujSqBihjoKd5jjIYeLTF2mobZKf6S49FghnQfHIU6jdj9LeR8zcoOXabdsKab2wTfxGsVQC29BnoRb1757zyDioJ7n+DJ/oOZAT1BV87TRdYq5yw4j9kxCWbFiPMy9Ro1r4HzKfzDQwuFCpiLM+Q14pSZ81UNmWPYaddNzPnvXOlQN059bU0/Vnbm3oqVLfvyuzuNnJv3cm7JO0h4LzRGb1fspYb9ciutftWVwN8wLng/Oa0hPWfPZtVTRAcL+SkqjPdE8pqMlmo17FTBM3S8maZT30eFYtcNVOZKblar9l2OSHGn89ldVF1xrvYnU+Er/F/aOOO9v0/0+WCw0+097O6+2OnsPfGnfYPu0j16gBP9iPboGXrpQ1vTJ/pMX4JB8C54H3yYla61POcOLVzBx5+WMPqA</latexit>g

<latexit sha1_base64="MwG40RBsI0akBKZ48myVImxJ9Zw=">AAAEy3iclVNNb9NAEJ0UQ0v4auHIxSJF4kJkV+LjWMGFA0hFatpKIUK2sw1Wba+1uy6EkCNnrvDP4B/Av+DNZAOEKinYsj37Zt7zztvdtC5y66LoW2vtQnDx0vrG5faVq9eu39jcunlgdWMy1ct0oc1RmlhV5JXqudwV6qg2KinTQh2mJ085f3iqjM11te/GtRqUyajKj/MscYB626P78fbrzU7UjeQKzwaxDzrkrz291fpKr2hImjJqqCRFFTnEBSVkcfcppohqYAOaADOIcskrmlIb3AZVChUJ0BO8Rxj1PVphzJpW2Bn+UuAxYIZ0FxyNOoOY/xZKvhFlRpdpT0ST5zbGN/VaJVBHb4Cex5tX/jvPoqKU3sd4hv/BHAI9Rlfs6SJrlXMOnMfiWA5mLQh7mXmNRtaAfQr/8NBBoQbG8RB5gzgT5nxVQ+FYcZq7SST/XSoZ5XHmaxv6sbIzfmtRduLL7+4Mcjzv5dxKdpDyXhiM3q3YSxPxi1da/6qrgL8VXMl+Yq0+PRfPZtVTRPsL+SkqrPcklzUZLNWaiFOlzJB5M01W30OFFtctVOZKPKtV+65ApKXT+ezOq64l1/iTqfFV/i9tnPH47xN9NjjY6cYPuw9e7nR2n/jTvkG36Q7dw4l+RLv0DL30oJ3TJ/pMX4IXgQ3eBx9mpWstz7lFC1fw8ScgffXW</latexit>

g � 1

<latexit sha1_base64="ge5ECdCNMC+Eaj4wMxKE1Fm7Y08=">AAAEy3iclVNNb9NAEJ0UQ0v4auHIxSJFQkKK7Ep8HCu4cACpSE1bKUTIdrbBqu21dteFEHLkzBX+GfwD+Be8mWyAUCUFW7Zn38x73nm7m9ZFbl0UfWutXQguXlrfuNy+cvXa9RubWzcPrG5MpnqZLrQ5ShOrirxSPZe7Qh3VRiVlWqjD9OQp5w9PlbG5rvbduFaDMhlV+XGeJQ5Qb3t0P95+vdmJupFc4dkg9kGH/LWnt1pf6RUNSVNGDZWkqCKHuKCELO4+xRRRDWxAE2AGUS55RVNqg9ugSqEiAXqC9wijvkcrjFnTCjvDXwo8BsyQ7oKjUWcQ899CyTeizOgy7Ylo8tzG+KZeqwTq6A3Q83jzyn/nWVSU0vsYz/A/mEOgx+iKPV1krXLOgfNYHMvBrAVhLzOv0cgasE/hHx46KNTAOB4ibxBnwpyvaigcK05zN4nkv0slozzOfG1DP1Z2xm8tyk58+d2dQY7nvZxbyQ5S3guD0bsVe2kifvFK6191FfC3givZT6zVp+fi2ax6imh/IT9FhfWe5LImg6VaE3GqlBkyb6bJ6nuo0OK6hcpciWe1at8ViLR0Op/dedW15Bp/MjW+yv+ljTMe/32izwYHO934YffBy53O7hN/2jfoNt2hezjRj2iXnqGXHrRz+kSf6UvwIrDB++DDrHSt5Tm3aOEKPv4EF7P11A==</latexit>

g + 1

<latexit sha1_base64="QB3pcnqQEmUf0JnlDfKpoaNxz2E=">AAAEyXiclVNNb9NAEJ0UAyV8teXIxSJF4hQ5lfg4VnAoEhyKaNpKaYRsZxus2l6zu4aGKCfOXOGvwT+Af8GbyQYIVVJqy/bsm3nPO293kyrPrIui742VS8HlK1dXrzWv37h56/ba+sa+1bVJVTfVuTaHSWxVnpWq6zKXq8PKqLhIcnWQnDzj/MF7ZWymyz03qlS/iIdldpylsQP0enNn881aK2pHcoVng44PWuSvXb3e+EZHNCBNKdVUkKKSHOKcYrK4e9ShiCpgfRoDM4gyySuaUBPcGlUKFTHQE7yHGPU8WmLMmlbYKf6S4zFghnQfHI06g5j/Fkq+FmVGF2mPRZPnNsI38VoFUEdvgZ7Hm1X+P8+iopDeR3gGF2AOgB6jK/Z0nrXMOQfOE3EsA7MShL1MvUYta8A+hX956KBQAeN4gLxBnApztqqhcKw4zd3Ekv8hlYzyOPW1Nf1c2hm/tSg78eVPdwY5nvdibik7SHkvDEanS/bSWPzilda/60rgHwRXsp9Yq0cvxbNp9QTR3lx+ggrrPclkTfoLtcbiVCEzZN5Uk9V3UaHFdQuVmRLPatm+yxFp6XQ2u/OqK8nV/mRqfJX/SxNnvPPviT4b7G+1O4/aD19ttbaf+tO+SnfpHj3AiX5M2/QcvXShPaTP9IW+Bi+Cd8Fp8HFautLwnDs0dwWffgGmRfVE</latexit>

G

Figure 2.3 – Illustration of the grouping technique for image denoising.

KSVD: KSVD [46] is a popular unsupervised learning algorithm for creating an adaptive dictionary for
sparse representations. Formally, let Y ∈ Rn×N be the matrix gathering all the N overlapping vectorized
patches of size n of a noisy image, D ∈ Rn×d an overcomplete dictionary (a set of d ≥ n patches, also
referred to as atoms, spanning the entire signal space), and Θ ∈ Rd×N the sparse coefficients of the linear
combinations. The optimization problem at the heart of KSVD [46] is the following:

arg min
D,Θ
∥Y −DΘ∥2

F s.t. ∥Θ·,j∥0 ≤ t0 ∀j ∈ {1, . . . , N} , (2.9)

where t0 ≤ n is an hyperparameter controlling the sparsity of the linear combinations. Note that this
objective is very similar with (2.8), with the difference that the dictionary D is no longer fixed but fully
integrated to the learning process. The resolution of (2.9) is achieved via an alternating optimization
algorithm by iteratively fixing dictionary D and coefficients Θ.

⋄ Sparse coding stage: For a dictionary D fixed, solving (2.9) amounts to solving N independent
subproblems for which any pursuit algorithm [26, 55, 125] can be leveraged for resolution. Indeed, we
have:

∥Y −DΘ∥2
F =

N∑
j=1
∥Y·,j −DΘ·,j∥2

2 . (2.10)

⋄Dictionary updating: Assuming that both D and Θ are fixed, except one column in the dictionary
D·,k (atom k) and its corresponding coefficients Θk,·, the penalty term can be rewritten as:

∥Y −DΘ∥2
F = ∥Y −

d∑
j=1

D·,jΘj,·∥2
F = ∥Ek −D·,kΘk,·∥2

F , (2.11)

where Ek := Y −
∑

j ̸=k D·,jΘj,·. In other words, it amounts to finding a matrix of rank 1 minimizing
the ℓ2 distance with Ek. The solution can be computed using the singular value decomposition (SVD)

63

Chapter 2 – Unsupervised learning

Figure 2.4 – Example of the learned dictionary by KSVD algorithm [46] (left), the overcomplete separable Haar
dictionary (middle) and the overcomplete DCT dictionary (right). Source: M. Aharon et al. [4].

according to Eckart-Young theorem [44]. Formally, let u, v and s be the first left-singular vector, right-
singular vector and singular value of Ek, respectively. Then, its closest matrix of rank 1, in the ℓ2 sense, is
simply suv⊤. However, it is very likely that the first right-singular value of Ek is not sparse; therefore, it
cannot be used to update coefficients Θj,·. The trick of KSVD [46] consists in modifying only the nonzero
entries of Θj,·, thus ensuring that it stays sparse. Mathematically, it comes down to computing the SVD
of Ek for which the columns corresponding to a zero coefficient in Θj,· have been deleted.

Following this alternating optimization procedure, KSVD [46] converges after a few iterations. At the
end, all denoised patches are repositioned at their initial locations and averaged to produce the final
denoised image. Interestingly, the dictionary learned in an unsupervised fashion can be displayed (see
Fig. 2.4). In spite of its great theoretical interest, KSVD [46] is unfortunately little used in practice, due
to its tedious optimization procedure, its difficult-to-set hyperparameters and its limited performance
compared to BM3D [35].

Simultaneous sparse coding (SSC) from a low-rank view point: While KSVD [46] tries to learn
a general overcomplete dictionary, for which every patch of the input image can be reconstructed using
only a few atoms, some authors argue that the dictionary should be adaptive to groups of similar patches
to improve the performance of sparse representation models [41, 57, 73, 124]. Indeed, a major drawback
of (2.9) is the assumption about the independence between sparsely-coded patches. In order to better
exploit the self-similarity of patches in an image, a refinement consists in constraining the similar patches
to share the same atoms in their sparse coding (simultaneous sparse coding; see Fig. 2.5). To that end,
the optimization problem (2.9) can be slightly adapted to groups of similar patches, making it even more
restricted:

arg min
D,Θ
∥Y −DΘ∥2

F s.t. ∥Θ∥0 ≤ t0 , (2.12)

where Y ∈ Rn×k is a similarity matrix, D ∈ Rn×d a dictionary, Θ ∈ Rd×k the sparse coding, and where
the matrix pseudo ℓ0 norm counts the number of non-zero rows. Note in particular that, subject to
dimensional compatibility, any admissible point Θ for (2.12) is also admissible for (2.9). Moreover, it is
worth noting that the dictionary becomes strictly local under the group sparse representation contrary

64

2.2. Sparsity methods

Figure 2.5 – Art of modeling image evolves from sparse coding (a) to simultaneous sparse coding (b). Source:
W. Dong et al. [41].

to (2.9). As a matter of fact, solving (2.12) amounts to solving a low-rank approximation of Y , thanks
to the change of variable X = DΘ:

arg min
X
∥Y −X∥2

F s.t. rank(X) ≤ t0 , (2.13)

for which the solution is expressed with the help of the singular value decompostion (SVD) of Y according
to Eckart-Young theorem [44]. In particular, considering the Lagrangian unconstrained formulation of
(2.13) with hyperparameter λ ≥ 0, we have (see proof in [69, 73]):

Uφhard,
√

λ(S)V ⊤ = arg min
X
∥Y −X∥2

F + λ rank(X) , (2.14)

where Y = USV ⊤ is the SVD of Y and φhard,λ denotes the hard shrinkage operator that applies element-
wise φhard,λ(x) = x1R\[−λ,λ](x). Equation (2.14) is at the core of PLR algorithm [73] where the value
of λ = 2.25kσ2 is recommended experimentally for denoising Y when it is corrupted by additive white
Gaussian noise (AWGN) of variance σ2.

A relaxation of (2.12) is proposed by LSSC [124] through a so-called grouped-sparsity regularizer to
encourage the alignment of sparse coefficients along the row direction, without imposing it as a hard
constraint. Interestingly, this relaxation has also a low-rank interpretation from a variance estimation
perspective [41]. Specifically, it amounts to solving a nuclear norm minimization problem (NNM) which
has a closed-form solution [19]:

Uφsoft,λ(S)V ⊤ = arg min
X

1
2∥Y −X∥

2
F + λ∥X∥∗ , (2.15)

where ∥X∥∗ denotes nuclear norm (sum of the singular values) and φsoft,λ denotes the soft shrinkage
operator that applies element-wise φsoft,λ(x) = sign(x) · max(|x| − λ, 0). More recently, WNNM [57]
refines the NNM problem (2.15) by assigning different weights to the singular values. Combined with
iterative regularization technique [139] involving multiple passes of denoising, WNNM [57] achieves state-
of-the-art performances.

65

Chapter 2 – Unsupervised learning

2.3 Bayesian methods coupled with a Gaussian model

Bayesian methods coupled with a Gaussian model form a powerful framework for probabilistic model-
ing in image denoising [2, 96, 99, 112, 190, 201]. The Gaussian model (or a mixture of Gaussians) is widely
used due to its simplicity and flexibility in capturing a wide range of continuous data, signal being no
exception. In this section, we review two algorithms [96, 201] that are major representatives of Bayesian
modeling under Gaussian prior.

EPLL: Based on the observation that learning good image priors over whole images is challenging,
EPLL [201] proposes to transpose the modeling of an image prior back to the prior modeling of small
image patches, which is assumed to be an easier task. Specifically, in the case of additive white Gaussian
noise (AWGN) of variance σ2, the maximum a posteriori (MAP) of the clean patch xi given its noisy
patch yi ∼ N (x, σ2In) and an arbitrary image patch prior p leads to the minimization of following energy
when applying Bayes’ rule:

Ei(xi, yi) := 1
2σ2 ∥xi − yi∥2

2 − log p(xi) . (2.16)

In order to extend this energy to the whole image, EPLL [75] defines the global energy of a full image x,
given a noisy image y, by the average energy of all its N overlapping patches:

E(x, y) := 1
N

N∑
i=1

Ei(xi, yi) = 1
N

N∑
i=1

1
2σ2 ∥xi − yi∥2

2 −
1
N

N∑
i=1

log p(xi)

≈ n

2σ2N
∥x− y∥2

2 − EPLLp(x) ,
(2.17)

where EPLLp(x) :=
∑

i log p(xi)/N is the expected patch log likelihood (EPLL). Note that the approxi-
mation is legitimate because a noisy pixel belongs to exactly n overlapping patches, with the exception
of pixels located close to the borders, which are neglected for the sake of simplicity. Searching for the
image x with smallest global energy, the resulting optimization problem finally reads [201]:

arg min
x

λ

2 ∥x− y∥
2
2 − EPLLp(x) , (2.18)

with λ = n
Nσ2 . Thus, the expected patch log likelihood (EPLL) acts as a regularization term in (2.18).

Direct optimization of the cost function (2.18) may be very hard, depending on the prior used. That
is why, half quadratic splitting is leveraged for efficient resolution by introducing auxiliary variables.
Note that this iterative optimization method shares close links with the alternating direction method of
multipliers (ADMM).

Although this framework allows the use of patch priors p of any sort, the authors [201] propose to
leverage a surprisingly simple Gaussian mixture model:

p(x) =
K∑

k=1
πkN (x;µk,Σk) , (2.19)

where πk are the mixing weights for each of the mixture component and the µk and Σk are the correspond-
ing mean and covariance matrix. In the original paper [201], the parameters πk, µk and Σk for K = 200

66

2.3. Bayesian methods coupled with a Gaussian model

components are estimated in a supervised fashion by maximum likelihood estimation (MLE) over a set
of two millions clean patches collected from BSD dataset [129] using the expectation–maximization (EM)
algorithm for optimization. However, a recent work [112] shows that Gaussian mixture parameters can
also be estimated unsupervisedly directly from the noisy input image itself, resulting in even better image
denoising performance than its supervised counterpart.

Despite their significant theoretical relevance, EPLL [201] and its variants [40, 112] have not gained
much popularity in practical applications primarily due to their cumbersome optimization procedures
when compared to the well-established BM3D [35] algorithm. Finally, note that the EPLL approach [201]
shares some similarities with the Field-of-Experts framework [155] designed six years before where the
parameterized density function, namely the Gaussian mixture model, is replaced by a Product-of-Experts
[68] that exploits non-linear functions of many linear filter responses and where optimization is essentially
performed through gradient ascent.

NL-Bayes: The N(on)-L(ocal) Bayes [96] algorithm combines the concepts of Bayesian modeling and
self-similarity [200] which appears to be key element for achieving state-of-the-art results. Formally, let
y ∼ N (x, σ2In) be a noisy image patch corrupted by Gaussian noise of variance σ2. Arbitrarily setting
a multivariate Gaussian prior on the clean patch x, i.e. p(x) = N (x;µ,Σ), where the mean µ and
covariance matrix Σ are to be estimated, the maximum a posteriori (MAP), computed using Bayes’ rule,
is the solution of the following optimization problem:

arg max
x

1
2σ2 ∥x− y∥

2
2 + 1

2(x− µ)⊤Σ−1(x− µ) =
(

1
σ2 In + Σ−1

)−1(1
σ2 y + Σ−1µ

)
= µ+ Σ

(
Σ + σ2In

)−1 (y − µ) .
(2.20)

NL-Bayes [96] proposes to construct the prior p(x) from the group of image patches similar to x. Specif-
ically, let X ∈ Rn×k be the similarity matrix of x. Then, µ is estimated by the average patch and Σ is
estimated by the empirical covariance matrix of the group, that is:

µX := 1
k
X1k and ΣX := 1

k
(X − µX1⊤

k)(X − µX1⊤
k)⊤ . (2.21)

But of course, the true similarity matrix X is unknown and can only be deduced from its noisy version
Y . To that end, unbiased estimates are leveraged as a first approximation, namely µY = 1

kY 1k and
ΣY = 1

k (Y − µY 1⊤
k)(Y − µY 1⊤

k)⊤ − σ2In. Using equation (2.20) and the two estimates µY and ΣY , each
noisy patch of a given similarity matrix can then be denoised. Viewing this denoising step as a function f
that processes similarity matrices, NL-Bayes falls into the category of non-local denoisers (see Fig. 2.3).

After reprojection and aggregation by average of all patch estimates, a first denoised image is built
which is exploited to refine the priors p(x) for each group of similar patches. Actually, using the equa-
tion (2.21) with approximate similarity matrices gives better results in practice than with the unbiased
estimates of the first step. The reader is referred to Chapter 5 for a more detailed description and reinter-
pretation of this stage. Repeating this second stage again and again, taking advantage of the availability
of a supposedly better image estimate than in the previous step, does not bring experimentally any
improvements unfortunately. That is why, the algorithm stops after two steps.

67

Chapter 2 – Unsupervised learning

NL-Bayes [96] compares favorably with BM3D [35] and is as competitive as in terms of speed which
makes it an interesting alternative for practical image denoising [99].

2.4 Deep learning-based methods

In recent years, attempts have been made to reconcile unsupervised learning and deep neural networks
in image denoising [8, 105, 149]. Major representatives are Deep Image Prior (DIP) [105] and Self2self
[149].

Deep Image Prior: Deep Image Prior [105] adopts a non-intuitive strategy which consists in training
a convolutional neural network with U-net architecture fθ to predict the input noisy image y ∈ Rn from
a single realization of pure uniform noise u ∼ U([0, 1]n×C), where C denotes the number of feature maps
(e.g. C = 32):

arg min
θ
∥fθ(u)− y∥2

2 . (2.22)

By early stopping the optimization process based on gradient descent in order to avoid perfect reconstruc-
tion of the noisy image y, it is observed that fθ(u) may be surprisingly very close to the true image x in
practice. According to the authors [105], this intriguing phenomenon is an evidence that realistic images
are naturally promoted by certain types of neural networks. Indeed, equation (2.22) is only composed of
the data-fidelity term without any regularizer, which suggests that network architectures actually encode
an implicit image prior.

Some refinements of (2.22) were proposed afterwards to enhance the performance of DIP [105] by
adding nevertheless an explicit prior. For example, combining DIP [105] with the traditional TV reg-
ularization [156] was investigated in [113] with relative quality improvement, at the price of an extra
hyperparameter balancing the data-fidelity term and the regularization term. Another interesting alter-
native [130] consists in explicitly regularizing DIP [105] using an existing unsupervised denoising algorithm
such as BM3D [35]. The concept of regularization by denoising (RED) [152] is indeed an alternative to
Plug-and-Play Prior [181] which enables to harness the implicit prior learned by a denoiser to any data-
fidelity term, while avoiding the need to differentiate the chosen denoiser. Other variants of DIP [105] for
improved performance include [29, 47, 80, 159].

Self2Self: More recently, Self2Self [149] considers the pretext task of inpainting to tackle image denois-
ing, namely:

θ∗ = arg min
θ

Eb∥(1− b)⊙ (fθ(b⊙ y)− y)∥2
2 , (2.23)

where ⊙ denotes the Hadamard product and b ∈ {0, 1}n is a random vector whose components follow
independent Bernoulli distributions with probability p ∈ (0, 1). This time, droupout [170] and sampling
are exploited as regularization techniques for avoiding the convergence to the constant function fθ(.) = y.
During the inference step, about a hundred of artificially simulated samples fθ∗(b ⊙ y) are averaged for
final estimation. Note that Self2Self [149] shares some similarities with Noise2Self [8] as fθ is learned
following the blind-spot strategy. To the best of our knowledge, Self2Self [149] is the current state-of-the-
art unsupervised deep learning-based denoiser.

68

2.4. Deep learning-based methods

Although promising, the aforementioned deep unsupervised learning methods are still limited in terms
of performance and especially in terms of computational cost compared to the patch-based and non-local
methods [35, 41, 42, 57, 65, 79, 84, 96]. Indeed, deep learning-based methods use the time-consuming gra-
dient descent algorithm for optimization, whereas traditional ones have in general closed-form solutions,
which speeds up learning.

Conclusion

This chapter has offered a non-exhaustive inventory of renowned unsupervised algorithms, grouped
into different categories using four key principles. Given the prominence of supervised deep neural net-
works in the past decade, which have revolutionized image denoising in achieving significant accuracy
improvements, unsupervised techniques have somewhat taken a back seat. However, it is legitimate to
question whether these methods can still be improved, considering the wealth of knowledge amassed in
the realm of deep learning.

69

Part II

Towards interpretable and better
conditioned supervised neural
networks for image denoising

71

Chapter 3

DCT2NET: AN INTERPRETABLE

SHALLOW CNN FOR IMAGE DENOISING

This chapter addresses the issue of interpretable noise removal in images, fo-
cusing our attention on the DCT algorithm [189] (Discrete Cosine Transform).
The latter, well known in signal processing, has been extensively studied over
the years. Although very simple, it is still an essential component of traditional
state-of-the-art denoising algorithms such as BM3D [35]. However, in recent
years, supervised deep neural networks have outperformed their traditional
counterparts, making signal processing methods less attractive. In this chap-
ter, we show that a DCT denoiser can be considered as a shallow convolutional
neural network (CNN) and that its original linear transform can be tuned by
gradient descent in a supervised way, which significantly improves its perfor-
mance. The result is a fully interpretable CNN called DCT2net. To deal with
the remaining artifacts induced by DCT2net, an original hybrid solution be-
tween DCT and DCT2net is proposed, taking advantage of the benefits of each
of the two denoising bases; DCT2net is selected to deal with non-stationary im-
age patches while DCT is optimal for piecewise smooth patches. Experiments
on artificially noisy images demonstrate that two-layer DCT2net delivers re-
sults comparable to BM3D, but more rapidly.

3.1 Introduction

In the last ten years, the development of deep learning have revolutionized computer vision, through
significant accuracy improvements, denoising task being no exception. A lot of convolutional neural net-
works have been proposed [17, 28, 111, 127, 144, 195, 197] and they all outperformed the traditional algo-
rithms via image training sets. Though fast and efficient, they all suffer from their lack of interpretability.
Acting as “black boxes”, it can be very challenging to thoroughly understand how they produce a result,
which can be prohibitive for critical applications such as medical imaging.

Our work contributes to the recent trend, which builds on traditional algorithms and revisits them
with a dose of deep learning, while keeping the original intuition [100, 166, 187]. We focus specifically on
the DCT denoiser [189] and show that it can be seen as a shallow CNN with weights corresponding to the
DCT projection kernel and a hard shrinkage function as activation function. By training this particular
CNN given external dataset, we can refine the resulting transform and boost its performance. As the

73

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

so-called DCT2net inherently may create unpleasant artifacts in flat regions of the image, we apply a
two-class classification procedure based on the Canny edge detector [22] applied to the image denoised
with the original DCT denoiser. The classification produces a binary map that separates homogeneous
regions from textured regions and contours. DCT2net is then applied to the set of pixels with more
complex geometries, while DCT is applied to stationary patches (i.e., with no significant spatial gradients).
Surprisingly, this strategy does not alter performances in terms of Peak Signal-to-Noise Ratio (PSNR)
while visually improving the results.

The remainder of this chapter is organized as follows. In section 3.2, we present the principle of
DCT denoiser and the properties of DCT2net which has the advantage to be invariant to the level of
noise in image unlike other CNN-based denoisers [28, 127, 195]. In section 3.3, we interpret the “pseudo”
basis learned by DCT2net and show that patch denoising and aggregation are jointly performed unlike
traditional patch-based denoisers. In section 3.4, we analyze the behavior of DCT2net which is further
mixed with the usual DCT denoiser to reduce unpleasant visual artifacts. In section 3.5, experimental
results on datasets demonstrate that DCT2net is very fast as DnCNN, improves significantly the DCT
results and is comparable to BM3D in terms of performance while remaining very simple and interpretable
as the DCT denoiser.

3.2 From popular DCT denoising to DCT2net

In what follows, the vector representation of an image is adopted. A noisy 2D image y composed of n
pixels is formally represented by a vector of Rn.

3.2.1 Traditional DCT denoiser

In its most mature formulation for image denoising [189], the DCT denoiser proceeds on small over-
lapping patches across the image. Each patch of size p×p is denoised independently, so that each pixel is
in fact denoised p2 times. For each pixel, the final denoised value is then obtained by averaging those p2

estimators. Typical values for p are powers of 2 (generally 8 or 16) for practical reasons in the computa-
tion of the fast discrete cosine transform. However, we focus here on the case where p is an odd number,
without loss of generality.

For the sake of representation, we denote by yi,j
k,p the p × p patch, in the vector form, for which the

central pixel, is located j pixels at the right of the kth pixel of y and i pixels beneath it (see Fig. 3.1).
Note that i and j can be negative numbers. Let us denote q = ⌊p

2⌋ (i.e. closest integer less than or equal
to p/2). The DCT denoiser denoted F can then be expressed as:

F (y)k = 1
p2

q∑
i=−q

q∑
j=−q

[Pφλ(P−1yi,j
k,p)]s(i,j) (3.1)

where P is a matrix of size p2 × p2, φλ is the hard shrinkage function φλ(x) = x × 1R\[−λ,λ](x), and
s(i, j) = (q − i)p+ q − j + 1 . According to [189], the most appropriate choice for λ is 3σ.

By definition of DCT, the mathematical expression of the coefficient of the matrix P at row i =

74

3.2. From popular DCT denoising to DCT2net

Figure 3.1 – Some examples of the notation yi,j
k,p.

xp+ y + 1 and column j = up+ v + 1 for (x, y, u, v) ∈ J0, p− 1K4 is given by:

Pi,j = 2
p
α(u)α(v) cos

[
(2x+ 1)uπ

2p

]
cos
[

(2y + 1)vπ
2p

]
(3.2)

where α(u) =
{

1√
2 if u = 0

1 otherwise
is a normalizing scale factor to make the transformation orthonormal.

The columns of the matrix P are, in fact, the basis in which the signal is decomposed (see Fig. 3.4a).
The matrix P is considered as a basis, in the sense that every signal (represented as a vector) can
be decomposed in a unique way as a linear combination of the columns of P . Alternatively, the term
“dictionary” is also used in image processing. In the case of DCT, this basis has the particularity of being
orthonormal, which implies that P−1 = P⊤ where the superscript T denotes the transpose operator.
The elements of this basis are generally ordered, in the zig-zag pattern, from the smoothest vector to
the one containing the highest frequencies (see Fig. 3.4a). This ordering is very useful for applications in
compression as frequencies higher than a certain threshold are typically quantified.

A small improvement of [189], called adaptive aggregation and inspired from [35], was proposed in
[143]. The idea is to give higher weight to patches that have a sparser representation in the DCT domain,
enabling to reduce the ringing effects near edges. The expression of the improved DCT denoiser then
becomes:

F (y)k = 1
Wk

q∑
i=−q

q∑
j=−q

wi,j,k[Pφλ(P−1yi,j
k,p)]s(i,j) (3.3)

with wi,j,k = (1 + ∥φλ(P−1yi,j
k,p)∥0)−1, where ∥.∥0 denotes the ℓ0 pseudo-norm that counts the number of

non-zero entries and Wk =
q∑

i=−q

q∑
j=−q

wi,j,k. We used this latter expression to derive DCT2net.

3.2.2 DCT2net: a CNN representation of a DCT denoiser

Interestingly, one of the easiest implementation of a DCT denoiser, as formulated in (3.3), can be
done with a neural network. Indeed, all operations involved can be interpreted in terms of convolutions
with a hard shrinkage function as activation function.

Figure 3.2 shows such an architecture when p = 5. The three first layers represent the multiplication

75

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

Figure 3.2 – Architecture of DCT2net for a patch size p = 5.

by matrix P−1 of all overlapping patches (performed through a p× p convolution layer), the application
of the hard shrinkage function element-wise and the multiplication by matrix P (performed through a
1 × 1 convolution layer), respectively. All other layers (with frozen weights ∈ {0, 1}) are designed to
emulate the aggregation step. More precisely, our shallow CNN is first composed of a convolutional layer
with kernel size p × p leading to p2 output channels. Note that the weights involved in the p2 kernels
are to be found in the matrix P−1: each row is associated with one convolutional kernel. The action of
this layer can be summed up as follows: each pixel is replaced by the patch formed by its neighborhood,
after transformation by P−1. Then, the hard shrinkage function is applied element-wise. Afterwards,
a 1 × 1 convolution layer operates on those patches where the weights correspond to the elements of
the matrix P . In order to compute the adaptive aggregation, we have to generate a weight map from
the first layer computing the values wi,j,k in (3.3). This latter is used to balance the features resulting
from the second layer by channel-wise multiplication. The weighted pixels are then repositioned at their
corresponding locations and then aggregated by summation. This can be implemented with the help of
a last convolutional layer where the values of weights are either 0 or 1. Note that, for computational
efficiency, a 2D transposed convolution is recommended. Finally, a normalization by Wk (see (3.3)) is
performed by dividing the last layer by the weight map, beforehand convolved by a kernel composed of
ones.

We want to stress that our DCT2net is the strict implementation of the formulation in (3.3). Equipped
with the correct weights given by the definition of the DCT in (3.2), it exactly produces the same results
as those obtained with the traditional implementation.

3.2.3 Improvement of the transform

As it is usually done with neural networks, we can train our DCT2net on an external dataset composed
of N pairs of noise-free and noisy images (xi, yi)i∈{1,...,N} to improve the underlying transform. More

76

3.2. From popular DCT denoising to DCT2net

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Classical hard threshold
Differentiable threshold for m=2
Differentiable threshold for m=4
Differentiable threshold for m=8
Differentiable threshold for m=16
Differentiable threshold for m=32

Figure 3.3 – Approximation of the hard thresholding function φλ by the sequence of differentiable functions
φm,λ for λ = 1 and m ∈ {2, 4, 8, 16, 32}.

precisely, our objective is to solve the following optimization problem:

P ∗ = arg min
P

N∑
i=1
∥FP (yi, σi)− xi∥2

2 (3.4)

where FP denotes the network (Fig. 3.2) and P gathers the unknown parameters.
To that extent, we need to restrict the model to the original transform where only one matrix is

involved (the other one being its inverse) and where the other convolutions of the network composed of 0
and 1 are frozen. This can be achieved with the help of modern machine learning libraries such as Pytorch
for which automatic differentiation can be kept on for complex operations such as matrix inversion but
also deactivated for some layers. Nevertheless, the thresholding operation must be slightly adapted in
a context of gradient descent where differentiation is needed. Thus, we replace the function 1R\[−λ,λ]

by ξm,λ(x) = x2m

x2m+λ2m with m ∈ N∗. This choice is legitimate as the sequence of functions (ξm,λ)m∈N∗

converges pointwise to 1R\[−λ,λ]
1. The hard shrinkage function φλ then becomes φm,λ(x) = x2m+1

x2m+λ2m .
Figure 3.3 shows how close this approximation is from the original hard shrinkage function with ever
growing values of m. By the way, this approximation is adopted only during the training phase for
facilitating the optimization process. To stick with the original DCT denoiser, we use the original hard
shrinkage function for the testing phase that gives the same results in terms of PSNR with no noticeable
visual differences for the denoised images. It is worth noting that the use of the original hard shrinkage
function instead of our differentiable approximation for the training phase does not work in our case,
leading to a poor suboptimal local minimum, even though this activation function is available in most
modern machine learning libraries. It is likely that this disappointing behavior is due to the discontinuity
of the original function.

Finally, as recommended in [189], the threshold parameter λ is set to 3σ to significantly remove noise.
But the choice of the multiplicative constant in front of σ is actually of little importance and any other

1. Note that another equivalent choice is to take, for example, ξm,λ(x) = sigm(m(|x/λ| − 1)).

77

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

(a) Original DCT basis (b) DCT2net learned basis

(c) DCT2net trained on flat areas (d) DCT2net trained on contours

(e) DCT2net trained to effectively
denoise patches before aggregation

(f) DCT2net with random
initialization

Figure 3.4 – Different bases in which patches are decomposed and thresholded for image denoising.

constant would produce same results as long as P can adapt itself. Indeed, for two levels of threshold
λ and λ′, we have φλ(x) = λ

λ′φλ′(λ′

λ x). In particular, for two choices of multiplicative constant c and
c′, φcσ(x) = c

c′φc′σ(c′

c x), hence Pφcσ(P−1y) = Qφc′σ(Q−1y) with Q = c
c′P This means that, in theory,

choosing a value other than 3 would result in estimating the same transform, up to a multiplicative
constant, and with exactly the same denoising performance. Appendix B.1 gives more details about the
choice of threshold, studying more particularly the case where multiple thresholds are used.

Note that, in practice, optimizing over the set of invertible matrices GLp2(R) in (3.4) is not an issue
and the problem can be treated through stochastic gradient descent without specific precaution. It is
attributable to the fact that GLp2(R) is dense in Mp2(R) but Mp2(R)\GLp2(R) is not.

78

3.3. A non-intuitive learned transform

(a) λ = 3σ / 28.98 dB (b) λ = 2.55σ / 29.28 dB

(c) Several thresholds / 29.44 dB (d) λ = 2.55σ / 29.20 dB
(random initialization)

Figure 3.5 – Orthonormal bases learned by DCT2net by addition of a regularization term. The threshold used
is indicated (learned by optimization process when different from 3σ) as well as the average PSNR on Set12
for σ = 25 with each of these orthonormal bases. By way of comparison, the average PSNR on Set12 for the
unconstrained DCT2net with patch size 9 × 9 is 29.57 dB. The basis exposed with several thresholds corresponds
actually to an orthogonal basis with only one threshold as shown in appendix B.3.

3.3 A non-intuitive learned transform

What is particularly attractive in our model is that we can easily display the learned transform and
thus have a direct visual intuition of what the network has learned. Once DCT2net has been trained on an
external dataset, a “pseudo” basis is derived, which is not orthonormal, but presumably more appropriate
to encode non-stationary signals than the conventional DCT. Figure 3.4 shows a visual comparison of
the learned bases in different contexts for patches of size 9× 9.

3.3.1 On the orthonormality of the learned transform

In the definition of DCT2net (3.3), we impose no orthonormality constraint to learn the basis. There-
fore, it is no wonder that, during the building of the matrix P through stochastic gradient descent, the
property of orthonormality gets lost. One way 2 to address this issue is to add a regularization term that
encourages orthonormality in the optimization process. The problem amounts to solving:

P ∗ = arg min
P

N∑
i=1
∥FP (yi, σi)− xi∥2

2 + β∥I − P⊤P∥1 (3.5)

2. For a direct technique to derive an orthonormal matrix, with similar results compared to the regularization form, see
appendix B.2.

79

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

0 20 40 60 80

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

Figure 3.6 – Representation of the matrix P ⊤P where P denotes the transform learned by DCT2net for patches
of size 9 × 9. If P were orthogonal, P ⊤P would be equal to an invertible diagonal matrix. This is not strictly the
case here, but we can notice that the elements outside the diagonal are very close to 0. Moreover, the diagonal
represents an important weight of this matrix as

∑
i
q2

i,i/
∑

i,j
q2

i,j ≈ 60% where the qi,j designate the coefficients
of P ⊤P .

where β ≥ 0 is the regularization parameter. We consider here the ℓ1 norm, defined for a matrix A by
∥A∥1 =

∑
|ai,j |, but the ℓ2 norm can be used instead. One can prove that this optimization problem

with a penalty term corresponds to an underlying constraint problem of the form:

P ∗ = arg min
P

N∑
i=1
∥FP (yi, σi)− xi∥2

2

s.t. ∥I − P⊤P∥1 ≤ t

(3.6)

which makes explicit the constraint of “close-orthonormality”. Note that the parameter t depends both
on β and on the data (xi, yi)i∈{1,...,N}.

It is worth noting that the resulting matrix P ∗ is not guaranteed to be orthonormal whatever the
parameter β is. To derive an orthonormal matrix from P ∗, we can select its nearest orthonormal matrix
Portho in the Frobenius norm sense. The unique solution is given by Portho = UV ⊤ where U and V are
the matrices from the singular value decomposition of P ∗ = UΣV ⊤.

However, adding a constraint of orthonormality limits the expressivity of the network and we observed
that the denoising performance was not as good as the regularization-free solution (see Fig. 3.5). Moreover,
the choice of the regularization parameter β can be challenging as it needs to be adapted for each patch
size. For all those reasons, we decided not to retain a solution with an orthonormal matrix. In spite of
this, the matrix P learned by DCT2net is quite close to be orthogonal, even if no constraint has been
imposed. This is illustrated in Fig. 3.6 which displays the matrix P⊤P for patches of size 9 × 9. We
can notice that the non-diagonal elements are close to zero, which is expected for a matrix close to be
orthogonal. In appendix B.3, we show how orthogonal and orthonormal matrices are linked, stating that
if P is orthogonal, there exists an orthonormal matrix Q that would give exactly the same results in
DCT2net as long as we set a different threshold by element of the basis.

Finally, as regards the initialization for the stochastic gradient descent, the original DCT basis (see

80

3.3. A non-intuitive learned transform

(3.2)) is considered by default. Considering random initializations such as Xavier initialization which is
common in deep neural networks, lead to similar bases, even though the time for convergence is slightly
more important. The convergence to the same solution whatever the initialization is a very good news,
suggesting that optimizing the underlying non-convex problem is tractable.

3.3.2 DCT2net does not denoise patches

When displaying the learned basis on a popular image dataset such as BSD400 [129], one may be
surprised. Interestingly, this basis, in which each patch is decomposed, is much more disorganized than
the original DCT basis. One may doubt that the DCT2net basis denoises better patches as it contains no
clear pattern. As a matter of fact, applying this basis does not denoise patches but rather degrades them
even more as shown in Fig. 3.8. The main reason is that the network actually denoise image patches and
performs aggregation at once, making it difficult to understand why such a basis improves the PSNR
value of the restored image.

We observed that, for a given noisy pixel k belonging to p2 patches, the p2 “denoised” versions of pixel
k with DCT2net have a very high variance when compared to the p2 denoised values obtained with the
DCT denoiser, for which all p2 denoised values are generally almost all the same, as illustrated in Fig. 3.8.
Nevertheless, after the adaptive aggregation step, the pixels denoised by applying the learned transform
are closer, in average, to the ground truth ones. This is a counter-intuitive result that questions our
preconceptions on denoising. This suggests that the final aggregation step is not a basic post-processing
step but plays an important role in denoising, as confirmed below.

One of the keys to understand why the learned transform as a superior denoising power is to study
the statistics of the residual noise. For a noisy pixel y associated with its ground truth underlying pixel
x, the denoising of the p2 noisy patches it belongs to provides p2 estimations x̂i. Let εP

i = x̂i − x be
the residual noise produced by the transform P for patch i. In the case where the final estimation x̂ is
computed by a simple average of the x̂i values, we have x̂ = x+ 1

p2

∑p2

i=1 ε
P
i . Thus, a good transform P

encourages 1
p2

∑p2

i=1 ε
P
i to be close to 0 but it is not required for εP

i to be small. The p2 residual noises
can be gathered in a vector εP = (εP

1 , . . . , ε
P
p2)⊤ with an ad-hoc ordering, according to the patch they

come from (for instance from top left to bottom right). Furthermore, as each pixel is associated with a
vector εP , we can display the correlation matrix of εP . Figure 3.7 shows the correlation matrices related
to the original DCT and the learned transform applied to the House image (σ = 25). Unlike DCT, the
transform produced by DCT2net tends to decorrelate the components of the residual noise which explains
why the PSNR values are higher after averaging.

3.3.3 Constraining DCT2net to effectively denoise patches is an unsuccessful
strategy

As the strategy followed by DCT2net is counter-intuitive and hardly comprehensible for a human
brain, we tried to constrain the learned transform to effectively denoise patches. In this study, aggregation
is performed in a second step with conventional weighted averages. This can be done in practice by cutting
our neural network represented in Fig. 3.2 after the two first convolutional layers, so that the output FP (yi)

81

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

DCT DCT2net

Figure 3.7 – Correlation matrices of the residual noise vector εP for two different transforms computed on the
House image for σ = 25 and patches of size 9 × 9. Top: components of εP ordered from top left to bottom right
according to the patch they belong, bottom: components of εP ordered from center to periphery.

is of size (H − p+ 1)× (W − p+ 1)× p2. For a clean image xi, we can compute its patch representation
Π(xi) of size (H − p+ 1)× (W − p+ 1)× p2 as well and solve the following optimization problem:

P ∗ = arg min
P

N∑
i=1
∥FP (yi, σi)−Π(xi)∥2

2. (3.7)

Figure 3.4e shows the learned transform P ∗ that effectively denoise patches. The resulting matrix
P ∗ is much more natural and interestingly very close the original DCT basis. The gain in PSNR on
patches of this new transform was evaluated on the Set 12 dataset. The results reported in Table 3.1
show that the learned transform produces systematically a higher PSNR in average for the patches than
the traditional DCT. One could expect that this transform would outperform DCT after the aggregation
step. Unfortunately, this is not the case. Once the transform has been re-used in our DCT2net shown
in Fig. 3.2 with the adaptive aggregation integrated, the expected boost compared to traditional DCT
in terms of PSNR significantly decreases. The difference of PSNR is insignificant, with a visually less
attractive result. We can notice an interesting phenomenon for σ = 15: from better denoised patches, our
learned transform fails to outperform the traditional DCT after any classical aggregation technique. This
counter-intuitive result confirms, once again, that the aggregation step is equally important as denoising
patches.

To go beyond DCT, the key issue is to follow a non-intuitive path that consists in degrading the

82

3.4. Strategies to reduce unpleasant visual artifacts

0.65 0.70 0.75 0.80
Values of the central pixel denoised pxp times

0

10

20

30

40

Co
un

ts

DCT
DCT2net

Noisy DCT DCT2net

0.3 0.4 0.5 0.6 0.7
Values of the central pixel denoised pxp times

0

2

4

6

8

10

12

14

Co
un

ts

DCT
DCT2net

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
Values of the central pixel denoised pxp times

0

5

10

15

20

25

Co
un

ts

DCT
DCT2net

Noisy DCT DCT2net Noisy DCT DCT2net

1

2 3

Figure 3.8 – For each noisy patch of size 13 × 13 extracted from House image corrupted by AWGN with σ = 10,
its denoised version is displayed when processed by the original DCT and by the transform learned by DCT2net.
The patches produced by DCT2net are very noisy compared to the original patches and patches denoised with
DCT. Histograms show a comparison of the p2 denoised values for the central pixel after transformation in each
of the p2 patches it belongs to (p = 13). The variance of pixels intensities is higher with DCT2net.

patches and performing aggregation step to rearrange everything and produce a high-quality denoised
image.

3.4 Strategies to reduce unpleasant visual artifacts

Even though DCT2net produces high PSNR values as BM3D [35], the visual results can be surprisingly
not as good as expected, especially in flat regions in images. This is due to the emergence of structured
unpleasant artifacts in those regions that are extremely eye-catcher. Figure 3.10 shows an example of
those artifacts that are inherent to our method. They are difficult to characterize and very different from
what we would get with a non-adaptive DCT denoiser. The visual impression is as if the recovered image
had been scratched in several locations. These undesirable artifacts were probably promoted by blind
stochastic gradient descent, to produce the best PSNR value in average. It is likely that this blind choice
originates from a trade-off between denoising flat regions and textures.

83

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

Noisy / 20.17 dB DCT / 31.18 dB

DCT2net / 32.20 dB DCT/DCT2net / 32.26 dB

Figure 3.9 – Application of the proposed procedure to get a partition of the noisy image House. Pixels belonging
to white areas after classification are denoised with DCT2net and the others with a traditional DCT denoiser.
Results (in PSNR) are given for each method for a noise level σ = 25.

In order to reduce the artifacts, we evaluated the multi-scale strategy as described in [177] to increase
the receptive field of the network. To that end, in addition to the denoising of all overlapping patches, an
equal quantity of downscaled patches was added to the process by considering dilated convolutions with
same weights. Dilated convolutions enable the network to double the receptive field but, unlike [177],
we did not notice any visual improvement or suppression of artifacts. Considering other perceptual loss
functions for the training was also explored. In addition to the ℓ2 loss, we examined three other loss
functions: the ℓ1 loss, a hybrid loss that combines the ℓ1 loss with the MS-SSIM [199] and a perceptual
loss based on the classification network VGG [81]. Although the ℓ1 loss (potentially combined with the
MS-SSIM) gave the best results, reducing the artifacts compared to the ℓ2 loss, there were still present
in flat regions.

To tackle this problem, we propose two different strategies: a fast and pragmatic one that mixes
DCT2net with DCT, and an alternative leveraging “internal adaptation” [177] which is more computa-
tionally demanding as it requires to partially retrain the weights of the network during inference.

84

3.4. Strategies to reduce unpleasant visual artifacts

Table 3.1 – The average PSNR (dB) results of two different transforms on patches of size 15 × 15 of Set12
corrupted with white Gaussian noise and σ = 15, 25 and 50.

Methods σ = 15 σ = 25 σ = 50
Before aggregation

DCT 27.74 25.19 21.92
DCT2net trained on patches 28.18 25.98 22.97

After adaptive aggregation
DCT 31.08 28.53 25.37

DCT2net trained on patches 30.90 28.66 25.65

Figure 3.10 – Image from BSD68 denoised with DCT2net producing unpleasant visual artifacts (left) and
denoised using both DCT and DCT2net in collaboration (right) for σ = 25. The difference between the noise-free
image and the denoised images is also provided, highlighting these artifacts.

3.4.1 DCT2net mixed with DCT

We combine below the performance of both transforms, that is the original DCT and the transform
learned by DCT2net. While the original DCT performs very well in flat regions, DCT2net recovers details
more efficiently in the vicinity of contours and in fine textured regions. Our idea is then to classify the
pixels into two classes and to apply the most appropriate denoiser at each pixel. In what follows, we show
how a binary map can be obtained, telling us which pixels are to be denoised with DCT2net or DCT.
Figure 3.9 illustrates an example of such a procedure applied to the House image.

The noisy image must be roughly denoised beforehand in order to robustly detect the flat regions,
textured regions and contours. The DCT denoiser (3.3) is appropriate in our case, as illustrated in Figure
3.12. It has the advantage of being particularly cost-efficient and nearly parameter-free. The resulting
denoised image is also re-used to produce the final image, as illustrated in Fig. 3.12, saving time and
resources. Interestingly, letting the traditional DCT denoiser operate on a large majority of pixels of the
noisy image does not alter the PSNR values in our experiments. As DCT produces smooth images in
homogeneous regions, the artifacts are removed and the visual result is enhanced considerably.

a) Classification based on Canny edge detector: Multiple choices of classification techniques are possible

85

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

DCT
31.91 dB

Canny mask
with dilation 3 × 3

Canny mask
with dilation 5 × 5

Canny mask
with dilation 11 × 11

Canny mask
with dilation 21 × 21

TV mask
with threshold of 75%

DCT2net
32.70 dB

DCT/DCT2net
32.59 dB

DCT/DCT2net
32.67 dB

DCT/DCT2net
32.67 dB

DCT/DCT2net
32.69 dB

DCT/DCT2net
32.62 dB

Figure 3.11 – Some examples of the classifications based on Canny edge detector and Total Variation on noisy
Lena for σ = 20.

to separate the flat regions from the contours and textured areas. A high precision in the classification
is not required as our goal is to isolate parts of the image that are susceptible to contain artifacts after
denoising with DCT2net.

The classification problem into two classes can be achieved with an efficient traditional technique:
the Canny edge detector [22]. This method uses Sobel filters in both horizontal and vertical direction at
its core to compute the gradient for each pixel. The direction of edges is then analyzed to remove any
unwanted pixels which may not constitute contours. Finally, an hysterisis thresholding is used to decide
which pixels, detected positively in the first instance, are actually edges. This last step is based on the
spatial analysis of connectivity, ensuring some coherence in the final classification map. To enlarge the
support of edges found by this Canny edge detector, we apply a simple morphology dilation operation in
the end.

In practice, the image is preliminary slightly smoothed with a unit standard deviation Gaussian filter.
The lower and upper thresholds involved in the Canny edge detector are set respectively to 0.1 and
0.2 (values of pixels being in the interval [0, 1]). These thresholds are set once and for all and are not
changed in all experiments. Finally, the dilation operation is performed using a kernel of size 5× 5 (i.e.,
all pixels neighboring an edge pixel at a distance of less than 2 in Manhattan geometry also become
edges). This choice of size of dilation kernel was motivated by its good performance in terms of PSNR,
without scarifying the visual quality depending on the amount of artifacts (which is the case for larger
sizes). Table 3.2 reports the influence of the size of the dilation operation on the PSNR values for σ = 20
on the Set 12 dataset composed of 12 widely used images for denoising. Unsurprisingly, the larger the
dilation filter (that is, the more pixels are processed with DCT2net), the higher the PSNR value is. It
can be noticed that considering small or large kernels does not affect the PSNR values significantly. If
the dilation is very large, it amounts to applying DCT2net to all pixels in the image.

b) Classification based on Total Variation: Alternatively, classification can be performed by applying
the local Total Variation (TV). This amounts to computing the sum of gradients on small windows,

86

3.4. Strategies to reduce unpleasant visual artifacts

Figure 3.12 – [Proposed hybrid denoising scheme. A first rough denoising is performed by DCT to improve
the classification procedure. Then the denoised image is recycled on the flat areas while DCT2net denoises the
contours.

which is expected to be low in flat regions and high on edges. After computing the value of the TV for
every pixel, a local-TV map is derived where values are all the more important as the original noisy
pixel belongs to a complex geometry, that is edges or texture. By defining an arbitrary threshold, it is
possible to partition the image into two distinct components: high gradient and low gradient pixels where
DCT2net and DCT are applied, respectively.

c) Comparisons of classification methods: Figure 3.11 shows the computed binary masks on the image
Lena for the two aforementioned classification techniques as well as the recomposed denoised image using
both DCT2net/DCT denoiser.

We can notice that the technique based on the Canny edge detector gives a coherent classification
where almost all contours are detected. When dilating more and more those contours with larger and
larger dilation kernels, the PSNR improves as more pixels are processed with DCT2net. However, there
is a risk of generating unpleasant artifacts near contours as it is the case in our example with a dilation
kernel of size 21× 21 (see Fig. 3.11). That is why, we set the size of this kernel to 5× 5 once and for all
which is a good balance between performance based on PSNR value and subjective visual perception.

87

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

Table 3.2 – The average PSNR (dB) results of our DCT/DCT2net method on Set12 corrupted with white
Gaussian noise and σ = 20 for different sizes of dilation kernel.

Size of dilation 3 5 7 9 11 ∞
DCT/DCT2net 30.58 30.67 30.69 30.70 30.71 30.75

Compared to the classification based on the Canny edge detector, the TV-based one is more limited.
Indeed, some edges are missing. Worse still, some isolated white blocks appear in the background. It is
very troublesome as those isolated zones will create further unpleasant artifacts at the end, as shown on
Figure 3.11. It appears that the denoising styles of those two denoisers are not compatible on similar
zones. The human eye quickly notices a lack of coherence in the denoising tone which is prejudicial to
the visual quality. We observed similar issues for all size of windows for the TV computation and for all
thresholds. Those critical drawbacks are prohibitive in the application of a such a method and we decided
to focus on the Canny edge detector in our experiments.

Note that simultaneously training two DCT2nets, one dedicated to flat regions and another one
dedicated to textured parts, brings a negligible boost in performance (PSNR values) and almost no
visual enhancement compared to the traditional DCT applied to flat regions, suggesting that the DCT
is near-optimal for piecewise smooth patches. This observation holds true when the segmentation into
flat regions and contours is computed from the noise-free image; on noisy images, we use the image
denoised by DCT before applying the Canny Edge Detector. Whatever the tested images and levels of
noise, applying DCT2net to flat regions did not significantly improve the results in our experiments (see
Table 3.3). Therefore, we preferred to consider the conventional DCT transform for denoising flat regions,
which also saves computing time.

3.4.2 Internal adaptation

“Internal adaptation” is an idea introduced by the authors of [177] that suggests to fine-tune the
weights of a neural network learned on an external dataset directly of the current noisy image y. More
precisely, in the case of DCT2net where the learned parameters are denoted by Pext, “internal adaptation”
consists in solving the following optimization problem:

Pint = arg min
P

Eε∥FP (x̂+ ε, σ)− x̂∥2
2 (3.8)

where ε ∼ N (0, σ2In) and x̂ = FPext
(y, σ). Finally, FPint

(y, σ) is presented as the final estimation of
the ground truth image x. The authors of [177] showed that this technique was only possible for small
networks to avoid overfitting, which is the case for DCT2net. In order to solve (3.8), we iteratively
simulate a realisation of the noise ε, compute the gradient of P 7→ ∥FP (x̂ + ε, σ) − x̂∥2

2 and update P
accordingly. Experimentally, less than a hundred iterations of gradient descent steps are necessary to
converge. To reduce artifacts even more, the ℓ2 norm is replaced in (3.8) by the ℓ1 + MS-SSIM norm
[199]. This same norm is also adopted for the training on an external dataset to obtain Pext. Figure
3.13 shows how “internal adaptation” enables to significantly improve the quality of the images visually;
several eye-catchy artifacts were completely suppressed.

88

3.5. Experiments

DCT2net Pext / 28.77 dB DCT2net Pint / 28.61 dB

Figure 3.13 – Denoising of the Man image with/without the “internal adaptation” step (σ = 30). Several
artifacts were completely suppressed by applying the “internal adaptation” procedure.

Table 3.3 – PSNR results of two hybrid solutions on Set12 dataset given an input segmentation map performed
with Canny Edge Detector. Left: segmentation of the noise-free image. Right: segmentation of the denoised image
(DCT).

Noise level DCT/DCT2net DCT2net/DCT2net
σ = 15 32.08 / 32.02 32.11 / 31.97
σ = 25 29.73 / 29.64 29.80 / 29.62
σ = 50 26.50 / 26.38 26.57 / 26.44

Note that the weights of the network need to be partially retrained during inference, making this
solution to reduce artifacts computationally demanding. As the interest of DCT2net is to be fast, we
decided to focus on DCT/DCT2net afterwards.

3.5 Experiments

In this section, we describe the experiments conducted to train our model DCT2net. Moreover, we
provide comparisons with traditional and deep-learning-based state-of-the-art algorithms. The code and
pre-trained models can be downloaded here: https://github.com/sherbret/DCT2net/.

3.5.1 Training settings

We trained our DCT2net on 400 gray-scale images from the Berkeley segmentation dataset (BSDS)
[129] where synthetic Gaussian noise with zero mean and a random standard deviation σ taken in ∈ [1, 55]
was added in order to create pairs (xi, yi)i∈{1,...,N} with N ≫ 400 (the xi are redundant). Our network
can adapt to the level of noise as the differentiable hard shrinkage function depends on σ, so that we
train our model only once for all levels of noise at the same time. This makes DCT2net more flexible
than many deep learning models that need to be retrained for each noise level (although solutions for
handling multiple noise levels within the same network were proposed, including a noise map supplied to

89

https://github.com/sherbret/DCT2net/

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

Table 3.4 – The average PSNR (dB) results of different methods on BSD68 dataset corrupted with white
Gaussian noise and σ = 15, 25 and 50.

Methods BM3D PEWA DnCNN GroupSC BM3D-Net LKSVD1,8,256 DCT DCT2net DCT/DCT2net
[35] [84] [195] [100] [187] [166] [189]

σ = 15 31.07 31.04 31.72 31.71 31.42 31.33 30.32 31.09 30.97
σ = 25 28.57 28.52 29.23 29.20 28.83 28.76 27.76 28.64 28.53
σ = 50 25.62 25.53 26.23 26.17 25.73 25.68 24.86 25.68 25.59

Noisy BM3D DnCNN LKSVD1,8,256 DCT DCT/DCT2net

20.17 dB 29.49 dB 30.15 dB 29.56 dB 28.27 dB 29.45 dB

20.17 dB 26.86 dB 27.76 dB 27.39 dB 25.45 dB 26.90 dB

20.17 dB 24.36 dB 24.80 dB 24.63 dB 23.31 dB 24.45 dB

Figure 3.14 – Denoising results (in PSNR) of some images from BSD68 dataset corrupted with white Gaussian
noise and σ = 25.

90

T
ab

le
3.

5
–

T
he

P
SN

R
(d

B
)

re
su

lts
of

di
ffe

re
nt

m
et

ho
ds

on
Se

t1
2

co
rr

up
te

d
w

ith
w

hi
te

G
au

ss
ia

n
no

is
e

an
d

σ
=

15
,2

5
an

d
50

.

Im
ag

es
C

.m
an

H
ou

se
Pe

pp
er

s
St

ar
fis

h
M

on
ar

ch
A

ir
pl

an
e

Pa
rr

ot
Le

na
B

ar
ba

ra
B

oa
t

M
an

C
ou

pl
e

A
ve

ra
ge

N
oi

se
Le

ve
l

σ
=

15
B

M
3D

[3
5]

31
.9

1
34

.9
3

32
.6

9
31

.1
4

31
.8

5
31

.0
7

31
.3

7
34

.2
6

33
.1

0
32

.1
3

31
.9

2
32

.1
0

32
.3

7
PE

W
A

[8
4]

31
.8

8
34

.7
2

32
.6

4
30

.8
5

31
.8

3
31

.0
4

31
.2

9
34

.0
9

32
.7

3
31

.9
0

31
.8

1
31

.8
8

32
.2

2
D

nC
N

N
[1

95
]

32
.6

1
34

.9
7

33
.3

0
32

.2
0

33
.0

9
31

.7
0

31
.8

3
34

.6
2

32
.6

4
32

.4
2

32
.4

6
32

.4
7

32
.8

6
G

ro
up

SC
[1

00
]

32
.5

1
35

.0
9

33
.2

6
32

.1
3

33
.1

6
31

.7
1

31
.9

3
34

.6
3

32
.7

9
32

.4
2

32
.4

1
32

.4
2

32
.8

7
LK

SV
D

1,
8,

25
6

[1
66

]
32

.0
7

34
.2

6
32

.7
9

31
.6

2
32

.4
9

31
.3

7
31

.6
2

34
.0

3
31

.8
4

31
.9

7
32

.0
7

31
.8

5
32

.3
3

D
C

T
[1

89
]

30
.7

7
33

.5
6

31
.6

5
30

.0
9

30
.6

2
30

.1
7

30
.6

4
33

.4
4

31
.6

3
31

.3
6

31
.0

4
31

.2
0

31
.3

5
D

C
T

2n
et

31
.6

0
34

.3
1

32
.5

7
31

.0
4

31
.6

9
30

.9
9

31
.3

6
33

.9
6

31
.8

1
31

.9
5

31
.9

7
31

.8
9

32
.1

0
D

C
T

/D
C

T
2n

et
31

.4
9

34
.3

0
32

.5
2

30
.8

8
31

.6
0

30
.9

3
31

.2
7

33
.9

3
31

.9
0

31
.8

2
31

.7
8

31
.7

8
32

.0
2

N
oi

se
Le

ve
l

σ
=

25
B

M
3D

[3
5]

29
.4

5
32

.8
5

30
.1

6
28

.5
6

29
.2

5
28

.4
2

28
.9

3
32

.0
7

30
.7

1
29

.9
0

29
.6

1
29

.7
1

29
.9

7
PE

W
A

[8
4]

29
.4

8
32

.7
7

30
.3

0
28

.1
3

29
.1

3
28

.4
1

28
.9

0
31

.8
9

30
.2

8
29

.6
5

29
.5

0
29

.4
8

29
.8

3
D

nC
N

N
[1

95
]

30
.1

8
33

.0
6

30
.8

7
29

.4
1

30
.2

8
29

.1
3

29
.4

3
32

.4
4

30
.0

0
30

.2
1

30
.1

0
30

.1
2

30
.4

3
G

ro
up

SC
[1

00
]

30
.0

5
33

.0
4

30
.7

9
29

.4
4

30
.3

7
29

.1
1

29
.5

0
32

.4
8

30
.3

1
30

.2
0

30
.0

6
30

.0
4

30
.4

5
LK

SV
D

1,
8,

25
6

[1
66

]
29

.4
9

31
.9

9
30

.1
9

28
.7

6
29

.7
3

28
.7

5
29

.0
9

31
.6

7
28

.8
6

29
.6

6
29

.6
5

29
.3

3
29

.7
6

D
C

T
[1

89
]

28
.0

9
31

.1
8

29
.0

2
27

.3
0

27
.7

1
27

.5
0

28
.1

0
31

.0
5

28
.6

9
28

.9
4

28
.7

2
28

.7
0

28
.7

5
D

C
T

2n
et

29
.2

9
32

.2
0

30
.1

5
28

.4
5

29
.1

6
28

.4
8

28
.9

6
31

.7
6

29
.1

6
29

.7
1

29
.6

4
29

.5
1

29
.7

1
D

C
T

/D
C

T
2n

et
29

.1
6

32
.2

6
30

.0
8

28
.3

2
29

.0
8

28
.4

2
28

.8
8

31
.7

5
29

.2
9

29
.5

6
29

.4
1

29
.4

1
29

.6
4

N
oi

se
Le

ve
l

σ
=

50
B

M
3D

[3
5]

26
.1

3
29

.6
9

26
.6

8
25

.0
4

25
.8

2
25

.1
0

25
.9

0
29

.0
5

27
.2

2
26

.7
8

26
.8

1
26

.4
6

26
.7

2
PE

W
A

[8
4]

26
.2

5
29

.2
9

26
.6

9
24

.5
3

25
.4

6
25

.0
7

25
.8

2
28

.8
3

26
.5

8
26

.6
4

26
.6

7
26

.0
2

26
.4

9
D

nC
N

N
[1

95
]

27
.0

3
30

.0
0

27
.3

2
25

.7
0

26
.7

8
25

.8
7

26
.4

8
29

.3
9

26
.2

2
27

.2
0

27
.2

4
26

.9
0

27
.1

8
G

ro
up

SC
[1

00
]

26
.8

8
29

.8
2

27
.2

5
25

.7
3

26
.8

2
25

.8
4

26
.4

3
29

.3
4

26
.7

9
27

.1
5

27
.1

6
26

.8
6

27
.1

7
LK

SV
D

1,
8,

25
6

[1
66

]
26

.2
6

28
.5

3
26

.5
2

25
.1

2
26

.0
0

25
.3

1
25

.9
3

28
.3

2
24

.7
5

26
.5

5
26

.6
8

26
.0

7
26

.3
4

D
C

T
[1

89
]

24
.6

7
27

.7
3

25
.4

8
23

.9
3

24
.1

0
24

.0
5

24
.7

8
27

.7
1

24
.9

8
25

.8
1

26
.0

1
25

.5
5

25
.4

0
D

C
T

2n
et

26
.2

0
28

.7
8

26
.5

9
24

.8
6

25
.5

4
25

.1
5

25
.9

1
28

.5
5

25
.5

3
26

.6
2

26
.7

0
26

.2
7

26
.3

9
D

C
T

/D
C

T
2n

et
26

.2
0

29
.0

5
26

.4
8

24
.7

4
25

.4
1

25
.1

5
25

.8
9

28
.6

3
25

.7
3

26
.4

7
26

.5
6

26
.2

0
26

.3
8

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

Table 3.6 – Running time (in seconds) of different methods for denoising images with size 256×256, 512×512
and 1,024×1,024. Run times are given on CPU and GPU when possible.

Image BM3D PEWA DnCNN GroupSC LKSVD1,8,256 DCT 16×16 DCT2net DCT/DCT2net
size [35] [84] [195] [100] [166] [189]

256×256 CPU 1.73 38.85 0.87 396.64 1.15 0.49 0.39 1.05
GPU - - 0.010 10.75 0.020 0.006 0.005 -

512×512 CPU 6.65 190.82 3.47 1311.78 5.78 2.02 1.56 4.08
GPU - - 0.037 35.66 0.082 0.037 0.027 -

1,024×1,024 CPU 26.90 803.76 18.35 4514.49 25.78 8.70 5.88 16.87
GPU - - 0.145 125.70 0.332 0.161 0.112 -

Table 3.7 – Model complexities comparison of our proposed method with two popular networks.

Methods DnCNN [195] LKSVD1,8,256 [166] DCT2net
Number of layers 17 5 2

Number of parameters 556,096 35,138 28,561

the network entry, e.g. FFDnet [197]).

During training, we randomly sample cropped images from the training set of size 128×128 with a mini-
batch size of 32. We use horizontal and vertical flipping as well as random rotations ∈ {0◦, 90◦, 180◦, 270◦}
as further data augmentation. In total, 400 × 665 overlapping patches from 400 clean images are used
for training. The mean squared error was used as loss function and we used Adam optimizer [88]. The
learning rate was set to 10−3 and decreased exponentially to 10−5 during the 15 epochs required for
convergence. Note that we initialized the weights of our networks according to the original discrete cosine
transform given by (3.2). Initializing the weights randomly, for example with a Xavier initialization as it is
usually done with deep neural networks, only slows down the time for convergence. As for the parameter
m specifying the degree of approximation of the hard shrinkage function φλ, we took m = 32. Training
a model took approximately 8 hours with a GeForce RTX 2080 Ti.

Note that a small improvement of our hybrid solution DCT/DCT2net can be obtained by training
DCT2net only on parts of images where the learned transform will be applied. In practice, this is done
by pre-computing binary masks bi according to the classification proposed for every image of the external
dataset and solving:

P ∗ = arg min
P

N∑
i=1
∥bi ⊙ (FP (yi, σi)− xi)∥2

2 (3.9)

where FP designates the network and ⊙ is the Hadamard product.
We recall the parameters chosen for the Canny edge detector: lower and upper thresholds are set once

and for all respectively to 0.1 and 0.2 and a supplementary dilation operation is performed using a kernel
of size 5× 5.

3.5.2 Results on test datasets

We tested the denoising performance of our architecture on two well-known datasets: Set12 and
BSD68. Results on satellite imagery data are presented in Appendix A. According to our experiments,

92

3.5. Experiments

the best model for DCT/DCT2net in terms of performance (i.e., PSNR) and subjective visual quality is
obtained with a patch size of 13. Larger sizes of patch only bring negligible enhancement for a complexity
much more important.

Tables 3.5 and 3.4 compare the performance of traditional and deep-learning-based state-of-the-art
algorithms with our model. We compare our DCT2net with BM3D [35] and PEWA [84], both state-of-the-
art traditional methods that exploit self-similarity and DCT decomposition. We also compare DCT2net
to related algorithm Deep K-SVD [166]. Scetbon et al. [166] proposed multiple models that depend on
the patch size, the dictionary size and the number of denoising steps. In what follows, we consider the
smallest model for which an implementation is given by the authors and which is denoted LKSVD1,8,256.
We performed the training by ourselves for each noise level, as no pretrained models were supplied by
the authors. Finally, we provide the PSNR results on BSD68 of two other deep-learning-based methods
that exploit self-similarity: BM3D-Net [187] and GroupSC [100].

We can notice that DCT2net achieves comparable performances with state-of-the-art traditional al-
gorithms on both Set12 and BSD68 datasets, outperforming its original counterpart DCT 3 [189]. Unlike
BM3D and PEWA and other algorithms such as NL-Bayes [96], DCT2net is a very simple one-pass algo-
rithm, able to produce similar performances to Deep K-SVD for high noise level while it is not trained
specifically to address such challenging situations.

Beyond the performance assessed with the PSNR criterion, nothing can replace the subjective assess-
ment of a human eye. On this criterion, our DCT/DCT2net can hold its own against established methods
such as BM3D as shown in Figure 6.8. The use of the traditional DCT on flat areas produces, for exam-
ple, a better-looking sky than Deep K-SVD or BM3D when applied to the Castle image. Unsurprisingly,
DCT/DCT2net (based on two layers) cannot compete with very deep neural networks such that DnCNN
[195] but it is faster on large size images (see below and Table 3.6).

Nevertheless, the performance has to be put in perspective with the complexity of the model which
is studied in the next subsection.

3.5.3 Complexity and low-cost training

We want to emphasize that DCT2net is very light and fast compared to its traditional and deep-
learning-based counterparts. In Table 3.7, we reported the complexity in terms of layers numbers and
parameters. The number of parameters of DCT2net represents only 5% of the total of parameters of
DnCNN. Moreover, the underlying parameters are the same whatever the noise level is, which is not the
case for DnCNN, Deep K-SVD or GroupSC where the models have to be trained from scratch for every
noise level.

Moreover, an interesting property of DCT2net is that it encodes a homogeneous function. Indeed,
denoting FP the network, FP (λ(y, σ)) = λFP (y, σ) for λ > 0 (the proof stems from Proposition 4 in
Appendix B.1 with λ1 = . . . = λn). As observed by the authors of [132], such functions are able to gener-
alize very well when deployed at noise levels outside the training range. We verified this experimentally
by training DCT2net over multiple ranges of noise levels (σ ∈ [1, 55], σ ∈ [1, 15] and σ ∈ [25, 25]). Figure
3.15 plots the PSNR values on the test dataset BSD68 for different noise levels. Interestingly, DCT2net is

3. The non-adaptive version of DCT denoiser was considered as it produced a slightly higher PSNR, despite its poor
subjective visual quality.

93

Chapter 3 – DCT2net: an interpretable shallow CNN for image denoising

10 15 20 25 30 35 40 45 50
Noise Level

22
24

26

28

30

32

34

PS
NR

DnCNN [0, 10]
BF-DnCNN [0, 10]
BF-DnCNN [0, 100]
DCT2net [1, 55]
DCT2net [25, 25]
DCT2net [1, 15]

Figure 3.15 – PSNR values (dB) on BSD68 dataset for different noise levels. Homogeneous functions (such as
DCT2net) are able to generalize outside their training range (indicated in square brackets) which is not the case
for DnCNN.

able to generalize to a certain extent even when trained over a narrow range (although DCT2net trained
over the full range [1, 55] provided the best PSNR values). The same phenomenon was observed with the
bias-free DnCNN introduced by the authors of [132] (see Figure 3.15).

In addition to the number of parameters, the executing time is a crucial feature of denoising algorithms.
Table 3.6 is provided for information purposes only, as the implementation, the language used and the
machine on which the code is run, highly influence the execution time. The CPU used is a 2,3 GHz Intel
Core i7 and the GPU is a GeForce RTX 2080 Ti. We used the implementation provided by the authors
for all algorithms, except for DCT [189] that we re-implemented with Pytorch on our own, leveraging
the network unfolding scheme already used in [166]. By the way, DCT2net can be easily adapted to
this specific unfolding implementation, as there is no difference between DCT2net and DCT denoiser,
apart from the underlying bases. Note that only the CPU time is provided for DCT/DCT2net as the
Canny Edge Detector implementation used does not run on GPU. We can notice that, despite their good
performances in terms of PSNR (see Table 3.5 and 3.4), the interpretable networks Deep K-SVD and
GroupSC are much slower than DCT2net (see Table 3.6). Only DnCNN is comparable in speed but this
network is not interpretable as it is composed of more than a dozen of layers (see Table 3.7).

We also tried to train our network on fewer images than the original BSD400 dataset. As our network
relies on a two-layers architecture, it is less prone to overfitting and the learning can be performed only
from several dozens of images. With 10 and 40 images, corresponding to 10×665 and 40×665 overlapping
patches of size 128× 128 respectively, our DCT/DCT2net achieves almost the same performance with no
visual difference. By way of comparison, training a model with 40 images takes less than one hour with
a GeForce RTX 2080 Ti and the average PSNR values on Set12 are 32.07dB, 29.69dB and 26.39dB, for
σ = 15, 25 and 50 respectively.

94

3.6. Discussion and conclusion

3.6 Discussion and conclusion

DCT2net is one of the first attempts to create a shallow CNN for image denoising It has the ad-
vantage to be fast, interpretable and flexible as it can handle a wide range of noise levels. Compared
to other sophisticated methods that can be computationally intensive, it performs quite well, in terms
of PSNR values but also in terms of subjective quality when combined with traditional DCT through
DCT/DCT2net. Sure enough, the performance of DCT2net still falls short in comparison to state-of-
the-art deep-learning-based methods such as DnCNN [195] but manipulating shallow networks has much
to offer. Beyond the fact that they are extremely fast as the number of hidden layers is limited, these
networks challenge us to think differently our approach to neural networks and encourage us to be more
creative than the traditional “Transform-BatchNorm-ReLU” repeated dozens of times. With shallow net-
works, the activation function must be carefully designed to best match its purpose. Thus, during the
training phase, DCT2net uses an approximation of a hard shrinkage function as activation function that
depends on the noise level. This is, to the best of our knowledge, the first time such a function is used in
a CNN.

Moreover, DCT2net is fully interpretable, unlike Deep K-SVD [166] that uses a multi-layer perceptron
(MLP) ahead of its sparsity-based network. This interpretability is an important advantage, making the
method more robust. At the end of the optimization process, it is possible to check what the network
has just learned and, in the case of DCT2net, to directly display the learned basis. By easily exploring
the different steps of the process, some usages, usually taken for granted, are disproved by the machine.
Thus, we were surprised to realize that the aggregation step that is common in denoising methods based
on patches, is not a basic post-processing step but can be fully integrated in the denoising process to
considerably improve the performance.

This study shows that signal processing methods such as the popular DCT denoising algorithm can
have a comeback by improving the transform involved through deep learning framework. We showed
that fully interpretable CNNs can be designed, for which denoising performances compare favorably with
state-of-the-art traditional algorithms. We hope that our work will open the door to new architectures,
more reliable and understandable for the human brain.

95

Chapter 4

NORMALIZATION-EQUIVARIANT NEURAL

NETWORKS WITH APPLICATION TO IMAGE

DENOISING

In many information processing systems, it may be desirable to ensure that any
change of the input, whether by shifting or scaling, results in a corresponding
change in the system response. While deep neural networks are gradually re-
placing all traditional automatic processing methods, they surprisingly do not
guarantee such normalization-equivariance (scale and shift) property, which
can be detrimental in many applications. To address this issue, we propose
a methodology for adapting existing neural networks so that normalization-
equivariance holds by design. Our main claim is that not only ordinary convo-
lutional layers, but also all activation functions, including the ReLU (Rectified
Linear Unit), which are applied element-wise to the pre-activated neurons,
should be completely removed from neural networks and replaced by better
conditioned alternatives. To this end, we introduce affine-constrained convolu-
tions and channel-wise sort pooling layers as surrogates and show that these
two architectural modifications do preserve normalization-equivariance with-
out loss of performance. Experimental results in image denoising show that
normalization-equivariant neural networks, in addition to their better condi-
tioning, also provide much better generalization across noise levels.

4.1 Introduction

Sometimes wrongly confused with the invariance property which designates the characteristic of a
function f not to be affected by a specific transformation T applied beforehand, the equivariance property,
on the other hand, means that f reacts in accordance with T . Formally, invariance is f ◦ T = f whereas
equivariance reads f ◦ T = T ◦ f , where ◦ denotes the function composition operator. Both invariance
and equivariance play a crucial role in many areas of study, including physics, computer vision, signal
processing and have recently been studied in various settings for deep-learning-based models [9, 18, 32,
52, 53, 58, 83, 101, 128, 165, 174, 180, 185].

In this chapter, we focus on the equivariance of neural networks fθ to a specific transformation T ,
namely normalization. Although highly desirable in many applications and in spite of its omnipresence in

97

Chapter 4 – Normalization-equivariant neural networks with application to image denoising

machine learning, current neural network architectures do not equivary to normalization. With application
to image denoising, for which normalization-equivariance is generally guaranteed for a lot of conventional
methods [15, 65, 79, 156], we propose a methodology for adapting existing neural networks, and in
particular denoising CNNs [28, 114, 127, 194, 195, 197], so that normalization-equivariance holds by
design. In short, the proposed adaptation is based on two innovations:

1. affine convolutions: the weights from one layer to each neuron from the next layer, i.e. the convo-
lution kernels in a CNN, are constrained to encode affine combinations of neurons (the sum of the
weights is equal to 1).

2. channel-wise sort pooling: all activation functions that apply element-wise, such as the ReLU, are
substituted with higher-dimensional nonlinearities, namely two by two sorting along channels that
constitutes a fast and efficient normalization-equivariant alternative.

Despite strong architectural constraints, we show that these simple modifications do not degrade perfor-
mance and, even better, increase robustness to noise levels in image denoising both in practice and in
theory.

4.2 Related work

A non-exhaustive list of application fields where equivariant neural networks were studied includes
graph theory, point cloud analysis and image processing. Indeed, graph neural networks are usually
expected to equivary, in the sense that a permutation of the nodes of the input graph should permute the
output nodes accordingly. Several specific architectures were investigated to guarantee such a property
[9, 83, 165]. In parallel, rotation and translation-equivariant networks for dealing with point cloud data
were proposed in a recent line of research [18, 52, 174]. A typical application is the ability for these
networks to produce direction vectors consistent with the arbitrary orientation of the input point clouds,
thus eliminating the need for data augmentation. Finally, in the domain of image processing, it may be
desirable that neural networks produce outputs that equivary with regard to rotations of the input image,
whether these outputs are vector fields [128], segmentation maps [180, 185], labels for image classification
[185] or even bounding boxes for object tracking [58].

In addition to their better conditioning, equivariant neural networks by design are expected to be
more robust to outliers. A spectacular example has been revealed by S. Mohan et al. [132] in the field
of image denoising. By simply removing the additive constant (“bias”) terms in neural networks with
ReLU activation functions, they showed that a much better generalization at noise levels outside the
training range was ensured. Although they do not fully elucidate why biases prevent generalization, and
their removal allows it, the authors establish some clues that the answer is probably linked to the scale-
equivariant property of the resulting encoded function: rescaling the input image by a positive constant
value rescales the output by the same amount.

98

4.3. Overview of normalization equivariance

4.3 Overview of normalization equivariance

4.3.1 Definitions and properties of three types of fundamental equivariances

We start with formal definitions of the different types of equivariances studied in this chapter. Please
note that our definition of “scale” and “shift” may differ from the definition given by some authors in the
image processing literature.

Definition 1. A function f : Rn 7→ Rm is said to be:
— scale-equivariant if ∀x ∈ Rn,∀λ ∈ R+

∗ , f(λx) = λf(x) ,
— shift-equivariant if ∀x ∈ Rn,∀µ ∈ R, f(x+ µ) = f(x) + µ ,

— normalization-equivariant if it is both scale-equivariant and shift-equivariant:

∀x ∈ Rn,∀λ ∈ R+
∗ ,∀µ ∈ R, f(λx+ µ) = λf(x) + µ ,

where addition with the scalar shift µ is applied element-wise.

Note that the scale-equivariance property is more often referred to as positive homogeneity in pure
mathematics. Like linear maps that are completely determined by their values on a basis, the above
described equivariant functions are actually entirely characterized by the values their take on specific
subsets of Rn, as stated by the following lemma (see proof in Appendix C.3.1).

Lemma 1 (Characterizations). f : Rn 7→ Rm is entirely determined by its values on the:
— unit sphere S of Rn if it is scale-equivariant,
— orthogonal complement of Span(1n), i.e. Span(1n)⊥, if it is shift-equivariant,
— intersection S ∩ Span(1n)⊥ if it is normalization-equivariant,

where 1n denotes the all-ones vector of Rn.

Finally, Lemma 2 highlights three basic equivariance-preserving mathematical operations that can be
used as building blocks for designing neural network architectures (see proof in Appendix C.3.1).

Lemma 2 (Operations preserving equivariance). Let f and g be two equivariant functions of the same
type (either in scale, shift or normalization). Then, subject to dimensional compatibility, all of the fol-
lowing functions are still equivariant:

— f ◦ g (f composed with g),
— x 7→ (f(x)⊤ g(x)⊤)⊤ (concatenation of f and g),
— (1− t)f + tg for all t ∈ R (affine combination of f and g).

4.3.2 Examples of normalization-equivariant conventional denoisers

A (“blind”) denoiser is basically a function f : Rn 7→ Rn which, given a noisy image y ∈ Rn, tries to
map the corresponding noise-free image x ∈ Rn. Since scaling up an image by a positive factor λ or adding
it up a constant shift µ does not change its contents, it is natural to expect scale and shift equivariance, i.e.
normalization equivariance, from the denoising procedure emulated by f . In image denoising, a majority
of methods usually assume an additive white Gaussian noise model with variance σ2. The corruption

99

Chapter 4 – Normalization-equivariant neural networks with application to image denoising

model then reads y ∼ N (x, σ2In), where In denotes the identity matrix of size n, and the noise standard
deviation σ > 0 is generally passed as an additional argument to the denoiser (“non-blind” denoising).
In this case, the augmented function f : (y, σ) ∈ Rn × R+

∗ 7→ Rn is said normalization-equivariant if:

∀(y, σ) ∈ Rn × R+
∗ ,∀λ ∈ R+

∗ ,∀µ ∈ R, f(λy + µ, λσ) = λf(y, σ) + µ , (4.1)

as, according to the laws of statistics, λy + µ ∼ N (λx + µ, (λσ)2In). In what follows, we give some
well-known examples of traditional denoisers that are normalization-equivariant (see proofs in Appendix
C.3.2).

Noise-reduction filters: The most rudimentary methods for image denoising are the smoothing filters,
among which we can mention the averaging filter or the Gaussian filter for the linear filters and the median
filter which is nonlinear. These elementary “blind” denoisers all implement a normalization-equivariant
function. More generally, one can prove that a linear filter is normalization-equivariant if and only if its
coefficients add up to 1. In others words, normalization-equivariant linear filters process images by affine
combinations of pixels.

Patch-based denoising: The popular N(on)-L(ocal) M(eans) algorithm [15] and its variants [39, 43,
79, 117] consist in computing, for each pixel, an average of its neighboring noisy pixels, weighted by the
degree of similarity of the patches to which they belong. In other words, they process images by convex
combinations of pixels. More precisely, NLM can be defined as:

fNLM(y, σ)i = 1
Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥2

2
h2 yj with Wi =

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥2

2
h2 (4.2)

where yi denotes the ith component of vector y, Ω(yi) is the set of its neighboring pixels, p(yi) represents
the vectorized patch centered at yi, and the smoothing parameter h is proportional to σ as proposed by
several authors [14, 43, 126, 162]. Defined as such, fNLM is a normalization-equivariant function. More
recently, NL-Ridge [65] and LIChI [66] propose to process images by linear combinations of similar patches
and achieves state-of-the-art performance in unsupervised denoising. When restricting the coefficients of
the combinations to sum to 1, that is imposing affine combination constraints, the resulting algorithms
encode normalization-equivariant functions as well.

TV denoising: Total variation (TV) denoising [156] is finally one of the most famous image denoising
algorithm, appreciated for its edge-preserving properties. In its original form [156], a TV denoiser is
defined as a function f : Rn × R+

∗ 7→ Rn that solves the following equality-constrained problem:

fTV(y, σ) = arg min
x∈Rn

∥x∥TV s.t. ∥y − x∥2
2 = nσ2 (4.3)

where ∥x∥TV := ∥∇x∥2 is the total variation of x ∈ Rn. Defined as such, fTV is a normalization-equivariant
function.

100

4.3. Overview of normalization equivariance

Denoising with “blind” DnCNN
PSNR: 36.89 dB PSNR: 31.47 dB

Ground truth (a) (b)
PSNR: 32.04 dB PSNR: 35.22 dB PSNR: 37.93 dB

Noisy (c) (d)

Figure 4.1 – Influence of normalization for deep-learning-based image denoising. The raw input data is a publicly
available real noisy image of the Convallaria dataset [147]. “Blind” DnCNN [195] with official pre-trained weights
is used for denoising and is applied on four different normalization intervals displayed in red, each of which being
included in [0, 1] over which it was learned. PSNR is calculated with the average of 100 independent noisy static
acquisitions of the same sample (called ground truth). Interestingly, the straightforward interval [0, 1] does not
give the best results. Normalization intervals are (a) [0, 1], (b) [0.08, 0.12], (c) [0.48, 0, 52] and (d) [0.64, 0.96]. In
the light of the denoising results (b)-(c) and (b)-(d), DnCNN is neither shift-equivariant, nor scale-equivariant.

4.3.3 The case of neural networks

Deep learning hides a subtlety about normalization equivariance that deserves to be highlighted.
Usually, the weights of neural networks are learned on a training set containing data all normalized to
the same arbitrary interval [a0, b0]. This training procedure improves the performance and allows for more
stable optimization of the model. At inference, unseen data are processed within the interval [a0, b0] via
a a-b linear normalization with a0 ≤ a < b ≤ b0 denoted Ta,b and defined by:

Ta,b : y 7→ (b− a) y −min(y)
max(y)−min(y) + a . (4.4)

Note that this transform is actually the unique linear one with positive slope that exactly bounds the
output to [a, b]. The data is then passed to the trained network and its response is finally returned to
the original range via the inverse operator T −1

a,b . This proven pipeline is actually relevant in light of the
following proposition (see proof in Appendix C.3.1).

Proposition 1. ∀ a < b ∈ R,∀ f : Rn 7→ Rm, T −1
a,b ◦ f ◦ Ta,b is a normalization-equivariant function.

While normalization-equivariance appears to be solved, a question is still remaining: how to choose the
hyperparameters a and b for a given function f ? Obviously, a natural choice for neural networks is to take
the same parameters a and b as in the learning phase whatever the input image is, i.e. a = a0 and b = b0,
but are they really optimal? The answer to this question is generally negative. Figure 4.1 depicts an
example of the phenomenon in image denoising, taken from a real-world application. In this example, the
straightforward choice is largely sub-optimal. This suggests that there are always inherent performance
leaks for deep neural networks due to the two degrees of freedom induced by the normalization (i.e., choice
of a and choice of b). In addition, this poor conditioning can be a source of confusion and misinterpretation
in critical applications.

101

Chapter 4 – Normalization-equivariant neural networks with application to image denoising

Table 4.1 – Equivariance properties of several image denoisers (left: traditional, right: deep learning-based)

TV NLM NL-Ridge LIChI DCT BM3D WNNM DnCNN NLRN SwinIR DRUNet
Scale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
Shift ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

4.3.4 Categorizing image denoisers

Table 4.1 summarizes the equivariance properties of several popular denoisers, either conventional
[15, 35, 57, 65, 66, 156, 189] or deep-learning-based [108, 111, 194, 195]. Interestingly, if scale-equivariance
is generally guaranteed for traditional denoisers, not all of them are equivariant to shifts. In particular,
the widely used algorithms DCT [189] and BM3D [35] are sensitive to offsets, mainly because the hard
thresholding function at their core is not shift-equivariant. Regarding the deep-learning-based networks,
only DRUNet [194] is insensitive to scale because it is a bias-free convolutional neural network with only
ReLU activation functions [132]. In particular, all transformer models [25, 108, 111, 144, 191, 193], even
bias-free, are not scale-equivariant due to their inherent attention-based modules. In the next section, we
show how to adapt existing neural architectures to guarantee normalization-equivariance without loss of
performance and study the resulting class of parameterized functions (fθ).

4.4 Design of normalization-equivariant networks

4.4.1 Affine convolutions

To justify the introduction of a new type of convolutional layers, let us study one of the most basic
neural network, namely the linear (parameterized) function fΘ : x ∈ Rn 7→ Θx, where parameters Θ are
a matrix of Rm×n. Indeed, fΘ can be interpreted as a dense neural network with no bias, no hidden layer
and no activation function. Obviously, fΘ is always scale-equivariant, whatever the weights Θ. As for the
shift-equivariance, a simple calculation shows that:

x 7→ Θx is shift-equivariant ⇔ ∀x ∈ Rn,∀µ ∈ R,Θ(x+ µ1n) = Θx+ µ1m ⇔ Θ1n = 1m . (4.5)

Therefore, fΘ is normalization-equivariant if and only if each row of matrix Θ sums to 1. In other
words, for the normalization-equivariance to hold, the rows of Θ must encode weights of affine combina-
tions. Transposing the demonstration to any convolutional neural network follows from the observation
that a convolution from an input layer of size H ×W × C to an output layer of size H ′ ×W ′ × C ′ can
always be represented with a dense connection by vectorizing the input and output layers. The elements
of the C ′ convolutional kernels of size k × k × C each are then stored separately along the rows of the
(sparse) transition matrix Θ of size (H ′ ×W ′ × C ′) × (H ×W × C). Therefore, a convolutional layer
preserves the normalization-equivariance if and only if the weights of the each convolutional kernel sums
to 1. In the following, we call such convolutional layers “affine convolutions”.

In order to guarantee the affine constraint on each convolutional kernel throughout the training phase,
one possibility is to ‘telescope” the circular shifted version of an unconstrained kernel to itself (this way,
the sum of the resulting trainable coefficients cancels out) and then add the inverse of the kernel size

102

4.4. Design of normalization-equivariant networks

Figure 4.2 – Illustration of the proposed alternative for replacing the traditional scheme “convolution + element-
wise activation function” in convolutional neural networks: affine convolutions supersede ordinary ones by restrict-
ing the coefficients of each kernel to sum to one and the proposed sort pooling patterns introduce nonlinearities
by sorting two by two the pre-activated neurons along the channels.

element-wise as a non-trainable offset. Despite this over-parameterized form (involving an extra degree of
freedom), we found this solution to be easier to use in practice. Moreover, it ensures that all coefficients
of the affine kernels follow the same law at initialization.

As a consequence, since normalization-equivariance is preserved through function composition, con-
catenation and affine combination (see Lemma 2), a (linear) convolutional neural network composed of
only affine convolutions with no bias and possibly skip or affine residual connections (trainable affine com-
bination of two layers), is guaranteed to be normalization-equivariant, provided that padding is performed
with existing features (reflect, replicate or circular padding for example). Obviously, in their current state,
these neural networks are of little interest, as linear functions do not encode best-performing functions for
many applications, image denoising being no exception. Nevertheless, based on such networks, we show
in the next subsection how to introduce nonlinearities without breaking the normalization-equivariance.

4.4.2 Channel-wise sort pooling as a normalization-equivariant alternative to
ReLU

The first idea that comes to mind is to apply a nonlinear activation function φ : R 7→ R preserving
normalization-equivariance after each affine convolution. In other words, we look for a nonlinear solution
φ of the characteristic functional equation of normalization-equivariant functions (see Def. 1) for n = 1.
Unfortunately, according to Prop. 2 (see proof in Appendix C.3.1 which is based on Lemma 1), the unique
solution is the identity function which is linear. Therefore, activation functions that apply element-wise
are to be excluded.

Proposition 2. Let NE(n) be the set of normalization-equivariant functions from Rn to Rn.
NE(1) = {x 7→ x} and

NE(2) =
{

(x1, x2) 7→ A

(
x1

x2

)
if x1 ≤ x2 else B

(
x1

x2

)∣∣∣∣∣ A,B ∈ R2×2 s.t. A12 = B12 = 12

}
.

To find interesting nonlinear functions, one needs to examine multi-dimensional activation functions,
i.e. ones of the form φ : Rn 7→ Rm with n ≥ 2. In order to preserve the dimensions of the neural layers

103

Chapter 4 – Normalization-equivariant neural networks with application to image denoising

and to limit the computational costs, we focus on the case n = m = 2, meaning that φ processes pre-
activated neurons by pairs. According to Prop. 2, the normalization-equivariant functions from R2 to R2

are parameterized by two matrices A,B ∈ R2×2 such that A12 = B12 = 12 and apply a different (affine-
constrained) linear mapping depending on whether or not the input is in ascending order. As long as A ̸=
B, the resulting function is nonlinear and makes it de facto a candidate to replace the conventional one-
dimensional activation functions such as the popular ReLU (rectified linear unit) function. Interestingly,
when arbitrarily choosing A to be the identity matrix of R2×2 and B to be the exchange matrix (“row-
reversed” version of the identity matrix), the resulting normalization-equivariant function simply reads:

φ : (x1, x2) ∈ R2 7→

(
min(x1, x2)
max(x1, x2)

)
, (4.6)

which is nothing else than the sorting function in R2. Clearly, it is among the simplest normalization-
equivariant nonlinear function from R2 to R2 and it is the one we consider as surrogate for the one-
dimensional activation functions (choosing other functions, that is considering other choices for A and
B, does not bring improvements in terms of performance in our experiments). More generally, it is easy
to show that all the sorting functions of Rn are normalization-equivariant and are nonlinear as soon as
n ≥ 2. Note that such sorting operators have been promoted by [5, 30] in totally different contexts for
their norm-preserving properties of the backpropagated gradients.

Since the sorting function (4.6) is to be applied on non-overlapping pairs of neurons, the partitioning
of layers needs to be determined. In order not to mix unrelated neurons, we propose to apply this
two-dimensional activation function channel-wisely across layers and call this operation “sort pooling”
in reference to the max pooling operation, widely used for downsampling, and from which it can be
effectively implemented. Figure 4.2 illustrates the sequence of the two proposed innovations, namely
affine convolution followed by channel-wise sort pooling, to replace the traditional scheme “conv+ReLU”,
while guaranteeing normalization-equivariance.

4.4.3 Encoding adaptive affine filters

Based on Lemma 2, we can formulate the following proposition which tells more about the class of
parameterized functions (fθ) encoded by the proposed networks (see proof in Appendix C.3.1).

Proposition 3. Let fNE
θ : Rn 7→ Rm be a CNN composed of only:

— affine convolution kernels with no bias and where padding is made of existing features,
— sort pooling nonlinearities,
— possibly skip or affine residual connections, and max or average pooling layers.

Then, fNE
θ is a normalization-equivariant continuous piecewise-linear function with finitely many pieces.

Moreover, on each piece represented by the vector yr,
fNE

θ (y) = Ayr

θ y, with Ayr

θ ∈ Rm×n such that Ayr

θ 1n = 1m .

In Prop. 3, the subscripts on Ayr

θ serve as a reminder that this matrix depends on the sort pooling
activation patterns, which in turn depend on both the input vector y and the weights θ. As already
revealed for bias-free networks with ReLU [132], Ayr

θ is the Jacobian matrix of fNE
θ taken at any point

104

4.5. Experimental results

...... Noisy Scale-equivariant Normalization-equivariant

Denoised Adaptive filters Denoised Adaptive filters

σ
=

25

Pixel 1

Pixel 2

PSNR:
20.17 dB

PSNR:
32.38 dB

Σ = 0.99

Σ = 1.00

PSNR:
32.36 dB

Σ = 1

Σ = 1

σ
=

5

PSNR:
34.15 dB

PSNR:
30.56 dB

Σ = 0.94

Σ = 0.99

PSNR:
36.72 dB

Σ = 1

Σ = 1

Figure 4.3 – Visual comparisons of the generalization capabilities of a scale-equivariant neural network (left)
and its normalization-equivariant counterpart (right) for Gaussian noise. Both networks were trained for Gaussian
noise at noise level σ = 25 exclusively. The adaptive filters (rows of Ayr

θ in Prop. 3) are indicated for two particular
pixels as well as the sum of their coefficients (note that some weights are negative, indicated in red). The scale-
equivariant network tends to excessively smooth out the image when evaluated at a lower noise level, whereas the
normalization-equivariant network is more adaptable and considers the underlying texture to a greater extent.

y in the interior of the piece represented by vector yr. Moreover, as Ayr

θ 1n = 1m, the output vector of
such networks are locally made of fixed affine combinations of the entries of the input vector. And since
a CNN has a limited receptive field centered on each pixel, fNE

θ can be thought of as an adaptive filter
that produces an estimate of each pixel through a custom affine combination of pixels. By examining
these filters in the case of image denoising (see Fig. 4.3), it becomes apparent that they vary in their
characteristics and are intricately linked to the contents of the underlying images. Indeed, these filters
are specifically designed to cater to the specific local features of the noisy image: averaging is done
over uniform areas without affecting the sharpness of edges. Note that this behavior has already been
extensively studied by [132] for unconstrained filters.

The total number of fixed adaptive affine filters depends on the weights θ of the network fNE
θ and

is bounded by 2S where S represents the total number of sort pooling patterns traversed to get from
the receptive filed to its final pixel (assuming no max pooling layers). Obviously, this upper bound
grows exponentially with S, suggesting that a limited number of sort pooling operations may generate
an extremely large number of filters. Interestingly, if ReLU activation functions where used instead, the
upper bound would reach 22S .

4.5 Experimental results

We demonstrate the effectiveness and versatility of the proposed methodology in the case of image
denoising. To this end, we modify two well-established neural network architectures for image denoising,
chosen for both their simplicity and efficiency, namely DRUNet [194]: a state-of-the-art U-Net with resid-
ual connections [63]; and FDnCNN, the unpublished flexible variant of the popular DnCNN [195]: a simple

105

Chapter 4 – Normalization-equivariant neural networks with application to image denoising

Table 4.2 – The PSNR (dB) results of “non-blind” deep-learning-based methods applied to popular grayscale
datasets corrupted by synthetic white Gaussian noise with σ = 15, 25 and 50.

Dataset Set12 BSD68

Noise level σ 15 / 25 / 50 15 / 25 / 50

DRUNet [194]
ordinary 33.23 / 30.92 / 27.87 31.89 / 29.44 / 26.54

scale-equiv 33.25 / 30.94 / 27.90 31.91 / 29.48 / 26.59
norm-equiv 33.20 / 30.90 / 27.85 31.88 / 29.45 / 26.55

FDnCNN [195]
ordinary 32.87 / 30.49 / 27.28 31.69 / 29.22 / 26.27

scale-equiv 32.85 / 30.49 / 27.29 31.67 / 29.20 / 26.25
norm-equiv 32.85 / 30.50 / 27.27 31.69 / 29.22 / 26.25

feedforward CNN that chains “conv+ReLU” layers with no downsampling, no residual connections and
no batch normalization during training [78], and with a tunable noise level map as additional input [197].
We show that adapting these networks to become normalization-equivariant does not adversely affect
performance and, better yet, increases their generalization capabilities. For each scenario, we train three
variants of the original Gaussian denoising network for grayscale images: ordinary (original network with
additive bias), scale-equivariant (bias-free variation with ReLU [132]) and our normalization-equivariant
architecture (see Fig. 4.2). Details about training and implementations can be found in Appendix C.1 and
C.2; the code is available at https://github.com/sherbret/normalization_equivariant_nn/. Unless
otherwise noted, all results presented in this chapter are obtained with DRUNet [194]; similar outcomes
can be achieved with FDnCNN [195] architecture (see Appendix C.4). Results on satellite imagery data
are presented in Appendix A.

Finally, note that both DRUNet [194] and FDnCNN [195] can be trained as “blind” but also as “non-
blind” denoisers and thus achieve increased performance, by passing an additional noisemap as input. In
the case of additive white Gaussian noise of variance σ2, the noisemap is constant equal to σ1n and the
resulting parameterized functions can then be put mathematically under the form fθ : (y, σ) ∈ Rn×R+

∗ 7→
Rn. In order to integrate this feature to normalization-equivariant networks as well, a slight modification
of the first affine convolutional layer must be made. Indeed, by adapting the proof (4.5) to the case (4.1),
we can show that the first convolutional layer must be affine with respect to the input image y only –
the coefficients of the kernels acting on the image pixels add up to 1 – while the other coefficients of the
kernels need not be constrained.

4.5.1 The proposed architectural modifications do not degrade performance

The performance, assessed in terms of PSNR values, of our normalization-equivariant alternative
(see Fig. 4.2) and of its scale-equivariant and ordinary counterparts is compared in Table 4.2 for “non-
blind” architectures on two popular datasets [129]. We can notice that the performance gap between two
different variants is less than 0.05 dB at most for all noise levels, which is not significant. This result
suggests that the class of parameterized functions (fθ) currently used in image denoising can drastically
be reduced at no cost. Moreover, it shows that it is possible to dispense with activation functions, such as
the popular ReLU: nonlinearities can simply be brought by sort pooling patterns. In terms of subjective
visual evaluation, we can draw the same conclusion since images produced by two architectural variants

106

https://github.com/sherbret/normalization_equivariant_nn/

4.5. Experimental results

Noisy Ordinary Scale-equiv Normalization-equiv
σ

=
10 PSNR: 36.11 dB PSNR: 36.20 dB PSNR: 36.12 dB

PSNR: 35.64 dB PSNR: 35.68 dB PSNR: 35.65 dB

D
R

U
N

et
F

D
nC

N
N

σ
=

20 PSNR: 30.09 dB PSNR: 30.16 dB PSNR: 30.13 dB

PSNR: 29.57 dB PSNR: 29.45 dB PSNR: 29.65 dB

D
R

U
N

et
F

D
nC

N
N

σ
=

30

PSNR: 28.79 dB PSNR: 28.82 dB PSNR: 28.85 dB

PSNR: 27.83 dB PSNR: 27.81 dB PSNR: 27.96 dB

D
R

U
N

et
F

D
nC

N
N

Figure 4.4 – Qualitative comparison of image denoising results with synthetic white Gaussian noise for “non-
blind” models. Regardless of the variant of a model, the denoising results are visually similar.

are hardly distinguishable (see Fig. 4.4).

4.5.2 Increased robustness across noise levels

S. Mohan et al. [132] revealed that bias-free neural networks with ReLU, which are scale-equivariant,
could much better generalize when evaluated at new noise levels beyond their training range, than their
counterparts with bias that systematically overfit. Even if they do not fully elucidate how such networks
achieve this remarkable generalization, they suggest that scale-equivariance certainly plays a major role.
What about normalization-equivariance then? We have compared the robustness faculties of the three
variants of networks when trained at a fixed noise level σ for Gaussian noise. Figure 4.5 summarizes the
explicit results obtained: normalization-equivariance pushes generalization capabilities of neural networks
one step further. While performance is identical to their scale-equivariant counterparts when evaluated
at higher noise levels, the normalization-equivariant networks are, however, much more robust at lower
noise levels. This phenomenon is also illustrated in Fig. 4.3.

Demystifying robustness Let x be a clean patch of size n, representative of the training set on which
a CNN fθ was optimized to denoise its noisy realizations y = x + ε with ε ∼ N (0, σ2In) (denoising at

107

Chapter 4 – Normalization-equivariant neural networks with application to image denoising

8 12 16 20 24 28 32
8

12

16

20

24

28

32

Input PSNR

O
ut

pu
t

PS
N

R

ordinary
scale-equiv
norm-equiv
identity

8 12 16 20 24 28 32
8

12

16

20

24

28

32

36

Input PSNR
8 12 16 20 24 28 32

8

12

16

20

24

28

32

36

Input PSNR

Figure 4.5 – Comparison of the performance of our normalization-equivariant alternative with its scale-
equivariant and ordinary counterparts for Gaussian denoising with the same architecture on Set12 dataset. The
vertical blue line indicates the unique noise level on which the “blind” networks were trained exclusively (from
left to right: σ = 50, σ = 25 and σ = 10). In all cases, normalization-equivariant networks generalize much more
robustly beyond the training noise level.

a fixed noise level σ exclusively). Formally, we note x ∈ D ⊂ Rn, where D is the space of representative
clean patches of size n on which fθ was trained. We are interested in the output of fθ when it is evaluated
at x+λε (denoising at noise level λσ) with λ > 0. Assuming that fθ encodes a normalization-equivariant
function, we have:

∀λ ∈ R+
∗ ,∀µ ∈ R, fθ(x+ λε) = λfθ((x− µ)/λ+ ε) + µ . (4.7)

The above equality shows how such networks can deal with noise levels λσ different from σ: normalization-
equivariance simply brings the problem back to the denoising of an implicitly renormalized image patch
with fixed noise level σ. Note that this artificial change of noise level does not make this problem any
easier to solve as the signal-to-noise ratio is preserved by normalization. Obviously, the denoising result
of x + λε will be all the more accurate as (x − µ)/λ is a representative patch of the training set. In
other words, if (x− µ)/λ can still be considered to be in D, then fθ should output a consistent denoised
image patch. For a majority of methods [194, 195, 197], training is performed within the interval [0, 1]
and therefore x/λ still belongs generally to D for 1 < λ < 10 (contraction), but this is much less true for
λ < 1 (stretching) for the reason that it may exceed the bounds of the interval [0, 1]. This explains why
scale-equivariant functions do not generalize well to noise levels lower than their training one. In contrast,
normalization-equivariant functions can benefit from the implicit extra adjustment parameter µ. Indeed,
there exists some cases where the stretched patch x/λ is not in D but (x−µ)/λ is (see Fig. 4.6b). This is
why normalization-equivariant networks are more able to generalize at low noise levels. Note that, based
on this argument, ordinary neural networks trained at a fixed noise level σ can also be used to denoise
images at noise level λσ, provided that a correct normalization is done beforehand [183]. However, this
time the normalization is explicit: the exact scale factor λ, and possibly the shift µ, must be known (see
Fig. 4.6a).

It turns out that this theoretical argument is valid for a wide range of noise types, not only Gaussian
noise. Indeed, the same argument holds for any additive noise ε that possesses the scaling property:
λε belongs to the same family of probability distributions as ε (e.g., Gaussian, uniform, Laplace or
even Rayleigh noise which is not zero-mean). By the way, the authors of [132] had already verified the

108

4.6. Conclusion and perspectives

PSNR: 10.63 dB
(λ = 3)

(a)

PSNR: 12.32 dB PSNR: 25.28 dB PSNR: 25.20 dB

input y f∅
θ (y) 3f∅

θ (y/3) fNE
θ (y)

PSNR: 22.67 dB
(λ = 0.75)

(b)

PSNR: 31.68 dB PSNR: 32.46 dB PSNR: 32.45 dB

inputy (x ∈ [0.3, 1]n) fSE
θ (y) fSE

θ (y − 0.3) + 0.3 fNE
θ (y)

Figure 4.6 – Denoising results for example images of the form y = x + λε (see notations of subsection 4.5.2)
with σ = 25/255 and x ∈ [0, 1]n, by “blind” CNNs specialized for noise level σ only. f∅

θ , fSE
θ and fNE

θ denote the
ordinary, scale-equivariant and normalization-equivariant variants, respectively. In order to get the best results
with f∅

θ and fSE
θ , it is necessary know the renormalization parameters (λ, µ) such that (x − µ)/λ belongs to

D ⊂ [0, 1]n (see subsection 4.5.2). Note that for fSE
θ , it is however sufficient to know only µ as λ is implicit by

construction. In contrast, fNE
θ can be applied directly.

noise generalization capabilities of scale-equivariant networks for uniform noise in addition to Gaussian
noise, without fully elucidating why it works. In the Appendix C.4, we checked experimentally that
“blind” normalization-equivariant networks trained on additive uniform, Laplace or Rayleigh noise at a
single noise level are much more robust at unseen noise levels than their scale-equivariant and ordinary
counterparts.

4.6 Conclusion and perspectives

In this work, we presented an original approach to adapt the architecture of existing neural networks
so that they become normalization-equivariant, a property highly desirable and expected in many appli-
cations such that image denoising. We argue that the classical pattern “conv+ReLU” can be favorably
replaced by the two proposed innovations: affine convolutions that ensure that all coefficients of the convo-
lutional kernels sum to one; and channel-wise sort pooling nonlinearities as a substitute for all activation
functions that apply element-wise, including ReLU or sigmoid functions. Despite these two important
architectural changes, we show that the performance of these alternative networks is not affected in any
way. On the contrary, thanks to their better-conditioning, they benefit, in the context of image denoising,
from an increased interpretability and especially robustness to variable noise levels both in practice and
in theory.

More generally, the proposed channel-wise sort pooling nonlinearities may potentially change the way
we commonly understand neural networks: the usual paradigm that neurons are either active (“fired”)

109

Chapter 4 – Normalization-equivariant neural networks with application to image denoising

or inactive, is indeed somewhat shaken. With sort pooling nonlinearities, neurons are no longer static
but they “wiggle and mingle” according to the received signal. We believe that this discovery may help
building new neural architectures, potentially with stronger theoretical guarantees, and more broadly,
may also open the doors for novel perspectives in deep learning.

Limitations

We would like to mention that the proposed architectural modifications for enforcing normalization-
equivariance require a longer training for achieving comparable performance with its original counterparts
(see Appendix C.2), and may be incompatible with some specific network layers such as batch-norm [78]
or attention-based modules. Moreover, our method has shown its potential mainly to image denoising as it
stands, even though in principle normalization-equivariance may be applicable and helpful in other tasks
as well (see preliminary results about image classification in Appendix C.4). Discovering similar advan-
tages of normalization-equivariance in other computer vision tasks, possibly related to outlier robustness,
is an interesting avenue of research for future work.

110

Part III

Fast and efficient unsupervised
denoising via linear combinations of

patches

111

Chapter 5

TOWARDS A UNIFIED VIEW OF

NON-LOCAL METHODS: THE NL-RIDGE

APPROACH

In this chapter, we propose a unified view of unsupervised non-local methods
for image denoising, for which BM3D [35] is a major representative, that oper-
ate by gathering noisy patches together according to their similarities in order
to process them collaboratively. Our general estimation framework is based on
quadratic risk minimization, proceeding in two steps. Relying on unbiased risk
estimation (URE) for the first step and on “internal adaptation”, a concept
borrowed from deep learning theory, for the second, we show that our ap-
proach enables to reinterpret and reconcile previous state-of-the-art non-local
methods. Within this framework, we propose a novel denoiser called NL-Ridge
that exploits linear combinations of patches. Although conceptually simpler, we
show that NL-Ridge can outperform some of the best-performing unsupervised
denoisers.

5.1 Introduction

Popularized by BM3D [35], the grouping technique (a.k.a. block-matching) has proven to be a key
element in achieving state-of-the-art performances in unsupervised image denoising [35, 41, 42, 57, 73, 96,
98, 124]. This technique consists in gathering noisy patches together according to their similarities in order
to denoise them collaboratively. First, groups of k similar noisy square patches

√
n×
√
n are extracted from

the noisy image y. Specifically, for each overlapping patch yg taken as reference, the similarity (e.g. in the
ℓ2 sense) with its surrounding overlapping patches is computed and the k-nearest neighbors, including
the reference patch, are then selected to form a so-called similarity matrix Yg ∈ Rn×k, where each
column represents a flattened patch. Subsequently, all groups are processed in parallel by applying a local
denoising function f that produces an estimate for each noise-free similarity matrix: X̂g = f(Yg) ∈ Rn×k.
Finally, the denoised patches are repositioned to their initial locations in the image and aggregated, or
reprojected [163], as pixels may have several estimates, to build the final estimated image Î. Generally,
arithmetic (sometimes weighed) averaging of all estimates for a same underlying pixel is used to that
end. Figure 5.1 summarizes the whole process.

Within this framework, the choice of the local denoising function f remains an open question. A

113

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

majority of state-of-the-art methods leverage the inherent sparsity of natural images for the design of f
[35, 41, 42, 57, 73, 124]. For example, BM3D [35] and LSSC [124] assume a locally sparse representation
of the similarity matrices in a predetermined basis or dictionary (wavelets or DCT) while others rather
adopt a low-rank approach [41, 42, 57, 73]. As for NL-Bayes [96], a Bayesian framework is exploited at
the patch level, in which f produces a maximum a posteriori probability (MAP) estimate.

In this chapter, we present a unified view, based on quadratic risk minimization, to reinterpret and
reconcile previous state-of-the-art non-local methods from families of parameterized functions. In our
estimation framework, no prior model for the distribution on patches is required. Second, derived from
this framework, we propose a novel denoiser called NL-Ridge that exploits linear combinations of patches.
We show that the resulting algorithm may outperform BM3D [35] and NL-Bayes [96], as well as several
unsupervised deep-learning methods [8, 105, 149], while being simpler conceptually.

The remainder of this chapter is organized as follows. In section 5.2, we construct NL-Ridge algorithm
from the family of parameterized functions that processes patches by linear combinations, whether con-
strained or not. In section 5.3, we show that when considering two specific families of functions, NL-Bayes
[96] and BM3D [35] can be fully reinterpreted within our statistical framework. Finally, in section 5.4,
we demonstrate on artificially noisy but also real-noisy images that NL-Ridge compares favorably with
its well-established counterparts [35, 96], despite relying only on linear combinations of patches.

5.2 NL-Ridge for image denoising

5.2.1 Parametric linear patch combinations

Focusing on functions that perform locally linear combinations of patches, f is chosen among the set
of the following parameterized functions for each input similarity matrix Yg:

fΘ : Y ∈ Rn×k 7→ YΘ (5.1)

where Θ ∈ Rk×k. Essentially, the k columns of matrix Θ encode the weights of the k different linear
combinations aimed to be applied for patch group denoising. Note that parameters Θ may change from
one similarity matrix Yg to another, so that as many different matrices Θ as there are similarity matrices
Yg may be chosen. According to the constraints imposed on the combination weights, the search space
for parameters Θ is restricted to subsets of Rk×k as follows:

— linear combinations of patches: Θ ∈ Rk×k.
— affine combinations of patches: Θ ∈ Rk×k s.t. Θ⊤1k = 1k.
— conical combinations of patches: Θ ∈ Rk×k s.t. Θ ⪰ 0.
— convex combinations of patches: Θ ∈ Rk×k s.t. Θ⊤1k = 1k and Θ ⪰ 0.

Aggregating similar patches via a linear (in general convex) combination has already been exploited
in the past [15, 79, 84]. However, the originality of our approach lies in the way of computing the weights
Θ, which significantly boosts performance.

114

5.2. NL-Ridge for image denoising

<latexit sha1_base64="8yMD1KIiPtSpeBudGQmJ+y26TT0=">AAAEz3iclVNNb9NAEJ0UAyV8tXDkYpEicYqcCgHHCi4cEGqlpi0KEbKdbVnV9lredVsrCuLKmSv8L/gH8C94M9kAoUoKtmzPvpn3vPN2NykzbV0UfWutXAouX7m6eq19/cbNW7fX1u/sWVNXqeqnJjPVQRJblelC9Z12mTooKxXnSab2k+PnnN8/UZXVpth1TamGeXxU6EOdxg7Q61dG2ybcaDbernWibiRXeD7o+aBD/to2662v9IZGZCilmnJSVJBDnFFMFveAehRRCWxIY2AVIi15RRNqg1ujSqEiBnqM9xFGA48WGLOmFXaKv2R4KjBDegCOQV2FmP8WSr4WZUYXaY9Fk+fW4Jt4rRyoo3dAL+LNKv+dZ1GRS+8NntF/MEdAD9EVezrPWuacA+epOKbBLAVhL1OvUcsasE/hHx46KJTAOB4hXyFOhTlb1VA4VpzmbmLJf5dKRnmc+tqafiztjN9GlJ348ru7Cjme92JuITtIeS8qjM6W7KWx+MUrbX7VFcBPBVeyn1hrQC/Fs2n1BNHuXH6CCus90bImw4VaY3Eqlxkyb6rJ6tuoMOK6hcpMiWe1bN9liIx0OpvdRdWl5Gp/Mg2+yv+ljTPe+/tEnw/2Nru9x91HO5udrWf+tK/SPbpPD3Gin9AWvUAvfWjn9Ik+05dgJzgN3gcfpqUrLc+5S3NX8PEnHr/34w==</latexit>

Noisy y <latexit sha1_base64="GTZijsgkwK6DKlpq8xLkiNo80Ns=">AAAE2niclVNNb9NAEJ0UAyV8peXIxSJF4hQ5VQUcK+DAgUORmrZSElW2s21Xtb3W7hoSWblwQ1w5c4WfBP8A/gVvJxsgVEnBlu3ZN/Oed97uJmUmjY2ib421K8HVa9fXbzRv3rp9525rY/PAqEqnopeqTOmjJDYik4XoWWkzcVRqEedJJg6T8+cuf/hGaCNVsW8npRjm8WkhT2QaW0DHrc0XolDSiFG4NTiLbT2ebh232lEn4iu8GHR90CZ/7amNxlca0IgUpVRRToIKsogzisng7lOXIiqBDakGphFJzguaUhPcClUCFTHQc7xPMep7tMDYaRpmp/hLhkeDGdJDcBTqNGL3t5DzFSs7dJl2zZpubhN8E6+VA7V0BvQy3rzy33kGFTn3PsEz+g/mCOgJunKeLrJWOWfBecqOSTBLRpyXqdeoeA2cT+EfHloolMBcPEJeI06ZOV/VkDmGnXbdxJz/zpUOdePU11b0Y2Vn7q1Y2bIvv7vTyLl5L+cWvIOE90JjNF6xl2r2y620+lVXAH/LuOD95LT69Io9m1VPEe0v5KeoMN4TyWsyXKpVs1M5z9DxZppOfQ8Vil03UJkruVmt2ncZIsWdzmd3WXXJucqfTIWv8H9p4ox3/z7RF4OD7U73cWfn9XZ795k/7et0nx7QI5zoJ7RLL9FLD9pj+kSf6UswCN4F74MPs9K1hufco4Ur+PgTkNL8Fw==</latexit>

Denoised x̂
<latexit sha1_base64="PB9Nhh37j3vFG1+QLfeUQltqkvs=">AAAEzniclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5VQUcK7hw4BCkpo2URsh2tsWq7bV21ylRFHHlzBV+GPwD+Be8mWyAUCUFW7Zn38x73nm7m1R5Zl0UfWtsXAuu39jcutm8dfvO3XvbO/ePrK5NqnqpzrXpJ7FVeVaqnstcrvqVUXGR5Oo4OX/J+eOxMjbT5aGbVGpYxGdldpqlsQPU3z0Zj7Szu2+3W1E7kiu8HHR80CJ/dfVO4yud0Ig0pVRTQYpKcohzisniHlCHIqqADWkKzCDKJK9oRk1wa1QpVMRAz/E+w2jg0RJj1rTCTvGXHI8BM6TH4GjUGcT8t1DytSgzukp7Kpo8twm+idcqgDp6B/Qq3qLy33kWFYX0PsEz+g/mCOgpumJPl1nrnHPgPBfHMjArQdjL1GvUsgbsU/iHhw4KFTCOR8gbxKkwF6saCseK09xNLPnvUskoj1NfW9OPtZ3xW4uyE19+d2eQ43mv5payg5T3wmD0fs1emopfvNL6V10J/EJwJfuJtQb0WjybV88QHS7lZ6iw3pNM1mS4UmsqThUyQ+bNNVm9iwotrluoLJR4Vuv2XY5IS6eL2V1VXUmu9idT46v8X5o4452/T/Tl4Giv3Xna3n+z1zp44U/7Fj2kR/QEJ/oZHdAr9NKTk/yJPtOXoBuMg1nwYV660fCcB7R0BR9/AmtZ97o=</latexit>...

<latexit sha1_base64="PB9Nhh37j3vFG1+QLfeUQltqkvs=">AAAEzniclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5VQUcK7hw4BCkpo2URsh2tsWq7bV21ylRFHHlzBV+GPwD+Be8mWyAUCUFW7Zn38x73nm7m1R5Zl0UfWtsXAuu39jcutm8dfvO3XvbO/ePrK5NqnqpzrXpJ7FVeVaqnstcrvqVUXGR5Oo4OX/J+eOxMjbT5aGbVGpYxGdldpqlsQPU3z0Zj7Szu2+3W1E7kiu8HHR80CJ/dfVO4yud0Ig0pVRTQYpKcohzisniHlCHIqqADWkKzCDKJK9oRk1wa1QpVMRAz/E+w2jg0RJj1rTCTvGXHI8BM6TH4GjUGcT8t1DytSgzukp7Kpo8twm+idcqgDp6B/Qq3qLy33kWFYX0PsEz+g/mCOgpumJPl1nrnHPgPBfHMjArQdjL1GvUsgbsU/iHhw4KFTCOR8gbxKkwF6saCseK09xNLPnvUskoj1NfW9OPtZ3xW4uyE19+d2eQ43mv5payg5T3wmD0fs1emopfvNL6V10J/EJwJfuJtQb0WjybV88QHS7lZ6iw3pNM1mS4UmsqThUyQ+bNNVm9iwotrluoLJR4Vuv2XY5IS6eL2V1VXUmu9idT46v8X5o4452/T/Tl4Giv3Xna3n+z1zp44U/7Fj2kR/QEJ/oZHdAr9NKTk/yJPtOXoBuMg1nwYV660fCcB7R0BR9/AmtZ97o=</latexit>...

<latexit sha1_base64="kpREcfXsQCoHJH84DoZSU9tGCqM=">AAAE6HiclVNNb9NAEJ0UA8V8pXDkYhEhcYqcChWOFRzgwKFITVspiSp7sw2mttfaXbeNolw5c0NcOXOF3wL/AP4FbycbIFRJwZbt2Tfznnfe7qZVnhkbx98aa5eCy1eurl8Lr9+4eet2c+POnlG1FrIrVK70QZoYmWel7NrM5vKg0jIp0lzup8fPXH7/RGqTqXLXjis5KJJRmR1lIrGADptRX8jSSp2Vo/C5VnUV9fuhPLM6Ea4gig6brbgd8xWdDzo+aJG/dtRG4yv1aUiKBNVUkKSSLOKcEjK4e9ShmCpgA5oA04gyzkuaUghujSqJigToMd4jjHoeLTF2mobZAn/J8WgwI3oAjkKdRuz+FnG+ZmWHLtOesKab2xjf1GsVQC29BnoRb1757zyDioJ7H+MZ/gdzCPQIXTlPF1mrnLPgPGHHMjArRpyXwmvUvAbOp+gPDy0UKmAuHiKvEQtmzlc1Yo5hp103Cee/c6VD3Vj42pp+rOzMvRUrW/bld3caOTfv5dySd5D0XmiMzlbspQn75VZa/aorgZ8yLnk/Oa0evWTPZtVTRLsL+SkqjPck4zUZLNWasFMFz9DxZppOfQcVil03UJkruVmt2nc5IsWdzmd3UXXFudqfTIWv9H8JccY7f5/o88HeZruz1X70arO1/dSf9nW6R/fpIU70Y9qmF+ilC+239Ik+05fgTfAueB98mJWuNTznLi1cwcefFR4Bqw==</latexit>

Group
extraction

<latexit sha1_base64="7FtQ6f27dbP33E/b+EbaKKdMBjA=">AAAE3niclVNNb9NAEJ0UAyV8tSBx4WIRIXGKnAoBxwIXDhyK1LSV0ghsZ2tWtXet3TUQhVy5Ia6cucIPgn8A/4K3kw0QqqRgy/bsm3nPO293s7qU1iXJt9bamejsufPrF9oXL12+cnVj89qe1Y3JRT/XpTYHWWpFKZXoO+lKcVAbkVZZKfaz48c+v/9KGCu12nXjWgyrtFDySOapA/R848ZhLpQTRqqi/bAojChCopN0E77ik0EvBB0K147ebH2lQxqRppwaqkiQIoe4pJQs7gH1KKEa2JAmwAwiyXlBU2qD26BKoCIFeox3gdEgoApjr2mZneMvJR4DZky3wdGoM4j932LON6zs0WXaE9b0cxvjmwWtCqijl0BP480r/51nUVFx72M8o/9gjoAeoSvv6SJrlXMOnAfsmASzZsR7mQeNhtfA+xT/4aGDQg3MxyPkDeKcmfNVjZlj2WnfTcr571zpUT/OQ21DP1Z25t+alR378rs7g5yf93Ku4h0kghcGozcr9tKE/fIrrX/VKeCvGRe8n7zWgJ6yZ7PqKaLdhfwUFTZ4InlNhku1JuxUxTP0vJmmV99BhWbXLVTmSn5Wq/ZdiUhzp/PZnVZdc64JJ1PjK8Jf2jjjvb9P9Mlgb6vbu9e9+2yrs/0onPZ1ukm36A5O9H3apifopQ/tt/SJPtOX6EX0LnoffZiVrrUC5zotXNHHn9Zd/jA=</latexit>

Aggregation

<latexit sha1_base64="rZdBkTVAF5CTy+f7jHm1bBYgpFg=">AAAEyXiclVNNb9NAEJ0UAyV8tXDkYpEicYrsqgKOFVyQ4FBE01YKEbKdbbBqe83uGhqinDhzhb8G/wD+BW8mGyBUScGW7dk385533u6mdZFbF0XfWmsXgouXLq9faV+9dv3GzY3NWwdWNyZTvUwX2hyliVVFXqmey12hjmqjkjIt1GF68oTzh++Usbmu9t24VoMyGVX5cZ4lDtDLrXjr9UYn6kZyhWeD2Acd8tee3mx9pVc0JE0ZNVSSoooc4oISsrj7FFNENbABTYAZRLnkFU2pDW6DKoWKBOgJ3iOM+h6tMGZNK+wMfynwGDBDugeORp1BzH8LJd+IMqPLtCeiyXMb45t6rRKoozdAz+PNK/+dZ1FRSu9jPMP/YA6BHqMr9nSRtco5B84jcSwHsxaEvcy8RiNrwD6Ff3jooFAD43iIvEGcCXO+qqFwrDjN3SSS/y6VjPI487UN/VjZGb+1KDvx5Xd3Bjme93JuJTtIeS8MRqcr9tJE/OKV1r/qKuDvBVeyn1irT8/Fs1n1FNH+Qn6KCus9yWVNBku1JuJUKTNk3kyT1fdQocV1C5W5Es9q1b4rEGnpdD6786pryTX+ZGp8lf9LG2c8/vtEnw0Otrvxg+7Oi+3O7mN/2tfpDt2l+zjRD2mXnqKXHrRH9Ik+05fgWfA2OA0+zErXWp5zmxau4ONPRVv1LQ==</latexit>

1

<latexit sha1_base64="vvq17NTNqJRgt4wKz4oecSyVHPc=">AAAEyXiclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5lQo9VnBBgkMRTVspRMh2NsGq7TW7a2iIcuLMFf4a/AP4F7yZbIBQJQVbtmffzHveebubVHlmXRR9a6xdCi5fWd+42rx2/cbNW5tbt4+srk2quqnOtTlJYqvyrFRdl7lcnVRGxUWSq+Pk9Annj98pYzNdHrpxpfpFPCqzYZbGDtDL7eH2681W1I7kCs8HHR+0yF8HeqvxlV7RgDSlVFNBikpyiHOKyeLuUYciqoD1aQLMIMokr2hKTXBrVClUxEBP8R5h1PNoiTFrWmGn+EuOx4AZ0n1wNOoMYv5bKPlalBldpj0RTZ7bGN/EaxVAHb0BehFvXvnvPIuKQnof4xn8B3MAdIiu2NNF1irnHDh74lgGZiUIe5l6jVrWgH0K//DQQaECxvEAeYM4FeZ8VUPhWHGau4kl/10qGeVx6mtr+rGyM35rUXbiy+/uDHI87+XcUnaQ8l4YjM5W7KWJ+MUrrX/VlcDfC65kP7FWj56LZ7PqKaLDhfwUFdZ7ksma9JdqTcSpQmbIvJkmqx+gQovrFipzJZ7Vqn2XI9LS6Xx2F1VXkqv9ydT4Kv+XJs545+8TfT442ml3HrZ3X+y09h/7075Bd+kePcCJfkT79BS9dKE9ok/0mb4Ez4K3wVnwYVa61vCcO7RwBR9/Ai5w9WM=</latexit>

f

<latexit sha1_base64="i5nP1IRTV0MbtizPjkzV76zhj+k=">AAAE23iclVNNb9NAEJ0UAyV8pfTIxSJF4hQ5ISTlVsGFA4ciNW2lJKpsZ1us2F5rbQORlRM3xJUzV/hH8A/gX/BmsgFySAq2bM++mfe883Y3yOIoLzzve23rinP12vXtG/Wbt27fudvYuXec69KEahDqWJvTwM9VHKVqUERFrE4zo/wkiNVJMH3O+ZM3yuSRTo+KWabGiX+RRudR6BeAzhq7I9GojJrM90ZTP8v8vbNG02s93e91uj3Xa3lev91pc9Dpdx933TYQvppkr0O9U/tGI5qQppBKSkhRSgXimHzKcQ+pTR5lwMZUATOIIskrmlMd3BJVChU+0CneFxgNLZpizJq5sEP8JcZjwHTpITgadQYx/82VfCnKjK7TrkST5zbDN7BaCdCCXgO9jLes/HdejopEep/hmfwHcwL0HF2xp6usTc4V4OyLYxGYmSDsZWg1SlkD9sn9y8MCChkwjifIG8ShMJer6gonF6e5G1/yP6SSUR6Htraknxs747cW5UJ8+dOdQY7nvZ6byg5S1guD0bsNe6kSv3il9e+6FPhbwZXsJ9Ya0kvxbFE9R3S0kp+jIreeRLIm47ValTiVyAyZt9Bk9UNUaHE9h8pSiWe1ad/FiLR0upzdZdWZ5Ep7MjW+yv6ljjO+PMju+uC402r3Wk9edZoHz+xp36b79IAe4UT36YBeoJcBtGf0mb7QV2fsvHc+OB8XpVs1y9mllcv59As71f0n</latexit>

<latexit sha1_base64="H4XI9w3Pgz8i5u2ye7EuoZ46mkg=">AAAE6XiclVNNb9NAEJ0UAyV8pXDkYkiROEVJpUKPFVw4cCioaYuSENnONl3F9lredSGyfObMDXHlzBX+CvwD+Be8nWyAUCUFW7Zn38x73nm7G2ax1Kbd/lZbu+BdvHR5/Ur96rXrN242Nm4daFXkkehGKlb5URhoEctUdI00sTjKchEkYSwOw8kTmz88FbmWKt0300wMkmCcymMZBQbQsHF38+Vw7Pdl6veTwJyEYfmielViZGQitD+pNoeNZrvV5ss/G3Rc0CR37amN2lfq04gURVRQQoJSMohjCkjj7lGH2pQBG1AJLEckOS+oojq4BaoEKgKgE7zHGPUcmmJsNTWzI/wlxpOD6dN9cBTqcsT2bz7nC1a26DLtkjXt3Kb4hk4rAWroBOh5vHnlv/M0KhLufYpn9B/MEdBjdGU9XWStcs6As8OOSTAzRqyXkdMoeA2sT/4fHhooZMBsPEI+Rxwxc76qPnM0O227CTj/nSstaseRqy3ox8rO7FuxsmFffneXI2fnvZyb8g4Szoscozcr9lLJftmVVr/qUuCvGRe8n6xWj56xZ7PqCtH+Qr5ChXaeSF6TwVKtkp1KeIaWN9O06nuoUOy6hspcyc5q1b6LESnudD6786ozzhXuZCp8hftLHWe88/eJPhscbLU6D1vbz7eau4/daV+nO3SPHuBEP6JdeopeutB+S5/oM33xJt477733YVa6VnOc27RweR9/AnAMAfw=</latexit>

Yg 2 Rn⇥k
<latexit sha1_base64="VvlGCXDK4tU6g2WsdMy1E+zdw4A=">AAAE0XiclVNNb9NAEJ0UAyV8tXDkYpEicYqcSnwcK7hw4FBE00ZKo8pxtqlV22vtrlsiKxLiypkr/C34B/AveDPZAKFKCrZsz76Z97zzdndYZql1UfStsXYluHrt+vqN5s1bt+/c3di8t291ZRLVTXSmTW8YW5Wlheq61GWqVxoV58NMHQxPX3L+4EwZm+piz01KNcjjcZEep0nsAPW3Dk9iV/emR+Oto41W1I7kCi8GHR+0yF+7erPxlQ5pRJoSqignRQU5xBnFZHH3qUMRlcAGVAMziFLJK5pSE9wKVQoVMdBTvMcY9T1aYMyaVtgJ/pLhMWCG9AgcjTqDmP8WSr4SZUaXadeiyXOb4Dv0WjlQRydAL+PNK/+dZ1GRS+8TPKP/YI6AHqMr9nSRtco5B85zcSwFsxSEvUy8RiVrwD6Ff3jooFAC43iEvEGcCHO+qqFwrDjN3cSS/y6VjPI48bUV/VjZGb+1KDvx5Xd3Bjme93JuITtIeS8MRu9W7KVa/OKV1r/qCuDngivZT6zVp9fi2ax6imhvIT9FhfWepLImg6VatTiVywyZN9Nk9V1UaHHdQmWuxLNate8yRFo6nc/usupScpU/mRpf5f/SxBnv/H2iLwb72+3O0/aTN9utnRf+tK/TA3pIj3Gin9EOvUIvXdH+RJ/pS/A2mATvgw+z0rWG59ynhSv4+BPp9Pj8</latexit>

X̂g

<latexit sha1_base64="7Ym+kv4Nk4HxargMSFgePrdd1BU=">AAAE1HiclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5lQocK7hw4FCkJq2UBuSPbVjV9lq760JkckJcOXOFXwX/AP4FbycbIFRJwZbt2Tfznnfe7iZVLo2Nom+ttUvB5SvrG1fb167fuHlrc+v2wKhap6KfqlzpoyQ2Ipel6Ftpc3FUaREXSS4Ok9OnLn94JrSRqjywk0qMinhcyhOZxhbQy2NWaLTIptvj7Vebnagb8RWeD3o+6JC/9tVW6ysdU0aKUqqpIEElWcQ5xWRwD6lHEVXARtQA04gk5wVNqQ1ujSqBihjoKd5jjIYeLTF2mobZKf6S49FghnQfHIU6jdj9LeR8zcoOXabdsKab2wTfxGsVQC29BnoRb1757zyDioJ7n+DJ/oOZAT1BV87TRdYq5yw4j9kxCWbFiPMy9Ro1r4HzKfzDQwuFCpiLM+Q14pSZ81UNmWPYaddNzPnvXOlQN059bU0/Vnbm3oqVLfvyuzuNnJv3cm7JO0h4LzRGb1fspYb9ciutftWVwN8wLng/Oa0hPWfPZtVTRAcL+SkqjPdE8pqMlmo17FTBM3S8maZT30eFYtcNVOZKblar9l2OSHGn89ldVF1xrvYnU+Er/F/aOOO9v0/0+WCw0+097O6+2OnsPfGnfYPu0j16gBP9iPboGXrpQ1vTJ/pMX4JB8C54H3yYla61POcOLVzBx5+WMPqA</latexit>g

<latexit sha1_base64="MwG40RBsI0akBKZ48myVImxJ9Zw=">AAAEy3iclVNNb9NAEJ0UQ0v4auHIxSJF4kJkV+LjWMGFA0hFatpKIUK2sw1Wba+1uy6EkCNnrvDP4B/Av+DNZAOEKinYsj37Zt7zztvdtC5y66LoW2vtQnDx0vrG5faVq9eu39jcunlgdWMy1ct0oc1RmlhV5JXqudwV6qg2KinTQh2mJ085f3iqjM11te/GtRqUyajKj/MscYB626P78fbrzU7UjeQKzwaxDzrkrz291fpKr2hImjJqqCRFFTnEBSVkcfcppohqYAOaADOIcskrmlIb3AZVChUJ0BO8Rxj1PVphzJpW2Bn+UuAxYIZ0FxyNOoOY/xZKvhFlRpdpT0ST5zbGN/VaJVBHb4Cex5tX/jvPoqKU3sd4hv/BHAI9Rlfs6SJrlXMOnMfiWA5mLQh7mXmNRtaAfQr/8NBBoQbG8RB5gzgT5nxVQ+FYcZq7SST/XSoZ5XHmaxv6sbIzfmtRduLL7+4Mcjzv5dxKdpDyXhiM3q3YSxPxi1da/6qrgL8VXMl+Yq0+PRfPZtVTRPsL+SkqrPcklzUZLNWaiFOlzJB5M01W30OFFtctVOZKPKtV+65ApKXT+ezOq64l1/iTqfFV/i9tnPH47xN9NjjY6cYPuw9e7nR2n/jTvkG36Q7dw4l+RLv0DL30oJ3TJ/pMX4IXgQ3eBx9mpWstz7lFC1fw8ScgffXW</latexit>

g � 1

<latexit sha1_base64="ge5ECdCNMC+Eaj4wMxKE1Fm7Y08=">AAAEy3iclVNNb9NAEJ0UQ0v4auHIxSJFQkKK7Ep8HCu4cACpSE1bKUTIdrbBqu21dteFEHLkzBX+GfwD+Be8mWyAUCUFW7Zn38x73nm7m9ZFbl0UfWutXQguXlrfuNy+cvXa9RubWzcPrG5MpnqZLrQ5ShOrirxSPZe7Qh3VRiVlWqjD9OQp5w9PlbG5rvbduFaDMhlV+XGeJQ5Qb3t0P95+vdmJupFc4dkg9kGH/LWnt1pf6RUNSVNGDZWkqCKHuKCELO4+xRRRDWxAE2AGUS55RVNqg9ugSqEiAXqC9wijvkcrjFnTCjvDXwo8BsyQ7oKjUWcQ899CyTeizOgy7Ylo8tzG+KZeqwTq6A3Q83jzyn/nWVSU0vsYz/A/mEOgx+iKPV1krXLOgfNYHMvBrAVhLzOv0cgasE/hHx46KNTAOB4ibxBnwpyvaigcK05zN4nkv0slozzOfG1DP1Z2xm8tyk58+d2dQY7nvZxbyQ5S3guD0bsVe2kifvFK6191FfC3givZT6zVp+fi2ax6imh/IT9FhfWe5LImg6VaE3GqlBkyb6bJ6nuo0OK6hcpciWe1at8ViLR0Op/dedW15Bp/MjW+yv+ljTMe/32izwYHO934YffBy53O7hN/2jfoNt2hezjRj2iXnqGXHrRz+kSf6UvwIrDB++DDrHSt5Tm3aOEKPv4EF7P11A==</latexit>

g + 1

<latexit sha1_base64="QB3pcnqQEmUf0JnlDfKpoaNxz2E=">AAAEyXiclVNNb9NAEJ0UAyV8teXIxSJF4hQ5lfg4VnAoEhyKaNpKaYRsZxus2l6zu4aGKCfOXOGvwT+Af8GbyQYIVVJqy/bsm3nPO293kyrPrIui742VS8HlK1dXrzWv37h56/ba+sa+1bVJVTfVuTaHSWxVnpWq6zKXq8PKqLhIcnWQnDzj/MF7ZWymyz03qlS/iIdldpylsQP0enNn881aK2pHcoVng44PWuSvXb3e+EZHNCBNKdVUkKKSHOKcYrK4e9ShiCpgfRoDM4gyySuaUBPcGlUKFTHQE7yHGPU8WmLMmlbYKf6S4zFghnQfHI06g5j/Fkq+FmVGF2mPRZPnNsI38VoFUEdvgZ7Hm1X+P8+iopDeR3gGF2AOgB6jK/Z0nrXMOQfOE3EsA7MShL1MvUYta8A+hX956KBQAeN4gLxBnApztqqhcKw4zd3Ekv8hlYzyOPW1Nf1c2hm/tSg78eVPdwY5nvdibik7SHkvDEanS/bSWPzilda/60rgHwRXsp9Yq0cvxbNp9QTR3lx+ggrrPclkTfoLtcbiVCEzZN5Uk9V3UaHFdQuVmRLPatm+yxFp6XQ2u/OqK8nV/mRqfJX/SxNnvPPviT4b7G+1O4/aD19ttbaf+tO+SnfpHj3AiX5M2/QcvXShPaTP9IW+Bi+Cd8Fp8HFautLwnDs0dwWffgGmRfVE</latexit>

G

Figure 5.1 – Illustration of the grouping technique for image denoising.

5.2.2 Parameter optimization

In what follows, for the sake of notation simplicity, the index g from Yg designating the group patch is
removed. Thus, Y ∈ Rn×k denotes any similarity matrix resulting of the corruption of X, its associated
clean similarity matrix, by the underlying noise model (e.g. Gaussian noise, Poisson noise, . . .).

For each patch group Y , the optimal local denoiser fΘ is found by minimizing the quadratic risk
defined as:

RΘ(X) = E∥fΘ(Y)−X∥2
F . (5.2)

In other words, we look for the Minimum-Mean-Squared-Error (MMSE) estimator among the family of
functions (fΘ)Θ∈Rk×k defined in (5.1). The optimal estimator fΘ∗ minimizes the risk, i.e.

Θ∗ = arg min
Θ

RΘ(X). (5.3)

Unfortunately, Θ∗ requires the knowledge of X which is unknown. The good news is that the risk RΘ(X)
can be approximated through the following two-step algorithm:

— In the first step, an approximation of Θ∗ is computed for each group of similar patches, through
the use of an unbiased risk estimate (URE) of RΘ(X). After reprojection [163] of all denoised
patches, a first denoised image Î(1) is obtained.

— In the second step, Î(1) is improved with a second estimation of Θ∗ which is found thanks to the
technique of “internal adaptation” described in [177] to eventually form Î(2).

In the rest, we focus on three different types of noise:
— Gaussian noise: Yi,j ∼ N (Xi,j , Vi,j) with V ∈ (R+

∗)n×k indicating the variance per pixel, sometimes
referred to as “noisemap”. In particular, for homoscedastic Gaussian noise, V = σ21n1⊤

k where
σ > 0 is the standard deviation, that is Yi,j ∼ N (Xi,j , σ

2),
— Poisson noise: Yi,j ∼ P(Xi,j),
— Mixed Poisson-Gaussian noise: Yi,j ∼ aP(Xi,j/a) +N (0, b) with (a, b) ∈ (R+

∗)2.

115

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

Note that in each case, Yi,j follows a noise model which is centered on Xi,j , i.e. E(Yi,j) = Xi,j , and,
as the noise is assumed to be independent at each pixel, the Yi,j are independent along each column.
Furthermore, the Yi,j are also independent along each row since there are no duplicate patches in each
group.

5.2.3 Step 1: Unbiased risk estimate (URE)

Recall that our objective is to get an approximation of Θ∗ from (5.3). While RΘ(X) is unattainable in
practice, an estimate of this quantity can be calculated instead when dealing with the common types of
noise described above, namely, Gaussian noise, Poisson noise and mixed Poisson-Gaussian noise. In any
case, an unbiased estimate of the risk RΘ(X) is given by (see Propositions 6, 7 and 8 in Appendix D.1):

UREΘ(Y) = ∥YΘ− Y ∥2
F + 2 tr(D1Θ)− tr(D1)

= 2 tr
(

1
2Θ⊤Q1Θ + C1Θ

)
+ const ,

(5.4)

where Q1 = Y ⊤Y is a positive semi-definite matrix, C1 = D1 − Q1 and D1 is a diagonal matrix that
depends on the type of noise:

D1 =


diag(V ⊤1n) for Gaussian noise,
diag(Y ⊤1n) for Poisson noise,
diag((aY + b)⊤1n) for mixed Poisson-Gaussian noise.

(5.5)

Interestingly, (5.4) gives an unbiased estimate of the risk RΘ(X) that does not depend on X, but only
on the observation Y . A common idea that has been previously exploited in image denoising, mainly for
homoscedastic Gaussian noise (e.g. see [10, 11, 39, 84, 119, 161, 178, 182]), is to use such an estimate as
a surrogate for minimizing the risk RΘ(X) in (5.3) which is inaccessible.

Minimization of the surrogate

By minimizing (5.4) with respect to Θ and assuming that Q1 = Y ⊤Y is positive-definite, we get the
following closed-form solutions, depending on whether affine combination constraints are imposed or not
(see Proposition 9 in Appendix D.1):

Θ̂(1)
lin = arg min

Θ∈Rk×k
UREΘ(Y) = Ik −Q−1

1 D1 , (5.6)

and
Θ̂(1)

aff = arg min
Θ∈Rk×k

s.t. Θ⊤1k=1k

UREΘ(Y) = Ik −
[
Q−1

1 −
Q−1

1 1k(Q−1
1 1k)⊤

1⊤
k Q

−1
1 1k

]
D1 . (5.7)

In the case of conical and convex combination constraints, there exist no closed-form solution. However,
by noticing that:

tr
(

1
2Θ⊤Q1Θ + C⊤

1 Θ
)

=
k∑

j=1

1
2θ

⊤
j Q1θj + c⊤

j θj , (5.8)

116

5.2. NL-Ridge for image denoising

where θj and cj denotes the jth column of Θ and C1, respectively, minimizing (5.4) under conical or convex
combination constraints is nothing else than solving k independent convex quadratic programming sub-
problems with linear constraints. Note that quadratic programs can always be solved in a finite amount of
computation [137]; if the contents of the optimal active set (the set identifying the active constraints in the
set of inequality constraints) were known in advance, we could express the active constraints as equality
constraints, thereby transforming the inequality-constrained problem into a simpler equality-constrained
subproblem, which in our case has a closed-form solution by exploiting the Karush–Kuhn–Tucker con-
ditions. Thus, if time computation were not an issue, we could iterate over all active sets (there are 2k

in our case, since there are k inequality constraints) in the search for this optimal active set, solve the
associated equality-constrained subproblem, and finally select the best solution among the 2k potential
candidates. Hopefully, a variety of algorithms have been developed to speed up this naive heuristic, in-
cluding active-set, interior-point, or gradient projection methods [137]. Interestingly, active-set methods
solve the quadratic programming problem exactly by cleverly exploring the active sets, although they are
much slower on large problems than the other methods [137].

In our particular case, active-set methods are especially slow given that they cannot be easily paral-
lelized, which is detrimental because there are as many quadratic programs to solve as there are over-
lapping patches in the image. That is why, following the idea in [51], a sequential coordinate descent
algorithm is proposed as a faster alternative in the Appendix D.4.

In conclusion, even though conical and convex combination weights, Θ̂(1)
cnl and Θ̂(1)

cvx respectively, do
not have closed-form expressions, they can be found exactly in a finite amount of computation using
active-set methods or, for speed improvement, very well approximated using the proposed sequential
coordinate descent algorithm in the Appendix D.4.

On the positive definiteness of Q1

Positive definiteness of Q1 is important to ensure the uniqueness of the minimizer of the URE (5.4)
since Q1 is the hessian matrix of the quadratic programming subproblems defined by (5.8). If Q1 is
positive definite, it means that the objective function is strictly convex, and as it is minimized on a
convex set, the solution is unique. A priori Q1 = Y ⊤Y is only positive semi-definite since for all s ∈ Rk,
s⊤Q1s = ∥Y s∥2

2 ≥ 0. However, when n ≥ k,Q1 is almost surely positive definite in general (in particular in
the case of ideal additive white Gaussian noise) as almost surely the columns of Y are linearly independent.
Indeed, when it is the case s⊤Q1s = ∥Y s∥2

2 = 0⇒ Y s = 0⇒ s = 0 and Q1 is then positive definite. By
the way, the closed-form expressions of the combination weights (5.6) and (5.7) require the inverse of Q1,
which can be computed efficiently based on Cholesky factorization, exploiting the positive definiteness of
Q1 [89].

For real-world noisy images, the actual noise may deviate from the assumed ideal noise models (in
general mixed Poisson-Gaussian noise). Apart from the consequences this may have on the denoising
performance, an unfortunate outcome is the non positive definiteness of Q1, even when n ≥ k (think of
constant regions of the image that are, for any reason, not affected by the noise: Y ∝ 1n1⊤

k). To remedy
to this issue, a possible way is to consider a “noisier” risk compared to (5.2) defined by:

RNr,α
Θ (X) = E∥fΘ(Y + αW)−X∥2

F , (5.9)

117

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

with α > 0 and W ∈ Rn×k with Wi,j ∼ N (0, 1) independent. One can prove that (see Proposition 10 in
Appendix D.1):

RNr,α
Θ (X) = RΘ(X) + α2n∥Θ∥2

F , (5.10)

hence, an unbiased estimate of RNr,α
Θ (X) is:

URENr,α
Θ (Y) = UREΘ(Y) + α2n∥Θ∥2

F

= 2 tr
(

1
2Θ⊤(Q1 + α2nIk)Θ + C1Θ

)
+ const ,

(5.11)

which is exactly the same expression as (5.4), up to a constant, replacing Q1 by Q1 + α2nIk. Its min-
imization is then given by formula (5.6) and (5.7) by substituting Q1 + α2nIk for Q1 and D1 + nα2Ik

for D1, respectively. The main advantage of using the “noisier” risk (5.9) instead of the usual one (5.2)
resides in the positive definiteness of Q1 +α2nIk which is always guaranteed. Indeed, for all s ∈ Rk \ {0},
s⊤(Q1 + α2nIk)s = ∥Y s∥2

2 + α2n∥s∥2
2 > 0. The choice of α constitutes an hyperparameter. In practice,

we want α to be as small as possible since, for α→ 0, the minimizer of the “noisier” risk (5.9) converges
to the minimizer of the usual risk (5.2).

Particular case: homoscedastic Gaussian noise

In the case of homoscedastic Gaussian noise, that is Yi,j ∼ N (Xi,j , σ
2), the expression of the URE is

reduced to:
SUREΘ(Y) = ∥YΘ− Y ∥2

F + 2nσ2 tr(Θ)− nkσ2 , (5.12)

which is nothing else than Stein’s unbiased risk estimate [172]. Considering unconstrained minimization,
the estimated optimal weights are:

Θ̂(1)
lin = arg min

Θ∈Rk×k
SUREΘ(Y) = Ik − nσ2(Y ⊤Y)−1 . (5.13)

Note that Θ̂(1) is close to Θ∗ as long as the variance of SURE is low. A rule of thumbs used in [11] states
that the number of parameters must not be “too large” compared to the number of data in order for
the variance of SURE to remain small. In our case, this suggests that n > k. This result suggests that
NL-Ridge is expected to be efficient during this step if a few large patches are used. This is consistent
with the condition for which Q1 = Y ⊤Y is almost surely positive definite.

5.2.4 Step 2: Internal adaptation

At the end of the first step, we get a first denoised image Î(1) which will serve as a pilot in the second
step. Once again, we focus on the solution of (5.3) to denoise locally similar patches. As X and X̂(1),
the corresponding group of similar patches in Î(1), are supposed to be close, the “internal adaptation”
procedure [177] consists in solving (5.3) by substituting X̂(1) for X.

Interestingly, for any of the types of noise studied, the quadratic risk (5.2) has a closed-form expression

118

5.2. NL-Ridge for image denoising

(see Lemma 4 in Appendix D.1):

RΘ(X) = ∥XΘ−X∥2
F + tr(Θ⊤D2Θ)

= 2 tr
(

1
2Θ⊤Q2Θ + C2Θ

)
+ const ,

(5.14)

where Q2 = X⊤X + D2 is a positive semi-definite matrix, C2 = D2 − Q2 and D2 is a diagonal matrix
that depends on the type of noise:

D2 =


diag(V ⊤1n) for Gaussian noise,
diag(X⊤1n) for Poisson noise,
diag((aX + b)⊤1n) for mixed Poisson-Gaussian noise.

(5.15)

Substituting X̂(1) for X in expression (5.14), a natural surrogate for RΘ(X) is RΘ(X̂(1)). A second
approximation of (5.3) can then be deduced by minimizing this latter. Interestingly, this second estimate
Θ̂(2) produces a significant boost in terms of denoising performance compared to Θ̂(1). Even if the second
step can be iterated but we did not notice improvements in our experiments.

Minimization of the surrogate

By minimizing (5.14) where X is replaced by X̂(1) with respect to Θ and assuming that Q2 is positive-
definite, we get the following closed-form solutions, depending on whether affine combination constraints
are imposed or not (see Proposition 9 in Appendix D.1):

Θ̂(2)
lin = arg min

Θ∈Rk×k
RΘ(X̂(1)) = Ik −Q−1

2 D2 , (5.16)

and
Θ̂(2)

aff = arg min
Θ∈Rk×k

s.t. Θ⊤1k=1k

RΘ(X̂(1)) = Ik −
[
Q−1

2 −
Q−1

2 1k(Q−1
2 1k)⊤

1⊤
k Q

−1
2 1k

]
D2 . (5.17)

As in the first step, there is no closed-form solution in the case of conical and convex combination
constraints. Θ̂(2)

cnl and Θ̂(2)
cvx can however be approximated using any of iterative algorithms [137] dedicated

to the resolution of convex quadratic programming problems or by using the proposed algorithm (see
Appendix D.4) which can be easily parallelized.

On the positive definiteness of Q2

Compared to the first step, Q2 = X̂(1)⊤X̂(1) +D2 is much more likely to be positive definite. In fact,
as soon as D2 has positive diagonal elements, which is always the case except for Poisson noise with
X̂(1) = 0, Q2 is positive definite. But this case can be treated separately by setting arbitrarily Θ̂(2) = Ik

for example.

119

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

Particular case: homoscedastic Gaussian noise

In the case of homoscedastic Gaussian noise, that is Yi,j ∼ N (Xi,j , σ
2), the expression of the quadratic

risk is reduced to:
RΘ(X) = ∥XΘ−X∥2

F + nσ2∥Θ∥2
F , (5.18)

which is nothing else than the expression of a multivariate Ridge regression. Considering unconstrained
minimization, the estimated optimal weights are then:

Θ̂(2)
lin = arg min

Θ∈Rk×k
RΘ(X̂(1)) = Ik − nσ2

(
X̂(1)⊤X̂(1) + nσ2Ik

)−1
. (5.19)

It is interesting to compare the behavior of the weights Θ̂(2)
lin and Θ̂(2)

aff when σ tends to +∞. In fact, the
higher σ and the more important the second term nσ2∥Θ∥2

F is in the expression of the risk (5.18) (and
the less the dependence on X). At the limit, when σ → +∞:

Θ̂(2)
lin = arg min

Θ∈Rk×k
RΘ(X)→ 0k0⊤

k , (5.20)

and
Θ̂(2)

aff = arg min
Θ∈Rk×k

s.t. Θ⊤1k=1k

RΘ(X̂(1))→ 1k1⊤
k /k . (5.21)

As a consequence, the final produced image Î(2) tends towards the “zero-image” in the case of un-
constrained minimization, whereas, in the case of affine combination of patches, Î(2) consists of simple
averages of similar patches. This fundamental difference in the asymptotic behavior of the weights may
explain why affine patch combinations are more recommended when the noise level increases.

5.2.5 Weighted average reprojection

After the denoising of a group of similar patches, each denoised patch is repositioned at its right
location in the image. As several pixels are denoised multiple times, a final step of aggregation, or
reprojection [163], is necessary to produce a final denoised image Î(1) or Î(2). With inspiration from
[163], each pixel belonging to column j of Y is assigned, after denoising, the weight wj = 1/(∥Θ·,j∥2

2).
Those weights are at the end pixel-wise normalized such that the sum of all weights associated to a same
pixel equals one.

The complete NL-Ridge method for image denoising is summarized in Algorithm 3. Please note the
difference between a freshly denoised similarity matrix, denoted X̌g, and its aggregated equivalent X̂g.

5.3 A unified view of non-local denoisers

In NL-Ridge, the local denoiser fΘ is arbitrarily of the form given by (5.1) involving the linear combi-
nations of similar patches with closed-form aggregation weights given in (5.6) and (5.16) for unconstrained
minimization. In this section, we show that NL-Ridge can serve to interpret two popular state-of-the-art
non-local methods - NL-Bayes [96] and BM3D [35] - which were originally designed with two very different

120

5.3. A unified view of non-local denoisers

Algorithm 3 NL-Ridge for image denoising
Input: Noisy image y, patch and group sizes for step 1 and step 2: √n1, √n2, k1 and k2.
Output: Denoised image Î(2).

/* Step 1
for each √n1 ×

√
n1 overlapping noisy patch in y do

Extract its k1 most similar patches to form similarity matrix Yg.
Estimate combination weights Θ̂(1)

g with formula (5.6) or (5.7) (closed-form expressions).
Perform collaborative denoising X̌(1)

g = YgΘ̂(1)
g .

end for
Aggregate all the denoised patches contained in the groups X̌(1)

g to form the estimated image Î(1).

/* Step 2
for each √n2 ×

√
n2 overlapping patch in Î(1) do

Extract its k2 most similar patches in Î(1) to form similarity matrix X̂(1)
g .

Extract the k2 corresponding noisy patches in y to form similarity matrix Yg.
Estimate combination weights Θ̂(2)

g with formula (5.16) or (5.17) (closed-form expressions).
Perform collaborative denoising X̌(2)

g = YgΘ̂(2)
g .

end for
Aggregate all the denoised patches contained in the groups X̌(2)

g to form the estimated image Î(2).

modeling and estimation frameworks. It amounts actually to considering two particular families (fΘ) of
local denoisers. In the remainder of this chapter, we focus exclusively on homoscedastic Gaussian noise,
that Yi,j ∼ N (Xi,j , σ

2). All the proofs of this section can be found in Appendix D.2 and D.3.

5.3.1 Analysis of NL-Bayes algorithm

The NL-Bayes [96] algorithm has been established in the Bayesian setting and the resulting maximum
a posteriori estimator is computed with a two-step procedure as NL-Ridge. Adopting a novel parametric
view of this algorithm, let us consider the following family of local denoisers as starting point:

fΘ,β : Y ∈ Rn×k 7→ ΘY + β1⊤
k (5.22)

where Θ ∈ Rn×n and β ∈ Rn. Our objective is to find an approximation of:

Θ∗, β∗ = arg min
Θ,β

RΘ,β(X) (5.23)

where RΘ,β(X) = E∥fΘ,β(Y)−X∥2
F is the quadratic risk.

Step 1: Unbiased risk estimate (URE)

In the case of Gaussian noise, Stein’s unbiased estimate of the quadratic risk RΘ,β(X) = E∥fΘ,β(Y)−
X∥2

F is:
SUREΘ,β(Y) = ∥ΘY − Y + β1⊤

k ∥2
F + 2kσ2 tr(Θ)− nkσ2 , (5.24)

121

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

which reaches its minimum for:

Θ̂(1) = (CY − σ2In)C−1
Y and β̂(1) = (In − Θ̂(1))µY (5.25)

where µY ∈ Rk and CY ∈ Rn×n denote the empirical mean and covariance matrix of a group of patches
Y ∈ Rn×k, that is

µY = 1
k
Y 1k and CY = 1

k
(Y − µY 1⊤

k)(Y − µY 1⊤
k)⊤ . (5.26)

Interestingly, fΘ̂(1),β̂(1)(Y) is the expression given in [96] (first step), which is actually derived from the
prior distribution of patches assumed to be Gaussian. Furthermore, our framework provides guidance
on the choice of the parameters n and k. Indeed, SURE is helpful provided that its variance remains
small which is achieved if n < k (the number of parameters must not be “too large” compared to the
number of data). This result suggests that NL-Bayes is expected to be efficient if small patches are used,
as confirmed in the experiments in [97].

Step 2: “Internal adaptation”

The quadratic risk RΘ,β(X) associated with the family of functions defined in (5.22) has a closed-form
expression:

RΘ,β(X) = ∥ΘX −X + β1⊤
k ∥2

F + kσ2∥Θ∥2
F . (5.27)

Interpreting the second step in [96] as an “internal adaptation” step, we want to minimize the risk
RΘ,β(X) by substituting X̂(1), obtained at the end of step 1, for X, which is unknown. The updated
parameters become:

Θ̂(2) = CX̂(1)(CX̂(1) + σ2In)−1 and β̂(2) = (In − Θ̂(2))µX̂(1) , (5.28)

and fΘ̂(2),β̂(2)(Y) corresponds to the original second-step expression in [96].

5.3.2 Analysis of BM3D algorithm

BM3D [35] is probably the most popular non-local method for image denoising. It assumes a locally
sparse representation of images in a transform domain. A two step algorithm was described in [35] to
achieve state-of-the-art results for several years. By using the generic NL-Ridge formulation, we consider
the following family of functions:

fΘ : Y 7→ P−1(Θ⊙ (PY Q))Q−1 (5.29)

where Θ ∈ Rn×m and where P ∈ Rn×n and Q ∈ Rm×m are two orthogonal matrices that model a
separable 3D-transform (typically a 2D and 1D Discrete Cosine Transform, respectively). Once again,
our objective is to find:

Θ∗ = arg min
Θ

RΘ(X) , (5.30)

where RΘ(X) = E∥fΘ(Y)−X∥2
F is the quadratic risk.

122

5.3. A unified view of non-local denoisers

Step 1: Unbiased risk estimate (URE)

Stein’s unbiased risk estimate (SURE) is:

SUREΘ(Y) = ∥(Θ− 1n1⊤
k)⊙ PY Q∥2

F + 2σ2⟨Θ,1n1⊤
k ⟩F − nkσ2 , (5.31)

and its minimization yields:

Θ̂(1)
a = 1n1⊤

k −
σ2

(PY Q)⊙2 , (5.32)

where the division is element-wise. Unfortunately, fΘ̂(1)
a

(Y) does not provide very satisfying denoising
results. This result is actually expected as the number of parameters equals the size of data (n × k),
making SURE weakly efficient. To overcome this difficulty, we can force the elements of Θ to be either
0 or 1, i.e. by imposing the search space to be Θ ∈ {0, 1}n×k. Minimizing SURE under this constraint
results in the alternative estimation:

Θ̂(1)
b = 1R\[−

√
2σ,

√
2σ](PY Q) . (5.33)

fΘ̂(1)
b

(Y) acts then as a hard thresholding estimator as in BM3D: the coefficients of the transform domain
(i.e. the elements of the matrix PY Q) below

√
2σ, in absolute value, are canceled before applying the

inverse 3D-transform. This result suggests that the threshold should be linearly dependent on σ but also
that the threshold value is independent on the choice of the orthogonal transforms P and Q. In [35], a
threshold value of 2.7σ was carefully chosen in Step 1, which is approximately twice the SURE-prescribed
threshold.

Step 2: “Internal adaptation”

The quadratic risk RΘ(X) associated with the family of functions defined in (5.29) has a closed-form
expression:

RΘ(X) = E∥fΘ(Y)−X∥2
F = ∥(Θ− 1n1⊤

k)⊙ PXQ∥2
F + σ2∥Θ∥2

F , (5.34)

and the “internal adaptation” step yields the same expression as the Wiener filtering step in BM3D [35]:

Θ̂(2) = (PX̂(1)Q)⊙2

σ2 + (PX̂(1)Q)⊙2
. (5.35)

However, it is worth noting that the closed-form expression of the risk (5.34) is obtained by assuming that
the coefficients of Y are all independent. Thus, theoretically, Y should gather together exclusively non-
overlapping patches. This important limitation is not yet considered in the original paper [35]. Hopefully,
this has little effect on the denoising performance. More recently, a new version of the algorithm has been
published that takes into account when the noise in one patch is correlated with the noise in one of the
other patches [136].

In conclusion, we have shown that BM3D [35] and NL-Bayes [96] can be interpreted under a parametric
view within NL-Ridge framework in the case of homoscedastic Gaussian noise. Figure 5.2 summarizes
the three different algorithms which are distinguished by their parametric families. Our novel paradigm

123

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

<latexit sha1_base64="V2A1l/zhpiPMtE5rpXIuVWOYu+o=">AAAEZniclVNNb9NAEJ20BkqAfoAQBy4WKRKnyKmqwrGCSw89FClpq6ZRtXY26aq21/KugSjKv+AKl/4q/kH7L3g72SDSKi1s5Hj2zXtvd2a9cZEqY6PoV21pOXjw8NHK4/qTp89W19Y3nh8aXZWJ7CQ61eVxLIxMVS47VtlUHhelFFmcyqP44pPLH32RpVE6b9tRIXuZGOZqoBJhAZ1sDs5O2+fSis2z9UbUjHiEt4OWDxrkx4HeqF3SKfVJU0IVZSQpJ4s4JUEGvy61KKICWI/GwEpEivOSJlSHtgJLgiGAXuB/iFnXoznmztOwOsEqKZ4SypDeQqPBKxG71ULOV+zs0EXeY/Z0exvhHXuvDKilc6D36WbMf9cZMDKufYSn/x/KPtABqnI9nVfd1TkLzQfumIKyYMT1MvEeFZ+B61P4Vw8tHApgLu4jXyJOWDk71ZA1hjvtqhGcv2KmQ9088dyKrrmyxbW5Klz/NX3zX0IO/Cvjkk/Zrdylfa5kyp4gas/lJ2AYv1PFneot9Brz/jPuodNNPZ37ARiae2HgMnOa3Ll/Abche6s/u7uPXXCu8vdF4y39KnXcvNbNe3Y7ONxqtnaa25+3Grsf/R1codf0ht7hnr2nXdpDLR145/SdftDP5atgNXgZvJpSl2pe84LmRhD+Bu7S4co=</latexit>

f⇥

<latexit sha1_base64="RDDHYb0iO2KFBQXDqOztyX+uI+M=">AAAEaniclVNNbxMxEJ20Cy3hqy0n1MuKgMSFaFOhwrFqLxw4FKlpK4WAvI6bWtldr9ZeIIryP7gWfhX/ACR+BM8TBxGqtOBos+M37z17xuu0zLR1SfKtsbIa3bi5tn6refvO3Xv3Nza3jq2pK6m60mSmOk2FVZkuVNdpl6nTslIiTzN1ko4OfP7kg6qsNsWRG5eqn4thoc+0FA7Qu/3MyNGzXDh5rovh+41W0k54xJeDTghaFMah2Wx8pbc0IEOSaspJUUEOcUaCLH496lBCJbA+TYBViDTnFU2pCW0NlgJDAB3hf4hZL6AF5t7TslpilQxPBWVMT6Ax4FWI/Wox52t29ugy7wl7+r2N8U6DVw7U0TnQ63Rz5r/rLBg51z7GM/gP5QDoGaryPV1UXdU5B81L7piGsmTE91IGj5rPwPcp/qOHDg4lMB8PkK8QS1bOTzVmjeVO+2oE578z06N+LgO3ph9c2fLafBW+/4Y+hS+hAP6RccWn7Ffu0WuuZMaeIjpayE/BsGGnmjvVX+o14f3n3EOvm3l690MwDPfCwmXuNL1y/wJuQ/bWv3d3HbvkXB3ui8FbhVWauHmdv+/Z5eB4p93ZbT9/s9Pa2w93cJ226RE9xT17QXv0CrV04V3RZ7qgL6s/o63oYbQ9o640guYBLYzo8S+hxeP2</latexit>

Block-matching
<latexit sha1_base64="n2v+ACpR7l71pZfkzSVBBXbyr7A=">AAAEd3iclVNNbxMxEJ20C5TwlcIJcWBFBOop2q0QcKzgwoFDQU1bKY2qXccNVnfXK9sLRFHEj0Fc4ffwD+AncON54iBClRYcbXb85r1nz3id14WyLkm+tdbWo0uXr2xcbV+7fuPmrc7m7X2rGyNkX+hCm8M8s7JQlew75Qp5WBuZlXkhD/LTFz5/8E4aq3S15ya1HJbZuFInSmQO0HHn7pGQlZNGVeP2G1lrqzyOWXzc6Sa9hEd8NkhD0KUwdvVm6xMd0Yg0CWqoJEkVOcQFZWTxG1BKCdXAhjQFZhApzkuaURvaBiwJRgb0FP9jzAYBrTD3npbVAqsUeAyUMT2ERoNnEPvVYs437OzRVd5T9vR7m+CdB68SqKO3QC/SLZj/rrNglFz7BM/oP5QjoCeoyvd0WXVe5xw0z7hjCsqaEd9LETwaPgPfp/iPHjo41MB8PELeIBasXJxqzBrLnfbVZJz/zkyP+rkI3IZ+cGWra/NV+P5r+hC+hAr4e8Yln7JfeUCvuJI5e4Zobyk/A8OGnSru1HCl15T3X3IPvW7u6d13wdDcCwuXhdPs3P1ncBuzt/q9u4vYNeeacF803jKs0sbNS/++Z2eD/e1e+qT3+PV2d+d5uIMbdI8e0Bbu2VPaoZeopQ/vj/SZvtDX9Z/R/ehRtDWnrrWC5g4tjSj9BYAt6OE=</latexit>

Repositioning

<latexit sha1_base64="Pwac7BjiIXY+7afQNJeeS3E/Fms=">AAADDXicjVLLSsNAFD2Nr1pfVZe6CBbBVUlF1GXRjQsXFWwrWCnJdKyDaSZMJqKIG3/A33Cr4E7c+g3+gS78B++MKahFdEKSM+fec2fOnQniUCTa815yztDwyOhYfrwwMTk1PVOcnWskMlWM15kMpToI/ISHIuJ1LXTID2LF/V4Q8mZwum3izTOuEiGjfX0R86Oe343EsWC+JqpdXGwxHmmuRNQt7Ermh26r1eGRFAkx7WLJK3t2uIOgkoESslGTxXe00IEEQ4oeOCJowiF8JPQcogIPMXFHuCROERI2znGFAmlTyuKU4RN7St8uzQ4zNqK5qZlYNaNVQnoVKV0sk0ZSniJsVnNtPLWVDftb7Utb0+ztgv5BVqtHrMYJsX/p+pn/1RkvGsfYtB4EeYotY9yxrEpqu2J27n5xpalCTJzBHYorwswq+312rSax3k1vfRt/tZmGNXOW5aZ4s7v83Z/xYToicW7PpkCXofLz6AdBY7VcWS+v7a2WqlvZtchjAUtYobPfQBU7qKFOK13jFne4d26cB+fRefpMdXKZZh7fhvP8AWzLpAI=</latexit>

Local
denoising

<latexit sha1_base64="OcI3g6F865/BxA9e22lgKmds8vc=">AAAC+XicjVLLSsNAFD2Nr1pfVZdugq3gqiQi6rLoxmUF+8C2SJJOa2iaxMlELKF/4VbBnbj1a/wDXfgP3hlTUEvRCUnOnHvPnTl3xg49NxKG8ZrRZmbn5heyi7ml5ZXVtfz6Ri0KYu6wqhN4AW/YVsQ812dV4QqPNULOrIHtsbrdP5Hx+g3jkRv452IYsvbA6vlu13UsQdRFsRVdc5H4o+JlvmCUDDX0SWCmoIB0VIL8B1roIICDGAMw+BCEPViI6GnChIGQuDYS4jghV8UZRsiRNqYsRhkWsX369mjWTFmf5rJmpNQOreLRy0mpY4c0AeVxwnI1XcVjVVmy02onqqbc25D+dlprQKzAFbF/6caZ/9VJLwJdHCkPLnkKFSPdOWmVWHVF7lz/5kpQhZA4iTsU54QdpRz3WVeaSHmXvbVU/E1lSlbOnTQ3xrva5XR/0ofsSIBbdTY5ugzm76OfBLW9knlQ2j/bK5SP02uRxRa2sUtnf4gyTlFBlVbycYd7PGiJ9qg9ac9fqVom1Wzix9BePgFDsZxJ</latexit>p
n

<latexit sha1_base64="OcI3g6F865/BxA9e22lgKmds8vc=">AAAC+XicjVLLSsNAFD2Nr1pfVZdugq3gqiQi6rLoxmUF+8C2SJJOa2iaxMlELKF/4VbBnbj1a/wDXfgP3hlTUEvRCUnOnHvPnTl3xg49NxKG8ZrRZmbn5heyi7ml5ZXVtfz6Ri0KYu6wqhN4AW/YVsQ812dV4QqPNULOrIHtsbrdP5Hx+g3jkRv452IYsvbA6vlu13UsQdRFsRVdc5H4o+JlvmCUDDX0SWCmoIB0VIL8B1roIICDGAMw+BCEPViI6GnChIGQuDYS4jghV8UZRsiRNqYsRhkWsX369mjWTFmf5rJmpNQOreLRy0mpY4c0AeVxwnI1XcVjVVmy02onqqbc25D+dlprQKzAFbF/6caZ/9VJLwJdHCkPLnkKFSPdOWmVWHVF7lz/5kpQhZA4iTsU54QdpRz3WVeaSHmXvbVU/E1lSlbOnTQ3xrva5XR/0ofsSIBbdTY5ugzm76OfBLW9knlQ2j/bK5SP02uRxRa2sUtnf4gyTlFBlVbycYd7PGiJ9qg9ac9fqVom1Wzix9BePgFDsZxJ</latexit>p
n

<latexit sha1_base64="M/7JhzhFliMLbJplLQVIGBLFDdg=">AAAC+HicjVLLTsJAFD3UF+ILdemmEUxckUKMuiS6cYmJPAwQ05YBJvSVdmpEwle41cSdcevf+Ae68B+8M5ZEJUSnaXvm3HvuzLkzVuDwSBjGa0qbm19YXEovZ1ZW19Y3sptbtciPQ5tVbd/xw4ZlRszhHqsKLhzWCEJmupbD6tbgVMbr1yyMuO9diGHA2q7Z83iX26Yg6jLf6pti1Bjnr7I5o2CooU+DYgJySEbFz36ghQ582IjhgsGDIOzARERPE0UYCIhrY0RcSIirOMMYGdLGlMUowyR2QN8ezZoJ69Fc1oyU2qZVHHpDUurYI41PeSFhuZqu4rGqLNlZtUeqptzbkP5WUsslVqBP7F+6SeZ/ddKLQBfHygMnT4FipDs7qRKrrsid699cCaoQECdxh+IhYVspJ33WlSZS3mVvTRV/U5mSlXM7yY3xrnY525/0ITvi40adTYYuQ/H30U+DWqlQPCwcnJdy5ZPkWqSxg13s09kfoYwzVFCllVzc4R4P2q32qD1pz1+pWirRbOPH0F4+AXoXm5w=</latexit>

X̂

<latexit sha1_base64="JjGP/UIIz4tYNz1ZjCfYb1aTOi8=">AAAC8nicjVLLSsNAFD2Nr1pfVZdugq3gqiRF1GXRjcuK9gG1SJJOa2iahMlELMVPcKvgTtz6Q/6BLvwH74xTUEvRCUnOnHvPnTl3xo0DPxGW9ZoxZmbn5heyi7ml5ZXVtfz6Rj2JUu6xmhcFEW+6TsICP2Q14YuANWPOnIEbsIbbP5bxxjXjiR+F52IYs/bA6YV+1/ccQdRZsV+8zBeskqWGOQlsDQrQoxrlP3CBDiJ4SDEAQwhBOICDhJ4WbFiIiWtjRBwn5Ks4wy1ypE0pi1GGQ2yfvj2atTQb0lzWTJTao1UCejkpTeyQJqI8TliuZqp4qipLdlrtkaop9zakv6trDYgVuCL2L90487866UWgi0PlwSdPsWKkO09XSVVX5M7Nb64EVYiJk7hDcU7YU8pxn02lSZR32VtHxd9UpmTl3NO5Kd7VLqf7kz5kRyLcqLPJ0WWwfx/9JKiXS/Z+ae+0XKgc6WuRxRa2sUtnf4AKTlBFjVbq4Q73eDCE8Wg8Gc9fqUZGazbxYxgvnzFUmOI=</latexit>

k

<latexit sha1_base64="b3wPqC1+Y4xaN8Twrz/1RF++Pvc=">AAADEHicjVLLSsNAFD3GV62vqEsXBqvgqqRF1GXRjcsq1lbaKkk66tC8SCZiCV36A/6GWwV34tY/8A904T94Z0zBB6ITkpw59547c+6MHbo8Fqb5PKQNj4yOjecm8pNT0zOz+tz8YRwkkcNqTuAGUcO2YuZyn9UEFy5rhBGzPNtldbu7I+P1CxbFPPAPRC9kbc868/kpdyxB1Im+tHJktLhvtDxLnNt2ut8/TmkmuMdio9tfOdELZtFUw/gJShkoIBvVQH9DCx0EcJDAA4MPQdiFhZieJkowERLXRkpcRIirOEMfedImlMUowyK2S98zmjUz1qe5rBkrtUOruPRGpDSwSpqA8iLCcjVDxRNVWbK/1U5VTbm3Hv3trJZHrMA5sX/pBpn/1UkvAqfYUh44eQoVI905WZVEdUXu3PjkSlCFkDiJOxSPCDtKOeizoTSx8i57a6n4i8qUrJw7WW6CV7XL3/1JH7IjAS7V2eTpMpS+H/1PcFguljaK63vlQmU7uxY5LGIZa3T2m6hgF1XUaKUr3OAWd9q1dq89aI8fqdpQplnAl6E9vQMIMaSN</latexit>

Y 2 Rn⇥k

BM3D assumes a locally sparse rep-
resentation in a transform domain:

NL-Bayes was originally established
in the Bayesian setting:

NL-Ridge (ours) leverages linear
combinations of noisy patches:

fΘ(Y) = P⊤(Θ⊙ (PY Q))Q⊤ , fΘ,β(Y) = ΘY + β1⊤
k , fΘ(Y) = YΘ .

P, Q: orthogonal matrices. 1k: k-dimensional all-ones vector.

Figure 5.2 – Illustration of the parametric view of several popular non-local denoisers. Examples of parameterized
functions unequivocally identifying the denoiser are given, whose optimal parameters are eventually selected for
each group of patches by “internal adaptation” optimization.

has some advantages beyond the unification of methods: it enables to set the size of the patches and may
potentially relax the need to specify the prior distribution of patches.

5.4 Experimental results

In this section, we compare the performance of our NL-Ridge method with state-of-the-art methods,
including related learning-based methods [8, 105, 149, 177, 195, 197] applied to standard gray images
artificially corrupted with homoscedastic Gaussian noise with zero mean and variance σ2 and on real-
world noisy images, modeled by mixed Poisson-Gaussian noise. We used the implementations provided
by the authors as well as the corresponding trained weights for supervised networks. Performances of
NL-Ridge and other methods are assessed in terms of PSNR values when the ground truth is available.
Unless specified, NL-Ridge is run without constraint on the weights of the linear combinations. The code
can be downloaded at: https://github.com/sherbret/NL-Ridge/. Results on satellite imagery data
are presented in Appendix A.

5.4.1 Setting of algorithm parameters

For the sake of computational efficiency, the search for similar patches, computed in the ℓ2 sense,
across the image is restricted to a small local window κ × κ centered around each reference patch (in
our experiments κ = 37). Considering iteratively each overlapping patch of the image as reference patch
is also computationally demanding, therefore only an overlapping patch over δ, both horizontally and
vertically, is considered as a reference patch. The number of reference patches and thus the time spent
searching for similar patches is then divided by δ2. This common technique [35, 57, 65] is sometimes
referred in the literature as the step trick. In our experiments, we take δ = 4.

124

https://github.com/sherbret/NL-Ridge/

5.4. Experimental results

Table 5.1 – Recommended patch size n and patch number k for the Step 1 and Step 2 versus noise standard
deviation σ.

σ n1 n2 k1 k2

10 < σ ≤ 15 7× 7 7× 7 18 55
15 < σ ≤ 35 9× 9 9× 9 18 90
35 < σ ≤ 50 11× 11 9× 9 20 120

Noisy / 22.09 dB BM3D [35] / 31.72 dB NL-Bayes [96] / 31.54 dB

Self2Self [149] / 31.62 dB DnCNN [195] / 31.06 dB NL-Ridge (ours) / 32.06 dB

Figure 5.3 – Denoising results (in PSNR) on Barbara corrupted with additive white Gaussian noise (σ = 20).

Finally, the choice of the parameters n and k depend on the noise level. Experimentally, larger patches
have to be considered for higher noise levels as well as a higher quantity of patches for the second step.
An empirical analysis led us to choose the parameters reported in Table 5.1 for homoscedastic Gaussian
noise of variance σ2.

5.4.2 Results on test datasets

Results on artificially noisy images corrupted by homoscedastic Gaussian noise

We tested the denoising performance of our method on three well-known datasets: Set12, BSD68
[129] and Urban100 [74]. For the sake of a fair comparison, algorithms are divided into two categories:
unsupervised methods, meaning that these methods (either non-local or deep learning-based) only have
access to the input noisy image, and supervised methods (i.e. involving neural networks) that require

125

T
ab

le
5.

2
–

T
he

P
SN

R
(d

B
)

re
su

lts
of

di
ffe

re
nt

m
et

ho
ds

ap
pl

ie
d

to
th

re
e

da
ta

se
ts

co
rr

up
te

d
w

ith
sy

nt
he

tic
w

hi
te

G
au

ss
ia

n
no

is
e

an
d

σ
=

5,
15

,2
5,

35
an

d
50

.T
he

be
st

m
et

ho
d

am
on

g
ea

ch
ca

te
go

ry
(u

ns
up

er
vi

se
d

or
su

pe
rv

is
ed

)
is

em
ph

as
iz

ed
in

bo
ld

.

M
et

ho
ds

Se
t1

2
B

SD
68

[1
29

]
U

rb
an

10
0

[7
4]

N
oi

sy
34

.2
5

/
24

.6
1

/
20

.1
7

/
17

.2
5

/
14

.1
5

34
.2

5
/

24
.6

1
/

20
.1

7
/

17
.2

5
/

14
.1

5
34

.2
5

/
24

.6
1

/
20

.1
7

/
17

.2
5

/
14

.1
5

Unsupervised
Traditional

B
M

3D
[3

5]
38

.0
2

/
32

.3
7

/
29

.9
7

/
28

.4
0

/
26

.7
2

37
.5

5
/

31
.0

7
/

28
.5

7
/

27
.0

8
/

25
.6

2
38

.3
0

/
32

.3
5

/
29

.7
0

/
27

.9
7

/
25

.9
5

N
L-

B
ay

es
[9

6]
38

.1
2

/
32

.2
5

/
29

.8
8

/
28

.3
0

/
26

.4
5

37
.6

2
/

31
.1

6
/

28
.7

0
/

27
.1

8
/

25
.5

8
38

.3
3

/
31

.9
6

/
29

.3
4

/
27

.6
1

/
25

.5
6

N
L

-R
id

ge
(li

ne
ar

)
38

.1
9

/
32

.4
6

/
30

.0
0

/
28

.4
1

/
26

.7
3

37
.6

7
/

31
.2

0
/

28
.6

7
/

27
.1

4
/

25
.6

7
38

.5
6

/
32

.5
3

/
29

.9
0

/
28

.1
3

/
26

.2
9

N
L

-R
id

ge
(a

ffi
ne

)
38

.1
7

/
32

.4
2

/
29

.9
8

/
28

.4
3

/
26

.7
9

37
.6

5
/

31
.1

8
/

28
.6

8
/

27
.1

6
/

25
.7

1
38

.5
4

/
32

.5
4

/
29

.9
3

/
28

.2
1

/
26

.4
0

N
L

-R
id

ge
(c

on
ic

al
)

38
.0

3
/

32
.1

6
/

29
.7

2
/

28
.0

7
/

26
.4

9
37

.4
6

/
30

.8
6

/
28

.3
8

/
26

.8
5

/
25

.4
3

-
/

-
/

-
/

-
/

-
N

L
-R

id
ge

(c
on

ve
x)

38
.0

0
/

32
.1

4
/

29
.7

0
/

28
.1

4
/

26
.5

1
37

.4
5

/
30

.8
5

/
28

.3
8

/
26

.8
6

/
25

.4
4

-
/

-
/

-
/

-
/

-

Deep
learning

D
IP

[1
05

]
-

/
30

.1
2

/
27

.5
4

/
-

/
24

.6
7

-
/

28
.8

3
/

26
.5

9
/

-
/

24
.1

3
-

/
-

/
-

/
-

/
-

N
oi

se
2S

el
f[

8]
-

/
31

.0
1

/
28

.6
4

/
-

/
25

.3
0

-
/

29
.4

6
/

27
.7

2
/

-
/

24
.7

7
-

/
-

/
-

/
-

/
-

Se
lf2

Se
lf

[1
49

]
-

/
32

.0
7

/
30

.0
2

/
-

/
26

.4
9

-
/

30
.6

2
/

28
.6

0
/

-
/

25
.7

0
-

/
-

/
-

/
-

/
-

Supervised

D
nC

N
N

[1
95

]
-

/
32

.8
6

/
30

.4
4

/
28

.8
2

/
27

.1
8

-
/

31
.7

3
/

29
.2

3
/

27
.6

9
/

26
.2

3
-

/
32

.6
8

/
29

.9
7

/
28

.1
1

/
26

.2
8

FF
D

N
et

[1
97

]
38

.1
1

/
32

.7
5

/
30

.4
3

/
28

.9
2

/
27

.3
2

37
.8

0
/

31
.6

3
/

29
.1

9
/

27
.7

3
/

26
.2

9
38

.1
2

/
32

.4
3

/
29

.9
2

/
28

.2
7

/
26

.5
2

LI
D

IA
[1

77
]

-
/

32
.8

5
/

30
.4

1
/

-
/

27
.1

9
-

/
31

.6
2

/
29

.1
1

/
-

/
26

.1
7

-
/

32
.8

0
/

30
.1

2
/

-
/

26
.5

1
D

C
T

2n
et

[6
4]

37
.6

5
/

32
.1

0
/

29
.7

1
/

28
.1

0
/

26
.3

9
37

.3
4

/
31

.0
9

/
28

.6
4

/
27

.1
7

/
25

.6
8

37
.5

9
/

31
.4

8
/

28
.8

1
/

27
.0

4
/

25
.1

7

T
ab

le
5.

3
–

T
he

P
SN

R
(d

B
)

re
su

lts
on

ra
w

da
ta

on
D

ar
m

st
ad

t
N

oi
se

D
at

as
et

(D
N

D
)

[1
45

]

U
ns

up
er

vi
se

d
Su

pe
rv

is
ed

M
et

ho
ds

B
M

3D
[3

5]
N

L
-R

id
ge

K
SV

D
[4

6]
N

C
SR

[4
2]

W
N

N
M

[5
7]

M
LP

[1
7]

T
N

R
D

[2
8]

FF
D

N
et

[1
97

]
D

C
T

2n
et

[6
4]

P
SN

R
(i

n
dB

)
47

.1
5

47
.1

2
46

.8
7

47
.0

7
47

.0
5

45
.7

1
45

.7
0

47
.4

0
46

.8
3

5.4. Experimental results

a training phase beforehand and an external dataset. A comparison with state-of-the-art algorithms is
reported in Table 5.2 (the missing figures are due either to the unavailability of a specific model for
the noise levels concerned in the case of supervised methods, or to prohibitive execution times on large
datasets [74] for unsupervised methods). Note that only the single-image extension was considered for
Noise2Self [8] and the time-consuming “internal adaptation” option was not used for LIDIA [177]. We
used the implementations provided by the authors for all algorithms. As for Noise2Self [8], only the
single-image extension was considered.

NL-Ridge, exclusively based on weighted aggregation of noisy patches, performs surprisingly at least
as well as its traditional counterparts [35] [96]. It is particularly efficient on Urban100 dataset which
contains abundant structural patterns and textures, achieving comparable performances with FFDnet
[197], a popular supervised network composed of hundreds of thousands of parameters. It is interesting
to note that imposing constraints on the weights of combinations does not bring much improvement.
It can even be detrimental in the case of conical or convex combinations of patches. This result is all
the more surprising since many denoising algorithms are exclusively based on convex combinations of
patches [15, 79, 84, 160]. We note however a slight superiority of the affine version over the unconstrained
one at higher noise levels, which can be explained by our observation at the end of subsection 5.2.4.
In what follows, only the affine version of NL-Ridge is considered, which has the advantage of being
normalization-equivariant in the case of Gaussian noise as proved in Appendix C.3.2.

Figure 5.3 illustrates the visual results of different methods. NL-Ridge is very competitive with respect
to well-established methods such as BM3D [35]. The self-similarity assumption is particularly useful to
recover subtle details such as the stripes on the Barbara image that are better reconstructed than DnCNN
[195].

Results on real-world noisy images

We tested the proposed method on the Darmstadt Noise Dataset [145] which is a dataset composed
of 50 real-noisy photographs. It relies on captures of a static scene with different ISO values, where the
nearly noise-free low-ISO image is carefully post-processed to derive the ground-truth. In this challenge,
the ground-truth images are not available. Each competitor submits the denoising results on the official
website 1. The algorithms are then evaluated according to standard metrics and the ranking is made
public 2.

The real noise can be modeled as a Poisson-Gaussian noise:

y ∼ aP(x/a) +N (0, b) , (5.36)

which can be further approximated with a heteroscedastic Gaussian noise whose variance is intensity-
dependent:

y ∼ N (x, diag(ax+ b)) , (5.37)

where (a, b) ∈ R+ ×R+ are the noise parameters. For each noisy image, the authors [145] calculated the
adequate noise parameters (a, b) based on this model and made them available to the user. Note that for

1. https://noise.visinf.tu-darmstadt.de/
2. https://noise.visinf.tu-darmstadt.de/benchmark/

127

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

(a)

Noisy

Noisy BM3D [35] NL-Ridge [65]

FFDNet [197] NL-Bayes [96] DCT2net [64]

(b)

Noisy

Noisy BM3D [35] NL-Ridge [65]

FFDNet [197] NL-Bayes [96] DCT2net [64]

(c)

Noisy

Noisy BM3D [35] NL-Ridge [65]

FFDNet [197] NL-Bayes [96] DCT2net [64]

Figure 5.4 – Qualitative comparison of image denoising results on real-world noisy images from Darmstadt
Noise Dataset [145]. Zoom-in regions are indicated for each method. From top to bottom: Img0003, Img0037 and
Img0044.

applying denoisers exclusively dedicated to homoscedastic Gaussian noise removal, a variance-stabilizing
transformation (VST) such as the generalized Anscombe transform [171] is performed beforehand. In
our case, stabilizing the variance is not necessary as NL-Ridge can handle mixed Poisson-Gaussian noise
directly.

Figure 5.4 shows a qualitative comparison of the results obtained with state-of-the-art denoisers
designed for the framework of additive white Gaussian noise. Since the real noise level is relatively low,
it is difficult to really differentiate between all methods visually. Table 5.3 compares the average PSNR
values obtained on this dataset for different methods. NL-Ridge obtains comparable results with BM3D
[35], which is so far the best unsupervised method on this dataset.

128

5.5. Conclusion

Table 5.4 – Running time (in seconds) of different methods for an image of size 256 × 256. Best among each
category (unsupervised or supervised) is in bold.

Methods CPU / GPU

U
n

su
p

er
v

is
ed

T
ra

di
ti

on
al BM3D [35] 1.68 / -

NL-Bayes [96] 0.21 / -
NL-Ridge 0.66 / 0.162

D
ee

p
le

ar
ni

ng DIP [105] - /∼ 5 min
Noise2Self [8] - /∼ 5 min
Self2Self [149] - / ∼ 1 hr

S
u

p
er

v
is

ed DnCNN [195] 0.35 / 0.007
FFDNet [197] 0.06 / 0.001
LIDIA [177] 21.08 / 1.18

DCT2net [64] 0.18 / 0.007

5.4.3 Complexity

We want to emphasize that NL-Ridge, is relatively fast compared to its traditional and deep-learning-
based unsupervised counterparts. The running times of different state-of-the-art algorithms are reported
in Table 5.4. It is provided for information purposes only, as the implementation, the language used and
the machine on which the code is run, highly influence the execution time. The CPU used is a 2,3 GHz
Intel Core i7 and the GPU is a GeForce RTX 2080 Ti. NL-Ridge has been entirely implemented in Python
with Pytorch, enabling it to run on GPU with almost no modification of the code, unlike its traditional
counterparts. The gap in terms of running time between supervised and unsupervised methods is explained
by the fact that these latter solve optimization problems “on the fly”. In comparison, supervised methods
find optimal parameters for empirical risk minimization in advance on an external dataset composed of
clean/noisy images and this time for optimization, sometimes counting in days on a GPU, is not taking
into account in Table 5.4. Nevertheless, it is worth noting that traditional unsupervised methods are
much less computationally demanding than unsupervised deep-learning-based ones [8, 105, 149] that use
time-consuming gradient descent algorithms for optimization, while traditional ones have closed-form
solutions.

5.5 Conclusion

In this chapter, we presented a unified view to reconcile state-of-the-art unsupervised non-local denois-
ers through the minimization of a risk from a family of estimators, exploiting unbiased risk estimates on
the one hand and the “internal adaptation” on the other. We derived NL-Ridge algorithm, which lever-
ages local linear combinations of noisy similar patches. Our experimental results show that NL-Ridge
compares favorably with its state-of-the-art counterparts, including recent unsupervised deep learning
methods which are much more computationally demanding. Moreover, NL-Ridge is very versatile, fast
and can deal with a lot of different types of noise.

However, the performance of NL-Ridge is somehow curbed by the impracticality of repeating the
second stage, which holds true for all methods [35, 96]. In the next chapter, we propose a novel chaining

129

Chapter 5 – Towards a unified view of non-local methods: the NL-Ridge approach

rule to overcome this limitation and further improve performance, while still relying on linear combinations
of patches.

130

Chapter 6

LICHI: BOOSTING DENOISING

PERFORMANCE VIA A NOVEL CHAINING

RULE

In this chapter, we rethink the parametric view of non-local denoisers, which
proceed in two stages. We propose to extend the underlying parametric math-
ematical formulation iteratively, improving image quality with each iteration.
Although natural, it turns out that iterating beyond two iterations degrades
images with most methods [35, 96]. The resulting formulation involves estimat-
ing a very large number of parameters in an unsupervised way. Starting from
the parameterized form of NL-Ridge [65], we propose a progressive scheme
to estimate the parameters by minimizing the quadratic risk. Ultimately, the
denoised images consist of iterative linear combinations of patches. Experi-
ments on both artificially noisy and real-world noisy images demonstrate that
our method compares favorably with the best unsupervised denoisers such as
WNNM [57], outperforming recent deep learning-based approaches, while be-
ing much faster.

6.1 Introduction

In unsupervised image denoising, BM3D [35] remains the reference method and is still competitive
today even if it was developed some fifteen years ago. Leveraging the non-local strategy, its mechanism
relies on processing collaboratively groups of similar noisy patches across the image, assuming a locally
sparse representation in a transform domain. Since then, a lot of methods based on patch grouping were
developed achieving more or less comparable performance [41, 42, 57, 65, 96, 124]. In particular, NL-
Bayes [96] and NL-Ridge [65] are both two-step algorithms that belong to the same family as BM3D [35],
according to the unifying approach proposed in the previous chapter. The very best method, to the best
of our knowledge, is however WNNM [57] which combines both a low-rank approach and the so-called
iterative regularization technique [139] which consists in non-intuitively adding a proportion of the noisy
signal at each of the dozens of steps of the algorithm. A natural idea for improving the above mentioned
non-local two-step methods [35, 65, 96] and closing the gap with WNNM [57] is to repeat their second
step again and again, taking advantage of the availability of a supposedly better image estimate, a.k.a.
pilot, at each step. However, this strategy is disappointing in practice as if these methods intrinsically

131

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

peaked at the second step, with no theoretical justifications.
In order to overcome the second stage limitation, we propose to generalize the underlying paramet-

ric formulation of non-local denoisers by a novel chaining technique that provides better estimators at
each iteration. The proposed innovation relies on iterative linear combinations of patches based on the
exploitation of more and more refined pilots. Despite the very large number of parameters involved in the
underlying function, the resulting algorithm remains relatively fast. Compared to its two-step NL-Ridge
counterpart [65], the proposed algorithm named LIChI, short for Linear and Iterative Combinations of
patcHes for Image denoising, removes a large amount of denoising artifacts, resulting in a nicer final
image. We show that the denoising performance, assessed in terms of PSNR values, is also significantly
improved when compared to unsupervised deep-learning-based and the most competitive two-step de-
noisers [35, 65, 96].

The remainder of this chapter is organized as follows. In section 6.2, we rethink the parametric view
of non-local two-step denoisers [35, 65, 96] and confirm the second stage limitation. In section 6.3, we
introduce a novel chaining technique of the aforementioned denoisers. Our progressive scheme approxi-
mates the optimal parameters in a unsupervised manner when considering linear combinations of similar
patches. In section 6.4, leveraging some techniques inspired from deep-learning, we show how to derive
an initial pilot, and study its influence on the final result. Finally, in section 6.5, experimental results
on popular datasets, either artificially noisy or real-world data, demonstrate that the resulting algorithm
outperforms the unsupervised deep-learning-based techniques and compares favorably with the very best
method [57] while being much faster at execution.

6.2 An extended parametric view of unsupervised two-step non-
local methods

In this section, we propose an extended formulation of the parametric view of non-local methods
proposed in the previous chapter that constitutes the foundation on which we build upon in the following
sections.

6.2.1 A unified framework for non-local denoisers

Formally, a non-local denoiser ϕΘ taking as input a noisy image y composed of G overlapping squared
patches of size

√
n×
√
n can be viewed as a high-dimensional parametric function:

ϕΘ(y) = π−1(FΘ(π(y))) , (6.1)

where,
— π : y 7→ Y is an operator that extracts G groups of similar patches, or similarity matrices, from

y. The G groups Y = {Yg}G
g=1 are viewed as a third-order tensor (i.e. three dimensional array) in

RG×n×k, where k denotes the number of similar patches per group. Note that π is such that the
gth overlapping patch is always included in the gth group Yg.

132

6.2. An extended parametric view of unsupervised two-step non-local methods

<latexit sha1_base64="rBBta7x/+CEz1clk2xV/GD/HbMo=">AAAEy3iclVNNb9NAEJ0UAyV8tXDkYpEicYqcCgHHCi4cQCpS01ZKI2Q727Kq7bV210AIOXLmCv8M/gH8C95MNkCokoIt27Nv5j3vvN3N6kI7nyTfWmsXoouXLq9faV+9dv3GzY3NW/vONDZX/dwUxh5mqVOFrlTfa1+ow9qqtMwKdZCdPuX8wRtlnTbVnh/XalimJ5U+1nnqAfW3jmq99Wqjk3QTueKzQS8EHQrXrtlsfaUjGpGhnBoqSVFFHnFBKTncA+pRQjWwIU2AWURa8oqm1Aa3QZVCRQr0FO8TjAYBrTBmTSfsHH8p8FgwY7oHjkGdRcx/iyXfiDKjy7QnoslzG+ObBa0SqKfXQM/jzSv/nedQUUrvYzyj/2COgB6jK/Z0kbXKOQ/OY3FMg1kLwl7mQaORNWCf4j889FCogXE8Qt4izoU5X9VYOE6c5m5SyX+XSkZ5nIfahn6s7IzfRpS9+PK7O4scz3s5t5IdpIIXFqN3K/bSRPzilTa/6irgbwVXsp9Ya0DPxbNZ9RTR3kJ+igoXPNGyJsOlWhNxqpQZMm+myeq7qDDiuoPKXIlntWrfFYiMdDqf3XnVteSacDINvir8pY0z3vv7RJ8N9re7vYfdBy+3OztPwmlfpzt0l+7jRD+iHXqGXvrQ1vSJPtOX6EXkovfRh1npWitwbtPCFX38CQw29kU=</latexit>⇡
<latexit sha1_base64="FDtEJvDJClLrVrTjCGvddx/tQRQ=">AAAE1HiclVNNb9NAEJ0UAyV8tXDkYpEicYqcqgKOFVw4cChSklZKQ2Q7m3ZV22vtroHI5IS4cuYKvwr+AfwL3k42QKiSgi3bs2/mPe+83U3KTBobRd8aG5eCy1eubl5rXr9x89btre07faMqnYpeqjKlj5LYiEwWomelzcRRqUWcJ5k4TM6eufzha6GNVEXXTksxzOOTQk5kGltAr3Ymo/q4eypsPJKzndFWK2pHfIXng44PWuSvA7Xd+ErHNCZFKVWUk6CCLOKMYjK4B9ShiEpgQ6qBaUSS84Jm1AS3QpVARQz0DO8TjAYeLTB2mobZKf6S4dFghvQAHIU6jdj9LeR8xcoOXaVds6ab2xTfxGvlQC2dAr2It6j8d55BRc69T/GM/4M5BjpBV87TZdY65yw4T9gxCWbJiPMy9RoVr4HzKfzDQwuFEpiLx8hrxCkzF6saMsew066bmPPfudKhbpz62op+rO3MvRUrW/bld3caOTfv1dyCd5DwXmiM3q7ZSzX75VZa/aorgL9hXPB+cloDesGezatniLpL+RkqjPdE8poMV2rV7FTOM3S8uaZTP0CFYtcNVBZKblbr9l2GSHGni9ldVF1yrvInU+Er/F+aOOOdv0/0+aC/2+48au+93G3tP/WnfZPu0X16iBP9mPbpOXrpQVvTJ/pMX4J+8C54H3yYl240POcuLV3Bx5+BHvpB</latexit>

f⇥i

<latexit sha1_base64="8yMD1KIiPtSpeBudGQmJ+y26TT0=">AAAEz3iclVNNb9NAEJ0UAyV8tXDkYpEicYqcCgHHCi4cEGqlpi0KEbKdbVnV9lredVsrCuLKmSv8L/gH8C94M9kAoUoKtmzPvpn3vPN2NykzbV0UfWutXAouX7m6eq19/cbNW7fX1u/sWVNXqeqnJjPVQRJblelC9Z12mTooKxXnSab2k+PnnN8/UZXVpth1TamGeXxU6EOdxg7Q61dG2ybcaDbernWibiRXeD7o+aBD/to2662v9IZGZCilmnJSVJBDnFFMFveAehRRCWxIY2AVIi15RRNqg1ujSqEiBnqM9xFGA48WGLOmFXaKv2R4KjBDegCOQV2FmP8WSr4WZUYXaY9Fk+fW4Jt4rRyoo3dAL+LNKv+dZ1GRS+8NntF/MEdAD9EVezrPWuacA+epOKbBLAVhL1OvUcsasE/hHx46KJTAOB4hXyFOhTlb1VA4VpzmbmLJf5dKRnmc+tqafiztjN9GlJ348ru7Cjme92JuITtIeS8qjM6W7KWx+MUrbX7VFcBPBVeyn1hrQC/Fs2n1BNHuXH6CCus90bImw4VaY3Eqlxkyb6rJ6tuoMOK6hcpMiWe1bN9liIx0OpvdRdWl5Gp/Mg2+yv+ljTPe+/tEnw/2Nru9x91HO5udrWf+tK/SPbpPD3Gin9AWvUAvfWjn9Ik+05dgJzgN3gcfpqUrLc+5S3NX8PEnHr/34w==</latexit>

Noisy y

<latexit sha1_base64="KUMh17vBcBMQFr+ancsF9ZXyJT4=">AAAE1HiclVNNb9NAEJ0UAyV8teXIxSJF4hTZVQUcK3rpgUORkrRSGiLb2bRWba+1uwYik1PFlTNX+FXwD+Bf8HayAUKVFGzZnn0z73nn7W5cZqk2QfCtsXbNu37j5vqt5u07d+/d39jc6mlZqUR0E5lJdRxHWmRpIbomNZk4LpWI8jgTR/H5vs0fvRFKp7LomEkpBnl0WqTjNIkMoNfb42F90jkTJhqG0+3hRitoB3z5l4PQBS1y16HcbHylExqRpIQqyklQQQZxRhFp3H0KKaAS2IBqYApRynlBU2qCW6FKoCICeo73KUZ9hxYYW03N7AR/yfAoMH16DI5EnUJs/+ZzvmJliy7TrlnTzm2Cb+y0cqCGzoBexZtX/jtPoyLn3id4Rv/BHAEdoyvr6SJrlXMGnOfsWApmyYj1MnEaFa+B9cn/w0MDhRKYjUfIK8QJM+er6jNHs9O2m4jz37nSonacuNqKfqzszL4lKxv25Xd3Cjk77+XcgneQcF4ojN6t2Es1+2VXWv6qK4C/ZVzwfrJafXrJns2qp4g6C/kpKrTzJOU1GSzVqtmpnGdoeTNNq36ICsmua6jMleysVu27DJHkTuezu6q65FzlTqbEV7i/NHHGw79P9OWgt9MOn7Z3X+209l64075OD+kRPcGJfkZ7dIBeutBW9Ik+0xev5733LrwPs9K1huM8oIXL+/gTivf6CQ==</latexit>

f⇥1

<latexit sha1_base64="rBBta7x/+CEz1clk2xV/GD/HbMo=">AAAEy3iclVNNb9NAEJ0UAyV8tXDkYpEicYqcCgHHCi4cQCpS01ZKI2Q727Kq7bV210AIOXLmCv8M/gH8C95MNkCokoIt27Nv5j3vvN3N6kI7nyTfWmsXoouXLq9faV+9dv3GzY3NW/vONDZX/dwUxh5mqVOFrlTfa1+ow9qqtMwKdZCdPuX8wRtlnTbVnh/XalimJ5U+1nnqAfW3jmq99Wqjk3QTueKzQS8EHQrXrtlsfaUjGpGhnBoqSVFFHnFBKTncA+pRQjWwIU2AWURa8oqm1Aa3QZVCRQr0FO8TjAYBrTBmTSfsHH8p8FgwY7oHjkGdRcx/iyXfiDKjy7QnoslzG+ObBa0SqKfXQM/jzSv/nedQUUrvYzyj/2COgB6jK/Z0kbXKOQ/OY3FMg1kLwl7mQaORNWCf4j889FCogXE8Qt4izoU5X9VYOE6c5m5SyX+XSkZ5nIfahn6s7IzfRpS9+PK7O4scz3s5t5IdpIIXFqN3K/bSRPzilTa/6irgbwVXsp9Ya0DPxbNZ9RTR3kJ+igoXPNGyJsOlWhNxqpQZMm+myeq7qDDiuoPKXIlntWrfFYiMdDqf3XnVteSacDINvir8pY0z3vv7RJ8N9re7vYfdBy+3OztPwmlfpzt0l+7jRD+iHXqGXvrQ1vSJPtOX6EXkovfRh1npWitwbtPCFX38CQw29kU=</latexit>⇡
<latexit sha1_base64="x4FEjNbOyxeTvuO7diWa5T1wI+c=">AAAEyniclVNNb9NAEJ0UAyV8tXDkYpEicSGyqwo4VnDh0EORmrZSiJDtbFurttfaXQORlRtnrvDT4B/Av+DNZAOEKinYsj37Zt7zztvdtC5y66LoW2ftSnD12vX1G92bt27fubuxee/Q6sZkapDpQpvjNLGqyCs1cLkr1HFtVFKmhTpKz19y/uidMjbX1YGb1GpUJqdVfpJniWNo60m89XajF/UjucKLQeyDHvlrX292vtIbGpOmjBoqSVFFDnFBCVncQ4opohrYiFpgBlEueUVT6oLboEqhIgF6jvcpRkOPVhizphV2hr8UeAyYIT0CR6POIOa/hZJvRJnRZdqtaPLcJvimXqsE6ugM6GW8eeW/8ywqSul9gmf8H8wx0BN0xZ4uslY558B5Lo7lYNaCsJeZ12hkDdin8A8PHRRqYByPkTeIM2HOVzUUjhWnuZtE8t+lklEeZ762oR8rO+O3FmUnvvzuziDH817OrWQHKe+FwejDir3Uil+80vpXXQX8veBK9hNrDWlPPJtVTxEdLOSnqLDek1zWZLRUqxWnSpkh82aarL6PCi2uW6jMlXhWq/ZdgUhLp/PZXVZdS67xJ1Pjq/xfujjj8d8n+mJwuN2Pn/Z3Xm/3dl/4075OD+ghPcaJfka79Aq9DKB9Rp/oM30J9gITTIJ2VrrW8Zz7tHAFH38CMxb1ZA==</latexit>�1

<latexit sha1_base64="GTZijsgkwK6DKlpq8xLkiNo80Ns=">AAAE2niclVNNb9NAEJ0UAyV8peXIxSJF4hQ5VQUcK+DAgUORmrZSElW2s21Xtb3W7hoSWblwQ1w5c4WfBP8A/gVvJxsgVEnBlu3ZN/Oed97uJmUmjY2ib421K8HVa9fXbzRv3rp9525rY/PAqEqnopeqTOmjJDYik4XoWWkzcVRqEedJJg6T8+cuf/hGaCNVsW8npRjm8WkhT2QaW0DHrc0XolDSiFG4NTiLbT2ebh232lEn4iu8GHR90CZ/7amNxlca0IgUpVRRToIKsogzisng7lOXIiqBDakGphFJzguaUhPcClUCFTHQc7xPMep7tMDYaRpmp/hLhkeDGdJDcBTqNGL3t5DzFSs7dJl2zZpubhN8E6+VA7V0BvQy3rzy33kGFTn3PsEz+g/mCOgJunKeLrJWOWfBecqOSTBLRpyXqdeoeA2cT+EfHloolMBcPEJeI06ZOV/VkDmGnXbdxJz/zpUOdePU11b0Y2Vn7q1Y2bIvv7vTyLl5L+cWvIOE90JjNF6xl2r2y620+lVXAH/LuOD95LT69Io9m1VPEe0v5KeoMN4TyWsyXKpVs1M5z9DxZppOfQ8Vil03UJkruVmt2ncZIsWdzmd3WXXJucqfTIWv8H9p4ox3/z7RF4OD7U73cWfn9XZ795k/7et0nx7QI5zoJ7RLL9FLD9pj+kSf6UswCN4F74MPs9K1hufco4Ur+PgTkNL8Fw==</latexit>

Denoised x̂
<latexit sha1_base64="PB9Nhh37j3vFG1+QLfeUQltqkvs=">AAAEzniclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5VQUcK7hw4BCkpo2URsh2tsWq7bV21ylRFHHlzBV+GPwD+Be8mWyAUCUFW7Zn38x73nm7m1R5Zl0UfWtsXAuu39jcutm8dfvO3XvbO/ePrK5NqnqpzrXpJ7FVeVaqnstcrvqVUXGR5Oo4OX/J+eOxMjbT5aGbVGpYxGdldpqlsQPU3z0Zj7Szu2+3W1E7kiu8HHR80CJ/dfVO4yud0Ig0pVRTQYpKcohzisniHlCHIqqADWkKzCDKJK9oRk1wa1QpVMRAz/E+w2jg0RJj1rTCTvGXHI8BM6TH4GjUGcT8t1DytSgzukp7Kpo8twm+idcqgDp6B/Qq3qLy33kWFYX0PsEz+g/mCOgpumJPl1nrnHPgPBfHMjArQdjL1GvUsgbsU/iHhw4KFTCOR8gbxKkwF6saCseK09xNLPnvUskoj1NfW9OPtZ3xW4uyE19+d2eQ43mv5payg5T3wmD0fs1emopfvNL6V10J/EJwJfuJtQb0WjybV88QHS7lZ6iw3pNM1mS4UmsqThUyQ+bNNVm9iwotrluoLJR4Vuv2XY5IS6eL2V1VXUmu9idT46v8X5o4452/T/Tl4Giv3Xna3n+z1zp44U/7Fj2kR/QEJ/oZHdAr9NKTk/yJPtOXoBuMg1nwYV660fCcB7R0BR9/AmtZ97o=</latexit>...

<latexit sha1_base64="PB9Nhh37j3vFG1+QLfeUQltqkvs=">AAAEzniclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5VQUcK7hw4BCkpo2URsh2tsWq7bV21ylRFHHlzBV+GPwD+Be8mWyAUCUFW7Zn38x73nm7m1R5Zl0UfWtsXAuu39jcutm8dfvO3XvbO/ePrK5NqnqpzrXpJ7FVeVaqnstcrvqVUXGR5Oo4OX/J+eOxMjbT5aGbVGpYxGdldpqlsQPU3z0Zj7Szu2+3W1E7kiu8HHR80CJ/dfVO4yud0Ig0pVRTQYpKcohzisniHlCHIqqADWkKzCDKJK9oRk1wa1QpVMRAz/E+w2jg0RJj1rTCTvGXHI8BM6TH4GjUGcT8t1DytSgzukp7Kpo8twm+idcqgDp6B/Qq3qLy33kWFYX0PsEz+g/mCOgpumJPl1nrnHPgPBfHMjArQdjL1GvUsgbsU/iHhw4KFTCOR8gbxKkwF6saCseK09xNLPnvUskoj1NfW9OPtZ3xW4uyE19+d2eQ43mv5payg5T3wmD0fs1emopfvNL6V10J/EJwJfuJtQb0WjybV88QHS7lZ6iw3pNM1mS4UmsqThUyQ+bNNVm9iwotrluoLJR4Vuv2XY5IS6eL2V1VXUmu9idT46v8X5o4452/T/Tl4Giv3Xna3n+z1zp44U/7Fj2kR/QEJ/oZHdAr9NKTk/yJPtOXoBuMg1nwYV660fCcB7R0BR9/AmtZ97o=</latexit>...

<latexit sha1_base64="kpREcfXsQCoHJH84DoZSU9tGCqM=">AAAE6HiclVNNb9NAEJ0UA8V8pXDkYhEhcYqcChWOFRzgwKFITVspiSp7sw2mttfaXbeNolw5c0NcOXOF3wL/AP4FbycbIFRJwZbt2Tfznnfe7qZVnhkbx98aa5eCy1eurl8Lr9+4eet2c+POnlG1FrIrVK70QZoYmWel7NrM5vKg0jIp0lzup8fPXH7/RGqTqXLXjis5KJJRmR1lIrGADptRX8jSSp2Vo/C5VnUV9fuhPLM6Ea4gig6brbgd8xWdDzo+aJG/dtRG4yv1aUiKBNVUkKSSLOKcEjK4e9ShmCpgA5oA04gyzkuaUghujSqJigToMd4jjHoeLTF2mobZAn/J8WgwI3oAjkKdRuz+FnG+ZmWHLtOesKab2xjf1GsVQC29BnoRb1757zyDioJ7H+MZ/gdzCPQIXTlPF1mrnLPgPGHHMjArRpyXwmvUvAbOp+gPDy0UKmAuHiKvEQtmzlc1Yo5hp103Cee/c6VD3Vj42pp+rOzMvRUrW/bld3caOTfv5dySd5D0XmiMzlbspQn75VZa/aorgZ8yLnk/Oa0evWTPZtVTRLsL+SkqjPck4zUZLNWasFMFz9DxZppOfQcVil03UJkruVmt2nc5IsWdzmd3UXXFudqfTIWv9H8JccY7f5/o88HeZruz1X70arO1/dSf9nW6R/fpIU70Y9qmF+ilC+239Ik+05fgTfAueB98mJWuNTznLi1cwcefFR4Bqw==</latexit>

Group
extraction

<latexit sha1_base64="7FtQ6f27dbP33E/b+EbaKKdMBjA=">AAAE3niclVNNb9NAEJ0UAyV8tSBx4WIRIXGKnAoBxwIXDhyK1LSV0ghsZ2tWtXet3TUQhVy5Ia6cucIPgn8A/4K3kw0QqqRgy/bsm3nPO293s7qU1iXJt9bamejsufPrF9oXL12+cnVj89qe1Y3JRT/XpTYHWWpFKZXoO+lKcVAbkVZZKfaz48c+v/9KGCu12nXjWgyrtFDySOapA/R848ZhLpQTRqqi/bAojChCopN0E77ik0EvBB0K147ebH2lQxqRppwaqkiQIoe4pJQs7gH1KKEa2JAmwAwiyXlBU2qD26BKoCIFeox3gdEgoApjr2mZneMvJR4DZky3wdGoM4j932LON6zs0WXaE9b0cxvjmwWtCqijl0BP480r/51nUVFx72M8o/9gjoAeoSvv6SJrlXMOnAfsmASzZsR7mQeNhtfA+xT/4aGDQg3MxyPkDeKcmfNVjZlj2WnfTcr571zpUT/OQ21DP1Z25t+alR378rs7g5yf93Ku4h0kghcGozcr9tKE/fIrrX/VKeCvGRe8n7zWgJ6yZ7PqKaLdhfwUFTZ4InlNhku1JuxUxTP0vJmmV99BhWbXLVTmSn5Wq/ZdiUhzp/PZnVZdc64JJ1PjK8Jf2jjjvb9P9Mlgb6vbu9e9+2yrs/0onPZ1ukm36A5O9H3apifopQ/tt/SJPtOX6EX0LnoffZiVrrUC5zotXNHHn9Zd/jA=</latexit>

Aggregation

<latexit sha1_base64="rZdBkTVAF5CTy+f7jHm1bBYgpFg=">AAAEyXiclVNNb9NAEJ0UAyV8tXDkYpEicYrsqgKOFVyQ4FBE01YKEbKdbbBqe83uGhqinDhzhb8G/wD+BW8mGyBUScGW7dk385533u6mdZFbF0XfWmsXgouXLq9faV+9dv3GzY3NWwdWNyZTvUwX2hyliVVFXqmey12hjmqjkjIt1GF68oTzh++Usbmu9t24VoMyGVX5cZ4lDtDLrXjr9UYn6kZyhWeD2Acd8tee3mx9pVc0JE0ZNVSSoooc4oISsrj7FFNENbABTYAZRLnkFU2pDW6DKoWKBOgJ3iOM+h6tMGZNK+wMfynwGDBDugeORp1BzH8LJd+IMqPLtCeiyXMb45t6rRKoozdAz+PNK/+dZ1FRSu9jPMP/YA6BHqMr9nSRtco5B84jcSwHsxaEvcy8RiNrwD6Ff3jooFAD43iIvEGcCXO+qqFwrDjN3SSS/y6VjPI487UN/VjZGb+1KDvx5Xd3Bjme93JuJTtIeS8MRqcr9tJE/OKV1r/qKuDvBVeyn1irT8/Fs1n1FNH+Qn6KCus9yWVNBku1JuJUKTNk3kyT1fdQocV1C5W5Es9q1b4rEGnpdD6786pryTX+ZGp8lf9LG2c8/vtEnw0Otrvxg+7Oi+3O7mN/2tfpDt2l+zjRD2mXnqKXHrRH9Ik+05fgWfA2OA0+zErXWp5zmxau4ONPRVv1LQ==</latexit>

1

<latexit sha1_base64="NQYH2AEE8O5ggQjtS+bOufWpfHM=">AAAE8XiclVPLbtNAFL0pBkp4pbBkY5EiwSZKKgQsK5CABYsiJW2lJIr8mKaj2h5rxgYiy9/Amh1iy5ot/Ab8AfwFZ24mQKiSgi3bd86953jumZkwT6Qput1vjY1z3vkLFzcvNS9fuXrtemvrxr5RpY7EIFKJ0odhYEQiMzEoZJGIw1yLIA0TcRCePLH5g1dCG6myfjHLxTgNppk8klFQAJq07j3Tqsz9WGRKGplN/e2nk2oUqiQ2sxSfatQ/FkVQ19uTVrvb6fLlnw56LmiTu/bUVuMrjSgmRRGVlJKgjArECQVkcA+pR13KgY2pAqYRSc4LqqkJbokqgYoA6AneU4yGDs0wtpqG2RH+kuDRYPp0BxyFOo3Y/s3nfMnKFl2lXbGmndsM39BppUALOgZ6Fm9R+e88g4qUe5/hif+DGQM9QlfW02XWOucKcB6xYxLMnBHrZeQ0Sl4D65P/h4cFFHJgNo6R14gjZi5W1WeOYadtNwHnv3OlRe04crUl/VjbmX0rVi7Yl9/daeTsvFdzM95BwnmhMXqzZi9V7JddafWrLgP+mnHB+8lqDekFezavrhH1l/I1KozzRPKajFdqVexUyjO0vLmmVd9DhWLXDVQWSnZW6/Zdgkhxp4vZnVWdc650J1PhK9xfmjjjvb9P9Olgf6fTe9C5/3KnvfvYnfZNukW36S5O9EPapefoZQDtt/SJPtMXz3jvvPfeh3npRsNxbtLS5X38CYhLBj8=</latexit>

Group denoising F⇥

<latexit sha1_base64="MwG40RBsI0akBKZ48myVImxJ9Zw=">AAAEy3iclVNNb9NAEJ0UQ0v4auHIxSJF4kJkV+LjWMGFA0hFatpKIUK2sw1Wba+1uy6EkCNnrvDP4B/Av+DNZAOEKinYsj37Zt7zztvdtC5y66LoW2vtQnDx0vrG5faVq9eu39jcunlgdWMy1ct0oc1RmlhV5JXqudwV6qg2KinTQh2mJ085f3iqjM11te/GtRqUyajKj/MscYB626P78fbrzU7UjeQKzwaxDzrkrz291fpKr2hImjJqqCRFFTnEBSVkcfcppohqYAOaADOIcskrmlIb3AZVChUJ0BO8Rxj1PVphzJpW2Bn+UuAxYIZ0FxyNOoOY/xZKvhFlRpdpT0ST5zbGN/VaJVBHb4Cex5tX/jvPoqKU3sd4hv/BHAI9Rlfs6SJrlXMOnMfiWA5mLQh7mXmNRtaAfQr/8NBBoQbG8RB5gzgT5nxVQ+FYcZq7SST/XSoZ5XHmaxv6sbIzfmtRduLL7+4Mcjzv5dxKdpDyXhiM3q3YSxPxi1da/6qrgL8VXMl+Yq0+PRfPZtVTRPsL+SkqrPcklzUZLNWaiFOlzJB5M01W30OFFtctVOZKPKtV+65ApKXT+ezOq64l1/iTqfFV/i9tnPH47xN9NjjY6cYPuw9e7nR2n/jTvkG36Q7dw4l+RLv0DL30oJ3TJ/pMX4IXgQ3eBx9mpWstz7lFC1fw8ScgffXW</latexit>

g � 1

<latexit sha1_base64="ge5ECdCNMC+Eaj4wMxKE1Fm7Y08=">AAAEy3iclVNNb9NAEJ0UQ0v4auHIxSJFQkKK7Ep8HCu4cACpSE1bKUTIdrbBqu21dteFEHLkzBX+GfwD+Be8mWyAUCUFW7Zn38x73nm7m9ZFbl0UfWutXQguXlrfuNy+cvXa9RubWzcPrG5MpnqZLrQ5ShOrirxSPZe7Qh3VRiVlWqjD9OQp5w9PlbG5rvbduFaDMhlV+XGeJQ5Qb3t0P95+vdmJupFc4dkg9kGH/LWnt1pf6RUNSVNGDZWkqCKHuKCELO4+xRRRDWxAE2AGUS55RVNqg9ugSqEiAXqC9wijvkcrjFnTCjvDXwo8BsyQ7oKjUWcQ899CyTeizOgy7Ylo8tzG+KZeqwTq6A3Q83jzyn/nWVSU0vsYz/A/mEOgx+iKPV1krXLOgfNYHMvBrAVhLzOv0cgasE/hHx46KNTAOB4ibxBnwpyvaigcK05zN4nkv0slozzOfG1DP1Z2xm8tyk58+d2dQY7nvZxbyQ5S3guD0bsVe2kifvFK6191FfC3givZT6zVp+fi2ax6imh/IT9FhfWe5LImg6VaE3GqlBkyb6bJ6nuo0OK6hcpciWe1at8ViLR0Op/dedW15Bp/MjW+yv+ljTMe/32izwYHO934YffBy53O7hN/2jfoNt2hezjRj2iXnqGXHrRz+kSf6UvwIrDB++DDrHSt5Tm3aOEKPv4EF7P11A==</latexit>

g + 1

<latexit sha1_base64="QB3pcnqQEmUf0JnlDfKpoaNxz2E=">AAAEyXiclVNNb9NAEJ0UAyV8teXIxSJF4hQ5lfg4VnAoEhyKaNpKaYRsZxus2l6zu4aGKCfOXOGvwT+Af8GbyQYIVVJqy/bsm3nPO293kyrPrIui742VS8HlK1dXrzWv37h56/ba+sa+1bVJVTfVuTaHSWxVnpWq6zKXq8PKqLhIcnWQnDzj/MF7ZWymyz03qlS/iIdldpylsQP0enNn881aK2pHcoVng44PWuSvXb3e+EZHNCBNKdVUkKKSHOKcYrK4e9ShiCpgfRoDM4gyySuaUBPcGlUKFTHQE7yHGPU8WmLMmlbYKf6S4zFghnQfHI06g5j/Fkq+FmVGF2mPRZPnNsI38VoFUEdvgZ7Hm1X+P8+iopDeR3gGF2AOgB6jK/Z0nrXMOQfOE3EsA7MShL1MvUYta8A+hX956KBQAeN4gLxBnApztqqhcKw4zd3Ekv8hlYzyOPW1Nf1c2hm/tSg78eVPdwY5nvdibik7SHkvDEanS/bSWPzilda/60rgHwRXsp9Yq0cvxbNp9QTR3lx+ggrrPclkTfoLtcbiVCEzZN5Uk9V3UaHFdQuVmRLPatm+yxFp6XQ2u/OqK8nV/mRqfJX/SxNnvPPviT4b7G+1O4/aD19ttbaf+tO+SnfpHj3AiX5M2/QcvXShPaTP9IW+Bi+Cd8Fp8HFautLwnDs0dwWffgGmRfVE</latexit>

G

<latexit sha1_base64="r6OWAZjABqdkvcr5J5PYLRAcbO4=">AAAE1HiclVNNb9NAEJ0UAyV8tXDkYpEicYqcSnwcKzjAgUORkrRSGiLb2bSr2l5rdw1EJifElTNX+FXwD+Bf8HayAUKVFGzZnn0z73nn7W5SZtLYKPrW2LgQXLx0efNK8+q16zdubm3f6htV6VT0UpUpfZjERmSyED0rbSYOSy3iPMnEQXL61OUPXgttpCq6dlqKYR4fF3Ii09gCerUzGdVH3RNh49Gz2c5oqxW1I77Cs0HHBy3y177abnylIxqTopQqyklQQRZxRjEZ3APqUEQlsCHVwDQiyXlBM2qCW6FKoCIGeor3MUYDjxYYO03D7BR/yfBoMEO6B45CnUbs/hZyvmJlh67SrlnTzW2Kb+K1cqCWToCex1tU/jvPoCLn3qd4xv/BHAOdoCvn6TJrnXMWnMfsmASzZMR5mXqNitfA+RT+4aGFQgnMxWPkNeKUmYtVDZlj2GnXTcz571zpUDdOfW1FP9Z25t6KlS378rs7jZyb92puwTtIeC80Rm/X7KWa/XIrrX7VFcDfMC54PzmtAb1gz+bVM0TdpfwMFcZ7InlNhiu1anYq5xk63lzTqe+jQrHrBioLJTerdfsuQ6S408XszqsuOVf5k6nwFf4vTZzxzt8n+mzQ3213HrYfvNxt7T3xp32T7tBduo8T/Yj26Dl66UFb0yf6TF+CfvAueB98mJduNDznNi1dwcef6/f6IA==</latexit>

f⇥G

<latexit sha1_base64="aEIKWjf2d9e2+wrjB5ISxjV3chA=">AAAE1HiclVNNb9NAEJ20hpbw1ZYjF4sUiVPkVCpwrODSA4ciJWmlNES2s0mt2l5rd12ITE6oV85c4VfBP4B/wdvJBghVUrBle/bNvOedt7tRkSbaBMG32tq6d+Pmxuat+u07d+/d39re6WpZqlh0YplKdRKFWqRJLjomMak4KZQIsygVx9H5S5s/vhBKJzJvm0kh+lk4zpNREocG0Jvd0aA6bZ8JEw7G093BViNoBnz5V4OWCxrkriO5XftKpzQkSTGVlJGgnAzilELSuHvUooAKYH2qgClECecFTakObokqgYoQ6DneY4x6Ds0xtpqa2TH+kuJRYPr0GByJOoXY/s3nfMnKFl2mXbGmndsE38hpZUANnQG9jjev/HeeRkXGvU/wDP+DOQQ6QlfW00XWKucMOM/ZsQTMghHrZew0Sl4D65P/h4cGCgUwGw+RV4hjZs5X1WeOZqdtNyHnv3OlRe04drUl/VjZmX1LVjbsy+/uFHJ23su5Oe8g4bxQGL1bsZcq9suutPxVlwN/y7jg/WS1evSKPZtVTxG1F/JTVGjnScJr0l+qVbFTGc/Q8maaVv0IFZJd11CZK9lZrdp3KSLJnc5nd111wbnSnUyJr3B/qeOMt/4+0VeD7l6z9bS5/3qvcfDCnfZNekiP6AlO9DM6oEP00oG2ok/0mb54Xe+998G7nJWu1RznAS1c3sefeKb6QA==</latexit>

f⇥g

<latexit sha1_base64="H4XI9w3Pgz8i5u2ye7EuoZ46mkg=">AAAE6XiclVNNb9NAEJ0UAyV8pXDkYkiROEVJpUKPFVw4cCioaYuSENnONl3F9lredSGyfObMDXHlzBX+CvwD+Be8nWyAUCUFW7Zn38x73nm7G2ax1Kbd/lZbu+BdvHR5/Ur96rXrN242Nm4daFXkkehGKlb5URhoEctUdI00sTjKchEkYSwOw8kTmz88FbmWKt0300wMkmCcymMZBQbQsHF38+Vw7Pdl6veTwJyEYfmielViZGQitD+pNoeNZrvV5ss/G3Rc0CR37amN2lfq04gURVRQQoJSMohjCkjj7lGH2pQBG1AJLEckOS+oojq4BaoEKgKgE7zHGPUcmmJsNTWzI/wlxpOD6dN9cBTqcsT2bz7nC1a26DLtkjXt3Kb4hk4rAWroBOh5vHnlv/M0KhLufYpn9B/MEdBjdGU9XWStcs6As8OOSTAzRqyXkdMoeA2sT/4fHhooZMBsPEI+Rxwxc76qPnM0O227CTj/nSstaseRqy3ox8rO7FuxsmFffneXI2fnvZyb8g4Szoscozcr9lLJftmVVr/qUuCvGRe8n6xWj56xZ7PqCtH+Qr5ChXaeSF6TwVKtkp1KeIaWN9O06nuoUOy6hspcyc5q1b6LESnudD6786ozzhXuZCp8hftLHWe88/eJPhscbLU6D1vbz7eau4/daV+nO3SPHuBEP6JdeopeutB+S5/oM33xJt477733YVa6VnOc27RweR9/AnAMAfw=</latexit>

Yg 2 Rn⇥k

<latexit sha1_base64="7Ym+kv4Nk4HxargMSFgePrdd1BU=">AAAE1HiclVNNb9NAEJ0UQ0v4auHIxSJF4hQ5lQocK7hw4FCkJq2UBuSPbVjV9lq760JkckJcOXOFXwX/AP4FbycbIFRJwZbt2Tfznnfe7iZVLo2Nom+ttUvB5SvrG1fb167fuHlrc+v2wKhap6KfqlzpoyQ2Ipel6Ftpc3FUaREXSS4Ok9OnLn94JrSRqjywk0qMinhcyhOZxhbQy2NWaLTIptvj7Vebnagb8RWeD3o+6JC/9tVW6ysdU0aKUqqpIEElWcQ5xWRwD6lHEVXARtQA04gk5wVNqQ1ujSqBihjoKd5jjIYeLTF2mobZKf6S49FghnQfHIU6jdj9LeR8zcoOXabdsKab2wTfxGsVQC29BnoRb1757zyDioJ7n+DJ/oOZAT1BV87TRdYq5yw4j9kxCWbFiPMy9Ro1r4HzKfzDQwuFCpiLM+Q14pSZ81UNmWPYaddNzPnvXOlQN059bU0/Vnbm3oqVLfvyuzuNnJv3cm7JO0h4LzRGb1fspYb9ciutftWVwN8wLng/Oa0hPWfPZtVTRAcL+SkqjPdE8pqMlmo17FTBM3S8maZT30eFYtcNVOZKblar9l2OSHGn89ldVF1xrvYnU+Er/F/aOOO9v0/0+WCw0+097O6+2OnsPfGnfYPu0j16gBP9iPboGXrpQ1vTJ/pMX4JB8C54H3yYla61POcOLVzBx5+WMPqA</latexit>g

<latexit sha1_base64="VvlGCXDK4tU6g2WsdMy1E+zdw4A=">AAAE0XiclVNNb9NAEJ0UAyV8tXDkYpEicYqcSnwcK7hw4FBE00ZKo8pxtqlV22vtrlsiKxLiypkr/C34B/AveDPZAKFKCrZsz76Z97zzdndYZql1UfStsXYluHrt+vqN5s1bt+/c3di8t291ZRLVTXSmTW8YW5Wlheq61GWqVxoV58NMHQxPX3L+4EwZm+piz01KNcjjcZEep0nsAPW3Dk9iV/emR+Oto41W1I7kCi8GHR+0yF+7erPxlQ5pRJoSqignRQU5xBnFZHH3qUMRlcAGVAMziFLJK5pSE9wKVQoVMdBTvMcY9T1aYMyaVtgJ/pLhMWCG9AgcjTqDmP8WSr4SZUaXadeiyXOb4Dv0WjlQRydAL+PNK/+dZ1GRS+8TPKP/YI6AHqMr9nSRtco5B85zcSwFsxSEvUy8RiVrwD6Ff3jooFAC43iEvEGcCHO+qqFwrDjN3cSS/y6VjPI48bUV/VjZGb+1KDvx5Xd3Bjme93JuITtIeS8MRu9W7KVa/OKV1r/qCuDngivZT6zVp9fi2ax6imhvIT9FhfWepLImg6VatTiVywyZN9Nk9V1UaHHdQmWuxLNate8yRFo6nc/usupScpU/mRpf5f/SxBnv/H2iLwb72+3O0/aTN9utnRf+tK/TA3pIj3Gin9EOvUIvXdH+RJ/pS/A2mATvgw+z0rWG59ynhSv4+BPp9Pj8</latexit>

X̂g

<latexit sha1_base64="8Hkmn2AnuMXGHkW1zTsNGH/cK5w=">AAAE2niclVNNb9NAEJ0UAyV8peXIxSJFQkKK7EoFjhVcOHAoUtJWSqLIdjapVdtrrddtI8sXbogrZ67wk+AfwL/g7WQDhCop2LI9+2be887b3TBP4kJ73rfGxjXn+o2bm7eat+/cvXe/tbV9WMhSRaIXyUSq4zAoRBJnoqdjnYjjXIkgDRNxFJ6+MvmjM6GKWGZdPcvFMA2mWTyJo0ADGrW2dyajatA9EToYVdOnfl3vjFptr+Px5V4OfBu0yV4HcqvxlQY0JkkRlZSSoIw04oQCKnD3ySePcmBDqoApRDHnBdXUBLdElUBFAPQU7ylGfYtmGBvNgtkR/pLgUWC69BgciTqF2PzN5XzJygZdpV2xppnbDN/QaqVANZ0AvYq3qPx3XoGKlHuf4Rn/B3MMdIKujKfLrHXOaXBesGMxmDkjxsvIapS8BsYn9w8PNRRyYCYeI68QR8xcrKrLnIKdNt0EnP/OlQY148jWlvRjbWfmLVlZsy+/u1PImXmv5ma8g4T1QmF0sWYvVeyXWWn5qy4Dfs644P1ktPr0hj2bV9eIukv5GhWF9STmNRmu1KrYqZRnaHhzTaN+gArJrhdQWSiZWa3bdwkiyZ0uZndVdc650p5Mia+wf2nijPt/n+jLweFux3/W2Xu7295/aU/7Jj2kR/QEJ/o57dNr9NKD9gV9os/0xRk475z3zod56UbDch7Q0uV8/AnTwvvt</latexit>

f⇥g+1

<latexit sha1_base64="/70qyFziWI03AlZyBdk3A4BNRGs=">AAAE2niclVNNb9NAEJ0UAyV8peXIxSJF4kJkVypwrODCgUORkrZSEkW2s0mt2l5rvW4bWb5wQ1w5c4WfBP8A/gVvJxsgVEnBlu3ZN/Oed97uhnkSF9rzvjU2rjnXb9zcvNW8fefuvfutre3DQpYqEr1IJlIdh0EhkjgTPR3rRBznSgRpmIij8PSVyR+dCVXEMuvqWS6GaTDN4kkcBRrQqLW9MxlVg+6J0MGomj7163pn1Gp7HY8v93Lg26BN9jqQW42vNKAxSYqopJQEZaQRJxRQgbtPPnmUAxtSBUwhijkvqKYmuCWqBCoCoKd4TzHqWzTD2GgWzI7wlwSPAtOlx+BI1CnE5m8u50tWNugq7Yo1zdxm+IZWKwWq6QToVbxF5b/zClSk3PsMz/g/mGOgE3RlPF1mrXNOg/OCHYvBzBkxXkZWo+Q1MD65f3iooZADM/EYeYU4YuZiVV3mFOy06Sbg/HeuNKgZR7a2pB9rOzNvycqaffndnULOzHs1N+MdJKwXCqOLNXupYr/MSstfdRnwc8YF7yej1ac37Nm8ukbUXcrXqCisJzGvyXClVsVOpTxDw5trGvUDVEh2vYDKQsnMat2+SxBJ7nQxu6uqc86V9mRKfIX9SxNn3P/7RF8ODnc7/rPO3tvd9v5Le9o36SE9oic40c9pn16jlx60L+gTfaYvzsB557x3PsxLNxqW84CWLufjT9yQ++8=</latexit>

f⇥g�1

<latexit sha1_base64="vh6xPtoA5yZou4YyFu2BqeFERMY=">AAAE23iclVPLbtNAFL0pBkp4pXTJxiJFYhU5lXgsK9iwYFGkpq2URJUf0zKK7bFmxkBkZcUOsWXNFv4I/gD+gjM3EyBUScGW7Tvn3nM898xMUuXS2Cj61tq4FFy+cnXzWvv6jZu3bne27hwaVetUDFKVK32cxEbkshQDK20ujist4iLJxVEyeebyR6+FNlKVB3ZaiXERn5XyVKaxBXTS2R6xRqNFNtsZTeKqindOOt2oF/EVng/6PuiSv/bVVusrjSgjRSnVVJCgkizinGIyuIfUp4gqYGNqgGlEkvOCZtQGt0aVQEUMdIL3GUZDj5YYO03D7BR/yfFoMEO6D45CnUbs/hZyvmZlh67SbljTzW2Kb+K1CqCWXgG9iLeo/HeeQUXBvU/xZP/BzICeoivn6TJrnXMWnCfsmASzYsR5mXqNmtfA+RT+4aGFQgXMxRnyGnHKzMWqhswx7LTrJub8d650qBunvramH2s7c2/FypZ9+d2dRs7NezW35B0kvBcao7dr9lLDfrmVVr/qSuBvGBe8n5zWkF6wZ/PqGaKDpfwMFcZ7InlNxiu1Gnaq4Bk63lzTqe+jQrHrBioLJTerdfsuR6S408XsLqquOFf7k6nwFf4vbZzx/t8n+nxwuNvrP+o9fLnb3XvqT/sm3aV79AAn+jHt0XP0MoD2lD7RZ/oSjIN3wfvgw7x0o+U527R0BR9/Ah45/OU=</latexit>

BM3D [35] assumes a locally sparse
representation in a transform domain:

NL-Bayes [96] was originally
established in the Bayesian setting:

NL-Ridge [65] denoises each
patch by linearly combining its

most similar noisy patches:
fΘg

(Yg) = P⊤(Θg ⊙ (PYgQ))Q⊤, fΘg,βg
(Yg) = ΘgYg + βg 1⃗⊤

k , fΘg
(Yg) = YgΘg.

where P and Q are or-
thogonal matrices.

where 1k denotes the k-
dimensional all-ones vector.

Figure 6.1 – Illustration of the parametric view of several popular non-local denoisers [35, 65, 96]. Examples of
parameterized functions fΘi , unequivocally identifying the denoiser, are given whose parameters Θi are eventually
selected for each group of patches by “internal adaptation” (see equation (6.6)).

— π−1 is the pseudo-inverse of π, replacing the patches at their initial positions and aggregating them
by averaging.

— FΘ is the function performing the denoising of all similarity matrices in a parallel fashion with
hyperparameters Θ = {Θg}G

g=1. More precisely, this function processes each group independently
through a non-local function fΘg

: Rn×k 7→ Rn×k which is exclusively dedicated to the denoising of
the gth similarity matrix Yg. Formally, FΘ : Y ∈ RG×n×k 7→ RG×n×k is such that ∀g ∈ {1, . . . , G},
FΘ(Y)g,·,· = fΘg

(Y g,·,·) = fΘg
(Yg).

In the following, we assume that the patch grouping operator π is ideal and forms the patch groups
solely based on the similarity of the underlying noise-free patches, and thus independently of the noise
realization. This way, π(y)g = Yg can be identified as the gth noisy similarity matrix associated to the
noise-free one π(x)g = Xg.

It is worth noting that the number of parameters of ϕΘ is G times the number of parameters of a
single local denoising function fΘg . Therefore, the number of parameters grows linearly with the number
of patches. As an illustrative example, Θ ∈ RG×n×k in the case of BM3D [35] because Θg ∈ Rn×k has
the same size as a patch group (see Fig. 6.1). This represents about a hundred million parameters to be
found for a 256×256 image with standard patch and group sizes (e.g. n = 8×8 and k = 16). Fortunately,
solutions do exist in practice to reduce this high number of parameters - and thus the computational
burden of non-local denoisers - such as the step trick (or sub-sampling) which was discussed in the
previous chapter.

133

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

6.2.2 Parameter optimization

In the previous chapter, we showed that several unsupervised two-step non-local algorithms [35, 65, 96]
could be reconciled by adopting a local minimal risk point of view. The ultimate objective is to determine
the parameters {Θg}G

g=1 by minimizing the global risk defined as:

RΘ(x) = E∥ϕΘ(y)− x∥2
2, (6.2)

where x is the true image and y is the noisy observed image. In the particular case of additive white
Gaussian noise of variance σ2, we have y ∼ N (x, σ2I). The optimal estimator is x̂ = ϕΘ∗(y) where Θ∗ is
the minimizer of (6.2):

Θ∗ = arg min
Θ
RΘ(x). (6.3)

Solving (6.3) directly is difficult due to the intractability of the aggregation operator π−1 in (6.1).
Therefore, a (suboptimal) greedy approach is used and aims at minimizing the risk at the individual
patch group level, as proposed in the previous chapter. This allows one to decompose the problem into
G simpler independent subproblems:

Θ∗
g = arg min

Θg

RΘg (Xg)

with RΘg
(Xg) = E∥fΘg

(Yg)−Xg∥2
F ,

(6.4)

where Yg = π(y)g and Xg = π(x)g are the gth noisy and noise-free similarity matrices, respectively. For
the underlying parameterized functions of [35], [96] and [65] illustrated in Fig. 6.1, the problem (6.4)
has a closed-form solution in the case of additive white Gaussian noise as demonstrated in the previous
chapter.

6.2.3 Principle of internal adaptation

As the true image x is not known, (6.3) cannot actually be solved. However, assuming that an initial
estimate x̃ of the denoised image (a.k.a. pilot or oracle estimator [98]) is available, G. Vaksman et al.
[177] proposed, in the context of deep learning, to substitute x̃ for x in (6.2). Formally, the idea is to
consider the surrogate:

RΘ(x̃) = E∥ϕΘ(y)− x̃∥2
2, (6.5)

where y follows a distribution depending on the noise model.
Originally, this so-called “internal adaptation” technique was presented as a simple post-processing

refinement to boost performances of lightweight networks already trained in a supervised manner [64,
133, 177]. In particular, as argued in [177], the “internal adaptation” trick is useful if the input noisy
image y deviates from the general statistics of the training set. Actually, it turns out that this technique
is at the core of the second stage of several state-of-the-art unsupervised two-step denoisers [35, 65, 96]
where each local risk (6.4) is replaced by the empirical one:

RΘg
(X̃g) = E∥fΘg

(Yg)− X̃g∥2
F , (6.6)

134

6.3. LIChI: linear and iterative combinations of patches for image denoising

0 1 2 3 4 5 6 7 8 9

27.5

28

28.5

29

29.5

30

Pilot number

Av
er

ag
e

PS
N

R
BM3D
NL-Bayes
NL-Ridge
LIChI (ours)

Figure 6.2 – Evolution of the PSNR for BM3D [35], NL-Bayes [96] and NL-Ridge [65] algorithms when repeating
the “internal adaptation” stage on Set12 dataset with noise level σ = 25. After a PSNR jump between the first
and second pilot, obtained with “internal adaptation”, the PSNR decreases for all methods, except ours.

where Yg = π(y)g and X̃g = π(x̃)g.

As long as the pilot x̃ is not too far from the true image x, x̂ = ϕΘ∗(y) obtained through “internal
adaptation” by minimizing (6.5) may be closer to x than the pilot itself (although there is no mathematical
guarantee). In practice, all state-of-the-art two-step denoisers [35, 65, 96] always observe a significant boost
in performance using this technique compared to the estimator obtained after the first stage. However,
counter-intuitively, repeating the process does not bring much improvement and tends on the contrary
to severely degrade the image after a few iterations (see Fig. 6.2). Therefore, these methods stop directly
after a single step of “internal adaptation”.

In order to overcome the second stage limitation and boost performances beyond the second iteration,
we introduce below a generalized expression of (6.1). Using a progressive optimization scheme, our algo-
rithm, that only perform linear combinations of patches, enables to significantly improve the denoising
performance at each iteration, making it as competitive as WNNM [57], the best unsupervised method
to the best of our knowledge.

6.3 LIChI: linear and iterative combinations of patches for im-
age denoising

In the following, we assume an additive white Gaussian noise model of variance σ2.

6.3.1 A novel chaining rule for generalization

We propose to study a class of parameterized functions that generalizes (6.1):

Φ{Θm}M
m=1

(y) = [ϕΘM
◦ . . . ◦ ϕΘ1] (y) (6.7)

135

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

where M ∈ N∗. In other words, we consider the M times iterated version of function (6.1). In our
approach, we focus on group denoising functions of the following straightforward form:

fΘg
(Yg) = YgΘg (6.8)

as in [65] (see Fig. 6.1). This choice is motivated by the fact that, despite their apparent simplicity, we
proved in [65] that considering linear combinations of patches is remarkably efficient for image denoising.
Note that when fixing Θm = {Ik}G

g=1 for m ≥ 2, where Ik denotes the identity matrix of size k, the above
class of functions coincides with (6.1) as fIk

is the identity function idRn×k .

6.3.2 A progressive scheme for parameter optimization

Following the same approach as for two-step non-local denoisers, our objective is to minimize the
quadratic risk:

{Θ∗
m}M

m=1 = arg min
{Θm}M

m=1

R{Θm}M
m=1

(x)

with R{Θm}M
m=1

(x) = E∥Φ{Θm}M
m=1

(y)− x∥2
2,

(6.9)

where x is the true image assumed to be known and y ∼ N (x, σ2I). The optimal estimator, in the ℓ2

sense, is then x̂ = Φ{Θ∗
m}M

m=1
(y).

Solving (6.9) is much more challenging than minimizing (6.2) due to the repeated aggregation/extraction
steps implicitly contained in expression (6.7) via the operation π ◦ π−1. Indeed, it is worth noting that
[π ◦ π−1](z) ̸= z for z ∈ RG×n×k when patches in z are not consistent (i.e. when there exists two dif-
ferent patch estimates for the same underlying patch). Therefore, we propose a (suboptimal) progressive
approach to approximate the solution of (6.9) as follows:

Θ∗
1 = argmin

Θ1

E∥ϕΘ1(y)− y1∥2
2

Θ∗
2 = argmin

Θ2

E∥[ϕΘ2 ◦ ϕΘ∗
1
](y)− y2∥2

2

...
Θ∗

M = argmin
ΘM

E∥[ϕΘM
◦ ϕΘ∗

M−1
◦ . . . ◦ ϕΘ∗

1
](y)− yM∥2

2

(6.10)

where ym = x + τm(y − x) with (τm)1≤m≤M a strictly decreasing sequence satisfying 0 ≤ τm < 1 and
τM = 0 (i.e. yM = x). Basically, Θm are found iteratively in a way such that composing by a new ϕΘm

closes the gap even more with the true image x. Essentially, the proposed scheme amounts to solving M
problems of the form:

Θ∗
m = arg min

Θm

E∥ϕΘm(zm−1)− ym∥2
2, (6.11)

where zm = [ϕΘ∗
m
◦ . . . ◦ ϕΘ∗

1
](y) if m ≥ 1 and z0 = y (note that, by construction, zm is expected to be

close to ym).

136

6.3. LIChI: linear and iterative combinations of patches for image denoising

6.3.3 Resolution when the true image is available

In order to solve (6.11), we adopt a greedy approach by minimizing the quadratic loss at the individual
patch group level as performed in (6.4). The problem is then decomposed into as many independent
subproblems as there are patch groups:

Θm∗
g = arg min

Θm
g

E∥fΘm
g

(Zm−1
g)− Y m

g ∥2
F , (6.12)

where Y m
g = π(ym)g = Xg + τm(Yg −Xg) with Xg = π(x)g and Zm−1

g = π(zm−1)g.
In its current state, (6.12) cannot be solved easily as in (6.4) because the probability distribution of

the pixels contained in Zm−1
g is intractable. Indeed, the repeated aggregation/extraction steps from which

Zm−1
g is formed make obtaining its law cumbersome. However, it can be approximated by construction

as a convex combination of the gth noisy and noise-free similarity matrices Yg = π(y)g and Xg = π(x)g,
respectively, that is:

Zm−1
g ≈ Xg + tm−1

g (Yg −Xg), (6.13)

where tm−1
g ∈ (0, 1] is estimated for each similarity matrix and is expected to be close to τm−1 when

m ≥ 2. Note that for m = 1, this approximation is in fact exact with t0g = 1. Denoting sd(.) the
operator that computes the standard deviation of the coefficients of the input random matrix, we have
sd(Yg − Zm−1

g) = (1− tm−1
g)σ. The parameter tm−1

g can therefore be estimated as follows:

tm−1
g = 1− sd(Yg − Zm−1

g)/σ. (6.14)

Finally, conceding this small approximation, the minimizer of (6.12) has the following closed-form solution
(see proof in Appendix E.1 where the closed-form solution under affine constraints is also provided):

Θm∗
g = Ik −

(
1− τm

tm−1
g

)
n(tm−1

g σ)2 (X⊤
g Xg + n(tm−1

g σ)2Ik

)−1
. (6.15)

6.3.4 Use of multiple cost-efficient pilots for unsupervised estimation

Solving the initial objective (6.9) is impossible in practice, whatever the scheme of optimization
adopted, as the true image x is missing. In section 6.2, we have mentioned that substituting a pilot x̃ for
x, that is applying “internal adaptation” [177], constitutes the reference method to overcome this issue
when M = 1. Here, we propose to use M different pilots x̃1, . . . , x̃M . More precisely, pilot x̃m is dedicated
to the computation of Θ∗

m as follows:
- Xg = π(x)g is replaced by X̃m

g = π(x̃m)g;
- tm−1

g is computed using the sample standard deviation in (6.14) where Yg = π(y)g and Zm−1
g =

π(zm−1)g are the only realizations at our disposal;
- Θm∗

g is computed with (6.15).
Let us assume that, for m ≥ 1, Θ∗

1, . . . ,Θ∗
m−1 have already been computed and that a pilot x̃m is

available. Then, Θ∗
m can be computed using x̃m and we propose to use an updated one for the next step

of the form:
x̃m+1 = [ϕΞm

◦ ϕΘ∗
m−1
◦ . . . ◦ ϕΘ∗

1
](y) = ϕΞm

(zm−1), (6.16)

137

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

<latexit sha1_base64="nRwKJTWjIaoiVehm1tr4Bx3Dhuk=">AAAE5niclVNNb9NAEJ0UQ0v4SuGIhCxSJE6RXSHgWMGFA4ciJW2lJIr8sW2s2l7Luy5Elm+cuSGunLnCj4F/AP+Ct5MNEKqkYMv27Jt5zztvd8MiTZT2vG+tjUvO5SubW1fb167fuHmrs337QMmqjMQgkqksj8JAiTTJxUAnOhVHRSmCLEzFYXj63OQPz0SpEpn39awQ4yw4yZPjJAo0oEnn3s6omCaTehTKNFazDJ961J8KHTQTv9mZdLpez+PLPR/4NuiSvfbldusrjSgmSRFVlJGgnDTilAJSuIfkk0cFsDHVwEpECecFNdQGt0KVQEUA9BTvE4yGFs0xNpqK2RH+kuIpwXTpATgSdSVi8zeX8xUrG3SVds2aZm4zfEOrlQHVNAV6EW9R+e88hYqMe5/hif+DGQM9RlfG02XWOuc0OE/ZsQTMghHjZWQ1Kl4D45P7h4caCgUwE8fIl4gjZi5W1WWOYqdNNwHnv3OlQc04srUV/VjbmXlLVtbsy+/uSuTMvFdzc95BwnpRYvRmzV6q2S+z0vJXXQ78NeOC95PRGtJL9mxe3SDqL+UbVCjrScJrMl6pVbNTGc/Q8OaaRn0fFZJdV1BZKJlZrdt3KSLJnS5md1F1wbnKnkyJr7B/aeOM+3+f6PPBwW7Pf9x79Gq3u/fMnvYtukv36SFO9BPaoxfoZQDtt/SJPtMXZ+q8c947H+alGy3LuUNLl/PxJw1bAas=</latexit>

�⇥1

<latexit sha1_base64="ckTFOkdmZNRMq2chdNYkQi66XWQ=">AAAE03iclVNNb9NAEJ0UQ0v4auHIxSJF4hTZFQKOFVw4cChS01ZKo8of27Kq7TW769LIygVx5cwV/hX8A/gXvJ1sgFAlBVu2Z9/Me955u5vWhTQ2ir51Vq4EV6+trl3v3rh56/ad9Y27e0Y1OhODTBVKH6SJEYWsxMBKW4iDWoukTAuxn56+cPn9M6GNVNWuHddiVCYnlTyWWWIBjTYPrSxy0Z5PjuLNo/Ve1I/4Ci8GsQ965K8dtdH5SoeUk6KMGipJUEUWcUEJGdxDiimiGtiIWmAakeS8oAl1wW1QJVCRAD3F+wSjoUcrjJ2mYXaGvxR4NJghPQRHoU4jdn8LOd+wskMXabes6eY2xjf1WiVQS2+AXsabVf47z6Ci5N7HePL/YOZAj9GV83Setcw5C84zdkyCWTPivMy8RsNr4HwK//DQQqEG5uIceY04Y+ZsVUPmGHbadZNw/jtXOtSNM1/b0I+lnbm3YmXLvvzuTiPn5r2YW/EOEt4LjdH5kr3Usl9updWvugr4O8YF7yenNaRX7Nm0eoJody4/QYXxnkhek9FCrZadKnmGjjfVdOo7qFDsuoHKTMnNatm+KxAp7nQ2u8uqa841/mQqfIX/SxdnPP77RF8M9rb68ZP+49dbve3n/rSv0X16QI9wop/SNr1ELwNov6VP9Jm+BIOgDd4HH6alKx3PuUdzV/DxJ4jJ+c4=</latexit>

x̃1
<latexit sha1_base64="L+8c/Lb5tSbogkaofUj3qEX/NDM=">AAAE03iclVPLbtNAFL1pDZTw6IMlG4sUiVXkRKiwrGDDgkWRmrZSGlV+TMuotsfMjKGRlQ1iy5ot/BX8AfwFZ24mQKiSgi3bd86953jumZmkyqWxUfSttbIaXLt+Y+1m+9btO3fXNza3DoyqdSoGqcqVPkpiI3JZioGVNhdHlRZxkeTiMDl/7vKHb4U2UpX7dlyJURGflfJUprEFNNo+tjLPRHMxOelvn2x0om7EV3g56PmgQ/7aU5utr3RMGSlKqaaCBJVkEecUk8E9pB5FVAEbUQNMI5KcFzShNrg1qgQqYqDneJ9hNPRoibHTNMxO8ZccjwYzpIfgKNRpxO5vIedrVnboIu2GNd3cxvgmXqsAauk10Kt4s8p/5xlUFNz7GE/2H8wM6Cm6cp7Os5Y5Z8F5yo5JMCtGnJep16h5DZxP4R8eWihUwFycIa8Rp8ycrWrIHMNOu25izn/nSoe6cepra/qxtDP3Vqxs2Zff3Wnk3LwXc0veQcJ7oTG6WLKXGvbLrbT6VVcCf8e44P3ktIb0kj2bVk8Q7c/lJ6gw3hPJazJaqNWwUwXP0PGmmk59DxWKXTdQmSm5WS3bdzkixZ3OZndVdcW52p9Mha/wf2njjPf+PtGXg4N+t7fTffyq39l95k/7Gt2nB/QIJ/oJ7dIL9DKA9hv6RJ/pSzAImuB98GFautLynHs0dwUffwKNLfnP</latexit>

x̃2
<latexit sha1_base64="IZ911mQc8GFIHYDLQHjhl1BI7gM=">AAAE03iclVNNb9NAEJ20Bkr4asuRi0WKxClyWgQcK7hw4FCkpq2URpU/tmVV22t219DIygVx5cwV/hX8A/gXvJ1sgFAlbW3Znn0z73nn7W5S5dLYKPrRWloOrl2/sXKzfev2nbv3VtfW94yqdSr6qcqVPkhiI3JZir6VNhcHlRZxkeRiPzl96fL774U2UpW7dlSJYRGflPJYprEFNNw4tDLPRHM2PtraOFrtRN2Ir/B80PNBh/y1o9Za3+mQMlKUUk0FCSrJIs4pJoN7QD2KqAI2pAaYRiQ5L2hMbXBrVAlUxEBP8T7BaODREmOnaZid4i85Hg1mSI/AUajTiN3fQs7XrOzQedoNa7q5jfBNvFYB1NJboBfxppWX5xlUFNz7CE92BWYG9BhdOU9nWYucs+A8Z8ckmBUjzsvUa9S8Bs6n8B8PLRQqYC7OkNeIU2ZOVzVkjmGnXTcx539ypUPdOPW1Nf1a2Jl7K1a27Mvf7jRybt7zuSXvIOG90BidLdhLDfvlVlr9qSuBf2Bc8H5yWgN6zZ5NqseIdmfyY1QY74nkNRnO1WrYqYJn6HgTTae+gwrFrhuoTJXcrBbtuxyR4k6ns7uouuJc7U+mwlf4v7Rxxnv/n+jzwd5mt/e0++TNZmf7hT/tK/SAHtJjnOhntE2v0Esf2u/oC32lb0E/aIKPwadJ6VLLc+7TzBV8/g2RkfnQ</latexit>

x̃3

<latexit sha1_base64="P7dKQ8soyrCmCdhTdEqpmP+xRCY=">AAAEyXiclVNNb9NAEJ20Bkr4asuRi0WKxClyqopyrOCCBIcimrZSiJDtbINV2+vurqEhyokzV/hr8A/gX/BmsgFClRRs2Z59M+955+1uUuWZdVH0rbGyGly5em3tevPGzVu376xvbB5aXZtUdVOda3OcxFblWam6LnO5Oq6MioskV0fJ6VPOH71Txma6PHCjSvWLeFhmJ1kaO0CvtkZbb9ZbUTuSK7wYdHzQIn/t643GV3pNA9KUUk0FKSrJIc4pJou7Rx2KqALWpzEwgyiTvKIJNcGtUaVQEQM9xXuIUc+jJcasaYWd4i85HgNmSA/A0agziPlvoeRrUWZ0kfZYNHluI3wTr1UAdfQW6GW8WeW/8ywqCul9hGfwH8wB0BN0xZ7Os5Y558B5LI5lYFaCsJep16hlDdin8A8PHRQqYBwPkDeIU2HOVjUUjhWnuZtY8t+lklEep762ph9LO+O3FmUnvvzuziDH817MLWUHKe+Fweh8yV4ai1+80vpXXQn8veBK9hNr9eiFeDatniA6mMtPUGG9J5msSX+h1licKmSGzJtqsvo+KrS4bqEyU+JZLdt3OSItnc5md1l1Jbnan0yNr/J/aeKMd/4+0ReDw+1251F75+V2a++JP+1rdI/u00Oc6F3ao2fopQvtIX2iz/QleB6cBefBh2npSsNz7tLcFXz8CYGK9XU=</latexit>y <latexit sha1_base64="QimCjFetv2angjopuhKOcKteZD0=">AAAEy3iclVNNb9NAEJ0UQ0v4auHIxSJF4hTZVQUcK7hwAKlITVspRJXtbMuqttfatQtpyJEzV/hn8A/gX/BmsgFClRRs2Z59M+955+1uWuXa1VH0rbVyJbh6bXXtevvGzVu376xv3N13prGZ6mUmN/YwTZzKdal6ta5zdVhZlRRprg7S0+ecPzhT1mlT7tWjSg2K5KTUxzpLakC9zfOjePNovRN1I7nCi0Hsgw75a9dstL7SGxqSoYwaKkhRSTXinBJyuPsUU0QVsAGNgVlEWvKKJtQGt0GVQkUC9BTvE4z6Hi0xZk0n7Ax/yfFYMEN6CI5BnUXMfwsl34gyo4u0x6LJcxvhm3qtAmhNb4FexptV/jvPoaKQ3kd4hv/BHAI9Rlfs6TxrmXM1OE/FMQ1mJQh7mXmNRtaAfQr/8LCGQgWM4yHyFnEmzNmqhsJx4jR3k0j+u1QyyuPM1zb0Y2ln/DaiXIsvv7uzyPG8F3NL2UHKe2Exer9kL43FL15p86uuBP5OcCX7ibX69FI8m1ZPEO3N5SeocN4TLWsyWKg1FqcKmSHzppqsvosKI647qMyUeFbL9l2OyEins9ldVl1JrvEn0+Cr/F/aOOPx3yf6YrC/1Y0fd7dfb3V2nvnTvkb36QE9wol+Qjv0Ar30oK3pE32mL8GrwAXnwYdp6UrLc+7R3BV8/AlPhvYa</latexit>z1
<latexit sha1_base64="NyUSN6qyY/dH+uM0TVdRIGRyjxc=">AAAEy3iclVNNb9NAEJ0UAyV8tXDkYpEicYqSqAKOFVw4gFSkpq0Uosp2tmVV22vtroE05MiZK/wz+AfwL3gz2QChSgq2bM++mfe883Y3rXLtfKfzrbF2Kbp85er6teb1Gzdv3d7YvLPvTG0z1c9MbuxhmjiV61L1vfa5OqysSoo0Vwfp6TPOH7xV1mlT7vlxpYZFclLqY50lHlB/6+yot3W00eq0O3LF54NuCFoUrl2z2fhKr2lEhjKqqSBFJXnEOSXkcA+oSx2qgA1pAswi0pJXNKUmuDWqFCoSoKd4n2A0CGiJMWs6YWf4S47HghnTA3AM6ixi/lss+VqUGV2mPRFNntsY3zRoFUA9vQF6EW9e+e88h4pCeh/jGf0HcwT0GF2xp4usVc55cJ6IYxrMShD2MgsatawB+xT/4aGHQgWM4xHyFnEmzPmqxsJx4jR3k0j+u1QyyuMs1Nb0Y2Vn/Dai7MWX391Z5Hjey7ml7CAVvLAYvV+xlybiF6+0+VVXAn8nuJL9xFoDeiGezaqniPYW8lNUuOCJljUZLtWaiFOFzJB5M01W30WFEdcdVOZKPKtV+y5HZKTT+ewuqq4kV4eTafBV4S9NnPHu3yf6fLDfa3cftbdf9Vo7T8NpX6d7dJ8e4kQ/ph16jl760Nb0iT7Tl+hl5KKz6MOsdK0ROHdp4Yo+/gRT6vYb</latexit>z2

<latexit sha1_base64="KI6G8pulv13k5fwLgfS07c5xR4g=">AAAEz3iclVNNb9NAEJ0UAyV8tXDkYpEicYqcCgHHCi4cOLRS0xalEbKdbWvV9lq7a9rICuLKmSv8L/gH8C94M9kAoUoKtmzPvpn3vPN2N6nyzLoo+tZauRJcvXZ99Ub75q3bd+6urd/bs7o2qeqnOtfmIImtyrNS9V3mcnVQGRUXSa72k9OXnN9/p4zNdLnrxpUaFvFxmR1laewAvdk4PIldcz7ZeLvWibqRXOHFoOeDDvlrW6+3vtIhjUhTSjUVpKgkhzinmCzuAfUoogrYkBpgBlEmeUUTaoNbo0qhIgZ6ivcxRgOPlhizphV2ir/keAyYIT0CR6POIOa/hZKvRZnRRdqNaPLcxvgmXqsA6ugE6GW8WeW/8ywqCul9jGf0H8wR0CN0xZ7Os5Y558B5Lo5lYFaCsJep16hlDdin8A8PHRQqYByPkDeIU2HOVjUUjhWnuZtY8t+lklEep762ph9LO+O3FmUnvvzuziDH817MLWUHKe+Fweh8yV5qxC9eaf2rrgR+JriS/cRaA3otnk2rJ4h25/ITVFjvSSZrMlyo1YhThcyQeVNNVt9GhRbXLVRmSjyrZfsuR6Sl09nsLquuJFf7k6nxVf4vbZzx3t8n+mKwt9ntPe0+2dnsbL3wp32VHtBDeowT/Yy26BV66UO7oE/0mb4EO8FZ8D74MC1daXnOfZq7go8/Abqc+EE=</latexit>

x̂

<latexit sha1_base64="aDBOSg0cMjXFhGn/qEgdlEZ/OjI=">AAAE5niclVNNb9NAEJ0UAyV8pXBEQhEpEqfIiRBwrODCgUORkrZSEkX+2Dar2l7LuwYiyzfO3BBXzlzhx8A/gH/B28kGCFVSsGV79s285523u2GeSG18/1tj64J38dLl7SvNq9eu37jZ2rl1oFVZRGIYqUQVR2GgRSIzMTTSJOIoL0SQhok4DE+f2fzhK1FoqbKBmedikgYnmTyWUWAATVt3d8f5TE6rcaiSWM9TfKrxYCZMUE/79e601fG7Pl/ts0HPBR1y177aaXylMcWkKKKSUhKUkUGcUEAa94h65FMObEIVsAKR5LygmprglqgSqAiAnuJ9gtHIoRnGVlMzO8JfEjwFmG26D45CXYHY/q3N+ZKVLbpOu2JNO7c5vqHTSoEamgE9j7es/HeeRkXKvc/xxP/BjIEeoyvr6Sprk3MGnCfsmAQzZ8R6GTmNktfA+tT+w0MDhRyYjWPkC8QRM5er2maOZqdtNwHnv3OlRe04crUl/djYmX0rVjbsy+/uCuTsvNdzM95BwnlRYPRmw16q2C+70upXXQb8NeOC95PVGtEL9mxRXSMarORrVGjnieQ1mazVqtiplGdoeQtNq76PCsWua6gsleysNu27BJHiTpezO68651zpTqbCV7i/NHHGe3+f6LPBQb/be9R9+LLf2XvqTvs23aF79AAn+jHt0XP0MoT2W/pEn+mLN/Peee+9D4vSrYbj3KaVy/v4ExHAAaw=</latexit>

�⇥2

<latexit sha1_base64="TcNkp6cc2nAUsE7TbacHdQK5I6s=">AAAE5niclVNNb9NAEJ0UAyV8pXBEQhYpEqfIaRFwrODCgUORkrZSEkW2s22s2l5rdw1Elm+cuSGunLnCj4F/AP+Ct5MNEKqkYMv27Jt5zztvd6MiTbQJgm+NjQvexUuXN680r167fuNma+vWgZalikU/lqlUR1GoRZrkom8Sk4qjQokwi1JxGJ0+s/nDV0LpROY9MyvEKAtP8uQ4iUMDaNy6uz0spsm4GkYynehZhk817E2FCevxbr09brWDTsCXfzbouqBN7tqXW42vNKQJSYqppIwE5WQQpxSSxj2gLgVUABtRBUwhSjgvqKYmuCWqBCpCoKd4n2A0cGiOsdXUzI7xlxSPAtOn++BI1CnE9m8+50tWtugq7Yo17dxm+EZOKwNqaAr0PN6i8t95GhUZ9z7DM/kP5gToMbqyni6z1jlnwHnCjiVgFoxYL2OnUfIaWJ/8Pzw0UCiA2XiCvEIcM3Oxqj5zNDttuwk5/50rLWrHsast6cfazuxbsrJhX353p5Cz817NzXkHCeeFwujNmr1UsV92peWvuhz4a8YF7yerNaAX7Nm8ukbUW8rXqNDOk4TXZLRSq2KnMp6h5c01rfo+KiS7rqGyULKzWrfvUkSSO13M7rzqgnOlO5kSX+H+0sQZ7/59os8GBzud7qPOw5c77b2n7rRv0h26Rw9woh/THj1HL31ov6VP9Jm+eFPvnffe+zAv3Wg4zm1auryPPwEWJQGt</latexit>

�⇥3

<latexit sha1_base64="zOg5qPpIjMIiwgGmMnCZ5PBg3rM=">AAAE43iclVNNb9NAEJ0UAyV8pXDsxSJF4hTFFQKOFVw4cChS00ZKosgf23ZV22t510Bk+cCZG+LKmSv8G/gH8C94O9kAoUoKtmzPvpn3vPN2NypSqU2//621ccm7fOXq5rX29Rs3b93ubN051KoqYzGIVarKYRRqkcpcDIw0qRgWpQizKBVH0dkzmz96JUotVX5gZoWYZOFJLo9lHBpA0872zrg4ldN6HKk00bMMn3o8lM00aHamnW6/1+fLPx8ELuiSu/bVVusrjSkhRTFVlJGgnAzilELSuEcUUJ8KYBOqgZWIJOcFNdQGt0KVQEUI9AzvE4xGDs0xtpqa2TH+kuIpwfTpPjgKdSVi+zef8xUrW3SVds2adm4zfCOnlQE1dAr0It6i8t95GhUZ9z7Dk/wHMwF6jK6sp8usdc4ZcJ6wYxLMghHrZew0Kl4D65P/h4cGCgUwGyfIl4hjZi5W1WeOZqdtNyHnv3OlRe04drUV/VjbmX0rVjbsy+/uSuTsvFdzc95BwnlRYvRmzV6q2S+70upXXQ78NeOC95PVGtEL9mxe3SA6WMo3qNDOE8lrMlmpVbNTGc/Q8uaaVn0fFYpd11BZKNlZrdt3KSLFnS5md1F1wbnKnUyFr3B/aeOMB3+f6PPB4W4veNR7+HK3u/fUnfZN2qZ79AAn+jHt0XP0MoD2W/pEn+mLJ7x33nvvw7x0o+U4d2np8j7+BCe0AFg=</latexit>

�⌅1

<latexit sha1_base64="AY+e8zIkxVx65Y+i/+pS3f5XBPo=">AAAE43iclVNNb9NAEJ0UQ0v4SuHYi0WKxClyIgQcK7hw4FCkpo2URJE/tu2qttfyrimRlQNnbogrZ67wb+AfwL/g7WQDhCop2LI9+2be887b3ahIpTZB8K2xccW7em1z63rzxs1bt++0tu8ealWVsejHKlXlIAq1SGUu+kaaVAyKUoRZlIqj6Oy5zR+9FqWWKj8w00KMs/Akl8cyDg2gSWtnd1Scykk9ilSa6GmGTz0ayNmkN9udtNpBJ+DLvxh0XdAmd+2r7cZXGlFCimKqKCNBORnEKYWkcQ+pSwEVwMZUAysRSc4LmlET3ApVAhUh0DO8TzAaOjTH2GpqZsf4S4qnBNOnB+Ao1JWI7d98zlesbNFV2jVr2rlN8Y2cVgbU0CnQy3iLyn/naVRk3PsUT/IfzAToMbqyni6z1jlnwHnKjkkwC0asl7HTqHgNrE/+Hx4aKBTAbJwgXyKOmblYVZ85mp223YSc/86VFrXj2NVW9GNtZ/atWNmwL7+7K5Gz817NzXkHCedFidGbNXupZr/sSqtfdTnwc8YF7yerNaSX7Nm8eoboYCk/Q4V2nkhek/FKrZqdyniGljfXtOr7qFDsuobKQsnOat2+SxEp7nQxu8uqC85V7mQqfIX7SxNnvPv3ib4YHPY63cedR6967b1n7rRv0Q7dp4c40U9oj16glz6039In+kxfPOG98957H+alGw3HuUdLl/fxJywZAFk=</latexit>

�⌅2

Figure 6.3 – Illustration of the proposed scheme based on the use of M = 3 pilots for unsupervised optimization.

where parameters Ξm must be found. Ideally, we want:

Ξ∗
m = arg min

Ξm

E∥ϕΞm(zm−1)− x∥2
2, (6.17)

for which the solution is given, according to (6.15) with τm = 0, by:

Ξ∗
m =

{
Ik − n(tm−1

g σ)2 (X⊤
g Xg + n(tm−1

g σ)2Ik

)−1}G

g=1
. (6.18)

Nevertheless, as x is unknown, Xg = π(x)g is replaced by the previous pilot, that is X̃m
g = π(x̃m)g,

and sample standard deviation is used for the computation of tm−1
g in (6.14). This way, provided that an

initial pilot x̃1 is available, all set of matrices from Θ∗
1 to Θ∗

M can be computed iteratively with updated
pilots at each step to finally get x̂ = Φ{Θ∗

m}M
m=1

(y) = zM as the final estimate for x. As for the choice
of the initial pilot x̃1, the reader is referred to section 6.4 in this regard; in Fig. 6.3 we illustrate the
proposed scheme for unsupervised resolution based on the use of M different pilots.

We want to emphasize that using the M proposed pilots instead of a single one for each step does
not increase the computational complexity. Indeed, the cost for computing the Ξ∗

m can be immediately
recycled to compute the Θ∗

m at the same time, by noticing how close they are in expression.
The whole procedure is summarized in Algorithm 4 where patch grouping is performed on zm at step m.

6.3.5 Weighted average reprojection

At step m, after processing all groups of similar patches thanks to functions FΘm
and FΞm

, all
processed patches are repositionned at their right location in the image and aggregated by averaging via
π−1 operator. If arithmetic averaging is possible for the aggregation of the pixels belonging to the same
position in the image, a weighted-average reprojection is recommended in [163]. As suggested in [163],
each pixel belonging to column j of Zm

g (i.e. belonging to the jth patch of the similarity matrix Zm
g) is

assigned a weight inversely proportional to the squared ℓ2 norm of the combination weights calculated for

138

6.4. Building an initial pilot

Algorithm 4 LIChI: Linear and Iterative Combinations of patcHes for Image denoising
Input: Noisy image y, initial pilot x̃1, noise level σ, group size k, patch size

√
n, number of iterations

M , sequence (τm)1≤m≤M .
Output: Denoised image x̂.
z0 = y
for m = 1, . . . ,M do

for each
√
n×
√
n overlapping patch in zm−1 do

Find its k most similar patches in zm−1 to form similarity matrix Zm−1
g .

Form X̃m
g and Y m

g with the corresponding patches in x̃m and y, respectively.
tm−1
g = 1− sd(Y m

g − Zm−1
g)/σ

Ξm
g = Ik − n(tm−1

g σ)2 (X̃m⊤
g X̃m

g + n(tm−1
g σ)2Ik

)−1

X̃m+1
g = Zm−1

g Ξm
g

Θm
g = (1− τm

tm−1
g

)Ξm
g + τm

tm−1
g

Ik

Zm
g = Zm−1

g Θm
g

end for
Reposition and aggregate patches of each patch group
Zm

g and X̃m+1
g to form zm and updated pilot x̃m+1.

end for
return zM

its processing, that is proportional to 1/∥Θm
g ej∥2

2 or 1/∥Ξm
g ej∥2

2, depending on the combinations weights
used, where ej is the jth canonical basis vector of Rk. Those weights are such that the sum of all weights
associated to a same pixel equals one.

6.4 Building an initial pilot

In Algorithm 4, an initial pilot x̃1 is necessary to start. If, in theory, any denoiser can be used to that
end, we show in this section how to build one of the form x̃1 = ϕΘ(y) where linear combinations of patches
is once again leveraged for local denoising (6.8). The denoisers that we consider in this section are then
described by Algorithm 5, all differing in the estimation of the parameters Θ = {Θg}G

g=1 corresponding
to the combination weights. In the end, most of them deliver the same noise reduction performance.

Algorithm 5 Pilot computation
Input: Noisy image y, noise level σ, group size k, patch size

√
n.

Output: Pilot estimation x̃.
for each

√
n×
√
n patch in y indexed by g do

Find its k most similar patches in y to form similarity matrix Yg.
Compute combination weights Θg with (6.20), (6.25), (6.26) or (6.27).
Perform collaborative denoising X̃g = YgΘg.

end for
Reposition and aggregate patches of each patch group X̃g to form the pilot image x̃.
return x̃

139

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

6.4.1 Stein’s unbiased risk estimate (SURE)

Considering the same risk minimization problem as (6.2) for the optimization of Θ = {Θi}G
g=1 brings

us back to the study of the G independent subproblems of the form (6.4). However, this time we aim
to minimize each local risk by getting rid of any surrogate for the true similarity matrices Xg. Stein’s
unbiased risk estimate (SURE) is probably the most traditional choice as it only depends on the noisy
image. Indeed, this popular estimate in image denoising [10, 11, 39, 84, 119, 161, 178, 182] provides
an approximation of the risk RΘg

(Xg) that solely depends on the observation Yg. In the case of linear
combinations of patches (6.8), the computation of SURE yields:

SUREΘg
(Yg) = −knσ2 + ∥YgΘg − Yg∥2

F + 2nσ2 tr(Θg), (6.19)

where tr(.) denotes the trace operator. Substituting this estimate for the risk RΘg (Xg) and minimizing
SUREΘg (Yg) with regards to Θg, we get:

ΘSURE
g = Ik − nσ2 (Y ⊤

g Yg

)−1
. (6.20)

Note that ΘSURE
g is close to the parameters Θ∗

g minimizing the risk as long as the variance of SURE is
low. A rule of thumbs used in [11] states that the number of parameters must not be “too large” compared
to the number of data in order for the variance of SURE to remain small. In our case, this suggests that
n > k. In other words, a small amount of large patches are necessary for applying this technique. Finally,
a possible pilot for x is x̃1 = ϕΘSURE(y) with ΘSURE = {ΘSURE

g }G
g=1.

6.4.2 Noisier2Noise

Although somewhat counter-intuitive, N. Moran et al. [135] showed that training a neural network
to recover the original noisy image from a noisier version (synthetically generated by adding extra noise)
constitutes an efficient strategy to learn denoising weights without access to any clean training examples.
This amounts in our case to considering the minimization of the following risk:

RΘ(y) = E∥ϕΘ(z)− y∥2
2, (6.21)

where y is the only noisy observation at our disposal and z is a noisier random vector; in the case
of additive white Gaussian noise of variance (ασ)2, where α > 0 is an hyperparameter controlling the
amount of extra noise, z ∼ N (y, (ασ)2I). Formally, minimizing (6.21) is no more difficult than minimizing
(6.2) and the same greedy approximation used in (6.4) can be applied to solve the G independent local
subproblems:

Θ̂α,g = arg min
Θg

E∥fΘg
(Zg)− Yg∥2

F , (6.22)

where Zg = π(z)g and Yg = π(y)g. As showed in [65], the problem (6.22) amounts to solving a multivariate
ridge regression for which the closed-form solution can be found:

Θ̂α,g = Ik − n(ασ)2 (Y ⊤
g Yg + n(ασ)2Ik

)−1
. (6.23)

140

6.4. Building an initial pilot

To get an estimate of the noise-free image x, Noisier2Noise [135] suggests to compute:

E(x|z) ≈
(1 + α2)ϕΘ̂α

(z)− z
α2 , (6.24)

where Θ̂α is the minimizer of (6.21) approximated by {Θ̂α,g}G
g=1. One can show (see proof in Appendix

E.2) that this quantity is equal to ϕΘNr2N
α

(y) on average with ΘNr2N
α = {ΘNr2N

α,g }G
g=1 where:

ΘNr2N
α,g = Ik − n(1 + α2)σ2 (Y ⊤

g Yg + n(ασ)2Ik

)−1
. (6.25)

The choice of the hyperparameter α remains an open question. N. Moran et al. [135] recommend to set
α = 0.5 to handle a variety of noise levels in their experiments. Interestingly, for α→ 0, parameters ΘNr2N

α

converge to ΘSURE; a practical advantage of ΘNr2N
α over ΘSURE is that the matrices Y ⊤

g Yg +n(ασ)2Ik in
(6.25) are symmetric positive-definite and therefore invertible, contrary to Y ⊤

g Yg in (6.20) which is only
positive semi-definite and positive-definite almost surely in the case of ideal additive white Gaussian noise
when n ≥ k. For real-world noisy images, estimation through combination weights ΘNr2N

α is recommended
over ΘSURE as, in some cases, matrices Y ⊤

g Yg may not be invertible. By the way, the combination weights
(6.25) can be efficiently computed based on the Cholesky factorization [89].

It is worth noting that the same weight expressions as (6.25) can also be obtained within the
Recorrupted-to-Recorrupted paradigm [140], which was originally applied in a deep-learning context,
providing an unbiased estimate of a different type of risk which is close to (6.4).

6.4.3 Two additional extreme pilots

In the case where the noisy patches within a group Yg are originally strictly identical (perfect patch
group), the optimal weights, under affine combinations contraints (i.e. Θ⊤1k = 1k), are the ones com-
puting an arithmetic averaging (see proof in Appendix E.2):

ΘAVG
g = 1k1⊤

k /k . (6.26)

Note that this is also the maximum likelihood estimator (MLE). Under the optimistic assumption that
each patch group formed is perfect, the pilot x̃1 = ϕΘAVG(y) with ΘAVG = {ΘAVG

g }G
g=1 is then optimal.

On the contrary, when the patch groups formed are highly dissimilar, collaborative denoising cannot
be beneficial and the resulting “do-nothing” weights are:

ΘNoisy
g = Ik, (6.27)

where Ik is the identity matrix of size k. Under this pessimistic assumption, the pilot x̃1 = ϕΘNoisy(y) = y

is optimal. This amounts to considering the original noisy image itself as an initial pilot in Algorithm 4.

6.4.4 Comparison of the pilots

To study the performance of the proposed pilots, we examined the outputs at three different levels:
i) the individual patch group level; ii) the global level after the aggregation stage; iii) the output of

141

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

15 20 25 30 35
15

20

25

30

35

Input PSNR

O
ut

pu
t

PS
N

R

SURE Nr2N AVG Noisy

Figure 6.4 – Average PSNR (in dB) results on patch groups (dotted line), after aggregation (dashed line) and
when taken as input for Algorithm 4 (solid line) for Set12 dataset depending on combination weights used and
noise level. Patch and group sizes are chosen as indicated by Table 6.1.

Noisy (σ = 15) Average / 26.83 dB SURE / 25.43 dB Noisier2Noise / 28.06 dB 15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Figure 6.5 – Colormap of the PSNR (in dB) of the denoised similarity matrices (n = 7×7 and k = 18) associated
with each overlapping patch of the noisy image. The average PSNR on similarity matrices is also indicated.

Algorithm 4. Figure 6.4 displays the average PSNR results obtained for these three levels computed for
different noise levels on Set12 dataset. Although the studied pilots have very different behaviors at the
patch group level, they tend to give similar results when used as inputs for Algorithm 4. The “do-nothing”
weights (6.27), however, perform slightly worse than the others, especially at high noise levels, while the
averaging ones (6.26) are disappointing for low noise levels. As for SURE (6.20) and Noisier2Noise (6.25)
weights, they give almost identical results in the end even if the Noisier2Noise weights are much more
efficient on the similarity matrices. By the way, this highlights a non-intuitive phenomenon which was
already observed in [64]: efficiency at the patch scale is a sufficient but not necessary condition to be
efficient after the aggregation stage. This confirms that aggregation is not a basic post-processing step
but plays a crucial role in image denoising.

For illustration, Fig. 6.5 provides a visual comparison of the performance of the different combination
weights ΘName

g where Name = {SURE,Nr2N,AVG,Noisy}, depending on the location of the reference
patch for intermediate noise level. Unsurprisingly, combination weights (6.26) are extremely effective on
the smooth parts of the image because they are theoretically optimal when applied on groups of patches
being originally identical. However, when the patch groups are less homogeneous, which occurs when the
reference patch is a rare patch, averaging over inherently dissimilar patches severely affects denoising. On

142

6.4. Building an initial pilot

Nb of estimates used per pixel AVG (27.62 dB / 27.93 dB) SURE (25.64 dB / 31.52 dB) Nr2N (28.79 dB / 31.83 dB)

1000

2000

3000

4000

5000

Figure 6.6 – Image denoising of Castle image from BSD68 dataset (σ = 15) by Algorithm 5 for three different
combination weights: (6.20) , (6.25) and (6.26). Left: a single estimate per pixel (no aggregation), right: aggregation
by averaging all estimates per pixel.

the contrary, SURE (6.20) and Noisier2Noise (6.25) weights seem to be more versatile and less sensitive
to the homogeneity of the similarity matrices, yielding comparable reconstruction errors regardless of the
rarity of the reference patch.

6.4.5 The crucial role of the aggregation stage

To get a better understanding of the role of the aggregation stage, let us define ψΘ(y) the estimator
that skips this operation:

ψΘ(y) = χ(FΘ(π(y))), (6.28)

where operator χ replaces each patch at their initial location and selects a single estimate among those
available for a given pixel. The single estimate is arbitrarily chosen at random from the most central
pixels of the denoised reference patches to avoid considering poor quality estimates. In particular, when
the patch size

√
n is an odd number, the chosen estimates are the denoised central pixels of the reference

patches. Figure 6.6 illustrates the gap of performance between ψΘ(y) and ϕΘ(y) for combination weights
(6.20), (6.25) and (6.26). Skipping the aggregation step results in a much poorer estimation, especially
for weights (6.20) and (6.25). As a matter of fact, non-local methods have the particularity of producing
a large number of estimates per noisy pixel, up to a few thousand (see Fig. 6.6), because a noisy pixel
can appear in many similarity matrices and even several times in one. To study the benefit of exploiting
those multiple estimates, a bias-variance decomposition can be leveraged:

E∥x̃− x∥2
2/d︸ ︷︷ ︸

MSE

= ∥E(x̃)− x∥2
2/d︸ ︷︷ ︸

squared-bias

+E∥x̃− E(x̃)∥2
2/d︸ ︷︷ ︸

variance

(6.29)

where x̃ is the estimator for the true image x. Figure 6.7 highlights the bias–variance tradeoff for estimators
ψΘ(y) and ϕΘ(y) and combination weights (6.20), (6.25) and (6.26) where y is the noisy image shown in
Fig. 6.3. We can notice that the squared-bias part of the MSE in (6.29) is practically unchanged whether
aggregation is applied or not. However, a remarkable drop in variance is noticeable. This is particularly

143

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

SURE Nr2N AVG
w/o w/ w/o w/ w/o w/

0

25

50

75

100

125

150

M
SE

Squared-bias Variance

Figure 6.7 – Bias-variance tradeoff between estimators (6.1) and (6.28), i.e. with (w/) and without (w/o)
aggregation, for three different types of combination weights. Results obtained with noisy image shown in Fig.
6.3 at noise level σ = 20 with patch size n = 9 × 9 and group size k = 18, estimated via Monte-Carlo simulation
using 100 different realizations of the noise.

impressive for SURE estimator (6.20), which significantly reduces its variance and so the MSE thanks
to aggregation, closing the gap with the Noisier2Noise estimator (6.25) as they share almost the same
squared-bias. However, for averaging estimator (6.26), the variance represents a very small part in the
MSE decomposition (6.29) and so aggregation is not beneficial.

We can draw a parallel with a popular machine-learning ensemble meta-algorithm: bootstrap aggre-
gating, also called bagging [62]. Bagging consists of fitting several (“weak” in some sense) models to
sampled versions of the original training dataset (bootstrap) and combining them by averaging the out-
puts of the models during the testing phase (aggregation). This procedure is known to improve model
performance, as it decreases the variance of the model, without increasing the squared-bias. In our case,
the bootstrap samples can be materialized by the numerous noisy similarity matrices Yg on which (weak)
models fΘi

(.) are trained in an unsupervised manner. Combining pixel estimates by aggregation enables
to significantly reduce the variance while keeping the squared-bias unchanged.

6.5 Experimental results

In this section, we compare the performance of the proposed method, referred to as LIChI (Algorithm
4), with state-of-the-art methods, including related deep-learning-based methods [8, 64, 105, 149, 177,
195, 197] applied to standard gray images artificially corrupted with additive white Gaussian noise with
zero mean and variance σ2 and on real-world noisy images. We used the implementations provided
by the authors as well as the corresponding trained weights for supervised networks. Performances of
LIChI and other methods are assessed in terms of PSNR values when the ground truth is available.
Results on satellite imagery data are presented in Appendix A. The code can be downloaded at: https:

//github.com/sherbret/LIChI/.

144

https://github.com/sherbret/LIChI/
https://github.com/sherbret/LIChI/

6.5. Experimental results

Table 6.1 – Recommended patch size n and group size k for Algorithm 5 and corresponding number of iterations
M in Algorithm 4.

σ n k M

10 < σ ≤ 10 9× 9 16 6
10 < σ ≤ 30 11× 11 16 9
30 < σ ≤ 50 13× 13 16 11

6.5.1 Setting of algorithm parameters

In all our experiments, the patch size n, the group size k and the strictly decreasing sequence
(τm)1≤m≤M in Algorithm 4 are empirically chosen as follows: n = 6×6, k = 64 and τm = 0.75×(1−m/M).
The number of iterations M depends on the noise level σ; the higher the noise level, the more iterations
of linear combinations of patches are necessary. Moreover, the optimal value of M is also influenced by
the quality of the initial pilot, itself depending on patch and group sizes according to Algorithm 5. In
Table 6.1, we report, for each noise range, the recommended patch size n and group size k in Algorithm 5
with Noisier2Noise weights (with α = 0.5), as this the most relevant choice based on the experiments in
section 6.4, as well as the associated number of iterations M .

For the sake of computational efficiency, the search for similar patches, computed in the ℓ2 sense,
across the image is restricted to a small local window κ × κ centered around each reference patch (in
our experiments κ = 65). Considering iteratively each overlapping patch of the image as reference patch
is also computationally demanding, therefore only an overlapping patch over δ, both horizontally and
vertically, is considered as a reference patch. The number of reference patches and thus the time spent
searching for similar patches is then divided by δ2. This common technique [35, 57, 65] is sometimes
referred in the literature as the step trick. In our experiments, we take δ = 3. Finally, to further speed up
the algorithm, the search for the location of patches similar to the reference ones is only performed every
third iteration because, in practice, the calculated locations vary little from one iteration to the next.

6.5.2 Results on artificially noisy images

We tested the denoising performance of our method on three well-known datasets: Set12, BSD68 [129]
and Urban100 [74]. Figure 6.8 provides a qualitative comparison with other state-of-the-art algorithms.
LIChI compares favorably with the very best methods, including DnCNN [195] which is the most popular
supervised neural network for image denoising. In particular, this neural network, contrary to our method,
is unable to recover properly the stripes on Barbara image (Fig. 6.8a), probably because such structures
were not present in its external training dataset. Moreover, the benefit of iterating linear combinations,
compared to the one-pass version represented by NL-Ridge [65] is clearly visible. Indeed, many eye-catchy
artifacts (e.g. Fig. 6.8c), especially around the edges, are removed and the resulting denoised image is
much more pleasant and natural.

PSNR results are reported in Table 6.2 for the three datasets corrupted by different noise levels. For
the sake of a fair comparison, algorithms are divided into two categories: unsupervised methods, meaning
that these methods (either traditional or deep learning-based) only have access to the input noisy image,
and supervised methods (i.e. involving neural networks) that require a training phase beforehand and

145

T
ab

le
6.

2
–

T
he

P
SN

R
(d

B
)

re
su

lts
of

di
ffe

re
nt

m
et

ho
ds

ap
pl

ie
d

to
th

re
e

da
ta

se
ts

co
rr

up
te

d
w

ith
sy

nt
he

tic
w

hi
te

G
au

ss
ia

n
no

is
e

an
d

σ
=

5,
15

,2
5,

35
an

d
50

.
T

he
be

st
m

et
ho

d
am

on
g

ea
ch

ca
te

go
ry

(u
ns

up
er

vi
se

d
or

su
pe

rv
is

ed
)

is
em

ph
as

iz
ed

in
bo

ld
.

T
he

be
st

m
et

ho
d

am
on

g
ea

ch
su

bc
at

eg
or

y
is

un
de

rli
ne

d.

M
et

ho
ds

Se
t1

2
B

SD
68

U
rb

an
10

0

N
oi

sy
34

.2
5

/
24

.6
1

/
20

.1
7

/
17

.2
5

/
14

.1
5

34
.2

5
/

24
.6

1
/

20
.1

7
/

17
.2

5
/

14
.1

5
34

.2
5

/
24

.6
1

/
20

.1
7

/
17

.2
5

/
14

.1
5

Unsupervised
Traditional

2-step

B
M

3D
[3

5]
38

.0
2

/
32

.3
7

/
29

.9
7

/
28

.4
0

/
26

.7
2

37
.5

5
/

31
.0

7
/

28
.5

7
/

27
.0

8
/

25
.6

2
38

.3
0

/
32

.3
5

/
29

.7
0

/
27

.9
7

/
25

.9
5

N
L-

B
ay

es
[9

6]
38

.1
2

/
32

.2
5

/
29

.8
8

/
28

.3
0

/
26

.4
5

37
.6

2
/

31
.1

6
/

28
.7

0
/

27
.1

8
/

25
.5

8
38

.3
3

/
31

.9
6

/
29

.3
4

/
27

.6
1

/
25

.5
6

N
L-

R
id

ge
[6

5]
38

.1
9

/
32

.4
6

/
30

.0
0

/
28

.4
1

/
26

.7
3

37
.6

7
/

31
.2

0
/

28
.6

7
/

27
.1

4
/

25
.6

7
38

.5
6

/
32

.5
3

/
29

.9
0

/
28

.1
3

/
26

.2
9

M-step

W
N

N
M

[5
7]

38
.3

6
/

32
.7

0
/

30
.2

6
/

28
.6

9
/

27
.0

5
37

.8
0

/
31

.3
7

/
28

.8
3

/
27

.3
0

/
25

.8
7

38
.7

7
/

32
.9

7
/

30
.3

9
/

28
.7

0
/

26
.8

3
L

IC
hi

(li
ne

ar
)

38
.3

6
/

32
.7

1
/

30
.2

4
/

28
.6

1
/

26
.8

1
37

.8
0

/
31

.4
1

/
28

.8
7

/
27

.3
1

/
25

.7
2

38
.7

7
/

33
.0

0
/

30
.3

7
/

28
.5

9
/

26
.5

6
L

IC
hi

(a
ffi

ne
)

38
.3

4
/

32
.6

9
/

30
.2

3
/

28
.6

3
/

26
.9

2
37

.7
9

/
31

.4
0

/
28

.8
6

/
27

.3
5

/
25

.8
3

38
.7

5
/

32
.9

8
/

30
.4

0
/

28
.6

7
/

26
.7

3

Deep
learning

D
IP

[1
05

]
-

/
30

.1
2

/
27

.5
4

/
-

/
24

.6
7

-
/

28
.8

3
/

26
.5

9
/

-
/

24
.1

3
-

/
-

/
-

/
-

/
-

N
oi

se
2S

el
f[

8]
-

/
31

.0
1

/
28

.6
4

/
-

/
25

.3
0

-
/

29
.4

6
/

27
.7

2
/

-
/

24
.7

7
-

/
-

/
-

/
-

/
-

Se
lf2

Se
lf

[1
49

]
-

/
32

.0
7

/
30

.0
2

/
-

/
26

.4
9

-
/

30
.6

2
/

28
.6

0
/

-
/

25
.7

0
-

/
-

/
-

/
-

/
-

Supervised

D
nC

N
N

[1
95

]
-

/
32

.8
6

/
30

.4
4

/
28

.8
2

/
27

.1
8

-
/

31
.7

3
/

29
.2

3
/

27
.6

9
/

26
.2

3
-

/
32

.6
8

/
29

.9
7

/
28

.1
1

/
26

.2
8

FF
D

N
et

[1
97

]
38

.1
1

/
32

.7
5

/
30

.4
3

/
28

.9
2

/
27

.3
2

37
.8

0
/

31
.6

3
/

29
.1

9
/

27
.7

3
/

26
.2

9
38

.1
2

/
32

.4
3

/
29

.9
2

/
28

.2
7

/
26

.5
2

LI
D

IA
[1

77
]

-
/

32
.8

5
/

30
.4

1
/

-
/

27
.1

9
-

/
31

.6
2

/
29

.1
1

/
-

/
26

.1
7

-
/

32
.8

0
/

30
.1

2
/

-
/

26
.5

1
D

C
T

2n
et

[6
4]

37
.6

5
/

32
.1

0
/

29
.7

1
/

28
.1

0
/

26
.3

9
37

.3
4

/
31

.0
9

/
28

.6
4

/
27

.1
7

/
25

.6
8

37
.5

9
/

31
.4

8
/

28
.8

1
/

27
.0

4
/

25
.1

7

T
ab

le
6.

3
–

R
es

ul
ts

fo
r

de
no

is
in

g
on

ra
w

da
ta

w
ith

V
ST

on
D

ar
m

st
ad

t
N

oi
se

D
at

as
et

(D
N

D
)

U
ns

up
er

vi
se

d
Su

pe
rv

is
ed

M
et

ho
ds

B
M

3D
[3

5]
N

L-
R

id
ge

[6
5]

K
SV

D
[4

6]
N

C
SR

[4
2]

W
N

N
M

[5
7]

L
IC

hI
M

LP
[1

7]
T

N
R

D
[2

8]
FF

D
N

et
[1

97
]

D
C

T
2n

et
[6

4]
P

SN
R

(i
n

dB
)

47
.1

5
47

.1
2

46
.8

7
47

.0
7

47
.0

5
47

.3
5

45
.7

1
45

.7
0

47
.4

0
46

.8
3

6.5. Experimental results

an external dataset. Note that only the single-image extension was considered for Noise2Self [8] and the
time-consuming “internal adaptation” option was not used for LIDIA [177]. Results show that, although
simpler conceptually, LIChI is as efficient as WNNM [57], the best unsupervised denoiser, to the best of
our knowledge. Such results demonstrate that considering iterative linear combinations of noisy patches
provides state-of-the-art performances. However, for very high noise levels (σ ≥ 50), our method seems
to lose some of its effectiveness and the low-rank paradigm adopted by WNNM [57] is objectively better.
Finally, it is interesting to notice that, on Urban100 [74] dataset which contains abundant structural
patterns and textures, all supervised neural networks are outperformed by the best unsupervised methods.

6.5.3 Results on real-world noisy images

Darmstadt Noise Dataset

We tested the proposed method on the Darmstadt Noise Dataset [145] which is a dataset composed
of 50 real-noisy photographs. It relies on captures of a static scene with different ISO values, where the
nearly noise-free low-ISO image is carefully post-processed to derive the ground-truth. In this challenge,
the ground-truth images are not available. Each competitor submits the denoising results on the official
website 1. The algorithms are then evaluated according to standard metrics and the ranking is made
public 2.

The real noise can be modeled as a Poisson-Gaussian noise, which is further approximated with a
heteroscedastic Gaussian noise whose variance is intensity-dependent:

y ∼ N (x, diag(ax+ b)) (6.30)

where (a, b) ∈ R+ × R+ are the noise parameters and operator diag(.) constructs the diagonal matrix
associated to the input vector. For each noisy image, the authors [145] calculated the adequate noise
parameters (a, b) based on this model and made them available to the user. To apply denoisers dedicated
to Gaussian noise removal, a variance-stabilizing transformation (VST) is performed beforehand. We used
the generalized Anscombe transform [171] to that end as in [145].

Figure 6.9 shows a qualitative comparison of the results obtained with state-of-the-art Gaussian
denoisers. Since the real noise level is relatively low, it is difficult to really differentiate between all
methods. However, the good news is that this experiment proves that Gaussian denoisers are able to
robustly remove real noise provided a variance stabilization is applied beforehand. Table 6.3 compares
the average PSNR values obtained on this dataset for different methods. It turns out that LIChI obtained
the second best score, surpassing BM3D [35] which was so far the best unsupervised method on this
dataset, and further closing the gap with FFDNet [197], a supervised neural network trained on a large
set of images artificially corrupted with Gaussian noise.

1. https://noise.visinf.tu-darmstadt.de/
2. https://noise.visinf.tu-darmstadt.de/benchmark/

147

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

(a)

Noisy / 22.09 dB

Ground truth BM3D [35] / 31.72 dB NL-Ridge [65] / 32.07 dB

DnCNN [195] / 31.06 dB WNNM [57] / 32.16 dB LIChI (ours) / 32.15 dB

(b)

Noisy / 22.09 dB

Ground truth BM3D [35] / 36.76 dB NL-Ridge [65] / 36.82 dB

DnCNN [195] / 37.06 dB WNNM [57] / 36.95 dB LIChI (ours) / 37.18 dB

(c)

Noisy / 22.09 dB

Ground truth BM3D [35] / 29.50 dB NL-Ridge [65] / 29.99 dB

DnCNN [195] / 30.06 dB WNNM [57] / 30.94 dB LIChI (ours) / 30.99 dB

Figure 6.8 – Qualitative comparison of image denoising results with synthetic white Gaussian noise (σ = 20).
Zoom-in regions are indicated for each method. From top to bottom: Barbara from Set12, Img009 from Urban100
and Img019 from Urban100.

148

6.5. Experimental results

(a)

Noisy

Noisy BM3D [35] NL-Ridge [65]

FFDNet [197] WNNM [57] LIChI (ours)

(b)

Noisy

Noisy BM3D [35] NL-Ridge [65]

FFDNet [197] WNNM [57] LIChI (ours)

(c)

Noisy

Noisy BM3D [35] NL-Ridge [65]

FFDNet [197] WNNM [57] LIChI (ours)

Figure 6.9 – Qualitative comparison of image denoising results on real-world noisy images from Darmstadt
Noise Dataset [145]. Zoom-in regions are indicated for each method. From top to bottom: Img0003, Img0037 and
Img0044.

149

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

Application in fluorescence microscopy

In order to further demonstrate the effectiveness of the proposed method in real-world applications,
we deployed LIChI to the denoising of fluorescence emission difference (FED) images in microscopy, for
which the real noise can also be modeled as a Poisson-Gaussian noise. Unfortunately, the ground truths
are not available in the present situation. To still provide a measure of comparison, we leverage the stack
of the 32 low/high frequency images produced by an array detector [186]. In this imagery technique,
the 32 sub-detectors are arranged around a central one: the more the detector is off-center, the noisier
the image. Some techniques [122, 148] were specifically developed to fully exploit redundancy and noise
independence across sub-detectors to produce a unique high-resolution estimation of the underlying clean
image. Arbitrarily, we consider that the image Iref obtained with such a technique [148] on the stack of
images (Ik)0≤k<32 constitutes a (pseudo) ground truth. This stack of images with different noise levels
can then be thought as an interesting specific dataset to test denoising algorithms independently on each
image for which the ground truth is shared across images. In practice, as Iref and den(Ik) may not be
aligned for k ≥ 1 and may present a different range of intensities, depending on the number of photons
captured, the adapted mean squared error (MSE) is calculated as follows:

min
a,b∈R,0≤i,j≤l

1
h× w

∥ci0,j0(Iref)− ci,j(aden(Ik) + b)∥2
2 (6.31)

where ci,j(I) crops the image I of size H ×W into a smaller one by removing i columns on the left and
j rows at the top, as well as the rest of the columns and rows on the right and bottom to obtain a final
image of size (H − l) × (W − l). In all ours experiments, we set l = 10 and (i0, j0) = (l/2, l/2). This
adapted MSE is then directly used in the computation of the PSNR.

According to Table 6.2 and Table 6.3, FFDNet [197] and LIChI are the best-in-class (supervised
and unsupervised, respectively) denoising algorithms evaluated, both on artificial but also real-world
noise. Figure 6.10 shows the results obtained with these two algorithms on FED images on the whole
stack when denoising is performed independently across all images. Note that Poisson-Gaussian noise
parameters (a, b) in (6.30) were estimated with the method explained in [50]. We can notice that LIChI
compares favorably with FFDNet [197], which was trained in a supervised fashion from an extensive
dataset composed of more than 5000 clean images of all kinds.

6.5.4 Complexity

We want to emphasize that LIChI, though being an iterative algorithm, is relatively fast compared to
its traditional and deep-learning-based unsupervised counterparts. In Table 6.4, we reported the running
time of different state-of-the-art algorithms. It is provided for information purposes only, as the imple-
mentation, the language used and the machine on which the code is run, highly influence the execution
time. The CPU used is a 2,3 GHz Intel Core i7 and the GPU is a GeForce RTX 2080 Ti. LIChI has been
entirely implemented in Python with Pytorch, enabling it to run on GPU unlike its traditional counter-
parts. The gap in terms of running time between supervised and unsupervised methods is explained by
the fact that these latter solve optimization problems “on the fly”. In comparison, supervised methods
find optimal parameters for empirical risk minimization in advance on an external dataset composed of

150

6.5. Experimental results

(a)

Noisy I0

Reference image FFDNet [197] / 37.46 dB

Noisy / 33.81 dB LIChI (ours) / 36.97 dB

(c)

0 5 10 15 20 25 30

30

32

34

36

Images Ik

PS
N

R

Noisy FFDNet LIChI

(b)

Noisy I0

Reference image FFDNet [197] / 35.90 dB

Noisy / 33.81 dB LIChI (ours) / 36.18 dB

(d)

0 5 10 15 20 25 30

30

32

34

36

Images Ik

PS
N

R

Noisy FFDNet LIChI

Figure 6.10 – A visual comparison of results obtained by FFDNet [197] and LIChI on FED images (central
sub-detector) depicting intestinal microvilli from a C.elegans worm in vivo expressing ERM::mNeonGreen fusion
protein (a) and mitochondria in cells expressing mito-GFP protein (b) (see [148]). Zoom-in regions as well as
the PSNR computed from (6.31) with a reference image, computed as explained in [148], are indicated for each
method (a-b). The graphs on the right (c-d) show the PSNR along all sub-detectors: the more the detector is
off-center, the noisier the image. Note that the results obtained with LIChI are very similar to those produced by
the supervised FFDNet method [197] which requires clean ground truths for training.

151

Chapter 6 – LIChI: boosting denoising performance via a novel chaining rule

Table 6.4 – Running time (in seconds) of different methods for an image of size 256 × 256. Best among each
category (unsupervised or supervised) is in bold. Best among each subcategory is underlined.

Methods CPU / GPU

U
n

su
p

er
v

is
ed

T
ra

di
ti

on
al

2-
st

ep

BM3D [35] 1.68 / -
NL-Bayes [96] 0.21 / -
NL-Ridge [65] 0.66 / 0.162

M
-s

te
p WNNM [57] 63.31 / -

LIChI 11.42 / 1.08
D

ee
p

le
ar

ni
ng DIP [105] - /∼ 5 min

Noise2Self [8] - /∼ 5 min
Self2Self [149] - / ∼ 1 hr

S
u

p
er

v
is

ed DnCNN [195] 0.35 / 0.007
FFDNet [197] 0.06 / 0.001
LIDIA [177] 21.08 / 1.18

DCT2net [64] 0.18 / 0.007

clean/noisy images and this time for optimization, sometimes counting in days on a GPU, is not taking
into account in Table 6.4. Nevertheless, it is worth noting that traditional unsupervised methods are
much less computationally demanding than unsupervised deep-learning-based ones [8, 105, 149] that use
time-consuming gradient descent algorithms for optimization, while traditional ones have closed-form
solutions.

6.6 Conclusion

We presented a parametric unified view of non-local two-step denoisers and extended the underlying
formulation by iteration. By considering multiple approximations of quadratic risks, we proposed a pro-
gressive scheme to find the optimal parameters in an unsupervised manner. We derive LIChI algorithm,
that successfully exploits iterative non-local linear combinations of patches. Our experimental results
show that LIChI preserves much better structural patterns and textures and generates much less visual
artifacts, in particular around the edges, than single-iterated denoisers, including BM3D. The proposed
algorithm compares favorably with WNNM, the best unsupervised denoiser to the best of our knowl-
edge, both in terms of both quantitative measurement and visual perception quality, while being faster
at execution.

152

CONCLUSION AND PERSPECTIVES

Conclusion

In this thesis, we reviewed the rich variety of strategies, tools and theories that have emerged over
the years to address the issue of image denoising. The contribution of the thesis to this field is two-fold:

1. conception of novel neural network architectures sharing the particularity to be more interpretable
than their habitual “black box” counterparts, and exhibiting characteristics that make them more
stable, predictable, and easier to analyze,

2. a general parametric estimation framework unifying several unsupervised state-of-the-art non-local
methods, from which two novel algorithms were developed.

In the first part, we proposed two different approaches for the design of more interpretable and better
conditioned supervised neural networks. First, we revisited a well-known traditional denoiser, namely
the DCT (Discrete Cosine Transform) denoiser, by expressing it into a shallow convolutional neural
network (CNN) where the weights align with the original projection kernel. We showed that training this
specific CNN on an external dataset refines the resulting transform, leading to significant performance
improvement. The resulting two-layer network, named DCT2net, offers many benefits. Beyond its speed,
its simplicity makes it possible to analyze the various stages of the denoising process. Through this
exploration, some usages, usually taken for granted, were disproved by the machine. In particular, our
analysis demonstrates that the aggregation step, common to all patch-based denoising methods, occupies
a central place in overall performance, giving it a much more important role than a basic post-processing
step. By fully exploiting the potential of end-to-end learning, the data-driven transform, which can be
directly displayed after the learning phase, exhibits much better noise decorrelation properties between
overlapping patches than the original transform. Sure enough, the performance of the proposed shallow
CNN still falls short in comparison to state-of-the-art deep neural networks but it compensates for this
by being less computationally intensive, and much easier to handle and interpret as the learned basis can
be displayed.

Parallel to this work, we proposed some architectural modifications to existing deep neural networks
so that normalization-equivariance holds by design. In the context of image denoising, this property
guarantees that the noise removal results are independent on how the images have been coded, or nor-
malized, which, surprisingly, is generally not the case with current methods. To this end, we argue that
the predominant “conv+ReLU” pattern can be advantageously substituted with two novel innovations,
namely affine convolutions, which ensure that all coefficients of the convolutional kernels sum up to one,
and channel-wise sort pooling nonlinearities, serving as replacements for all activation functions applied
element-wise, including ReLU or sigmoid functions. Interestingly, despite implementing these two signif-
icant architectural changes, we demonstrate that the performance of these alternative variants remains
unaffected. On the contrary, due to their improved conditioning, these networks exhibit enhanced in-

153

terpretability since they basically encodes adaptive affine filters that can be revealed by computing the
Jacobian matrices, and especially remarkable resilience to varying noise levels in the context of image
denoising, both in practical applications and theoretical analyses.

In the second part of this thesis, we proposed a general parametric estimation framework based on
quadratic risk minimization that enables to reinterpret and reconcile several state-of-the-art non-local
methods for unsupervised denoising, in which only the input noisy image is used for learning. Starting
from an arbitrary choice of a parameterized family of estimators designed to denoise a full group of
similar noisy patches, the selection of the best member is carried out in two stages. First, the minimum
mean square error estimator is approximated via the minimization of an unbiased risk estimate, depend-
ing solely on the observations, and that acts as a surrogate for minimizing the true risk. In particular,
the technique is well grounded in Stein’s unbiased risk estimation theory in the case of Gaussian noise.
Next, estimation is refined through the “internal adaptation” trick borrowed from deep learning theory,
leveraging the pilot image obtained in the first step. The proposed methodology is very general, allowing
to deal with different types of noise, and can a priori be applied to any family of parametric estimators.
In particular, we showed that when choosing specific families, it is possible to reinterpret under our para-
metric framework several popular non-local methods, such as BM3D or NL-Bayes. Even more remarkable
is the possibility to build other image denoisers simply by starting from a brand new family of param-
eterized functions. Focusing on estimators that compute linear combinations of patches, we proposed
a straightforward but effective algorithm called NL-Ridge. While simpler conceptually, we showed that
NL-Ridge may outperform well-established state-of-the-art unsupervised denoisers, including the recent
unsupervised deep learning-based approaches. Subsequently, we enhanced the NL-Ridge formulation by
introducing a novel chaining technique, which involves estimating a more extensive set of parameters
in an unsupervised manner. This extended algorithm, termed LIChI, proves highly effective in reducing
denoising artifacts at each iteration without degrading signals, compared to its two-step counterpart,
resulting in visually pleasant denoised images. Experiments on artificially noisy images and on real-world
noisy images demonstrate that the proposed method compares favorably with the very best unsupervised
denoisers such as WNNM in terms of both quantitative measurements and visual perception quality, all
while benefiting from faster execution times.

Perspectives

We suggest some avenues of research for future work. Firstly, it would be interesting to extend NL-
Ridge to video denoising, for which similar patches can be found in neighboring frames in addition to
intra-frame self-similarity as previously investigated in [7, 12, 16, 37, 123]. Extending the algorithm to
video essentially requires computer engineering skills, as the mathematical theory remains the same.
Second, as far as normalization-equivariant networks are concerned, many questions remain unanswered,
especially from a theoretical perspective. Indeed, we proved that the proposed architectural constraints
imply that such networks encode continuous piecewise-linear functions with finitely many pieces and are
entirely characterized by the values they take on a subset of the unit sphere. However, the position of the
pieces, their exact number, size and importance are open questions [56, 59, 60, 134, 173]. Answering these
questions could potentially help to develop techniques for pruning the resulting functions once training

154

has been completed, in order to improve their interpretability and efficiency.
Moreover, while this thesis concentrated on image denoising, some of our contributions may have

relevance beyond it. In particular, we believe that data-driven transforms, in the spirit of DCT2net,
may potentially be beneficial for image compression, in replacement of the traditional transforms such as
DCT or wavelets at the core of JPEG and JPEG 2000 standards, respectively. However, it is hard to say
how much performance enhancement can be expected. Indeed, the secret of DCT2net lies in its ability
to decorrelate noise between overlapping patches, leveraging the final aggregation step. As far as image
compression is concerned, encoding is, to the best of our knowledge, carried out on non-overlapping
patches for the sake of parsimony. Therefore, nothing is less certain about the feasibility of such an
approach. As for normalization-equivariant networks, we believe that their better conditioning can be
beneficial in contexts other than denoising. For example, subject to potentially marginal adaptations, the
proposed architectural modifications should also work for super-resolution, segmentation, or classification,
with the expected advantages of being potentially more robust to outliers. Finally, the emergence of
denoising diffusion probabilistic models [70] is an exciting and very promising new area of research for
image generation. The contribution of this thesis to image denoising may possibly be useful for improving
such models.

155

Appendix

157

Appendix A

APPLICATION TO SATELLITE IMAGERY

A.1 Data description

The remote sensing dataset (RSD) has been developed within the LiChIE project, funded by Bpifrance
agency, between Inria and Airbus Defense and Space, drawing on the technical expertise of Renaud Fraisse
(Airbus Defense and Space) and the computer skills of Sylvain Prigent (Inria). It was designed to test
algorithm performance on multiple inverse problems in imaging, including denoising, deconvolution and
zooming (a.k.a. single image super-resolution) with remote sensing images. This is a synthetic dataset
built from 10 cm resolution aerial raw images of the French territory, publicly available via online image
banks 1 2. These images contain different types of land cover, such as rural areas, homogeneous structures,
seas, city centers, buildings (see Fig. A.1). From the raw images, a radiometric simulator has been
developed in order to:

— apply blur level,
— resample images to 50 cm: the target resolution,
— perform corrections and conversions: remove gamma correction, convert to 12-bit images, . . .

More precisely, a synthetic ground truth 50 cm resolution image x is obtained from a raw 10 cm resolution
image z by applying the formula:

x =
(

(z ⊗ k) ↓5 +s
255 + s

)γ

× (255 + s)× r (A.1)

where z ⊗ k denotes two-dimensional convolution between the 10 cm resolution image z and the kernel
k emulating the point spread function (PSF) of a satellite sensor (see Fig. A.2), ↓5 denotes the standard
5-fold downsampler, i.e., selecting the upper-left pixel for each distinct 5 × 5 patch, and r = 5, γ = 2.2
and s = 100 are the radio factor, the gamma correction and the atmosphere coefficient, respectively.
These processed images constitute the source images (i.e. ground truths) in the case of denoising. The
noisy images are simulated from these latter assuming a heteroscedastic Gaussian noise model:

y ∼ N (x,diag(ax+ b)) (A.2)

where a ∈ R+
∗ and b ∈ R+

∗ are the parameters relative to shot and read noise, respectively. Based on

1. https://bmo.maps.arcgis.com/apps/OnePane/basicviewer/index.html?&extent={%22xmin%22:91008.
42514315259,%22ymin%22:6804051.886670487,%22xmax%22:191050.7585611528,%22ymax%22:6877068.56603718,
%22spatialReference%22:{%22wkid%22:102110,%22latestWkid%22:2154}}&appid=87a4dd5890b540648fd98385f24d4a28

2. https://data.toulouse-metropole.fr/explore/dataset/orthophotoplan-2017/map/?basemap=jawg.streets&
location=11,43.64552,1.40853

158

https://bmo.maps.arcgis.com/apps/OnePane/basicviewer/index.html?&extent={%22xmin%22:91008.42514315259,%22ymin%22:6804051.886670487,%22xmax%22:191050.7585611528,%22ymax%22:6877068.56603718,%22spatialReference%22:{%22wkid%22:102110,%22latestWkid%22:2154}}&appid=87a4dd5890b540648fd98385f24d4a28
https://bmo.maps.arcgis.com/apps/OnePane/basicviewer/index.html?&extent={%22xmin%22:91008.42514315259,%22ymin%22:6804051.886670487,%22xmax%22:191050.7585611528,%22ymax%22:6877068.56603718,%22spatialReference%22:{%22wkid%22:102110,%22latestWkid%22:2154}}&appid=87a4dd5890b540648fd98385f24d4a28
https://bmo.maps.arcgis.com/apps/OnePane/basicviewer/index.html?&extent={%22xmin%22:91008.42514315259,%22ymin%22:6804051.886670487,%22xmax%22:191050.7585611528,%22ymax%22:6877068.56603718,%22spatialReference%22:{%22wkid%22:102110,%22latestWkid%22:2154}}&appid=87a4dd5890b540648fd98385f24d4a28
https://data.toulouse-metropole.fr/explore/dataset/orthophotoplan-2017/map/?basemap=jawg.streets&location=11,43.64552,1.40853
https://data.toulouse-metropole.fr/explore/dataset/orthophotoplan-2017/map/?basemap=jawg.streets&location=11,43.64552,1.40853

A.2. Comparison of denoising algorithms

Figure A.1 – Representative raw images from the remote sensing dataset (RSD). These images contain different
types of land cover, such as rural areas, homogeneous structures, seas, city centers, buildings.

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Figure A.2 – Empirical point spread function (PSF) for the remote sensing dataset (RSD).

empirical considerations, the noise parameter set (a, b) = (0.046, 7.7) was chosen to mimic the real-world
noise in satellite sensors.

A training set is built from 20 tiles of size 10000 × 10000 randomly selected from the online image
banks described above. These tiles are split into 250×250 images for easing training. Four images, strictly
different from the training set, serve as validation set and three images of size 1000× 1000 representing
Brest, Lyon and Toulouse Airport are used as a testing set.

A.2 Comparison of denoising algorithms

In this section, we compare different image denoising algorithms [57, 96, 184, 191, 194, 195], and in
particular those proposed in this thesis [64–67] in the Chapters 3, 4, 5 and 6, in the presence of satellite
imagery data.

Performance: Figures A.4, A.5, A.6, A.7, A.8 and A.9 display a qualitative comparison of the denoising
results. Note that since the images are corrupted with very low noise level, the use of a sharpen filter is
recommended to highlight the differences in the restored images. We choose a 3× 3 filter of the following
form: −1 −1 −1

−1 12 −1
−1 −1 −1

 . (A.3)

159

Chapter A – Application to satellite imagery

100 101 102 103 104 105 106 107 108

100

101

102

NL-Ridge

NL-Bayes

DCT 16 × 16

BM3D

LIChI

WNNM

DRUNet

DCT2net

Restormer

CARE

DnCNN

Number of parameters

Ex
ec

ut
io

n
tim

e
(in

se
co

nd
s)

Figure A.3 – The execution time on CPU v.s the total number of parameters of different methods [35, 57, 64–
66, 96, 184, 189, 191, 194, 195] for the denoising of images of size 512 × 512 (CPU: 2,3 GHz Intel Core i7).

Two observations can be made:

1. The unsupervised algorithm NL-Bayes [96] currently used by Airbus can be favorably replaced
with a supervised deep-learning-based alternative for increased performance.

2. Among the supervised models, the best results are obtained when specifically training on satellite
imagery data with the precise target noise model. Indeed, because they benefit from better qual-
ity training data, the lightweight neural networks DnCNN [195] and CARE [184] achieve better
performance on average than the state-of-the-art heavy architectures [191, 194] trained exclusively
on Gaussian noise and academic images [3, 109, 121, 129]. There is no doubt that combining an
advanced network architecture [108, 191, 193, 194], preferably made normalization-equivariant for
better-conditioning [67], with a high-quality training set for satellite imagery such as the remote
sensing dataset (RSD), will further improve the results, provided that the hardware resources are
available.

Complexity: Since denoising algorithms are eventually intended to be embedded in space, model light-
ness and execution times are at stake. Figure A.3 compares the competing algorithms with respect to
these two criteria. It is provided for information purposes only, as the implementation, the language used
and the machine on which the code is run, highly influence the execution time. The unsupervised algo-
rithms [57, 65, 66, 96] have the advantage to be particularly light as they do not need to store any learned
parameters compared to their supervised counterparts [64, 184, 191, 194, 195]. However, this does not
mean necessarily that these methods are faster since they basically solve optimization problems “on the
fly” which can be time-consuming. Generally speaking, the best-performing methods in terms of MSE
are also those that are the most computationally demanding. As always in real-life situations, a trade-off
has to be found between allocated computational resources in space and minimal expected performance.
But this topic goes beyond the scope of this present thesis.

160

A.2. Comparison of denoising algorithms

Supervised Unsupervised

Ground truth Noisy / 46.59 NL-Bayes [96] / 24.01

FDnCNN [195] / 27.06 DRUNet [194] / 21.58 NL-Ridge (ours) [65] / 24.86

DCT2net* (ours) [64] / 28.85 Restormer [191] / 19.93 WNNM [57] / 22.44

DnCNN* [195] / 18.96 CARE* [184] / 19.97 LIChI (ours) [66] / 22.49

Figure A.4 – Denoising results of a region of interest of image “Brest0146_6836_50cm_F06opt_B120” from
the remote sensing dataset (RSD). All algorithms were designed for homoscedastic Gaussian noise exclusively
and are applied after a variance-stabilizing transformation [171], except for models indicated with * which were
trained on the training set of RSD. Note that the normalization-equivariant models [67] are used for FDnCNN
[195] and DRUNet [194]. The mean squared error is indicated for all algorithms (best is in bold in each category).
Best viewed by zooming on a computer screen.

161

Chapter A – Application to satellite imagery

Supervised Unsupervised

Ground truth Noisy / 41.79 NL-Bayes [96] / 22.39

FDnCNN [195] / 25.08 DRUNet [194] / 20.17 NL-Ridge (ours) [65] / 23.20

DCT2net* (ours) [64] / 27.19 Restormer [191] / 18.69 WNNM [57] / 20.77

DnCNN* [195] / 17.95 CARE* [184] / 18.80 LIChI (ours) [66] / 20.85

Figure A.5 – Denoising results of a region of interest of image “Brest0146_6836_50cm_F06opt_B120” from
the remote sensing dataset (RSD). All algorithms were designed for homoscedastic Gaussian noise exclusively
and are applied after a variance-stabilizing transformation [171], except for models indicated with * which were
trained on the training set of RSD. Note that the normalization-equivariant models [67] are used for FDnCNN
[195] and DRUNet [194]. The mean squared error is indicated for all algorithms (best is in bold in each category).
Best viewed by zooming on a computer screen.

162

A.2. Comparison of denoising algorithms

Supervised Unsupervised

Ground truth Noisy / 42.02 NL-Bayes [96] / 19.24

FDnCNN [195] / 21.42 DRUNet [194] / 17.65 NL-Ridge (ours) [65] / 19.23

DCT2net* (ours) [64] / 22.33 Restormer [191] / 16.47 WNNM [57] / 17.74

DnCNN* [195] / 16.78 CARE* [184] / 17.21 LIChI (ours) [66] / 18.00

Figure A.6 – Denoising results of a region of interest of image “Lyon_1844_5175_50cm_F06opt_B120” from
the remote sensing dataset (RSD). All algorithms were designed for homoscedastic Gaussian noise exclusively
and are applied after a variance-stabilizing transformation [171], except for models indicated with * which were
trained on the training set of RSD. Note that the normalization-equivariant models [67] are used for FDnCNN
[195] and DRUNet [194]. The mean squared error is indicated for all algorithms (best is in bold in each category).
Best viewed by zooming on a computer screen.

163

Chapter A – Application to satellite imagery

Supervised Unsupervised

Ground truth Noisy / 35.18 NL-Bayes [96] / 19.95

FDnCNN [195] / 22.88 DRUNet [194] / 18.53 NL-Ridge (ours) [65] / 20.40

DCT2net* (ours) [64] / 23.44 Restormer [191] / 17.92 WNNM [57] / 18.81

DnCNN* [195] / 16.71 CARE* [184] / 17.30 LIChI (ours) [66] / 18.93

Figure A.7 – Denoising results of a region of interest of image “Lyon_1844_5175_50cm_F06opt_B120” from
the remote sensing dataset (RSD). All algorithms were designed for homoscedastic Gaussian noise exclusively
and are applied after a variance-stabilizing transformation [171], except for models indicated with * which were
trained on the training set of RSD. Note that the normalization-equivariant models [67] are used for FDnCNN
[195] and DRUNet [194]. The mean squared error is indicated for all algorithms (best is in bold in each category).
Best viewed by zooming on a computer screen.

164

A.2. Comparison of denoising algorithms

Supervised Unsupervised

Ground truth Noisy / 67.91 NL-Bayes [96] / 31.46

FDnCNN [195] / 35.89 DRUNet [194] / 29.48 NL-Ridge (ours) [65] / 32.42

DCT2net* (ours) [64] / 37.96 Restormer [191] / 33.02 WNNM [57] / 29.57

DnCNN* [195] / 27.29 CARE* [184] / 28.50 LIChI (ours) [66] / 29.68

Figure A.8 – Denoising results of a region of interest of image “ToulouseAirport_50cm_F06opt_B120” from
the remote sensing dataset (RSD). All algorithms were designed for homoscedastic Gaussian noise exclusively
and are applied after a variance-stabilizing transformation [171], except for models indicated with * which were
trained on the training set of RSD. Note that the normalization-equivariant models [67] are used for FDnCNN
[195] and DRUNet [194]. The mean squared error is indicated for all algorithms (best is in bold in each category).
Best viewed by zooming on a computer screen.

165

Chapter A – Application to satellite imagery

Supervised Unsupervised

Ground truth Noisy / 54.77 NL-Bayes [96] / 17.76

FDnCNN [195] / 21.99 DRUNet [194] / 16.37 NL-Ridge (ours) [65] / 17.42

DCT2net* (ours) [64] / 25.41 Restormer [191] / 14.90 WNNM [57] / 15.29

DnCNN* [195] / 14.45 CARE* [184] / 15.25 LIChI (ours) [66] / 15.40

Figure A.9 – Denoising results of a region of interest of image “ToulouseAirport_50cm_F06opt_B120” from
the remote sensing dataset (RSD). All algorithms were designed for homoscedastic Gaussian noise exclusively
and are applied after a variance-stabilizing transformation [171], except for models indicated with * which were
trained on the training set of RSD. Note that the normalization-equivariant models [67] are used for FDnCNN
[195] and DRUNet [194]. The mean squared error is indicated for all algorithms (best is in bold in each category).
Best viewed by zooming on a computer screen.

166

Appendix B

SUPPLEMENTARY MATERIAL FOR

DCT2NET

B.1 Why is taking multiple thresholds useless?

In the definition of DCT2net (and traditional DCT), a unique threshold λ, dependent on the level of
noise σ, is applied to all the coefficients of the vector P−1y, corresponding to the frequency representation
of the signal y. One may wonder what would bring a different threshold for every coefficient, replacing
the function φλ by φλ1,...,λn

defined by:

∀x ∈ Rn, φλ1,...,λn
(x) = (φλ1(x1), . . . , φλn

(xn))

As a matter of fact, defining multiple thresholds is useless as the matrix P and the threshold values
λ1, . . . , λn can be "encoded" in a single matrix as explained by the following result.

Proposition 4. Let λ1, . . . , λn > 0 be n values of threshold and Λ = diag(λ1, . . . , λn).
∀P ∈ GLn(R),∀y ∈ Rn,∀σ > 0,

Pφλ1σ,...,λnσ(P−1y) = (PΛ)φσ((PΛ)−1y)

Proof. The result can be easily derived thanks to the property on hard shrinkage functions, stating that
for two levels of threshold λ and λ′, we have φλ(x) = λ

λ′φλ′(λ′

λ x).

B.2 Direct technique to derive an orthonormal matrix for DCT2net

In addition to the technique relying on the introduction of a regularization term, we expose here a
direct technique that is based on the following lemma.

Lemma 3. Let On(R) be the set of orthonormal matrices, GLn(R) the set of invertible matrices and
S++

n the set of symmetric positive definite matrices of size n× n. Then,

On(R) =
{
M
(√

M⊤M
)−1

|M ∈ GLn(R)
}
.

where
√
A designates the only matrix of S++

n such that A =
√
A×
√
A (exists and is unique if A ∈ S++

n).

167

Chapter B – Supplementary material for DCT2net

Proof. First of all, ∀M ∈ GLn(R), M⊤M ∈ S++
n . Moreover, ∀A ∈ S++

n , A is invertible (with A−1 ∈ S++
n).

Therefore, for all M ∈ GLn(R), M(
√
M⊤M)−1 is well defined.

Now, by double inclusion:
(⊂): Let Q ∈ On(R). We set M = Q ∈ GLn(R).√
M⊤M = In is invertible and Q = M(

√
M⊤M)−1.

(⊃): Let M ∈ GLn(R) and Q = M(
√
M⊤M)−1. Using that for all A ∈ S++

n , (
√
A)−1 =

√
A−1, we have:

QQ⊤ = M(
√
M⊤M)−1(

√
M⊤M)−1M⊤

= M
√

(M⊤M)−1
√

(M⊤M)−1M⊤

= M(M⊤M)−1M⊤

= MM−1(M⊤)−1M⊤

= In

hence, Q ∈ On(R).

Let FP denote the network DCT2net where P is the learned transform. The direct technique consists
in solving the following optimization problem:

M∗ = arg min
M∈GLp2 (R)

N∑
i=1
∥F

M(
√

M⊤M)−1(yi, σi)− xi∥2
2 (B.1)

Similarly to the unconstrained formulation of DCT2net (3.4), the optimization problem is solved by
stochastic gradient descent, leveraging the power of automatic differentiation in modern machine learning
libraries such as Pytorch [141]. The learned transform P ∗ is reconstructed at the end and is guaranteed
to be orthonormal thanks to Lemma 3:

P ∗ = M∗
(√

M∗⊤M∗
)−1

B.3 Link between orthonormal matrices and orthogonal ones in
DCT2net

Although often used as synonyms in the literature, a clear distinction between orthonormal matrices
and orthogonal ones is made in this chapter.

Definition 2. Let P be a matrix of size n× n.
— P is an orthonormal matrix, and we note P ∈ On(R), if P⊤P = PP⊤ = In.
— P is an orthogonal matrix, and we note P ∈ Og

n(R), if P⊤P = D, with D an invertible diagonal
matrix.

In other words, a matrix P is said to be orthonormal if its columns c1, . . . , cn have the property:
∀i, j ∈ {1, . . . , n}, ⟨ci, cj⟩ = δi,j where δi,j is the Kronecker delta. The orthogonality property is less

168

B.3. Link between orthonormal matrices and orthogonal ones in DCT2net

restrictive as its columns must satisfy ∀i, j ∈ {1, . . . , n}, ⟨ci, cj⟩ = 0⇔ i ̸= j.

Taking P ∈ On(R) with multiple values of threshold amounts to considering only one value of threshold
with P ∈ Og

n(R) and conversely. Indeed, let P ∈ Og
n(R). There exists D an invertible diagonal matrix

such that P⊤P = D. We can write P = Q
√
D with Q = P (

√
D)−1 ∈ On(R). Now applying Prop. 4 for

λi =
√
Di,i > 0 and Q gives that ∀y ∈ Rn,∀σ > 0,

Pφσ(P−1y) = Qφλ1σ,...,λnσ(Q−1y)

169

Appendix C

SUPPLEMENTARY MATERIAL FOR

NORMALIZATION-EQUIVARIANT NEURAL

NETWORKS

C.1 Description of the denoising architectures and implemen-
tation

C.1.1 Description of models

DRUNet: DRUNet [194] is a U-Net architecture, and as such has an encoder-decoder type pathway,
with residual connections [63]. Spatial downsampling is performed using 2× 2 convolutions with stride 2,
while spatial upsampling leverages 2× 2 transposed convolutions with stride 2 (which is equivalent to a
1× 1 sub-pixel convolution [167]). The number of channels in each layer from the first scale to the fourth
scale are 64, 128, 256 and 512, respectively. Each scale is composed of 4 successive residual blocks “3× 3
conv + ReLU + 3× 3 conv”.

FDnCNN: FDnCNN [195] is the unpublished flexible variant of the popular DnCNN [195]. It consists
of 20 successive 3× 3 convolutional layers with 64 channels each and ReLU nonlinearities. As opposed to
DnCNN, FDnCNN does not use neither batch normalization [78] for training, nor residual connections
[63] and can handle an optional noisemap (concatenated with the input noisy image). Note that this
architecture does not use downsampling or upsampling. Finally, the authors [195] recommend to train it
by minimizing the ℓ1 loss instead of the mean squared error (MSE).

C.1.2 Description of variants

Ordinary: The ordinary variant is built by appending additive constant (“bias”) terms after each
convolution of the original architecture. Note that the original FDnCNN [195] model is already in the
ordinary mode.

Scale-equivariant: Since both models (DRUNet and FDnCNN) use only ReLU activation functions,
removing all additive constant (“bias”) terms is sufficient to ensure scale-equivariance [132]. Note that
the original DRUNet [194] model is already in the scale-equivariant mode.

170

C.2. Description of datasets and training details

Normalization-equivariant: All convolutions are replaced by the proposed affine-constrained convo-
lutions without “bias” and with reflect padding, and the proposed channel-wise sort pooling patterns
supersede ReLU nonlinearities. Moreover, classical residual connections are replaced by affine residual
connections (the sum of two layers l1 and l2 is replaced by their affine combination (1− t)l1 + tl2 where
t is a trainable scalar parameter).

C.1.3 Practical implementation of normalization-equivariant networks

The channel-wise sort pooling operations can be efficiently implemented by concatenating the sub-
layer obtained with channel-wise one-dimensional max pooling with kernel size 2 and its counterpart
obtained with min pooling. Note that intertwining these two sub-layers to comply with the original
definition is not necessary in practice (although performed anyway in our implementation), since the
order of the channels in a CNN is arbitrary. Another possibility is to use the ReLU function, noting that
the sort function defined in (4.6) can be rewritten as follows:

φ(x1, x2) =
(
x1

x2

)
+ ReLU(x1 − x2)

(
−1
1

)
. (C.1)

Regarding the implementation of affine convolutions for training, each unconstrained kernel can be
in practice “telescoped” with its circular shifted version (this way, the sum of the resulting trainable
coefficients cancels out) and then the inverse of the kernel size is added element-wise as a non-trainable
offset. Despite this over-parameterized form (involving an extra degree of freedom), we found this solution
to be more easy to use in practice. Moreover, it ensures that all coefficients of the affine kernels follow the
same law at initialization. Another possibility is to set an arbitrary coefficient of the kernel (the last one
for instance) equal to one minus the sum of all the other coefficients. Note that the solution consisting in
dividing each kernel coefficient by the sum of all the other coefficients does not work because it generates
numerical instabilities as the divisor may be zero, or close to zero.

All our implementations are written in Python and are based on the PyTorch library. The code is
available at https://github.com/sherbret/normalization_equivariant_nn/.

C.2 Description of datasets and training details

We use the same large training set as in [194] for all the models and all the experiments, composed of
8, 694 images, including 400 images from the Berkeley Segmentation Dataset BSD400 [129], 4, 744 images
from the Waterloo Exploration Database [121], 900 images from the DIV2K dataset [3], and 2, 750 images
from the Flickr2K dataset [109]. This training set is augmented via random vertical and horizontal flips
and random 90◦ rotations. The dataset BSD32 [129], composed of the 32 images, is used as validation
set to control training and select the best model at the end. Finally, the two datasets Set12 and BSD68
[129], strictly disjoint from the training and validation sets, are used for testing.

All the models fθ are optimized by minimizing the average reconstruction error between the denoised
images x̂ = fθ(x+ ε), where ε ∼ N (0, σ2In), and ground-truths x with Adam algorithm [88]. For “non-
blind” models, the noise level σ is randomly chosen from [1, 50] during training. The training parameters,

171

https://github.com/sherbret/normalization_equivariant_nn/

Chapter C – Supplementary material for normalization-equivariant neural networks

specific to each model and its variants, are guided by the instructions of the original papers [194, 195],
to the extent possible, and are summarized in Table C.1. Note that each training iteration consists in a
gradient pass on a batch composed of patches randomly cropped from training images. Normalization-
equivariant variants need a longer training and always use a constant learning rate (speed improvements
are however certainly possible by adapting the learning rate throughout optimization, but we did not
investigated much about it). Furthermore, contrary to [194] where the ℓ1 loss function is recommended
to achieve better performance, supposedly due to its outlier robustness properties, we obtained slightly
better results with the usual mean squared error (MSE) loss when dealing with normalization-equivariant
networks. Training was performed with a Quadro RTX 6000 GPU.

Table C.1 – Training parameters. * indicates that it is divided by half every 100, 000 iterations.

Model Batch
size

Patch
size

Loss
function

Learning
rate

Number of
iterations

DRUNet [194]
ordinary 16 128× 128 ℓ1 1e-4* 800, 000

scale-equiv 16 128× 128 ℓ1 1e-4* 800, 000
norm-equiv 16 128× 128 MSE 1e-4 1, 800, 000

FDnCNN [195]
ordinary 128 70× 70 ℓ1 1e-4 500, 000

scale-equiv 128 70× 70 ℓ1 1e-4 500, 000
norm-equiv 128 70× 70 MSE 1e-4 900, 000

In Table C.2, we compare the computational costs of different variants for training and inference.
Interestingly, the computational cost for training is much more sensitive to the “affine mode” (involving
affine-constrained convolutions with reflect padding and affine residual connection) than to sort pooling
nonlinearities, while it is the opposite for inference. All in all, for gaining normalization-equivariance, the
learning and inference time is almost doubled for the DRUNet architecture [194]. Note however that we
do not claim to have the most optimized implementation and there is probably room for improvement.

Table C.2 – Execution time (in seconds) comparison on a training batch of size 16 × 1 × 128 × 128 for different
variants of the same DRUNet architecture [194] (GPU: Quadro RTX 6000).

Affine SortPool Backward pass ↓ Inference pass ↓

✗ ✗ 0.229 0.067
✗ ✓ 0.268 0.102
✓ ✗ 0.344 0.083
✓ ✓ 0.386 0.122

Affine: affine-constrained convolutions with reflect padding and affine residual connections.
SortPool: channel-wise sort pooling nonlinearities instead of ReLU.

172

C.3. Mathematical proofs for normalization-equivariant neural networks

C.3 Mathematical proofs for normalization-equivariant neural
networks

C.3.1 Proofs of Propositions

Lemma 1(Characterizations)

Proof. For each type of equivariance, both existence and uniqueness of f must be proven. Let 0n be the
zero vector of Rn and (yx)x∈C the values that f takes on its characteristic set C.

Scale-equivariance:
— Uniqueness: Let f and g two scale-equivariant functions such that ∀x ∈ S, f(x) = g(x). First of

all, for any scale-equivariant function h, h(0n) = h(2 ·0n) = 2h(0n), hence h(0n) = 0m. Therefore,
f(0n) = g(0n) = 0m.
Let x ∈ Rn \ {0n}. As x

∥x∥ ∈ S, we have f(x
∥x∥) = g(x

∥x∥) ⇒ 1
∥x∥f(x) = 1

∥x∥g(x) ⇒ f(x) = g(x).
Finally, f = g.

— Existence: Let f : x ∈ Rn 7→

{
∥x∥ · y x

∥x∥
if x ̸= 0n

0m otherwise
. Note that ∀x ∈ S, f(x) = yx. Let

x ∈ Rn and λ ∈ R+
∗ . If x ̸= 0n, f(λx) = ∥λx∥ · y λx

∥λx∥
= λ∥x∥ · y x

∥x∥
= λf(x) and if x = 0n

f(λx) = 0m = λf(x), hence f is scale-equivariant.
Shift-equivariance:
— Uniqueness: Let f and g two shift-equivariant functions such that ∀x ∈ Span(1n)⊥, f(x) = g(x).

Let x ∈ Rn. By orthogonal decomposition of Rn into Span(1n)⊥ and Span(1n):

∃! (x1, x2) ∈ Span(1n)⊥ × Span(1n), x = x1 + x2 .

Then, f(x) = f(x1 + x2) = f(x1) + x2 = g(x1) + x2 = g(x1 + x2) = g(x).
— Existence: Let f : x ∈ Rn 7→ yx1 + x2, where x = x1 + x2 is the unique decomposition such that

x1 ∈ Span(1n)⊥ and x2 ∈ Span(1n). Note that ∀x ∈ Span(1n)⊥, f(x) = yx. Let x ∈ Rn and
µ ∈ R. f(x+ µ) = yx1 + x2 + µ1m = f(x) + µ as if x orthogonally decomposes into x1 + x2 with
x1 ∈ Span(1n)⊥ and x2 ∈ Span(1n), then x+ µ orthogonally decomposes into x1 + (x2 + µ1m). f
is then shift-equivariant.

Normalization-equivariance:
— Uniqueness: Let f and g two normalization-equivariant functions such that ∀x ∈ S∩Span(1n)⊥, f(x) =

g(x). First, as f and g are a fortiori scale-equivariant, f(0n) = g(0n) = 0m. Let x ∈ Rn \ {0n}.
By orthogonal decomposition of Rn into Span(1n)⊥ and Span(1n):

∃! (x1, x2) ∈ Span(1n)⊥ × Span(1n), x = x1 + x2 .

If x1 = 0n, f(x) = f(0n+x2) = f(0n)+x2 = 0m+x2 = x2. Likewise, g(x) = x2, hence f(x) = g(x).
Else, if x1 ̸= 0n, f(x) = f(x1 + x2) = f(x1) + x2 = ∥x1∥f(x1

∥x1∥) + x2 = ∥x1∥g(x1
∥x1∥) + x2 =

g(x1) + x2 = g(x1 + x2) = g(x), as x1
∥x1∥ ∈ S ∩ Span(1n)⊥. Finally, f = g.

173

Chapter C – Supplementary material for normalization-equivariant neural networks

— Existence: Let f : x ∈ Rn 7→

{
∥x1∥ · y x1

∥x1∥
+ x2 if x1 ̸= 0n

x2 otherwise
, where x = x1+x2 is the unique de-

composition such that x1 ∈ Span(1n)⊥ and x2 ∈ Span(1n). Note that ∀x ∈ S ∩Span(1n)⊥, f(x) =
yx. Let x ∈ Rn, λ ∈ R+

∗ and µ ∈ R. x decomposes orthogonally into x1 + x2 with x1 ∈ Span(1n)⊥

and x2 ∈ Span(1n), and we have f(λx + µ) = f(λx1 + (λx2 + µ)), where λx1 + (λx2 + µ) is the
orthogonal decomposition of λx+ µ into Span(1n)⊥ and Span(1n).
If x1 = 0n, then λx1 = 0n and f(λx+ µ) = λx2 + µ = λf(x) + µ.
Else, if x1 ̸= 0n, then λx1 ̸= 0n, and f(λx + µ) = ∥λx1∥ · y λx1

∥λx1∥
+ (λx2 + µ) = λ(∥x1∥ · y x1

∥x1∥
+

x2) + µ = λf(x) + µ. Finally, f is normalization-equivariant.

Lemma 2 (Operations preserving equivariance)

Proof. Let x ∈ Rn, λ ∈ R+
∗ and µ ∈ R.

— If f and g are both scale-equivariant, (f ◦ g)(λx) = f(g(λx)) = f(λg(x)) = λf(g(x)) = λ(f ◦ g)(x)
and if they are both shift-equivariant, (f ◦ g)(x+ µ) = f(g(x+ µ)) = f(g(x) + µ) = f(g(x)) + µ =
(f ◦ g)(x) + µ.

— Let h : x 7→ (f(x)⊤ g(x)⊤)⊤. If f and g are both scale-equivariant, h(λx) = (f(λx)⊤ g(λx)⊤)⊤ =
(λf(x)⊤ λg(x)⊤)⊤ = λh(x) and if they are both shift-equivariant, h(x + µ) = (f(x + µ)⊤ g(x +
µ)⊤)⊤ = (f(x)⊤ + µ g(x)⊤ + µ)⊤ = h(x) + µ.

— Let t ∈ R and h : x 7→ (1 − t)f + tg. If f and g are both scale-equivariant, h(λx) = (1 −
t)f(λx) + tg(λx) = (1 − t)λf(x) + tλg(x) = λ((1 − t)f(x) + tg(x)) = λh(x) and if they are both
shift-equivariant, h(x + µ) = (1 − t)f(x + µ) + tg(x + µ) = (1 − t)(f(x) + µ) + t(g(x) + µ) =
(1− t)f(x) + tg(x) + (1− t)µ+ tµ = h(x) + µ.

Proposition 1

Proof. Let a < b ∈ R, f : Rn 7→ Rm, x ∈ Rn, λ ∈ R+
∗ and µ ∈ R.

We have Ta,b(λx+µ) = (b− a) λx+µ−min(λx+µ)
max(λx+µ)−min(λx+µ) + a = (b− a) x−min(x)

max(x)−min(x) + a = Ta,b(x) (i.e. Ta,b

is normalization-invariant). T −1
a,b denotes the inverse transformation intricately linked to the input x of

Ta,b (note that this is an improper notation as Ta,b is not bijective). Thus, if x is the input of Ta,b, then
T −1

a,b : y 7→ (max(x)−min(x)) y−a
b−a + min(x).

(T −1
a,b ◦ f ◦ Ta,b)(λx+ µ) = max(λx+ µ)−min(λx+ µ)

b− a
((f ◦ Ta,b)(λx+ µ)− a) + min(λx+ µ) ,

= λ
max(x)−min(x)

b− a
((f ◦ Ta,b)(λx+ µ)− a) + λmin(x) + µ ,

= λ

(
max(x)−min(x)

b− a
((f ◦ Ta,b)(x)− a) + min(x)

)
+ µ ,

= λ(T −1
a,b ◦ f ◦ Ta,b)(x) + µ .

Finally, T −1
a,b ◦ f ◦ Ta,b is normalization-equivariant.

174

C.3. Mathematical proofs for normalization-equivariant neural networks

Proposition 2

Proof. Let id : x ∈ R 7→ x be the identity function. id is a normalization-equivariant function so {x 7→
x} ⊆ NE(1). Reciprocally, let f ∈ NE(1). By scale-equivariance, f(0) = f(2×0) = 2f(0), hence f(0) = 0.
By shift-equivariance, ∀x ∈ R, f(x) = f(x+ 0) = f(0) + x = x, hence, f = id. Finally, NE(1) ⊆ {x 7→ x},
hence NE(1) = {x 7→ x}. Note that it is coherent with Lemma 1 which states that f is entirely determined
by its values on S ∩ Span(1n)⊥, which reduces to the empty set for n = 1.

Let F =
{

(x1, x2) 7→ A

(
x1

x2

)
if x1 ≤ x2 else B

(
x1

x2

)∣∣∣∣∣ A,B ∈ R2×2 s.t. A12 = B12 = 12

}
and f ∈

F . Let x ∈ R2, λ > 0 and µ ∈ R.

f(λx + µ) =
{

A(λx+ µ) if λx1 + µ ≤ λx2 + µ

B(λx+ µ) otherwise
=
{

λAx+ µ if x1 ≤ x2

λBx+ µ otherwise
= λf(x) + µ, hence

f ∈ NE(2).
Reciprocally, let f ∈ NE(2). For n = 2 and when considering the Euclidean distance, S∩Span(1n)⊥ =

{−u, u} with u = (−1/
√

2, 1/
√

2). Let

A = 1
u2 − u1

(
u2 − f(u)1 f(u)1 − u1

u2 − f(u)2 f(u)2 − u1

)
and B = 1

u2 − u1

(
u2 + f(−u)1 −f(−u)1 − u1

u2 + f(−u)2 −f(−u)2 − u1

)
. Let g :

(x1, x2) 7→ A

(
x1

x2

)
if x1 ≤ x2 else B

(
x1

x2

)
. We have g ∈ F since A12 = B12 = 12 (in particular g is

then normalization-equivariant) and ∀x ∈ {−u, u}, g(x) = f(x). According to Lemma 1, g = f , hence
f ∈ F . Finally, NE(2) ⊆ F , hence NE(2) = F .

Proposition 3

Proof. fNE
θ is composed of three types of building blocks of the following form:

— affine convolutions: aΘ : x ∈ Rn 7→ Θx with Θ ∈ Rm×n subject to Θ1n = 1m ,
— sort pooling nonlinearities: sortpool : Rn 7→ Rn ,
— max pooling layers: maxpool : Rn 7→ Rm with m < n ,
which are assembled using:
— function compositions: comp(f, g) 7→ f ◦ g ,
— skip connections: skip(f, g) 7→ (x 7→ (f(x)⊤ g(x)⊤)⊤) ,
— affine residual connections: arest(f, g) 7→ (1− t)f + tg with t ∈ R .
Note that the rows of Θ in aΘ encode the convolution kernels in a CNN and the trainable parameters,

denoted by θ, are only composed of matrices Θ and scalars t. Moreover, note that average pooling layers
are nothing else than affine convolutions with fixed parameters.

Since aΘ, sortpool and maxpool are normalization-equivariant functions, Lemma 2 states that the
resulting function fNE

θ is also normalization-equivariant. Moreover, since they are continuous and the
assembling operators preserve continuity, fNE

θ is continuous. Then, for a given input x ∈ Rn, we have
(sortpool ◦ aΘ)(x) = aπ(Θ)(x) = π(Θ)x, where π an operator acting on matrix Θ by permuting its rows
(note that the permutation π is both dependent on x and Θ). Therefore, applying a pattern “conv affine
+ sortpool” simply amounts locally to a linear transformation. Moreover, since applying a max pooling
layer amounts to removing some rows from matrix Θ, the local linear behavior is preserved. Thus, as the
nonlinearities of fNE

θ are exclusively brought by sort pooling patterns (and possibly max pooling layers),

175

Chapter C – Supplementary material for normalization-equivariant neural networks

fNE
θ is actually locally linear. In other words, fNE

θ is piecewise-linear. Moreover, as there is a finite number
(although high) of possible permutations (and possibly eliminations) of the rows of all matrices Θ, fNE

θ

has finitely many pieces. Finally, on each piece represented by the vector yr, fNE
θ (y) = Ayr

θ y. It remains
to prove that Ayr

θ 1n = 1m. But this property is easily obtained by noticing that, subject to dimensional
compatibility on matrices Θ:

— Θ1n = 1m ⇒ π(Θ)1n = 1m (“conv affine + sortpool”) ,
— Θ1n = 1m ⇒ ρ(Θ)1n = 1l (“conv affine + maxpool”) where ρ removes some rows ,
— Θ11n = 1m and Θ21m = 1l ⇒ Θ2Θ11n = 1l (composition) ,

— Θ11n1 = 1m1 and Θ21n2 = 1m2 ⇒

(
Θ1

Θ2

)
1n1+n2 = 1m1+m2 (skip connection) ,

— Θ11n = 1m and Θ21n = 1m ⇒ (1− t)Θ11n + tΘ21n = 1m (affine residual connection) .
Thus, the affine combinations are preserved all along the layers of fNE

θ . In the end,

fNE
θ (y) = Ayr

θ y, with Ayr

θ ∈ Rm×n such that Ayr

θ 1n = 1m .

C.3.2 Examples of normalization-equivariant conventional denoisers

Noise-reduction filters: All linear smoothing filters can be put under the form fΘ : x ∈ Rn 7→ Θx
with Θ ∈ Rn×n (the rows of Θ encode the convolution kernel). Obviously, fΘ is always scale-equivariant,
whatever the filter Θ. As for the shift-equivariance, a simple calculation shows that:

x 7→ Θx is shift-equivariant ⇔ ∀x ∈ Rn,∀µ ∈ R,Θ(x+ µ1n) = Θx+ µ1m ⇔ Θ1n = 1m .

Since the sum of the coefficients of a Gaussian kernel and an averaging kernel is one, we have Θ1n = 1m,
hence these linear filters are normalization-equivariant. The median filter is also normalization-equivariant
because median(λx+ µ) = λmedian(x) + µ for λ ∈ R+

∗ and µ ∈ R.

Patch-based denoising: -
− NLM [15]: Assuming that the smoothing parameter h is proportional to σ, i.e. h = ασ, we have

e
−

∥p(λyi+µ)−p(λyj +µ)∥2
2

(αλσ)2 = e
−

λ2∥p(yi)−p(yj)∥2
2

λ2(ασ)2 = e−
∥p(yi)−p(yj)∥2

2
h2 , hence the aggregation weights are normalization-

invariant. Then,

fNLM(λy + µ, λσ)i = 1
Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥2

2
h2 (λyj + µ) withWi =

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥2

2
h2 ,

= 1
Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥2

2
h2 λyj + 1

Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥2

2
h2 µ ,

= λ

 1
Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥2

2
h2 yj

+ µ ,

= λfNLM(y, σ)i + µ .

176

C.4. Additional results

Finally, fNLM is a normalization-equivariant function.
− NL-Ridge [65]: The block-matching procedure at the heart of NL-Ridge is normalization-invariant

as it is based on comparisons of the ℓ2 norm of the difference of image patches. For each noisy patch
group, a.k.a. similarity matrix, Y ∈ Rn×k composed of k vectorized similar patches of size n, the optimal
weights Θ∗ ∈ Rk×k, in the ℓ2 risk sense, are computed such that YΘ∗ is as close as possible to the
(unknown) clean patch group X ∈ Rn×k. The two successive minimization problems approximating Θ
under affine constraints C = {Θ ∈ Rk×k,Θ⊤1k = 1k} can be put under the form:

Θ∗ = arg min
Θ∈C

tr
(

1
2Θ⊤QΘ + CΘ

)
= Ik − nσ2

[
Q−1 − Q−11k(Q−11⊤

k)
1⊤

k Q
−11k

]
.

with Q = Y ⊤Y or Q = X̂⊤X̂ + nσ2Ik for the first and second step, respectively (X̂ is the patch group
estimate obtained after the first step), C = nσ2Ik−Q and where tr denotes the trace operator. Depending
on the step, we have:

2 tr
(

1
2Θ⊤QΘ + CΘ

)
=


∥YΘ− Y ∥2

F + 2nσ2 tr (Θ) + const
or
∥X̂Θ− X̂∥2

F + nσ2∥Θ∥2
F + const

where ∥.∥F is the Frobenius norm. But, for any Z ∈ Rn×k and any function h : Θ ∈ Rk×k 7→ R,

∥(λZ + µ)Θ− (λZ + µ)∥2
F + n(λσ)2h(Θ) = λ2 (∥ZΘ− Z∥2

F + nσ2h(Θ)
)
,

assuming that Θ⊤1k = 1k. Therefore, the aggregation weights Θ∗ are normalization-invariant and (λY +
µ)Θ∗ = λYΘ∗+µ. Finally, NL-Ridge with affine constraints encodes a normalization-equivariant function.

TV denoising: Let y ∈ Rn, λ ∈ R+
∗ and µ ∈ R. Let x∗ = arg min

x∈Rn
∥x∥TV s.t. ∥y − x∥2

2 = nσ2 be the

solution of TV [156].

fTV(λy + µ, λσ) = arg min
x∈Rn

∥x∥TV s.t. ∥λy + µ− x∥2
2 = n(λσ)2 ,

= arg min
x∈Rn

λ

∥∥∥∥x− µλ
∥∥∥∥

TV
s.t. λ2

∥∥∥∥y − x− µ
λ

∥∥∥∥2

2
= λ2nσ2 ,

= arg min
x∈Rn

∥∥∥∥x− µλ
∥∥∥∥

TV
s.t.

∥∥∥∥y − x− µ
λ

∥∥∥∥2

2
= nσ2 ,

= λx∗ + µ ,

= λfTV(y, σ) + µ .

Finally, fTV is a normalization-equivariant function.

C.4 Additional results

177

Chapter C – Supplementary material for normalization-equivariant neural networks

8 12 16 20 24 28 32
8

12

16

20

24

28

32

Input PSNR

O
ut

pu
t

PS
N

R

ordinary
scale-equiv
norm-equiv
identity

8 12 16 20 24 28 32
8

12

16

20

24

28

32

36

Input PSNR
8 12 16 20 24 28 32

8

12

16

20

24

28

32

36

Input PSNR

Figure C.1 – Comparison of the performance of our normalization-equivariant FDnCNN [195] with its scale-
equivariant and ordinary counterparts for Gaussian denoising on the Set12 dataset. The vertical blue line indicates
the unique noise level on which the networks were trained exclusively (from left to right: σ = 50, σ = 25 and
σ = 10). In all cases, normalization-equivariant networks generalize much more robustly beyond the training noise
level.

8 12 16 20 24 28 32
8

12

16

20

24

28

32

Input PSNR

O
ut

pu
t

PS
N

R

ordinary
scale-equiv (relu)
norm-equiv
scale-equiv (affine)
scale-equiv (sortpool)
identity

8 12 16 20 24 28 32
8

12

16

20

24

28

32

Input PSNR

(a) Uniform (b) Laplace

8 12 16 20 24 28 32
8

12

16

20

24

28

32

Input PSNR
5 15 25 35 45 55 65 75 85

26

28

30

32

34

36

38

Quality factor

(c) Rayleigh (d) JPEG

Figure C.2 – Comparison of the performance of our normalization-equivariant alternative with its scale-
equivariant (under three different forms) and ordinary counterparts for different types of additive noises on
the Set12 dataset with “blind” FDnCNN architecture. The vertical blue line indicates the unique noise level on
which the “blind” networks were trained exclusively. Note that JPEG noise (d) (i.e. JPEG artifacts) is treated
with the networks of (a), assimilating JPEG noise with uniform noise (similar outcomes can be achieved when
using the networks specialized for Laplace noise (b)).

178

C.4. Additional results

...... Noisy Scale-equivariant Normalization-equivariant

Denoised Adaptive filters Denoised Adaptive filters

σ
=

75

PSNR:
10.63 dB

PSNR:
27.53 dB

Σ = 0.98

Σ = 1.00

PSNR:
27.54 dB

Σ = 1

Σ = 1

σ
=

25

Pixel 1

Pixel 2

PSNR:
20.17 dB

PSNR:
32.18 dB

Σ = 1.04

Σ = 0.99

PSNR:
32.14 dB

Σ = 1

Σ = 1

σ
=

5

PSNR:
34.15 dB

PSNR:
33.67 dB

Σ = 0.99

Σ = 0.99

PSNR:
36.63 dB

Σ = 1

Σ = 1

Figure C.3 – Visual comparisons of the generalization capabilities of a scale-equivariant FDnCNN [195] (left)
and its normalization-equivariant counterpart (right) for Gaussian noise. Both networks were trained for Gaussian
noise at noise level σ = 25 exclusively. The adaptive filters (rows of Ayr

θ in Prop. 3) are indicated for two particular
pixels as well as the sum of their coefficients (note that some weights are negative, indicated in red). The scale-
equivariant network tends to excessively smooth out the image when evaluated at a lower noise level, whereas the
normalization-equivariant network is more adaptable and considers the underlying texture to a greater extent.

Table C.3 – Real image denoising on Darmstadt Noise Dataset (DND) with raw data and variance-stabilizing
transformation (VST). All “non-blind” methods were trained solely on synthetic white Gaussian noise.

Quality metric PSNR ↑ SSIM ↑ Quality metric PSNR ↑ SSIM ↑

DRUNet
ordinary 47.58 0.9762

FDnCNN
ordinary 47.37 0.9754

scale-equiv 47.59 0.9763 scale-equiv 47.31 0.9754
norm-equiv 47.57 0.9762 norm-equiv 47.35 0.9753

Table C.4 – Test errors of different variants of the same VGG8b architecture for image classification. Note that
norm-equivariance is with respect to the classification vector and becomes norm-invariance after label selection
via argmax. See [138] for details about architecture, datasets and training.

Dataset MNIST Kuzushiji-MNIST Fashion-MNIST

VGG8b
ordinary 0.26% 1.53% 4.53%

scale-equiv 0.37% 1.52% 5.01%
norm-equiv 0.44% 2.78% 6.57%

Note that for norm-equiv variants, learning rate is initialized to 3e-5 instead of 5e-4 and dropout rate is halved.

179

Chapter C – Supplementary material for normalization-equivariant neural networks

PSNR: 10.63 dB
(λ = 3)

(a)

PSNR: 12.34 dB PSNR: 24.45 dB PSNR: 24.34 dB

input y f∅
θ (y) 3f∅

θ (y/3) fNE
θ (y)

PSNR: 22.67 dB
(λ = 0.75)

(b)

PSNR: 31.69 dB PSNR: 32.14 dB PSNR: 32.07 dB

inputy (x ∈ [0.3, 1]n) fSE
θ (y) fSE

θ (y − 0.3) + 0.3 fNE
θ (y)

Figure C.4 – Denoising results for example images of the form y = x + λε with σ = 25/255 and x ∈ [0, 1]n, by
FDnCNN [195] specialized for noise level σ only. Here, f∅

θ , fSE
θ and fNE

θ denote the ordinary, scale-equivariant
and normalization-equivariant variants, respectively.

180

Appendix D

SUPPLEMENTARY MATERIAL FOR

NL-RIDGE

D.1 Mathematical proofs for NL-Ridge

In what follows, X,Y ∈ Rn×k. In each case, Yi,j follows a noise model which is centered on Xi,j (i.e.
E(Yi,j) = Xi,j) and variables Yi,j are supposed independent along each row. More precisely,

— Gaussian noise: Yi,j ∼ N (Xi,j , Vi,j) with V ∈ (R+
∗)n×k representing the noisemap, i.e. the variance

per pixel. In particular, for homoscedastic Gaussian noise, V = σ21n1⊤
k with σ > 0, that is

Yi,j ∼ N (Xi,j , σ
2),

— Poisson noise: Yi,j ∼ P(Xi,j),
— Mixed Poisson-Gaussian noise: Yi,j ∼ aP(Xi,j/a) +N (0, b) with (a, b) ∈ (R+

∗)2.
The local denoiser in NL-Ridge is of the form fΘ : Y ∈ Rn×k 7→ YΘ with Θ ∈ Rk×k. The quadratic risk
is defined as RΘ(X) = E∥fΘ(Y)−X∥2

F .

D.1.1 Minimization of the quadratic risk

Lemma 4 (A closed-form expression for the quadratic risk). Let X,Y ∈ Rn×k and V ∈ (R+
∗)n×k such

that the Yi,j are independent along each row, E(Yi,j) = Xi,j and V(Yi,j) = Vi,j.

RΘ(X) = E∥fΘ(Y)−X∥2
F = ∥XΘ−X∥2

F + tr
(
Θ⊤ diag(V ⊤1n)Θ

)
.

Proof. By development of the squared Frobenius norm:

∥YΘ−X∥2
F = ∥YΘ∥2

F + ∥X∥2
F − 2⟨YΘ, X⟩F .

Now by linearity of expectation:
E⟨YΘ, X⟩F = ⟨XΘ, X⟩F ,

and, as Yi,j are independent along each row, and as E(Y 2
i,j) = E(Yi,j)2 + V(Yi,j) = X2

i,j + Vi,j , we have:

E∥YΘ∥2
F = E

 n∑
i=1

k∑
j=1

(
k∑

l=1
Yi,lΘl,j

)2 =
n∑

i=1

k∑
j=1

E

(k∑
l=1

Yi,lΘl,j

)2
181

Chapter D – Supplementary material for NL-Ridge

=
n∑

i=1

k∑
j=1

 k∑
l=1

(X2
i,j + Vi,j)Θ2

l,j + 2
∑

1≤l<l′≤k

Xi,lΘl,jXi,l′Θl′,j



=
n∑

i=1

k∑
j=1

 k∑
l=1

Vi,jΘ2
l,j +

∑
1≤l≤k
1≤l′≤k

Xi,lΘl,jXi,l′Θl′,j


=

n∑
i=1

k∑
j=1

k∑
l=1

Vi,jΘ2
l,j +

n∑
i=1

k∑
j=1

(
k∑

l=1
Xi,lΘl,j

)2

=
k∑

j=1

k∑
l=1

Θl,j

(
n∑

i=1
Vi,j

)
Θl,j + ∥XΘ∥2

F

= tr
(
Θ⊤ diag(V ⊤1n)Θ

)
+ ∥XΘ∥2

F .

Hence,
E∥YΘ−X∥2

F = ∥XΘ−X∥2
F + tr

(
Θ⊤ diag(V ⊤1n)Θ

)
.

Proposition 5 (Minimization of the quadratic risk). Let RΘ(X) = E∥fΘ(Y)−X∥2
F . Let Q = X⊤X+D

with D a diagonal matrix defined as:

D =


nσ2Ik (for homoscedastic Gaussian noise)
diag(V ⊤1n) (for heteroscedastic Gaussian noise)
diag(X⊤1n) (for Poisson noise)
diag((aX + b)⊤1n) (for mixed Poisson-Gaussian noise)

.

If Q is positive definite:

arg min
Θ∈Rk×k

RΘ(X) = Ik −Q−1D ,

and
arg min

Θ∈Rk×ks.t. Θ⊤1k=1k

RΘ(X) = Ik −
[
Q−1 − Q−11k(Q−11k)⊤

⟨Q−1,1k1⊤
k ⟩F

]
D .

Proof. By Lemma 4,

RΘ(X) = ∥XΘ−X∥2
F + tr

(
Θ⊤ diag(V ⊤1n)Θ

)
= tr

(
(XΘ−X)⊤(XΘ−X)

)
+ tr

(
Θ⊤ diag(V ⊤1n)Θ

)
= tr

(
Θ⊤X⊤XΘ− 2X⊤XΘ +X⊤X + Θ⊤ diag(V ⊤1n)Θ

)
= tr

(
Θ⊤(X⊤X + diag(V ⊤1n))Θ− 2X⊤XΘ

)
+ tr

(
X⊤X

)
Lemma 8 allows to conclude.

182

D.1. Mathematical proofs for NL-Ridge

D.1.2 Unbiased risk estimates (URE)

The three following propositions introduce unbiased risk estimates for RΘ(X) depending on the noise
model assumed on Y , denoted UREΘ(Y) in a generic way.

Proposition 6 (Gaussian noise). An unbiased estimate of the risk RΘ(X) = E∥fΘ(Y)−X∥2
F is:

SUREΘ(Y) = ∥YΘ− Y ∥2
F + 2 tr(DΘ)− tr(D) ,

with D = diag(V ⊤1n). In particular, for homoscedastic Gaussian noise, SUREΘ(Y) = ∥YΘ − Y ∥2
F +

2nσ2 tr(Θ)− nkσ2 .

Proof. For n = 1, all components of Y are independent and generalized Stein’s unbiased risk estimate
(SURE) [172] is given by (see Theorem 2):

SUREΘ(Y) = ∥fΘ(Y)− Y ∥2
F + 2 tr(diag(V ⊤1n)Θ)− tr(diag(V ⊤1n)) .

For n ≥ 1, E∥fΘ(Y) − X∥2
F =

n∑
i=1

E∥Yi,·Θ − Xi,·∥2
F =

n∑
i=1

E (SUREΘ(Yi,·)) = E

(
n∑

i=1
SUREΘ(Yi,·)

)
,

hence,

SUREΘ(Y) =
n∑

i=1
SUREΘ(Yi,·) =

n∑
i=1
∥Yi,·Θ− Yi,·∥2

F + 2 tr(diag(V ⊤
i,·)Θ)− tr(diag(V ⊤

i,·))

= ∥YΘ− Y ∥2
F + 2 tr(DΘ)− tr(D) .

Proposition 7 (Poisson noise). An unbiased estimate of the risk RΘ(X) = E∥fΘ(Y)−X∥2
F is:

PUREΘ(Y) = ∥YΘ− Y ∥2
F + 2 tr(DΘ)− tr(D) ,

with D = diag(Y ⊤1n).

Proof. For n = 1, all components of Y are independent and Poisson unbiased risk estimate (PURE)
[94, 120] is given by (see Theorem 3):

PUREΘ(Y) = ∥fΘ(Y)∥2
F + ∥Y ∥2

F − Y 1k − 2⟨f [−1]
Θ (Y), Y ⟩F

with f
[−1]
Θ is such that f [−1]i

Θ (Y) = f i
Θ(Y − ei). We have:

⟨f [−1]
Θ (Y), Y ⟩F =

k∑
j=1

(
k∑

l=1
(Y1,l − δl,j)Θl,j

)
Y1,j =

k∑
j=1

(
k∑

l=1
Y1,lΘl,j

)
Y1,j −

k∑
j=1

(
k∑

l=1
δl,jΘl,j

)
Y1,j

= ⟨YΘ, Y ⟩F −
k∑

j=1
Θj,jY1,j = ⟨YΘ, Y ⟩F − Y diag(Θ) .

So finally, PUREΘ(Y) = ∥YΘ− Y ∥2
F − Y 1k + 2Y diag(Θ) = ∥YΘ− Y ∥2

F + 2 tr(DΘ)− tr(D).

183

Chapter D – Supplementary material for NL-Ridge

For n ≥ 1, E∥fΘ(Y) − X∥2
F =

n∑
i=1

E∥Yi,·Θ − Xi,·∥2
F =

n∑
i=1

E(PUREΘ(Yi,·)) = E

(
n∑

i=1
PUREΘ(Yi,·)

)
,

hence,

PUREΘ(Y) =
n∑

i=1
PUREΘ(Yi,·) =

n∑
i=1
∥Yi,·Θ− Yi,·∥2

F + 2 tr(diag(Y ⊤
i,·)Θ)− tr(diag(Y ⊤

i,·))

= ∥YΘ− Y ∥2
F + 2 tr(DΘ)− tr(D) .

Proposition 8 (Mixed Poisson-Gaussian noise). An unbiased estimate of the risk RΘ(X) = E∥fΘ(Y)−
X∥2

F is:
PG-UREΘ(Y) = ∥YΘ− Y ∥2

F + 2 tr(DΘ)− tr(D) ,

with D = diag((aY + b)⊤1n).

Proof. For n = 1, all components of Y are independent and the Poisson-Gaussian unbiased risk estimate
(PG-URE) [94] is given by (see Theorem 4):

PG-UREΘ(Y) = ∥fΘ(Y)∥2
F + ∥Y ∥2

F − 2⟨f [−a]
Θ (Y), Y ⟩F − (aY + b)1k + 2bdiv(f [−a]

Θ)(Y)

with f
[−a]
Θ is such that f [−a]i

Θ (Y) = f i
Θ(Y − aei). We have:

⟨f [−a]
Θ (Y), Y ⟩F =

k∑
j=1

(
k∑

l=1
(Y1,l − aδl,j)Θl,j

)
Y1,j

=
k∑

j=1

(
k∑

l=1
Y1,lΘl,j

)
Y1,j −

k∑
j=1

(
k∑

l=1
aδl,jΘl,j

)
Y1,j

= ⟨YΘ, Y ⟩F − a
k∑

j=1
Θj,jY1,j = ⟨YΘ, Y ⟩F − aY diag(Θ) .

and div(f [−a]
Θ)(Y) =

k∑
j=1

∂f
[−a]j
Θ
∂yj

(Y) =
k∑

j=1

∂

∂yj
f j

Θ(Y − aej) =
k∑

j=1
Θj,j = 1⊤

k diag(Θ) .

So finally, PG-UREΘ(Y) = ∥YΘ−Y ∥2
F−(aY +b)1k +2(aY +b) diag(Θ) = ∥YΘ−Y ∥2

F +2 tr(DΘ)−tr(D).

For n ≥ 1, E∥fΘ(Y)−X∥2
F =

n∑
i=1

E∥Yi,·Θ−Xi,·∥2
F =

n∑
i=1

E(PG-UREΘ(Yi,·)) = E

(
n∑

i=1
PG-UREΘ(Yi,·)

)
,

hence,

PG-UREΘ(Y) =
n∑

i=1
PG-UREΘ(Yi,·)

=
n∑

i=1
∥Yi,·Θ− Yi,·∥2

F + 2 tr(diag((aYi,· + b)⊤)Θ)− tr(diag((aYi,· + b)⊤))

= ∥YΘ− Y ∥2
F + 2 tr(DΘ)− tr(D) .

184

D.1. Mathematical proofs for NL-Ridge

In the following, we denote UREΘ(Y) either the SUREΘ(Y), PUREΘ(Y) or PG-UREΘ(Y) estimate,
depending on the noise model assumed on Y .

Proposition 9 (Minimization of the URE). Let Q = Y ⊤Y and D a positive diagonal one defined as:

D =


nσ2Ik (for homoscedastic Gaussian noise)
diag(V ⊤1n) (for heteroscedastic Gaussian noise)
diag(Y ⊤1n) (for Poisson noise)
diag((aY + b)⊤1n) (for mixed Poisson-Gaussian noise)

.

If Q is definite positive,

arg min
Θ∈Rk×k

UREΘ(Y) = Ik −Q−1D ,

and
arg min

Θ∈Rk×ks.t. Θ⊤1k=1k

UREΘ(Y) = Ik −
[
Q−1 − Q−11k(Q−11k)⊤

⟨Q−1,1k1⊤
k ⟩F

]
D .

Proof. Using Proposition 6, 7 and 8,

UREΘ(Y) = ∥YΘ− Y ∥2
F + 2 tr(DΘ)− tr(D)

= tr
(
Θ⊤Y ⊤YΘ + 2(D − Y ⊤Y)Θ

)
+ const

Lemma 8 allows to conclude.

Proposition 10 (URE for a noisier risk and its minimization). Let α > 0 and W ∈ Rn×k with Wi,j ∼
N (0, 1) independent along each row. We define the noisier risk as RNr,α

Θ (X) = E∥fΘ(Y + αW) −X∥2
F .

An unbiased estimate of the noisier risk RNr,α
Θ (X) is:

URENr,α
Θ (Y) = UREΘ(Y) + nα2∥Θ∥2

F .

and its minimization yields:

arg min
Θ∈Rk×k

URENr,α
Θ (Y) = Ik −Q−1(D + nα2Ik) ,

and
arg min

Θ∈Rk×ks.t. Θ⊤1k=1k

URENr,α
Θ (Y) = Ik −

[
Q−1 − Q−11k(Q−11k)⊤

⟨Q−1,1k1⊤
k ⟩F

]
(D + nα2Ik) ,

with Q = Y ⊤Y + nα2Ik a symmetric definite-positive matrix and D a diagonal one defined as:

D =


nσ2Ik (for homoscedastic Gaussian noise)
diag(V ⊤1n) (for heteroscedastic Gaussian noise)
diag(Y ⊤1n) (for Poisson noise)
diag((aY + b)⊤1n) (for mixed Poisson-Gaussian noise)

.

185

Chapter D – Supplementary material for NL-Ridge

Proof. As fΘ is a linear function and Y and W are independent:

RNr,α
Θ (X) = E∥fΘ(Y + αW)−X∥2

F

= E
[
∥fΘ(Y)−X∥2

F + α2∥fΘ(W)∥2
F + 2⟨fΘ(Y)−X,αfΘ(W)⟩F

]
= RΘ(X) + α2E∥fΘ(W)∥2

F

= E [UREΘ(Y)] + α2E∥WΘ∥2
F

with, as the Wi,j are independent along each row:

E∥WΘ∥2
F =

n∑
i=1

k∑
j=1

E

(k∑
l=1

Wi,lΘl,j

)2 =
n∑

i=1

k∑
j=1

k∑
l=1

Θ2
l,j = n∥Θ∥2

F .

Now, using Proposition 6, 7 and 8,

UREΘ(Y) = ∥YΘ− Y ∥2
F + 2 tr(DΘ)− tr(D) + nα2∥Θ∥2

F

= tr
(
Θ⊤(Y ⊤Y + nα2Ik)Θ + 2(D − Y ⊤Y)Θ

)
+ const

Lemma 8 allows to conclude.

D.1.3 Optimal combination weights are not necessary non-negative

Let (α, β) ∈ (R+
∗)2 and X ∈ Rn×k be the noise-free similarity matrix gathering k patches of size

√
n×
√
n:

X =



α 0
β α

.
. . . α

0 β

0 0
...

...
0 0


.

Assuming homoscedastic Gaussian noise of variance σ2, the optimal weights are given by Prop. 5:

Θ∗ = Ik − nσ2(X⊤X + nσ2Ik)−1 .

186

D.2. Mathematical proofs for NL-Bayes

In this toy example, we have:

X⊤X + nσ2Ik =


a b 0

b
.
. b

0 b a

 ,

with a = α2 + β2 + nσ2 > 0 and b = αβ > 0. According to [34], its inverse, as long as a > 0, b ̸= 0 and
a > 2|b| (which is the case as (α− β)2 ≥ 0⇒ α2 + β2 ≥ 2αβ ⇒ a > 2b > 0), is equal to:

(X⊤X + nσ2Ik)−1
ij = (−1)i+j 1

b

(ri
+ − ri

−)(rk−j+1
+ − rk−j+1

−)
(r+ − r−)(rk+1

+ − rk+1
−)

with r± = a±
√

a2−4b2

2b . Therefore, as r+ > r− > 0 and b > 0,

1
b

(ri
+ − ri

−)(rk−j+1
+ − rk−j+1

−)
(r+ − r−)(rk+1

+ − rk+1
−)

> 0

and Θ∗ has both negative coefficients (e.g. when i+j ≡ 0 mod 2 and i ̸= j) and non-negative coefficients
(e.g. when i+ j ≡ 1 mod 2).

D.2 Mathematical proofs for NL-Bayes

In what follows, X,Y ∈ Rn×k, with Yi,j ∼ N (Xi,j , σ
2) independent along each column. The local

denoiser in NL-Bayes is of the form fΘ,β : Y ∈ Rn×k 7→ ΘY + β1⊤
k with Θ ∈ Rn×n and β ∈ Rn. The

quadratic risk is defined as RΘ,β(X) = E∥fΘ,β(Y) −X∥2
F . We denote by µZ ∈ Rk and CZ ∈ Rn×n the

empirical mean and covariance matrix of a group of patches Z ∈ Rn×k, that is

µZ = 1
k
Z1k and CZ = 1

k
(Z − µZ1⊤

k)(Z − µZ1⊤
k)⊤ .

D.2.1 Minimization of the quadratic risk

Lemma 5 (A closed-form expression for the quadratic risk).

RΘ,β(X) = E∥fΘ,β(Y)−X∥2
F = ∥ΘX −X + β1⊤

k ∥2
F + kσ2∥Θ∥2

F .

Proof. By development of the Frobenius norm and using Lemma 4:

E∥fΘ,β(Y)−X∥2
F = E

[
∥ΘY −X∥2

F + ∥β1⊤
k ∥2

F + 2⟨ΘY −X,β1⊤
k ⟩F

]
= E∥Y ⊤Θ⊤ −X⊤∥2

F + ∥β1⊤
k ∥2

F + 2E⟨ΘY −X,β1⊤
k ⟩F

= ∥X⊤Θ⊤ −X⊤∥2
F + kσ2∥Θ⊤∥2

F + ∥β1⊤
k ∥2

F + 2⟨ΘX −X,β1⊤
k ⟩F

= ∥XΘ−X + β1⊤
k ∥2

F + kσ2∥Θ∥2
F

187

Chapter D – Supplementary material for NL-Ridge

Proposition 11 (Minimization of the quadratic risk).

arg min
Θ∈Rn×n

β∈Rn

RΘ,β(X) = Θ̂, β̂

with Θ̂ = CX(CX + σ2In)−1 and β̂ = (In − Θ̂)µX .

Proof. According to Lemma 5, RΘ,β(X) = E∥fΘ,β(Y)−X∥2
F = ∥ΘX −X + β1⊤

k ∥2
F + kσ2∥Θ∥2

F . For Θ
fixed and using Lemma 9, it is minimized for β = −(ΘX −X)1k/k = (In −Θ)µX .
Injecting it in the expression of the risk:

∥(X − µX1⊤
k)⊤Θ⊤ − (X − µX1⊤

k)⊤∥2
F + kσ2∥Θ⊤∥2

F

This quantity is minimal, using Lemma 8, for

Θ̂⊤ = In − kσ2((X − µX1⊤
k)(X − µX1⊤

k)⊤ + kσ2In)−1 = In − kσ2(kCX + kσ2In)−1 ,

i.e.
Θ̂ = In − σ2(CX + σ2In)−1 = CX(CX + σ2In)−1 .

D.2.2 Unbiased risk estimate (URE)

Proposition 12 (Gaussian noise). An unbiased estimate of the risk RΘ,β(X) = E∥fΘ,β(Y)−X∥2
F is:

SUREΘ,β(Y) = ∥ΘY − Y + β1⊤
k ∥2

F + 2kσ2 tr(Θ)− nkσ2 .

Proof. For k = 1, all components of Y are independent and Stein’s unbiased risk estimate (SURE) [172]
is given by (see Theorem 1):

SUREΘ,β(Y) = −nσ2 + ∥fΘ,β(Y)− Y ∥2
F + 2σ2 div fΘ,β(Y)

with div fΘ,β(Y) =
n∑

i=1

∂f i
Θ,β

∂yi
(Y) =

n∑
i=1

∂

∂yi

n∑
l=1

Θi,lYl,1 =
n∑

i=1
Θi,i = tr(Θ).

For k ≥ 1,

E∥fΘ,β(Y)−X∥2
F =

m∑
j=1

E∥ΘY·,j + β −X·,j∥2
F =

k∑
j=1

E(SUREΘ,β(Y·,j)) = E

 k∑
j=1

SUREΘ,β(Y·,j)

 ,

188

D.3. Mathematical proofs for BM3D

hence,

SUREΘ,β(Y) =
k∑

j=1
SUREΘ,β(Y·,j) = ∥ΘY − Y + β1⊤

k ∥2
F + 2kσ2 tr(Θ)− nkσ2 .

Proposition 13 (Minimization of the URE).

arg min
Θ,β

SUREΘ,β(Y) = Θ̂, β̂

with Θ̂, β̂ = (CY − σ2In)C−1
Y , (In − Θ̂)µY .

Proof. For Θ fixed and using Lemma 9, SUREΘ,β(Y) is minimal for β = −(ΘY −Y)1k/k = (In−Θ)µY .
Injecting it in the expression of SURE:

∥(Y − µY 1⊤
k)⊤Θ⊤ − (Y − µY 1⊤

k)⊤∥2
F + 2kσ2 tr(Θ)− nkσ2 .

This quantity is minimal, using Lemma 8, for

Θ̂⊤ = In − kσ2((Y − µY 1⊤
k)(Y − µY 1⊤

k)⊤)−1 = In − σ2C−1
Y ,

i.e.
Θ̂ = (CY − σ2In)C−1

Y .

D.3 Mathematical proofs for BM3D

In what follows, X,Y ∈ Rn×k, with Yi,j ∼ N (Xi,j , σ
2) independent. The local denoiser in BM3D is of

the form fΘ : Y 7→ P−1(Θ⊙(PY Q))Q−1 with Θ ∈ Rn×k and P ∈ Rn×n and Q ∈ Rk×k are two orthogonal
matrices (i.e. PP⊤ = In and QQ⊤ = Ik). The quadratic risk is defined as RΘ(X) = E∥fΘ(Y)−X∥2

F .

D.3.1 Minimization of the quadratic risk

Lemma 6 (A closed-form expression for the quadratic risk).

RΘ(X) = E∥fΘ(Y)−X∥2
F = ∥(Θ− 1n1⊤

k)⊙ PXQ∥2
F + σ2∥Θ∥2

F .

Proof. Let W = Y −X. We have Wi,j ∼ N (0, σ2). As P and Q are orthogonal matrices, they preserve
the ℓ2 norm:

∥fΘ(Y)−X∥2
F = ∥Θ⊙ (PY Q)− PXQ∥2

F

= ∥Θ⊙ (PXQ) + Θ⊙ (PWQ)− PXQ∥2
F

189

Chapter D – Supplementary material for NL-Ridge

= ∥(Θ− 1n1⊤
k)⊙ PXQ∥2

F + ∥Θ⊙ (PWQ)∥2
F + 2⟨(Θ− 1n1⊤

k)⊙ PXQ,Θ⊙ (PWQ)⟩F

Now computing the expected value for each term yields:

E⟨(Θ− 1n1⊤
k)⊙ (PXQ),Θ⊙ (PWQ)⟩F = 0

and

E∥Θ⊙ (PWQ)∥2
F =

n∑
i=1

k∑
j=1

E[(Θi,j(PWQ)i,j)2] =
n∑

i=1

k∑
j=1

V[Θi,j(PWQ)i,j] + E[Θi,j(PWQ)i,j]2︸ ︷︷ ︸
=0

=
n∑

i=1

k∑
j=1

Θ2
i,jV[(PWQ)i,j]

with, as Wi,j are independent and P and Q are orthogonal,

V[(PWQ)i,j] = V

(
k∑

l=1

(
n∑

l′=1
Pi,l′Wl′,l

)
Ql,j

)
=

k∑
l=1

Q2
l,jV

(
n∑

l′=1
Pi,l′Wl′,l

)
=

k∑
l=1

Q2
l,j

n∑
l′=1

P 2
i,l′V (Wl′,l) = σ2 .

Finally, E∥fΘ(Y)−X∥2
F = ∥(Θ− 1n1⊤

k)⊙ PXQ∥2
F + σ2∥Θ∥2

F .

Proposition 14 (Minimization of the quadratic risk).

arg min
Θ∈Rn×k

RΘ(X) = (PXQ)⊙2

σ2 + (PXQ)⊙2 .

Proof. According to Lemma 6, RΘ(X) = E∥fΘ(Y)−X∥2
F = ∥(Θ− 1n1⊤

k)⊙ PXQ∥2
F + σ2∥Θ∥2

F .

Let α ∈ R. The minimum of x 7→ α2(x− 1)2 + σ2x2 is obtained for x = α2

σ2 + α2 . Finally,

arg min
Θ
∥(Θ− 1n1⊤

k)⊙ PXQ∥2
F + σ2∥Θ∥2

F = (PXQ)⊙2

σ2 + (PXQ)⊙2 .

D.3.2 Unbiased risk estimate (URE)

Proposition 15 (Gaussian noise). An unbiased estimate of the risk RΘ(X) = E∥fΘ(Y)−X∥2
F is:

SUREΘ(Y) = ∥(Θ− 1n1⊤
k)⊙ PY Q∥2

F + 2σ2⟨Θ,1n1⊤
k ⟩F − nkσ2 .

Proof. Let W = Y − X. By development of the squared Frobenius norm, ∥fΘ(Y) − Y ∥2
F = ∥fΘ(Y) −

190

D.3. Mathematical proofs for BM3D

X∥2
F + ∥W∥2

F − 2⟨fΘ(Y)−X,W ⟩F . As P−1 = P⊤ and Q−1 = Q⊤:

⟨fΘ(Y),W ⟩F = ⟨P−1(Θ⊙ (PY Q))Q−1,W ⟩F = ⟨Θ⊙ (PY Q), PWQ⟩F
= ⟨Θ⊙ (PXQ), PWQ⟩F + ⟨Θ⊙ (PWQ), PWQ⟩F .

Now computing the expected value for each term yields:

E⟨Θ⊙ (PXQ), PWQ⟩F = 0, E∥W∥2
F = nkσ2, E⟨X,W ⟩F = 0

and
E⟨Θ⊙ (PWQ), PWQ⟩F = σ2⟨1n1⊤

k ,Θ⟩F .

Indeed, as the Wi,j are independent and P and Q are orthogonal matrices, and according to the proof of
Lemma 6:

E[Θi,j(PWQ)2
i,j] = Θi,jE[(PWQ)2

i,j] = Θi,j

E[(PWQ)i,j]2︸ ︷︷ ︸
=0

+V[(PWQ)i,j]︸ ︷︷ ︸
=σ2

 = σ2Θi,j

Finally, we get E∥fΘ(Y) −X∥2
F = E

[
∥fΘ(Y)− Y ∥2

F + 2σ2⟨1n1⊤
k ,Θ⟩F − nkσ2] with ∥fΘ(Y) − Y ∥2

F =
∥(Θ− 1n1⊤

k)⊙ PY Q∥2
F .

Proposition 16 (Minimization of the URE).

arg min
Θ∈Rn×k

SUREΘ(Y) = 1n1⊤
k −

σ2

(PY Q)⊙2 ,

and
arg min

Θ∈{0,1}n×k
SUREΘ(Y) = 1R\[−

√
2σ,

√
2σ](PY Q) .

Proof.

∥(Θ− 1n1⊤
k)⊙ PY Q∥2

F + 2σ2⟨Θ,1n1⊤
k ⟩F =

n∑
i=1

n∑
j=1

((PY Q)i,j(Θi,j − 1))2 + 2σ2Θi,j

Let α ∈ R∗. The minimum of x ∈ R 7→ (α(x− 1))2 + 2σ2x is obtained for xmin,1 = 1− σ2

α2 . Hence,

arg min
Θ∈Rn×k

SUREΘ(Y) = 1n1⊤
k −

σ2

(PY Q)⊙2 .

The minimum of x ∈ {0, 1} 7→ (α(x− 1))2 + 2σ2x is obtained for xmin,2 = 1R\[−
√

2σ,
√

2σ](α). Hence,

arg min
Θ∈{0,1}n×k

SUREΘ(Y) = 1R\[−
√

2σ,
√

2σ](PY Q) .

191

Chapter D – Supplementary material for NL-Ridge

D.4 A sequential coordinate descent algorithm for quadratic
programming under conical and convex constraints

The following sequential coordinate descent algorithm computes an approximation of the minimizer
of

q(θ) = 1
2θ

⊤Qθ + c⊤θ (D.1)

with Q ∈ Rk×k and c ∈ Rk under conical (i.e θ ⪰ 0) or convex (i.e 1⊤
k θ = 1 and θ ⪰ 0) constraints. It is

employed in practice for fast approximation of the columns of Θ̂cnl and Θ̂cvx, respectively, in NL-Ridge
algorithm. Algorithm 6 details the descent procedure in both cases. Note that the proposed algorithm
produces, by construction, a sequence of feasible iterates θ(0), . . . , θ(T) such that q(θ(0)) ≥ . . . ≥ q(θ(T)),
where q denotes the objective function.

Algorithm 6 Sequential coordinate descent for minimizing the quadratic program q(θ) = 1
2θ

⊤Qθ+ c⊤θ
under conical (i.e θ ⪰ 0) or convex (i.e 1⊤

k θ = 1 and θ ⪰ 0) constraints.
Input: Number of iterations T .
Output: Approximation of the minimizer θ∗.

Start with an initial estimate θ(0) = 1k/k.
for t = 1, . . . , T do

θ(t) ← θ(t−1)

for j = 1, . . . , k do
Choose descent direction dj :

dj =
{
ej (conical constraint)
ej − ej′ with j′ ∈ {1, . . . , k} \ {j} chosen at random (convex constraint)

Solve the unidimensional problem:

α∗ = arg min
α∈R s.t.

θ(t)+αdj⪰0

q(θ(t) + αdj)

=

 max(− θ(t)⊤Q·,j+cj

Qj,j
,−θ(t)

j) (conical constraint)

min(max(− θ(t)⊤(Q·,j−Q·,j′)+cj−cj′

Qj,j−2Qj,j′ +Qj′,j′
,−θ(t)

j), θ(t)
j′) (convex constraint)

Update θ(t):
θ(t) ← θ(t) + α∗dj

end for
end for
return θ(T)

192

Appendix E

SUPPLEMENTARY MATERIAL FOR LICHI

E.1 Minimization of the quadratic risk

Lemma 7 (A closed-form expression for the quadratic risk). Let X,Y ∈ Rn×k such that the Yi,j are
independent along each row, E(Yi,j) = Xi,j and V(Yi,j) = σ2. Let (τ1, τ2) ∈ R2.

RΘ(X, τ1, τ2) := E∥fΘ(X + τ1(Y −X))− (X + τ2(Y −X))∥2
F = ∥XΘ−X∥2

F + nσ2∥τ1Θ− τ2Ik∥2
F .

Proof. Let W = Y −X and Θ′ = (τ1Θ− τ2Ik). By development of the squared Frobenius norm:

RΘ(X, τ1, τ2) = E
(
∥XΘ−X∥2

F + 2⟨XΘ−X,WΘ′⟩F + ∥WΘ′∥2
F

)
= ∥XΘ − X∥2

F + E∥WΘ′∥2
F ,

with E∥WΘ′∥2
F = E

 n∑
i=1

k∑
j=1

(
k∑

l=1
Wi,lΘ′

l,j

)2 =
n∑

i=1

k∑
j=1

E

(k∑
l=1

Wi,lΘ
′

l,j

)2 =
n∑

i=1

k∑
j=1

k∑
l=1

σ2Θ
′2
l,j

= nσ2∥Θ′∥2
F = nσ2∥τ1Θ− τ2Ik∥2

F .

Proposition 17 (Minimization of the quadratic risk). Let (τ1, τ2) ∈ R∗ × R.

arg min
Θ∈Rk×k

RΘ(X, τ1, τ2) = Ik −Q−1D ,

and
arg min

Θ∈Rk×ks.t. Θ⊤1k=1k

RΘ(X, τ1, τ2) = Ik −
[
Q−1 − Q−11k(Q−11k)⊤

⟨Q−1,1k1⊤
k ⟩F

]
D ,

with Q = X⊤X + n(τ1σ)2Ik and D = (1− τ2
τ1

)n(τ1σ)2Ik.

Proof. By Lemma 7,

RΘ(X, τ1, τ2) = ∥XΘ−X∥2
F + nσ2∥τ1Θ− τ2Ik∥2

F

= tr
(
(XΘ−X)⊤(XΘ−X)

)
+ nσ2 tr

(
(τ1Θ− τ2Ik)⊤(τ1Θ− τ2Ik)

)
= tr

(
Θ⊤X⊤XΘ− 2X⊤XΘ +X⊤X + nσ2(τ2

1 Θ⊤Θ− 2τ1τ2Θ + τ2
2 Ik)

)
193

Chapter E – Supplementary material for LIChI

= tr
(
Θ⊤(X⊤X + nσ2τ2

1 Ik)Θ− 2(X⊤X + nσ2τ1τ2Ik)Θ
)

+ const

= 2 tr
(

1
2Θ⊤QΘ + C⊤Θ

)
+ const ,

with Q = X⊤X +nσ2τ2
1 Ik and C = −(X⊤X +nσ2τ1τ2Ik). Lemma 8 allows to conclude by noticing that

C = D −Q with D = (1− τ2
τ1

)n(τ1σ)2Ik.

E.2 Building an initial pilot

Proposition 18 (Noisier2Noise). Let α > 0 and y, z two vectors with z ∼ N (y, (α2σ2)I). We have:

E

[
(1 + α2)ϕΘ̂α

(z)− z
α2

]
= ϕΘNr2N

α
(y)

with Θ̂α and ΘNr2N
α defined in section 6.4.

Proof. First of all, notice that:
(1 + α2)Θ̂α,g − Ik

α2 = ΘNr2N
α,g .

Therefore,
(1 + α2)ϕΘ̂α

(z)− z
α2 = ϕ 1+α2

α2 Θ̂α− 1
α2 I

(z) = ϕΘNr2N
α

(z)

with I = {Ik}N
i=1. And finally, by linearity of expectation,

E

[
(1 + α2)ϕΘ̂α

(z)− z
α2

]
= E

[
ϕΘNr2N

α
(z)
]

= ϕΘNr2N
α

(y).

Proposition 19. Let X,Y ∈ Rn×k such that the Yi,j are independent along each row, E(Yi,j) = Xi,j

and V(Yi,j) = σ2. If each column of X ∈ Rn×k is the same:

arg min
Θ∈Rk×ks.t. Θ⊤1k=1k

E∥fΘ(Y)−X∥2
F = 1k1⊤

k /k

Proof. According to Lemma 7 with τ1 = 1 and τ2 = 0:

E∥fΘ(Y)−X∥2
F = ∥XΘ−X∥2

F + nσ2∥Θ∥2
F .

As Θ is restricted to verify Θ⊤1k = 1k and assuming that each column of X is the same, ∥XΘ−X∥2
F = 0.

Thus, the problem amounts to minimizing k independent problems (one for each column of Θ) of the

194

E.2. Building an initial pilot

form:

arg min
θ∈Rk
∥θ∥2

2

subject to θ⊤1k = 1

According to the Karush–Kuhn–Tucker conditions, the minimizer θ∗ of this problem satisfies (stationarity
condition):

θ∗ = λ1k

with λ ∈ R. But as (feasibility) θ∗⊤1k = 1, we have λ = 1/k, hence θ∗ = 1k/k.

195

Appendix F

MATHEMATICAL PROOFS OF USEFUL

RESULTS

F.1 Unbiased risk estimators for image denoising

See [94, 120, 172] for original proofs of the following theorems.

Theorem 1 (SURE). Let x ∈ Rn ∼ X and y ∼ N (x, σ2In). Let fθ : Rn 7→ Rn a (parameterized)
function.

Ex,y∥fθ(y)− x∥2
2 = Ey

[
−nσ2 + ∥fθ(y)− y∥2

2 + 2σ2 div(fθ)(y)
]

In particular, −nσ2 + ∥fθ(y)− y∥2
2 + 2σ2 div(fθ)(y) is an unbiased estimate of Ex,y∥fθ(y)− x∥2

2.

Proof. Let x ∈ Rn fixed and let ε = y − x ∼ N (0, σ2In). First of all,

∥fθ(y) − y∥2
2 = ∥fθ(y) − x∥2

2 + ∥ε∥2
2 − 2⟨fθ(y) − x, ε⟩ = ∥fθ(y) − x∥2

2 + ∥ε∥2
2 − 2⟨fθ(y), ε⟩ + 2⟨x, ε⟩ .

Moreover, Eε∥ε∥2
2 = nσ2 and Eε⟨x, ε⟩ = 0, hence,

Ey∥fθ(y)− x∥2
2 = −nσ2 + Ey∥fθ(y)− y∥2

2 + 2Ey⟨fθ(y), ε⟩ .

It remains to prove that Ey⟨fθ(y), ε⟩ = σ2Ey div(fθ)(y) , i.e. Eε⟨fθ(x+ ε), ε⟩ = σ2Eε div(fθ)(x+ ε).
By denoting f i

θ(y) the ith component of fθ(y), we have:

Eε⟨fθ(x+ ε), ε⟩ =
∫
Rn

(
n∑

i=1
f i

θ(x+ ε)εi

)
1

(
√

2πσ2)n
e−

∥ε∥2
2

2σ2 dε

=
n∑

i=1

∫
Rn−1

(∫
R
f i

θ(x+ ε)εi
1√

2πσ2
e−

ε2
i

2σ2 dεi

)
1

(
√

2πσ2)n−1
e−

∥ε−i∥2
2

2σ2 dε−i

(see ⋆) =
n∑

i=1

∫
Rn−1

(
σ2
∫
R

∂f i
θ

∂yi
(x+ ε) 1√

2πσ2
e−

ε2
i

2σ2 dεi

)
1

(
√

2πσ2)n−1
e−

∥ε−i∥2
2

2σ2 dε−i

= σ2
n∑

i=1

∫
Rn

∂f i
θ

∂yi
(x+ ε) 1

(
√

2πσ2)n
e−

∥ε∥2
2

2σ2 dε

= σ2
∫
Rn

n∑
i=1

∂f i
θ

∂yi
(x+ ε) 1

(
√

2πσ2)n
e−

∥ε∥2
2

2σ2 dε

196

F.1. Unbiased risk estimators for image denoising

= σ2Eε [div fθ(x+ ε)]

⋆ indeed, by integration by parts, we get:

∫
R
f i

θ(x+ε)εi
1√

2πσ2
e−

ε2
i

2σ2 dεi = σ2
∫
R

∂f i
θ

∂yi
(x+ε) 1√

2πσ2
e−

ε2
i

2σ2 dεi +
[
−σ2f i

θ(x+ ε) 1√
2πσ2

e−
ε2

i
2σ2

]+∞

εi=−∞︸ ︷︷ ︸
=0

.

Theorem 2 (Generalized SURE). Let x ∈ Rn ∼ X and y ∼ N (x, diag(σ2
1 , . . . , σ

2
n)). Let fθ : Rn 7→ Rn a

(parameterized) function.

Ex,y∥fθ(y)− x∥2
2 = Ey

[
−

n∑
i=1

σ2
i + ∥fθ(y)− y∥2

2 + 2
n∑

i=1
σ2

i

∂f i
θ

∂yi
(y)
]
.

Proof. Let x ∈ Rn fixed and let ε = y − x ∼ N (0,diag(σ2
1 , . . . , σ

2
n)). First of all,

∥fθ(y) − y∥2
2 = ∥fθ(y) − x∥2

2 + ∥ε∥2
2 − 2⟨fθ(y) − x, ε⟩ = ∥fθ(y) − x∥2

2 + ∥ε∥2
2 − 2⟨fθ(y), ε⟩ + 2⟨x, ε⟩ .

Moreover, Eε∥ε∥2
2 =

n∑
i=1

σ2
i and Eε⟨x, ε⟩ = 0, hence,

Ex,y∥fθ(y)− x∥2
2 = −

n∑
i=1

σ2
i + Ex,y∥fθ(y)− y∥2

2 + 2ExEy|x⟨fθ(y), ε⟩ .

It remains to prove that Ey⟨fθ(y), ε⟩ = Ey

n∑
i=1

σ2
i

∂f i
θ

∂yi
(y), i.e. Eε⟨fθ(x+ ε), ε⟩ = σ2Eε

∑n
i=1 σ

2
i

∂fi
θ

∂yi
(x+ ε).

By denoting f i
θ(y) the ith component of fθ(y), we have:

Eε⟨fθ(x+ ε), ε⟩

=
∫
Rn

(
n∑

i=1
f i

θ(x+ ε)εi

)
1∏n

j=1

√
2πσ2

j

exp

−1
2

n∑
j=1

ε2
j/σ

2
j

 dε

=
n∑

i=1

∫
Rn−1

(∫
R
f i

θ(x+ ε)εi
1√

2πσ2
i

e
−

ε2
i

2σ2
i dεi

)
1∏n

j=1
j ̸=i

√
2πσ2

j

exp

−1
2

n∑
j=1
j ̸=i

ε2
j/σ

2
j

 dε−i

=
n∑

i=1

∫
Rn−1

(
σ2

i

∫
R

∂f i
θ

∂yi
(x+ ε) 1√

2πσ2
i

e
−

ε2
i

2σ2
i dεi

)
1∏n

j=1
j ̸=i

√
2πσ2

j

exp

−1
2

n∑
j=1
j ̸=i

ε2
j/σ

2
j

 dε−i (see ⋆)

=
n∑

i=1
σ2

i

∫
Rn

∂f i
θ

∂yi
(x+ ε) 1∏n

j=1

√
2πσ2

j

exp

−1
2

n∑
j=1

ε2
j/σ

2
j

 dε

197

Chapter F – Mathematical proofs of useful results

= Eε

[
n∑

i=1
σ2

i

∂f i
θ

∂yi
(x+ ε)

]

⋆ indeed, by integration by parts, we get:

∫
R
f i

θ(x+ ε)εi
1√

2πσ2
i

e
−

ε2
i

2σ2
i dεi = σ2

i

∫
R

∂f i
θ

∂yi
(x+ ε) 1√

2πσ2
i

e
−

ε2
i

2σ2
i dεi +

[
−σ2

i f
i
θ(x+ ε) 1√

2πσ2
i

e
−

ε2
i

2σ2
i

]+∞

−∞︸ ︷︷ ︸
=0

.

Theorem 3 (PURE). Let x ∈ Rn ∼ X and y ∼ P(x). Let fθ : Rn 7→ Rn a (parameterized) function.

Ex,y∥fθ(y)− x∥2
2 = Ey[∥fθ(y)∥2

2 + ∥y∥2
2 − 1⊤

n y − 2⟨f [−1]
θ (y), y⟩] .

where f [−1]
θ is such that f [−1]i

θ : y ∈ Rn 7→ f i
θ(y − ei).

Proof. Let x ∈ Rn fixed. First of all,

∥fθ(y)− x∥2
2 = ∥fθ(y)∥2

2 + ∥x∥2
2 − 2⟨fθ(y), x⟩ .

But Ey∥y∥2
2 =

n∑
i=1

Ey(y2
i) =

n∑
i=1

x2
i + xi = ∥x∥2

2 + 1⊤
n x = ∥x∥2

2 + Ey(1⊤
n y), so Ey(∥y∥2

2 − 1⊤
n y) = ∥x∥2

2.

Hence,
Ey∥fθ(y)− x∥2

2 = Ey

(
∥fθ(y)∥2

2 + ∥y∥2
2 − 1⊤

n y − 2⟨fθ(y), x⟩
)
.

It remains to prove that Ey⟨fθ(y), x⟩ = Ey⟨f [−1]
θ (y), y⟩.

We have:

Ey⟨fθ(y), x⟩ =
∑

y∈Nn

(
n∑

i=1
f i

θ(y)xi

)
n∏

j=1

e−xjx
yj

j

yj !

=
n∑

i=1

∑
y∈Nn

f i
θ(y)xi

n∏
j=1

e−xjx
yj

j

yj !

=
n∑

i=1

∑
y−i∈Nn−1

∑
yi∈N

f i
θ(y)xi

e−xixyi

i

yi!

 n∏
j=1
j ̸=i

e−xjx
yj

j

yj !

=
n∑

i=1

∑
y−i∈Nn−1

∑
yi∈N

f i
θ(y − ei)yi

e−xixyi

i

yi!

 n∏
j=1
j ̸=i

e−xjx
yj

j

yj ! (see ⋆)

=
n∑

i=1

∑
y−i∈Nn−1

∑
yi∈N

f i
θ(y − ei)yi

 n∏
j=1

e−xjx
yj

j

yj !

=
∑

y∈Nn

(
n∑

i=1
f i

θ(y − ei)yi

)
n∏

j=1

e−xjx
yj

j

yj !

198

F.1. Unbiased risk estimators for image denoising

= Ey⟨f [−1]
θ (y), y⟩

⋆ indeed, by change of variable,

∑
yi∈N

f i
θ(y − ei)yi

e−xixyi

i

yi!
= xi

∑
yi∈N∗

f i
θ(y − ei)

e−xixyi−1
i

(yi − 1)! = xi

∑
yi∈N

f i
θ(y)e

−xixyi

i

yi!
=
∑
yi∈N

f i
θ(y)xi

e−xixyi

i

yi!
.

Theorem 4 (PG-URE). Let x ∈ Rn ∼ X and y ∼ aP(x/a) + N (0, bIn) with (a, b) ∈ (R+
∗)2. Let

fθ : Rn 7→ Rn a (parameterized) function.

Ex,y∥fθ(y)− x∥2
2 = Ey

[
∥fθ(y)∥2

2 + ∥y∥2
2 − a1⊤

n y − nb− 2⟨f [−a]
θ (y), y⟩+ 2bdiv(f [−a]

θ)(y)
]
,

where f [−a]
θ is such that f [−a]i

θ : y ∈ Rn 7→ f i
θ(y − aei).

Proof. First of all,
∥fθ(y)− x∥2

2 = ∥fθ(y)∥2
2 + ∥x∥2

2 − 2⟨fθ(y), x⟩ .

But Ey∥y∥2
2 =

n∑
i=1

Ey(y2
i) =

n∑
i=1

Ey(yi)2 + Vy(yi) =
n∑

i=1
x2

i + (axi + b) = ∥x∥2
2 + a1⊤

n x+ nb, so Ey(∥y∥2
2 −

a1⊤
n y − nb) = ∥x∥2

2.
Hence,

Ex,y∥fθ(y)− x∥2
2 = Ex,y

(
∥fθ(y)∥2

2 + ∥y∥2
2 − a1⊤

n y − nb− 2⟨fθ(y), x⟩
)
.

It remains to prove that Ey⟨fθ(y), x⟩ = Ey⟨f [−a]
θ (y), y⟩ − bdiv(f [−a]

θ)(y).
Let y = az + ε with z ∼ P(x/a) and ε ∼ N (0, bIn).
We have:

Ey⟨fθ(y), x⟩

=
∫
Rn

∑
z∈Nn

 n∑
i=1

f i
θ(az + ε)xi

n∏
j=1

e−
xj
a (xj

a)zj

zj !
1√
2πb

e− 1
2b ∥ε∥2

2

 dε

=
∫
Rn

 n∑
i=1

∑
z∈Nn

f i
θ(az + ε)xi

n∏
j=1

e−
xj
a (xj

a)zj

zj !

 1√
2πb

e− 1
2b ∥ε∥2

2 dε

=
∫
Rn

 n∑
i=1

∑
z−i∈Nn−1

(∑
zi∈N

f i
θ(az + ε)xi

e− xi
a (xi

a)zi

zi!

)
n∏

j=1
j ̸=i

e−
xj
a (xj

a)zj

zj !

 1√
2πb

e− 1
2b ∥ε∥2

2 dε

=
∫
Rn

 n∑
i=1

∑
z−i∈Nn−1

(∑
zi∈N

f i
θ(az + ε− aei)azi

e− xi
a (xi

a)zi

zi!

)
n∏

j=1
j ̸=i

e−
xj
a (xj

a)zj

zj !

 1√
2πb

e− 1
2b ∥ε∥2

2 dε (see ⋆)

199

Chapter F – Mathematical proofs of useful results

=
∫
Rn

 n∑
i=1

∑
z∈Nn

f
[−a]i
θ (az + ε)azi

n∏
j=1

e−
xj
a (xj

a)zj

zj !

 1√
2πb

e− 1
2b ∥ε∥2

2 dε

= Ey⟨f [−a]
θ (y), az⟩

= Ey⟨f [−a]
θ (y), y⟩ − Ey⟨f [−a]

θ (y), ε⟩

⋆ indeed, by change of variable,

∑
zi∈N

f i
θ(a(z − ei) + ε)zi

e− xi
a (xi

a)zi

zi!
= xi

a

∑
zi∈N∗

f i
θ(a(z − ei) + ε)

e− xi
a (xi

a)zi−1

(zi − 1)!

= xi

a

∑
zi∈N

f i
θ(az + ε)

e− xi
a (xi

a)zi

zi!
,

hence, ∑
zi∈N

f i
θ(az + ε)xi

e− xi
a (xi

a)zi

zi!
=
∑
zi∈N

f i
θ(az + ε− aei)azi

e− xi
a (xi

a)zi

zi!
.

Using the proof of Theorem 1, we also have Ey⟨f [−a]
θ (y), ε⟩ = bdiv(f [−a]

θ)(y), which allows us to conclude.

F.2 Some useful results in convex optimization

Lemma 8 (Multivariate quadratic programming). Let Q,C ∈ Rk×k. If Q is symmetric positive definite,

arg min
Θ∈Rk×k

tr
(

1
2Θ⊤QΘ + C⊤Θ

)
= −Q−1C = Ik −Q−1(Q+ C) ,

and
arg min

Θ∈Rk×ks.t. Θ⊤1k=1k

tr
(

1
2Θ⊤QΘ + C⊤Θ

)
= Ik −

(
Q−1 − Q−11k(Q−11k)⊤

1⊤
k Q

−11k

)
(Q+ C) .

Proof. Let θj and cj denote the jth column of matrix Θ ∈ Rk×k and C ∈ Rk×k, respectively.
First of all,

tr
(

1
2Θ⊤QΘ + C⊤Θ

)
=

k∑
j=1

1
2θ

⊤
j Qθj + c⊤

j θj =
k∑

j=1
hj(θj) .

with hj : θ ∈ Rk 7→ 1
2θ

⊤Qθ + c⊤
j θ. The minimization problem is then separable and amounts to solve

k independent quadratic programming subproblems. As Hesshj(θ) = Q which is symmetric positive
definite, hj is strictly convex and so hj has at most one global minimum. By canceling the gradient, we
have:

∇hj(θ) = 0⇔ Qθ + cj = 0⇔ θ = −Q−1cj .

Finally,

arg min
Θ∈Rk×k

tr
(

1
2Θ⊤QΘ + C⊤Θ

)
= −Q−1C = Ik −Q−1(Q+ C) .

200

F.2. Some useful results in convex optimization

Moreover, according to the Karush–Kuhn–Tucker conditions, the minimizer θ∗ of hj under the con-
straint 1⊤

k θ = 1 satisfies ∇hj(θ) = λ1k with λ ∈ R. Thus, Qθ∗ + cj = λ1k, hence,

θ∗ = λQ−11k −Q−1cj .

Since 1⊤
k θ

∗ = 1, we deduce that 1⊤
k θ

∗ = λ1⊤
k Q

−11k − 1⊤
k Q

−1cj = 1 then,

λ = 1 + 1⊤
k Q

−1cj

1⊤
k Q

−11k
= 1⊤

k Q
−1(Qej + cj)

1⊤
k Q

−11k
.

Finally, by noticing that −Q−1cj = ej −Q−1(Qej + cj)

θ∗ = 1⊤
k Q

−1(Qej + cj)
1⊤

k Q
−11k

Q−11k −Q−1cj = ej −
(
Q−1 − Q−11k(Q−11k)⊤

1⊤
k Q

−11k

)
(Qej + cj) ,

and
arg min

Θ∈Rk×ks.t. Θ⊤1k=1k

tr
(

1
2Θ⊤QΘ + C⊤Θ

)
= Ik −

(
Q−1 − Q−11k(Q−11k)⊤

1⊤
k Q

−11k

)
(Q+ C) .

Lemma 9. Let A ∈ Rn×k and v ∈ Rk \ {0}.

arg min
β∈Rn

∥A− βv⊤∥2
F = Av

∥v∥2
2

Proof. ∥A− βv⊤∥2
F =

∑n
i=1 ∥Ai,· − βiv∥2

2 =
∑n

i=1 ∥Ai,·∥2
2 − 2βi⟨Ai,·, v⟩+ β2

i ∥v∥2
2 . Now, as the univariate

quadratic function βi ∈ R 7→ ∥Ai,·∥2
2 − 2βi⟨Ai,·, v⟩+ β2

i ∥v∥2
2 is minimized for βi = ⟨Ai,·, v⟩/∥v∥2

2, we have
arg min

β
∥A− βv⊤∥2

F = Av/∥v∥2
2.

Lemma 10 (Softshrinkage function). Let a ∈ R and λ > 0.

arg min
x∈R

1
2(x− a)2 + λ|x| = φsoft,λ(a) ,

with φsoft,λ : a ∈ R 7→ sign(a) ·max(|a| − λ, 0) =


a− λ if a > λ

a+ λ if a < −λ
0 otherwise

the softshrinkage function.

In particular, for A ∈ Rn×k and λ > 0:

arg min
X∈Rn×k

1
2∥X −A∥

2
F + λ∥X∥1 = φsoft,λ(A) .

Proof. Let h : x 7→ 1
2 (x− a)2 + λ|x|, f : x 7→ 1

2 (x− a)2 + λx and g : x 7→ 1
2 (x− a)2 − λx. We have:

h(x) = 1[0,+∞[(x)f(x) + 1]−∞,0[(x)g(x) .

201

Chapter F – Mathematical proofs of useful results

with
arg min

x∈R
f(x) = a− λ and arg min

x∈R
g(x) = a+ λ .

Since x 7→ 1
2 (x− a)2 is a strictly convex function and x 7→ λ|x| is convex, h is a strictly convex function.

Therefore every local minimum of h is a global minimum and h has at most one global minimum.
— If a > λ, f has a local minimum in a− λ > 0, hence arg min

x∈R
h(x) = a− λ .

— If a < −λ, g has a local minimum in a+ λ < 0, hence arg min
x∈R

h(x) = a+ λ .

— If −λ ≤ a ≤ λ, arg min
x∈R+

f(x) = arg min
x∈R−

g(x) = 0 since f and g are decreasing then increasing as
they are quadratic functions with positive highest degree coefficients, hence arg min

x∈R
h(x) = 0 .

F.3 Tweedie’s formula

See [45] for original proof.

Theorem 5 (Tweedie’s formula). If the likelihood p(y|x) can written under the form p(y|x) = a(x)b(y) exp(x⊤T (y))
with a : Rn 7→ R, b : Rn 7→ R and T : Rn 7→ Rn, then:

JT (y)⊤E(x|y) = ∇y ln(p(y))−∇y ln(b(y)) ,

where JT denotes the Jacobian matrix of function T .

Proof. On the one hand,

E(x|y) =
∫
Rn

xp(x|y) dx

=
∫
Rn

x
p(y|x)p(x)

p(y) dx (Bayes’ rule)

= b(y)
p(y)

∫
Rn

xa(x) exp(x⊤T (y))p(x) dx

with

p(y) =
∫
Rn

p(y|x)p(x) dx

=
∫
Rn

a(x)b(y) exp(x⊤T (y))p(x) dx

= b(y)
∫
Rn

a(x) exp(x⊤T (y))p(x) dx,

hence,

E(x|y) =
∫
Rn xa(x) exp(x⊤T (y))p(x) dx∫
Rn a(x) exp(x⊤T (y))p(x) dx

.

202

F.4. Product of two Gaussian probability density functions

On the other hand,
ln p(y)
b(y) = ln

∫
Rn

a(x) exp(x⊤T (y))p(x) dx,

hence,

∇y ln p(y)
b(y) = JT (y)⊤

∫
Rn xp(x)a(x) exp(x⊤T (y)) dx∫
Rn p(x)a(x) exp(x⊤T (y)) dx

.

Finally,
JT (y)⊤E(x|y) = ∇y ln(p(y))−∇y ln(b(y)) .

F.4 Product of two Gaussian probability density functions

Lemma 11 (Product of two Gaussian probability density functions). Let N (x;µ, σ2) be the probability
density function of the normal distribution N (µ, σ2).

N (x;µ1, σ
2
1)N (x;µ2, σ

2
2) = N (µ1;µ2, σ

2
1 + σ2

2)N
(
x; µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2
,
σ2

1σ
2
2

σ2
1 + σ2

2

)
.

Proof.

N (x;µ1, σ
2
1)N (x;µ2, σ

2
2) = 1

σ1
√

2π
exp

(
−1

2(x− µ1

σ1
)2
)

1
σ2
√

2π
exp

(
−1

2(x− µ2

σ2
)2
)

= 1
2πσ1σ2

exp
(
−1

2

((
x− µ1

σ1

)2
+
(
x− µ2

σ2

)2
))

,

with

(
x− µ1

σ1

)2
+
(
x− µ2

σ2

)2
=x2 − 2µ1x+ µ2

1
σ2

1
+ x2 − 2µ2x+ µ2

2
σ2

2

= (σ2
1 + σ2

2)x2 − 2x(µ1σ
2
2 + µ2σ

2
1) + (σ2

2µ
2
1 + σ2

1µ
2
2)

σ2
1σ

2
2

= σ2
1 + σ2

2
σ2

1σ
2
2

(
x2 − 2xµ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)
+ σ2

2µ
2
1 + σ2

1µ
2
2

σ2
1σ

2
2

= σ2
1 + σ2

2
σ2

1σ
2
2

((
x− µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)2

−
(
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)2)
+ σ2

2µ
2
1 + σ2

1µ
2
2

σ2
1σ

2
2

= σ2
1 + σ2

2
σ2

1σ
2
2

(
x− µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)2

− (σ2
2µ1 + σ2

1µ2)2

(σ2
1σ

2
2)(σ2

1 + σ2
2) + σ2

2µ
2
1 + σ2

1µ
2
2

σ2
1σ

2
2

= σ2
1 + σ2

2
σ2

1σ
2
2

(
x− µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)2

+ σ2
1σ

2
2µ

2
1 + σ2

1σ
2
2µ

2
2 − 2σ2

1σ
2
2µ1µ2

(σ2
1σ

2
2)(σ2

1 + σ2
2)

= σ2
1 + σ2

2
σ2

1σ
2
2

(
x− µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)2

+ (µ1 − µ2)2

σ2
1 + σ2

2
,

203

Chapter F – Mathematical proofs of useful results

hence,

N (x;µ1, σ1)N (x;µ2, σ2) = 1
2πσ1σ2

exp

−1
2

(
µ1 − µ2√
σ2

1 + σ2
2

)2
 exp

−1
2

x− µ1σ2
2+µ2σ2

1
σ2

1+σ2
2

σ1σ2√
σ2

1+σ2
2

2
= N (µ1;µ2, σ

2
1 + σ2

2)N (x; µ1σ
2
2 + µ2σ

2
1

σ2
1 + σ2

2
,
σ2

1σ
2
2

σ2
1 + σ2

2
) .

204

BIBLIOGRAPHY

[1] R. Achddou, Y. Gousseau, and S. Ladjal. Fully synthetic training for image restoration tasks.
Computer Vision and Image Understanding, 233:103723, 2023.

[2] C. Aguerrebere, A. Almansa, Y. Gousseau, J. Delon, and P. Musé. A hyperprior Bayesian approach
for solving image inverse problems. HAL preprint, 2014.

[3] E. Agustsson and R. Timofte. NTIRE 2017 Challenge on single image super-resolution: Dataset
and study. In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 1122–1131, 2017.

[4] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete dic-
tionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322,
2006.

[5] C. Anil, J. Lucas, and R. Grosse. Sorting out Lipschitz function approximation. In International
Conference on Machine Learning (ICML), volume 97, pages 291–301, 2019.

[6] S. Anwar and N. Barnes. Real image denoising with feature attention. In International Conference
on Computer Vision (ICCV), October 2019.

[7] P. Arias and J.-M. Morel. Towards a Bayesian video denoising method. In Advanced Concepts for
Intelligent Vision Systems, pages 107–117, 2015.

[8] J. Batson and L. Royer. Noise2Self: Blind denoising by self-supervision. In International Conference
on Machine Learning (ICML), volume 97, pages 524–533, 2019.

[9] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari, T. E. Smidt,
and B. Kozinsky. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic
potentials. Nature Communications, 13(1):2453, 2022.

[10] A. Benazza-Benyahia and J.-C. Pesquet. An extended SURE approach for multicomponent image
denoising. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
volume 2, pages ii–945, 2004.

[11] T. Blu and F. Luisier. The SURE-LET approach to image denoising. IEEE Transactions on Image
Processing, 16(11):2778–2786, 2007.

[12] J. Boulanger, C. Kervrann, and P. Bouthemy. Space-time adaptation for patch-based image se-
quence restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1096–
1102, 2007.

205

BIBLIOGRAPHY

[13] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron. Unprocessing images for
learned raw denoising. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
11028–11037, 2019.

[14] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In Conference on
Computer Vision and Pattern Recognition (CVPR), volume 2, pages 60–65, 2005.

[15] A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms, with a new one.
Multiscale Modeling & Simulation, 4(2):490–530, 2005.

[16] A. Buades, B. Coll, and J.-M. Morel. Nonlocal image and movie denoising. International Journal
of Computer Vision, 76:123–139, 2008.

[17] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural networks compete
with BM3D? In Conference on Computer Vision and Pattern Recognition (CVPR), pages 2392–
2399, 2012.

[18] G. Bökman, F. Kahla, and A. Flinth. ZZ-Net: A universal rotation equivariant architecture for
2D point clouds. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
10966–10975, 2022.

[19] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion.
SIAM Journal on Optimization, 20(4):1956–1982, 2010.

[20] Y. Cai, X. Hu, H. Wang, Y. Zhang, H. Pfister, and D. Wei. Learning to generate realistic noisy im-
ages via pixel-level noise-aware adversarial training. In Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pages 3259–3270, 2021.

[21] A. F. Calvarons. Improved Noise2Noise denoising with limited data. In Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages 796–805, 2021.

[22] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8(6):679–698, 1986.

[23] V. Chappelier and C. Guillemot. Oriented wavelet transform for image compression and denoising.
IEEE Transactions on Image Processing, 15(10):2892–2903, 2006.

[24] P. Chatterjee and P. Milanfar. Is denoising dead? IEEE Transactions on Image Processing,
19(4):895–911, 2010.

[25] L. Chen, X. Chu, X. Zhang, and J. Sun. Simple baselines for image restoration. In European
Conference on Computer Vision (ECCV), pages 17–33, 2022.

[26] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing, 20(1):33–61, 1998.

[27] W.-H. Chen, C. Smith, and S. Fralick. A fast computational algorithm for the Discrete Cosine
Transform. IEEE Transactions on Communications, 25(9):1004–1009, 1977.

206

BIBLIOGRAPHY

[28] Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and
effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6):1256–1272, 2017.

[29] Z. Cheng, M. Gadelha, S. Maji, and D. Sheldon. A Bayesian perspective on the Deep Image Prior.
In Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[30] A. Chernodub and D. Nowicki. Norm-preserving orthogonal permutation linear unit activation
functions (OPLU). arXiv preprint arXiv:1604.02313, 2016.

[31] H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch. Adaptive Bayesian wavelet shrinkage.
Journal of the American Statistical Association, 92(440):1413–1421, 1997.

[32] T. Cohen and M. Welling. Group equivariant convolutional networks. In International Conference
on Machine Learning (ICML), volume 48, pages 2990–2999, 2016.

[33] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[34] C. Da Fonseca and J. Petronilho. Explicit inverses of some tridiagonal matrices. Linear Algebra
and its Applications, 325(1-3):7–21, 2001.

[35] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-D transform-
domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007.

[36] A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian. Spatially adaptive filtering as regularization
in inverse imaging: Compressive sensing, super-resolution, and upsampling. In Super-Resolution
Imaging, pages 123–154. CRC Press, 2017.

[37] A. Davy, T. Ehret, J.-M. Morel, P. Arias, and G. Facciolo. Video denoising by combining patch
search and CNNs. Journal of Mathematical Imaging and Vision, 63:73–88, 2021.

[38] C.-A. Deledalle, L. Denis, and F. Tupin. Iterative weighted maximum likelihood denoising with
probabilistic patch-based weights. IEEE Transactions on Image Processing, 18(12):2661–2672, 2009.

[39] C.-A. Deledalle, V. Duval, and J. Salmon. Non-local methods with shape-adaptive patches (NLM-
SAP). Journal of Mathematical Imaging and Vision, 43:103–120, 2012.

[40] C.-A. Deledalle, S. Parameswaran, and T. Q. Nguyen. Image denoising with generalized Gaussian
mixture model patch priors. SIAM Journal on Imaging Sciences, 11(4):2568–2609, 2018.

[41] W. Dong, G. Shi, and X. Li. Nonlocal image restoration with bilateral variance estimation: A
low-rank approach. IEEE Transactions on Image Processing, 22(2):700–711, 2013.

[42] W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally centralized sparse representation for image
restoration. IEEE Transactions on Image Processing, 22(4):1620–1630, 2013.

[43] V. Duval, J.-F. Aujol, and Y. Gousseau. A bias-variance approach for the nonlocal means. SIAM
Journal on Imaging Sciences, 4(2):760–788, 2011.

207

BIBLIOGRAPHY

[44] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika,
1(3):211–218, 1936.

[45] B. Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association,
106(496):1602–1614, 2011.

[46] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image processing, 15(12):3736–3745, 2006.

[47] R. Fermanian, M. Le Pendu, and C. Guillemot. Regularizing the Deep Image Prior with a learned
denoiser for linear inverse problems. In International Workshop on Multimedia Signal Processing
(MMSP), pages 1–6, 2021.

[48] R. Fermanian, M. Le Pendu, and C. Guillemot. PnP-ReG: Learned regularizing gradient for Plug-
and-Play gradient descent. SIAM Journal on Imaging Sciences, 16(2):585–613, 2023.

[49] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive dct for high-quality deblocking
of compressed color images. In European Signal Processing Conference (EUSIPCO), pages 1–5,
2006.

[50] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical Poissonian-Gaussian noise mod-
eling and fitting for single-image raw-data. IEEE Transactions on Image Processing, 17(10):1737–
1754, 2008.

[51] V. Franc, V. Hlaváč, and M. Navara. Sequential coordinate-wise algorithm for the non-negative
least squares problem. In International Conference on Computer Analysis of Images and Patterns
(CAIP), pages 407–414, 2005.

[52] F. Fuchs, D. Worrall, V. Fischer, and M. Welling. SE(3)-Transformers: 3D roto-translation equiv-
ariant attention networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 33, pages 1970–1981, 2020.

[53] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, 1980.

[54] K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural
Networks, 2(3):183–192, 1989.

[55] I. Gorodnitsky and B. Rao. Sparse signal reconstruction from limited data using FOCUSS: a
re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3):600–616,
1997.

[56] A. Goujon, A. Etemadi, and M. Unser. The role of depth, width, and activation complexity in the
number of linear regions of neural networks. arXiv preprint arXiv:2206.08615, 2022.

[57] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with application
to image denoising. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
2862–2869, 2014.

208

BIBLIOGRAPHY

[58] D. K. Gupta, D. Arya, and E. Gavves. Rotation equivariant siamese networks for tracking. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 12357–12366, 2021.

[59] B. Hanin and D. Rolnick. Complexity of linear regions in deep networks. In International Conference
on Machine Learning (ICML), pages 2596–2604, 2019.

[60] B. Hanin and D. Rolnick. Deep ReLU networks have surprisingly few activation patterns. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[61] S. W. Hasinoff. Photon, Poisson noise. Computer Vision, A Reference Guide, 4(16):1, 2014.

[62] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: data mining,
inference, and prediction, volume 2. Springer, 2009.

[63] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[64] S. Herbreteau and C. Kervrann. DCT2net: an interpretable shallow CNN for image denoising.
IEEE Transactions on Image Processing, 31:4292–4305, 2022.

[65] S. Herbreteau and C. Kervrann. Towards a unified view of unsupervised non-local methods for
image denoising: the NL-Ridge approach. In IEEE International Conference on Image Processing
(ICIP), pages 3376–3380, 2022.

[66] S. Herbreteau and C. Kervrann. Unsupervised linear and iterative combinations of patches for
image denoising. arXiv preprint arXiv:2212.00422, 2022.

[67] S. Herbreteau, E. Moebel, and C. Kervrann. Normalization-equivariant neural networks with ap-
plication to image denoising. arXiv preprint arXiv:2306.05037, 2023.

[68] G. Hinton. Products of experts. In International Conference on Artificial Neural Networks
(ICANN), volume 1, pages 1–6, 1999.

[69] J.-B. Hiriart-Urruty and H. Y. Le. From eckart and young approximation to moreau envelopes and
vice versa. RAIRO-Operations Research-Recherche Opérationnelle, 47(3):299–310, 2013.

[70] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pages 6840–6851, 2020.

[71] S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

[72] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approx-
imators. Neural Networks, 2(5):359–366, 1989.

[73] H. Hu, J. Froment, and Q. Liu. A note on patch-based low-rank minimization for fast image
denoising. Journal of Visual Communication and Image Representation, 50:100–110, 2018.

[74] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-
exemplars. In Conference on Computer Vision and Pattern Recognition (CVPR), pages 5197–5206,
2015.

209

BIBLIOGRAPHY

[75] S. Hurault, T. Ehret, and P. Arias. EPLL: an image denoising method using a Gaussian mixture
model learned on a large set of patches. Image Processing On Line, 8:465–489, 2018.

[76] S. Hurault, A. Leclaire, and N. Papadakis. Gradient step denoiser for convergent Plug-and-Play.
In International Conference on Learning Representations (ICLR), 2022.

[77] S. Hurault, A. Leclaire, and N. Papadakis. Proximal denoiser for convergent Plug-and-Play opti-
mization with nonconvex regularization. In International Conference on Machine Learning (ICML),
volume 162, pages 9483–9505, 2022.

[78] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), volume 37,
pages 448–456, 2015.

[79] Q. Jin, I. Grama, C. Kervrann, and Q. Liu. Nonlocal means and optimal weights for noise removal.
SIAM Journal on Imaging Sciences, 10(4):1878–1920, 2017.

[80] Y. Jo, S. Y. Chun, and J. Choi. Rethinking Deep Image Prior for denoising. In International
Conference on Computer Vision (ICCV), pages 5087–5096, 2021.

[81] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In European Conference on Computer Vision (ECCV), pages 694–711, 2016.

[82] Z. Kadkhodaie and E. Simoncelli. Stochastic solutions for linear inverse problems using the prior
implicit in a denoiser. In Advances in Neural Information Processing Systems (NeurIPS), volume 34,
pages 13242–13254, 2021.

[83] N. Keriven and G. Peyré. Universal invariant and equivariant graph neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[84] C. Kervrann. PEWA: Patch-based exponentially weighted aggregation for image denoising. In
Advances in Neural Information Processing Systems (NIPS), volume 27, 2014.

[85] C. Kervrann and J. Boulanger. Optimal spatial adaptation for patch-based image denoising. IEEE
Transactions on Image Processing, 15(10):2866–2878, 2006.

[86] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training
for deep learning: Generalization gap and sharp minima. In International Conference on Learning
Representations (ICLR), 2017.

[87] K. Kim and J. C. Ye. Noise2Score: Tweedie’s approach to self-supervised image denoising without
clean images. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, pages
864–874, 2021.

[88] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

210

BIBLIOGRAPHY

[89] A. Krishnamoorthy and D. Menon. Matrix inversion using Cholesky decomposition. In Signal
Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pages 70–72, 2013.

[90] A. Krull, T.-O. Buchholz, and F. Jug. Noise2Void - Learning denoising from single noisy images.
In Conference on Computer Vision and Pattern Recognition (CVPR), pages 2124–2132, 2019.

[91] A. Krull, T. Vicar, M. Prakash, M. Lalit, and F. Jug. Probabilistic Noise2Void: Unsupervised
content-aware denoising. Frontiers in Computer Science, 2:5, 2020.

[92] S. Laine, T. Karras, J. Lehtinen, and T. Aila. High-quality self-supervised deep image denoising.
In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[93] R. Laumont, V. D. Bortoli, A. Almansa, J. Delon, A. Durmus, and M. Pereyra. Bayesian imaging
using Plug & Play priors: When Langevin meets Tweedie. SIAM Journal on Imaging Sciences,
15(2):701–737, 2022.

[94] Y. Le Montagner, E. D. Angelini, and J.-C. Olivo-Marin. An unbiased risk estimator for image
denoising in the presence of mixed Poisson–Gaussian noise. IEEE Transactions on Image Processing,
23(3):1255–1268, 2014.

[95] M. Le Pendu and C. Guillemot. Preconditioned Plug-and-Play ADMM with locally adjustable
denoiser for image restoration. SIAM Journal on Imaging Sciences, 16(1):393–422, 2023.

[96] M. Lebrun, A. Buades, and J. M. Morel. A nonlocal Bayesian image denoising algorithm. SIAM
Journal on Imaging Sciences, 6(3):1665–1688, 2013.

[97] M. Lebrun, A. Buades, and J.-M. Morel. Implementation of the "Non-Local Bayes" (NL-Bayes)
image denoising algorithm. Image Processing On Line, 3:1–42, 2013.

[98] M. Lebrun, M. Colom, A. Buades, and J.-M. Morel. Secrets of image denoising cuisine. Acta
Numerica, 21(4):475 – 576, 2012.

[99] M. Lebrun, M. Colom, and J.-M. Morel. The Noise Clinic: a blind image denoising algorithm.
Image Processing On Line, 5:1–54, 2015.

[100] B. Lecouat, J. Ponce, and J. Mairal. Fully trainable and interpretable non-local sparse models for
image restoration. In European Conference on Computer Vision (ECCV), pages 238–254, 2020.

[101] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551,
1989.

[102] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks: Tricks
of the trade, pages 9–50. Springer, 2002.

[103] K. Lee and W.-K. Jeong. Noise2Kernel: Adaptive self-supervised blind denoising using a dilated
convolutional kernel architecture. Sensors, 22(11):4255, 2022.

211

BIBLIOGRAPHY

[104] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila. Noise2Noise:
Learning image restoration without clean data. In International Conference on Machine Learning
(ICML), volume 80, pages 2965–2974, 2018.

[105] V. Lempitsky, A. Vedaldi, and D. Ulyanov. Deep image prior. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9446–9454, 2018.

[106] A. Levin and B. Nadler. Natural image denoising: Optimality and inherent bounds. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2833–2840, 2011.

[107] A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch complexity, finite pixel correlations
and optimal denoising. In European Conference on Computer Vision (ECCV), pages 73–86, 2012.

[108] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte. SwinIR: Image restoration using
Swin Transformer. In International Conference on Computer Vision Workshops (ICCVW), pages
1833–1844, 2021.

[109] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single
image super-resolution. In Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1132–1140, 2017.

[110] J. H. Lim, A. Courville, C. Pal, and C.-W. Huang. AR-DAE: Towards unbiased neural entropy
gradient estimation. In International Conference on Machine Learning (ICML), volume 119, pages
6061–6071, 2020.

[111] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang. Non-local recurrent network for image
restoration. In Advances in Neural Information Processing Systems (NeurIPS), volume 31, 2018.

[112] H. Liu, X. Liu, J. Lu, and S. Tan. Self-supervised image prior learning with GMM from a single
noisy image. In International Conference on Computer Vision (ICCV), pages 2825–2834, 2021.

[113] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov. Image restoration using total variation regularized
deep image prior. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7715–7719, 2019.

[114] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo. Multi-level wavelet-CNN for image restoration.
In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 773–782,
2018.

[115] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer: Hierar-
chical vision Transformer using shifted windows. In International Conference on Computer Vision
(ICCV), pages 9992–10002, 2021.

[116] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A ConvNet for the 2020s. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11966–11976, 2022.

[117] C. Louchet and L. Moisan. Total variation as a local filter. SIAM Journal on Imaging Sciences,
4(2):651–694, 2011.

212

BIBLIOGRAPHY

[118] F. Luisier, T. Blu, B. Forster, and M. Unser. Which wavelet bases are the best for image denoising?
In Wavelets XI, volume 5914, page 59140E, 2005.

[119] F. Luisier, T. Blu, and M. Unser. A new SURE approach to image denoising: interscale orthonormal
wavelet thresholding. IEEE Transactions on Image Processing, 16(3):593–606, 2007.

[120] F. Luisier, C. Vonesch, T. Blu, and M. Unser. Fast interscale wavelet denoising of Poisson-corrupted
images. Signal Processing, 90:415–427, 2010.

[121] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang. Waterloo exploration database:
New challenges for image quality assessment models. IEEE Transactions on Image Processing,
26(2):1004–1016, 2017.

[122] Y. Ma, C. Kuang, Y. Fang, B. Ge, D. Li, and X. Liu. Virtual fluorescence emission difference
microscopy based on photon reassignment. Optics Letters, 40(20):4627–4630, 2015.

[123] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian. Video denoising, deblocking, and enhance-
ment through separable 4-D nonlocal spatiotemporal transforms. IEEE Transactions on Image
Processing, 21(9):3952–3966, 2012.

[124] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image
restoration. In International Conference on Computer Vision (ICCV), pages 2272–2279, 2009.

[125] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions
on Signal Processing, 41(12):3397–3415, 1993.

[126] J. V. Manjón, J. Carbonell-Caballero, J. J. Lull, G. García-Martí, L. Martí-Bonmatí, and M. Robles.
MRI denoising using non-local means. Medical image analysis, 12(4):514–523, 2008.

[127] X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder
networks with symmetric skip connections. In Advances in Neural Information Processing Systems
(NIPS), volume 29, 2016.

[128] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia. Rotation equivariant vector field networks. In
International Conference on Computer Vision (ICCV), pages 5058–5067, 2017.

[129] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In
International Conference on Computer Vision (ICCV), volume 2, pages 416–423 vol.2, 2001.

[130] G. Mataev, P. Milanfar, and M. Elad. DeepRED: Deep image prior powered by RED. In Interna-
tional Conference on Computer Vision Workshops (ICCVW), 2019.

[131] P. Milanfar. Symmetrizing smoothing filters. SIAM Journal on Imaging Sciences, 6(1):263–284,
2013.

[132] S. Mohan, Z. Kadkhodaie, E. P. Simoncelli, and C. Fernandez-Granda. Robust and interpretable
blind image denoising via bias-free convolutional neural networks. In International Conference on
Learning Representations (ICLR), 2020.

213

BIBLIOGRAPHY

[133] S. Mohan, J. L. Vincent, R. Manzorro, P. Crozier, C. Fernandez-Granda, and E. Simoncelli. Adap-
tive denoising via GainTuning. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, pages 23727–23740, 2021.

[134] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep
neural networks. In Advances in Neural Information Processing Systems (NIPS), volume 27, 2014.

[135] N. Moran, D. Schmidt, Y. Zhong, and P. Coady. Noisier2Noise: Learning to denoise from unpaired
noisy data. In Conference on Computer Vision and Pattern Recognition (CVPR), pages 12061–
12069, 2020.

[136] Y. Mäkinen, L. Azzari, and A. Foi. Collaborative filtering of correlated noise: Exact transform-
domain variance for improved shrinkage and patch matching. IEEE Transactions on Image Pro-
cessing, 29:8339–8354, 2020.

[137] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

[138] A. Nøkland and L. H. Eidnes. Training neural networks with local error signals. In International
Conference on Machine Learning (ICML), pages 4839–4850, 2019.

[139] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for total
variation-based image restoration. Multiscale Modeling & Simulation, 4(2):460–489, 2005.

[140] T. Pang, H. Zheng, Y. Quan, and H. Ji. Recorrupted-to-Recorrupted: Unsupervised deep learning
for image denoising. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
2043–2052, 2021.

[141] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), volume 32,
2019.

[142] W. B. Pennebaker and J. L. Mitchell. JPEG: Still image data compression standard. Springer
Science & Business Media, 1992.

[143] N. Pierazzo, J.-M. Morel, and G. Facciolo. Multi-Scale DCT denoising. Image Processing On Line,
7:288–308, 2017.

[144] T. Plötz and S. Roth. Neural nearest neighbors networks. In Advances in Neural Information
Processing Systems (NeurIPS), volume 31, 2018.

[145] T. Plötz and S. Roth. Benchmarking denoising algorithms with real photographs. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2750–2759, 2017.

[146] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. Image denoising using scale mixtures of
Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11):1338–1351, 2003.

214

BIBLIOGRAPHY

[147] M. Prakash, M. Lalit, P. Tomancak, A. Krul, and F. Jug. Fully unsupervised probabilistic
Noise2Void. In International Symposium on Biomedical Imaging (ISBI), pages 154–158, 2020.

[148] S. Prigent, S. Dutertre, A. Bidaud-Meynard, G. Bertolin, G. Michaux, and C. Kervrann. Sparse
denoising and adaptive estimation enhances the resolution and contrast of fluorescence emission
difference microscopy based on an array detector. Optics Letters, 48(2):498–501, 2023.

[149] Y. Quan, M. Chen, T. Pang, and H. Ji. Self2Self with dropout: Learning self-supervised denoising
from single image. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
1887–1895, 2020.

[150] S. Ramani, T. Blu, and M. Unser. Monte-Carlo SURE: A black-box optimization of regularization
parameters for general denoising algorithms. IEEE Transactions on Image Processing, 17(9):1540–
1554, 2008.

[151] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pages 400–407, 1951.

[152] Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by Denoising
(RED). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

[153] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer Assisted Intervention (MICCAI), pages
234–241, 2015.

[154] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological Review, 65(6):386, 1958.

[155] S. Roth and M. Black. Fields of Experts: a framework for learning image priors. In Conference on
Computer Vision and Pattern Recognition (CVPR), volume 2, pages 860–867, 2005.

[156] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena, 60:259–268, 1992.

[157] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[158] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: a database and web-based
tool for image annotation. International Journal of Computer Vision, 77:157–173, 2008.

[159] A. Sagel, A. Roumy, and C. Guillemot. Sub-dip: Optimization on a subspace with deep image prior
regularization and application to superresolution. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2513–2517, 2020.

[160] J. Salmon. Agrégation d’estimateurs et méthodes à patch pour le débruitage d’images numériques.
PhD thesis, Université Paris Diderot, 2010.

215

BIBLIOGRAPHY

[161] J. Salmon. On two parameters for denoising with non-local means. IEEE Signal Processing Letters,
17(3):269–272, 2010.

[162] J. Salmon and E. Le Pennec. An aggregator point of view on NL-Means. In Wavelets XIII, volume
7446, pages 447–454, 2009.

[163] J. Salmon and Y. Strozecki. From patches to pixels in non-local methods: Weighted-average repro-
jection. In IEEE International Conference on Image Processing (ICIP), pages 1929–1932, 2010.

[164] J. Salmon, R. Willett, and E. Arias-Castro. A two-stage denoising filter: The preprocessed
Yaroslavsky filter. In IEEE Statistical Signal Processing Workshop (SSP), pages 464–467, 2012.

[165] V. G. Satorras, E. Hoogeboom, and M. Welling. E(n) equivariant graph neural networks. In
International Conference on Machine Learning (ICML), volume 139, pages 9323–9332, 2021.

[166] M. Scetbon, M. Elad, and P. Milanfar. Deep K-SVD denoising. IEEE Transactions on Image
Processing, 30:5944–5955, 2021.

[167] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang.
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural
network. In Conference on Computer Vision and Pattern Recognition (CVPR), pages 1874–1883,
2016.

[168] E. Simoncelli. Photographic image priors in the era of machine learning. In IEEE International
Conference on Image Processing (ICIP) - plenary talk, 2022.

[169] S. Soltanayev and S. Y. Chun. Training deep learning based denoisers without ground truth data.
In Advances in Neural Information Processing Systems (NeurIPS), volume 31, 2018.

[170] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way
to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–
1958, 2014.

[171] J.-L. Starck, F. D. Murtagh, and A. Bijaoui. Image Processing and Data Analysis: the multiscale
approach. Cambridge University Press, 1998.

[172] C. M. Stein. Estimation of the mean of a multivariate normal distribution. The Annals of Statistics,
9(6):1135–1151, 1981.

[173] Y. Takai, A. Sannai, and M. Cordonnier. On the number of linear functions composing deep neural
network: Towards a refined definition of neural networks complexity. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 3799–3807, 2021.

[174] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley. Tensor field net-
works: Rotation-and translation-equivariant neural networks for 3D point clouds. arXiv preprint
arXiv:1802.08219, 2018.

216

BIBLIOGRAPHY

[175] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In International Con-
ference on Computer Vision (ICCV), pages 839–846, 1998.

[176] A. Trockman and J. Z. Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792, 2022.

[177] G. Vaksman, M. Elad, and P. Milanfar. LIDIA: Lightweight learned image denoising with instance
adaptation. In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 2220–2229, 2020.

[178] D. Van De Ville and M. Kocher. SURE-based Non-Local Means. IEEE Signal Processing Letters,
16(11):973–976, 2009.

[179] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Systems (NIPS),
volume 30, 2017.

[180] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling. Rotation equivariant CNNs for
digital pathology. In Medical Image Computing and Computer Assisted Intervention (MICCAI),
pages 210–218, 2018.

[181] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-Play priors for model based
reconstruction. In IEEE Global Conference on Signal and Information Processing, pages 945–948,
2013.

[182] Y.-Q. Wang and J.-M. Morel. SURE guided Gaussian mixture image denoising. SIAM Journal on
Imaging Sciences, 6(2):999–1034, 2013.

[183] Y.-Q. Wang and J.-M. Morel. Can a single image denoising neural network handle all levels of
Gaussian noise? IEEE Signal Processing Letters, 21(9):1150–1153, 2014.

[184] M. Weigert, U. Schmidt, T. Boothe, A. Müller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt,
C. Broaddus, S. Culley, M. Rocha-Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial,
M. Solimena, J. Rink, P. Tomancak, L. Royer, and E. Myers. Content-aware image restoration:
pushing the limits of fluorescence microscopy. Nature Methods, 15(12):1090–1097, 2018.

[185] M. Weiler, F. A. Hamprecht, and M. Storath. Learning steerable filters for rotation equivariant
CNNs. In Conference on Computer Vision and Pattern Recognition (CVPR), pages 849–858, 2018.

[186] K. Weisshart. The basic principle of airyscanning. Zeiss Technology Note, 22, 2014.

[187] D. Yang and J. Sun. BM3D-Net: a convolutional neural network for transform-domain collaborative
filtering. IEEE Signal Processing Letters, 25(1):55–59, 2018.

[188] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015.

[189] G. Yu and G. Sapiro. DCT image denoising: a simple and effective image denoising algorithm.
Image Processing On Line, 1:292–296, 2011.

217

BIBLIOGRAPHY

[190] G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators:
From Gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing,
21(5):2481–2499, 2012.

[191] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M. Yang. Restormer: Efficient
transformer for high-resolution image restoration. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5718–5729, 2022.

[192] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao. CycleISP: Real
image restoration via improved data synthesis. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2693–2702, 2020.

[193] K. Zhang, Y. Li, J. Liang, J. Cao, Y. Zhang, H. Tang, D.-P. Fan, R. Timofte, and L. V. Gool.
Practical blind image denoising via Swin-Conv-UNet and data synthesis. Machine Intelligence
Research, 2023.

[194] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte. Plug-and-Play image restora-
tion with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(10):6360–6376, 2022.

[195] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian denoiser: residual learning
of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142–3155, 2017.

[196] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep CNN denoiser prior for image restoration.
In Conference on Computer Vision and Pattern Recognition (CVPR), pages 2808–2817, 2017.

[197] K. Zhang, W. Zuo, and L. Zhang. FFDNet: Toward a fast and flexible solution for CNN-based
image denoising. IEEE Transactions on Image Processing, 27(9):4608–4622, 2018.

[198] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu. Residual non-local attention networks for image
restoration. In International Conference on Learning Representations (ICLR), 2019.

[199] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image restoration with neural networks.
IEEE Transactions on Computational Imaging, 3(1):47–57, 2017.

[200] M. Zontak and M. Irani. Internal statistics of a single natural image. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 977–984, 2011.

[201] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration.
In International Conference on Computer Vision (ICCV), pages 479–486, 2011.

218

Titre : Apprentissage machine et réseaux de convolution interprétables pour le débruitage
supervisé et non-supervisé d’images : application à l’imagerie satellitaire

Mot clés : Débruitage d’images, Analyse des réseaux de neurones, Equivariance, Méthodes
non-locales

Résumé : La première partie de cette thèse
est consacrée à la compréhension, l’analyse
et la conception de réseaux de neurones
supervisés dans le contexte du débruitage
d’images. Notre premier travail s’appuie sur le
débruiteur traditionnel DCT et le revisite avec
une dose d’apprentissage, tout en conservant
l’intuition originale. Le CNN à deux couches
qui en résulte s’appuie sur une transformation
interprétable basée sur les données, ce qui
améliore considérablement les performances.
En parallèle, nous étudions l’importance de
l’équivariance à la normalisation dans le dé-
bruitage et proposons des modifications ar-
chitecturales pour les CNNs existants afin de
garantir cette propriété sans perte de perfor-
mance, tout en les rendant également plus ro-
bustes aux changements de niveaux de bruit.

La deuxième partie traite de l’appren-
tissage non supervisé pour le débruitage
d’images. Nous proposons un cadre général
d’estimation paramétrique basé sur la minimi-
sation du risque quadratique qui permet de
réinterpréter et de réconcilier plusieurs mé-
thodes non-locales, y compris BM3D. Grâce
à ce paradigme, nous construisons NL-Ridge,
un nouveau débruiteur qui exploite les combi-
naisons linéaires de patchs bruités. Puis, en
étendant sa formulation via une technique de
chaînage reposant sur l’exploitation d’images
pilotes de plus en plus raffinées, un algorithme
à plusieurs étapes est proposé. Nous mon-
trons que ce dernier se compare favorable-
ment aux meilleures méthodes non supervi-
sées.

Title: Machine learning and interpretable convolutional networks for supervised and unsuper-
vised image denoising with application to satellite imagery

Keywords: Image denoising, Analysis of neural networks, Equivariance, Non-local methods

Abstract: The first part of this thesis is dedi-
cated to the understanding, analysis and de-
sign of supervised neural networks in the con-
text of image denoising. Our first work builds
on the traditional DCT denoiser and revisits it
with a dose of machine learning, while keep-
ing the original intuition. The resulting shal-
low CNN relies on an interpretable data-driven
transform which significantly improves perfor-
mance. In parallel, we study the importance
of equivariance to normalization in denois-
ing and propose some architectural modifica-
tions to existing CNNs to guarantee this prop-
erty without loss of performance, making them
more robust to outliers.

The second part deals with unsupervised
learning for image denoising. We propose
a general parametric estimation framework
based on quadratic risk minimization that
enables to reinterpret and reconcile several
state-of-the-art non-local methods, including
BM3D. Within this paradigm, we build NL-
Ridge, a novel denoiser which leverages lin-
ear combinations of noisy patches. Then, by
extending its formulation via a chaining tech-
nique relying on the exploitation of more and
more refined pilot images, a multi-step algo-
rithm is derived. We show that this latter com-
pares favorably with the very best unsuper-
vised methods.

	Résumé en français
	Motivation
	Formulation mathématique du problème
	Challenges et contributions de cette thèse
	Plan de la thèse
	Publications and communications

	Introduction
	Motivation
	Mathematical formulation of the problem
	Challenges and contributions of this thesis
	Thesis outline
	Publications and communications

	I Related work on image denoising
	Supervised learning
	Principle of supervised learning
	Classes of parameterized functions
	Multi-layer perceptron (MLP)
	Convolutional neural networks (CNN)
	Transformers

	Parameter optimization
	Back-propagation
	Stochastic gradient descent
	Adam optimization algorithm

	Weakly supervised learning
	Learning from noisy image pairs
	Learning single noisy images

	Unsupervised learning
	Weighted averaging methods
	Sparsity methods
	Sparsity in a fixed basis
	Sparsity on a learned dictionary

	Bayesian methods coupled with a Gaussian model
	Deep learning-based methods

	II Towards interpretable and better conditioned supervised neural networks for image denoising
	DCT2net: an interpretable shallow CNN for image denoising
	Introduction
	From popular DCT denoising to DCT2net
	Traditional DCT denoiser
	DCT2net: a CNN representation of a DCT denoiser
	Improvement of the transform

	A non-intuitive learned transform
	On the orthonormality of the learned transform
	DCT2net does not denoise patches
	Constraining DCT2net to effectively denoise patches is an unsuccessful strategy

	Strategies to reduce unpleasant visual artifacts
	DCT2net mixed with DCT
	Internal adaptation

	Experiments
	Training settings
	Results on test datasets
	Complexity and low-cost training

	Discussion and conclusion

	Normalization-equivariant neural networks with application to image denoising
	Introduction
	Related work
	Overview of normalization equivariance
	Definitions and properties of three types of fundamental equivariances
	Examples of normalization-equivariant conventional denoisers
	The case of neural networks
	Categorizing image denoisers

	Design of normalization-equivariant networks
	Affine convolutions
	Channel-wise sort pooling as a normalization-equivariant alternative to ReLU
	Encoding adaptive affine filters

	Experimental results
	The proposed architectural modifications do not degrade performance
	Increased robustness across noise levels

	Conclusion and perspectives

	III Fast and efficient unsupervised denoising via linear combinations of patches
	Towards a unified view of non-local methods: the NL-Ridge approach
	Introduction
	NL-Ridge for image denoising
	Parametric linear patch combinations
	Parameter optimization
	Step 1: Unbiased risk estimate (URE)
	Step 2: Internal adaptation
	Weighted average reprojection

	A unified view of non-local denoisers
	Analysis of NL-Bayes algorithm
	Analysis of BM3D algorithm

	Experimental results
	Setting of algorithm parameters
	Results on test datasets
	Complexity

	Conclusion

	LIChI: boosting denoising performance via a novel chaining rule
	Introduction
	An extended parametric view of unsupervised two-step non-local methods
	A unified framework for non-local denoisers
	Parameter optimization
	Principle of internal adaptation

	LIChI: linear and iterative combinations of patches for image denoising
	A novel chaining rule for generalization
	A progressive scheme for parameter optimization
	Resolution when the true image is available
	Use of multiple cost-efficient pilots for unsupervised estimation
	Weighted average reprojection

	Building an initial pilot
	Stein's unbiased risk estimate (SURE)
	Noisier2Noise
	Two additional extreme pilots
	Comparison of the pilots
	The crucial role of the aggregation stage

	Experimental results
	Setting of algorithm parameters
	Results on artificially noisy images
	Results on real-world noisy images
	Complexity

	Conclusion

	Conclusion and perspectives

	 Appendix
	Application to satellite imagery
	Data description
	Comparison of denoising algorithms

	Supplementary material for DCT2net
	Why is taking multiple thresholds useless?
	Direct technique to derive an orthonormal matrix for DCT2net
	Link between orthonormal matrices and orthogonal ones in DCT2net

	Supplementary material for normalization-equivariant neural networks
	Description of the denoising architectures and implementation
	Description of models
	Description of variants
	Practical implementation of normalization-equivariant networks

	Description of datasets and training details
	Mathematical proofs for normalization-equivariant neural networks
	Proofs of Propositions
	Examples of normalization-equivariant conventional denoisers

	Additional results

	Supplementary material for NL-Ridge
	Mathematical proofs for NL-Ridge
	Minimization of the quadratic risk
	Unbiased risk estimates (URE)
	Optimal combination weights are not necessary non-negative

	Mathematical proofs for NL-Bayes
	Minimization of the quadratic risk
	Unbiased risk estimate (URE)

	Mathematical proofs for BM3D
	Minimization of the quadratic risk
	Unbiased risk estimate (URE)

	A sequential coordinate descent algorithm for quadratic programming under conical and convex constraints

	Supplementary material for LIChI
	Minimization of the quadratic risk
	Building an initial pilot

	Mathematical proofs of useful results
	Unbiased risk estimators for image denoising
	Some useful results in convex optimization
	Tweedie's formula
	Product of two Gaussian probability density functions

	Bibliography

