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Ce travail a pour objectif d'améliorer la compréhension et le développement des méthodes numériques lagrangiennes utilisées pour l'hydrodynamique radiative multi-matériaux. Dans ce contexte, la robustesse, la précision et les coûts de calcul des schémas numériques pour la résolution de ce modèle constituent un enjeu majeur.

Différents aspects des écoulements multimatériaux et de leur discrétisation sont étudiés. Ceux-ci incluent notamment la comparaison des équations iso-pression et iso-déformation; la discrétisation multi-matériaux du transport radiatif; les couplages raides des systèmes à trois températures et leur implicitation; les aspects multi-vitesse au sein d'une stratégie de Multi-Lagrange + Projection ; le traitement numérique des produits non-conservatifs. Dans ces différentes études qui s'étalent sur trois chapitres différents, les chocs multi-matériaux et multi-températures sont un intérêt majeur. Leur spécification et leur approximation robuste se fait grâce à un contrôle de la dissipation numérique entre les différents matériaux. Un quatrième et dernier chapitre traite cette même problématique sous un angle plus académique. Les produits non-conservatifs sont définis à l'aide de la notion de chemin et ce formalisme nécessite une stratégie numérique cohérente.

Abstract: This work aims at improving the understanding and development of Lagrangian numerical methods for multi-material radiation hydrodynamics. In this context, robustness, accuracy and computational cost of numerical schemes are a major challenge.

Several aspects of multi-material flows and their discretization are studied. They include, among others, comparison between the equal-pressure and equal-strain assumptions; discrete multi-material radiation transport; stiff couplings inside threetemperature systems and their implicit time integration; multi-velocity aspects in the context of a "Multi-Lagrange + Remapping" strategy; numerical treatment of non-conservative products. These topics are treated in three separate chapters but multitemperature multi-material shocks remain a major theme throughout. Their specification and robust approximation is guaranteed by a proper control of the numerical dissipation between the different materials. A fourth and last chapter is devoted to this very same issue while adopting a more academicoriented approach. Shocks are there defined with the so-called path theory and their approximation requires adequate numerical strategies. The present work is made of four distinct chapters. Each chapter is designed to be standalone and includes its own state of the art. Depending on the specific underlying physical assumptions made in each chapter, the number of equations can vary and additional terms can be considered.

Although different, these systems of equations all stem from a unique modeling effort and most numerical challenges are similar. Consequently, this introduction aims at bringing in a unified manner the different equations and ensuing numerical issues encountered separately in each chapter. Overall, the connection between chapters 1, 2 and 3 is more apparent than with chapter 4 which adopts a more academic approach. This last chapter leans on a completely different formalism for deriving solutions and their numerical approximation. The global consistency of the manuscript is here addressed and duly motivated. In a first part, some generalities of hydrodynamics and thermodynamics are first discussed before delving into the multi-material aspects. In a second part, numerical strategies are discussed. Special attention is paid to shock capturing and dissipation.

1 Fluid models

Single-material hydrodynamics

To describe flows, different approaches are possible depending on the regime and required level of accuracy. In the limit of small Knudsen number, the mean free path is small compared to the system characteristic lengths; the continuum hypothesis can be made so that the flow evolution can be expressed with partial differential equations. Here is given a brief summary of the Euler equations which are formally obtained from the Navier-Stokes equations in the inviscid limit.

Their elementary mathematical properties, the Lagrangian system of coordinates, the basics of thermodynamics and shocks are discussed. A more detailed presentation of the following results can be found in [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF][START_REF] Eleuterio | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF].

Euler equations

The Euler equations are an essential building block of any fluid description. The material state is entirely characterized by its density ρ, velocity u and specific total energy E. The pressure is denoted p.

∂ ∂t ρ + ∇ • (ρu) = 0, (1a) 
∂ ∂t (ρu) + ∇ • (ρu ⊗ u) + ∇p = 0, (1b) 
∂ ∂t (ρE) + ∇ • (ρEu) + ∇ • (pu) = 0. ( 1c 
)
The equations describe, in order, the conservation of mass, momentum and total energy. Because all quantities are conserved, the Euler equations are an example of a system of conservation laws.

In one dimension (see the aforementioned references for definition in arbitrary dimension), such equations are of the form

∂ ∂t U + ∂ ∂x F (U ) = 0 ( 2 
)
where U is the state vector and F is the flux function. For the Euler equations U = (ρ, ρu, ρE)

and F consists of two separate fluxes: an advection flux associated with the transport of the variables and an acoustic flux associated with the pressure forces and their work. Defining A(U ) as the Jacobian of the flux F (U ), equation [START_REF] Abgrall | A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics[END_REF] can also be written

∂ ∂t U + A(U ) ∂ ∂x U = 0. ( 3 
)
The properties of the matrix A(U ) are tied with the equation's response to a linear perturbation.

In particular, if it is diagonalizable with real eigenvalues, the system is called hyperbolic and the initial-value problem is well-posed. The Euler equations can be shown to be hyperbolic under some conditions on the expression of p.

In the present work, fluid equations will be written in Lagrangian coordinates. By definition, the Lagrangian coordinate is constant along the flow of a given fluid parcel. This effectively factorizes transport fluxes into the time derivatives. Such factorization is critical for the numerical strategies detailed in the different chapters. The Lagrangian derivative of an arbitrary quantity

φ is d dt φ = ∂ ∂t φ + u • ∇φ. (4) 
The Euler equations [START_REF] Abgrall | How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach[END_REF] can then be recast into the updated Lagrangian formalism [START_REF] Maire | Contribution to the numerical modeling of inertial confinement fusion[END_REF] ρ d dt

1 ρ -∇ • u = 0, (5a) 
ρ d dt u + ∇p = 0, (5b) 
ρ d dt E + ∇ • (pu) = 0. ( 5c 
)
Finally, the total energy E is made of two contribution: kinetic energy and internal energy. The evolution of the specific kinetic energy 1 2 u 2 is obtained from the momentum equation. The total energy conservation law can then be replaced with the internal energy e = E -1 2 u 2 evolution, which reads d dt e + p d dt

1 ρ = 0. ( 6 
)
The internal energy formulation is crucial for taking into account thermodynamics and becomes all the more necessary for multi-material and multi-temperature applications.

Thermodynamics

In [START_REF] Abgrall | How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach[END_REF], a constitutive equation still needs to be written for the pressure. Under the assumption of local thermodynamic equilibrium, pressure is specified by thermodynamics. Thermodynamics is the cornerstone of hydrodynamics. It closes the equations, defines admissible solutions and has substantial consequences on the structure of these solutions. The two first laws of thermodynamics state that the internal energy is given as a function e(v, s) of the volume v = 1/ρ and the entropy s; pressure and temperatures are then defined as the partial derivatives of the energy, leading to the so-called Gibbs equation de = -pdv + T ds. [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF] The variation of internal energy is expressed as the sum of the work of pressure forces -pdv and the heat deposit T ds. The second law states that, for an isolated system, entropy can only increase over time

ds ≥ 0. ( 8 
)
Because of total energy conservation, the internal energy variation must correspond to exchanges with other energy potentials (e.g. kinetic energy). The work of pressure forces is unsigned and can go in one way or the other; in other words, it is reversible. By contrast, the heat deposit corresponds to an irreversible process as entropy cannot decrease. To illustrate the role of both, let's consider a piston on which a force is applied, thus increasing its internal pressure. If the piston is instantaneously freed from this force, the pressure imbalance between the inside and the outside will initiate an expansion. This expansion creates a pressure work leading to a conversion of internal energy into kinetic energy. Pressure then drops inside the material and, upon reaching pressure equilibrium with the outside, the total force acting on the box is zero. However, because of inertia, the piston continues to expand until the new resulting pressure imbalance induces a compression. If the only energy exchange is that of pressure work, then the piston experiences a periodic oscillation between expansion and compression phases.

In practice, such a perpetual motion does not exist because of dissipation. The term T ds progressively converts kinetic energy into heat in an irreversible manner. Oscillations are then damped or may not even start at all if dissipation is sufficient. This example is completely analogous to that of a swinging pendulum under gravitational acceleration. As the pendulum goes up, kinetic energy is converted into gravitational potential energy; as it goes down, the reverse process occurs. This essentially means that the work of gravity is reversible, as any force resulting from a potential. The periodic movement would then go on forever were it not for the air resistance which induces an irreversible transfer of kinetic energy into heat.

If pressure and temperature consist in first order derivative of the energy [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF], second and third order derivatives also play an important role in the behavior of the flow [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF]. Here are mentioned two which are especially relevant for fluid applications. First, the speed of sound c is defined as

c 2 = ∂p ∂ρ s ≥ 0. ( 9 
)
It is directly related to the eigenvalues of the matrix A(U ) (3) associated with the Euler equations which are uc, u and u + c. It then corresponds to a characteristic speed of propagation in the system. In particular, if c → +∞, compression waves are instantaneous, pressure progressively becomes decoupled from density and incompressible flows are eventually recovered. Strictly speaking, incompressible hydrodynamics are not in the scope of thermodynamics but rather in its closure. Another major thermodynamic coefficient is the fundamental derivative, defined as

G = 1 c ∂ρc ∂ρ s . ( 10 
)
It measures the convexity of isentropic curves in the p-1/ρ plane. Its sign is usually positive but can vary for some materials, a feature which has deep implications on the structure of shocks.

Shocks

The Euler equations describe isentropic behavior as seen when comparing [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF] with [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF]. However, pressure discrepancy can generate compression which tends to steepen solutions. Without any opposing effect, gradients can become arbitrarily high in finite time and generate singularities.

Physically, such singularities cannot exist; additional dissipative phenomena such as viscosity or heat exchange must be considered as in the Navier-Stokes equations [START_REF] Manuel | The curious events leading to the theory of shock waves[END_REF]. The steepening induced by pressure forces competes with the smearing created by dissipation. When a balance is found between the two, a profile eventually settles down and propagates through the medium with some speed σ. Such a phenomenon is called a shock and its profile can spread over as little as a few nanometers. Dissipation is then substantial in the vicinity of the shock but reasonably negligible away from it. Integrating the solution from its left state U L to its right state U R yields the following jump condition

σ (U R -U L ) = F (U R ) -F (U L ). ( 11 
)
It is worth noticing that [START_REF] Bridges | Multi-symplectic integrators: numerical schemes for hamiltonian pdes that conserve symplecticity[END_REF] does not include any contribution from the dissipation. The upstream and downstream states do not depend on these details although the exact shock profile does. Because of the necessary dissipation, shocks are irreversible processes; the entropy is always larger downstream than it is upstream so as to comply with the second principle of thermodynamics. The thermodynamics of the shock is contained in the so-called Rankine-Hugoniot relationship which is a direct consequence of [START_REF] Bridges | Multi-symplectic integrators: numerical schemes for hamiltonian pdes that conserve symplecticity[END_REF] e Re L = p R + p L 2

1 ρ L - 1 ρ R . ( 12 
)
From a mathematical point of view, it is possible to define shocks without the explicit use of dissipation. Although [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF] describes an isentropic evolution, algebraic manipulations used to derive it only make sense if the solution is smooth. Hyperbolic conservation laws usually develop discontinuities in finite time. In this case, solutions of (2) cannot be understood in the classical sense; a weak formulation is necessary. Discontinuity are then allowed and satisfy equation [START_REF] Bridges | Multi-symplectic integrators: numerical schemes for hamiltonian pdes that conserve symplecticity[END_REF]. For an arbitrary hyperbolic conservation law, a given shock is always associated to one of the eigenvalues λ(U ) of the matrix A(U ). For small amplitudes, its propagation speed σ can reasonably be approximated by

σ ≈ λ(U L ) + λ(U R ) 2 . (13) 
For the Euler equation, it confirms the relationship between the propagation of shocks and the speed of sound c. The weak formulation alone is not enough to uniquely specify solutions. An entropy criterion must be added and shows that although not explicitly used, the evanescent effect of dissipation cannot be forgotten without failing to guarantee physically meaningful solutions. Because the full shock profile is replaced with a strict discontinuity, the entropy production is confined to an infinitely small region and takes the form of a Dirac distribution.

On a more general note, shocks consist in only one of the elementary wave patterns of general hyperbolic systems (and the only one associated with dissipation). The nature and properties of elementary waves depend on their associated eigenvalue and eigenvector fields. For the Euler equations, it boils down to the sign of the fundamental derivative G. In particular, if its sign changes, elementary waves display complex composite behaviors [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF].

Multi-temperature and multi-material aspects

Averaging procedure

Multi-material flows are locally described with the Euler equations, possibly supplemented with dissipation. Thermodynamics vary discontinuously inside the medium depending on the material. Such a description requires a perfect knowledge of the position of interfaces throughout the entire evolution of the system. It is generally impossible, especially for dispersed phases where small structures are numerous and have characteristic lengths substantially smaller than the observation scale. The so-called averaging procedure is then a convenient tool for both modeling multi-material flows and numerically approximating them. Details on this wide-spread method can be found in [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF][START_REF] Drew | Mathematical modeling of two-phase flow[END_REF][START_REF] Wörner | A compact introduction to the numerical modeling of multiphase flows[END_REF][START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF]. The main steps are here summarized.

• Single-fluid equations are multiplied with a function b k ∈ [0, 1]. The function b k is a generic way of quantifying the presence of material k. It can be taken as a local mass fraction or a geometrical indicator function. It can also depend on an additional variable ω living in a probability space Ω if the description is stochastic.

• An averaging operator • is applied on the resulting equations. It consists in a moving average with an arbitrary kernel (or density function). Once again, the averaging is generic and can be performed with respect to space, time, probability realizations or any combination of the three.

• Material averaged quantities are defined as

α k ρ k φ k = b k ρφ ( 14 
)
for φ ∈ {1/ρ, 1, u, e}. In particular, the quantity α k = b k corresponds to a presence probability, a time frequency or a volume fraction depending on the type of averaging.

The historic terminology volume fraction is commonly used, regardless of the underlying measure.

• The resulting equations describe the evolution of averaged quantities. Part of the equations are expressed with the very same averaged variables but they also include correlation terms for which no a priori closure can be given. These correlations depend on both the system and the nature of the averaging. They essentially encapsulate small-scale phenomena.

A phenomelogical description of correlation terms can be found in [52, app. B]. Because of their presence, finding a universal multi-material model is a wager lost in advance. Still, it remains possible to extract the greatest common denominator of all multi-material models [111, app. A] for which pressure discrepancy between materials is neglected and all dissipation is omitted.

The resulting isentropic equations, written in a Lagrangian factorized form, are

α k ρ k d k dt 1 α k ρ k -∇ • u k = 0, (15a) 
α k ρ k d k dt u k + α k ∇p = 0, (15b) 
α k ρ k d k dt e k + p k d k dt 1 ρ k = 0, (15c) 
p k = p. (15d) 
The equations are devoid of any term that is not related to the work of pressure forces. As a result, they describe purely reversible (i.e. isentropic) processes and can also be derived from a least action principle [START_REF] Gavrilyuk | Multiphase flow modeling via Hamilton's principle[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF]. Pressure equality between the different materials is found to be a consequence of this variational approach. For applications where surface tension is needed, the additional potential it generates can be added to the system Lagrangian; pressure equality is then lost.

To get a better insight into the meaning of the averaging procedure and model [START_REF] Chaigneau | Rapport CEA[END_REF], let's consider three materials in two dimensions. The first two consists in two identical dense materials with an almost zero compressibility (e.g. water). They form two distinct diffused circular regions where their volume fraction α k , k ∈ {1, 2} is maximal at the center and fades out around. They will be referred to as clouds. The last material is the ambient medium. It is assumed less dense and highly compressible so that its dynamics can be reasonably assumed not to affect the two other materials (e.g air). The situation can be visualized on the first picture of figure 1. Let's now assumed that the two clouds are given an initial velocity toward one another so that they eventually cross midway. Because materials are not coupled beyond pressure forces in [START_REF] Chaigneau | Rapport CEA[END_REF], there is no reason for the two different clouds to interact with each other. It may sound surprising as, depending on the context, some form of interaction would be expected. An essential point of the averaging method is that it inherently hides in the correlation terms part of the underlying physics; information is then lost as soon as these terms are removed. As given in [START_REF] Chaigneau | Rapport CEA[END_REF], nothing is said about the nature of the averaging, nor are specified the correlation terms. This situation can arise from infinitely many averaging procedures, and lead to radically different behaviors.

As an illustration, two of them are here discussed.

First, the averaging procedure may have be done spatially with respect to the z-axis, and the two clouds may actually come from particles living in two distinct parallel planes as in figure 1. In this case, their volume fraction actually corresponds to a lineic fraction with respect to the z-axis. The two particles only interact through the acoustic waves their movement generates in the medium. The effect of the medium on the denser particles has already been deemed negligible, this approximation being all the more relevant if the two parallel planes are far from each other. Eventually, in the averaged model, the two clouds are expected to cross without seeing each other. Alternatively, the averaging procedure could have been performed

with respect to a statistical mean. This choice is relevant if the clouds are formed by a large number of small droplets as in figure 1. A deterministic description of each droplet is out of reach and must be left out in favor of a stochastic approach where probability densities are used to describe the statistical distribution of their number, size, shape and position. In this case, the individual realizations of the stochastic process are not relevant and only its expected (i.e. averaged) value is of interest. The equations describing the average behavior are precisely the ones given by the averaging procedure where the measure is that of the aforementioned distribution. The volume fraction now corresponds to a probability of presence. The two clouds of droplets, which should physically interact with each other, only do so through the correlation terms which can be described macroscopically with an equivalent drag force.

The two previous examples show both the universality and the limited nature of the "av-eraging+closure" procedure. It covers a wide array of conceptually different approaches as all measures share the same algebraic properties so that the resulting averaged models are all formally equivalent. Still, the devil is in the details: differences are embedded in the correlation terms but remain crucial, especially in the vicinity of shocks.

Multi-temperature hydrodynamics

For applications such as the Inertial Confinement Fusion (ICF) [24], extreme conditions, not unlike that occurring at the core of a star, can produce plasma. In completely ionized plasmas, ions and electrons can separately be assumed to be at local thermodynamic equilibrium. Although collisions between the two drive them toward a common temperature, the characteristic z z Figure 1: Illustration of the averaging procedure on a 3-material system. The middle and right images are real system whose averaging both yields the averaged system depicted on the left. Middle: two particles leaving in parallel planes undergo a spatial averaging along the z-axis; Right: two clouds of small droplets are smothered into a diffused region after taking the expected value of the position, size and form of the droplets.

times associated to that process can be smaller than the observation scale. In this case, each species of each material k must be described with its own potential e k e and e k i . Besides, if the medium is subject to strong radiation effects, a volumetric radiation energy e k r is needed for a full description of the system. The previously derived universal model can then be supplemented with a three-temperature description of each material

α k ρ k d k dt 1 α k ρ k -∇ • u k = 0, (16a) 
α k ρ k d k dt u k + α k ∇p = 0, (16b) 
α k ρ k d k dt e k i + p k i d k dt 1 ρ k = 0, (16c) 
α k ρ k d k dt e k e + p k e d k dt 1 ρ k = 0, (16d) 
α k ρ k d k dt e k r ρ k + p k r d k dt 1 ρ k = 0, (16e) 
p k i + p k e + p k r = p. (16f) 
Once again, such model neglects all dissipation and can be obtained from the least action principle.

Additional physics and model reduction

Although equations [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] consist in a universal starting point for multi-temperature multimaterial hydrodynamics, it must be supplemented with additional terms to describe real-world applications. As explained earlier, the possible combinations are infinite and system-dependant.

For applications such as the ICF, some terms cannot be neglected and are now discussed.

• Couples of materials with different velocities usually experience some form of drag. Because of total momentum conservation, the two forces must be opposite to one another; a possibility is given by the following expression

α 1 ρ 1 d 1 dt u 1 = ρν(u 2 -u 1 ), (17a) 
α 2 ρ 2 d 2 dt u 2 = ρν(u 1 -u 2 ), ( 17b 
)
where ρ is the mixture density and ν is homogeneous to a frequency. The greater it is, the more coupled the velocities are. In particular, the limit ν → +∞ enforces velocity equality.

• Ions, electrons and photons can have different temperatures but they remain tightly coupled. Temperature relaxation must be taken into account and reads [START_REF] Mihalas | Foundations of radiation hydrodynamics[END_REF][START_REF] Decoster | Modelling of Collisions[END_REF]]

α k ρ k d k dt e k i = cκ k (T k e -T k i ), (18a) 
α k ρ k d k dt e k e = cκ k (T k i -T k e ) + cσ k P a T k r 4 -a T k e 4 , (18b) 
α k ρ k d k dt e k r ρ k = cσ k P a T k e 4 -a T k r 4 . (18c) 
The relaxation coefficient κ k depends on both the ionic and electronic temperatures; the Planck opacity σ k P depends on the electronic and radiation temperatures. Ionic and electronic temperature relaxation can also be considered between different materials but it usually occurs on larger time scales [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] and are here neglected.

• Radiation transport is an important feature of flows in the presence of strong radiation fields. It describes the propagation of photons and the energy they carry. For a single material, under the Rosseland diffusion approximation [START_REF] Mihalas | Foundations of radiation hydrodynamics[END_REF], it reads

α k ρ k d k dt e k r ρ k = ∇ • c 3σ k R ∇e k r (19)
The diffusion coefficient is proportional to the speed of light c and inversely proportional to the Rosseland opacity σ k R which is given as a function of the electronic temperature T k e . Equation [START_REF] Chauveheid | Ecoulements multi-matériaux et multi-physiques : solveur volumes finis eulérien co-localisé avec capture d'interfaces[END_REF] only takes into account diffusion inside each material separately; the expression of inter-material exchanges induced by the radiation transport will be discussed in chapter 2. Strictly speaking, there also exist ionic and electronic heat exchanges. They are not as stiff as their radiation counterpart and will not be considered in the present work.

The different couplings are represented in figure 2. In the limit of infinite stiffness, relaxation terms simplify models by rendering some equations redundant. Infinite drag between every couple of materials results in a single-velocity model. Infinite collision frequencies yield two-temperature or one-temperature models. With both, it reduces to a single-velocity onetemperature multi-material model. These models are studied respectively in chapters 2, 3 and 1. In general, complex systems can display different drag regimes depending on the couples of materials and likewise for collisions. It produces a whole hierarchy of mixed models where a single velocity is shared in between clusters of materials and where each materials is described with its own number of temperatures.

Additionaly, and perhaps more subtly, stability issues must be addressed. Contrary to the Euler equations, model ( 16) is not hyperbolic but rather displays a mixed hyperbolic-elliptic behavior. Ellipticity predicts instability at all wavelengths and prevents initial-value problems from being well-posed. Consequently, equations ( 16) must be supplemented with physical terms stabilizing short-wavelength phenomena. Such terms include surface tension or viscosity [START_REF] Ramshaw | Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems[END_REF] among others. They must nonetheless leave unchanged the flow behavior at large wavelengths;

if not, the resulting damping of hydrodynamic instabilities (e.g. Kevin-Helmotz instabilities) would jeopardize the physical relevance of the solution [111, app. A and refs therein]. The issue of ellipticity only concerns the multi-velocity aspects of model ( 16) and single-velocity equations are hyperbolic, independently of the number of materials or temperatures.

Thermodynamics of multi-temperature and multi-material hydrodynamics

For multi-temperature and multi-material applications, each component (i.e. ions, electrons and photons) of each material possesses its own equation of state and hence its own energy, entropy, pressure and temperature. The previous discussion on thermodynamics remains valid but the multiplicity of energy potentials adds new complexities. In particular, individual Gibbs relationship can be written for each individual potentials

de k i = -p k i d 1 ρ k + T k i ds k i , (20a) 
de

k e = -p k e d 1 ρ k + T k e ds k e , (20b) 
d e k i ρ k = -p k r d 1 ρ k + T k i ds k e . (20c) 
Once again, the work of pressure forces produces a reversible exchange between the kinetic energy of all materials and the internal energy of each component of each material. The exchange between kinetic and internal energies is distributed between the different materials so as to comply with the prescribed volume evolution. Model [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] only accounts for the work of pressure forces so that it only describes reversible isentropic processes.

If dissipative forces are added, they also generate an exchange (albeit irreversible) between kinetic and internal energies. The total heat deposit (i.e. the loss of total kinetic energy) and its distribution between materials answers to the second principle of thermodynamics, namely the total entropy of the system cannot decrease. Beyond this requirement, no other constraint exists on the total heat deposit distribution; it may be shared arbitrarily between materials. This distribution is essentially system-dependent and encapsulates part of the missing information contained in the correlation terms of the averaged model. As an illustration of this concept, consider two materials whose velocities are coupled through a drag force (a similar computation can also be performed with viscosity). Pressure forces are omitted for simplicity and only one temperature per material is considered. The loss of total kinetic energy induced by equations ( 17) is then

α 1 ρ 1 d 1 dt u 1 2 + α 2 ρ 2 d 2 dt u 2 2 = -ρν u 2 -u 1 2 ≤ 0. ( 21 
)
The total heat deposit ρν u 2u 1 2 ≥ 0 indeed corresponds to dissipation. For total energy conservation, it is distributed between materials internal energies

α 1 ρ 1 T 1 d 1 dt s 1 = λ 1 ρν u 2 -u 1 2 , ( 22a 
)
α 2 ρ 2 T 2 d 2 dt s 2 = λ 2 ρν u 2 -u 1 2 . ( 22b 
)
where λ 1 and λ 2 sum up to one. In particular, if λ 1 = 1λ 2 = 0, material 2 bears all the dissipation while material 1 undergoes an isentropic evolution. More generally, the coefficients must be chosen so as to satisfy the following inequality

α 1 ρ 1 d 1 dt s 1 + α 2 ρ 2 d 2 dt s 2 = λ 1 T 1 + λ 2 T 2 ρν u 2 -u 1 2 ≥ 0. ( 23 
)
It is worth noticing that λ 1 ≥ 0 and λ 2 ≥ 0 is a sufficient but not necessary condition. Only the total entropy of the system must increase and one material's entropy is allowed to decrease as long as it is compensated by the other material. This is typically what happens with exchanges between different internal energies. For instance, collisions between ions and electrons induce an energy transfer of the form

α k ρ k d k dt e k i = cκ k (T k e -T k i ), (24a) 
α k ρ k d k dt e k e = cκ k (T k i -T k e ). ( 24b 
)
The colder species entropy increases while the hotter one decreases, but the evolution of the sum is always positive

α k ρ k d k dt s k i + α k ρ k d k dt s k e = cκ k (T k e -T k i ) 2 T k e T k i ≥ 0. (25) 
Likewise, radiation transport can result in a local entropy diminution as hot regions radiate heat around them. However, once integrated over the whole domain Ω (assumed isolated), the entropy always increases.

Ω α k ρ k d k dt s k r dx = Ω 4cT r 3σ R ∇T k r 2 dx ≥ 0. ( 26 
)
Just as in the single-material case, the mixture speed of sound can be derived from the eigenvalues of the matrix A(U ) (3) associated with the model of interest. For the multi-velocity equations, finding an analytical expression is possible when velocities are all equal and it yields 

c 2 0 = k β k (c k ) 2 , (27) 
P K 1 K 2 K 3 E 1 i E 2 i E 3 i E 1 e E 2 e E 3 e E 1 r E 2 r E 3 r RT C ie C er
. K k , E k i , E k
e and E k r are respectively the kinetic, ionic, electronic and radiation energy of material k integrated over the whole domain. P, C ie , C er and RT are used to denote exchanges induced respectively by pressure, collisions between ions and electrons, collisions between electrons and photons and radiation transport. The different energies need not be homogeneously distributed over the whole domain; although not represented, spatial exchanges (i.e. fluxes) also exist.

where

β k = α k /(ρ k (c k ) 2 ) l α l /(ρ l (c l ) 2 ) . (28) 
Alternatively, with a single-velocity model (i.e. with an infinite drag force), it reads

c 2 ∞ = k ρ k ρ β k (c k ) 2 . (29) 
Equation ( 27) consists in a convex combination of material speed of sounds while [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF] does not.

The latter can result in mixture speed of sound considerably lower than the one of its components (e.g. for mixtures of air and water). Generally speaking, the so-called subcharacteristic condition relates dissipation to slower speeds of sound [START_REF] José | On the effect of temperature and velocity relaxation in two-phase flow models[END_REF]. The mixture fundamental derivative can also be obtained in a similar fashion [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] but it is here omitted for the sake of brevity.

Multi-material shocks and non-conservative products

For single-fluid one-temperature equations, the second principle of thermodynamics excludes all non-physical behaviors and only one possible solution remains. It essentially means that all dissipative processes generate the same overall behavior and the differences are confined to narrow regions of the flow (namely in the profiles of shock). For multi-temperature or multimaterial applications (and a fortiori for both), shocks are small-scale dependent and their global structure cannot be known without the details of what is happening along their width. As an illustration, the propagation of sound waves inside a thick smog is not as fast as in a light drizzle.

Both systems are essentially equivalent in terms of the water volume fraction, but not in the size and distribution of water droplets. The correlation terms differ greatly; the drag force is more pronounced inside the fog which results in a lower mixture speed of sound.

General jump relationships on material masses, total momentum and total energy can still be written and read as in the single-material case. For a three-temperature N -material multivelocity system, the 5N evolution equations only produces a system of N + 2 partial jump conditions. The remaining 4N -2 equations then depend on small-scale phenomena and fall into two categories.

• N -1 are related to the N small-scale forces F k acting on each material. They can include various terms such as surface tension, viscosity or drag. Because of total momentum conservation, their sum must correspond to a flux whose contribution to the jump relationships is zero. Thus the N -1 degrees of freedom.

• The remaining 3N -1 are related to the different thermodynamic potentials. Dissipation generates a total heat deposit Q which needs to be shared between the different materials and their respective temperatures. As in (22), the following equation can be written without any loss of generality

α k ρ k T k θ d dt s k θ = λ k θ Q, (30) 
where θ ∈ {i, e, r} and coefficients λ k θ are such that k θ∈{i,e,r}

λ k θ = 1. (31) 
Again, only having positive λ k θ is enough to ensure consistency with the second principle of thermodynamics but heat exchanges can widen the range of admissible coefficients.

Mathematically, the non-uniqueness of entropic solutions comes from the failure to write (16) as a system of conservation laws [START_REF] Abgrall | A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics[END_REF]. No canonical weak formulation can be written. In [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF], this limitation is overcome for hyperbolic systems of the form (3), thanks to the use of the so-called path theory. Paths φ(U L , U R , ξ) are functions used to define generalized jump relationships

σ(U R -U L ) = 1 0 A(φ(ξ, U L , U R )) ∂ ∂ξ φ(ξ, U L , U R )dξ. ( 32 
)
This definition is an extension of the jump relationships for conservation laws as [START_REF] Drew | Mathematical modeling of two-phase flow[END_REF] reduces to [START_REF] Bridges | Multi-symplectic integrators: numerical schemes for hamiltonian pdes that conserve symplecticity[END_REF] when A(U ) is the jacobian of a flux function F (U ). Although this formalism offers a rigorous and convenient way to define shocks as a strict discontinuity, the path still needs to be specified. Identifying the one corresponding to a given regularization is not trivial and some choices may even result in unphysical solutions. The link between paths and their underlying physics is explored for a simple two-temperature system in chapter 4.

On the Baer-Nunziato model

A widespread one-temperature model for two-phase flows is given by the so-called Baer-Nunziato (BN) equations [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF]. Originally developed for the description of deflagration to detonation transition (DDT) in granular reactive flows, it was latter applied to general multi-material systems in [START_REF] Saurel | A simple method for compressible multifluid flows[END_REF] after which it gained considerable popularity. Over time, several modifications were performed on the original equations [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF]; here is written the version found in [START_REF] Saurel | A simple method for compressible multifluid flows[END_REF] for which phase change and heat transfer are neglected.

α k ρ k d k dt 1 α k ρ k -∇ • u k = 0, ( 33a 
)
α k ρ k d k dt u k + α k ∇p k = (p I -p k )∇α k , (33b) 
α k ρ k d k dt e k + p k d k dt 1 ρ k = (p I -p k )(u I -u k ) • ∇α k + λ(u I -u k ) • (u l -u k ) + µ(p I -p k )(p l -p k ), (33c) 
∂ ∂t α k + u I • ∇α k = µ(p k -p l ), (33d) 
where l = 2 if k = 1 and l = 1 if k = 2. Compared to equations ( 15), the BN model includes perturbations stemming from the use of interface pressure p I and velocity u I which both require a dedicated closure. Throught coefficient λ ≥ 0, it also accounts for a drag force which is essentially equivalent to [START_REF] Chandrashekar | A path conservative finite volume method for a shear shallow water model[END_REF]. Finally, pressure equilibrium (15d) is replaced with an evolution equation on the volume fraction (33d). This equation corresponds to the transport of the interface supplemented with a compaction term. Compaction takes the form of a relaxation process, controlled by coefficient µ ≥ 0 and which drives volume evolution toward pressure equilibrium. Two asymptotic behavior can be identified and are discussed in details in chapter 1 for a single-velocity model.

• If µ → +∞, then equality of pressures is formally recovered. Volume evolution is completely driven by thermodynamics. It is physically relevant [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] but couples all materials through pressure forces in a convoluted and possibly stiff way [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF].

• Alternatively, if µ = 0, the volume evolution becomes purely geometrical and disconnected from thermodynamics. Although questionable for highly contrasted mixtures [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] (e.g. air and water), it alleviates stiffness and substantially eases the numerical treatment.

The evolution of the mixture entropy is given by

α 1 ρ 1 d 1 dt s 1 + α 2 ρ 2 d 2 dt s 2 =∇α 1 • p I -p k T 1 (u I -u 1 ) - p I -p 2 T 2 (u I -u 2 ) + λ T 1 T 2 (u 1 -u 2 ) • (T 2 u 1 -(T 2 -T 1 )u I -T 1 u 2 ) + µ T 1 T 2 (p 1 -p 2 )(T 2 p 1 -(T 2 -T 1 )p I -T 1 p 2 ). ( 34 
)
In general, for arbitrary interface pressure and velocity, the model needs not comply with the second principle of thermodynamics. The closure p I = p 1 and u I = u 2 is then often considered as it yields

α 1 ρ 1 d 1 dt s 1 + α 2 ρ 2 d 2 dt s 2 = λ T 1 u 1 -u 2 2 + µ T 2 (p 1 -p 2 ) 2 ≥ 0. ( 35 
)
It removes the contribution of interface terms while ensuring that relaxation processes imply an increase of total entropy. Material 1 bears all the dissipation induced by drag while compaction only applies dissipation on material 2.

In the literature, the BN model is sometimes introduced as a necessary starting point for modeling all multi-material flows. From this town-down perspective, 6-equation and 5-equation models can be derived by reduction (i.e in the limit of infinite drag or compaction) and consists in simplified versions of the ground truth that is assumed to be the BN model. Its hyperbolicity seems to be one of the main reasons for its appeal in the community [START_REF] Saurel | A simple method for compressible multifluid flows[END_REF]. However, concerns have been raised over its use outside the scope of its original purpose (namely modeling granular flows) [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF]. Non-destruction of entropy is only assured under arbitrary closures on the interface variables. Such closures are relevant for some applications but are not compatible with the otherwise necessary degrees of freedom for general mixtures. As mentioned in [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF], a more reasonable stance is then to consider the BN model as a perturbation of equations ( 15) in a bottom-up fashion where drag, compaction and interface terms are specific closures of the correlation terms.

Numerical approximation of multi-material flows

Numerical approaches to the approximation of multi-material flows are numerous. They include finite difference, finite element or finite volume dicretizations; staggered or cell-centered strategies; and a variety of both widespread and niche ideas. Providing a classification and comparison of the existing methods is not the intent of this introduction. Instead, a selection of topics are discussed. They introduce and justify the motivations behind the different schemes developed throughout the manuscript. Their reach however goes beyond the present work as, although varied, all possible strategies are tied to the same criterion of consistency with physics.

"Lagrange + Remap" approach

A widespread approach for computational flow dynamics is the so-called "Lagrange + Remap" strategy [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF][START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF]. It essentially consists in splitting the treatment of pressure fluxes and transport.

• For the Lagrangian step, physical quantities are first computed on a moving mesh following the mixture. Cells undergoes deformations depending on the local discrete velocity field.

The integration of pressure forces and dissipation must be consistent with thermodynamics.

Gibbs equation [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF] is then reproduced at the discrete level

d dt e k c = -p k c d dt 1 ρ k c + T k c d dt s k c ( 36 
)
where φ k c is the numerical approximation of φ k in cell c. Equation ( 36) binds the energy evolution to that of the volume and the entropy. Volume is modified with respect to the Initial Lagrange Remap Figure 3: Schematic representation of the "Lagrange + Remap" approach. The initial square cell follows the flow (here an expansion); the deformed cell is then projected back to a reference mesh (here the initial one).

prescribed closure (e.g. pressure equality or the equal-strain assumption) while the entropy evolution depends on the chosen dissipation.

• For the remapping step, quantities are projected back to a reference mesh. This strategy is amenable to arbitrary mesh changes. Keeping the Lagrangian mesh amounts to bypassing the remapping step and following the fluid motion throughout the whole simulation; the method is referred to as being purely Lagrangian. Lagrangian computations usually benefits from better accuracy but mesh entanglement can occur and abruptly stop the simulation. Alternatively, if the remapping is performed at each time step on a fixed mesh, the method is then called Eulerian. Stability is improved at the cost of a more diffused solution. Generally, any intermediate choice can be considered and leads to the Arbitrary-Euler-Lagrange (ALE) formalism [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF][START_REF] Galera | A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[END_REF]. Adequate choices ideally yield low dissipation in regions where the mesh can adapt to the fluid motion and better stability where it cannot. The issue of designing such meshes is not addressed in the present work.

Only pure Lagrangian or pure Eulerian simulations will be performed.

The two steps are represented in figure 3. On a final note, the previous considerations assume there is only one Lagrangian frame; in other words, materials all share the same velocity field.

This assumption is no longer valid in a multi-velocity framework where a single mesh cannot simultaneously follow the motion of every material. To circumvent this issue, the strategy can be extended to an "Averaged Lagrange + Remap" where the different quantities are first computed in the center-of-momentum frame or any other relevant averaged frame. Velocity fluctuations appear during the Lagrange step and mimicking Gibbs equation at the discrete level is more tedious. Another approach consists in a "Multi-Lagrange + Remap" splitting where each quantity is computed in its material's Lagrangian frame [START_REF] Cournède | Un schéma bilagrange plus projection pour la simulation bifluide des instabilités de mélange[END_REF]. This choice requires additional care for volume conservation. It is the latter option which will be considered in chapter 3.

Numerical treatment of shocks and non-conservative products

The numerical treatment of shocks require specific care to provide both stable and accurate results. A first strategy would consist in specifying dissipation in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] and consistently discretizing it. Convergence is expected but it would require a large number of numerical cells in the vicinity of shocks to capture their profile. If viscosity and other coefficients related to dissipation are small, shocks spread over narrow regions for which a proper meshing is reasonably out of reach. Shocks are then under-resolved as physical dissipation cannot compete with its numerical counterpart. Although the latter is not involved in the formal consistency of the scheme, shocks are regions where the Taylor approach to consistency breaks down as gradients can be arbitrarily large. A more sensible approach is to directly shape numerical dissipation so as to mimic the physics of the flow. In doing so, capturing the shock profile is discarded and the focus is rather on correctly approximating the upstream state, the downstream state and the shock speed. Generally speaking, the numerical discretization of shocks hinges on two conditions: conservation and dissipation.

• Conservation must be guaranteed at the discrete level. For [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF], it concerns material masses, total momentum and total energy. If the numerical scheme fails to do so, solutions may display wrong jump relationships between the upstream and downstream states of the shock.

• As for dissipation, it is essentially equivalent to satisfying the second principle of thermodynamics at the discrete level. If the entropy production is lacking or even negative, instabilities can prevent any solution from being computed. It may also lead to entropydestroying shocks inside rarefaction waves.

These two requirements are necessary but only sufficient for systems of conservation laws [START_REF] Abgrall | A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics[END_REF].

For systems which cannot be cast into such form, several admissible shocks exist and their approximation is more delicate. A subtle control of dissipation is mandatory, not only in order to provide stable numerical shocks, but also to select the one of interest. Two approaches are explored in this work.

First, if shocks are specified through explicit dissipative processes, these terms can serve as a guideline for modeling numerical dissipation. This is essentially the idea behind artificial viscosity used in the seminal paper [START_REF] Neumann | A Method for the Numerical Calculation of Hydrodynamic Shocks[END_REF] but every stable scheme also contains an equivalent term, even if only implicitly. For multi-temperature multi-material applications, the main idea is to isolate the discrete total heat deposit associated with the scheme. Once identified, a discrete version of (30) can be inserted inside [START_REF] Enaux | Numerical resolution of a three temperature plasma model[END_REF]. Just as in the continuous case, different choices of coefficients λ k θ will produce different shocks. This approach stays close to the physics of the system but it is sensitive to spurious dissipation sources which can effect convergence inside shocks. The main contribution comes from the transport (or remapping), usually consisting in convex combinations and thus producing some form of discrete heat exchange [START_REF] Marboeuf | Schémas ALE multi-matériaux totalement conservatifs pour l'hydrodynamique[END_REF]. Such perturbations may be reasonably small and convergence errors can be acceptable for applications.

A second approach is to specify shocks with the path theory [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF] and associated jump relationships [START_REF] Drew | Mathematical modeling of two-phase flow[END_REF]. Traditional Godunov-type schemes have been extended to non-conservative hyperbolic systems through path-consistent approximate Riemann solvers [3,[START_REF] Dumbser | A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems[END_REF][START_REF] Díaz | Pathconservative central-upwind schemes for nonconservative hyperbolic systems[END_REF]. Convergence issues were shown to remain inside shocks [3] as the scheme total dissipation only partially comes from the solver. Again, spurious dissipation is added when averaging the approximate solution over the cell. In chapter 4, the method from [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] is applied to two-temperature Lagrangian hydrodynamics. This one-dimensional numerical strategy manages to remove the excess dissipation through in-cell discontinuous reconstruction. Convergence is shown to hold for isolated shocks and is also observed for more general Riemann problems.

On robustness and accuracy

The different possible flow regimes induce contradictory requirements. When smooth, the flow is reversible which advocates for a strict zero entropy production. Such a feat is usually not possible and it leads to a precarious balancing act between keeping dissipation at a bare minimum while still ensuring consistency with thermodynamics. On the other hand, shocks uncompromisingly need dissipation. This almost schizophrenic behavior is addressed in two distinct manners in the literature.

• Shocks are the focal point of the Godunov scheme [START_REF] Godunov | Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics[END_REF]. Dissipation is integrated into the scheme through exact Riemann solvers at the interface between cells. Approximate solvers [START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF][START_REF] Harten | On upstream differencing and godunovtype schemes for hyperbolic conservation laws[END_REF][START_REF] Eleuterio | Restoration of the contact surface in the hll-riemann solver[END_REF] were shown to produce similar results while substantially decreasing computation times. The resulting schemes display robust behavior in shocks but invasive dissipation prevents isentropic flows from being properly captured. In the literature, the main solution to improve accuracy leans on higher order extensions. Upon realizing that conservative monotone linear schemes are first-order accurate at most [START_REF] Harten | On finite-difference approximations and entropy conditions for shocks[END_REF], flux limiters [START_REF] Jay | Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works[END_REF][START_REF] Peter | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] and slope limiters [START_REF] Bram Van Leer | Towards the ultimate conservative difference scheme[END_REF] were developed. Non-linearity allows these techniques to provide second-order accuracy in smooth regions while degenerating into a robust firstorder scheme in the vicinity of shocks.

• Instead of starting from intrinsically robust schemes and trying to skim off the excess dissipation, a dual approach is to first derive almost dissipation-free schemes and then add artificial dissipation to stabilize shocks. In order to stay as close as possible to a zero entropy production, strategies include conservation of kinetic energy or enstrophy [START_REF] Zhang | A mass-, kinetic energy-and helicity-conserving mimetic dual-field discretization for three-dimensional incompressible Navier-Stokes equations, part I: Periodic domains[END_REF], as well as preserving geometric (e.g. symplectic or variational) structures [START_REF] Bridges | Multi-symplectic integrators: numerical schemes for hamiltonian pdes that conserve symplecticity[END_REF][START_REF] Pavlov | Marsden, and Mathieu Desbrun. Structure-preserving discretization of incompressible fluids[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF]. Staggered schemes are more often employed but cell-centering is also possible [START_REF] Reiss | A family of energy stable, skew-symmetric finite difference schemes on collocated grids: a simple way to avoid odd-even decoupling[END_REF].

Designing relevant artificial dissipation and deciding where to apply it is an entire question on its own. Its specification must be driven by physics which makes it naturally suited for multi-temperature or multi-material shocks.

In the present work, the starting point of the numerical strategy is the EUCCLHYD/GLACE scheme [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF][START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF]. It is based on nodal Riemann solvers and thus belongs to the first category. The extension to multi-temperature multi-material flows however borrows some ideas from the second category as shaping the numerical dissipation is crucial for multi-valued shocks. This is made possible by an explicitly known discrete entropy production associated with the scheme, a feature which is seldom encountered in Godunov-type schemes where dissipation can be convoluted.

Robust shock capturing and accuracy are only two of numerous constraints applied to numerical schemes. The list includes, but is not limited to stiff radiation transport and temperature relaxation (studied in chapter 2), contrasts in equations of state [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF], fundamental derivative stiffness [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] and well-balanced issues [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF]. Generally speaking, compromises must be made and are essentially conditioned by applications. In the context of this work, numerical strategies must handle strong shocks and overall stiff conditions. Robustness is then crucial and prevails over accuracy. As such, control of entropy at the discrete level will be a major concern throughout all chapters. Such an adamant stance toward entropy can affect the quality of the solution in isentropic regions of the flow. This issue is discussed in the conclusion of the manuscript and will be addressed in future studies.

Outline of the thesis

The present work is made of four distinct chapters. Each chapter is meant to be standalone but their order is still meaningful. The first chapter serves as a first in-depth introduction to the multi-material equations and their numerical treatment. It introduces the core multimaterial aspects, focusing on a one-temperature single-velocity model. Two closures on the volumes are discussed and compared: the equal-strain and the equal-pressure assumptions.

Equal-strain corresponds to a simple transport of volume fractions, it is purely geometrical and is not concerned with possible thermodynamic stiffnesses (e.g. highly contrasted equations as in mixtures of air and water). However, it becomes physically irrelevant in some regimes where the equal-pressure assumption is then preferable. The equal-pressure assumption, as its name suggests, enforces local pressure equilibrium between materials. It is a sensible closure for most applications but induces a possibly stiff thermodynamic coupling between materials.

The present numerical strategy follows the "Lagrange + Remap" approach where variables first evolve following the deformation of the mixture before being projected on a arbitrary mesh. The Lagrange step, which is the main focus of the chapter, is a multi-material extension of the GLACE/EUCCLHYD scheme [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF][START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF]. Whichever closure (namely equal-strain or equalpressure) is chosen, ensuring thermodynamic consistency at the discrete level is necessary in order to produce stable computations and select physically-meaningful solutions. In particular, ensuring a positive total heat deposit and tuning properly its distribution between materials is a key ingredient of the present work. It is also an essential stepping stone toward approximating more sophisticated models as it is done in the second and third chapters.

The second chapter merges the multi-material aspects developed in the previous chapter with the multi-temperature aspects of [START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF]. The discretization of the resulting model is challenging because of the multiplied thermodynamic potentials and the stiff phenomena coupling them all together. They include the pressure coupling from the equal-pressure assumption, radiation transport and relaxation terms between ionic, electronic and radiation energies. A thermodynamically-consistent and stable numerical approximation of all these intertwined phenomena is out of the scope of the present work. Pressure equilibrium is here left out in favor of the equal-strain assumption. Although simplified, the model remains complex and several issues still needs to be addressed. First, the discretization of the multi-material radiation transport is not trivial and is here performed with respect to Discrete Equations Method (DEM) introduced in [4]. Second, stiff radiation transport and relaxation terms require an implicit time integration which results in a highly non-linear system of equations. The iterative strategy proposed in [START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF] is here extended to the multi-material setting; temperatures are ensured to stay non-negative at each iteration through the use of convex combinations.

The third chapter represents a straight continuation of the first chapter where a multi-velocity model is now considered. The multi-velocity setting brings new issues both at the continuous and discrete level. At the continuous level, consequences of the model ellipticity is discussed.

As for the numerical strategy, the "Lagrange + Remap" approach of the single-velocity scheme is extended to a "Multi-Lagrange + Remap" method where each material first evolves in its own Lagrangian frame before being projected on a common mesh. A large emphasis is, again, put on thermodynamic consistency. The main ideas remain the same for the Lagrange step although total energy conservation must be given due consideration. The remapping is subject to unexpected constraints which couples all materials. The resulting semi-discrete scheme is shown to strictly comply with the second principle of thermodynamics.

The fourth and last chapter is motivated by the numerical approximation of shocks for hyperbolic equations which are not systems of conservation laws. This issue is already present in the previous chapters and addressed by the control of the total heat deposit between materials. Because of spurious (but arguably limited) additional entropy sources, the issue was only partially answered; the complexity of the models, two-dimensional nature of the schemes and tight robustness requirements on the discretization, make exactly converging to the prescribed solution a difficult task. This chapter then takes a more academic stance and consider the simplified model of single-material two-temperature Lagrangian hydrodynamics in one dimension.

The path formalism introduced in [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF] is chosen to describe shocks. The link between a given path and its underlying dissipation; several conditions are shown to physically constrain the path. The numerical strategy follows the ideas developed in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] where in-cell discontinuous reconstructions are used to eliminate spurious numerical dissipation. Test cases consisting of Riemann problem for different paths and equations of state are then considered. Numerical solutions are shown to converge to the analytical solution inside shocks when a path-consistent Godunov's scheme fails to do so. A cell-centered Lagrangian scheme is presented for a multi-material hydrodynamics model with equilibrated material pressures. The scheme is conservative in mass, momentum, and total energy while being entropic per material. This last point is critical for various engineering applications but is seldom addressed. The entropy production in each material is taken as an arbitrary part of the global entropy production hence mimicking different viscosity operators and the underlying vanishing viscosity solution. The scheme is applied to various 1 or 2-dimensional test cases where materials have highly contrasted equations of state. These challenging test cases confirm the robustness of the scheme and show that pressures are kept equal up to the scheme order or even strictly if an additional equilibration procedure is added.

1 Introduction

Motivations and existing approaches

In the context of multi-material flows, interface widths between materials are significantly smaller than observation scales for many applications and may then be considered as sharp discontinuities. Dealing accurately with these interfaces is critical and has driven most of the efforts of the community starting from the fifties. A large spectrum of models and numerical strategies has since been developed. Among all available methods, two categories have emerged in order to handle interfaces between materials [START_REF] Maltsev | High-order methods for diffuseinterface models in compressible multi-medium flows: A review[END_REF]. The first one does not allow any mixing between materials. Materials are assigned a specific domain and the interface is defined as the border between these disjoint zones. Such methods are referred to as sharp interface methods. The second one deals with interfaces as diffuse areas in which materials may artificially mix with each other. They are referred to as diffuse interface methods.

The latter category gained popularity over the past few decades for several reasons. First, the interface is allowed to spread over a certain width, thus bypassing potential geometric difficulties which are the main drawback of sharp interface methods. Diffuse interface methods also allow the easy integration of additional physical phenomena such as capillarity, surface tension, drag forces and added mass, among others [START_REF] Heulhard De Montigny | Thermo-hydro-dynamic consistency and stiffness in general compressible multiphase flows[END_REF]. Finally, although the inherent numerical smearing of the interfaces results in a certain loss of accuracy, it still may be mitigated by anti-diffusive methods [START_REF] Paulin | Improved numerical schemes for monotonic conservative scalar advection : tackling mesh imprinting and numerical wetting[END_REF] and by the computational power breakthrough of the last decades. Of course, diffuse interface methods require appropriate models and numerical methods. A detailed review may be found in [START_REF] Saurel | Diffuse-interface capturing methods for compressible two-phase flows[END_REF][START_REF] Maltsev | High-order methods for diffuseinterface models in compressible multi-medium flows: A review[END_REF].

Concerning models, several possibilities exist when dealing with multi-material flows in the framework of diffuse interface method. The sheer variety of existing models partially comes from the different possible levels of sophistication, which is traditionally indicated by the number of equations in the case of two material flows. Four-equation models consider mixture equations (i.e. equations on the average density, momentum and energy of the mixture) supplemented with a transport equation in order to take into account interface advection [START_REF] Abgrall | How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach[END_REF]. This transport equation may concern volume fraction, or a set of thermodynamic coefficients which completely characterizes the mixture equation of state. However, material thermodynamic states (i.e. material densities and internal energies) are not accessible and the accuracy of the model heavily depends on the ability to properly model the mixture state through the average pressure. On the other hand, 7-equation models [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF][START_REF] Cournède | Un schéma bilagrange plus projection pour la simulation bifluide des instabilités de mélange[END_REF] allow for a more accurate description of the mixture, even with real equations of state, as all material variables are available (including density, momentum, energy and volume fraction). However, these models display complex wave structures and their discretization is challenging.

Five-equation models constitute a compromise between the two, providing a physically sound description of the mixture without trading off too much simplicity. Only the mixture velocity is known but individual thermodynamic states are defined, even if sometimes only implicitly.

However, inside the class of 5-equation models, there is no general agreement on the equations and multiple models has been proposed [5,[START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF][START_REF] Galera | A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[END_REF]. They all converge on conservation equations (i.e. mixture momentum and energy as well as material mass equations) but may differ when it comes to material internal energies, densities, volume fractions, pressures or entropies (all of them being set as soon as two of them are known). The model under consideration in this article is a 5-equation model, obtained through a conditional averaging procedure introduced in [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF] and summarized in [START_REF] Wörner | A compact introduction to the numerical modeling of multiphase flows[END_REF][START_REF] Llor | Modèles hydrodynamiques statistiques pour les écoulements d'instabilités de mélange en régime développé: critères théoriques d'évaluation 0D et comparaison des approches mono et bifluides[END_REF][START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF]. The averaging procedure introduces several fluctuation terms which are then neglected. As a result, the model is naturally isentropic for each material.

However, it is only a general foundation and some terms still need to be specified with physical assumptions. It encompasses most, but not all, models of the literature.

Generic approach on closures and on entropy

In the present article, we focus on two closures for the isentropic model: the equal strain and equal pressure assumptions. The former consists in assuming volume fractions stay constant during the Lagrangian phase; in other words, all materials are compressed or expanded with the same rate. The latter enforces equality of pressures between materials. These two closures may be interpreted as two extreme cases of the Baer-Nunziato model [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF] where the volume fraction evolution depends on a dynamic compaction viscosity. As this coefficient goes to zero, the volume fraction evolution is no longer driven by thermodynamics and one recovers the equal strain assumption. As it goes to infinity, pressures are instantaneously relaxed to the same value and one recovers the equal pressure assumption.

The equal strain assumption is numerically quite simple and is relevant enough for some applications; thus, it is widely used in simulations of multi-material flows [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the simulation of High-Energy-Density-Physics Problems[END_REF]. However, it leads to a strong pressure decoupling inside mixtures where materials have significantly different equations of state (e.g. mixtures of air and water). Apart from being quite unrealistic, the resulting pressure decoupling may not be compatible with chemical reactions, phase changes or other physical phenomena which depend on thresholds. It also leads to losses of robustness in highly contrasted systems with "real" equations of state (EOS) [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF].

For these reasons, another closure is necessary for some applications and the equal pressure assumption is a sound one [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF][START_REF] Gavrilyuk | Multiphase flow modeling via Hamilton's principle[END_REF]. Volume fractions and densities evolution is completely defined by this constraint, even if implicitly. Enforcing pressure equilibration may be done at the discrete level by solving a non-linear system of equation [START_REF] Després | Numerical resolution of a two-component compressible fluid model with interfaces[END_REF] through an iterative method.

This article follows the ideas developed in [START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF] by computing the evolution equation for the density and then discretizing it. As a result, the scheme is fully explicit and does not rely on any iterative solver. Moreover, it allows to properly factor in entropy contributions, which is essential to our scheme and which sets it apart from other approaches relying on the same closure [START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF][START_REF] Després | Numerical resolution of a two-component compressible fluid model with interfaces[END_REF].

More generally, and for any closure, a specific attention has to be put on entropy. No dissipation process or heat exchange are taken into account so entropy variation has to be nonnegative for each material as to comply with the second principle of thermodynamics. Not only entropy variation must be non-negative for each material, but ratios between materials may be freely customized. It is a key feature of multi-material flows and relates to the presence of nonconservative terms in the model. Contrary to hyperbolic conservation laws, non-conservative systems of equation do not admit a canonical solution. Solutions may then be defined with an added vanishing regularization operator or with a choice of path [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF] which defines generalized Rankine-Hugoniot jump conditions. The latter choice inspired the methodology described in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] for a path-dependent scheme based on in-cell reconstruction techniques and exact resolution of Riemann problems. Our approach, following the work made in [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF], is related to vanishing regularization operators which are mimicked at the discrete level by a choice of entropy production distribution. It answers the issue of thermodynamic consistency and the multiplicity of solutions arising from the presence of non-conservative terms. It needs to be emphasized that the present methodology should be applicable to a large variety of schemes, even if it is presently illustrated on a specific scheme.

Present numerical scheme and tests

The scheme developed in this article is based on a "Lagrange + Remap" approach [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF][START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF].This procedure consists in first solving the Lagrangian equation on a mesh which moves with the flow.

This formalism is naturally suitable for interface problems and prevents excessive smearing of the interface as no mass flux occurs between numerical cells. However, robustness issues may arise when facing large flow deformations which often results in mesh entanglement and code failure. The Remap phase is then introduced in order to tackle this latter problem. The solution is projected on a mesh whose regularity ensures a robust behavior of the scheme while not sacrificing most qualities of pure Lagrangian methods. The Lagrange+Remap formalism also facilitates the control of the entropy as it allows to separate thermodynamics from advection phenomena.

The Lagrangian part, which constitutes the main contribution of this article, is an extension of the Eucclhyd scheme [START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF], written in internal energy [START_REF] Cheng | A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations[END_REF][START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF], for multi-material flows.

It needs to be highlighted that the internal energy formulation is uncommon for cell-centered schemes but is essential here. It allows for an accurate control of each material entropy production. Practically, the semi-continuous scheme is constructed so that entropy variation is positive for each material, thus ensuring thermodynamic consistency of our approach. While being critical for various engineer applications this point is seldom addressed. The resulting Lagrangian part of the scheme is exactly conservative in mass, momentum and total energy (i.e. the sum of kinetic energy and all material internal energies).

Concerning the Remap phase, the initial Eulerian mesh is used for the projection and the remapping procedure is a standard Alternate Direction one [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF][START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF]. This mesh choice is not optimal and more sophisticated alternatives exist [START_REF] Galera | A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[END_REF]. When the mesh on which the solution is projected is far from the Lagrangian one, a pressure decoupling may appear and threaten the consistency with the equal pressure assumption. As such, a pressure equilibration procedure is added, based on the work of [START_REF] Després | Numerical resolution of a two-component compressible fluid model with interfaces[END_REF] and already used in [START_REF] Heulhard De Montigny | Thermo-hydro-dynamic consistency and stiffness in general compressible multiphase flows[END_REF]. This procedure enforces pressure equilibration and is still consistent with thermodynamics in the sense that mixture volume and energy are conserved while material entropies do not decrease.

The article is organized as follows. In section 2, the two different closures (namely equal strain and equal pressure assumptions) for multi-material models are presented. The numerical scheme is then detailed in section 3, together with a note on the pressure equilibration procedure.

Finally, the scheme is confronted with 1D and 2D test cases (some of which displaying highly contrasted equations of state) and results are compared between both equal strain and equal pressure closures.

2 Closures for a multi-material model

In this section, a model for multi-material flows is presented. This model does not provide a full description of the system and calls for an additional closure. Two closures are then introduced and discussed. The first one is the equal strain assumption and is commonly used.

However, it may become particularly irrelevant in the case of materials with strongly different compressibilities. The second one aims at being relevant for a wider spectrum of applications and is based on an equal pressure assumption. An explicit formulation is derived which takes into account entropy production, hence laying the foundations for our numerical scheme.

Notations

A mixture of an arbitrary number of material is considered. The volume fraction of material k is denoted by α k and its density by ρ k . Inside a given volume V where a mass m k of material k occupies a volume V k , these quantities are defined as

α k = V k V , ρ k = m k V k . (1.1)
The total density of the mixture is defined as

ρ = m V = k α k ρ k . (1.2)
Additionally, internal energy of material k is denoted e k . Likewise, an energy for the mixture is defined as

ρe = k ρ k e k . (1.3) 
Each material k has its own pressure p k and entropy η k . The quantities ρ k , e k and p k are related to each other with an equation of state (EOS) p k (ρ k , e k ). Finally, the characteristic times at which material velocities relax to a common value are assumed to be significantly smaller than the characteristic times of observation. Only one common velocity u is thus considered. Equations will be written with Lagrangian time derivatives which are defined by

d dt • = ∂ ∂t • + u • ∇•. (1.4)

Isentropic model for multi-material flows

The present model is written for an arbitrary number of materials, each one of them being described by its own EOS. The EOS are arbitrary, provided they fulfill some thermodynamic constraints such as concavity of the entropy and having a real speed of sound.

α k ρ k d dt 1 α k ρ k = ∇ • u, (1.5a) 
ρ d dt u = -∇p, (1.5b) 
α k ρ k d dt e k = -α k ρ k p k d dt 1 ρ k . (1.5c)
Equations (1.5) are obtained through a conditional averaging procedure introduced in [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF] and summarized in [START_REF] Wörner | A compact introduction to the numerical modeling of multiphase flows[END_REF] for non-miscible materials and in [52, §B] for general mixtures. More precisely, single material Euler equations with discontinuous thermodynamic properties are initially considered. These equations undergo a material-conditional averaging procedure which allows specific material quantities to be defined. Finally, all fluctuations appearing in the averaging procedure are neglected and, as such, the model is naturally isentropic for each material. The energy equation of material k thus corresponds to Gibbs identity de k = -p -kd(1/ρ k ) + T k ds k with ds k = 0. Fluctuation terms or other dissipative effects (e.g. surface tension, added mass, etc...) can be added seperately.

The total pressure p, not yet defined in (1.5), is actually constrained by the condition of total energy conservation and is given by the convex average

p = k θ k p k , θ k = α k ρ k d dt 1 ρ k l α l ρ l d dt 1 ρ l . (1.6)
Indeed, in this case,

k α k ρ k d dt e k = - k α k ρ k p k d dt 1 ρ k (1.7) = - k θ k p k l α l ρ l d dt 1 ρ l (1.8) = -p∇ • u, (1.9) 
which eventually yields

k α k ρ k d dt e k + ρ d dt u 2 2 = -∇ • (pu).
(1.10)

A quick comparison of the number of equations and number of unknowns shows that the model is still under-determined and must be supplemented with closures or evolution equation for either volume fractions, densities, or pressures. Hence, this model is only a general framework within which numerous closures can be introduced. Two of them will now be investigated and compared, namely the equal strain and the equal pressure assumptions.

Remark: In [5], a model with both closures (namely the equal strain and equal pressures assumptions) is studied. However, this model does not comply with the second principle of thermodynamics as entropy may be destroyed over time (see A). Despite boasting good mathematical properties such as hyperbolicity (for a large class of equations of state), it may come at the cost of losing some consistency with physics. Ultimately, this is the reason why it will not be considered here.

Equal strain assumption

The first closure is the so-called equal strain assumption [7, §3.11.1] whereby all materials are assumed to experience the same volume deformation

1 ρ d dt ρ = 1 ρ k d dt ρ k = ∇ • u. (1.11) 
As detailed in [START_REF] Galera | A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[END_REF], combination of (1.11) and (1.5a) eventually yields d dt (α k ) = 0.

(1.12)

Equation (1.12) is also often introduced as a transport equation in Euler formalism [5] ∂ ∂t

(α k ) + u • ∇α k = 0. (1.13)
It is also called a topological equation because it exactly expresses the advection of the interface2 .

The density equation may be deduced and then reads

α k ρ k d dt 1 ρ k = α k ∇ • u. (1.14)
Equation (1.6) then reduces to p = k α k p k3 . The closed model is hyperbolic with a squared speed of sound c 2 of the mixture given as a convex combination of squared speeds of sound (c k ) 2

c 2 = k α k ρ k ρ (c k ) 2 . (1.15)
The resulting model is widely used for the simulation of multi-material flows, as it does not imply strong modifications of single material schemes. The numerical treatment of the set of equations is standard and for clarity we do not intend to detail it here. Instead we refer to [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the simulation of High-Energy-Density-Physics Problems[END_REF][START_REF] Galera | A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[END_REF] in which this is clearly explained.

However convenient this model might be, it still has its shortcomings. Although if it is quite relevant for mixtures of similar materials, equation (1.11) becomes unrealistic when dealing with contrasted EOS: if a mixture of air and water is compressed, air should physically bear most of the deformation and its volume fraction should decrease accordingly instead of being constant. In the case where both air and water are compressed with the same factor, water pressure skyrockets and may exceed thresholds governing chemical reactions or phase changes, hence producing unrealistic physical behaviors. Finally, in industrial applications where some equations of state are tabulated and not known analytically, thermodynamic states where pressure is not defined might be explored. All these reasons motivate the introduction of a second closure discussed below.

Equal pressure assumption : from implicit to explicit formulation

In the vast majority of multi-material systems, pressure relaxation processes between materials occur on time scales much smaller compared to the characteristic hydrodynamic time scales [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF].

Consequently, material pressures may be considered equal. This will be referred to as the equal pressure assumption

p = p k (ρ k , e k ), ∀k ∈ {1, ..., n}, (1.16) 
which provides an implicit closure on the volume fractions and densities. Following [111, §3.5],

in order to make the coupling with equations (1.16), the underlying rates of expansion d dt (ρ k ) are derived. The conservation of total mass gives a relationship between all d dt (ρ k ) 

k ρ k α k d dt 1 α k ρ k -∇ • u α k = 0, ⇐⇒ k α k ρ k d dt ρ k + d dt α k = -∇ • u, ⇐⇒ k α k ρ k d dt ρ k = -∇ • u. ( 1 
(c k ) 2 = ∂p k ∂ρ k η , Γ k = 1 ρ k T k ∂p ∂η ρ , (1.19) 
pressure derivatives may be written as a function of density and entropy derivatives

d dt p = (c k ) 2 d dt ρ k + ρ k Γ k T k d dt η k . (1.20)
Finding d dt (ρ k ) essentially amounts to solving the linear system (1.17)-(1.20) with unknowns

d dt p, d dt ρ k . Substituting d dt ρ k with 1 (c k ) 2 ( d dt p -ρ k Γ k T k d dt η k ) inside equation (1.17) gives d dt p = - 1 k α k ρ k (c k ) 2 ∇ • u + k β k ρ k Γ k T k d dt η k , (1.21a 
)

β k = α k ρ k (c k ) 2 l α l ρ l (c l ) 2
.

(1.21b)

Notice that k β k = 1. At this point, the unknowns d dt (ρ k ) are immediately recovered as

α k ρ k d dt 1 ρ k = β k ∇ • u + l α l ρ l (c l ) 2 l β k β l ∆ kl , (1.22a) 
∆ kl = ρ k Γ k T k d dt η k -ρ l Γ l T l d dt η l . (1.22b) 
In the particular case of isentropic flows, model (1.5) is then supplemented with

α k ρ k d dt 1 ρ k = β k ∇ • u. (1.23)
which is equivalent to the equal strain closure (1.14) if β k is replaced with α k . This essentially means that inside a given volume containing multiple materials, the expansion of the total volume is no longer shared between materials with respect to their volume fractions α k . It is instead shared with respect to coefficients β k , which take into account the thermodynamical properties of the different materials. Because of this coefficient, some stiffness may appear, especially in mixtures with highly contrasted materials (e.g. air and water). Besides, the speed of sound of the mixture c is given by Wood's formula [START_REF] Beaumont | A Textbook of Sound[END_REF] 1

ρc 2 = k α k ρ k (c k ) 2 .
(1.24)

It is not a convex combination of the material speed of sound and has a non-monotonic behavior.

Despite the hyperbolicity of the model (see [START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF]), these two features (namely the stiffness and non-monotonic behavior of the speed of sound) are often invoked in order to reject it [START_REF] Maltsev | High-order methods for diffuseinterface models in compressible multi-medium flows: A review[END_REF] in favor of others which do not have these characteristics (e.g. the model presented in section 2.3).

However, the stiffness is expected in the sense that, from a physical point of view, a mixture of air and water is stiff. Hence, it should not be avoided, even though it requires additional care during the discretization process [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF]. As for the non-monotonicity of the speed of sound, it has been confirmed experimentally [START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF][START_REF] Drew | Theory of Multicomponent Fluids[END_REF].

This model is not new and has already been studied and discretized in the literature. In [START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF], it is derived from the Baer-Nunziato model [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF] in the infinitely strong relaxation limit. The authors also provide a complete study of the hyperbolicity and wave structure of the model. In [START_REF] Gavrilyuk | Multiphase flow modeling via Hamilton's principle[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF], it is derived with the least action principle. The equal pressure assumption is shown to be a direct consequence of the variation of the action with respect to the volume fraction, provided that potential energy is only internal. However, both previously mentioned sources do not take into account the entropy contribution inside the density equation (1.23), which is, as it will be seen later, essential to our numerical strategy.

Remark: Regarding the previous considerations on total energy conservation, one automatically recovers it from the equality of pressures. This property will need to be ensured at the discrete level with the chosen numerical strategy.

Numerical strategy

The numerical strategy for (1.5)-(1.16) is based on the continuous equations (1.22) derived in the previous section. This allows us not to rely on an iterative procedure to deal with the strongly non-linear and potentially stiff implicit initial formulation of the model (1.16). The resulting scheme is then fully explicit, conserves mass, momentum and total energy while ensuring a positive entropy production for each material.

Geometry and notations

The notations are similar to those introduced in [START_REF] Maire | Contribution to the numerical modeling of inertial confinement fusion[END_REF][START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF]. Each cell is assigned a unique index c and is denoted ω c . Its volume is V c . The cells are assumed to be polygonal so that they are defined by the set of their nodes P(c). The neighboring cells are collected in the set N (c). For a given node p, C(p) is the set of cells that contains p. x p and u p are its position and velocity.

p + is the node in P(c) which follows p in counterclockwise order and p -the previous node. Let n + pc be the outward normal unit vector to --→ pp + and consider l + pc = 1 2 --→ pp + . Similarly, n - pc and l - pc are defined accordingly. Consequently, the corner outward normal unit vector n pc is defined as follows

n pc = l + pc n + pc + l - pc n - pc l pc , l pc = l + pc n + pc + l - pc n - pc 2 . (1.25)
Finally, V pc denotes the volume of the area formed by x p , (x p + x p + )/2, x c and (

x p + x p -)/2.
The quantity V p is the volume around p defined by

V p = p∈P(c) V pc . (1.26)
All the notations introduced are illustrated in figure 1.1. Concerning cell variables, the approach is that of a finite volume scheme. Consequently, for physical quantities φ ∈

1 α k ρ k , e k , 1 ρ k related Figure 1.1: Cell notations.
to material k and a cell c, are defined the averaged quantities over the cell by

m k c = ωc α k ρ k dx, φ c = 1 m k c ωc α k ρ k φdx, (1.27a 
)

m c = ωc ρdx, u c = 1 m c ωc ρudx. (1.

27b)

Remark: In the following, ρ k c denotes the inverse of 1/ρ k c which is technically different from the weighted average value of ρ k over the cell. Same goes for the notation (α

k ρ k ) c . Finally α k c is defined as the ratio of (α k ρ k ) c by ρ k so that (α k ρ k ) c = α k c ρ k c . With this definition, the α k c satisfy k α k c = k 1 ρ k c 1 α k ρ k c = k ωc α k dx ωc 1dx = 1.
(1.28)

Defining these averaged quantities prepares for the use of Reynold's transport theorem which states that

d dt ωc α k ρ k φdx = m k c d dt φ c , φ ∈ 1 α k ρ k , e k , 1 ρ k , (1.29a) d dt ωc ρudx = m c d dt u c . (1.29b)

Total volume and momentum conservation equations

Regarding the discretization of the mass and momentum equations, no significant changes are made from the classic Eucclhyd scheme [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF][START_REF] Galera | A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[END_REF][START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF]. The mass conservation equation (1.5a), averaged over a Lagrangian cell, together with equation (1.29a) gives

m k c d dt 1 α k c ρ k c = ∂ωc u • ndl = p∈P(c) l pc n pc • u p . (1.30)
The left hand-side may be interpreted as a sum of node fluxes. Considering that the cell remains polygonal through advection, its volume only depends on position of nodes. Then, equation

(1.30) may also be seen as the exact derivative of the Lagrangian volume, using the chain rule and the formula ∂Vc ∂xp = l pc n pc . More details may be found in [START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF]. In order to proceed with the discretization of the momentum conservation equation, sub-cell forces are defined as follows

f pc = - ∂ωpc∩∂ωc pndl.
(1.31)

For the momentum conservation, equation (1.29b) and Green's formula simply leads to

m c d dt u c = - ωc ∇pdx (1.32a) = - ∂ωc pndl (1.32b) = p∈P(c) - ∂ωpc∩∂ωc pndl (1.32c) = p∈P(c) f pc . (1.32d)
In the spirit of [START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF] the closure procedure to compute f pc is chosen to guarantee a correct material dissipation entropy as well as to ensure the momentum and total energy conservation

f pc = -l pc p c n pc + M pc (u p -u c ) , (1.33) 
where M pc is a semi-positive defined matrix called in the following a dissipation matrix. Now, in order to enforce a correct discrete material entropy production, the following standard dissipation matrix definition [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF] is taken

M pc = ρ c c c l + pc n + pc ⊗ n + pc + l - pc n - pc ⊗ n - pc , (1.34) 
where c is the speed of sound of the mixture whose expression is given by Wood's formula [START_REF] Beaumont | A Textbook of Sound[END_REF] 1

ρc 2 = k α k (ρ k (c k ) 2 .
(1.35)

Material internal energy and density equations

A naive discretization of energy (1.5c) and density equations (1.23) would consist in

m k c d dt e k c = -p c m k c d dt 1 ρ k , (1.36a) m k c d dt 1 ρ k = -β k c p∈P(c) l pc n pc • u p . (1.36b)
However, when comparing the suggested discretization (1.36) with the standard single material scheme, one understands that some numerical dissipation needs to be added in order to stabilize the scheme. This numerical dissipation physically translates into entropy production so that the non-isentropic equations (i.e. the fundamental thermodynamic relation and equation (1.22) for each material k) must be considered

m k c d dt e k c = -p m k c d dt 1 ρ k c + ωc α k ρ k T k d dt η k , (1.37a) m k c d dt 1 ρ k c = -β k c p∈P(c) l pc n pc • u p + ωc α k ρ k (c k ) 2 l β l ∆ kl .
(1.37b)

The discretization of term α k ρ k T k d t (η k ) (also appearing inside the expression of ∆ lk ) needs to be specified to enforce the chosen numerical viscosity for each material. The conservation equation of the total energy k α k ρ k e k must be discretized according to the single material

scheme k m k c d dt e k c = p∈P(c) f pc • (u p -u c ), (1.38) 
which gives

k ωc α k ρ k T k d dt η k = p∈P(c) (u p -u c ) T M pc (u p -u c ). (1.39)
The total entropy production now needs to be shared between materials through coefficients

λ k > 0 such that k λ k = 1. The material discrete numerical viscosity is then written ωc α k ρ k T s d dt η k = λ k   p∈P(c) (u p -u c ) T M pc (u p -u c )   , (1.40a) 
= p∈P(c) (u p -u c ) T M k pc (u p -u c ), (1.40b) 
with

M k pc = λ k M pc . (1.41)
The choice of the coefficients λ k is no simple matter and does more than only stabilizing the scheme. Indeed, it is well-known [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF][START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] that non-conservative hyperbolic systems, such as the one under study here, have no canonical solution as vanishing viscosity solutions depend on the diffusion operator; this is not the case for conservative hyperbolic systems. Hence, different choices of λ k may produce different numerical solutions [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] and they should be chosen according to physical considerations. For this reason, their value is left to the user's expertise. For our test cases, we chose λ k as the mass fraction of material k. Finally, our space discretization is

m k c d dt e k c = -p c m k c d dt 1 ρ k c + p∈P(c) (u p -u c ) T M k pc (u p -u c ), (1.42a) m k c d dt 1 ρ k c = -β k c p∈P(c) l pc n pc • u p + α k c ρ k c (c k c ) 2 l β l c ∆ kl c , (1.42b) 
∆ kl c = p∈P(c) (u p -u c ) T Γ k c α k c M k pc - Γ l c α l c M l pc (u p -u c ). (1.42c)
The only thing missing in the semi-discrete scheme is the expression of the node velocities u p .

As in the single material scheme, they are computed as follows

u p =   c∈C(p) M pc   -1   c∈C(p) (p c l pc n pc -M pc u c )   . (1.43)
This equation is equivalent to c∈C(p) f pc = 0, which ensures both the momentum and total energy semi-discrete conservation (see next section).

Time discretization

A standard Euler forward strategy is chosen for the time discretization of the equations. The scheme is then explicit, all spatial terms derived in the previous sections being taken at the initial time. Some caution may still need to be exercised on the velocity u c inside the energy equation (1.42a). Indeed, taking an average value (u n+1 c + u n c )/2 is necessary for the discrete total energy conservation as it will be discussed in the next section. The resulting scheme is still fully explicit as velocities may be computed before energies.

m k c ∆t 1 (αρ) k,n+1 c - 1 (αρ) k,n c = p∈P(c) l pc n pc • u n p , (1.44a) 
m c u n+1 c -u n c ∆t = p∈P(c) f n pc , (1.44b) 
m k c e k,n+1 c -e k,n c ∆t = -p n c m k c ∆t 1 ρ k,n+1 c - 1 ρ k,n c + p∈P(c) (u n p -u n c ) T M k,n pc u n p - u n c + u n+1 c 2 ,
(1.44c)

m k c ∆t 1 ρ k,n+1 c - 1 ρ k,n c = -β k,n c p∈P(c) l pc n pc • u n p + l α l,n c ρ l,n c (c l,n c ) 2 l β k,n c β l,n c ∆ kl,n c , (1.44d) ∆ kl,n c = p∈P(c) (u n p -u n c ) T Γ k,n c α k,n c M n,k pc - Γ l,n c α l,n c M l,n pc u n p - u n c + u n+1 c 2 . (1.44e)
As for any standard explicit Lagrangian scheme, time step ∆t is subject to two constraints.

The first one is the CFL or acoustic condition which uses the mixture speed of sound (1.24).

The second one prevents cell volume and volume fractions from becoming negative.

Numerical properties

In this section, discrete total energy conservation and semi-discrete entropy production are proven. These results are an extension of the ones given in [START_REF] Maire | Contribution to the numerical modeling of inertial confinement fusion[END_REF] in the context of equal strain assumption. Here, they are closure-independent. 

m c 2∆t u n+1 c 2 -u n c 2 = p∈P(c) f n pc • u n+1 c + u n c 2 . (1.46)
On the other hand, adding energy equations (1.44c) over all materials leads to

m c e n+1 c -e n c ∆t = k p c m k c 1 ρ k,n+1 c - 1 ρ k,n c + p∈P(c) (u p -u c ) T M pc u p - u n+1 c + u n c 2 = -p c p∈P(c) l pc n pc • u p - u n+1 c + u n c 2 + p∈P(c) M pc (u p -u c ) • u p - u n+1 c + u n c 2 = p∈P(c) (-p c l pc n pc + M pc (u p -u c )) • u p - u n+1 c + u n c 2 = p∈P(c) f n pc • u p - u n+1 c + u n c 2 , (1.47) 
where the total internal energy e is defined by .48) This discrete internal energy evolution equation may be combined with the kinetic energy equation (1.46) to recover the following discrete total energy equation

me = k m k e k . ( 1 
m c ∆t e n+1 c -e n c + u n+1 c 2 2 - u n c 2 2 = p∈P(c) f n pc • u p . (1.49)
As in the single material case, node velocities u p are computed to ensure both discrete momentum and total energy conservation which concludes the proof. The details of this last point can be found in [START_REF] Maire | Contribution to the numerical modeling of inertial confinement fusion[END_REF] Property 2. Semi-discrete entropy production The semi-discrete entropy variation is positive in each cell and for each material:

m k c d dt η k c ≥ 0. (1.50)
Proof. The semi-discrete entropy is written thanks to Gibbs' equation

m k c T k c d dt η k c = m k c d dt e k c + m k c p k c d dt 1 ρ k c . (1.51)
The discretization of the energy equation uses the density equation one so that

m k c d dt e k c = -m k c p k c d dt 1 ρ k c + p∈P(c) (u p -u c ) T M k pc (u p -u c ). (1.52) Finally m k c T k c d dt η k c = p∈P(c) (u p -u c ) T M k pc (u p -u c ) ≥ 0. (1.53)
Notice that the proof does not rely on the discretization of the density equation. It only requires both density and energy equations to be consistent with each other. As a result, the semidiscrete entropy production does not depend on the closure chosen for d dt (ρ k ); in particular, it is identical for the equal strain and the equal pressure closures.

Pressure equilibration procedure

Here it should be highlighted that the numerical strategy presented in the previous sections only enforces the pressure equilibration between materials in a mixed cell up to the scheme time order. Consequently, as iterations accumulate, pressures may diverge from one another. This decoupling is clearly illustrated in the numerical section and decreasing the CFL number helps recover a better pressure coupling. In order to keep a large CFL number, an equilibration procedure in the spirit of the ideas introduced in [START_REF] Després | Numerical resolution of a two-component compressible fluid model with interfaces[END_REF][START_REF] Heulhard De Montigny | Thermo-hydro-dynamic consistency and stiffness in general compressible multiphase flows[END_REF], is now presented. In practice, this correction is applied after the Lagrangian phase and remains particularly inexpensive since it is local and one already starts with a pressure decoupling of order O(∆t). Of course, this process should be carefully done in order to preserve at the discrete level all the properties proven above.

The following notation is now introduced

[X] = X final -X initial , (1.54)
where X is a physical quantity and the notation [.] represents the difference between a final state and an initial one. The equilibration procedure must fulfill some requirements. Firstly, the procedure must preserve the total volume of the cell as well as its total energy

c 1 [v 1 ] + c 2 [v 2 ] = 0, (1.55a) c 1 [e 1 ] + c 2 [e 2 ] = 0. (1.55b)
with c k = α 1 ρ 1 /ρ the mass fraction of material k. In addition, the process must be consistent with thermodynamics; therefore, no entropy destruction should occur on any material involved.

Considering thermodynamic paths p 1 (v 1 ) and p 2 (v 2 ) (see figure 1.2), one has

[e k ] = - v f k v i k p k (v)dv k + Q k , k ∈ {1, 2} , (1.56) 
where Q k is the entropy production on material k. Defining the average pressure p k along the path, it becomes Both volume and energy conservation (1.55) eventually yields

[e k ] = -p k [v k ] + Q k , k ∈ {1, 2} . (1.57)
[e k ] = -β 1 p 1 + β 2 p 2 [v k ] (1.58a) = -p[v k ], (1.58b) 
with

β 1 = c 2 Q 2 c 1 Q 1 + c 2 Q 2 , β 2 = c 1 Q 1 c 1 Q 1 + c 2 Q 2 , β 1 + β 2 = 1. (1.59)
Because p does not depend on the material, taking p = p f is a sensible choice. The entropy variation sign must now be assessed.

Property 3. Pressure equilibration entropy variation

The thermodynamic path defined by [e] = -p f [v] is entropic for all equations of state

[η] > 0.

(1.60)

In particular, for the relaxation procedure, entropy variation is positive for all materials and all equations of state.

Proof. Taylor-Lagrange theorem is applied to the entropy η(v, e) around the state (v f , e f ). Then, there is a convex combination (v, e) of the initial and final states for which

η i = η f + ∂η ∂v f (v i -v f ) + ∂η ∂e f (e i -e f ) + 1 2 ∇ 2 η(v, e) (v i -v f , e i -e f ) = η f + p f T f (v i -v f ) + 1 T f (e i -e f ) + 1 2 ∇ 2 η(v, e) (v i -v f , e i -e f ).
(1.61a)

Using both the equation [e] = -p f [v] and the concavity of the entropy, the entropy production positivity is then proved To summarize, the following set of equations with unknowns

[η] = - 1 2 ∇ 2 η(v, e) (v i -v f , e i -e f ) > 0. ( 1 
v f 1 , v f 2 , e f
1 , e f 2 and p f is solved with a standard Newton-Raphson method to enforce the equal pressure assumption

c 1 [v 1 ] + c 2 [v 2 ] = 0, (1.63a) p f 1 = p f 2 = p f , (1.63b) [e 1 ] = -p f [v 1 ], (1.63c 
)

[e 2 ] = -p f [v 2 ]. (1.63d) 
The methodology naturally extends to an arbitrary number of materials.

Numerical test cases

Our scheme is now confronted with 1D and 2D test cases. Apart from the last one, where mesh entanglement imposes the use of a remap and a equilibration procedure, all test cases are purely Lagrangian. The robustness and accuracy of our scheme is assessed, and the results are compared with that of a scheme based on the equal strain assumption.

Two-material shock tube

The system under consideration is that of a homogeneous mix of two perfect gases inside a piston, with same initial pressures, one having a very low volume fraction (see figure 1.3). The left border of the domain moves at velocity u L which creates a shock. Because gas 2 is dominant, its evolution is almost not affected by gas 1 and results are expected to be the same for equal strain and equal pressure assumptions. As for gas 1, different closures may result in significantly different results.

If the two gases have different equations of state, their compression rate needs to be different in order to maintain pressure equilibrium after the shock. Numerical results (with 100 cells and at final time t = 0.2) on figure 1.4 confirm that the equal strain assumption leads to a decoupling of pressures while our scheme, based on the equal pressure assumption, does not, even without the equilibration procedure. Apart from the pressure decoupling, densities and internal energies With the equal strain assumption, densities are kept equal as the initial density and the compression rate are the same for all gases. On the first line, the entropy production is shared with respect to mass fractions while on the second line, the entropy production on gas 1 is one hundred times its mass fraction. In the second line, as gas 1 bears most of the dissipation, the resulting heating translates to an even stronger pressure decoupling for the equal strain assumption and a collapse of the density for the equal pressure one (even if the mixture is compressed, gas 1 undergoes an expansion). are significantly different. This is of utmost importance when considering chemical reactions which may or not be triggered depending on an energy threshold. As it is physically sounder, the equal pressure assumption should provide more sensible energy and density values.

Finally, the scheme has been tested with different distribution of the entropy production.

On the first line of figure 1.4, coefficient λ 1 is the mass fraction of gas 1 while on the second line it has been taken as one hundred times the same value. Qualitatively, results are substantially different for gas 1. In the second line, as it bears most of the dissipation, the resulting heating translates to an even stronger pressure decoupling for the equal strain assumption and a collapse of the density for the equal pressure one (even if the mixture is compressed, gas 1 undergoes an expansion). As surprising as it might be, the expansion is predicted from a theoretical point of view [52, §E] and is a testament to the sheer variety of admissible solutions.

Saurel-Abgrall shock tube

The scheme is tested on a shock tube [START_REF] Saurel | A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows[END_REF] initially filled with water on the left and air on the right. The left and right states are

   ρ L u L p L    =    10 3 0 10 9    and    ρ R u R p R    =    50 0 10 5    .
(

The mesh consists of only pure cells, except at the interface where both air and water are present inside a mixed cell. Inside this cell, water volume fraction is equal to 10 -3 . Water is modeled as a stiffened gas (γ w = 5/3 and π w = 6.6 • 10 8 , see [START_REF] Olivier | The Noble-Abel stiffened-gas equation of state[END_REF] for more details) ; air is assumed to behave as a perfect gas with γ a = 1.4.

Because equations of state are particularly contrasted, the equal strain assumption leads to a strong decoupling in pressures inside the mixed cell as it may be seen on figure 1.5 at time t = 2.2 • 10 -4 for 100 cells and a 0.5 CFL . Water pressure skyrockets with a factor of order 10 3 . As of our scheme with equal pressure assumption, pressures stay closer to one another but not strictly equal as no pressure equilibration procedure is added. For a CFL value of 0.5, the pressure decoupling is around a hundred times smaller than with the equal strain assumption.

As expected, it converges to zero as the CFL number decreases (see figure 1.6).

2D multi-material Taylor-Sedov blast wave

The present test is a slight adaptation of the standard 2D Sedov problem [START_REF] Kamm | On efficient generation of numerically robust Sedov solutions[END_REF] to a mixture of two perfect gases (γ 1 = 1.4 and γ 2 = 5/3) with equal constant heat capacities c v = 1. At the initial time, volume fractions, densities and velocities are constant across the domain. Energies are set to an almost zero value except at the center where an important energy deposit ε or is put. The energy deposit of gas 1 is computed so that the wave front radius is 1 at time t = 1.

For gas 2, it is determined as to ensure equality of temperatures. All values can be found in figure 1.7.

The numerical domain used is a square [0, 1.2] 2 discretized with 30 cells on each direction.

As the test case is a reduction of a cylindrical physical phenomenon in a 2D plane, we impose a Aside from the central cell, the pressure decoupling is less intense for the equal pressure assumption based scheme. As for the central cell, the difference between pressures is still important, even bigger than that of the equal strain assumption scheme. This shows that if our scheme effectively deals with high contrasts of equations of state (see previous test case for example), it struggles with stiff initial conditions. This is because pressures are only kept equal up to scheme order. Hence, we believe that improving the order of the scheme would yield better results. In any case, figure 1.8 shows that decreasing the CFL makes both pressures converge to the same limit (obviously not for the equal strain assumption).

Shock through an air bubble

From [START_REF] Saurel | A simple method for compressible multifluid flows[END_REF][START_REF] Kokh | An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model[END_REF], a test case is considered consisting in an air bubble surrounded by water which is initially at pressure equilibrium. A shock passes through the domain. Because air and water have highly different compressibility, the bubble is expected to collapse in on itself. A pure Lagrangian approach would not work here because of mesh entanglement. As a consequence, a remap procedure is added between the Lagrangian step and the pressure equilibration procedure.

The projection is performed with a Alternate Direction (AD) procedure described in [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF][START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF].

The air bubble coincides with the disk of center (0.5, 0.5) and radius 0.4 inside the domain

[-2, 2] × [0, 1].
Water is modeled with a stiffened gas (γ w = 4.4 and π w = 6.8 • 10 8 , see [START_REF] Olivier | The Noble-Abel stiffened-gas equation of state[END_REF] for more details); air is assumed to behave as a perfect gas with γ a = 1.4. Air is at pressure p a = 10 5

and density ρ a = 1. For x > 0.04, water is at pressure equilibrium with air p w R = p a = 10 5 and has density ρ w R = 10 3 . In order to initiate the shock, water pressure and density are set to p w L = 3.10 9 and ρ w L = 1030.9 inside the domain x < 0.04. A velocity gradient is also added with u L = (300, 0) when x < 0.04 and u R = (0, 0) when x > 0.04. Numerical results with a 600×300 mesh are displayed on figure 1.9. Because of the high compressibility of air when mixed with water, the bubble shrinks until almost disappearing. Thanks to the pressure equilibration procedure, pressures are equal up to machine precision.

Conclusion

A new cell-centered Lagrangian scheme has been presented in order to deal with the equal pressure closure condition for a multi-material model. The scheme derivation is motivated by thermodynamic considerations. A particular emphasis is put on entropy production whose distribution over all material is an answer to the problem of multi-valued solutions when working with non-conservative equations. The scheme fares well when applied to test cases with high contrast of equations of state between materials. Perspectives are numerous. Improving the scheme order of accuracy could improve pressure equality without having to rely on low CFL numbers or pressure equilibration procedures. It would also reduce errors by helping capture more accurately solutions. Finally, an extension of this scheme to a multivelocity model is currently being investigated. A simple diffuse interface strategy for multi-material diffusion and application to three-temperature multi-material hydrodynamics In applications such as Inertial Confinement Fusion [24] or astrophysics, the materials under scrutiny are usually plasmas. In strongly ionized plasmas, the behavior of ions and electrons is characterized by different thermalization time scales. Ions and electrons individually reach thermal equilibrium on characteristic times much shorter than those necessary for the mixture thermalization. If the hydrodynamic time scale falls between the two, a two-temperature description of the plasma is necessary; ions and electrons both have their own temperature and both need not be equal. Likewise, in the presence of a strong radiation field, photons also need their own description which is here given by the grey diffusion approximation. Such an approximation is relevant in the optically thick limit if radiation thermalization is assumed [START_REF] Mihalas | Foundations of radiation hydrodynamics[END_REF]. The resulting three different temperatures are coupled through collisions between ions and electrons and between electrons and photons. These couplings can be arbitrarily stiff and the singletemperature Euler-Lagrange equations are recovered in the case of instantaneous relaxation.

Besides, radiation transport accounts for the propagation of photons throughout the domain and can also display a stiff behavior. Diffusion on the ionic and electronic energies also exist but are here neglected.

The physical description can be supplemented with an additional multi-material layer. Multimaterial aspects are essential to properly describe complex mixtures with contrasted physical characteristics (e.g. mixtures of gases and solids). The most common approach to derive multimaterial equations is that of conditional averaging procedures [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF][START_REF] Drew | Mathematical modeling of two-phase flow[END_REF][START_REF] Wörner | A compact introduction to the numerical modeling of multiphase flows[END_REF]. It produces averaged quantities describing the behavior of the flow, as well as additional correlation terms which encapsulate the remaining details. These correlation terms are often neglected as a first approximation as they are deemed minor, at least outside of shocks. If this approach has proven its efficiency in describing single-temperature multi-material flows, its application to radiation transport is not trivial. Indeed, averaged fluxes only express radiation transport separately within each material while the associated correlation term deals with the coupling between different materials. While radiation transport in between materials is essential for weakly opaque mixtures of materials, its expression remains unclear and heavily mixture-dependant. Alternatively, if it is neglected as a first approximation, then different materials are no longer coupled through temperatures, thus leading to questionable results.

Numerical strategy

Multi-material radiation transport or diffusion

The discretization of the multi-material radiation transport consists in one of the main contribution of this chapter. As explained above, its expression at the continuous level is a difficult task. Still, its discretization is possible and different strategies exist in the literature. Interface reconstruction techniques [START_REF] Parker | Two and three dimensional Eulerian simulations of fluid flow with material interfaces[END_REF][START_REF] Rao V Garimella | Interface reconstruction in multi-fluid, multi-phase flow simulations[END_REF][START_REF] Dawes | Three-dimensional multi-material polyhedral method for diffusion[END_REF] estimate the interface between materials inside mixed cells. Mixed cells are then separated into pure cells and the diffusion operator is discretized with any single material strategy. At their best, these techniques allow for an accurate descrip-tion of the mixture. However, complex topology of the flow require ad hoc strategies [START_REF] Hergibo | A moment-of-fluid method for resolving filamentary structures using a symmetric multi-material approach[END_REF] and interface reconstruction fails at describing dispersed phases. The treatment of three or more materials is usually not invariant under permutation of materials and depends on an arbitrary order [START_REF] Kikinzon | Establishing mesh topology in multi-material cells: Enabling technology for robust and accurate multi-material simulations[END_REF]. Finally, the computational cost, especially in three dimensions, can be significant.

Alternatively, homogenization methods [START_REF] Dawes | Solving the diffusion equation on a non-aligned mesh[END_REF] assume that mixture of different materials act as a single equivalent material. Such methods are inexpensive but are usually not considered reliable [START_REF] Kikinzon | Approximate static condensation algorithm for solving multi-material diffusion problems on meshes non-aligned with material interfaces[END_REF][START_REF] Dawes | Solving the diffusion equation on a non-aligned mesh[END_REF]. Apart from obvious accuracy issues on the fluxes, homogenization methods are built on the assumption that all materials share the same temperature inside a given cell. Such hypothesis is not relevant for mixtures of materials with contrasted opacity or for applications where relaxation of temperatures cannot be considered instantaneous.

Here is presented the so-called Discrete Equation Method (DEM) based on the ideas independently developed in [4,[START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF][START_REF] Chaigneau | Rapport CEA[END_REF] and latter used in numerous works including but not limited to [START_REF] Berry | The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section[END_REF][START_REF] Petrella | On the discrete equation model for compressible multiphase fluid flows[END_REF]. Instead of being dealt with as a local source term and approximated through interface reconstruction or instantaneous equalization, diffusion between materials takes place at each face, just like diffusion of a single material. This effectively bypasses the averaging procedure.

The method remains both conceptually and computationally simple while test cases establish significant accuracy improvements over homogenization methods.

Multi-material hydrodynamics

The numerical strategy for the hydrodynamic part is based on the single material, single temperature GLACE/EUCCLHYD scheme [START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF]. The scheme is Lagrangian and can be integrated into an Arbitrary-Lagrange-Euler (ALE) setting [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF][START_REF] Galera | A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[END_REF]. It will here be coupled with an Alternate Direction (AD) procedure [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF][START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF], chosen for both its performance and simplicity.

Generally speaking, two main difficulties arise when starting from a single temperature and single material scheme and extending it to a three-temperature multi-material one. First, an evolution equation must be added for the material volumes. Here, the equal strain assumption is made and consists in saying that volume fractions stay constant during the Lagrangian phase [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the simulation of High-Energy-Density-Physics Problems[END_REF]. This closure is chosen for simplicity although it may become irrelevant for mixture of materials with contrasted equations of state [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF][START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF] (e.g. air and water). Second, first order models with several temperatures or several materials (and a fortiori with both) are not sufficient to characterize shocks. Indeed, only partial jump relationships (on individual masses, total momentum, total energy) exist and shocks are eventually small-scale dependant. The detail of the entropy production (which summarizes the contribution of the aforementioned correlation terms) is then necessary to fully describe shocks both at the continuous and at the discrete level.

Time integration of diffusion and relaxation processes

A three-temperature model allows the description of systems which are not at thermal equilibrium. Although diffusion and relaxation processes are not instantaneous, they are usually stiff and require an implicit time integration in order to keep decent time steps. Because of the non-linearity, iterative methods are usually considered. However, enforcing positivity of temperatures both at convergence and during the different iterations is not trivial and failing to do so can abruptly stop the computation.

The method considered here is a multi-material extension of [START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF]. The hydrodynamics, the radiation transport and the source terms are all treated at the same time without any splitting.

As pointed out in [START_REF] Chauveheid | Ecoulements multi-matériaux et multi-physiques : solveur volumes finis eulérien co-localisé avec capture d'interfaces[END_REF], doing so allows to better capture the coupling between the different terms in radiation shocks where temperatures and densities experience large variations over few numerical cells. Contrary to some approaches in the literature [START_REF] Chauveheid | Ecoulements multi-matériaux et multi-physiques : solveur volumes finis eulérien co-localisé avec capture d'interfaces[END_REF][START_REF] Peter | Level set methods for multimaterial radiative shock hydrodynamics[END_REF], radiation transport and source terms are here fully implicited (i.e. the implicitation concerns the global terms and not only the temperatures or energies). This choice arguably offers better robustness with respect to sudden changes in the constitutive laws of collision frequencies, opacities and diffusion coefficients; the effects of similar changes on the pressure were studied in [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] where they were refered to as "stiff stiffness". The system resulting from the full time implicitation is however all the more non-linear and harder to solve numerically. The present strategy is based on convex combinations and ensures that temperatures all stay positive during the iterative procedure.

2 Three-temperature multi-material equations 2.1 Three-temperature single-material equations

The notations are standard with ρ the density, u the velocity, e i and e e the specific ionic and electronic internal energies, and e r the volumetric radiation energy. Additionally, ions and electrons are described with an equation of state e θ (1/ρ, s θ ), θ ∈ {i, e} where s θ is the species entropy. Pressures and temperatures are then defined by Gibbs relationship

de θ = -p θ d 1 ρ + T θ ds θ . (2.1)
Positivity of temperature and density allows to express all quantities as functions of the density ρ and the internal energy e θ [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF]. Likewise, photons have their own pressure, temperature and entropy, defined by

p r = e r 3 , (2.2a) 
e r = aT 4 r , (2.2b 
)

d e r ρ = -p r d 1 ρ + T r ds r , (2.2c) 
where a is the radiation constant. The three-temperature equations [START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF] are here written in the Lagrangian formalism which factorizes transport into time derivatives. It lays the foundations for the "Lagrange + Remap" approach used in section 4.

ρ d dt 1 ρ = ∇ • u, (2.3a) ρ d dt u = -∇p, (2.3b) ρ d dt e i = -ρp i d dt 1 ρ + cκ (T e -T i ) , (2.3c) 
ρ d dt e e = -ρp e d dt 1 ρ + cκ (T i -T e ) + cσ P aT 4 r -aT 4 e , (2.3d) 
ρ d dt e r ρ = -ρp r d dt 1 ρ -∇ • F r + cσ P aT 4 e -aT 4 r .
(2.3e)

The different temperatures are coupled through relaxation terms driving the system toward local thermal equilibrium T e = T i = T r . The coupling between ions and electrons is given by a relaxation coefficient κ, while the coupling between electrons and photons is given by Planck's opacity σ P . Both coefficients are functions of the different temperatures. c is the speed of light.

The radiation flux F r couples spatially photon temperatures from one place to another, thus driving the system towards an homogenization state ∇T r = 0. It is here expressed accordingly to the Rosseland diffusion approximation [81]

F r = - c 3σ R ∇e r (2.4)
where the Rosseland opacity σ R is a function of the electronic temperature T e . Physically, ionic and electronic transport should also be considered but they are usually weaker [] and here completely neglected. Thanks to these terms (namely relaxation terms and radiation transport), thermal equilibrium is not instantaneous but may still be stiff. Equations (2.3c),(2.3d), (2.3e) are deliberately written in a consistent manner with (2.1), (2.2c) so that it becomes obvious that the entropy production is given by the relaxation terms and the diffusion

ρ d dt (s i + s e + s r ) = -∇ • F r T r + 4acT r 3σ R ∇T r 2 + cκ (T i -T e ) 2 T i T e + caσ P (T e -T r )(T 4 e -T 4 r ) T e T r . (2.5)
Every term in the right hand side is either positive or a flux thus complying with the second principle of thermodynamics. Finally, the total pressure is p = p i + p e + p r and conservation of total energy is then given by ρ d dt

u 2 2 + e i + e e + e r ρ = -∇ • (pu + F r ) . (2.6)

Multi-material aspects

An arbitrary number of material is now considered. The general methodology to derive multimaterial equations is based on a conditional averaging procedure introduced in [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF] and summarized in [START_REF] Wörner | A compact introduction to the numerical modeling of multiphase flows[END_REF] for non-miscible materials and in [52, §B] for general mixtures. The averaging may be spatial, temporal or statistical. In all cases, averaged quantities and averaged fluxes are defined for all materials but some residuals (or correlation terms) remain unspecified and are often neglected as a first approximation. Additionally, the model can be subsequently simplified if materials are assumed to be at local velocity, pressure or temperature equilibrium. Such hypothesis depend on the characteristic times of observation. Here, it is assumed that thermal equilibrium is not reached while pressure and velocity equilibrium are sensible approximations [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF]. Eventually, the three-temperature single-velocity multi-material equations read

α k ρ k d dt 1 α k ρ k = ∇ • u, (2.7a) 
ρ d dt u = -∇p, (2.7b 
)

α k ρ k d dt e k i = -α k ρ k p k i d dt 1 ρ k + α k cκ k T k e -T k i , (2.7c 
)

α k ρ k d dt e k e = -α k ρ k p k e d dt 1 ρ k + α k cκ k T k i -T k e + α k cσ k P e k r -a(T k e ) 4 , (2.7d) α k ρ k d dt e k r α k ρ k = -α k ρ k p k r d dt 1 ρ k -∇ • α k F k r + α k cσ k P a(T k e ) 4 -E k r .
(2.7e)

The indices k refer to the averaged quantities related to material k. α k is the volume fraction of material k while ρ is the total density

ρ = k α k ρ k . (2.8) 
Although the averaging process alleviates the treatment of interfaces, certain details of the flow are lost and, as such, model (2.7) is underdetermined. Closures need to be provided.

• The first one concerns the evolution of either densities, volume fractions or pressures and ensures that the number of equations equals the number of unknowns. In keeping with the previous considerations on pressure equilibrium, a sound closure would consists in the equality of material pressures. The numerical treatment of pressure equalization is challenging in the context of a three-temperature multi-material model with stiff source terms. It is here left out in favor of the simpler equal strain assumption

α k ρ k d dt 1 ρ k = α k ∇ • u ⇐⇒ d dt α k = 0. (2.9)
This approximation is physically questionable when dealing with highly contrasted mixtures. A discussion on these two closures is performed in [START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF]. The total pressure then needs to be

p = k α k (p k i + p k e + p k r ).
(2.10) so as to ensure total energy conservation. The resulting first order system (without diffusion or source terms) is hyperbolic with eigenvalues -c + u, u, c + u where c is the speed of sound of the mixture

ρc 2 = k α k ρ k ∂p k i ∂ρ s k i + ∂p k e ∂ρ s k e + ∂p k s ∂ρ s k s .
(2.11)

• Even with the right amount of equations, the behavior of the mixture is still not defined inside shocks. Indeed, multi-temperature multi-material shocks are small-scale dependent which means that no complete jump relationships can be written without knowing the details of what is happening inside the shock [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF]. Mathematically, this failure comes from the presence of non-conservative products which prevents any canonical weak formulation from being written [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF]. In practice, entropy production on each material and on each species (i.e. ions, electrons and photons) encapsulates the details of the small-scale effects and entirely determines the shock.

• The averaged radiation flux ∇ • (α k F k r ) only describes parallel diffusion for each material separately. The physically necessary coupling between materials is actually hidden in the correlation terms previously neglected. Such correlation terms could be modelled as local source terms coupling temperatures of different materials but their expression would be heavily mixture dependant. One of the main contribution of the present chapter concerns the discretization of the multi-material radiation transport and is discussed in section 3.

Concerning the entropy production of the multi-material model, an inequality similar to (2.5) can be derived. However, the expression of the radiation transport in (2.7e) will not be discretized as it is. It will be seen that the chosen approach also leads to an entropy inequality at the discrete level as well as total energy conservation.

Numerical strategies for the multi-material heat equation

In this section, the full three-temperature picture is reduced in order to focus only on the multimaterial aspects of the radiation transport. The prototype is the so-called heat equation

∂ t T = ∇ • (κ∇T ) .
(2.12)

The thermal conductivity κ is assumed to depend on the temperature T and the space coordinate

x. The space dependence reflects the multi-material aspects as κ may experience discontinuities in the vicinity of the interfaces between different materials. In the following, two methods (namely the homogenization method and the DEM) are presented for the numerical approximation of (2.12) in the context of mixed cells, i.e. cells containing more than one material and thus as many temperatures and thermal conductivities.

Homogenization methods: principles and limits

In the case of the so-called homogenization methods [START_REF] Dawes | Solving the diffusion equation on a non-aligned mesh[END_REF], mixed cells are assumed to contain a fictive single material. It is described by only one temperature T c and one thermal conductivity κ c which is an average of the thermal conductivities of the real materials, weighted by their volume fractions.

κ c = φ -1 k α k c φ κ k c . (2.13)
The mean is arithmetic for φ(x) = x and harmonic for φ(x) = 1 x . Other choices are possible as long as φ is strictly monotonic and positive, but they will not be considered in the following.

The flux between cells c and d is then written

F cd = κ c T cd -T c h cd S cd , (2.14) 
where T cd is the temperature at the interface between cells c and d. h cd and S cd are respectively the distance between the center of ω c and the interface, and the surface of the interface.

Remark 1. Continuity of the temperature at the interface implies T cd = T dc . Likewise, geometrical considerations simply leads to S cd = S dc . Finally, h cd obeys to no particular symmetry.

Homogenization methods may induce accuracy issues. Indeed, allowing only one temperature inside each cell is a strong approximation which does not account for mixtures with highly contrasted thermal conductivity [START_REF] Kikinzon | Approximate static condensation algorithm for solving multi-material diffusion problems on meshes non-aligned with material interfaces[END_REF] (or opacity for radiation transport). Because diffusion has a regularizing effect, temperatures are theoretically continuous across interfaces between different materials. However, steep temperature gradients may exist so that temperatures cannot be numerically considered constant inside cells close to these interfaces.

These accuracy issues have cascading effects in the context of three-temperature hydrodynamics. For a given material, electronic, ionic and photon temperatures are coupled through relaxation terms. These couplings are stiff and may occur on characteristic times smaller than those of diffusion for opaque materials. Equality of photon temperatures does not comply with this hierarchy and indirectly produces a non-physical coupling between ionic and electronic temperatures of different materials. This is critical when considering chemical or nuclear reactions depending on temperature thresholds. They may be spuriously triggered or turned off leading to physically questionable results.

DEM-based discretization

The present strategy follows the idea in [START_REF] Chaigneau | Rapport CEA[END_REF][START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF]4]. Instead of discretizing the averaged equations, the single material equations are first implicitly discretized before being averaged at the discrete level. Fluxes between materials now take place at the interface between cells instead of only being dealt with as local source terms. The method is here described as implicitly resulting from an interface reconstruction where the different geometrical quantities are estimated inexpensively without sacrificing too much accuracy. An interface reconstruction implies that the averaging procedure is spatial as it is explained in [START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF] with the so-called stratified flow model. Probabilistic averaging can also be taken as it is done in [4]. All averaging share the same algebraic properties so that the different approaches result in formally equivalent schemes. . 
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Generic formulation

Considering a mixed cell c and assuming that the position of each material is known (with an interface reconstruction technique for example), the heat equation may be integrated on each material sub-volume ω k c leading to

ω k c ∂ t T dv = ∂ω k c (κ∇T ) • nds. (2.15)
Then dividing the surface ∂ω k c into sub-surfaces ∂ω kl cd where material k of cell c is in contact with material l of cell d (it is not excluded that c = d), equation (2.15) becomes

ω k c ∂ t T dv = l,d ∂ω kl cd (κ∇T ) • nds = l,d F kl cd . (2.16)
The sum may be taken over all materials and over all cells by arbitrarily defining F kl cd = 0 when both materials or cells are not in contact. A generic expression of these fluxes is the following

F kl cd = κ k c T kl cd -T k c h kl cd S kl cd , (2.17) 
where the notations are similar to that of the homogenization case, except they now depend on a pair of materials.

T 1 c T 2 c T 1 d T 2 d T 1 d T 2 d T 1 c T 2 c T 1 d T 2 d T 1 c T 2 c T 1 d T 2 d Figure 2.3:
Examples of the λ 0 (left), λ max (center) and λ min (right) cases for given surface fractions. On each scheme, the center line corresponds to the interface. As an example, the proportion δ 12 cd is the ratio of the surface shared by rectangles T 1 c and T 2 d on the total surface of the interface (i.e. 1 6 for λ 0 , 0 for λ max and 1 3 for λ min ).

• h kl cd is the distance between the center of the sub-cell ω k c and the interface between material k of cell c and material l of cell d.

• T kl cd is the temperature at the interface between the two materials.

• S kl cd is the area of the interface between the two materials. It is set as a portion δ kl cd of the entire surface S cd between the two cells S kl cd = δ kl cd S cd .

Remark 2. Symmetries detailed in remark 1 are still valid (namely T kl cd = T lk dc and S kl cd = S lk dc ). They hold because both terms involve the same pair of materials. On the other hand, there is no reason for T kl cd to be equal to T lk cd or T kl dc (and likewise for S).

Here, no information concerning the geometry of the mixed cell is assumed. In particular, the position of each material inside the cell and their surface of contact at each interfaces with neighbor cells is not known. Nevertheless, an approximation of F kl cd is still possible. Fluxes between different cells (i.e. c = d) are treated similarly to [START_REF] Chaigneau | Rapport CEA[END_REF][START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF]4]. The method is described in the next section 3.2. Internal fluxes (i.e. c = d) are discussed in section 3.2.

Computations of the geometry

The distances h kl cd are taken as the distance between the center of the cell ω c and the face between cells c and d. It does not depend on materials k and l and consists in a neutral standing point as, again, the location of each material inside the cell remains unknown.

Regarding proportions δ kl cd , the strategy retained is that of [4,[START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF][START_REF] Chaigneau | Rapport CEA[END_REF]. δ k cd denotes the total surface fraction of material k at the interface between cells c and d. The surface fraction may be discontinuous so that δ k cd = δ k dc . Parameters δ kl cd are then constrained by

l δ kl cd = δ k cd , ∀k (2.18a) k δ kl cd = δ l dc , ∀l. (2.18b)
Without any information on the location of each material inside the cell, these surface fractions can be reasonably approximated by the volume fraction of the associated cell δ k cd = α k c . For the sake of readability, the following analysis of system (2.18) is restricted to the case of two materials 1 and 2. The case of an arbitrary number of materials is discussed in B.

δ 11 cd + δ 12 cd = α 1 c , (2.19a) 
δ 21 cd + δ 22 cd = α 2 c , (2.19b) 
δ 11 cd + δ 21 cd = α 1 d , (2.19c 
) 

δ 12 cd + δ 22 cd = α 2 d . ( 2 
δ 11 cd = α 1 c α 1 d + λ, (2.20a 
)

δ 12 cd = α 1 c α 2 d -λ, (2.20b 
)

δ 21 cd = α 2 c α 1 d -λ, (2.20c 
)

δ 22 cd = α 2 c α 2 d + λ, (2.20d) 
where λ is a real-valued degree of freedom. Because surface fractions need to stay in

[0, 1], λ is bounded -min(α 1 c α 1 d , α 2 c α 2 d ) ≤ λ ≤ min(α 1 c α 2 d , α 2 c α 1 d ). (2.21) 
In this continuum, three cases (displayed in figure 2.3) are retained for the rest of the chapter

• λ = 0 which adds no a priori with the way materials interact with each other. This choice was already explored in [START_REF] Chaigneau | Rapport CEA[END_REF]. It will be referred to as λ 0 in the following.

• λ = min(α 1 c α 2 d , α 2 c α 1 d )
for which interactions between the same material are preferred. This corresponds to the stratified flow model detailed in [START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF]. In [4], it is associated to separate phase flows. It will be referred to as λ max .

• λ = -min(α 1 c α 1 d , α 2 c α 2 d
) which maximizes the surface between pairs of different materials. In [4], it is associated to dispersed flows. It will be referred to as λ min .

Remark 3. Estimations of distances h kl cd or surface fractions δ k cd can be honed using additional information provided by estimations of volume fraction gradients as it is done for the computation of internal fluxes in C. This is the usual starting point of an interface reconstruction [START_REF] Parker | Two and three dimensional Eulerian simulations of fluid flow with material interfaces[END_REF] although it is possible to extract the information of interest while bypassing the bulk of the procedure. Hence, greater accuracy could be achieved without a significant increase in computation time. As a simple example, surface fractions can be estimated with a linear reconstruction of volume fractions. The reconstruction must be limited (e.g. with a minmod limiter []).

Internal flux

For two materials and two dimensions, a formulation of the internal flux is suggested in C.

The interface is assumed linear. Under this assumption, its surface and the length between the two centers of mass are exactly computed as a function of the volume fraction and its angle 23 can reach 1 so that the flux between cell 2 and cell 3 concerns material 2. Symmetrically, the volume fraction δ 1 21 is also 1 so that the flux between cell 1 and cell 2 concerns material 1. Then, both materials do not interact at all with each other.

(i.e. the direction of the gradient of volume fractions). This serves as an illustration on how volume fractions and their derivatives can be used to estimate quantities without resorting to an explicit interface reconstruction. Still, this formulation is not relevant for dispersed phases and does not extend easily to more materials and three dimensions. These issues were already discussed earlier and were the reason why discretizing the averaged model was first excluded.

In the previous installments of the DEM ideas no internal term is considered. In [START_REF] Chaigneau | Rapport CEA[END_REF], λ 0 is used and materials always interact at the interface (as long they all have non zero volume fractions) so the lack of internal flux is not damageable. In [START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF], λ max is used for pressure forces and, loosely speaking, materials do not interact at an interface if the field of volume fractions is constant. It is not an issue as the correlation term p∇α k is precisely zero in this case; it is a one-pressure model, so pressure equilibrium is already reached inside each cell.

In the present case, the choice λ max may be desirable for accurately capturing dispersed phases. However, if volume fractions are constant across the whole domain, both materials do not interact at all with each other. Contrary to [START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF], it seriously endangers the results as this is not a one-temperature model and materials do need to exchange heat. In a sense, the choice λ max ends up having the same issues as a direct discretization of the averaged equation with the remaining uncertainty on the internal flux. Other choices do not suffer from the same problem and might consist in "milder" options.

Remark 4. Even with λ 0 or λ min , internal flux may still be needed. Indeed, if surface fractions are estimated with a strongly anti-diffusive limiter (as explained in remark 3), they can be 0 or 1 even if the cell volume fraction is not (see figure 2.4). In this case, all choices of λ are equivalent and materials do not interact with each other. Hence, both λ max and high order reconstruction techniques are not compatible with the omission of an internal flux.

Conservation and practical computations of the fluxes

Up until now, every fluxes have been expressed in terms of surface temperatures which are yet to be specified. Conservation of the scheme heavily constrains surface temperatures although some leeway exists for the DEM.

The case of homogenization methods

For homogenization methods, only one temperature is considered for each cell and each face.

Continuity of the flux holds at the interface between two materials

F cd = -F dc .
(2.22)

(2.22) also immediately guarantees that the scheme is conservative. Solving for T cd = T dc in equation (2.22) eventually yields

F cd = κ cd T d -T c h cd + h dc S cd , (2.23a 
)

T cd = κ c h cd T c + κ d h dc T d κ c h cd + κ d h dc , (2.23b 
)

κ cd = (h cd + h dc ) h cd κ c + h dc κ d . ( 2 

.23c)

The case of the discrete equation method

In the case of DEM, two approaches may be distinguished. First, as in [START_REF] Kikinzon | Approximate static condensation algorithm for solving multi-material diffusion problems on meshes non-aligned with material interfaces[END_REF], only one temperature is allowed on each face. Consequently, only one equation is needed to fully define the scheme.

A global conservation is chosen

k F kl cd = - l F lk dc . (2.24) 
Alternatively, one may consider as many temperatures as there are couples of materials interacting at the face. Because of these new degrees of freedom, conservation for individual fluxes is possible

F kl cd = -F lk dc . (2.25)
It is the latter choice which is retained. Indeed, having allowed more than one temperature inside the cell, it seems counterproductive to then only allow one temperature on each face.

Just as for (2.23), (2.25) gives

F kl cd = κ kl cd T l d -T k c h kl cd + h lk dc S kl cd , (2.26a) 
T kl cd = κ k c h kl cd T k c + κ l d h lk dc T l d κ k c h kl cd + κ l d h lk dc , (2.26b) 
κ kl cd = h kl cd + h lk dc h kl cd κ k c + h lk dc κ l d .
(2.26c) Remark 5. Fluxes may be written in the generic form

F kl cd = A kl cd T l d -T k c , (2.27) 
with A kl cd = A lk dc ≥ 0. This factorized form will be used for the three-temperature multi-material scheme for best readability. 

Numerical results and comparison of the two methods

The different test cases aim at comparing the performances of the different methods. The numerical error depends both on the number of cells and the relative position of the mesh with respect to the physical interfaces. Increasing the mesh size without changing its relative position from the interfaces amounts to measure the order of convergence of the different methods.

The order of convergence is an important feature of numerical schemes but it is somewhat an orthogonal issue to what is investigated in this chapter. Besides, no significant difference in the order of convergence is expected; in particular, if the mesh is perfectly aligned with the interfaces, all methods are equivalent and the order will exactly be the same.

Here, performance is measured in terms of robustness with respect to changes of volume fraction. More precisely, the mesh size is fixed and the focus is put on how accuracy deteriorate when the mesh undergoes arbitrary displacements. For a cartesian mesh, the displacement is here given as a function of two parameters: the x-shift and the y-shift as depicted in figure 2.5.

The x-shift is the relative displacement parallel to the x-axis. Two values of x-shift which are equal modulo 1 give the same mesh so only values in [0, 1] are considered. In particular, the values 0 and 1 induce no change on the mesh. Same goes for the y-shift.

In all test cases, the different methods are denoted with their own specific key. For homogenization methods, it is respectively A for the arithmetic mean and H for the harmonic mean.

The discrete equation method's key is identified with the letter L and is then given in order by: the choice of λ (0, min or max), the reconstruction of volume fractions (1 constant and 2 for linear) and the use of internal flux (F if none is used and T otherwise). For instance Lmin2F stands for the DEM with the choice λ min , linear reconstruction of volume fractions and no internal flux. Finally, time integration is implicit and not subject to any stability restriction on the time step. Results are summarized in figure 2.7. Homogenization methods perform differently depending on the mean. Arithmetic mean gives the worst accuracy; the error skyrockets even for small displacements of the mesh. Harmonic mean fares well, even better than the DEM. It can actually be shown that, for this particular problem, it gives exact global stationary fluxes. As for the DEM, the value of λ cannot be changed because there is no adjacent mixed cells. Only the linear reconstruction of volume fractions and the internal flux can be studied. The linear reconstruction seems to significantly improve the results, except for x-shifts close to 0.5. For small displacements (i.e. with an x-shift or volume fraction close to 0 or to 1), the linear reconstruction helps mitigate the presence of the material in minority. However, for balanced mixed cell, it seriously underestimate the flux between the two materials (as explained in remark 4). This is the reason why an additional internal flux decreases the error. However, its effect fades out for a greater number of cells. It becomes less relevant as the underlying solution is continuous and refining the mesh means that temperature inside mixed cell converge to one another.

Sandwich problem

While the previous test case was interested in fluxes orthogonal to the interface, the so-called sandwich problem [START_REF] Kikinzon | Approximate static condensation algorithm for solving multi-material diffusion problems on meshes non-aligned with material interfaces[END_REF] studies fluxes parallel to the interface. The domain [0, 0.5] × [0, 1] is shared between two materials as depicted in figure 2.9: the first one, with a thermal conductivity 

Hydrodynamics

The hydrodynamics part of the scheme consists in a multi-material extension of the GLACE/EUCCLHYD schemes [START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF]. Global quantities (i.e. total Lagrangian volume, momentum and total energy of the system) are solved with the single-material scheme. The scheme is here written in internal energy as opposed to the usually preferred total energy. The internal energy formulation lays the necessary foundations for a thermodynamically consistent space discretization of the material quantities.

m k c d dt 1 (αρ) k c = p∈P(c) l pc n pc • u p , (2.28a 
)

m c d dt u c = p∈P(c) M pc (u p -u c ) , (2.28b) k m k c d dt e k c = -p c p∈P(c) l pc n pc • u p + Q c (2.28c) e k c =e k i,c + e k e,c + e k r,c ρ k c , (2.28d) 
Q c = p∈P(c) (u p -u c ) • M pc (u p -u c ), (2.28e 
)

u p =M -1 p c∈C(p)
(M pc u p + p c l pc n pc ) .

(2.28f) Equation (2.28a) governs the evolution of the total Lagrangian volume. It is often referred to as the Geometric Conservation Law [START_REF] Thomas | Geometric Conservation Law and Its Application to Flow Computations on Moving Grids[END_REF]. Equation (2.28b) is the conservation of momentum while (2.28c) is the total internal energy equation. Q c corresponds to the total irreversible heat deposit of the scheme; the matrices M pc are symmetric positive, thus ensuring Q c ≥ 0 and preventing destruction of entropy. The expressions (2.28e) and (2.28f) also enforces both consistency of the scheme and conservation of total energy. Details may be found in [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF][START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF]. The extension to a multi-material setting focuses on the discretization of individual densities, internal energies and entropies. For the sake of thermodynamical consistency, they are related to each other through Gibbs identity 

d dt e k i,c = -p k i,c d dt 1 ρ k c + T k i,c d dt s k i,c , (2.29a) 
1 ρ k c + T k r,c d dt s k r,c , (2.29c) 
in such a way that is compatible with (2.28c). Densities evolve according to the equal-strain assumption (2.9)

m k c d dt 1 ρ k c = α k c p∈P(c) l pc n pc • u p . (2.30)
It is also equivalent to d dt α k c = 0. As for the entropy, the global heat deposit Q can be shared arbitrarily between materials and their temperatures with respect to coefficients λ k θ , θ ∈ {i, e, r}

m k c T k c d dt s k θ,c = λ k θ,c Q c , (2.31a) 
k θ∈{e,i,r}

λ k θ,c = 1. (2.31b)
Changing the coefficients λ k θ changes the numerical approximation of shocks, even at convergence [START_REF] Lefloch | Numerical methods with controlled dissipation for small-scale dependent shocks[END_REF]3]. Their expression must then be motivated by physics and cannot be reasonably specified by numerical considerations alone. The coefficients λ k = λ k i + λ k e + λ k r depend on the mixture (separated, dispersed,...) and all the underlying small-scale phenomena (viscosity, surface tension, heat exchange,...). Once the λ k are known, they should be divided into λ k θ . Strictly speaking, the λ k θ can be arbitrary (as long as they sum up to λ k ) but they are here defined proportionally to the mass of the different species as prescribed in [START_REF] Borisovitch | Physics of shock waves and hightemperature hydrodynamic phenomena[END_REF] 

λ k θ = m k θ m k λ k . (2.32) 
Then the ions bear almost all of the dissipation and the photons none.

Radiation transport and source terms

Local relaxation terms are approximated with a simple quadrature rule

ωc α k cκ k T k e -T k i cV k c κ k c T k e,c -T k i,c , (2.33a 
)

ωc α k cσ k P a T k r 4 -a T k e 4 cV k c σ k P,c a T k r,c 4 -a T k e,c 4 
.

(2.33b)

Each relaxation term appears twice with opposite sign and the discretization of the opposite is the opposite of the discretization. This is both natural and necessary for energy conservation.

Radiation transport is discretized with one of the strategies presented in section 3. The previous thermal conductivities κ are replaced with local approximations of opacities

c 3σ k R c = c 3σ k R,c
.

(2.34)

In the following, the discrete diffusion operator for material k will be written in the generic form

d,l A kl cd e k r,c -e l r,d , (2.35) 
with A kl cd ≥ 0 depending on the chosen strategy and the geometry of the mesh. Eventually, the semi-discrete internal energy equations read

m k c d dt e k i,c =H k i,c + cV k c κ k c T k e,c -T k i,c , (2.36a) 
m k c d dt e k e,c =H k e,c + cV k c κ k c T k i,c -T k e,c + cV k c σ k P,c a T k r,c 4 -a T k e,c 4 
, (2.36b) m k c d dt e k r,c ρ k c =H k r,c + d,l A kl cd e l r,d -e k r,c + cV k c σ k P,c a T k e,c 4 
-a T k r,c 4 
.

(2.36c) with H k i,c , H k e,c and H k r,c the, previously detailed, discretization of the hydrodynamic part

H k θ,c = -α k c p k θ,c p∈P(c) l pc n pc • u pc + λ k θ,c Q c .
(2.37)

Implicit time integration: an iterative method based on convex combinations

Temperature relaxation processes and radiation transport are usually stiff phenomena. Explicit time integration of these terms is possible but would require unreasonably small time steps.

An implicit integration is then preferred so that only the hydrodynamics part of the scheme constrains the time steps. 

m k c ∆t e k,n+1 i,c -e k,n i,c =H k,n i,c + c(V κ) k,n+1 c T k,n+1 e,c -T k,n+1 i,c , (2.38a) 
+ c(V σ P ) k,n+1 c a T k,n+1 e,c 4 
-a T k,n+1 r,c 4 , (2.38c) 
with the hydrodynamics part

H k,n θ,c = -α k,n c p k,n θ,c p∈P(c) l n pc n n pc • u n pc + λ k,n θ,c p∈P(c) (u n c -u n p ) • M n pc 1 2 u n+1 c + u n c -u n p . (2.39)
Remark 6. In (2.39), it is necessary to take the half-sum 1 2 (u n+1 + u n ) for total energy conservation as explained in [START_REF] Cheng | A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations[END_REF]. This is not an implicitation per se as momentum equations are solved before energy equations.

System (2.38) is non-linear as energies e k

i , e k e , e k r and coefficients κ, σ P , σ R are possibly nonlinear functions of temperatures. Following [START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF], it is then solved by an iterative strategy with which positivity of temperatures is ensured at each step (under some conditions detailed in Proposition 3). The number of the sub-iteration is indicated by the letter m. First, defining the new variables

φ k θ = aT k θ , ∀θ ∈ {i, e, r}, (2.40a 
)

β k,n+1,m θ,c = φ k,n+1,m θ,c -φ k,n θ,c e k,n+1,m θ,c -e k,n θ,c
, ∀θ ∈ {i, e}, (2.40b)

δ k,n+1,m ie,c = T k,n+1,m i,c -T k,n e,c φ k,n+1,m i,c -φ k,n+1,m e,c , (2.40c) 
the linearized equations for the m th iteration are

m k c β k,n+1,m i,c ∆t φ k,n+1,m+1 i,c -φ k,n i,c =H k,n i,c + c(V κδ ie ) k,n+1,m c φ k,n+1,m+1 e,c -φ k,n+1,m+1 i,c
, (2.41a)

m k c β k,n+1,m e,c ∆t φ k,n+1,m+1 e,c -φ k,n e,c =H k,n e,c + c(V κδ ie ) k,n+1,m c φ k,n+1,m+1 i,c -φ k,n+1,m+1 e,c + c(V σ P ) k,n+1,m c φ k,n+1,m+1 r,c -φ k,n+1,m+1 e,c , (2.41b 
)

m k c ∆t φ k,n+1,m+1 r,c ρ k,n+1 c - φ k,n r,c ρ k,n c =H k,n r,c + d,l A kl,n+1,m cd φ l,n+1,m+1 r,d -φ k,n+1,m+1 r,c + c(V σ P ) k,n+1,m c φ k,n+1,m+1 e,c -φ k,n+1,m+1 r,c (2.41c) 
Without the diffusion, system (2.41) would only be a concatenation of 3 × 3 linear systems for each cell and each material. Diffusion couples all these systems both spatially and in between materials so that a global matrix inversion cannot be avoided. Instead of directly solving (2.41), the local 3 × 3 systems are first analytically triangularized so that the global system now only concerns the radiation temperatures. This effectively divides by 3 the size of the linear system to be inverted. The triangularization reveals the following convex combinations

φ k,n+1,m+1 i,c = h k,n+1,m c ψ k,n+1,m i,c + 1 -h k,n+1,m c φ k,n+1,m c , (2.42a) 
φ k,n+1,m+1 e,c = f k,n+1,m c ψ k,n+1,m e,c + 1 -g k,n+1,m c ψ k,n+1,m i,c + 1 -f k,n+1,m c φ k,n+1,m+1 r,c , (2.42b) 
φ k,n+1,m+1 r,c   m k c ρ k,n c + ∆tc(V σ P f ) k,n+1,m c + d,l A kl,n+1,m cd   - d,l A kl,n+1,m cd φ l,n+1,m+1 r,d = m k c ψ k,n+1,m r,c + ∆tc(V σ P f ) k,n+1,m ψ k,n+1,m e,c + 1 -g k,n+1,m c ψ k,n+1,m i,c
.

where

h k,n+1,m c = 1 1 + c(V κδ ie β i ) k,n+1,m c ∆t m k c , (2.43a 
)

g k,n+1,m c = 1 1 + c(V κδ ie β e h) k,n+1,m c ∆t m k c , (2.43b 
)

f k,n+1,m c = 1 1 + c(V σ P β e g) ∆t m k c , (2.43c) 
and

ψ k,n+1,m i,c = φ k,n i,c + ∆tβ k,n+1,m i,c m k c H k,n i,c , (2.44a 
)

ψ k,n+1,m e,c = φ k,n e,c + ∆tβ k,n+1,m e,c m k c H k,n e,c , (2.44b 
)

ψ k,n+1,m r,c = φ k,n ρ k,n + ∆t m k c H k,n r,c . (2.44c) 
The numerical time step ∆t is not restricted by the radiation transport or the source terms.

It is only driven by the hydrodynamic part of the equations and its resulting CLF-like condition

∆tc c V c P c ≤ 1 2 . (2.45) 
where V c is the volume of the cell, P c its perimeter and c c the mixture speed of sound (2.11).

This restriction is supplemented with a second restriction preventing cell inversion and thus ensuring positivity of the density.

Remark 7. Strictly speaking, system (2.42) consists in convex combinations if and only if coefficients β k,n+1,m i,c

and β k,n+1,m e,c are non-negative. For a given equation of state, the heat capacity c v and the Grüneisen coefficient Γ are defined as

c v = ∂e ∂T ρ , (2.46a) 
Γ = ρ T ∂T ∂ρ s . ( 2 

.46b)

The following thermodynamic relation then stands are always positive as long as the variation of volume is neglected. If not, these coefficients may become negative and convex combinations are lost. Radiation phenomena usually occurs on time scales shorter than those of hydrodynamics so that variations of volume can be reasonably neglected.

dT = 1 c v de + p c v -ρΓT d 1 ρ . ( 2 
Remark 8. The convergence rate of the present method is slower than a regular Newton's method. Although Newton's method may fail to ensure positivity of temperatures and may thus crash the simulation in demanding test cases [START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF], it usually behaves well. The present method should not be seen as the main procedure but rather as a backup to another fasterconverging method.

Properties

Proposition 1 (Discrete Energy conservation). The discrete total energy

c m c u c 2 2 + k m k c e k,n i,c + e k,n e,c + e k,n r,c ρ k,n c , (2.48) 
is conserved.

Proof. When summing ionic, electronic and radiation energy, the contribution of relaxation terms disappears. Radiation transport is written in terms of fluxes which cancel when summed over all cells and all materials as explained in 3.3. Only remains the hydrodynamics part.

Conservation is not obvious in (2.28) where the internal energy formulation was favored. Proof of the conservation of total energy (as well as momentum) for the GLACE/EUCCLHYD scheme can be found in [START_REF] Després | Numerical resolution of a two-component compressible fluid model with interfaces[END_REF][START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF][START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF]. Proof. The semi-discrete entropy equations read

m k c T k i,c d dt s k i,c =λ k i,c Q c + c(V κ) k c T k e,c -T k i,c , (2.50a) 
m k c T k e,c d dt s k e,c =λ k e,c Q c + c(V κ) k c T k i,c -T k e,c + c(V σ P ) k c a T k e,c 4 
-a T k r,c 4 , (2.50b) 
m k c T k r,c d dt s k r,c =λ k r,c Q c + d,l A kl cd e l r,d -e k r,c + c(V σ P ) k c a T k e,c 4 
-a T k r,c 4 
.

(2.50c)

The relaxation terms provide a local and individual (i.e. for a given cell and a given material) entropy production as it can be seen by summing all equations of (2.50). Radiation transport, however, consists in a heat exchange between cells and materials so that the associated entropy production can only be recovered by summing equations (2.50c) over all cells and all materials. Consequently, positivity of radiation temperatures is ensured. Finally, positivity of electronic and ionic temperatures follows from the convex combinations (2.42b) and (2.42a).

Eventually c,k m k c d dt s k i,c + s k e,c + s k r,c =   k θ∈{i,e,r} λ k θ,c T k θ,c   Q c + {c,d},{k,l} A kl cd T k r,c -T l r,d T k r,c 4 -T l r,d 4 T k r,c T l r,d + c,k c(V κ) k c T k i,c -T k e,c 2 
T k i,c T k e,c + c,k ca(V σ P ) k c T k e,c -T k r,c T k e,c 4 -T k r,c 4 
T k e,c T k r,c , (2.51) Unit Xenon Beryllium ρ g.cm -3 0.006 1.85 u cm.s -1 0 0 k B T = k B T r eV 100 1 p g.cm -1 .s -2 (γ -1)ρe e erg.g -1 c v (k B T ) e r erg.cm -3 a(k B T r ) 4 σ P = σ R cm -1 σ 0 ρ 2 (k B T ) -7/2 c v cm 2 .s -2 .

Numerical results

Ablation wall problem

For this one-dimensional test case [START_REF] Peter | Level set methods for multimaterial radiative shock hydrodynamics[END_REF], a hot gas (xenon) interacts with a denser cold wall (beryllium). The radiation transport at the interface heats the beryllium and triggers an expansion wave pushing the interface towards the hot gas. Additionally, the initial pressure discontinuity generates a shock wave through the gas while the pressure difference induced by the heating of the wall causes a second shock wave to propagate inside it. The domain measures 0.16 cm and is initially divided at x = 0.10 cm with the wall on the right. Initial quantities are summarized in table 2.1 along with the values of the physical constants. In practice, the present three-temperature code is reduced to a two-temperature one by using infinite κ (10 30 for both materials in our test) and taking (c v ) i = (c v ) e = 1 2 c v . The physics of the problem is stiff because of the high contrasted densities, pressures, temperatures and opacities. In particular, opacity experiences a sharp change at the interface (σ R /σ L ≈ 10 12 ). In (2.26c), the equivalent diffusion coefficient at the interface between two materials is given by an harmonic mean. This specific averaging appears naturally because the underlying assumption is that of a stationary solution for which the flux is constant. This hypothesis however breaks down when dealing with such a highly non-stationary test case.

Generally speaking, other averaging (e.g. arithmetic or geometric mean) could be used. An arithmetic mean would produce a mean diffusion coefficient close to the greatest one (≈ 10 10 ) while an harmonic mean would result in a mean diffusion coefficient close to the smallest one (≈ 10 -2 ). This is important as the flux at the interface drives most of the physics of the system and different choices are then expected to yield different solutions.

Results at t = 4ns with 1024 cells, without remapping and for different means (namely arithmetic, geometric and harmonic) are displayed in figure 2.11. Without remapping, no mixed cell appears and the profiles accurately describe the state of the individual unmixed materials.

All solutions, except for the harmonic mean display a similar structure which is consistent with the semi-analytical solution given in [START_REF] Drake | Behavior of irradiated low-Z walls and adjacent plasma[END_REF] and the numerical results obtained in [START_REF] Peter | Level set methods for multimaterial radiative shock hydrodynamics[END_REF][START_REF] Chauveheid | Ecoulements multi-matériaux et multi-physiques : solveur volumes finis eulérien co-localisé avec capture d'interfaces[END_REF].

However, the previous results as well as the present ones display different wave and interface positions between each other. Several reasons can be invoked to explain this discrepancy.

• The most substantial differences come from the choice of the mean diffusion coefficient at the interface. The harmonic mean almost entirely freezes radiation transport between the two materials. In this case, the solution is then essentially driven by the hydrodynamic part of the system and consists in a leftward propagating shock wave through the lighter xenon and a rightward propagating rarefaction wave through the denser beryllium (see figure 2.11). This explains why the temperature is lower on the right side of the wall; the beryllium experiences an expansion whose resulting temperature decrease is not compensated by the heat flux from the xenon. Radiation still has an effect on the left part of the solution where the opacity is quite low. The shock is then smeared out by radiation transport while the equilibration of material and radiation temperatures lags. Alternatively, the arithmetic mean probably overestimates the interface diffusion coefficient as the interface seems to be pushed excessively to the left, so much so that performing the computation up to 5.5ns as in [START_REF] Peter | Level set methods for multimaterial radiative shock hydrodynamics[END_REF] is not possible without collision with the left border.

• Another factor may be related to convergence issues. As seen in figure 2.12, doubling the number of cell significantly shifts the interface position. Even with a decent mesh (1024 cells), the rarefaction wave is only captured with a limited number of cells and remains largely unresolved; this issue seems to be affected by the remapping procedure. Even if all numerical schemes were to converge to a common solution, the required mesh size for numerical convergence may be out of reach in practice. In this case, properly modelling the opacity at the interface is mandatory.

• Finally, because shocks propagate through two-temperature medium, their downstream and upstream states, as well as the shock speed all depend on the details of entropy production on each energies. Different numerical schemes may then produce different solutions depending on their underlying numerical diffusion. For example, in figure 2.12, the intermediate state between the left shock and the interface is different for the velocity if a remapping procedure is used because of the additional diffusion it induces. The additional diffusion translates to entropy production or heating which in turn accelerates the expansion.

Two-dimensional test case

The last test case comes from [START_REF] Chauveheid | Ecoulements multi-matériaux et multi-physiques : solveur volumes finis eulérien co-localisé avec capture d'interfaces[END_REF] and is itself inspired from the one found in [START_REF] Vincent | Temporal accuracy of the nonequilibrium radiation diffusion equations applied to two-dimensional multimaterial simulations[END_REF]. Results will not be compared directly to these references as the nondimensionalization and equations of state are not specified in the former one while the latter one does not take into account hydrodynamics.

In any case, this test case aims at demonstrating the proficiency of the present scheme in a twodimensional two-temperature two-material setting; a more quantitative approach is out of the scope of this chapter. Once again, the three-temperature scheme is reduced to a two-temperature one by using infinite κ (10 30 for both materials in our test) and taking (c v ) i = (c v ) e = 1 2 c v . The two materials initially occupy the domain [0, 1] × [0, 1] as in figure 2.13 with a radial temperature distribution T (x, y) = T r (x, y) = 0.001 + 100 exp -x 2 + y 2 0.01 Results at t = 0.5 for a 128 × 128 mesh are given in figure 2.14. The choice λ 0 with no internal flux and constant reconstruction of volume fraction is made for the radiation transport.

1 4 , ( 2 
The initial stiff temperature distribution evolves according to two phenomena. First, radiation transport propagates the centrally concentrated heat to the rest of the domain. Second, at constant density, temperature gradients induce pressure gradients which accelerate the system radially. The initial squares are eventually deformed by the acceleration. Neglecting the interaction of the heat front with the top and right borders, the solution would display a radial symmetry were it not for the difference in opacity. Indeed, the second material being more opaque, radiation does not propagate well inside. Its greater opacity also means that material and radiation temperatures are more coupled. As a result, material 2 radiation temperature is lower than its surroundings. Yet, its material temperature is actually greater than that of material 1 whose coupling between material and radiation temperature is weaker. Results with and without remapping share the same global behavior although the remapping obviously smears the solution at the interface between the two materials.

Conclusion

The present work is devoted to the discretization of three-temperature multi-material hydrodynamics. A large focus is put on the multi-material radiation transport which is here dealt with the so-called discrete equation method (DEM). When compared with homogenization methods on perturbed meshes, the DEM shows significant improvement in accuracy while remaining both conceptually and computationally simple. The global numerical scheme conserves mass, momentum and total energy. Implicit time integration allows for stiff relaxation terms and radiation transport without unreasonably small time steps. The retained strategy also ensures that temperatures stay positive during the iterative time integration procedure.

Perspectives are numerous; three of them are here mentioned. First, extension to higher order is desirable for better accuracy as the present scheme is only at first order both in time and space. Anti-diffusive methods could be used to prevent over-smearing of the interface when the scheme is paired with a remapping procedure. Second, the methodology of comparison with perturbed meshes could be extended and bettered for more general meshes (with random displacements for instance). Finally, even though the scheme is written for an arbitrary number of materials, it remains to check its efficiency for more than two materials.

Introduction

Multi-material hydrodynamics is of paramount importance for industrial and academic applications alike. Applications includes, among others, pharmacology, aerodynamics, combustion, astrophysics and climatology. Although all these applications differ in their physical regimes (i.e. material properties, domain and amplitude of physical quantities, dissipation, presence and strength of shocks,...), the governing equations can be derived in a unified manner. The most common method is based on a conditional averaging [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF][START_REF] Wörner | A compact introduction to the numerical modeling of multiphase flows[END_REF] of the single-material equations. The averaging, whether performed with respect to space, time, or statistical realisations, produces a mixed zone within which several materials coexist. The description and numerical treatment of these numerically diffused interfaces is an active domain of research [START_REF] Maltsev | High-order methods for diffuseinterface models in compressible multi-medium flows: A review[END_REF].

Multi-material equations

Description of multi-material hydrodynamics are numerous in the literature. The variety of equations stems from two reasons. First, different levels of description [START_REF] Linga | A hierarchy of non-equilibrium two-phase flow models[END_REF][START_REF] Städtke | Two-Fluid Model of Two-Phase Flow[END_REF][START_REF] Maltsev | High-order methods for diffuseinterface models in compressible multi-medium flows: A review[END_REF] can be used to describe the mixture. The lowest level of description considers a single equation of state for the mixture and an additional variable, namely the mass fraction, to characterize the presence of each material; for two materials, it gives 4 unknowns and the resulting equations are referred to as 4-equation models. Alternatively, each material can have its own equation of state, pressure and velocity; for two materials, it yields a 7-equation model whose most famous instance was introduced by Baer and Nunziato [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF]. In between exists a large spectrum of models depending on the number of deployed physical variables. Obviously, the more are used, the more accurate the description of the mixture is, especially in the case of highly contrasted equations of state.

Here, a 6-equation model is considered with multiple velocity but only one pressure. Multiple velocities allow to take into account inter-penetration and shear between materials while one common pressure is a relevant physical approximation [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF]. The second reason explaining the sheer variety of models concerns short-wavelength phenomena. Multi-material flows can include several (dissipative or not) such as surface tension, drag, added mass, viscosity or heat flux.

Although they are necessary for a complete description of the flow, they are heavily mixturedependent. For a given number of variables, infinitely many models can be created depending on the chosen terms and their expression. The stance of the present work is to focus on the greatest common denominator of all these models by altogether neglecting all additional phenomena including dissipation.

Ignoring short-wave length phenomena has two major consequences. First, the neglected terms are essential to describe shocks which, contrary to the single-material case, are smallscale dependent. Part of the missing information can be recovered by looking at entropy. The evolution of the total entropy of the mixture selects physical shocks so as to comply with the second principle of thermodynamics; among all the admissible shocks, the details of the entropy production on each material then selects the one of interest. Second, the resulting system of equations features a mixed elliptic-hyperbolic behavior. Ellipticity induces instability which is the reason why the model is often left out in favor of hyperbolic equations such as in [START_REF] Saurel | A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows[END_REF]. The model is still of interest as discussed in [START_REF] Ramshaw | Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems[END_REF][START_REF] Vazquez-Gonzalez | Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option[END_REF] and should be seen as a universal starting point rather than a comprehensive physical description; in particular, instabilities are expected to be damped as soon as dissipation is added [START_REF] Ramshaw | Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems[END_REF]. As such, its discretization is an important and relevant issue.

Numerical discretization

This work is an extension of the cell-centered numerical scheme presented in [START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF] for multimaterial single-velocity hydrodynamics. The original scheme is based on the so-called "Lagrange + Remap" strategy [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF][START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF] where physical quantities are first computed on a moving mesh following the flow of the mixture (the Lagrange step) and are then projected on a new mesh whose choice is motivated by various user-controled criteria (the remapping step). This strategy becomes non-trivial in the context of multi-velocity flows as each material possesses its own Lagrangian trajectories. A common Lagrangian frame can be built from any average velocity of the mixture. The present work favors an alternative approach where each material evolves in its own Lagrangian frame before being projected back on a common mesh. Such a strategy will be referred to as "Multi-Lagrange + Remap" [START_REF] Cournède | Un schéma bilagrange plus projection pour la simulation bifluide des instabilités de mélange[END_REF]. This formalism allows to exactly isolate the pressure terms in the Multi-Lagrange phase from the convection terms in the remapping phase, thus contributing to the convenient design of thermodynamically-consistent numerical schemes. In particular, compliance with the second principle of thermodynamics, namely preventing entropy destruction, is an essential requirement for multi-material schemes.

Apart from providing stability and physically-sound results, distribution of entropy production between materials selects solutions inside shocks [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF][START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF][START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF]; this issue is also explored in chapter 4 for two-temperature applications. Control of entropy production and its distribution will be the main guideline of the present work.

The Lagrange phase is based on the GLACE/EUCCLHYD method [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF][START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF][START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the simulation of High-Energy-Density-Physics Problems[END_REF]. Although the original scheme is built upon approximate Riemann solvers which fail to apply to elliptic equations, it can still be formally extended to a multi-velocity system. The present extension preserves total energy conservation while allowing for an arbitrary distribution of entropy production on the different materials. As for the remapping procedure, it prevents mesh entanglement which are usually unavoidable in pure Lagrangian computations. More generally, it allows changes of mesh during the simulation as in the Arbitrary Lagrange-Euler (ALE) setting [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF][START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the simulation of High-Energy-Density-Physics Problems[END_REF]. Designing such changes and measuring their relevance is not the focus of this work and solutions will only be projected on the initial mesh. In a "Multi-Lagrange + Remap" approach, the remapping must comply with the volume-filling constraint, as well as with the positiveness of density. As a result, it is unexpectedly coupled with the Lagrange step. This renders necessary a new approach to remapping which does not include usual face flux schemes.

The chapter is organized as follows. In section 2, the 6-equation model under consideration is presented. Explicit volume evolution equations are derived from the one-pressure assumption as in [START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF][START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF]. Shocks and ellipticity are also discussed. In section 3, the numerical scheme is presented. The focus is put on the consequences and constraints of the multi-velocity aspects on the discretization. Finally, the numerical scheme is applied to various one-dimensional and two-dimensional test cases in section 4.

2 Multi-velocity model and thermodynamic closures

Core equations

The present model is written in Lagrangian formalism for an arbitrary number of materials. The notations are standard with α k , ρ k , u k , and e k denoting the volume fraction, density, velocity and internal energy of material k. Each material is described by its own equation of state (EOS) which, in particular, defines its pressure p k as a function of ρ k and e k . The EOS are arbitrary, provided they fulfill the thermodynamic constraints such as concavity of entropies s k and real speeds of sound c k . Because each material possesses its own velocity, it defines its own Lagrangian derivative

d k dt = ∂ ∂t + u k • ∇.
The mass, momentum, and internal energy equations are thus Conservation of material masses and total momentum k α k ρ k u k are naturally ensured. So is conservation of total energy as soon as the total pressure of the mixture is defined as

α k ρ k d k dt 1 α k ρ k -∇ • u k = 0, (3.1a) α k ρ k d k dt u k + α k ∇p = 0, (3.1b) α k ρ k d k dt e k + p k d k dt 1 ρ k = 0. ( 3 
p = k θ k p k , (3.2a 
)

θ k = 1 ∇ • u α k ρ k d k dt 1 ρ k . (3.2b)
Simple computations shows that k θ k = 1. Indeed, defining the volume averaged velocity

u = k α k u k , (3.3) it gives, k α k ρ k d k dt e k = - k α k ρ k p k d k dt 1 ρ k (3.4a) = - k θ k p k ∇ • u (3.4b) = -p∇ • u, (3.4c) 
which eventually yields

k α k ρ k d k dt e k + d k dt u k 2 2 = -∇ • (pu) . (3.5) 
Although the averaging process alleviates the treatment of interfaces, some details of the flow are lost and, as such, model (3.1) is underdetermined. Thermodynamical closures then need to be provided and are of two different kinds.

• The first one concerns the evolution of either densities, volume fractions or pressures and ensures that the number of equations equals the number of unknowns. Such a closure is enough to fully describe isentropic regions of the flow. In the following, equality of material pressures will be discussed.

• The flow behavior still needs to be specified outside isentropic regions, namely inside shocks. Indeed, unlike single material shocks, multi-material ones are small-scale dependent which means that no complete jump relationships can be written without knowing the details of what is happening inside the shock [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF]. Mathematically, this property comes from the fact that the system cannot be fully written in conservative form so that no canonical weak formulation exists [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF].

Explicit volume closure for the equal pressure assumption

In the vast majority of multi-material systems, pressure relaxation processes between materials occur on time scales much smaller than the characteristic hydrodynamic time scales [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF][START_REF] Städtke | Two-Fluid Model of Two-Phase Flow[END_REF].

Consequently, material pressures may be considered equal

p = p k (ρ k , e k ), ∀k ∈ {1, ..., n}. (3.6) 
The underlying material expansion rates d k dt ρ k associated with the algebraic relationships (3.6) can be derived following the ideas introduced in [START_REF] Tollak Munkejord | A MUSTA Scheme for a Nonconservative Two-Fluid Model[END_REF] for isentropic flows and extended in [111, §3.5] for arbitrary entropy production. This new formulation allows to properly factor entropy production inside shocks which is essential to the present numerical strategy.

Through the coupling of pressures, the unknowns d k dt ρ k and ∂ ∂t p all depend on each other. Consequently, a linear system, of which they are solution, is sought. The first equation is given by total mass conservation and reads

k ρ k α k d k dt 1 α k ρ k -∇ • u k α k = 0 ⇐⇒ k α k ρ k d k dt ρ k = -∇ • u. (3.7)
On the other hand, differentiating (3.6) with respect to time gives

∂ ∂t p = d k dt p k -u k • ∇p. (3.8)
Introducing the speed of sound c k and the Grüneisen coefficient Γ k [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF] of material k

(c k ) 2 = ∂p k ∂ρ k s k , Γ k = 1 ρ k T k ∂p k ∂s k ρ k , ( 3.9) 
pressure derivatives may be written as a function of density and entropy derivatives

∂ ∂t p = (c k ) 2 d k dt ρ k + ρ k Γ k T k d k dt s k -u k • ∇p. (3.10)
Solving the system formed by equations (3.7) and (3.10) eventually yields

α k ρ k d k dt 1 ρ k -β k ∇ • u + D k = 0, (3.11) 
with

D k = α k ρ k (c k ) 2 l β l (u k -u l ) • ∇p + ∆ kl , (3.12a 
)

β k = α k ρ k (c k ) 2 l α l ρ l (c l ) 2 , (3.12b) ∆ kl = ρ l Γ l T l d l dt s l -ρ k Γ k T k d k dt s k . (3.12c)
The term ∇•u in equation (3.11) comes from mass conservation and, as such, is purely geometric.

It corresponds, in some sense, to a global deformation rate of the mixture which is then shared between materials according to weighting coefficients β k (β k ≥ 0 and k β k = 1). Because of these coefficients and their dependence on thermodynamics, some stiffness may appear, especially in mixtures with highly contrasted materials [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] (e.g. air and water when β air >> α air ). The second term, D k , corresponds to a volume exchange rate (i.e. k D k = 0) and is induced by both the velocity drift between materials and their entropy production.

Small-scale effect closure

Shocks are crucial phenomena in most hydrodynamic applications and demand specific care in terms of both physical modelling and numerical treatment. They correspond to zones where quantities vary rapidly or even discontinuously in the vanishing viscosity limit. A notable feature of conservation laws (e.g. Euler equations) is that two states connected by a shock do not depend on its profile or on the underlying physical dissipation processes. This property does not extend to systems which are not fully conservative (e.g. model (3.1)) where shocks heavily depend on small-scale effects which do not always explicitly appear in the equations [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF]. Both from physical and numerical points of view, it is a relevant issue to be able to characterize the range of admissible shocks.

In the case of the single fluid Euler equations, shocks are completely constrained by conservation of mass, momentum and total energy. Then, the resulting jump relationships (also known as the Rankine-Hugoniot equations in the theory of conservation laws) algebraically close the shock. The set of all right states which can be connected to a given left state through a left-moving or right-moving shock (i.e. a 1-shock or a 3-shock in mathematical terms) forms a one dimensional half-curve called the shock locus whose projection on the p -1/ρ plane is known as the Hugoniot curve []. This essentially means that once the amplitude of the shock is given, other variables are immediately recovered as a consequence of conservation, including the shock speed.

In the case of multi-material equations, this locus becomes a larger dimension object as illustrated in figure 3.1. The new dimensions offers new degrees of freedom and correspond to the total number of equations of the system minus the number of conserved quantities. For model (3.1) with n materials, this number is 2(n -1). Hence, for a given amplitude, several shocks are admissible depending on the underlying short-wavelength phenomena. These phenomena include drag, viscosity, heat exchange, added mass, and surface tension among others. Their number is way larger than the number of degrees of freedom which shows that multiple physical regularizations can define shocks connecting the same left and right states (although the details of the shock's profile may still be different). Generally speaking, the regularized equations read

α k ρ k d k dt u k + α k ∇p = εF k , (3.13a) α k ρ k d k dt e k + p k d k dt 1 ρ k = ελ k Q. (3.13b)
where

• ε is an arbitrarily small parameter controlling the width and steepness of the shock. The smaller ε is, the more narrow and steep the shock is.

• The term F k is a global force acting on material k. It may include individual (i.e. only concerning material k) terms such as viscosity, as well as exchanges of momentum between materials such as drag. Because of total momentum conservation, the sum k F k must correspond to a flux term, hence the n -1 first degrees of freedom.

• Because of total energy conservation, the sum of powersk u k • F k is equal, up to a flux, to the total heat deposit Q > 0. It is then distributed among materials with respect to coefficients λ k . According to Gibb's identity, ελ k Q corresponds to the entropy variation

α k ρ k T k d dt s k of material k.
If no heat exchange between materials is present (adiabatic This interaction between the different terms is represented in figure 3.2. Equation (3.13b) and positivity of Q and λ k shows that material entropies all increase with time which is a sufficient condition for the total entropy to increase, thus complying with the second principle of thermodynamics. Yet, it is not necessary as an additional heat exchange could decrease one material entropy while still inducing a total entropy production. With only incomplete EOS, temperatures are not accessible and there is no way of knowing if a given heat exchange is indeed entropic: this is why it has been excluded here. Nevertheless, it shows that heat exchange could increase the size of the locus defined by conditions (3.13a) and (3.13b) as represented by the dashed curves in figure 3.1. It is not a new degree of freedom per se as the dimension of the augmented locus remains the same. In this sense, (3.13) λ k ≥ 0 should spread U R over all degrees of freedom although not over their entire range.

U L U R • • U L U R •
Remark 9. Theories have been developed to properly define weak solutions through the addition of a path describing the profile of travelling waves [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF]. If this formalism offers a solid mathematical background and has been used to extend Godunov-type schemes to non-conservative hyperbolic systems [START_REF] Dumbser | A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems[END_REF][START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF], its physical interpretation is not always clear. As a consequence, its use for physics-driven applications is usually not straightforward. It will not be considered hereafter.

2.4

The elephant in the room : ellipticity of the model Model (3.1) together with the equal pressure assumption (3.6) is known to display elliptic behavior. This feature sparked much controversy in the community as ellipticity predicts unstable behavior at vanishing small scales, effectively rendering impossible any simulation on fine meshes [START_REF] Cournède | Un schéma bilagrange plus projection pour la simulation bifluide des instabilités de mélange[END_REF]. This chapter does not aim at extensively discussing the complex link between ellipticity and stability in the context of non-linear equations. Contributions may be found in [START_REF] Ramshaw | Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems[END_REF][START_REF] Lee | Mathematical properties of nonhyperbolic models for incompressible two-phase flow[END_REF][START_REF] Vazquez-Gonzalez | Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option[END_REF].

The stance retained in this chapter follows [110, app. A and refs therein].

. . . λ 1 Q λ n Q Q k u k • F k . . . u 1 • F 1 u n • F n + = Flux . . . F 1 F n + + = Flux Figure 3.2:
Diagram displaying the physical origin of the different degrees of freedom. They all hinge around total energy conservation which allows some of the total kinetic energy to be transformed into a heat deposit. The loss of kinetic energy and increase in internal energy can both be freely shared among materials. In doing so, each of them provide n -1 degrees of freedom on the right state of a shock.

• Model (3.1)-(3.6) is a universal starting point for any description of multi-material flows.

Indeed, the model relies on the strong physical basis that is the least action principle [START_REF] Gavrilyuk | Multiphase flow modeling via Hamilton's principle[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF]. It may also be derived through an averaging procedure from the Euler equations whose well-posedness is widely accepted. Hence, the model is essentially correct up to some correlation terms which have been neglected as a first approximation after the averaging.

• Small-scale effects (3.13) then need to be added to amend for the lack of these correlation terms. Apart from providing closures inside shocks (as discussed previously), they also damp short wavelength instabilities. As pointed out in [START_REF] Ramshaw | Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems[END_REF], the model is still successful at predicting long wavelength behaviors such as Kelvin-Helmotz instabilities. Consequently, any small-scale effect that should be introduced should not be so intrusive as to seriously modify these phenomena.

With that being said, model (3.1) supplemented with (3.6) (i.e. the "universal" part of the model) will be discretized as it is. In practice, a well-controlled numerical scheme should mimick equations (3.13) at the discrete level. In this case, ε is implicitly related to both the cell characteristic lengths and the order of the scheme. It is also inversely proportional to an underlying cutoff frequency beyond which instabilities are damped. Refining the mesh then allows the growth of instabilities at larger and larger frequencies, to the point where it may abruptly stop the simulation. Results can still be obtained on coarse enough meshes. 3 Numerical strategy

Geometry and notations

The notations are similar to those introduced in [START_REF] Maire | Contribution to the numerical modeling of inertial confinement fusion[END_REF][START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF][START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF]. Each cell is assigned a unique index c and is denoted by ω c . Its volume is V c . The two-dimensional cells are assumed to be polygonal so that they are defined by the set of their nodes P(c). For a given node p, x p and u p are its position and velocity while C(p) is the set of cells that contain p. Corner vectors [START_REF] Walter | WAT: a numerical method for two-dimensional unsteady fluid flow[END_REF] are given by

l pc n pc = ∂V c ∂x p , (3.14) 
where n pc is a unit vector. They can equivalently be constructed as follows : p + is the node in P(c) which follows p in counterclockwise order and p -the previous node. Let n + pc be the outward normal unit vector to the edge pp + and define l + pc = 1 2 pp + (n - pc and l - pc are defined accordingly). Finally

n pc = l + pc n + pc + l - pc n - pc l pc , (3.15a 
)

l pc = l + pc n + pc + l - pc n - pc 2 . (3.15b)
All the notations are illustrated in figure 3.3.

Global strategy

The present chapter aims at extending the work introduced in [START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF] for a single velocity model (1.5). This previous scheme relies on a Lagrange+Remap approach, meaning that each time step consists in two main phases plus an additional pressure equilibration procedure.

• The Lagrangian phase is based on an extension of the GLACE/EUCCLHYD [START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF] scheme to a multi-material one pressure setting. The GLACE/EUCCLHYD scheme is Lagrangian, cell-centered and allows a semi-discrete entropy production to be written as where α k ρ k T k d dt s k is taken as an arbitrary portion of the total irreversible work of the scheme (3.16). This ensures thermodynamic consistency as each material entropy increases over time. The arbitrary distribution of the total irreversible work also allows to capture different solutions in keeping with the discussion of section 2.3.

m c T c d dt s c = m c d dt e c + p c d dt 1 ρ c = p∈P(c) (u p -u c ) T M pc (u p -u c ), ( 3 
• Once all material quantities have evolved on the Lagrangian mesh, they are remapped on the initial mesh. The remapping procedure is essentially independant of the chosen strategy for the Lagrangian step. An Alternate Direction projection [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF] is chosen for its entropic character (to first order), easy extensions to second order, and overall simplicity.

• Finally, an equilibration procedure is added so as to enforce pressure equality up to machine precision. This procedure relies on an iterative method (here Newton's method) to solve the following non-linear system of equations

k (αρ) k,n+1 e k,n+1 = k (αρ) k,n+1 e k, , (3.18a 
)

e k,n+1 -e k, = -p 1 ρ k,n+1 - 1 ρ k, , (3.18b) 
p = p k (ρ k,n+1 , e k,n+1 ). (3.18c)
where the exponent is used for the quantities before correction and n+1 for the corrected variables. This system, by virtue of its implicit pressure work [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides à plusieurs constituants[END_REF][START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF], prevents entropy destruction while conserving total volume and total energy of the system.

Extending this approach to a multi-velocity model is no simple task. The main challenge comes from the very definition of the Lagrangian phase as there exists as many Lagrangian frames as there are materials. The choice retained for this work consists in a "Multi-Lagrange + Remap" approach where all quantities associated with a given material are first computed on its own Lagrangian frame as in [START_REF] Cournède | Un schéma bilagrange plus projection pour la simulation bifluide des instabilités de mélange[END_REF]. Quantities then evolve on different frames before being projected on a common mesh, which is here taken as the initial one (see figure 3.4). Finally, the

φ 1,n φ 2,n φ 2,L 2 φ 1,L 1 φ 2,n+1 φ 1,n+1
Initial Lagrange Remap Figure 3.4: Schematic representation of the "Multi-Lagrange + Remap" approach with two materials. The notation L k is used for quantities computed on the Lagrangian frame of material k.

pressure relaxation procedure is not concerned with the multi-velocity aspects and is thus left unchanged.

The multi-Lagrange and the remapping steps will be presented in sections 3.4 and 3.5 respectively. Both discussions will be carried out in the light of the general common theme that is entropy. In the Lagrangian phase, entropy production is mainly given by what may be interpreted as numerical viscosity and which is shown to be constrained by the GLACE/EUCCLHYD setting. As for the remapping procedure, entropy considerations heavily constrain it and, contrary to the single velocity scheme, total volume conservation binds it to the Lagrange phase.

Before delving into these issues, a global overview of entropy production of the scheme is given in section 3.3. It serves as a foundation for the following discussions and justifies the adamant requirements on entropy.

Considerations on entropy

Control of entropy production is a key ingredient for all multi-material compressible schemes.

It serves two main purposes, namely stabilizing and selecting solutions of interest. Stabilization ensures that numerical simulations do not explode over time, especially around shocks where a strict entropy inequality is required [START_REF] Neumann | A Method for the Numerical Calculation of Hydrodynamic Shocks[END_REF][START_REF] Peter | Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves[END_REF]. More generally, it ensures that solutions are physically admissible as destroying entropy could create spurious shocks inside what should be rarefaction waves. Secondly, as explained in section 2.3, ensuring an entropy inequality is not sufficient to fully define solutions; the details of entropy production are then crucial to properly select solutions inside shocks and consist in the second n -1 degrees of freedom identified in section 2.3.

A comprehensive list of entropy sources in the present numerical scheme is now given.

• The main source of entropy is introduced during the Lagrange phase where some kind of numerical viscosity is added to the pressure work in the internal energy equations. If the total irreversible work Q is known explicitly, then it may be shared arbitrarily among materials

α k ρ k d k dt e k + p d k dt 1 ρ k = λ k Q, (3.19)
where λ k are arbitrary coefficients between 0 and 1 whose sum over all materials is 1.

Changing the coefficients will change the numerical solution inside shocks, even at convergence [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF][START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF]. Their specification must then be driven by physics and cannot reasonably be determined by numerical considerations alone.

• The second main source of entropy (and more generally of numerical diffusion) is the remapping step. A sensible remapping procedure should consist in some sort of averaging.

Convex inequalities then ensure that no entropy is destroyed over time. If it provides strong robustness, the remapping procedure may induce accuracy issues as its underlying numerical diffusion pollutes the numerical viscosity terms. Their sum acts as an effective viscosity which remains partially uncontroled, thus inducing some potential convergence issues [START_REF] Lefloch | Numerical methods with controlled dissipation for small-scale dependent shocks[END_REF][START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] for systems whose shock are small-scale dependent. These can still be mitigated by a higher order remapping procedure and, more generally, consist in a compromise between accuracy and robustness. This discussion also applies to the following items of the list for which entropy distribution is also not controlled, although their effect is not as substantial as for the remapping procedure.

• Pressure equilibration also creates an entropy residue. Its sign is always positive thanks to the implicit pressure formulation [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides à plusieurs constituants[END_REF][START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF][START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF]. Because pressures are already equal up to the scheme order, this residue may be deemed minor compared to the other entropy contributions.

• Time integration of pressure work produces an additional entropy residue whose sign depends on the time at which pressure is taken. Implicit pressure will always result in a positive entropy production while explicit pressure will always destroy entropy [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF]. Once again, this entropy contribution is minor compared to the other entropy contribution but still needs to be taken into account for demanding test cases [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF].

• Finally, the conservation law ∂ ∂t

k α k = 0 (3.20)
must also be satisfied at the discrete level. If the spatial discretization fails to preserve the sum of volume fractions, one might be tempted to add, what would seem at first, a mere normalization step. However, because masses must be conserved, products α k ρ k cannot be modified. Changes in volume fractions α k then carry out as changes in densities ρ k which, in turn, alter entropy. More precisely, if the sum k α k is greater than 1 at the end of a time iteration, then normalization will reduce volume fractions and increase densities ρ k , thus destroying entropy for all materials (for positive pressures). This issue will be further discussed in section 3.5.

Multi-Lagrange phase

Conservation of total momentum and total energy

Momentum and internal energy equations must be discretized in a consistent manner with (3.13) so as to produce stable results, particularly in the vicinity of shocks. In the single fluid GLACE/EUCCLHYD scheme, (3.16) serves this very purpose and may be interpreted as a form of numerical viscosity. However, the exact expression of the numerical viscosity comes from approximate Riemann solvers at the nodes. Consequently, fluxes act as black boxes where both pressure and viscous terms are intertwined. They cannot be separated in the sense that it is not possible to find an estimation of the gradient [∇p] c such that

p c [∇ • u] c + u c • [∇p] c (3.21)
is a flux. Details may be found in appendix D. This failure has two major consequences : [START_REF] Abgrall | How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach[END_REF] numerical viscosity cannot be removed from the scheme in regions where it is not needed (e.g. rarefaction waves); (2) its discretization must take into account that of the pressure terms. The latter consequence heavily constrains the discretization of total momentum and total energy so as to ensure conservation of both. A possibility is to take Proof. The proof follows the approach introduced in [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF]. Node forces are defined by

m k c d k dt u k c = α k c p∈P(c) M pc (u p -u c ), (3.22a) k m k c d k dt e k c = -p c p∈P(c) l pc n pc • u p + p∈P(c) (u p -u c ) T M pc (u p -u c ). ( 3 
F pc = -p c l pc n pc + M pc (u p -u c ). (3.24)
Summing equation (3.22a) over all materials gives the total momentum evolution

k m k c d k dt u k c = p∈P(c) M pc (u p -u c ) (3.25a) = p∈P(c) [-p c l pc n pc + M pc (u p -u c )] (3.25b) = p∈P(c) F pc . (3.25c)
Pressure terms have been artificially added although they do not contribute to the sum (because p∈P(c) l pc n pc = 0). On the other hand, lengthy algebraic computations show that the total energy is given by

k m k c d k dt |u k c | 2 2 + d k dt e k c = p∈P(c) F pc • u c . (3.26a)
A local (nodal) conservation property is sought and reads c∈C(p)

F pc = 0, (3.27a) c∈C(p) F pc • u c = 0. (3.27b)
Factorizing u c in (3.27b) shows that the latter equation is a direct consequence of the former, which is itself satisfied as soon as u p is defined by (3.23).

Remark 10. It is not immediately clear that the right-hand side of (3.22a) is consistent with a pressure gradient. Injecting expression (3.23) in (3.22a) makes it more apparent. Details may be found in [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF] and appendix D.

Remark 11. The original derivation of the single material scheme [START_REF] Carré | A cellcentered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] is based on nodal solvers which define node pressures fluxes from linearized jump relationships. Thanks to total momentum conservation, such an approach can be naturally extended and gives the following discretization 

m k c d k dt u k c = α k c p∈P(c) M pc (û p -ûc ), ( 3 
l pc n pc u p + p∈P(c) (û p -ûc ) T M pc (u p -u c ). (3.29)
Although this alternate scheme is quite appealing as it leans on the well-established ideas of Godunov's type scheme and approximate Riemann solvers, it is no longer consistent with thermodynamics. Indeed, the term p∈P(c) (û pûc ) T M pc (u pu c ) cannot be interpreted as a squared norm and may become negative. As explained in the next section 3.4, it may result in entropy destruction which is ultimately why this scheme has been excluded.

Density, internal energy and entropy equations through thermodynamical consistency

The discussion conducted in the previous section 3.4 are deeply tied to the GLACE/EUCCLHYD formalism. Although total momentum and total energy conservation should be a universal concern, the provided answer to this issue is specific to the present approach. The following discussion has however a larger scope. It is rooted in thermodynamical consistency and should apply to a wide range of multi-material schemes (as in [START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF] for instance). Internal energy, density, and entropy discretizations are related to each other through Gibbs identity. It is the first step to warrant thermodynamic consistency of the scheme. 

d k dt e k c = -p c d k dt 1 ρ k c + T k c d k dt s k c . ( 3 
m k c d k dt 1 ρ k c = β k c p∈P(c) l pc n pc u p + D k c , (3.31a) 
D k c = α k c ρ k c (c k c ) 2 l β l c   (u k c -u l c ) • p∈P(c) M pc (u p -u c ) + ∆ kl c   , (3.31b) ∆ kl c = Γ l c α l c m l c T l c d l dt s l c - Γ k c α k c m k c T k c d k dt s k c . (3.31c)
Finally, the total heat deposit is identified in (3.22b) to be p∈P(c) (u pu c ) T M pc (u pu c ). As in (3.19), it is shared arbitrarily between materials with respect to coefficients

λ k c m k c T k c d k dt s k c = λ k c p∈P(c) (u p -u c ) T M pc (u p -u c ). (3.32)
If both the total heat deposit and coefficients λ k c are positive, the next proposition immediately follows.

Proposition 5. The semi-discrete Lagrangian procedure increases entropy inside each cell and for each material

d k dt s k c ≥ 0. (3.33)
To conclude this section on thermodynamic consistency, the expression of the matrices M pc is now discussed. The matrices are symmetric in order to ensure a positive total heat deposit.

As in [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF][START_REF] Loubère | Staggered and colocated finite volume schemes for lagrangian hydrodynamics[END_REF], they are chosen to be proportional to

M pc ∝ l + pc n + pc ⊗ n + pc + l - pc n - pc ⊗ n - pc . (3.34)
The amplitude must ensure sufficient dissipation so as to produce a stable scheme. It must be consistent with a density times a velocity. As prescribed in [START_REF] Vazquez | Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles[END_REF], it is taken as

k (β k c ) 2 α k c ρ k c 2 0,c (3.35) 
where c 0 is the mixture speed of sound at zero drag [78]

c 2 0,c = k β k c (c k c ) 2 . (3.36)
In the case of a light gas flowing against an inert incompressible material, the numerical viscosity on the gas reduces to the single-material scheme: the wall has no effect on the dynamics of the system. On the other hand, a mixture of two identical gases (same density, velocity, energy and equation of state but arbitrary volume fraction field) is described, as expected, by the single-material Lagrangian scheme.

Lagrangian volume and node velocities

The derivation of Lagrangian volume equations are quite straightforward. The only essential modification from the single material scheme is the fact that as many equations as there are materials are now needed.

m k c d k dt 1 (αρ) k c = p∈P(c) l pc n pc • u k p . (3.37)
The term l pc n pc • u k p is a node flux ensuring conservation of total volume. The conservation is local as the sum of fluxes over all cells of a given node is zero (as in the proof of proposition 4). Equation (3.37) may be seen as a consistent discretization of equation (3.1a). It also corresponds to the derivative of the Lagrangian volume, using the chain rule and the formula ∂Vc ∂xp = l pc n pc . This double interpretation is why equation (3.37) is often referred to as the Geometric Conservation Law [START_REF] Thomas | Geometric Conservation Law and Its Application to Flow Computations on Moving Grids[END_REF].

The remaining difficulty lies in the definition of material node velocities u k p . Up until now, only the average node velocity u p is known (3.23). It is then natural to enforce equality

u p = k α k p u k p , (3.38) 
where node estimates of volume fractions α k p still need to be specified. Equation (3.38) will be shown to have profound consequences on the remapping procedure and α k p will only then be defined. From (3.38), material node velocities are taken as

u k p = M -1 p c∈C(p) M pc u k c + p c l pc n pc + C p , (3.39a) 
C p = k M -1 p   c∈C(p) M pc α k c u k c -α k p c∈C(p) M pc u k c   . (3.39b) 
C p is a covariance term that may also be written

k E p [α k u k ] -E p [α k ]E p [u k ] where E p [X] is some node estimation of X.
It is necessary for (3.38) but might be negligible in practice.

Time integration

A standard Euler forward strategy is chosen for the time discretization. The scheme is then explicit, all spatial terms derived in the previous sections being taken at the initial time. In keeping with [START_REF] Cheng | A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations[END_REF], some caution still needs to be exercised on the velocity u c for discrete total energy conservation.

m k c e k,L k c -e k,n c ∆t = -p n c m k c ∆t 1 ρ k,L k c - 1 
ρ k,n c + λ k c p∈P(c) (u n p -u n c ) T M n pc u n p - u n c + u L c 2 . (3.40) 
The exponent L k is used for the quantities computed in the Lagrangian frame of material k and

u L c = k α k,n c u k,L k c . (3.41) 
The resulting scheme is still fully explicit as velocities are computed before internal energies. As stated earlier, although the semi-discrete scheme is strictly entropic for each material, time integration may destroy small amounts of entropy. It does so through the explicit time integration of pressure work [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF] and the discrete energy deposit in (3.40) where the half sum (u n c + u L c )/2 prevents it from being a perfect squared norm.

The time step ∆t is subject to two constraints. First, a CFL-like condition accounts for the propagation of acoustic waves. It reads

∆t = CFL × min k,c V c P c (c 0,c + u k c ) , (3.42) 
where V c is the volume of the cell, P c its perimeter and c 0,c the speed of sound of the mixture (3.36). CFL is a parameter, of the order of 1, which must be tuned. Additionally, ∆t is chosen so as to prevent cell volumes and volume fractions from becoming negative.

Remap phase : Lagrange/Remap consistency and volume conservation

The following discussion is restricted to the one dimensional scheme where cells are ordered from left to right by indexes i ∈ Z while nodes are denoted by half-integers i + 1 2 . The one dimensional setting is sufficient to illustrate the necessity of some form of consistency between the Lagrange an the remapping, as well as how the issue was tackled in the present work. The general multi-dimensional remapping procedure may be found in appendix E.

From volume conservation to a common diffusion

In the context of a Multi-Lagrange+Remap approach, enforcing the volume filling condition (3.20) at the discrete level is no simple matter. Because each α k is first computed on its own Lagrangian frame, the sum may not be conserved during the Lagrange step, nor may it be maintained during the remapping step. It is then crucial to ensure that both steps compensate each other as best as possible. Failing to do so would make the normalization step all the more intrusive which, as explained in 3.3, may jeopardize the scheme stability and its consistency with thermodynamics.

In practice, the divergence term ∇ • u appearing in the Lagrange step (3.7) must cancel with the sum of the remapping fluxes for the volume fractions k ∇ • (α k u k ). It should not come as a surprise considering the computations performed in (3.7) and the geometric nature of the term ∇ • u. In one dimension, the sum over all materials of equation (3.11) 

yields k V k,L k i -V k,n i = ∆t u i+ 1 2 -u i-1 2 , (3.43) 
while a generic remapping procedure should be written

k V k,n+1 i -V k,L k i = -∆t k (αu) k i+ 1 2 -(αu) k i-1 2 , (3.44) 
where (αu) k 

u i+ 1 2 = k (αu) k i+ 1 2 . (3.45) 
Remap procedures often consist in upwinding physical quantities as it provides stability while still remaining quite simple. In a multi-velocity setting, two major choices exist.

• Physical quantities are upwinded with respect to their respective material velocities. Then

(αu) k i+ 1 2 = α k i+ 1 2 ,up k u k i+ 1 2 , (3.46) 
with

α k i+ 1 2 ,up k = α k i if u k i+ 1 2 ≥ 0 and α k i+ 1 2 ,up k = α k i+1
if not. This is a robust choice as it generates convex combinations []. However, because volume fractions are upwinded with respect to different velocities, their value may come from different cells. As such, their sum needs not be one at a given node. Apart from inducing potentially dubious geometrical interpretations, it prevents the Lagrange volume evolution rate ∇•u from being translation invariant as

k α k i+ 1 2 ,up k (u k i+ 1 2 -u 0 ) = k α k i+ 1 2 ,up k u k i+ 1 2 -u 0 k α k i+ 1 2 ,up k , (3.47) may differ from u i+ 1 2 -u 0 .
• Physical quantities are upwinded with respect to a common velocity U . Node volume fractions now come from the same cell so that translation symmetry is recovered. However convex combinations are lost for material whose velocities are opposite to U , leading to possible stability issues.

In order to correct these shortcomings, upwind fluxes (3.46) are written in the alternate form

α k,up k i+ 1 2 u k i+ 1 2 = u k i+ 1 2 α k i + α k i+1 2 + u k i+ 1 2 α k i -α k i+1 2 , (3.48) 
which can be interpreted as the sum of a centered flux (for which the sum of volume fractions adds up to one) and a diffusion flux, necessary for stability. When summing these fluxes over all materials, the effective nodal volume fractions are not centered because diffusion fluxes do not cancel out. It shows that the diffusion level must be the same for all materials. Consequently, fluxes are replaced with

(αu) k i+ 1 2 = u k i+ 1 2 α k i + α k i+1 2 + w i+ 1 2 α k i -α k i+1 2 , (3.49) 
where w i+ 

α k i+ 1 2 = α k i + α k i+1 2 . (3.50) 
Although probably negligible, the correlation term (3.39b) is non zero. Enforcing C p = 0 is possible (at least in one dimension) but at the cost of introducing thermodynamics inside the remapping procedure. It has been excluded so as to keep the projection purely geometrical.

Remark 13. Consistency between the volume-filling constraint and the upwinding is recurring issue in multi-material schemes [START_REF] Cournède | Un schéma bilagrange plus projection pour la simulation bifluide des instabilités de mélange[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF] whatever their approach (Eulerian, Lagrangian, with remap,...). It appears to be generally solved with decomposition "tricks" similar to (3.49).

From a common diffusion to stability

All Eulerian quantities φ ∈ {1, α, αρ, αρu, αρe} are treated in the same manner

V n+1 i φ k,n+1 i -V L k i φ k,L k i = -∆t F k i+ 1 2 (φ) -F k i-1 2 (φ) , (3.51) 
with

F k i+ 1 2 (φ) = u k i+ 1 2 φ k i + φ k i+1 2 + w i+ 1 2 φ k i -φ k i+1 2 . (3.52) 
The following proposition shows that the "over-upwinding"

w i+ 1 2 = max l u l i+ 1 2 (3.53)
is sufficient to ensure stability in the sense detailed in the next proposition. 

m k,n+1 s k,n+1 i -m k,n s k,L k i ≥ 0. ( 3.54) 
Proof. Equation (3.51), together with (3.52), yields 

V n+1 i φ k,n+1 i = V L k i -∆t(u k i+ 1 2 + w i+ 1 2 -u k i-1 2 + w i-1 2 ) φ k,L k i + V n i-1 2 φ k,L k i-1 + V n i+ 1 2 φ k,L k i+1 , (3.55a) 
V n i± 1 2 = ∆t 2 w i± 1 2 -u k i± 1 2 . ( 3 
ρ k,n+1 i = 1 -κ n i-1 2 -κ n i+ 1 2 1 ρ k,L k i + κ n i-1 2 1 ρ k,L k i-1 + κ n i+ 1 2 1 ρ k,L k i+1 , (3.56a) 
e k,n+1 i = 1 -κ n i-1 2 -κ n i+ 1 2 e k,L k i + κ n i-1 2 e k,L k i-1 + κ n i+ 1 2 e k,L k i+1 , (3.56b) 
with

κ n i± 1 2 = δV n i± 1 2 /V k,n+1 i . By concavity of the function s k (1/ρ k , e k ) s k,n+1 i ≥ κ n i s k,L k i + κ n i-1 2 s k,L k i-1 + κ n i+ 1 2 s k,L k i+1 . (3.57) 
Unwinding all the previous computations eventually gives

m k,n+1 s k,n+1 i -m k,L k s k,L k i ≥ -∆t F k i+ 1 2 (αρs) -F k i-1 2 (αρs) , (3.58) 
which is consistent with the continuous inequality

∂ t (α k ρ k s k ) + ∂ x (α k ρ k s k u k ) ≥ 0.
Summing over all cells, it implies the weaker global result (3.54).

Going beyond the previous result, some nuances are brought to the discussion in the following remarks. They also hold for the multi-dimensional extension presented in appendix E. Then, a normalization step may still be needed but should be significantly less intrusive. Just as for the Lagrange step, the semi-discrete remapping step is strictly entropic for each material but integration in time may induce small entropy destructions after normalization.

Remark 15. While some entropy destruction cannot be completely excluded, the remapping procedure should actually be quite diffusive as all material quantities are now diffused with respect to the maximum velocity and no longer with their own. It may cause singular asymptotic behavior when a high-velocity phase disappears (i.e. u k large and α k → 0), effectively driving the dissipation of the whole mixture. A possible answer is to replace the diffusion coefficient

max l |u l i+ 1 2
| in (3.52) with some weighted average

l θ l u l i+ 1 2 , (3.59) 
where θ l → 0 as α l → 0. Then the proof of proposition 6 is no longer valid and entropy might be destroyed over time for the fastest materials. However, convex combinations are sufficient for the proof but perhaps not necessary. Besides, the second principle of thermodynamics only requires an increase in total entropy so that an entropy destruction for a fast disappearing material might not be such a concern. The general issue of phase disappearance is a painful recurring hassle in several situations. It is usually taken care of by a brute force clipping below some threshold [88, §1].

Remark 16. Conservation of total energy is not given a priori. The issue comes from the difference between projected kinetic energy and kinetic energy computed from the projected velocities [START_REF] Debar | Fundamentals of the KRAKEN code[END_REF]. A solution is to look at the gap between the two and dump it into the internal energy. Convexity of the square function ensures that the correction does not destroy entropy.

Numerical results

The various test cases presented in this section are concerned with stiffened gas and perfect gas equations of state (EOS). The stiffened gas EOS (of which the perfect gas EOS is simply a specific case) is presented in appendix F.

Sod test case

The first test case extends the classical Sod shock tube problem to a multi-velocity context.

A domain [0, 1] is filled with a mixture of two perfect gases. The properties of the mixture initially displays a discontinuity at x = 0.5. The left and right states are found in table 3.1.

An additional drag force can be considered in order to couple the fluid velocities. The modified equations read

α 1 ρ 1 d dt u 1 = -α 1 ∇p + νρ u 2 -u 1 , (3.60a) 
α 2 ρ 2 d dt u 2 = -α 2 ∇p + νρ u 1 -u 2 . (3.60b)
Numerically, the time integration of the drag force is implicit, resulting in a local 2 × 2 linear system which can easily be inverted by hand. In figures 3.5 and 3.6 are displayed the results at t = 0.2 obtained with the present multi-velocity scheme as well as with the single-velocity scheme found in [START_REF] Manach-Pérennou | Cellcentered lagrangian scheme for multi-material flows with pressure equilibration[END_REF]. Because of the discontinuity in volume fraction, the densities and velocities of the materials are different in the mixing zone. The velocity difference between the two materials mainly depends on two parameters. First, the stronger the drag force is, the smaller the difference gets (see figure 3.5). With an infinite drag force, the single-velocity scheme is eventually recovered. Second,adding more cells reduces the width of the diffused interface and

γ ρ L u L p L α L ρ R u R p R α R
Gas 1 1.4 1 0 1 0.9 0.125 0 0.1 0.1 Gas 2 0.1 0.9 thus the width over which a relative drift is observed (see figure 3.6). As the mixing zone gets thinner, the amplitude of the velocity difference also decreases.

Triple point test case

The second test case consists in the so-called triple point problem [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the simulation of High-Energy-Density-Physics Problems[END_REF]. Just as the Sod shock tube, it is a standard numerical test in computational fluid dynamics and it is here adapted to a multi-velocity setting. The geometry of the problem and its initial conditions can be found in With no drag force, the scheme displays a robust behavior although further interpretation of the results is not easy. With a large drag coefficient ν = 10 5 , the solution is similar to what can usually be observed with a single-velocity scheme. The curl appearing at the interface between the three materials is quite diffused; a better resolution would require extending the scheme to higher order.

Ransom water faucet problem

The Ransom water faucet problem is a standard benchmark in multi-velocity two-phase numerical simulations [START_REF] Victor | Numerical benchmark test No 2.1: Faucet flow[END_REF][START_REF] Vazquez | Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles[END_REF][START_REF] Vazquez-Gonzalez | Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option[END_REF]. A 12m long vertical pipe is filled with an initially homogeneous mixture of air and water whose properties are detailed in table 3.2. Air and water are respectively described by a perfect gas (γ = 1.4) and a stiffened gas (Γ = 3.4 and π = 10 9 ) equations of state. At the top of the tube, water is injected at 10 m.s -1 with a volume fraction of 0.8, density of 1000 Kg.m -3 and pressure p = 10 5 Pa. The bottom of the tube is left opened at atmospheric pressure p = 10 5 Pa. Additionally, a downward gravity force g = 10 m.s -2 is applied to the mixture.

Because of the highly contrasted equations of state, water behaves in an almost incompressible manner while its dynamics is essentially insensitive to that of air. The dynamics of water can then be approximated with a free fall. Because its upstream velocity is constant, the newly injected water lags behind the continuously accelerated stream. As a result, the water stream Good agreement with the semi-analytical solution is observed. For finer meshes, an undershoot appears upstream of the contact wave. This instability is not numerical but rather comes from the elliptic nature of the model itself. This well-known issue echoes the discussion in section 2.4

and is also largely examined in [START_REF] Vazquez-Gonzalez | Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option[END_REF] and references therein.

Sedimentation problem

This numerical test case from [START_REF] Städtke | Two-Fluid Model of Two-Phase Flow[END_REF] studies the evolution of a mixture of water and air in a vertical column [0,[START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF]. Equations of state are the same as in the Ransom faucet problem. At first, the mixture is homogeneous and at rest; its characteristics are detailed in table 3.3. Wall conditions are set on each side. The mixture is set into motion by gravity and density contrast:

the denser water moves downwards while air goes upwards. As a consequence, a volume fraction wave forms on each side and both eventually merge into an interface between the then fully separated air and water. Figure 3.10 shows the air volume fraction profile at different times obtained with 200 cells. These numerical results are in good agreement with those obtained in [22].

Crossing particles

From [START_REF] Vazquez | Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles[END_REF] is considered a test case consisting in the crossing of water droplet clouds (ρ = 1000) at supersonic speeds in air (ρ = 1). The equations of state are the same as in the two previous 

The initial position x 0 and velocity of the clouds can be found in figure 3.11. The pressure is homogeneous throughout the domain with P = 10 5 . Numerical results at different times are displayed on figure 3.12.

Just as for the Ransom faucet problem, the effect of the air medium on the particles can reasonably be neglected because of the high contrast in densities and compressibilities. The particles then move steadily until crossing each other in the center at t = 10 -3 . There, their movement remains unperturbed as air inhibits all pressure perturbations. Although such behavior may seem counter-intuitive, one has to remember that the model has been stripped of all dissipative terms so as to focus on the universal features of dissipation-free multi-material flows. A complete physical description would include exchanges of momentum such as drag which would slow the clouds down upon crossing each other, the form and amplitude of such exchanges being heavily system-dependant. Eventually, at t = 2 • 10 -3 , the clouds reach the other side, modified only by the numerical diffusion induced by the remapping step. It is worth noticing that the resulting smearing seems isotropic (i.e. their circular shape is preserved). With usual remapping procedures, diffusion is only observed in the direction of the propagation. Here, it is common to all materials, including those moving horizontally and those moving vertically.

As a result, all materials are equally subject to both horizontal and vertical diffusion.

Overall, the numerical scheme shows good robustness with respect to the supersonic velocities of the droplets, to the highly contrasted equations of state, as well as to the small values reached by the air volume fraction when the particles are all superimposed at t = 10 

Conclusion

A numerical scheme was presented for a multi-material multi-velocity one-pressure model. A Lagrangian phase is first performed in parallel on each material before being followed by a remapping procedure. A large emphasis is put on thermodynamic consistency and in particular on entropy as a mean of stabilizing the scheme and selecting the solutions of interest inside shocks. Space integration of both the Lagrange phase and the remapping is shown to be strictly entropic while the main source of entropy (namely the Lagrangian numerical viscosity) can be arbitrarily shared between materials. The numerical scheme is confronted to several test cases assessing its robustness to shocks and contrasted equations of state.

The present work paves the way for further studies. Without trying to produce a comprehensive list, perspectives include going to higher order (both in time and space), extending the present method to an Arbitrary Lagrangian-Eulerian setting, bettering time step restrictions and dissipation tuning, and evaluating the performances on more demanding test cases [START_REF] Heulhard | Taming the "stiff stiffness" of pressure work and equilibration in numerical schemes for compressible multi-fluid flows[END_REF]. The present work is devoted to the study of two-temperature Lagrangian hydrodynamics and their approximation through in-cell shock reconstructions [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. The model under consideration is not fully conservative which raises several issues in terms of defining solutions and numerically solving them. The path formalism [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF] offers a solid mathematical background on which the present work relies. However, the physical interpretation of paths is not a trivial question and some constraints and asymptotic behaviors are here identified. The path-dependent scheme is based on a new Roe-type solver and is applied to several Riemann problems, equations of state and paths. In all cases, the numerical solution is shown to correctly approximate the exact solution in the vicinity of shock, a feature which is not achieved by Godunov's type schemes.

Introduction

The theoretical background behind hyperbolic conservation laws has been extensively studied over the last two centuries. In one dimension, conservation laws are systems of equations of the form

∂ t U + ∂ x F (U ) = 0, (4.1) 
where U is the state vector and F is the corresponding flux. If the Jacobian of the flux only has real eigenvalues, the system is called hyperbolic; such condition guarantees the well-posedness of the initial value problem. A large numerical arsenal for solving such equations now exists and enables for accurate simulations of the Euler equations or the Shallow water equations among others. Conservation is a crucial property not only for the theory, as it allows to define weak solutions and jump conditions inside shocks [START_REF] Peter | Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves[END_REF], but also for the numerical strategies as it is critical for ensuring convergence to the correct solution. More generally, numerous physical systems can be written in the form

∂ t U + A(U )∂ x U = 0, (4.2) 
where A is a matrix with real eigenvalues for hyperbolicity. If A is not the Jacobian of a flux F then (4.2) cannot be cast into a conservation law (4.1). For instance, in multi-phase flows, the mixture evolution must comply with conservation laws but individual phases are described with non-conservative equations. Likewise, properly modelling non-equilibrium plasma calls for two temperatures: one for the electrons and one for the ions. The resulting equations are, again, non-conservative. These examples and many others all illustrate how critical the study and development of adequate numerical schemes are. Sadly, the classic theory of conservation laws fails to extend to non-conservative ones. No canonical weak formulation exists and, as such, solutions are ill-defined inside discontinuities. Dal Maso, LeFloch and Murat overcame these shortcomings by defining shocks with the additional help of a path [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF]. Although it solves the issues of the definition, existence and uniqueness of solutions, two main limitations remain.

First, crafting physically relevant paths is not trivial. Second, the question of translating this formalism within the scope of numerical schemes is still a burgeoning one.

Defining solutions for non-conservative hyperbolic systems

From a physical point of view, hyperbolic equations correspond to a limit of parabolic equations; the textbook example of such limit is the Euler equations asymptotically coming from Navier-Stokes equations when viscosity and heat exchanges are neglected. The parabolic regularization should be taken into account so as to define solutions. When the corresponding dissipative terms tend to zero, they leave an evanescent effect on solutions even though they are no longer explicitly present inside the hyperbolic equations. In particular, vanishing viscosity solutions satisfy an entropy inequality as first shown by Lax [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF] which explains why entropic solutions are the usual solutions of interest.

In the case of conservation laws, specifying the exact dissipative effects is not mandatory and a simple entropy inequality is sufficient. Indeed, variables being conserved over time constrains the behavior of shocks through Rankine-Hugoniot relationships

σ(U R -U L ) = F (U R ) -F (U L ) (4.3)
which relates the speed of the shock σ with its left and right states U L and U R , and this, regardless of the expression of dissipative terms. The entropy inequality then selects the shocks actually coming from a viscous limit.

In the case of non-conservative systems, equation (4.3) no longer holds true as shocks now depend on small-scale physical mechanisms. Dal Maso, LeFloch and Murat [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF] showed that taking into account the underlying dissipative effects amounts to specifying a path φ(U L , U R , s)

as a function of the left and right states U L and U R , and a parameter s ∈ [0, 1]. The function must satisfy the algebraic relationships

φ(U L , U R , 0) = U L , (4.4a) 
φ(U L , U R , 1) = U R , (4.4b) φ(U, U, s) = U, (4.4c) 
as well as additional smoothness requirements [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF]. It then allows to define jump conditions

σ(U R -U L ) = 1 0 A(φ(U L , U R , s)) ∂φ ∂s ds. (4.5) 
They consist in generalized Rankine-Hugoniot relationships as they reduce to (4.3) when A is the Jacobian of a flux F . Once a choice of a path has been made, the classic theory of hyperbolic conservation laws formally extends to non-conservative systems [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF].

Approximating solutions to non-conservative hyperbolic systems

Numerical diffusion is the key ingredient in order to capture and stabilize shocks in numerical schemes. The upwind scheme for the advection equation ∂ t u + a∂ x u = 0 is the most typical finite volume scheme and it is written

u n+1 i -u n i ∆t + a u n i+1 -u n i-1 2∆x = |a| u n i+1 -2u n i + u n i-1 2∆x . (4.6)
It displays a second hand term that may be interpreted as the dominant (but not sole) source of numerical diffusion. This additional term corrects the otherwise unstable centered scheme and shows that mimicking a parabolic regularization at the discrete level is crucial for capturing shocks.

Loosely speaking, for conservative equations, vanishing viscosity solutions do not depend on the expression of the viscosity, which explains the large spectrum of existing numerical methods [START_REF] Godunov | Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics[END_REF][START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF][START_REF] Harten | On upstream differencing and godunovtype schemes for hyperbolic conservation laws[END_REF][START_REF] Eleuterio | Restoration of the contact surface in the hll-riemann solver[END_REF][START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF][START_REF] Eleuterio | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF] (the list of references being far from comprehensive), despite having widely different intrinsic numerical diffusion. For non-conservative systems, the solution however depends on a path and its underlying parabolic regularization. In order to design a scheme approximating this solution, one needs to control not only the sign and order of the numerical diffusion, but also its form. Hence, when directly applying a classic scheme to such equations, the numerical diffusion is large enough to robustly produce a result but it may not converge to the wanted solution [START_REF] Hou | Why nonconservative schemes converge to wrong solutions: Error analysis[END_REF]3].

Several endeavors has been conducted in order to assess, quantify and minimize this issue.

Two main strategies may be identified. The first approach is geometrical or mimetic and consists in preserving geometrical or algebraic structures at the discrete level in the hope of minimizing numerical diffusion. Consequently, schemes are rendered almost isentropic which makes them unstable inside shocks. Artificial numerical diffusion is then added and can be customized to mimic physical dissipation. These general ideas have been applied to several physical systems such as incompressible flows [START_REF] Pavlov | Marsden, and Mathieu Desbrun. Structure-preserving discretization of incompressible fluids[END_REF], compressible flows [START_REF] Arthur | Supraconservative finite-volume methods for the euler equations of subsonic compressible flow[END_REF], multi-phase flows [START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF] or general continuum mechanics [START_REF] Abgrall | A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics[END_REF]. Although these methods still display convergence issues (spurious numerical diffusion is minimized but not completely eliminated) they provide very satisfactory results for industrial purposes where the remaining convergence errors are to be compared with the inherent inaccuracies related to the physical model. This first approach benefits from the so-called equivalent equations which provide the form of the numerical diffusion up to a chosen order [START_REF] Lefloch | Numerical methods with controlled dissipation for small-scale dependent shocks[END_REF].

A second approach, inside which this work falls into, aims at extending Godunov's scheme to arbitrary non-conservative hyperbolic systems. Different path-dependent solvers have been developed in the literature [START_REF] Díaz | Pathconservative central-upwind schemes for nonconservative hyperbolic systems[END_REF][START_REF] Chandrashekar | A path conservative finite volume method for a shear shallow water model[END_REF][START_REF] Dumbser | A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems[END_REF]. When used in conjunction with Godunov's method, numerical results are shown not to converge to the exact solution even though the mismatch is deemed small enough for shocks of small amplitude [START_REF] Díaz | Pathconservative central-upwind schemes for nonconservative hyperbolic systems[END_REF][START_REF] Lefloch | Numerical methods with controlled dissipation for small-scale dependent shocks[END_REF]. This failure may be explained by the dissipation introduced in the averaging step. While the resolution of Riemann problems at interfaces naturally produces dissipation which is relevant (in a sense that it can be made consistent with a given path), the averaging step's dissipation is not related to any path whatsoever and is the one preventing convergence to the correct solution.

Other works have been dedicated to finding schemes converging to the exact solution by adapting or altogether negating the dissipation introduced during the averaging process. In [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF], the averaging is replaced with a random selection of one of the values resulting from the Riemann problem. This comes at the cost of having only a weaker, probabilistic, form of consistency. With this method, isolated shock do not spread over any cell but their position is only correct on average. In [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF][START_REF] Pimentel-García | In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems -second-order extension[END_REF], the averaging procedure is left unchanged but a shock reconstruction is performed at the beginning of every time step and aims at unraveling the averaging. Consequently, isolated shocks are allowed to spread over one cell at most. This incell reconstruction technique was first introduced as an anti-diffusive strategy in the context of scalar conservation laws in order to accurately capture shocks [START_REF] Lagoutière | A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction[END_REF]. It is the second strategy [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] which is considered in this chapter and applied to two-temperature Lagrangian hydrodynamics.

Two-temperature Lagrangian hydrodynamics

In this chapter, the ideas of [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] are applied to the so-called two-temperature system, written in Lagrangian coordinates and in one dimension. The Lagrangian formulation is favored over the Eulerian one as it substantially eases the computations without influencing the thermodynamics of shocks. The equations read

∂ t τ -∂ x u = 0, (4.7a) 
∂ t u + ∂ x p = 0, (4.7b) 
∂ t e 1 + p 1 ∂ x u = 0, (4.7c)

∂ t e 2 + p 2 ∂ x u = 0. (4.7d)
The notations are standard with τ denoting the specific volume, u the velocity, e i the internal energy of component i and p i its pressure which is given as a function of τ and e i . The total pressure p corresponds to the sum of all individual pressures p i . Such equations arise when dealing with totally ionized plasma far from temperature equilibrium. Electrons and ions have not yet relaxed to the same temperature and are then described with their own equation of state.

A source term needs to be added in order to take into account the ongoing temperature relaxation process. It will not be considered here as this work focuses on the study and discretization of the hyperbolic part. This omission is acceptable as, numerically, the hyperbolic part and the source terms are often split and treated separately [START_REF] Sijoy | Trhd: Three-temperature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids[END_REF][START_REF] Enaux | Numerical resolution of a three temperature plasma model[END_REF].

The system is truly non-conservative in the sense that no equivalent physical conservative version of the equations exists. Surely, the energy equations may be replaced with the conservation of (physical) entropy ∂ t s i = 0 with i ∈ {1, 2} but this formulation is not physical as it would imply that entropies are conserved inside shocks but not the total energy E = e 1 + e 2 + u 2 /2 which satisfies the additional conservation law

∂ t E + ∂ x (pu) = 0. ( 4.8) 
An arbitrary path supplementing system (4.7) does not necessarily ensure the conservation of total energy and even with this constraint, no canonical path exists. Because system (4.7) has 4

equations and is subject to 3 conservation laws (namely on the mass (4.7a), momentum (4.7b) and total energy (4.8)), one degree of freedom remains for the specification of shocks. This non uniqueness echoes the fact that, physically, multiple solutions are admissible depending on the entropy deposit on ions and electrons [START_REF] Borisovitch | Physics of shock waves and hightemperature hydrodynamic phenomena[END_REF]. A physically relevant parabolic regularization is given by the additional viscosity

∂ t τ -∂ x u = 0, (4.9a) 
∂ t u + ∂ x p = ( 1 + 2 )∂ xx u, (4.9b) 
∂ t e 1 + p 1 ∂ x u = 1 (∂ x u) 2 , (4.9c) 
∂ t e 2 + p 2 ∂ x u = 2 (∂ x u) 2 . (4.9d)
The viscosity is here linear but regardless of its expression, its work must be shared between the two compounds with coefficients 1 > 0 and 2 > 0. The vanishing viscosity solution is expected to only depend on the ratio 1 / 2 . The explicit link between the parabolic regularization and the corresponding path is a relevant but difficult question. It will be partially addressed in this paper in the case where one compound bears all the entropy production (i.e. 1 = 0 or 2 = 0).

These asymptotic limits are physically meaningful in the case of a completely ionized gas as the ions are expected to carry almost all the dissipation [START_REF] Borisovitch | Physics of shock waves and hightemperature hydrodynamic phenomena[END_REF]. In general, heat exchange can also be considered between the two components. It is essentially equivalent to allowing negative values of 1 and 2 (while still complying with the second principle of thermodynamics). It does not consist in a second degree of freedom but rather widens the range of admissible solutions.

The present work, from the analysis of the equations to the numerical strategy, can be extended to the N temperature system (i.e. model (4.7) with N energy equations). In particular, the three-temperature system could model the ion, electron and photon energy of a strongly radiative completely ionized plasma.

The chapter is organized as follows. In section 2, the solution of the Riemann problem for the two-temperature system is presented. The solution inside shocks depends on a arbitrary path on the variable ∆p = p 1p 2 , the path on the other variables having been defined so as to ensure total energy conservation. Different restrictions on the path on ∆p are derived and they exhibit two asymptotic cases whose underlying physical regularization is known. In section 3, the numerical strategy is presented. It consists in the method introduced in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] and uses a new approximate Roe solver [START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF][START_REF] Toumi | A weak formulation of Roe's approximate Riemann solver[END_REF] for the two-temperature model. The solver is derived in closed form for stiffened gases but it can be extended to an arbitrary equation of state, provided that a non-linear equation is solved. Finally, in section 4, several test cases based on Riemann problems are considered. The approximate solution obtained with the previously presented scheme is compared with the exact solution obtained with the exact solver, thus assessing convergence.

2 Riemann problem for two-temperature Lagrangian hydrodynamics

The solution to the Riemann problem for two-temperature Lagrangian hydrodynamics is here presented. Some generalities are first discussed for completeness in a first section. The readers already versed in the theory of hyperbolic systems may easily skip it and jump straight to section 2.2 where the issue of defining physically relevant paths is tackled. This part constitutes one of the main contributions of the present work.

Generalities

Hyperbolicity and fields

In order to study its wave structure, the two-temperature system (4.7) is usually written in entropy variables s 1 and s 2 as the equations are simpler and the speed of sound ρc = -∂ τ p| s 1 ,s 2 naturally comes up. This new formulation is only equivalent to the previous one for smooth solutions. It is thus not relevant for shocks and will only be considered for the computations of the eigenmodes.

∂ t τ -∂ x u = 0 (4.10a) ∂ t u + ∂ x p = 0 (4.10b) ∂ t s 1 = 0 (4.10c) ∂ t s 2 = 0. (4.10d)
System (4.10) may be written in quasi-linear form

∂ t U + A(U )∂ x U = 0 (4.11)
with U T = (τ, u, s 1 , s 2 ) and Assuming that ∂ τ ρc| s 1 ,s 2 (which is proportional to the fundamental derivative G of the system) is of constant sign, the first and third characteristic fields are genuinely nonlinear while the second (of dimension 2) is linearly degenerate. The derivative ∂ τ ρc| s 1 ,s 2 is here assumed positive so that the entropy condition is p L < p R for 1-shocks and p L > p R for 3-shocks.

A(U ) =       0 -1 0 0 ∂ τ p 0 ∂ s 1 p ∂ s 2 p 0 0 0 0 0 0 0 0       . ( 4 

Global strategy

Hence the typical solution of a Riemann problem consists in a left wave and a right waves which are either shocks or rarefaction waves and separated by two superimposed contact discontinuities. The key feature to the strategy for finding the intermediate states of the solution is to notice that both u and p are constant through the contact discontinuity. Indeed, contact discontinuities connect states that belong to a certain integral curve of a vector field which is a and likewise for r 22 . Hence, in order to compute the solution of the Riemann problem, one needs to be able to compute all left states U * L (respectively all right states U * R ) that can be connected to U L from the right by a 1-wave (respectively to U R from the left by a 3-wave) as functions of p * . These functions are of the form

U L U R U * L U * R t x
U * L (p * ) = U shock L (p * ) if p * > p L , U wave L (p * ) else, (4.15a) 
U * R (p * ) = U shock R (p * ) if p * > p R , U wave R (p * ) else. (4.15b)
Then, it only remains to find p * such that u * L = u * R .

Remark 17. A general analytical solution is difficult to obtain, even for two perfect gas equations of state, and this, for several reasons. First computing U wave L/R requires solving an ordinary differential equation which does not necessarily admit an analytical solution. Same goes for U shock L/R which requires to solve a non-linear equation. Finally, the equation u * L = u * R is also highly non-linear. For all these reasons, the exact solution of a general Riemann problem will be solved numerically with, for example, Newton's method.

Rarefaction waves

Rarefaction waves are smooth solutions of equation (4.7). As a consequence, they are independent of the chosen path. Just as this is the case for conservative systems, states that can be joined by a rarefaction wave belong to the same integral curve of the vector field r k with k ∈ {1, 3}. If these curves are parameterized with the total pressure p as in (4.15), then, for Using the definition of the speed of sound, it then may be written

d dp τ = - 1 (ρc) 2 , (4.18a) d dp u = - 1 ρc , (4.18b) 
d dp ∆p = (ρc 1 ) 2 -(ρc 2 ) 2 (ρc) 2 , (4.18c) 
where ∆p = p 1p 2 . For a 3-wave, the equations are the same, except for the velocity equation Remark 18. When equations are written in the form df /dp = 0, f is called a Riemann invariant and using it directly allows to bypass an otherwise necessary numerical integration. Here, s 1 and s 2 are Riemann invariant for 1 and 3-waves. However, the expression of the entropy is not always known for an arbitrary EOS. Besides, one last Riemann invariant is needed and is expected to highly depend on the EOS. In the case of the single temperature equations and with a perfect gas EOS, it is well-known that a last Riemann invariant can be taken as u + 2c/(γ -1)

for 1-waves and u -2c/(γ -1) for 3-waves. For the two-temperature model and perfect gas EOS, it consists in the less practical formula

u ± τ τ 0 γ 1 e s 1 τ -(γ 1 +1) + γ 2 e s 2 τ -(γ 2 +1) dτ. (4.19) 
For all these reasons, a general and EOS-independent approach is preferred although it relies on numerical approximations.

Remark 19. The previous ODE only provides the set of states that can be joined from a given state by an expansion wave. It does not provide the profile of the wave U wave (ξ) (where ξ denotes the auto-similar variable x/t), needed to compute analytical solutions. In order to obtain the profile, one needs to add the following characteristic speed condition

ξ = λ k , or dλ k dξ = 1, k ∈ {1, 3}. (4.20)
Once again, through the EOS (see F for stiffened gases), it gives the evolution of density with respect to the variable ξ and, consequently, the rarefaction wave profile. The equations are then

d dξ τ = ∓ ∂ρc ∂τ -1 s 1 ,s 2 , (4.21a) d dξ u = ±ρc d dξ τ, (4.21b) 
d dξ p i = -(ρc i ) 2 d dξ τ, (4.21c) 

Shocks

Generalized jump conditions for two-temperature Lagrangian hydrodynamics Contrary to rarefaction waves, shocks will depend on a choice of path φ. Jump relationships for system (4.7) read

σ(U R -U L ) = 1 0 A(φ(U L , U R , s)) ∂φ ∂s ds, (4.22) 
with U T = (τ, u, e 1 , e 2 ) and

A(U ) =       0 -1 0 0 ∂ τ p 0 ∂ e 1 p ∂ e 2 p 0 p 1 0 0 0 p 2 0 0       . ( 4.23) 
The volume and velocity equations are conservative so that their jump relationships are simply

σ(τ R -τ L ) = u R -u L , (4.24a) 
σ(u R -u L ) = p R -p L , (4.24b) 
regardless of the chosen path. As for energy equations in (4.22), they both read

σ(e 1 R -e 1 L ) = 1 0 p 1 (s) ∂ ∂s u(s)ds, (4.25a) 
σ(e 2 Re 2 L ) = Using the total pressure p = p 1 + p 2 and pressure difference ∆p = p 1p 2 , they can be recast into

σ(e 1 R -e 1 L ) = 1 2 ([[p]] + [[∆p]]) (u R -u L ), (4.26a) σ(e 2 R -e 2 L ) = 1 2 ([[p]] -[[∆p]]) (u R -u L ), (4.26b) 
where [[p]] and [[∆p]] are some form of weighed average of the total pressure and pressure difference along the path

[[p]] = 1 u R -u L 1 0 p(s) ∂ ∂s u(s)ds, (4.27a 
)

[[∆p]] = 1 u R -u L 1 0 ∆p(s) ∂ ∂s u(s)ds. (4.27b)
The flow is subject to total energy conservation (4.8) which implies the following additional jump relationship

σ(E R -E L ) = p R u R -p L u L . (4.28) 
Simple algebraic manipulations show that (4.28) is equivalent to

[[p]] = p R + p L 2 (4.29)
Eventually, the complete set of jump relationships for two-temperature Lagrangian hydrodynamics only depends on a function

[[∆p]](U L , U R ) σ(τ R -τ L ) = u L -u R (4.30a) σ(u R -u L ) = p R -p L (4.30b) e 1 R -e 1 L = 1 2 p R + p L 2 + [[∆p]] (τ L -τ R ) (4.30c) e 2 R -e 2 L = 1 2 p R + p L 2 -[[∆p]] (τ L -τ R ) (4.30d)
It shows that the exact expression of the path is not relevant: all paths sharing the same averaged value on the pressure difference will produce the same shocks. This unique degree of freedom echoes the discussion on system (4.9) for which the vanishing viscosity solution is expected to only depend on the, again, unique parameter 1 / 2 . L , e 2 L ) of (4.30) with p L = p * and positive shock speed σ.

Constraints on [[∆p]]

The computations performed in the previous section show that the only relevant feature of a path is its average value on the total pressure p (for total energy conservation) and on the pressure difference ∆p (the remaining degree of freedom); different paths with the same averages will produce the same shocks. Although it can be tailored, the choice of the parameter [[∆p]] is not completely arbitrary as it needs to fulfill some conditions to be physically sound.

1. First, physical invariance with respect to reflection through the shock position implies that if

(τ L , u L , p L , ∆p L , τ R , u R , p R , ∆p R , σ) (4.31)
is a solution of (4.30) then

(τ R , -u R , p R , ∆p R , τ L , -u L , p L , ∆p L , -σ) (4.32)
is also a solution of the same system. As a consequence, [[∆p]] must be invariant with respect to the aforementioned change of variable. A simple way of satisfying this invariance is to take it as a function f (∆p Integrating these inequalities (weighed by the velocity as in (4.27)) provides a lower and upper bound for the average value of ∆p along a path

L , ∆p R ) such that f (∆p L , ∆p R ) = f (∆p R , ∆p L ). A natural choice is then [[∆p]] = ∆p R + ∆p L 2 . ( 4 
- p R + p L 2 -2π 1 < [[∆p]] < p R + p L 2 + 2π 2 . ( 4.36) 
It may be checked that the choice (4.33) naturally satisfies this condition.

3. The choice of path should not only ensure that all intermediate states are compatible with the EOS but also that their evolution complies with the second principle of thermodynamics: the system entropy s 1 +s 2 must increase inside shocks. A sufficient condition to enforce such inequality is to require that s 1 and s 2 both increase. In the p iτ plane, consider an entropic evolution of compound i, parameterized by ξ ∈ [0, 1]. The system must undergo a compression (assuming a positive fundamental derivative G i ) and the curve (τ (ξ), p(ξ))

is necessarily above its isentropic counterpart (τ, p i (τ, s i (ξ = 0)) = p i,iso (τ )) (assuming a 

τ L τ R p i L p i R p i (τ L , s i R ) p i (τ R , s i L ) s i = s i L s i = s i R ∝ 1 0 p i (s)ds

Numerical strategy

The numerical strategy is an extension of the scheme introduced in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] which is based on in-cell shock reconstructions. The strategy itself is kept unchanged but the new system of equations In a second part, the details of the numerical strategy are recalled.

An approximate solver for two-temperature Lagrangian hydrodynamics

Roe-type approximate solvers Definition 1. Generalized Roe solvers [START_REF] Toumi | A weak formulation of Roe's approximate Riemann solver[END_REF] are adapted to non-conservative hyperbolic systems of equations of the form

∂ t U + A(U )∇U = 0. (4.45)
They consist on finding the solution of the following linearized system of equation

∂ t U + A(U L , U R )∇U = 0. ( 4 

.46)

The matrix A(U L , U R ) must fulfill the three following conditions:

(i) A(U L , U R ) must be consistent in the sense that if U L = U R = U , then A(U, U ) = A(U ).

(ii) A(U L , U R ) is diagonalizable with real eigenvalues.

(iii) A(U L , U R ) must also be consistent with a given choice of path

A(U L , U R )(U R -U L ) = 1 0 A(φ(s, U L , U R ))∂ s φ(s, U L , U R )ds. (4.47)
Remark 23. When the equations are conservative (A is the jacobian matrix of a flux F ), then condition (iii) becomes

A(U L , U R )(U R -U L ) = F (U R ) -F (U L ), (4.48) 
and ensures that the scheme is conservative.

Remark 24. In order to automatically comply with the two first conditions, A(U L , U R ) is often taken as A(U ) where U (U L , U R ) still needs to be specified in order to check condition (iii).

According to condition (ii), matrix A(U L , U R ) is diagonalizable; its eigenvalues are written 

λ 1 ≤ λ 2 ≤ • • • ≤ λ n
l i , r j = δ ij (4.49) 
where δ ij is the Kronecker symbol. In this case, the exact solution to the Riemann problem of equation (4.46) is given by

U (x, t) = m k=0 l k , U R r k + n k=m+1 l k , U L r k (4.50)
with m the unique integer such that λ m < x/t < λ m+1 (with the convention λ 0 = -∞ and

λ n+1 = +∞).
Application to two-temperature hydrodynamics 

An average state U (U L , U R ) = (τ , u, e 1 , e
     0 -1 0 0 ∂ τ p 0 ∂ e 1 p 1 ∂ e 2 p 2 0 p 1 0 0 0 p 2 0 0             τ R -τ L u R -u L e 1 R -e 1 L e 2 R -e 2 L       =       u L -u R p R -p L 1 2 ((p R + p L )/2 + [[∆p]]) (u R -u L ) 1 2 ((p R + p L )/2 -[[∆p]]) (u R -u L )       . ( 4.51) 
Pressure partial derivatives are computed using the stiffened gas closure (see F for details). The general case will be discussed at the end of the section.

∂ τ p = - p + i (Γ i + 1)π i τ , ∂ e i p i = Γ i τ . (4.52) 
Hence (4.51) yields

- p + i (Γ i + 1)π i τ + i Γ i τ e i R -e i L τ R -τ L = p R -p L τ R -τ L , (4.53a 
)

p 1 = 1 2 p R + p L 2 + [[∆p]] , (4.53b 
)

p 2 = 1 2 p R + p L 2 -[[∆p]] . (4.53c) 
Average pressures are immediately recovered from (4.53b) and (4.53c). Once injected inside equation (4.53a), the average specific volume is obtained after some basic algebraic manipulations. The average velocity remains arbitrary and is here taken as an arithmetic mean.

Eventually

τ = τ L + τ R 2 , u = u L + u R 2 , (4.54a) 
p = p L + p R 2 , ∆p = [[∆p]]. (4.54b) 
A set of left l k and right r k eigenvectors are given by (overlines are omitted for clarity)

λ 1 = -(ρc) r1 = (τ, c, -τ p 1 , -τ p 2 ) l1 = (∂ τ p, -ρc, ∂ e 1 p 1 , ∂ e 2 p 2 ) (4.55a) λ 2 = 0 r21 = (∂ e 1 p 1 , 0, -∂ τ p, 0) l21 = (∂ e 1 p 1 , 0, ∂ τ p, 0) r22 = (∂ e 2 p 2 , 0, 0, -∂ τ p) l22 = (∂ e 2 p 2 , 0, 0, ∂ τ p) (4.55b) λ 3 = +(ρc) r3 = (τ, -c, -τ p 1 , -τ p 2 ) l3 = (∂ τ p, ρc, ∂ e 1 p 1 , ∂ e 2 p 2 ). (4.55c)
Eventually, Roe intermediate states are

U * L = l 1 , U R r 1 + 4 k=2 l k , U L r k = U L + l 1 , U R -U L r 1 (4.56) U * R = 3 k=1 l k , U R r k + l 4 , U L r 4 = U R + l 4 , U L -U R r 4 (4.57) with r k = rk , l k = lk lk , rk , k ∈ {1, 3}. (4.58) 
Remark 25. The stiffened gas assumption substantially eases the computation of τ for which a closed form can then be found. For an arbitrary equation of state, equation (4.53a) would be replaced by

(τ R -τ L )∂ τ p + i∈{1,2} (e i R -e i L )∂ e i p = p R -p L . (4.59) 
This equation needs not be linear and an iterative solver may be required.

Remark 26. Regarding the different constraints detailed in 2.2, 1. If the path satisfies the previously identified symmetry condition, so does the approximate solver. Specifically, permuting U L with U R and multiplying all velocities by -1 amounts to applying a reflection on the approximate solution given by the Roe linearization. The proof hinges around the fact that the matrix A(U ) is left unchanged by the symmetry.

2. If the path does not go through any impossible thermodynamical state, then the average state of the Roe solver is also consistent with thermodynamics (i.e. p i + π i > 0).

3. However, Roe solvers are known not to necessarily be entropic. As such, the approximate solution may not comply with the second principle of thermodynamics even if the underlying path does.

In-cell discontinuous reconstruction scheme

The numerical strategy is the one introduced in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. It consists in 1) detecting and reconstructing cells containing a shock, 2) updating the cells in question and their neighbors by exactly advecting the corresponding shock and 3) applying a classic finite volume scheme around the remaining cells. The method relies on a Riemann solver at each aforementioned step as it defines 1) where shocks may appear, 2) what are the states and speed of the shocks and 3) is at the basis of Godunov-type schemes. In order for the scheme to to capture isolated shocks, the solver itself must be exact in such cases. Two solvers satisfying this property will then be considered:

the exact solver and the approximate Roe solver derived in the previous section.

Notations

The following notations are standard in the finite volume literature. The one dimensional mesh consists in cells c i defined by their left and right node positions x i-1/2 and x i+1/2 and center

point x i = 1 2 (x i+1/2 + x i-1/2
). The cell width ∆x i = x i+1/2x i-1/2 is assumed constant and will simply be written ∆x. Variables are averaged over each cell c i at each time step t n and are then written ψ n i with ψ ∈ {τ, u, e 1 , e 2 }

ψ n i = 1 ∆x x i+1/2 x i-1/2 ψ(x, t n )dx. ( 4 

.60)

For cells where no shock reconstruction is performed, the cell values are updated with respect to Riemann problems at the nodes. Consequently, the left and right halves of a single cell will evolve independently which motivates the following definition

ψ n i,L = 2 ∆x x i x i-1/2 ψ(x, t n )dx, (4.61a) ψ n i,R = 2 ∆x x i+1/2 x i ψ(x, t n )dx. (4.61b)
Finally, the equations of state allow the definition of cell pressures (p k ) n i = p(τ n i , (e k ) n i ), k ∈ {1, 2}.

Shock detection and reconstruction

The first step is to detect and reconstruct shocks inside cells. The detection is motivated by the example of isolated shocks. For this specific case, the shock is located inside the cell i for which

u n i-1 > u n i+1 . (4.62)
This criterion is retained in the general case as a heuristic. Once a shocks has been deemed possible, it is reconstructed inside the cell. It means that instead of considering a constant value for the variables ψ ∈ {τ, u, e 1 , e 2 }, they are described by a discontinuity. The discontinuity is defined with a left state ψ n i,l , a right state ψ n i,r , a speed of propagation σ n i and a position x n,ψ i which may a priori depends on the variable ψ.

• The nature of the shock is determined by the volume difference: it is a 1-shock if τ n i+1 < τ n i-1

and a 3-shock if τ n i+1 > τ n i-1 . Its speed σ n i is then taken as the corresponding shock speed of the solver under consideration.

• The chosen solver also provides the reconstructed states depending on the nature of the shock

ψ n i,l = ψ n i-1 , ψ n i,r = ψ * L (U n i-1 , U n i+1 ) if σ n i < 0, (4.63a) 
ψ n i,l = ψ * R (U n i-1 , U n i+1 ), ψ n i,r = ψ n i+1 if σ n i > 0. ( 4.63b) 
• The shock position x n,ψ i is chosen so as to ensure that the reconstruction procedure is conservative. Expressing the position as

x n,ψ i = x i-1/2 + d n,ψ i ∆x, (4.64) 
the conservation

d n,ψ i ψ n i,l + (1 -d n,ψ i )ψ n i,r = ψ n i (4.65) eventually yields d n,ψ i = ψ n j,r -ψ n j ψ n j,r -ψ n j,l . (4.66) 
Some shock reconstructions are ultimately not considered. In order not to deal with shock interactions, an admissible shock in cell c i is not considered if a 3-shock is admissible in cell c i-1

c i c i+1 c i-1 ψ n i-1 ψ n i ψ n i+1 ψ n i,l ψ n i,r
x n,ψ i or if a 1-shock is admissible in cell c i+1 . Besides, its position needs to be inside its corresponding cell, or equivalently, one must have d n,ψ i ∈ [0, 1] for all variables ψ ∈ {τ, u, e 1 , e 2 }.

All these considerations restrict substantially the number of effective shock reconstructions.

The rationale is to use Godunov's scheme as much as possible and let the shock reconstruction scheme take over in the case of isolated shocks for which the former scheme fails to provide converging results. The failure of Godunov type schemes lies in the averaging process which creates superficial physical entropy (or, equivalently, destroys mathematical entropy). This production of entropy is not physical in the sense that it does not result from thermodynamics but rather may be interpreted, in the lights of statistical entropy, as a loss of information and creation of disorder. The shock reconstruction procedure undoes what the averaging step did in the previous time step. As a consequence, the shock reconstruction destroys entropy as the cell is injected with an a priori information that a shock exists inside. This justifies the necessity of robust shock detection and reconstruction techniques as insufficient ones would needlessly destroy entropy and jeopardize the scheme stability. This issue has been discussed in [START_REF] Lagoutière | A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction[END_REF] for scalar conservation laws.

Remark 27. In the present case, one could compute the total entropy of each cell after the propagation of the solution but before the averaging. During the next time step, it can then be checked whether or not the shock reconstruction destroys more entropy than what the averaging created. Such safeguard is not used in the present work but the scheme was nonetheless able to provide stable computations on the selected test cases.

Remark 28. It is worth mentioning that the shock detection and reconstruction is not directionally biased. Cells are first declared admissible or not, independently of their neighbors; in a second time, some shocks are excluded based on criterion which can be applied simultaneously on each cell (and not from left to right or right to left). As an example, if a 3-shock is detected in c i and a 1-shock is detected in c i+1 during the first step, they are both rejected during the second step.

Cell values update

Cell values are updated depending on whether or not a shock has been reconstructed. The general idea is to exactly advect the reconstructed shocks while applying the classic Godunov's 

ψ n+1 i = 1 2 (ψ n+1 i,L + ψ n+1 i,R ). ( 4 

.67)

Case 1. In this case, the whole cell value ψ n+1 i is updated at once

ψ n+1 i = ψ n i - σ n i (ψ n i,r -ψ n i,l ) ∆x min(∆t, ∆t ψ i ), (4.68) 
where ∆t ψ i corresponds to the time it takes for the discontinuity to leave the cell, namely

∆t ψ = 1 -d n,ψ i σ n,ψ i ∆x if σ n,ψ i > 0, (4.69a) ∆t ψ = - d n,ψ i σ n,ψ i ∆x if σ n,ψ i < 0. (4.69b) Case 2.
No shock is considered around the node x i-1/2 so ψ n+1 i,L (and for the very same reason ψ n+1 i-1,R ) is updated with Godunov's method together with the chosen solver: the (approximated or exact) solution at time ∆t of the Riemann problem between U i-1 and U i is computed and then averaged over each half cells. Case 3. A shock is reconstructed inside cell c i-1 and travels towards cell c i through which it may then propagate. Consequently,

ψ n+1 i,L = ψ n i - 2σ n i-1 (ψ n i -ψ n i-1,l ) ∆x min(0, ∆t -∆t ψ i-1 ). ( 4 

.70)

Where ∆t ψ i-1 ) is given by (4.69) adapted to c i-1 . In particular, if ∆t ψ i-1 < ∆t (i.e. the shock has not reach the node x i-1/2 ), then the value is unchanged. Case 4. A shock is reconstructed inside cell c i-1 and travels towards the opposite direction of n 

• t final Left State Right State EOS τ L u L p L ∆p L τ R u R p R ∆p R 1 
ψ n+1 i,L = ψ n i + 2σ n i-1 (ψ n i -ψ n i-1,r ) ∆x ∆t. (4.71)
Remark 29. The resulting scheme is exact for isolated shocks if the approximate Riemann solver is also exact in such a case (as with a Roe linearization). This means that the shock is spread over one cell at most. In particular, the numerical solution converges to the exact solution. A proof of this result can be found in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. The main idea behind the proof is to notice that in the case of an isolated shock, the shock reconstruction exactly recovers the solution before averaging.

Numerical results

Different Riemann problems are considered in order to assess the scheme's convergence and Godunov's schemes are used together with the Roe solver and their results are compared with analytical solutions provided by the exact solver. It is shown that Godunov's scheme fails to converge to the analytical solution for Riemann problems displaying at least one shock, while the shock reconstruction scheme concurs with the analytical solution and is even exact in the case of an isolated shock (i.e. the shock spreads over one cell at most).

Single temperature double shock

The first test case comes from [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. Both energies are initialized with half the prescribed value and their respective EOS are identical. Consequently, the two-temperature model degenerates to the single temperature Euler equations while the Roe solver derived in section 3.1 degenerates to the Roe solver found in [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. As such, the results are expected to be exactly the same.

They are displayed in figure 4. The two-temperature isolated shock test case with 100 cells and a 0.9 CFL. Godunov's scheme provides a solution with an additional contact wave inconsistently with the analytical solution. The shock reconstruction scheme exactly captures the shock. The results around it are similar for both schemes; it is expected as the latter reduces to the former in such a case.

Isentropic path and stiffened gas

The last test case aims at illustrating how the shock reconstruction scheme (together with the Roe solver) performs with stiffened gases and the isentropic paths. The test case consists in an strong isolated shock for an isentropic path on compound 1. It may be seen in figure 4.8 that the entropy s 1 stays constant across the shock while the entropy s 2 increases hence ensuring consistency with the second principle of thermodynamics. On the same figure are found the results of a simulation with the same initial condition but with an isentropic path on compound 2. The exact solution no longer consists in an isolated shock and displays instead a right shock together with a contact wave and a left rarefaction wave. The entropy s 2 is kept constant across the shock wave while the entropy s 1 increases, as expected. In both cases, the numerical results obtained with the shock reconstruction scheme coincide with the exact solution.

Conclusion

In this chapter, a scheme, based on in-cell shock reconstruction [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF] is applied to two-temperature Lagrangian hydrodynamics. The system is genuinely non-conservative, a fact which has several consequences, both mathematically and physically. From a mathematical perspective, no canonical weak formulation exists inside discontinuities. The method for solving Riemann problems is presented and relies on the path formalism first introduced in [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF]. It is shown that the jump relationships only depend on a single feature of the path, namely the average value of the pressure difference along the path [[∆p]]. Physically, solutions heavily depend on dissipation (e.g. viscosity and heat transfer) occurring in the vicinity of shocks. This study tries to bridge the gap between the two points of view by investigating how physical considerations on entropy constrain the path used to define jump relationships.

The numerical strategy is an extension of [START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. The scheme requires an approximate solver.

A new Roe-type solver is then presented. It depends only on [[∆p]] and is not concerned with the exact expression of the path. It is derived in closed form for stiffened gases but could be used for general EOS as long as a scalar non-linear equation is solved. Convergence of the scheme to the exact solution is observed for different choices of path, including the asymptotic case where one compound bears all the dissipation, leaving the other one with an isentropic behavior.

Perspectives are numerous. First, the link between the choice of path and physical considerations could be tighten, in the full spectrum between the two asymptotic cases identified in this chapter, as well as beyond these limits if an additional heat transfer is taken into account. As for the scheme based on in-cell shock reconstruction, extensions to higher order (see [START_REF] Pimentel-García | In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems -second-order extension[END_REF] for second order), higher dimensions or more sophisticated equations of state could be investigated. Fourth test case with 100 cells,a 0.9 CFL and two different paths ensuring either that compound 1 or compound 2 is isentropic. Both numerical solutions provided by the shock reconstruction scheme match the exact solution. In particular, the isentropic behavior is recovered in both cases.

Conclusion (English)

Contents Several numerical schemes were presented in this manuscript. In chapter 1, an extension of the GLACE/EUCCLHYD scheme to multi-material flows is designed. In chapter 2 and 3, it is in turn supplemented with respectively three-temperature and multi-velocity aspects.

Robustness is assessed through numerous test cases displaying strong shocks and/or contrasted equations of state. Beyond robustness, a focus is put on the specification of shocks which depend on small-scale effects. Tuning the numerical dissipation is shown to allow the approximation of different admissible shocks; the desired one is then selected according to relative entropy production between species. In chapter 4, this last issue is studied in the scope of the so-called path theory for two-temperature Lagrangian hydrodynamics. Numerical dissipation is accurately controlled and convergence is obtained for various Riemann problems. Physical requirements on paths are also discussed. Below are mentioned general concluding remarks and perspectives.

1 Toward three-temperature multi-velocity multi-material hydrodynamics with pressure equilibration

A relevant challenge, subsequent to the present work, is to merge the strategies of chapters 2 and 3 in order to obtain a complete discretization of three-temperature multi-velocity multimaterial hydrodynamics with pressure equilibration (i.e. equations ( 16) with drag, temperature relaxations and radiation transport). The inclusion of drag or any additional dissipative force F k can be written in a generic fashion

m k c d k dt u k c = α k c p∈P(c) M pc (u p -u c ) + F k c . (5.1) 
Forces are subject to the conditions k F k c = 0 (conservation of momentum) and k F k c • u k c > 0 (second principle of thermodynamics). Once again, a discrete Gibbs equation is written for each potential

d k dt e k i,c = -p k i,c d k dt 1 ρ k c + T k i,c d k dt s k i,c , (5.2a) 
d k dt e k e,c = -p k e,c d k dt 1 ρ k c + T k e,c d k dt s k e,c , (5.2b) 
d k dt e k r,c ρ k = -p k r,c d k dt 1 ρ k c + T k r,c d k dt s k r,c . (5.2c) 
Volume evolution is given by the equal pressure assumption. The discretization of chapter 3 is amenable to three-temperature flows and gives

m k c d k dt 1 ρ k c = β k c p∈P(c) l pc n pc u p + D k c , (5.3a) 
D k c = α k c ρ k c c k c 2 l β l c   (u k c -u l c ) • p∈P(c) M pc (u p -u c ) + ∆ kl c   , (5.3b) 
∆ kl c = θ∈{i,e,r} Γ l θ,c α l c m l c T l θ,c d l dt s l θ,c - Γ k θ,c α k c m k c T k θ,c d k dt s k θ,c . (5.3c) 
where (c k ) 2 = θ{i,e,r} (c k θ ) 2 and the definition of coefficients β k remains unchanged. Finally, the entropy evolution is given by the total heat deposit distribution (which takes into account the work of forces F k c ) and the additional term Q k θ,c which encapsulates temperature relaxation and radiation transport.

m k c T k θ,c d k dt s k θ,c = λ k θ,c   k F k c • u k c + p∈P(c) (u p -u c ) T M pc (u p -u c )   + Q k θ,c . (5.4) 
If space discretization is an essentially straightforward continuation of the ideas developed in the manuscript, time integration remains a challenging issue. While an implicit time integration of additional forces F k c is essentially independent on pressure equality or on the number of temperatures, the implicit treatment of temperature relaxations and radiation transport is not trivial. The strategy presented in chapter 2 cannot be directly adapted as Q k θ,c generates an entropy production which, in turn, affects the pressure equilibrium and volume evolution in (5.3c). Solving the resulting convoluted coupling between numerous stiff phenomena would require robust ad hoc numerical methods.

Toward better accuracy

Accuracy issues are twofold and generally stems from over-dissipation. In isentropic regions of the flow, dissipation is not required and can lead to nonphysical heating or smearing; dissipation should ideally be completely removed. In the vicinity of shocks, unrequested dissipation pollutes the specification of the total heat deposit distribution, thus leading to convergence issues (for systems that are not full conservation laws); a distinction must then be made between the necessary physically-driven dissipation and its spurious counterpart.

Lagrange phase

During the Lagrange phase, the scheme entropy production is almost entirely given by the numerical viscosity. It must be kept for stabilizing shocks but could be removed where it is not needed. Removal can be tedious and endanger total energy conservation if the numerical viscosity is entangled with the work of pressure forces as discussed in appendix D. It is worth mentioning that the pressure terms preventing conservation can be removed from the GLACE/EUCCLHYD discrete divergence of the velocity (D.2). In this case, a corresponding discrete pressure gradient exists and they read

[∇ • u] c = p∈P(c) d∈C(p) l pc n T pc M -1 p M pd u d , (5.5a) 
[∇p] c = p∈P(c) d∈C(p)

p d l pd M pc M -1 p n pd . (5.5b) 
Because pressure and viscosity can now be separated from one another, isentropic flows could be captured. The resulting scheme however drifts away from the GLACE/EUCCLHYD scheme and can no longer be considered as an extension of Godunov's method. In particular

• Because of the GCL, node velocities needs to be changed and now read

u p = M -1 p c∈C(p)
M pc u c .

(5.6)

• Numerical viscosity still needs to be added in the vicinity of shocks to guarantee stability.

The GLACE/EUCCLHYD innate one is not a possibility as it can no longer count on the pressure terms to compensate its lack of conservation.

Even if pressure forces are properly separated from dissipation, removing the latter can produce oscillations resulting from an odd-even decoupling. Odd-even decoupling is a common issue on cell-centered configurations when viscosity is neglected. Asymmetric space derivatives seem to alleviate this issue [START_REF] Reiss | A family of energy stable, skew-symmetric finite difference schemes on collocated grids: a simple way to avoid odd-even decoupling[END_REF] but further studies would be needed to properly tailor their expression.

Remap phase

The remapping also introduces its share of dissipation. Transport is a reversible process but its approximation is usually not. Upwind fluxes are commonly used and guarantee monotony, a condition which is critical in strong regimes where volume fraction or density are prone to becoming negative. Upwinding however induces a discrete entropy production. It appears that monotony and reversibility are mutually exclusive [START_REF] Pavlov | Marsden, and Mathieu Desbrun. Structure-preserving discretization of incompressible fluids[END_REF]. If a stricly isentropic transport approximation is not reasonnable, the design of high order limiters for transport remains a relevant direction toward better accuracy [START_REF] Kuzmin | Flux-corrected transport: principles, algorithms and applications[END_REF][START_REF] Paulin | Doubly monotonic constraint on interpolators: bridging secondorder to singularity preservation to cancel "numerical wetting" in transport schemes[END_REF]; the present work could substantially benefit from them. Caution still needs to be exercised as mindless high-order strategies can destroy thermodynamic consistency [START_REF] Marboeuf | Schémas ALE multi-matériaux totalement conservatifs pour l'hydrodynamique[END_REF].

3 Toward a general framework for multi-material discretization

Although the number of possible numerical approaches is virtually infinite, the physics remains universal. Some principles can hardly be ignored without jeopardizing the credibility of numerical approximations. Pinpointing the generalities that can be extracted from the present work is a worthy effort. This list could serve as a guideline from which comparisons could be drawn with previous work on multi-material flows including [START_REF] Saurel | A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows[END_REF][START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF]. Common features could be identified while discrepancies and their impact on solutions could be evaluated.

Conservation

Masses, total momentum and total energy conservation are necessary for correct jumps inside shocks. In finite volume schemes, conservation is obtained by writing integral equations and fluxes between cells [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF]. Other techniques focus on the algebraic requirements underpinning conservation [START_REF] Gerritsma | An introduction to a compatible spectral discretization method[END_REF][START_REF] Celledoni | An introduction to Lie group integrators-basics, new developments and applications[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF]. The three first chapters extend the finite volume EUCCLHYD/GLACE scheme to multi-material flow. Conservation is obtained through node fluxes. The discussion in section 2.1 however shows that a proper discrete integration by part could help designing an essentially diffusion-free scheme.

Thermodynamic consistency

Another critical point of fluid applications is consistency with thermodynamics. This point is a major concern across all chapters and is addressed by writing a discrete form of Gibbs equation (3.30). Entropy evolution can then be directly discretized and inserted into the internal energy evolution. A general formalism to deal with dissipative systems is the GENERIC framework [START_REF] Gremla | Dynamics and thermodynamics of complex fluids. I. Development of a general formalism[END_REF]. The parametrization X of the phase space evolves consistently with d dt X = A(X)∇E(X) + B(X)∇S(X),

where E is the total energy, S the entropy, and A and B are matrices depending on the system.

The GENERIC framework consists in a minimum set of algebraic conditions on A and B which imply total energy conservation and an increase of entropy. It is shown to include hydrodynamics in [START_REF] Christian | Dynamics and thermodynamics of complex fluids. II. Illustration of a general formalism[END_REF] and serves as a guideline for deriving numerical approximations in [START_REF] Español | Thermodynamically admissible form for discrete hydrodynamics[END_REF]. The present work perhaps could be evaluated in the scope of this formalism.

Shocks

Finally, multi-temperature multi-material shocks depend on small-scale phenomena. Numerically, the multiplicity of admissible shocks must translate into some form of degrees of freedom at the discrete level. If not, the scheme will only be able to capture specific shocks thus implicitly binding it to specific applications.

• In chapter 1, 2 and 3, shocks are defined through coefficients λ k θ (1.41) (2.31) (3.32). They can arbitrarily be chosen inside a limited range whose boundary is dictated by thermodynamics. This strategy is already employed in previous works [START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF][START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF].

• In chapter 4, shocks are defined by paths [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF] and, again, must answer to several physical constraints. Path-consistent extensions of Godunov's scheme have been extensively studied [START_REF] Dumbser | A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems[END_REF][START_REF] Díaz | Pathconservative central-upwind schemes for nonconservative hyperbolic systems[END_REF][START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. Shocks are highly non-linear phenomena and, as such, dissipation cannot commute with any form of averaging. The main issue with general path-consistent schemes comes from specifying the dissipation in the approximate solver before the averaging. This issue can only be circumvented if the averaging is bypassed as in [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF][START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF][START_REF] Pimentel-García | In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems -second-order extension[END_REF] and chapter 4, or is somehow made path-consistent as in [START_REF] Xu | Numerical path-preserving Godunov schemes for hyperbolic systems[END_REF].

• Finally, in [4,[START_REF] Petrella | On the discrete equation model for compressible multiphase fluid flows[END_REF], shocks are understood as arising from the geometry of the mixture.

The numerical approximations of pressure fluxes is formally equivalent to that of the radiation transport in chapter 2. According to [START_REF] Petrella | On the discrete equation model for compressible multiphase fluid flows[END_REF], maximizing same-material interactions corresponds to separated phases while minimizing them corresponds to dispersed phases.

Switching from one description to another is a difficult task. An attempt is conducted in chapter 4 for the two first approaches. Beyond any abstract considerations, even if all strategies are able to capture the entire range of admissible solutions, relating whichever description is chosen to genuine physical systems is a question that cannot be avoided. 

Conclusion (Français)

Vers une meilleur précision

Les difficultés liées à la précision peuvent prendre deux formes différentes qui ont toutes deux pour origine une dissipation mal maîtrisée. Dans les régions isentropique de l'écoulement, aucune dissipation n'est nécessaire et son ajout peut provoquer un chauffage non-physique; la dissipation devrait idéalement pouvoir être entièrement supprimée. Au voisinage des chocs, des résidus d'entropie viennent polluer le partage du dépôt de chaleur entre les différents matériaux, ce qui peut générer des erreurs de convergence (pour les systèmes non-conservatifs); il est alors nécessaire de distinguer la dissipation à laquelle on donne un sens physique de son homologue parasite. M pc u c . (6.6)

Phase lagrangienne

• De la viscosité numérique doit être ajoutée au voisinage des chocs pour assurer leur stabilité. Il n'est pas possible de recycler l'expression donnée dans le schéma GLACE ou EUCCLHYD car celle-ci ne pourra plus compter sur les termes de pression pour compenser son manque de conservation.

Même si les termes de pression et visqueux sont séparables, supprimer ces dernier peut générer des oscillations venant d'un découplage pair-impair. Le découplage pair-impair est un artefact récurrent des schémas centrés sans viscosité. Il semblerait que ce problème soit atténué par un décentrement des dérivées spatiales [START_REF] Reiss | A family of energy stable, skew-symmetric finite difference schemes on collocated grids: a simple way to avoid odd-even decoupling[END_REF]; une étude supplémentaire est nécessaire pour correctement ajuster ce décentrement.

Phase de projection

La projection est également à l'origine de dissipation. L'advection des quantités physiques est une phénomène intrinsèquement réversible mais son approximation numérique l'est rarement.

Pour garantir la positivité de la densité ou des fractions volumiques dans des écoulements raides une stratégie communément utilisée est celle d'un décentrement upwind des flux de transport.

Ce décentrement est cependant associé à une production d'entropie au niveau discret. Il semblerait qu'il ne soit pas possible de concilier monotonie et réversibilité du transport [START_REF] Pavlov | Marsden, and Mathieu Desbrun. Structure-preserving discretization of incompressible fluids[END_REF]. À défaut d'un transport discret isentropique, il est pertinent de réduire au maximum la dissipation associée grâce au développement de méthodes d'ordre élevé [START_REF] Kuzmin | Flux-corrected transport: principles, algorithms and applications[END_REF][START_REF] Paulin | Doubly monotonic constraint on interpolators: bridging secondorder to singularity preservation to cancel "numerical wetting" in transport schemes[END_REF]; les résultats présentés dans ce manuscrit en serait grandement améliorés. Il convient néanmoins d'exercer une certaine prudence quant à la consistance thermodynamique qui peut être menacée par certaines méthodes [START_REF] Marboeuf | Schémas ALE multi-matériaux totalement conservatifs pour l'hydrodynamique[END_REF].

3 Vers un cadre général pour la discrétisation des écoulements multi-matériaux

Bien qu'il existe virtuellement une infinité de stratégies numériques différentes, la physique qu'elles approchent est universelle. Un certain nombre de principes sont essentiels et doivent être respectés sans quoi les résultats peuvent être discutables. Distinguer ce qui relève du particulier de ce qui relève de l'universel au sein de ce manuscrit est une démarche pertinente. Cela pourrait servir de base pour comparer ce travail avec de précédents schémas pour les écoulements multimatériaux [START_REF] Saurel | A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows[END_REF][START_REF] Chang | A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF]. Les points communs pourraient être identifiés tandis que les divergences et leurs conséquences pourraient être évaluées.

Conservation

La conservation des masses, de la quantité de mouvement totale et de l'énergie totale sont nécessaires pour obtenir des relations de saut discrètes dans les chocs. Dans les schémas de type volume fini, la conservation est automatiquement donnée par l'écriture intégrale des équations et l'utilisation de flux entre les cellules [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF]. D'autres approches existent et se concentrent sur les relations algébriques soutenant la conservation [START_REF] Gerritsma | An introduction to a compatible spectral discretization method[END_REF][START_REF] Celledoni | An introduction to Lie group integrators-basics, new developments and applications[END_REF][START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF]. Les trois premiers chapitres de ce manuscrit développent des extensions du schéma volume fini EUCCLHYD/GLACE à des écoulement multi-matériaux et la conservation est obtenue à l'aide de flux aux noeuds. Les discussions de la section 2.1 témoignent cependant de la possibilité d'obtenir un schéma nondissipatif à l'aide de méthodes d'intégration par partie discrète.

Cohérence thermodynamique

Un autre aspect crucial des écoulements fluides est celui de la cohérence thermodynamique. Il est un enjeu majeur tout le long de ce travail et est essentiellement abordé par l'écriture d'une version discrète de la relation de Gibbs (3.30). L'évolution de l'entropie peut-être directement discrétisée et vient ensuite alimenter l'évolution de l'énergie interne. Un formalisme général pour décrire les systèmes dissipatifs et celui de GENERIC [START_REF] Gremla | Dynamics and thermodynamics of complex fluids. I. Development of a general formalism[END_REF]. L'espace des phases y est paramétré par X dont la dynamique est alors décrite par l'équation d dt X = A(X)∇E(X) + B(X)∇S(X), (6.7) où E est l'énergie totale, S l'entropie, et A et B sont deux matrices qui dépendent du système. Le formalisme GENERIC consiste en un ensemble de contraintes algébriques que doivent vérifier ces deux matrices de manière à assurer la conservation de l'énergie et le respect du second principe de la thermodynamique. Il englobe l'hydrodynamique au niveau continue [START_REF] Christian | Dynamics and thermodynamics of complex fluids. II. Illustration of a general formalism[END_REF] et peut également s'appliquer à une version discrète des équations [START_REF] Español | Thermodynamically admissible form for discrete hydrodynamics[END_REF]. Évaluer le travail développé dans le manuscrit à la lumière de ce formalisme est une perspective potentielle.

Chocs

Enfin, les chocs se propageant au sein d'un milieu multi-matériaux multi-températures dépendent des effets aux petites échelles. Numériquement, il est important de traduire cette dépendance par un certain nombre de degrés de liberté sur la dissipation numérique. Dans le cas contraire, le schéma sélectionne de manière injustifiée les chocs qu'il capture et ne peut donc être adapté à la totalité des applications possibles.

• Dans le chapitre 1, 2 et 3, les chocs sont définis à l'aide des coefficients λ k θ (1.41) (2.31) (3.32). Ils peuvent être choisis de manière arbitraire dans un domaine donc les frontières sont données par la thermodynamique. Cette stratégie est celle employée dans plusieurs travaux précédents [START_REF] Vazquez-Gonzalez | A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid[END_REF][START_REF] Chauvin | A colocalized scheme for three-temperature grey diffusion radiation hydrodynamics[END_REF].

• Dans le chapitre 4, les chocs sont définis par des chemins [START_REF] Dal Maso | Definition and weak stability of nonconservative products[END_REF]; encore une fois, le choix du chemin est contraint par la thermodynamique. L'extension des idées historiques de Godunov à ce formalisme a été largement étudié dans la littérature [START_REF] Dumbser | A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems[END_REF][START_REF] Díaz | Pathconservative central-upwind schemes for nonconservative hyperbolic systems[END_REF][START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF]. Les chocs sont des phénomènes intraséquement non-linéaires et la spécification de la dissipation ne peut donc pas commuter avec une moyenne à l'échelle de la cellule. Une difficulté récurrente des schémas est liée à ce que la dissipation est ajoutée avant cette moyenne. Ce problème est résolu uniquement si la moyenne est court-circuitée, comme c'est le cas dans [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF][START_REF] Chalons | Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems[END_REF][START_REF] Pimentel-García | In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems -second-order extension[END_REF] et le chapitre 4, ou rendue cohérente avec le choix de chemin comme dans [START_REF] Xu | Numerical path-preserving Godunov schemes for hyperbolic systems[END_REF].

• Enfin, dans [4,[START_REF] Petrella | On the discrete equation model for compressible multiphase fluid flows[END_REF], la multiplicité des chocs est comprise comme une conséquence directe de la géométrie du mélange. Les flux de pression numériques sont traités de la même manière que la diffusion radiative dans le chapitre 2. D'après [START_REF] Petrella | On the discrete equation model for compressible multiphase fluid flows[END_REF], favoriser les flux entre même matériaux au détriment des flux entre matériaux différents correspond aux phases séparées; l'inverse correspond aux phases dispersées. Passer d'une approche à une autre pour établir des connexions entre elles est une tâche difficile. Une tentative est menée dans le chapitre 4 entre les deux premières descriptions. Plus généralement, même si toutes les approches permettent de capturer l'ensemble du spectre des solutions admissibles, la question de leur application à des systèmes réels ne peut être éludée.

Appendix B

Interface area proportions: extension to more than two materials This section extends the analysis exposed in section 3.2 for system (2.18) (rewritten below) when dealing with an arbitrary number N of materials. on the sum of the lines and columns. In the case N = 2, there is only (N -1) 2 = 1 degree of freedom which corresponds to λ in (2.20). The three cases λ 0 , λ max and λ min do not all extend well to an arbitrary number of materials.

• An natural equivalent of λ 0 is given by and correspond respectively to invariance with respect to material subsitution, reflection through the x-axis, reflection through the y-axis and reflection through the first diagonal. These equations allow us to restrict our attention to the domain (α, θ) ∈ [0, 1 2 ] × [0, π 2 ]. For a given θ, there exists some α lim (θ) such that for all α ∈ [α lim (θ), 1 2 ], the surface is constant, as seen in Figure C.2. The limit volume fraction is reached when one of the end of the interface is at a corner of the cell. The corner first reached is determined by the ratio ∆x ∆y tan(θ): it is the upper right corner if the ratio is lower than one and the lower left one if it is greater than 1. If ∆x ∆y tan(θ) < 1 then trigonometric identities eventually yield S α lim (θ) ≤ α ≤ As stated earlier, no pressure gradient can compensate for the pressure terms in the second part of the equation. In the GLACE/EUCCLHYD scheme, conservation of total energy is obtained through subtle compensations between the work of pressure forces and the numerical viscosity.

δ kl cd = δ k cd δ l dc . (B.
In other words, both terms do not individually generate a flux; they only generate a global flux together.

tions of the initial values (under a CFL-like condition). In this case, the proof of 6 extends naturally to the multi-dimensional case.

In the following, the exponent L k will be omitted for readability purposes. Condition (i) is automatically recovered as long as w dpc are O(h) with h a characteristic length of the cells.

Condition (ii) reads is a constant C > 0 along isentropic curves. Considering two specific volumes τ R and τ L , the average pressure along the isentropic curve between these two states is Remark 31. When π = 0, the stiffened gas EOS reduces to the perfect gas EOS. The perfect gas EOS is generally written with the adiabatic exponent γ which, in this case, is equal to Γ + 1 p = (γ -1) e τ (F.11)

1 τ R -τ L τ R τ L p iso (τ )dτ = C Γ τ -Γ L -τ Γ R τ R -τ L -π > -
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 2 Figure 2: Schematic representation of the considered energy exchanges in a three-material system. K k ,E ki , E k e and E k r are respectively the kinetic, ionic, electronic and radiation energy of material k integrated over the whole domain. P, C ie , C er and RT are used to denote exchanges induced respectively by pressure, collisions between ions and electrons, collisions between electrons and photons and radiation transport. The different energies need not be homogeneously distributed over the whole domain; although not represented, spatial exchanges (i.e. fluxes) also exist.
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 1 Discrete total energy conservationThe total discrete energy is conserved c

Figure 1 . 2 :

 12 Figure 1.2: Visualization of the transformations in the (p, v) plane.

Figure 1 . 3 :

 13 Figure 1.3: Initial states inside the piston.

Figure 1 . 4 :

 14 Figure1.4: Gas 2: full black line. Gas 1: dotted orange lines for the equal strain assumption and dashed blue lines for the equal pressure one. With the equal pressure assumption, pressures are kept equal. With the equal strain assumption, densities are kept equal as the initial density and the compression rate are the same for all gases. On the first line, the entropy production is shared with respect to mass fractions while on the second line, the entropy production on gas 1 is one hundred times its mass fraction. In the second line, as gas 1 bears most of the dissipation, the resulting heating translates to an even stronger pressure decoupling for the equal strain assumption and a collapse of the density for the equal pressure one (even if the mixture is compressed, gas 1 undergoes an expansion).
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 915916 Figure 1.5: Saurel-Abgrall shock tube test results for the equal strain assumption (top) and the equal pressure one (bottom). The blue line corresponds to the air pressure while the orange dashed line corresponds to the water pressure. With the equal pressure assumption, pressures are around a hundred times closer for a large CFL value (0.5).
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 1617 Figure 1.7: Initial states for the Sedov test case.

Figure 1 . 8 :

 18 Figure 1.8: Pressure differences for different CFL values. Left: equal strain assumption ; Right: equal pressure assumption. Top: CFL = 0.4 ; Middle: CFL = 0.04 ; Bottom: CFL = 0.004. The equal pressure assumption ensures the equality of pressure between materials everywhere but inside the central cell because of the stiffness of initial conditions. Low CFL numbers help correct this problem.

Figure 1 . 9 :

 19 Figure1.9: Air volume fraction for the air bubble test case at different times. The Lagrangian phase is robust with respect to the contrast between equations of state. The Remap procedure, together with the pressure equilibration, is necessary in order to deal with mesh entanglement.

12 cdFigure 2 . 1 :

 1221 Figure 2.1: Example of two adjacent mixed cells and the corresponding notations for the geometry. The volume ω c contains the sub-volume ω 1 c . Likewise, the surface ∂ω 12 cd is includes inside the surface ∂ 1 c .
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 22 Figure 2.2: Same configuration as in figure 2.1 with the fluxes.

Figure 2 . 4 :

 24 Figure 2.4: With an anti-diffusive high order technique, the estimation of the volume fraction δ 223 can reach 1 so that the flux between cell 2 and cell 3 concerns material 2. Symmetrically, the volume fraction δ 1 21 is also 1 so that the flux between cell 1 and cell 2 concerns material 1. Then, both materials do not interact at all with each other.
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 25 Figure2.5: Initial mesh (dashed lines) and shifted mesh (full lines). The shift is parameterized by the lengths x and y. The relative x-shift is given by x ∆x ∈ [0, 1] (and likewise for y).

Figure 2 . 6 :

 26 Figure 2.6: Layered wall configuration.
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 12728 Figure 2.7: L 2 error as a function of the displacement of the mesh for the layered wall test case. Left: 32 × 1 mesh. Right: 160 × 1 mesh.
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 11214029210 Figure 2.9: Sandwich (left) and sand and shale (right) configurations.

4 A

 4 cell-centered Lagrangian scheme for three-temperature multi-

. 47 )

 47 Equation (2.47) is in particular valid for the equation of state of ions and electrons of material k. Because c k v,i > 0 and c k v,e > 0, coefficients β k,n+1,m i,c and β k,n+1,m e,c

Proposition 2 (

 2 Semi-discrete entropy production). The following semi-discrete inequality on total entropy stands

Proposition 3 (

 3 Positivity of temperatures). Under a hydrodynamics-driven CFL condition and the positivity of coefficients β k,n+1,m i,c and β k,n+1,m e,c , temperatures stay positive at each step of the iterative procedure. Proof. If coefficients β k,n+1,m i,c and β k,n+1,m e,c are positive, coefficients h, g and f (2.43) belong to [0, 1]. On the other hand, all ψ (2.44) variables are positive under a CFL-like condition which only depends on the hydrodynamics. Then, the right-hand side of equations (2.42c) is positive. The global matrix associated to the left-hand side of system (2.42c) is a M -matrix.

Figure 2 . 11 :

 211 Figure 2.11: Results at 4ns of the ablation wall problem (see table 2.1) for 1024 cells and different interface average diffusion coefficient.

Figure 2 . 12 :

 212 Figure2.12: Results of the ablation wall problem with different mesh sizes (512 and 1024) and with or without an additional remapping procedure. The interface diffusion coefficient is obtained with an arithmetic mean. The remapping produces a mixture inside which multimaterial equations become mandatory. They are here discretized with the choice λ 0 , constant reconstruction of volume fractions and no internal flux. The plotted density is then that of the mixture.

1 Figure 2 . 13 :

 1213 Figure 2.13: Configuration of the two-dimensional two-temperature two-material problem. The dimensions on the y-axis can be recovered from the symmetry with respect to the line x = y.

  .1c) Equations (3.1) are commonly obtained through a conditional averaging procedure introduced by numerous authors, among which[START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF] and summarized in[START_REF] Wörner | A compact introduction to the numerical modeling of multiphase flows[END_REF] for non-miscible materials and in [52, app. B] for general mixtures. Single material Euler equations with discontinuous thermodynamic properties are initially considered. These equations undergo a material-conditional averaging procedure which allows specific material quantities to be defined. Finally, if fluctuations appearing in the averaging procedure are neglected the final model is naturally isentropic for each material. The internal energy equation of material k thus corresponds to Gibbs identity de k = -p k d(1/ρ k ) + T k ds k with ds k = 0. Correlation terms or other dissipative effects (e.g. viscosity, added mass,...) can be added separately.

Figure 3 . 1 :

 31 Figure3.1: Schematic representation of the right states U R which can be connected by a shock to a given left state U L . Left : the case where all equations are conservation laws. The curve is one dimensional and U R is completely determined by the shock amplitude. Right: the case where some equations cannot be written in conservative form. For a given shock amplitude, multiple states U R are admissible. The gray region corresponds to the zone inside which each material entropy increases. The larger zone encircled by the dashed lines corresponds to the addition of heat exchange which allows some material entropy to decrease as long as the global entropy still increases.

Figure 3 . 3 :

 33 Figure 3.3: Cell notations.

. 16 )

 16 where M pc are symmetric positive matrices ensuring that the entropy increases. Their exact expression is what distinguishes GLACE from EUCCLHYD. The main ingredients of the multi-material extension concern the evolution equations for the densities and the thermodynamical consistency for the internal energy equations. The density equations ensure equality of pressures up to the time order of the scheme. Once they have been specified, internal energies evolve consequently

.22b) Proposition 4 .

 4 Equations (3.22) ensure conservation of both total momentum and total energy provided thatu p = M -1 p c∈C(p) [M pc u c + p c l pc n pc ] (3.23)with M p = c∈C(p) M pc .

  ûc + p c l pc n pc ] . (3.28b) with ûc = k c k u k c . Total energy conservation then gives k

. 30 )

 30 Both density and entropy evolution rates are chosen to guarantee that (3.30) is compatible with(3.22b). The geometric term ∇ • u is identified as p∈P(c) l pc n pc u p in equation(3.22b). It is then shared between materials with respect to coefficients β k c . A consistent discretization D k c of the exchanges (3.12a) is added to complete the density evolution

i+ 1 2

 1 are node flux estimations. Total volume conservation means that fluxes from equations (3.43) and (3.44) should cancel out. It yields the following equation which is to be compared with (3.38)

1 2 2 . 12 .

 1212 no longer depends on material k. Then constraint (3.45) becomes consistent with translation symmetry. Stability is discussed in the next section 3.5; it is shown to hold for a specific value of w i+ 1 Remark Equation (3.49) implies that node volume fractions used in (3.39) are

Proposition 6 .

 6 The remapping procedure (3.51)-(3.53) consists in convex combinations under a CFL-like condition on the time step. They ensure positivity of the densities and volume fractions as well as positive entropy production for each material in the sense that i∈Z

  .55b) With the choice (3.53), all coefficients are positive under a CFL-like condition which is essentially (but not exactly) the same global restriction which would have resulted from an upwind remapping procedure on each material. Dividing (3.55a) by the very same equation for φ = 1 gives convex combinations on the Eulerian variables φ. It ensures positivity of the volume fraction. Alternatively, dividing (3.55a) by the very same equation for φ = αρ gives convex combinations on the Lagrangian variables φ/(αρ) which ensures positivity of the density. In particular, for φ = α and φ = αρe, it reads 1

Remark 14 .

 14 The remapping fluxes depend on the Lagrangian values. Enforcing equation (3.45) would require a global implicitation of the volume fraction during the Lagrange step. It has been excluded for the sake of simplicity and computation time. Consequently, equation (3.45) is verified only up to a O(∆t) residue.

figure 3 . 7 .

 37 figure 3.7. Wall boundary conditions are set on each side. The three materials are separated at first but the remapping procedure eventually creates mixing zones in which material velocities can drift away from each other. Results for different drag coefficients ν are shown in figure 3.8.

Figure 3 . 5 :Figure 3 . 6 : 5 (ρ 2 , 2 = 1 . 5 (ρ 3 , u 3 , p 3 )Figure 3 . 7 :Table 3 . 3 :

 3536522153333733 Figure 3.5: Density (left) and velocity (right) profiles obtained using 100 cells for ν = 0 (top), ν = 1 (middle), ν = 10 (bottom).

Figure 3 .

 3 Figure 3.9 displays the numerical results for the air volume fraction and the water velocity.

Figure 3 . 9 :

 39 Figure 3.9: Air volume fraction (left) and water velocity (right) profiles displayed at time t = 0.6. With 1200 cells, an undershoot appears on the upstream state of the volume fraction wave.

Figure 3 . 12 :

 312 Figure 3.12: Medium volume fraction profile with 1200 × 1200 cells.
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. 12 ) 1 =

 121 The matrix A(U ) is diagonalizable. Defining ρc = -∂ τ p| s 1 ,s 2 , its eigenvalues and eigenvectors are λ -ρc, r 1 = (1, ρc, 0, 0), (4.13a)λ 2 = 0, r 21 = ∂ s 1 p, 0, (ρc) 2 , 0 ,(4.13b)r 22 = ∂ s 2 p, 0, 0, (ρc) 2 , (4.13c) λ 3 = +ρc, r 3 = (1, -ρc, 0, 0). (4.13d)

Figure 4 . 1 :

 41 Figure 4.1: Typical solution of the Riemann problem consisting in a 1-rarefaction wave and a 3-shock.

  which reads du/dp = +1/(ρc). In order to find U wave L (p * ) (respectively U wave R (p * )), one only needs to integrate the previous equation from p L with initial state U L (respectively p R with initial state U R ) to p * .

Remark 20 .

 20 Coming back to the Riemann problem, for a given left state U L , U shock L (p * ) consists in the solution (τ R , u R , e 1 R , e 2 R ) of (4.30) with p R = p * and negative shock speed σ. Similarly, for a given right state U R , U shock R (p * ) consists in the solution (τ L , u L , e 1

Figure 4 . 2 :

 42 Figure 4.2: Visualization of the path on p i and the corresponding integral. Because isentropic curves are convex, the integral is smaller than the area under the line connecting the states (τ L , p i L ) and (τ R , p i R ).

  and the corresponding left and right eigenvectors l k and r k . The eigenvectors are normalized so as to satisfy

Figure 4 . 3 :

 43 Figure 4.3: Example of a reconstructed 3-shock (dashed lines) inside cell c i for variable ψ.

Figure 4 . 4 :

 44 Figure 4.4: Decision tree for computing ψ n+1 i,L .

1

 1 = 0.4, π 1 = 1.0 Γ 2 = 0.8, π 1 = 4.0

  5 and indeed corresponds to the previously published ones. Godunov's scheme provides a solution with a false right intermediate state (the error is especially

Figure 4 . 6 :

 46 Figure 4.6:The two-temperature isolated shock test case with 100 cells and a 0.9 CFL. Godunov's scheme provides a solution with an additional contact wave inconsistently with the analytical solution. The shock reconstruction scheme exactly captures the shock.

Figure 4 . 7 :

 47 Figure 4.7: Two-temperature test case with a left rarefaction wave with 100 cells and a 0.9 CFL. The results around it are similar for both schemes; it is expected as the latter reduces to the former in such a case.

Figure 4 . 8 :

 48 Figure 4.8: Fourth test case with 100 cells,a 0.9 CFL and two different paths ensuring either that compound 1 or compound 2 is isentropic. Both numerical solutions provided by the shock reconstruction scheme match the exact solution. In particular, the isentropic behavior is recovered in both cases.

1MlM

  Vers une approximation des écoulements multi-matériaux multivitesses trois-températures avec équilibrage des pressionsUn défi important, dans la continuité de ce travail, est celui de fusionner les stratégies respectives des chapitre 2 et 3 pour être en mesure d'approcher les écoulements multi-matériaux multivitesses trois-températures avec équilibrage des pressions (i.e. les équations (16) avec traînée, collisions et transport radiatif). L'inclusion de la traînée ou de toute force dissipative F k peut se faire de la manière suivante pc (u pu c ) + F k c . (6.1)La discrétisation des forces est soumise aux contraintes de conservation de l'impulsion k F k c = 0 et du respect du second principe de la thermodynamique k F k c • u k c > 0. Une fois de plus, une version discrète de l'équation de Gibbs est écrite pour chaque potentiel thermodynamique d variation de volume y est donnée par l'équilibrage des pressions. La discrétisation du chapitre 3 s'étend sans difficulté à un modèle à trois-températures pc n pc u p + D k c , pc (u pu c ) + ∆ kl c k ) 2 = θ{i,e,r} (c k θ ) 2 et où la définition des β k reste inchangée. Finalement, l'évolution de l'entropie est donnée par le dépôt total de chaleur et sa distribution entre les différents matériaux.Elle tient également compte du terme supplémentaire Q k θ,c qui contient la discrétisation des collisions et du transport radiatif.

4 )

 4 u c ) T M pc (u pu c ) Au vue des idées développées au sein des chapitres 2 et 3, la discrétisation spatiale ne pose pas de difficulté majeure. À l'inverse, l'intégration en temps de ces équations est loin d'être triviale. Les difficultés associées à une implicitation des forces F k c ne dépendent pas du nombre de températures et sont donc essentiellement les mêmes que pour le chapitre 3; le traitement implicite des collisions et du transport radiatif et cependant particulièrement ardu. En effet, la stratégie présentée au sein du chapitre 2 ne s'adapte pas directement à un équilibre des pressions dans le mesure où les termes Q k θ,c contaminent l'équilibrage des pressions. Le système implicite global couple donc un nombre important de raideurs et sa résolution nécessite des méthodes robustes ad hoc.

  Pendant la phase lagrangienne, la production d'entropie du schéma est presque entièrement donnée par la viscosité numérique. Celle-ci doit être conservée autour des chocs à des fins de stabilisation, mais elle peut être enlevée ailleurs. Son extraction peut se révéler pénible et même mettre en danger la conservation de l'énergie totale comme cela est évoqué dans l'annexe D. Il convient cependant de noter que les termes de pression qui empêchent une intégration par parties discrète dans l'équation D.2 peuvent tout simplement être omis. Dans ce cas, il est possible d'écrire une divergence et un gradient discret qui se combinent exactement; ils s'écrivent[∇ • u] c = p∈P(c) d∈C(p) l pc n T pc M -1 p M pd u d ,(6.5a)[∇p] c = p∈P(c) d∈C(p)p d l pd M pc M -1 p n pd . (6.5b)Puisque la pression et la viscosité numérique peuvent maintenant être séparées, il est en principe possible de capturer les écoulements isentropiques. Le schéma que l'on obtient s'éloigne cependant du formalisme du schéma GLACE/EUCCLHYD, lui-même héritier des idées du schéma historique de Godunov. En particulier• À cause de la GCL, les vitesses aux noeuds deviennentu p = M -1 p c∈C(p)

3 dcFigure B. 1 :

 31 Figure B.1: Matrix of variables for N = 3.

3 )••

 3 The case λ max consists in maximizing diagonals element in the variable matrix. cd -δ kk cd )(δ l dcδ ll cd ) k (δ k cdδ kk cd ) ,(B.4b) where (B.4a) corresponds to the maximum value diagonal elements can take. The rest of surface proportions are arbitrarily given by (B.4b), although other choices are still possible because of the great number of degrees of freedom. The case λ min has no natural extension. Applying λ min to every couple of materials is possible but heavily depends on the order with which couples are taken. between the interface and the horizontal axis) and the lengths ∆x and ∆y. The following functional equations must hold S(1α, θ, ∆x, ∆y) = S(α, θ, ∆x, ∆y), (C.3a) S(α, -θ, ∆x, ∆y) = S(α, θ, ∆x, ∆y), (C.3b) S(α, πθ, ∆x, ∆y) = S(α, θ, ∆x, ∆y), (C.3c) S(α, π/2θ, ∆x, ∆y) = S(α, θ, ∆y, ∆x), (C.3d)

  is directly recovered from the last functional equality of (C.3). Indeed, if ∆x ∆y tan(θ) > 1 then ∆y ∆x tan π 2θ < 1 and we get from equation (C.4) S α lim (θ) ≤ α ≤ case 0 ≤ α ≤ α lim (θ), it can be shown that S = 2α∆x∆y cos(θ) sin(θ) . (C.6) A plot of the function S(•, θ) for different values of theta may be visualized in Figure C.4. 2 Computation of the internal length We now consider the same cell as before and are interested in computing the distance L = ---→ G 1 G 2 between the center of gravity of the two materials. The previous functional equations The first part only depends on the velocity and is consistent with ∇•u [29]. The second part only depends on the pressure and comes from approximate Riemann solvers at the nodes. It is the second part which does not allow the discrete integration by part (D.3). Neglecting boundary conditions, for (D.3) to imply conservation, it would require that c (u c • [∇p] c + p c [∇ • u] c ) of matrices M pc when switching between indexes c and d, it eventually leads to c u c •   [∇p] c + p∈P(c) d∈C(p) p d l pd M pc M -1 p n pd   + p c,d∈C(p) p c p d l pc l pd n T pc M -1 p n pd = 0. (D.7)

θw 9 )

 9 (w dpcw cpd )(φ k cφ k d ) = 0. (E.5c)It is then natural to enforce symmetry of the coefficients w dpc = w cpd . In regards to condition (iii), equation (E.1) may be writtencp l pc n pc • u k p + w dpc dpcθ dp l pc n pc • u k p   φ k d . (E.6)Dividing (E.6) for an arbitrary φ by the same equation for φ = 1 then gives a convex combination provided thatV c -∆t p∈P(c)   θ cp l pc n pc • u k p + p∈P(c)∩P(d) w dpcθ dp l pc n pc • u k p ≥ 0. (E.7b)Equation (E.7a) is essentially a CFL-like restriction on the time step. Equation (E.7b) gives a lower-bound for the diffusion coefficient. In the present work, only regular cartesian meshes are considered. In all test cases, node estimations were given byθ cp = 1/4. (E.8)As for the diffusion coefficients w dc , constraint (E.7b) is saturated so that p∈P(c)∩P(d)The sum contains one or two terms depending on if the cells c and d share a face or only a single node.

3 )

 3 also provides the following partial derivatives necessary in order to compute the Roe solver∂ τ p e = -p + (Γ + 1)π τ , ∂ e p τ = Γ τ . (F.8)Finally, in order to be able to compute the profile of rarefaction waves, the partial derivative∂ τ ρc| s is needed. Differentiating equation (F.4) gives d(ρc) 2 = (Γ + 1) ρdpρ 2 (p + π)dτ . (F.9)Using equation (F.2a) and performing simple algebraic manipulations, the expression of the partial derivative is eventually recovered∂ τ ρc s = 1 2(ρc) ∂ τ (ρc)2 s = -(Γ + 2) ρc 2τ . (F.10)
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  .19d) System(2.19) consists in four equations and four unknowns. It is not invertible as the last equation is redundant and can be deduced from the other 3. A general solution is then of the form

Table 2 .

 2 eV -1 3.22 • 10 11 7.98 • 10 11

	γ		5/4	5/3
	σ 0 c k B a	cm -1 cm.s -1 eV.K -1 erg.cm -3 .eV -4	3.1 • 10 8 3.00 • 10 10 4.2 • 10 9 8.61 • 10 -5 1.37 • 10 2

1: Initial conditions of the ablation wall problem.

which is, as announced, non-negative.

Table 3 .

 3 1: Initial conditions for the Sod test case.

		ρ	u	p	α
	Air	1	0	10 5 0.2
	Water 1000 10		0.8

Table 3 .

 3 2: Initial conditions inside the domain for the Ransom faucet problem.

  requires an adequate solver for computing intermediate states of Riemann problems. One could use the exact solver derived earlier. However, it is computationally expensive and would make simulations on large meshes unreachable. An approximate solver is then necessary. Even if the intermediate states it provides are allowed to slightly differ from the exact solution, the approximate solver needs to coincide with the exact solver in the case of an isolated shock (i.e. both intermediate states and shock speed must be exact). Roe approximate solvers naturally satisfy this property. A new Roe-type solver for the two-temperature Lagrangian hydrodynamics is first presented. It allows for an arbitrary function [[∆p]] (4.27b) (which was identified as the sole degree of freedom on shocks in the previous section). The solver is amenable to various equations of state although a closed form is only obtained for stiffened gases (see appendix F).

  2 ) is now computed so that the matrix A(U ) is a

	Roe matrix for the two-temperature system (4.7). The underlying path is arbitrary as long
	as it satisfies (4.29) and the different constraints on [[∆p]](U L , U R ) (4.27b). By construction,
	conditions (i) and (ii) are satisfied; as for condition (iii), equation (4.47), together with (4.23),
	becomes
	

Table 4 .

 4 1: Final time, initial conditions and equations of state for each test case.

	cell c i . Then, ψ n+1 i,L is set to
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More generally, this transport equation has been used with other variables such as the adiabatic coefficient γ k for perfect gases[START_REF] Karni | Multicomponent flow calculations by a consistent primitive algorithm[END_REF] or other parameters for more complicated EOS.
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positive Grüneisen coefficient Γ i ). By virtue of Gibb's thermodynamic identity

Comparing this inequality for i = 1 with (4.30c) provides a lower bound for [[∆p]] which reads

Likewise, comparing it for i = 2 with (4.30d) provides an upper bound for [[∆p]]

In appendix F, these inequalities are derived in closed form for stiffened gases and conditions (4.38)-(4.39) are shown to be more restrictive than (4.36). The limit where (4.38) becomes an equality corresponds to the limit 1 / 2 → 0 in (4.9) while the limit where (4.39) becomes an equality corresponds to the limit 1 / 2 → +∞. The case of arbitrary positive coefficients 1 and 2 is contained inside the segment defined by (4.38) and (4.39).

The actual correspondence between the travelling wave solution and the path formalism is not available in the interior of the set.

As stated earlier, a strict entropy condition on each component is sufficient but not necessary in the sense that one of the entropy could decrease as long as it is compensated by the second entropy so that their sum still increases. Physically, this amounts to adding heat exchange between the two compounds. It is also equivalent to allowing negative values on 

Isentropic paths

In the previous section, three constraints were identified and the choice (4.33) was shown to comply with all of them. In this section are now designed two alternate paths for which the third condition on entropy is saturated. They transform either (4.38) or (4.39) into an equality, meaning that one of the two compounds undergoes no entropy increase inside shocks. Equations (4.38)-(4.39) are only defined when states (τ L , p i L ) and (τ R , p i R ) belong to the same isentropic curve; in order to fully define a path (or, sufficiently, its average value on one pressure), it must be extended to an arbitrary couple of states. A possibility is given by

where the pressure is integrated along the isentropic curve going through the state of minimal entropy (i.e. the curve

2 for a visual illustration). The exact expression of the integral is computed in appendix for a stiffened gas (F.7). In regards with the different constraints identified in 2.2, 1. The extension does not break the symmetry as (4.40) is invariant under the transformation (4.31)↔(4.32).

2. It does not infringe upon thermodynamical feasibility. Indeed, if isentropic curves are convex in the τp i plane (i.e. if the fundamental derivative G i is positive), (4.40) implies

which gives, together with (4.29),

3. Entropy considerations are only relevant for couples of states which can actually be connected by a shock and are thus not concerned with the extension of the path to arbitrary states.

In conclusion, for an isentropic evolution on component 1, the parameter [[∆p]] is taken as

while for an isentropic evolution on component 2, it is taken as

Remark 22. This choice of path is relevant in the case of a completely ionized plasma. Ions are significantly heavier than electrons and are expected to assume almost all of the entropy production, leaving the electrons with an essentially isentropic evolution [START_REF] Borisovitch | Physics of shock waves and hightemperature hydrodynamic phenomena[END_REF]. 

Isolated shock

For the first genuine two-temperature test case, the solution of the Riemann problem consists in a single isolated wave. Results are displayed in figure 4.6. Godunov's scheme generates a spurious contact wave and, again, does not converge to the right solution. As for the shock reconstruction scheme, the shock is well maintained and spread only over one cell as expected.

Rarefaction wave

The exact solution for this test case consists in a left rarefaction wave, a contact wave, and a right shock wave. Results can be found in figure 4.7. For the shock wave, the results are similar to that of previous test cases, meaning that Godunov's scheme create a wrong intermediate state while the shock reconstruction scheme captures correctly the shock. For the rarefaction wave, both schemes provide similar results. This is not surprising as the shock reconstruction scheme reduces to Godunov's scheme in such a case.

Appendix A

Single-velocity model with both equal-strain and equal-pressure assumptions

In this section, it is shown that using both equal strain and equal pressure assumption is possible, at the expense of loosing the consistency with the second principle of thermodynamics. In [5],

such a model is studied. The system of equation then reads

As shown in the two previous sections, equal strain and equal pressure assumptions both provide full closure of system (1.5); hence they are not compatible unless completely equivalent, which is not the case as soon as equation of states are different. The reason why both assumptions may here be considered jointly is because material isentropy of model (1.5) is given up. Indeed, it may be shown that (A.1c) and (1.20) imply

which may become negative for some temperatures. As such, this model does not necessarily respect the second principle of thermodynamics and accounts for an heat exchange between materials which has yet to be justified physically. The advantage of model (1.5) is that it provides a framework where the isentropic behavior is dealt with independently of dissipative terms which may be added depending on the physical context. In [START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF], the authors also pointed out the fact that the mixture sound of speed of model (A.1) may not be properly defined for real equations of state.

Appendix C

Computation of the internal flux for two materials

In this section, all the detail required to compute the internal flux are presented. The internal flux between two materials of a given cell is

where S is the surface of the interface between the two materials and L denotes the length between the center of gravity of their respective domain. In the following, in the case of a cell Without loss of generality, we assume ∆x ∆y tan(θ) < 1 so that the interface first reaches the top right corner (if ∆x ∆y tan(θ) > 1 then ∆y ∆x tan π 2θ < 1 and the last functional equality may be applied). Similarly to the computation of the surface, two cases are studied separately, both represented in Figure C.3. We first consider the case 0 < α < α lim where the volume occupied by the first material is a triangle. In this case

At this point, we only need to compute the center of gravity of a rectangle and a triangle which is merely the barycenter of their vertices. Finally

Then, when α lim < α < 1 2 , the volume ω 1 may be decomposed into a triangle and a parallelogram 

Once again, finding

---→ G 1 G 2 amounts to computing centers of gravity of simple shapes which eventually yields 

Appendix D GLACE/EUCCLHYD and discrete integration by part failure

The single-fluid GLACE/EUCCLHYD scheme, written in internal energy, reads Appendix E

Multi-dimensional remapping procedure

In order to extend the one-dimensional remapping procedure of section 3.5, the following generic scheme is written

with φ ∈ {1, α, αρ, αρu, αρe}. Node fluxes are chosen instead of face fluxes because consistency with the Lagrange step is needed. It will be seen that a remapping procedure with face fluxes is actually not compatible with volume conservation. As in the one-dimensional case, fluxes are written as the sum of a centered and a diffusion contribution

Node estimations φ k,L k p are given as convex combinations over the surrounding cells

with positive coefficients θ dp summing up to one. They are assumed to only depend on the geometry of the initial mesh, hence being the same for all materials. This is essential to ensure that the sum of node volume fractions (φ = α) over all materials equals one. As for the diffusion coefficients w dpc , necessary for stability, they are also assumed not to depend on the material so as to ensure their sum over all materials is zero for φ = α. Both parameters answer to different constraints:

(i) Consistency needs to be ensured. Here, it is worth noticing that for all materials not satisfying the maximum max k in (E.9), the flux between two such cells is non zero. This is necessary to comply with the constraints on total volume conservation.

Appendix F where α 0 is the entering water volume fraction (α 0 = 0.8 in the test case). This gives the profile of the volume fraction up to the contact wave beyond which it is trivially constant. The position of the interface is given by x(t) with t 0 = 0.

Stiffened gas equation of state