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Polynomial functors on the categories FI d
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Proposition. Pour R un corps de caractéristique nulle, les objets simples de la catégorie FI d -Mod sont les foncteurs (M λ ) k qui envoient un objet n ∈ FI d sur M λ si n = k et sur zéro sinon, pour λ une partition de k. 1 Id τ 1 δ c 1 0 i c 1 , où τ 1 est l'endofoncteur décalage F ( -) ↦ F ( -+ 1) et i c 1 une transformation naturelle associée à la couleur c. Nous dénissons également une structure d'ensemble partiellement ordonné sur n qui sont polynomiaux. En plus de fournir des exemples concrets, ces quotients peuvent aussi nous donner une meilleure idée de ce à quoi ressemblent les foncteurs polynomiaux sur FI d . Par exemple, dans la Section 8.1 nous obtenons une famille de quotients du foncteur P FI d 0 qui sont faiblement polynomiaux de degré 0 en ltrant ses générateurs par le nombre d'occurrences des couleurs. En eet, pour k 1 , . . . , k d ∈ N, I ⊂ {c 1 , . . . , c d } et α ∈ FI d (0, k) nous notons γ i (α) le nombre n de la Dénition 8.3.2. Nous le prouvons de deux manières : premièrement, nous calculons directement δ c 1 de ce quotient, ce qui est très similaire au calcul de δ c 1 de P FI d n dans la Proposition 5.2.1 mais, puisque

This theory was extended in [Ram17a] to FI d -modules with a generalized notion of representation stability. Ramos then got the following result: a FI d -module F is nitely generated if and only if the space F (n) is nite dimensional for all n ∈ N and, for any partition λ of weight |λ| and any sequence of integers n 1 ≥ ⋅ ⋅ ⋅ ≥ n d ≥ |λ| + λ 1 , if c λ,n 1 ,...,n d denotes the multiplicity of the irreducible representation associated with the padded partition (n 1 -|λ|, . . . n d -|λ|, λ 1 , . . . λ h ), then c λ,n 1 +l,...,n d +l is independent of l for l and n large enough. This theorem is a direct generalization of the analogous theorem of [CEF15, CEFN14] for FI-modules. Morally, the last point can be interpreted by saying that the irreducible representations associated with a partition of at least d rows eventually appear with a stable multiplicity in a nitely generated FI d -module.

Proposition. A FI d -module F is in the subcategory SN c i 1 ,...,c im (FI d , R-Mod) of Fct(FI d , R-Mod) if and only if the functors ∆ * c (F ) are in the subcategory SN (FI, R-Mod) of Fct(FI, R-Mod) for all colours c in {c i 1 , . . . , c im }.

R[x ±1

2 , . . . , x ±1 d ]-Mod.

For d = 1 we recover that the polynomial FI-modules of degree 0 are the constant functors, but for a general d these functors form a more complex category. We prove this theorem in two steps: rst, we show in Proposition 7.4.2 that the polynomial objects of degree 0 of St(FI d , R-Mod) *
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Des FI-modules aux FI d -modules

Les FI-modules sont les foncteurs de la catégorie FI des ensembles nis et des injections (également notée I dans [START_REF] Schwede | On the homotopy groups of symmetric spectra[END_REF] et Θ dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]) vers la catégorie R-Mod des R-modules (pour R un anneau commutatif). Plus généralement, un C-module est un foncteur d'une catégorie C vers la catégorie R-Mod. Les FI-modules ont été largement étudiés au cours de la dernière décennie par Church, Ellenberg, Farb, Nagpal, Reinhold et d'autres (voir par exemple [CEF15, CEFN14, CEF14, CE17, CF13, Chu12, CMNR18, Dja16, DV19]). La théorie des FImodules a été introduite dans [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] an de transformer la notion complexe de stabilité de représentation en un résultat de nitude sur la suite de représentations des groupes symétriques considérée comme un objet unique. Une introduction détaillée à la théorie des FI-modules et à la stabilité de représentation peut être trouvée dans [START_REF] Sam | Structures in representation stability[END_REF] mais nous rappelons ici les principes de base. La notation FI a été introduite dans [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] en tant qu'acronyme pour la catégorie des ensembles Finis (souvent représentés par leur cardinal dans le squelette) et des Injections. Un FI-module correspond à une famille de représentations linéaires des groupes symétriques avec des conditions de compatibilité données par des applications linéaires, ce qui peut être représenté par le diagramme suivant :

FI 0 1 2 . . . n . . . R-Mod F (0) F (1) F (2) . . . F (n) . . . F S 0 S 1 S 2 Sn F (S 0 ) F (S 1 ) F (S 2 ) F (Sn)
Chaque èche de ce diagramme représente en fait plusieurs èches que nous pouvons construire par composition et via l'action des groupes symétriques. Un grand nombre d'exemples concrets de FI-modules sont présentés dans [START_REF] Church | Representation theory and homological stability[END_REF]. D'autres exemples intéressants de FI-modules de type ni sont donnés par la cohomologie des groupes de tresses pures dans [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF] et des groupes appelés pure string motion group dans [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF].

Dans la littérature il existe plusieurs variantes (voir [START_REF] Sam | Structures in representation stability[END_REF] pour une liste détaillée) de la catégorie FI : les catégories FI d que nous développons dans cette thèse, FI G la catégorie des ensembles nis et des couples d'une injection et d'un choix d'un élément du groupe G pour chaque élément à la source (voir [START_REF] Ramos | On the degree-wise coherence of FI G -modules[END_REF]), FS G la catégorie des ensembles nis et des G-surjections pour G un groupe (voir [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF]), FI W pour W certains groupes de Weyl dans [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF], FIM la catégorie des ensembles nis et des paires d'injection et de couplage parfait sur le complémentaire de l'image (voir [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF]), ou une version symplectique (voir [START_REF] Sam | Structures in representation stability[END_REF]).
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Il existe également des variantes pour les représentations des groupes linéaires, comme VI(R) la catégorie des modules libres de rang ni et des applications linéaires injectives avec inverse à gauche, qui est présentée en détail dans [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. Cette catégorie, et sa généralisation VIC(R) des modules libres de rang ni et des applications linéaires injectives avec un choix de supplémentaire de l'image, ont été introduites sous les noms S(ab) pour R = Z dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] et S(R) dans [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF].

Dans cette thèse, nous nous concentrerons sur la catégorie FI d pour d un entier non nul, introduite par Sam et Snowden dans [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF], dans laquelle les objets sont toujours les ensembles nis et les morphismes sont les injections colorées. Nous étudions ici les FI d -modules et nous soulignons en particulier les diérences avec les FI-modules. Même si nous étudions les foncteurs dont la catégorie but est une catégorie de modules pour plus de clarté, l'essentiel de ce travail reste vrai si nous remplaçons R-Mod par une catégorie de Grothendieck générale (voir [START_REF] Garkusha | Grothendieck categories[END_REF]). Nous récupérons en particulier les FI-modules puisque la catégorie FI 1 est isomorphe à la catégorie FI (voir Section 2.1). La première diérence majeure est que l'unité 0 est un objet initial dans FI ≅ FI 1 , mais pas dans FI d pour d > 1. Nous montrons également dans la Section 2.7 que le foncteur oubli FI d → FI, qui relie les FI d -modules et les FI-modules, possède une famille d'adjoints ∆ c ∶ FI → FI d qui ajoutent la couleur c à tous les morphismes de FI. Par précomposition, ils permettent de considérer un FI d -module comme un FI-module.

Pour toute catégorie C, une famille d'exemples importants de foncteurs de C vers R-Mod sont les foncteurs projectifs standard. Ces foncteurs fondamentaux apparaissent pour les foncteurs entre les espaces vectoriels F p dans [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF], pour FI d dans [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF], et pour d = 1 dans [DV19, [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF][START_REF] Vespa | Special lecture on mathematical sciences, Functor Homology: Theory and applications[END_REF], ou sous le nom de modules libres dans [CEF15, CEFN14, MW19] ou encore de foncteurs représentables dans [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. Ils jouent le rôle des modules libres dans la théorie classique des modules. Nous pouvons déduire beaucoup d'informations sur les FI d -modules de la structure des foncteurs projectifs standards puisqu'ils forment une famille de générateurs projectifs de FI d -Mod (Proposition 2.2.5).

Les FI d -modules simples La catégorie FI d est une catégorie EI : i.e. une catégorie dont les endomorphismes sont des isomorphismes. Ces catégories et leurs représentations ont été introduites par Dieck dans [START_REF] Tom | Transformation Groups[END_REF] dans le contexte de la K-théorie algébrique, et plus récemment étudiées par Li dans [START_REF] Li | A generalized Koszul theory and its application[END_REF], en particulier leur propriété de Koszul. Cette propriété nous donne déjà un résultat sur les FI d -modules simples, c'est-à-dire les FI d -modules qui n'ont pas de sous-foncteurs propres non nuls. Pour exprimer ce résultat, nous rappelons que les représentations irréductibles du groupe symétrique S n sur un corps de caractéristique nulle sont indexées par les partitions λ de n. Nous désignons par M λ la représentation irréductible associée à la partition λ de n, qui est dénie comme l'idéal de l'anneau K[S n ] engendré par un élément idempotent associé à la partition λ, appelé le symétriseur de Young. Par exemple, la représentation associée à la partition λ = (n) est la représentation triviale, celle associée à λ = (1 n ) est la signature, et celle associée à λ = (n-1, 1) est la représentation standard. Nous donnons ensuite dans la Proposition 2.4.3 la description suivante des FI d -modules simples :

Stabilité de représentation

Bien que la catégorie FI ait été étudiée dans diérents contextes combinatoires, elle a été utilisée pour la première fois dans la cadre de la stabilité de représentation. Cette théorie a été introduite par Church et Farb dans [START_REF] Church | Representation theory and homological stability[END_REF] pour étudier certaines familles compatibles de représentations de groupes qui admettent une décomposition en irréductibles qui nit par devenir stable. Il s'agit d'une généralisation de la stabilité homologique classique dans le cas où les applications induites en homologie ne deviennent pas des isomorphismes. Une suite de représentations de groupes, tels que les groupes symétriques, est stable en ce sens lorsque les noms des représentations irréductibles (avec une manière appropriée de les indexer) qui apparaissent dans la décomposition nissent par se stabiliser, même si les espaces changent. Des exemples concrets de cette stabilisation sont donnés dans [START_REF] Sam | Structures in representation stability[END_REF] et dans [START_REF] Church | Representation theory and homological stability[END_REF]. En caractéristique nulle, les représentations irréductibles des groupes symétriques sont indexées par les partitions. Alors la stabilité de représentation pour ces groupes peut être résumée comme suit (voir [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF][START_REF] Church | FI-modules over Noetherian rings[END_REF][START_REF] Farb | Representation stability[END_REF]) : une famille compatible (V n ) n de représentations est stable si nous obtenons la décomposition de la représentation V n+1 de S n+1 en ajoutant une case sur la ligne supérieure des diagrammes associés à la décomposition de la représentation V n de S n . Ce processus, ainsi que l'équivalence entre ces deux dénitions, est décrit sur des exemples dans [START_REF] Church | Representation theory and homological stability[END_REF] et [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]Ex. XXXI].

La théorie des FI-modules a été introduite dans [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] pour encoder ce phénomène en un unique objet : en eet, il est prouvé dans [START_REF] Farb | Representation stability[END_REF] que, si un FI-module est de type ni, alors la famille associée de représentations des groupes symétriques est stable. Notons que la réciproque est vraie pour les foncteurs à valeurs de type ni, et que la preuve est basée sur la propriété noethérienne des FI-modules et sur le fait que les familles associées aux générateurs projectifs P FI n sont stables comme expliqué dans [START_REF] Jennifer | Oberwolfach workshop on the topology of arrangements and representation stability: A brief introduction to representation stability[END_REF]. Les exemples concrets de FI-modules introduits dans [START_REF] Church | Representation theory and homological stability[END_REF] et [START_REF] Jennifer | Oberwolfach workshop on the topology of arrangements and representation stability: A brief introduction to representation stability[END_REF] ont d'abord été considérés comme des représentations stables des groupes symétriques et ont été compris comme étant des FI-modules de type ni après, par exemple dans [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF]. Un autre exemple intéressant de stabilité de représentation est donné par la cohomologie des pure string motion group. Il est traité en détail dans [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF] et illustré par un exemple. En pratique, il est généralement plus facile de prouver un résultat de nitude sur un objet que de prouver la stabilité d'une famille entière.

Les résultats centraux sur la stabilité de représentation sont résumés et présentés sur un exemple concret dans [Wil18a, Section 5]. Les principaux outils de ces résultats sont l'étude des représentations apparaissant dans les foncteurs projectifs standard, et les polynômes des caractères (voir [Far14, 4.2] pour une dénition simple) : il est montré dans [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] et [START_REF] Church | Linear and quadratic ranges in representation stability[END_REF] que les caractères d'un FI-module de type ni nissent par être égaux à un polynôme. En particulier, si F est un FI-module de type ni sur un corps, alors la dimension des espaces vectoriels F (n) devient polynomiale. Ce résultat, comme beaucoup d'autres concernant les FI-modules, a été prouvé pour la première fois dans [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] et dans [START_REF] Snowden | Syzygies of Segre embeddings and ∆-modules[END_REF]Theorem 3.1] sur un corps de caractéristique nulle, et a été étendu dans [START_REF] Church | FI-modules over Noetherian rings[END_REF] pour des anneaux plus généraux. De plus, Sam et Snowden ont montré dans [START_REF] Snowden | Syzygies of Segre embeddings and ∆-modules[END_REF] et [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] que si un FI-module est de type ni alors sa série de Hilbert, codant la dimension de ses valeurs, est de la forme p(t) + e t q(t) où p et q sont des polynômes. Par exemple, les polynômes des caractères de [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] peuvent être récupérés à partir de la fonction polynomiale p de cette série et la fonction polynomiale q peut être récupérée à partir de la cohomologie locale.
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Cette théorie a été étendue dans [START_REF] Ramos | Generalized representation stability and FI d -modules[END_REF] aux FI d -modules avec une notion généralisée de stabilité de représentation. Ramos obtient alors le résultat suivant : un FI d -module F est de type ni si et seulement si l'espace F (n) est de dimension nie pour tout n ∈ N et, pour toute partition λ de poids |λ| et toute suite d'entiers n 1 ≥ ⋅ ⋅ ⋅ ≥ n d ≥ |λ| + λ 1 , si c λ,n 1 ,...,n d désigne la multiplicité de la représentation irréductible associée à la partition (n 1 -|λ|, . . . , n d -|λ|, λ 1 , . . . , λ h ), alors c λ,n 1 +l,...,n d +l est indépendant de l pour l et n susamment grands. Ce théorème est une généralisation directe du théorème analogue de [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF][START_REF] Church | FI-modules over Noetherian rings[END_REF] pour les FI-modules. Moralement, le dernier point peut être interprété en disant que les représentations irréductibles associées à une partition d'au moins d lignes apparaissent avec une multiplicité qui devient stable dans un FI d -module de type ni. Ce théorème ne prédit pas le comportement des représentations irréductibles associées à des partitions plus petites, mais le Théorème B de [START_REF] Ramos | Generalized representation stability and FI d -modules[END_REF] traite certains de ces cas. Depuis, Sam et Snowden ont déni une série de Hilbert "améliorée" qui encode plus d'informations sur la structure d'un FI d -module en tant que représentations des groupes symétriques et ils ont prouvé un résultat similaire à celui de la série de Hilbert "classique" cidessus pour cette série améliorée, pour d = 1 dans [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] et pour un d général dans [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF] et [START_REF] Sam | Hilbert series for twisted commutative algebras[END_REF].

Les foncteurs fortement polynomiaux

Dans une catégorie de foncteurs il existe de très grands foncteurs, souvent incontrôlables, et la propriété polynomiale est un moyen de mesurer la complexité d'un foncteur. Ainsi, les foncteurs polynomiaux doivent être considérés comme un analogue des fonctions polynomiales pour les foncteurs, qui sont plus faciles à comprendre. La notion de foncteur polynomial remonte aux années 1950, lorsque Eilenberg et Mac Lane l'ont introduite dans [START_REF] Eilenberg | On the groups h(π, n), ii: Methods of computation[END_REF] pour les foncteurs entre catégories de modules. Depuis, les foncteurs polynomiaux ont été étudiés pour un large éventail d'applications telles que leur connexion à la théorie des représentations ou à la cohomologie des groupes.

La dénition originale d'Eilenberg et Mac Lane a été étendue pour diérentes familles de catégories à la source, comme dans [START_REF] Hartl | Polynomial functors from algebras over a set-operad and nonlinear Mackey functors[END_REF] au cas où la source est une catégorie monoïdale dont l'unité est un objet nul. Une approche complémentaire dans la généralisation de ces foncteurs polynomiaux consiste à étudier les foncteurs d'une catégorie monoïdale vers une catégorie non abélienne telle que la catégorie des groupes (voir [START_REF] Baues | Quadratic endofunctors of the category of groups[END_REF]). La dénition d'Eilenberg et Mac Lane basée sur la notion d'eets croisés est équivalente à la dénition basée sur l'endofoncteur diérentiel utilisée par Kuhn dans [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF] et Powell dans [START_REF] Georey | The structure of indecomposable injectives in generic representation theory[END_REF]. Dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], les auteurs introduisent deux notions de foncteurs polynomiaux à partir d'une catégorie monoïdale symétrique M dont l'unité est un objet initial vers une catégorie abélienne : la généralisation naïve des foncteurs polynomiaux donne la notion de foncteurs fortement polynomiaux qui ont de mauvaises propriétés comme le fait de ne pas être stables par sous-objet. Cela conduit aux foncteurs faiblement polynomiaux dénis en introduisant une catégorie quotient suivant la construction de Gabriel dans [START_REF] Gabriel | Des catégories abéliennes[END_REF]. L'idée de cette catégorie quotient est d'inverser les morphismes dont le noyau et le conoyau sont dans la sous-catégorie en question. Les foncteurs fortement polynomiaux dans ce contexte sont dénis en utilisant les endofoncteurs diérentiels δ k , pour k ∈ M, généralisant celui de [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF] et [START_REF] Georey | The structure of indecomposable injectives in generic representation theory[END_REF]. Dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], Djament et Vespa ont également adapté la dénition des eets croisés à leur cadre et ont montré que les foncteurs fortement polynomiaux sont égaux à ceux obtenus en utilisant ces eets croisés. La dénition utilisant les endofoncteurs diérentiels est mieux adaptée à l'étude des comportements stables et a l'avantage d'être récursive, c'est pourquoi nous choisissons de présenter et de généraliser ce point de vue pour les FI d -modules.

En particulier, la catégorie FI s'inscrit dans le cadre de Djament et Vespa et nous obtenons la dénition suivante des FI-modules fortement polynomiaux en utilisant uniquement l'endofoncteur diérentiel δ 1 puisque 1 ∈ FI est un générateur : le foncteur F ∶ FI → R-Mod est fortement polynomial de degré n si nous obtenons le foncteur nul en lui appliquant n + 1 fois l'endofoncteur δ 1 . Ceci est analogue aux polynômes habituels : une fonction f ∶ R → R est polynomiale de degré n si sa (n + 1)-ième dérivée est nulle. L'endofoncteur δ 1 qui joue le rôle de la dérivée est utilisé dans divers contextes : dans les travaux de Kuhn et Powell sur les foncteurs des F p -espaces vectoriels vers les F p -espaces vectoriels ( [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF][START_REF] Georey | The structure of indecomposable injectives in generic representation theory[END_REF]), dans la théorie de la stabilité de représentation ([CEF15, CEFN14, CE17, CMNR18]), dans la dénition des foncteurs polynomiaux par Randal-Williams et Wahl dans [START_REF] Randal | Homological stability for automorphism groups[END_REF], dans la théorie des algèbres commutatives tordues ([SS12, SS16]) ou dans les travaux de Ramos ([Ram17b,[START_REF] Li | Depth and the local cohomology of FI G -modules[END_REF]). Les notions de foncteurs polynomiaux introduites dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] donnent une autre façon d'exprimer et de comprendre les résultats sur les FI-modules. Par exemple, les FI-modules de type ni avec des valeurs de type ni sont les foncteurs fortement polynomiaux sur FI. En utilisant [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF], nous déduisons que, sur un corps de caractéristique nulle, la dimension des espaces vectoriels associés à un FI-module polynomial avec des valeurs de dimension nie devient polynomiale. Il existe de nombreux exemples de FI-modules polynomiaux qui apparaissent dans diérents contextes. En particulier, un grand nombre des FI-modules présentés dans [START_REF] Church | Representation theory and homological stability[END_REF] sont fortement polynomiaux. La cohomologie des espaces de conguration sur une variété régulière donne un FI-module fortement polynomial d'un intérêt particulier. Plusieurs FI-modules étudiés par Church, Ellenberg et Farb ont plus de structure : ce sont des S(ab)-modules, où S(ab) est la catégorie des groupes abéliens et des monomorphismes scindés, correspondant à VIC(Z) de [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. Les S(ab)-modules polynomiaux sont étudiés dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF].

Dans la Section 2.6, nous dénissons les foncteurs fortement polynomiaux sur FI d de la même manière que sur FI, en utilisant une famille d'endofoncteurs δ c 1 indexés par les d couleurs de FI d au lieu d'un seul endofoncteur δ 1 pour les FI-modules. Pour d = 1, nous retrouvons la dénition des foncteurs fortement polynomiaux sur FI de [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] puisque la seule couleur de FI 1 donne l'unique endofoncteur δ 1 de [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Nous dénissons également une notion d'eets croisés pour les FI d -modules dans la Section 5.4 en introduisant la catégorie cotranche (0 ↓ FI d ) (parfois appelée la catégorie au-dessous de 0 comme dans [ML98, P.45]) des paires (k, x) où k est un objet de FI d et x un morphisme dans FI d (0, k). En eet, nous prouvons dans la Proposition 5.4.4 que la catégorie cotranche (0 ↓ FI d ) est une catégorie monoïdale dont l'unité est un objet initial, ce qui nous permet de dénir les eets croisés d'un FI d -module via le foncteur oubli (0 ↓ FI d ) → FI d et les travaux de Djament et Vespa dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Nous montrons ensuite dans la Proposition 5.4.12 que les foncteurs polynomiaux dénis avec les eets croisés sur FI d sont les mêmes que les foncteurs fortement polynomiaux dénis avec les endofoncteurs δ c 1 :

Proposition. Pour n ∈ N et F un FI d -module, F est dans Pol strong n (FI d , R-Mod) si et seulement si cr n+1 (F ) ( -) est le foncteur nul sur (0 ↓ FI d ) ×n+1 .

Nous utilisons ensuite cette dénition alternative des FI d -modules fortement polynomiaux pour montrer dans la Proposition 5.4.18 le résultat suivant.

Proposition. Pour m, n ∈ N, si F ∶ FI d → R-Mod est fortement polynomial de degré inférieur ou égal à m et si X ∶ R-Mod → R-Mod préserve les épimorphismes et est un foncteur polynomial de degré inférieur ou égal à n, alors la composée X ○ F ∶ FI d → R-Mod → R-Mod est fortement polynomiale de degré inférieur ou égal à nm.
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Nous utilisons ce résultat pour obtenir dans le Théorème 5.5.4 que le produit tensoriel terme à terme de deux FI d -modules fortement polynomiaux est fortement polynomial : Cependant, dans ce théorème la borne n'est peut-être pas la meilleure possible. En eet, nous pourrions nous attendre à ce que F ⊗ G soit fortement polynomial de degré inférieur ou égal à n + m. Par exemple, pour d = 1 il est montré dans [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] qu'un FI-module est fortement polynomial de degré inférieur ou égal à n si et seulement s'il est un quotient d'une somme des foncteurs projectifs standards P FI i pour i ≤ n. Cela permet de prouver que, sur FI, le produit tensoriel F ⊗G est polynomial de degré n+m si F est de degré n et G de degré m. Nous prouvons également dans l'annexe A le même résultat dans le cadre étudié par Djament et Vespa dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], c'est-à-dire les foncteurs sur une catégorie monoïdale symétrique générale dont l'unité est un objet initial :

Théorème. Soit M une petite catégorie monoïdale symétrique dont l'unité est un objet initial. Pour n, m ∈ N et F, G ∶ M → R-Mod, si F est dans Pour d = 1, les foncteurs projectifs standard P FI n constituent un exemple vraiment important de FI-modules fortement polynomiaux, comme montré dans la [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF]Proposition 4.4]. Cela rend l'étude des foncteurs polynomiaux sur FI beaucoup plus facile. En particulier, cela implique qu'être fortement polynomial est équivalent à être de type ni (avec des valeurs de type ni) pour les FI-modules. Ceci est spécique à la catégorie FI, dû au fait que les foncteurs projectifs standards sont polynomiaux, et n'est pas vrai en général pour d'autres catégories. Pour les FI dmodules, ces résultats n'ont aucune raison d'être vrais puisque nous montrons dans le Corollaire 5.2.2 ce qui suit :

Proposition. Pour d > 1, le foncteur projectif standard P FI d n n'est pas fortement polynomial.

L'exemple des espaces de conguration

Comme expliqué ci-dessus, il existe de nombreux exemples de FI-modules dans la littérature dans une grande variété de domaines. Nous présentons principalement un exemple donné par l'homologie des espaces de conguration d'une variété, qui est entièrement décrit dans [START_REF] Sam | Structures in representation stability[END_REF][START_REF] Jennifer | MSRI graduate summer school on representation stability: Representation stability for conguration spaces of open manifolds[END_REF] et [START_REF] Church | Representation theory and homological stability[END_REF]. Pour M une variété régulière, la cohomologie rationnelle des espaces de conguration de M est un FI-module de type ni ([CEF15, Théorème 6.2.1]), ce qui est presque équivalent à fortement polynomial. De plus, pour M une variété connexe de dimension au moins 2 et vériant d'autres hypothèses, il a été montré dans [CMNR18, Theorem A] que 2k est une borne supérieure pour le degré polynomial du FI-module H i (Conf (-) (M ) , K).

Les résultats concernant le FI-module H i (Conf (-) (M ) , K) sont prouvés pour une variété de dimension au moins deux. Cette hypothèse est nécessaire pour garantir que les espaces de conguration soient connexes et que les points peuvent se déplacer les uns autour des autres. Mais pour une variété de dimension 1, comme un graphe, il n'y a pas assez d'espace et les points se bloquent les uns les autres dans les espaces de conguration, de sorte que la même approche n'est plus valable. Par exemple, l'espace de conguration d'un graphe linéaire avec une seule arête est homotopiquement équivalent à n! points disjoints. Par conséquent, Ramos a introduit dans [START_REF] Ramos | Conguration spaces of graphs with certain permitted collisions[END_REF] l'homologie d'un genre d'espaces de conguration modiés pour les graphes qui forment un FI d -module. Dans ces espaces modiés, appelés espaces de conguration sink, nous prenons n points (ordonnés) sur le graphe, comme pour les espaces classiques, mais ils peuvent être distincts deux à deux ou se chevaucher en un sommet du graphe mais pas à l'intérieur d'une arête. Les d sommets du graphe correspondent alors aux d couleurs de FI d , ce qui donne la structure d'un FI d -module lorsque nous prenons l'homologie rationnelle de ces espaces topologiques. Cela donne un exemple intéressant de FI d -module puisque, avant cela, tous les FI d -modules de la littérature étaient soit libres, soit obtenus à partir de FI-modules via le foncteur oubli. Ramos a prouvé dans [START_REF] Ramos | Conguration spaces of graphs with certain permitted collisions[END_REF] que ces FI d -modules sont de type ni pour tout degré homologique et tout graphe connexe. Dans la Proposition 3.2.8 nous donnons une description explicite de ces foncteurs pour les graphes linéaires :

Proposition. Pour G d le graphe linéaire sur d sommets, le FI d -module

H 0 ( Conf sink (-) (G d , [d]) , Q ) est le foncteur constant Q, tandis que pour i ≥ 1 le FI d -module H i ( Conf sink (-) (G d , [d]) , Q )
est le foncteur envoyant n sur Q N (d,i+1) si n = i + 1 et sur zéro sinon, où

N (d, i + 1) = { (d -1) i+1 -( d-1 i+1 )(i + 1)! si d ≥ i + 2 N (d -1) i+1 si d ≤ i + 1 .
Dans la Proposition 5.1.8 nous déduisons de cette description que ces foncteurs sont fortement polynomiaux et nous donnons leur degré :

Proposition. Pour i ∈ N * et G d le graphe linéaire sur d sommets, le FI d -module

H i ( Conf sink (-) (G d , [d]
) , Q ) est polynomial de degré 0 pour i = 0, et de degré i + 1 pour i > 1.

Les algèbres commutatives tordues

La théorie des algèbres commutatives tordues (ACTs) remonte aux années 1950 et est apparue en topologie algébrique. Elle a été introduite pour étudier diérentes structures, telles que des suites d'objets munies d'une action de groupes linéaires ou symétriques. C'est également un analogue de la théorie de l'algèbre commutative adaptée à l'étude des représentations de ces groupes. Par exemple, dans [START_REF] Barratt | Twisted Lie algebras[END_REF] Barratt a déni une algèbre tordue générale et a ajouté une condition pour être une algèbre de Lie tordue ou une algèbre commutative tordue. Comme nous le verrons, les FI d -modules apparaissent dans ce contexte puisqu'il existe une équivalence de catégories entre les FI d -modules et les modules sur l'ACT libre sur d générateurs.

Une ACT est un monoïde dans la catégorie monoïdale Fct(Σ, K -Vect), où Σ est la catégorie des ensembles nis et des bijections. En considérant plusieurs catégories équivalentes à Fct(Σ, K -Vect) nous obtenons diérentes dénitions équivalentes des ACTs comme expliqué dans [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] et [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF] : il peut s'agir d'un foncteur des espaces vectoriels vers des anneaux commutatifs, ou d'un anneau commutatif muni d'une action du groupe linéaire inni par un morphisme d'algèbre, ou d'un anneau gradué unitaire associatif doté d'une action des groupes symétriques. Dans chaque cas une condition supplémentaire, appelée polynomialité (dans un sens diérent de celui des foncteurs polynomiaux que nous étudions ici), est ajoutée pour former une ACT. Parfois, les ACTs sont également traitées comme des objets d'une catégorie Introduction (Français) abstraite équivalente à n'importe laquelle des catégories précédentes, ce qui conduit à une autre dénition équivalente donnée dans [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF] par l'intermédiaire des opérades. Nous choisissons de considérer les ACTs principalement comme des foncteurs F ∶ Σ → K -Vect, munis d'une loi de multiplication ν ∶ F ⊗ F → F et d'une unité (Dénition 4.1.5). La dénition en termes de représentations du groupe linéaire inni GL(∞), souvent utilisée par Sam et Snowden, est bien décrite dans [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] et [START_REF] Derksen | Topological noetherianity for cubic polynomials[END_REF]. Ces deux notions utilisant les groupes symétriques ou le groupe linéaire inni sont équivalentes pour K de caractéristique nulle via la dualité de Schur-Weyl, mais donnent deux notions diérentes d'ACTs pour K de caractéristique positive.

Le premier exemple d'ACT, provenant de [START_REF] Barratt | Twisted Lie algebras[END_REF], est le foncteur envoyant n sur l'espace ) ) qui est étudié dans [START_REF] Sam | Stability patterns in representation theory[END_REF]. Par exemple, ils montrent qu'il existe une équivalence similaire à celle de FI d : les modules de type ni sur cette ACT sont équivalents aux modules de type ni sur la catégorie FIM de [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF] dont les objets sont des ensembles nis et dont les morphismes sont des paires d'injection et de couplage parfait sur le complémentaire de l'image.

K[S n ]
Il existe une action naturelle de GL(K d ) sur les modules sur l'ACT Sym((K d ) (1) ) qui agit diagonalement sur les composantes (K d ) ⊗n de Sym((K d ) (1) ) avant d'appliquer la loi de multiplication. Dans la Section 4.3, nous utilisons l'équivalence de catégories de [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] pour transformer ceci en une action de GL(K d ) sur les FI d -modules. Nous obtenons dans la Proposition 4.3.5 la description concrète suivante : Proposition. Soit B une base de K d , pour φ ∈ GL(K d ) et G ∈ FI d -Mod, le foncteur φ B ⋅ G ∶ FI d → K -Vect envoie un objet n ∈ FI d sur G(n) et un morphisme (f, g) ∈ FI d (n, m) sur la somme

∑ g ′ ∈FI d (0,m∖f (n)) m g ′ (1),g(1) . . . m g ′ (m∖f (n)),g(m∖f (n)) G(f, g ′ ),
où (m i,j ) 1≤i,j≤d est la matrice de φ dans la base B de K d .

Les foncteurs faiblement polynomiaux

La notion de foncteurs faiblement polynomiaux donne un ranement de la notion de foncteurs fortement polynomiaux qui est plus intuitive mais manque de propriétés essentielles. En eet, pour une catégorie source qui est une catégorie monoïdale symétrique dont l'unité est un objet nul, les sous-catégories de foncteurs polynomiaux sont épaisses (voir [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] pour le cas général) ce qui permet de regarder les quotients par ces sous-catégories. Cependant, lorsque l'unité est juste un objet initial comme dans FI, un sous-foncteur d'un foncteur fortement polynomial peut être de degré plus élevé, ou même ne pas être polynomial. Pour éviter ces phénomènes d'instabilité, Djament et Vespa ont déni une notion de foncteurs faiblement polynomiaux dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] en supprimant les foncteurs problématiques dans une catégorie quotient. Ils ont montré que la catégorie SN (FI, R-Mod) de ces foncteurs, appelés les foncteurs stablement nuls, est composée des FI-modules dont la colimite est nulle. Ces foncteurs stablement nuls correspondent aux modules de torsion sur l'ACT libre sur un générateur de degré 1 étudiés dans [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] ou [START_REF] Nagpal | Regularity of FI-modules and local cohomology[END_REF], et l'endofoncteur κ qui donne le sous-foncteur maximal d'un FI-module dans SN (FI, R-Mod) correspond au foncteur de cohomologie locale noté H 0 m (-) dans [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF][START_REF] Nagpal | Regularity of FI-modules and local cohomology[END_REF][START_REF] Church | FI-modules over Noetherian rings[END_REF]. En particulier, les propriétés de leurs foncteurs dérivés à droite H i m (-) sont étudiées dans [SS16, NSS18] an de comprendre comment Fct(FI, R-Mod) est construite à partir des deux morceaux SN (FI, R-Mod) et St(FI, R-Mod). De même, le degré polynomial faible pour les FI-modules correspond à la notion de degré stable de [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] et [START_REF] Church | FI-modules over Noetherian rings[END_REF] tandis que le degré local précise comment les degrés faibles et forts sont reliés. Il donne moralement le degré polynomial fort modulo le degré polynomial faible et contrôle le rang à partir duquel la famille de représentations associée devient stable.

L'un des principaux objectifs de cette thèse est d'introduire et d'étudier les FI d -modules faiblement polynomiaux. L'une des diérences avec la situation précédente est qu'il existe plusieurs sous-catégories qui peuvent remplacer les foncteurs stablement nuls dans ce cas : les foncteurs globalement stablement nuls SN (FI d , R-Mod) et les foncteurs stablement nuls le long de diérentes combinaisons de couleurs SN c i 1 ,...,c im (FI d , R-Mod). Ces sous-catégories forment un ranement de la notion des foncteurs stablement nuls introduite dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] pour FI. En eet, pour d = 1 il y a une inclusion de l'unique sous-catégorie de foncteurs stablement nuls SN (FI, R-Mod) dans Fct(FI, R-Mod) mais, pour un d général, ces sous-catégories forment un ensemble partiellement ordonné plus riche pour l'inclusion. Par exemple, pour d = 2, l'ensemble partiellement ordonné est le suivant :

SN c 1 (FI 2 , R-Mod) SN c 1 ,c 2 (FI 2 , R-Mod) SN (FI 2 , R-Mod) Fct(FI 2 , R-Mod) SN c 2 (FI 2 , R-Mod)
Dans la Proposition 6.1.7 et le Corollaire 6.2.5 nous montrons que les sous-catégories La sous-catégorie SN c i 1 ,...,c im (FI d , R-Mod) de Fct(FI d , R-Mod) des foncteurs stablement nuls le long des couleurs c i 1 , . . . , c im est dénie dans la Section 6.2 de manière similaire aux foncteurs globalement stablement nuls, mais en utilisant les endofoncteurs κ c 1 pour chaque couleur c dans {c i 1 , . . . , c im }. Dans le Corollaire 6.2.4 nous montrons que ces catégories admettent également une dénition équivalente, cette fois par l'intermédiaire des foncteurs

SN (FI d , R-Mod) et SN c i 1 ,...,c im (FI d , R-Mod) de Fct(FI d , R-Mod) sont
∆ * c ∶ Fct(FI d , R-Mod) → Fct(FI, R-Mod) : Proposition. Un FI d -module F est dans la sous-catégorie SN c i 1 ,...,c im (FI d , R-Mod) de Fct(FI d , R-Mod) si et seulement si les foncteurs ∆ * c (F )
sont dans la sous-catégorie SN (FI, R-Mod) de Fct(FI, R-Mod) pour toutes les couleurs c dans {c i 1 , . . . , c im }.

Cette dénition équivalente nous permet d'utiliser les résultats déjà prouvés pour les foncteurs sur FI, en particulier ceux de Djament et Vespa dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Cependant, nous montrons dans la Section 5.1 que dans le quotient par une sous-catégorie de foncteurs stablement nuls le long des couleurs, les objets polynomiaux sont un peu plus diciles à dénir. Dans ce processus, nous perdons certaines propriétés importantes comme le fait que les endofoncteurs κ c 1 deviennent nuls et que les endofoncteurs δ c 1 deviennent exacts dans le quotient. C'est une première raison pour laquelle nous ne développons que les foncteurs faiblement polynomiaux correspondant à la sous-catégorie globale SN (FI d , R-Mod) : celle-ci se comporte mieux avec les endofoncteurs δ c 1 qui constituent un outil crucial pour l'étude des foncteurs polynomiaux. 

Théorème. Soit R = K un corps, pour X ∈ Pol n (FI d , K -Vect) et Y ∈ Pol m (FI d , K -Vect), nous avons X ⊗ Y ∈ Pol n+m (FI d , K -Vect).
Alors que la compréhension des catégories de foncteurs polynomiaux est un problème dicile en général, sauf pour les petites valeurs, le quotient des foncteurs polynomiaux de degré n modulo les foncteurs de degré n -1 est bien compris dans plusieurs contextes. En 

G I,k 1 ,...,k d (n) = R [ α -X | α ∈ FI d (0, n) qui satisfait la condition (P I,k 1 ,...,k d )] , où X ∈ FI d (0, n) est
F n (m) = R [ σ ○ (f, g) -(f, g) | (f, g) ∈ FI d (n, m), σ ∈ S m ] .

Nous montrons que le quotient du foncteur

(m) = R [ (f, σ ⋅ g) -(f, g) | (f, g) ∈ FI d (n, m), σ ∈ S m-n ] .
Nous montrons que le quotient du foncteur Proposition. Pour tout n ∈ N, il existe un isomorphisme naturel 

P FI d n / H n ≅ ( O * P FI n ) ⊗ P C d 0 ( (-) -n ) ○ Ω , où O est le foncteur oubli FI d → FI et où Ω ∶ FI d → C d envoie n ∈ FI d sur n ∈ C d et un morphisme (f, g) ∈ FI d (n, m)

La construction Cospan

An d'étudier les foncteurs polynomiaux sur les catégories monoïdales symétriques dont l'unité est un objet initial, Djament et Vespa ont introduit dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] un foncteur M → M qui transforme la catégorie M dont l'unité est un objet initial en la catégorie M dont l'unité est un objet nul. Cette construction, qui est universelle au sens où elle donne un adjoint au foncteur oubli, ajoute moralement des morphismes "décroissants" des objets de la catégorie vers l'unité tout en préservant les morphismes "croissants" de l'unité vers les objets. Cette construction est équivalente à la construction Cospan(-) de [START_REF] Vespa | Generic representations of orthogonal groups: the mixed functors[END_REF] où les foncteurs sur Cospan peuvent être vus comme une généralisation des foncteurs de Mackey. Comme cette construction préserve les foncteurs polynomiaux, elle permet à Djament et Vespa dans [DV19, Théorème 4.8] de transformer l'étude des foncteurs polynomiaux sur une catégorie dont l'unité est un objet initial en l'étude des foncteurs polynomiaux sur une catégorie dont l'unité est un objet nul, qui sont mieux connus.

Ils appliquent ensuite ce résultat à FI dont l'unité est un objet initial. Cela leur permet de décrire le quotient des foncteurs polynomiaux (dans la catégorie quotient St(FI, R-Mod)) de degré inférieur ou égal à n sur FI par sa sous-catégorie épaisse des foncteurs polynomiaux de degré inférieur ou égal à n -1. En eet, les catégories Cospan(FI) et FI sont équivalentes à la catégorie FI # des injections partielles d'ensembles nis de [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF]. Ils utilisent ensuite une variante d'un théorème de type Dold-Kan de Pirashvili pour décrire le même quotient pour les foncteurs sur Cospan(FI). Ce théorème de Pirashvili de [START_REF] Pirashvili | Dold-Kan type theorem for Γ-groups[END_REF] donne une équivalence de catégories entre les foncteurs sur la catégorie Γ des ensembles nis pointés et les foncteurs sur Ω la catégorie des ensembles nis et des surjections, en utilisant les eets croisés. La variante utilisée dans [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], qui est décrite explicitement dans [CEF15, Théorème 4.1.5], donne une équivalence de catégories entre les foncteurs sur la catégorie FI # et les foncteurs sur la catégorie Σ des ensembles nis et des bijections, étant donné que FI # est une sous-catégorie de Γ et Introduction (Français) que Σ est une sous-catégorie de Ω. La combinaison de ces deux résultats donne la description suivante dans [DV19, Proposition 5.9] : pour n ∈ N, il existe une équivalence de catégories From FI-modules to FI d -modules

Pol n (FI) / Pol n-1 (FI) ≅ Pol n (Cospan(FI)) / Pol n-1 (Cospan(FI)) ≅ Fct ( Σ n , R-Mod),
The FI-modules are the functors from the category FI of nite sets and injections (also denoted by I in [START_REF] Schwede | On the homotopy groups of symmetric spectra[END_REF] and Θ in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]) to the category R-Mod of R-modules (for R a commutative ring). More generally, a C-module is a functor from a category C to the category R-Mod. The FI-modules have been studied extensively in the last decade by Church, Ellenberg, Farb, Nagpal, Reinhold and others (see for example [CEF15, CEFN14, CEF14, CE17, CF13, Chu12, CMNR18, Dja16, DV19]). The theory of FI-modules was introduced in [CEF15] in order to transform the complex notion of representation stability into a niteness result about the sequence of representations of the symmetric groups viewed as a unique object. A detailed introduction to the theory of FI-modules and representation stability can be found in [START_REF] Sam | Structures in representation stability[END_REF] but we recall the basic principles here. The notation FI was introduced in [CEF15] as an acronym for the category of Finite sets (often represented by their cardinality in the skeleton) and Injections. A FImodule is a family of linear representations of the symmetric groups together with compatibility conditions given by linear maps, which can be represented by the following diagram:

FI 0 1 2 . . . n . . . R-Mod F (0) F (1) F (2) . . . F (n) . . . F S 0 S 1 S 2 Sn F (S 0 ) F (S 1 ) F (S 2 ) F (Sn)
Each arrow in this diagram actually represents many arrows that we can construct by composition with the action of the symmetric groups. A large number of concrete examples of FI-modules are presented in [START_REF] Church | Representation theory and homological stability[END_REF]. Other interesting examples of nitely generated FI-modules are given by the cohomology of the pure string motion groups in [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF] and the pure braid groups in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF].

In the literature there are several variants (see [START_REF] Sam | Structures in representation stability[END_REF] for a detailed list) of the category FI: the categories FI d that we develop in this thesis, FI G the category of nite sets and couples of an injection and a choice of an element of the group G for each element at the source (see [START_REF] Ramos | On the degree-wise coherence of FI G -modules[END_REF]), FS G the category of nite sets and G-surjections for G a group (see [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF]), FI W for W some Weyl groups in [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF], FIM the category of nite sets and pairs of injection and perfect matching on the complement of the image (see [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF]), or a symplectic version (see [START_REF] Sam | Structures in representation stability[END_REF]). There are also variants for representations of linear groups such as VI(R) the category of free modules of nite rank and injective linear maps with left inverse which is presented in detail in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. This category, and its generalization VIC(R) of free modules of nite rank and injective linear maps with a choice of direct complement of the image, were introduced under the names S(ab) for R = Z in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] and S(R) in [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF].

In this thesis we will focus on the category FI d for d a nonzero integer, introduced by Sam and Snowden in [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF], in which the objects are still the nite sets and the morphisms are the coloured injections. We study here the FI d -modules and we emphasize in particular the dierences with FI-modules. Even if we study the functors whose target category is a module category for more clarity, most of this work stays true if we replace R-Mod by a general Grothendieck category (see [START_REF] Garkusha | Grothendieck categories[END_REF]). We recover in particular the FI-modules since the category FI 1 is isomorphic to the category FI (see Section 2.1). The rst major dierence is that the unit 0 is an initial object in FI ≅ FI 1 but not in FI d for d > 1. We also show in Section 2.7 that the forgetful functor FI d → FI, that connects the FI d -modules and the FI-modules, has a family of adjoints ∆ c ∶ FI → FI d called the colouring functors which add the colour c to all morphisms of FI. By precomposition, they allow us to consider a FI d -module as a FI-module.

For any category C, a family of important examples of functors from C to R-Mod are the standard projective functors. These fundamental functors appear for functors between F p -vector spaces in [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF], for FI d in [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF], and for d = 1 in [DV19, [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF][START_REF] Vespa | Special lecture on mathematical sciences, Functor Homology: Theory and applications[END_REF], or under the name of free modules in [CEF15, CEFN14, MW19] or of representable functors in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. They play the role of the free modules in the classical theory of modules. We can deduce a lot of information about the FI d -modules from the structure of the standard projective functors since they form a family of projective generators of FI d -Mod (Proposition 2.2.5).

Simple FI d -modules

The category FI d is an EI-category: i.e. a category whose endomorphisms are isomorphisms. These categories and their representations have been introduced by Dieck in [START_REF] Tom | Transformation Groups[END_REF] in the context of algebraic K-theory, and more recently studied by Li in [START_REF] Li | A generalized Koszul theory and its application[END_REF], in particular their Koszul property. This property already gives us a result about the simple FI d -modules, that is the FI dmodules which do not have non-zero proper subfunctors. In order to express this result, we recall that the irreducible representations of the symmetric group S n over a eld of characteristic zero are indexed by the partitions λ of n. We denote by M λ the irreducible representation associated with the partition λ of n, which is dened as the ideal of the ring K[S n ] generated by an idempotent element associated to the partition λ called the Young symmetrizer. For example, the representation associated with the partition λ = (n) is the trivial representation, the one associated with λ = (1 n ) is the sign representation, and the one associated with λ = (n -1, 1) is the standard representation. We then give in Proposition 2.4.3 the following description of the simple FI d -modules:

Proposition. For R a eld of characteristic zero, the simple objects of the category FI d -Mod are the functors (M λ ) k that sends an object n ∈ FI d to M λ if n = k and to zero else, for λ a partition of k.

Representation stability

Although the category FI has been studied in dierent combinatorial contexts, it was rst used in the frame of representation stability. This theory was introduced by Church and Farb in [START_REF] Church | Representation theory and homological stability[END_REF] to study some compatible families of representations of groups which admit a decomposition in irreducible that eventually becomes stable. It was thought as a generalization Introduction (English) of the classical homological stability in the case where the induced maps in homology do not eventually become isomorphisms. A sequence of representations of groups, such as the symmetric groups, is representation stable when the names of the irreducible representations (with an appropriate way of indexing them) that occur in the decomposition eventually stabilize, even if the spaces change. Concrete examples of this stabilization are given in [START_REF] Sam | Structures in representation stability[END_REF] and in [START_REF] Church | Representation theory and homological stability[END_REF]. In characteristic zero, the irreducible representations of the symmetric groups are indexed by the partitions. Then the representation stability for these groups can be summarized as follows (see [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF][START_REF] Church | FI-modules over Noetherian rings[END_REF][START_REF] Farb | Representation stability[END_REF]): a compatible family (V n ) n of representations is stable if we obtain the decomposition of the representation V n+1 of S n+1 by adding a box on the top row of the diagrams associated with the decomposition of the representation V n of S n . This process, along with the equivalence between these two denitions, is described on examples in [START_REF] Church | Representation theory and homological stability[END_REF] and [Wil18a, Ex. XXXI].

The theory of FI-modules was introduced in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] to encode this phenomenon in a single object: indeed, it is proven in [START_REF] Farb | Representation stability[END_REF] that, if a FI-module is nitely generated, then the associated family of representations of the symmetric groups is stable. Note that the converse is true for functors with nitely generated values, and that the proof is based on the noetherian property of FI-modules and on the fact that the families associated with the projective generators P FI n are stable as explained in [START_REF] Jennifer | Oberwolfach workshop on the topology of arrangements and representation stability: A brief introduction to representation stability[END_REF]. The concrete examples of FI-modules introduced in [CF13] and [START_REF] Jennifer | Oberwolfach workshop on the topology of arrangements and representation stability: A brief introduction to representation stability[END_REF] were rst thought to be stable representations of the symmetric groups and were understood to be nitely generated FI-modules after, for example in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF]. Another interesting example of representation stability is given by the cohomology of pure string motion groups. It is treated in detail in [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF] and illustrated by an example. In practice, it is generally easier to prove a niteness result on one object than to prove the stability of an entire family.

The central results on representation stability are summarized and presented on a concrete example in [Wil18a, section 5]. The main tools of these results are the study of the representations appearing in the standard projective functors, and the character polynomials (see [START_REF] Farb | Representation stability[END_REF]4.2] for a simple denition): it is shown in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] and [START_REF] Church | Linear and quadratic ranges in representation stability[END_REF] that the characters of a nitely generated FI-module eventually becomes equal to a polynomial. In particular, if F is a nitely generated FI-module over a eld, then the dimension of the vector spaces F (n) eventually become polynomial. This result, as many others about the FI-modules, was rst proved in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] and in [Sno13, Theorem 3.1] over a eld of characteristic zero, and was extended in [START_REF] Church | FI-modules over Noetherian rings[END_REF] for more general rings. Moreover, Sam and Snowden showed in [START_REF] Snowden | Syzygies of Segre embeddings and ∆-modules[END_REF] and [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] that if a FI-module is nitely generated then it's Hilbert series, encoding the dimension of its values, is of the form p(t) + e t q(t) where p and q are polynomials. For example, the character polynomials of [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] can be recovered from the polynomial function p of this series and the polynomial function q can be recovered from the local cohomology. This theorem does not predict the behavior of the irreducible representations associated with smaller partitions, but the Theorem B from [START_REF] Ramos | Generalized representation stability and FI d -modules[END_REF] treats some of these cases. Since then, Sam and Snowden dened an "enhanced" Hilbert series that encodes more information about the structure of a FI d -module as representations of the symmetric groups and they proved a result similar to the one for the "classical" Hilbert series above for this enhanced series, for d = 1 in [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] and for a general d in [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF] and [START_REF] Sam | Hilbert series for twisted commutative algebras[END_REF].

The strong polynomial functors

In a functor category there are very huge functors, often out of control, and the polynomial property is a way of measuring the complexity of a functor. Thus, polynomial functors should be thought of as an analog to polynomial functions for functors, which are easier to understand. The notion of polynomial functors dates back to the 1950s when Eilenberg and Mac Lane introduced it in [START_REF] Eilenberg | On the groups h(π, n), ii: Methods of computation[END_REF] for functors between categories of modules. Since then, polynomial functors have been studied for a wide range of applications such as their connection to representation theory or group cohomology.

The original denition of Eilenberg and Mac Lane has been extended for dierent families of categories at the source, as in [START_REF] Hartl | Polynomial functors from algebras over a set-operad and nonlinear Mackey functors[END_REF] to the case where the source is a monoidal category whose unit is a null object. A complementary approach in the generalization of these polynomial functors is to study functors from a monoidal category to a non-abelian category such as the category of groups (see [START_REF] Baues | Quadratic endofunctors of the category of groups[END_REF]). The denition of Eilenberg and Mac Lane based on the notion of cross eects is equivalent to the denition based on the dierential functor as used by Kuhn in [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF] and Powell in [START_REF] Georey | The structure of indecomposable injectives in generic representation theory[END_REF]. In [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] the authors introduce two notions of polynomial functors from a symmetric monoidal category M whose unit is an initial object to an abelian category: the naive generalization of polynomial functors gives the notion of strong polynomial functors which have some bad properties like not being stable by subobject. This leads to the weak polynomial functors dened by introducing a quotient category following the construction of Gabriel in [START_REF] Gabriel | Des catégories abéliennes[END_REF]. The idea of this quotient category is to invert the morphisms whose kernel and cokernel are in the subcategory in question. The strong polynomial functors in this context are dened using the dierential endofunctors δ k , for k ∈ M, generalizing the one from [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF] and [START_REF] Georey | The structure of indecomposable injectives in generic representation theory[END_REF]. In [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], Djament and Vespa also adapted the denition of cross eects to their framework and showed that the strong polynomial functors are equal to the ones obtained by using these cross eects. The denition using the dierential endofunctors is better suited for the study of stable behaviour and has the advantage to be recursive, so we choose to mainly present and generalize this point of view for FI d -modules.

In particular, the category FI falls into the framework of Djament and Vespa and we get the following denition of strong polynomial FI-modules using only the dierential endofunctor δ 1 since 1 ∈ FI is a generator: the functor F ∶ FI → R-Mod is strong polynomial of degree n if we get the zero functor by applying n + 1 times the endofunctor δ 1 to it. This is analog to the usual polynomials: a function f ∶ R → R is polynomial of degree n if its (n + 1)-th derivative is zero. The endofunctor δ 1 which plays the role of the derivative is used in various contexts: in Kuhn's and Powell's work over functors from F p -vector spaces to F p -vector spaces ( [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF][START_REF] Georey | The structure of indecomposable injectives in generic representation theory[END_REF]), in representation stability theory ([CEF15, CEFN14, CE17, CMNR18]), in the denition of polynomial functors by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF], in the theory of twisted commutative algebras ([SS12, SS16]) or in the work of Ramos ([Ram17b,[START_REF] Li | Depth and the local cohomology of FI G -modules[END_REF]). The notions of polynomial functors introduced in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] give an alternative way to express Introduction (English) and understand results on FI-modules. For example, the nitely generated FI-modules with nitely generated values are the strong polynomial functors over FI. Using [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] we then deduce that, over a eld of characteristic zero, the dimension of the vector spaces associated with a polynomial FI-module with nite dimensional values is eventually polynomial. There are many examples of polynomial FI-modules that occur in dierent contexts. In particular, a large number of the FI-modules presented in [START_REF] Church | Representation theory and homological stability[END_REF] are strong polynomial. The cohomology of conguration spaces over a regular manifold gives a strong polynomial FI-module of particular interest. Several FI-modules studied by Church, Ellenberg and Farb have more structure: they are S(ab)-modules, were S(ab) is the category of abelian groups and split monomorphisms, which correspond to VIC(Z) from [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. The polynomial S(ab)-modules are studied in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF].

In Section 2.6 we dene the strong polynomial functors over FI d in a similar way as over FI, using a family of endofunctors δ c 1 indexed by the d colours of FI d instead of just one endofunctor δ 1 for FI-modules. For d = 1 we recover the denition of strong polynomial functors over FI from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] since the only colour in FI 1 gives the unique endofunctor δ 1 of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. We also dene a notion of cross eects for FI d -modules in Section 5.4 by introducing the category coslice (0 ↓ FI d ) (sometimes called the undercategory under 0 as in [ML98, P.45]) of pairs (k, x) where k is an object of FI d and x a morphism in FI d (0, k). Indeed, we prove in Proposition 5.4.4 that the category coslice (0 ↓ FI d ) is a monoidal category whose unit is an initial object, which allows us to dene the cross eects of a FI d -module via the forgetful functor (0 ↓ FI d ) → FI d and the work of Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. We then show in Proposition 5.4.12 that the polynomial functors dened with the cross eects over FI d are the same as the strong polynomial functors dened with the endofunctors δ c 1 :

Proposition. For n ∈ N and F a FI d -module, F is in Pol strong n (FI d , R-Mod) if and only if cr n+1 (F ) ( -) is the zero functor over (0 ↓ FI d ) ×n+1 .

We then use this alternative denition of strong polynomial FI d -modules to show in Proposition 5.4.18 the following result.

Proposition. For m, n ∈ N, if F ∶ FI d → R-Mod is a strong polynomial functor of degree less than or equal to m and if X ∶ R-Mod → R-Mod preserves epimorphisms and is a polynomial functor of degree less than or equal to n, then the composite X ○ F ∶ FI d → R-Mod → R-Mod is a strong polynomial functor of degree less than or equal to nm.

We use this result to get in Theorem 5.5.4 that the pointwise tensor product of two strong polynomial FI d -modules is strong polynomial:

Theorem. For n, m ∈ N and F, G ∶ FI d → R-Mod, if F is in Pol strong n (FI d , R-Mod) and if G is in Pol strong m (FI d , R-Mod), then their tensor product F ⊗ G is in Pol strong 2 max(n,m) (FI d , R-Mod).
However, in this theorem the bound may be not the best possible. Indeed, we could expect for F ⊗ G to be strong polynomial of degree less than or equal to n + m. For example, for d = 1 it is shown in [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] that a FI-module is strong polynomial of degree less than or equal to n if and only if it is a quotient of a sum of the standard projective functors P FI i for i ≤ n. This allows us to prove that, over FI the tensor product F ⊗ G is polynomial of degree n + m if F has degree n and G has degree m. We also prove in Appendix A the same result in the framework studied by Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], that is the functors over a general symmetric monoidal category whose unit is an initial object:

Theorem. Let M be a small symmetric monoidal category whose unit is an initial object. For n, m ∈ N and

F, G ∶ M → R-Mod, if F is in Pol strong n (M, R-Mod) and if G is in Pol strong m (M, R-Mod), then their tensor product F ⊗ G ∶ M → R-Mod is in Pol strong 2 max(n,m) (M, R-Mod).
For d = 1, the standard projective functors P FI n form a really important example of strong polynomial FI-modules, as shown in [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF]Proposition 4.4]. This makes the study of polynomial functors over FI much easier. In particular, it implies that being strong polynomial is equivalent to being nitely generated (with nitely generated values) for FI-modules. This is specic to the category FI, due to the fact that the standard projective functors are polynomial, and is not true in general on other categories. For the FI d -modules these results have no reason to hold since we show in Corollary 5.2.2 the following: Proposition. For d > 1, the standard projective functor P FI d n is not strong polynomial.

The example of conguration spaces

As explained above, there are many examples of FI-modules in the literature in a wide variety of areas. We mainly present one given by the homology of the conguration spaces of a manifold, which is fully described in [START_REF] Sam | Structures in representation stability[END_REF][START_REF] Jennifer | MSRI graduate summer school on representation stability: Representation stability for conguration spaces of open manifolds[END_REF] and [START_REF] Church | Representation theory and homological stability[END_REF]. For M a regular manifold, the rational cohomology of the conguration spaces of M is a nitely generated FI-module ([CEF15, Theorem 6.2.1]), which is almost equivalent to being strong polynomial. Furthermore, for M a connected manifold of dimension at least 2 and under some more assumptions, it was showed in [CMNR18, Theorem A] that 2k is an upper bound for the polynomial degree of the FI-module H i (Conf (-) (M ) , K).

The results about the FI-module H i (Conf (-) (M ) , K) are proved for a manifold of dimension at least two. This hypothesis is necessary to ensure that the conguration spaces are connected and that the points can move around each other. But for a manifold of dimension 1, like a graph, there is not enough space and the points block each other in the conguration spaces, so the same approach is no longer valid. For example, the conguration space of the linear graph with only one edge is homotopy equivalent to n! disjoint points. Therefore, Ramos introduced in [Ram19] the homology of a kind of modied conguration spaces for graphs that form a FI d -module. In these modied spaces, called the sink conguration spaces, we take n (ordered) points on the graph, as for the classical ones, but now they can either be distinct two by two or they can overlap at a vertex of the graph but not within an edge. Then, the d vertices of the graph correspond to the d colours of FI d which gives the structure of a FI d -module when we take the rational homology of these topological spaces. This gives an interesting example of FI d -module since, before this, all the FI d -modules in the literature were either free or obtained from FI-modules via the forgetful functor. Ramos proved in [START_REF] Ramos | Conguration spaces of graphs with certain permitted collisions[END_REF] that these FI d -modules are nitely generated for every homological degree and every connected graph. In Proposition 3.2.8 we give an explicit description of these functors for the linear graphs:

Proposition. For G d the linear graph on d vertices, the FI d -module H 0 ( Conf sink

(-) (G d , [d]) , Q )
is the constant functor Q, while for i ≥ 1 the FI d -module

H i ( Conf sink (-) (G d , [d]) , Q ) Introduction (English)
is the functor sending n to Q N (d,i+1) if n = i + 1 and zero else, where

N (d, i + 1) = { (d -1) i+1 -( d-1 i+1 )(i + 1)! if d ≥ i + 2 (d -1) i+1 if d ≤ i + 1 .
In Proposition 5.1.8 we deduce from this description that these functors are strong polynomial and we give their degree: Proposition. For i ∈ N * and G d the linear graph on d vertices, the FI d -module

H i ( Conf sink (-) (G d , [d]) , Q
) is polynomial of degree 0 for i = 0, and of degree i + 1 for i > 1.

The twisted commutative algebras

The theory of twisted commutative algebras (TCAs) dates back to the 1950s and appeared in algebraic topology. It was introduced to study dierent structures, such as sequences of objects endowed with an action of linear or symmetric groups. It is also an analog of the theory of commutative algebra adapted to the study of representations of these groups. For example, in [START_REF] Barratt | Twisted Lie algebras[END_REF] Barratt dened a general twisted algebra and added a condition to be a twisted Lie algebra or a twisted commutative algebra. As we will see, the FI d -modules appear in this context since there is an equivalence of categories between the FI d -modules and the modules over the free TCA on d generators.

A TCA is a monoid in the monoidal category Fct(Σ, K -Vect), where Σ is the category of nite sets and bijections. By considering several categories equivalent to Fct(Σ, K -Vect) we get dierent equivalent denitions of the TCAs, as explained in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] and [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF]: it can be a functor from vector spaces to commutative rings or a commutative ring endowed with an action of the innite linear group by an algebra morphism, or an associative unital graded ring endowed with an action of the symmetric groups. In each case there is an additional condition, called polynomiality (in a dierent sense than the polynomial functors we study here) which is added to form a TCA. Sometimes the TCAs are also treated as objects of an abstract category equivalent to any of the previous ones, which leads to another equivalent denition given in [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF] via operads. We choose to think of the TCAs mainly as functors F ∶ Σ → K -Vect, endowed with a multiplication law ν ∶ F ⊗ F → F and a unit law (Denition 4.1.5). The denition in terms of representations of the innite linear group GL(∞), often used by Sam and Snowden, is well described in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] and [START_REF] Derksen | Topological noetherianity for cubic polynomials[END_REF]. These two notions using the symmetric groups or the innite linear group are equivalent for K of characteristic zero via the Schur-Weyl duality, but give two dierent notions of TCAs for K of positive characteristic.

The rst example of TCA, coming from [START_REF] Barratt | Twisted Lie algebras[END_REF], is the functor sending n to the space K[S n ] on which the group S n acts by conjugation and whose multiplication is given by the standard inclusion of S n × S m in S n+m . An easy way to create other TCAs is to take the symmetric algebra of a representation of GL(K ∞ ). These examples, called "polynomial TCAs" (which has nothing to do with our polynomial functors) are fully described in the dierent equivalent denitions in [SS12, Section 8.2.3]. We focus on the free TCAs on d generators of degree one Sym((K d ) (1) ), which has been studied extensively, for example in [SS12, SS16, SS19, GS10]. In particular, Sam and Snowden showed in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] that the category of modules over this TCA is equivalent, via a choice of a basis of K d , to the category of FI d -modules. As mentioned above, this explains how the FI d -modules appear in the theory of TCAs. We give the concrete description of the TCA Sym((K d ) (1) ) in Denition 4.1.15 and the detail of the equivalence in Section 4.2. Another such example of TCA is Sym( Λ 2 (K ∞ ) ) which is studied in [START_REF] Sam | Stability patterns in representation theory[END_REF]. For example, they show that there is a equivalence similar to the one of FI d : the nitely generated modules over this TCA are equivalent to the nitely generated modules over the category FIM of [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF] whose objects are nite sets and whose morphisms are pairs of injection and perfect matching on the complement of the image.

There is a natural action of GL(K d ) on the modules over the TCA Sym((K d ) (1) ) that acts diagonally on the components (K d ) ⊗n of Sym((K d ) (1) ) before applying the multiplication law. In Section 4.3, we use the equivalence of categories from [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] to transform this into an action of GL(K d ) on the FI d -modules. We obtain in Proposition 4.3.5 the following concrete description:

Proposition. Let B be a basis of K d , for φ ∈ GL(K d ) and G ∈ FI d -Mod, the functor φ B ⋅ G ∶ FI d → K -Vect sends an object n ∈ FI d to G(n) and a morphism (f, g) ∈ FI d (n, m) to the sum ∑ g ′ ∈FI d (0,m∖f (n)) m g ′ (1),g(1) . . . m g ′ (m∖f (n)),g(m∖f (n)) G(f, g ′ ),
were (m i,j ) 1≤i,j≤d is the matrix of φ in the basis B of K d .

The weak polynomial functors

The notion of weak polynomial functors gives a renement of the notion of strong polynomial functors which is more intuitive but lacks of essential properties. Indeed, for a source category which is a symmetric monoidal category whose unit is a null object, the subcategories of polynomial functors are thick (see [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] for the general case) which allows us to look at the quotients by these subcategories. However, when the unit is just an initial object as in FI, a subfunctor of a strong polynomial functor can be of higher degree or even non-polynomial. To avoid these instability phenomena, Djament and Vespa dened a notion of weak polynomial functors in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] by erasing the problematic functors in a quotient category. They showed that the category SN (FI, R-Mod) of these functors, called the stably zero functors, is composed of the FI-modules whose colimit is zero. These stably zero functors correspond to the torsion modules over the free TCA over a generator of degree 1 studied in [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] or [START_REF] Nagpal | Regularity of FI-modules and local cohomology[END_REF], and the endofunctor κ which gives the maximal subfunctor of a FI-module in SN (FI, R-Mod) corresponds to the local cohomology functor denoted by H 0 m (-) in [SS16, NSS18, CEFN14]. In particular, the properties of their right derived functors H i m (-) are studied in [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF][START_REF] Nagpal | Regularity of FI-modules and local cohomology[END_REF] in order to understand how Fct(FI, R-Mod) is constructed from the two pieces SN (FI, R-Mod) and St(FI, R-Mod). Similarly, the weak polynomial degree for FI-modules corresponds to the notion of stable degree of [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] and [START_REF] Church | FI-modules over Noetherian rings[END_REF] while the local degree precise how the weak and strong degrees are linked. It morally gives the strong polynomial degree modulo the weak polynomial degree and controls the rank from which the associated family of representations becomes stable.

One of the main goal of this thesis is to introduce and study weak polynomial FI d -modules. One of the dierences with the previous situation is that there are several subcategories that can replace the stably zero functors in this case: the globally stably zero functors SN (FI d , R-Mod) and the stably zero functors along dierent colour combination SN c i 1 ,...,c im (FI d , R-Mod). These subcategories form a renement of the notion of stably zero functors introduced in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for FI. Indeed, for d = 1 there is an inclusion of the unique subcategory of stably zero functors Introduction (English) SN (FI, R-Mod) in Fct(FI, R-Mod) but, for a general d, these subcategories form a richer poset for the inclusion. For example, for d = 2, the poset looks like this:

SN c 1 (FI 2 , R-Mod) SN c 1 ,c 2 (FI 2 , R-Mod) SN (FI 2 , R-Mod) Fct(FI 2 , R-Mod) SN c 2 (FI 2 , R-Mod)
In Proposition 6.1.7 and Corollary 6.2.5 we show that the subcategories SN (FI d , R-Mod) and SN c i 1 ,...,c im (FI d , R-Mod) of Fct(FI d , R-Mod) are thick, that is stable by subobject, quotient and extension. Then we can consider the quotient category of Fct(FI d , R-Mod) by any of these subcategories following Gabriel's construction in [START_REF] Gabriel | Des catégories abéliennes[END_REF], and dene polynomial objects in them using the endofunctors δ c 1 of Fct(FI d , R-Mod) which pass to the quotients. This is possible because these subcategories are stable by colimits and so the quotient functor π d has a right adjoint S d called the section functor.

The subcategory SN (FI d , R-Mod) of globally stably zero functors is dened in Section 6.1 using a family of endofunctors κ c 1 of Fct(FI d , R-Mod). These functors are dened in Section 2.6 in a dual way to the δ c 1 , and they all t in the exact sequence of endofunctors

0 κ c 1 Id τ 1 δ c 1 0 i c 1 ,
were τ 1 is the shifting endofunctor F ( -) ↦ F ( -+ 1) and i c 1 a natural transformation associated to the colour c. We also dene a poset structure on N d for the product order and a functor ξ d ∶ N d → FI d that sends an object (n 1 , . . . , n d ) ∈ N d to the object n 1 + ⋅ ⋅ ⋅ + n d of FI d . We then show in Proposition 6.1.5 that there is an equivalent denition of the category SN (FI d , R-Mod) using a ltered colimit over N d :

Proposition. Let F be a FI d -module, then F is in SN (FI d , R-Mod) if and only if colim N d F ○ ξ d = 0.
For d = 1 we recover the description of SN (FI, R-Mod) from [DV19, Proposition 5.7], namely that the stably zero functors are those whose colimit is zero. Recall that, by [START_REF] Steven | Introduction to twisted commutative algebras[END_REF], the category of FI d -modules is equivalent to the category of Sym((K d ) (1) )-modules. In Section 6.4 we give a description of SN (FI d , R-Mod) in terms of Sym((K d ) (1) )-modules through this equivalence. We also show in Proposition 6.4.2 that, for d > 1, the subcategory

SN (FI d , K -Vect) of Fct(FI d , K -Vect) is not stable by the action of GL(K d ) dene above.
The subcategory SN c i 1 ,...,c im (FI d , R-Mod) of Fct(FI d , R-Mod) of stably zero functors along the colours c i 1 , . . . , c im is dened in Section 6.2 similarly to the globally stably zero functors, but using the endofunctors κ c 1 for each colour c in {c i 1 , . . . , c im }. In Corollary 6.2.4 we show that these categories also admit an equivalent denition, this time via the colouring functors

∆ * c ∶ Fct(FI d , R-Mod) → Fct(FI, R-Mod):
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This equivalent denition allows us to use the results already proved for functors over FI, especially those of Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. However, we show in Section 7.2 that in the quotient by a subcategory of stably zero functors along colours the polynomial objects are a bit harder to dene. In this process we lose some important properties like the fact that the endofunctors κ c 1 become zero, and the endofunctors δ c 1 become exact in the quotient. This is a rst reason why we develop only the weak polynomial functors corresponding to the global subcategory SN (FI d , R-Mod): this one behaves better with the endofunctors δ c 1 which are a crucial tool for the study of polynomial functors.

In Chapter 7 we focus on the category St(FI d , R-Mod) of stable functors, i.e. the quotient by the globally stably zero functors SN (FI d , R-Mod), the largest of these subcategories, in order to get a smaller quotient category that may be easier to describe. Although the objects of the quotient category St(FI d , R-Mod) are by denition the functors from FI d to R-Mod, one should think of them as abstract objects since the morphisms in the quotient are modied by some isomorphisms classes. In Denition 7.2.1, we dene the weak polynomial FI d -modules as the functors over FI d whose image in the quotient category St(FI d , R-Mod) by the quotient functor π d is a polynomial object (we sometimes identify F and π d (F ) by an abuse of notation). With this denition, a strong polynomial functor is weak polynomial but the converse is not true, which justies the terminology introduced by Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for FI-modules. We denote by Pol n (FI d , R-Mod) the full subcategory of St(FI d , R-Mod) of polynomial objects of degree less than or equal to n. In an abuse of notation, it also denotes the full subcategory of Fct(FI d , R-Mod) of functors whose image by the quotient functor π d is a polynomial object of degree less than or equal to n. We then take R = K a eld to ensure that the tensor product functor is exact and we show in Theorem 7.3.6 that the pointwise tensor product of two polynomial objects of St(FI d , R-Mod) is polynomial:

Theorem. Let R = K be a eld, for X ∈ Pol n (FI d , K -Vect) and Y ∈ Pol m (FI d , K -Vect), we have X ⊗ Y ∈ Pol n+m (FI d , K -Vect).
While the comprehension of the categories of polynomial functors is a hard problem in general, except for small values, the quotient of polynomial functors of degree n modulo the functors of degree n -1 is well understood in several contexts. In particular, Djament and Vespa described this quotient in [DV19, Theorem 2.26] for the polynomial objects of St(FI, R-Mod), as we recall in Chapter 9. For n = 0, they get that the only objects in Pol 0 (FI, R-Mod) are the constant functors.

In Section 7.4 we describe the polynomial objects of degree 0 of St(FI d , R-Mod), which form a richer category than for d = 1. For this, we introduce in Denition 7.4.8 the category R-Mod d of R-modules together with d -1 automorphisms which commute two by two. Similarly, we introduce the category of modules over the ring of commutative polynomials R[x ±1 2 , . . . , x ±1 d ] in the d-1 variables x 2 , . . . , x d all invertible. One of our main result is then the following description obtained in Theorem 7.4.12:

Theorem. There are equivalences of categories between the category Pol 0 (FI d , R-Mod) of polynomial objects of degree 0 of St(FI d , R-Mod), the category R-Mod d and the category Introduction (English) satisfy an abstract condition called (P OL0). We then use the intermediate category FI d dened in Section 2.5 to show, in Propositions 7.4.6 and 7.4.7 that, for each object F in the quotient satisfying (P OL0), the image of F by the section functor S d is completely determined by its image on the morphisms c ∈ FI d (0, 1). These images of the morphisms c ∈ FI d (0, 1) correspond to the d -1 module isomorphisms of the category R-Mod d when we trivialize the action of c 1 . From the point of view of R[x ±1 2 , . . . , x ±1 d ]-modules the images of the morphism c i ∈ FI d (0, 1) correspond to the action of x i , where x 1 acts by the identity when we trivialize the action of c 1 .

Examples of polynomial quotients of the functors

P FI d n
The fact that the standard projective generators P FI d n are strong polynomial for d = 1 simplies the study of polynomial functors over the category FI. As explained above, this is not the case for d > 1. Therefore we describe several quotients of the functors P FI d n which are polynomial. In addition to providing some concrete examples, these quotients may also give us a better idea of what the polynomial functors on FI d look like. For example, in Section 8.1 we obtain a family of quotients of the functor P FI d 0 which are weak polynomial of degree 0 by ltering its generators by the number of occurrences of the colours. Indeed, for k 1 , . . . , k d ∈ N, I ⊂ {c 1 , . . . , c d } and α ∈ FI d (0, k) we denote by γ i (α) the number of occurrences of the colour c i in α. We then say that α ∈ FI d (0, k) satises the condition (P I,k 1 ,...,k d ) if γ i (α) ≥ k i for all i ∈ I, or there exists j ∈ {c 1 , . . . , c d } ∖ I such that γ j (α) ≥ k j . With these notations, we introduce in Denition 8.1.7 the subfunctor G I,k 1 ,...,k d of P FI d 0 given by

G I,k 1 ,...,k d (n) = R [ α -X | α ∈ FI d (0, n) that satises the condition (P I,k 1 ,...,k d )] ,
where X ∈ FI d (0, n) is a given morphism in FI d (0, n) satisfying the condition (P I,k 1 ,...,k d ). We then show in Proposition 8.1.15 the following: Proposition. For k 1 , . . . , k d ∈ N and I ⊂ {c 1 , . . . , c d }, the quotient of P FI d 0 by its subfunctor G I,k 1 ,...,k d is weak polynomial of degree 0.

Moreover, the proof is based on the Lemma 8.1.14 which shows that this quotient is equal to a constant functor modulo a stably zero functor of SN (FI d , R-Mod). This implies that its image in the quotient corresponds, through the equivalence giving the description of

Pol 0 (FI d , R-Mod), to the object (R, Id, . . . , Id) of R-Mod d or to the trivial R[x ±1 2 , . . . , x ±1 d ]- module.
In parallel, in Section 8.2 we study the quotient of the functor P FI d n by its subfunctor corresponding to the action of the symmetric groups by post-composition. This subfunctor, denoted by F n in Denition 8.2.1, is given on objects by

F n (m) = R [ σ ○ (f, g) -(f, g) | (f, g) ∈ FI d (n, m), σ ∈ S m ] .
We show that the quotient of the functor P FI d n by F n is weak polynomial in Theorem 8.2.11:

Theorem. For all n ∈ N, the quotient functor of P FI d n by F n is weak polynomial of degree 0, where F n is the subfunctor of P it is not easy to nd one since the passage to the quotient category is not an explicit construction.

In Section 8.3 we give a quotient of P FI d n which is weak polynomial of degree n: for a morphism (f, g) in FI d (n, m) the second map g corresponds to a choice of mn colours. So there exists an action of the symmetric group S m-n permuting these colour choices, which gives an action of S m-n on P FI d n (m). The subfunctor of P FI d n corresponding to this action of the symmetric groups, denoted by H n in Denition 8.3.2, is given on objects by

H n (m) = R [ (f, σ ⋅ g) -(f, g) | (f, g) ∈ FI d (n, m), σ ∈ S m-n ] .
We show that the quotient of the functor P FI d n by H n is weak polynomial in Theorem 8.3.14:

Theorem. For all n ∈ N, the quotient of P FI d n by H n is weak polynomial of degree n, where H n is the subfunctor of P FI d n from Denition 8.3.2.

We prove this in two ways: rst, we directly compute δ c 1 of this quotient, which is very similar to the computation of δ c 1 of P FI d n in Proposition 5.2.1 but, since we take the quotient by the action of the symmetric groups on the colours, the component that prevents P FI d n from being polynomial vanishes here. Second, we introduce in Denition 8.2.5 the category C d whose objects are the integers and whose morphisms from n to m are the mn-tuple of colours (c i 1 , . . . , c im-n ) quotient by the action of S m-n (which is the same as the unordered choices of mn colours). We then show in Proposition 8.2.9 that the quotient of P Proposition. For all n ∈ N, there is a natural isomorphism

P FI d n / H n ≅ ( O * P FI n ) ⊗ P C d 0 ( (-) -n ) ○ Ω ,
where O is the forgetful functor

FI d → FI and Ω ∶ FI d → C d sends n ∈ FI d to n ∈ C d and a morphism (f, g) ∈ FI d (n, m)
to the colours of g quotient by the action of S m-n .

This explains how the injections and the colours are mixed to form the functor P FI d n up to the action of the symmetric groups on the colour choices. Moreover, since the functor P FI n is strong polynomial of degree n for d = 1, the image of the arrows from P FI n to the direct sum of all P FI k for k ≤ i is weak polynomial of degree i for any i ∈ N. We then construct in Proposition 8.4.5 a quotient of P FI d n that is weak polynomial of degree i for any i ∈ N using the above formula for the quotient of P FI d n by H n .

The construction Cospan

In order to study the polynomial functors over symmetric monoidal categories whose unit is an initial object, Djament and Vespa introduced in [DV19] a functor M → M which transforms the category M whose unit is an initial object into the category M whose unit is a null object. This construction, which is universal in the sense that it gives an adjoint to the forgetful functor, morally adds "decreasing" morphisms from the objects of the category to the unit while preserving the "increasing" morphisms from the unit to the objects. This construction is equivalent to the construction Cospan(-) of [START_REF] Vespa | Generic representations of orthogonal groups: the mixed functors[END_REF] where the functors over Cospan can be seen as a generalization of the Mackey functors. Since this construction preserves the polynomial functors, it allows Djament and Vespa in [DV19, Theorem 4.8] to Introduction (English) turn the study of polynomial functors over a category whose unit is an initial object into the study of polynomial functors over a category whose unit is a null object, which are better known.

They then apply this result to FI whose unit is an initial object. It allows them to describe the quotient of polynomial functors (in the quotient category St(FI, R-Mod)) of degree less than or equal to n over FI by its thick subcategory of polynomial functors of degree less than or equal to n -1. Indeed, the categories Cospan(FI) and FI are equivalent to the category FI # of partial injections of nite sets of [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF]. They then use a variation of a Dold-Kan type theorem of Pirashvili to describe the same quotient for functors over Cospan(FI). This Pirashvili's theorem from [START_REF] Pirashvili | Dold-Kan type theorem for Γ-groups[END_REF] gives an equivalence of categories between the functors over the category Γ of pointed nite sets and the functors over Ω the category of nite sets and surjections, using the cross eects. The variation used in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], which is described explicitly in [CEF15, Theorem 4.1.5], gives an equivalence of categories between the functors over the category FI # and the functors over the category Σ of nite sets and bijections, since FI # is a subcategory of Γ and Σ of Ω. The combination of these two results give the following description in [DV19, Proposition 5.9]: for n ∈ N, there is an equivalence of categories

Pol n (FI) / Pol n-1 (FI) ≅ Pol n (Cospan(FI)) / Pol n-1 (Cospan(FI)) ≅ Fct ( Σ n , R-Mod),
where Σ n is the category associated with the symmetric group S n . We show that this approach can not be directly generalized to describe the polynomial functors over FI d .

In Chapter 9 we introduce a generalization of the construction Cospan for FI d as follows: the objects of Cospan(FI d ) are the same as the objects of FI d and the morphisms are classes of diagrams under an equivalence relation. These diagrams are morally composed of an injection and two dierent colour choices on dierent sets which interact with each other. Thus, we show in Proposition 9.2.8 that the category Cospan(FI d ) is isomorphic to a combinatorial category FI d # whose morphisms consist of a partial injection and two distinct colour choices, one on the complement at the source and one on the complement at the target. Moreover, we show in Proposition 9.1.6 that each morphism in Cospan(FI d ) admits a minimal representative diagram of the class, which implies that both the morphisms from 0 to n and the morphisms from n to 0 in Cospan(FI d ) are in bijection with FI d (0, n). This emphasizes that the category Cospan(FI d ) is essentially obtained by keeping the morphisms from 0 to n of FI d and adding new morphisms from n to 0 corresponding to them.

We then study the Cospan(FI d )-modules as we did for FI d -modules: in Section 9.3 we dene the polynomial functors on Cospan(FI d ) using a family of endofunctors δ c 1 of Cospan(FI d ) for the dierent colours. A major dierence is that the stably zero functors over Cospan(FI d ) are zero since this category has a null object, so the weak and strong notions of polynomial functors over Cospan(FI d ) coincide. We then obtain in Theorem 9.4.9 the following description of the polynomial Cospan(FI d )-modules of degree 0:

Theorem. A functor F ∈ Fct(Cospan(FI d ), R-Mod) is in Pol 0 (Cospan(FI d ), R-Mod) if

and only if it is a constant functor. There is an equivalence of categories

Pol 0 ( Cospan(FI d ), R-Mod ) ≅ R-Mod .
Together with the description of the polynomial objects of degree 0 of St(FI d , R-Mod) (Theorem 7.4.12), this shows that for a general d the rst equivalence of [DV19, Proposition 5.9] presented above already fails for n = 0, that is the quotient of Pol n (FI d , R-Mod) by Pol n-1 (FI d , R-Mod) is not equivalent to the same quotient over Cospan(FI d ).
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The organization of the manuscript is the following: in the rst chapter we recall the construction and the important facts about the quotient of a category by a thick subcategory. In Chapter 2, we present the FI d -modules and give an overview of the basic results already known about them. We also introduce the main tools for their study and describe the simple objects of this category. In Chapter 3 we present the example of conguration spaces and describe it explicitly in simple cases. The Chapter 4 concerns the twisted commutative algebras and their connection with the FI d -modules. In Chapter 5 we dene the strong polynomial functors over FI d and give examples and counterexamples. We also extend the cross eects to these functors and show that the resulting notion of polynomial functors coincides with the one using the dierential endofunctor. Chapter 6 is dedicated to the dierent notions of stably zero functors and the poset they form. In Chapter 7 we study the quotient category St(FI d , R-Mod) and the polynomial functors in this quotient. In particular, we describe the weak polynomial objects of degree zero of St(FI d , R-Mod), which are not just the constant functors. In Chapter 8 we give examples of polynomial quotients of the standard projective functors. Finally, in the last chapter we introduce the category Cospan(FI d ), and we show that the method of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for describing the weak polynomial FI-modules does not work the same for weak polynomial FI d -modules.

Chapter 1

Recollection on quotient categories

The aim of this section is to recall the construction and some important properties of the quotient of a category by a thick subcategory. Most of these properties are taken from the pages 366-372 from Gabriel's thesis [START_REF] Gabriel | Des catégories abéliennes[END_REF] and we refer to that paper for the proofs of these propositions. In this section A is an abelian category and C is a subcategory of A.

Denition of a quotient category

We start with the construction of the quotient of the category A by C, when C is a thick subcategory which is dened below. We will see that this construction depends on the thick hypothesis, so it will be important in the following sections to always check whether the subcategories we are considering are thick or not. The idea of this quotient category is to inverse the morphisms whose kernel and cokernel are in the subcategory C.

Denition 1.1.1. A subcategory C of A is thick if it is stable by subobjects, quotients and extensions. In other words, C is thick if, for every short exact sequence 0 M N P 0 in A the object N is in C if and only if both M and P are in C.

Since A is an abelian category it admits a biproduct denoted by ∐. We then give basic results on the thick subcategories that we use in the following constructions: Lemma 1.1.2. For C a thick subcategory of an abelian category A and any two objects

A and B of C, then A ∐ B is in C and, if A and B are subobjects of C ∈ A, then A + B ∶= Im(A ∐ B → C) is in C.
Proof. The rst point is a classical result about abelian categories (see for example [START_REF] Mac | Categories for the working mathematician[END_REF]) obtained using the short exact sequence

0 A A ∐ B B 0 i A p B
, and the second point comes from the denition of a thick subcategory since

A + B is a quotient of A ∐ B.
In order to dene the quotient category we introduce some notations.

Denition 1.1.3. For a thick subcategory C of A and any two objects A and B of A we dene A poset

I A,B = { (A ′ , B ′ ) ∈ A 2 | A ′ ⊂ A, A / A ′ ∈ C, B ′ ⊂ B, B ′ ∈ C} ,
where the order relation is given by:

(A ′ , B ′ ) ≤ (A ′′ , B ′′ ) if A ′ ⊃ A ′′ and B ′ ⊂ B ′′ .
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The category I A,B associated with the poset I A,B .

The functor F A,B ∶ I A,B → Ab sending an object (A ′ , B ′ ) of I A,B to the group

Hom A (A ′ , B / B ′ ) and a map (A ′ , B ′ ) ≤ (A ′′ , B ′′ ) in I A,B to the application Hom A (A ′ , B / B ′ ) → Hom A (A ′′ , B / B ′′ ) f ↦ p B ′ B ′′ ○ f ○ i A ′ A ′′ , where i A ′ A ′′ is the inclusion of A ′′ in A ′ and p B ′ B ′′ the projection of B / B ′ onto B / B ′′ .
We then want to dene the quotient category A / C as the category with the same objects as A and whose morphisms from A to B are the elements of the colimit of F A,B as in [START_REF] Gabriel | Des catégories abéliennes[END_REF]p. 365]. However, using this as a denition of the morphisms, it would be really abstract and not easy to use and the composition would be hard to dene. We then use the fact that the category I A,B is ltered when C is thick to give a more concrete description of this colimit. Denition 1.1.4. A category M is ltered if it is not empty, if for every two objects X and Y in M there exist an object Z and two arrows f ∶ X → Z and g ∶ Y → Z in M and if for every two parallel arrows f, g ∶ X → Y there exist an object Z and an arrow h ∶ Y → Z such that h ○ f = h ○ g. The colimit of a functor is a ltered colimit if the source category is a ltered category.

Lemma 1.1.5. For a thick subcategory C of A and for any two objects A, B ∈ A, the category

I A,B is ltered. Proof. For (A ′ , B ′ ) and (A ′′ , B ′′ ) two objects of I A,B , we pose X = A ′ ∩ A ′′ and Y = B ′ + B ′′ ∶= Im(B ′ ∐ B ′′ → B). Since C is thick (X, Y
) is an object of I A,B , i.e. an element of the poset I A,B .

Then we have that (A ′ , B ′ ) ≤ (X, Y ) and (A ′′ , B ′′ ) ≤ (X, Y ) by construction. Furthermore, the element (A, 0) is minimal in I A,B so I A,B is non-empty and, by construction there is one or zero arrow in I A,B between two objects, so two parallel arrows in I A,B are equal.

We now recall a description of ltered colimits over R-modules, which will be useful to describe the colimit of F A,B in a concrete way, even though it is not directly related to quotient categories.

Proposition 1.1.6. [START_REF] Borceux | Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics and its Applications[END_REF]Proposition 2.13.3] 

For F ∶ C → R-Mod a functor, if C is a small ltered category then the colimit (M, µ C ∶ F (C) → M ) of F is given by: The R-module M is the quotient of the direct sum of all F (C) for C ∈ C by the equivalence relation given by: a ∈ F (C) and a ′ ∈ F (C ′ ) are equivalent if there exist C ′′ ∈ C and two maps f ∈ C(C, C ′′ ) and f ′ ∈ C(C ′ , C ′′ ) in C such that F (f )(a) = F (f ′ )(a ′ ),
The map of R-modules µ C ∶ F (C) → M is the composition of the inclusion of F (C) in the direct sum and of the quotient map by the equivalence relation that sends an element a ∈ F (C) to its equivalence class. In particular, an element a ∈ F (C) is in the same equivalence class as zero if and only if there exists an object

C ′′ ∈ C and a map f ∶ C → C ′′ such that F (f )(a) = 0.
Chapter 1. Recollection on quotient categories Corollary 1.1.7. For A, B ∈ A, there is an isomorphism

colim I A,B F A,B ≅ ⊕ (A ′ ,B ′ )∈I A,B Hom A (A ′ , B / B ′ ) / ∼ where f ∈ Hom A (A ′ , B / B ′ ) and f ∈ Hom A ( Ã′ , B / B′ ) are equivalent if there exist X ⊂ A ′ ∩ Ã′ and Y ⊃ B ′ + B′ such that (X, Y ) ∈ I A,B and f | X = f | X ∶ X → B / Y .
Proof. The Proposition 1.1.6 implies that the colimit of F A,B is equivalent to the direct sum of all

Hom A (A ′ , B / B ′ ) for (A ′ , B ′ ) ∈ I A,B
quotient by an equivalence relation. This relation is given by:

f ∈ Hom A (A ′ , B / B ′ ) and f ∈ Hom A ( Ã′ , B / B′ ) are equivalent if there exist (X, Y ) ∈ I A,B , φ ∈ Hom I A,B ( (A ′ , B / B ′ ) , (X, Y ) ) and φ ∈ Hom I A,B ( ( Ã′ , B / B′ ) , (X, Y ) ) such that F A,B (φ)(f ) = F A,B ( φ)( f ).
The result then follows from the denitions of I A,B and of F A,B on the arrows.

We can now dene the quotient of an abelian category A by a subcategory C if it is a thick subcategory.

Denition 1.1.8. The quotient category A / C of the abelian category A by its thick subcategory C is given by: The objects of A / C are the objects of A,

The morphisms in A / C from A to B are the elements of the direct limit

lim (A ′ ,B ′ )∈I A,B Hom A (A ′ , B / B ′ ) = colim I A,B F A,B ≅ ⊕ (A ′ ,B ′ )∈I A,B Hom A ( A ′ , B / B ′ ) / ∼
where the equivalence relation is given in Corollary 1.1.7. We denote by [f ] the class of a morphism f ∈ Hom A (A ′ , B / B ′ ) in this quotient.

The composition of two morphisms is dened by choosing a representative of the class of each morphism and by composing the (co)-restrictions of them in a natural way:

Hom A/ C (A, B) × Hom A/ C (B, C) → Hom A/ C (A, C) ( [f ] , [g] ) ↦ [ g ○ α ○ f ],
where [ g ○ α ○ f ] is the class of the composition g ○ α ○ f . These last morphisms are dened by: α is the isomorphism

A ′ + A ′′ / A ′ ≅ A ′′ / A ′ ∩ A ′′ , f is the (co)-restriction f ∶ f -1 ( A ′ + A ′′ / A ′ ) → A ′ + A ′′ / A ′ where f ∈ Hom A (A ′ , B / B ′ ) is a representative of [f ] and g ∶ A ′′ / A ′ ∩ A ′′ → C / C ′ + g(A ′ ∩ A ′′ ) is the morphism obtained as g ∶ A ′′ → C / C ′ passing to the quotient, where g ∈ Hom A (B ′′ , C / C ′ ) is a representative of [g].
Remark 1.1.9. The idea of the composition is to restrict f at the target to the subobject

A ′ + A ′′ / A ′ of A / A ′ and g at the source to A ′′ / A ′ ∩ A ′′ , so that we can compose them via the isomorphism α ∶ A ′ + A ′′ / A ′ ≅ A ′′ / A ′ ∩ A ′′ .
The hypothesis that C is thick is crucial to dene the composition in such a way because we use that these objects (or quotients of them) are in C. However, this denition of the composition of two morphisms depends on the choice of two representatives f of [f ] and g of [g]. We can check (see [START_REF] Gabriel | Des catégories abéliennes[END_REF]p.365]) that the result does not depend on these choices by making a commutative diagram showing, for

[f ′ ] = [f ] and [g ′ ] = [g], that [ g′ ○ α ○ f ′ ] = [ g ○ α ○ f ]
when restricted to some (E, F ) ∈ I A,B so that E is small enough to get the information from f and f ′ , and F is large enough to get the information from g and g ′ .

Proposition 1.1.10. [Gab62, Proposition 1 p.367] The quotient category A / C is abelian.

We give an example of morphisms in the quotient category which enlightens that this quotient is dicult to understand explicitly, even in simple cases.

Example 1.1.11. For C a thick subcategory of A and A, B ∈ A, if A or B is in C we have

Hom A/ C (A, B) = 0. Indeed, if A ∈ C, for (A ′ , B ′ ) in I A,B we have (0, B ′ ) ∈ I A,B since A / 0 = A ∈ C,
and by denition of the order on the poset I A,B we have

(A ′ , B ′ ) ≤ (0, B ′ ). Then the map F A,B (A ′ , B ′ ) → colim F A,B factors through F A,B (0, B ′ ) = Hom A (0, B / B ′ ) = 0. This shows that the maps F A,B (A ′ , B ′ ) → colim F A,B are zero for all (A ′ , B ′ ) ∈ I A,B if A ∈ C,
and so the colimit is zero by minimality. In the case where B ∈ C, we apply the same reasoning but with

(A ′ , B) ∈ I A,B satisfying (A ′ , B ′ ) ≤ (A ′ , B) and F A,B (A ′ , B) = Hom A (A ′ , B / B ) = 0.

The quotient functor

In this section we describe the properties of the canonical quotient functor π from A to the quotient A / C . Denition 1.2.1. The canonical quotient functor π ∶ A → A / C sends an object A in A to itself in A / C and a morphism f on its class [f ] in the colimit for (A, 0) ∈ I A,B , according to Denition 1.1.8. We now describe some properties of this quotient functor.

Proposition 1.2.2. [Gab62, Proposition 1 p.367] The quotient functor π is essentially surjective and exact.

Moreover, the quotient functor is almost a full functor: it is full up to isomorphisms, as explained in the following proposition.

Proposition 1.2.3. [Gab62, Corollary 1 p.368] For any short exact sequence

0 M N P 0 f g in A / C , there is a short exact sequence 0 M 1 N 1 P 1 0 f 1 g 1
in A such that the induced sequence in the quotient obtained by applying the quotient functor is exact, and there exist isomorphisms

u ∶ M ≅ π(M 1 ), v ∶ N ≅ π(N 1 ), w ∶ P ≅ π(P 1 ) in A / C such that the following diagram commutes 0 M N P 0 0 π(M 1 ) π(N 1 ) π(P 1 ) 0 . f u g v w π(f 1 ) π(g 1 )
We now describe the conditions under which a morphism in A is sent by the quotient functor π to a monomorphism, an epimorphism or to zero in the quotient. We give a sketch of the proof since it gives another example of how to compute morphism in the quotient category.

Chapter 1. Recollection on quotient categories Proposition 1.2.4. [Gab62, Lemma 3 p.366] Let f ∶ A → B be a morphism in the category A, the morphism π(f ) in the quotient A / C is zero (resp. a monomorphism, an epimorphism) if and only if

Im(f ) (resp. ker(f ), Coker(f )) is in the subcategory C of A. In particular, if π(A) = 0 then A is in the subcategory C of A.
Proof. We give a sketch of the proof in the rst case, the other being similar. If

Im(f ) ∈ C, then the image π(f ) = [f ] of f in the colimit is zero since (A, Im(f )) ∈ I A,B so we have a representative of this class in Hom A ( A, B / Im(f ) ) which is zero. For the converse, if π(f ) = [f ] is zero, we can choose a representative of this class f ′ ∶ A ′ → B / B ′ which is zero, with (A ′ , B ′ ) ∈ I A,B . This implies that f (A ′ ) ⊂ B ′ , and so f (A ′ ) ∈ C since B ′ ∈ C. We have a short exact sequence 0 f (A ′ ) Im(f ) A / A ′ + Ker(f ) 0 because Im(f ) ≅ A / Ker(f ) and f (A ′ ) ≅ A ′ / A ′ ∩ Ker(f ) ≅ A ′ + Ker(f ) / Ker(f ) .
We then con- clude that Im(f ) ∈ C using this short exact sequence since

A / A ′ + Ker(f ) is a quotient of A / A ′ which is in C.
The last point of the statement is obtained by applying the functor π to the morphism identity of A. This gives a zero morphism in the quotient, and so the image A of this morphism is in C.

Finally, we can state a famous result about quotient categories which will not be used in the following.

Theorem 1.2.5 (Gabriel-Popescu Theorem). If A is a Grothendieck category with a generator G, then there is an equivalence of categories

A ≅ Mod-R / C ,
where R = End(G) and C is the thick subcategory corresponding to the kernel of the functor Hom(G, -).

The section functor

The quotient functor π makes a link from the category A to the quotient one A / C , but it is only in one direction. However, under some hypothesis, this functor has an adjoint, called the section functor, which makes the link in the opposite direction. In this case we say that C is localizing. When A is a Grothendieck category this hypothesis has a concrete description and, since we will only consider Grothendieck categories, we only present this case (see [START_REF] Gabriel | Des catégories abéliennes[END_REF]p.377] for a general version). We now describe this adjoint and we give some properties of the adjunction. Denition 1.3.1. [Gar01, p.7] The category A is a Grothendieck category if it is an AB5 category with a generator. This means that A is an abelian category with a generator (i.e. an object A in A such that every object is a quotient of a direct sum of copies of A), such that every (possibly innite) family of objects in A has a coproduct (direct sum) in A, and every direct limit of short exact sequences is exact (i.e. for every family of short exact sequences in A the induced sequence of direct limits is a short exact sequence).

Example 1.3.2. For any ring R, the categories R -Mod and Mod-R are Grothendieck categories. Indeed, they are abelian categories generated by R in which you can consider innite direct sums. The last property can be checked by hand on elements (see [START_REF] Garkusha | Grothendieck categories[END_REF]p.7]).

We can now give the condition that C must satisfy so that the quotient functor has an adjoint. Proposition 1.3.3. [Gab62, Special case of Propositions 8 and 9 p.377-378] Let A be a Grothendieck category (Denition 1.3.1), the quotient functor π has a right adjoint

S ∶ A / C → A
if and only if the subcategory C is stable by colimit. In this case, the quotient functor commutes with all ltered colimits.

From now on we will assume that the quotient functor π has a right adjoint S. Since we have dened a quotient, we want a statement similar to the usual universal property of the quotient. The following proposition gives this, but only if the functor we want to pass to the quotient is exact.

Proposition 1.3.4. [Gab62, Corollary 2 p.368] Let F be an exact functor from A to an abelian category D. If F (C) is zero for all objects C of C, then there exists a unique functor

G from A / C to D such that F = G ○ π.
More than that, since we need the functor F ∶ A → D to be exact, the resulting functor G ∶ A / C → D is also exact by using the following corollary which describes when a functor from a quotient is exact: Corollary 1.3.5. [Gab62, Corollary 3 p.369] Let G be a functor from A / C to an abelian category D, then G is exact if and only if G ○ π is exact.

In particular, as stated above, if G is induced by an exact functor F from A to D as in Proposition 1.3.4, then G is also exact. However, the exactness hypothesis on F in Proposition 1.3.4 is a bit restrictive, and at some point we will need a more general version of this proposition. Indeed, if the functor F is not exact but induces a long exact sequence for every short exact sequence, it is sucient to obtain an induced functor from the quotient as explained in the following proposition. For example, this is typically the case for the Ext and Tor functors, or for the (co)homology functors.

Proposition 1.3.6. Let F be a functor from A to an abelian category D left (resp. right) exact such that, for every short exact sequence in A, F induces a long exact sequence. If F (C) is zero for all objects C of C, then there exists a unique functor G from A / C to D such that F = G ○ π. Proof. The only time we use the exactness of F in the proof of Proposition 1.3.4 ([Gab62, Corollary 2 p.368]) is when we want to dene, for all A, B ∈ A and all (A ′ , B ′ ) ∈ I A,B , a bijection

ψ ∶ Hom D ( F (A), F (B) ) ≅ Hom D ( F (A ′ ), F (B/B ′ ) ).
To do this we consider the short exact sequence

0 A ′ A A/A ′ 0 i A A ′ (1.1)
and we get that

F (i A A ′ ) ∶ F (A ′ ) → F (A
) is an isomorphism using the fact that A/A ′ ∈ C, the hypothesis F (C) = 0 for all C ∈ C, and the exactness of F . We then do the same with the short exact sequence associated with p ∶ N → N /N ′ to show that F (p) is an isomorphism and the two together imply that the morphism ψ is a bijection. This proof still works here because we replace the exactness of F by a long exact sequence associated by F with the short exact sequence (1.1). In this long exact sequence the morphism

F (i A A ′ ) ∶ F (A ′ ) → F (A) is between two terms of the type F (A/A ′ ) which are zero since A/A ′ ∈ C, proving that F (i A A ′ ) ∶ F (A ′ ) → F (A
) is an isomorphism. The same argument works for p ∶ N → N /N ′ and the end of the proof is exactly the same.

Chapter 1. Recollection on quotient categories Remark 1.3.7. In the last proposition we need F (C) to be zero for all C ∈ C. For example if

F = H * (-, K) we need for all C ∈ C that H n (C, K) = 0 for all n ∈ N, and not just H 0 (C, K) = 0.
We now give some properties of the adjunction of the quotient functor π and the section functor S, in particular we describe the unit and the co-unit of this adjunction. Denition 1.3.8. The natural transformations η ∶ Id → S ○ π and ε ∶ π ○ S → Id such that Applying a general result concerning the unit and the co-unit of an adjunction given in [START_REF] Borceux | Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics and its Applications[END_REF]P.115] to the adjunction of the quotient we obtain: Proposition 1.3.9. If the unit η ∶ Id → S ○ π and the co-unit ε ∶ π ○ S → Id of the adjunction of π and S are isomorphisms, then there is an equivalence of the categories A / C ≅ A.

(ε π ○ π(η) ∶ π → π ○ S ○ π → π) = Id
Since we consider the adjunction corresponding to a quotient category, there a some other results about the unit and the co-unit that arise in this case. For the co-unit we have the following.

Proposition 1.3.10. [Gab62, Proposition 3.a p.371] The co-unit ε ∶ π ○ S → Id of the adjunction of π and S is always an isomorphism.

For the unit the description is a bit more complicated and we need the following denition, which is a reformulation of the denition of [START_REF] Gabriel | Des catégories abéliennes[END_REF]p.371].

Denition 1.3.11. An object

A ∈ A is C-closed if Hom(H, A) and Ext 1 (H, A) are both zero for all H ∈ C.
Then, the following proposition describes when the unit is an isomorphism. Proposition 1.3.12. [Gab62, Corollary p.371] Let A be an object of A, the unit η A ∶ A → S○π(A) of the adjunction of π and S is an isomorphism if and only if A is C-closed.

If the unit is not an isomorphism, we can still say something about its kernel and cokernel, as in the following: Proposition 1.3.13. [Gab62, Proposition 3.b p.371] For all objects A in A, the kernel and the cokernel of the unit η A ∶ A → S ○ π(A) of the adjunction of π and S are in the subcategory C of A.

Finally, we gave above some properties of the image of the quotient functor, but there is an important property in the opposite direction about the image of an object of the quotient category by the section functor S: Lemma 1.3.14. [Gab62, Lemma 2 p.371] For any object N in the quotient category A / C , the object

S(N ) of A is C-closed.
Chapter 2

Functors on the categories FI d

The functors from the category FI of nite sets and injections (also denoted by I in [START_REF] Schwede | On the homotopy groups of symmetric spectra[END_REF] and by Θ in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]) to R-Mod are called FI-modules. They have been studied extensively in the last decade by Church, Ellenberg, Farb, Nagpal and some others (see for example [CEF15, CEFN14, CEF14, CE17, CF13, Chu12, CMNR18, Dja16, DV19]), mostly for their link to the theory of representation stability. A complete introduction to these subjects can be found in [START_REF] Sam | Structures in representation stability[END_REF], but we summarize this process now: the theory of FI-modules was introduced in [START_REF] Church | Representation theory and homological stability[END_REF] to study the compatible families of representations of the symmetric groups which admit a decomposition in irreducible that eventually becomes stable (in the sense of [START_REF] Farb | Representation stability[END_REF]). It was thought as a generalization of the classical homological stability taking into account the action of the symmetric groups. A large family of concrete examples in a wide range of areas are presented in [START_REF] Church | Representation theory and homological stability[END_REF] and [START_REF] Jennifer | Oberwolfach workshop on the topology of arrangements and representation stability: A brief introduction to representation stability[END_REF]. Church and Farb then proved that a FI-module is nitely generated if and only if it has nitely generated values and the associated family is representation stable. In practice, it is generally easier to prove a niteness result on one objects than the stability of an entire family, which shows the interest of studying these functors. Replacing the target category R-Mod by a more combinatorial category we can also consider the non-abelian categories of FI-posets, FI-graphs and more generally FI-sets with relations (see [START_REF] Ramos | FI-sets with relations[END_REF]).

Since then, the category FI has been generalized in dierent directions. The one we are concerned was introduced by Sam and Snowden in [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF], leading to the categories FI d for d a non-zero integer in which the morphisms are coloured injections (see Denition 2.1.2). More precisely, the category FI 1 is isomorphic to the category FI. We study here the functors from FI d to R-Mod, called FI d -modules, and we emphasize in particular the dierences with FImodules. These functors intervene, in particular, in the theory of TCAs and in representation stability. Indeed, the FI d -modules are equivalent to the modules over the free TCA with d generators of degree 1 (see Chapter 4), and there is a result similar to the one for FI from [Ram19]: a FI d -module is nitely generated if and only if it has nitely generated values and the associated family of representations is stable in a general sense (for large enough partitions). In this Chapter, after recalling the denition of FI d , we give some examples of FI d -modules and we describe the simple FI d -modules. We then dene some endofunctors of the category FI d -Mod, which we will use in the following chapters to dene the notions of polynomial functors and we study some functors between FI-modules and FI d -modules.

Chapter 2. Functors on the categories FI d

The categories FI and FI d

We start with the denition of the category FI and its generalization the category FI d . We give their rst properties and some notations that we will use throughout the manuscript. Denition 2.1.1. The category FI has for objects the nite sets and for morphisms the injections between these sets. The composition of morphisms is the usual composition of injections.

The category FI d is constructed as the category FI to which we add some colours on the morphisms. Explicitly, for d ∈ N * let C (d) be a set of cardinality d whose elements are called colours and are denoted by c i for 1 ≤ i ≤ d.

Denition 2.1.2. The category FI d has for objects the nite sets and for morphisms the injections together with a colour choice in C (d) for each element in the codomain which is not mapped to by any element. In other words, an arrow from X to Y is a pair noted by (f, g) with f ∶ X ↪ Y an injection and g ∶ Y ∖ f (X) → C (d) a set application. The composition is given for two composable morphisms (f 1 , g 1 ) and (f 2 , g 2 ), by

(f 1 ∶ Y ↪ Z, g 1 ) ○ (f 2 ∶ X ↪ Y, g 2 ) = (f 1 ○ f 2 ∶ X ↪ Z , g ′ ) where g ′ ∶ Z ∖ (f 1 ○ f 2 )(X) → C (d) is dened by g ′ (z) = { g 2 (z) if z ∈ Z ∖ f 2 (Y ) g 1 (f -1 2 (z)) if z ∈ f 2 (Y ) ∖ f 2 ○ f 1 (X).
Example 2.1.3. We give an example of the composition of two morphisms with two dierent colours in FI d :

• • • • c 1 • • • • c 2 • • • • • • c 2 • c 1 Denition 2.1.4. The functor ⊙ ∶ FI d × FI d → FI d is given on objects X 1 , X 2 ∈ FI d by the disjoint union X 1 ⊙ X 2 = X 1 ⊔ X 2
and on morphisms by

(f 1 ∶ X 1 ↪ Y 1 , g 1 ) ⊙ (f 2 ∶ X 2 ↪ Y 2 , g 2 ) = (f 1 ⊔ f 2 ∶ X 1 ⊔ X 2 ↪ Y 1 ⊔ Y 2 , g 1 + g 2 ).
Lemma 2.1.5. The functor ⊙ gives a monoidal symmetric structure on FI d with the empty set as the unit.

The categories FI d generalize the category FI since for d = 1 we have an isomorphism of categories FI 1 ≅ FI. Indeed, the category FI 1 is easy to describe because C (1) = {c} so we can dene a functor ∆ c ∶ FI → FI 1 by the identity on objects and which sends an injection f ∶ X ↪ Y to the morphism (f, g), where g is the unique map from Y ∖ f (X) to C (1) . This functor gives an isomorphism of categories and its quasi-inverse is a forgetful functor O ∶ FI 1 → FI which is given by the identity on objects and which sends a morphism (f, g) in FI 1 to the injection f in FI. The functors ∆ c and O can be generalized to get functors between FI and FI d , we dene the general forgetful functor now and the general functor ∆ c in Section 2.7. Denition 2.1.6. The forgetful functor O ∶ FI d → FI is dened on objects by O(X) = X and on morphisms by O(f, g) = f . Lemma 2.1.7. The forgetful functor O is monoidal.

In order to simplify the notation, the set C (d) is simply denoted by C if it leads to no misunderstanding. We also consider the skeleton of the category FI d given by the integers, where n corresponds to the class of sets of cardinality n which is represented by the set n = {1, . . . , n} (also see [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF] for d = 1). In this skeleton the class of the empty set corresponds to 0 and a morphism from n to m is a couple (f, g) where f ∶ n → m is an injection and g ∶ mn → C is a choice of mn ordered colours. The monoidal structure ⊙ on FI d corresponds to the addition "+" in the skeleton.

Remark 2.1.8. We use the notation "+" since the disjoint union correspond to take the sum of the cardinality when we consider the skeleton of FI d . However, this monoidal structure is not a coproduct, even for d = 1. For example the following diagram can not be completed by any dashed arrow in FI or FI d :

1 2 1 1 Id 1 Id 1
In FI d the morphisms from 0 to an integer m are really important and will be used a lot. We give there a nice description of these morphisms.

Remark 2.1.9. For m ∈ FI d , an element of FI d (0, m) corresponds to a choice of m colours in C, so we have a bijection FI d (0, m) ≅ C m given by:

FI d (0, m) → C m (0 ↪ m , g ∶ m → C) ↦ ( g(1) , . . . , g(m) ).
We often denote an element x in FI d (0, m) by x = (c 1 , . . . , c m ) for some colours c 1 , . . . , c m ∈ C according to this bijection. In particular, for c ∈ C we denote by c m the morphism

(0 → m, m → {c} → C) in FI d (0, m).
The rst important dierence between FI and FI d is that 0 is an initial object in FI ≅ FI 1 , but it is not the case in FI d for d > 1. Indeed, the set of morphisms

FI d (0, m) ≅ (C (d) ) m = {c 1 , . . . , c d } m
has d m elements in general. This gives the existence of a unique morphism from 0 to m in FI 1 , but such a morphism is not unique in FI d for d > 1.

Remark 2.1.10. In the literature they are several variants (see [START_REF] Sam | Structures in representation stability[END_REF] for a detailed list) of the category FI: The categories FI d , FI W for W some Weyl groups in [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF], FS G the category of nite sets and G-surjections for G a group (see [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF]), or a symplectic version (see [START_REF] Sam | Structures in representation stability[END_REF]). There are also variants for representations of linear groups presented in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF], such as VI(R) the category of free modules of nite rank and injective linear maps with left inverse, and its generalization VIC(R) of free modules of nite rank and injective linear maps with a choice of direct complement of the image. These categories are particular cases of the category S(A) introduced by Djament in [START_REF] Djament | Sur l'homologie des groupes unitaires à coecients polynomiaux[END_REF] for A an abelian category. For A = R-Mod this category is denoted by S(R) in [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] and for A = Z -Mod it is denoted by S(ab) in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. They are similar to FI and FI d since the morphisms are given by an injective map coupled with a choice on the complement of the image. Most of these categories are example of the construction U(G) from [START_REF] Randal | Homological stability for automorphism groups[END_REF]: for G = S n we get the category FI, and for G = GL n (R) we get S(R). The functors over such categories have been studied, like the category G in [START_REF] Djament | Sur l'homologie des groupes d'automorphismes des groupes libres à coecients polynomiaux[END_REF] for G = Aut(F n ) and U β in [START_REF] Soulié | Some computations of stable twisted homology for mapping class groups[END_REF] for G = B n . Another variant of the category FI is the category FI G of nite sets and couples of an injection and a choice of an element of the group G for each element at the source. The functors over this category have been studied for example in [START_REF] Ramos | On the degree-wise coherence of FI G -modules[END_REF][START_REF] Li | Depth and the local cohomology of FI G -modules[END_REF] and Sam and Snowden showed that the category of nitely generated FI G -module is noetherian. This result was extended in [START_REF] Ramos | On the degree-wise coherence of FI G -modules[END_REF] to the notion of degree wise coherent modules using endofunctors similar to the ones we dene in Section 2.6. In [START_REF] Li | Depth and the local cohomology of FI G -modules[END_REF] they show that the dimension of the functors over FI G eventually becomes polynomial, as for FI.

Functors on the categories FI d

The main objects that we study in this thesis are the FI d -modules, which are the functors from FI d to the category of modules R-Mod. The theory of FI-module was introduced by Church and Farb in [START_REF] Church | Representation theory and homological stability[END_REF] to encode a large quantity of information about a family of representations of the symmetric groups in one object. Concrete examples of this are given in [START_REF] Church | Representation theory and homological stability[END_REF] and [START_REF] Jennifer | Oberwolfach workshop on the topology of arrangements and representation stability: A brief introduction to representation stability[END_REF]. Indeed, it was proven in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] that if a FI-module is nitely generated, then the family of representations of the symmetric groups associated is stable (in the sense of [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF][START_REF] Church | FI-modules over Noetherian rings[END_REF][START_REF] Farb | Representation stability[END_REF]). The FI d -modules were then introduced as a generalization of the FI-modules, and it was proven in [START_REF] Ramos | Generalized representation stability and FI d -modules[END_REF] that, if a FI d -module is nitely generated, then the family of representations of the symmetric groups associated is stable in a generalized sense (for large enough irreducible representations). In this part we give general results on this category of functors. We start with the denition of this abelian category and we give a family of generating functors which are the standard projective. We will see that we can get a lot of information about the FI d -modules from the structure of these projective standard functors. We only consider here functors with values in R-modules but most of the results admit generalizations for functors with values in a Grothendieck category A (Denition 1.3.1). Denition 2.2.1. The category FI d -Mod = Fct(FI d , R-Mod) is the category of functors from FI d to the category of modules R-Mod, with natural transformations as morphisms.

Proposition 2.2.2. The category FI d -Mod = Fct(FI d , R-Mod) is a Grothendieck category (Denition 1.3.1), in particular it is abelian. Proof. The category R-Mod is a Grothendieck category and a functor category with values in a Grothendieck category is also a Grothendieck category (see [START_REF] Garkusha | Grothendieck categories[END_REF]).

Remark 2.2.3. The structure of a FI d -module can be represented by a diagram: it is a family of linear representations of the symmetric groups together with compatibility conditions given by linear maps. We give an example for d = 1, the diagram for a general d being analogue with more arrows:

FI 0 1 2 . . . n . . . R-Mod F (0) F (1) F (2) . . . F (n) . . . F S 0 S 1 S 2 Sn F (S 0 ) F (S 1 ) F (S 2 ) F (Sn)
Each arrow in this diagram represents in fact many arrows, however every arrow from i to j in FI is obtained from one by composition with the symmetric group S j .

A family of important examples of FI d -modules are the standard projective functors. These functors naturally exist in every category of functors with values in an abelian category and we will show that they form a family of generators of FI d -Mod. These fundamental functors introduced in a dierent context in [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF] appear for FI d in [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF] and for d = 1 in [DV19, Dja16, Ves19], or under the name of free modules in [CEF15, CEFN14, MW19] or representable functors in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. They play the role of the free modules in the classical theory of modules. Denition 2.2.4. For n ∈ FI d , the standard projective functor on FI d associated with n,

denoted by P FI d n ∶ FI d → R-Mod, is given by P FI d n = R [Hom FI d ( n, -)] ,
where

R[ -] ∶ Set → R-Mod is the R-linearization functor (i.e. the left adjoint to the forgetful functor R-Mod → Set). It sends an object m ∈ FI d to the R-module R [Hom FI d ( n, m )] and a morphism (f, g) ∈ FI d (m, k) on R[(f, g) * ]
, the linearization of the post-composition by (f, g).

This functor is sometimes called the representable functor on FI d associated with n.

We recall that a family F of objects in a category C is generative of C if for every object C in C there exists an epimorphism from a direct sum of elements in F to C. We now show that the projective functors generate the category FI d -Mod and that they are projective objects in the category FI d -Mod, following [START_REF] Vespa | Special lecture on mathematical sciences, Functor Homology: Theory and applications[END_REF].

Proposition 2.2.5. The family ( P FI d n ) n∈N of standard projective functors forms a set of projective generators of the category of FI d -modules. Proof. Let F be an object of FI d -Mod, the linear Yoneda lemma gives, for all n ∈ FI d , a bijection

ξ n ∶ Hom FI d -Mod (P FI d n , F ) ∼ → F (n).
Then the natural transformation

⊕ n∈FI d ⊕ x∈F (n) ( P FI d n F ξ -1 n (x)
)

is an epimorphism since, for any n ∈ FI d and x ∈ F (n), the natural transformation ξ -1 n (x) sends the identity of n to the elements x ∈ F (n). Moreover, every functor P FI d n is a projective object in the category FI d -Mod. Indeed, for an epimorphism f ∶ F → G in FI d and a natural transformation g ∶ P FI d n → G, the Yoneda lemma gives two natural bijections

Hom FI d -Mod (P FI d n F ) ≅ F (n)
and

Hom FI d -Mod (P FI d n G) ≅ G(n).
Since the application Remark 2.2.9. For d = 1, if F is a nitely generated FI-module over a eld, then the dimension of the vector spaces F (n) eventually becomes polynomial in n. This result was rst proved in [START_REF] Snowden | Syzygies of Segre embeddings and ∆-modules[END_REF] and in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] over a eld of characteristic zero, then in [START_REF] Church | FI-modules over Noetherian rings[END_REF] and in [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF] in general. This is false for d > 1 since P FI d 0 is nitely generated but

f n ∶ F (n) → G(n) is surjective, there exist h ∶ P FI d n → F such that f ○ h = g,
P FI d 0 (n) = R[FI d (0, n)] = R[C n ] is of dimension d n .
However, this result admits a generalization for nitely generated FI dmodules with the notion of Hilbert series introduced by Sam and Snowden. More precisely, they showed in [SS17, Corollary 7.1.7] that if F is a nitely generated FI d -module, then its Hilbert series H F (t) = ∑ dim K F (n) t n is of the form P (t)/Q(t), where P (t), Q(t) are polynomials in

K[t] with Q(t) = ∏ d j=1 (1 -jt) e j
for some e j ≥ 0. In particular, this implies that the dimension of F (n) eventually becomes a sum on 1 ≤ j ≤ d of a polynomial multiplied by j n . For d = 1 we recover that the dimension of F (n) is eventually polynomial, but for d > 1 it has a more complex expression.

As explained above, the theory of FI-modules was introduced to encode the notion of representation stability. It then was proven in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] that, if a FI-module is nitely generated, then the family of representations of the symmetric groups associated is stable (in the sense of [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF][START_REF] Church | FI-modules over Noetherian rings[END_REF][START_REF] Farb | Representation stability[END_REF]). In order to present the theorem [Ram17a, Theorem A], which is the analogue result for FI d -modules, we rst introduce the padded partitions: Denition 2.2.10. For λ = (λ 1 , . . . , λ h ) a partition of weight |λ| = ∑ λ i , and

n 1 ≥ ⋅ ⋅ ⋅ ≥ n d ≥ |λ| + λ 1 d positive integers, the associated d-padded partition is given by λ[n] = (n 1 -|λ|, . . . , n d - |λ|, λ 1 , . . . , λ h ).
As explained in [START_REF] Church | Representation theory and homological stability[END_REF][START_REF] Farb | Representation stability[END_REF][START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF] this is a way to name these irreducible partitions such that it is independent of the index of the symmetric groups. Then the representation stability of [START_REF] Church | Representation theory and homological stability[END_REF] for the symmetric groups can be summarized as follows (see [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF][START_REF] Church | FI-modules over Noetherian rings[END_REF][START_REF] Farb | Representation stability[END_REF]): a coherent family (V n ) n of representations is stable if, for each partition λ, the multiplicity of the irreducible representation associated with the padded partition λ[n] = (n -|λ|, λ 1 , . . . , λ h ) in V n is eventually independent of n. For example, the family of spaces K n , together with the injections of the canonical basis, is stable since each space decomposes into [n]. We now give the analogous theorem for FI d -modules: Theorem 2.2.11. [Ram17a, Theorem A] For K a eld of characteristic 0, a FI d -module F is nitely generated if and only if the space F (n) is nite dimensional for all n ∈ N and, for n large enough:

K n = M (n) ⊕M (n-1,1) = M (0) [n] ⊕ M (1)
The intersection of the kernels Ker(F (f, g)), for (f, g) the maps starting at n, is zero, The sum of the spaces This theorem is quite technical, but it is a direct generalization of the analogue theorem of [CEF15, CEFN14] for FI-modules. Morally, one can interpret the last point by saying that the irreducible representation associated with a partition with at least d rows appears eventually with a stable multiplicity in a nitely generated FI d -module. This theorem does not predict the behavior of the irreducible representations associated with smaller partitions, but the Theorem B in [START_REF] Ramos | Generalized representation stability and FI d -modules[END_REF] treat some of these cases.

F ( (f, g) ∶ n → n + 1 )(F (n))

First examples of FI d -modules

In this section we give examples of FI d -modules. We start with some elementary functors and with a family of functors induced by the tensor product of modules. The rst example we can construct is the constant functor. Let M ∈ R-Mod be an object, we still denote by M ∶ FI d → R-Mod the constant functor which sends any object to M and any morphism to the identity. Since there are only maps in FI d (n, m) when n ≤ m, we can dene variations of some of the examples of functor given in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] over a symmetric monoidal category with an initial object. Indeed, we can construct the twisted atomic functor M k ∶ FI d → R-Mod, which is dened on objects by

M k (n) = { M if n = k 0 else , and on a morphism (f, g) ∈ FI d (n, m) by M k (f, g) = M k (σ) if n = m = k and zero else with σ ∈ S n .
When the action of the symmetric group S n on M given by M k (σ) is trivial, we simply say that M k is atomic. Note that such a functor can not be dened over a source category with compatible maps a → b → a such that the composition is the identity. We can also consider M ≥k ∶ FI d → R-Mod the subfunctor of the constant functor M dened on objects by

M ≥k (n) = { M if n ≥ k 0 if n < k,
and on a morphism

(f, g) ∈ FI d (n, m) by M ≥k (f, g) = Id M if n, m ≥ k and zero else. For d = 1,
this functor is called the truncated module associated to the constant functor in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. We can combine these functors and, for a set I ⊂ N, we can dene the functors

⊕ i∈I M i and ⊕ i∈I M ≥i ⊂ ⊕ i∈I M.
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M <k (n) = { M if n < k 0 if n ≥ k,
and Remark 2.3.2. For d = 1, the functor R ≥k corresponds to the image of the functor P FI k (see Denition 2.2.4) by the arrow P FI k → P FI 0 given by the unique morphism 0 → k in FI. We also give a rst example of a functor that acts in dierently depending on the colours associated with a morphism:

M <k (f, g) = Id M if n, m < k
Example 2.3.3. Let F FI d c 1 ∶ FI d → R-Mod be dened on objects by F FI d c 1 (n) = R for all n ∈ FI d , and on an arrow (f, g) in FI d (n, m) by F FI d c 1 (f, g) = { 0 if g -1 (c 1 ) ≠ ∅, Id R else.
In other words, F FI d c 1 sends a morphism to zero if it uses the colour c 1 and to the identity else. It denes a functor since the colour c 1 appears in the composition (f, g) ○ (f ′ , g ′ ) if and only if it appears in (f, g) or in (f ′ , g ′ ). One can note that for d = 1 this functor is equal to the sum on i ∈ N of the atomic functors M i dened above since it sends every non-bijective morphism to zero and all bijective morphism on the identity.

Another interesting example is given by the tensor product on modules. We will see in Example 5.1.12 that it belongs to a family of strong polynomial functors since the tensor power is a usual polynomial functor over modules.

Example 2.3.4. For k ∈ N an integer, let T (d) k be the FI d -module dened on objects by

T (d) k (n) = (K n ) ⊗k , and on a morphism (f, g) ∈ FI d (n, m) by the arrow (K n ) ⊗k → (K m ) ⊗k induced by the map that injects K n into K m along f . For d = 1 we get that T (1) k is the composition of F ∶ FI → K -Vect which sends n to K n , with T k ∶ K -Vect → K -Vect which sends V to V ⊗k .
Since the functor is dened on injections independently of the colour, we also have the composition

T (d) k = T (1) k ○ O = O * ( T (1) k ),
where O is the forgetful functor of Denition 2.1.6.

Simple FI d -modules

We give a description of the simple objects of the category FI d -Mod using the fact that FI d is an EI-category. The EI-categories and their representations have been introduced among others by Dieck (in [START_REF] Tom | Transformation Groups[END_REF]) in the context of algebraic K-theory and have been studied more recently by Li (in [START_REF] Li | A generalized Koszul theory and its application[END_REF]), in particular their Koszul property.

Remark 2.4.1. The representation theory of the symmetric groups is well known. A brief summary of the results used in the context of twisted commutative algebras and FI-modules can be found in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF]. In particular, over a eld of characteristic zero, the irreducible representations of the symmetric group S n are indexed by the partitions λ of n. The irreducible representation associated to λ, denoted by M λ , is often dened as the ideal of the ring K[S n ] generated by an idempotent element associated to the partition λ called the Young symmetrizer. For example, the representation associated with the partition λ = (n) is the trivial representation, the one associated with λ = (1 n ) is the sign representation, and the one associated with λ = (n -1, 1) is the standard representation.

Denition 2.4.2. An EI-category is a category in which every endomorphism is an isomorphism.

The category FI d is an EI-category. Indeed, by denition for n ∈ N we have

FI d (n, n) = { (f ∶ n ↪ n, g ∶ n -n → C) } = { (σ ∈ S n , 0 → C) } ≅ S n .
Recall that the simple elements of a category of functors Fct(C, R-Mod) are the functors F which do not have non-zero proper subfunctors. When the source category C is an EI-category as it is the case here, the simple objects of Fct(C, R-Mod) can be described as follows:

Proposition 2.4.3. For K a eld of characteristic zero, the simple objects of the category FI d -Mod are the twisted atomic functors

(M λ ) k that sends an object n ∈ FI d to M λ if n = k and to zero else, for M λ ∈ K -Vect the irreducible representation of S k associated with a partition λ of k. Proof. First, if a functor F ∈ FI d -Mod is non-zero, there exists k ∈ FI d such that F (k) ≠ 0.
Then the twisted atomic functor F (k) k dened in Section 2.3 is a subfunctor of F which is not zero. If F is not equal to this twisted atomic functor F (k) k , it then admits a proper subfunctor and so it is not simple. Since the category FI d is an EI-category, we conclude that a simple element of FI d -Mod is a twisted atomic functor M k for some k ∈ N and some M ∈ R-Mod.

A twisted atomic FI d -module M k is given by the vector space M and by the action of the endomorphisms corresponding to the symmetric group S k . Then the twisted atomic functor M k is a linear representation of S k and it is simple as an object of FI d -Mod if and only if it is irreducible as a representation.

The category FI d

In this section we explain that a functor on FI d is completely determined by the image of the morphisms starting from 0 if they are sent to isomorphisms. This property will be used in the following chapters, in particular to describe the polynomial functors of degree 0 on FI d in Section 7.4. To prove it we introduce a subcategory FI d of FI d which contains only the morphisms starting from 0 and the symmetric groups. Then we show that, under the condition of sending these morphisms to isomorphisms, the functors on FI d correspond to the functors on FI d . First we explain that, under this hypothesis, the order of the colours is not important to dene a FI d -module.

Proposition 2.5.1. For F ∶ FI d → R-Mod, if there exist an object k ∈ FI d and a colour c ∈ C such that F (c k ) is an isomorphism, then For all permutation σ ∈ S k , the morphism F (σ) is the identity, Chapter 2. Functors on the categories FI d For all k-tuple of colours c j 1 , . . . , c j k ∈ C we have the following identity:

F ( (c j 1 , . . . , c j k ) ) = F ( (c j σ(1) , . . . , c j σ(k) ) ).
Proof. By denition, the two morphisms c k and σ ○ c k are equal in FI d , which give the identity

F (σ) ○ F (c k ) = F (c k ). Since F (c k
) is an isomorphism by hypothesis, we get the rst point. The second point is a consequence using the identity

F (σ) ○ F ( (c j 1 , . . . , c j k ) ) = F ( (c j σ(1) , . . . , c j σ(k) ) ).
We now dene the subcategory FI d of FI d and we emphasize that a functor F on FI d induces canonically a functor F on FI d by restriction.

Denition 2.5.2. The category FI d is the subcategory of FI d with the same objects (nite sets) and whose morphisms are given by

FI d (n, m) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ FI d (0, m) if n = 0 {S m } if n = m 0 else .
The following lemma and proposition explain that, if a functor F sends the morphisms starting from zero to isomorphisms, then it can be re-constructed from its induced functor F ∶ FI d → R-Mod. Morally this states that such a FI d -module is completely determined by its image on the morphisms starting from 0.

Lemma 2.5.3. Let F be a FI d -module, if F (x) is an isomorphism for all k ∈ FI d and all x ∈ FI d (0, k) then, for each u ∈ FI d (n, m), the morphism F (u) is obtained from F by the formula:

F (u) = F (v) ○ ( F (c n 1 ) ) -1 , where v = u ○ c n 1 ∈ FI d (0, m).
Moreover, the only relations between the images of morphisms in FI d by F are the one from Proposition 2.5.1.

Proof. For u ∈ FI d (n, n + m) a morphism in FI d and c n 1 ∈ FI d (0, n) we have u ○ c n 1 ∈ FI d (0, n + m). By hypothesis, F (c n 1 ) and F (u ○ c n 1 ) are isomorphisms, so the relation F (u) ○ F (c n 1 ) = F (u ○ c n 1 ) = F (v) implies the identity F (u) = F (v) ○ ( F (c n 1 ) ) -1 = F (v) ○ ( F (c n 1 ) ) -1 .
By Proposition 2.5.1 we get F (σ) = Id and so F (σ) = Id. Then, for x, y ∈ FI d (0, k) we have F (x) = F (y) when there exist σ ∈ S k such that y = σ ○ x. This gives the conclusion since the only possible compositions in FI d are of the form y = σ ○ x with x ∈ FI d (0, k) and y ∈ FI d (0, k) and σ ∈ S k .

Proposition 2.5.4. Let F ∶ FI d → R-Mod be a functor such that the image of all morphisms in FI d is an isomorphism. This functor can be extended in a unique way in a functor F from FI d to R-Mod.

Proof. By hypothesis, F (x) is an isomorphism for all k ∈ FI d and all x ∈ FI d (0, k). Then we can dene a functor F ∈ Fct(FI d , R-Mod) by the formula of Lemma 2.5.3 and by the relations necessary to have a functor. This same lemma proves that F is an extension of F .
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In this section we dene some endofunctors of Fct( FI d , R-Mod ) which will be used throughout this manuscript, for example to dene strong polynomial functors in Section 5.1 or to construct subcategories of Fct( FI d , R-Mod ) in Chapter 6. These denitions are inspired by [DV19, Section 2] concerning functors over a symmetric monoidal category where the unit is an initial object. As said in Section 2.1 this is not the case for FI d so these denitions are adapted for FI dmodules. We present here the denitions of these endofunctors and the rst general properties about them.

Denition 2.6.1. For k ∈ FI d , the endofunctor

τ k ∶ Fct( FI d , R-Mod ) → Fct( FI d , R-Mod ) is dened by τ k (F ) = F ( (-) + k).
This means that τ k (F ) sends an object n to F (n + k) and a morphism (f, g) to F ( (f, g) + Id 1 ). For x ∈ FI d (0, k), the natural transformation

i x k ∶ Id → τ k is dened on a functor F ∈ Fct(FI d , R-Mod) by i x k (F ) = F ( Id (-) +x) ∶ F (-) → F ( (-) + k).
The main dierence with FI-modules is that for FI d there is one natural transformation i x k for each morphism x ∈ FI d (0, k), while for FI there is only one natural transformation i k for k xed. For example, when k = 1 we have FI d (0, 1) ≅ C and so there are d natural transformations i c 1 , one for each c ∈ C. Denition 2.6.2. For k ∈ FI d and x ∈ FI d (0, k), the endofunctor κ x k is the kernel of i x k , and δ x k is its cokernel. Finally, the endofunctor κ is the sum

κ = ∑ k∈FI d ∑ x∈FI d (0,k) κ x k .
For k = 1, the endofunctor δ c 1 is called the c-coloured dierential endofunctor.

Remark 2.6.3. The endofunctors τ 1 and δ 1 appears under dierent names in dierent contexts:

in [START_REF] Nicholas | Generic representations of the nite general linear groups and the Steenrod algebra[END_REF] for functors from F p -vector spaces to F p -vector spaces, in the representation stability theory (see [CEF15, CEFN14, CE17, CMNR18]), in the denition of polynomial functors in [START_REF] Randal | Homological stability for automorphism groups[END_REF], in the theory of twisted commutative algebras (see [START_REF] Steven | Introduction to twisted commutative algebras[END_REF][START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF]) or in the work of Ramos (see [START_REF] Ramos | On the degree-wise coherence of FI G -modules[END_REF][START_REF] Li | Depth and the local cohomology of FI G -modules[END_REF]). Palmer introduced variations of these endofunctors in [START_REF] Palmer | A comparison of twisted coecient systems[END_REF] for functor over a category with stabilisers which encodes the existence of natural transformations like the transformations i x k .

Similarly than above, for d = 1 there are unique endofunctors δ c 1 and κ c 1 for the only colour c ∈ C, which are denoted by δ 1 and κ 1 , and respectively called the dierential and evanescent endofunctors in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. These endofunctors are used to construct both strong and weak polynomial functors over FI. We will use all the endofunctors δ x k and κ x k for k ∈ FI d and x ∈ FI d (0, k) to dene the polynomial functors over FI d . These endofunctors are arranged in a very important exact sequence: Lemma 2.6.4. By denition for k ∈ FI d and x ∈ FI d (0, k) there is an exact sequence of endofunctors

0 κ x k Id τ k δ x k 0 i x k (I)
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It is important to note that, on FI d there are formulas that associate τ k with iterations of τ 1 and i x k with iterations of i c 1 which are presented in the following proposition, but there is no such formula for δ x k or κ x k . In particular, δ x k is not the composition of k endofunctors δ c 1 .

Proposition 2.6.5. For k ∈ FI d and x = (c 1 , . . . , c k ) ∈ FI d (0, k), there are isomorphisms

τ k ≅ τ 1 ○ ⋅ ⋅ ⋅ ○ τ 1 and i x k = τ k-1 (i c k 1 ) ○ . . . ○ τ 1 (i c 2 1 ) ○ i c 1
1 . However, for d > 1 and k ≥ 2, there is no similar isomorphism for δ x k or κ x k i.e. we do not always have

δ x k ≅ δ c k 1 ○⋅ ⋅ ⋅○δ c 1 1 or κ x k ≅ κ c k 1 ○⋅ ⋅ ⋅○κ c 1
1 . Proof. By denition, τ k is equal to the composition τ 1 ○⋅ ⋅ ⋅○τ 1 of τ 1 by itself k times. The relation for i x k also follows from the denitions of τ k and i x k . We give a counterexample to prove that there is no similar relation for δ

x k and κ x k if d > 1: Let F = F FI d c 1 ∶ FI d → R-Mod be the functor of Example 2.3.3, we then compute that δ c 1 1 (F ) = τ 1 (F ), δ c 2 1 (F ) = 0 and δ (c 1 ,c 2 ) 2 (F ) = τ 2 (F ). This proves that δ c 2 1 ○ δ c 1 1 (F ) = δ c 2 1 (τ 1 (F )) ≅ δ c 2 1 (F ) = 0 and δ c 1 1 ○ δ c 2 1 (F ) = δ c 1 1 (0) = 0, while δ (c 1 ,c 2 ) 2 (F ) = τ 2 (F ) is not zero. Similarly we have κ c 1 1 (F ) = F and κ c 2 1 (F ) = 0 which gives κ c 2 1 ○ κ c 1 1 (F ) = κ c 1 1 ○ κ c 2 1 (F ) = 0, while κ (c 1 ,c 2 ) 2 (F ) = F .
Before using these endofunctors to dene the polynomial functors in the following chapters, we give some of their basic properties which will be used several times. For d = 1 we recover most of [DV19, Proposition 2.4].

Proposition 2.6.6. For k, l ∈ FI d , x ∈ FI d (0, k) and y ∈ FI d (0, l) we have: 0) For every short exact sequence

0 → F → G → H → 0 in Fct( FI d , R-Mod ) there is an ex- act sequence 0 κ x k (F ) κ x k (G) κ x k (H) δ x k (F ) δ x k (G) δ x k (H) 0.
1) The endofunctors τ k and τ l commute up to a natural isomorphism. They also commute with limits and colimits.

2) The endofunctors δ x k and δ y l commute up to a natural isomorphism. They also commute with colimits.

3) The endofunctors κ x k and κ y l commute up to a natural isomorphism. They also commute with limits.

4) The inclusion

(κ x k ) ○ (κ x k ) ↪ (κ x k ) gives a natural isomorphism (κ x k ) 2 ≅ (κ x k ).
5) The endofunctors τ l and δ x k commute up to a natural isomorphism. 6) The endofunctors τ l and κ x k commute up to a natural isomorphism. 7) There is a natural exact sequence

0 κ y l κ x+y k+l τ l ○ κ x k δ y l δ x+y k+l τ l ○ δ x k 0 .
8) The family of subobjects

( κ x k (F ) ) k∈FI d , x∈FI d (0,k)
of F forms a ltered set for the inclusion. 9) The endofunctor κ is left exact.
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0 F G H 0 0 τ k (F ) τ k (G) τ k (H) 0 i x k (F ) i x k (G) i x k (H)
It commutes by naturality of i x k , and the snake lemma gives the result.

1) By denition, τ k and τ l commute up to an isomorphism β induced by the symmetry k + l ≃ l + k. Moreover they behave well with the universal property of limit and colimit of functors, so they commute with both.

5,6) Applying the exact functor τ l to the exact sequence (I) from Lemma 2.6.4 on one side, and pre-composing it with τ l on the other side, we get the following diagram with exact rows

0 κ x k ○ τ l τ l τ k ○ τ l δ x k ○ τ l 0 0 τ l ○ κ x k τ l τ l ○ τ k τ l ○ δ x k 0 i x k ○τ l id β γ τ l ○i x k
By denition of β it commutes in the middle. Using the universal property of kernels for κ x k , and of cokernels for δ x k , we get the existence of the two dashed morphisms. They are isomorphisms by the ve lemma since β is an isomorphism.

2) We again use the exact sequence (I) with l and y but this time we extract the short exact sequence 0 Ker(s)

τ l δ y l 0 i y l | Ker(s) s
from it, where Ker(s) is a subfunctor of the identity. Applying the right exact (by point 0) functor δ x k to it on one side, and pre-compose it with δ x k on the other side, we get another diagram with exact rows

δ x k ○ Ker(s) δ x k ○ τ l δ x k ○ δ y l 0 0 Ker(s) ○ δ x k τ l ○ δ x k δ y l ○ δ x k 0 δ x k ○i y l | Ker(s) id γ i y l | Ker(s) ○δ x k
since Ker(s) is a subfunctor of the identity. It commutes in the middle by construction of γ as β passing to the quotient and because Ker(s) is a subfunctor of the identity. Then the universal property of the cokernel induces the existence of the dashed arrow and it is an isomorphism by the ve lemma.

3) It is analogue to the point 2) 4) We again use the exact sequence (I) by pre-composing it with the endofunctor κ x k and by applying the exact endofunctor τ k to it. We get the following diagram with exact rows and Chapter 2. Functors on the categories FI d columns:

0 0 0 κ x k ○ κ x k κ x k τ k ○ κ x k δ x k ○ κ x k 0 0 κ x k id τ k δ x k 0 τ k τ k ○ τ k j i x k ○κ x k τ k (j) j i x k
It commutes in the middle since the transformation i x k is natural between id and τ k . Since the second row is exact we have

τ k (j) ○ (i x k ○ κ x k ) = i x k ○ j = 0 but τ k (j) is a monomorphism since τ k is exact, which implies that i x k ○ κ x k = 0. By exactness it means that the inclusion (κ x k ) ○ (κ x k ) ↪ (κ x k ) is an isomorphism.
7) Recall (see [START_REF] Mac | Categories for the working mathematician[END_REF] p.208) that for two composable morphisms u ∶ a → b and v ∶ b → c there always exists an exact sequence

0 → Ker(u) → Ker(v ○ u) → Ker(v) → Coker(u) → Coker(v ○ u) → Coker(v) → 0.

We use this property for

u = i y l ∶ Id → τ l and v = τ l (i x k ) ∶ τ l → τ l ○ τ k .
The endofunctor τ l commutes with kernels and cokernels as they are limits and colimits, so the result follows from the identity v ○ u = ( τ l (i x k ) ) ○ i y l = (i x k + id l ) ○ i y l = i x+y k+l . 8) From point 7) we have an inclusion κ y l ↪ κ x+y k+l and by symmetry we also have κ x k ↪ κ x+y k+l . 9) By the point 8), the colimit κ is a growing ltered colimit so it is exact since R-Mod is a Grothendieck category (Denition 1.3.1). Knowing that each κ x k is left exact by the point 0), this implies that their colimit κ is also left exact.

Unlike what the last proposition suggest, we warm the reader that these endofunctors do not all commute together. In particular, the endofunctors δ x k and κ y l do not commute as explained below.

Remark 2.6.7. For k, l ∈ FI d and x ∈ FI d (0, k), y ∈ FI d (0, l), the endofunctors κ y l and δ x k of Fct(FI d , R-Mod) do not commute in general, even for d = 1. We give there a counterexample for k = l = 1 and x = c ∈ C: for M ∈ R-Mod, let M ≥k ∶ FI d → R-Mod be the functor dened in Section 2.3 as a subfunctor of the constant functor. As explained later in Example 5.1.7, we can compute that τ 1 (M ≥k ) = M ≥k-1 and that, for any colour c, κ c 1 (M ≥k ) = 0 and

δ c 1 (M ≥k ) = M k-1 , where M k-1 is the atomic functor of rank k -1. This implies that κ c 1 ○ δ c 1 (M ≥k ) is the atomic functor of rank k -1, while δ c 1 ○ κ c 1 (M ≥k ) is zero.

The forgetful and colouring functors

In this section we study the link between the FI d -modules and the FI-modules. In particular, we present some properties of the forgetful functor O ∶ FI d → FI from Denition 2.1.6 and a family of right-adjoints ∆ c ∶ FI → FI d for c ∈ C called the colouring functors. We start this section by showing that the endofunctors of the previous section (Denition 2.6.2) behave well with the precomposition by the forgetful functor.

Proposition 2.7.1. For all object k ∈ FI d and all morphism x ∈ FI d (0, k) there are natural isomorphisms :

i) O * ○ τ k = τ k ○ O * ii) O * ○ δ k ≅ δ x k ○ O * iii) O * ○ κ k ≅ κ x k ○ O * .
Proof. For F ∈ Fct(FI, R-Mod), using the fact that the forgetful functor O is monoidal together with the relations O(k) = k and O(Id) = Id we have

O * ○ τ k (F ) = F (-+ k) ○ O = F (O(-) + k) = F (O(-+ k)) = τ k (F ○ O) = τ k ○ O * (F ).
Moreover, for a natural transformation σ ∈ Fct(FI d , R-Mod)(F, G), we also have:

O * ○ τ k (σ) = O * (σ -+k ) = σ O(-)+k = σ O(-+k) = τ k (σ O(-) ) = τ k ○ O * (σ).
This shows that there is an equality

O * ○ τ k = τ k ○ O * .
By pre-composing the exact sequence of endofunctors of FI d (I) from Lemma 2.6.4 by the functor O * we get the exact sequence

0 κ x k ○ O * O * τ k ○ O * δ x k ○ O * 0 i x k ○O *
.

By the denition of precomposition on natural transformations, we have for any functor F ∈ Fct(FI, R-Mod):

i x k ○ O * (F ) = i x k (F ○ O) = F ○ O(id +x) = F ( id +(0 → k) ) = i k (F ).
Next we use the same exact sequence (I), but for FI = FI 1 , and we apply the exact functor O * to it, which gives the exact sequence

0 O * ○ κ k O * O * ○ τ k (F ) O * ○ δ k (F ) 0 O * (i k )=i k .
Applying the precomposition functor O * to the natural transformation i k , we have for any functor F ∈ Fct(FI, R-Mod):

O * (i k )(F ) = F ( id O(-) +(0 → k) ) = F ( id (-) +(0 → k) ) = i k (F ).
We then have the following diagram with exact rows:

0 O * ○ κ k O * O * ○ τ k O * ○ δ k 0 0 κ x k ○ O * O * τ k ○ O * δ x k ○ O * 0. O * (i k )=i k i x k ○O * =i k It commutes in the middle since i x k ○O * = i k = O * (i k )
, so the two dashed arrows exist by universal properties and they are isomorphisms by the ve lemma.

We now dene a collection of functors from Fct(FI d , R-Mod) to Fct(FI, R-Mod) called the colouring functors. These functors add a colour on the morphisms in FI to get morphisms in FI d and, by precomposition they allow us to consider a FI d -module as a FI-module. We will use this to describe the stably zero functors along colours in a concrete way in Section 6.2.

Chapter 2. Functors on the categories FI d Denition 2.7.2. For c ∈ C ≅ FI d (0, 1), the c-colouring functor ∆ c ∶ FI → FI d is the functor given by the identity on objects and on a morphism f ∈ FI(n, m) by The functor ∆ c is monoidal since adding the colour c on the arrows does not aect the monoidal structure. By denition we also get Proposition 2.7.3. For all colours c ∈ C we have the identities:

∆ c (f ) = (f ∶ n ↪ m , m ∖ Im(f ) → {c} → C) . Let ∆ * c ∶ Fct(FI d , R-Mod) → Fct(FI,
∆ c (0 → 1) = (0 → 1, c) = c ∈ FI d (0, 1) and ∆ c (i k ) = i c k k , where i k ∶ Id → τ k and i c k k ∶ Id → τ k
O ○ ∆ c = Id FI and ∆ * c ○ O * = Id Fct(FI) ,
where O is the forgetful functor of Denition 2.1.6. Proof. It follows from the denitions of O and ∆ c .

We now give some properties of the precomposition by colouring functors ∆ * c , in particular we describe how they behave with endofunctors τ k , δ k and κ k . Proposition 2.7.4. For k ∈ FI d and c ∈ C there are natural isomorphisms:

i) τ k ○ ∆ * c ≅ ∆ * c ○ τ k ii) δ k ○ ∆ * c ≅ ∆ * c ○ δ c k k iii) κ k ○ ∆ * c ≅ ∆ * c ○ κ c k k .
Proof. For F ∈ Fct(FI d , R-Mod), the rst isomorphism can be checked by hand: since ∆ c is monoidal, we have the following identity

τ k ○ ∆ * c (F ) = F ○ ∆ c (-+ k) ≅ F (∆ c (-) + k) = F (-+ k) ○ ∆ c (-) = τ k (F ) ○ ∆ c (-) = ∆ * c ○ τ k (F ).
This isomorphism is natural by denition of the precomposition functors on natural transformations. For the other isomorphisms we take the exact sequence (I) from Lemma 2.6.4 for k ∈ FI d and x = c k ∈ FI d (0, k) and we apply the exact functor ∆ * c to it. It gives the exact sequence

0 ∆ * c ○ κ c k k (F ) ∆ * c (F ) ∆ * c ○ τ k (F ) ∆ * c ○ δ c k k (F ) 0 ∆ * c ( F (i c k k ) )
and by denition of precomposition functor on natural transformations we have

∆ * c ( F (i c k k ) ) = F (i c k k ).
Next we use the exact sequence (I) again, but for FI = FI 1 , and we precompose it with the functor ∆ * c (F ). This gives the exact sequence

0 κ k ○ ∆ * c (F ) ∆ * c (F ) τ k ○ ∆ * c (F ) δ c k k ○ ∆ * c (F ) 0 ∆ * c (F ) (i k )
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∆ * c (F ) (i k ) = F ○ ∆ c (i k ) = F (i c k k ).
We then have the following diagram with exact rows:

0 ∆ * c ○ κ c k k (F ) ∆ * c (F ) ∆ * c ○ τ k (F ) ∆ * c ○ δ c k k (F ) 0 0 κ k ○ ∆ * c (F ) ∆ * c (F ) τ k ○ ∆ * c (F ) δ k ○ ∆ * c (F ) 0. F (i c k k ) F (i c k k )
It commutes in the middle by the previous point, so the two dashed arrows exist by universal properties and they are isomorphisms by the ve lemma.

Chapter 3

Homology Sink of graph conguration spaces

There are many concrete FI-modules that occur in dierent contexts. Numerous of such examples are presented in [START_REF] Church | Representation theory and homological stability[END_REF]. One interesting example, for a regular manifold M , is the cohomology of the conguration spaces of M , which is fully detailed in [Sam20, [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF][START_REF] Jennifer | MSRI graduate summer school on representation stability: Representation stability for conguration spaces of open manifolds[END_REF] and [START_REF] Church | Representation theory and homological stability[END_REF]. When M is open, there are a structure of FI-module and FI op -module which are compatible (the rst is given by adding points at innity on the boundary). This gives a structure of FI #-modules, where FI # is the category of nite sets and partial injections presented in [Wil18a, MW19, MW20], which is equivalent to the category Cospan(FI) from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] presented in Chapter 9. Even if there is an extensive literature on the cohomology of the conguration spaces of a manifold, these groups essentially have been studied globally and are known explicitly only in a few cases. The stability theorem from [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] states that, for a non-compact manifold, these FI-modules are nitely generated, which can be interpreted in terms of polynomial functor since being nitely generated is almost equivalent to being strong polynomial for FI-modules as we will see in Section 5.1.

These results about the FI-module H i (Conf (-) (M ) , R) are proved for a manifold M of dimension at least two in order to ensure that the conguration spaces are connected and that the points can move around each other. But for a manifold of dimension 1, like a graph, there is not enough space and the points block each other in the conguration spaces, so the same approach is no longer valid. Therefore, Ramos introduced in [Ram19] the homology of a kind of modied conguration spaces of graphs, called the sink conguration spaces, in which we take n (ordered) points on the graph as for the classical ones but in which they can either be distinct two by two or they can overlap at a vertex of the graph but not within an edge. Then, the d vertices of the graph correspond to the d colours of FI d which gives the structure of a FI d -module when we take the homology of these topological spaces. This gives an interesting family of examples of FI d -modules. Ramos proved in [START_REF] Ramos | Conguration spaces of graphs with certain permitted collisions[END_REF] that these FI d -modules are nitely generated for every homological degree and every connected graph. In Proposition 3.2.8 we give an explicit description of these functors for the linear graphs and we show that they are either twisted atomic or constant functors.

Cohomology of classical conguration spaces as FI-modules

We start by presenting the FI-module H i (Conf M (-), R) of the i-th cohomology of the conguration spaces of a manifold M . We give a concrete example of how it acts on map and we Chapter 3. Homology Sink of graph conguration spaces 59 summarize the results about this FI-module.

Denition 3.1.1. For M a manifold the n-strand conguration space of M is the topological

space Conf n (M ) = {(x 1 , . . . , x n ) ∈ M n | ∀1 ≤ i ≠ j ≤ n, x i ≠ x j },
where the topology is induced by M n .

In explicit words, we take n (ordered) points on the manifold distinct two by two. These conguration spaces, presented among many others in [CF13, CEF15, MW20, CF13] naturally give a functor from FI op to Top as explained in the following. Denition 3.1.2. The contravariant functor Conf -(M ) ∶ FI op → Top sends an object n ∈ FI to the topological space Conf n (M ) and a map f ∈ FI(n, m) to the application that sends (x 1 , . . . , x m ) to (y 1 , . . . , y n ) = (x f (1) , . . . , x f (n) ).

For example, if M is the torus and f the injection (0 → 1) + Id 2 ∈ FI(2, 3) which sends 1 to 2 and 2 to 3, it gives an application like the following one:

x 1 • x 2 • x 3 • y 1 = x f (1) • y 2 = x f (2) •
We can then take the cohomology of these topological spaces, which is contravariant, and with the induced maps in cohomology, this gives a FI-module H i (Conf (-) (M ) , R).

Theorem 3.1.3. For i ∈ N, if M is a connected oriented manifold of dimension at least 2 with dim Q (H * (M, Q)) > ∞, then the FI-module H i (Conf (-) (M ) , Q) is nitely generated. Proof. It was proved by Church, Ellenberg and Farb in [CEF15, Theorem 6.2.1] .

For example, the hypothesis dim

Q H * (M, Q)) > ∞ is satised is M is compact.
This result is illustrated on a concrete example in [Wil19, Section 3.1]. More than that, there is a stronger result of polynomiality, which can be interpreted with Denitions 5.1.1 and 7.2.1 of strong and weak polynomial FI-modules (already present in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for FI-modules). More precise boundaries are given in [START_REF] Miller | FI-hyperhomology and ordered conguration spaces[END_REF] since the generation degree corresponds to the strong degree and the presentation degree precise how to the weak and strong degrees are linked. Theorem 3.1.4. For i ∈ N, if M is a connected manifold of dimension at least 2, then the FI-module H i (Conf (-) (M ) , R) is strong and weak polynomial of degree less than or equal to 2i. Proof. It is proved in [CEF15, Theorem 1.8] for eld of characteristic 0, and in [CMNR18,

Application A] in general.

Remark 3.1.5. An additional similar construction can be done if M is a non-compact manifold of dimension at least 2, as explained in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF] and [START_REF] Jennifer | MSRI graduate summer school on representation stability: Representation stability for conguration spaces of open manifolds[END_REF], by sending an injection f ∶ n ↪ n + 1 to a map that permutes the n points of the n-th conguration space and adds a new point "at innity" on the boundary of the rescaled manifold. When dim(M ) ≥ 2, these maps dene a functor over FI up to homotopy. It has been proven in [CEF15, Theorem 6.4.3] and [MW19, Theorem 3.12] that these FI-modules are nitely generated with better bounds than for the compact case which can be interpreted in terms of polynomial functor since being nitely generated is almost equivalent to being strong polynomial for FI-modules (see Section 5.1). The proof uses a vanishing result about the spectral sequence associated with the semi-simplicial space called the arc resolution. These arcs connect the points of the conguration space to the boundary of the manifold and are dened when the dimension of M is at least 2. For an open manifold, the structure of FI-module and FI op -module are compatible, giving a structure of FI #-modules, where FI # is the category of nite sets and partial injections (see in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF][START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF][START_REF] Miller | FI-hyperhomology and ordered conguration spaces[END_REF]) and is equivalent to the category Cospan(FI) from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. The theorem of [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] which states that these FI-modules are nitely generated can be interpreted as follows: if the homological degree is small enough relative to the number of points, the homology of the conguration spaces is spanned by the classes corresponding to the conguration spaces were at least one point is isolated near innity (i.e. near the boundary of the manifold). This was generalized for open manifolds in [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF] where they showed that, after some point, the homology of the conguration spaces is spanned by the classes were at least one point is stationary at innity or two points are orbiting around each other near innity.

Remark 3.1.6. Other interesting examples of nitely generated FI-module are given by the cohomology of the pure string motion groups in [START_REF] Jennifer | Representation stability for the cohomology of the pure string motion groups[END_REF] and the pure braid groups in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF]. The pure braid groups are equivalent to the fundamental group of the conguration spaces of C, which gives another proof using the niteness result about the conguration space.

Homology of a generalized conguration space of graphs as FI d -modules

The results of the previous section are obtained for a manifold of dimension at least two but for a manifold of dimension 1, like a graph, the same method does not work since the points block each other in the conguration space. For example, as explained in [START_REF] Jennifer | MSRI graduate summer school on representation stability: Representation stability for conguration spaces of open manifolds[END_REF] and [START_REF] Ramos | Conguration spaces of graphs with certain permitted collisions[END_REF], if G is the linear graph with only one edge then the conguration space is homotopy equivalent to n! disjoints points, while it is always connected when M has higher dimension. In this section we present a variation of this, which makes a FI d -module for graphs by using the homology of some kind of modied conguration spaces introduced by Ramos in [START_REF] Ramos | Conguration spaces of graphs with certain permitted collisions[END_REF]. This gives an interesting non-trivial example of FI d -module since, before that, all the FI d -modules in the literature were either free or obtained from FI-modules via the forgetful functor. In this section we calculate and give an explicit description of these functors for the linear graphs. We show that they are either twisted atomic or constant functors and we then recover for these examples that these 

sink n (G, [d]) = {(x 1 , . . . , x n ) ∈ G n | ∀ 1 ≤ i ≠ j ≤ n, x i ≠ x j or x i = x j ∈ [d]}.
In explicit words, as for the classical conguration spaces we take n (ordered) points on the graph, but in these sink conguration spaces they can either be distinct two by two, or they can overlap at a vertex of the graph but not within an edge. These conguration spaces naturally give a functor from G,[d]) and a map (f, g) ∈ FI d (n, m) to the application that sends (x 1 , . . . , x n ) to (y 1 , . . . , y m ) with

y j = { x f -1 (j) if j ∈ Im(f ) g(j) ∈ [d] else .
For the rest of this section, let G d be the linear graph on d vertices:

1 • 2 • 3 • d •
For d = 3, we give an example of an application (x 1 , . . . , x n ) ↦ (y 1 , . . . , y m ) from Denition 3.2.2 for G 3 and the injection c 1 + Id 2 ∈ FI 3 (2, 3) (which sends 1 to 2, 2 to 3 and colours the element 1 with c 1 ):

1 • 2 • 3 • 1 • 2 • 3 • ⨉ x 1 ⨉ y 2 ⨉ y 1 ⨉ x 2 ⨉ y 3
We can then consider the homology

H i (Conf sink (-) (G, [d]
) , Q) of these topological spaces and, together with the induced maps in homology, this gives an FI d -module. We consider the rational homology since it is the main framework studied by Ramos due to its connection with the representation stability. It also allows us to do concrete computations and to use the classication of the irreducible representations of the symmetric groups recalled in Remark 2.4.1. However, most of the following remains true for the homology over a general commutative ring R. 

(G, [d]) , Q) ≅ Q n c ,
where c is the number of connected components.

In the end of this section, we give an explicit description of this FI d -module for the linear graphs G d . To do this we rst describe the space Conf sink n (G 2 , [2]) for d = 2, then we deduce the general case before computing the homology in Proposition 3.2.8. Proposition 3.2.5. For n ∈ N * , the space Conf sink n (G 2 , [2]) is homotopy equivalent to the sphere S n-1 if n ≥ 2, and to a point if n = 1. Proof. There is an embedding of G 2 in the subspace

[-1, 1] of R. This embedding sends Conf sink n (G 2 , [2]) to a subspace of the hypercube C n ∶= [-1, 1] n = {X ∈ R n | ∥ X ∥ ∞ ≤ 1}.
We denote by I the image of Conf sink n (G 2 , [2]) by this embedding. We then have the following description

I = C n ∖ { (x 1 , . . . , x n ) ∈ [-1, 1] n | ∃ 1 ≤ i ≠ j ≤ n such that -1 < x i = x j < 1}.
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The last inequalities are strict since the points in Conf sink n (G 2 , [2]) can overlap at a vertex, so the boundary ∂ C n of the cube C n is in I. We show now that ∂ C n is a deformation retract of I. Indeed, the center of the hypercube 0 ∈ R n is not in I so we can dene the central retraction (see gure 3.1 for n = 2)

F ∶ I × [0, 1] → ∂ C n (X, t) ↦ tX 1 ∥X∥∞ + (1 -t)X.
Then we can check that F (X, t) is a deformation retraction. Finally, the boundary of the hypercube ∂ C n is homotopy equivalent to the sphere S n-1 , which gives the result if n ≥ 2. The case n = 1 is clear. is homotopy equivalent to the bouquet of N (d, n) spheres S n-1 , where

(-1, 1) (1, 1) (-1, -1) (1, -1) • ≃ (-1, 1) (1, 1) (-1, -1) (1, -1) 
N (d, n) = { (d -1) n -( d-1 n )n! if d ≥ n + 1 (d -1) n if d ≤ n.
Proof. We use the same argument than in the proof of Proposition 3.2.5, but with an embedding of Conf sink

n (G d , [d]) in a big hypercube C n ⊂ R n given by the embedding of G in the subspace [0, d -1] of R. This big hypercube is composed of (d -1) n small hypercubes [i 1 -1, i 1 ] × ⋅ ⋅ ⋅ × [i n -1, i n ] for 1 ≤ i 1 , . . . , i n ≤ d -1. Each small hypercube corresponds to a possible choice of n edges among the d -1 in G since (x 1 , . . . , x n ) ∈ Conf sink n (G d , [d]) is in [i 1 -1, i 1 ] × ⋅ ⋅ ⋅ × [i n -1, i n ]
if and only if x 1 is in the i 1 -th edge, x 2 is in the i 2 -th edge, . . . , x n is in the i n -th edge. If we represent a small hypercube by its center, there are two possibilities:

Either the center has two equal coordinates, and then the center do not belong to ) is then homotopy equivalent to a wedge of boundaries of hypercubes which are homotopy equivalent to the sphere S n-1 . The number of spheres in this wedge is given by the number of small hypercubes such that their center has two equal coordinates. This is equal to the number of total hypercubes (d -1) n minus the number of choices of n dierent edges among the d -1 possible, which is 

(d -1)(d -2) . . . (d -n) = ( d-1 n ) n! if n ≤ d -1,
.25 that, if (G, V, E) is a tree, then H i ( Conf sink n (G, V ) )
is torsion free and depends only on i, n and the number of edges |E| in G, and not on the structure of the graph. The proof of this result is based on counting the number of "critical cells" that generates the homology group when we view Conf sink n (G, V ) as a CW complex. Then the small hypercubes whose center have two equal coordinates in the proof of Proposition 3.2.6 seems to correspond to the critical cells of the discrete Morse theory, and the other small hypercubes corresponds to collapsible (or redundant) cells. Moreover, the Theorem A in [START_REF] Ramos | Conguration spaces of graphs with certain permitted collisions[END_REF] states that, if G is a tree, then Conf sink n (G, V ) is homotopy equivalent to a cubical complex and in the proof of [Ram19, Corollary 3.25], it is shown that the group H i ( Conf sink n (G, V ) ) is free on the number of critical cells, and so nitely generated. This may indicate that the corresponding FI d -module has a quite simple description, similar than in Proposition 3.2.6, if G is a tree.

Finally, using the description of the space Conf sink n (G d , [d]) from Proposition 3.2.6 we can compute its homology and describe the FI d -module associated. Proposition 3.2.8. For i ∈ N * and G d the linear graph on d vertices, the FI d -module

H i ( Conf sink (-) (G d , [d]) , Q ) is a twisted atomic functor ( Q N (d,i+1
) ) i+1 of rank i + 1 dened in Section 2.3, where

N (d, i + 1) = { (d -1) i+1 -( d-1 i+1 )(i + 1)! if d ≥ i + 2 (d -1) i+1 if d ≤ i + 1. For i = 0, the FI d -module H 0 ( Conf sink (-) (G d , [d]) , Q ) is the constant functor Q. Proof. By Proposition 3.2.6 the space Conf sink n (G d , [d]
) is homotopy equivalent to the bouquet of N (d, n) spheres S n-1 . Since i > 0, we can use the reduced homology and we get the isomorphisms

H i ⎛ ⎝ N (d,n) ⋁ k=1 S n-1 ⎞ ⎠ = Hi ⎛ ⎝ N (d,n) ⋁ k=1 S n-1 ⎞ ⎠ ≅ N (d,n) ⊕ k=1
Hi (S n-1 ) .
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Since Hi (S n-1 ) is equal to Q if i = n -1 and zero else, this gives that

H i ( Conf sink n (G d , [d]) Q ) ≅ { Q N (d,i+1) if n = i + 1 0 else .
The case i = 0 is explained in Remark 3.2.4.

Remark 3.2.9. In Proposition 3.2.8 we describe the FI d -module

H i ( Conf sink (-) (G d , [d]
) , Q) on objects but we do not give its values on morphisms for i > 0. It is clear that all the non-bijective morphisms in FI d are sent to the zero map by this functor since it is twisted atomic, however there is a non-trivial action of the symmetric group S i+1 on Q N (d,i+1) . Remark 3.2.10. Ramos also studied the classical unordered conguration spaces of graphs in [START_REF] Ramos | An application of the theory of FI-algebras to graph conguration spaces[END_REF]. He introduced a FI-module that sends n to the wedge of a xed graph and n copies of another xed graph, and showed this has strong niteness properties. In particular, this generalizes the fact that homology of the unordered conguration space of a graph is nitely generated.

Chapter 4

Twisted commutative algebras

In algebraic topology, the theory of twisted commutative algebras (TCAs) dates back to the 1950s. For example, Barratt denes in [START_REF] Barratt | Twisted Lie algebras[END_REF] a general twisted algebra and adds a condition to be a twisted Lie algebra or a twisted commutative algebra. In this section we explain and exploit the link between the FI d -modules and the theory of TCAs. Indeed, Sam and Snowden showed in [SS12, SS17] that there is an equivalence of categories between the modules on the free TCA on d generators Sym((K d ) (1) ) and the FI d -modules. The modules over these free TCAs have recently been studied in dierent contexts, such as in [SS12, [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF][START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] or in [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF]. They focused on a family of quotient categories given by what they call the determinantal ideals. The TCAs have been used in other contexts, for example, the modules over the TCA Sym( Sym 2 (C ∞ ) ) are equivalent to the representations of the innite orthogonal group. In a rst section we give some reminders about the dierent denitions and basic properties of the TCAs. Then we construct explicitly two functors giving the equivalence stated by Sam and Snowden. In a third part, we describe a natural action of the linear group GL(K d ) on the modules over the TCA Sym((K d ) (1) ) and in Proposition 4.3.5 we make explicit the action of GL(K d ) on the FI d -modules induced by this action through the equivalence of categories. In this chapter we assume that R = K is a eld of characteristic zero in order to use dierent equivalent denitions of the TCAs as explained in the rst section.

A reminder about twisted commutative algebras

A twisted commutative algebra (TCA) is a monoid in an abstract category which is equivalent to several concrete categories, thus there are dierent equivalent ways to dene the TCAs. For example, it can be dened as a functor from vector spaces to commutative rings, or a commutative ring endowed with an action of the innite linear group, or a graded algebra endowed with an action of the symmetric groups. In each case there is an additional condition, called polynomiality (in a dierent sense than the polynomial functors we study), which is added to form a TCA and there is a corresponding notion of modules over a TCA. We choose to focus mainly on this last denition, using the others from time to time when it is more relevant. The connection between these denitions is given by the Schur-Weyl duality for a eld of characteristic zero, so this is the framework for this chapter. We start with a reminder on the denitions and the basic results on the TCAs. We also introduce examples of TCAs, such as Sym((K d ) (1) ) the free TCA on d generators of degree one. Denition 4.1.1. The category Σ has for objects the nite sets and for morphisms the bijections. The composition of morphisms is the usual composition of bijections.

As for FI d , we consider a skeleton of the category Σ given by N, where n corresponds to the class of the sets of cardinality n which is represented by the set n = {1, . . . , n}. We now construct a symmetric monoidal category with the functors over Σ. First we introduce the following tensor product on these functors, sometimes called the Day convolution as in [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF]:

Denition 4.1.2. The functor ⊗ ∶ Fct ( Σ, K -Vect )×Fct ( Σ, K -Vect ) → Fct ( Σ, K -Vect ) is given on objects by (F ⊗ G)(n) ∶= ⊕ i⊔j=n F (i) ⊗ K G(j)
and on a morphism σ ∶ n → n by the induced map sending the factor

F (i) ⊗ G(j) of (F ⊗ G)(n) to the factor F (σ(i)) ⊗ G(σ(j)).
Lemma 4.1.3. The category Fct ( Σ , K -Vect ) endowed with the functor ⊗, the functor K 0 which sends 0 ∈ Σ to K and everything else on 0, and with the natural symmetric structure τ on ⊗, gives a symmetric monoidal category.

Proof. This follows from the denitions of the tensor product ⊗ and the functor K 0 .

Remark 4.1.4. The category Fct ( Σ , K -Vect ) admits another symmetric structure by introducing signs corresponding to the degree, but it has been shown in [SS12, Section 7.4] that both symmetric categories are equivalent.

We can now give the denition of a TCA in the symmetric monoidal category Fct ( Σ , K -Vect ). Denition 4.1.5. A twisted commutative algebra is a commutative monoid in the symmetric monoidal category ( Fct ( Σ , K -Vect ), ⊗, K 0 , τ ). In other words, a TCA is a functor A ∶ Σ → K -Vect together with two laws ν ∶ A ⊗ A → A and ε ∶ K 0 → A such that ν is associative, commutative and admits ε as a unit.

Example 4.1.6. The rst example, already presented in [START_REF] Barratt | Twisted Lie algebras[END_REF] and in [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF], is the functor sending n ∈ Σ to K[S n ] on which S n acts by conjugation, while the tensor product is given by the standard inclusion of S n × S m in S n+m .

Remark 4.1.7. For A ∶ Σ → K -Vect a TCA, by taking the sum of the vector spaces A(n)

for n ∈ N we get an associative graded algebra with an action of S n on the piece of degree n compatible with the multiplication. Then the algebra

⊕ n∈N A(n)
is commutative, up to the "twist" which exchanges blocks, as explained in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] or in [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF].

Remark 4.1.8. The endofunctor τ 1 from Denition 2.6.1 has an equivalent in the context of TCAs. It is the Schur derivative, denoted by D, which is the adjoint of a shift on grading functors. It was introduced in [SS12, Section 6.4] and in [SS16, 5.4] and it should not be confused with the endofunctor δ that we call dierential. They call it derivative because it veries the Leibniz rule and a dierential equation for the Hilbert series they introduced. To generalize this endofunctor we dene a family of endofunctors τ k for k ∈ N * while, in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF], they dene a family D λ for λ a partition to give adjoints of the shift corresponding to the partition λ.

Remark 4.1.9. If K is a eld of characteristic zero, we recall that the irreducible representations of the symmetric groups are indexed by the partitions and that the Littlewood-Richardson rule explains how the tensor product of two such representations is decomposed into irreducible representations.

The Schur-Weyl duality (see [SS12, Section 1]) describes how the space (K n ) ⊗k is decomposed into irreducible representations of S n ×GL n (K), which are the product of the irreducible representations of S n and GL n (K) associated with the same partition. This result is important since it connects the representations of the symmetric and linear groups and gives a concrete way to construct the irreducible representations of GL n (K) from the representations of S n . This result is frequently used in the theory of TCAs, as in the following: Lemma 4.1.10. For K a eld of characteristic 0, the symmetric monoidal category Fct(Σ, K -Vect) is equivalent to the following three other categories:

The category Rep(S * ) of innite sequence of representations of symmetric groups.

The category Rep pol (GL) of polynomial representations of the group GL(K ∞ ), where K ∞ is the vector space with the basis e 1 , e 2 , . . . , e n , . . . , and where polynomial means a subquotient of a direct sum of representations of the form (K ∞ ) ⊗k . The full subcategory S of Fct(K -vect, K -Vect) of the functors which are isomorphic to direct sums of the Schur functors ( (-) ⊗n ⊗ M ) Sn , with M a nite dimensional module on the symmetric group S n .

Then, the TCAs can then be dened as the monoids in any of those categories or even in an abstract equivalent category. These dierent points of view, the equivalences between the categories and the concrete description of the TCAs in these categories are presented in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF][START_REF] Derksen | Topological noetherianity for cubic polynomials[END_REF], and with more details in [START_REF] Feltz | Master's thesis: Algèbres commutatives tordues[END_REF]. From the point of view in Rep pol (GL), frequently used by Sam and Snowden, a TCA is a commutative, associative, unitary, K-algebra endowed with a compatible polynomial action of GL(K ∞ ).

Remark 4.1.11. Note that the two notions of TCAs using the action of the symmetric groups or the action of GL(K ∞ ) are equivalent in characteristic zero via the Schur-Weyl duality, but give two dierent notions of TCAs in positive characteristic.

Remark 4.1.12. The dierent denitions of a TCA as a monoid in one of the equivalent categories of Lemma 4.1.10 leads to another denition over an operad O in [START_REF] Ginzburg | Dierential operators and BV structures in noncommutative geometry[END_REF]: an O-algebra in the symmetric monoidal category Rep(S * ). Explicitly, it is a graded algebra A = ⊕ A(n) with an action of S n on A(n) as in Remark 4.1.7, together with a map

⊕ O n ⊗ Sn A(n) → A(n) coming from the maps O n ⊗ A(i 1 ) ⊗ ⋅ ⋅ ⋅ ⊗ A(i n ) → A(i 1 + ⋅ ⋅ ⋅ + i n ).
To be a TCA, we request in addition that it satises the "twist" condition from Remark 4.1.7.

We give right away the denition of a module over a TCA, which is simply a module over the TCA viewed as a monoid in Fct ( Σ , K -Vect ): Denition 4.1.13. A module over the twisted commutative algebra (A, ν, ε) is a module over the monoid A in the symmetric monoidal category

( Fct ( Σ , K -Vect ), ⊗, K 0 , τ ).
A module over a TCA is of nite length if it is a nite direct sum of simple objects and is graded nite if each simple object appears with nite multiplicity.

In other words, a module over the twisted commutative algebra (A, ν, ε) is a functor F ∶ Σ →

K -Vect together with an application

µ ∶ A ⊗ F → F such that µ ○ (id ⊗µ) = µ ○ (ν ⊗ id) ∶ A ⊗ A ⊗ F → F.
Example 4.1.14. A simple family of examples of TCAs are the "polynomial TCAs" from [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] (in a dierent sense than the polynomial functors) which are obtained by taking the symmetric algebra of a space. The simplest of them is the symmetric algebra over the space K 1 , denoted by Sym((K 1 ) (1) ) which corresponds, in the category Fct(Σ, K -Vect), to the functor sending n to K ⊗n and, in the category of representations of GL(∞), to the ring Sym(K ∞ ). Then we have the symmetric algebras over the space K d for d ≥ 1 which are the free TCAs generated in degree 1 denoted by Sym((K d ) (1) ). They are the most studied one (see for example [SS12, SS16, SS19]) and are also called the multivariate TCAs. While the full description of these TCAs in the dierent equivalent denitions is given in [SS12, 8.2.3], we summarize now the important facts about them.

For simplicity we denote K d by V in the following. Denition 4.1.15. The free twisted commutative algebra with d generators in degree 1 is the functor Sym(V (1) ), which sends an object n of Σ to V ⊗n and a morphism σ ∈ Σ(n, n) to the application which permutes the tensor factors according to σ -1 . The multiplication map

Sym(V (1) ) ⊗ Sym(V (1) ) → Sym(V (1) )
is the concatenation of the tensor products and the unit is given by K 0 ≅ Sym(V (1) )(0). Remark 4.1.16. The notation "Sym" comes from the equivalent denition of the TCAs in the category Rep pol (GL) from Lemma 4.1.10: in this category, the TCA Sym(V (1) ) is given by the symmetric algebra Sym( V ⊗ K ∞ ) over the representation V ⊗ K ∞ of GL(K ∞ ). As a representation of GL(∞) it can be identied with the ring K[x i,j |1 ≤ i ≤ d, 1 ≤ j], where x i,j corresponds to the tensor product e i ⊗ ε j ∈ V ⊗ K ∞ for e 1 , . . . , e n a basis of V and ε 1 , . . . , ε k , . . . a basis of K ∞ . For d = 1, the TCA Sym((K 1 ) (1) ) is then identied by Sam and Snowden in [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] with the ring K[x 1 , . . . , x n , . . . ]. It may also be surprising that a σ -1 appears on the arrows instead of a σ. It follows from this equivalent denition, in which σ permutes the factors V ⊗n according to σ but, as we take the quotient by the action of the symmetric group S n , we can permute the factors back to get the image expressed in terms of the original factors. This makes the σ -1 appear when we pass from this denition to the denition of TCAs in the category

Fct ( Σ , K -Vect ).
In [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF], Sam and Snowden generalize their work for nitely generated Sym((K 1 ) (1) )modules of [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] to all Sym((K d ) (1) )-modules. In particular, they introduce and describe the spectrum and ideals of the TCA Sym((K d ) (1) ) and focus on a family of ideals called determinantal ideals. The r-th determinantal ideal a r , introduced in [SS19] and in [SS12, 8.2.6], is generated by all the (r + 1) × (r + 1) minors of the matrix (x i,j ) with the identication

Sym(K d ⊗ K ∞ ) ≅ K[x i,j | 1 ≤ i ≤ d, 1 ≤ j]. It also corresponds to the ideal ⋀ r+1 (K d ) ⊗ ⋀ r+1 (K ∞ ) of the ring Sym(K d ⊗ K ∞ )
in its decomposition given by the Cauchy formula. They show in [SS19, Theorem 3.3] that the spectrum of the TCA Sym((K d ) (1) ) (i.e. the set of all prime ideals of Sym((K d ) (1) )) is isomorphic to the total Grassmannian Gr(K d ), which is the union of the sets Gr k (K d ) of subvector spaces of K d of rank k for 0 ≤ k ≤ d.

Remark 4.1.17. In [SS12] Sam and Snowden dene the quotient of modules over a TCA by its full subcategory of modules locally annihilated by a power of a prime ideal of the TCA. In [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] they apply this construction to the TCA Sym((K d ) (1) ) =∶ A and to the determinantal ideals to dene a ltration of subcategories of Sym(K d ⊗ K ∞ )-modules: the rank stratication

Mod A,≤0 ⊂ Mod A,≤1 ⊂ ⋅ ⋅ ⋅ ⊂ Mod A,≤d = Mod A ,
where the modules in Mod A,≤r are locally annihilated by a power of a r . They then dene Mod A,r as the quotient of Mod A,≤r by Mod A,≤r-1 , which intuitively corresponds to the part of Mod A whose support is in Gr r (K d ) within Gr(K d ). In particular, they compute the Grothendieck group of Mod A,r which is free of rank ( d r ) over the ring of symmetric functions. This construction gives, through the equivalence of categories from [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] developed in Section 4.2, a family of quotients of FI d -Mod which would be interesting to compare with ours.

We focused on the free TCAs on d generators of degree one, which is the most fundamental example of TCA but there are other interesting examples given by a symmetric algebra Sym( V ) over a representation V of GL(K ∞ ). For example, for V = Λ 2 (K ∞ ) it gives the TCA Sym( Λ 2 (K ∞ ) ), or for V the space of symmetric bilinear forms over K (spanned by the elements x i,j = e i e j for e 1 , e 2 , . . . a basis of K ∞ ) this gives the TCA Sym( Sym 2 (K ∞ ) ) which is equivalent to the algebra K[x i,j ]. These two examples have been studied in [START_REF] Nagpal | Noetherianity of some degree two twisted commutative algebras[END_REF]. Another example is the TCA Sym((K 1 ) (n) ) generated in degree n, corresponding to the ring Sym( (K ∞ ) ⊗n ), which is detailed in [SS12, 8.2.4]. The important result about all these TCAs are presented in details in [START_REF] Derksen | Topological noetherianity for cubic polynomials[END_REF].

Example 4.1.18. In Section 4.2 we explain that the category of modules over the TCA Sym((K d ) (1) ) is equivalent to the category of modules over FI d , following [START_REF] Steven | Introduction to twisted commutative algebras[END_REF]. There is a similar equivalence for the two TCAs Sym( Sym 2 (C ∞ ) ) and Sym( Λ 2 (C ∞ ) ). Indeed, Sam and Snowden showed in [START_REF] Sam | Stability patterns in representation theory[END_REF] that the nitely generated modules over these TCAs are equivalent to the nitely generated modules over the upwards Brauer category B(δ). This last is equivalent to the category FIM from [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF] whose objects are nite sets, and whose morphisms are pairs of an injection and a perfect matching on the complement of the image (see [START_REF] Nagpal | Noetherianity of some degree two twisted commutative algebras[END_REF] or [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF]). Moreover, there is an analog of the Schur-Weyl duality for the innite orthogonal group which is given by an equivalence of categories between the algebraic representations of O(∞) and the functors over the upward Brauer category.

Remark 4.1.19. In the recent years, it has been proven that dierent algebraic structures similar to the TCAs are noetherian, such as the FI-modules and FI d -modules (see [START_REF] Church | FI-modules over Noetherian rings[END_REF], [SS16, SS19] and [Sno13, Theorem 2.3]), the FS-modules (see [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF]), the VIC(R)-modules (see [START_REF] Putman | Representation stability and nite linear groups[END_REF]) and many others. Note that in [START_REF] Putman | Representation stability and nite linear groups[END_REF] and [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF] it is also shown that the category of Fct(F q -mod, F d -mod) is noetherian, which was known as the Lannes-Schwartz conjecture. They are such results about TCAs, but it is still an open question to nd if every nitely generated TCA is noetherian. For now, it was proven that the TCAs generated in degree 1 are noetherian (see [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] and [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF]), and that the two TCAs generated in degree 2 Sym( Sym 2 (C ∞ ) ) and Sym( Λ 2 (C ∞ ) ) are noetherian (see [START_REF] Nagpal | Noetherianity of some degree two twisted commutative algebras[END_REF]). In particular, the last theorem implies that the nitely generated FIM-modules are noetherian, recalling the result about the FI-modules which can be proved using the TCA Sym(K (1) ). Lately, it was shown in [START_REF] Derksen | Topological noetherianity for cubic polynomials[END_REF] that the TCA Sym( Sym 3 (C ∞ ) ) generated in degree 3 is topologically noetherian, which is a weaker notion.

The equivalence between FI d -modules and Sym( (K d ) (1) )modules

In this section we give an explicit construction of the equivalence of categories Remark 4.2.1. Since B = (e 1 , . . . , e d ) is a basis of V = K d , then the elements e i 1 ⊗⋅ ⋅ ⋅⊗e in of V ⊗n for 1 ≤ i 1 , . . . , i n ≤ d form a basis of V ⊗n . We denote by C the set consisting of these elements, and we have a canonical bijection

FI d (0, n) ≅ Hom Set (n, d) ≅ C.
For g ∈ FI d (0, n) we denote by e g the basis element e g(1) ⊗ ⋅ ⋅ ⋅ ⊗ e g(n) corresponding to g by this bijection. This gives a decomposition

V ⊗n ≅ ⊕ g∈FI d (0,n) K ⋅e g .
We are now able to dene the two functors χ B and Γ B which give the equivalence of categories. To give the denition of χ B we recall that, for a TCA A, a A-module is a pair (F, µ), where 

F ∶ Σ → K -Vect is a functor and µ ∶ A ⊗ F → F a natural
F (n) F (f (n)) K ⋅e g ⊗ F (f (n)) F (m) . F (f ∶ n→f (n)) ∼ µ| K ⋅eg ⊗F (f (n)) For ε ∶ F → F ′ a natural transformation in FI d -Mod, the natural transformation χ B (ε) is given for all object n ∈ FI d by χ B (ε) n = ε n ∶ χ B (F )(n) = F (n) → F ′ (n) = χ B (F ′ )(n).
To dene the opposite functor Γ B we need to see Σ as a subcategory of FI d . We then dene the functor θ ∶ Σ → FI d , which sends an object n in Σ to n in FI d , and a morphism σ

∶ n → n in Σ to the morphism (σ, 0 = ∅ → d) in FI d . Denition 4.2.3. The functor Γ B ∶ FI d -Mod → Sym(V (1) ) -Mod sends a FI d -module G to the functor G ○ θ ∶ Σ → K -Vect together with the application µ ∶ Sym(V (1) ) ⊗ (G ○ θ) → G ○ θ,
where for all object n ∈ Σ,

µ n ∶ ( Sym(V (1) ) ⊗ (G ○ θ) )(n) → G ○ θ(n) is the composition ⊕ i+j=n V ⊗i ⊗ G(j) ⊕ i+j=n ⊕ g∈FI d (0,i) K ⋅e g ⊗ G(j) ⊕ i+j=n ⊕ g∈FI d (0,i) G(j) G(n). ∼ ∼ ⊕ G(j↪n,g)
For ε ∶ (G, µ) → (G ′ , µ ′ ) a natural transformation in Sym(V (1) ) -Mod, the natural transformation Γ B (ε) is given for all objects n ∈ Σ by Theorem 4.2.4. For any basis B of V , the functors χ B and Γ B give an equivalence of categories

Γ B (ε) n = ε n ∶ Γ B (G, µ)(n) = G(n) → G ′ (n) = Γ B (G ′ , µ ′ )(n).
FI d -Mod ≅ Sym( (K d ) (1) ) -Mod .
Proof. This theorem was rst stated in [SS12, Section 10.2] for d = 1, and proved in [SS17, Proposition 7.2.5]. The proof consist in checking that the functors χ B and Γ B are quasi-inverse, but we refer to [START_REF] Feltz | Master's thesis: Algèbres commutatives tordues[END_REF] for more details.

Remark 4.2.5. For the TCA Sym(V (1) ), the representable objects denoted by K < n > in [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] correspond exactly to the projective standard functors P FI d n via the equivalence of Theorem 4.2.4.

An action of GL(K d ) on FI d -modules

In this section we will use the natural action of GL(V ) on the Sym(V (1) )-modules in the theory of TCAs to get an action of GL(V ) on the FI d -modules. To do this we will use the equivalence of categories given in Theorem 4.2.4 for a xed basis B of V = K d . We start with the denition of this action of GL(V ) on the Sym(V (1) )-modules, then we will explain how we transpose it into an action on FI d -modules.

Denition 4.3.1. For φ ∈ GL(V ) and (F, µ) ∈ Sym(V (1) ) -Mod, the Sym(

V (1) )-module φ ⋅ (F, µ) is dened by φ ⋅ (F, µ) = (F, φ ⋅ µ),
where φ ⋅ µ ∶ Sym(V (1) ) ⊗ F → F is the natural transformation given on an object n ∈ Σ, by the composition

(φ ⋅ µ) n ∶= ⎛ ⎜ ⎝ ⊕ i+j=n V ⊗i ⊗ F (j) ⊕ i+j=n V ⊗i ⊗ F (j) F (n) ⊕ i+j=n φ ⊗i ⊗id µn ⎞ ⎟ ⎠ .
This gives an invertible endofunctor φ ⋅ (-) of the category Sym(V (1) ) -Mod sending an object (F, µ) to φ⋅(F, µ) and a natural transformation σ between (F, µ) and (F ′ , µ ′ ) to φ⋅σ = σ between (F, φ ⋅ µ) and (F ′ , φ ⋅ µ ′ ).

Proposition 4.3.2. The group GL(V ) acts on the category Sym(V (1) ) -Mod by the invertible endofunctor φ ⋅ (-).

Proof. The application φ⋅(-) being an extension of the diagonal action of GL(V ) on V ⊗n , we just need to check that its image on a natural transformation in Sym(V (1) ) -Mod is still a natural transformation in Sym(V (1) ) -Mod. This is true since the following diagram, corresponding to σ ∶ (F, µ) → (F ′ , µ ′ ), is commutative for all n ∈ Σ:

⊕ i+j=n V ⊗i ⊗ F (j) ⊕ i+j=n V ⊗i ⊗ F ′ (j) F (n) F ′ (n) . µn ⊕ i+j=n id ⊗σ j µ ′ n σn
This means that for all x ∈ V ⊗i and all y ∈ F (j) for i + j = n, we have the equality σ n ○ µ n (x ⊗ y) = µ ′ n ( x ⊗ (σ j (y) ). In particular, for x = φ ⊗i (x) we have

σ n ( µ n ( (φ ⊗i (x)) ⊗ y) ) = σ n ( µ n (x ⊗ y) ) = µ ′ n ( x ⊗ (σ j (y) ) = µ ′ n ( (φ ⊗i (x)) ⊗ (σ j (y) ),
which shows that the following diagram, corresponding to σ ∶ (F, φ ⋅ µ) → (F ′ , φ ⋅ µ ′ ), is commutative:

⊕ i+j=n V ⊗i ⊗ F (j) ⊕ i+j=n V ⊗i ⊗ F ′ (j) F (n) F ′ (n) (φ⋅µ)n ⊕ i+j=n id ⊗σ j (φ⋅µ ′ )n σn .
We now use the equivalence of categories to transfer this action of GL(V ) from the Sym(V (1) )-modules to the FI d -modules. First, we dene this action on FI d -modules using the equivalence as follows, and then we describe it explicitly in a second step. Denition 4.3.3. Let B be a basis of V , for φ ∈ GL(V ) the endofunctor φ B ⋅ (-) of FI d -Mod is given by the composition

FI d -Mod Sym(V (1) ) -Mod Sym(V (1) ) -Mod FI d -Mod Γ B φ⋅(-) χ B .
To give a more explicit description of this action we need to use the matrix M = (m i,j ) 1≤i,j≤d of φ in the basis B = (e 1 , . . . , e d ) of V . With this notation we can write a formula for φ ⊗n which will be useful in the following. Remark 4.3.4. By denition, for 1 ≤ k ≤ d we have φ(e k ) = ∑ m l,k e l . Then, for g ∈ FI d (0, n), using the notation e g ∶= e g(1) ⊗ ⋅ ⋅ ⋅ ⊗ e g(n) from Remark 4.2.1 and the linearity of the tensor product, we can give the following formula for φ ⊗n (e g ):

φ ⊗n (e g ) = d ∑ l 1 ,...,ln=1 m l 1 ,g(1) . . . m ln,g(n) (e i 1 ⊗ ⋅ ⋅ ⋅ ⊗ e in ) = ∑ g ′ ∈FI d (0,n) m g ′ (1),g(1) . . . m g ′ (n),g(n) e g ′ ,
where the last equality is just a relabeling of the sum using the bijection FI d (0, n) ≅ Hom Set (n, d).

Proposition 4.3.5. Let B be a basis of V , for φ ∈ GL(V ) and G ∈ FI d -Mod, the functor

φ B ⋅ G ∶ FI d → K -Vect sends an object n ∈ FI d to G(n) and a morphism (f, g) ∈ FI d (n, m) to the sum ∑ g ′ ∈FI d (0,m∖f (n)) ⎛ ⎝ ∏ l ∈ m∖f (n) m g ′ (l),g(l) ⎞ ⎠ G(f, g ′ ).
Moreover, for a natural transformation σ ∶ G → G ′ in FI d -Mod, the action of φ B is given by

φ ⋅ σ = ( σ n ∶ φ ⋅ G(n) = G(n) → G ′ (n) = φ ⋅ G ′ (n) ) .
Proof. First for a natural transformation σ ∶ G → G ′ , by the denitions above, we have

φ B ⋅ (σ) = χ B ( φ ⋅ ( Γ B (σ) ) ) = χ B ( φ ⋅ (σ) ) = χ B (σ) = σ.
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χ B we get that φ B ⋅ G = χ B (φ ⋅ Γ B (g)) is the functor sending an object n ∈ FI d to G ○ θ(n) = G(n) and a morphism (f, g) ∈ FI d (n, m) to the composition G(n) G(f (n)) K e g ⊗ G(f (n)) G(m) y G( f , ∅)(y) e g ⊗ G( f , ∅)(y) (φ ⋅ µ) m (e g ⊗ G( f , ∅)(y)), G( f ,∅) ∼ (φ⋅µ)m
where f is the bijective map f ∶ n → f (n). However, with Remarks 4.3.4 and 4.2.1 we get that the transformation (φ ⋅ µ) n is given on a basis object

e g ⊗ x of ⊕ K ⋅e g ⊗ F (j) = (Sym(V (1) ) ⊗ F )(n) by (φ ⋅ µ) n (e g ⊗ x) = µ n ⎛ ⎝ ∑ g ′ ∶i→d ( j ∏ l=1 m g ′ (l),g(l) ) (e g ′ ⊗ x) ⎞ ⎠ = ∑ g ′ ∶i→d ( j ∏ l=1 m g ′ (l),g(l) ) G(j ↪ n, g ′ )(x).
This nally give

(φ ⋅ µ) m (e g ⊗ G( f , ∅)(y)) = ∑ g ′ ∶m∖f (n)→d ⎛ ⎝ m∖f (n) ∏ l=1 m g ′ (l),g(l) ⎞ ⎠ G(f (n) ↪ m, g ′ ) ○ G( f , ∅)(y),
and we conclude since

(f (n) ↪ m, g ′ )○( f , ∅) is (f, g ′ ) by the denition of composition in FI d .
Example 4.3.6. For d = 1, the action of GL(V ) = GL(K) = K * is simply described. Indeed, for φ ∈ GL(V ) the matrix M B (φ) = (a) is one dimensional, with a ∈ K * and so in the formula of Proposition 4.3.5 the product is a power a m-n of the only possible term a. Also, the sum has only one term since there is only one morphism from 0 to m∖f (n) in FI. Then, for G ∈ FI -Mod, the functor φ B ⋅ G sends n ∈ FI d to G(n) and (f, g) ∈ FI d (n, m) to a m-n ⋅ (f, g) with a ∈ K * . Then, the automorphisms of G(n) given by the multiplication by a n ∈ K * form a natural equivalence between G and φ B ⋅ G.

Chapter 5

Strong polynomial functors on FI d

The polynomial functors were introduced by Eilenberg and Mac Lane in [START_REF] Eilenberg | On the groups h(π, n), ii: Methods of computation[END_REF] in the context of functors from R-modules to R-modules using the notion of cross eects. In such functor categories there are huge functors which are dicult to understand and the polynomial property is as a way to measure their complexity. Indeed, the polynomial functors are easier to understand than the others, thus they should be thought as an analogue of polynomial functions approaching more complex functions. In [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] this notion was extended to functors from a symmetric monoidal category with an initial object to the category R-Mod. Djament and Vespa used an equivalent denition of the polynomial functors based on a dierential endofunctor δ instead of cross eects. They show in [DV19, 3.3] that these two denitions coincide, however the denition using the dierential endofunctor is better suited for the study of stable behavior, so we choose to mainly present and generalize this point of view for FI d -modules. In Section 5.1 we then introduce and study the strong polynomial FI d -modules, dened using all the ccoloured dierential endofunctors δ c 1 of Denition 2.6.2 to replace the unique endofunctor δ of FI-modules. In particular, for d = 1 we recover the denition of strong polynomial FI-modules from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. After giving examples of polynomial FI d -modules, we show in Proposition 5.2.2 that the FI d -modules P FI d n are not strong polynomial for d > 1. In a third part, we study the support of FI d -modules and we explain how it is linked to strong polynomial FI d -modules. In Section 5.4 we generalize the denition using cross eects and we show that the notion of polynomial functors obtained coincides with the strong polynomial functors, which helps us to prove dierent kind of results. For example, we prove in Proposition 5.4.18 that the composition FI d → R-Mod → R-Mod of two polynomial functors is polynomial and we use this in Section 5.5 to show that the pointwise tensor product respects strong polynomiality.

Denition and examples of strong polynomial FI d -modules

In this section we dene the strong polynomial functors from FI d to R-Mod and we give some of their basic properties. For d = 1, we recover the denition on FI-modules from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. We also describe some explicit examples, such as the functors dened in Chapters 2 and 3. First, we dene the strong polynomial FI d -modules using the c -coloured dierential endofunctors introduced in Denition 2.6. where δ c 1 is the c-coloured dierential endofunctor from Denition 2.6.2.

(FI d , R-Mod) if δ c 1 (F ) ∈ Pol strong n-1 (FI d , R-Mod) for all c ∈ C,
Remark 5.1.2. For d = 1, since the cardinality of C = {c} is 1, we recover the denition of strong polynomial functors over FI from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] using only one endofunctor δ 1 = δ c 1 . In particular, the polynomial functors give an alternative way to express and understand results about FI-modules. For example, the nitely generated FI-modules with nitely generated values are the strong polynomial functors over FI. Also, the strong polynomial degree of a FI-module corresponds exactly to its generation degree from [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF] and [START_REF] Church | FI-modules over Noetherian rings[END_REF] since it is given by the functor denoted by H FI 0 , which gives the minimal generators of a FI-module and which corresponds to the cross eect functor on the element 1 of FI. Also, there is a stronger notion of polynomial functors for FI-modules, called degree-r coecient systems in [START_REF] Randal | Homological stability for automorphism groups[END_REF], also dened using the endofunctor δ 1 , denoted by D(-). The comparison between the degree-r coecient systems and the strong polynomial functors of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] is given in [Wil18a, 6.2]: morally, the dierence is that the degree-r coecient systems include the stably zero functors of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] in the degree 0, while they are strong polynomial of higher degree (or even not polynomial) along Djament and Vespa.

We now present the rst properties of the strong polynomial functor over FI d . In particular, we show that in Denition 5.1.1 if we use all the endofunctors δ x k for k ∈ FI d and x ∈ FI d (0, k), and not just for k = 1, we get an equivalent denition. n-1 (FI d , R-Mod). By induction, this subcategory is stable by τ k , which gives

δ c 1 ( τ k (F ) ) ≅ τ k ( δ c 1 (F ) ) ∈ Pol strong n-1 (FI d , R-Mod).
Since this is true for all colour c ∈ C, we conclude that τ k (F ) ∈ Pol strong 

0 κ c 1 (F ) κ c 1 (G) κ c 1 (H) δ c 1 (F ) δ c 1 (G) δ c 1 (H) 0 ,
f that we can split to get a short exact sequence

0 Im(f ) δ c 1 (G) δ c 1 (H) 0 .
By hypothesis, δ c 1 (F ) and δ c

1 (H) are in Pol strong n-1 (FI d , R-Mod) and Im(f ) is also in Pol strong n-1 (FI d , R-Mod) since it is a quotient of δ c 1 (F ).
Finally, we use induction on the short exact sequence to get that δ c

1 (G) is in Pol strong n-1 (FI d , R-Mod), for all c ∈ C, which means that G is in Pol strong n (FI d , R-Mod).

Chapter 5. Strong polynomial functors on FI d

In this proposition we showed that the subcategories Pol strong n (FI d , R-Mod) of Fct(FI d , R-Mod) are stable by quotient and by extensions. However, we explain in Remark 5.1.9 that this notion of strong polynomial functors is not completely satisfying since it is not stable by subobjects. We now show that in Denition 5.1.1 we can also use all the endofunctors δ x k for k ∈ FI d and x ∈ FI d (0, k) as explained above. 

(F ) is in Pol strong n-1 (FI d , R-Mod).
First, we apply the exact sequence of endofunctors of Fct(FI d , R-Mod) from Proposition 2.6.6.7) to F . We get an exact sequence that we can split to get the short exact sequence ,c) 2

0 Im(f F ) δ (c,c) 2 (F ) τ 1 ○ δ c 1 (F ) 0 , where f F is a map from δ c 1 (F ) to δ (c
(F ) By Proposition 5.1.3 the subcategory Pol strong n-1 (FI d , R-Mod) is stable by quotient and by τ 1 so the rst and last terms of this short exact sequence are in Pol strong n-1 (FI d , R-Mod). Since the subcategory Pol strong n-1 (FI d , R-Mod) is also stable by extensions by Proposition 5.1.3 we then proved that, for any colours c, c ∈ C, the functor δ

(c,c) 2 (F ) is in Pol strong n-1 (FI d , R-Mod)
. By induction, using the exact sequence 2.6.6.7) in a general version, we prove in a similar way that δ

x k (F ) is in Pol strong n-1 (FI d , R-Mod) for all k ∈ FI d and all x ∈ FI d (0, k).
In the following we give some examples of strong polynomial functors, the rst being the functors that are zero after or until some rank.

Lemma 5.1.5. For F ∈ FI d -Mod and k ∈ N, if F (n) = 0 for all n > k, then

F ∈ Pol strong k (FI d , R-Mod).
Proof. We prove this by induction. For k = 0 it is clear that, if F (0) is the only non-zero part of

F , then τ 1 (F ) and δ c 1 (F ) are zero and F is in Pol strong 0 (FI d , R-Mod). Now if F (n) = 0 for n > k, then τ 1 (F )(n) = F (n + 1) = 0 for n > k -1,
and so for any colour c ∈ C, we have δ c 1 (F )(n) = 0 for n > k -1. By induction we get that δ c 1 (F ) ∈ Pol strong k-1 (FI d , R-Mod) for any colour c ∈ C, and so

F ∈ Pol strong k (FI d , R-Mod).
The converse of this result is false, but we still have: Lemma 5.1.6. For F ∈ FI d -Mod and k ∈ N, if F (n) = 0 for all n < k and F is non-zero, then

F ∉ Pol strong k-1 (FI d , R-Mod).
Proof. We prove this by induction, the case k = 0 being empty. For k ≥ 1, if F is a non-zero 1) For M ∈ R-Mod, the constant functor equal to M is strong polynomial of degree 0. Indeed, it sends every morphism to the identity and so we can compute for all c ∈ C:

FI d -module such that F (n) = 0 for n < k + 1, then for all c ∈ C, δ c 1 (F )(n) = 0 for n < k since it is a quotient of τ 1 (F )(n) = F (n + 1). Since F is non-zero, there exist m ∈ N minimal such that F (m) ≠ 0. Since we consider k ≥ 1, we have F (0) = 0 and so m ≥ 1. Then δ c 1 (F )(m -1) is the cokernel of the map F (m -1) = 0 → F (m), so δ c 1 (F )(m -1) = F (m) ≠ 0. We get that δ c 1 (F ) is non-zero and by induction δ c 1 (F ) is not in Pol strong k-1 (FI d , R-Mod) for c ∈ C, which gives that F is not in Pol strong k (FI d , R-Mod).
δ c 1 (M ) = Coker (i c 1 (M )) = Coker (M (i c 1 )) = Coker (Id) = 0.
2) For k ∈ N, the twisted atomic functor

M k ∶ FI d → R-Mod is strong polynomial of degree k. Indeed, τ 1 (M k ) = M k-1 and so the natural transformation i c 1 (M k ) ∶ M k → τ 1 (M k ) = M k-1
is zero since either the source or the target is zero. This gives us that

δ c 1 (M k ) = τ 1 (M k ) = M k-1
for all c ∈ C and by induction we get

M k ∈ Pol strong k (FI d , R-Mod).
3) Similarly, we have τ 1 (M ≥k ) = M ≥k-1 and we can show that, for any colour c ∈ C

δ c 1 (M ≥k ) = M k-1 proving that M ≥k ∈ Pol strong k (FI d , R-Mod).
4) Finally, we can check that the direct sum on k ∈ N of the constant functor M is strong polynomial of degree zero, while the functors

⊕ k∈N M k and ⊕ k∈N M ≥k
are not strong polynomial since each M ≥k and each M k has a degree k where k goes to innity.

As a special case, we retrieve the example of FI d -module developed in Chapter 3 of the homology of the sink conguration spaces of graphs. In particular, we deduce from Proposition 3.2.8 the following: Proposition 5.1.8. For i ∈ N and G d the linear graph on d vertices, the FI d -module

H i ( Conf sink (-) (G d , [d]) , Q ) from Denition 3.2.2 is strong polynomial of degree i + 1 if i > 0 and of degree 0 if i = 0. Proof. By Proposition 3.2.8, for i > 0 the FI d -module H i ( Conf sink (-) (G d , [d]) , Q ) is twisted atomic of rank i + 1,
so it is strong polynomial of degree i + 1 by Example 5.1.7.2). For i = 0, this FI d -module is a constant functor by Proposition 3.2.8 so it is strong polynomial of degree 0.

In Proposition 5.1.3 we proved that the subcategories Pol strong n (FI d , R-Mod) are stable by quotients, extensions and by the endofunctors τ k and δ c k , but they are not stable by subobjects or by the endofunctors κ x k as explained in the following remarks.

Remark 5.1.9. A subfunctor of a strong polynomial functor is not necessarily strong polynomial of lower degree or even strong polynomial at all. For d = 1, we can nd counterexamples in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] page 362. For FI d , we use the variations of these functors dened in Example 2.3: for M ∈ R-Mod, the subfunctor M ≥k of the constant functor M is strong polynomial of degree k, while M is strong polynomial of degree 0. Moreover, the direct sum on k ∈ N of the constant functor M is strong polynomial of degree zero, while its subfunctor ⊕ M ≥k is not strong polynomial at all. These examples emphasize the interest of introducing the notion of weak polynomial functors in Chapter 7.

and T k preserve epimorphisms, we can use the proposition 3.12 from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] to conclude that T

(1) k ∈ Pol strong k×1 (FI, K -Vect). Finally, using Proposition 5.1.11 we get

T (d) k = O * ( T (1) k ) ∈ Pol strong k (FI d , K -Vect).
Remark 5.1.13. This example comes from a factorization

FI d → FI → R-Mod → R-Mod,
where the last functor is a polynomial functor in the classical sense (see Denition 5.4.1). The Proposition 5.1.11 together with the proposition 3.12 from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] prove that this kind of composition preserves polynomiality if the last functor preserves epimorphisms. We will show in Proposition 5.4.18 that a direct composition FI d → R-Mod → R-Mod which does not factor by FI also preserves polynomiality under a similar hypothesis, but with a non optimal bound.

The standard projective functors

A very important family of examples of strong polynomial FI-modules are the standard projective functors P FI n from Denition 2.2.4. The fact that the functors P FI n are polynomial simplies the study of polynomial functors over FI and leads to important results. In this section we show that the FI d -modules P FI d n are not strong polynomial when d > 1 using an explicit description of δ c 1 (P FI d n ), which emphasizes an important dierence between FI-modules and FI d -modules.

Proposition 5.2.1. For n ∈ FI d and c ∈ C, we have the following relation:

δ c 1 ( P FI d n ) ≅ ( P FI d n-1 ) ⊕n ⊕ ( P FI d n ) ⊕(d-1) .
Proof. By denition δ c

1 (P FI d n ) is the cokernel of the morphism i c 1 (P FI d n ) = P FI d n ( Id (-) +c ) which is given by R [(Id (-) +c) * ] ∶ P FI d n (-) = R[FI d (n, -)] → R[FI d ( n, (-) + 1 )] = P FI d n ( (-) + 1 ). For k ∈ FI d with k ≤ n -1 we have P FI d n (k) = R[ FI d (n, k) ] = R[∅] = 0. For k ≥ n the morphism i c 1 (P FI d n ) sends a basis element (f, g) ∈ FI d (n, k) to the composition (Id k +c) ○ (f, g) ∶ n → k → k + 1.
Then, the only basis morphisms that do not vanish in its cokernel are the morphisms (f, g) ∈ FI d (n, k + 1) such that either the element k + 1 is in the image of f , or the element k + 1 is not in the image of f and is coloured with a colour other than c (i.e. g(k + 1) ≠ c). Then, we have the isomorphism of R-modules

δ c 1 (P FI d n ) (k) ≅ R[(f, g) | k + 1 ∈ Im(f )] ⊕ R[(f, g) | k + 1 ∉ Im(f ), g(k + 1) ≠ c].
The generators (f, g) of the rst component correspond to all the morphisms in FI d (n ∖ {j}, k + 1 ∖ {k + 1}) for all possible inverse images 1 ≤ j ≤ k of the element k + 1. The generators (f, g) of the second component correspond to all the morphisms in FI d (n, k) coupled with a colour choice in C ∖ {c} for k + 1. This gives the isomorphism of R-modules

δ c 1 (P FI d n ) (k) ≅ R[FI d ( n -1, k )] ⊕n ⊕ R[FI d ( n, k )] ⊕(d-1)
for all c ∈ C. Finally, this decomposition is natural since, for a map (f, g) ∈ FI d (k, l), the application δ c 1 (P FI d n ) (f, g) is obtained as the application τ 1 (P

FI d n ) (f, g) = R [( (f, g) + Id 1
) * ] passing to the cokernel and because the post-composition by ( (f, g) + Id 1 ) preserves the conditions mentioned above. Remark 5.2.3. For d = 1, the Proposition 5.2.1 gives the relation

δ 1 ( P FI n ) = ( P FI n-1 )
⊕n already present in the proof of [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF]prop 4.4]. By induction this shows that the functor P FI n is strong polynomial of degree n. In particular, this implies that the nitely generated FI-modules with nitely generated values are the strong polynomial functors over FI as explained in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. This result is very specic to the FI-modules, due to the fact that the projective standard functors are polynomial. A similar formula is also present in [START_REF] Church | FI-modules over Noetherian rings[END_REF] where the authors show that τ a ( P FI n ) ≅ (

P FI n-1 ) ⊕ Q a with Q a a direct sum of P FI i with i ≤ d -1.
This formula is one of the key points to prove the noetherian property in a general context for FI-modules.

Support of a FI d -module

For functors over a symmetric monoidal category with an initial object, such as FI, the notion of support studied by Djament in [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] is closely related to the notion of strong polynomial functors. Indeed, for FI-modules being strong polynomial of degree less than or equal to i is equivalent to being supported by the integers 0, . . . , i. This result is specic to the FI-modules and is not easily generalized to other categories. In this section, we show that for FI d -modules this is only an implication and the converse is false. Thus the notion of support has less important applications for FI d -modules than it has for FI-modules, although it is still related to the strong polynomial functors. Denition 5.3.1. For F a FI d -module, a support of F is a set S of objects of FI d such that for any subfunctor G ⊂ F , if G(n) = F (n) for all n ∈ S, then G = F . A FI d -module is said to be nitely supported if it admits a support of nite cardinality.

Remark 5.3.2. A support of a FI d -module F is not unique. Indeed, if S is a support of F , then S ⊔ {n} is another support of F for any object n of FI d that is not in S.

Example 5.3.3. If a FI d -module is zero after some rank then it is nitely supported. Conversely, it is not enough to have zero maps after some rank to be nitely supported. For example, the functor ⊕ k∈N M k has no nite support since every support of M k must contain k.

The following proposition explains how the notion of support of a FI d -module is related to being generated by the rst standard projective functors. Proposition 5.3.4. Let F be a FI d -module and S be a set of objects of FI d , then S is a support of F if and only if F is a quotient of the direct sum

⊕ n∈S ( P FI d n ) ⊕kn ,
where k n ∈ N ⊔{∞}. In particular, if a FI d -module is nitely generated, then it is nitely supported.

Proof. This result was proved by Djament in the general context of functors over a small category in the proposition 2.10 and corollary 2.11 from [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF].

Remark 5.3.5. The direct sum in Proposition 5.3.4 can have an innite number of terms P FI d n . This is why nitely generated implies nitely supported, but the converse is not true. For example P FI d 0 admits {0} as a support, so the direct sum ⊕ P FI d 0 with an innite number of terms also admits {0} as a support, and so it is nitely supported even if it is not nitely generated. The Proposition 5.3.4 also shows that a functor is generated in degree ≤ k, as dened in [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF] for example, if and only if the rst k integers form a support of this functor.

Remark 5.3.6. As a consequence of Proposition 5.3.4, the notion of nitely supported is stable by quotient and extension. Indeed, for 0

F G H 0 a short exact sequence of FI d -modules, if G is a quotient of a direct sum of P FI d n
for a nite number of n ∈ N, then H is also such a quotient since it is a quotient of G. Moreover, if F and H are such quotients the horseshoe lemma implies that G is also such a quotient. However, the notion of nitely supported is not stable by subobjects. Indeed, the direct sum on k ∈ N of the constant functor M is supported by {0}, while its subfunctor ⊕ k∈N M ≥k is not nitely supported, since any support of M ≥k must contain k.

We now explain the connection between the support of a FI d -module and the fact that it is strong polynomial. Explicitly, we show that if

F ∶ FI d → R-Mod is in Pol strong i (FI d , R-Mod),
then the rst i integers form a support of F . This is inspired by [Dja16, Proposition 4.1] which gives the same result for functors over a symmetric monoidal category with an initial object, such as FI. We start with the case i = 0 and we get the general case by induction.

Lemma 5.3.7. Let F be a FI d -module, if F is strong polynomial of degree 0, then {0} is a support of F . Proof. Let G be a subfunctor of F such that G(0) = F (0), then by hypothesis we have δ c 1 (F ) = Coker(Id (-) +c) = 0 for all c ∈ C. This shows that F (Id n +c) is an epimorphism for all c ∈ C and all n ∈ N. We then show by induction that G(n) = F (n) for all n ∈ N: the case n = 0 is true by hypothesis and if

G(n) = F (n) we have F (Id n +c) (G(n)) = F (Id n +c) (F (n)) = F (n + 1). Since G is a subfunctor of F , we also have that F (Id n +c) (G(n)) is a submodule of G(n + 1), which shows that G(n + 1) = F (n + 1).
Proposition 5.3.8. Let F be a FI d -module, if F is strong polynomial of degree less than or equal to i, then {0, . . . , i} is a support of F . Proof. We proceed by induction on i ∈ N, the case i = 0 being given by Lemma 5.3.7. For

F ∈ Pol strong i+1 (FI d , R-Mod), let G be a subfunctor of F such that G(n) = F (n)
for all n ∈ {0, . . . , i, i + 1}. By Proposition 2.6.6.0) we have an exact sequence

0 κ c 1 (G) κ c 1 (F ) κ c 1 ( F / G ) δ c 1 (G) δ c 1 (F ) δ c 1 ( F / G ) 0 φ c 1 for all c ∈ C. Let H c 1 be the subfunctor of δ c 1 (F ) dened by H c 1 = Im( φ c 1 ∶ δ c 1 (G) → δ c 1 (F ) ). We then have H c 1 (m) = δ c 1 (m) for all m ∈ {0, . . . , i} since (φ c 1 ) m is constructed by the following diagram G(m) τ 1 (G)(m) = G(m + 1) δ c 1 (G) 0 
F (m) τ 1 (F )(m) = F (m + 1) δ c 1 (F ) 0 , (φ c 1 )m 82
Chapter 5. Strong polynomial functors on FI d and the rst two vertical maps are epimorphisms for m ∈ {0, . . . , i} by hypothesis, which implies that the last one is an epimorphism. Since δ c 1 (F ) ∈ Pol strong i (FI d , R-Mod), we have by induction that {0, . . . , i} is a support of δ c 1 (F ), and so

H c 1 = Im( φ c 1 ∶ δ c 1 (G) → δ c 1 (F ) ) = δ c 1 (F ). This means that φ c
1 is an epimorphism and, together with the exact sequence above, it gives that δ c 1 ( F / G ) = 0 for all c ∈ C. We conclude that F / G is in Pol strong 0 (FI d , R-Mod) and, by Lemma 5.3.7, that {0} is a support of F / G . Finally, ( F / G ) (0) = 0 since G(0) = F (0) by hypothesis, so F / G = 0 since {0} is a support of F / G , and then G = F . Remark 5.3.9. The converse of Proposition 5.3.8 is true for FI-modules (Proposition 4.4 in [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF]) but it is false for FI d -modules with d > 1. Indeed, P FI d n admits {0, . . . , n} for support by Proposition 5.3.4, but it is not strong polynomial if d > 1 by Corollary 5.2.2. The fact that the converse of Proposition 5.3.8 is true for FI-modules is very specic to the category FI. It allows us to describe the strong polynomial functors over FI with the notion of support and it comes from the fact that the standard projective functors are polynomial in this case (Remark 5.2.3) which is not often the case over other categories. However, the converse of Lemma 5.3.7, which is the case where i = 0, is true for functors over a symmetric monoidal category with an initial object (Remark 2.12 in [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF]), but it is particular to 0 since it is the initial object.

The category coslice (0 ↓ FI d ) and cross eects

The original denition of polynomial functors given by Eilenberg and Mac Lane in [START_REF] Eilenberg | On the groups h(π, n), ii: Methods of computation[END_REF] for functors between categories of modules over a ring is based on the notion of cross effects, which as been extended several times. We recall in Denition 5.4.1 the denition of cross eects for functors over monoidal categories whose unit is initial given in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. In this section we introduce and study the cross eects for FI d -modules (in Denition 5.4.6) following this generalization which is better adapted for such categories with only increasing morphisms. We then prove in Proposition 5.4.12 that the corresponding polynomial FI dmodules are exactly the strong polynomial FI d -modules from Denition 5.1.1. To do this, we introduce a new category which corresponds to the category coslice (0 ↓ FI d ) (sometimes also called the undercategory under 0 like in [START_REF] Mac | Categories for the working mathematician[END_REF]page 45) of couples (a, x), where a is an object of FI d and x a morphism from 0 to a in FI d . Then we use this alternative denition to prove that the composition of two polynomial functors is still polynomial in Proposition 5.4.18.

Since its introduction, the denition of polynomial functors based on cross eects has been extended several times, like in [START_REF] Hartl | Polynomial functors from algebras over a set-operad and nonlinear Mackey functors[END_REF] to the case where A is a monoidal category whose unit is a null object. The cross eects are generally dened by the kernel of a morphism where we omit a term of a sum at the target but when the unit is a null object, it is equivalent to use the cokernel of a morphism where we omit a term of a sum at the source (see [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for a proof). In [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], Djament and Vespa dene the following notion of cross eects for functors over a monoidal category M whose unit is initial following the denition as a cokernel: Denition 5.4.1. For A and B two monoidal categories whose unit 0 is initial, the n-th cross eect of F ∶ A → B is the functor cr n (F ) ∶ A n → B given on n objects a 1 , . . . , a n of A by

cr n (F ) (a 1 , . . . , a n ) = Coker ⎛ ⎜ ⎜ ⎝ n ⊕ i=1 F ( ⊕ j≠i a j ) F ( n ⊕ j=1 a j ) n ⊕ i=1 F (σa i ) ⎞ ⎟ ⎟ ⎠ , Chapter 5. Strong polynomial functors on FI d 83
where σ a i is given by the unique map 0 → a i and the identity on the other components. The functor F ∶ A → B is polynomial of degree less than or equal to n if its (n + 1)-th cross eects cr n+1 (F ) (-, . . . , -) is the zero functor.

When the source is a monoidal category whose unit is a null object, the cross eects functors are exact which implies directly that the categories of (strong) polynomial functors are thick. Djament and Vespa also dene a notion of strong polynomial functors over a monoidal category M whose unit is initial using the endofunctors δ as in Denition 5.1.1. They then show in [DV19, Proposition 3.3] that the two denitions are equivalent: a functor F ∶ M → R-Mod is polynomial of degree less than or equal to n if and only if the cross eect cr n+1 (F ) is the zero functor. However, since these categories only have an initial object, they lost the exactness of the cross eect functors and so the stability of polynomial functor by subobjects.

We will show in this section that the same thing happens for FI d -modules. First we introduce the category coslice (0 ↓ FI d ) whose unit is initial and then we dene the n-th cross eects functor of a FI d -module through a forgetful functor Θ ∶ (0 ↓ FI d ) → FI d in Denition 5.4.6. This way the n-th cross eect cr n (F ) of a FI d -module F is a functor over (0 ↓ FI d ) n and we show in Proposition 5.4.12 that F is in

Pol strong n (FI d , R-Mod) if and only if F ○ Θ is in Pol strong n ( (0 ↓ FI d ), R-Mod).
Denition 5.4.2. The category (0 ↓ FI d ) has for objects the pairs (a, x) where a is an object of FI d and x a morphism in FI d (0, a). The morphisms in (0 ↓ FI d ) from (a, x) to (b, y) are the morphisms f ∈ FI d (a, b) such that f ○ x = y, and the composition comes from FI d .

Remark 5.4.3. For d = 1, the unit 0 of FI is an initial object so for every a ∈ FI, there exists a unique morphism from 0 to a. There is then an isomorphism of categories between (0 ↓ FI) and FI.

Proposition 5.4.4. The category (0 ↓ FI d ) is a symmetric monoidal category and its unit (0, id 0 ) is an initial object. Proof. The monoidal structure on (0 ↓ FI d ) is induced by the monoidal structure on FI d (see Lemma 2.1.5) and the unit 0 of FI d gives the unit (0, Id 0 ) of (0 ↓ FI d ). Now for any object (a, x) in (0 ↓ FI d ), the only map from (0, id 0 ) to (a, x) in (0 ↓ FI d ) is x since such a map f must satisfy f ○ id 0 = x. This shows that (0, id 0 ) is initial.

Since (0 ↓ FI d ) is a symmetric monoidal category whose unit (0, Id 0 ) is an initial object, it falls in the framework of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] and so there is a notion of cross eects for functors over (0 ↓ FI d ) recalled in Denition 5.4.1. It gives the following: Denition 5.4.5. For G ∶ (0 ↓ FI d ) → R-Mod a functor, the n-th cross eect of G is the

functor cr n (G) ∶ (0 ↓ FI d ) n → R-Mod given on n objects (a 1 , x 1 ) . . . (a n , x n ) of (0 ↓ FI d ) by cr n (G) ( (a 1 , x 1 ), . . . , (a n , x n ) ) = Coker ⎛ ⎜ ⎜ ⎝ n ⊕ i=1 G( ∑ j≠i (a j , x j )) G( n ∑ j=1 (a j , x j )) n ⊕ i=1 G( σ (a i ,x i ) ) ⎞ ⎟ ⎟ ⎠ ,
where σ (a i ,x i ) is given by the unique morphism x i ∶ (0, Id 0 ) → (a i , x i ) in (0 ↓ FI d ) and the identity on the other components.

We then can dene the cross eects of functors over FI d using the forgetful functor Θ ∶ (0 ↓ FI d ) → FI d , which sends an objects (a, x) of (0 ↓ FI d ) to a ∈ FI d , and an arrow f in (0 ↓ FI d ) to itself in FI d , and the denition over (0 ↓ FI d ):

Denition 5.4.6. For F a FI d -module, n ∈ N * and (a 1 , x 1 ) . . . (a n , x n ) objects of (0 ↓ FI d ), the module cr n (F ) ( (a 1 , x 1 ), . . . , (a n , x n ) ) is the n-th cross eect cr n (F ○Θ) ( (a 1 , x 1 ), . . . , (a n , x n ) ) of the functor F ○ Θ over (0 ↓ FI d ).

Lemma 5.4.7. For F a FI d -module and n ∈ N * , the modules cr n (F ) ( (a 1 , x 1 ), . . . , (a n , x n ) ) for all objects (a 1 , x 1 ) . . . (a n , x n ) of (0 ↓ FI d ) dene a functor

cr n (F )(-, . . . , -) ∶ (0 ↓ FI d ) n → R-Mod,
called the n-th cross eect of F . Proof. It is a consequence of the fact that cr n (F ○ Θ) ( -, . . . , -) is a functor over (0 ↓ FI d ) n in the denition of cross eects over (0 ↓ FI d ) whose unit is initial, and that the maps in (0 ↓ FI d ) are the maps in FI d that ts the colours.

Remark 5.4.8. For d = 1, we recover the denition of cross eects for FI-modules from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] since (0 ↓ FI) is isomorphic to FI.

We give an explicit description of the cross eects of functors over FI d , using the category (0 ↓ FI d ) and the morphisms σ x i a i = Θ(σ (a i ,x i ) ) in FI d which are similar to the morphisms σ a i in Denition 5.4.1.

Proposition 5.4.9. For F a FI d -module and n ∈ N * the n-th cross eect of F on the objects

(a 1 , x 1 ) . . . (a n , x n ) of (0 ↓ FI d ) is the R-module cr n (F ) ( (a 1 , x 1 ), . . . , (a n , x n ) ) = Coker ⎛ ⎜ ⎜ ⎝ n ⊕ i=1 F ( ∑ j≠i a j ) F ( n ∑ j=1 a j ) n ⊕ i=1 F (σ x i a i ) ⎞ ⎟ ⎟ ⎠
, where σ x i a i = Θ(σ (a i ,x i ) ) is given by the morphism x i ∶ 0 → a i and the identity on the other components. Proof. For F a FI d -module F ○ Θ is a functor from (0 ↓ FI d ) to R-modules. Then cr n (F ○ Θ) ( (a 1 , x 1 ), . . . , (a n , x n ) ) is the cokernel of the map ⊕ F ○ Θ( σ (a i ,x i ) ) and by denition the morphism Θ(σ (a i ,x i ) ) = σ x i a i is given by the morphism x i ∶ 0 → a i and the identity on the other components.

We now give a lemma about the cokernel of cokernel maps that will be used to prove basic properties of the cross eects.

Lemma 5.4.10. Consider the diagram

A B C D E F f α P f h h g Pg in R-Mod where (C, P f ) = Coker(f ) and (F, P g ) = Coker(g).
If the left square of the diagram is commutative, there exists a unique h ∶ C → D such that h ○ P f = P g ○ h, and there is an isomorphism

Coker (h) ≅ Coker ( B ⊕ D E g⊕h ) .
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Proof. The existence and unicity of h is given by the universal property of the cokernel applied to P g ○ h since P g ○ h ○ f = P g ○ g ○ α = 0. Since P f is an epimorphism, the equality h ○ P f = P g ○ h implies that Im (h) = Im(P g ○ h), which is by denition the image of the map P g restricted to the image of h. The kernel of the map P g restricted to the image of h being exactly Im(h) ∩ Im(g), this gives

Im (h) ≅ Im (P g | Im(h) ) ≅ Im(h) / Ker (P g | Im(h) ) ≅ Im(h) / Im(h) ∩ Im(g) .
With classical isomorphisms we then get

Im (h) ≅ Im(h) + Im(g) / Im(g) = Im(h ⊕ g) / Im(g) .
Finally, since F is the cokernel of g, we have

Coker (h) = F / Im (h) ≅ ( E / Im(g) ) / ( Im(h ⊕ g) / Im(g) ) ≅ E / Im(h ⊕ g) = Coker(h ⊕ g).
We now show basic properties of the cross eects of functors over FI d . In particular, the cross eects satisfy the usual induction relation cr n+m = cr n (cr m+1 (-)), where in the second term we use the cross eects of a functor over (0 ↓ FI d ).

Proposition 5.4.11. For F a FI d -module, n, m ∈ N * and (a 1 , x 1 ) . . .

(a n , x n ), (b 1 , y 1 ) . . . (b m , y m ), (k, x) objects in (0 ↓ FI d ),
1) There is a natural isomorphism cr n+m (F ) ( (a 1 , x 1 ), . . . , (a n , x n ), (b 1 , y 1 ), . . . , (b m , y m ) ) ≅ cr n ( cr m+1 (F ) ( -, (b 1 , y 1 ), . . . , (b m , y m ) ) ) ( (a 1 , x 1 ) . . . (a n , x n ) ).

2) There is a natural isomorphism

cr n+1 (F ) ( (k, x), (a 1 , x 1 ), . . . , (a n , x n ) ) ≅ cr n ( δ x k (F ) ) ( (a 1 , x 1 ), . . . , (a n , x n ) ).
Proof. 1) It is a formal consequence of the fact that the same properties are true for functors over monoidal categories whose unit is initial such as

(0 ↓ FI d ) (see [DV19, Proposition 3.2]) since cr n (F ) is cr n (F ○ Θ) by denition.
2) We consider the following diagram in R-Mod:

n ⊕ i=1 F ( ∑ j≠i a j ) n ⊕ i=1 F ( ∑ j≠i a j + k) n ⊕ i=1 δ x k (F )( ∑ j≠i a j ) F ( n ∑ j=1 a j ) F ( n ∑ j=1 a j + k) δ x k (F )( n ∑ j=1 a j ) n ⊕ i=1 F (σ x i a i ) n ⊕ i=1 F ( Id ∑ j≠i a j +x) n ⊕ i=1 F (σ x i a i +Id k ) n ⊕ i=1 δ x k (F )(σ x i a i ) F ( Id ∑ a j +x)
where the two right horizontal maps are the projection on the cokernels. The left square commutes by naturality of the transformation i x k from Denition 2.6.1, which corresponds to the horizontal maps when applied to F and ⊕ F . Also, cr n ( δ x k (F ) ) ( (a 1 , x 1 ), . . . , (a n , x n ) ) is ex- actly the cokernel of the right vertical map cr n (F ) (Id +x) by Proposition 5.4.9. Then the Lemma 5.4.10 gives an isomorphism between Coker ( cr n (F ) (Id +x) ) and

Coker ⎛ ⎜ ⎜ ⎜ ⎝ n ⊕ i=1 F ( ∑ j≠i a j + k) ⊕ F ( n ∑ j=1 a j ) F ( n ∑ j=1 a j + k) n ⊕ i=1 F (σ x i a i +Id k )⊕F ( Id +x) ⎞ ⎟ ⎟ ⎟ ⎠ .
Finally, this last cokernel is exactly cr n+1 (F ) ( (k, x), (a 1 , x 1 ), . . . , (a n , x n ) ) by Proposition 5.4.9.

We now prove that the denition of the polynomial functors over FI d using the cross eects as in Denition 5.4.1 is equivalent to the denition of strong polynomial functors from Denition 5.1.1 using the endofunctors δ.

Proposition 5.4.12. Let F be a FI d -module and n ∈ N be an integer, then F is in

Pol strong n (FI d , R-Mod) if and only if cr n+1 (F ) ( -) is the zero functor over (0 ↓ FI d ) ×(n+1) , if and only if F ○ Θ is in Pol strong n ( (0 ↓ FI d ), R-Mod).
Proof. We prove the rst equivalence by induction on n ∈ N, the second is given by [DV19, Proposition 3.3] since (0 ↓ FI d ) is monoidal with an initial object. For n = 0, the functor cr 1 (F ) is zero if and only if the map F (x) is an epimorphism for all k ∈ FI d and all x ∈ FI d (0, k), since 

cr 1 (F )(k, x) = Coker( F (x) ∶ F (0) → F (k) ) for any (k, x) ∈ (0 ↓ FI d ).
cr n+1 ( δ x k (F ) ) ( -, . . . , -) ≅ cr n+2 (F ) ( (k, x), -, . . . , -).
This shows that F is in Pol strong n+1 (FI d , R-Mod) if and only if cr n+2 (F ) is the zero functor. A direct consequence is that a FI d -module F is strong polynomial of degree n if and only if F ○ Θ is strong polynomial of degree n over (0 ↓ FI d ) because of Denition 5.4.6. Moreover, if a FI d -module is strong polynomial, then its cross eects are zero after some rank as in the following:

Corollary 5.4.13. For F a FI d -module and n ∈ N, if F is in Pol strong n (FI d , R-Mod) then the functors cr k (F ) ( -) are the zero functor over (0 ↓ FI d ) ×k for k ≥ n + 1. Proof. It is a consequence of Proposition 5.4.12 together with the induction relation from Proposition 5.4.11.

Remark 5.4.14. For d = 1, the generation degree in [START_REF] Miller | Higher-order representation stability and ordered conguration spaces of manifolds[END_REF] is exactly the strong polynomial degree. Indeed, it is given by the functor denoted by H FI 0 , which corresponds to the cross eect functor on the element 1 of FI and gives the minimal generators of a FI-module.

We end this section by using the cross eects to show that a composition FI d → R-Mod → R-Mod of two polynomial functors is polynomial. In this goal we rst prove a lemma that will be central in the next proof.

Lemma 5.4.15. For F a FI d -module, m ∈ N, and E a set of k ≥ m objects (a 1 , x 1 ) . . . (a k , x k ) of (0 ↓ FI d ) we denote by P m (E) the set of the subsets of E of cardinality m and by σ x E∖I a E∖I ∶ ∑ i∈I a i → ∑ i∈E a i the morphism given by x i ∶ 0 → a i for (a i , x i ) ∈ E ∖ I and the identity of a i for (a i , x i ) ∈ I. If the functor F is strong polynomial of degree less than or equal to m, then the morphism

φ E = ⎛ ⎜ ⎜ ⎝ ⊕ I∈Pm(E) F ( ∑ i∈I a i ) F ( ∑ i∈E a i ) ⊕ I∈Pm(E) F (σ x E∖I a E∖I ) ⎞ ⎟ ⎟ ⎠
is an epimorphism. Proof. We proceed by induction on |E| = k ≥ m. For k = m, we have P m (E) = {E} so there is only one term in the sum (for I = E) and by denition σ x E∖E a E∖E is the identity so it is an epimorphism. Now if the cardinality of E is k + 1, we consider the following diagram

k+1 ⊕ l=1 ⊕ I∈Pm(E∖{(a l ,x l )} F ⎛ ⎝ ∑ (a i ,x i )∈I a i ⎞ ⎠ k+1 ⊕ l=1 F ⎛ ⎝ ∑ (a i ,x i )∈E∖{(a l ,x l )} a i ⎞ ⎠ ⊕ J∈Pm(E) F ⎛ ⎝ ∑ (a j ,x j )∈J a j ⎞ ⎠ F ⎛ ⎝ ∑ (a i ,x i )∈E a i ⎞ ⎠ . k+1 ⊕ l=1 φ E∖{(a l ,x l )} = k+1 ⊕ l=1 ⊕ I∈Pm(E∖{(a l ,x l )} F (σ) k+1 ⊕ l=1 F (σ x l a l ) φ E = ⊕ J∈Pm(E) F (σ x E∖J a E∖J )
This diagram commutes because of the relation

F (σ x E∖J a E∖J ) = F (σ x E∖I a E∖I ) ○ F (σ x I∖J a I∖J ) for I = J ⊔ {(a l , x l )}.
Then by induction each of the maps φ E∖{(a l ,x l )} is an epimorphism because |φ E ∖ {(a l , x l )}| = k, and so is their sum ⊕ φ E∖{(a l ,x l )}) .

Moreover, F is in Pol strong m (FI d , R-Mod) so the Corollary 5.4.13 implies that the functors cr k+1 (F ) ( -) is the zero functor over (0 ↓ FI d ) ×(k+1) because k + 1 ≥ m + 1. By Proposition 5.4.9 the module cr k+1 (F ) ( (a 1 , x 1 ), . . . , (a k+1 , x k+1 ) ) is the cokernel of the right vertical map, which implies that this is an epimorphism. Then, by composition the diagonal of the diagram is an epimorphism, so the bottom map φ E is also an epimorphism.

Remark 5.4.16. For d = 1, we recover the corollary 3.5 from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] which is used to prove that a composition FI → R-Mod → R-Mod of two polynomial functors is polynomial.

Remark 5.4.17. In Lemma 5.4.15 we can replace the set P m (E) of the subsets of E of cardinality m by the set P m (E) of the subsets of E of cardinality less than or equal to m and the result stays true. Indeed, the cokernels of the maps

⊕ I∈Pm(E) F ( ∑ i∈I a i ) F ( ∑ i∈E a i ) ⊕ I∈Pm(E) F (σ x E∖I a E∖I )
and ⊕

J∈Pm(E)

F ( ∑ j∈J a j ) F ( ∑ j∈E a j ) ⊕ J∈Pm(E) F (σ x E∖J a E∖J )
are equal.It comes from the fact that the new maps on the right (|J| < m) all factor by maps that are already present in both sides (|j| = m) and so they do not change the cokernel. For example Chapter 5. Strong polynomial functors on FI d if |J| = m -1 and if (a l , x l ) ∈ E ∖ J then |I| = m for I = J ⊔ {(a l , x l )} and we have the relation

F (σ x E∖J a E∖J ) = F (σ x E∖I a E∖I ) ○ F (σ x I∖J a I∖J )
, which shows that the image of the map

F (σ x E∖J a E∖J ) is included in the image of F (σ x E∖I a E∖I ), with |I| = m.
We can nally prove that the composition FI d → R-Mod → R-Mod of two polynomial functors is polynomial.

Proposition 5.4.18. For m, n ∈ N, if F ∶ FI d → R-Mod is strong polynomial of degree less than or equal to m and if X ∶ R-Mod → R-Mod preserves epimorphisms and is polynomial of degree less than or equal to n (Denition 5.4.1), then the composite X ○ F ∶ FI d → R-Mod → R-Mod is strong polynomial of degree less than or equal to nm. Proof. If n ≠ 0 and m ≠ 0: We pose k = nm + 1 and we take E a set of k objects (a 1 , x 1 ),. . . ,(a k , x k ) of (0 ↓ FI d ). Since n ≠ 0 we have k = nm + 1 ≥ m so we can apply Lemma 5.4.15 to E and F ∈ Pol strong m (FI d , R-Mod). Together with Remark 5.4.17 it implies that the morphism

φ E = ⎛ ⎜ ⎜ ⎝ ⊕ J∈Pm(E) F ( ∑ j∈J a j ) F ( ∑ j∈E a j ) ⊕ J∈Pm(E) F (σ x E∖J a E∖J ) ⎞ ⎟ ⎟ ⎠
is an epimorphism, where P m (E) is the set of the subsets of E with cardinality less than or equal to m. Since X preserves the epimorphisms we get that X(φ E ) is an epimorphism.

Similarly, since m ≠ 0 we get that

|P m (E)| = m ∑ i=0 ( nm+1 i )
≥ n, and so we can apply the proposition 3.5 of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], which is a version of Lemma 5.4.15 for functors over a symmetric monoidal category with an initial object such as R-Mod, to X and E ′ = P m (E). With the same argument than in Remark 5.4.17 it implies that the morphism

ψ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⊕ J∈Pn(Pm(E)) X( ⊕ I∈J F ( ∑ i∈I a i )) X ⎛ ⎝ ⊕ I∈Pm(E) F ( ∑ i∈I a i ) ⎞ ⎠ ⊕ J∈Pn(Pm(E))
X(σa

Pm(E)∖J ) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
is an epimorphism, where a I = F ( ∑ i∈I a i ). We then consider the following diagram

⊕ J∈Pn(Pm(E)) X( ⊕ I∈J F ( ∑ i∈I a i )) X ○ F ( ∑ i∈E a i ) ⊕ J∈Pn(Pm(E)) X ○ F ( ∑ i∈⊔I,I∈J a i ) ⊕ K∈Pnm(E) X ○ F ( ∑ i∈K a i ) X(φ E )○ψ ⊕ K∈Pnm(E) X○F (σ x E∖K a E∖K )
It commutes since the maps are made with the morphisms σ x a and the identities. Then, X(φ E ) ○ ψ is an epimorphism, and by composition it implies that the right map is an epimorphism. Using the same argument as in Remark 5.4.17, we see that the cokernel of this right map is equal to

Coker ⎛ ⎜ ⎜ ⎜ ⎝ k ⊕ i=1 X ○ F ( ∑ j≠i a j ) X ○ F ( ∑ j∈E a j ) k ⊕ i=1 X○F (σ x i a i ) ⎞ ⎟ ⎟ ⎟ ⎠
, which is cr k (X ○ F ) ( (a 1 , x 1 ), . . . , (a k , x k ) ) by Proposition 5.4.9. We conclude that cr k (X ○ F ) ( (a 1 , x 1 ), . . . , (a k , x k ) ) is zero for all objects (a 1 , x 1 ),. . . ,(a k , x k ) of (0 ↓ FI d ), so cr k (X ○ F ) ( -, . . . , -) is the zero functor. Finally, by Proposition 5.4.12, the functor

X ○ F is in Pol strong nm (FI d , R-Mod) since k = nm + 1. If n = 0: By the proposition 2.9 of [DV19], if X ∶ R-Mod → R-Mod is polynomial of degree 0, then it is a quotient of a constant functor B ∶ R-Mod → R-Mod. Since the precomposition F * by F is an exact functor, we get that X ○ F = F * (X) is a quotient of a constant functor B ○ F = F * (B). Then B ○ F is in Pol 0 (FI d , R-Mod)
and, since it is stable by quotient (Proposition 5.1.3), we get that

X ○ F is in Pol 0 (FI d , R-Mod). If m = 0: By denition, F ∈ Pol 0 (FI d , R-Mod) implies that δ c 1 (F ) = Coker F (Id (-) +c) = 0 for all c ∈ C. Then F (Id (-) +c) is an epimorphism and, since X preserves epimorphisms, we get that X ○ F (Id (-) +c) = δ c 1 (X ○ F ) is an epimorphism. This implies that δ c 1 (X ○ F ) = 0 for all c ∈ C, and so X ○ F is in Pol 0 (FI d , R-Mod).
Remark 5.4.19. The constructions of the cross eects and of the strong polynomial functors were presented for functor F ∶ FI d → R-Mod but it can be extended to the case of functors F ∶ FI d → A for A any abelian category. Then the previous result can be extended to F ∶ FI d → A and X ∶ A → B, for A and B two abelian categories. Moreover, for d = 1, we recover the proposition 3.12 from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] which gives this result for functors over FI.

The pointwise tensor product

In this section we present and study the properties of the pointwise tensor product of FI dmodules. In particular, we show that it preserves strong polynomiality using Proposition 5.4.18. We will see in Section 7.3 that this tensor product pass to the quotient category St(FI d , R-Mod). We will then extend this result to the weak polynomial degree, when R is a eld, with a more precise bound on the degree by using a simpler argument which require the stability by subobject. We start by dening the pointwise tensor product of two FI d -modules. Denition 5.5.1. For F and G two FI d -modules, their pointwise tensor product

F ⊗ G ∈ FI d -Mod is given on an object n by (F ⊗ G)(n) = F (n) ⊗ G(n) and on a morphism (f, g) ∈ FI d (n, m) by (F ⊗ G)(f, g) = F (f, g) ⊗ G(f, g).
Remark 5.5.2. This notion of pointwise tensor product should not be confused with the following construction of Sam and Snowden in [START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF]. They dene a FI d -module from d FImodules M 1 , . . . , M d : the

FI d -module N = M 1 ⊗ ⋅ ⋅ ⋅ ⊗ M d is dened on a set S by N (S) = ⊕ M 1 (S 1 ) ⊗ ⋅ ⋅ ⋅ ⊗ M d (S d )
, where the sum is on the decompositions S = S 1 ⊔ ⋅ ⋅ ⋅ ⊔ S d , and on a morphism (f, g) ∈ FI d (S, T ) by the direct sum of the maps

M 1 (S 1 ) ⊗ ⋅ ⋅ ⋅ ⊗ M d (S d ) M 1 ( S 1 ⊔ g -1 (c 1 ) ) ⊗ ⋅ ⋅ ⋅ ⊗ M d ( S d ⊔ g -1 (c d ) ). d ⊗ i=1 ( S i ↪S i ⊔g -1 (c i ) )
First we prove that the tensor product of vector spaces is a polynomial functor of degree 2 in the classical sense.

Lemma 5.5.3. The tensor product -⊗ -∶ R-Mod × R-Mod → R-Mod is a polynomial functor of degree 2 in the sense of Denition 5.4.1. Proof. Since R-Mod × R-Mod is an abelian category it is in particular monoidal symmetric category with a null object so it falls in the framework of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Then it is enough to prove that δ

X 1 ○ δ X 2 ○ δ X 3 (-⊗ -) is the zero functor, while δ X 1 ○ δ X 2 (-⊗ -) is not zero, for all objects X 1 = (M 1 , N 1 ), X 2 = (M 2 , N 2 ), X 3 = (M 3 , N 3 ) of R-Mod × R-Mod. For U, V ∈ R-Mod, the space δ (M 1 ,N 1 ) (-⊗ -)(U, V ) is the cokernel of the map i (M 1 ,N 1 ) given by (-⊗ -)(U, V ) → τ (M 1 ,N 1 ) (-⊗ -)(U, V ) U ⊗ V ↦ (U ⊕ M 1 ) ⊗ (V ⊕ N 1 ) . By the denition of i (M 1 ,N 1 ) in [DV19] the module U ⊗ V is sent to U ⊗ V , and so δ (M 1 ,N 1 ) (-⊗ -)(U, V ) is equal to (U ⊗ N 1 ) ⊕ (M 1 ⊗ V ) ⊕ (M 1 ⊗ N 1 ). This decomposition is natural since the application i (M 1 ,N 1 ) is natural. Now the space δ (M 2 ,N 2 ) ○ δ (M 1 ,N 1 ) (-⊗ -)(U, V ) is the cokernel of the map δ (M 1 ,N 1 ) (-⊗ -)(U, V ) → τ (M 2 ,N 2 ) ( δ (M 1 ,N 1 ) (-⊗ -) )(U, V ) (U ⊗ N 1 ) ⊕ (M 1 ⊗ V ) ⊕ (M 1 ⊗ N 1 ) ↦ ( (U ⊕ M 2 ) ⊗ N 1 ) ⊕ ( M 1 ⊗ (V ⊕ N 2 ) ) ⊕ (M 1 ⊗ N 1 ).
As above, this implies that

δ (M 2 ,N 2 ) ○ δ (M 1 ,N 1 ) (-⊗ -)(U, V ) = (M 2 ⊗ N 1 ) ⊕ (M 1 ⊗ N 2 ).
Again, this is natural and it proves that δ (M 2 ,N 2 ) ○δ (M 1 ,N 1 ) (-⊗-) is the constant functor equals to (M 2 ⊗N 1 )⊕(M 1 ⊗N 2 ), so it is not zero. Finally, we have that

δ (M 3 ,N 3 ) ○δ (M 2 ,N 2 ) ○δ (M 1 ,N 1 ) (-⊗-)
is zero since it is given on the object (U, V ) by the cokernel of the map

δ (M 2 ,N 2 ) ○ δ (M 1 ,N 1 ) (-⊗ -)(U, V ) → τ (M 3 ,N 3 ) ( δ (M 2 ,N 2 ) ○ δ (M 1 ,N 1 ) (-⊗ -) )(U, V ) (M 2 ⊗ N 1 ) ⊕ (M 1 ⊗ N 2 ) ↦ (M 2 ⊗ N 1 ) ⊕ (M 1 ⊗ N 2 ).
We can now prove that the pointwise tensor product respects strong polynomiality by using Proposition 5.4.18. Theorem 5.5.4. For n, m ∈ N and

F, G ∶ FI d → R-Mod, if F is in Pol strong n (FI d , R-Mod) and if G is in Pol strong m (FI d , R-Mod), then their tensor product F ⊗ G is in Pol strong 2 max(n,m) (FI d , R-Mod).
Proof. We consider the functor (F, G) in Fct(FI d , R-Mod × R-Mod) and we show by induction that (F, G) is polynomial of degree less than or equal to max(n, m). By hypothesis

F ∈ Pol strong n (FI d , R-Mod)
, and so we have δ c

1 (F ) ∈ Pol strong n-1 (FI d , R-Mod)
for all c ∈ C, and we have the same for G. This implies that δ

c 1 (F, G) = ( δ c 1 (F ), δ c 1 (G) ) is polynomial of de- gree less than or equal to max(n, m) -1 = max(n -1, m -1). By induction we get δ c 1 (F, G) ∈ Pol strong max(n,m)-1 (FI d , R-Mod × R-Mod) for all c ∈ C, so (F, G) ∈ Pol strong n (FI d , R-Mod).
Moreover, we showed Lemma 5.5.3 that -⊗-is polynomial of degree 2, and the functor -⊗-preserves epimorphisms since an epimorphism in R-Mod × R-Mod is a couple (f, g) of epimorphism in R-Mod and then f ⊗ g is also an epimorphism. Since R-Mod × R-Mod is an abelian category, we then conclude by applying a generalization of Proposition 5.4.18 presented in Remark 5.4.19 to the composition

FI d R-Mod × R-Mod R-Mod .
(F,G) -⊗-Remark 5.5.5. In Appendix A we give a version of Theorem 5.5.4 for the context of symmetric monoidal category whose unit is an initial object studied in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF].

Remark 5.5.6. In Theorem 5.5.4, the bound may be not the best possible. Indeed, we could expect for F ⊗G ∶ FI d → R-Mod to be strong polynomial of degree less than or equal to n+m. For example, for d = 1 the proposition 4.1 from [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] shows that a FI-module is strong polynomial of degree less than or equal to n if and only if it is a quotient of a sum of the standard projective functors P FI i for i ≤ n. This implies that, over FI, the tensor product F ⊗ G is polynomial of degree n + m if F has degree n and G has degree m. One could try to prove a more rened version of Proposition 5.4.18 and use this renement to get a better bound.

Remark 5.5.7. The result of Theorem 5.5.4 is generally false if we consider a functor F ∈ Fct(FI d , R-Mod) which does not preserve epimorphisms. We gives a counterexample for R = Z that is adapted from the remark 3.13 in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Let F r ∶ FI d → Ab be given on objects by

F r (n) = Z if n < r and F r (n) = Z /2 Z if n ≥ r,
and on morphisms by the identity of Z or the canonical epimorphism between Z and Z /2 Z. Then F r is strong polynomial of degree 0 since δ c Chapter 6

Poset of stably zero functors

The notion of strong polynomial FI d -modules introduced in Chapter 5 is not fully satisfactory since it lacks of important properties, such as being stable by subobjects (Remark 5.1.9).

To solve these problems we want to dene a notion of weak polynomial functors inspired by [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for FI-modules. In order to dene them Djament and Vespa studied the subcategory of Fct(FI, R-Mod) of functors whose colimit is zero called stably zero functors (Denition 2.10 and Proposition 2.13 in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]) to erase them in a quotient. We do the same for FI d , but we will see in this section that there are several subcategories that can replace the stably zero functors in the case of FI d -modules. We rst introduce the notion of globally stably zero functors, then we dene notions of stably zero functors along colours. We end the section by explaining how these notions interact with each other in Section 6.3 and how they interact with the theory of twisted commutative algebra from Chapter 4. In particular, we show that each of these subcategories is thick so we can take the quotient of Fct(FI d , R-Mod) by any of them and dene a notion of weak polynomial functors for each of these quotients. However, we only develop in Chapter 7 the weak polynomial functors corresponding to the global subcategory SN (FI d , R-Mod) since it behaves better with the endofunctors δ x k that allow us to dene polynomial functors.

The subcategory of globally stably zero functors

We start with the study of the biggest of these subcategories which we will use in Chapter 7 to dene a notion of weak polynomial functors in the corresponding quotient of Fct(FI d , R-Mod).

It is the subcategory of globally stably zero functors denoted by SN (FI d , R-Mod). We will present the other subcategories of stably zero functors, along colours, in the second section.

Denition 6.1.1. The category SN (FI d , R-Mod) is the full subcategory of Fct(FI d , R-Mod) whose objects are the globally stably zero functors, i.e. the functors Proof. Suppose rst that κ(F ) = F , then for all n ∈ FI d and all a ∈ F (n) we have

F ∶ FI d → R-Mod such that κ(F ) = F . Proposition 6.1.2. Let F ∶ FI d → R-
a ∈ κ(F )(n) = ∑ k∈FI d ∑ x∈FI d (0,k) κ x k (F )(n).
By Proposition II.1.14.8) the family of subobjects ( κ x k (F ) ) of F is ltered so there exist k ∈ FI d and x ∈ FI d (0, k) such that a ∈ κ x k (F )(n). Conversely, let n be an object of FI d , if for all Chapter 6. Poset of stably zero functors 93 a ∈ F (n) there exist k ∈ FI d and x ∈ FI d (0, k) such that a ∈ κ x k (F )(n), then the inclusion

κ x k (F )(n) ⊂ κ(F )(n) implies the inclusion F (n) ⊂ κ(F )(n).
Since this is true for all objects n ∈ FI d , and since κ(F ) is a subfunctor of F , this implies the identity κ(F ) = F . Remark 6.1.3. Morally, the Proposition 6.1.2 means that a FI d -module F is globally stably zero if for each n ∈ N every element a ∈ F (n) is sent to zero by some map, of the form Id n +x for x ∈ FI d (0, k).

We now give an alternative description of the subcategory SN (FI d , R-Mod) using ltered colimits, which will allow us to prove later that SN (FI d , R-Mod) is thick and stable by the endofunctors δ x k . To do this, we dene a poset structure on N d using the product order, which means that for (n 1 , . . . 

( Id n 1 , (m 1 ∖ n 1 → {c 1 }) ) + . . . + ( Id n d , (m d ∖ n d → {c d }) ) in FI d (n 1 + ⋅ ⋅ ⋅ + n d , m 1 + ⋅ ⋅ ⋅ + m d )
, which can also be written as

( Id n 1 +⋅⋅⋅+n d , ( m 1 ∖ n 1 C c m 1 -n 1 1 ) + ⋅ ⋅ ⋅ + ( m d ∖ n d C c m d -n d d
) ).

Then the following proposition gives a characterization of the stably zero functors as a colimit using the pre-composition by ξ d . Proposition 6.1.5. Let F be a FI d -module, then F ∈ SN (FI d , R-Mod) if and only if

colim N d F ○ ξ d = 0.
Remark 6.1.6. For d = 1 we recover the propositions 2.13 and 2.14 of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for the subcategory SN (FI, R-Mod) of FI-modules since the functor ξ 1 ∶ N → FI is the functor ζ from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF].

Proof of Proposition 6.1.5. Since the category N d is ltered, the colimit of 

F ○ ξ d ∶ N d → R-Mod
(n ′ 1 , . . . , n ′ d ) ≤ (n ′′ 1 , . . . , n ′′ d ) in N d such that F ○ ξ d (f )(a) = F ○ ξ d (g)(a ′ ).
k i = m i -n i for 1 ≤ i ≤ d and k = k 1 +⋅ ⋅ ⋅+k d . For x = (k 1 → {c 1 })+⋅ ⋅ ⋅+(k d → {c d }) ∈ FI d (0, k) we can rewrite F ○ ξ d (f ) = F ( ( Id n 1 , k 1 → {c 1 }) + ⋅ ⋅ ⋅ + ( Id n d , k d → {c d }) ) = F (Id n +x).
ξ d (f ) = ( Id n 1 +⋅⋅⋅+n d , ( k 1 {c 1 } ) + ⋅ ⋅ ⋅ + ( k d {c d } ) ) ∈ FI d (n, n + k).
Then there exits a permutation σ ∈ S k , rearranging the colours as in x, such that 2) The subfunctor

(Id n +σ) ○ ξ d (f ) = Id n +x. Since a ∈ κ x k (F )(n), we have 0 = F (Id n +x)(a) = F (Id n +σ) ○ (F ○ ξ d (f ))(a
κ x k (F ) of F is in SN (FI d , R-Mod).
3) The functor κ(F ) is the biggest subfunctor of F in SN (FI d , R-Mod).

4) The subcategory SN (FI d , R-Mod) is stable by the endofunctor δ x k . Proof. 1) For 0 F G H 0 a short exact sequence of FI d -modules, we get an- other short exact sequence 0

F ○ ξ d G ○ ξ d H ○ ξ d 0 in Fct(N d , R-Mod
) by precomposition with the functor ξ d . Since R-Mod is a Grothendieck category (Denition 1.3.1) so is Fct(N d , R-Mod), which implies that the ltered colimits are exact. By denition N d is a ltered category so we get a short exact sequence

0 colim F ○ ξ d colim G ○ ξ d colim H ○ ξ d 0 .
Then, by Proposition 6.1.5, G is in SN (FI d , R-Mod) if and only if colim G ○ ξ d = 0. This is then equivalent to having colim F ○ ξ d = 0 and colim H ○ ξ d = 0, which means that F and H are in the subcategory SN (FI d , R-Mod) by Proposition 6.1.5 again. Finally, SN (FI d , R-Mod) is stable by colimits by Proposition 6.1.5 since colimits commute together.

2) By Proposition 2.6.6 we have κ x k ○ κ x k = κ x k , so by denition we get

κ ( κ x k (F ) ) = ∑ l∈FI d ∑ y∈FI d (0,l) κ y l ○ κ x k (F ) = κ x k ○ κ x k (F ) + ∑ l∈FI d ∑ y∈FI d (0,l),y≠x κ y l ○ κ x k (F ) = κ x k (F ) + ∑ l∈FI d ∑ y∈FI d (0,l),y≠x κ y l ○ κ x k (F ).
Since κ(κ x k (F )) is a subfunctor of κ x k (F ), this shows that κ(κ x k (F )) = κ x k (F ), and so κ x k (F ) is in SN (FI d , R-Mod).

3) By denition, κ x k (F ) is a subfunctor of F for all k ∈ FI d and x ∈ FI d (0, k), so their sum κ(F ) is also a subfunctor of F by universal property. By the point 2), each of the κ x k (F ) is in the subcategory SN (FI d , R-Mod) which is stable by colimits by the point 1). This implies that κ(F ) is also in SN (FI d , R-Mod). It remains to check that κ(F ) is the biggest subfunctor of F within SN (FI d , R-Mod). Let G ⊂ F be another subfunctor such that G = κ(G) and let j denote the inclusion G ↪ F . Then we have a short exact sequence 0 G F Coker(j) 0 . By Proposition 2.6.6 the endofunctor κ is left exact, so we get a monomorphism from G = κ(G) to F = κ(F ).

4) Let F be a functor in SN (FI d , R-Mod), by Proposition 6.1.5 it implies that colim F ○ ξ d = 0. By Proposition 2.6.6 the endofunctor δ x k commutes with colimits so we get that

colim δ x k (F ) ○ ξ d = δ x k ( colim F ○ ξ d ) = δ x k (0) = 0.
Then δ x k (F ) is in the subcategory SN (FI d , R-Mod) by Proposition 6.1.5 again.

Remark 6.1.8. The point 3) in Proposition 6.1.7 implies in particular that the endofunctor κ is an adjoint of the inclusion functor of SN (FI d , R-Mod) in Fct(FI d , R-Mod).

Remark 6.1.9. For d = 1, the stably zero functors in SN (FI, R-Mod) correspond exactly to the torsion modules over the free TCA Sym((K d ) (1) ) from Denition 4.1.15. Then the endofunctor κ, which gives the maximal subfunctor of a FI-module in SN (FI, R-Mod), corresponds to the local cohomology functor denoted by H 0 m (-) in [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] and [START_REF] Nagpal | Regularity of FI-modules and local cohomology[END_REF]. In particular, they studied the properties of its right derived functors H i m (-) in order to understand how Fct(FI, R-Mod) is constructed from the two pieces SN (FI, R-Mod) and St(FI, R-Mod).

We end this section with some technical results about the SN (FI d , R-Mod)-closed objects dened below, which will be used in Chapter 7. 

0 κ( Ker(σ)) κ(H) κ(σ ○ H) .
Since H is in SN (FI d , R-Mod) we have κ(H) = H and since it is stable by subobjects (Proposition 6.1.7.1) we get that Ker(σ) is also in SN (FI d , R-Mod). Then we have κ(Ker(σ)) = Ker(σ) and we can make the following commutative diagram with exact rows:

0 κ( Ker(σ)) κ(H) κ(σ ○ H) 0 Ker(σ) H σ ○ H 0.
σ By a careful application of the ve lemma we see that the monomorphism κ(σ ○H) ↪ σ ○H is also an epimorphism, so an isomorphism. This means that the image σ ○H of σ is a non-zero subfunctor of F inside SN (FI d , R-Mod) and by Proposition 6.1.7.3) it implies that κ(F ) is non-zero. Conversely, by Proposition 6.1.7, the functor κ x k (F ) is in SN (FI d , R-Mod) for all k ∈ FI d and all x ∈ FI d (0, k). Since this subcategory is stable by colimits by Proposition 6.1.7 it implies that κ(F ) is also in SN (FI d , R-Mod). Then the inclusion j of κ(F ) in F is in Hom(κ(F ), F ) and we showed that κ(F ) is in SN (FI d , R-Mod). Then, by hypothesis we get j is zero and so κ(F ) = 0.

2) By Proposition 2.6.6 the endofunctor τ k commutes with colimits and with κ y l for all l ∈ FI d and y ∈ FI d (0, l), so it commutes with κ. However, according to the previous point, the hypothesis is equivalent to κ(F ) = 0. We then deduce that κ( τ k (F ) ) = τ k ( κ(F ) ) = 0 and the result follows by the previous point.

3) In this case, the exact sequence (I) from Lemma 2.6.4 becomes short by hypothesis since the rst arrow is in Hom(κ x k (F ), F ), with κ x k (F ) in SN (FI d , R-Mod). We then get the short exact sequence 0 F τ k (F ) δ x k (F ) 0 , and for H ∈ SN (FI d , R-Mod) there is a long exact sequence associated with it and with the functor Hom(H, -):

0 Hom(H, F ) Hom(H, τ k (F )) Hom(H, δ x k (F )) Ext 1 (H, F ) . . . .
The rst and the fourth terms are zero by hypothesis so, for all x ∈ FI d (0, k), there is an isomorphism Hom(H, τ k (F )) ≃ Hom(H, δ x k (F )). Then, the result is just a consequence of the last point.

Finally, the following proposition explains that the precomposition by the colouring functors from Denition 2.7.2 preserves the SN -closed functors. Proposition 6.1.13. For c ∈ C and F a FI d -module, if F is SN (FI d , R-Mod)-closed, then the functor ∆ * c (F ) is SN (FI, R-Mod)-closed. Proof. Let η ∶ Id → S 1 ○ π 1 be the unit of the adjunction of π 1 and S 1 . By Proposition 1.3.12 it is enough to prove that the morphism η ∆ * c (F ) ∶ ∆ * c (F ) → S 1 ○ π 1 ○ ∆ * c (F ) is an isomorphism. By hypothesis, the set Hom(H, F ) is reduced to zero for all H ∈ SN (FI d , R-Mod) and by Chapter 6. Poset of stably zero functors 97 Proposition 6.1.12 we have κ(F ) = 0. In particular, it gives κ c k k (F ) = 0 for all k ∈ FI d and by Proposition 2.7.4 we have

κ k ○ ∆ * c (F ) ≅ ∆ * c ○ κ c k k (F ) = ∆ * c ○ 0 = 0.
Then by taking the sum on k ∈ FI we get κ( ∆ * c (F ) ) = 0 and nally using 6.1.12 for FI = FI 1 we have Hom Fct(FI,R-Mod) ( H, ∆ * c (F ) ) = 0 for all H ∈ SN (FI, R-Mod).

But by Proposition 1.3.13, the kernel of the unit η is in SN (FI, R-Mod) so the inclusion of Ker(η ∆ * c (F ) ) in ∆ * c (F ) is zero. This shows that the morphism η ∆ * c (F ) is a monomorphism. Now, if N denotes its cokernel we have a short exact sequence

0 ∆ * c (F ) S 1 ○ π 1 ○ ∆ * c (F ) N 0 η ∆ * c (F )
.

By Lemma 1.3.14 the image of S 1 is SN (FI, R-Mod)-closed, and Proposition 6.1.12 again we have

κ k (S 1 ○ π 1 ○ ∆ * c (F )) = 0 for k ∈ FI.
Then the snake lemma gives an exact sequence

0 κ k (N ) δ k ○ ∆ * c (F ) δ k ○ S 1 ○ π 1 ○ ∆ * c (F ) δ k (N ) 0 .
However, there is a monomorphism

κ k ○δ k ○S 1 ○π 1 ○∆ * c (F ) ↪ δ k ○S 1 ○π 1 ○∆ * c (F ), with S 1 ○π 1 ○∆ * c ( 
F ) which is SN (FI, R-Mod)-closed by Lemma 1.3.14. By Proposition 6.1.7 the image of κ k is in SN (FI, R-Mod), so this monomorphism is zero and we have

κ k ○ δ k (S 1 ○ π 1 ○ ∆ * c (F )) = 0.
Using this and applying the left exact functor κ k to the previous exact sequence we get an isomorphism

κ k ○ κ k (N ) ≅ κ k ○ δ k ○ ∆ * c (F ).
Using Propositions 2.6.6.4) and 2.7.4 we deduce for all k ∈ FI the identity

κ k (N ) = κ k ○ κ k (N ) ≅ κ k ○ δ k ○ ∆ * c (F ) ≅ ∆ * c ○ κ c k k ○ δ c k k (F ). Since F is SN (FI d , R-Mod)-closed and since the image of κ c k k is in SN (FI d , R-Mod) the inclusion of κ c k k ○ δ c k k (F ) in δ c k k (F )
is the zero map by Proposition 6.1.12.3), implying that the functor κ c k k ○ δ c k k (F ) is zero. We get that κ k (N ) is zero for all k ∈ FI and, by taking the sum over k ∈ FI, we get κ(N ) = 0. The Proposition 6.1.12.1) implies then that the set Hom(H, N ) is reduced to zero for all H ∈ SN (FI, R-Mod). Since N is the cokernel of the unit η, by Proposition 1.3.13 it is in SN (FI, R-Mod) so we can deduce that the map Id N is zero. This proves that N = 0, so the monomorphism η ∆ * c (F ) is also an epimorphism and so it is an isomorphism.

Stably zero functors along colours

We now dene the subcategories SN c i 1 ,...,c im (FI d , R-Mod) of Fct(FI d , R-Mod) of stably zero functors along colours similarly to the globally stably zero functor of the previous section. To do this we use the results already proved for functors over FI, especially those of Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], via the colouring functors ∆ * c ∶ Fct(FI d , R-Mod) → Fct(FI, R-Mod) from Denition 2.7.2. We show that each of these subcategories is thick in Corollary 6.2.5, so we can take the quotient of Fct(FI d , R-Mod) by each of them and dene a notion of weak polynomial functors along colours for any of these quotients. Denition 6.2.1. Let c i 1 , . . . , c im ∈ C be distinct colours, the category SN c i 1 ,...,c im (FI d , R-Mod) is the full subcategory of Fct(FI d , R-Mod) of the FI d -modules F such that, for all colours c ∈ {c i 1 , . . . , c im }, we have the identity

∑ k∈FI d κ c k k (F ) = F.
Remark 6.2.2. Morally, it means that a FI d -module F is stably zero in the colours c i 1 , . . . , c im ∈ C if for each n ∈ N every element a ∈ F (n) is sent to zero by some map of the form Id n +c k for every colour c in {c i 1 , . . . , c im }.

We can use the precomposition by the colouring functors ∆ c from Denition 2.7.2 to give another description of these subcategories based on the stably zero FI-modules. Indeed, we show that a FI d -module is in the subcategory SN c i 1 ,...,c im (FI d , R-Mod) if and only if the precomposition by the colouring functor is stably zero on FI for all the colours in {c i 1 , . . . , c im }. This will allow us to use the results about stably zero FI-modules to obtain similar properties for stably zero FI d -modules. Proposition 6.2.3. For F a FI d -module and c ∈ C, the functor F is in the subcategory SN c (FI d , R-Mod) if and only if the functor ∆ * c (F ) is in the subcategory SN (FI, R-Mod). Proof. By denition, the functor

F is in SN c (FI d , R-Mod) if and only if the sum on k ∈ FI d of the functors κ c k k (F ) is equal to F . Since every κ c k k (F ) is a subfunctor of F , this is equivalent the equality of R-modules ∑ k∈FI d κ c k k (F )(n) = F (n)
for all n ∈ FI d . By denition of ∆ c we have

F (n) = F ○ ∆ c (n) = ∆ * c (F )(n) and κ c k k (F )(n) = κ c k k (F ) ○ ∆ c (n) = ∆ * c ○ κ c k k (F )(n) = κ k ○ ∆ * c (F )(n).
This allows us to rewrite the identity as

∑ k∈FI κ k (∆ * c (F )) (n) = ∆ * c (F )(n).
Again, each κ k (∆ * c (F )) is a subfunctor of ∆ * c (F ), so this identity (which holds for all objects n ∈ FI) is equivalent to the equality

∑ k∈FI κ k (∆ * c (F )) = ∆ * c (F ),
which is the denition of ∆ * c (F ) being in the subcategory SN (FI, R-Mod). 

Poset of stably zero functors

In this section we explain that the subcategories of Fct(FI d , R-Mod) of stably zero functors presented in the two previous sections give a renement of the notion of stably zero functors introduced in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for FI-modules. Indeed, for d = 1 there is an inclusion of the unique subcategory of stably zero functors SN (FI, R-Mod) in Fct(FI, R-Mod), but for a general d, these subcategories naturally form a richer poset for the inclusion. Lemma 6.3.1. There is a poset of subcategories of Fct(FI d , R-Mod) for the inclusion. It can be represented as follows, where the target of these functor categories is always R-Mod. 

κ x k (F ) = ∑ k∈FI d κ c k k (F ) + ∑ k∈FI d ∑ x∈FI d (0,k),x≠c k κ x k (F ).
However, F ∈ SN c (FI d , R-Mod) implies that ∑

k∈FI d κ c k k (F ) = F and, since κ(F ) is a subfunctor of F we have κ(F ) = F + ∑ k∈FI d ∑ x∈FI d (0,k),x≠c k κ x k (F ) = F.
We give now some examples of functors in the poset of Lemma 6.3.1 and, in particular, we illustrate that the inclusions of these subcategories are strict. Example 6.3.2. We illustrate that the inclusions forming the poset are strict for d = 2, but the given counterexamples are generalizable for any FI d . For d = 2 the poset is simply the following:

SN c 1 (FI 2 , R-Mod) SN c 1 ,c 2 (FI 2 , R-Mod) SN (FI 2 , R-Mod) Fct(FI 2 , R-Mod). SN c 2 (FI 2 , R-Mod)
The inclusion SN (FI 2 , R-Mod) ↪ Fct(FI 2 , R-Mod) is strict since any constant functor is not stably zero.

of subcategories of the modules over this TCA, which would be interesting to compare with the poset of Lemma 6.3.1, and they decompose the category into the successive quotients of this ltration. They then describe in [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] each quotient in the ltration and explain how these pieces come together.

We end this section by showing that the precomposition by the forgetful functor O ∶ FI d → FI from Denition 2.1.6 preserves the stably zero functors. More precisely, if a FI-module F is stably zero, we show that the FI d -module O * (F ) = F ○ O is stably zero in every possible way. Lemma 6.3.5. For c i 1 , . . . , c im ∈ C, there are inclusions of categories of functors to R-Mod:

O * ( SN (FI) ) ⊂ SN c 1 ,...,c d (FI d ) ⊂ SN c i 1 ,...,c im (FI d ) ⊂ SN (FI d ) .
Proof. For F in SN (FI, R-Mod) and c ∈ C, by denition F = κ(F ) = ∑ k∈FI κ k (F ). By Proposition 2.7.1 we also have O * ○ κ k (F ) ≅ κ x k ○ O * (F ) for all x ∈ FI d (0, k) and all k ∈ N. This implies that

∑ k∈FI d κ c k k ○ O * (F ) ≅ ∑ k∈FI d O * ○ κ k (F ) = O * ⎛ ⎝ ∑ k∈FI d κ k (F ) ⎞ ⎠ = O * (F ).
We conclude that ∑ k∈FI d κ c k k ○ O * (F ) = O * (F ) for all c ∈ C, and so O * (F ) is in SN c 1 ,...,c d (FI d , R-Mod), the smallest subcategory in the poset.

Globally stably zero functors and twisted commutative algebras

For R = K a eld, there is an equivalence of categories between the category of FI d -modules and the category of modules over the free TCA Sym((K d ) (1) ) of Denition 4.1.15 given in Theorem 4.2.4. The aim of this section is to study the notion of stably zero functors through this equivalence of categories. We begin with the description of the category equivalent to the notion of globally stably zero functors from the point of view of Sym((K d ) (1) )-modules. We recall that this equivalence depends on a choice of a basis B of V = K d , and we use the same notations as in Section 4.2.

Proposition 6.4.1. The subcategory SN (FI d , K -Vect) of Fct(FI d , K -Vect) is equivalent to the full subcategory of Sym(V (1) ) -Mod having as objects the Sym(V (1) )-modules (G, µ) such that for all objects n ∈ Σ we have the equality

G(n) = ∑ k∈Σ ∑ x∶k→d Ker ( G(n) K ⋅e x ⊗ G(n) G(n + k) Φx µ n+k | K ⋅ex⊗G(n) ) ,
where

Φ x is the canonical isomorphism G(n) ≅ K ⋅e x ⊗ G(n).
Proof. We prove that the essential image of the subcategory SN (FI d , K -Vect) by the functor Γ B of Theorem 4.2.4's proof consists of the Sym(V (1) )-modules (G, µ) which satisfy the condition of the statement. This proves the equivalence since the functor Γ B is full and faithful by Theorem 4.2.4. For (G, µ) a Sym(V (1) )-module, n, k ∈ FI d and x ∈ FI d (0, k) ≅ Set(k, d), we can describe

κ x k (χ B (G, µ))(n) by κ x k (χ B (G, µ))(n) = Ker ((χ B (G, µ)) (id n +x) ∶ χ B (G, µ)(n) → χ B (G, µ)(n + k)) = Ker ( G(n) G(n) K ⋅e x ⊗ G(n) G(n + k) G(idn) Φx µ n+k | K ⋅ex⊗G(n) ),
where the last equality is just the denition of χ 

F FI 2 c 1 (f, g) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Id K if f is bijective,
Id K if the only colour that appears in g is the colour c 1 , 0 if the colour c 2 appears in g.

We showed in Example 6.3.2 that F FI 2 c 1 is in the subcategory SN (FI 2 , K -Vect). For φ ∈ GL(K 2 ) dened in the basis B by the matrix

M B (φ) = ( 1 1 0 1 ) ,
by Proposition 4.3.5 we have (φ B ⋅ F FI 2 c 1 )(n) = K for all objects n ∈ FI 2 and

(φ B ⋅ F FI 2 c 1 )(f, g) = ∑ g ′ ∈FI 2 (0,m∖f (n)) ⎛ ⎝ m∖f (n) ∏ l=1 m g ′ (l),g(l) ⎞ ⎠ F FI 2 c 1 (f, g ′ )
for all morphisms (f, g) ∈ FI 2 (n, m). Since F FI 2 c 1 (f, g ′ ) is zero if c 2 appears in g ′ the only nonzero term in this sum is the one for g ′ = (c 1 ) m∖f (n) . By denition F FI 2 c 1 (f, g ′ ) is the identity in this case, so we get

(φ B ⋅ F FI 2 c 1 )(f, g) = ⎛ ⎝ m∖f (n) ∏ l=1 m 1,g(l) ⎞ ⎠ F FI 2 c 1 (f, g ′ ) = (1 #{c 1 ∈g} ⋅ 1 #{c 2 ∈g} ) ⋅ Id K = Id K .
Applying this to the morphism (f, g) = Id (-) +x for k ∈ FI 2 and x ∈ FI 2 (0, k), we get that

κ x k (φ B ⋅ F FI 2 c 1 ) = Ker ( (φ B ⋅ F FI 2 c 1 )(Id (-) +x) ) = Ker(Id) = 0.
Finally, we have κ(φ

B ⋅ F FI 2 c 1 ) = ∑ κ x k (φ B ⋅ F FI 2 c 1 ) = 0, showing that the functor φ B ⋅ F FI 2 c 1 is not in the subcategory SN (FI 2 , K -Vect) although F FI 2 c 1 is in SN (FI 2 , K -Vect).
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Weak polynomial functors on FI d

For functors over a symmetric monoidal category whose unit is a null object, the polynomial functors are stable by subobjects (see [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF]) which simplies their study. It is because this is not true when the unit is just initial that the weak polynomial functors were introduced in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] to recover this kind of properties. As seen in Remark 5.1.9, even for d = 1, the strong polynomial FI d -modules are not sable by subobject either. The given counterexamples are made of functors which are zero on maps after some rank, which gives rise to unstable phenomena. To avoid this instability we delete the problematic functors, such as the stably zero functors studied in Chapter 6, in a quotient category of Fct(FI d , R-Mod). Then we can dene polynomial objects in this quotient category and the weak polynomial FI d -modules as the functors whose image in the quotient is polynomial. Then this notion of weak polynomial FI d -modules has all the important properties we want. This idea is inspired by the situation studied in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] for FI-modules but, as seen in Chapter 6, for FI d there are several subcategories of stably zero functors that we can consider.

In Section 7.1, we present the quotient by the largest of these subcategories, SN (FI d , R-Mod), to get a smaller quotient category that may be the easiest to describe. In particular, we get a characterization of the simple objects of this quotient in Proposition 7.1.8. We then introduce and study the polynomial objects in this quotient in Section 7.2. We also explain in Remark 7.2.10 that in the quotient by another subcategory of stably zero functors the polynomial objects are a bit harder to dene and we lose some important properties like the fact that the endofunctors δ x k become exact when they pass to the quotient category. In Section 7.3 we explain that the pointwise tensor product from Denition 5.5.1 passes to the quotient by SN (FI d , R-Mod) and preserves polynomial objects. Finally, we dene the category R-Mod d whose objects are the tuples (M, φ 2 , . . . , φ d ), where M is an object of R-Mod and φ 2 , . . . , φ d ∶ M → M are d -1 isomorphisms in R-Mod commuting two by two in Section 7.4. We then show that the category of polynomial objects of degree 0 in this quotient is equivalent to R-Mod d .

The quotient category St(FI d , R-Mod)

We showed in Proposition 6.1.7 that the subcategory SN (FI d , R-Mod) of Fct(FI d , R-Mod) is thick so, using the construction from Denition 1.1.8, we can dene the quotient by this subcategory. In this section we give the denition, the basic results and some more abstract properties of this quotient category of stable functors. 

= Sym( K ∞ )⊗Sym( K ∞ ⊗ K ∞
) from the point of view of TCAs as representations of GL(∞), which also has a structure of a FI op -module. They then show that the two functors Hom FI (-, K) and Hom FI op (-, K), (respectively post and pre) composed with a duality, are quasiinverse of each other. In [SS19, Section 5], they show that the extremal quotients Mod A,0 and Mod A,d of the rank stratication of Remark 4.1.17 are equivalent, which generalizes this equivalence for a general d. To prove this, they show that both categories are equivalent to the category of polynomial representations of the group GL(∞)⋉(K ∞ ⊗ K d ). However, it seems to be false that Mod A,k and Mod A,d-k are equivalent for k ≠ 0, d. The quotient Mod A,d corresponds to the category St(FI d , R-Mod) via the equivalence from Theorem 4.2.4, while the full subcategory Mod A,0 of Mod A consists, from the point of view of TCAs as representations of GL(∞), of the modules supported at zero, i.e. which are locally annihilated by a power of Remark 7.1.4. In [SS16, Section 1.3] Sam and Snowden show that, for d = 1, the equivalent categories St(FI, R-Mod) and SN (FI, R-Mod) can be described as the category of representations of an explicit quiver with relations called Part HS . The vertices of this quiver are the partitions, there is an order relation on the partitions: µ ≤ λ if λ/µ is a "horizontal strip" (called HS), which means that λ i ≥ µ i ≥ λ i+1 for all i. There is an arrow in Part HS from the partition µ to the partition λ if µ ≤ λ. For three partitions λ, µ and ν such that µ ≤ λ and λ ≤ ν, the composition of the two maps µ ≤ λ and λ ≤ ν is equal to the map µ ≤ ν if µ ≤ ν and is zero if µ ≰ ν. This quiver corresponds to the simple elements (see Proposition 2.4.3) of the category and gives the relations between them. The proof of this result uses the functors that give the equivalence St(FI, R-Mod) ≅ SN (FI, R-Mod) for d = 1.

K d ⊗ K ∞ ⊂ Sym(K d ⊗ K ∞ ). With the identication Sym(K d ⊗ K ∞ ) ≅ K[x i,j |1 ≤ i ≤ d, 1 ≤ j] it is the ideal generated by the x i,j with the identication Sym(K d ⊗ K ∞ ) ≅ K[x i,j |1 ≤ i ≤ d, 1 ≤ j],
Lemma 7.1.5. The quotient functor π d is essentially surjective, exact, it commutes with all ltered colimits and has a right adjoint 

S d ∶ St(FI d , R-Mod) → Fct(FI d , R-Mod)
○ δ x k = (δ x k ) St ○ π d and π d ○ τ k = τ St k ○ π d .
These endofunctors are exact, they commute to colimits, and there is a short exact sequence of endofunctors of St(FI d , R-Mod):

0 Id St τ St k (δ x k ) St 0 (i x k ) St
Proof. For F ∈ SN (FI d , R-Mod), by Proposition 2.6.6 the endofunctor τ k commutes with κ x l and colimits, so we have

κ(τ k (F )) = ∑ l∈FI d ∑ x∈FI d (0,l) κ x l (τ k (F )) = ∑ l∈FI d ∑ x∈FI d (0,l) τ k (κ x l (F )) = τ k (κ(F )) = τ k (F ).
This means that τ k (F ) is in SN (FI d , R-Mod), so the functor π d ○ τ k is zero on all objects of the subcategory SN (FI d , R-Mod). Moreover, both π d and τ k are exact functors, so π d ○ τ k is also exact. Then, by Proposition 1.3.4, there exists a unique functor τ St k which satises the relation π d ○ τ k = τ St k ○ π d . By Corollary 1.3.5 we get that it is exact, and it commutes with colimits by construction since π d and τ k commute with colimits too (Proposition 2.6.6 and Lemma 7.1.5). Now we do the same for δ x k : for every short exact sequence 0 → F → G → H → 0 in Fct(FI d , R-Mod), by applying the exact functor π d to the exact sequence of Proposition 2.6.6 we get the short exact sequence

0 π d ○ δ x k (F ) π d ○ δ x k (G) π d ○ δ x k (H) 0 
since we have π d ○ κ x k = 0 by Proposition 6.1.7. This means that the functor π d ○ δ x k is exact. Moreover, by Proposition 6.1.7 the subcategory SN (FI d , R-Mod) is stable by the endofunctor δ x k , which implies that π d ○ δ x k is zero on the subcategory SN (FI d , R-Mod). By Proposition 1.3.4 there exists a unique functor (δ x k ) St which satises the relation

π d ○ δ x k = (δ x k ) St ○ π d .
It is also exact and it commutes with colimits with the same arguments as for τ k . Finally, applying the exact functor π d to the exact sequence (I) from Lemma 2.6.4 we get the short exact sequence

0 π d (F ) τ St k (π d (F )) (δ x k ) St (π d (F )) 0 (i x k ) St π d (F )
since π d ○ κ x k = 0 by Proposition 6.1.7. Using Proposition 1.2.3 we get, for all X ∈ St(FI d , R-Mod), the existence of the natural short exact sequence of the statement.

Chapter 7. Weak polynomial functors on FI d Remark 7.1.7. In [SS16] Sam and Snowden consider the full subcategory of nitely generated torsion modules over the TCA Sym((K 1 ) (1) ), which corresponds to the modules ofnite length. Then they study the properties of the quotient category of nitely generated Sym((K 1 ) (1) )-modules by this full subcategory. This quotient is equivalent to the subcategory of St(FI, R-Mod) of nitely generated objects. In particular, they show that the projective nitely generated modules are also injective and that the section functor sends the injective objects of the quotient to projective objects, and that all the nitely generated FI-modules have nite injective dimension.

The following proposition gives a condition that describes the simple objects of the quotient category St(FI d , R-Mod). It is inspired by [SS16, Proposition 2.2.1] which gives a similar result for nitely generated FI-modules but expressed in terms of modules over the TCA Sym((K 1 ) (1) ).

Proposition 7.1.8. For F a FI d -module, the object Remark 7.1.9. In fact, this proof works for any quotient category A / C , since it uses only the results of Chapter 1. By Proposition 7.1.8 to classify the simple objects of St(FI d , R-Mod) is equivalent to classify the FI d -modules F such that for each of its submodule G either G or F /G is in SN (FI d , R-Mod). For d = 1, Sam and Snowden used this equivalence to classify explicitly the simple objects of the quotient category for nitely generated FI-modules in [SS16, Section 2.2]. Indeed, they showed that the simple objects of the quotient are indexed by the partitions: the object associated to the partition λ is the image by the section functor π 1 of the direct sum of the simple objects of FI -Mod (see Proposition 2.4.3 for d = 1) associated with the partitions of the form (n, λ), with n ≥ λ 1 . They then used this result to classify the injective objects of this quotient.

π d (F ) ∈ St(FI d , R-Mod) is simple if and only if, for all submodules G of F , either G is in SN (FI d , R-Mod) or F /G is in SN (FI d , R-Mod). Proof. If π d (F ) is simple, then for all submodules G of F , π d (G) is a subobject of π d (F ), since π d is exact. Then either π d (G) = 0, which means that G ∈ SN (FI d , R-Mod), or π d (G) = π d (F ) which implies that π d (F /G) = 0 since π d is
We now use the notion of SN (FI d , R-Mod)-closed objects (Denition 6.1.10) and the Proposition 6.1.12 to show that there is a monomorphism from δ x k ○ S d to S d ○ (δ x k ) St . This will be used in Section 7.4 in order to describe the polynomial functors of degree 0. Proposition 7.1.10. For all k ∈ FI d and x ∈ FI d (0, k) there is a natural monomorphism

δ x k ○ S d S d ○ (δ x k ) St .
Proof. 

δ x k ○ S d (X) S d ○ π d ○ δ x k ○ S d (X) S d ○ (δ x k ) St ○ π d ○ S d (X) S d ○ (δ x k ) St (X), η δ x k ○S d (X) ∼ ∼
where the rst isomorphism is given by Proposition 7.1.6 and the second by Proposition 1.3.10. By denition, the kernel of ηX is the same as the kernel of η δ x k ○S d (X) and, by Proposition 1.3.13 it is in the subcategory SN (FI d , R-Mod) since it is the kernel of the unit of the adjunction of π d and S d . Moreover, by Lemma 1.3.14 the functor S d (X) is SN (FI d , R-Mod)-closed. Then the inclusion j of the kernel Ker(η X ) within δ

x k ○ S d (X) is in Hom ( Ker(η X ), δ x k (S d (X)) ), with Ker(η X ) in SN (FI d , R-Mod) and S d (X) which is SN (FI d , R-Mod)-closed.
By Proposition 6.1.12 we get j = 0 and so ηX is a monomorphism from δ

x k ○S d (X) to S d ○(δ x k ) St (X).
It is natural since the co-unit is natural and the two isomorphisms inside ηX are also natural.

Finally we construct an homology functor h FI d * (-) from the quotient category St(FI d , R-Mod) to the graded category R-Mod gr over R-Mod as the usual homology functor H * (FI d , -) from the category Fct(FI d , R-Mod) passing to the quotient. This denition is inspired by Propositions 2.17 and 2.18 of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Recall that for R-Mod we use the constant functor R to dene the usual homology functor H * (FI d , -) as the functor Tor FI d * (R, -).

Proposition 7.1.11. For F a FI d -module, if the morphism i x k (F ) is a split monomorphism for all k ∈ FI d and x ∈ FI d (0, k), then 1) For every functor H ∈ SN (FI d , R-Mod) we have Ext * (H, F ) = 0.

2) For every functor G ∈ Fct(FI d , R-Mod), the morphism

Ext * Fct(FI d ,R-Mod) (G, F ) Ext * St(FI d ,R-Mod) (π d (G) , π d (F )) (π d ) * is an isomorphism. In particular, π d ∶ Hom(G, F ) → Hom( π d (G), π d (F ) ) is an isomor- phism. 3) If X ∶ FI op d → R-Mod
is a functor such that the morphism i x k (X) is a split epimorphism for all k ∈ FI d and x ∈ FI d (0, k), then for all H ∈ SN (FI d , R-Mod) we have Tor * (X, H) = 0. 4) Let R-Mod gr be the graded category over R-Mod. The homology functor H * (FI d , -) ∶ Fct(FI d , R-Mod) → R-Mod gr passes to the quotient St(FI d , R-Mod), which means that there exists a unique functor

h FI d * (-) ∶ St(FI d , R-Mod) → R-Mod gr such that h FI d * ○ π d = H * (FI d , -).
Proof. 1) For H a functor in SN (FI d , R-Mod), we rst assume that there exist k ∈ FI d and

x ∈ FI d (0, k) such that i x k (H) = 0. For all natural transformations σ ∶ H → F , the naturality of i x k implies the relation τ k (σ) ○ i x k (H) = i x k (F ) ○ σ, so the following diagram commutes: Hom (H, F ) Hom (H, τ k (F )) Hom (τ k (H), τ k (F )) (i x k (F )) * τ k (i x k (H)) 108 
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Since we assumed that i x k (H) is zero the morphism (i x k (F )) * is also zero. Moreover i x k (F ) is a split monomorphism by hypothesis, so (i x k (F )) * is also an epimorphism. Since Hom(-, F ) and Hom(-, τ k (F )) are left exact functors, their derived functors Ext * (-, F ) and Ext * (-, τ k (F )) are universal δ-functors. So there exist unique morphisms (i x k (F ))

n * ∶ Ext n (H, F ) → Ext n (H, τ k (F )) extending (i x k (F )) * .
By unicity of the extending morphisms all the morphisms (i x k (F ))

n * are both split monomorphisms and zero. This implies that, for all n ∈ N, the object Ext n (H, F ) is zero proving the statement if there exist k ∈ FI d and x ∈ FI d (0, k) such that i x k (H) = 0. For H an arbitrary functor in SN (FI d , R-Mod), we still have

H = κ(H) = ∑ k∈FI d ∑ x∈FI d (0,k) κ x k (H).
By denition, for all k ∈ FI d and x ∈ FI d (0, k), the morphism i x k ( κ x k (H) ) is zero, so from the previous point we get Ext * ( κ x k (H) , F ) = 0. Since the functor Hom(-, F ) commutes with colimits, its derived functors also commute with colimits because they are universal δ-functors. This implies the equality

Ext * ( H , F ) = Ext * ⎛ ⎝ ∑ k∈FI d ∑ x∈FI d (0,k) κ x k (H) , F ⎞ ⎠ = ∑ k∈FI d ∑ x∈FI d (0,k) Ext * ( κ x k (H) , F ) = 0.
2) By Proposition 1.2.3 the functor π d is full up to inner isomorphisms, so the morphism

π d ∶ Hom(G, F ) → Hom(π d (G), π d (F )
) is surjective since we use skew categories (these inner isomorphisms do not count) and we prove that it is also injective. 

( π d ) * ∶ Ext n Fct(FI d ,R-Mod) (G, F ) → Ext n St(FI d ,R-Mod) (π d (G), π d (F ))
extending π d . By unicity of the extending morphisms, all the morphisms (π d ) * are also isomorphisms.

3) This is the dual statement of point 1).

4) The constant functor R ∶ FI op d → R-Mod satises the hypothesis of point 3) since, for all k ∈ FI d and all x ∈ FI d (0, k), the morphism i x k (R) = R(Id +x) = Id R is a split monomorphism. We then deduce that, for all functors H ∈ SN (FI d , R-Mod), we have the equality H * ( FI d , H) = Tor FI d * (R, H) = 0, so the functor H * (FI d , -) is zero on the subcategory SN (FI d , R-Mod). Moreover the functor H * (FI d , -) gives a long exact sequence for every short exact sequence in Fct(FI d , R-Mod). We conclude with Proposition 1.3.6 (with this long exact sequence), and we get the existence of a unique functor h 

FI d * (-) ∶ St(FI d , R-Mod) → R-Mod gr such that h FI d * ○ π d = H * (FI d , -).
(FI d , R-Mod) is zero and, for n ∈ N, an object X of St(FI d , R-Mod) is in Pol n (FI d , R-Mod) if (δ c 1 ) St (X) ∈ Pol n-1 (FI d , R-Mod) for all c ∈ C,
where (δ c 1 ) St is the endofunctor from Proposition 7.1.6. A FI d -module F is a weak polynomial functor of degree less than or equal to n if its projection π d (F ) is in the subcategory

Pol n (FI d , R-Mod) of St(FI d , R-Mod).
Remark 7.2.2. We say that a functor over FI d is weak polynomial if its image in the quotient category St(FI d , R-Mod) by π d is a polynomial object. By denition of the endofunctors (δ x k ) St we get that a strong polynomial functor is weak polynomial, but the converse is not true as shown in Example 5.1.7. This justies the terminology introduced by Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF].

Remark 7.2.3. In an abuse of notation, we sometimes also denote by Pol n (FI d , R-Mod) the full subcategory of Fct(FI d , R-Mod) of weak polynomial functors of degree less than or equal to n, i.e. the functors F such that π d (F ) is in the subcategory Pol n (FI d , R-Mod) of St(FI d , R-Mod). In the contrary, we sometimes call by polynomial functors the polynomial objects of St(FI d , R-Mod), even if they are objects of the quotient category.

One may expect that the image by the section functor of a polynomial object in the quotient category St(FI d , R-Mod) gives a strong polynomial FI d -module with the same degree, but this is not always true as shown in the following example.

Example 7.2.4. There exist polynomial objects of degree 1 such that their image by the section functor is not a polynomial FI d -module of degree 1. We give an example for R = Z adapted from 

d ○ δ c 1 (F ) = π d (Z ≥1 ) = π d (Z)
which is weak polynomial of degree 0. We then compute that κ(Z[-]) = 0 and κ(Z[-]) = 0 so, by Proposition 6.1.12, we get Hom(H, Z[-]) = 0 and Hom(H, Z) = 0 for all H ∈ SN (FI d , R-Mod). Similarly, since Z[-] is projective we get Ext 1 (H, Z) = 0 and we deduce from the exact sequence 0 F Z[-] Z that F is SN (FI d , R-Mod)-closed (Denition 6.1.10). Finally, Proposition 1.3.12 gives that F ≅ S d ○ π d (F ), and we showed that π d (F ) is polynomial of degree 1 while S d ○ π d (F ) is strong polynomial of degree 2.

We now prove that the subcategories Pol n (FI d , R-Mod) of St(FI d , R-Mod) are thick.

The pointwise tensor product

In this section we show that the pointwise tensor product respects polynomial objects of St(FI d , R-Mod), as for strong polynomial FI d -modules (Section 5.5) but with a simpler argument. To do this we introduce a long exact sequence of vector spaces connecting the kernel and the cokernel of the tensor product of two linear maps. We then use it to obtain a natural long exact sequence of functors associated with the tensor product of the two maps i x k (F ) ∶ F → τ k (F ) and i y l (G) ∶ G → τ l (G) of Denition 2.6.1. Finally, we use a part of this exact sequence to prove by induction that the tensor product preserves polynomial degree, with more precise bound than for the strong degree. Since this argument requires the stability by subobject, it does not work for strong degree which is why we used the arguments of Section 5.5. In this section we assume that R = K is a eld but all the statements are true if we consider only at R-modules and morphisms of R-modules with at kernels and cokernels. We start by showing that the pointwise tensor product from Denition 5.5.1 passes to the quotient St(FI d , R-Mod).

Lemma 7.3.1. The pointwise tensor product from Denition 5.5.1 passes to the quotient of Fct(FI d , K -Vect) by the subcategory SN (FI d , K -Vect), which gives a functor

⊗ ∶ St(FI d , K -Vect) × St(FI d , K -Vect) → St(FI d , K -Vect). Proof. If F or G is in the subcategory SN (FI d , K -Vect), then so is F ⊗ G. Indeed, we can compute for all n ∈ FI d that colim (n 1 ,...,n d )∈N d (F ⊗G)○ξ d (n 1 , . . . , n d ) = colim (n 1 ,...,n d )∈N d F ○ξ d (n 1 , . . . , n d )⊗ colim (n 1 ,...,n d )∈N d G○ξ d (n 1 , . . . , n d )
since on vector spaces the tensor product commutes with colimits. By Proposition 6.1.5, if F is in SN (FI d , K -Vect) then the colimit of F ○ ξ d is zero, and so is the colimit of (F ⊗ G) ○ ξ d . Using Proposition 6.1.5 again, this implies that F ⊗ G is in SN (FI d , K -Vect) and it is similar if G is in SN (FI d , K -Vect). Now the functor ⊗ ∶ K -Vect × K -Vect → K -Vect is exact since every vector space is at which implies that the pointwise tensor product ⊗ of FI d -modules over K is also exact. We can post-compose it with the exact functor π d and, using Proposition 1.3.4 two times, we get an exact tensor functor on the quotient as stated.

We now introduce a lemma about the tensor product of linear maps, which we will use to construct the long exact sequence of Proposition 7.3.4. Lemma 7.3.2. Let f ∶ X → Y and f ′ ∶ X ′ → Y ′ be two linear maps between K-vector spaces, the two exact sequences associated with their kernel and cokernel

0 K X Y C 0 i f p and 0 K ′ X ′ Y ′ C ′ 0 i ′ f ′ p ′
can be combined to form the following long exact sequence associated with the tensor product f ⊗ f ′ :

0 K ⊗ K ′ (K ⊗ X ′ ) ⊕ (X ⊗ K ′ ) X ⊗ X ′ 0 C ⊗ C ′ (C ⊗ Y ′ ) ⊕ (Y ⊗ C ′ ) Y ⊗ Y ′ (Id K ⊗i ′ )⊕(i⊗Id K ′ ) (i⊗Id X ′ )-(Id X ⊗i ′ ) f ⊗f ′ (Id C ⊗p ′ )-(p⊗Id C ′ ) (p⊗Id Y ′ )⊕(Id Y ⊗p ′ )
Proof. The kernel K of f is a subvector space so we can choose a complement S such that X = K ⊕S. Then the classical isomorphism X / Ker(f ) ≅ Im(f ) gives an isomorphism Im(f ) ≅ S.

By denition we also have C = Coker(f ) ≅ Y / Im(f ) , which means that C ≅ Y / S and that Y ≅ C ⊕ S since every short exact sequence of vector spaces splits. Then we have a new exact sequence

0 K K ⊕ S C ⊕ S C 0 Id K ⊕0 0⊕Id S Id C ⊕0
, and there is a natural equivalence between this exact sequence and the one with f from the statement since the following diagram commutes

0 K X Y C 0 0 K K ⊕ S C ⊕ S C 0. i f p ≅ Id K ⊕0 0⊕Id S Id C ⊕0
The same construction works for f ′ and we can combine the two commutative diagrams (for f and f ′ ) with the tensor product to make the following sequence equivalent to the one of the statement:

0 K ⊗ K ′ (K ⊗ K ′ ) ⊕2 ⊕ (K ⊗ S ′ ) ⊕ (S ⊗ K ′ ) (K ⊗ K ′ ) ⊕ (K ⊗ S ′ ) ⊕(S ⊗ K ′ ) ⊕ (S ⊗ S ′ ) 0 C ⊗ C ′ (C ⊗ C ′ ) ⊕2 ⊕ (C ⊗ S ′ ) ⊕ (S ⊗ C ′ ) (C ⊗ C ′ ) ⊕ (C ⊗ S ′ ) ⊕(S ⊗ C ′ ) ⊕ (S ⊗ S ′ ) ∆ K⊗K ′ ⊕ 0 ∇ K⊗K ′ ⊕ Id 0 ⊕ Id S⊗S ′ ∇ C⊗C ′ ⊕ 0 ∆ C⊗C ′ ⊕Id ⊕0
where ∆ K⊗K ′ ∶ K⊗K ′ → (K⊗K ′ ) ⊕2 is the diagonal application and ∇ K⊗K ′ ∶ (K⊗K ′ ) ⊕2 → K⊗K ′ is the identity on the rst component and minus the identity on the second one. We can check at each term that this sequence is exact since it consists only of zero and identity maps. This implies that the long sequence of the statement is also exact since they are equivalent.

Remark 7.3.3. The proof of Lemma 7.3.2 is not canonical since it depends strongly on the choice of the complements S and S ′ of K and K ′ in X and X ′ .

To study the tensor product of polynomial functors we use the exact sequence of vector spaces of Lemma 7.3.2 to induce a similar exact sequence of functors associated with the endofunctors κ x k and δ x k .

Proposition 7.3.4. Let R = K be a eld, then for F, G in FI d -Mod = Fct(FI d , K -Vect) there is an exact sequence of functors associated with the tensor product i x k (F ) ⊗ i y l (G):

0 → κ x k (F ) ⊗ κ y l (G) (κ x k (F ) ⊗ G) ⊕ (F ⊗ κ y l (G)) F ⊗ G 0 ← δ x k (F ) ⊗ δ y l (G) (δ x k (F ) ⊗ τ l (G)) ⊕ (τ k (F ) ⊗ δ y l (G)) τ k (F ) ⊗ τ l (G) Id ⊗ι G ⊕ι F ⊗Id ι F ⊗Id -Id ⊗ι G i x k (F )⊗i y l (G) Id ⊗ρ G -ρ F ⊗Id ρ F ⊗Id ⊕ Id ⊗ρ G Proof.
For n ∈ FI d , we apply Lemma 7.3.2 to the two exact sequences of vector spaces

0 κ x k (F )(n) F (n) τ k (F )(n) δ x k (F )(n) 0 i x k (F )(n) and 0 κ y l (G)(n) G(n) τ l (G)(n) δ y l (G)(n) 0 i y l (G)(n) ,
where the rst equivalence is given by the co-unit η X ∶ π d ○ S d (X) ≅ X of the adjunction of π d and S d (Proposition 1.3.10) and the second by Proposition 7.1.6. This shows that δ St c (X) = 0 for all c ∈ C, so X is in Pol 0 (FI d , R-Mod). Conversely, if X is in Pol 0 (FI d , R-Mod), we show that for any k ∈ FI d and any x ∈ FI d (0, k) the morphism i x k (S d (X)) is a monomorphism and an epimorphism in the abelian category Fct(FI d , R-Mod), i.e. an isomorphism. First, since X is in Pol 0 (FI d , R-Mod) by Lemma 7.2.6 the functor (δ x k ) St (X) is zero and so we have

δ x k (S d (X)) ↪ S d ○ (δ x k ) St (X) = S d (0) = 0,
where the monomorphism is given by Proposition 7.1.10. This proves that i x k (S d (X)) is an epimorphism. Moreover, by adjunction of π d and S d we have, for all H ∈ SN (FI d , R-Mod):

Hom Fct(FI d ,R-Mod) (H, S d (X)) ≅ Hom St(FI d ,R-Mod) (π d (H), X) = Hom (0, X) = 0.
By Proposition 6.1.12, this implies that κ(S d (X)) = 0. Since the endofunctor κ is the sum of all the κ x k , the minimality of the sum implies that all κ x k (S d (X)) are zero. We then have κ x k = 0 and so i x k is a monomorphism. Note that the rst point is very specic to the degree 0, while the second is true in general (see Remark 7.2.2).

We now give an explicit description of the functors satisfying the condition (P OL0), which will be used to prove Theorem 7.4.12. First recall that by Denition 7.4.1, if X ∈ St(FI d , R-Mod) satises the condition (P OL0), then S d (X)(c k 1 ) is an isomorphism for all k ∈ FI d . Using this, the Proposition 2.5.4 and the category FI d given in Denition 2.5.2 we dene a functor H X isomorphic to S d (X) and we give an explicit description of this functor. This equivalence is essential for the proof of Theorem 7.4.12. We now prove that, for X ∈ St(FI d , R-Mod) which satises the condition (P OL0), the functor S d (X) is equivalent to the functor H X of Denition 7.4.4. This allows us to conclude that the FI d -module S d (X) is determined by its image on the colouring morphism c ∈ C, which is the key point in the proof of the theorem. Lemma 7.4.7. For X ∈ St(FI d , R-Mod) satisfying the condition (P OL0) there is a natural equivalence ε ∶ H X ≅ S d (X) given by ε n = S d (X)(c n 1 ) ∶ H X (n) = S d (X)(0) → S d (X)(n) for n ∈ FI d .

where the rst equality is given by Proposition 7.1.6 and the second comes from the fact that Θ d (M, φ 2 , . . . , φ d ) (Id +c) is an isomorphism. This shows that the image of the functor π d ○ Θ d is in Pol 0 (FI d , R-Mod). Now if X is in Pol 0 (FI d , R-Mod) it satises the condition (P OL0) by Proposition 7.4.2 and, by Lemma 7.4.7, the functor S d (X) is equivalent to the functor H X which is exactly the image of M X ∶= (S d (X)(0), (S d (X) (c 1 ))

-1 ○ S d (X) (c 2 ) , . . . , (S d (X) (c 1 )) -1 ○ S d (X) (c d ) )

by the functor Θ d by Proposition 7.4.6. By Proposition 1.3.10 the co-unit of the adjunction of π d and S d is always an isomorphism from π d ○S d to Id and, since π d is exact, we get the isomorphism This shows that the functor π d ○ Θ d is full and faithful and that its essential image is Pol 0 (FI d , R-Mod).

X ≅ π d ○ S d (X) ≅ π d ○ H X ≅ π d ○ Θ d (M X ).
Chapter 9. Functors on the categories Cospan(FI d )

The categories Cospan(FI d )

In this section we present a generalization of the construction Cospan for the categories FI d and we give the main properties of the category Cospan(FI d ). This construction can be found for other categories in [START_REF] Vespa | Generic representations of orthogonal groups: the mixed functors[END_REF] and is equivalent to the construction ˜∶ Mon ini → Mon nul from 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ i + 0 m i + l Idm +β g ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ○ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + k Idm +α f ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ i + 0 + 0 n m + k i + l + k Id i +β+α f g+Id k ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
, where we choose a representative diagram of each class. 

[D] ∶= ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + k Idm +α f ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + z + (k ∖ z) Idm +(σ○α) (Idm +σ)○f ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
Since there is only one equivalence class in Cospan(FI d )(0, 0), so we have

[D] = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + z Idm +β g ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 k ∖ z γ h ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + z Idm +β g ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ =∶ [D ′ ] .
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Finally, the diagram (D ′ ) is minimal since g restricted to g -1 (z) → z is surjective, i.e. bijective.

Then, the Proposition 9.1.6 gives, in particular, the following description of the morphisms starting and ending at 0 in Cospan(FI d ): 

)
where g is g restricted to k ∖ g -1 (l) and co-restricted to its image within n ∖ l, so that it is an isomorphism of k ∖ g -1 (l).

Remark 9.2.2. As in Remark 9.1.2, a morphism (f, α) in FI d #(n, m) morally consists of an injection and two colour choices, one on the complement at the source and one on the complement at the target, which interact with each other. Indeed, the morphism f = (g, β) ∈ FI d (l, m) is itself a pair formed by an injection g from l into m and a colour choice β on the complement of the image of g in m.

We now dene two functors between Cospan(FI d ) and FI d #, and we prove in Theorem 9.2.8 that they are inverse to each other. 

Γ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + k Idm +α f ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ( f -1 (m) m f , 0 Im(f ) ∩ k n ∖ f -1 (m) α| Im(f )∩k f -1 )
where f is f restricted to n ∖ f -1 (m) and co-restricted to Im(f ) ∩ k so it is an isomorphism. as in the proof of Proposition 9.1.6 we can choose k and k ′ minimal such that Im(f ) ∩ k = k and Im(g) ∩ k ′ = k ′ . The minimality for both k and k ′ implies that φ is bijective. Then the equality g = (Id m +φ) ○ f implies that f -1 (m) = g -1 (m) and that the restrictions of f and g to this subobject are the same. This relation also implies that g = φ ○ f , and together with the relation α ′ = φ ○ α it gives the relations g-1

○ α ′ = (φ ○ f ) -1 ○ φ ○ α = f -1 ○ φ -1 ○ φ ○ α = f -1 ○ α which shows that Γ([D]) = Γ([D ′ ]).
Remark 9.2.6. If we choose k minimal as in Proposition 9.1.6, then Im(f ) ∩ k = k and the injective morphism f restricted to n ∖ f -1 (m) gives an isomorphism n ∖ f -1 (m) ≃ k. This isomorphism can be used to rewrite the image of the functor Γ on morphisms as follows:

Γ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + k Idm +α f ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎝ f -1 (m) m f , 0 k n ∖ f -1 (m) α (f | n∖f -1 (m) ) -1 ⎞ ⎠ .
In the end of the section we always choose such a minimal k and we use the alternative denition of Γ given in Remark 9.2.6 to simplify the notations. Remark 9.2.7. We can assume that f restricted to n ∖ f -1 (m) is the identity by the following commutative diagram:

m + 0 f -1 (m) + (n ∖ f -1 (m)) m + k m + (n ∖ f -1 (m)) Idm +α Idm +((f | n∖f -1 (m) ) -1 ○α) f f +Id n∖f -1 (m) Idm +(f | n∖f -1 (m) ) -1
. This explains why the inverse image of f , restricted to n ∖ f -1 (m), appears in the denition of the functor Γ, and illustrates the equivalence below. Indeed, this representative diagram of the class isolates the colour choice on the complement at the source n ∖ f -1 (m) and the colour choice on the complement m ∖ f (n) ∩ m at the target, which corresponds to a morphism in FI d # . Proof. By denition both compositions of Γ and χ are the identity on objects, we prove that this is also the case for morphisms. For (g ∶ l → m, β ∶ 0 → n ∖ l) a morphism in FI d #(n, m) we have:

Γ ○ χ ( ( l m g , 0 n ∖ l β ) ) = Γ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n = l + (n ∖ l) m + (n ∖ l) Idm +β g+Id n∖l ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
Then, the image by Γ of this class is 

χ ○ Γ( [D] ) ∶= χ ○ Γ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 n m + k Idm +α f ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = χ ⎛ ⎝ f -1 (m) m f | f -1 (m) , 0 k = n ∖ f -1 (m) (f | n∖f -1 (m) ) -1 ○α ⎞ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + 0 f -1 (m) + (n ∖ f -1 (m)) m + (n ∖ f -1 (m)) Idm +((f | n∖f -1 (m) ) -1 ○α) f | f -1 (m) +Id n∖f -1 (m) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
.

We denote by [D ′ ] this last class of diagrams. Then, since f induces an isomorphism n∖f -1 (m) ≅ k, we can make the following commutative diagram:

m + 0 n = f -1 (m) + (n ∖ f -1 (m)) m + (n ∖ f -1 (m)) m + k, Idm +((f | n∖f -1 (m) ) -1 ○α) Idm +α f | f -1 (m) +Id n∖f -1 (m) f =f | f -1 (m) +f | n∖f -1 (m) Idm +f | n∖f -1 (m)
. which shows that the class [D ′ ] is the same as the initial class [D], implying that χ ○ Γ = Id.

Polynomial Cospan(FI d )-modules

In this section we study the polynomial functors from the category Cospan(FI d ) to the category R-Mod, called Cospan(FI d )-modules, as we did for FI d -modules in the previous chapters. We start by dening the endofunctors τ k , δ x k and κ x k on Fct(Cospan(FI d ), R-Mod) as we did for Fct(FI d , R-Mod) in Section 2.6 and we dene the polynomial functors on Cospan(FI d ) using them, as for polynomial FI d -modules in Section 5.1. One important dierence is that all the endofunctors κ x k are zero for Cospan(FI d )-modules, as we have shown in Proposition 9.3.4, which simplies the study of these functors. For example, it implies that the subcategories of stably zero functors over Cospan(FI d ) are zero so there is only one notion of polynomial Cospan(FI d )modules. 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = F ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ m + k n m + k + l Id m+k +α (f +Id k )○(Idn +x) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = F (Id m +x) ○ F ([D]).
We then dene the endofunctors δ x k and κ x k as we did in Denition 2.6.2 for FI d -modules. However, we immediately show that the endofunctors κ x k are all zero over Cospan(FI d ). We now show that the basic properties of these endofunctors that we proved for FI d -modules remain true for Cospan(FI d )-modules. Some of them even become empty since all the endofunctors κ x k are zero by Proposition 9.3.4.

Proposition 9.3.6. For k, l ∈ Cospan(FI d ) and x ∈ Cospan(FI d )(0, k), y ∈ Cospan(FI d )(0, l), we have 0) The endofunctor δ x k is exact, 1) The endofunctors τ k and τ l commute up to a natural isomorphism. They also commute with limits and colimits. 2) The endofunctors δ x k and δ y l commute up to a natural isomorphism. They also commute with colimits.

3) The endofunctors τ l and δ x k commute up to a natural isomorphism. 4) There is a natural short exact sequence 0 δ y l δ x+y k+l τ l ○ δ x k 0 . Proof. The proof is the same as the proof of Proposition 2.6.6. The only dierences are that the exact sequence of points 0) and 4) becomes short since κ x k is zero, which implies that all endofunctors δ x k are exact and not just right exact.

Les foncteurs sur la catégorie FI des injections entre ensembles finis apparaissent naturellement dans différents contextes. Ils interviennent notamment dans l'étude de la stabilité des familles de représentations des groupes symétriques initiée par Church, Ellenberg et 

  Théorème. Pour n, m ∈ N et F, G ∶ FI d → R-Mod, si F est dans Pol strong n (FI d , R-Mod) et si G est dans Pol strong m (FI d , R-Mod), alors leur produit tensoriel F ⊗ G est dansPol strong 2 max(n,m) (FI d , R-Mod).

  Pol strong n (M, R-Mod) et si G est dans pol strong m (M, R-Mod), alors leur produit tensoriel F ⊗ G ∶ M → R-Mod est dans Pol strong 2 max(n,m) (M, R-Mod).

F ○ ξ d = 0 .

 0 épaisses, c'est-àdire stables par sous-objet, quotient et extension. Nous pouvons alors considérer la catégorie quotient de Fct(FI d , R-Mod) par n'importe laquelle de ces sous-catégories en suivant la construction de Gabriel dans[START_REF] Gabriel | Des catégories abéliennes[END_REF], et y dénir des objets polynomiaux en utilisant les endofoncteurs δ c 1 de Fct(FI d , R-Mod) qui passent aux quotients. Ceci est possible parce que ces sous-catégories sont stables par colimites et que le foncteur quotient π d a un adjoint à droite S d appelé le foncteur section. La sous-catégorie SN (FI d , R-Mod) des foncteurs globalement stablement nuls est dénie dans la Section 6.1 à l'aide d'une famille d'endofoncteurs κ c 1 de Fct(FI d , R-Mod). Ces foncteurs sont dénis dans la Section 2.6 d'une manière duale à δ c 1 , et ils s'insèrent tous dans la suite exacte d'endofoncteurs 0 κ c Introduction (Français) N d pour l'ordre du produit et un foncteur ξ d ∶ N d → FI d qui envoie un objet (n 1 , . . . , n d ) ∈ N d sur l'objet n 1 + ⋅ ⋅ ⋅ + n d de FI d . Nous montrons ensuite dans la Proposition 6.1.5 qu'il existe une dénition équivalente de la catégorie SN (FI d , R-Mod) utilisant une colimite ltrée sur N d : Proposition. Soit F un FI d -module, alors F est dans SN (FI d , R-Mod) si et seulement si colim N dPour d = 1, nous retrouvons la description de SN (FI, R-Mod) de [DV19, Proposition 5.7], à savoir que les foncteurs stablement nuls sont ceux dont la colimite est nulle. Rappelons que, par[START_REF] Steven | Introduction to twisted commutative algebras[END_REF], la catégorie des FI d -modules est équivalente à la catégorie des Sym((K d ) (1) )modules. Dans la Section 6.4, nous donnons une description de SN (FI d , R-Mod) en termes de Sym((K d ) (1) )-modules par le biais de cette équivalence. Nous montrons également dans la Proposition 6.4.2 que, pour d > 1, la sous-catégorie SN (FI d , K -Vect) de Fct(FI d , K -Vect) n'est pas stable par l'action de GL(K d ) dénie ci-dessus.

  particulier, Djament et Vespa ont décrit ce quotient dans [DV19, Théorème 2.26] pour les objets polynomiaux de St(FI, R-Mod) comme nous le rappelons dans le Chapitre 9. Pour n = 0, ils obtiennent que les seuls objets de Pol 0 (FI, R-Mod) sont les foncteurs constants. Dans la Section 7.4, nous décrivons les objets polynomiaux de degré 0 de St(FI d , R-Mod), qui forment une catégorie plus riche que pour d = 1. Pour cela, nous introduisons dans la Dénition 7.4.8 la catégorie R-Mod d des R-modules avec d -1 automorphismes qui commutent deux à deux. De même, nous introduisons la catégorie des modules sur l'anneau des polynômes commutatifs R[x ±1 2 , . . . , x ±1 d ] en les d -1 variables x 2 , . . . , x d toutes inversibles. Un de nos principaux résultats est alors la description suivante obtenue dans le Théorème 7.4.12 : Théorème. Il existe des équivalences de catégories entre la catégorie Pol 0 (FI d , R-Mod) des objets polynomiaux de degré 0 de St(FI d , R-Mod), la catégorie R-Mod d et la catégorie R[x ±1 2 , . . . , x ±1 d ]-Mod. Pour d = 1 nous retrouvons que les FI-modules polynomiaux de degré 0 sont les foncteurs constants, mais pour un d général ces foncteurs forment une catégorie plus complexe. Nous prouvons ce théorème en deux étapes : tout d'abord, nous montrons dans la Proposition 7.4.2 que les objets polynomiaux de degré 0 de St(FI d , R-Mod) satisfont une condition abstraite appelée (P OL0). Nous utilisons ensuite la catégorie intermédiaire FI d dénie dans la Section 2.5 pour montrer, dans les Propositions 7.4.6 et 7.4.7 que, pour chaque objet F du quotient satisfaisant (P OL0), l'image de F par le foncteur section S d est complètement déterminée par son image sur les morphismes c ∈ FI d (0, 1). Ces images des morphismes c ∈ FI d (0, 1) correspondent aux d -1 isomorphismes de modules de la catégorie R-Mod d , lorsque nous trivialisons l'action de c 1 . Du point de vue des R[x ±1 2 , . . . , x ±1 d ]-modules, les images des morphismes c i ∈ FI d (0, 1) correspondent à l'action des x i , où x 1 agit par l'identité lorsque nous trivialisons l'action de c 1 . Exemples de quotients polynomiaux des foncteurs P FI d n Le fait que les générateurs projectifs standards P FI d n soient fortement polynomiaux pour d = 1 simplie l'étude des foncteurs polynomiaux sur la catégorie FI. Comme expliqué ci-dessus, ce n'est pas le cas pour d > 1. Nous décrivons donc plusieurs quotients des foncteurs P FI d Introduction (Français) d'occurrences de la couleur c i dans α. Nous disons alors que α ∈ FI d (0, k) satisfait la condition (P I,k 1 ,...,k d ) si γ i (α) ≥ k i pour tout i ∈ I ou s'il existe j ∈ {c 1 , . . . , c d } ∖ I tel que γ j (α) ≥ k j . Avec ces notations, nous introduisons dans la Dénition 8.1.7 le sous-foncteur G I,k 1 ,...,k d de P FI d 0 donné par

  ) admet un diagramme représentatif minimal de la classe, ce qui implique que les morphismes de 0 à n et les morphismes de n à 0 dans Cospan(FI d ) sont en bijection avec FI d (0, n). Ceci souligne que la catégorie Cospan(FI d ) est essentiellement obtenue en conservant les morphismes de 0 à n de FI d et en ajoutant de nouveaux morphismes de n à 0 qui leur correspondent.Nous étudions ensuite lesCospan(FI d )-modules comme nous l'avons fait pour les FI dmodules : dans la Section 9.3 nous dénissons les foncteurs polynomiaux sur Cospan(FI d ) en utilisant une famille d'endofoncteurs δ c 1 de Cospan(FI d ) pour les diérentes couleurs. Une diérence majeure est que les foncteurs stablement nuls sur Cospan(FI d ) sont nuls puisque cette catégorie a un objet nul, ainsi les notions faibles et fortes de foncteurs polynomiaux sur Cospan(FI d ) coïncident. Nous obtenons alors dans le Théorème 9.4.9 la description suivante des Cospan(FI d )-modules polynomiaux de degré 0 : Théorème. Un foncteur F ∈ Fct(Cospan(FI d ), R-Mod) est dans Pol 0 (Cospan(FI d ), R-Mod) si et seulement si c'est un foncteur constant. Il existe une équivalence des catégories Pol 0 ( Cospan(FI d ), R-Mod ) ≅ R-Mod . Avec la description des objets polynomiaux de degré 0 de St(FI d , R-Mod) (Théorème 7.4.12), ceci montre que pour un d général la première équivalence de [DV19, Proposition 5.9] présentée ci-dessus échoue déjà pour n = 0, c'est-à-dire que le quotient de Pol n (FI d , R-Mod) par Pol n-1 (FI d , R-Mod) n'est pas équivalent au même quotient sur Cospan(FI d ). Structure du document L'organisation du manuscrit est la suivante : dans le premier chapitre nous rappelons la construction et les faits importants concernant le quotient d'une catégorie par une sous-catégorie épaisse. Nous présentons les FI d -modules dans le Chapitre 2 et nous donnons un aperçu des résultats basiques déjà connus à leur sujet. Nous introduisons également les principaux outils pour leur étude et décrivons les objets simples de cette catégorie. Dans le Chapitre 3, nous présentons l'exemple des espaces de conguration et le décrivons explicitement dans des cas simples. Le Chapitre 4 concerne les algèbres commutatives tordues et leur lien avec les FI dmodules. Dans le Chapitre 5, nous dénissons les foncteurs fortement polynomiaux sur FI d et donnons des exemples et des contre-exemples. Nous étendons également les eets croisés à ces foncteurs et montrons que la notion résultante de foncteurs polynomiaux coïncide avec celle utilisant l'endofoncteur diérentiel. Le Chapitre 6 est consacré aux diérentes notions de foncteurs stablement nuls et à l'ensemble partiellement ordonné qu'elles forment. Dans le Chapitre 7, nous étudions la catégorie quotient St(FI d , R-Mod) et les foncteurs polynomiaux dans ce quotient. En particulier, nous décrivons les objets polynomiaux de degré zéro de St(FI d , R-Mod), qui ne sont pas simplement les foncteurs constants. Dans le Chapitre 8, nous donnons des exemples de quotients polynomiaux des foncteurs projectifs standards. Enn, dans le dernier chapitre nous introduisons la catégorie Cospan(FI d ) et nous montrons que la méthode de [DV19] pour décrire les FI-modules faiblement polynomiaux ne fonctionne pas de la même manière aux FI d -modules faiblement polynomiaux.

  FI d n from Denition 8.2.1. A nice representative of the image of this quotient in the category St(FI d , R-Mod) could help us to describe it in the category R[x ±1

  FI d n by F n is equivalent to the functor P C d n , and describe the quotient of P FI d n by H n as a tensor product in Proposition 8.3.8 via the formula:

  π and (S(ε) ○ η S ∶ S → S ○ π ○ S → S) = Id S are respectively the unit, and the co-unit of the adjunction of π ∶ A → A / C and S ∶ A / C → A.

  and zero else. Remark 2.3.1. Neither M k or M <k+1 are subfunctors of the constant functor since, in both cases, the image of the spaces M k (k) = M and M <k+1 (k) = M by the maps M (k → k + 1) = Id M are equal to M , which is not a subspace of M k (k+1) = 0 or M <k+1 (k+1) = 0. Thus the category of FI d -modules is not semisimple since the short exact sequence 0 M ≥k M M <k 0 do not split.

  R-Mod) denote the precomposition functor dened by ∆ * c (F ) = F ○ ∆ c for all functors F ∈ Fct(FI d , R-Mod) and by ∆ c (σ) = σ for all natural transformation σ ∶ F → G, where σ on the right is seen as a natural transformation between F ○ ∆ c and G ○ ∆ c .

  are the natural transformations of Denition 2.6.1 for FI and FI d respectively. Finally, the c-colouring functors are right-inverses of the forgetful functor O ∶ FI d → FI as explained in the following.

  FI d -modules are nitely generated as proved in [Ram19]. Denition 3.2.1. Let G be a graph with d vertices labeled by [d] = {1, . . . , d}, the n-strand sink conguration space of G is given by Conf

  FI d to Top, as explained in the following, since the d vertices of the graph will correspond to the d colours of FI d . Denition 3.2.2. The covariant functor Conf sink -(G, [d]) ∶ FI d → Top sends an object n ∈ FI d to the topological space Conf sink n (

  Theorem 3.2.3. For i ∈ N and G a connected graph, the FI d -module H i (Conf sink (-) (G, [d]) , Q) is nitely generated. Proof. It was proved by Ramos in [Ram19, Theorem 4.1]. Remark 3.2.4. The case i = 0 is simple to describe. Indeed, if G is connected then the space Conf sink (-) (G, [d]) is connected and so H 0 (Conf sink (-) (G, [d]) , Q) is the constant functor Q. For a general graph G, the same argument applies to the connected components of G which implies that H 0 (Conf sink n

≃Figure 3 . 1 :

 31 Figure 3.1: The space Conf sink 2 (G, [2]) is homotopy equivalent to the sphere S 1 . We now give a similar argument to prove that the space Conf sink n (G d , [d]) for a general d is a bouquet of spheres S n-1 . Proposition 3.2.6. For n ∈ N * and G d the linear graph on d vertices, the space Conf sink n (G d , [d])

  , [d]). Since two points are on the same edge, we can use the central retraction as in the proof of Proposition 3.2.5 to show that the subspace of Conf sink n (G d , [d]) included in this hypercube admits the boundary of the small hypercube as a deformation retract. Either the center does not have two equal coordinates, and then the whole hypercube is in Conf sink n (G d , [d]) since all the points are on dierent edges. In this case the subspace of Conf sink n (G d , [d]) corresponding to this hypercube is contractible (it corresponds to the grey squares on the gure 3.2). The gure 3.2 gives an example of this process for n = 2, and d = 3. The space Conf sink n (G d , [d]

Figure 3

 3 Figure 3.2: The space Conf sink 2 (G, [3]) is homotopy equivalent to the wedge of two spheres S 1 .

FI

  d -Mod ≅ Sym( V (1) ) -Mod rst stated by Sam and Snowden in [SS12, Section 10.2] for d = 1, then proved in [SS17, Proposition 7.2.5]. In particular, we give an explicit construction of two functors χ B ∶ Sym(V (1) ) -Mod → FI d -Mod and Γ B ∶ FI d -Mod → Sym(V (1) ) -Mod giving the equivalence. Note that these functors depend on the choice of the basis B of V = K d , so we x one B = (e 1 , . . . , e d ) for this section.

  transformation giving the action of A on F . Denition 4.2.2. The functor χ B ∶ Sym(V (1) ) -Mod → FI d -Mod sends a Sym(V (1) )-module (F, µ) to a FI d -module χ B (F, µ) ∶ FI d → K -Vect sending the object n to F (n), and the morphism (f, g) of FI d to the composition

Chapter 4 .

 4 Twisted commutative algebras 71 Finally we can state the equivalence of categories shown by Sam and Snowden in [SS17]:

  2. Denition 5.1.1. The full subcategories of Fct(FI d , R-Mod) of strong polynomial functors of degree less than or equal to n, denoted by Pol strong n (FI d , R-Mod), are dened by induction. By convention Pol strong -1 (FI d , R-Mod) is zero and, for n ∈ N, a FI d -module F is in Chapter 5. Strong polynomial functors on FI d 75 Pol strong n

  Proposition 5.1.3. For n ∈ N, k ∈ FI d and x ∈ FI d (0, k), the subcategory Pol strong n (FI d , R-Mod) of Fct(FI d , R-Mod) is stable by quotient, by extensions, by colimits and by the endofunctors τ k and δ x k . Proof. For c ∈ C, by Proposition 2.6.6 the endofunctor δ c 1 commutes (up to isomorphism) with the endofunctors τ k and δ x k and with colimits. We then prove by induction on n ∈ N that Pol strong n (FI d , R-Mod) is stable by colimits and by τ k and δ x k . We write the details for the endofunctor τ k , the other cases being similar. If F ∈ Pol strong n (FI d , R-Mod) then δ c 1 (F ) is in Pol strong

n(

  FI d , R-Mod). As a special case of the stability by colimits we get that the subcategories Pol strong n (FI d , R-Mod) are stable by quotient. Finally, we show by induction on n ∈ N that Pol strong n (FI d , R-Mod) is stable by extension. Let 0 F G H 0 be a short exact sequence in Fct(FI d , R-Mod) such that F and H are in Pol strong n (FI d , R-Mod), we want to prove that G is also in Pol strong n (FI d , R-Mod). For c ∈ C, by Proposition 2.6.6.0) we have an exact sequence

  Proposition 5.1.4. A FI d -module F is in Pol strong n (FI d , R-Mod) if and only if the functor δ x k (F ) is in Pol strong n-1 (FI d , R-Mod) for all k ∈ FI d and all x ∈ FI d (0, k). Proof. One implication is obvious by taking k = 1 and c ∈ C = FI d (0, 1), we prove the reverse. Let F be in Pol strong n (FI d , R-Mod) and c, c ∈ C be two colours, we prove that δ (c,c) 2

Chapter 5 .

 5 Strong polynomial functors on FI d 77 Some interesting examples are the functors dened in Section 2.3: Example 5.1.7.

Chapter 5 .

 5 Strong polynomial functors on FI d Corollary 5.2.2. For d > 1, the standard projective functor P FI d n is not strong polynomial of any degree. Proof. It follows directly from the relation of Proposition 5.2.1 and from the denition of strong polynomial functors.

  In this case, for any m ∈ FI d , the map F ( (id m +x) ○ c m 1 ) = F (id m +x) ○ F (c m 1 ) is an epimorphism, which implies that F (id m +x) is an epimorphism. Then cr 1 (F ) = 0 implies that δ x k (F )(m) ∶= Coker(F (id m +x)) = 0 for all m ∈ FI d , k ∈ FI d and all x ∈ FI d (0, k), which is equivalent to F ∈ Pol strong 0 (FI d , R-Mod) by Proposition 5.1.4. The converse is direct by taking m = 0 since δ x k (F ) = Coker(F (x)) = 0 implies that F (x) is an epimorphism. For n ∈ N, by Proposition 5.1.4, F is in Pol strong n+1 (FI d , R-Mod) if and only if the functor δ x k (F ) is in Pol strong n (FI d , R-Mod) for all k ∈ FI d and all x ∈ FI d (0, k), which is equivalent to cr n+1 ( δ x k (F ) ) = 0 by induction. However, by Proposition 5.4.11.2), we have a natural isomorphism

  , n d ), (m 1 , . . . , m d ) ∈ N d we have (n 1 , . . . , n d ) ≤ (m 1 , . . . , m d ) if n i ≤ m i for all 1 ≤ i ≤ d. We then consider the category N d associated with this poset which is therefore a ltered category. We now dene a functor ξ d ∶ N d → FI d where the i-th component of N d corresponds to the i-th colour of FI d . Denition 6.1.4. The functor ξ d ∶ N d → FI d sends an object (n 1 , . . . , n d ) ∈ N d to the object n 1 + ⋅ ⋅ ⋅ + n d of FI d and a morphism (n 1 , . . . , n d ) ≤ (m 1 , . . . , m d ) in N d to the morphism

  is a ltered colimit. Then by Proposition 1.1.6 its elements can be written as the equivalence class of all objects a ∈ F ○ ξ d (n 1 , . . . , n d ) quotient by the following equivalence relation: two objectsa ∈ F ○ ξ d (n 1 , . . . , n d ) and a ′ ∈ F ○ ξ d (n ′ 1 , . . . ,n ′ d ) are equivalent if there exists (n ′′ 1 , . . . , n ′′ d ) ∈ N d , and two maps f ∶ (n 1 , . . . , n d ) ≤ (n ′′ 1 , . . . , n ′′ d ) and g ∶

  In particular, the class of an element a ∈ F ○ ξ d (n ′ 1 , . . . , n ′ d ) is zero if and only if there exists an object (m 1 , . . . , m d ) ∈ N d and a map f ∶ (n 1 , . . . , n d ) ≤ (m 1 , . . . , m d ) such that F ○ ξ d (f )(a) = 0. Now we can prove the equivalence. If colim F ○ ξ d = 0, for n ∈ FI d and (n 1 , . . . , n d ) in N d such that ξ d (n 1 , . . . , n d ) = n 1 + ⋅ ⋅ ⋅ + n d = n, then for every element a ∈ F (n) we can consider the class of a ∈ F ○ ξ d (n 1 , . . . , n d ) in the colimit of F ○ ξ d . Since this colimit is zero, the class of a is zero which means that there exists an object (m 1 , . . . , m d ) ∈ N d and a map f ∶ (n 1 , . . . , n d ) ≤ (m 1 , . . . , m d ) in N d such that F ○ξ d (f )(a) = 0. We now pose m = m 1 +⋅ ⋅ ⋅+m d , as well as

Chapter 6 .

 6 Poset of stably zero functorsThen for all a ∈ F (n) there exist k ∈ FI d and x ∈ FI d (0, k) such that F (Id n +x)(a) = 0, so a ∈ κ x k (F )(n) ⊂ κ(F )(n). This gives the inclusion F (n) ⊂ κ(F )(n) for all objects n ∈ FI d , and since κ(F ) is a subfunctor of F , this implies the identity κ(F ) = F .If F ∈ SN (FI d , R-Mod) then κ(F ) = F . Let a ∈ F ○ ξ d (n 1 , . . . , n d ) be a representative of a class [a ∈ F ○ ξ d (n 1 , . . . , n d )] in the colimit of F ○ ξ d . For n = n 1 + ⋅ ⋅ ⋅ + n d ,by Lemma 6.1.2 there exist k ∈ FI d and x ∈ FI d (0, k) such that a ∈ κ x k (F )(n). We then denote by k i the number of occurrences of c i in x for 1 ≤ i ≤ d, and by f the map (n 1 , . . . , n d ) ≤ (n 1 + k 1 , . . . , n d + k d ) in N d . We then have k 1 + ⋅ ⋅ ⋅ + k d = k and

  ), and so F ○ ξ d (f )(a) = 0 since the map Id n +σ is bijective. This means that the class[a ∈ F ○ ξ d (n 1 , . . . , n d )] in the colimit of F ○ ξ d is zero.Using this description of SN (FI d , R-Mod) in terms of a ltered colimit we now state important properties of the stably zero functors. Proposition 6.1.7. For F a FI d -module, k ∈ FI d and x ∈ FI d (0, k), we have 1) The subcategory SN (FI d , R-Mod) is thick and stable by colimits.

  Denition 6.1.10 (Special case of Denition 1.3.11). A FI d -module F is SN (FI d , R-Mod)closed if, for all H ∈ SN (FI d , R-Mod), both Hom(H, F ) and Ext 1 (H, F ) are zero. Remark 6.1.11. The SN (FI d , R-Mod)-closed modules are called saturated from the point of view of TCAs in [SS16] for d = 1, and in [SS19, Proposition 4.1] for a general d. In [SS19], the saturation functors denoted by Σ >r correspond to the composition S ○ π for the quotient category by Mod A,≤r . It is shown in [NSS18, Proposition 2.7] that the right derived functors of these functors preserve nitely generated modules and vanish after some rank.Proposition 6.1.12. For F a FI d -module we have 1) The subfunctor κ(F ) is zero if and only if the set of natural transformations Hom(H, F ) is reduced to 0 for allH ∈ SN (FI d , R-Mod). 2) If Hom(H, F ) = 0 for all H ∈ SN (FI d , R-Mod), then Hom( H, τ k (F ) ) = 0 for all k ∈ N and for all H ∈ SN (FI d , R-Mod). 3) If F is SN (FI d , R-Mod)-closed, then Hom( H, δ x k (F ) ) = 0 for all k ∈ FI d , all x ∈ FI d (0, k) and all H ∈ SN (FI d , R-Mod)Chapter 6. Poset of stably zero functors Proof. 1) If for some H in SN (FI d , R-Mod) there exists a non-zero natural transformation σ in Hom(H, F ), then its image σ ○ H is a non-zero subfunctor of F . We then have the short exact sequence 0 Ker(σ) H σ ○ H 0 σ of FI d -modules. Applying the left exact functor κ to it we get another exact sequence:

  Proof. We prove the inclusion SNc (FI d , R-Mod) ↪ SN (FI d , R-Mod) for a colour c ∈ C,while the other inclusions of the poset are clear by denition. For c ∈ C and F ∈ SN c (FI d , R-Mod) we have κ(F ) = ∑ k∈FI d ∑ x∈FI d (0,k)

  exact, and thus F /G ∈ SN (FI d , R-Mod). Conversely, for X a subobject of π d (F ) we can apply Proposition 1.2.3 to the inclusion of X in π d (F ), which gives the existence of F , G ∈ Fct(FI d , R-Mod) and of a monomorphism f ∶ G → F of FI dmodules and of isomorphisms π d (G) ≅ X and π d ( F ) ≅ π d (F ), which makes a commutative diagram. In particular, π d ( F ) is simple if and only if π d (F ) is simple. Then we consider the image of f which is a submodule of F : By hypothesis, either this image is in SN (FI d , R-Mod), either the quotient by this image is in SN (FI d , R-Mod). By Lemma 1.2.4, in the rst case we get π d (f ) = 0 so π d (G) ≅ X = 0, and in the second case we get Coker(f ) = 0 so π d (f ) is an epimorphism and π d ( F ) = π d (G) ≅ X.

  Let σ ∶ G → F be a natural transformation such that π d (σ) is zero, by Proposition 1.2.4 its image Im(σ) is in SN (FI d , R-Mod). Since the category Fct(FI d , R-Mod) is abelian, the morphism σ splits into j ○ e with e ∶ G → Im(σ) an epimorphism and j ∶ Im(σ) → F a monomorphism. Then j is in Hom(Im(σ), F ) and Im(σ) is in SN (FI d , R-Mod). From the previous point we get j = 0, so σ = 0. This means that π d (σ) = 0 implies σ = 0 and (since both categories Fct(FI d , R-Mod) and St(FI d , R-Mod) are additives) it means that π d is injective, so bijective. Now π d is an exact functor, so Hom(-, F ) and Hom(π d (-), π d (F )) are left exact functors, and their derived functors Ext * (-, F ) and Ext * (π d (-), π d (F )) are universal δ-functors. Then there exist unique morphisms

Chapter 7 .

 7 Weak polynomial functors on FI d 109 7.2 Generalities on the category Pol n (FI d , R-Mod) In this section we introduce the weak polynomial functors over FI d , which are the FI d -modules that become polynomial objects of St(FI d , R-Mod) when passed to the quotient. To dene these polynomial objects of St(FI d , R-Mod) we use the endofunctors (δ c 1 ) St of St(FI d , R-Mod) from Proposition 7.1.6, for the dierent colours c ∈ C. After the denition we give the basic properties of these objects. In particular, we show in Proposition 7.2.5 that, unlike to strong polynomial functors, they form a thick subcategory of the quotient St(FI d , R-Mod). Denition 7.2.1. The full subcategories of St(FI d , R-Mod) of polynomial objects of degree less than or equal to n, denoted by Pol n (FI d , R-Mod), are dened by induction. By convention, Pol -1

[ DV19 ,

 DV19 Example 5.3]. Let F ∶ FI d → Ab be the kernel of the augmentation map Z[-] → Z, where Z is the constant functor equal to Z and Z[-] is the linearization that sends an object n to Z n and a map (f, g) ∈ FI d (n, m) to the injection of Z n in Z m along f . Then we get that δ c 1 (F ) = Z ≥1 for all c ∈ C and by the Example 5.1.7 the functor F is strong polynomial of degree 2. It is weak polynomial of degree 1 since we have π

  Remark 7.4.3. The Proposition 7.4.2 and the denitions of strong and weak polynomial FI dmodules give the following two characterizations for the degree 0:A functor F ∈ Fct(FI d , R-Mod) is in Pol strong 0 (FI d , R-Mod) if and only if the morphism i x k (F ) is an epimorphism for all k ∈ FI d , and all x ∈ FI d (0, k). An object X ∈ St(FI d , R-Mod) is in Pol 0 (FI d , R-Mod) if and only if the morphism i x k (S d (X)) is an isomorphism for all k ∈ FI d , and all x ∈ FI d (0, k). For d = 1, the rst point is included in [DV19, Proposition 2.9] and the second in the proof of [DV19, Proposition 2.26]. For F ∈ Fct(FI d , R-Mod) and X ∈ St(FI d , R-Mod) by applying the exact functor π d to the exact sequence (I) from Lemma 2.6.4, by Proposition 6.1.7 we have the following:If X is in Pol 0 (FI d , R-Mod) then S d (X) is in Pol strong 0 (FI d , R-Mod), If F is in Pol strong 0 (FI d , R-Mod) then π d (F ) is in Pol 0 (FI d , R-Mod).

  Denition 7.4.4. For X ∈ St(FI d , R-Mod) satisfying the condition (P OL0), the functor H X ∶ FI d → R-Mod is given on an object n ∈ FI d by H X (n) = S d (X)(0), and on a morphism x ∈ FI d (0, k) = FI d (0, k) byH X (x) = ( S d (X) (c k 1 ) ) -1 ○ S d (X) (x),where c 1 is a xed colour, and by the identity onFI d (k, k) = FI d (k, k) = S k .Chapter 7. Weak polynomial functors on FI d117This functor extends to a unique functor H X ∶ FI d → R-Mod by Proposition 2.5.4 since it sends every morphism to isomorphisms. We now explain how the functor H X is completely determined by its image on the morphisms c ∈ FI d (0, 1) = C using the subcategory FI d of FI d from Denition 2.5.2. These images correspond to the d -1 isomorphisms of modules of the category R-Mod d as we trivialize the action of c 1 .Proposition 7.4.5. If X ∈ St(FI d , R-Mod) satises the condition (P OL0), then H X is determined by the imagesH X (c) = ( S d (X) (c 1 ) ) -1 ○ S d (X) (c) ∶ S d (X)(0) → S d (X)(0)for c ∈ C and by the relationsH X (c) ○ H X (c ′ ) = H X (c ′ ) ○ H X (c) for c, c ′ ∈ C.Proof. For x ∈ FI d (0, k) and y ∈ FI d (0, l), by applying the functor S d (X) to the relation (Id l +x)○c l 1 = (c l 1 + Id k ) ○ x in FI d we get S d (X) ( Id l +x ) ○ S d (X) (c l 1 ) = S d (X) ( c l 1 + Id k ) ○ S d (X) (x).Using this, by denition of H X , we get the identitiesH X (x) ○ H X (y) = ( S d (X) (c k 1 ) ) -1 ○ S d (X) (x) ○ ( S d (X) (c l 1 ) ) -1 ○ S d (X) (y) = ( S d (X) (c k 1 ) ) -1 ○ ( S d (X) ( c l 1 + Id k ) ) -1 ○ S d (X) ( Id l +x ) ○ S d (X) (y) = ( S d (X) (c k+l 1 ) ) -1 ○ S d (X) ( (y, x) ) = H X ( (y, x) ).This proves that for any two morphisms x, y starting from 0 we have the relation H X (x)○H X (y) = H X (y, x) and by induction we conclude that H X is determined only by the image H X (c) of the colour morphisms c ∈ FI d (0, 1). Finally, since S d (X)(c k ) is an isomorphism for all k ∈ FI d and c ∈ C, we have S d (X) (y, x) = S d (X) (y, x) by Proposition 2.5.1. This gives for c, c ∈ C, with the previous relations, the identityH X (c) ○ H X (c) = H X ( (c, c) ) = H X ( (c, c) ) = H X (c) ○ H X (c).Finally, any family of commuting isomorphisms (H X (c)) c ∈C of S d (X)(0) (i.e. satisfying the identitiesH X (c) ○ H X (c) = H X (c) ○ H X (c) for c, c ∈ C) determines a unique functor H X ∶ FI d → R-Mod by the formulas above. Proposition 7.4.6. If X ∈ St(FI d , R-Mod) satises the condition (P OL0), then H X is determined by the images H X(c) = ( S d (X) (c 1 ) ) -1 ○ S d (X) (c) ∶ S d (X)(0) → S d (X)(0) for c ∈ C,and by the relationsH X (c) ○ H X (c ′ ) = H X (c ′ ) ○ H X (c) for c, c ′ ∈ C.Proof. It is a consequence of Proposition 7.4.5 and Proposition 2.5.4, which state that a FI dmodule is determined by its underlying functor over FI d .

Finally, we show

  that the functor π d ○ Θ d is full and faithful. The functor Θ d is faithful since we have ( Θ d (f ) ) 0 = f for any morphism f in R-Mod d . For ε a natural transformation between Θ d (M, φ 2 , . . . , φ d ) and Θ d (N, ψ 2 , . . . , ψ d ), by naturality we have the relations ε 1○ φ j = ψ j ○ ε 0 and ε n ○ (φ jn ○ ⋅ ⋅ ⋅ ○ φ j 1 ) = (ψ jn ○ ⋅ ⋅ ⋅ ○ ψ j 1 ) ○ ε 0 for all 1 ≤ j, j 1 , . . . , j n ≤ d with φ 1 = ψ 1 = Id. Using the second relation with j 1 = ⋅ ⋅ ⋅ = j n = 1 we get ε n = ε 0 for all n ∈ FI d . The rst relations then give ε 0 ○ φ j = ψ j ○ ε 0 for all 2 ≤ j ≤ d. This means exactly that ε = Θ d (ε 0 ∶ M → N ),so the functor Θ d is full and faithful. Moreover, the functor Θ d (N ψ 2 , . . . , ψ d ) sends all morphisms to isomorphisms which are split monomorphisms. Then it satises the hypothesis of Proposition 7.1.11 so the functor π d is an isomorphism on arrows and, with the previous point, we get a natural bijection Hom R-Mod d ( (M, φ 2 , . . . , φ d ) , (N, ψ 2 , . . . , ψ d ) ) ≅ Hom Fct(FI d ,R-Mod) ( Θ d (M, φ 2 , . . . , φ d ) , Θ d (N, ψ 2 , . . . , ψ d ) ) ≅ Hom St(FI d ,R-Mod) ( π d ○ Θ d (M, φ 2 , . . . , φ d ) , π d ○ Θ d (N, ψ 2 , . . . , ψ d ) ).

[ DV19 ,,

 DV19 [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF]. The idea is to start with FI d , which has only increasing morphisms (i.e. from n to m when n ≤ m), and to add decreasing morphisms to it. For example, FI is a monoidal category with an initial object and the construction Cospan turns it into Cospan(FI), a monoidal category with a null object. The following denition extends the one from the category FI to the category FI d : Denition 9.1.1. The category Cospan(FI d ) has the same objects as FI d . The morphisms in Cospan(FI d ) from n ∈ FI d to m ∈ FI d are the classes of diagrams of the form (with k ∈ FI d , α ∈ FI d (0, k) and f ∈ FI d (n, m + k) in the quotient by the equivalence relation generated by: i) All diagrams from 0 to 0 are in relation, n to m are in relation if there exists φ ∈ FI d (k, k ′ ) such that (Id m +φ) ○ f = f ′ and (Id m +φ) ○ (Id m +α) = α ′ . The class of the diagram (D) in the quotient is denoted by [D]. The composition in Cospan(FI d ) is given by the relation

  Remark 9.1.2. A diagram (D) consists of an object k ∈ FI d and two morphisms α ∈ FI d (0, k) and f ∈ FI d (n, m + k). The morphism α starts from zero, so it corresponds to a colour choice on the object k, and the morphism f = (g, β) ∈ FI d (n, m + k) consists of an injection g and a colour choice β on the complement of the image. This emphasizes that a morphism in Cospan(FI d ) is morally composed of an injection g and colour choices on two sets α and β, which interact with each other. Chapter 9. Functors on the categories Cospan(FI d ) 141 Remark 9.1.3. The two diagrams [D] and [D ′ ] of Denition 9.1.1 from n to m are in relation (along the point ii) if there exists φ ∈ FI d (k, k ′ ) such that the following diagram is commutative:The composition in Cospan(FI d ) corresponds to the natural way to complete the diagram that links the two diagrams:i + 0 m + 0 = m i + l n m + k i + l + k.Id i +β g Idm +α Id i+l +α f g+Id k Lemma 9.1.4. The composition in the category Cospan(FI d ) does not depend on the chosen representative. The category Cospan(FI d ) is a symmetric monoidal category. Proof. For two representatives (D) and (D ′ ) of a morphism [D] ∈ Cospan(FI d )(i, m) and two representatives ( D) and ( D′ ) of a morphism [ D] ∈ Cospan(FI d )(m, n) connected by the com-i + l + k i + l ′ m + k ′ i + l ′ + k ′ Id i +β ′ Id i +β Id i +ψ Id i + Id l +α f f ′ g+Id k Idm +φ Id i +ψ+φ Id i + Id l ′ +α ′ g ′ +Id k ′shows that the two composition diagrams are related and so their class is the same. For two dierent representatives (D) and (D ′ ) of a morphism [D] from 0 to 0, the two compositions [D] ○ [ D] and [D ′ ] ○ [ D] give the same result due to the structure of monoidal category. Finally, the structure of symmetric monoidal category directly comes from FI d . Chapter 9. Functors on the categories Cospan(FI d ) Remark 9.1.5. For d = 1, the category Cospan(FI 1 ) is equivalent to the category FI of [DV19, Section 4] whose objects are the ones of FI and whose morphisms between n and m are the elements of the ltered colimit of the sets FI(n, m + a) for a ∈ FI. The equivalence is given by the functor that sends an object k in FI to k in Cospan(FI 1 ) and a morphism [f ] ∈ colim a∈FI Hom FI (n, m + a) to the class of diagrams representative f ∶ n → m + a of the class [f ] in the ltered colimit. The value of the functor on a morphism does not depend on the chosen representative by Proposition 1.1.6. This functor is essentially surjective, full and faithful since the equivalence relations dening the morphisms in Cospan(FI) correspond exactly to the ltered colimit relations dening the morphisms in FI by Proposition 1.1.6 again. We now prove that for every morphism [D] in Cospan(FI d ) we can choose a minimal representative diagram (D) of the class [D]. This important property will be used in the following and gives a description of the morphisms from 0 to m and from n to 0 in Cospan(FI d ). Proposition 9.1.6. For each morphism [D] in Cospan(FI d )(n, m), there exists 0 ≤ z ≤ n, β ∈ FI d (0, z) and g ∈ FI d (n, m + z) such that the diagram (D ′ ) dened by these three elements is a minimal representative of the class [D] (in the sense that z ≤ k for every k ∈ FI d associated to a representative (D) of the class [D]). Proof. Let z be the subobject Im(f ) ∩ k of k and σ be an isomorphism between k and z + (k ∖ z), the following diagram commutes: m + 0 n m + k m + z + (k ∖ z). Idm +α Idm +(σ○α) f (Idm +σ)○f Idm +σ Since the image of f is in m + z, we can dene some morphisms g ∈ FI d (n, m + z), h ∈ FI d (0, k ∖ z), β ∈ FI d (0, z) and γ ∈ FI d (0, k ∖ z) by the relations (Id m +σ) ○ f = g + h and Id m +(σ ○ α) = (Id m +β) + γ. Since f is an injection we get 0 ≤ z ≤ n. By denition, we have the following equality

.,

  Denition 9.1.7. For n ∈ N and x ∈ FI d (0, n), we denote by x ∈ Cospan(FI d ) (0, n) and byx ∈ Cospan(FI d ) (0, n) the morphisms given by the classes Proposition 9.1.8. For n, m ∈ N, with the notations of Denition 9.1.7, the set Cospan(FI d ) (0, m) is the disjoint union of the equivalence classes x for x ∈ FI d (0, m). Similarly, the set Cospan(FI d ) (n, 0) is the disjoint union of the equivalence classes x for x ∈ FI d (0, n). Moreover, for x ∈ FI d (0, n) the composition x ○ x is the identity. Proof. For [D] ∈ Cospan(FI d ) (0, m), the Proposition 9.1.6 for n = 0 gives z = 0, so β = Id 0 and there exists a minimal representative of [D] associated with some x ∈ FI d (0, m) as in Denition 9.1.7. Two such diagrams are never related so we get the description of Cospan(FI d ) (0, m). For [D] ∈ Cospan(FI d ) (n, 0) the Proposition 9.1.6 for m = 0 gives a minimal representative of [D] associated with 0 ≤ z ≤ n, β ∈ FI d (0, z) and g ∈ FI d (n, z). Since the set FI d (n, z) is empty for z < n we get z = n and g is in FI d (n, n) = S n , so it is bijective. We then have the commutative diagram 0 Then we get the equalities Cospan(FI d ) (n, 0) = ⋃ β∈FI d (0,n) Denition 9.2.1. The category FI d # has the same objects as FI d and the morphisms in

FI d #

  from n to m are the pairs (f, α) where f is a partially dened morphism in FI d -i.e. a morphism f ∈ FI d (l, m) for l a subobject of n in FI d -and α ∈ FI d (0, n ∖ l) is a colour choice. The composition is given by the relation( ∖ k + Im(g) (i ∖ k) + (k ∖ g -1 (l)) = i ∖ g -1 (l)β+(α| Im(g) ) Id i∖k +g -1

  Denition 9.2.3. The functor Γ ∶ Cospan(FI d ) → FI d # is given on objects by Γ(n) = n and on morphisms by

.

  Denition 9.2.4. The functor χ ∶ FI d # → Cospan(FI d ) is given on objects by χ(n) = n and on morphisms by χ ( Lemma 9.2.5. The functors Γ ∶ Cospan(FI d ) → FI d # and χ ∶ FI d # → Cospan(FI d ) are well dened. Proof. By denition of the composition in Cospan(FI d ) and FI d #, both Γ and χ respect composition and identities. The denition of Γ does not depend on the choice of a representative (D) of the class [D]: indeed, for two representatives (D) and (D ′ ) of the morphism [D] connected by the commutative diagram m + 0 n m + k m + k ′ , Idm +α Idm +α ′ f g Idm +φ 146 Chapter 9. Functors on the categories Cospan(FI d )

  Theorem 9.2.8. The functors Γ ∶ Cospan(FI d ) → FI d # and χ ∶ FI d # → Cospan(FI d ) from Denitions 9.2.3 and 9.2.4 are inverse of each other. They give an isomorphism of categories Cospan(FI d ) ≅ FI d #.

  Id) -1 (m) m g+Id n∖l , 0 n ∖ l ((g+Id)| n∖(g+Id) -1 (m) ) Functors on the categories Cospan(FI d ) 147 showing the identity Γ ○ χ = Id on morphisms. For [D] a morphism in Cospan(FI d )(n, m), we use the denitions to get

  Denition 9.3.1. For k ∈ Cospan(FI d ), the endofunctor τ k of Fct( Cospan(FI d ) , R-Mod ) is given on a functor F ∶ Cospan(FI d ) → R-Mod by τ k (F ) = F (-+ k) and on a natu-ral transformation σ ∶ F → F ′ by τ k (σ) = σ (-+k) . For x ∈ Cospan(FI d )(0, k), the natural transformation i x k ∶ Id → τ k is given on a functor F ∶ Cospan(FI d ) → R-Mod by i x k (F ) = F ( Id (-) +x ) ∶ F (-) → F (-+ k).148 Chapter 9. Functors on the categories Cospan(FI d ) Remark 9.3.2. The transformation i x k is natural: for any functor F ∶ Cospan(FI d ) → R-Mod and any morphism [D] in Cospan(FI d )(n, m), using the monoidal structure of Cospan(FI d ) and Proposition 9.1.8 we have τ k (F )([D]) ○ F (Id n +x) Id m+k +α (Idm +x+Id l )○f

  Denition 9.3.3. For k ∈ Cospan(FI d ) and x ∈ Cospan(FI d )(0, k), the endofunctor κ x k of Fct( Cospan(FI d ) , R-Mod ) is the kernel of the natural transformation i x k , and δ x k is its cokernel. Proposition 9.3.4. For all k ∈ Cospan(FI d ) and x ∈ Cospan(FI d )(0, k), the endofunctor κ x k is zero. Proof. By Proposition 9.1.8 there exists a morphism x in Cospan(FI d)(k, 0) such that x ○ x = Id 0 . Then, for all functor F ∶ Cospan(FI d ) → R-Mod we have the relation F (Id (-) +x) ○ F (Id (-) +x) = F (Id (-) + (x ○ x) ) = Id F (-). This implies that the morphism i x k (F ) = F (Id (-) +x) is a monomorphism, so its kernel κ x k (F ) is zero. Since this is natural it shows that κ x k is zero as an endofunctor.Remark 9.3.5. For k ∈ Cospan(FI d ) and x ∈ Cospan(FI d )(0, k) there exists a short exact

  Farb. Djament et Vespa ont montré que la stabilité des représentations peut s'exprimer en termes de polynomialité forte de foncteurs sur FI. Ils introduisent également une notion de polynomialité faible mieux adaptée aux phénomènes stables. Ces propriétés polynomiales sont des moyens de mesurer la complexité d'un foncteur et peuvent être considérées comme un analogue des fonctions polynomiales. Il existe des généralisations de la catégorie FI, notées FId, où l'on rajoute un choix de couleurs parmi d possibles sur le complémentaire de l'image des injections. Les foncteurs sur ces catégories interviennent notamment dans les travaux de Sam et Snowden sur les modules sur les algèbres commutatives tordues libres, et dans ceux de Ramos sur la cohomologie des espaces de configuration de graphes. Les catégories FId n'ayant pas d'objet initial pour d > 1, elles sortent du cadre considéré par Djament et Vespa. Dans cette thèse on introduit différentes notions (forte et faibles) de foncteurs polynomiaux sur les catégories FId et on étudie leur comportement. Pour définir les foncteurs fortement polynomiaux on utilise une famille d'endofoncteurs qui jouent le rôle de la dérivée des fonctions polynomiales usuelles, généralisant la construction de Djament et Vespa sur FI. On adapte aussi la définition classique de foncteurs polynomiaux (basée sur les effets croisés) au cadre de FId, et on montre que les deux définitions obtenues sur FId coïncident. Les foncteurs polynomiaux sur FId s'avèrent plus difficiles à étudier que sur FI. Par exemple, les projectifs standards sont fortement polynomiaux sur FI, et on montre que ce n'est plus le cas sur FId pour d > 1. Cependant, la notion forte de foncteurs polynomiaux manque de propriétés essentielles concernant les phénomènes stables. On introduit alors les foncteurs faiblement polynomiaux en considérant le quotient par une sous-catégories afin de supprimer les foncteurs problématiques. Alors que les foncteurs faiblement polynomiaux de degré 0 sur FI sont les foncteurs constants, on donne une description de ceux sur FId qui forment une catégorie plus complexe. INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE UMR 7501 Université de Strasbourg et CNRS 7 Rue René Descartes 67 084 STRASBOURG CEDEX Tél. 03 68 85 01 29 Fax 03 68 85 03 28 https://irma.math.unistra.fr irma@math.unistra.fr IRMA 2024/001 https://tel.archives-ouvertes.fr/tel-04404154 ISSN 0755-3390 Ins titut de R echerche Mathématique Avancée

  sur lequel le groupe S n agit par conjugaison et dont la multiplication est donnée par l'inclusion standard de S n × S m dans S n+m . Une façon simple de créer d'autres ACTs est de prendre l'algèbre symétrique d'une représentation de GL(K ∞ ). Ces exemples, appelés "ACTs polynomiales" (ce qui n'a rien à voir avec nos foncteurs polynomiaux) sont entièrement décrits dans les diérentes dénitions équivalentes dans [SS12, Section 8.2.3]. Nous nous concentrons sur les ACTs libres sur d générateurs de degré un Sym((K d ) (1) ), qui ont été largement étudiées, par exemple dans [SS12, SS16, SS19, GS10]. En particulier, Sam et Snowden ont montré dans [SS12] que la catégorie des modules sur cette ACT est équivalente, via le choix d'une base de K d , à la catégorie des FI d -modules. Comme mentionné ci-dessus, cela explique comment les FI

d -modules apparaissent dans la théorie des ACTs. Nous donnons la description concrète de l'ACT Sym((K d ) (1) ) dans la Dénition 4.1.15 et le détail de l'équivalence dans la Section 4.2. Un autre exemple d'ACT est Sym( Λ 2 (K ∞

  Fct(FI d , R-Mod) des foncteurs dont l'image par le foncteur quotient π d est un objet polynomial de degré inférieur ou égal à n. Nous prenons alors R = K un corps pour nous assurer que le produit tensoriel est exact et nous montrons dans le Théorème 7.3.6 que le produit tensoriel terme à terme de deux objets polynomiaux de St(FI d , R-Mod) est polynomial :

Dans le Chapitre 7, nous nous concentrons sur la catégorie St(FI d , R-Mod) des foncteurs stables, i.e. le quotient par les foncteurs globalement stablement nuls SN (FI d , R-Mod), la plus grande de ces sous-catégories, an d'obtenir une catégorie quotient plus petite qui peut être plus facile à décrire. Bien que les objets de la catégorie quotient St(FI d , R-Mod) soient par dénition les foncteurs de FI d vers R-Mod, il faut les considérer comme des objets abstraits puisque les morphismes dans le quotient sont modiés par certaines classes d'isomorphismes. Dans la Dénition 7.2.1, nous dénissons les FI d -modules faiblement polynomiaux comme les foncteurs sur FI d dont l'image dans la catégorie quotient St(FI d , R-Mod) par le foncteur quotient π d est un objet polynomial (nous identions parfois F et π d (F ) par abus de langage). Avec cette dénition, un foncteur fortement polynomial est faiblement polynomial mais la réciproque n'est pas vraie, ce qui justie la terminologie introduite par Djament et Vespa dans [DV19] pour les FImodules. Nous désignons par Pol n (FI d , R-Mod) la sous-catégorie pleine de St(FI d , R-Mod) des objets polynomiaux de degré inférieur ou égal à n. Par abus de langage, cela désigne aussi la sous-catégorie pleine de

  un morphisme xé dans FI d (0, n) satisfaisant la condition (P I,k 1 ,...,k d ). Nous montrons alors dans la Proposition 8.1.15 ce qui suit : Proposition. Pour k 1 , . . . , k d ∈ N et I ⊂ {c 1 , . . . , c d }, le quotient de P FI d 0 par son sous-foncteur G I,k 1 ,...,k d est faiblement polynomial de degré 0. De plus, la preuve est basée sur le Lemme 8.1.14 qui montre que ce quotient est égal à un foncteur constant modulo un foncteur stablement nul de SN (FI d , R-Mod). Cela implique que son image dans le quotient correspond, par l'équivalence donnant la description de Pol 0 (FI d , R-Mod), à l'objet (R, Id, . . . , Id) de R-Mod d ou au R[x ±1 2 , . . . , x ±1

d ]-module trivial. Parallèlement, dans la Section 8.2 nous étudions le quotient du foncteur P FI d n par son sous-foncteur correspondant à l'action des groupes symétriques par post-composition. Ce sousfoncteur, noté F n dans la Dénition 8.2.1, est donné sur les objets par

  P FI d Théorème. Pour tout n ∈ N, le foncteur quotient de P FI d n par F n est faiblement polynomial de degré 0, où F n est le sous-foncteur de P FI d Pol 0 (FI d , R-Mod). Cependant, nous expliquons dans la Section 8.2 qu'il n'est pas facile d'en trouver un puisque le passage à la catégorie quotient n'est pas une construction explicite. Dans la Section 8.3 nous donnons un quotient de P FI d n qui est faiblement polynomial de degré n : pour un morphisme (f, g) dans FI d (n, m) la seconde application g correspond à un choix de mn couleurs. Il existe alors une action du groupe symétrique S m-n permutant ces choix de couleurs, qui donne une action de S m-n sur P FI d n (m). Le sous-foncteur de P FI d

	n	par F n est faiblement polynomial dans le
	Théorème 8.2.11 :	
		n	correspondant à
	cette action des groupes symétriques, noté H n dans la Dénition 8.3.2, est donné sur les objets
	par	
	H n	

n de la Dénition 8.2.1. Un bon représentant de l'image de ce quotient dans la catégorie St(FI d , R-Mod) pourrait nous aider à le décrire dans la catégorie R[x ±1 2 , . . . , x ±1 d ]-Mod via l'équivalence donnant la description de

  P FI d Théorème. Pour tout n ∈ N, le quotient de P FI d n par H n est faiblement polynomial de degré n, où H n est le sous-foncteur de P FI d nous quotientons par l'action des groupes symétriques sur les couleurs, la composante qui empêche P FI d n d'être polynomial disparait ici. Deuxièmement, nous introduisons dans la Dénition 8.2.5 la catégorie C d dont les objets sont les entiers et dont les morphismes de n vers m sont les (m -n)-uplets de couleurs (c i 1 , . . . , c im-n ) quotientés par l'action de S m-n (ce qui est la même chose que les choix non ordonnés de mn couleurs). Nous montrons ensuite dans la Proposition 8.2.9 que le quotient de P FI d n par F n est équivalent au foncteur P C d n , et décrivons le quotient de P FI d n par H n comme un produit tensoriel dans la Proposition 8.3.8 via la formule :

	n	par H n est faiblement polynomial dans le
	Théorème 8.3.14 :	

  sur les couleurs de g quotientées par l'action de S m-n . Nous construisons ensuite dans la Proposition 8.4.5 un quotient de P FI d

Ceci explique comment les injections et les couleurs sont mélangées pour former le foncteur P FI d n , à l'action des groupes symétriques sur les choix de couleurs près. De plus, comme le foncteur P FI n est fortement polynomial de degré n pour d = 1, l'image des èches de P FI n vers la somme directe de tous les P FI k pour k ≤ i est faiblement polynomial de degré i pour tout i ∈ N. n qui est faiblement polynomial de degré i pour tout i ∈ N en utilisant la formule ci-dessus du quotient de P FI d n par H n .

  où Σ n est la catégorie associée au groupe symétrique S n . Nous montrons que cette approche ne peut pas être directement généralisée pour décrire les foncteurs polynomiaux sur FI d . Dans le Chapitre 9 nous introduisons une généralisation de la construction Cospan pour FI d comme suit : les objets de Cospan(FI d ) sont les mêmes que les objets de FI d et les morphismes sont des classes de diagrammes sous une relation d'équivalence. Ces diagrammes sont moralement composés d'une injection et de deux choix de couleurs diérents sur des ensembles diérents qui interagissent l'un avec l'autre. Ainsi, nous montrons dans la Proposition 9.2.8 que la catégorie Cospan(FI d ) est isomorphe à une catégorie combinatoire FI d # dont les morphismes consistent en une injection partiellement dénie et deux choix de couleur distincts, l'un sur le complémentaire à la source et l'autre sur le complémentaire au but. De plus, nous montrons dans la Proposition 9.1.6 que chaque morphisme dans Cospan(FI d

  thus the functor P FI d n is projective. Equivalently, the functor Hom(P FI dThis property allows us to dene the notion of nitely generated FI d -module. Indeed, we have shown that every FI d -module is a quotient of a direct sum of projective standard functors, and so we say that it is nitely generated if it is a quotient of a nite one. Denition 2.2.6. A FI d -module F is nitely generated if there exists an epimorphism Remark 2.2.7. There are equivalent ways to dene the nitely generated FI d -modules: in [CEF15, CEFN14, Ram17a] a FI-module F is said nitely generated if and only if there exists a nite set of integers such that every subfunctor of F that coincides with F on this set is equal to F . The equivalence with Denition 2.2.6 is explicitly described in [CEFN14, Proposition 2.3] or in[START_REF] Ramos | Generalized representation stability and FI d -modules[END_REF], and from the point of view of TCAs in [SS12, Section 8.3.2]. Sometimes F might be dened as nitely generated if every growing family of subfunctors of F whose union is F is stationary. The equivalence is given, for a large family of categories such as FI d , in [Dja16, Prop 2.7].Remark 2.2.8. In recent years it has been proved that several algebraic structures are noetherian (i.e. a submodule of a nitely generated module is nitely generated), such as the FI-modules (see[START_REF] Church | FI-modules over Noetherian rings[END_REF][START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF]), the FS-modules where FS is the category of nite sets and surjections also denoted by Ω in[START_REF] Pirashvili | Dold-Kan type theorem for Γ-groups[END_REF] (see[START_REF] Sam | Gröbner methods for representations of combinatorial categories[END_REF]), the VIC(R)-modules (see[START_REF] Putman | Representation stability and nite linear groups[END_REF]) and many others. The category FI d and its ordered version OI d appears in [SS17, Section 7.1] where they show that OI d is Gröbner and FI d quasi-Gröbner (i.e. morally there is an essentially surjective functor from the Gröbner category OI d to FI d ) and thus that the categories of FI

n , -) is equivalent to the evaluation functor F ↦ F (n) which is exact, so it is also exact. Since the category FI d -Mod is abelian, it implies that the functor

P FI d n is projective. k ⊕ i=0 ( P FI d i ) ⊕c i ↠ F

from a nite direct sum of standard projective functors to F .

Chapter 2. Functors on the categories FI d d -modules are noetherian over any left-noetherian ring R. The idea is to add an order to the category to get a Gröbner category and then use the forgetful functor to transfer the noetherian property from one to the other. This result was rst proved in [Sno13, Theorem 2.3] over a eld of characteristic zero, then for d = 1 in

[START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] 

(in characteristic zero) and

[START_REF] Church | FI-modules over Noetherian rings[END_REF]

. The noetherian property is a crucial tool to prove that a sequence of representation stabilizes since it is equivalent to prove that the FI-module associated is nitely generated.

  , for the maps (f, g) in FI d (n, n + 1), generates F (n + 1) as a representation of S n+1 , For any partition λ of weight |λ| and any integersn 1 ≥ ⋅ ⋅ ⋅ ≥ n d ≥ |λ| + λ 1 , if c λ,n 1 ,...,n dis the multiplicity of the irreducible representation associated with the padded partition

λ[n] = (n 1 -|λ|, . . . , n d -|λ|, λ 1 , . . . λ h ), then c λ,n 1 +l,...,n d +l is independent of l for l large enough.

  Mod be a functor, then F is in the subcategory SN (FI d , R-Mod) if and only if, for every object n ∈ FI d and every element a in F (n) there exist k ∈ FI d and x ∈ FI d (0, k) such that a ∈ κ x

	k (F )(n).

  Corollary 6.2.4. For F a FI d -module and c i 1 , . . . , c im ∈ C distinct colours, the functor F is in the subcategory SN c i 1 ,...,c im (FI d , R-Mod) if and only if the functors ∆ * c (F ) are in the subcategory SN (FI, R-Mod) for all colours c ∈ {c i 1 , . . . , c im }. Proof. It follows from the denition of the categories SN c i 1 ,...,c im (FI d , R-Mod) together with Proposition 6.2.3.An important consequence of this description of the subcategories SNc i 1 ,...,c im (FI d , R-Mod)is that they are thick subcategories of Fct(FI d , R-Mod), which allows us to take the quotient by any of them. Corollary 6.2.5. For c i 1 , . . . , c im ∈ C distinct colours, the subcategorySN c i 1 ,...,c im (FI d , R-Mod) of Fct(FI d , R-Mod) is thick. Proof. For c ∈ {c i 1 , . . . , c im } and 0 F G H 0 a shortexact sequence in Since the subcategory SN (FI, R-Mod) is thick (see Proposition 6.1.7 for d = 1, or [DV19]), the functor ∆ * c (G) is in SN (FI, R-Mod) if and only if ∆ * c (F ) and ∆ * c (H) are in SN (FI, R-Mod). Using this for all the colours c in {c i 1 , . . . , c im } we get that SN c i 1 ,...,c im (FI d , R-Mod) is thick by Corollary 6.2.4.

	Fct (FI d , R-Mod), the precomposition functor ∆ * c being exact, we get the following short exact
	sequence				
	0	∆ * c (F )	∆ * c (G)	∆ * c (H)	0
	in Fct(FI, R-Mod).				

  B . Since χ B and Γ B are quasi-inverse of each other, (G, µ) is in the essential image of SN (FI d , K -Vect) by Γ B if and only if χ B (G, µ) is in SN (FI d , K -Vect) and we conclude using the denition of SN (FI d , K -Vect).In Denition 4.3.3 we described an action of GL(V ) on FI d -modules for a xed basis B of V = K d , where φ ∈ GL(V ) acts by φ B ⋅ (-). For d = 1, the subcategory SN (FI, K -Vect) of FI -Mod (see Denition 6.1.1) is stable by the action of GL(V ) since we have shown the following description of this action in Example 4.3.6: for φ ∈ GL(V ) and G ∈ FI -Mod thefunctor φ B ⋅ G sends n ∈ FI d to G(n) and (f, g) ∈ FI d (n, m) to a ⋅ (f, g) with a ∈ K * .In the following we show that this is not true for d > 1 by giving a counterexample. In particular, this implies that the action of GL(V ) does not pass to the quotient in an action on the quotient category of Fct(FI d , K -Vect) by SN (FI d , K -Vect). Proposition 6.4.2. For d > 1, the subcategory SN (FI d , K -Vect) of Fct(FI d , K -Vect) is not stable by the action of GL(V ) given in Denition 4.3.3. Proof. We use the functor F FI 2 c 1 from Example 6.3.2 as a counterexample for d = 2 which can be generalized for any d > 1. We recall that F FI 2 c 1 is dened on objects by F FI 2 c 1 (n) = K for all n ∈ FI 2 and on morphisms by

  Chapter 7. Weak polynomial functors on FI d Denition 7.1.1. The category St(FI d , R-Mod) is the quotient categorySt(FI d , R-Mod) = Fct(FI d , R-Mod) / SN (FI d , R-Mod)where the quotient is described in Denition 1.1.8 and π d is the canonical quotient functorπ d ∶ Fct(FI d , R-Mod) → St(FI d , R-Mod).Remark 7.1.2. Although the objects of the quotient category St(FI d , R-Mod) are by denition the functors from FI d to R-Mod, one should think of them as abstract objects since the morphisms in the quotient are modied by some isomorphism classes, so the objects of the quotient category are only functors up to relations. To make this clear, we often denote by X an object of the quotient and by F a functor in Fct(FI d , R-Mod). We will say that a functor F is weak polynomial if its image π d (F ) in the quotient is a polynomial object, but sometimes we use an abuse of notation and we identify F and π d (F ).

	Remark 7.1.3.

For d = 1 and R = K a eld of characteristic zero, there is an equivalence of categories St(FI, R-Mod) ≅ SN (FI, R-Mod), if we consider only nitely generated functors. The proof is done in [SS16, Section 2.5] by dening a FI-module K

  which seems to correspond to the subcategory SN c 1 ,...,c d (FI d , R-Mod) although we have no rigorous proof of this. If this is true, we would have an equivalence of categories between SN c 1 ,...,c d (FI

d , R-Mod) and the quotient category St(FI d , R-Mod).

  called the section functor. Proof. By Proposition 1.2.2 the quotient functor is always exact and essentially surjective.Since the category R-Mod is a Grothendieck category (Denition 1.3.1), the functor category Fct(FI d , R-Mod) is also one. Then Proposition 1.3.3 implies, with Proposition 6.1.7, that SN (FI d , R-Mod) is a localizing subcategory of Fct(FI d , R-Mod), which means exactly that the quotient functor π d has a right adjoint. In this case Proposition 1.3.3 implies that it commutes with all ltered colimits. We now give some properties of this quotient category inspired by [DV19, section 2] which is similar for FI-modules and St(FI, R-Mod). We begin with a proposition stating that the endofunctors τ k and δ x k pass to the quotient category St(FI d , R-Mod), while the endofunctors κ x k become all zero in the quotient. Proposition 7.1.6. For k ∈ FI d and x ∈ FI d (0, k), the endofunctors τ k and δ x k of Fct(FI d , R-Mod) induce two endofunctors τ St k and (δ x k ) St of St(FI d , R-Mod) dened by the relations π d

  Since Chapter 7. Weak polynomial functors on FI d 107 the co-unit of the adjunction of π d and S d is always an isomorphism between π d ○ S d and Id, we can consider ηX the composition

Let η ∶ Id → S d ○ π d be the unit of the adjunction of π d and S d , then for X ∈ St(FI d , R-Mod), k ∈ N and x ∈ FI d (0, k), the object η δ x k ○S d (X) is in Fct(FI d , R-Mod).

, . . . , x ±1 d ]-Mod through the equivalence giving the description of Pol 0 (FI d , R-Mod). However, we explain in Section 8.2 that

We deduce the following description of the colimit of the functor F A,B over the category I A,B .

(F r ) = 0 for all colour c ∈ C, and X ∶= Hom(Z /2 Z, -) ∶ Ab → Ab is a polynomial functor of degree 1 since it is additive. However, the composition X ○ F r is the functor (Z /2 Z) ≥r from Example 5.1.7 and so it is strong polynomial of degree r.

(S d (X)) is an isomorphism, so its cokernel δ c (S d (X)) is zero. Then we haveδ St c (X) ≅ δ St c ○ π d ○ S d (X) ≅ π d ○ δ c ( S d (X) ) ≅ π d (0) = 0,

Chapter 5. Strong polynomial functors on FI d Remark 5.1.10. As a complement of Proposition 5.1.3, we give a counterexample showing that the subcategory Pol strong n (FI d , R-Mod) of Fct(FI d , R-Mod) is not stable by the endofunctors κ x k for all k ∈ FI d and x ∈ FI d (0, k). Indeed, for M ∈ R-Mod we can consider the quotient of the constant functor M by its subfunctor M ≥k dened in Section 2.3. This quotient is given on objects by

and on a morphism (f, g) ∈ FI d (n, m) by the identity if n, m < k and by zero else. We then compute that τ 1 ( M / M ≥k ) (n) = M / M ≥k (n + 1) for n ∈ FI d . For c ∈ C, as this functor is a quotient of the constant functor M , we deduce that

) is the identity of M if n > k -1 and zero else. This proves that δ c 1 ( M / M ≥k ), which is the cokernel of this map, is zero for all c ∈ C, and so

On the other hand, these identities also implies that κ c 1 ( M / M ≥k ) = M k-1 , and we explained in Example 5.1.7 that M k-1 is strong polynomial of degree k-1, so it is not in Pol strong 0 (FI d , R-Mod) for k > 1.

We end this section by showing that the precomposition by the forgetful functor O ∶ FI d → FI from Denition 2.1.6 respects the strong polynomiality. Proof. We prove the result by induction on n ∈ N, the case n = 0 being a special case of the following reasoning. For F ∈ Pol strong n (FI, R-Mod), by Proposition 2.7.1 we have for all colours c ∈ C the isomorphism

By denition of strong polynomial functors over FI we have δ 1 (F ) ∈ Pol strong n-1 (FI, R-Mod) and by induction we conclude that O * (δ c 1 (F ) ) ∈ Pol strong n-1 (FI d , R-Mod). The Proposition 5.1.11 explains that each strong polynomial functor over FI provides a strong polynomial functor over FI d . We give here an example of this process which comes from the Example 2.3.4.

Example 5.1.12. For k ∈ N, let T (d) k be the FI d -module dened in Example 2.3.4 sending n to (K n ) ⊗k . We recall that there is a relation

k ) and that, for d = 1, T

(1) k is the composition of F ∶ FI → K -Vect, which sends n to K n , with T k ∶ K -Vect → K -Vect which sends V to V ⊗k . It is a classical example that T k is polynomial of degree k in the usual sense (see Denition 5.4.1), and we can compute that F is strong polynomial of degree 1. Indeed, we have

Similarly, for any morphism f in FI, by denition we have τ 1 (F )(f ) = F (f + id), which means that δ 1 (F )(f ) = Id K , showing that δ 1 (F ) is a constant functor. Since FI has an initial object Chapter 6. Poset of stably zero functors

The inclusion SN c 1 ,c 2 (FI 2 , R-Mod) ↪ SN c 1 (FI 2 , R-Mod) is strict: If F FI 2 c 1 ∶ FI 2 → R-Mod is the functor of Example 2.3.3 (sending all objects to R, the maps containing the colour c 1 to zero and the other maps to the identity), then the functor ∆ * c 1 (F FI 2 c 1 ) is the sum of all atomic functors, i.e. it sends all objects to R and all non-bijective morphisms on zero, so it is in the subcategory SN (FI, R-Mod). This implies by Proposition 6.2.3 that F FI 2 c 1 is in the subcategory SN c 1 (FI 2 , R-Mod). However ∆ * c 2 (F FI 2 c 1 ) is a constant functor so it is not in SN (FI, R-Mod). By Proposition 6.2.3 it implies that F FI 2 c 1 is not in SN c 2 (FI 2 , R-Mod) and even less in SN c 1 ,c 2 (FI 2 , R-Mod).

The inclusions SN c 1 (FI 2 , R-Mod) ↪ SN (FI 2 , R-Mod) and SN c 2 (FI 2 , R-Mod) ↪ SN (FI 2 , R-Mod) are strict: We give an example of a functor in SN (FI 2 , R-Mod) which is neither in SN c 1 (FI 2 , R-Mod) nor in SN c 2 (FI 2 , R-Mod) using the matrices A 1 , A 2 ∈ M 2 (R) dened by

A 2 for any k ∈ N * . We can then dene a FI 2 -module G by G(n) = R 2 on an object n ∈ FI 2 , and on morphisms (f, g) ∈ FI 2 (n, m) by

A 1 if the only colour that appears in g is the colour c 1 , A 2 if the only colour that appears in g is the colour c 2 , 0 if both c 1 and c 2 appears in g.

The functor ∆ * c 1 (G) sends every object of FI to R 2 and every non-bijective morphism to A 1 . This implies that κ( ∆ * c 1 (G) )(n) is the constant functor equals to Ker(A 1 ), so G is not in the subcategory SN c 1 (FI 2 , R-Mod). By symmetry, it is not in SN c 2 (FI 2 , R-Mod) either, but we compute

Finally, κ c 1 ,c 2 2 (G) = G implies κ(G) = G, so G is in the subcategory SN (FI 2 , R-Mod).

Remark 6.3.3. The Example 6.3.2 shows that the inclusion of subcategories SN c (FI d , R-Mod) ↪ SN (FI d , R-Mod) is strict for c ∈ C, so the functor π 1 ○ ∆ * c (F ) is not zero on all functors in SN (FI d , R-Mod). This implies in particular, in contrast to the endofunctors τ k and δ x k as we will show in Proposition 7.1.6, that the colouring functors do not pass to the quotient by the subcategory SN (FI d , R-Mod). Remark 6.3.4. In [START_REF] Steven | Introduction to twisted commutative algebras[END_REF] Sam and Snowden dene the quotient of the modules over a TCA by its full subcategory of modules locally annihilated by a power of a prime ideal of the TCA. In [START_REF] Sam | GL-equivariant modules over polynomial rings in innitely many variables[END_REF] they apply this construction to the modules over the TCA Sym((K d ) (1) ) which are equivalent to the FI d -modules over a eld R = K. They rst decompose the category of modules over the TCA Sym(K d ⊗ K ∞ ) into two pieces which seems to correspond exactly to SN (FI d , R-Mod) and St(FI d , R-Mod) via the equivalence of Theorem 4.2.4. Indeed, they dene a module over this TCA to be torsion if it is annihilated by a non-zero element of positive degree, which seems to correspond through the equivalence to the globally stably zero functors over FI d although we have no rigorous proof of this. They then dene the "generic" category Mod gen A as the quotient of the A-modules by the full subcategory of torsion functors. In a second time, they study the rank stratication from Remark 4.1.17 dened via the determinant ideals. This gives a ltration Chapter 7. Weak polynomial functors on FI d Proposition 7.2.5. For all n ∈ N, the subcategory Pol n (FI d , R-Mod) of St(FI d , R-Mod) is thick, stable by colimits and stable by the endofunctors (τ k ) St and (δ x k ) St for all k ∈ FI d and all

x ∈ FI d (0, k).

Proof. The rst assumption is proved by induction using Proposition 7.1.6, which implies that all endofunctors (δ c 1 ) St are exact and commute with colimits. The second assumption is true since τ k and δ x k commute with δ c 1 as endofunctors of Fct(FI d , R-Mod), and it is still true when they pass to the quotient as endofunctors of St(FI d , R-Mod) by Proposition 7.1.6.

Using only the endofunctors (δ c

1 ) St for c ∈ C in Denition 7.2.1 seems a bit restrictive, but the following lemma shows that, if we use all the endofunctors (δ x k ) St for k ∈ FI d and x ∈ FI d (0, k), we get an equivalent denition.

Lemma 7.2.6. An object X of St(FI d , R-Mod) is in Pol n (FI d , R-Mod) if and only if

for all k ∈ FI d and all x ∈ FI d (0, k). Proof. One implication is obvious by taking k = 1 and c ∈ C = FI d (0, 1), we prove the converse. For X in Pol n (FI d , R-Mod) and c, c ∈ C, we prove that for (δ (c,c) 2

) St (X) is in Pol n-1 (FI d , R-Mod). By Proposition 7.1.6 we have the identities π d ○ τ 1 = τ St 1 ○ π d and π d ○ δ x k = (δ x k ) St ○ π d , and by Proposition 6.1.7 we have π d ○ κ x k = 0. Applying the exact functor π d to the exact sequence of Proposition 2.6.6.7) we get the short exact sequence

The co-unit of the adjunction of π d and S d gives a natural isomorphism η ∶ π d ○ S d ≃ Id by Proposition 1.3.10, so applying this exact sequence to the functor S d (X), we get the following short exact sequence in St(FI d , R-Mod):

By Proposition 7.2.5 the subcategory Pol n-1 (FI d , R-Mod) is thick and stable by τ 1 , so the rst and last terms of the short exact sequence are in Pol n-1 (FI d , R-Mod) by hypothesis, and so the middle term (δ

We then proved that for any colours c, c ∈ C, the functor (δ

and we conclude similarly, using the exact sequence of Proposition 2.6.6.7) in a general version, that (δ

Remark 7.2.7. For d = 1, the weak polynomial degree corresponds to the notion of stable degree of [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] and [START_REF] Church | FI-modules over Noetherian rings[END_REF] while the local degree precise how the weak and strong degrees are linked. It morally gives the strong polynomial degree modulo the weak polynomial degree and controls the rank from which the representation become stable. For example, in [START_REF] Church | Linear and quadratic ranges in representation stability[END_REF] they use these notions and spectral sequences to obtain representation stability results for two families of FI-modules. This shows that the composition π d ○ O * is zero on the subcategory SN (FI, R-Mod) of Fct(FI, R-Mod). Since the functor O * is exact, we can use Proposition 1.3.4, which gives the result.

We now show that the precomposition by the forgetful functor preserves the polynomiality when passed to the quotient categories. Proposition 7.2.9. For n ∈ N we have the inclusion of categories

where

is the functor from Lemma 7.2.8. Proof. We prove the result by induction on n ∈ N, the case n = 0 is being a special case of the following reasoning. For X ∈ Pol n (FI, R-Mod) and c ∈ C, we have the isomorphism

given by Propositions 2.7.1, 7.1.6 and 7.2.8. Since the co-unit always gives an isomorphism from π 1 ○ S 1 to the identity by Proposition 1.3.10, we conclude that there is an isomorphism

Finally, we explain in the following remark that the notion of weak polynomial functors corresponding to another quotient category of Fct(FI d , R-Mod) by stably zero functors is more complex and have less properties than in St(FI d , R-Mod).

Remark 7.2.10. We recall that the composition π d ○ δ x k is an exact functor because of the exact sequence (I) from Lemma 2.6.4 since κ x k (F ) ∈ SN (FI d , R-Mod) by Proposition 6.1.7. For c i 1 , . . . , c im ∈ C some colours, in order to dene the polynomial objects in the quotient of Fct(FI d , R-Mod) by its thick subcategory SN c i 1 ,...,c im (FI d , R-Mod), we must check that the endofunctors δ x k pass to this quotient. However, if π denotes the quotient functor associated with this quotient category, the composition π ○ δ x k is not an exact functor. Indeed, in general

is the functor from Example 2.3.3 sending all objects to R, the maps containing the colour c 1 to zero and the others to the identity, then we see that κ c 1 1 (F ) = F is stably zero in c 1 but not in the other colours. We must then adapt Proposition 1.3.4 as we did in Proposition 1.3.6 by replacing the short exact sequence of an exact functor by the exact sequence 0

I) from Lemma 2.6.4. This allows us, as in Proposition 7.1.6, to dene the endofunctors (κ x k ) Stc i 1 ,...,c im and (δ x k ) Stc i 1 ,...,c im of the quotient of Fct(FI d , R-Mod) by its thick subcategory

We can then dene polynomial objects in this quotient as we did for St(FI d , R-Mod) using these endofunctors (δ x k ) Stc i 1 ,...,c im . The problem is that, during this process, we lost the fact that the endofunctors κ x k become zero in the quotient. We then also lost the exactness of the endofunctors (δ x k ) Stc i 1 ,...,c im , which is fundamental to study the polynomial objects of the quotient. For example these subcategories of polynomial objects in this quotient do not seem to be stable by subobjects.

Chapter 7. Weak polynomial functors on FI d obtained from the exact sequence (I) from Lemma 2.6.4. It implies that, for all n ∈ FI d , the long sequence of vector spaces corresponding to the one of the statement evaluated in n is exact. This exact sequence of vector spaces is natural in n ∈ FI d by the denitions of the endofunctors τ k , δ x k , κ x k and of the tensor product.

In the following result we extract a short exact sequence from the long exact sequence of Proposition 7.3.4 that we will use to prove the Theorem 7.3.6.

Corollary 7.3.5. Let R = K be a eld, for F, G ∈ FI d -Mod there is a natural short exact sequence

Proof. By denition of the pointwise tensor product we get

The exact sequence (I) from Lemma 2.6.4 associated with the functor F ⊗ G can then be written as

.

We then get the short exact sequence of the statement by splitting the long exact sequence of Proposition 7.3.4 for k = l and x = y with the following epi-mono factorization:

We nally prove that the pointwise tensor product respects polynomiality. In addition to providing numerous examples of polynomial FI d -modules, an interesting application of this theorem is to give a second proof (in Theorem 8.3.11) that the quotient of P FI d n that we study in Section 8.3 is weak polynomial of degree n.

Theorem 7.3.6. For R = K be a eld,

Proof. We proceed by induction on n, for m xed. By symmetry we also have the result for n xed as m varies and the two together give the result for all n, m ∈ N. For X in Pol n+1 (FI d , K -Vect) and Y in Pol m (FI d , K -Vect), by Corollary 7.3.5 we have a short exact sequence

, so we can apply the exact functor π d to this short exact sequence. Because of the isomorphisms

Id from Propositions 7.1.6 and 1.3.10, we get the following short exact sequence in St(FI d , R-Mod): 

We conclude this case by induction on m ∈ N to prove that X ⊗ Y ∈ Pol m (FI d , R-Mod).

Remark 7.3.7. Since the method used in the proof of Theorem 7.3.6 requires the stability by subobject, it does not work for strong degree. This is why we used a dierent argument in Section 5.5 to prove that the pointwise tensor product preserves the notion of strong polynomial FI d -modules.

Description of Pol

In this section we give a description of the category Pol 0 (FI d , R-Mod) of polynomial objects of St(FI d , R-Mod) of degree 0. These functors are actually given by an object M of the category R-Mod, together with d -1 automorphisms of M which commute two by two or by a R[x ±1 2 , . . . , x ±1 d ]-module. More precisely, we dene R-Mod d the category whose objects are the tuples (M, φ 2 , . . . , φ d ), where M is an object of R-Mod and φ 2 , . . . , φ d ∶ M → M are d -1 isomorphisms in R-Mod commuting two by two and we prove the following in Theorem 7.4.12.

Theorem. There is an equivalence of categories Pol 0 (FI d , R-Mod) ≅ R-Mod d given by the functor π d ○ Θ d , where Θ d (M, φ 2 , . . . , φ d ) is the functor that sends all objects k in FI d to M and a morphism x = (c j 1 , . . . , c

2 , . . . , x ±1 d ]-modules (see Remark 7.4.9) we also have an equivalence between Pol 0 (FI d , R-Mod) and R[x ±1 2 , . . . , x ±1 d ]-Mod. For d = 1 we recover a special case of [DV19, Theorem 2.26] which says that, for FI, the only objects in Pol 0 (FI, R-Mod) are the constant functors, and that the equivalence is given by π M ○ c, where c ∶ R-Mod → Fct(FI, R-Mod) sends M ∈ R-Mod to the constant functor M . We prove the Theorem 7.4.12 in two steps: rst we dene an abstract condition (P OL0) and we show in Proposition 7.4.2 that the polynomial objects of degree 0 are those which satisfy this condition. Then we show that the objects satisfying the condition (P OL0) correspond to the objects of R-Mod d . Denition 7.4.1. An object X of St(FI d , R-Mod) satises the condition (POL0) if, for all k ∈ FI d and all x ∈ FI d (0, k), the morphism

is an isomorphism, where S d is the section functor of Lemma 7.1.5. 

) )

-1 ○S d (X) (u○c n 1 ). This implies the naturality of ε:

Finally, ε is a natural equivalence by denition of the condition (P OL0).

Finally, we dene the category R-Mod d which will be isomorphic to the category Pol 0 (FI d , R-Mod) of polynomial objects of degree 0. The equivalence is given in Theorem 7.4.12. Denition 7.4.8. The category R-Mod d has for objects the tuple (M, φ 2 , . . . , φ d ), where We end this section with the theorem describing the polynomial functors of degree 0.

Theorem 7.4.12. There is an equivalence of categories Pol 0 (FI d , R-Mod) ≅ R-Mod d given by the functor

Remark 7.4.13. For d = 1, since R-Mod 1 = R-Mod we recover the description of Pol 0 (FI, R-Mod) given by Djament and Vespa in Theorem 2.26 of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]:

Proof of Theorem 7.4.12. First we prove that the essential image of π d ○ Θ d is the subcategory

Weak polynomial quotients of the projective standard functors 0 , obtained in Section 8.1 by ltering its generators by the number of occurrences of the colours, which are weak polynomial of degree 0. We also show that the image of these quotients in St(FI d , R-Mod) is equal to the image of a constant functor. Then these functors correspond, through the equivalence of categories given in Theorem 7.4.12 giving the description of Pol 0 (FI d , R-Mod), to the object (R, Id, . . . , Id) of R-Mod d or to the trivial R[x ±1 2 , . . . , x ±1 d ]-module.

In Section 8.2 we show that the quotient of the functor P FI d n by the subfunctor corresponding to the action of the symmetric groups by post-composition is weak polynomial of degree 0. However, we explain that it is not easy to nd the corresponding object of R-Mod d through the equivalence of categories giving the description of Pol 0 (FI d , R-Mod) since the passage to the quotient category is not explicit. In Section 8.3 we give a quotient of P FI d n , which is weak polynomial of degree n, obtained as the quotient by the action of the symmetric groups on the colour choices. To prove this we use a formula from Proposition 8.3.8 which links this quotient of P FI d n with P FI n and the functor P C d 0 over the category C d , introduced in Denition 8.2.5, whose objects are the integers and whose morphisms from n to m are the unordered choice of mn colours in C. Finally, in Section 8.4 we construct a quotient of P FI d n that is weak polynomial of degree i for any i ∈ N using the above formula and similar quotients of P FI n .

8.1 Weak polynomial quotients of P FI d 0

In this section we give examples of quotients of the functor P FI d 0 which are weak polynomial of degree 0 by ltering its generators by the occurrences of the colours. We begin with a rst example where we quotient P FI d 0 by identifying all its generators. Denition 8.1.1. For n ∈ FI d , the submodule G 0 (n

Chapter 8. Weak polynomial quotients of the projective standard functors

We then deduce from the equality

We show that this quotient of P FI d 0 is strong polynomial of degree 0 as it is a constant functor.

Proposition 8.1.3. The quotient

Proof. For n ∈ FI d , the quotient We now generalize this example by identifying only the morphisms with at least i occurrences of c 1 and we show that it gives weak polynomial quotients of P FI d 0 . We rst recall that a morphism

In the following, we then denote by γ k (α) the number of occurrences of

Lemma 8.1.5. The submodules

We show now that the quotient of P FI d 0 by its subfunctor G i is weak polynomial for all i ∈ N.

Proposition 8.1.6. For i ∈ N, the quotient

Proof. For n ∈ FI d , we have by denition

This quotient module is generated by the class c n 1 of c n 1 and by the classes
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since it is the kernel of this map, and so

These examples are part of a family of weak polynomial quotients of P FI d 0 obtained by ltering its generators by the number of occurrences of the dierent colours. Indeed, for d integers k 1 , . . . , k d ∈ N we can dene a family of subfunctors indexed by the subsets I of A = {1, . . . , d}: for a subset I ⊂ A we say that α ∈ FI d (0, k) satises the condition

where γ i (α) denotes the number of occurrences of c i in α. With these notations, we introduce the following subfunctor

where X ∈ FI d (0, n) is a given morphism in FI d (0, n) satisfying the condition (P I,k 1 ,...,k d ).

Lemma 8.1.8. The submodules

Proof. This is similar to the proof of Lemma 8.1.2. For any morphism (f, g) ∈ FI d (n, m) the morphism P FI d 0 (f, g) is the linearization of the post-composition by (f, g) which can only add more colour and increase γ i . So for any n ∈ N we have an inclusion of modules

Remark 8.1.9. The subfunctor G i given in Denition 8.1.4 is a particular case of Denition 8.1.7. In fact, we have G A,i,0,...,0 = G i . In general, the cases I = ∅ and I = A are easy to describe. Indeed, for n ∈ N, we have

We prove in Proposition 8.1.15 that the quotient of P FI d 0 by the subfunctor G I,k 1 ,...,k d is weak polynomial of degree 0. To do this, we dene a similar family of subfunctors F I,k 1 ,...,k d of P FI d 0 and we show that the quotient by these subfunctors are stably zero. Then, we show in Lemma 8.1.14 that the quotient of Remark 8.1.12. As in Remark 8.1.9, the cases I = ∅ and I = A are easy to describe. Indeed, for n ∈ N, we have

and

All the subfunctors F I,k 1 ,...,k d behaves in a similar way so we can consider them all at once, independently of the subset I ⊂ A and of the d-tuple (k 1 , . . . , k d ). Indeed, in all cases the quotient of P FI d 0 by one of these subfunctors is stably zero as explained in the following proposition.

Proposition 8.1.13. For k 1 , . . . , k d ∈ N and I ⊂ A, the quotient of P FI d 0 by its subfunctor

In particular, we have

Proof. By denition, the functor

However, the morphism

) is zero since it is given by the application

, which is the linearization of the map

) * , passing to the quotient. The functor

being the kernel of this morphism, it is equal to

The quotients of P FI d 0 by G I,k 1 ,...,k d and by F I,k 1 ,...,k d are linked in a short exact sequence by a constant functor as explained in the following. Lemma 8.1.14. For k 1 , . . . , k d ∈ N and I ⊂ A, there is a short exact sequence in

Proof. By denition, the functor

Then, the quotient of 

Proof. By Lemma 8.1.14 there is a short exact sequence

and by Proposition 8.1.13 the last term is in the subcategory SN (FI d , R-Mod) of Fct(FI d , R-Mod). Since the quotient functor π d is exact, we get an isomorphism

Remark 8.1.16. As explained above, the short exact sequence of Lemma 8.1.14 shows that this quotient is equal to a constant functor modulo the stably zero functor P FI d 0 / F I,k 1 ,...,k d . This implies that its image in the quotient is equal to π d (R) and so it corresponds through the equivalence of categories given in Theorem 7.4.12 to the object (R, Id, . . . ,

We proved that the quotient of P FI d 0 by the subfunctor G I,k 1 ,...,k d is weak polynomial of degree 0 for any k 1 , . . . , k d ∈ N and I ⊂ A, and that the quotient by the subfunctor F I,k 1 ,...,k d is stably zero. In the end of this section we look at the strong polynomiality of these quotients. In Proposition 8.1.19 we show that, for I = ∅ and k 1 , . . . , k d ∈ N * , they are strong polynomial because they are constant after some rank. But we explain in Proposition 8.1.18 that, when |I| ≥ 1, they are not strong polynomial based on the case I = A.

Lemma 8.1.17. For I = A, 1 ≤ i ≤ d, and F k 1 ∧⋅⋅⋅∧k d = F A,k 1 ,...,k d the functor from Remark 8.1.12, we have the relation

where kj = k j -1 if k j ≥ 1, and 0 if k j = 0.

Chapter 8. Weak polynomial quotients of the projective standard functors 125 Proof. For n ∈ FI d , by denition

is the cokernel of the application 

with kj = k j -1 if k j ≥ 1, and 0 if k j = 0. These relations combined prove that the iterated functors (δ c 1 1 ) i ( P FI d 0 / F k 1 ∧⋅⋅⋅∧k d ) (n) for i ∈ N are never zero, and so

Using the short exact sequence from Lemma 8.1.14, it implies that P FI d 0 / G k 1 ∧⋅⋅⋅∧k d is not strong polynomial since these categories are stable by quotients by Proposition 5.1.3. This gives the result when I = A, the general case is proved in a similar way because the parts associated with the colours in I take over from the parts associated with the colours in A ∖ I and they prevent the quotient to be strong polynomial. In this section we dene the quotient of the functor P FI d n by the subfunctor, called F n in Denition 8.2.1, which corresponds to the action of the symmetric groups by post-composition. We show in Theorem 8.2.11 that this quotient of P FI d n is weak polynomial of degree 0. We also show in Proposition 8.2.9 that this quotient of P FI d n is isomorphic to P C d 0 over the category C d , introduced in Denition 8.2.5, whose objects are the integers and whose morphisms from n to m are the unordered choice of mn colours in C. In a second time, we try to nd a nice representative of the class of this quotient in the quotient category St(FI d , R-Mod) for n = 0. The objective is to describe the class of P FI d 0 / F 0 in terms of the category R-Mod d via the equivalence of categories given in Theorem 7.4.12 but this is not always possible since the passage to the quotient category is not an explicit construction. Denition 8.2.1. For m ∈ FI d , we denote by F n (m) the submodule of P FI d n (m) given by

Then there exists σ ∈ S l (we can take σ which acts as σ on Im( f ) ≅ m and is the identity on

Therefore we have

We then proved on the generators of F n (m) that we have the inclusion of submodules

For a n-tuple (c i 1 , . . . , c in ) of colours we denote by (c i 1 , . . . , c in ) the class of this n-tuple under the action of the symmetric group S n permuting the positions in the n-tuple. For each class we can choose a representative n-tuple (c j 1 , . . . , c jn ) of the class (c i 1 , . . . , c in ) such that the colours are in the natural order, i.e. such that 1 ≤ j 1 ≤ ⋅ ⋅ ⋅ ≤ j n ≤ d. Using this notation we can give a description of the quotient P FI d n / F n in the following proposition.

Proposition 8.2.3. The quotient functor P FI d n / F n sends an object m ∈ FI d to the free R-module generated by the class of (m-n)-tuples (c i 1 , . . . , c im-n ) under the action of symmetric group S m-n . In other words, we have

Moreover, it sends a map ( f , g) ∈ FI d (m, l) to the morphism of R-modules R [ ( Id n +g) * ] that sends a basis element (c i 1 , . . . , c im-n ) to the element basis (c i 1 , . . . , c im-n , g).

Remark 8.2.4. In this proposition we could choose a representative of the class (c i 1 , . . . , c in , g)

where the colours are in the natural order to make it more consistent, but it would need more notations for no more information. We give here an example to make it clearer: for d = 5, n = 1, m = 3 and l = 5 the application ( (0 → 2) + Id 3 , (c 3 , c 2 ) ) ∈ FI 4 (3, 5) sends the basis element
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The action of S m permutes both the injection f and the colours g, so we can choose for each class in the quotient a representative with the injection being the inclusion of the rst n elements in m, and with the colours in the natural order. This gives the isomorphisms

For a map ( f , g) ∈ FI d (m, l), the morphism

passing to the quotient. Since we take the quotient by the action of S l , the injection f can be supposed to be the inclusion of the m rst elements. Then P FI d n / F n ( f , g) is the morphism of R-modules adding the colours of g on each basis element.

The description of the quotient of P FI d n by F n of Proposition 8.2.3 suggests dening a category C d corresponding to this functor. More precisely, after giving the denition of this category, we show in Proposition 8.2.9 that the quotient P FI d n / F n is equivalent to the functor P C d n .

Denition 8.2.5. The category C d has for objects the integers and its morphisms from n to m are the class of the (m -n)-tuples

quotient by the action of the symmetric group S m-n . In other words, we have

The composition is given by the concatenation of two representatives of each class:

Remark 8.2.6. As in Remark 8.2.4, in the denition of the composition we could choose a representative of the class of (c j 1 , . . . , c j k-m , c i 1 , . . . , c im-n ) where the colours are in the natural order to make it more consistent, but it would need more notations for no more information. We give here an example to make it clearer: For d = 5, n = 1, m = 3 and k = 5 we have

There is a natural functor between FI d and C d which we dene in the following. since

Proposition 8.2.9. For all n ∈ N, there is a natural isomorphism in Fct(FI d , R-Mod):

Chapter 8. Weak polynomial quotients of the projective standard functors Proof. For m ∈ FI d , by denition of C d and by Proposition 8.2.3 we have an isomorphism of R-modules

For a morphism ( f , g) ∈ FI d (m, l), we have by Proposition 8.2.3 that P FI d n / F n ( f , g) sends the basis element (c i 1 , . . . , c in ) to (c i 1 , . . . , c in , g). However, we also have by denition, that

. . , c in , g). This implies that the diagram

Using the explicit description of the quotient P FI d n / F n from Proposition 8.2.3 we compute its image by the endofunctor δ c 1 , for c ∈ C, in the following lemma. We then use this computation to prove in Theorem 8.2.11 that the quotient of P FI d n by F n is weak polynomial of degree 0. Lemma 8.2.10. For c ∈ C, the functor δ c 1 ( P FI d n / F n ) sends an object m ∈ FI d to the free Rmodule generated by the class of the (m -n + 1)-tuples (c i 1 , . . . , c i m-n+1 ) under the action of symmetric group that does not contain the colour c. In other words, we have

Moreover, this functor sends a map 

Then the image of the morphism P FI d n / F n (Id m +c) is generated by all the (m -n)-tuples of unordered colours where c appears. We then deduce that its cokernel is

passing to the cokernel. However, by Proposition 8.2.3, this last morphism is the linearization of the map (Id n+1 +g) * , so its image is in the image of P FI d n / F n (Id n +c) if and only if the colour c appears in g. When passing to the cokernel, this gives that δ c 1 (

Theorem 8.2.11. For all n ∈ N, the quotient functor P FI d n / F n is weak polynomial of degree 0, i.e. we have:
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We conclude using Proposition 7.1.6 because, for all c ∈ C, we have

Example 8.2.12. We make this quotient explicit for n = 0 and d = 2. First we recall that for n ∈ FI d , we have

, so a basis morphism α ∈ P FI d 0 (n) corresponds to a choice of n colours in C. Then the post-composition in FI d by S n = FI d (n, n) corresponds to the action of the symmetric group S n on P FI d 0 (n) permuting the colours of the generators. Since the subfunctor F 0 of P FI 2 0 correspond to this action, this gives for d = 2 and n ∈ FI 2 the following description:

Moreover, the quotient P FI 2 0 / F 0 sends a morphism (f, g) ∈ FI 2 (n, m) to the linearization of the map (Id n +g) * passing to the quotient. In particular this quotient functor sends a bijective morphism σ ∈ FI 2 (n, n) = S n to the identity and the image of a morphism (f, g) ∈ FI 2 (n, m) is determined only by the colour choice g. We then have the following explicit description as a diagram:

Note that each arrow in the category FI 2 in this diagram actually represents many arrows that we can construct by composition with the action of the symmetric groups. This diagram also represent the functor P C 2 0 since P C 2 0 ○ Ω ≅ P FI 2 0 / F 0 by Proposition 8.2.9.

Remark 8.2.13. We proved in Theorem 8.2.11 that the quotient of P FI d n by its subfunctor F n of Denition 8.2.1 corresponding to the action of the symmetric groups, is weak polynomial of degree 0. We would like to use Theorem 7.4.12 to describe this quotient in terms of the category R-Mod d , but to do that we need to nd a representative of the class π d ( P FI d n / F n ) which is 130 Chapter 8. Weak polynomial quotients of the projective standard functors constant on the objects and which sends arrows from 0 to 1 to commutative isomorphisms. However, this is generally dicult to do since passing to the quotient category St(FI d , R-Mod) is not very explicit.

In the end of this section we give ideas on how to nd a nice representative of the class π d ( P FI d n / F n ) as explained in Remark 8.2.13 for n = 0. Recall that the quotient P FI d 0 / F 0 sends an object n to the free R-module generated by the class (c i 1 , . . . , c in ) of the n-tuples of colours quotient by the action of S n permuting the colours. For each class we can choose a representative n-tuple (c i 1 , . . . , c in ) such that the colours are in the natural order, i.e. such that 1 ≤ i 1 ≤ ⋅ ⋅ ⋅ ≤ i n ≤ d. We start by dening a ltration of subfunctors of the quotient P FI d 0 / F 0 according to the number of occurrences of the colour c 1 . We show in Proposition 8.2.18 that each of these subfunctors gives a proper subfunctor of P FI d 0 / F 0 , however they are not strictly smaller since they are isomorphic to P FI d 0 / F 0 itself with a shift, as shown in Proposition 8. 

Proof. For (f, g) ∈ FI d (n, m), the morphism P FI d 0 / F 0 (f, g) is the linearization of the postcomposition by (f, g) passing to the quotient by F 0 . This morphism can only add more colour in the n-tuples of colours and then only increase the number of occurrences of c 1 . When passing to the quotient, this shows that all these subfunctors of P FI d 0 / F 0 are well dened since we have the inclusion of R-modules

The inclusions follow directly from the denition of L k . Remark 8.2.16. Recall that the quotient of P FI d 0 by its subfunctor G i from Denition 8.1.4 is given on an object n ∈ FI d by the free R-module generated by the class c n 1 of c n 1 and by the classes α for α ∈ FI d (0, n) such that γ 1 (α) < i. Then the quotient of P FI d 0 / G i by the action of the symmetric groups by post-composition is equivalent to the quotient of P FI d 0 / F 0 by its subfunctor L i from Denition 8.2.14. Remark 8.2.17. We chose to dene L k as the subfunctor where c 1 appears at least k times for simplicity but this is arbitrary. Instead, we could consider any mix of colour and dene L k 1 ,...,k d the subfunctor generated by the classes of the n-tuple of colour choices in the quotient by the symmetric group in which c 1 appears at least k 1 times, c 2 at least k 2 times, ... and c d appears at least k d times. In fact, it appears that every non-zero subfunctor H of P FI d 0 / F 0 is a sum of subfunctors similar to L k 1 ,...,k d of P FI d 0 . Indeed, there is a minimal n ∈ N * such that H(n) ≠ 0. For x non-zero in H(n), H contains a subfunctor similar to L k 1 ,...,k d starting at x: it is the subfunctor generated by the classes containing x and in addition at least k 1 times c 1 , ... , at least k d times c d . Either H is equal to this subfunctor, either it is greater and we can restart the reasoning with the quotient. The process stops in a nite number of steps because each time the number of possible occurrences of the dierent colours decrease. Then, the subfunctors L k 1 ,...,k d generate all the subfunctors of P FI d 0 / F 0 . However studying all of them is similar to studying only L k , but with more complex notations, so we write the details for L k using only c 1 for more clarity. Proof. For k ∈ N, let K k denote the quotient of ( P FI d 0 / F 0 ) by its subfunctor L k . By denition the functor κ

is the kernel of the map K k ( Id (-) +(c 1 ) k ) obtained as the morphism P FI d 0 / F 0 (Id (-) +(c 1 ) k ) passing to the quotient by L k . By Proposition 8.2.3, this last morphism is the map that sends a basis element

since the colour c 1 appears at least k times. This shows that the image of the application P FI d 0 / F 0 ( Id (-) +(c 1 ) k ) is in the subfunctor L k . When passing to the quotient, it implies that the application K k ( Id (-) +(c 1 ) k ) is zero. We then have

By denition, we have a short exact sequence 0

and, since the functor π d is exact, we get the wanted natural isomorphism. This gives us a family of representatives of the class π d ( P FI d 0 / F 0 ), but neither of them is constant on the objects. More than that, we show now that each of these subfunctors L k is in fact isomorphic to a shift of P FI d 0 / F 0 himself. Proposition 8.2.19. For all k ∈ N, there is a natural isomorphism τ k (L k ) ≅ P FI d 0 / F 0 . Proof. For n ∈ FI d , by denition the R-module L k (n + k) is generated by the classes (c i 1 , . . . , c in+k ) with 1 ≤ i 1 ≤ ⋅ ⋅ ⋅ ≤ i n+k ≤ d such that c 1 appears at least k times. Then we have i 1 = ⋅ ⋅ ⋅ = i k = 1, so L k (n + k) is equivalent to the module generated by the classes (c i k+1 , . . . , c i k+n ) with 1 ≤ i k+1 ≤ ⋅ ⋅ ⋅ ≤ i n+k ≤ d. This corresponds to the generators of the module P FI d 0 / F 0 (n), so we have the equivalence of R-modules

Since L n is a subfunctor of P FI d 0 / F 0 we have, for any morphism (f, g) ∈ FI d (n, m), the identity

By Proposition 8.2.3 this last morphism is induced by R [ ( Id n +g + Id k ) * ] passing to the quo- tient. In these identities the term "Id k " corresponds to the k occurrences of c 1 that disappear in the equivalence of modules

This shows the naturality of this equivalence since the morphism

Remark 8.2.20. We can prove in the same way that there is a natural isomorphism 

, where the last term

Since the category R-Mod is a Grothendieck category (Denition 1.3.1), so is the category Fct(FI d , R-Mod) and so the ltered colimits in this category are exact. Using this we obtain another short exact sequence

The middle term is equal to P FI d 0 / F 0 since it does not depend on k, and the last term stays in the subcategory SN (FI d , R-Mod) since it is stable by colimits by Proposition 6.1.7. Applying the exact functor π d to it, we get the wanted isomorphism.

The quotient of P FI d n by the action of symmetric groups on colours

In this section we dene the quotient of the functor P FI d n by the subfunctor, called H n in Denition 8.3.2, corresponding to the action of the symmetric groups on the colour choices, and we prove in two dierent ways that:

Theorem. For all n ∈ N, the quotient P FI d n / H n is weak polynomial of degree n, i.e. we have

First, we prove this theorem if R = K is a eld in Theorem 8.3.11, using the decomposition

from Proposition 8.3.8 since the pointwise tensor product respects the polynomial degree. In a second time we prove the theorem in the general case in Theorem 8.3.14 using the direct computation

from Proposition 8.3.13. In both cases there is a non-trivial stably zero functor that prevents this quotient from being strong polynomial.

Remark 8.3.1. For (f, g)

There is an action of the symmetric group S m-n on these colour choices by permutation, which gives an action on P FI d n (m). For a mn-tuple (c i 1 , . . . , c im-n ) of colours we denote by (c i 1 , . . . , c im-n ) the class of this mn-tuple under this action and, for each class, we can choose a representative mn-tuple (c j 1 , . . . , c jm-n ) such that the colours are in the natural order, i.e. such that 1 ≤ j 1 ≤ ⋅ ⋅ ⋅ ≤ j m-n ≤ d.

We start with the denition of the subfunctor H n of P FI d n using an action of S m-n on P FI d n (m). 

where the action of S m-n is described in Remark 8. 

Then there exists σ ∈ S l-n (we can take σ which acts as σ on Im( f ) ∖ Im( f ○ f ) ≅ mn, and is the identity on l -Im( f ) ≅ lm) such that σ ⋅ ( ( f , g) ○ (f, g) ) = ( f , g) ○ (f, σ ⋅ g). We then get

showing, on the generators (f, σ ⋅ g) -(f, g) of H n (m), that we have the inclusion of R-modules

Remark 8.3.4. For d = 1 the subfunctor H n of P FI 1 n is zero since the symmetric groups acts on the unique colour choice and so σ ⋅ (f, g) = (f, g) for all (f, g) ∈ FI 1 (n, m) and σ ∈ S n . In particular, Theorem 8.3.11 for d = 1 tells that P FI n is weak polynomial of degree less than or equal to n. In fact, it is even strong polynomial of degree n as explained in Remark 5.2.3.

We rst give a concrete description of the quotient P FI d n / H n that we will use in both proofs of Theorems 8.3.11 and 8.3.14. Proposition 8.3.5. The quotient functor P FI d n / H n sends an object m ∈ FI d to the free R-module generated by the pairs ( f, (c i 1 , . . . , c im-n ) ), where f ∶ n ↪ m is an injection and (c i 1 , . . . , c im-n ) is a class of a (m -n)-tuple of colours under the action of the symmetric group S m-n . In other words, there is an isomorphism of R-modules

Moreover, for ( f , g) a morphism in FI d (m, l), the image of ( f , g) ∈ FI d (m, l) by

Remark 8.3.6. As in Remark 8.2.4, in this proposition we could choose a representative of the class (c i 1 , . . . , c in , g) where the colours are in the natural order to make it more consistent but it would need more notations for no more information.

Proof of Proposition 8.3.5. By denition, for m ∈ FI d we have

Then the action of S m-n permutes the colours of g so we can choose for each class in the quotient a representative with the colours in the natural order as explained in Remark 8.3.1. This gives the formula for

passing to the quotient, which acts on the rst component of (f, (c i 1 , . . . , c in )) by post-composition by f and on the second component, since we take the quotient by the action of S l-m , it adds the colours of g to the class (c i 1 , . . . , c im-n ).

We now introduce a negative shift on the category C d from Denition 8.2.5 that we will use in the following. Recall that this category has for objects the integers and for morphisms from n to m the unordered choices of mn colours in C, and that there is a natural functor Ω ∶ FI d → C d . Denition 8.3.7. For F ∶ C d → R-Mod and n ∈ N, the shifted functor F ( (-) -n ) is given on objects by

and on morphisms by F ( (-)-n ) = F (-) using the natural bijection
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The rst consequence of the description of the quotient P FI d n / H n in Proposition 8.3.5 is that we can express it as a tensor product of P FI n by P C d 0 shifted using the shift from Denition 8.3.7. This explains how the injections and the colours are mixed to form the functor P FI d n up to the action of the symmetric groups on the colour choices. This relation will allow us to prove in Theorem 8.3.11 that P FI d n / H n is weak polynomial of degree n using the fact that pointwise tensor product preserves the polynomial degree (see Theorem 7.3.6). Proposition 8.3.8. For all n ∈ N, there is a natural isomorphism

which can equivalently be written as

Remark 8.3.9. For d = 1, the subfunctor H n of P FI n is zero as explained in Remark 8.3.4. Using this, we can rewrite the formula of Proposition 8.3.8 into a more homogeneous one:

Proof of Proposition 8.3.8. For m ∈ FI d , using the description of P FI d n / H n (m) from Proposition 8.3.5 for = 0 we see that the elements x ∶= (c i 1 , . . . , c im ) with

for any two sets A and B, we can reformulate the isomorphism of Proposition 8.3.5 as:

We then have an isomorphism of modules

This isomorphism is natural in m ∈ FI d since, for ( f , g) ∈ FI d (m, l) the application P FI d n / H n ( f , g) sends a basis element (f, (c i 1 , . . . , c im-n ) ) to the element ( f ○f , (c i 1 , . . . , c im-n , g) ) by Proposition 8.3.5. On the rst component of these morphisms

. This shows the naturality since the isomorphism is given by the separation of the rst and the second components.

The formula of Proposition 8.3.8 for n = 0 implies that the quotient P FI d n / H n is weak poly- nomial of degree 0 as explained in the following: Corollary 8.3.10. There are natural isomorphisms of FI d -modules

where F 0 and H 0 are the subfunctors of P FI d 0 from Denitions 8.2.1 and 8.3.2. In particular, these functors are weak polynomial of degree 0. Proof. For d = 1, the functor P FI 0 is a constant functor, and so is O * P FI 0 by Proposition 7.2.9.

Then the formula of Proposition 8.3.8 applied for n = 0 gives the rst equivalence since M cst ⊗ F is equivalent to F for any FI d -module F and any constant FI d -module M textcst . The second equivalence is given by Proposition 8.2.9 and the quotient of P FI d 0 by F 0 is weak polynomial of degree 0 by Theorem 8.2.11.

Chapter 8. Weak polynomial quotients of the projective standard functors 135 Finally, the relation from Proposition 8.3.8 allows us to prove that the quotient P FI d n / H n is weak polynomial of degree n using the fact that tensor product preserve polynomiality if R = K is a eld. Theorem 8.3.11. If R = K is a eld, for all n ∈ N the quotient P FI d n / H n is weak polynomial of degree less than or equal to n, i.e. we have

Proof. The functor P FI n is weak polynomial of degree n on FI by Lemma 5.2.1 for d = 1, and the functor O * preserves polynomiality by Proposition 7.2.9. The FI d -module P C d 0 ○ Ω is weak polynomial of degree 0 by Corollary 8.3.10. Then the FI d -module P C d 0 ( (-) -n ) ○ Ω is also weak polynomial of degree 0 since it is the same functor but shifted by n and the weak polynomiality concerns the stable behavior. We then have

) by Proposition 8.3.8 and Theorem 7.3.6.

A second consequence of the description of the quotient of P FI d n by the subfunctor H n from Proposition 8.3.5 is that we can compute explicitly the functor δ c 1 ( P FI d n / H n ). In particular, we describe it with a short exact sequence in Lemma 8.3.12 and we give a description of its image in the quotient category St(FI d , R-Mod) in Proposition 8.3.13. The following proposition is very similar to the calculation of δ c 1 (P FI d n ) in Proposition 5.2.1. However, the second component of the direct sum in Proposition 5.2.1, which prevents P FI d n from being polynomial, vanishes here since we take the quotient by the action of the symmetric groups on the colours. Lemma 8.3.12. For c ∈ C, the submodules

n / H n ), which ts into the following short exact sequence whose last term is in SN c (FI d , R-Mod):

Proof. We write the proof for c = c 1 , the other cases are obtained by symmetry. By Proposition 8.3.5, the module 

by Proposition 8.3.5. This implies that its cokernel is generated by the elements

or that c 1 does not appear, which gives the isomorphism of R-modules

For ( f , g) ∈ FI d (m, l), by Proposition 8.3.5 the application τ 1 (

) is induced by this application passing to the quotient, which 136 Chapter 8. Weak polynomial quotients of the projective standard functors

) become zero when passed to the quotient by I since it sends such elements to

We can now use this short exact sequence to give a formula for

Proposition 8.3.13. For all colour c ∈ C, there is a natural isomorphism

Proof. Applying the exact functor π d to the short exact sequence of Lemma 8.3.12, by Proposition 7.1.6 we get the natural isomorphisms

since the last term of the short exact sequence is in SN (FI d , R-Mod). We conclude by showing that there is a natural isomorphism I ≅ ( P FI d n-1 / H n-1 ) ⊕n

. Indeed, we have the following isomorphisms

where the rst is obtained by removing the injection of i ∶= (f ′ ) -1 (m + 1) ∈ n = {1, . . . , n} in m + 1 and where the direct sum on n comes from the choice of i in n. This isomorphism is natural since we showed in Lemma 8.3.12 that

). This description also works for the image I ( f , g) since I is a subfunctor of δ c 1 ( P FI d n / H n ). Finally, since the pre-image of m + 1 by f ′ is the same as the pre-image of l + 1 by ( f + Id 1 ) ○ f ′ , this gives the naturality of the decomposition into the direct sum.

We then use the computation from Proposition 8.3.13 to prove that the quotient of P FI d n by the subfunctor H n is weak polynomial of degree n for any ring R, generalizing Theorem 8.3.11. Theorem 8.3.14. For all n ∈ N, the quotient We explained in Remark 5.2.3 that the functor P FI n is strong polynomial of degree n over FI. In this section we present a quotient of P FI n that is weak polynomial of degree i for each i ∈ N, and we explain why this quotient is not strong polynomial of degree less than n. We then use it and the formula from Proposition 8.3.8 to describe a corresponding quotient of P FI d n that is weak polynomial of degree i for each i ∈ N.

Denition 8.4.1. For n, i ∈ N, the functor Q i n ∶ FI → R-Mod is given by

, where j * k is the precomposition by the injection j k ∈ FI(k, n).

We explain in the following that Q i n is a weak polynomial quotient of P FI n of degree i and that it is not strong polynomial of degree less than n.

Proposition 8.4.2. For n, i ∈ N, the quotient Q i n of P FI n is strong polynomial of degree n, but not n -1. Proof. The functor Q i n is a quotient of P FI n since it is the image of a natural transformation starting from P FI n and the FI-module P FI n is strong polynomial of degree n by Proposition 5.2.1 for d = 1. Since the strong polynomial functors are stable by quotient by Proposition 5.1.3 we conclude that Q i n is strong polynomial of degree less than or equal to n. However, for m < n we have P FI n (m) = 0, and so

is the image of the morphism P FI n (m) → ⊕ P FI k (m). Then Q i n (m) = 0 for m < n and, using Lemma 5.1.6, we conclude that Q i n is not strong polynomial of degree n -1.

Proposition 8.4.3. For n, i ∈ N, the quotient Q i n of P FI n is weak polynomial of degree less than or equal to i. Proof. The Proposition 5.2.1 implies, for d = 1, that the FI-module P FI k is weak polynomial of degree k. Then the sum ⊕ k≤i ( P FI k ) ⊕ FI(k,n) is weak polynomial of degree i and Q i n is by denition a subfunctor of this sum. We conclude using the fact that the weak polynomial functors are stable by subobjects by Proposition 7.2.5. 0 ( (-)-n ) ○Ω is also weak polynomial of degree 0 since it is the same functor but shifted by n and the weak polynomiality concerns the stable behavior. However, in Proposition 8.4.3 we showed that Q i n is a quotient of P FI n which is weak polynomial of degree less than or equal to i. Since the functor O * is exact and preserves the polynomiality by Proposition 7.2.9, we get that O * Q i n is a quotient of O * P FI n in Pol i (FI, R-Mod). As the pointwise tensor product respects epimorphisms, we get that

n / H n , so a quotient of P FI d n . Finally, by Proposition 7.3.6, the pointwise tensor product preserves the polynomiality so we conclude that this quotient of

Chapter 9

Functors on the categories Cospan(FI d )

In order to study the polynomial functors over a symmetric monoidal category whose unit is an initial object like FI, Djament and Vespa introduce in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF][START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] the construction M → M which turns the category M whose unit is an initial object into the category M whose unit is a null object. This construction is a variation of a construction of Quillen in K-theory, and it morally adds morphisms from the objects of the category to the unit, while preserving the morphisms from the unit to the objects. Since this construction preserves the polynomial properties, it allows us to turn the study of polynomial functors over a category whose unit is an initial object into the study of polynomial functors over a category whose unit is a null object, as shown in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]Theorem 4.8]. The advantage is that the functors on those categories with a null object are better known. In particular, for FI-modules, where Σ n is the category associated with the symmetric group and Cospan(FI) is equivalent to FI. This result combines two equivalences of categories: the rst describes the quotient of polynomial functors over FI as the same quotient of polynomial functors over the intermediate category Cospan(FI). The second equivalence describes the quotient of polynomial functors over Cospan(FI) using a variation of a Dold-Kan type theorem of Pirashvili from [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] which gives an equivalence of categories between the functors over the category FI # of nite sets and partial injections, and the functors over Σ the category of nite sets and bijections.

In this chapter we show that this approach can not be directly generalized to describe the polynomial functors over FI d . Indeed, after introducing a generalization of the construction Cospan for FI d and after dening polynomial Cospan(FI d )-modules, we show that the polynomial functors of degree 0 over Cospan(FI d ) are the constant functors. Together with Theorem 7.4.12, this shows that the rst equivalence in (9.1) already fails for n = 0. More precisely, in Section 9.1 we introduce the category Cospan(FI d ) and we study its properties. In particular, the morphisms in Cospan(FI d ) are given by some equivalence classes of diagrams and we show that each class admits a minimal representative. This implies that the morphisms in Cospan(FI d ) from 0 to 1 and from 1 to 0 are isomorphic to FI d (0, 1). In Section 9.2 we introduce a combinatorial category FI d # that is equivalent to Cospan(FI d ): it is the category of nite sets and of partial injections coupled with a choice of colours on the complement at the source and the target. Finally, in the following sections we dene the polynomial functors over Cospan(FI d ), we give their basic properties and we describe the ones of degree 0.

where the last equality is obtained by checking that two diagrams associated with dierent x ∈ FI d (0, n) are not related. Finally, for n ∈ N and x ∈ FI d (0, n), the composition x ○ x is a morphism from 0 to 0 and therefore the identity.

The Proposition 9.1.8 implies that both Cospan(FI d ) (0, n) and Cospan(FI d ) (n, 0) are in bijection with FI d (0, n). This emphasizes that the category Cospan(FI d ) is essentially obtained by keeping the morphisms from 0 to n of FI d and adding new morphisms from n to 0 corresponding to them. This remark also shows that 0 is a null object in Cospan(FI d ) for d = 1, as explained in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], but this is not true for d > 1.

Remark 9.1.9. As a special case of Proposition 9.1.8, using the notations of Denition We describe the adjoint of this functor using the theory of Kan extensions, but rst we introduce the slice category (η ↓ n): Denition 9.1.11. For n in Cospan(FI d ), the slice category (η ↓ n) has for objects the pairs (t, φ), where t ∈ Cospan(FI d ) and ϕ ∈ Cospan(FI d ) ( t , n), and for morphisms from (t, ϕ) to (t ′ , ϕ ′ ) the maps f ∶ t → t ′ in Cospan(FI d ) such that ϕ ′ ○ f = ϕ. The forgetful functor from (η ↓ n) to FI d is denoted by ι n . Proposition 9.1.12. The precomposition functor

has a left adjoint α which is given on the objects by α(F

Proof. Since R-Mod is cocomplete, the general theory of Kan extensions (see [ML98, P.236])

gives the existence of a left adjoint to the precomposition functor η * . It is the functor α = Lan η (-), given on a functor F ∶ FI d → R-Mod by the functor α(F ) = Lan η (F ) ∶ Cospan(FI d ) → R-Mod, described on objects by the formula of the statement, and its image on morphisms is obtained by the universal properties of colimits.

Equivalence between Cospan(FI d ) and FI d #

In this section we introduce the combinatorial category FI d # and we prove that it is isomorphic to Cospan(FI d ). For example, when d = 1 we recover the isomorphism FI ≅ FI # of [DV19, Example 4.2] or [START_REF] Jennifer | MSRI graduate summer school on representation stability: Representation stability for conguration spaces of open manifolds[END_REF], where FI # is the category of partial injections of nite sets from [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] and [START_REF] Jennifer | Michigan representation stability week 2018: An introduction to FImodules and their generalizations[END_REF].

Remark 9.3.7. Since all the endofunctors κ x k of Fct( Cospan(FI d ) , R-Mod ) are zero by Proposition 9.3.4, the analogues for Cospan(FI d ) of the categories SN (FI d , R-Mod) and SN c i 1 ,...,c im (FI d , R-Mod) of Denitions 6.1.1 and 6.2.1 are reduced to zero. Then any corresponding quotient category by one of these subcategories is isomorphic to Fct(Cospan(FI d ), R-Mod) and thus the dierent notions of weak and strong polynomial functors that we could dene for Cospan(FI d )-modules coincide. Therefore, in the following section we present only one notion of polynomial functors over Cospan(FI d ).

Finally, we dene the polynomial functors on Cospan(FI d ), as we did for functors on FI d in Section 5.1, using the endofunctors δ c 1 for c ∈ C. Remark 9.3.9. For d = 1, since C = {c} we recover the denition of polynomial functors over the symmetric monoidal category Cospan(FI) with a null object of [DV19] using only one endofunctor δ 1 = δ c 1 . We end this section with the rst properties of the polynomial functor over Cospan(FI d ).

In particular, we show that this denition using only the endofunctors δ c 1 for c ∈ C a colour is equivalent to the similar denition using all endofunctors δ x k for k ∈ Cospan(FI d ) and x ∈ Cospan(FI d (0, k)). Lemma 9.4.2. A functor

and, for u ∈ Cospan(FI d )(n, m), the morphism F (u) is obtained from F by the formula:

Proof. For x ∈ Cospan(FI d )(0, k), let x be the morphism in Cospan(FI d )(k, 0) corresponding to

x by Proposition 9.1.8, then we have x ○ x = Id 0 . Since x ○ c k 1 is in Cospan(FI d )(0, 0) we also get by denition x ○ c k 1 = Id 0 . Applying F to these relations, since F (c k 1 ) is an isomorphism, we get F (x)○F (c k 1 ) = F (x○c k 1 ) = F (Id 0 ). This gives F (x) = (F (c k 1 ) ) -1 . We then get (F (c k 1 ) ) -1 ○F (x) = F (x ○ x) = Id F (0) and so F (x) = F (c k 1 ). The rest of the proof is similar to the proof of Lemma 2.5.3 using that u ○ c n 1 is in Cospan(FI d )(0, m) and that F (u ○ c n 1 ) = F (c m 1 ) = F (c m 1 ) because of the relation F (x) = F (c n 1 ).

Corollary 9.4.3. For F ∶ Cospan(FI d ) → R-Mod, if the image of all morphisms in Cospan(FI d ) by F is an isomorphism, then this functor can be extended to a unique functor F from Cospan(FI d ) to R-Mod. Proof. By hypothesis, F (c k 1 ) is an isomorphism for all k ∈ Cospan(FI d ), so we can dene a functor F ∶ Cospan(FI d ) → R-Mod by the formula of Lemma 9.4.2. This lemma also proves that F is the unique extension of F .

Under the hypothesis that a Cospan(FI d )-module sends a morphism c k to an isomorphism, we show that the actions of the symmetric groups on this functor are trivial. Proposition 9.4.4. For F ∶ Cospan(FI d ) → R-Mod, if there exist k ∈ Cospan(FI d ) and c ∈ C such that F (c k ) is an isomorphism, then for all permutations σ ∈ S k = Cospan(FI d )(k, k), the morphism F (σ) is the identity. Proof. It is similar to the proof of Proposition 2.5.1 using the Lemma 9.4.2.

We nally prove that the polynomial functors of degree 0 over Cospan(FI d ) are the constant functors using the category Cospan(FI d ). We start by giving a concrete condition for functors over Cospan(FI d ) to be polynomial of degree 0. Appendix A: The pointwise tensor product on Mon ini This appendix is a complement of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. In this context M denotes a small symmetric monoidal category whose unit is an initial object and Mon ini denotes the category of these small categories.

We prove that the pointwise tensor product of two strong polynomial functors over M is strong polynomial. Djament and Vespa dened a notion of strong polynomial functors over these categories which is similar to the denition over FI d . We then use the Proposition 3.12 from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], which corresponds to Proposition 5.4.18 but for M ∈ Mon ini , to prove the following result analogous to Theorem 5.5.4: Proof. We consider the functor (F, G) in Fct(M, R-Mod × R-Mod). We start by proving by induction on k ∈ N that δ ○k 1 (F, G) = ( δ ○k 1 (F ), δ ○k 1 (G) ), where δ ○k 1 is the composition of δ 1 by itself k times. For k = 0 it is by denition, and by induction we have δ ○k+1 1 (F, G) = δ 1 ( δ ○k 1 (F, G) ) = δ 1 ( δ ○k 1 (F ), δ ○k 1 (G) ) ). Then, for a ∈ M, δ 1 ( δ ○k 1 (F ), δ ○k 1 (G) )(a) is the cokernel of the map showing that (F, G) is polynomial of degree less than or equal to max(n, m). We conclude by applying the Proposition 3.12 from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] to the composition

.

Indeed, we showed in Lemma 5.5.3 that -⊗ -is polynomial of degree 2, and we proved that (F, G) is polynomial of degree less than or equal to max(n, m). The functor -⊗ -preserves epimorphisms since an epimorphism in R-Mod × R-Mod is a couple (f, g) of epimorphism in R-Mod and then f ⊗ g is also an epimorphism.

Remark 9.4.10. In this theorem the bound may not be the best possible. Indeed, we could expect for F ⊗ G ∶ M → R-Mod to be strong polynomial of degree less than or equal to n + m.

Chapter 9. Appendix A: The pointwise tensor product on Mon ini 153 For example, for M = FI, the Proposition 4.1 from [START_REF] Djament | Des propriétés de nitude des foncteurs polynomiaux[END_REF] shows that a FI-module is strong polynomial of degree less than or equal to n if and only if it is a quotient of a sum of the standard projective functors P FI i for i ≤ n. This allows us to prove that, over FI the tensor product F ⊗ G is polynomial of degree n + m if F has degree n and G has degree m. Similarly, for functors over a symmetric monoidal category where the unit is a null object, this theorem is true with the optimal bound since we have deg(F ⊗ G) ≤ deg(F ) + deg(G). The proof of this result is given in [Ves19, Proposition 2.9] with a direct use of the cross eects. One could try to prove a more rened version of the proposition 3.12 from [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] and use this renement in the proof to get a better bound.