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1

Introduction

1.1 | Context

We are mainly interested in this thesis by the analysis of scattering and inverse scattering

problems for the time harmonic magnetic Schrödinger operator. Before addressing our inverse

problem, we would like to first discuss this question:

What is an inverse problem?

The problem that may be regarded as one of the earliest inverse problems pertains to the

computation of the earth’s diameter by Eratosthenes in 200 B.C. For centuries, individuals

have sought refuge by tapping the walls and analyzing echo, this is a distinct instance of an

inverse problem. Heisenberg proposed that quantum interactions were completely character-

ized by their scattering matrix, which collects information about the interaction at infinity.

The discovery of neutrinos by measuring the consequences of their existence is also in line

with inverse problems.

Inverse problem publications have seen a sharp increase in recent years. A good example

of the broad range of applications is provided by the list of inverse problems below:

■ Acoustic scattering, scattering in quantum mechanics [24, 93].

1



Chapter 1. Introduction

■ The inverse problem of geomagnetic induction [91].

■ Laser tomography, ultrasound tomography, X-ray tomography [3].

■ Locating cracks or mines by electrical prospecting [81].

■ Radio-astronomical imaging, image analysis [76].

■ The use of electrocardiography and magneto-cardiography [34].

■ Determining the volatility in models for financial markets [12].

Let’s assume we have a mathematical model for a physical process. This model is assumed

to provide a description of the system underlying the process and its operating conditions and

to explain the main quantities of the model: input, system parameters, output.

Figure 1.1: The process [7]

The description of the system is typically provided in terms of a set of equations (ordinary

and/or partial differential equations, integral equations, etc.) with specific parameters. Three

different sorts of problems can be distinguished in the examination of the provided physical

process via the mathematical model (see Fig. 1.1).

(I) The direct problem: Given the input and the system parameter, the goal is to find out

the output of the model.

(II) The reconstruction problem: Given the system parameters and the output, the goal is

to find out which input has led to this output.

2



Chapter 1. Introduction

(III) The identification problem: Given the input and the output, the goal is to determine the

system parameters which are in agreement with the relation between input and output.

A type (I) problem is referred to as a direct (or forward) problem because it is focused

on a cause-and-effect sequence. In this sense, type problems (II) and (III) are referred to

as "inverse problems" because they are problems of finding out unknown causes of known

consequences. It is immediately obvious that treating one of the aforementioned problems

necessitates dealing with the others as well. the main objective of inverse modeling is to solve

inverse problems in order to have a comprehensive discussion of the model (see [7]).

A well-posed mathematical model for a physical problem must have three properties:

uniqueness, existence, and stability. Accordingly, the identification of the direct and inverse

problem is based on Hadamard’s concept of the ill-posed problem [38]. The well-posed of

the two problems is known as the direct problem, and the ill-posed is known as the inverse

problem.

More precisely, we are interested in the scattering phenomena which represents the most

widely used mathematical model to recover unknown physical, geophysical, or medical ob-

jects from exterior observations [49, 45]. The direct scattering problem involves determining

the scattered field from the incident field and the differential equations governing the wave

motion; the inverse scattering problem involves determining the nature of the scatterer, such

as location, geometry, or material properties, from knowledge of the scattered field [24, 2, 41].

If the total field is viewed as the sum of an incident field and a scattered field, the scattered

field can be determined from the incident field and the differential equations governing the

wave motion.

Our interest is in the analysis of the inverse scattering problem for time-harmonic magnetic

Schrödinger operator HA,q where is given by

HA,q := −(∇+ iA)2 + q (1.1)

where A represents the magnetic potential and q represents the electric potential. Due to

the Gauge invariance [46], the magnetic potential A cannot be uniquely determined from far

3



Chapter 1. Introduction

field or near field measurements outside the scatterer. So, the best one could recover is the

magnetic field curlA. Let us mention that the first who studied this type of problem in the

mathematical community is Sun in his paper [85]. His result was improved by other authors

[11, 90, 79].

Our research focuses specifically on the stability of reconstructing the magnetic field and

electric potential using measurements of the far field and near field maps. We derive loga-

rithmic stability estimates with explicit exponents, taking into account regularity assumptions

on the parameters. Prior to this analysis, we establish at first the well-posedness of the direct

problem using the Lippmann-Schwinger equation and a variational approach. Additionally,

we investigate sampling methods for reconstructing the geometric support of the magnetic po-

tential. Our work concludes with a study of the interior transmission problem for the magnetic

Schrödinger operator.

In the field of inverse problems, the stability estimate provides a measure of how small

changes or errors in the input data affect the errors in the solution. It quantifies the relationship

between the data perturbations and the resulting deviations in the solution, enabling us to

assess the robustness of the inverse problem solution.

In the absence of magnetic potential, a significant number of researchers addressed the

stability question, such as Hähner and Hohage in [40], who established logarithmic stabil-

ity estimates based on complete aperture measurements. Stefanov, in [84], gave an explicit

exponent in the logarithmic estimate and used the L2-weighted norm for far field patterns.

In [43], Isaev and Novikov demonstrated stability estimates with explicit dependence on the

wave number, and we refer to [68, 70, 71, 87] for pioneering uniqueness results under various

regularity assumptions. Lipschitz stability results were obtained for the time-domain acoustic

wave equation in [90, 19, 73, 31, 11], which is "equivalent" to data available of all frequencies.

We are specifically interested in studying stability in the presence of a magnetic potential

A. Several works in the literature addressed this question for both full and partial measure-

ment settings. For full measurements, which corresponds with measuring the global Dirichlet

to Neumann map for bounded domains, we refer to [90, 79]. While in the context of partial

4



Chapter 1. Introduction

measurements, we refer to [8, 9, 11, 79, 85, 90]. Recently, several studies were concerned with

stability estimates for the inverse scattering problems considering both far and near fields, see

[22, 40, 84, 48, 80].

To study the situation where one would like to simultaneously recover the magnetic field

and the electric potential from full aperture measurements, we shall make use of geometrical

optics solutions developed by Calderon, Sylvester, and Uhlmann in [11, 79, 85, 90] for various

context in relation to inverse problems. We adopt a similar methodology as in [40, 84]. Tzou

demonstrated in [90] a log-type stability estimate for the H−1norms of the coefficients using

DtN data and assuming that the magnetic potentials are in W2,∞ and the electric potentials are

in L∞. Here, we focus on stability with respect to the L∞ norm and make a clear connection

between the additional regularity that the coefficients must have and the logarithm exponent.

To achieve these results, we improved technical results concerning geometric optical type

solutions [87] and Helmholtz decompositions, which played an important role in obtaining

the results in [10].

In complement to these theoretical results we addressed the challenging task of recovering

the shape of a perturbation based on the measurements of scattered waves at a fixed frequency.

We extended the Linear Sampling Method (LSM) and the Factorization Method (FM) to the

case of magnetic Schrödinger operator.

These methods belong to the class of qualitative methods that aim to provide a rough esti-

mate of the scatterer’s geometry without precise quantitative information and without using a

forward solver, we refer to [21, 51, 29, 37, 42, 64, 75]. These techniques were first introduced

in 1996 [21]. One of these methods’ primary benefits is that they don’t depend on a forward

problem solver. They are fast at computation because of this. Moreover, certain among them

provide a proof of uniqueness for reconstructing the geometry with minimal assumptions on

the material properties. However, these methods also depend on what are referred to as mul-

tistatic data, which involve a substantial number of sources and receivers. These methods

exclusively furnish geometrical information about the target.

The principle of the sampling method consists in constructing an indicator function from a

5



Chapter 1. Introduction

measurement operator and a well-chosen test function that reveals whether a point lies inside

the desired geometry. The difference between the sampling methods actually lies in the way

this indicator function is constructed. We will mainly consider the cases of linear sampling

method (LSM) [21, 27, 18, 14] and factorization method (FM) [53, 57, 58, 59, 60]. These

approaches are interrelated and each has its advantages and disadvantages.

The linear sampling method (LSM), proposed by Kirsh and Colton [21] has probably

the simplest formulation and wider range of applications (different wave models and more

flexible configuration of sources and receivers). The LSM indicator function also has a direct

interpretation with the so-called interior transmission problem, which plays an important role

in the analysis of the method. However, the mathematical justification does not provide a full

justification of the method as it does not explicitly indicate how the approximate solution can

be constructed.

The factorization method (FM) was originally proposed by Kirsh in 1998 [51], and more

robust from a mathematical background because the geometry is precisely characterized by

a constructed indicator function. However, the analysis of the factorization method relies

on a special factorization of the measurement operator, which usually corresponds to a full-

aperture measurement. Using the factorization approach, one loses however the connection

with the interior transmission problem.

In addition to the theoretical study of these methods in the context of magnetic Schrödinger

operator, we present several validating results in 2D for simple configurations. The theoreti-

cal part required the study of the interior transmission problem with contrast produced by the

refractive index and the magnetic potential. This is the objective of the last part of our work.

We prove the well-posedness of the Interior Transmission Problem (ITP) and the discreteness

of the set of transmission eigenvalues through the application of Fredholm theory and the up-

per triangular Fredholm theory. The interior transmission problem was first posed by Kirsch

in [55]. A few years later, Colton and Monk in [25] used the interior transmission problem

to solve the inverse scattering problem for acoustic waves in an inhomogeneous medium.

Since that time, the ITP has gained a large attention in inverse scattering community (see, for

6



Chapter 1. Introduction

example, [13, 24, 14]).

1.2 | Overview and organization

The dissertation is structured as follows: After a general introduction, the manuscript is split

into four chapters as follows:

Chapter 2: This chapter is dedicated to establishing the well-posedness of the direct prob-

lem for the magnetic Schrödinger operator. The analysis is done using first the Lippmann-

Schwinger equation and then using a variational approach. We conclude the chapter with

numerical examples illustrating the scattering problem solutions, using the finite element li-

brary FreeFem++.

Chapter 3: The purpose of this Chapter is to provide stability estimates for inverse scat-

tering problems related to the time harmonic magnetic Schrödinger equation. Due to gauge

invariance, the magnetic potential A cannot be uniquely determined from far field or near

field measurements outside the scatterer. We prove logarithmic type estimates for retrieving

the magnetic fields curl(A) and electric potentials from near field or far field maps. Our ap-

proach combines techniques from similar results obtained in the literature for inhomogeneous

inverse scattering problems based on the use of geometrical optics solutions.

Chapter 4: In this chapter, we first focus on the use of sampling methods: Linear Sam-

pling Method (LSM) and Factorization Method (FM) to solve the inverse shape problem. We

provide theoretical justification of these two methods along with some numerical validating

examples. We present second a comprehensive analysis of the uniqueness of the reconstruc-

tion of the shape of the domain from far field pattern.

Chapter 5: This chapter presents a study of the interior transmission problem (ITP) fo-
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cusing on establishing the well-posedness of the (ITP), and the discreteness of the set of

transmission eigenvalues through the application of Fredholm theory and the upper triangular

Fredholm theory.

8



2

Scattering problem for the magnetic
Schrödinger operator

. Abstract:

This chapter is dedicated to establishing the well-posedness of the direct problem for the

magnetic Schrödinger operator. The analysis is done using first the Lippmann-Schwinger

equation and then using a variational approach but we present first the magnetic Schrödinger

model and the acoustic model. We conclude the chapter with numerical examples illustrating

the scattering problem solutions, using the finite element library FreeFem++.
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2.1 | Introduction

This chapter is organized as follows. In Section 2.2, we present the physical and mathematical

models of the scattering problem for the magnetic Schrödinger operator. We discuss, in Sec-

tions 2.3 and 2.4, the existence and uniqueness of solution for the direct problem using both

the variational approach and the Lippmann-Schwinger equation. In the last Section 2.5, we

end this chapter by giving numerical examples using the finite element program FreeFem++.

This study will be useful for the other chapters.

2.2 | Physical and mathematical model

2.2.1 | Physical model

2.2.1.1 | The magnetic schrödinger model

The Schrödinger equation stands as one of the fundamental equations that govern the behav-

ior of the nanoscopic world. It represents a key milestone in the development of quantum

mechanics.

The time-dependent Schrödinger equation describing the dynamics of a quantum particle,

such as an electron, of mass m moving under the influence of a three-dimensional potential in

position x⃗ = (x, y, z) at time t, can be written as:

− h̄2

2m
∆Ψ(x⃗, t) + VΨ(x⃗, t) = ih̄

∂Ψ
∂t

(x⃗, t), (2.1)

where

■ Ψ(x⃗, t) is the wave function,

10



Chapter 2. Scattering problem for the magnetic Schrödinger operator

■ H = − h̄2

2m ∆ + V is the Hamiltonian operator,

■ h̄ is the reduced Planck constant,

■ ∆ is the Laplacian operator,

■ V = qV is the potential energy function,

■ q is the charge of particle,

■ V is the electric potential.

Let’s now take a closer look at the specific instance of time-independent potentials V(x⃗, t) =

V(x⃗). The wave function can be expressed as the product of spatial and temporal components

in this case, since the Hamiltonian operator is also time-independent,

Ψ(x⃗, t) = ψ(x⃗)e−iEt/h̄, (2.2)

where ψ(x⃗) is the solution of time-independent Schrödinger equation

− h̄2

2m
∆ψ(x⃗) + Vψ(x⃗) = Eψ(x⃗), (2.3)

which is of the form Hψ = Eψ with E is the total energy of the particle. This particular

solution of the Schrödinger equation is called stationary state because the probability density

is stationary i.e., it does not depend on time

|Ψ(x⃗, t)|2 = |ψ(t)e−iEt/h̄|2 = |ψ(x⃗)|2.

In the initial half of 1926, Erwin Schrödinger (1887–1961) presented the time-independent

wave equation (2.3), which was a pivotal contribution and established the groundwork for

wave mechanics. This significant discovery was made known in the first of his four monu-

mental papers. Moreover, in that first paper, Schrödinger promptly utilized the equation to

deduce the energy spectrum of the hydrogen atom.

11
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Now, with the presence of the magnetic potential A, the magnetic Schrödinger equation

has the following form

1
2m

(−ih̄∇− qA)2Ψ(x⃗, t) + VΨ(x⃗, t) = ih̄
∂Ψ
∂t

(x⃗, t). (2.4)

The magnetic vector potential A and electric potential V = 1
qV mentioned in the equation

are integral components of the electromagnetic field. They are responsible for generating

the electromagnetic forces that affect the behavior of particles at the quantum level. The

electromagnetic field, described by the electric field ∇V and magnetic field ∇×A.

In the case of time-independent potentials, the wave function Ψ(x⃗, t) can be written as

(2.2) where ψ(x⃗) is the solution of time-independent magnetic Schrödinger equation

1
2m

(−ih̄∇− qA)2ψ(x⃗) + qVψ(x⃗) = Eψ(x⃗). (2.5)

For further readings about the Schrödinger model, we refer to [35, 78, 93].

2.2.1.2 | The acoustic model

In this subsection, we provide a quick presentation of the acoustic model. Let us consider

the propagation of a small amplitude acoustic wave produced by a small perturbation in a

homogeneous and isotropic fluid in R3. The wave equation is then given by:

∂2
t p(t, x)− c2∆p(t, x) = 0, (2.6)

where

■ c is the speed of sound in the medium,

■ p represents the pressure field, where the velocity potential (according to the studied

model) is derived by linearizing the fluid motion equations (Euler equation, continuity

equation, and adiabatic hypothesis) [24].

12
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When trying to solve this equation in the spectral domain, one considers harmonic waves of

the form

p(t, x) = ℜe(eitωu(x)),

where

■ ω > 0 represents the frequency of the time variation,

■ u represents the pressure field amplitude.

We then obtain that u, which takes complex values, satisfies the Helmholtz equation:

(∆ + k2n)u = 0, (2.7)

where

■ k = ω
c0
> 0 is the wave number,

■ c0 is the wave speed in the vacuum,

■ n = c0
c is the medium refractive index.

This equation bears the name of the physicist Hermann Ludwig Ferdinand von Helmholtz

(1821–1894) for his significant contributions to mathematical acoustics and electromagnetics.

For more detailed information on the derivation of the model, we refer to Chapter 2 of

[24].

2.2.1.3 | Analogy between the Schrödinger model and acoustic model

The Schrödinger model or the acoustic model can be written in the following form:

−(∇+ iA)2u + qu = k2u. (2.8)

This corresponds to the Schrödinger model by taking:

■ A = −q
h̄A.

13
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■ q = 2m
h̄2 qV .

■ k =
√

2mE
h̄ .

It represents also the acoustic model by taking :

■ A = 0.

■ k = ω
c0

.

■ q = k2(1 − n).

2.2.2 | Mathematical model

Let D ⊂ R3 be a bounded open set with smooth boundary such that R3 \ D is connected

and B be a smooth bounded a simply connected domain (typically a ball) containing D with

outward normal denoted by ν. Let A = (a1, a2, a3) ∈ W1,∞(R3)3 be a real valued vector

modeling the magnetic potential, the refractive index n ∈ L∞(R3, C) with non negative

imaginary, positive real and n = 1 outside the support D and q ∈ L∞(R3) be a complex

valued function with non negative imaginary part modeling the electric potential such that

Supp(A) ⊂ D and Supp(q) ⊂ D.

Figure 2.1: The inhomogeneous direct scattering problem
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We consider the magnetic Schrödinger operator given by

HA,q := −(∇+ iA)2 + q = −∆ − QA,q, (2.9)

where QA,q is the first order operator given by

QA,qv := i div(Av) + iA · ∇v − (|A|2 + q)v, v ∈ H1
loc(R

3). (2.10)

The direct scattering problem is to determine the total field u knowing the incident wave ui

that satisfies the Helmholtz equation in R3 which describes how waves propagate through

space, and knowing that the total field satisfies with the presence of the electric potential q

and magnetic potential A

HA,quA,q − k2uA,q = 0 in R3, (2.11)

with k > 0 is the wave number. The total field is decomposed into

uA,q = ui + us
A,q in R3, (2.12)

where the scattered field us
A,q ∈ H2

loc(R
3) and satisfies the Sommerfeld radiation condition

at infinity

lim
r→∞

r
(

∂rus − ikus
)
= 0, r = |x| (2.13)

uniformly with respect to x̂ = x
|x| . This condition was introduced by Sommerfeld in 1912 to

ensure uniqueness for the solutions to the scattering problems (see [83]).

Two important families of incident fields are given by

■ Plane waves: ui(x) = ui(x, d) = eikx·d, where d ∈ S2, called plane wave because

ei(kx·d−ωt) is constant on the planes kx · d−ωt = cte where ω is an angular frequency.

They propagate with the speed c = ω
k in the direction d ∈ S2.

■ Spherical waves coming from a point source outside D. More precisely, let Φ be the

Green function given by

Φ(x, y) :=
1

4π

eik|x−y|

|x − y| , x ̸= y (2.14)
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which is the fundamental solution of the Helmholtz equation, i.e. satisfying ∆Φ(·, y) +

k2Φ(·, y) = −δy together with the Sommerfeld radiation condition. The spherical

incident wave created by a point source at y is ui(x, y) = Φ(x, y).

In the next two section, we analyze the direct scattering problem using two distinct ap-

proaches: the Lippmann-Schwinger equation and the variational approach.

2.3 | Analysis of the direct problem using the

Lippmann-Schwinger equation

We here study the well-posedness of the direct scattering problem using the formulation of the

problem as a Lippmann-Schwinger equation (see, for instance, [82, 39]) and prove a uniform

bound with respect to the potentials.

Assumption 2.3.1. We assume that the magnetic potential A = (a1, a2, a3) ∈ W1,∞(R3, R3)

and the electric potential q ∈ L∞(R3, C) with non negative imaginary part such that Supp(A) ⊂
D and Supp(q) ⊂ D. Moreover, A and q satisfies ∥A∥W1,∞ ≤ M and ∥q∥L∞ ≤ M, respec-

tively, for some constant M > 0.

The function v will be referring in this section to the incident wave (i.e. Φ(·, y) or

ui(·, d)); the associated total field is denoted by u = uA,q and the scattered field us = us
A,q =

u− v ∈ H2
loc(R

3). Both scattering problems can then be stated as solving for us ∈ H2
loc(R

3)

satisfying

−∆us − k2us = QA,q(us + v) in R3, (2.15)

and the Sommerfeld radiation condition (2.13). For the study of this problem, we only require

that v ∈ H1(D). Convolution properties imply in particular that us can be represented as

us(x) =
∫

D
Φ(x, y)QA,qu(y) dy, x ∈ R3, with u = us + v in D. (2.16)
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Let us introduce the integral operator TA,q : H1(D) → H1(D) defined by

TA,qw(x) :=
∫

D
Φ(x, y)QA,qw(y)dy, x ∈ D. (2.17)

We remark that, since QA,q : H1(D) → L2(D) is continuous (by regularity assumptions on

A and q), and since the volume potential

w 7→
∫

D
Φ(·, y)w(y)dy,

continuously maps L2(D) into H2
loc(R

3) (see [24]), we deduce that TA,q is compact. Equation

(2.16) implies in particular that the total field u ∈ H1(D) and is a solution of the Lippmann-

Schwinger equation

u − TA,qu = v in H1(D). (2.18)

Conversely, if u ∈ H1(D) satisfies (2.18), then one easily verifies using the properties of

volume potentials [24] that us
A,q given by (2.16) is in H2

loc(R
3) and is a solution of the scat-

tering problem (2.15)-(2.13). The well-posedness of the latter is then a consequence of the

following proposition.

Proposition 2.3.2. The operator I − TA,q : H1(D) → H1(D) with I denoting the identity

operator on H1(D) is continuously invertible.

Proof. The operator I − TA,q is of Fredholm type with index 0. It is therefore sufficient to

prove the injectivity of this operator. If u − TA,qu = 0, then, from the above equivalence, us

given by (2.16) with v = 0 satisfies

−∆us − k2us = QA,qus in R3.

Multiplying by us and integrating over a ball B containing D imply after applying the Green’s

theorem in both sides∫
B
(|∇us|2 − k2|us|2)dx −

∫
∂B

∂rus usds(x)

=
∫

B

(
iA · (∇usus −∇usus)− (|A|2 + q)|us|2

)
dx.

17
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Taking the imaginary part of the previous equality implies that ℑ(
∫

∂B ∂rus usds(x)) ≥ 0

(since A is real valued and ℑ(q) ≥ 0). The Rellich lemma then implies that us = 0 in

R3 \ B. We now observe that

|∆us(x)| ≤ (k2 + ∥q∥∞ + ∥A∥2
∞ + ∥∇ · A∥∞)|us(x)|+ 2∥A∥∞|∇us(x)|,

for a.e. x ∈ R3.

The unique continuation theorem yields us = 0 in R3 and therefore u = 0 in D. This proves

the injectivity of I − TA,q and finishes the proof of the proposition.

It is also possible to prove the following uniform bound.

Proposition 2.3.3. The assumption 2.3.1 holds. Then there exists a constant C that only

depends on D, M and k such that ∥(I − TA,q)
−1∥ ≤ C. Here ∥ · ∥ denotes the norm in

L(H1(D)).

Proof. We prove the result using a contradiction argument. Let us assume that, for each

n ∈ N, there exists An ∈ W1,∞(R3)3 and qn ∈ L∞(R3) as in the proposition such that

∥(I − TAn,qn)
−1∥ ≥ n.

This implies in particular the existence of a non trivial function vn ∈ H1(D) such that the

function un ∈ H1(D) satisfying un − TAn,qn un = vn in H1(D) verifies

∥un∥H1(D) ≥ n∥vn∥H1(D).

This gives for the normalized sequence ũn = un
∥un∥H1(D)

ũn − TAn,qn ũn =
vn

∥un∥H1(D)
=: ṽn in H1(D), (2.19)

where ∥ṽn∥H1(D) ≤ 1
n . The associated scattered field ũs

n ∈ H2
loc(R

3) is defined by

ũs
n(x) =

∫
D

Φ(x, y)QAn,qn ũn(y) dy, x ∈ R3, with ũn = ũs
n + ṽn in D. (2.20)
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Since the sequence (ũn) is bounded in H1(D), the assumptions on An and qn imply that the

sequence (QAn,qn(ũn)) is also bounded in L2(D). It yields in particular, using (2.20), that the

sequence (ũs
n) is bounded in H2(D). Using the Rellich-Kondrachov compactness Theorem

(see [1]), we infer that an extracted subsequence that we keep denoting (ũs
n) is a Cauchy

sequence in H1(D). From ũn = ũs
n + ṽn we deduce that (ũn) is also a Cauchy sequence in

H1(D) and therefore converges to some u in H1(D). Given the boundedness of the sequences

(An) and (qn), by changing the original sequence and without corrupting the contradiction

argument (i.e., the H1 norm of ũn is equal to 1 and ∥ṽn∥H1(D) → 0 as n → +∞), one can

assume that (An) and (qn) weak-* converge to A and q, respectively, in W1,∞(R3)3 and

L∞(R3). One then easily verifies that QAn,qn(ũn) weakly converges in L2(D) to QA,q(u).

Consequently, from (2.17), we get that TAn,qn ũn strongly convergences to TA,qũ in H1(D).

Passing to the limit in (2.19) implies that u ∈ H1(D) verifies u − TA,qu = 0. The limits

A and q obviously verify the hypothesis of Proposition 2.3.2 and therefore u = 0. This

contradicts ∥u∥H1(D) = ∥ũn∥H1(D) = 1.

Let us observe for later use that, thanks to (2.16), the far field associated with the scattered

wave verifying (2.15) can be expressed as

u∞
A,q(x̂) :=

1
4π

∫
R3

e−ikx̂·yQA,qu(y)dy, x̂ ∈ S2, (2.21)

where u is the solution of (2.18).

As a straightforward corollary of Proposition 2.3.3, the continuity properties of volume

potentials and (2.21), we have the following uniform estimates for us solution of (2.15)-(2.13)

and associated far field.

Corollary 2.3.4. The assumption 2.3.1 holds. Then there exists a constant C that depends

only on M, D and k such that

∥us
A,q∥H2(D) ≤ C∥v∥H1(D) and ∥u∞

A,q∥L2(S2) ≤ C∥v∥H1(D)

for all v ∈ H1(D), where us
A,q ∈ H2

loc(R
3) and is a solution of the scattering problem

(2.15)-(2.13). Moreover, for any compact K there exists a constant C that depends only on
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M, D, K and k such that for all v ∈ H1(D)

∥us
A,q∥H2(K) ≤ C∥v∥H1(D).

Armed with with above, let us define for later use the linear and continuous solution

operator MA,q by

MA,q : H1(D) → H2
loc(R

3),

v 7→ MA,qv := us
A,q,

(2.22)

where us
A,q is the solution of (2.15)-(2.13).

We use this data to define the near field operator NA,q : L2(∂B) → L2(∂B), as

NA,qh(x) :=
∫

∂B
us

A,q(x, y)h(y)ds(y), x ∈ ∂B (2.23)

where us
A,q(·, y) := MA,qΦ(·, y), y ∈ ∂B. We first remark that

∥NA,q∥ ≤ ∥us
A,q∥L2(∂B×∂B),

and therefore it is sufficient to study the stability of NA,q 7→ (A, q) in order to infer stability

results in terms of near field measurements.

We second observe that, after introducing the single-layer operator S : L2(∂B) →
H1(D) defined by

Sh(x) :=
∫

∂B
Φ(x, y)h(y)ds(y), x ∈ D, (2.24)

one has by linearity and continuity properties of the mapping MA,q the following identity

NA,qh = (MA,qSh)|∂B. (2.25)

This equality states that NA,qh is nothing but the near field measurements on ∂B generated

by an incident field v := Sh.

From properties and jump relations for single-layer potential (see [24]) v = Sh with den-

sity h ∈ L2(∂B) is defined in R3 and satisfies the Helmholtz equation in R3 \ ∂B, the Som-

merfeld radiation condition (2.13), and the following continuity and jump properties across
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∂B:
v−(x) = v+(x) = v(x) on ∂B,

∂νv−(x)− ∂νv+(x) = h(x) on ∂B,
(2.26)

where v+ and v− respectively denote the restriction of v to R3 \ B and B. In order to exploit

the information encoded into the identity (2.25), one can easily check the following lemma

by using (2.26).

Lemma 2.3.5. Assume that Assumption 2.3.1 holds and h ∈ L2(∂B). Set v = Sh and

us = MA,qv. Then the total field u = v + us is solution to the transmission problem

HA,qu(x) = k2u(x) in R3\∂B,

u+(x) = u−(x) on ∂B,

∂νu−(x)− ∂νu+(x) = h(x), on ∂B

(2.27)

together with the Sommerfeld radiation condition (2.13).

We finally point out the following lemma that will be useful what follows.

Lemma 2.3.6. Assume that Assumption 2.3.1 holds. Then, we have∫
∂B

(
NA,q f

)
gds(x) =

∫
D
Sg QA,q(MA,qS f + S f )dx, (2.28)

for all f , g ∈ L2(∂B).

Proof. Using the definition of NA,q, we have∫
∂B
(NA,q f )gds(x) =

∫
∂B

∫
∂B

us
A,q(x, y) f (y)g(x)ds(x)ds(y),

where us
A,q(·, y) is the scattered field associated to Φ(·, y), y ∈ ∂B. Moreover, from (2.16),

we get∫
∂B
(NA,q f )gds(x) =

∫
∂B

∫
∂B

[∫
D

Φ(x, t)QA,qu(t, y) dt
]
(x, y) f (y)g(x) ds(x)ds(y).

According to Fubini’s Theorem, we find∫
∂B
(NA,q f )gds(x) =

∫
D

(∫
∂B

Φ(x, t)g(x)ds(x)
) ∫

∂B
QA,qu(t, y) f (y)ds(y).
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Using the fact that uA,q(·, y) = us
A,q(·, y) + Φ(·, y), y ∈ ∂B, we obtain∫

∂B
(NA,q f )gds(x) =

∫
D
Sg(t)QA,q

(∫
∂B

us(t, y) f (y)ds(y)

+
∫

∂B
Φ(t, y) f (y)ds(y)

)
(t) dt

=
∫

D
Sg(t)QA,q

(
MA,qS f + S f

)
(t) dt,

where the operators MA,q and S are given by (2.22) and (2.24) respectively.

The proof is completed.

We establish now the following result that proves that the transpose operator associated

with NA,q is equal to N−A,q. In order to ease the writing, we indicate two useful formulas

that we shall use a few times. The first one is a consequence of the Green’s theorem and states

that ∫
B

(
HA,qu1 u2 − u1H−A,qu2

)
dx =

∫
∂B

(u1∂ru2 − u2∂ru1)ds(x), (2.29)

for all u1, u2 ∈ H2(B). The second one is a classical consequence of the Green’s theorem

and the Rellich lemma and states that [24]∫
∂B

(u1∂ru2 − u2∂ru1)ds(x) = 0, (2.30)

for all u1, u2 ∈ H2
loc(R

3 \ B) satisfying the Helmholtz equation ∆u + k2u = 0 in R3 \ B

and the Sommerfeld radiation condition (2.13).

Lemma 2.3.7. Assume that Assumption 2.3.1 holds. Let y, z ∈ R3 \ D and set

us
A,q(·, y) := MA,qΦ(·, y), and us

−A,q(·, z) := M−A,qΦ(·, z).

Then we have the following reciprocity relation:

us
A,q(z, y) = us

−A,q(y, z).

This reciprocity implies in particular that (NA,q)
t = N−A,q, i.e.,∫

∂B
f
(
N−A,qg

)
ds(x) =

∫
∂B

(
NA,q f

)
g ds(x) for all f , g ∈ L2(∂B). (2.31)
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Proof. From (2.16)

us
A,q(z, y) =

∫
D

Φ(z, t)QA,q (us
A,q(t, y) + Φ(t, y))dt.

On the other hand, applying (2.29) and (2.30) to u1 = us
A,q(·, y) and u2 = us

−A,q(·, z) implies∫
B

(
HA,qus

A,q(t, y) us
−A,q(t, z)− us

A,q(t, y)H−A,qus
−A,q(t, z)

)
dt = 0.

Using (2.15) yields∫
D

(
QA,qΦ(t, y) us

−A,q(t, z)− us
A,q(t, y)Q−A,qΦ(t, z)

)
dt = 0.

Using the Green’s theorem we obtain (since y, z ∈ R3 \ D and A has compact support in D)∫
B

(
Φ(t, y) Q−A,qus

−A,q(t, z)− QA,qus
A,q(t, y)Φ(t, z)

)
dt = 0.

When then conclude, since Φ(z, t) = Φ(t, z),

us
A,q(z, y) =

∫
D

(
Φ(t, y) Q−A,qus

−A,q(t, z) + Φ(t, z)QA,qΦ(t, y)
)
dt.

Applying the Green’s theorem to the second term in the integral finally shows that

us
A,q(z, y) =

∫
D

Φ(t, y) Q−A,q
(
us
−A,q(t, z) + Φ(t, z)

)
dt = us

−A,q(y, z).

Identity (2.31) is a direct consequence of the reciprocity relation and the Fubini theorem.

2.4 | Analysis of the direct problem using the

variational approach

We now use a variational approach to prove the well-posedness of the direct scattering prob-

lem as in the previous section. The advantage of this approach is to weaken the needed

regularities for A and q.
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Assumption 2.4.1. Let A ∈ L∞(R3)3 be a real vector valued magnetic potential such that

div(A) ∈ L∞(R3, R) and Supp(A) ⊂ D and the refractive index n ∈ L∞(R3, C) with non

negative imaginary part and positive real part such that n = 1 outside D.

Let B be a sufficiently large ball with radius R containing D. We now introduce the

Dirichlet to Neumann map Λ.

Definition 2.4.2. [15] The Dirichlet-to-Neumann map Λ is defined by

Λ : H
1
2 (∂B) −→ H− 1

2 (∂B)

φ 7−→ ∂us

∂ν
|∂B, (2.32)

where us ∈ H1
loc(R

3 \ B) is a solution to the following system
∆us + k2us = 0 in R3 \ B,

us = φ on ∂B,

lim
r→∞

r
(

∂us

∂r − ikus
)
= 0,

(2.33)

and ν is the outward normal.

We recall that (see[15]), Λ is a continuous map from H
1
2 (∂B) to H− 1

2 (∂B) and verifies

the following properties

ℑ (⟨Λφ, φ⟩) > 0, ∀φ ∈ H
1
2 (∂B), φ ̸= 0, (2.34)

and

ℜ (⟨Λφ, φ⟩) ≤ 0, ∀φ ∈ H
1
2 (∂B), (2.35)

where ⟨·, ·⟩ denotes the duality product between H− 1
2 (∂B) and H

1
2 (∂B) that extends the

L2(∂B) scalar product for regular functions.

Problem (2.11)-(2.13) can be equivalently formulated as a variational problem for u ∈
H1(B) satisfying, for all v ∈ H1(B), the following equation∫

B
(∇+ iA)u · (∇− iA)v dx − k2

∫
B

nuv dx − ⟨Λu, v⟩ = −⟨Λ(ui)− ∂ui

∂ν
, v⟩. (2.36)

24



Chapter 2. Scattering problem for the magnetic Schrödinger operator

Let us introduce the sesquilinear form a(·, ·) : H1(B)× H1(B) −→ C defined by

a(u, v) =
∫

B
(∇+ iA)u · (∇− iA)v dx − k2

∫
B

nuv dx − ⟨Λu, v⟩, (2.37)

and the linear form ℓ(·) : H1(B) −→ C defined by

ℓ(v) = −⟨Λ(ui)− ∂ui

∂ν
, v⟩ = −⟨g, v⟩. (2.38)

Then, problem (2.36) can be rewritten in the following form

a(u, v) = ℓ(v) ∀v ∈ H1(B). (2.39)

We establish now the following result that prove the well-posedness of the direct problem.

Theorem 2.4.3. Assume that Assumption 2.4.1 holds. Then, there exists a unique solution

u ∈ H1(B) to (2.39). Moreover, there exists a constant C independent from g such that

∥u∥H1(B) ≤ C∥g∥
H− 1

2 (∂B)
. (2.40)

Proof. Obviously, ℓ is a bounded anti-linear functional on H1(B). Let ℓg ∈ H1(B) be such

that ℓ(v) = (ℓg, v)H1(B), for all v ∈ H1(B), which is uniquely provided by the Riesz repre-

sentation theorem and satisfies

∥ℓg∥H1(B) ≤ C∥g∥
H− 1

2 (∂B)
. (2.41)

Now, let us define the sequilinear form

a0(u, v) =
∫

B
∇u · ∇v dx +

∫
B

uv dx − ⟨Λu, v⟩, ∀w, v ∈ H1(B), (2.42)

and

b(u, v) = a(u, v)− a0(u, v)

=
∫

B
i (A · ∇vu − A · ∇uv) dx +

∫
B
(|A|2 − k2n − 1)uv dx, (2.43)
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Chapter 2. Scattering problem for the magnetic Schrödinger operator

for all w, v ∈ H1(B). Moreover, using the Riesz representation theorem, we can define the

operators A,B : H1(B) −→ H1(B) by

(Au, v)H1(B) = a0(u, v),

and

(Bu, v)H1(B) = b(u, v),

respectively. Then, problem (2.39) is equivalent to the following problem: Find u ∈ H1(B)

such that

(A+ B)u = ℓg. (2.44)

The invertability of the operator (A+ B) is necessary to establish the existence and unique-

ness of (2.44). We have

|a0(u, u)| ≥ |ℜ (Au, u)H1(B) |

≥ ∥u∥2
H1(B) −ℜ (⟨Λu, u⟩) .

Using (2.35), we obtain

|a0(u, u)| ≥ C∥u∥2
H1(B), ∀u ∈ H1(B),

which implies, using the Lax-Milgram theorem, that the operator A is an isomorphism.

Furthermore, to prove B is compact, let a sequence (uρ)ρ∈N ∈ H1(B) and assume that

there exist u ∈ H1(B) such that

uρ ⇀ u in H1(B).

Thanks to the compact embedding of H1(B) into L2(B), we obtain uρ converges strongly

to u in L2(B). Let us set eρ = uρ − u. We first observe that Beρ weakly converges to 0 in

H1(B) and eρ strongly converges to 0 in L2(D). Moreover, Beρ strongly converges to 0 in

L2(B). From the definition of B, we have

∥Beρ∥2
H1(B) =

∫
B

i
(

A · ∇Beρeρ − A · ∇eρBeρ

)
dx +

∫
B
(|A|2 − k2n − 1)eρBeρ dx.
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Chapter 2. Scattering problem for the magnetic Schrödinger operator

Since A ∈ L∞(B) then ABeρ and Aeρ strongly converge to 0 in L2(B). We then can take the

limit in the integrals as the product of weakly convergent sequences against strongly conver-

gent one and obtain

∥Beρ∥H1(B) −→
ρ→+∞

0,

which gives us the desired result. Thus, we conclude that the operator (A+ B) is Fredholm

of index zero.

Finally, to prove that the operator (A+B) is invertible, we need to show that (A+B) is

injective. We assume that we have

(A+ B)u = 0, u ∈ H1(B),

which implies

((A+ B)u, v)H1(B) = 0, ∀v ∈ H1(B).

Consequently, for v = u, we find∫
B
(∇+ iA)u(∇− iA)u dx − k2

∫
B

n|u|2 dx − ⟨Λu, u⟩ = 0, ∀u ∈ H1(B).

Thus, we obtain

ℑ
(∫

B
|(∇+ iA)u|2 dx − k2

∫
B

n|u|2 dx − ⟨Λu, u⟩
)
= 0.

This yields

k2
∫

B
ℑ(n)|u|2 dx +ℑ (⟨Λu, u⟩) = 0, ∀u ∈ H1(B).

We know that ℑ(n) ≥ 0. Therefore

ℑ (⟨Λu, u⟩) = 0, ∀u ∈ H1(B).

Using the property (2.34), we get u = 0 on ∂B and by the definition of the map Λ (Theorem

2.4.2), we find ∂u
∂ν = 0 on ∂B. By unique continuation theorems, we get u = 0 in B \ D. The

function u satisfies

∆u + idiv(A)u + 2iA · ∇u + (k2n − |A|2)u = 0 in B,
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Chapter 2. Scattering problem for the magnetic Schrödinger operator

Since A ∈ L∞(B) and div(A) ∈ L∞(B) one can apply unique continuation theorem to

deduce that u = 0 in B. Thus, we proved the existence of a unique solution to (2.39).

Moreover, using the invertibility of (A+ B) and using (2.41), we get the inequality (2.40).

2.5 | Numerical examples using FreeFem++

In this section, we give some numerical illustrations of the solution to the scattering problem

using Lagrange finite elements. We apply classical finite elements discretization procedure

on the variational formulation u ∈ H1(B) such that

a(u, v) = ℓ(v) ∀v ∈ H1(B), (2.45)

where

a(u, v) := −
∫

B
(∇+ iA)u · (∇− iA)v dx − k2

∫
B

nuv dx − ⟨Λu, v⟩, (2.46)

for all w, v ∈ H1(B) and

ℓ(v) := −⟨Λ(ui)− ∂ui

∂ν
, v⟩ = −⟨g, v⟩, ∀v ∈ H1(B). (2.47)

We modified an existing FreeFem++ program, originally designed for solving the direct

Helmholtz problem for A = 0 to include the case A ̸= 0.

The following are numerical results obtained corresponding to inhomogeneities, in a two-

dimensional setting, with index of refraction equal to n = 3 in D and n = 1 outside of D. We

illustrate the influence of various factors such as the presence of the magnetic potential A and

the frequency k. The numerical solutions are computed using P1 Lagrange finite elements.

■ Example 1: we taking the frequency k = 6. Set λ = 2π/k as the wavelength. We

choose D is disc centered at (0, 0) with radius r = 0.5 and B be a disc centered also in

(0, 0) with radius rB = r + π/3.

We here consider an incident plane wave given by ui(x⃗, d) = eikx⃗·d where x⃗ = (x, y)

and d = (cos(θ), sin(θ)) for θ ∈ (0, 2π):

28



Chapter 2. Scattering problem for the magnetic Schrödinger operator

Figure 2.2: Incident field ui.

– Influence of the presence of the magnetic potential A: for k = 6

Scattered field us Total field u

Figure 2.3: The case for A = 0.

Scattered field us Total field u

Figure 2.4: The case for A = 2.5(− sin(θ), cos(θ)) in D where θ ∈ (0, 2π) and A = 0
outside D (div(A) = 0 in R3).
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– Influence of the frequency k:

Scattered field us Total field u

Figure 2.5: The case for k = 6 and A = 2.5(− sin(θ), cos(θ)) in D where θ ∈ (0, 2π) and
A = 0 outside D

Scattered field us Total field u

Figure 2.6: The case for k = 12 and A = 2.5(− sin(θ), cos(θ)) in D where θ ∈ (0, 2π) and
A = 0 outside D
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Chapter 2. Scattering problem for the magnetic Schrödinger operator

■ Example 2: we change the shape of D to be a peanut as shown below.

– Influence of the presence of the magnetic potential A:

Scattered field us Total field u

Figure 2.7: The case for A = 0 and k = 6.

Scattered field us Total field u

Figure 2.8: The case for A = 2.5(xθ, yθ) in D where xθ = 0.8 cos(2θ) cos(θ) − (1. +
0.4 sin(2θ)) sin(θ), yθ = 0.8 cos(2θ) sin(θ) + (1 + 0.4 sin(2θ)) cos(θ) and θ ∈ (0, 2π)
and A = 0 outside D (div(A) = 0), and k = 6.
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– Influence of the frequency k:

Scattered field us Total field u

Figure 2.9: The case for k = 6 for A = 2.5(xθ, yθ) in D where xθ = 0.8 cos(2θ) cos(θ)−
(1. + 0.4 sin(2θ)) sin(θ), yθ = 0.8 cos(2θ) sin(θ) + (1 + 0.4 sin(2θ)) cos(θ) and θ ∈
(0, 2π)

Scattered field us Total field u

Figure 2.10: The case for k = 12 for A = 2.5(xθ, yθ) in D where xθ = 0.8 cos(2θ) cos(θ)−
(1. + 0.4 sin(2θ)) sin(θ), yθ = 0.8 cos(2θ) sin(θ) + (1 + 0.4 sin(2θ)) cos(θ) and θ ∈
(0, 2π)

32



3

Stability results

Abstract:

This chapter is mainly extracted from the published article [10]. We derive conditional

stability estimates for inverse scattering problems related to time harmonic magnetic

Schrödinger equation. We prove logarithmic type estimates for retrieving the magnetic and

electric potentials from near field or far field maps. Our approach combines techniques from

similar results obtained in the literature for inhomogeneous inverse scattering problems

based on the use of geometrical optics solutions.
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3.4.4 Stability estimate for the electric potential . . . . . . . . . . . . . 54

3.5 Stability analysis for far field data . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Far field pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.3 Relation between u∞
A,q and NA,q . . . . . . . . . . . . . . . . . . 66

3.5.4 Proof of the Theorem 3.3.3 . . . . . . . . . . . . . . . . . . . . . 70

3.1 | Introduction

This chapter is concerned with the inverse scattering problem of recovering the magnetic and

electric potentials in the magnetic Schrödinger model from near field or far field measure-

ments at a fixed frequency. (see for instance [82, 61]).

In the absence of the magnetic potential A, the study of the identifiability of q from full

aperture measurements is one of the first foundational problems in inverse scattering theory

and we refer to [68, 70, 71, 87] for pioneering uniqueness results under various (regularity)

assumptions. In the presence of a magnetic potential A, we remind that there is an obstruction

to uniqueness for both near field and far field settings (as has been noted in [85] for instance).

In fact, the magnetic potential A cannot be uniquely determined from far field or near field

measurements outside B due the gauge transformation that we will explain it in the Section

3.2. Several studies have investigated about the presence of the magnetic potential, so we

refer to [8, 9, 69, 72, 90].

The outline of the chapter is as follows . We start, in Section 3.2, by presenting the Gauge

invariance with numerical results. In Section 3.4, we establish the stability result first for the

magnetic field in the case of near field data. We then employ a carefully designed Helmholtz

decomposition to infer the stability result for the electric potential. The derivation of the

results for far field data are obtained after establishing some key properties relating this data

to the near field data in Section 3.5.
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3.2 | Gauge invariance with numerical results

Gauge invariance is a concept that permeates every branch of mathematics, including differ-

ential geometry and mathematical analysis. This involves the idea that certain mathematical

objects, such as functions or vector fields, remain invariant under certain transformations, so-

called gauge transformations. Gauge invariance provides a powerful framework for studying

scattering phenomena, independent of the choice of measuring instrument (see, for instance,

[72, 32, 45, 11]).

3.2.1 | Gauge invariance

We recall that A ∈ W1,∞(R3, R3) and q ∈ L∞(R3, C) with non negative imaginary part

such that Supp(A) ⊂ D and Supp(q) ⊂ D. For B be a ball containing D and let y ∈ ∂B be

the location of a point source. The total field u(·, y) generated by the point source satisfies

HA,qu(·, y)− k2u(·, y) = δy in R3, (3.1)

uA,q(·, y) = Φ(·, y) + us
A,q(·, y) in R3, (3.2)

lim
r→∞

r
(

∂rus − ikus
)
= 0, r = |x| (3.3)

uniformly with respect to x̂ = x
|x| and where the scattered field us

A,q(·, y) ∈ H2
loc(R

3) and

the incident field is given by (2.14).

The first inverse problem that we shall investigate is to recover A and q from the knowl-

edge us
A,q(x, y) for all (x, y) ∈ ∂B × ∂B. Defining the near field operator NA,q : L2(∂B) →

L2(∂B), as

NA,qh(x) :=
∫

∂B
us

A,q(x, y)h(y)ds(y), x ∈ ∂B, (3.4)

where us
A,q(·, y) is given by (3.2) and satisfying (3.3), the inverse problem in the near field

setting can be equivalently stated as identifying A and q from the knowledge of NA,q.

The direct scattering problem in the far field setting formally corresponds with letting

|y| → ∞ in the direction −d with d ∈ S2 (the unit sphere of R3) and can be phrased as
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follows: Given an incident plane wave ui(x, d) = eikx·d, x ∈ R3, seek a total field uA,q(·, d)

that satisfies

HA,qu(·, d)− k2u(·, d) = 0 in R3, (3.5)

uA,q(·, d) = ui(·, d) + us
A,q(·, d) in R3, (3.6)

where the scattered field us
A,q(·, d) ∈ H2

loc(R
3) and satisfies the Sommerfeld radiation con-

dition. The latter implies in particular that the scattered field has the following asymptotic

behavior as |x| → ∞,

us
A,q(x, d) =

eik|x|

|x|

(
u∞

A,q(x̂, d) + O
( 1
|x|

))
, (3.7)

where u∞
A,q(·, d) is the so-called far field pattern. The second inverse problem that we shall

consider is the identification of A and q from the knowledge of u∞
A,q(x̂, d) for all (x̂, d) ∈

S2 × S2.

We remind that there is an obstruction to uniqueness for both near field and far field

settings (as has been noted in [85] for instance). In fact, the scattered field outside a ball B

containing D is invariant under the gauge transformation of the magnetic potential. Namely,

given φ ∈ W2,∞(R3) with support compactly embedded in B and letting ũ = u(x)e−iφ(x)

one easily observes that

HA+∇φ,qũ := −(∇+ i(A +∇φ))2ũ + q(x)ũ = e−iφ(x)HA,qu. (3.8)

Since φ = 0 outside B, ũ then satisfies the same equation as u, namely (2.12) (respectively

(3.6)) in the near field setting (respectively in the far field setting) with HA,q replaced by

HA+∇φ,q. Let us denote by us
A+∇φ,q the scattered field associated with the potentials A +

∇φ and q. From uniqueness of solutions to the above stated scattering problems one easily

deduces that for all y ∈ ∂B and d ∈ S2

us
A+∇φ,q(·, y) = (e−iφ(x) − 1)Φ(·, y) + e−iφ(x)us

A,q(·, y) in R3,

us
A+∇φ,q(·, d) = (e−iφ(x) − 1)ui(·, d) + e−iφ(x)us

A,q(·, d) in R3.
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This clearly shows that us
A+∇φ,q(·, y) = us

A,q(·, y) and us
A+∇φ,q(·, d) = us

A,q(·, d) outside D

and therefore, the magnetic potential A cannot be uniquely determined from far field or near

field measurements outside B. It indicates that the best we can expect from the knowledge

of the near field operator NA,q or the far field u∞
A,q is to identify (A, q) modulo a gauge

transformation of A. When Supp(A) ⊂ D is known, the problem may be equivalently

reformulated as whether the magnetic field defined by the 2-form associated with the vector

A,

curl A :=
1
2

3

∑
i,j=1

(
∂xj ai − ∂xi aj

)
dxj ∧ dxi, (3.9)

and the electric potential q can be retrieved from far field or near field measurements. The

uniqueness for similarly stated inverse problems has been established in [62] for L∞ regularity

of the coefficients. It has been studied in earlier works under more regularity assumptions in

[69] and for small perturbations in [85, 82]. We also quote the recent uniqueness result in

[66] for measurements associated with finite number of incident waves but with full frequency

range.

We hereafter shall follow a similar approach as in [40, 84] to study the case when one

would like to simultaneously recover curl A and q from full aperture measurements in the light

of geometrical optics solutions developed in [11, 79, 85, 90] for various context in relation

with the inverse problem we are interested in.

For bounded domains, the inverse problem with full aperture measurements corresponds

with measuring the global Dirichlet to Neumann map. For this problem Tzou proved in [90]

log-type stability estimate for H−1 norms of the coefficients, assuming that the magnetic

potentials are in W2,∞ and the electric potentials are in L∞. We here consider stability with

respect to the L∞ norm with explicit link between the additional needed regularity for the

coefficients and the logarithm exponent. Let us finally indicate that uniqueness and log-log

stability results with partial data have been also studied by many authors in the literature (see

for instance [90, 19, 73, 31, 11]) but are not addressed in the present work.
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3.2.2 | Numerical verification

In this subsection, we present the validation by numerical result pertaining to the gauge in-

variance by using FreeFem++ to solve the direct scattering problem with ui a plane wave.

The physical parameters are set as the frequency k = 6 and the refractive index n = 3 in D

and n = 0 outside D. Set λ = 2π/k as the wavelength. Let D is ball centered in (0, 0) with

radius r = 0.5 and B be a ball centered also in (0, 0) with radius rB = r + π/3.

Moreover, we consider the magnetic potential A = (A1, A2) by A = 2.5(−sin(θ), cos(θ))

in D where θ ∈ (0, 2π) and A = (0, 0) outside D

Figure 3.1: A1 (the 1st component of A) Figure 3.2: A2 (the 2nd component of A)

Let φ ∈ W2,∞(R3) with support compactly embedded in D. Numerically, we consider φ

as a solution of  ∆φ = f in D,

φ = 0 on ∂D,

where f (x, y) = cos(3πx).
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Figure 3.3: the function φ

Now, we get the following results:

Figure 3.4: Scattered field us
A,q(·, d) Figure 3.5: Scattered field us

A+∇φ,q(·, d)

⇒ We observe qualitatively the same solution outside D and that there is a perturbation

in D.

Even if, we change the geometry of D such that D ⊂ B, we also validate the coincidence

of the us
A and us

A+∇φ outside of D.
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Figure 3.6: Scattered field us
A,q(·, d) Figure 3.7: Scattered field us

A+∇φ,q(·, d)

3.3 | Main stability results

We here state the main results of this chapter concerning conditional log-stability reconstruc-

tion of the magnetic field curl A given by (3.9) and the electric potential q from knowledge

of the full aperture far field measurements, i.e., u∞
A,q(x̂, d) for any (x̂, d) ∈ S2 × S2 or from

knowledge of the near field operator NA,q.

Let us first indicate the required conditions for admissible compactly supported magnetic

potentials A and electric potentials q. Let M > 0 and σ > 0 be given. We define the class of

admissible magnetic potentials Aσ(M) by

Aσ(M) := {A ∈ W2,∞(R3, R3), Supp(A) ⊂ D,

∥A∥W2,∞ ≤ M, and ∥ĉurlA∥L1
σ(R3) ≤ M}, (3.10)

where v̂ denotes the Fourier transform of v and L1
τ(R

3) is the weighted L1(R3) space with

norm

∥v∥L1
τ(R3) :=

∫
R3
(1 + |ξ|2)τ/2|v(ξ)|dξ.

Given M > 0 and γ > 0, we define the class of admissible electric potentials Qγ(M) by

Qγ(M) := {q ∈ L∞(R3, C), ℑ(q) ≥ 0, Supp(q) ⊂ D,

∥q∥L∞(D) ≤ M and ∥q̂∥L1
γ(R3) ≤ M}. (3.11)
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The first main result is the following log-stability for the magnetic field curl A and the electric

potential q from the near field measurements.

Theorem 3.3.1. Let M > 0, σ > 0 and γ > 0. Then there exists a constant C > 0 such that

for any (Aj, qj) ∈ Aσ(M)×Qγ(M), j = 1, 2, we have

∥curl(A1 − A2)∥L∞ ≤ C
(
∥NA1,q1 −NA2,q2∥

1/2 +
∣∣ log(∥NA1,q1 −NA2,q2∥)

∣∣− σ
(σ+3)

)
,

∥q2 − q1∥L∞ ≤ C
(
∥NA1,q1 −NA2,q2∥

1/2 +
∣∣ log(∥NA1,q1 −NA2,q2∥)

∣∣− γσ
(σ+3)(2γ+3)

)
,

Here C depends only on B, M, σ and γ.

An exactly similar stability result can be deduced for far field measurements if one uses

the following very restrictive norm on the measurements. Let

Γ := {(ℓ, m), ℓ ∈ N ∪ {0}, m ∈ [[−ℓ, ℓ]]} , (3.12)

and denote by Ym
ℓ , (ℓ, m) ∈ Γ the complete system of special harmonics on S2. For a far field

pattern, u∞ we denote by µ(ℓ1,m1;ℓ2,m2), (ℓi, mi) ∈ Γ, i = 1, 2 its Fourier coefficients given by

µ(ℓ1,m1;ℓ2,m2) :=
∫

S2

∫
S2

u∞(x̂, d)Ym1
ℓ1

(x̂)Ym2
ℓ2

(d) ds(x̂) ds(d). (3.13)

Let a > 0 such that D ⊂ {x ∈ R3; |x| < a}. Following [40], we then introduce the following

norm

∥u∞∥2
F := ∑

(ℓ1,m1)∈Γ
∑

(ℓ2,m2)∈Γ

(2ℓ1 + 1
eka

)2ℓ1
(2ℓ2 + 1

eka

)2ℓ2
∣∣∣µ(ℓ1,m1;ℓ2,m2)

∣∣∣2 . (3.14)

In Lemma 3.5.1 below we prove that this norm is finite for all far fields u∞
A,q with A ∈ Aσ(M)

and q ∈ Qγ(M). Using Lemma 3.5.5 and Theorem 3.3.1, we immediately get the following

theorem.

Theorem 3.3.2. Let M > 0, σ > 0 and γ > 0. Then there exists a constant C > 0 such that

for any (Aj, qj) ∈ Aσ(M)×Qγ(M), j = 1, 2, we have

∥curl(A1 − A2)∥L∞ ≤ C
(
∥u∞

A1,q1
− u∞

A2,q2
∥1/2
F +

∣∣ log(∥u∞
A1,q1

− u∞
A2,q2

∥F )
∣∣− σ

(σ+3)
)
,
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and

∥q2 − q1∥L∞ ≤ C
(
∥u∞

A1,q1
− u∞

A2,q2
∥1/2
F +

∣∣ log(∥u∞
A1,q1

− u∞
A2,q2

∥F )
∣∣− γσ

(σ+3)(2γ+3)
)
.

Here C depends only on D, a, M, σ and γ.

One can also obtain a slightly modified stability result using the L2 norm of the measure-

ments following the method in [40]. It is summarized in the following theorem.

Theorem 3.3.3. Let M > 0, σ > 0, γ > 0 and ε > 0. Then there exist two constants C > 0

and δ > 0 such that for all (Aj, qj) ∈ Aσ(M) × Qγ(M), j = 1, 2 verifying ∥u∞
A1,q1

−
u∞

A2,q2
∥L2(S2×S2) < δ we have

∥curl(A1 − A2)∥L∞(D) ≤ C
(

log−(∥u∞
A1,q1

− u∞
A2,q2

∥L2(S2×S2)

)− σ
σ+3+ϵ,

∥q2 − q1∥L∞(D) ≤ C
(

log−(∥u∞
A1,q1

− u∞
A2,q2

∥L2(S2×S2)))
− γσ

(σ+3)(2γ+3)+ϵ.

Here C depends only on D, a, M, σ, ϵ, δ and γ.

From Theorems 3.3.1 and 3.3.2 (or 3.3.3) we immediately derive the uniqueness corollary.

Corollary 3.3.4. Let A1 and A2 ∈ Aσ(M) be two vector fields, q1 and q2 ∈ Qγ(M) and

B ⊃ D. Then, we have

u∞
A1,q1

(x̂, d) = u∞
A2,q2

(x̂, d), ∀(x̂, d) ∈ S2 × S2,

or

us
A1,q1

(x, y) = us
A2,q2

(x, y), ∀(x, y) ∈ ∂B × ∂B,

implies q1 = q2 and curl A1 = curl A2 in D.

3.4 | Stability analysis for near field data

The aim of this section is to prove the stability estimates given in Theorem 3.3.1. The first

step will be to use the properties of the near fields to prove an orthogonality identity, which
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relates the difference of potentials to the difference of near field operators. Then we will use a

special family of solutions called complex geometric optics solutions to estimate the Fourier

transform of the difference of the magnetic fields and the difference of the electric potentials.

Consider two pairs of potentials (Aj, qj) ∈ W1,∞(R3, R3)× L∞(R3, C), j = 1, 2, satis-

fying the assumption 2.3.1. We set

A(x) := (A2 − A1)(x), q(x) := (q2 − q1)(x), x ∈ R3, (3.15)

and introduce the first order operator PA1,A2,q defined by

P(A1,A2,q)v := idiv(Av) + iA · ∇v + (|A2|2 − |A1|2 + q)v, v ∈ H1(R3), (3.16)

here we remark that the coefficients of the first order operator P(A1,A2,q) are supported in D.

3.4.1 | An orthogonality identity and a key integral inequal-

ity

First, we present an orthogonality identity, which relates the difference of potentials to the

difference of near field operators.

Lemma 3.4.1. Let f1, f2 ∈ L2(∂B), and set

us
1 := M−A1,q1S f1, us

2 := MA2,q2S f2 in R3, (3.17)

and for j = 1, 2,

vj := S f j in D, and uj := vj + us
j in D. (3.18)

Then the following identity holds true:∫
∂B

(
NA1,q1 f2 −NA2,q2 f2

)
f1 ds(x) =

∫
D
P(A1,A2,q)u1 u2 dx. (3.19)
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Proof. Using (2.31) we first observe that∫
∂B

(
NA1,q1 f2 −NA2,q2 f2

)
f1 ds(x) =

∫
∂B

(
N−A1,q1 f1

)
f2 −

(
NA2,q2 f2

)
f1 ds(x).

We deduce from (2.28) that∫
∂B

(
NA1,q1 f2 −NA2,q2 f2

)
f1 ds(x) =

∫
D
(v2 Q−A1,q1u1 − v1 QA2,q2u2) dx. (3.20)

Applying the Green’s theorem and (2.30) to us
1 and us

2 implies∫
B

(
us

2 (−∆us
1 − k2us

1)− us
1(−∆us

2 − k2us
2)
)

dx = 0,

which yields according to (2.15),∫
D

(
us

2 (Q−A1,q1u1)− (QA2,q2u2)us
1
)

dx = 0.

Adding the left hand side of this equality to the right-hand side of (3.20) shows that∫
∂B

(
NA1,q1 f2 −NA2,q2 f2

)
f1 ds(x) =

∫
D
(u2 Q−A1,q1u1 − u1 QA2,q2u2) dx. (3.21)

The result of the lemma follows from (3.21) after integrating by parts in the right hand side

and observing that

Q−A1,q1u1 − Q−A2,q1u1 = P(A1,A2,q)u1.

This completes the proof.

We now prove the fundamental integral inequality, which relates the difference of two

magnetic potentials and electric potential in D to the difference between their corresponding

near pattern fields. This integral inequality will be the starting point in the proof of the stability

estimate for the corresponding inverse problem.

Lemma 3.4.2. There is a constant C > 0 that only depends on B and k such that∣∣∣∣∫B
[iA · (u1∇u2 − u2∇u1)− (|A2|2 − |A1|2 + q)u1u2]dx

∣∣∣∣
≤ C∥NA1,q1 −NA2,q2∥∥u1∥H2(B)∥u2∥H2(B) (3.22)

for all u1 ∈ H2(B) satisfying H−A1,q1u1 = k2u1 in B and all u2 ∈ H2(B) satisfying

HA2,q2u2 = k2u2 in B.
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Proof. Let uj, j = 1, 2, be given as in the lemma. Let u+
j ∈ H1

loc(R
3 \ B) be the outgoing

solution to the following exterior Dirichlet problem (see for instance [24]) ∆u+
j + k2u+

j = 0 in R3 \ B,

u+
j = uj on ∂B,

and u+
j satisfies the Sommerfeld radiation condition (3.3). Elliptic regularity infers that u+

j ∈
H2

loc(R
3 \ B) and that in particular, by trace theorems [65, Theorem 2.1 in Chapter 4],

∥∂νu+
j ∥L2(∂B) ≤ C̃∥uj∥H2(B), (3.23)

for some constant C̃ that only depends on B and k. Let us extend the functions uj as follows

uj(x) :=

 u−
j (x) = uj(x) if x ∈ B,

u+
j (x) if x ∈ R3 \ B,

and set

f j := ∂νu−
j − ∂νu+

j on ∂B. (3.24)

By trace theorems and (3.23) we have that f j ∈ L2(∂B) and

∥ f j∥2
L2(∂B) ≤ C∥uj∥2

H2(B), (3.25)

for some constant C that only depends on B and k. One can easily check that u1 and u2 satisfy

the following transmission problems, respectively
H−A1,q1u1 = k2u1 in R3\∂B,

u−
1 = u+

1 on ∂B,

∂νu−
1 − ∂νu+

1 = f1 on ∂B,


HA2,q2u2 = k2u2 in R3\∂B,

u−
2 = u+

2 on ∂B,

∂νu−
2 − ∂νu+

2 = f2 on ∂B.

Moreover, u+
j , j = 1, 2, satisfy the Sommerfeld radiation condition (3.3). Consider now the

functions

vj(x) := S f j =
∫

∂B
Φ(x, y) f j(y)ds(y) x /∈ ∂B, j = 1, 2.
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Therefore, us
j := uj − vj, j = 1, 2, are the same as in Lemma 2.3.5 and then satisfies Lemma

2.3.7; i.e., it verifies (3.17)-(3.18). Consequently, identity (3.19) holds, namely,∫
D
P(A1,A2,q)u1 u2 dx =

∫
∂B

(
NA1,q1 f2 −NA2,q2 f2

)
f1 ds(x).

In view of (3.16), we get∫
B
[iA · (u1∇u2 − u2∇u1)− (|A2|2 − |A1|2 + q)u1u2]dx

=
∫

∂B

(
NA1,q1 f2 −NA2,q2 f2

)
f1 ds(x). (3.26)

Consequently,∣∣∣∣∫B
[iA · (u1∇u2 − u2∇u1)− (|A2|2 − |A1|2 + q)u1u2]dx

∣∣∣∣
≤ ∥NA1,q1 −NA2,q2∥∥ f1∥L2(∂B)∥ f2∥L2(∂B). (3.27)

Identity (3.22) immediately follows from (3.27) and (3.25).

3.4.2 | Complex geometric optics solutions-CGO

The main strategy of the proof of stability estimate on determining the magnetic field and the

electric potential from the near field data is the use of complex geometrical optics solutions in

(3.22) to estimate the Fourier coefficients of the difference of two magnetic fields curl(A2 −
A1) and the difference of two potential q2 − q1. We therefore first outline some known results

about these special solutions extracted from the literature [11, 79, 85, 90]. Let ω = ω1 + iω2

be a vector with ω1, ω2 ∈ S2 and ω1 · ω2 = 0. We define the operator Nω := ω · ∇. Since

this operator can be interpreted as the ∂ operator in the complex plane defined by ω1 and ω2

one can construct an inverse operator that can be formally defined by

N−1
ω (g)(x) =

1
(2π)3

∫
R3

e−ix·ξ
( ĝ(ξ)

ω · ξ

)
dξ, (3.28)

for a compactly supported distribution g (for instance). We remark that if ρ ∈ C3 satisfies

ρ · ρ = 0, then ρ = sω with s = |ρ|√
2

and ω is as above. With this notation for ρ we
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have the following Lemma, where the proof can be found in [11] with the electric potential q

replaced by q + k2. Note that this lemma requires more regularity than W1,∞ for the magnetic

potentials.

Lemma 3.4.3. Let A0 ∈ W2,∞(D) and q0 ∈ L∞(D) such that ∥A0∥W2,∞ ≤ M, ∥q0∥L∞ ≤
M for some positive constant M, and Supp(A0), Supp(q0) ⊂ D. There exists s0 > 0 such

that, for any s ≥ s0, ρ = sω satisfying ρ · ρ = 0, there exist complex geometrical solutions

u(·, ρ) ∈ H2(B) of the form

u(x, ρ) = eix·ρ(eiφ0(x,ω) + r(x, ρ)),

to the equation HA0,q0u = k2u in B, where φ0(x, ω) = N−1
ω (−ω · A0) and

∥r(·, ρ)∥Hm(B) ≤ Csm−1, 0 ≤ m ≤ 2 and ∥u(·, ρ)∥H2(B) ≤ Cs2eΛs,

where C, Λ and s0 depend only on B, k and M.

In the remainder of this section we consider two pairs of potentials (Aj, qj) ∈ W2,∞ × L∞,

j = 1, 2, with Supp(Aj), Supp(qj) ⊂ D, ℑ(qj) ≥ 0 and satisfying

∥Aj∥W2,∞ ≤ M, ∥qj∥L∞ ≤ M, j = 1, 2, (3.29)

for some M > 0 fixed and set as previously

A(x) := (A2 − A1)(x), q(x) := (q2 − q1)(x), x ∈ R3. (3.30)

Let ξ ∈ R3, ω1, ω2 ∈ S2 be three mutually orthogonal vectors in R3. For each s >

|ξ| /2, let

ρ1 = s

(
iω2 +

(
ξ

2s
−
√

1 − |ξ|2
4s2 ω1

))
:= sω∗

1(s), (3.31)

ρ2 = s

(
−iω2 +

(
ξ

2s
+

√
1 − |ξ|2

4s2 ω1

))
:= sω∗

2(s). (3.32)
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For s ≥ s0 > 0 for some s0 sufficiently large (that only depends on B and k), Lemma

3.4.3 guarantees the existence of the geometrical optics solutions: u1 ∈ H2(B) verifying

H−A1,q1u1 = k2u1 in B and u2 ∈ H2(B) verifying HA2,q2u2 = k2u2 in B and such that

uj(x) = eix·ρj(eiφj(x,ω∗
j ) + rj(x, ρj)), (3.33)

where rj(·, ρj), j = 1, 2, satisfies

∥rj(·, ρj)∥Hm(D) ≤ Csm−1, 0 ≤ m ≤ 2, (3.34)

and where φ1(x, ω∗
1) = N−1

ω∗
1
(ω∗

1 · A1) and φ2(x, ω∗
2) = N−1

ω∗
2
(−ω∗

2 · A2) are solutions of

ω∗
1 · ∇φ1 = ω∗

1 · A1, ω∗
2 · ∇φ2 = −ω∗

2 · A2. (3.35)

Furthermore, according to (3.33), (3.31) and (3.32), there exist C and Λ > 0 such that

∥u1u2∥L1(B) ≤ C and ∥uj∥H2(B) ≤ Cs2eΛsfor j = 1, 2. (3.36)

3.4.3 | Stability estimate for the magnetic potential

We derive in this section a stability estimate for the magnetic fields. First, we will use

Lemma 3.4.1 and the complex geometric solutions constructed as above to estimate the

Fourier transform of the difference of the magnetic fields curl A. Second, we exploit the

condition ∥ĉurlA∥Lσ , σ > 0, which is a priori bounded to prove the stability estimate.

First , we recall the following three lemmas proved in [90] on the properties of the operator

N−1
ω , ω ∈ S2 + iS2, given by (3.28). The first Lemma, due to Salo [79] in the reconstruction

methods and similar to the one appearing in Eskin and Ralston [33] and Sun [85], shows that

a relation between a non-linear and linear Fourier transform of ω · A for a vector field A.

Lemma 3.4.4. Let ω = ω1 + iω2 with ω1, ω2 ∈ S2 and ξ ∈ R3, such that ξ, ω1 and ω2 be

three mutually orthogonal vectors in R3. Let A ∈ W2,∞(D)3 with Supp(A) ⊂ D. Then we

have the following equality∫
R3

ω · A(x)eix·ξeiN−1
ω (−ω·A)(x)dx =

∫
R3

ω · A(x)eix·ξdx, (3.37)

where A is extended by 0 outside D.
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Lemma 3.4.5. Let g ∈ Wn,∞(R3), n ≥ 0, with Supp(g) ⊆ D. Then N−1
ω (g) ∈ Wn,∞(R3)

and satisfies

∥N−1
ω (g)∥Wn,∞(R3) ≤ C∥g∥Wn,∞(D),

where C depends only on D.

Finally, we have the following result which gives the dependence of N−1
ω (−ω · A) on the

parameter ω.

Lemma 3.4.6. Let A ∈ W2,∞(D) with Supp(A) ⊂ D such that ∥A∥W2,∞ ≤ M and let

θ, θ′ ∈ S2 + iS2 such that |θ − θ′| < 1 such that ℜ(θ) · ℑ(θ) = ℜ(θ′) · ℑ(θ′) = 0. Then,

we have the following inequality

∥N−1
θ (−θ · A)− N−1

θ′ (−θ′ · A)∥L∞(D) ≤ C
∣∣θ − θ′

∣∣ , (3.38)

where C depends only in D and M.

We have the following Lemma which is a straightforward extension and adaptation of a

similar lemma in [11].

Lemma 3.4.7. Let uj, j = 1, 2, be the functions given by (3.33) and set ω = ω1 + iω2. Then

for any |ξ| ≤ s, we have the following identity

i
∫

D
A(x) · (u2∇u1 − u1∇u2) dx = 2s

∫
D

ω · A(x)eix·ξdx +R(ξ, s), (3.39)

with |R(ξ, s)| ≤ C ⟨ξ⟩, where C is independent of s, ξ and M, with the short notation

⟨ξ⟩ :=
√
|ξ|2 + 1.

Proof. By using (3.33), we have for j = 1, 2

∇uj = eix·ρj(i(ρj +∇φj)eiφj + iρjrj +∇rj), (3.40)

where φ1 and φ2 are given by

φ1(x, ω∗
1) = N−1

ω∗
1
(ω∗

1 · A1), φ2(x, ω∗
1) = N−1

ω∗
2
(−ω∗

2 · A2), (3.41)
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where Aj, j = 1, 2 are extended by 0 outside D. Therefore, direct calculation gives

u2∇u1 − u1∇u2 = i(ρ1 − ρ2)ei(φ1+φ2)eix·(ρ1+ρ2) + Ψ1(x, ρ1, ρ2) + Ψ2(x, ρ1, ρ2), (3.42)

where Ψ1 and Ψ2 are given by

Ψ1(x, ρ1, ρ2) = i(ρ1 − ρ2)
[
r1eiφ2 + r2eiφ1 + r1r2

]
eix·(ρ1+ρ2),

Ψ2(x, ρ1, ρ2) =
[
i(∇φ1 −∇φ2)ei(φ1+φ2) + (∇r1eiφ2 −∇r2eiφ1)

+ (ir2∇φ1eiφ1 − ir1∇φ2eiφ2) + (r∇r1 − r1∇r2)
]
eix·(ρ1+ρ2).

Using Lemma 3.4.5 and the fact that Aj, j = 1, 2, is compactly supported in R3, we obtain

∥φj(·, ω∗
j )∥L∞(D) ≤ C∥Aj∥L∞(R3) ≤ CM. (3.43)

This implies that

∥Ψ1(·, ρ1, ρ2)∥L1(D) ≤ C. (3.44)

From (3.42), we obtain

i
∫

R3
A · (u2∇u1 − u1∇u2) dx =

∫
R3

A · (ρ2 − ρ1)eix·ξei(φ1+φ2)dx +R1(ξ, s), (3.45)

where

R1(ξ, s) = i
∫

R3
A · (Ψ1(x, ρ1, ρ2) + Ψ2(x, ρ1, ρ2))dx, ξ = ρ1 + ρ2. (3.46)

Let now compute the first integral in the right hand side of (3.45). By using (3.31) and (3.34),

we have for ω = ω1 + iω2∫
R3

A · (ρ2 − ρ1)eix·ξei(φ1+φ2)dx = 2s
∫

R3
ω · Aeix·ξei(φ1+φ2)dx

+ 2s
(√

1 − |ξ|2
4s2 − 1

) ∫
R3

ω1 · Aeix·ξei(φ1+φ2)dx, (3.47)

Let ψ1 = N−1
ω (ω · A1) and ψ2 = N−1

ω (−ω · A2), then we have

ψ1(x) + ψ2(x) = N−1
ω (−ω · (A2 − A1)) = N−1

ω (−ω · A).
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We insert ei(ψ1+ψ2) in (3.47), then we have∫
R3

A(x) · (ρ2 − ρ1)eix·ξei(φ1+φ2)dx = J (ξ, s) +R2(ξ, s) +R3(ξ, s), (3.48)

where

J (ξ, s) = 2s
∫

R3
ω · A(x)eix·ξei(ψ1+ψ2)dx,

R2(ξ, s) = 2s
∫

R3
ω · A(x)eix·ξ

(
ei(φ1+φ2) − ei(ψ1+ψ2)

)
dx,

R3(ξ, s) = 2s
(√

1 − |ξ|2
4s2 − 1

) ∫
R3

ω1 · A(x)eix·ξei(φ1+φ2)dx.

By using the Lemma 3.4.4, we obtain

J (ξ, s) = 2s
∫

R3
ω · A(x)eix·ξdx. (3.49)

On the other hand, we have

R2(ξ, s) = −2s
∫ 3

R
e−ix·ξω · A

(
eiφ1
(
eiφ2 − eiψ2

)
− eiψ2

(
eiψ1 − eiφ1

))
dx. (3.50)

Using the dependence of N−1
ω (−ω · A) on the parameter ω given in Lemma 3.4.6 and the

fact that SuppA ⊂ D, we get∣∣∣eiφ2 − eiψ2
∣∣∣ ≤ C

∣∣∣N−1
ω∗

2
(−ω∗

2 · A2)− N−1
ω (−ω · A2)

∣∣∣ ≤ C |ω∗
2 − ω| ,∣∣∣eiψ1 − eiφ1

∣∣∣ ≤ C
∣∣∣N−1

ω (ω · A1)− N−1
−ω∗

1
(−ω∗

1 · A1)
∣∣∣ ≤ C |ω + ω∗

1 | . (3.51)

Taking into account (3.50), (3.51) and using that 1 −
√

1 − |ξ|2/s2 ≤ |ξ|2/4s2, for all

|ξ| ≤ 2s, we conclude ∣∣R2(ξ, s)
∣∣ ≤ Cs

|ξ|2
4s2 ≤ C|ξ|. (3.52)

By the same way, we find |R3(ξ, s)| ≤ C|ξ|, for some positive constant which is independent

of ξ and s. The proof is completed.

In what follows, for A1 and A2 ∈ W2,∞(R3) as above, we introduce the notation

aj(x) = (A2 − A1)(x) · ej = A(x) · ej, j = 1, 2, 3, x ∈ R3, (3.53)
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where (e1, e2, e3) is the canonical basis of R3 and set for j, ℓ = 1, 2, 3,

bjℓ(x) :=
∂aℓ
∂xj

(x)−
∂aj

∂xℓ
(x), x ∈ R3, (3.54)

the components of curl A, and

b̂jℓ(ξ) =
∫

R3
eix·ξbjℓ(x)dx,

the associated Fourier coefficients. We then have the following estimate for the Fourier trans-

form of the difference of the magnetic fields.

Lemma 3.4.8. For any s ≥ s0 and ξ ∈ R3 such that |ξ| ≤ s the following estimate holds

true:

|b̂jℓ(ξ)| ≤ C ⟨ξ⟩
(

eΛs∥NA1,q1 −NA2,q2∥+ s−1 ⟨ξ⟩
)

, (3.55)

for j, ℓ = 1, 2, 3, where C and Λ are positive constants independent of s, ξ and M.

Proof. Let ξ ∈ R3 such that |ξ| ≤ s. Let ω = ω1 + iω2, where ωj, j = 1, 2 are as above

and consider uj, j = 1, 2 the solutions given by (3.33). By using (3.22) and (3.39), we get for

|ξ| ≤ s

2s
∣∣ ∫

B
ω · Aeix·ξdx

∣∣
≤ C

(
∥NA1,q1 −NA2,q2∥∥u1∥H2(B)∥u2∥H2(B) + ∥u1u2∥L1(B) + ⟨ξ⟩

)
. (3.56)

Then, we obtain by (3.36)∣∣ ∫
B

ω · A(x)eix·ξdx
∣∣ ≤ C

(
eΛs∥NA1,q1 −NA2,q2∥+ s−1 ⟨ξ⟩

)
. (3.57)

The reasoning above remains valid if we change ω1 by −ω1 and therefore we also have∣∣ ∫
B
−ω · A(x)eix·ξdx

∣∣ ≤ C
(

eΛs∥NA1,q1 −NA2,q2∥+ s−1 ⟨ξ⟩
)

. (3.58)

Outside the plane ξ jek − ξℓej = 0, we choose ω2 =
ξ jeℓ−ξℓej

|ξ jeℓ−ξℓej| which is indeed an orthogonal

unitary direction to ξ. Multiplying both sides of (3.57) and (3.58) by
∣∣ξ jeℓ − ξℓej

∣∣, adding

them together and using the triangular inequality to eliminate ω1 imply∣∣ ∫
R3

eix·ξ(ξ jaℓ(x)− ξℓaj(x))dx
∣∣ ≤ C ⟨ξ⟩

(
eΛs∥NA1,q1 −NA2,q2∥+ s−1 ⟨ξ⟩

)
, (3.59)
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for ξ jeℓ − ξℓej ̸= 0. The inequality extends to all |ξ| ≤ s by regularity of both sides in terms

of ξ and proves (3.55).

This end the proof.

We are now in position to prove the main stability result for the magnetic potential from

the near field data using (3.55) and regularity assumptions to estimate Fourier coefficients

for large |ξ|. More precisely, we assume now that for j = 1, 2, Aj ∈ W2,∞(D) with

∥A∥W2,∞(D) ≤ M, and ∫
R3

⟨ξ⟩σ |ĉurlAj(ξ)| dξ < M (3.60)

for some σ > 0, where ĉurlAj denotes the Fourier transform of curlAj.

End of the proof of the stability for the magnetic field

We derive now the stability estimate for the magnetic fields in L∞ norm. Let s0 > 1 be as in

Lemma 3.4.8 and s and R be two parameters satisfying s ≥ R ≥ s0. From (3.55) we get∫
R3

|b̂jℓ(ξ)| dξ =
∫
⟨ξ⟩≤R

|b̂jℓ(ξ)| dξ +
∫
⟨ξ⟩>R

|b̂jℓ(ξ)| dξ

≤ CR2
(

eΛs∥NA1,q1 −NA2,q2∥+ s−1R
)
+ 2MR−σ.

Choosing R = s1/(σ+3) we deduce that, for s0 sufficiently large (depending only on B, k, M

and σ),

∥bjℓ∥L∞(R3) ≤ C′(eΛ′s∥NA1,q1 −NA2,q2∥+ s−σ/σ+3), (3.61)

for some positive constants C′ and Λ′ and all s ≥ s0. Now if ∥NA1,q1 −NA2,q2∥ ≤ ε0, for

some ε0 > 0, such that − log(ϵ0) ≥ 2Λ′s0, then taking s = −1
2Λ′ log(∥NA1,q1 −NA2,q2∥) in

(3.61) implies

∥bjℓ∥L∞(R3)

≤ C′
(
∥NA1,q1 −NA2,q2∥

1/2 +

(
−1
2Λ′ log(∥NA1,q1 −NA2,q2∥)

)−σ/σ+3
)

. (3.62)
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We also observe that this type of inequality holds true if ∥NA1,q1 −NA2,q2∥ ≥ ε0 since in

that case we can simply write

∥bjℓ∥L∞(R3) ≤ M ≤ (M/
√

ϵ0)∥NA1,q1 −NA2,q2∥
1/2. (3.63)

The proof of the first estimate of Theorem 3.3.1 is then completed.

Using the above result, we are able to prove the second main result related to the stability

for the electric potential.

3.4.4 | Stability estimate for the electric potential

In this section, we are going to use the complex geometric optics solutions and the stability

estimate we already obtained for the magnetic field in order to retrieve a stability result for the

electric potential. There are, however, some difficulties with this. In fact, in order to isolate

the integral of the difference q = q2 − q1 we would need to control the norm of the difference

A = A2 − A1. Unfortunately, we can only estimate the difference of the magnetic fields

curl(A). To overcome this difficulty we will use the Helmholtz decomposition and write

A = H −∇ϑ, with the fact that div H = 0 and we are able to estimate the norm of ∇ϑ.

Lemma 3.4.9. Let p > 3. There exist ϑ ∈ W3,p(B) ∩ H1
0(B) and a positive constant C such

that

∥ϑ∥W3,p(B) ≤ C∥A∥W2,p(D), (3.64)

and

∥A +∇ϑ∥W1,p(B) ≤ C∥curl(A)∥Lp(D). (3.65)

Moreover, if B′ is a ball containing D and such that B′ ⊂ B, then

∥ϑ∥W2,p(B\B′) ≤ C∥curl(A)∥Lp(D). (3.66)

Proof. Let ϑ solve the following elliptic boundary value problem in the ball B −∆ϑ = div(A) in B,

ϑ = 0 on ∂B.
(3.67)
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Since the source term div(A) belongs to W1,p(B) by the elliptic regularity (see [36, Theorem

2.5.1.1 in Chapter 2]), we have ϑ ∈ W3,p(B) ∩ H1
0(B). Moreover, there exist C > 0 such

that

∥ϑ∥W3,p(B) ≤ C∥div(A)∥W1,p(D) ≤ C∥A∥W2,p(D), (3.68)

this ends the prove of (3.64). To prove (3.65), we consider the vector field H ∈ W2,p(B)

defined by

H = A +∇ϑ. (3.69)

By (3.67) and (3.69), H satisfies

div(H) = 0, curl(H) = curl(A) in B, and H ∧ ν = 0 on ∂B. (3.70)

By the Lp-div-curl estimate, we get

∥H∥W1,p(B) ≤ C∥curl(H)∥Lp(B), (3.71)

and we conclude (3.65). Finally, to prove (3.66) we consider a cutoff function χ0 ∈ C∞(Rn)

such that χ0 = 1 in B\B′ and χ0 = 0 in D. Set ϑ0 = χ0ϑ, we have by (3.67) −∆ϑ0 = [∆, χ0]ϑ in B,

ϑ0 = 0 on ∂B,
(3.72)

where we have used A = 0 outside D. Thus, we obtain

∥ϑ0∥W2,p(B) ≤ C∥∇ϑ∥Lp(B\D), (3.73)

since the first order operator [∆, χ0] is supported in B′\D. Then we deduce that

∥ϑ0∥W2,p(B) ≤ C∥A +∇ϑ∥Lp(B\D) ≤ C∥curl(A)∥Lp(D). (3.74)

This ends the proof.

Applying now Morrey’s inequality, we obtain for some positive constant C

∥A +∇ϑ∥L∞(B) ≤ C∥curl(A)∥L∞(D), (3.75)
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and

∥ϑ∥W1,∞(B\B′) ≤ C∥curl(A)∥L∞(D). (3.76)

We now prove the following inequality which is a slight modification of the previous esti-

mate (3.22) given in Lemma 3.4.2. This inequality is based on the invariance of the near

field operator under gauge transformation for the magnetic potential that was explained in the

introduction.

Lemma 3.4.10. Let B denote an open ball containing D, and let φ ∈ W2,∞(B) with Supp(φ) ⊂
B. Then there exists a constant C that only depends on B and such that∣∣∣∣∫B

e−iφ[i(A +∇φ) · (u1∇u2 − u2∇u1)− ((A +∇φ) · (A1 + A2) + q)u1u2
]
dx
∣∣∣∣

≤ C∥NA1,q1 −NA2,q2∥∥u1∥H2(B)∥u2∥H2(B), (3.77)

for all u1 ∈ H2(B) satisfying H−A1,q1u1 = k2u1 in B and all u2 ∈ H2(B) satisfying

HA2,q2u2 = k2u2 in the ball B.

Proof. Define Ã1 = A1 − 1
2∇φ and Ã2 = A2 +

1
2∇φ. Consider u1, u2 ∈ H2(B) as in the

lemma. Let denote ũj = e−iφ/2uj, then by (3.8) we get

H−Ã1,q1
ũ1 = e−iφ/2H−A1,q1u1 = k2ũ1,

HÃ2,q2
ũ2 = e−iφ/2HA2,q2u1 = k2ũ2, in B. (3.78)

Moreover, due the gauge invariance of the scattered field and since φ|∂B = 0, we have from

(2.23) that

NÃj,qj
= NAj,qj , j = 1, 2. (3.79)

With these solution at hand, we use the gauge invariance (3.79) and (3.22) with Ãj and ũj

instead of Aj and uj, respectively, to obtain∣∣∣∣∫B
[iÃ · (ũ1∇ũ2 − ũ2∇ũ1)− (|Ã2|2 − |Ã1|2 + q)ũ1ũ2]dx

∣∣∣∣
≤ C∥NA1,q1 −NA2,q2∥∥ũ1∥H2(B)∥ũ2∥H2(B). (3.80)

From the identity (3.80), we get (3.77). This ends the proof.
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Lemma 3.4.10 then allows us to obtain an estimate to A added with a gradient term. By

adding ∇ϑ, we would thus get an estimate with controlled terms. Unfortunately, we cannot

directly add ∇ϑ because of the requirement that Supp(φ) ⊂ B in Lemma 3.4.10. We can

solve this difficulty by using a cutoff argument.

Now, we will fix φ = χϑ, for χ ∈ C∞
0 (B) such that χ = 1 in B′ and ϑ ∈ W2,∞(B) given

by Lemma 3.4.9 which satisfying (3.75) and (3.76).

Lemma 3.4.11. Let uj, j = 1, 2 be the functions given by (3.33) for some s0 > 0. Then there

exist a positive constants C and Λ such that∣∣∣∣∫B
e−iφq(x)u1u2dx

∣∣∣∣ ≤ Ce2Λs∥NA1,q1 −NA2,q2∥+ s∥curl(A)∥L∞(D) (3.81)

for all s > s0.

Proof. Let uj, j = 1, 2 be the functions given by (3.33) for some s0 > 0. Adding and

subtracting the same terms we get∫
B

e−iφq(x)u1u2dx =
∫

e−iφ(A +∇ϑ) · (A1 + A2)u1u2dx

+
∫

B
ie−iφ(A +∇ϑ) · (u1∇u2 − u2∇u1)dx

+
∫

B
e−iφ(A +∇ϑ) · ∇φu1u2dx +R

:=J1 + J2 + J3 +R, (3.82)

where R denotes the integral

R = −
∫

B
e−iφ[i(A +∇ϑ) · (u1∇u2 − u2∇u1)

+
(
(A +∇ϑ) · (A1 + A2)− q + (A +∇ϑ) · ∇φ

)
u1u2

]
dx.

First, we have

|J2| ≤ C∥A +∇ϑ∥L∞(B)(∥u1∇u2∥L1(B) + ∥u2∇u1∥L1(B)). (3.83)
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Then, we deduce from (3.75) and (3.36) that

|J2| ≤ Cs∥curl(A)∥L∞(D). (3.84)

Similarly, we have

|J1| ≤ C∥A +∇ϑ∥L∞(B)∥u1u2∥L1(B) (3.85)

and then, we have

|J1| ≤ C∥curl(A)∥L∞(D). (3.86)

Finally, by the same arguments, we have

|J3| ≤ C∥curl(A)∥L∞(D). (3.87)

Now recall that φ = χϑ and set φ̃ = (1 − χ)ϑ. Since ∇ϑ = ∇φ +∇φ̃ we obtain, by

Lemma 3.4.10, that

|R| ≤ C∥NA1,q1 −NA2,q2∥∥u1∥H2(B)∥u2∥H2(B)

+

∣∣∣∣∫B
ie−iφ∇φ̃ · (u1∇u2 − u2∇u1) + e−iφ(∇φ + A1 + A2) · ∇φ̃ u1u2dx

∣∣∣∣ . (3.88)

By the same arguments used previously, we get

|R| ≤ Ce2Λs∥NA1,q1 −NA2,q2∥+ s∥∇φ̃∥L∞(B). (3.89)

Since by (3.76) we have

∥∇φ̃∥L∞(B) ≤ ∥∇ϑ∥L∞(B\B′) ≤ C∥curl(A)∥L∞(D), (3.90)

we conclude (3.81) from (3.83), (3.86), (3.87) and (3.90).

We now state the following integral identity for the electric potential which is proved in

the Appendix.

Lemma 3.4.12. Let uj, j = 1, 2 be the functions given by (3.33) for some s0 > 0. Then for

all ξ ∈ R3 and s ≥ max(s0, |ξ|/2), we have the following identity∫
D

e−iφq(x)u1u2 dx =
∫

D
q(x)eix·ξ dx +R′(ξ, s), (3.91)
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where R′(ξ, s), satisfy

∣∣R′(ξ, s)
∣∣ ≤ C

(
∥curl(A)∥L∞(D) + s−1 ⟨ξ⟩

)
. (3.92)

The constants C and s0 depend only on B, M and k.

Proof. By a direct calculation, we have

u1u2 = eix·ξei(φ1+φ2) + eix·ξ(eiφ2r1 + eiφ1r2 + r1r2
)
. (3.93)

We use the identity (3.93) and we insert eix·ξq(x), we obtain∫
D

e−iφq(x)u1u2dx =
∫

D
q(x) eix·ξ dx +R′

1(ξ, s) +R′
2(ξ, s), (3.94)

where

R′
1(ξ, s) =

∫
D

q(x) eix·ξ eiφ1
(

ei(φ2−φ) − e−iφ1
)

dx,

R′
2(ξ, s) =

∫
D

e−iφq(x)eix·ξ(eiφ2r1 + eiφ1r2 + r1r2
)
dx.

Let ψ3 = N−1
ω∗

2
(−ω∗

2 · A1). We insert eiψ3 in R′
1 and obtain from Lemmas 3.4.5 and 3.4.6

∣∣R′
1(ξ, s)

∣∣ ≤ C∥ei(φ2−φ) − eiψ3∥L∞(D) + ∥eiψ3 − e−iφ1∥L∞(B)

≤ C
(
∥N−1

ω∗
2
(−ω∗

2 · (A2 +∇φ))− N−1
ω∗

2
(−ω∗

2 · A1)∥L∞(B)

+ ∥N−1
ω∗

2
(−ω∗

2 · A1)− N−1
−ω∗

1
(ω∗

1 · A1)∥L∞(B)
)

≤ C
(
∥A +∇φ∥L∞(B) + |ω∗

2 + ω∗
1 |
)

≤ C
(
∥A +∇ϑ∥L∞(B) + ∥ϑ∥W1,∞(B\B′) + |ω∗

2 + ω∗
1 |
)

. (3.95)

Using (3.75) and (3.76), we obtain

∣∣R′
1(ξ, s)

∣∣ ≤ C
(
∥curl(A)∥L∞(B) + s ⟨ξ⟩−1

)
. (3.96)

Moreover from (3.34), we get |R′
2(ξ, s)| ≤ Cs−1. Collecting this with (3.96) and (3.94) we

obtain the desired result.
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This identity allows to obtain the following estimates for the Fourier coefficients

q̂(ξ) :=
∫

R3
eix·ξq(x) dx.

From Lemma 3.4.11 and Lemma 3.4.12 we deduce the following estimate.

Lemma 3.4.13. There exists s0 > 0 such that for all s ≥ s0 and ξ ∈ R3 with |ξ| ≤ s the

following estimate holds true:

|q̂(ξ)| ≤ C
(
eΛs∥NA1,q1 −NA2,q2∥+ s∥curl(A)∥L∞(D) + s−1 ⟨ξ⟩

)
. (3.97)

The constants s0, C, and Λ depend only on B, M and k.

With the help of the previous lemma, we are now in position to prove the stability result

for the electric potential under the assumption∫
R3

⟨ξ⟩γ |q̂j(ξ)| dξ < M, (3.98)

for some γ > 0.

End of the proof of the stability estimate for the electric potential

Let s0 > 1 be as in Lemma 3.4.13 and s and R be two parameters satisfying s ≥ R ≥ s0.

From (3.97) and (3.98) we get∫
R3

|q̂(ξ)| dξ =
∫
⟨ξ⟩≤R

|q̂(ξ)|, dξ +
∫
⟨ξ⟩>R

|q̂(ξ)| dξ

≤ CR
(

eΛs∥NA1,q1 −NA2,q2∥+ s∥curl(A)∥L∞ + Rs−1
)
+ 2MR−γ.

Choosing R = s1/(γ+2), we deduce that, for s0 sufficiently large (depending only on B, k M

and γ),

∥q∥L∞(R3) ≤ C′(eΛ′s∥NA1,q1 −NA2,q2∥+ s(γ+3)/(γ+2)∥curl(A)∥L∞ + s−γ/(γ+2)) (3.99)

for some positive constants C′ and Λ′ and all s ≥ s0. Observe now that (3.61) implies in

particular (after eventually changing the constants C′, Λ′ and s0)

∥curlA∥L∞(D) ≤ C′(eΛ′sκ∥NA1,q1 −NA2,q2∥+ s−κσ/(σ+3)), (3.100)
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for all κ ≥ 1. Choosing κ such that

− κσ

σ + 3
+

γ + 3
γ + 2

= − γ

γ + 2
⇔ κ =

(2γ + 3)(σ + 3)
σ(γ + 2)

,

we obtain by substituting (3.100) in (3.99)

∥q∥L∞(R3) ≤ C′(eΛ′sκ∥NA1,q1 −NA2,q2∥+ s−γ/(γ+2)), (3.101)

with possibly different constants C′ and Λ′.

Now if ∥NA1,q1 −NA2,q2∥ ≤ ε0, for some ε0 > 0, such that − log(ϵ0) ≥ 2Λ′sκ
0, then

taking sκ = −1
2Λ′ log(∥NA1,q1 −NA2,q2∥) in (3.61) implies

∥q∥L∞(R3) ≤ C′(∥NA1,q1 −NA2,q2∥
1/2 +

( −1
2Λ′ log(∥NA1,q1 −NA2,q2∥)

)−γ/κ(γ+2)).
(3.102)

We also observe that this type of inequality holds true if ∥NA1,q1 −NA2,q2∥ ≥ ε0 since in

that case we can simply write

∥q∥L∞(R3) ≤ M ≤ (M/
√

ϵ0)∥NA1,q1 −NA2,q2∥
1/2. (3.103)

The proof of the second part of Theorem 3.3.2 is then completed.

3.5 | Stability analysis for far field data

The aim of this section is to prove the stability estimates with far field measurements given

in Theorems 3.3.2 and 3.3.3. First, we will introduce spherical harmonics to represent the far

field pattern as a Fourier series in terms of spherical harmonics. Then, we will exploit the

relation between the far field u∞
A,q(x̂, d), (x̂, d) ∈ S2 × S2 and the operator NA,q.

3.5.1 | Spherical harmonics

Within this section, we delve into the essential properties of both spherical harmonics and

spherical Bessel functions.
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Spherical harmonics are the angular part of the solution to the Laplace equation, ∆u = 0,

in the spherical coordinate system. In this system, the Laplace equation is written as follows:

∆u =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
r2 sin2 θ

∂2u
∂φ2 = 0. (3.104)

For any ℓ ∈ N and m ∈ {−ℓ, . . . , ℓ}, the spherical harmonics are given by:

Ym
ℓ (θ, φ) = (−1)mα(ℓ, m)Pm

ℓ (cos θ)eimφ, θ ∈ [0, 2π], φ ∈ [0, π], (3.105)

where Pm
ℓ is the associated Legendre polynomial of degree ℓ and order m:

Pm
ℓ (x) =

(−1)m

2mℓ!
(1 − x2)

m
2

dℓ+m

dxℓ+m ((x2 − 1)ℓ), (3.106)

and α(ℓ, m) is the normalization function:

α(ℓ, m) = (−1)m

√
2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)! . (3.107)

Spherical harmonics form an orthonormal basis in the Hilbert space L2(S2) where S2 is

the unit sphere in R3. In particular, we have:∫ 2π

0

∫ π

0
Ym
ℓ (θ, φ)Ym′

ℓ′ (θ, φ) sin θ dθdφ = δℓ,ℓ′δm,m′ . (3.108)

Given a spherical function g : S2 −→ R, g can be expressed as a linear combination of

spherical harmonics as follows:

g(θ, φ) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

Cℓ,m Ym
ℓ (θ, φ), (3.109)

where the coefficients Cℓ,m, called harmonic coefficients of order (ℓ, m), are defined as fol-

lows:

Cℓ,m = α(ℓ, m)
∫ 2π

0

∫ π

0
g(θ, φ)Pm

ℓ (cos θ)e−imφ sin θ dθdφ. (3.110)

For k > 0, we consider the Helmholtz equation in R3:

(∆ + k2)u(x) = 0, for all x ∈ R3.
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We seek a solution u of the form:

u(x) = f (k|x|)Ym
ℓ (θ, φ) = f (kr)Ym

ℓ (θ, φ), r = |x|, (3.111)

where (θ, φ) denote the spherical angles of x̂ = x
|x| . The function f is then a solution of the

spherical Bessel differential equation:

t2 f ′′(t) + 2t f ′(t) + (t2 − ℓ(ℓ− 1)) f (t) = 0. (3.112)

This equation has two linearly independent solutions:

jℓ(t) =
∞

∑
p=0

(−1)p

2p p!1 · 3 . . . (2ℓ+ 2p − 1)
tℓ+2p, (3.113)

and

yℓ(t) = − (2ℓ)!
2ℓℓ!

∞

∑
p=0

(−1)p

2p p!(−2ℓ+ 1)(−2ℓ+ 3) . . . (−2ℓ+ 2p − 1)
t2p−ℓ−1. (3.114)

The spherical Hankel functions of the first and second kinds are defined as:

h(1)ℓ (t) = jℓ(t) + iyℓ(t), (3.115)

and

h(2)ℓ (t) = jℓ(t)− iyℓ(t). (3.116)

Then, we have:

h(k)ℓ+1(t) = −tℓ
d
dt
(t−ℓh(k)ℓ (t)), k = 1, 2; ℓ ∈ N. (3.117)

For a more detailed analysis of spherical harmonics and spherical Bessel functions, we refer

to Lebedev [63] and to Colton and Kress [24].

3.5.2 | Far field pattern

We here assume that the Assumption 2.3.1 holds. Let B = {x ∈ R3, |x| < a} for some

sufficiently large a > 0 so that D ⊂ B. We recall that the far field pattern can be expressed as

u∞
A,q(x̂, d) =

1
4π

∫
D

e−ikx̂·yQA,quA,q(y, d)dy. (3.118)
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We denote by µ(ℓ1,m1;ℓ2,m2), (ℓi, mi) ∈ Γ, i = 1, 2, the Fourier coefficients of u∞
A,q given by

µ(ℓ1,m1;ℓ2,m2) :=
∫

S2

∫
S2

u∞
A,q(x̂, d)Ym1

ℓ1
(x̂)Ym2

ℓ2
(d)ds(x̂) ds(d). (3.119)

For proving the first lemma we need the following well known results about the asymptotic

of spherical Bessel functions jℓ and spherical Hankel functions of the first kind h(1)ℓ [84]:

|jℓ(kr)| ≤ α
( ekr

2ℓ+ 1

)ℓ 1
2ℓ+ 1

, 0 ≤ r ≤ a, ℓ ∈ N ∪ {0}, (3.120)

and ∣∣∣h(1)ℓ (kr)
∣∣∣ ≤ α

(2ℓ+ 1
ekr

)ℓ
, 0 < r ≤ a, ℓ ∈ N ∪ {0}, (3.121)

where α is a constant that only depend on a and k. We also recall the following equality that

comes from the addition formula [24],∫
S2

Ym2
ℓ2

(ẑ)Φ(x, rẑ)ds(ẑ) = ikjℓ2(kr)h(1)ℓ2
(k|x|)Ym2

ℓ2
(x̂), |x| > r, (3.122)

together with the Funk-Hecke formula∫
S2

e−ikx·ẑYm2
ℓ2

(ẑ)ds(ẑ) =
4π

iℓ2
jℓ2(k|x|)Y

m2
ℓ2

(x̂), x ∈ R3. (3.123)

For a more detailed study about the spherical harmonics, we refer to Lebedev [63] and to

Colton & Kress [24].

Lemma 3.5.1. The Assumption 2.3.1 holds. Let µ(ℓ1,m1;ℓ2,m2) denote the Fourier coefficients

of the far field patterns u∞
A,q as defined in (3.119). Then there exists a constant C > 0 that

only depends on D, a, k, and M such that∣∣∣µ(ℓ1,m1;ℓ2,m2)

∣∣∣2 ≤ C
( eka

2ℓ1 + 1

)2ℓ1+3( eka
2ℓ2 + 1

)2ℓ2+3
, (3.124)

and

∑
(ℓ1,m1)∈Γ

∑
(ℓ2,m2)∈Γ

(2ℓ1 + 1
eka

)2ℓ1+1(2ℓ2 + 1
eka

)2ℓ2+1 ∣∣∣µ(ℓ1,m1;ℓ2,m2)

∣∣∣2 ≤ C.
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Proof. We only need to prove (3.124). According to (3.119) and (3.118), we obtain

µ(ℓ1,m1;ℓ2,m2) =
1

4π

∫
B

( ∫
S2

QA,qu(y, d)Ym2
ℓ2

(d)ds(d)
)( ∫

S2
e−ikx̂·yYm1

ℓ1
(x̂)ds(x̂)

)
dy

:=
1

4π

∫
B

wℓ2,m2(y)vℓ1,m1(y)dy.

(3.125)

With the help of the Funk-Hecke formula (3.123) we compute

vℓ1,m1(y) :=
∫

S2
e−ikx̂·yYm1

ℓ1
(x̂)ds(x̂) =

4π

iℓ1
jℓ1(k |y|)Y

m1
ℓ1

(ŷ), y ∈ R3. (3.126)

Then by (3.120), we get

∥vℓ1,m1∥
2
L2(B) ≤ C

∫ a

0

∣∣jℓ1(kr)
∣∣2 r2dr ≤ C

( eka
2ℓ1 + 1

)2ℓ1+3
. (3.127)

Using again the Funk-Hecke formula, we obtain∫
S2

u(y, d)Ym2
ℓ2

(d)ds(d) = TA,q

( ∫
S2

u(y, d)Ym2
ℓ2

(d)ds(d)
)
+ (−1)ℓ2vℓ2,m2 , (3.128)

and we deduce that

wℓ2,m2(x) = (−1)ℓ2 QA,q

(
(I − TA,q)

−1vℓ2,m2

)
(x). (3.129)

Using the fact that QA,q is a first order operator supported in D, then we obtain from Propo-

sition 2.3.3,

∥wℓ2,m2∥L2(B) ≤ C∥(I − TA,q)
−1vℓ2,m2∥H1(D) ≤ C∥vℓ2,m2∥H1(D). (3.130)

We note that there is a constant C > 0 such that the inequality

∥u∥H1(D) ≤ C∥u∥L2(B) (3.131)

holds true for all u ∈ H1
loc(R

3) satisfying the Helmholtz equation ∆u + k2u = 0 in R3. We

can then estimate

∥wℓ2,m2∥L2(B) ≤ C∥vℓ2,m2∥
2
H1(D) ≤ ∥vℓ2,m2∥

2
L2(B) ≤ C

( eka
2ℓ2 + 1

)2ℓ2+3
, (3.132)
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we conclude, from (3.125), (3.127) and (3.132), that∣∣∣µ(ℓ1,m1;ℓ2,m2)

∣∣∣2 ≤ C∥vℓ1,m1∥
2
L2(B)∥wℓ2,m2∥

2
L2(B)

≤ C
( eka

2ℓ2 + 1

)2ℓ2+3( eka
2ℓ1 + 1

)2ℓ1+3
. (3.133)

This competes the proof.

3.5.3 | Relation between u∞
A,q and NA,q

In this subsection, we will explore the connection between the far-field pattern u∞
A,q(x̂, d),

(x̂, d) ∈ S2 × S2 and the near-field operator NA,q given by (3.4) and derive the Theorem

3.3.2 . We establish the following duality result where the Assumption 2.3.1 holds.

Lemma 3.5.2. Let vi ∈ H1(B), i = 1, 2 such that ∆vi + k2vi = 0 in B. Then, the identity∫
B

QA,qv1(I − T−A,q)
−1v2dx =

∫
B

Q−A,qv2(I − TA,q)
−1v1dx, (3.134)

holds where QA,q and TA,q are given by (2.10) and (2.17), respectively.

Proof. We associate to v1 (respectively v2) a total field uA,q (respectively u−A,q) and a scat-

tered field us
−A,q (respectively, us

−A,q). Applying (2.33) to u1 = us
A,q and u2 = us

−A,q implies∫
B

(
HA,qus

A,q us
−A,q − us

A,qH−A,qus
−A,q

)
dx = 0.

Making use of uA,q = us
A,q + v1 and u−A,q = us

−A,q + v2, it follows by direct calculation∫
B

(
QA,qv1u−A,q − Q−A,qv2

)
dx =

∫
B

(
QA,qv1v2 − Q−A,qv2v1

)
dx.

Moreover, by integrating by parts, we get∫
B

(
QA,qv1v2 − Q−A,qv2v1

)
dx = 0.

Due to uA,q = (I − TA,q)
−1v1 and u−A,q = (I − T−A,q)

−1v2, we obtain the desired result.
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Proposition 3.5.3. For k > 0 fixed, we have

us
A,q(x, y) =

1
4π

eik|x|

|x|
eik|y|

|y| u∞
A,q (x̂,−ŷ) +

1
|x||y|

(
1
|x| +

1
|y|

)
Λ(x, y), x ̸= y, (3.135)

where Λ(x, y) is uniformly bounded as |x| −→ ∞ and |y| → ∞.

Proof. Using the asymptotics of Φ(·, z) and ∇zΦ(·, z) for z ∈ D, we get

us
A,q(x, y) =

∫
D

Q−A,qΦ(x, z)uA,q(z, y)dz (3.136)

=
eik|x|

4π|x|w (y,−x̂) +
O(1)
|x|2 ∥uA,q(., y)∥L2(D), |x| → ∞, (3.137)

uniformly with respect to y ∈ R3 \ B, where

w(y, d) :=
∫

D
Q−A,qeikz·duA,q(z, y)dz.

Using now Lemma 3.5.2 and integrating by parts, we get

w(y, d) = −
∫

D
Φ(z, y)Q−A,qu−A,q(z, d)dz, (3.138)

and therefore w(·, d) = us
−A,q(·, d). Consequently, (3.137) and (3.118) imply that for |x|,

|y| → ∞

us
A,q(x, y) =

1
4π

eik|x|

|x|
eik|y|

|y| u∞
−A,q (ŷ,−x̂) +

O(1)
|x|2 ∥uA,q(·, y)∥L2(D)

+
O(1)
|x||y|2∥u−A,q(·,−x̂)∥L2(D). (3.139)

Let us observe that according to Corollary 2.3.4 (and the asymptotic behavior of Φ(x, y) and

∇xΦ(x, y) with x ∈ D and |y| → ∞) we get that

∥uA,q(·, y)∥L2(D) =
O(1)
|y| as |y| → ∞,

and ∥u−A,q(·,−x̂)∥L2(D) is uniformly bounded with respect to x̂. We finally obtain the de-

sired result by noticing the reciprocity relation u∞
A,q(d, θ) = u∞

−A,q(−θ,−d), where θ, d ∈ S2

(which is also a consequence of Lemma 3.5.2) or using Lemma 2.3.7.
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Now, let us expand the scattering amplitude u∞
A,q(d, θ) in spherical harmonics

u∞
A,q(d, θ) = ∑

(ℓ1,m1)∈Γ
∑

(ℓ2,m2)∈Γ
µℓ1m1ℓ2m2Ym1

ℓ1
(d)Ym2

ℓ1
(θ), (3.140)

where µℓ1m1ℓ2m2 is given by (3.119).

The following lemma makes the link between us
A,q(·, y) and u∞

A,q(·, d). The proof follows

similar ideas as in Stefanov [84] for A = 0 but uses different arguments since we do not rely

on the properties of the Green function for A ̸= 0 when x ∼ y. Our proof would apply to

more general contexts since we mainly rely on the reciprocity relation in Lemma 2.3.7.

Lemma 3.5.4. The scattered field associated with point sources can be expanded as

us
A,q(x, y) = − k2

4π ∑
(ℓ1,m1)∈Γ
(ℓ2,m2)∈Γ

iℓ1−ℓ2µ(ℓ1,m1;ℓ2,m2)h
(1)
ℓ1

(k|x|)h(1)ℓ2
(k|y|)Ym1

ℓ1
(x̂)Ym2

ℓ2
(ŷ) ,

(3.141)

uniformly for |x|, |y| ≥ a, with x̂ = x/|x| and ŷ = y/|y|.

Proof. Making use of the addition formula [24],

Φ(x, z) = ∑
ℓ,m

εℓ,m(z)h
(1)
ℓ (k|x|)Ym

ℓ (x̂) , |x| > |z|, (3.142)

∇yΦ(x, z) = ∑
ℓ,m

ε′ℓ,m(z)h
(1)
ℓ (k|x|)Ym

ℓ (x̂) , |x| > |z|, (3.143)

where εℓ,m(z) = ikjℓ(k|z|)Ym
ℓ (ẑ) and ε′ℓ,m = ik∇

(
jℓ(k|z|)Ym

ℓ (ẑ)
)
, it follows from (3.136)

that for y ∈ R3 \ D and uniformly for |x| ≥ a

us
A,q(x, y) = ∑

(ℓ1,m1)∈Γ
αℓ1m1(y)h

(1)
ℓ1

(k|x|)Ym1
ℓ1

(x̂) .

Similarly, for x ∈ R3 \ D and uniformly for |y| ≥ a

us
−A,q(y, x) = ∑

(ℓ2,m2)∈Γ
βℓ2m2(x)h(1)ℓ2

(k|y|)Ym2
ℓ2

(ŷ) .

We observe that

αℓ1m1(y)h
(1)
ℓ1

(ka) =
∫

S2
us

A,q(ax̂, y)Ym1
ℓ1

(x̂) ds(x̂).
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Using the reciprocity relation of Lemma 2.3.7 we then get uniformly for |y| ≥ a

αℓ1m1(y) = ∑
(ℓ2,m2)∈Γ

γℓ1m1ℓ2m2 h(1)ℓ2
(k|y|)Ym2

ℓ2
(ŷ) ,

where

γℓ1m1ℓ2m2 =
1

h(1)ℓ1
(ka)

∫
S2

βℓ2m2(ax̂)Ym1
ℓ1

(x̂) ds(x̂).

This yields in particular that for |x| ≥ a and |y| ≥ a

us
A,q(x, y) = ∑

(ℓ1,m1)∈Γ
(ℓ2,m2)∈Γ

γℓ1m1ℓ2m2 h(1)ℓ1
(k|x|)Ym1

ℓ1
(x̂) h(1)ℓ2

(k|y|)Ym2
ℓ2

(ŷ) . (3.144)

Observe that from Proposition 3.5.3, we have in particular that us
A,q ∈ L2(SR × SR) for

R sufficiently large, with SR = {|x| = R}. The orthonormality of products of spherical

harmonics in L2(S2 ×S2) implies in particular that the series (3.144) is convergent in L2(S2 ×
S2) and∫

S2×S2
us

A,q(Rx̂, Rŷ)Ym1
ℓ1

(x̂)Ym2
ℓ2

(ŷ) ds(x̂)ds(ŷ) = γℓ1m1ℓ2m2 h(1)ℓ1
(kR)h(1)ℓ2

(kR).

We recall that ([24])

h(1)ℓ (r) = (−i)ℓ+1 eir

r
+ O

(
r−2
)

,

Proposition 3.5.3 and the identity Ym2
ℓ2

(−ŷ) = (−1)ℓ2Ym2
ℓ2

(ŷ) then imply, by integrating on

SR × SR and letting R → ∞ that

γℓ1m1ℓ2m2 =
−k2

4π
iℓ1+ℓ2(−1)ℓ2µℓ1m1ℓ2m2 .

This yields the desired result. We remark that it also implies from (3.124) and (3.121) that

the series (3.144) is absolutely convergent together with its first and second derivatives with

respect to x or y.

Then we have the following Lemma showing the Lipschitz continuity of the mapping

u∞
A,q 7→ NA,q when u∞

A,q is endowed with the norm (3.14).
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Lemma 3.5.5. We assume that the Assumption 2.3.1 holds. Then

∥NA1,q1 −NA2,q2∥ ≤ α2 k2

4π
∥u∞

A1,q1
− u∞

A2,q2
∥F , (3.145)

Proof. For j = 1, 2, denote by µ
j
(ℓ1,m1;ℓ2,m2)

the Fourier coefficients associated with u∞
Aj,qj

as

above. We get from (3.141)

∥NA1,q1 −NA2,q2∥
2

≤
(

k2

4π

)2

∑
(ℓ1,m1)∈Γ
(ℓ2,m2)∈Γ

|h(1)ℓ1
(ka)|2|h(1)ℓ2

(ka)|2|µ1
(ℓ1,m1;ℓ2,m2)

− µ2
(ℓ1,m1;ℓ2,m2)

|2.

The estimate then follows using (3.121).

From (3.145) and Theorem 3.3.1 we easily derive Theorem 3.3.2. Following the same

arguments as in [40] one can obtain a stability result using only the L2 norm of the far field.

In fact, identity (3.141) and the uniform bound of Corollary 2.3.4 allows us to reproduce

exactly the same arguments as in [40, Section 4] to state the following continuity result.

Lemma 3.5.6. Let M > 0 and 0 < θ < 1 be given. Assume that the assumption 2.3.1 holds.

Then there exists a constant η > 0 that only depends on M, k, a and θ and a constant ω that

only depends on a and k such that

∥NA1,q1 −NA2,q2∥ ≤ η2 exp
(
−
(
− ln

∥u∞
A1,q1

− u∞
A2,q2

∥L2(S2×S2)

ωη

)θ
)

,

where NAj,qj , j = 1, 2 denote here the near field operators associated with B = {x ∈
R3, |x| < 2a}.

3.5.4 | Proof of the Theorem 3.3.3

We now stand poised to finish this chapter by demonstrating the last main result. Using the

result of this lemma and Theorem 3.3.1 one can prove Theorem 3.3.3 as follows.
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According to Lemma 3.5.6

−ln
(
∥NA1,q1 −NA2,q2∥

)
≥ −ln(η2) +

(
− ln

∥u∞
A1,q1

− u∞
A2,q2

∥L2

ωη

)θ

≥ 1
2

(
− ln

∥u∞
A1,q1

− u∞
A2,q2

∥L2

ωη

)θ
,

for sufficiently small ∥u∞
A1,q1

− u∞
A2,q2

∥L2 such that ∥u∞
A1,q1

− u∞
A2,q2

∥L2 ≤ ωηe−2(ln(η2))
1
θ .

Then, if we further suppose that ∥u∞
A1,q1

− u∞
A2,q2

∥L2 ≤ e/(ωη), then

(
−ln

(
∥NA1,q1 −NA2,q2∥

))− σ
σ+3 ≤ 2

σ(1−θ)
σ+3

(
−ln

(
∥u∞

A1,q1
− u∞

A2,q2
∥L2

))− σθ
σ+3 .

Using the first inequality in Theorem 3.3.1 and choosing θ such that θ σ
σ+3 = σ

σ+3 − ϵ, where

0 < ϵ < σ
σ+3 , yield the first inequality of Theorem 3.3.3 related to ∥curlA1 − curlA2∥L∞(D).

The estimate for ∥q1 − q2∥L∞(D) is derived analogously.
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4

Inverse geometric problem

Abstract:

We consider the inverse medium scattering problem and provide an overview of the sam-

pling techniques employed for deducing the shape of a perturbation using measurements of

scattered waves at a fixed frequency. Our primary focus is on the linear sampling method

(LSM) and the factorization method (FM). We present several validating results in both 2D.

Using synthetic data, we end the chapter with an alternative proof for the uniqueness of the

reconstruction of the shape from far-field patterns associated with all incident plane waves.
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4.4.3.1 Reconstruction using LSM . . . . . . . . . . . . . . . 90

4.4.3.2 Reconstruction using factorization method F# . . . . . 93

4.5 Another approach for the uniqueness of the domain D . . . . . . . . . . . 96

4.1 | Introduction

The sampling methods are one of well established inversion methods for inverse scattering

problems. The principle of sampling method is to define an indicator function that reveals

information about the position and shape of the unknown object. The sampling methods have

generated a lot of discussion in the literature because of their practical importance. Some ex-

amples include the linear sampling method [21], the factorization method [51], the General-

ized Linear Sampling Method (GLSM) which combines theoretical elements of both the LSM

and FM [5, 4], the MUSIC-type method [29, 37, 2], the point source and probe method [74],

the enclosure method [42], and the one-shot and orthogonality sampling methods [64, 75].

The main advantage of the sampling methods is that they don’t involve solving a sequence

of forward inverse problems like iterative methods do, and they can handle a wide range of

practical problems even when there is limited information about the scatterer. Actually, the

physical characteristics of the unknown object need not be known a priori using these meth-

ods. But generally speaking, the disadvantage of these approaches is that a lot of data is

required because one typically needs all measurements of the far field pattern for all observa-

tion points and all directions of incident plane waves.

The chapter is organized as follows. We recall the setting of the direct scattering problem

in Section 4.2, while in Section 4.3 we present the setting of the inverse problem and demon-

strate the uniqueness of the domain D from the far field pattern. Next, we introduce the near

field operator and its factorizations, which are necessary for the two sampling methods on

which we will concentrate: the linear sampling method (LSM) and the factorization method.
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Some key properties of these operators are then proved in section 4.4 as preparations for the

analysis of sampling methods.

4.2 | Setting of the direct scattering problem

In order to ease the reading of this chapter, we recall in this section the direct scattering

problem, which was introduced in Chapter 2, and give some properties that will be helpful

later.

We assume that A ∈ L∞(R3, R3) such that div(A) ∈ L∞(R3, R) and Supp(A) ⊂ D

and n ∈ L∞(R3, C) with non negative imaginary part and positive real part such that n = 1

outside D.

Our direct problem consists in finding the total field u ∈ H1(D) and the scattered field

us ∈ H1(R3 \ D) which verify the following system

(∇+ iA)2u + k2nu = 0 in D, (4.1)

∆us + k2us = 0 in R3 \ D, (4.2)

u − us = ui on ∂D, (4.3)

∂u
∂ν

− ∂us

∂ν
=

∂ui

∂ν
on ∂D, (4.4)

lim
r→∞

r
(

∂us

∂ν
− ikus

)
= 0, (4.5)

where ν denote the outward normal. We proved in chapter 2 that the direct scattering problem

has a unique solution u.

Now, we define the function w by

w(x) =

 u(x)− ui(x) if x ∈ D,

us(x) if x ∈ R3 \ D.

Then, w ∈ H1
loc(R

3) is the unique solution of (∇+ iA)2w + k2nw = Q̃A,nui in R3,

lim
r→∞

r
(

∂w
∂ν − ikw

)
= 0.

(4.6)
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where Q̃A,n is the first order operator given by

Q̃A,n(w) = −iA · ∇w − idiv(Aw) + (|A|2 + k2(1 − n))w. (4.7)

Theorem 4.2.1 ([24]). Let us ∈ H2
loc(R

3 \ D) be an outgoing solution of the Helmholtz

equation in R3 \ D. Then we have the following formula

us(x) =
∫

∂D

(
us ∂Φ

∂ν(y)
(x, ·)− Φ(x, ·)∂us

∂ν

)
ds(y), ∀x ∈ R3 \ D (4.8)

where Φ(·, ·) is given by (2.14).

The following reciprocity lemma will be useful later.

Theorem 4.2.2 (Mixed reciprocity relation). Let u(·, z) be a solution generated by a point

source at z: 
(∇+ iA)2u(·, z) + k2nu(·, z) = −δz, in R3,

u = ui
1 + us; ui

1(x) = Φ(·, z), z ∈ R3 \ D,

lim
r→∞

r
(

∂us

∂r
− ikus

)
= 0,

and ũ(·, d) be a solution of the dual problem generated by the plane wave of direction d,
(∇− iA)2ũ(·, d) + k2nũ(·, d) = 0, in R3,

ũ = ui
2 + ũs; ui

2(x) = eikd·x, d ∈ S2,

lim
r→∞

r
(

∂ũs

∂r
− ikũs

)
= 0.

Then, we have the mixed reciprocity relation

4πu∞(−d, z) = ũs(z, d), z ∈ R3 \ D, d ∈ S2,

where u∞(x̂, z) is the far field pattern of the scattered field us(x, z).

Proof. We have ui
j a solution of (∆ + k2)ui

j = 0 in D for j = 1, 2. Then, according to Green

second formula, we obtain ∫
∂D

(
ui

1
∂ui

2
∂ν

− ui
2

∂ui
1

∂ν

)
ds(y) = 0. (4.9)
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In addition, we know that ũs(·, d), us(·, z) are solutions of the Helmholtz equation outside

of D. Then, for r > 0 large enough such that D ⊂ B(0, r) and according to Green second

formula, we have∫
∂D

(
us(y, z)

∂ũs

∂ν
(y, d)− ũs(y, d)

∂us

∂ν
(y, z)

)
ds(y) = lim

r→∞
Ir(z, d),

where the integral Ir(z, d) is given by

Ir(z, d) =
∫

Sr

(
us(y, z)

∂ũs

∂ν
(y, d)− ũs(y, d)

∂us

∂ν
(y, z)

)
ds(y).

Using the Cauchy-Schwartz inequality and the radiation condition, we get

|Ir(z, d)|2 −→
r→∞

0.

This implies ∫
∂D

(
us(y, z)

∂ũs

∂ν
(y, d)− ũs(y, d)

∂us

∂ν
(y, z)

)
ds(y) = 0. (4.10)

According to the definition of the far field pattern

u∞(x̂) =
1

4π

∫
∂D

(
us ∂

∂ν
(e−ikx̂·y)− ∂us

∂ν
e−ikx̂·y

)
ds(y), ∀x̂ ∈ S2, (4.11)

we obtain for z ∈ R3 \ D and d ∈ S2 that

4πu∞(−d, z) =
∫

∂D

(
us(y, z)

∂ui
2

∂ν
(y)− ui

2(y)
∂us

∂ν
(y, z)

)
ds(y), (4.12)

furthermore, due to the Theorem 4.2.1, we have

ũs(z, d) =
∫

∂D

(
ũs(y, d)

∂ui
1

∂ν
(y)− ui

1(y)
∂ũs

∂ν
(y, d)

)
ds(y), z ∈ R3 \ D, d ∈ S2.

(4.13)

In the other hand, by summing (4.9) and (4.12), we get

4πu∞(−d, z) =
∫

∂D

(
u(y, z)

∂ui
2

∂ν
(y)− ui

2(y)
∂u
∂ν

(y, z)

)
ds(y), (4.14)
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and by subtracting (4.10) from (4.13), one obtains

−ũs(z, d) =
∫

∂D

(
u(y, z)

∂ũs

∂ν
(y, d)− ũs(y, d)

∂u
∂ν

(y, z)
)

ds(y), (4.15)

Adding together (4.14) and (4.15), we have∫
∂D

(
u(y, z)

∂ũ
∂ν

(y, d)− ũ(y, d)
∂u
∂ν

(y, z)
)

ds(y) = 4πu∞(−d, z)− ũs(z, d).

Finally, using Green’s formula twice and the equation satisfied by u and ũ in D, we obtain

the right hand side vanishes.

4.3 | Setting of the inverse problem

In this section, the inverse problem we are interested in is the reconstruction of the domain D

from the knowledge of u∞(x̂, d) for all (x̂, d), (see, for instance, [13, 15, 51, 45]).

4.3.1 | Definition of the far field operator

The far field operator F : L2(S2) −→ L2(S2) is defined, as the integral operator with the far

field pattern as its kernel, as follows

(Fg)(x̂) :=
∫

S2
w∞

A,n(x̂, d)g(d)ds(d), x̂ =
x
|x| , (4.16)

where the far field pattern is given by

w∞
A,n(x̂) = − 1

4π

∫
D

e−ikx̂·yQ̃A,n(ui + w)(y) dy, (4.17)

where w satisfies (4.6) with incident field ui. Now, let us consider the Herglotz operator

H : L2(S2) −→ L2(D),

g 7−→ vg|D, (4.18)

where vg is the Herglotz wave function defined by

vg(x) =
∫

S2
eikx·dg(d)ds(d), x ∈ R3. (4.19)
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The function g is called the Herglotz kernel of vg.

Moreover, let H∗ : L2(D) −→ L2(S2) the adjoint of the operator Herglotz H be defined

as follows

(H∗ψ)(x̂) =
∫

D
e−ikx̂·yψ(y) dy, ψ ∈ L2(D), x̂ ∈ S2. (4.20)

Let us denote by Hinc(D) the closure of the range of H in L2(D). This estimate help us to

consider the compact operator G as follows

G : Hinc(D) −→ L2(S2),

u0 7−→ w∞
A,n, (4.21)

where w∞
A,n is the far field pattern of w solution of (4.6) with incident field ui = u0. Then,

for all g ∈ L2(S2), we obtain

(G ◦ H)(g) =
∫

S2
G(eikx·d)g(d)ds(d) = F(g).

This ensures the first factorization

F = GH. (4.22)

Next, using the definition of w∞
A,n and the adjoint of the Herglotz operator H∗, we can

obtain that G = H∗T where the operator T is defined by

T : L2(D) −→ L2(D)

u0 7−→ − 1
4π

Q̃A,n(ui + w), (4.23)

where w is the solution of (4.6) with incident field ui = u0. Thus, we get the second factor-

ization of the far field operator F : L2(S2) −→ L2(S2) in this form

F = H∗TH. (4.24)

Moreover, let

F# := |ℜ(F)|+ |ℑ(F)|, (4.25)
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where

ℜ(F) :=
1
2
(F + F∗) , ℑ(F) :=

1
2i
(F − F∗), (4.26)

with F∗ is the adjoint of the far field operator F.

The following interior transmission problem serves as a basis for the sampling techniques

that will be discussed later and is defined by: Given ( f , h) ∈ H
3
2 (∂D) × H

1
2 (∂D), find

(u, u0) ∈ L2(D)× L2(D) such that u − u0 ∈ H2(D) and

ITP(A, n)



(∇+ iA)2u + k2nu = 0 in D,

∆u0 + k2u0 = 0, in D,

u − u0 = f on ∂D,
∂u
∂ν − ∂u0

∂ν = h on ∂D,

(4.27)

where ν denotes the outward normal on ∂D.

In the rest of this chapter, we need the following assumption that formulates the well-

posedness of ITP.

Assumption 4.3.1. The refractive index n, the magnetic potential A and the wave number k

are such that ITP(A, n) and ITP(−A, n) are well-posed problem.

The solvability of the interior transmission problem will be studied in Chapter 5.

4.3.2 | Some useful properties for sampling methods

We start now with the following Lemma which gives a characterization of the closure of the

range of H.

Lemma 4.3.2 ([15]). The operator H defined by (4.18) is compact and injective. Let Hinc(D)

be the closure of the range of H in L2(D). Then, we have

Hinc(D) = { v ∈ L2(D) such that ∆v + k2v = 0 in D}. (4.28)

The reciprocity lemma that follows will be helpful.
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Lemma 4.3.3. Let u0, u1 ∈ Hinc(D) and let w0 and w1 ∈ H1
loc(R

3) be the solutions of

(4.6) corresponding to (∇+ iA)2w0 + k2nw0 = Q̃A,n(u0) and (∇− iA)2w1 + k2nw1 =

Q̃−A,n(u1) together with the sommerfield radiation condition. Then∫
D

Q̃A,nu0w1 dx =
∫

D
Q̃−A,nu1w0 dx. (4.29)

Proof. We have that w0 and w1 satisfy

(∇+ iA)2w0 + k2nw0 = Q̃A,nu0 in R3, (4.30)

and

(∇− iA)2w1 + k2nw1 = Q̃−A,nu1 in R3, (4.31)

respectively. Assume that B is an open, D-containing ball with radius R. Multiplying (4.30)

by w1 and (4.31) by w0 and integrating over B yields

∫
B

∆w0w1 dx + i
∫

B
div (Aw0)w1 + iA · ∇w0w1 dx

+
∫

B
(k2n − |A|2)w0w1 dx =

∫
B

Q̃A,nu0w1 dx,

and

∫
B

∆w1w0 dx − i
∫

B
div (Aw1)w0 + iA · ∇w1w0 dx

+
∫

B
(k2n − |A|2)w0w1 dx =

∫
B

Q̃−A,nu1w0 dx.

Taking the difference

∫
B

∆w0w1 − ∆w1w0 dx + i
∫

B
div (Aw0)w1 + iA · ∇w0w1 dx

+ i
∫

B
div (Aw1)w0 + iA · ∇w1w0 dx =

∫
B

Q̃A,nu0w1 − Q̃−A,nu1w0 dx. (4.32)

By integrating by parts, we obtain∫
|x|=R

∂w0

∂r
w1 −

∂w1

∂r
w0ds(x) =

∫
B

Q̃A,nu0w1 − Q̃−A,nu1w0 dx. (4.33)
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Due to the fact that w0 and w1 verify the Sommerfeld radiation and the following identity

lim
R→∞

∫
|x|=R

∣∣wj
∣∣2 ds(x) =

∫
S2

∣∣∣w∞,j
A,n

∣∣∣2 ds(x̂), j = 1, 2,

we obtain

lim
R→∞

∫
|x|=R

∂w0

∂r
w1 −

∂w1

∂r
w0ds(x) = 0.

We finish the proof by letting R → ∞ in (4.33).

Now, we demonstrate the key element needed to justify the sampling Methods.

Theorem 4.3.4. Assume that assumption 4.3.1 holds. Then, The operator G : Hinc(D) −→
L2(S2), defined by (4.21), is injective with dense range. Moreover

Φ∞(·, z) ∈ R(G) if and only if z ∈ D, (4.34)

where Φ∞(·, z) is the far field pattern due to a point source located at the point z which is

given by

Φ∞(x̂, z) =
1

4π
e−ikx̂·z, x̂ ∈ S2. (4.35)

Proof. We start by proving that G is injective with dense range. Let u0 and w satisfy (4.6).

Then, we have

w∞
A,n(x̂) = − 1

4π

∫
D

e−ikx̂·yQ̃A,n(u0 + w)(y) dy, x̂ ∈ S2.

Then, for g ∈ L2(S2), we get

(G(u0), g)L2(S2) = − 1
4π

∫
D

Q̃A,n(u0 + w)(x)
∫

S2
e−ikd·xg(d)ds dx

= − 1
4π

∫
D

Q̃A,n(u0 + w)(x)Hg(x) dx. (4.36)

We assume that u0 = Hφ for some φ ∈ L2(S2) and set w(φ) ≡ w. The equality (4.36) can

be written as

(G(Hφ), g)L2(S2) = k2
∫

D
Q̃A,n(Hφ)Hg dx + k2

∫
D

Q̃A,n(w(φ))Hg dx.
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Using the Lemma 4.3.3, we obtain∫
D

Q̃A,n(w(φ))Hg dx =
∫

D
Q̃−A,n(w(g))Hφ dx,

and by integrating by parts, we find∫
D

Q̃A,n(Hφ)Hg dx =
∫

D
Q̃−A,n(Hg)Hφ dx.

Therefore, we obtain the reciprocity relation

(G(Hφ), g)L2(S2) = (G̃(Hg), φ)L2(S2), (4.37)

where G̃ : Hinc(D) −→ L2(S2) is the operator defined the same as G replacing A by −A.

We assume (G(Hφ), g)L2(S2) = 0, ∀φ ∈ L2(S2). Using the previous reciprocity relation

(4.37), we find G̃(Hg) = 0. We get w(g) = 0 in R3 \ D using Rellich’s Lemma and

the unique continuation principle where w(g) is solution to (4.6) with A replaced by −A.

Moreover, let u := w(g) +Hg, then, we obtain that (u,Hg) is a solution to ITP(−A, n)

with f = h = 0 which implies that Hg = 0 in D. By the injectivity of H (Lemma 4.3.2), we

get g = 0. This proves the denseness of the range of G.

Next, we are going to prove the injectivity of G. Let u0 ∈ Hinc(D) and let w ∈ H1
loc(R

3)

be associated field via (4.6) with ui = u0. Assume that G(u0) = 0. By Rellich’s Lemma

and the unique continuation principle, we obtain that w = 0 in R3 \ D. Therefore, the pair

(u, u0) is a solution to (4.27) with zero data. If we set u := w + u0, then, the assumption of

the well-posedness of ITP(A, n) guarantees that w = u0 = 0, demonstrating the injectivity

of G.

We finish by proving the last part of the theorem. We note that Φ∞(·, z) is the far field

pattern of ue = Φ(·, z) satisfying ∆ue + k2ue = −δz in R3 as well as the Sommerfeld

radiation condition. Let z ∈ D. We take (u, u0) ∈ L2(D) × L2(D) to be the solution to

(4.27) with  f (x) = ue(x, z) x ∈ ∂D,

h(x) = ∂ue(x,z)
∂ν(x) x ∈ ∂D.

(4.38)
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We define

w(x) =

 u(x)− u0(x) x ∈ D,

ue(x, z) x ∈ R3 \ D.
(4.39)

According to (4.38), we have that w ∈ H2(R3) and satisfies (4.6). Therefore G(u0) =

Φ∞(·, z).

Next, let z ∈ R3 \ D. Suppose that there exists u0 ∈ Hinc(D) such that G(u0) =

Φ∞(·, z). We determine that w = ue(·, z) in R3 \ D, where w is the solution to the prob-

lem (4.6), via the Rellich’s Lemma and the unique continuation principle. Given that w ∈
H1(R3 \ D) yet ue(·, z) /∈ H1

loc(R
3 \ D), this results in a contradiction.

The following lemma that follows will be helpful.

Lemma 4.3.5. For all ψ ∈ L2(D), we have the following identity

4πℑ (Tψ, ψ)L2(D) = k
∫

D
|w∞

A,n|2ds + k2
∫

D
ℑ(n)|ψ + w|2 dx. (4.40)

where w is the scattered field solution of (4.6) associated with the incident field ui = ψ.

Proof. Multiplying the first equation of (4.6) by w and applying the Green Theorem, we

obtain ∫
B
(∇+ iA)2ww dx + k2

∫
B

n|w|2 dx =
∫

B
Q̃A,nψw dx,

yields

−
∫

B
|∇w|2 dx + k2

∫
B
|w|2 dx +

∫
B

iA · ∇ww + idiv(Aw)w dx

+
∫
|x|=R

∂w
∂ν

wds −
∫

B
(|A|2 + k2(1 − n))|w|2 dx

= −
∫

B
(iA · ∇ψw + idiv(Aψ)w) dx +

∫
B
(|A|2 + k2(1 − n))ψw dx,
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which implies∫
D
(|A|2 + k2(1 − n))(ψ + w)w dx − i

∫
B

A · ∇(ψ + w)w dx

− i
∫

B
div(A(ψ + w))w dx

= −
∫

B
|∇w|2 dx + k2

∫
B
|w|2 dx +

∫
|x|=R

∂w
∂ν

wds.

Taking the imaginary part, we find

ℑ
(∫

|x|=R

∂w
∂ν

wds
)
= ℑ

(∫
D
(|A|2 + k2(1 − n))(ψ + w)w dx

)
−ℑ

(
i
∫

B
A · ∇(ψ + w)w + div(A(ψ + w))w dx

)
,

using the fact that

ℑ
(∫

|x|=R

∂w
∂ν

wds
)
= k

∫
S2
|w∞

A,n|2ds, (4.41)

we obtain

k
∫

S2
|w∞

A,n|2ds = ℑ
(∫

D
(|A|2 + k2(1 − n))(ψ + w)w dx

)
−ℑ

(
i
∫

B
A · ∇(ψ + w)w + div(A(ψ + w))w dx

)
.

Next, we have

(Tψ, ψ)L2(D) =
1

4π

∫
D

iA · ∇(ψ + w)w dx +
1

4π

∫
D

idiv(A(ψ + w))ψ dx

+
1

4π

∫
D
(k2(n − 1)− |A|2)(ψ + w)w dx.

Since (ψ + w)ψ = |ψ + w|2 − (ψ + w)w, we find

(Tψ, ψ)L2(D) =
1

4π

∫
D

iA · ∇(ψ + w)ψ dx +
1

4π

∫
D

idiv(A(ψ + w))ψ dx

− 1
4π

∫
D
(k2(n − 1)− |A|2)(ψ + w)w dx

+
1

4π

∫
D
(k2(n − 1)− |A|2)|ψ + w|2dx,
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therefore, we get

4πℑ
(
(Tψ, ψ)L2(D)

)
= ℑ

(∫
D

iA · ∇(ψ + w)ψ + idiv(A(ψ + w))ψ dx
)

+ℑ
(∫

D
(|A|2 + k2(1 − n))(ψ + w)w dx

)
+ k2

∫
D
ℑ(n)|ψ + w|2 dx

= ℑ
(∫

D
iA · ∇(ψ + w)(ψ + w) + idiv(A(ψ + w))ψ + w dx

)
+ k

∫
S2
|w∞

A,n|2ds + k2
∫

D
ℑ(n)|ψ + w|2 dx.

Knowing that

∫
D
[iA · ∇(ψ + w) + idiv(A(ψ + w))]ψ + w dx

= −2ℑ
(∫

D
A · ∇(ψ + w)(ψ + w) dx

)
∈ R,

gives us the desired result.

We have the following lemma.

Lemma 4.3.6. Let ℑ(n) ≥ 0 and ℜ(n − 1) ≥ α > 0 in D ( respectively ℜ(1 − n) ≥ α > 0

in D). Then, the operator T satisfies

ℑ
(
(Tψ, ψ)L2(D)

)
≥ 0, ∀ψ ∈ Hinc(D). (4.42)

Moreover, ℑ(T) is injective on Hinc(D) and we can decompose ℜ(T) as ℜ(T) = T0 + C

where C is compact on Hinc(D) and T0 satisfies

(T0ψ, ψ)L2(D) ≥ β∥ψ∥2
L2(D), (4.43)

for all ψ ∈ Hinc(D) and for some β > 0.

Proof. We have

T(ψ) = − 1
4π

Q̃A,n(ψ + w(ψ)), (4.44)
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where w(ψ) is a solution of (4.6) with ui = ψ. Let T0 : L2(D) −→ L2(D) the operator

defined by

T0(ψ) =
k2

4π
ℜ(n − 1)ψ. (4.45)

For all ψ ∈ Hinc(D), we have∣∣∣(T0ψ, ψ)L2(D)

∣∣∣ ≥ k2

4π

∣∣∣∣∫D
ℜ(n − 1)|ψ|2 dx

∣∣∣∣ ≥ k2α

4π
∥ψ∥2

L2(D),

which implies T0 is coercive. Moreover, we define T1 := ℜ(T)− T0 as follows

T1 : L2(D) −→ L2(D)

ψ 7−→ T1(ψ) = (T
′
1 + T

′′
1 )(ψ),

where

T
′
1(ψ) =

1
4π

(iA · ∇w(ψ) + idiv(Aw(ψ))) +
1

4π

(
k2ℜ(n − 1)− |A|2

)
w(ψ),

and

T
′′
1 (ψ) =

1
4π

(iA · ∇ψ + idiv(Aψ)− |A|2ψ), ψ ∈ L2(D).

Let ψj ∈ Hinc(D) such that ψj ⇀ 0 in L2(D) and wj = w(ψj) ∈ H2(D). Then, by th

continuous of the mapping ψj 7−→ w(ψj) from L2(D) into H2(D), we have that wj −⇀ 0 in

H2(D) and ∇wj ⇀ 0 in H1(D). Using the Rellich’s compact embedding Theorem, we find

wj −→ 0 in L2(D) and ∇wj −→ 0 in L2(D). Then, wj −→ 0 in H1(D). Furthermore, we

obtain

∥T
′
1(ψj)∥ ≤ C∥wj∥H1(D) ∀j ∈ N, (4.46)

which implies that T
′
1 is compact. Moreover, we have ψj ∈ Hinc(D) then by combining the

elliptic regularity with the knowledge that A has compact support in D, we get that ψ 7−→
− 1

4π |A|2ψ is compact and that div(Aψj), A · ∇ψj ∈ L2(K), for all K compact of D which

means that there is a constant C(K) such that

∥A · ∇ψj∥L2(K) ≤ C(K)∥ψj∥L2(D) ∀j ∈ N, (4.47)
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which implies that T
′′
1 is compact. Therefore, we obtain T1 is compact. From (4.40), we have

ℑ
(
(Tψ, ψ)L2(D)

)
≥ 0.

To finish the proof, we only need to demonstrate that ℑ(T) is injective on Hinc(D). We have

(ℑ(T)ψ, ψ)L2(D) = ℑ
(
(Tψ, ψ)L2(D)

)
= 0, which implies

k
∫

D
|w∞

A,n|2ds + k2
∫

D
ℑ(n)|ψ + w|2 dx = 0.

Since k is not a transmission eigenvalues and ℑ(n) ≥ 0, we find w∞
A,n = 0 and ψ + w = 0

in D, which implies with the help of Rellich’s Lemma that w = 0 in R3 \ D. Moreover,

the pair (w + ψ, w) is a solution to (4.27) with zero data. Then, by the assumption of the

well-posedness of ITP, we deduce that w = ψ = 0.

4.4 | Application to sampling methods

4.4.1 | The Linear Sampling Method (LSM)

Let’s now describe the Linear Sampling Method (LSM), which has been first introduced in

a paper by Kirsh and Colton in 1996 [21] and analyzed in a number of subsequent works,

[27, 18, 14]. The LSM allows the reconstruction of the shape of an obstacle (or a local

inhomogeneity) from multi-static data at a fixed frequency. This method has the simplest

formulation and can be easily adapted to different settings of the data (near field data, data

available on a limited aperture) and the scattering problem (inhomogeneous background). For

different applications of the LSM for obstacle detection with various boundary conditions in

the case of Helmholtz or Maxwell equation we refer to [13, 18, 23] and also for scattering by

a partially coated crack you can see [14, 59].

The argument for the Linear Sampling Method (LSM) is based on the following theorem.

Theorem 4.4.1. The operator F : L2(S2) −→ L2(S2) is injective with dense range. More-

over,
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(i) If z ∈ D then there exists a sequence gα
z ∈ L2(S2) such that lim

α→0
∥Fgα

z −Φ∞(·, z)∥L2(S2) =

0 and lim
α→0

∥Hgα
z∥L2(D) < ∞.

(ii) If z /∈ D then for all gα
z ∈ L2(S2) such that lim

α→0
∥Fgα

z − Φ∞(·, z)∥L2(S2) → 0 and

lim
α→0

∥Hgα
z∥L2(D) = ∞.

Proof. Using the injectivity and the denseness of the range of the operators H and G, which

are provided by Lemma 4.3.2 and Theorem 4.3.4, we obtain the injectivity and the denseness

of the range of F.

If z ∈ D, let u0 ∈ Hinc(D) be such that G(u0) = Φ∞(·, z), which is true according

to Theorem 4.3.4, exists. The first statement arises from the fact that F = G ◦ H, which is

shown by Lemma 4.3.2, that there exists a sequence gα
z ∈ L2(S2) such that Hgα

z −→ u0 as

α → 0.

If z /∈ D. Let gα
z ∈ L2(S2) be such that ∥F(gα

z )− Φ∞(·, z)∥L2(S2) −→ 0 as α → 0. We

assume that ∥Hgα
z∥L2(D) is bounded as α → 0. We can assume that Hgα

z weakly converges to

some u0 ∈ Hinc(D) without suffering from generality loss. Theorem 4.3.4’s final statement is

in conflict with the limit G(u0) = Φ∞(·, z), which results from the fact that F = G ◦H.

The numerical implementation of the LSM consists of 3 main steps:

■ Utilizing a priori data on the approximate size and location of the scatterer, the parame-

ter z is varied over a grid in the region where the scatterer D is to be located. To ensure

the effectiveness of this approach, the grid has to be "fine enough" and D needs to be

within the search domain.

■ This step involves using each z in the grid to approximately solve the following equation

by finding gα
z ∈ L2(D) such that

F(gα
z ) ≃ Φ∞(·, z), (4.48)

using Tikhonov regularization [88], which requires the solution gα
z ∈ L2(S2) of the

equation

(α + FF∗)gα
z = F∗(Φ∞(·, z)), (4.49)
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where α > 0 denotes the regularization parameter, and the Morozov discrepancy prin-

ciple [27]. Assuming that Fδ is the far field operator corresponding to noisy measure-

ments uδ
∞ such that

∥uδ
∞ − u∞∥L2(S2)×L2(S2) ≤ δ. (4.50)

For each z, the parameter α is chosen in such away that

∥Fδgα(·, z)− Φ∞(·, z)∥L2(S2) = δ∥gα(·, z)∥L2(S2). (4.51)

■ The indicator function I(z) = 1
∥gα

z∥L2(D)
is then plotted and enabling the extraction of

the scatterer as the location of z for which I(z) does not vanish.

4.4.2 | The Factorization Method F#

The Factorization method has been first introduced by A. Kirsh on 1998 [51]. It is inspired

from the Linear Sampling Method. Unlike LSM, which relies on an approximate solution, this

approach provides a exact characterisation of the scatterer in terms of the far field operator. In

[52], Kirsch studied the acoustic inhomogeneous medium case. In [54], he extended the the

Factorization method to include absorbing media or limited aperture. For a thorough analysis

of the Factorization method utilized to solve many inverse problems, see the monograph [56].

The following lemma gives the characterization of D in terms of the operator H∗.

Lemma 4.4.2 ([15]). For z ∈ R3, we have that z ∈ D if and only if Φ∞(·, z) is in the range

of H∗.

In view of the previous Lemma, Lemma 4.3.6 and Lemma 4.3.2, we can apply directly

the result of the factorization method F# (see Theorem 2.31, [15]).

Theorem 4.4.3. Let ℑ(n) ≥ 0 and ℜ(n− 1) ≥ α > 0 in D ( respectively ℜ(1− n) ≥ α > 0

in D). Then, z ∈ D if and only if Φ∞(·, z) as in the range of (F#)
1
2 .

The factorization method (FM) consists also of three main steps:
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■ Utilizing a priori data on the approximate size and location of the scatterer, the parame-

ter z is varied over a grid in the region where the scatterer D is sought. For this approach

to be effective, the grid must to be sufficiently fine and D needs to be within the search

domain.

■ The second step consists of using each z in the grid to approximately solve the following

equation by finding gz,# ∈ L2(D) such that

F#(gz,#) ≃ Φ∞(·, z) (4.52)

and then computing gz,# by using Tikhonov regularization [88] along with the Morozov

discrepancy principle [27].

■ Finally, the indicator function I(z) = 1
∥gz,#∥L2(D)

is plotted, and valuable information

about the scatterer can be extracted.

4.4.3 | Validating Numerical Experiments

We conclude the study with numerical tests of the sampling methods presented earlier. Our

focus in this section is solely on two-dimensional models.

4.4.3.1 | Reconstruction using LSM

The frequency is k = 6 and Nd equidistant incident directions and observation points have

been used. The data have been generated synthetically by solving the forward scattering

problem using a standard finite element method. Let gα
z be the Tikhonov regularized solution

of (4.49), where the regularization parameter is computed using the Morozov discrepancy

principle.

In the following numerical examples, we show the reconstruction of domain D using the

indicator function

I(z) = 1
∥gα

z∥L2(D)
. (4.53)
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■ For D is a ball domain:

Figure 4.1: Reconstruction of the domain D for A = 0 (on the left) and for A =
2.5(− sin(θ), cos(θ)) in D where θ ∈ (0, 2π) and A = 0 outside D (on the right).

Figure 4.2: Reconstruction of the domain D with the presence of A, i.e., A =
2.5(− sin(θ), cos(θ)) in D where θ ∈ (0, 2π) and A = 0 outside D, for Nd = 40 (on
the left) and Nd = 60 (on the right).
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■ For D is a different geometry:

Figure 4.3: Reconstruction of the domain D for A = 0 (on the left) and for A = 2.5(xθ, yθ)
in D where xθ = 0.8 cos(2θ) cos(θ)− (1.+ 0.4 sin(2θ)) sin(θ), yθ = 0.8 cos(2θ) sin(θ)+
(1 + 0.4 sin(2θ)) cos(θ) and θ ∈ (0, 2π) and A = 0 outside D where div(A) = 0, (on the
right).

Figure 4.4: Reconstruction of the domain D with the presence of A where A = 2.5(xθ, yθ) in
D where xθ = 0.8 cos(2θ) cos(θ)− (1. + 0.4 sin(2θ)) sin(θ), yθ = 0.8 cos(2θ) sin(θ) +
(1 + 0.4 sin(2θ)) cos(θ) and θ ∈ (0, 2π) and A = 0 outside D (div(A) = 0) for Nd = 40
(on the left) and Nd = 60 (on the right).
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4.4.3.2 | Reconstruction using factorization method F#

The frequency is k = 6 and Nd equidistant incident directions and observation points have

been used. The data have been generated synthetically by solving the forward scattering

problem using a standard finite element method. Let gα
z be the Tikhonov regularized solution,

where the regularization parameter is equal to zero.

In the following numerical examples, we show the reconstruction of domain D using the

indicator function

I(z) = 1
∥gα

z,#∥L2(D)
. (4.54)
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■ For D is a ball domain:

Figure 4.5: Reconstruction of the domain D for A = 0 (on the left) and for A =
2.5(− sin(θ), cos(θ)) in D where θ ∈ (0, 2π) and A = 0 outside D (on the right).

Figure 4.6: Reconstruction of the domain D with the presence of A, i.e., A =
2.5(− sin(θ), cos(θ)) in D where θ ∈ (0, 2π) and A = 0 outside D, for Nd = 40 (on
the left) and Nd = 60 (on the right).
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■ For D is a different geometry:

Figure 4.7: Reconstruction of the domain D for A = 0 (on the left) and for A = 2.5(xθ, yθ)
in D where xθ = 0.8 cos(2θ) cos(θ)− (1.+ 0.4 sin(2θ)) sin(θ), yθ = 0.8 cos(2θ) sin(θ)+
(1 + 0.4 sin(2θ)) cos(θ) and θ ∈ (0, 2π) and A = 0 outside D where div(A) = 0 (on the
right).

Figure 4.8: Reconstruction of the domain D with the presence of A where A = 2.5(xθ, yθ) in
D where xθ = 0.8 cos(2θ) cos(θ)− (1. + 0.4 sin(2θ)) sin(θ), yθ = 0.8 cos(2θ) sin(θ) +
(1 + 0.4 sin(2θ)) cos(θ) and θ ∈ (0, 2π) and A = 0 outside D (div(A) = 0) for Nd = 40
(on the left) and Nd = 60 (on the right).
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4.5 | Another approach for the uniqueness of

the domain D

The factorization method proves the unique reconstruction of D from far field data. Other

approach, we can demonstrate the uniqueness of the support without necessarily having the

uniqueness of A and q. The idea of demonstrating uniqueness in the inverse medium scatter-

ing problem dates back to [44, 45], where it is shown that the shape of a penetrable, inhomo-

geneous, isotropic medium is uniquely determined by its far field pattern u∞(·, d), d ∈ S2 for

all incident plane waves ui := eikx·d. Our approach follows the one in [15] for A = 0. We

make the assumption that supp(A) ⊂ D.

Let f ∈ H
1
2 (∂D) and h ∈ H− 1

2 (∂D). The interior transmission problem we are consid-

ering is

(∇+ iA)2u + k2nu = 0 in D, (4.55)

∆v + k2v = 0 in D, (4.56)

u − v = f on ∂D, (4.57)

∂u
∂ν

− ∂v
∂ν

= h on ∂D. (4.58)

We begin by making the following assumption, which formulates the well-posedness of a

modified interior transmission problem.

Assumption 4.5.1. A and n are such that the modified interior transmission problem: Given

f ∈ H
1
2 (∂D), h ∈ H− 1

2 (∂D), ℓ1 ∈ L2(D) and ℓ2 ∈ L2(D), find u ∈ H1(D) and v ∈
H1(D) satisfying

(∇+ iA)2u + γ1nu = ℓ1 in D, (4.59)

∆v + γ2v = ℓ2 in D, (4.60)

u − v = f on ∂D, (4.61)

∂u
∂ν

− ∂v
∂ν

= h on ∂D, (4.62)
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for some constants γ1 and γ2, has a unique solution which satisfies

∥u∥H1(D) + ∥v∥H1(D) ≤ C
(
∥ f ∥

H
1
2 (∂D)

+ ∥h∥
H− 1

2 (∂D)
+ ∥ℓ1∥L2(D) + ∥ℓ2∥L2(D)

)
.

The following lemma which will be used in the proof of the uniqueness Theorem.

Lemma 4.5.2. assume that Assumption 4.5.1 holds, and let (vn, un) ∈ H1(D)× H1(D),

j ∈ N be a sequence of solutions to the interior transmission problem (4.55)-(4.58) with

boundary data fn ∈ H
1
2 (∂D), hn ∈ H− 1

2 (∂D). If the sequences ( fn) and (hn) converge

in H
1
2 (∂D) and H− 1

2 (∂D) respectively, and if the sequence (vn) and (un) are bounded in

H1(D), then there exists a subsequence (vnk) which converges in H1(D).

Proof. We have (un, vn) a sequence of solutions to

(∇+ iA)2un + k2nun = 0 in D,

∆vn + k2vn = 0 in D,

un − vn = fn on ∂D,

∂un

∂ν
− ∂vn

∂ν
= hn on ∂D.

Then, thanks to the compact embedding of H1(D) into L2(D), we select L2-convergent sub-

sequences (unk) and (unk) which satisfies

(∇+ iA)2ukn + γ1unk = (γ1 − k2n)ukn in D,

∆vkn + γ2vnk = (γ2 − k2)vkn in D,

ukn − vkn = fkn on ∂D,

∂ukn

∂ν
− ∂vkn

∂ν
= hkn on ∂D,

or we know that the assumption 4.5.1 holds, we get

∥vnk − v∥H1(D) ≤ C
(
∥ fnk − f ∥

H
1
2 (∂D)

+ ∥hnk − h∥
H− 1

2 (∂D)
+ ∥unk − u∥L2(D)

+∥A∥L∞(D)∥unk − u∥
H− 1

2 (∂D)
+ ∥vnk − v∥L2(D)

)
−−→
nk→∞

0,
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which completes the proof.

Armed with above, we establish now the uniqueness result.

Theorem 4.5.3. Let the domains D1 et D2 and the couples (−A1, n1) and (−A2, n2) are

such that Assumption 4.5.1 holds. If the far field patterns ũ∞
1 (x̂, d) and ũ∞

2 (x̂, d) correspond-

ing to D1, A1, n1 and D2, A2, n2, respectively, coincide for all x̂ ∈ S2 and d ∈ S2, then

D1 = D2.

Proof. Let G be the unbounded connected component of R3 \ (D1 ∪ D2) and define De
1 =

R3 \ D1 and De
2 = R3 \ D2. We denote u = u1 − u2, then, we obtain

u∞(x̂, d) = u∞
1 (x̂, d)− u∞

2 (x̂, d) = 0, ∀x̂, d ∈ S2,

therefore, according to Rellich’s Lemma , we get

us
1(·, d) = us

2(·, d) in G, ∀d ∈ S2,

where us
j , j = 1, 2 is a solution of the problem (4.1)− (4.4) with D1, A1, n1 and D2, A2, n2,

respectively, and ui(x) = eikx·d, d ∈ S2.

For the incident field ui := Φ(·, z), z ∈ G, we denote us
1(·, z) and us

2(·, z) the scattered fields

associated to D1, −A1, n1 and D2, −A2, n2, respectively. Based on the mixed reciprocity

relation (Theorem 4.2.2), we have

4πu∞
j (−d, z) = us

j(z, d), z ∈ G, d ∈ S2, j = 1, 2 ,

where u∞(·, z) = u∞
1 (·, z)− u∞

2 (·, z) such that u∞
1 (·, z) and u∞

2 (·, z) are the far field pattern

corresponding to D1, −A1, n1 and D2, −A2, n2, respectively, which implies

u∞(−d, z) = us
1(z, d)− us

2(z, d) = 0, ∀d ∈ S2, z ∈ G.

Then, according to Rellich’s Lemma, we obtain

us
1(·, z) = us

2(·, z), z ∈ G.
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Therefore, we get

w1(·, z) = w2(·, z), ∀z ∈ G,

where wj(·, z), j = 1, 2 is a solution of (4.6).

Now, we assume that D1 ̸⊂ D2. From the fact that De
2 is connected, we can find a point

z ∈ ∂D1 and ε > 0 with the following proprieties:

(i) B(z, 8ε) ∩ D2 = ∅ ,

(ii) D1 ∩ B(z, 8ε) ⊂ Cz(D1), where Cz(D1) connected component of z in D1.

(iii) There exist points a1, · · · aℓ ∈ Cz(D1) such that a1, · · · aℓ /∈ D1 ∩ B(z, 8ε),

(vi) the points zn = z + ε
n ν(z) ∈ G, ∀n ∈ N, where ν(z) is the unit normal to ∂D1 at z.

In the other hand, we have the singularity of Φ(·, z) i.e,

Φ(x, z) =
eik|x−z|

4π|x − z| −→x→z
∞.

Or we have

∥Φ(·, zn)∥2
L2(D1)

≤ C
∫

D(zn,αε)

1
|x − zn|2

dx

≤ C
∫

D(zn,αε)

1
|αε|2 dx = C

1
|αε|2 Vol(D(zn, αε)), ∀n ∈ N,

where D(zn, αε) represent the disk with center zn and radius αε with α ∈ N, such that

D1 ⊂ D(zn, αε), and we have

∥∇Φ(·, zn)∥2
L2(D1)

≥
∫

D1

∣∣∣∣Φ(x, zn)

|x − zn|

∣∣∣∣2 dx −
∫

D1

k2|Φ(x, zn)|2dx

≥ C
∫

D1

1
|x − zn|4

dx − c
∫

D1

1
|x − zn|2

dx

≥ C
∫

D1

1
|x − zn|4

dx − m,

or ∫
D1

1
|x − zn|4

dx diverges.
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Then

∥∇Φ(·, zn)∥2
L2(D1)

−→
n→∞

∞,

which implies

∥Φ(·, zn)∥H1(D1)
−→
n→∞

∞.

Now, we define vn by

vn(x) =
1

∥Φ(·, zn)∥H1(D2)
Φ(x, zn), x ∈ D1 ∪ D2,

we obtain, for each n, that vn is a solution of the Helmholtz equation in D1 and D2.

Besides, we define

wn
j =

wj

∥Φ(·, zn)∥H1(D1)
, j = 1, 2 ,

then wn
j is a solution of the equation

(∇+ iA)2wn
j + k2njwn

j = −PAvn + k2(1 − nj)vn in R3. (4.63)

Our goal is to prove that if D1 ̸⊂ D2 then w1(·, z) = w2(·, z), z ∈ G, which allows the

existence of a subsequence (vnk) from (vn) that implies

vnk −→ 0 in H1(D1).

Contradiction because ∥vn∥H1(D1)
= 1. From the fact that

w1(·, z) = w2(·, z), ∀z ∈ G,

we get

wn
1(·, z) = wn

2(·, z), ∀z ∈ G.

In one way, we have Φ(·, zn) with their derivatives are uniformly bounded in every compact

subset of R3 \ B(z, 2ε) and such that

∥Φ(·, zn)∥H1(D1)
−−→
n→∞

∞,
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then

∥vn∥H1(D2)
−−→
n→∞

0.

In other ways, if R is large enough such that D1 ∪ D2 ⊂ B(0, R) and from (??) we have

∥wn
2∥H2(B(0,R)∩G) ≤ C∥vn∥H1(D2)

−→
n→∞

0,

therefore

∥wn
2∥H1(B(0,R)∩G) ≤ C∥wn

2∥H2(B(0,R)∩G) −→n→∞
0.

Making use of w1
n = w2

n in G, it follows

∥wn
1∥H1(B(0,R)∩G) −→n→∞

0.

Now, let be χ ∈ C∞
0 (B(z, 8ε)) such that χ(x) = 1 in B(z, 7ε). Or according to the trace

Theorem, we get

∥χwn
1∥H

1
2 (∂D1)

≤ C∥χwn
1∥H1(B(0,R)\D1)

≤ C∥wn
1∥H1(B(0,8ε)∩(B(0,R)∩G))

≤ C∥wn
1∥H1(G∩B(0,R))

−→
n→∞

0,

then

(χwn
1) −→ 0 in H

1
2 (D1). (4.64)

and the same way for ∂νwn
1 , we obtain(

∂χwn
1

∂ν

)
−→ 0 in H

1
2 (D1). (4.65)

It is enough that the condition (ii) and (vi) on z are verified to ensure B(z, 8ε) ∩ De
1 =

B(z, 8ε) ∩ G. Moreover, we have in the outside of B(z, 2ε)

∥vn∥H2(B(0,R)\B(z,2ε)) ≤ C, ∀n ∈ N.
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and we have

∥wn
1∥H2((B(0,R)∩De

1)\B(z,4ε)) ≤ C∥vn∥H2(D1∪D2)

≤ C∥vn∥H2(B(0,R)\B(z,2ε)), ∀n ∈ N.

In the one hand, using the compact embedding of H2(B(0, R) ∩ De
1) into H1(B(0, R) ∩

De
1), then we can select a subsequence

(
(1 − χ)wnk

1

)
of
(
(1 − χ)wn

1
)
. Thus,

(
(1 − χ)wnk

1

)
converges in H

1
2 (∂D1) and

(
∂((1−χ)w

nk
1 )

∂ν

)
converges in H− 1

2 (∂D1).

In the other hand, from (4.64) and (4.65), we obtain
(
wn

1
)

and
(

∂wn
1

∂ν

)
converge in H

1
2 (∂D1)

and H− 1
2 (∂D1) respectively. Since the functions wn

1 + vnk and vnk are solutions to the interior

transmission problem (4.55)-(4.58) with D = D1, f = wn
1 and h =

∂wn
1

∂ν , we get

∥wn
1 + vnk∥H1(D1)

≤ C1 and ∥vnk∥H1(D1)
≤ C2; ∀n ∈ N,

and according to the Lemma 4.5.2, we can extract a subsequence of (vnk), denoted again by

(vnk), which

vnk −→ v in H1(D1),

with v ∈ H1(D1) is a weak solution of the Helmholtz equation.

Or due to the the uniform convergence of (vnk) towards 0 outside of B(z, 2ε), then v|D1\B(z,2ε) =

0. Therefore, according to the Holmgren’s uniqueness Theorem, we get v(x) = 0, ∀x ∈ D1.

Contradiction with the fact that ∥vnk∥H1(D1)
= 1 which implies that the hypothesis of D1 ̸⊂

D2 is false.

We do the same work to mount the contradiction of the hypothesis D1 ̸⊂ D2. Then, we obtain

D1 = D2.

This achieves the proof.
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5

The study of interior transmission
problem for magnetic Schrödinger

operator

Abstract:

This chapter presents a study of the interior transmission problem (ITP) for the magnetic

Schrödinger operator focusing on establishing the well-posedness of the (ITP), and the

discreteness of the set of transmission eigenvalues through the application of Fredholm

theory and the upper triangular Fredholm theory.
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5.1 | Introduction

The interior transmission problem (ITP) is by now a well known problem in inverse scattering

theory that plays a fundamental role in the theoretical and numerical investigations of the

inverse medium problem (see, for example, [13, 24, 14]). The ITP was first posed by Kirsch

in [55]. A few years later, Colton and Monk in [25] used the interior transmission problem

to solve the inverse scattering problem for acoustic waves in an inhomogeneous medium. A

particular attention has been given in recent years to the study of the frequencies for which

this problem has non unique solutions : the so-called transmission eigenvalues. These values

can for instance be used to obtain bounds of the inclusion physical parameters [17, 26], or

more importantly in non destructive testing of complex materials [16].

This chapter is organized as follows. In Section 5.2, we start by presenting the Fredholm

theory in Subsection 5.2.1, which helps to study our interior transmission problem by estab-

lishing the existence and uniqueness of the solution in Subsection 5.2.2. We then explore the

behavior of transmission eigenvalues and derive conditions for their existence in subsection

5.2.3. Next, in Section 5.3, we drive the analysis of our ITP by applying the upper triangu-

lar Fredholm theory in Subsection 5.3.4 and the Born approximation in Subsection 5.3.3 to

demonstrate in other ways the existence and discreteness of the set of transmission eigenval-

ues.
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5.2 | Study of ITP using Fredholm Theory

This section aims to investigate the solvability of the interior transmission problem. The

Fredholm property of this problem and the discreteness of transmission eigenvalues were

initially studied in [86]. However, our approach will align with the methodology presented

by Kirsch in [50]. Kirsch revisited the findings of [86] for a real-valued refractive index and

achieved identical results through a variational approach. Nevertheless, before proceeding,

we will review the fundamental properties of Fredholm theory.

5.2.1 | Fredholm Theory

We want to briefly review the proprieties of the Fredholm theory that we will use in what

follows for the discreteness of the set of transmission eigenvalues (see [28, 47, 86]).

Definition 5.2.1. Let H be a Hilbert space. An operator T : H −→ H is a Fredholm

operator, if Ker(T) and Coker(T) := H/Im(T) are finite-dimensional where Coker(T) is

the complement space of Ker(T).

Moreover, we define the index of T by

ind(T) := dim Ker(T)− dim Coker(T), (5.1)

where the codimension of Im(T) is dim Coker(T).

The index indicates how many dimensions are missing for Ker(T) or Coker(T): if the

index is negative, then T is not surjective; if it is positive, then T is not injective.

We now state by the following theorem that compact perturbations do not change Fred-

holmness and do not change the index.

Theorem 5.2.2 (Alternative Fredholm [47]). Let T be Fredholm operator of index ind(T). If

K is a compact operator, then T + K is a Fredholm operator of index ind(T + K) = ind(T).

Using the definition of operator’s index (5.1), we get the following proposition.
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Lemma 5.2.3. Let T a Fredholm operator of index zero . If T is injective (Ker(T) = {0})
or T is surjective (Coker(T) = {0}), then T is invertible.

Remark 5.2.4. If T is invertible then T is Fredholm of index zero.

Lemma 5.2.5 (Analytic Fredholm Theorem). Suppose that R(λ) is an analytic compact op-

erator valued function of λ for λ in an open connected set Γ. Then if I − R(λ0) is invertible

for one λ0 ∈ Γ, it is invertible for all but a discrete subset Λ of Γ. Moreover, for λ ∈ Λ,

I − R(λ) is a Fredholm operator.

5.2.2 | Interior transmission problem

Here, we will delve into the process of establishing the well-posedness of our interior trans-

mission problem.

5.2.2.1 | Setting of the problem

Let D ⊂ R3, be a bounded open set with smooth boundary such that (R3 \ D) is connected.

We assume that there is a neighborhood of the boundary N , which is an open subdomain

N ⊂ D with ∂D ⊂ N , where we impose conditions on the contrast n − 1. In D ⊂ N , the

contrast n − 1 can take on any value.

Let us denote

L2
∆(D) := {v ∈ L2(D); ∆v ∈ L2(D)}.

Furthermore, the Hilbert space H2
0(D) to be the completion of C∞

0 (D) in the norm

∥u∥2
L2

∆(D)
= ∥u∥2

L2(D) + ∥∆u∥2
L2(D). (5.2)
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Figure 5.1: Sketch of geometry

In this section, we assume that Assumption 2.4.1 holds, i.e., letting the magnetic potential

A ∈ L∞(R3, R3) such that div(A) ∈ L∞(R3, R) and Supp(A) ⊂ D and the refractive

index n ∈ L∞(R3, C) with non negative imaginary, positive real and n = 1 outside the

support D. The interior transmission problem is to find (w, v) ∈ L2(D)× L2
∆(D) such that

w − v ∈ H2(D) and 

(∇+ iA)2w + k2nw = 0 in D,

∆v + k2v = 0, in D,

w − v = f on ∂D,
∂w
∂ν − ∂v

∂ν = h on ∂D,

(5.3)

for given ( f , h) ∈ H
3
2 (∂D)× H

1
2 (∂D) where ν denotes the outward normal on ∂D.

Definition 5.2.6. Values of k ∈ C for which the interior transmission problem

(∇+ iA)2w + k2nw = 0 in D,

∆v + k2v = 0, in D,

w − v = 0 on ∂D,
∂w
∂ν − ∂v

∂ν = 0 on ∂D,

(5.4)

has non-trivial solutions w and v, are called transmission eigenvalues.
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Let u = 1
k2 (w − v) and given f ∈ H

3
2 (∂D) and h ∈ H

1
2 (∂D), find u ∈ H2(D) and

v ∈ L2
∆(D) such that and

(∇+ iA)2u + k2nu = − 1
k2 PAv − (n − 1)v in D,

∆v + k2v = 0 in D,

u = f on ∂D,
∂u
∂ν = h on ∂D.

(5.5)

where PA is the first order operator given by

PAv = iA · ∇v + idiv(Av)− |A|2v, v ∈ H1
loc(R). (5.6)

Moreover, let θ ∈ H2(D) such that θ = f and ∂θ
∂ν = h on ∂D. Then, θ satisfies

∥θ∥H2(D) ≤ C
(
∥ f ∥

H
3
2 (∂D)

+ ∥h∥
H

1
2 (∂D)

)
. (5.7)

It’s possible to transform (5.5) to the following problem: Given F ∈ L2(D), find u ∈ H2
0(D)

and v ∈ L2
∆(D) such that

(∇+ iA)2u + k2nu = − 1
k2 PAv − (n − 1)v + F in D,

∆v + k2v = 0 in D,

u = 0 on ∂D,
∂u
∂ν = 0 on ∂D.

(5.8)

The above equations are assumed to be satisfied in the following weak sense∫
D
(∆ψ + k2ψ)v dx = 0,∫

D

[
(∇+ iA)2u + k2nu +

1
k2 PAv + (n − 1)v

]
φ dx =

∫
D

Fφ dx,

for all ψ ∈ H2
0(D) and φ ∈ L2

∆(D).

Let us denote X(D) := H2
0(D)× L2

∆(D). Then, the problem (5.8) can be written in the

following equivalent variant form: Find (u, v) ∈ X(D) such that for all (ψ, φ) ∈ X(D)∫
D
(∆ψ + k2ψ)v dx +

∫
D
(∇+ iA)2uφ + k2nuφ dx

+
∫

D

(
1
k2 PAvφ + (n − 1)vφ

)
dx =

∫
D

Fφ dx. (5.9)
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For any k ∈ C, we define the sequilinear form Bk : X(D)× X(D) −→ C by

Bk(u, v; ψ, φ) =
∫

D
(∆ψ + k2ψ)v dx +

∫
D
((∇+ iA)2u + k2nu)φ dx

+
∫

D

(
1
k2 PAvφ + (n − 1)vφ

)
dx, (5.10)

for all (u, v) ∈ X(D) and (ψ, φ) ∈ X(D). Let define also the sequilinear form B̂k : X(D)×
X(D) −→ C by

B̂k(u, v; ψ, φ) =
∫

D
(∆ψ + k2ψ)v dx +

∫
D
(∆u + k2u)φ dx +

∫
D
(n − 1)vφ dx, (5.11)

for all (u, v) ∈ X(D) and (ψ, φ) ∈ X(D).

5.2.2.2 | Well-posedness of the problem

We will now determine that the interior transmission problem (5.3) is well-posed. The Riesz

representation Theorem yields the existence of bounded linear operators Bk, B̂k : X(D) −→
X(D) such that

Bk(u, v; ψ, φ) =< Bk(u, v), (ψ, φ) >X(D), for all (u, v), (ψ, φ) ∈ X(D),

and

B̂k(u, v; ψ, φ) =< B̂k(u, v), (ψ, φ) >X(D), for all (u, v), (ψ, φ) ∈ X(D).

Hence, the interior transmission problem is equivalent to the following equation

Bk(u, v) = l, (u, v) ∈ X(D), (5.12)

where l ∈ X(D) is the Riesz representation Theorem of a bounded antilinear functional

L : (ψ, φ) 7−→
∫

D Fφ dx i.e., L(ψ, φ) =< ℓ, (ψ, φ) >X(D), for all (ψ, φ) ∈ X(D).

Theorem 5.2.7. For any two k1, k2 ∈ C, the difference Bk1 − B̂k2 and Bk1 − Bk2 are compact.
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Proof. Let (uj, vj) ∈ X(D) such that

(uj, vj) −⇀ 0 in X(D).

Let (ψ, φ) ∈ X(D). Then, we have

(Bk1 − B̂k2)(uj, vj; ψ, φ) =
1
k2

1

∫
D

PAvj φ dx +
∫

D
(k2

1n − k2
2)uj φ dx

+
∫

D
PAuj φ dx + (k2

1 − k2
2)
∫

D
vjψ dx.

Since uj −⇀ 0 in H2
0(D) and ∇uj ⇀ 0 in H1(D), Rellich’s compact embedding Theorem

implies that uj −→ 0 in L2(D) and ∇uj −→ 0 in L2(D), respectively. Then, uj −→ 0 in

H1(D). Furthermore, we obtain∣∣∣∣∫D
(k2

1n − k2
2)uj φ dx

∣∣∣∣ ≤ ∥k2
1n − k2

2∥L∞(D)∥uj∥L2(D)∥φ∥L2
∆(D). (5.13)

and∣∣∣∣∫D
PAuj φ dx

∣∣∣∣ ≤ max
(

2∥A∥L∞(D), ∥div(A)∥L∞(D) + ∥A∥2
L∞(D)

)
∥uj∥H1(D)∥φ∥L2

∆(D)

(5.14)

We know that vj −⇀ 0 in L2
∆(D). Let zj ∈ H1(D) with ∆zj = vj in D and zj = 0 on ∂D

implies that zj −⇀ 0 in H1(D). According to Rellich’s compact embedding Theorem, we

find zj −→ 0 in L2(D) and the following estimates∣∣∣∣∫D
ψvj dx

∣∣∣∣ = ∣∣∣∣∫D
ψ∆zj dx

∣∣∣∣ = ∣∣∣∣∫D
∆ψzj dx

∣∣∣∣ ≤ ∥zj∥L2(D)∥ψ∥H2(D), (5.15)

Moreover, we have A has compact support in D implies that PA is continuous and has a

compact support in L2(D). Thus, using the fact that vj ∈ L2
∆(D) and the elliptic regularity,

we are able to prove that

∥PAvj∥L2(D) ≤ C(∥vj∥L2(D) + ∥∆vj∥L2(D)) ≤ C∥vj∥L2
∆(D), (5.16)

for K = supp(A) and which implies

1
k2

1

∫
D

PAvj φ dx ≤ 1
k2

1
∥PAvj∥L2(D)∥φ∥L2

∆(D) −→ 0 in L2(D). (5.17)
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Therefore, (5.13), (5.14), (5.15) and (5.17) imply

∥
(

Bk1 − B̂k2

)
(uj, vj)∥X(D) = sup

(ψ,φ)∈X(D)

(ψ,φ) ̸=0

∣∣∣(Bk1 − B̂k2

)
(uj, vj; ψ, φ)

∣∣∣
−→
j→∞

0.

This prove the compactness of Bk1 − B̂k2 . The proof for (Bk1 − Bk2) proceeds in a similar

way where

(Bk1 − Bk2)(uj, vj; ψ, φ) =

(
1
k2

1
− 1

k2
2

) ∫
D

PAvj φ dx + (k2
1 − k2

2)
∫

D
nuj φ dx

+ (k2
1 − k2

2)
∫

D
vjψ dx,

for (uj, vj), (ψ, φ) ∈ X(D).

Now, we need to prove the invertibility of B̂k for some k ∈ C. At this point, we need to

assume that ℜ(n − 1) ≥ α > 0 or ℜ(1 − n) ≥ α > 0 for almost points in D. We denote

n∗ = inf
N
ℜ(n) and n∗ = sup

N
ℜ(n).

Lemma 5.2.8. Let n ∈ L∞(D) such that either n∗ > 1 or 0 < n∗ < 1 and A ∈ L∞(D, R3)

with compact support such that div(A) ∈ L∞(R3). Then, there exist constant C1 > 0,

C2 > 0 and d > 0 such that for all k = iκ, κ > 0, the following estimates∫
D\N

|v|2 dx ≤ C1e−2dκ
∫
N
|ℜ(n)− 1| |v|2 dx, (5.18)

and
1
κ2

∫
D\N

iA · ∇vv dx ≤ C2e−2dκ
∫
N
|ℜ(n)− 1| |v|2 dx, (5.19)

hold, for all v ∈ L2(D) solution of ∆v − κ2v = 0 in D.

Proof. We pick a neighborhood N ′
of the boundary ∂D such that d = dist(D \ N, N

′
) > 0

and a function ρ ∈ C∞(D) with compact support in D such that ρ = 1 in D \ N
′
. Then
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the Green’s formula is applied to ρv and it is noted that ρv = v in D \ N′, which means

∆ρv − κ2ρv = 0 in D \ N
′
, results

ρ(x)v(x) = −
∫

D

[
∆(ρv)(y)− κ2(ρv)(y)

] e−κ|x−y|

|x − y| dy

= −
∫
N ′

[2∇ρ(y) · ∇v(y) + v(y)∆ρ(y)]
e−κ|x−y|

|x − y| dy

=
∫
N ′

[
2div

(
∇ρ(y)

e−κ|x−y|

|x − y|

)
− ∆ρ(y)

e−κ|x−y|

|x − y|

]
v(y) dy.

For x ∈ D \ N , we conclude that

|v(x)| ≤ e−κd

d

∫
N ′

|∆ρv(y)| dy ≤ ce−κd
∫
N ′

|v(y)| dy,

which implies

|v(x)|2 ≤ ce−2κd|N |
∫
N
|v(y)|2 dy

≤ cκ2 |N |
β2 + κ2δ

e−2dκ
∫
N
|ℜ(n)− 1| |v(y)|2 dy,

where δ = n∗ − 1 if n∗ > 1 or δ = 1 − n∗ if n∗ < 1. Then, we find∫
D\N

|v(x)|2 dx ≤ C1e−2κd
∫
N
|ℜ(n)− 1| |v(y)|2 dy.

Next, we have ∫
D\N

iA · ∇vv dx ≤ ∥A · ∇v∥L2(D\N )∥v∥L2(D\N ).

Since v satisfies ∆v − κ2v = 0 in D and A has a compact support, then, according to

the elliptic regularity, there exist CA such that ∥A · ∇v∥L2(K) ≤ CA∥v∥L2(D\N ), for K =

Supp(A) ⊂⊂ D \ N which implies

1
κ2

∫
D\N

iA · ∇vv dx ≤ CA

κ2

∫
D\N

|v(y)|2 dy

≤ C2e−2dκ
∫
N
|ℜ(n)− 1| |v(y)|2 dy,

where we used the estimate (5.18). This completes the proof.
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Theorem 5.2.9. There exist positive constants κ0 > 0 and C > 0 such that for all κ ≥ κ0,

such that

sup
(ψ,φ) ̸=0
(ψ,φ)∈X(D)

∣∣∣B̂iκ(u, v; ψ, φ)
∣∣∣

∥(ψ, φ)∥X(D)
≥ C∥(u, v)∥X(D), ∀(u, v) ∈ X(D). (5.20)

You can obtain the proof in [15]. Using the previous Theorem 5.2.9 implies the invertibil-

ity of B̂iκ.

Lemma 5.2.10. Let κ > 0 be such that the condition (5.20) is valid. Then the operator

B̂iκ : X(D) −→ X(D) is invertible with bounded inverse B̂−1
ik .

The following theorem claims the uniqueness of a solution to the interior transmission

problem (5.3).

Theorem 5.2.11. Let A ∈ L∞(R3, R3) such that div(A) ∈ L∞(R3, R) and Supp(A) ⊂ D.

Let n ∈ L∞(R3, C) such that Supp(n) ⊂ D, ℑ(n) ≥ 0 almost everywhere in D and

inf
N
ℜ(n) > 1 or 0 < sup

N
ℜ(n) < 1 for some neighborhood N of the boundary ∂D. Further-

more, assume that k ∈ C is not a transmission eigenvalue. Then, for any given f ∈ H
3
2 (∂D)

and h ∈ H
1
2 (∂D), the interior transmission problem (5.3) has a unique solution w ∈ L2(D)

and v ∈ L2
∆(D) with w − v ∈ H2(D) and the following a priori estimates hold

∥w∥L2(D) + ∥v∥L2
∆(D) ≤ C(∥ f ∥

H
3
2 (∂D)

+ ∥h∥
H

1
2 (∂D)

), (5.21)

∥u∥H2(D) ≤ C(∥ f ∥
H

3
2 (∂D)

+ ∥h∥
H

1
2 (∂D)

), (5.22)

with some positive constant C > 0.

Proof. For k ∈ C, we can write Bk = (Bk − B̂iκ) + B̂iκ where κ > 0 is sufficiently large.

Then, by using the Theorem 5.2.7 and the Lemma 5.2.10, we obtain that (Bk − B̂iκ) is compact

and B̂iκ is invertible respectively. Thus, we can conclude that the operator Bk is Fredholm of

index zero. Moreover, using the fact that k is not a transmission eigenvalue, we proved that

the operator Bk is invertible .
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To finish this proof, we need to demonstrate the estimates (5.21) and (5.22). Our problem

(5.3) is equivalent to the problem (5.8) where F = −(∇+ iA)2θ − k2nθ for θ ∈ H2(D) and

satisfies (5.7). Then, we get

∥ℓ∥2
X(D) ≤

∫
D
|Fℓ2| dx = ∥ℓ2∥L2(D)∥F∥L2(D) ≤ C∥ℓ∥X(D)∥θ∥H2(D),

where ℓ = (ℓ1, ℓ2) ∈ X(D) satisfies (5.12). From (5.7), we have

∥ℓ∥X(D) ≤ C∥θ∥H2(D) ≤ C
(
∥ f ∥

H
3
2 (D)

+ ∥h∥
H

1
3 (D)

)
. (5.23)

Using the fact Bk is invertible such that B−1
k is continuous, we find

∥(u, v)∥X(D) ≤ C∥ℓ∥X(D) ≤ C
(
∥ f ∥

H
3
2 (D)

+ ∥h∥
H

1
3 (D)

)
,

which implies the required estimates. This proof is completed.

5.2.3 | Existence and discreteness of the set of transmis-

sion eigenvalues

Our next task is to establish the necessary conditions for the transmission eigenvalues in set

C to be discrete (possibly empty), with only +∞ as an accumulation point. To achieve this,

we will begin by demonstrating the existence of a wave number k that is not a transmission

eigenvalue.

The following theorem indicates that there may be only a finite number of transmission

eigenvalues on the imaginary axis.

Theorem 5.2.12. Let n ∈ L∞(R3) with ℜ(n) > n0 > 0, ℑ(n) = 0 almost everywhere

in D and n∗ = sup
N

ℜ(n) > 1 for some neighborhood N of the boundary ∂D. Then, for

sufficiently large κ > 0, the operator Biκ : X(D) −→ X(D) is invertible with bounded

inverse.
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Proof. Showing that Biκ is injective for some value of k is enough, given that B̂iκ is in-

vertible and B̂iκ − Biκ is compact. We prove it by the contradiction, we assume that there

exists a sequence κj −→ ∞ and functions (uj, vj) ∈ X(D) with ∥(uj, vj)∥X(D) = 1 and

Biκj(uj, vj) = 0. Therefore, uj ∈ H2
0(D) and vj ∈ L2

∆(D) satisfy

(∇+ iA)2uj − κ2
j nuj =

1
κ2

j
PAvj − (n − 1)vj in D. (5.24)

and

∆vj − κ2
j vj = 0 in D, (5.25)

Multiplying the identity (5.24) by vj and integrating over D, we have∫
D

∆ujvj dx +
∫

D
PAujvj − κ2

j nujvj dx =
∫

D

1
κ2

j
PAvjvj − (n − 1)|vj|2 dx,

using Green’s second identity and the equation in (5.25) yields∫
D

PAujvj − κ2
j (n − 1)ujvj dx =

∫
D

1
κ2

j
PAvjvj − (n − 1)|vj|2 dx. (5.26)

Multiplying (5.24) by uj and integrating over D, we find∫
D
((∇+ iA)2u)uj − κ2

j n|uj|2 dx =
∫

D

1
κ2

j
PAvjvj − (n − 1)|vj|2 dx,

or we know that using Green’s first identity together∫
D
((∇+ iA)2uj)uj dx = −

∫
D
((∇+ iA)uj)((∇− iA)uj) dx

= −
∫

D
((∇+ iA)uj)((∇+ iA)uj) dx,

yields

−
∫

D

∣∣(∇+ iA)uj
∣∣2 dx − κ2

j

∫
D

n|uj|2 dx =
∫

D

1
κ2

j
PAvjuj − (n − 1)vjuj dx.

Moreover, PA is self-adjoint, we have

∥(∇+ iA)uj∥2
L2(D)+

∫
D

κ2
j n|uj|2 dx = − 1

κ2
j

∫
D

PAujvj dx+
∫

D
(n− 1)vjuj dx, (5.27)
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from (5.26), we get

∥(∇+ iA)uj∥2
L2(D) +

∫
D

κjn|uj|2 dx = − 1
κ4

j

∫
D

PAvjvj dx +
1
κ2

j

∫
D
(n − 1)|vj|2 dx,

we have that the left side of (5.28) is positive since ℜ(n) ≥ 0.

∥(∇+ iA)uj∥2
L2(D) +

∫
D

κ2
j n|uj|2 dx

=
1
κ4

j

∫
D
(iA · ∇ujvj − iA · ∇vjvj) dx +

1
κ2

j

∫
D

(
n − 1 +

1
κ2

j
|A|2

)
|vj|2 dx

=
1
κ4

j

∫
D
(iA · ∇ujvj + iA · ∇vjvj) dx +

1
κ2

j

∫
D

(
n − 1 +

1
κ2

j
|A|2

)
|vj|2 dx

=
2
κ4

j
ℜ
(∫

D
iA · ∇ujvj dx

)
+

1
κ2

j

∫
D

(
n − 1 +

1
κ2

j
|A|2

)
|vj|2 dx

=
2
κ4

j
ℜ
(∫

D\N
iA · ∇ujvj dx

)
+

1
κ2

j

∫
D\N

(n − 1 +
1
κ2

j
|A|2)|vj|2 dx

+
1
κ2

j

∫
N
(n − 1)|vj|2 dx, (5.28)

where A = 0 on N . Using Lemma 5.2.8 and the fact that sup
N

ℜ(n) < 1, we obtain

∥(∇+ iA)uj∥2
L2(D) +

∫
D

κ2
j n|uj|2 dx =

∫
N
(ℜ(n)− 1)|vj|2 dx + O(e−2dκ) < 0,

for κ > 0 sufficiently large, which contradicts the fact that ∥(uj, vj)∥X(D) = 1. This com-

pletes the proof.

Theorem 5.2.13. Assume that n ∈ L∞(D) with ℜ(n) > n0 > 0, ℑ(n) = 0 almost ev-

erywhere in D and either inf
N
ℜ(n) > 1 or sup

N
ℜ(n) < 1 for some neighborhood N of the

boundary ∂D. Then the set of transmission eigenvalues is at most discrete with +∞ as the

only accumulation point.

Proof. We know that transmission eigenvalues are the values of k ∈ C for which the kernel

of Bk is non-trivial. Thanks to Theorem 5.2.12, we chose κ0 > 0 such that Biκ0 is invertible
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and write the equation Bk(u, v) = 0 in the form

(u, v) + B−1
iκ0

(Bk − Biκ0)(u, v) = 0. (5.29)

Using the fact that Bk − Biκ0 : X(D) −→ X(D) is compact, due to Theorem 5.2.7, we can

establish the result of the theorem by invoking the analytic Fredholm Theorem.

5.3 | Study of ITP using upper triangular Fred-

holm theory

The objective of this section is to demonstrate the existence and discreteness of the set of

transmission eigenvalues with certain coercivity conditions on the contrast m = 1−n through

the application of the upper triangular Fredholm theory. This work inspired by Sylvester’s

paper [86], and we aim to obtain the same results with the presence of the magnetic Laplace

operator.

5.3.1 | Setting of the problem with main results

Let D ⊂ R3, be a bounded open set with smooth boundary such that (R3 \ D) is connected

and a > 0 such that D ⊂ B(0, a). The scattering of a time-harmonic wave in an inhomoge-

neous medium is modeled by the scattering problem for the magnetic Schrödinger equation.

The total wave satisfies

(∇+ iA)2u − λ(1 + m)u = 0 in R3, (5.30)

where the contrast, m, denotes the deviation of the index of refraction from the constant

background, i.e, n = 1 + m, and A = (a1, a2, a3) denotes the magnetic potential and λ =

−k2.
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We consider the following interior transmission eigenvalues problem
(∆ + Qλ

A,m − λ)v = 0 in D,

(∆ − λ)w = 0, in D,

v = w ; ∂v
∂ν = ∂w

∂ν on ∂D,

(5.31)

where Qλ
A,m is a first order operator given by

Qλ
A,mv(x) = i[div(A(x)v(x)) + A(x) · ∇v(x)]− |A(x)|2 v(x)− λm(x)v(x) (5.32)

= PAv(x)− λm(x)v(x).

Values of λ for which the interior transmission problem (5.31) has non-trivial solutions v and

w, are called interior transmission eigenvalues.

Now, we set u = v − w. Then, the interior transmission eigenvalue problem (5.31) can

be rewritten as the following problem
(∆ + Qλ

A,m − λ)u + Qλ
A,mw = 0 in D,

(∆ − λ)w = 0, in D,

u ∈ H2
0(D); w ∈ L2

∆(D),

(5.33)

Furthermore, let B be the unbounded operator represented by

B(λ) : H2
0(D)× L2

∆(D) −→ L2(D)× L2(D),

B(λ) :=

∆ + Qλ
A,m Qλ

A,m

0 ∆

 . (5.34)

Therefore, (u, w) is solution of the problem (5.33) if and only if (u, w) is solution of the

problem

(B(λ)− λI)(u, w)t = 0. (5.35)

We assume that λ ̸= 0. Then, (u, w) is solution of (5.35) if and only if (u, λw) is solution of

the following problem
(∆ + Qλ

A,m − λ)u + λ−1Qλ
A,mw = 0 in D,

(∆ − λ)w = 0, in D,

(u, w) ∈ H2
0(D)× L2

∆(D).

(5.36)
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Definition 5.3.1. Let m ∈ L∞(D) and A ∈ W1,∞(R3, R3) such that supp(A) ⊂ D. The

interior transmission eigenvalues are the spectrum of the generalized eigenvalue problem

B̃(λ)− λIm :=

∆ + PA λ−1Qλ
A,m

0 ∆

− λ

1 + m 0

0 1

 . (5.37)

We now delve into the main result as follows.

Theorem 5.3.2. Let A ∈ W1,∞(R3, R3) and m ∈ L∞(D, C) such that supp(A) ⊂ D

and supp(m) ⊂ D. Assume that there are real numbers m∗ ≥ m∗ > 0 and a constant

θ ∈]− π
2 , π

2 [ such that

(i) Re(eiθm(x)) > m∗ in some neighborhood N of ∂D, or that m(x) is real in all of D,

and satisfies m(x) ≤ −m∗ in some neighborhood N of ∂D.

(ii) |m(x)| < m∗ in all of D.

(iii) Re(1 + m(x)) ≥ δ > 0 in all of D.

Then, the Λ, set for which there exist functions v, w ∈ L2(D) with v − w ∈ H2
0(D)

solving the system (5.31), is a discrete subset of C∗, and each λ ∈ Λ is of finite multiplicity.

This will be derived as a corollary of the next theorem.

Theorem 5.3.3. Let A ∈ W1,∞(R3, R3) and m ∈ L∞(D, C) such that supp(A) ⊂ D and

supp(m) ⊂ D. Suppose that there are real numbers m1 ≥ m0 > 0 and a unit complex

number eiθ in the open right half plane such that

(i) Re(eiθm(x)) > m0 in N .

(ii) |m(x)| < m1 for each x ∈ D.

Then, the spectrum of B̃(λ) consists of a (possibly empty) discrete set of eigenvalues with

finite dimensional generalized eigenspaces.
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5.3.2 | A priori estimates

We are going to prove a simple version of some a priori elliptic estimates for the resolvent of

B̃ when λ is large enough.

Proposition 5.3.4. Let A ∈ W1,∞(R3, R3) such that supp(A) ⊂ D. Suppose that ρ ∈
L∞(D), that ℜ(ρ) > δ > 0, and that ϕ ∈ C∞

0 (D) is real valued, with 0 ≤ ϕ ≤ 1 such that

ϕ(x) = 1 outside a neighborhood N of ∂D. If g ∈ L2(D) and w satisfies

(∆ + PA − λρ)w = g in D, (5.38)

then there exists a constant C(ϕ, A, δ), such that, for sufficiently large positive λ,

∥ϕw∥2
L2(D) ≤

C
λ

(
∥(1 − ϕ)w∥2

L2(D) +
∥ϕg∥2

L2(D)

λ

)
, (5.39)

∥w∥2
L2(D) ≤ C

(
∥(1 − ϕ)w∥2

L2(D) +
∥ϕg∥2

L2(D)

λ2

)
, (5.40)

∥∇(ϕw)∥2
L2(D) ≤ C

(
∥w∥2

L2(D) +
∥ϕg∥2

L2(D)

λ

)
. (5.41)

Proof. We insert
∫

D ϕ2wdx in (5.38) and we use the integration by parts, so we have∫
D

ϕ2wgdx =
∫

D

(
∆wwϕ2 + PAwϕ2w − λρϕ2|w|2

)
dx

=
∫

D

[
−∇(ϕ2w) · ∇w − iA · ∇(ϕ2w)w + iA · ∇wwϕ2

−(|A|2 + λρ)|ϕw|2
]

dx

= −
∫

D
ϕ∇w · ∇(ϕw)dx −

∫
D

ϕ∇w · ∇ϕwdx − i
∫

D
A · ∇(ϕw)ϕwdx

− i
∫

D
A · ∇ϕϕ|w|2dx + i

∫
D

A · ∇wwϕ2dx −
∫

D
(|A|2 + λρ)|ϕw|2dx.
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Using ϕ∇w = ∇(ϕw)− w∇ϕ and ϕ∇ϕ = 1
2∇(ϕ2), we find∫

D
ϕ2wgdx = −

∫
D
|∇(ϕw)|2dx +

∫
D
∇(ϕw) · ∇ϕwdx −

∫
D
∇ϕ · ∇(ϕw)wdx

+
∫

D
|∇ϕ|2|w|2dx − i

∫
D

A · ∇(ϕw)ϕwdx − i
∫

D
A · ∇ϕϕ|w|2dx

+ i
∫

D
A · ∇(ϕw)wϕdx − i

∫
D

A · ∇ϕϕ|w|2dx −
∫

D
(|A|2 + λρ)|ϕw|2dx

= −∥∇(ϕw)∥2
L2(D) + ∥∇ϕw∥2

L2(D) +
∫

D
∇ϕ · (∇(wϕ)w −∇(wϕ)w) dx

− 2i
∫

D
A · ∇ϕϕ|w|2dx + i

∫
D

A · (∇(ϕw)w −∇(ϕw)w)ϕdx

−
∫

D
(|A|2 + λρ)|ϕw|2dx

= −∥∇(ϕw)∥2
L2(D) + ∥∇ϕw∥2

L2(D) − i
∫

D
A · ∇(ϕ2)|w|2dx

+ 2i Im
(∫

D
∇ϕ · ∇(wϕ)wdx

)
− 2 Im

(∫
D

A · ∇(ϕw)wϕdx
)

−
∫

D
(|A|2 + λρ)|ϕw|2dx.

Taking the real parts, so we get

Re
(∫

D
ϕ2wgdx

)
= −∥∇(ϕw)∥2

L2(D) + ∥∇ϕw∥2
L2(D) −

∫
D
(|A|2 + λ Re(ρ))|ϕw|2dx

− 2 Im
(∫

D
A · ∇(ϕw)wϕdx

)
, (5.42)

rearranging yields

∥∇(ϕw)∥2
L2(D) +

∫
D
(|A|2 + λ Re(ρ))|ϕw|2dx = ∥∇ϕw∥2

L2(D) − Re
(∫

D
ϕ2wgdx

)
− 2 Im

(∫
D

A · ∇(ϕw)wϕdx
)

. (5.43)

Using that Re(ρ)(x) > δ, ∀x ∈ D, we have

∥∇(ϕw)∥2
L2(D) + λδ∥ϕw∥2

L2(D) ≤ ∥∇ϕw∥2
L2(D) + 2∥A∥L∞(D)∥∇(ϕw)∥L2(D)∥ϕw∥L2(D)

+ ∥ϕw∥L2(D)∥ϕg∥L2(D)

≤ ∥∇ϕ∥2
L∞(D)∥w∥2

L2(D) +

(
8∥A∥2

L∞(D) +
λ

δ

)
∥ϕw|2L2(D)

+
1
2
∥∇(ϕw)∥2

L2(D) +
δ

λ
∥ϕg∥2

L2(D),
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which yields

∥∇(ϕw)∥2
L2(D) + λδ∥ϕw∥2

L2(D) ≤ C(ϕ, A)

(
∥w∥2

L2(D) +
∥ϕg∥L2(D)

λ

)
. (5.44)

We immediately find

∥∇(ϕw)∥2
L2(D) ≤ C

(
∥w∥2

L2(D) +
∥ϕg∥L2(D)

λ

)
.

Also, we find

∥ϕw∥2
L2(D) ≤

C
λρ

(
∥w∥2

L2(D) +
∥ϕg∥L2(D)

λ

)

≤ C
λ

(
∥ϕw∥2

L2(D) + ∥(1 − ϕ)w∥2
L2(D) +

∥ϕg∥L2(D)

λ

)
,

which implies that

∥ϕw∥2
L2(D) ≤

C
λ

(
∥(1 − ϕ)w∥2

L2(D) +
∥ϕg∥L2(D)

λ

)
.

Moreover, using (5.39), we obtain

∥w∥2
L2(D) ≤ C

(
∥(1 − ϕ)w∥2

L2(D) +
∥ϕg∥2

L2(D)

λ2

)
.

Corollary 5.3.5. Let A ∈ W1,∞(R3, R3) such that supp(A) ⊂ D. Let ϕ ∈ C∞
0 (D) be real

valued, with 0 ≤ ϕ ≤ 1 and we suppose that Re(ρ) > δ > 0 and |m(x)| < m∗ < ∞,

∀x ∈ D. Moreover, for some unit complex number eiθ and some neighborhood Γ of ∂D,

Re(eiθm(x)) > m∗, and that ϕ(x) = 1 in D \ N . Then, for sufficiently large positive λ, we

have

∥w∥2
L2(D) ≤ C

(∣∣∣∣∫D
m|w|2dx

∣∣∣∣+ ∥ϕg∥2
L2(D)

λ2

)
, (5.45)
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Proof. We have

∥w∥2
L2(D) ≤

∣∣∣∣∫D
(1 − ϕ2)|w|2dx

∣∣∣∣+ ∣∣∣∣∫D
ϕ2|w|2dx

∣∣∣∣
≤
∣∣∣∣∫D

Re
(

eiθm
m∗

)
(1 − ϕ2)|w|2dx

∣∣∣∣+ ∣∣∣∣∫D
ϕ2|w|2dx

∣∣∣∣
≤
∣∣∣∣Re

(
eiθ

m∗

∫
D

m(1 − ϕ2)|w|2
)

dx
∣∣∣∣+ ∣∣∣∣∫D

ϕ2|w|2dx
∣∣∣∣

≤
∣∣∣∣ 1
m∗

∫
D

m(1 − ϕ2)|w|2dx
∣∣∣∣+ ∣∣∣∣∫D

ϕ2|w|2dx
∣∣∣∣

≤
∣∣∣∣ 1
m∗

∫
D

m|w|2dx
∣∣∣∣+ m∗ + m∗

m∗
∥ϕw∥2

L2(D).

Applying (5.39), we get

∥w∥2
L2(D) ≤

∣∣∣∣ 1
m∗

∫
D

m|w|2dx
∣∣∣∣+ m∗ + m∗

m∗

C
λ

(
∥w∥2

L2(D) +
∥ϕg∥2

L2(D)

λ

)
,

which implies the desired estimate.

Next, let f̃ ∈ H1(D) and g ∈ L2. Then, for λ is large enough, we have the following

system

(∆ + PA − λ)u = f̃ in D, (5.46)

(∆ − λ)w = g in D, (5.47)

u ∈ H2
0(D) , w ∈ L2

∆(D). (5.48)

Lemma 5.3.6. Let A ∈ W1,∞(R3, R3) such that supp(A) ⊂ D. Let u be a solution of (5.46).

Then, for sufficiently large positive λ, there is a constant C such that the following estimate

3

∑
j=0

λ2−j∥u∥2
H j(D)

≤ C∥ f̃ ∥2
L2(D), (5.49)

holds.

Proof. We multiply (5.46) by u and integrate over D. Then, we find∫
D
(∆u + PAu − λu)udx =

∫
D

f̃ udx,
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yields ∫
D

∆uudx − λ
∫

D
|u|2dx =

∫
D

f̃ udx −
∫

D
PAuudx.

Integrating by parts, we get∫
D
|∇u|2dx + λ

∫
D
|u|2dx =

∫
D

PAuudx −
∫

D
f̃ udx,

which implies

∥∇u∥2
L2(D) + λ∥u∥2

L2(D) ≤ ∥ f̃ ∥L2(D)∥u∥L2(D) + ∥PAu∥L2(D)∥u∥L2(D)

≤ 1
ελ

∥ f̃ ∥2
L2(D) + ελ∥u∥2

L2(D) + ∥PAu∥L2(D)∥u∥L2(D).

Choosing ε = 1
2 , we obtain

∥∇u∥2
L2(D) +

λ

2
∥u∥2

L2(D) ≤
2
λ
∥ f̃ ∥2

L2(D) +
1
ε′
∥PAu∥2

L2(D) + ε′∥u∥2
L2(D)

≤ 2
ε′
∥A∥2

L∞(D)∥∇u∥2
L2(D) +

1
ε′
∥div(A)∥2

L∞(D)∥u∥2
L2(D)

+
2
λ
∥ f̃ ∥2

L2(D) + ε′∥u∥L2(D).

By choosing ε′ = 4∥A∥2
L∞(D), we find

∥∇u∥2
L2(D) +

λ

2
∥u∥2

L2(D) ≤
2
λ
∥ f̃ ∥2

L2(D) +
1
2
∥∇u∥2

L2(D) + δ1∥u∥2
L2(D),

where δ1 =
∥div(A)∥2

L∞(D)

4∥A∥2
L∞(D)

+ 4∥A∥2
L∞(D). Then, we have

1
2
∥∇u∥2

L2(D) +
λ

4
∥u∥2

L2(D) ≤
2
λ
∥ f̃ ∥2

L2(D),

which implies

λ∥∇u∥2
L2(D) + λ2∥u∥2

L2(D) ≤ C∥ f̃ ∥2
L2(D). (5.50)

In the other side, we have

∥∆u∥2
L2(D) ≤ ∥PAu∥2

L2(D) + λ∥u∥2
L2(D) + ∥ f̃ ∥2

L2(D)

≤ C∥u∥2
H1(D) + λ∥u∥2

L2(D) + ∥ f̃ ∥2
L2(D)

≤ C∥ f̃ ∥2
L2(D).

Then, we get the desired result.
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Lemma 5.3.7. Let ϕ ∈ C∞
0 (D) be real valued, with 0 ≤ ϕ ≤ 1 and ϕ = 1 outside a

neighborhood N of ∂D. Then, for sufficiently large positive λ, there is a constant C such that

λ∥ϕ∇w∥2
L2(D) + λ2∥ϕw∥2

L2(D) ≤ C
(
∥ϕg∥2

L2(D) + λ∥w∥2
L2(D)

)
, (5.51)

and

∥ϕw∥2
H1(D) ≤ C

(∥ϕg∥2
L2(D)

λ
+ ∥w∥2

L2(D)

)
(5.52)

hold.

Proof. Multiplying (5.47) by ϕ2w and integrating over D, we find∫
D
(∆ − λ)wϕ2wdx =

∫
D

gϕ2wdx,

and integrating by parts, we get∫
D
−∇w · ∇(ϕ2w)dx − λ

∫
D

ϕ2|w|2dx =
∫

D
gϕ2wdx,

yields

−
∫

D
∇w · ∇(ϕ2)wdx −

∫
D

ϕ2|∇w|2dx − λ
∫

D
ϕ2|w|2dx =

∫
D

gϕ2wdx,

then, we get∫
D

ϕ2|∇w|2dx + λ
∫

D
ϕ2|w|2dx = −

∫
D

gϕ2wdx − 2
∫

D
w∇w · ∇ϕϕdx.

Using Cauchy estimates, we obtain

∥ϕ∇w∥2
L2(D) + λ∥ϕw∥2

L2(D) ≤
2
λ
∥ϕg∥2

L2(D) +
λ

2
∥ϕw∥2

L2(D) + 2
∫

D
|w∇w · ∇ϕϕ|dx,

then, we have

∥ϕ∇w∥2
L2(D) +

λ

2
∥ϕw∥2

L2(D) ≤
2
λ
∥ϕg∥2

L2(D) + 8∥w∇ϕ∥2
L2(D) +

1
2
∥ϕ∇w∥2

L2(D),

which implies

1
2
∥ϕ∇w∥2

L2(D) +
λ

2
∥ϕw∥2

L2(D) ≤
2
λ
∥ϕg∥2

L2(D) + 8∥∇ϕ∥2
L∞(D)∥w∥2

L2(D).
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Therefore, we find

λ∥ϕ∇w∥2
L2(D) + λ2∥ϕw∥2

L2(D) ≤ C
(
∥ϕg∥2

L2(D) + λ∥w∥2
L2(D)

)
.

In the other side, using (5.41) yields (5.52) which completes the proof.

Next, we derive some a priori estimates for the resolvent of B̃(λ). Let f , g ∈ L2(D) and

we suppose that f = f̃ + λ−1Qλ
A,mw. Then, we have the following problem

(∆ + PA − λ)u + λ−1Qλ
A,mw = f in D, (5.53)

(∆ − λ)w = g in D, (5.54)

u ∈ H2
0(D) , w ∈ L2

∆(D). (5.55)

Moreover, let ϕ = 1 in supp(A), supp(ϕ) ⊂ D. Then, using (5.51), for sufficiently large

positive λ, the estimate (5.49) can be written as follows

2

∑
j=0

λ2−j∥u∥2
H j(D)

≤ C
[
∥ f ∥2

L2(D) + λ−3∥ϕg∥2
L2(D) + ∥w∥2

L2(D)

]
. (5.56)

Lemma 5.3.8. Let A ∈ W1,∞(R3, R3) such that supp(A) ⊂ D and m ∈ L∞(D). Let (u, w)

a solution of (5.53)-(5.54). Then, there is a constant C such that the following estimates

∥w∥2
L2(D) ≤ C

(
∥ f ∥2

L2(D) + λ−2∥g∥2
L2(D)

)
, (5.57)

and

∥w∥2
L2

∆(D)
≤ C

(
λ∥ f ∥2

L2(D) + ∥g∥2
L2(D)

)
, (5.58)

hold.

Proof. We multiply (5.53) by w and integrate over D, then we have∫
D
(∆u + PAu − λu)wdx +

∫
D

λ−1Qλ
A,mwwdx =

∫
D

f wdx. (5.59)

Multiplying the complex conjugate of (5.54) by u yields∫
D
(∆w − λw)udx =

∫
D

gudx,
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and integrating by parts,we get∫
D

w(∆u − λu)dx =
∫

D
gudx. (5.60)

Next, we differentiate between (5.59) and (5.60) then we find∫
D
(PAuw + λ−1PAww − m|w|2)dx =

∫
D
( f w − gu)dx,

or PA is self-adjoint, then, we get∫
D

m|w|2dx =
∫

D
PAw(λ−1w + u)dx +

∫
D
(gu − f w)dx. (5.61)

Using (5.51), we find∣∣∣∣∫D
m|w|2dx

∣∣∣∣ ≤ λ−1∥PAw∥L2(D)∥w∥L2(D) + ∥PAw∥L2(D)∥u∥L2(D) + ∥g∥L2(D)∥u∥L2(D)

+ ∥ f ∥L2(D)∥w∥L2(D)

≤ λ−1∥ϕw∥H1(D)∥ϕw∥L2(D) + ∥u∥L2(D)∥ϕw∥H1(D) + ∥g∥L2(D)∥u∥L2(D)

+ ∥ f ∥L2(D)∥w∥L2(D)

≤ Cλ−1∥ϕw∥2
H(D)1 + Cλ∥u∥2

L2(D) + Cελ
−2∥ϕw∥2

L2(D) + ε∥ϕw∥2
H1(D)

+ Cελ
−2∥g∥2

L2(D) + ελ2∥u∥2
L2(D) + Cε∥ f ∥2

L2(D) + ε∥w∥2
L2(D)

≤ (Cλ−1 + ε)∥ϕw∥2
H1(D) + (Cλ−3 + ε)∥w∥2

L2(D) + (Cλ + ελ2)|u|2L2(D)

+ Cε∥ f ∥2
L2(D) + Cελ

−2∥g∥2
L2(D).

Choosing ε small enough such that λ−1 ≤ ε, we obtain∣∣∣∣∫D
m|w|2dx

∣∣∣∣ ≤ C
(

λ−1∥ϕw∥2
H1(D) + λ−1∥w∥2

L2(D) + λ∥u|2L2(D) + ∥ f ∥2
L2(D) + λ−2∥g∥2

L2(D)

)
.

Using (5.52) and (5.56), we get∣∣∣∣∫D
m|w|2dx

∣∣∣∣ ≤ C
(

λ−2∥g∥2
L2(D) + ∥ f ∥2

L2(D) + λ−1∥w∥2
L2(D)

)
From the Corollary 5.3.5, we find

∥w∥2
L2(D) ≤ C

(∣∣∣∣∫D
m|w|2dx

∣∣∣∣+ λ−2∥g∥2
L2(D)

)
≤ C

(
λ−2∥g∥2

L2(D) + ∥ f ∥2
L2(D) + λ−1∥w∥2

L2(D)

)
,
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which implies

∥w∥2
L2(D) ≤ C

(
∥ f ∥2

L2(D) + λ−2∥g∥2
L2(D)

)
.

Next, we have

∥∆w∥2
L2(D) ≤ λ∥w∥2

L2(D) + ∥g∥2
L2(D) ≤ C

(
λ∥ f ∥2

L2(D) + ∥g∥2
L2(D)

)
,

yields (5.58). The proof is completed.

Finally, using the last Lemma 5.3.8 and (5.56), we get the following estimate

2

∑
j=0

λ2−j∥u∥2
H j(D)

≤ C
[
∥ f ∥2

L2(D) + λ−2∥g∥2
L2(D)

]
. (5.62)

5.3.3 | Born approximation

Lemma 5.3.9. [11] Let T be a closed densely defined of a Hilbert space H. Then, the follow-

ing properties are equivalent

(i) Im(T) is closed in H.

(ii) Im(T∗) is closed in H.

(iii) Im(T) = (Ker(T∗))⊥.

(iv) Im(T∗) = (Ker(T))⊥.

In particular, if Im(T) is closed and T∗ is injective then T is surjective.

Lemma 5.3.10. For λ real, positive and large enough, (B(λ)− λI) is injective.

Proof. We need to prove that if (u, w) ∈ H2
0(D)× L2

∆(D) solve (∆ + Qλ
A,m − λ)u + λ−1Qλ

A,mw = 0 in D,

(∆ − λ)w = 0 in D,
(5.63)
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then, we have u = w = 0. We argue by contradiction and we assume that u ̸= 0. We

normalize u with ∥u∥L2 = 1. Multiplying the complex conjugate of the first equation by u

and integrating over D yields∫
D

u(∆ − λ)udx + λ−1
∫

D
uQλ

A,mwdx = −
∫

D
uQλ

A,mudx,

which implies∫
D
|∇u|2dx+λ

∫
D
|u|2dx−λ−1

∫
D

uPAwdx+
∫

D
umwdx =

∫
D

uPAudx−λ
∫

D
m|u|2dx.

(5.64)

We multiply the same equation by w and integrate over D, then we get

λ−1
∫

D
wPAwdx −

∫
D

m|w|2dx = −
∫

D
wPAudx + λ

∫
D

mwudx, (5.65)

where we have used
∫

D w(∆ − λ)udx = 0. According to PA = P∗
A, we obtain

∫
D
|∇u|2dx + λ

∫
D
|u|2dx − λ−1

[∫
D

m|w|2dx − λ−1
∫

D
wPAwdx + λ

∫
D

mwudx
]

+
∫

D
mwudx = −λ

∫
D

m|u|2dx +
∫

D
uPAudx. (5.66)

Therefore, we deduce that

λ−1
∫

D
m|w|2dx =

∫
D
|∇u|2dx + λ

∫
D
|u|2dx −

∫
D

uPAudx + λ−2
∫

D
wPAwdx

+ λ
∫

D
m|u|2dx − 2i

∫
D

Im(m)uwdx. (5.67)

Let ϕ ∈ C∞
0 (D) such that ϕ2 = 1 in Supp(A) and Re(m) ≥ −δ in Supp(1 − ϕ2). Then, we

get

λ−1
∫

D
(1 − ϕ2)m|w|2dx = −λ−1

∫
D

ϕ2m|w|2dx + ∥∇u∥2
L2(D) −

∫
D

uPAudx

+ λ
∫

D
(1 + m)|u|2dx + λ−2

∫
D

wPAwdx − 2i
∫

D
Im(m)uwdx. (5.68)

Further, we have∣∣∣∣∫D
uPAudx

∣∣∣∣ ≤ ∥u∥L2(D)∥PAu∥L2(D) ≤ C∥u∥2
L2(D) +

1
2
∥∇u∥2

L2(D),
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so

∥∇u∥L2(D) −
∫

D
uPAudx ≥ −C, (5.69)

for some positive constant C with independent of λ. Then, by taking the real part of (5.68),

we obtain

λ−1
∫

D
(1−ϕ2)Re(m)|w|2dx ≥ (δλ−C)−Cλ−1∥ϕw∥2

L2(D)−λ−2∥w∥L2(D)∥ϕw∥H1(D)

− C∥Im(m)∥L∞(D)∥w∥L2(D), (5.70)

where we have used Re(1 + m) ≥ δ in D. Moreover, applying Lemmas 5.3.7 and 5.3.8 with

f = λm and g = 0, we get

∥w∥L2(D) ≤ Cλ, ∥ϕw∥L2(D) ≤ C
√

λ, ∥ϕw∥H1(D) ≤ Cλ, (5.71)

we deduce that

λ−1
∫

D
(1 − ϕ2)Re(m)|w|2dx ≥ λ(δ − ε)− C. (5.72)

Taking λ large, ε small, we obtain that the right-hand side of (5.72) is positive. Since Re(m) ≤
−δ in Supp(1 − ϕ2), we conclude that the left-hand side of (5.72) vanishes. That is w = 0 in

a neighborhood of the boundary ∂D. By the unique continuation principal, we get u = 0 in

D. This contradicts ∥u∥L2(D) = 1.

Lemma 5.3.11. We recall the Born approximation B̃(λ) : H2
0(D)× L2

∆(D) −→ L2(D)×
L2(D) given by

B̃(λ) :=

∆ + PA λ−1Qλ
A,m

0 ∆

 . (5.73)

Then, for λ real, positive, and large enough, (B̃(λ)− λI) is invertible.

Proof. First, we need to prove that (B̃(λ)− λI) is injective. Let (B̃(λ)− λI)(u, w)t = 0.

Since

∥(B̃(λ)− λI)(u, w)t∥2
L2(D)×L2(D) = ∥ f ∥2

L2(D) + ∥g∥2
L2(D), (5.74)
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and using the estimates (5.58) and (5.62), we find

∥ f ∥2
L2(D) + ∥g∥2

L2(D) ≥
1
C

(
∥u∥2

H2(D) + ∥w∥2
L2

∆(D)

)
, (5.75)

which implies

∥(B̃(λ)− λI)(u, w)t∥2
L2(D)×L2(D) ≥

1
C
∥(u, w)∥2

H2(D)×L2
∆(D)

. (5.76)

Then, we obtain u = w = 0 in D.

Next, by the Lemma 5.3.9, it’s enough to prove that Im(B̃(λ)− λI) is closed and the ad-

joint of (B̃(λ)− λI) is injective. Let ( fn, gn) ∈ Im(B̃(λ)− λI) such that ( fn)n and (gn)n

converge respectively in L2(D) for some f , g ∈ L2(D). Let (un, wn) ∈ H2
0(D)× L2

∆(D)

satisfying (B̃(λ) − λI)t(un, wn) = ( fn, gn) in D. Since ( fn, gn) is Cauchy in L2(D) ×
L2(D); the injectivity of (B̃(λ) − λI) implies that the sequence (un, wn) is Cauchy in

H2
0(D) × L2

∆(D) and therefore has a unique limit (u, w) ∈ H2
0(D) × L2

∆(D); which sat-

isfies (B̃(λ)− λI)t(u, w) = ( f , g). Then Im(B̃(λ)− λI) is closed.

Since, the adjoint of (B̃(λ)− λI) is given

(B̃(λ)− λI)∗ = (B̃(λ)∗ − λI) =

∆ + PA − λ 0

λ−1Qλ
A,m ∆ − λ

 , (5.77)

and let (B̃(λ)− λI)∗(w, u)t = 0. Then, we have∫
D
(∆w + PAw − λw)wdx = 0,

which implies

λ∥w∥2
L2(D) + ∥∇w∥2

L2(D) ≤
λ

2
∥w∥2

L2(D) +
2
λ
∥PAw∥2

L2(D) ≤
λ

2
∥w∥2

L2(D) +
C
λ
∥w∥2

H1(D).

which, for λ positive and large enough, implies that w = 0 in D. Moreover, (u, w) is also

solution of (5.53)-(5.54) where f = PAu and g = −PAw. Therefore, using the estimate

(5.62), we get

3

∑
j=0

λ2−j∥u∥2
H j(D)

≤ C
(
∥PAu∥2

L2(D) + ∥PAw∥2
L2(D)

)
≤ C∥u∥2

H1(D),

which implies u = 0 in D. This ends the proof.
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Lemma 5.3.12. Assume that we can write the resolvent (B̃(λ)−λI)−1 : L2(D)× L2(D) −→
L2(D)× L2(D) in block diagonal form

(B̃(λ)− λI)−1 =

R11(λ) R12(λ)

R21(λ) R22(λ)

 . (5.78)

Then, R11(λ), R12(λ) and R22(λ) are compact, and R21 is bounded, as operators from

L2(D) to itself. If ϕ is a smooth function vanishing in neighborhood of ∂D and equal to 1 on

D ⊂ N , then the operator ϕR21(λ) is compact.

Moreover, there exist a constant C > 0 such that the following estimate

∥R11∥+ ∥R12∥+ ∥ϕR21∥+ ∥R22∥ ≤ C√
λ

. (5.79)

holds.

Proof. We know that the operator R11(λ) is the projection to the first component of the re-

striction of (B− λI)−1 to the subspace L2(D)×{0} which means that for given f ∈ L2(D),

there exist unique functions u ∈ H2
0(D) and w ∈ L2

∆(D) solving the problem (5.53)-(5.55)

with g = 0, and that R11(λ) : L2(D) −→ L2(D) is the mapping f 7−→ u taking values in

H2
0(D). Moreover, R11(λ) is compact using the estimate (5.62) and the compact embedding

of H2
0(D) into L2(D). Similarly, we obtain that the operator R12(λ), is the projection to the

first component of the restriction of (B − λI)−1 to the subspace {0} × L2(D), is compact

where R12(λ) : L2(D) −→ L2(D) is the mapping g 7−→ u taking values in H2
0(D).

Next, the operator R21(λ) is the projection to the second component of the restriction

of (B − λI)−1 to the subspace L2(D)× {0}, and that R21(λ) : L2(D) −→ L2(D) is the

mapping g 7−→ v taking values in L2
∆(D). Using the estimates (5.57) and (5.51), and the

compact embedding of L2
∆(D) into L2(D), ϕR21(λ) is compact. Similarly, we obtain that

the operator ϕR22(λ) is compact where R22(λ) is the projection to the second component of

the restriction of (B− λI)−1 to the subspace {0}× L2(D), and R22(λ) : L2(D) −→ L2(D)

is the mapping g 7−→ u taking values in L2
∆(D).

Let prove the the compactness of R22(λ). We assume that we have a sequence (gn)n ⊂
L2(D) converges weakly to zero. Then, the sequences un = R12gn and ϕwn = ϕR22gn
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converge strongly to zero. Using (5.61), we obtain∫
D

m|wn|2dx = λ−1
∫

D
PAwnϕwndx +

∫
D

unPAwndx +
∫

D
gnundx

−−→
n→∞

0.

Moreover, we find∫
D

m(1 − ϕ2)|wn|2dx =
∫

D
gnundx + λ−1

∫
D

PAwnϕwndx +
∫

D
unPAwndx

−
∫

D
ϕ2m|wn|2dx

−−→
n→∞

0.

Therefore, we have

∥R22gn∥2
L2(D) = ∥wn∥2

L2(D) ≤ ∥(1 − ϕ)wn∥2
L2(D) + ∥ϕwn∥2

L2(D) −−→n→∞
0.

Finally, according to (5.51), (5.57) and (5.62), we get the desired estimate (5.79). The proof

is complete.

5.3.4 | The upper triangular Fredholm theory

In this subsection, we want to briefly review the proprieties of the upper triangular Fredholm

theory that we will use in what follows for the discreteness of the set of transmission eigen-

values (Section 5.3.5). [28, 47, 86].

We have constructed the resolvent (B̃(λ)− λI)−1 for large positive λ and shown that it

is upper triangular compact. Moreover, let us introduce the resolvent identity which is given

as follows

R(µ) = R(λ)(I − (µ − λ)R(µ))−1, (5.80)

for all complex λ and µ.

Definition 5.3.13. [86] Suppose that R is a bounded operator mapping a Hilbert space H to

itself. If the Hilbert space has a decomposition into direct sum H =
n
⊗
j=1

Hj, we say R is upper
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triangular compact (UTC) (with respect to this decomposition if the upper triangular blocks

(including the diagonal) in the corresponding decomposition of R =
n
∑

j,k=1
Rjk are compact.

We can easily check the following proposition.

Proposition 5.3.14. Let R, R̃ be an upper triangular compact operators. Then R + R̃, R − R̃

and R ◦ R̃ are still UTC operators. Moreover, for any B a bounded operator, B ◦ R and R ◦ B

are an UTCs.

The following theorem claims that the analytic Fredholm theorem (see [77]) still holds for

the upper triangular Fredholm operators.

Lemma 5.3.15 (Upper triangular analytic Fredholm Theorem). Suppose that R(λ) is an

analytic UTC operator valued function of λ for λ is an open connected set Γ. Then, if

Ker(I − R(λ0)) = {0} or Coker(I − R(λ)) = {0} for one λ0, it is invertible for that

λ0 and for all but a discrete set Λ of Γ. Moreover, for λ ∈ Λ, (I − R) is a Fredholm.

Proof. Using the fact that R(λ) is an analytic UTC operator, we have

I − R(λ) = (I − L(λ))− C(λ) =

 1 0

−R21 1

−

R11 R12

0 R22

 ,

where C is compact and L is bounded and strictly lower triangular. Moreover, for all λ,

(I − L(λ)) is invertible with bounded inverse, and that inverse is an analytic function of λ.

Therefore, we can write I − R(λ) as follows

I − R(λ) = (I − L(λ))(I − (I − L(λ))−1C(λ)).

Since (I − (I − L(λ))−1C(λ)) satisfies the hypothesis of the analytic Fredholm Theorem

5.2.5, and the fact that (I − L(λ)) is invertible, we obtain the required result for I − R(λ).

The next result presents a special case of the previous theorem.
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Theorem 5.3.16. Let B̃(λ) be a closed densely defined operator on an infinite dimensional

Hilbert space and suppose that for one complex number λ0, (B̃(λ0)− λ0 I) is invertible and

(B̃(λ0)− λ0 I)−1 is UTC. Then the spectrum of B̃(λ) consists of a (possibly empty) discrete

set of eigenvalues with finite dimensional generalized eigenspaces.

Proof. Using the resolvent identity (5.80), we find

(B̃(µ)− µI) = (B̃(λ0)− λ0 I)(I − (B̃(λ0)− λ0 I)−1(µ − λ0)), ∀µ ∈ C.

Moreover, according to the fact that (B̃(λ0) − λ0 I)−1 is UTC, the UT analytic Fredholm

Theorem 5.3.15 implies that (I − (B̃(λ0)− λ0 I)−1(µ− λ0)) is invertible at all but a discrete

set of point µn and the dimension of the kernel is finite at all such points.

5.3.5 | Proof of main results

In this subsection, we show that the interior transmission eigenvalues are discrete by proving

the Theorems 5.3.2 and 5.3.3. [33, 86].

Proof of Theorem 5.3.2. We fix λ0 real, positive and large enough such that (B̃(λ0)− λ0 I)

is invertible with bounded UTC inverse. Then, we can write (B̃(λ0)− λ0 Im) as follows

(B̃(λ0)− λ0 Im) = (B̃(λ0)− λ0 I)

I − λ0(B̃(λ0)− λ0 I)−1

m 0

0 0


= (B̃(λ0)− λ0 I)M(λ0).

Using Proposition 5.3.14 and (B(λ0) − λ0 I)−1 is UTC, we obtain M(λ0) is an UTC and

M(λ0) = V(λ0) + K(λ0) where V(λ0) is invertible and K(λ0) is compact. Then, by the

Fredholm alternative 5.2.2 and Remark 5.2.4, M(λ0) is Fredholm of index zero. Moreover,

we find M(λ0) is injective. Indeed, we have M(λ0)(u, w)t = 0, for (u, w) ∈ H2
0(D) ×

L2
∆(D). Based on Lemma 5.3.10, we get that (B̃(λ0)− λ0 Im) is injective for λ0 sufficiently

large and since M(λ0) = (B̃(λ0)− λ0 I)−1(B̃(λ0)− λ0 Im)−1, we find that u = w = 0 in
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D. Using Lemma 5.2.3, M(λ0) is invertible. Therefore, for λ0 large enough, (B̃(λ0)−λ0 Im)

is invertible and we have

(B̃(λ0)− λ0 Im)
−1 =

I − λ0(B̃(λ0)− λ0 I)−1

m 0

0 0

−1

(B̃(λ0)− λ0 I)−1.

Since (B(λ0)− λ0 I)−1 is UTC and M(λ0)
−1 is a bounded operator where

M(λ0)
−1 =

 (1 − λ0mR11(λ0))
−1 0

λ0m(1 − λ0mR11(λ0))
−1R21(λ0) 1

 , (5.81)

we obtain, by the Proposition 5.3.14, that (B̃(λ0)− λ0 Im)−1 is UTC and also (I−1
m B̃(λ0)−

λ0 I)−1 = Im(B̃(λ0)− λ0 Im)−1 is the UTC resolvent of I−1
m B̃(λ0) at λ0. Using the Theorem

5.3.16 implies the desired result.

Proof of Theorem 5.3.3. Let B̃(λ) be the operator defined in (5.73). Using the Lemma 5.3.11

and 5.3.12, if we take λ0 real, positive and large enough, then (B̃(λ0)− λ0 I) is invertible and

(B̃(λ0)− λ0 I)−1 is UTC. Therefore, according to the Lemma 5.3.16, the spectrum of B̃(λ)

is discrete and of finite multiplicity.
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6

Conclusion and Perspectives

We presented in this thesis some mathematical and numerical developments for solutions to

direct and inverse scattering problem for the time harmonic magnetic Schrödinger operator.

Our primary aim was to look into the inverse problem of stable determining the magnetic

and electric potentials from near field and far field patterns. We first showed that the direct

scattering problem is well-posed, which was accomplished by two approaches: the first one

with the use of the Lippmann-Schwinger integral equation, which requires a stronger assump-

tion of regularity for the magnetic potential A (which is bounded in the W1,∞norm) and the

electric potential q (which is bounded in L∞norm). The second approach is the variational

method, which requires less regularity on A and q (A, div(A) and q are bounded in L∞norm).

We presented some numerical illustrations of the solutions to the scattering problem. Due to

gauge invariance, the magnetic potential A cannot be uniquely determined from far field or

near field measurements outside the scatterer. We proved logarithmic type estimates for re-

covering the magnetic fields curl(A) and electric potentials from near field or far field maps

based on the use of geometrical optics solutions. As a perspective of this part, we would like

to study the inverse problem in the case where A has an unbounded support. We are also

interested in investigating the optimality of our results.

Secondly, we addressed more specifically the inverse medium scattering problem for the

magnetic Schrödinger operator. We demonstrated that the measurements of scattered waves

at a fixed frequency can be used to recover the shape of an inhomogeneous scatterer. The
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Linear Sampling Method (LSM) and the Factorization Method (FM) are the main topics of

our review of the sampling methods used to numerically solve our problem. The LSM has the

simplest formulation and can be easily adapted to different settings of the data and the scat-

tering problem. On the other hand, the FM provides an exact characterization of the scatterer

in terms of the far field operator. We obtained our results by utilizing the well-posedness of

the interior transmission problem that we proved through the application of Fredholm and the

upper triangular Fredholm theories. We presented several numerical validating results con-

ducted in 2D. Throughout our studies, we assumed that the support of the magnetic potential

A is strictly contained within the support of the electric potential contrast. A challenging

perspective would be to remove this assumption and extend our results to the case where

the both supports coincide. Another perspective is to analyze a new structure of the interior

transmission problem when the electric potential contrast vanishes but A ̸= 0.

Last but not least, concerning numerical aspects, we have obtained validating results in 2D

and simple configurations. Our plan to extend these numerical investigations to 3D problems.
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