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General introduction

The evolution of the electric world is undergoing a rapid transformation as societies

try to achieve a low-carbon strategy introducing green energy sources to lower the pollu-

tion. The shift towards a more sustainable and environmentally friendly electric sector is

reshaping the way we power our lives. From the increasing adoption of renewable energy

technologies such as solar and wind power to the advancement of electric vehicles, the elec-

tric world is experiencing a shift. This transition needs our adaptation to these changes,

as we strive to build a cleaner and greener future.

In order to be efficient with this transformation, the need of quantifying the energy

consumption of the different systems arises. To that aim, the use of measuring devices

(sensors) that provide a complete idea of the electricity consumption of an electric instal-

lation is necessary.

Moreover, the necessity for our installations to be as compact as possible motivates us

to create sensors that can address the mission of measurement and protection simultane-

ously. This is why measuring sensors are embedded in circuit breakers. Circuit breakers

are in every building: houses, apartments, public buildings, factories... their aim is to

protect people and goods in case of overcurrent. Their function is simple: interrupt the

current flow when an overcurrent is perceived. Nevertheless, its conception is more com-

plex.

Current sensors are crucial elements of circuit breakers. They provide current with two

functionalities: obtain a measurement of the current and power other electronic compo-

nents. Then, if a defect is found when measuring the current, the electronic components

can analyse it and they can open the circuit, so that the current is stopped. These sensors

are not easy to develop since the different functionalities impose diverse constraints, such

as normative constraints (UL for the U.S. and IEC for Europe) or restrictions regarding

the accuracy, the current or frequency range in which they should operate and the envi-

ronment difficulties linked to humidity or temperature.

In order to reduce the conception time of a sensor or to optimize it once it has been

marketed, the use of modeling and simulation tools is valuable. This thesis is focused in

modeling current sensors of Schneider Electric that are part of circuit breakers. These

sensors are composed of two parts: a current transformer to power the other components

of the circuit breaker and a Rogowski metering coil to obtain an accurate measurement of
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the current.

A first thought to model these sensor could be to use the classical finite element method.

This method is able to accurately model the Rogowski metering coil alone. It is also able

to model the current transformer isolated. Nevertheless, when both of them are placed

together, the mesh needed to accurately represent the phenomena of the system has to

be very thin, especially in the air region between the current transformer and the Ro-

gowski metering coil. This happens due to the interference of the current transformer on

the Rogowski metering coil, which can change its behaviour. A very thin mesh increases

the computation time and memory used to solve the problem, which is not unlimited. In

this case, a mesh thin enough to provide accurate results is not always possible, and the

precision is compromised.

The Grenoble Electrical Engineering Laboratory (G2Elab) is specialised in the volume

integral method, which is an alternative to the finite element method. Its main difference

is the absence of a discretization in the air region, meshing only the active parts. This

allows to avoid possible problems that arise when an extensive regions of air needs to be

meshed.

This thesis is a collaboration of Schneider Electric and G2Elab to develop the volume

integral method in order to model the mentioned current sensors. There are a total of four

chapters:

• The first chapter introduces the context, dividing it in the industrial challenges, that

is to say, the current sensors, and the modeling challenges, that explains the possible

modeling tools, choosing the volume integral method.

• The second chapter describes the magnetostatic volume integral formulation devel-

oped by [1] which is the foundation of this thesis. A second part in this chapter

explains the development that we have made to model thin air gaps within this

formulation, given that many of the sensors treated contain thin air gaps and their

effect on the sensor is not negligible. The formulation and the air gap model are

validated with the current transformer of NSX sensor.

• The third chapter extends the magnetostatic volume integral formulation previously

explained to a time-stepping formulation, taking into account the field-circuit cou-

pling. This is done in two different ways: a weak coupling and a strong coupling.

These formulations are also validated with the current transformer of NSX sensor.

• Finally, the fourth chapter is a real application case that gives value to the developed

formulation. It considers a challenging sensor that has been developed by Schneider

Electric, named MTZ sensor. In the previous years we have faced difficulties to have

an accurate simulation model of this sensor when using the finite element method.

The whole volume integral formulation developed in this thesis is applied to MTZ

sensor to obtain precise and reliable simulations that provide extra information of

it, corroborating its robustness.





Chapter I

Context: self powered current sensors

Summary

This chapter explains the context of this thesis: the modeling of self-powered current

sensors. We first introduce them, explaining their functionality in circuit breakers.

We provide an overview of the traditional current sensors to later focus on two of

them: current transformers and Rogowski metering coils. Then, the need of models to

simulate these sensors is explained, and some tools that can be used to model them are

described, focusing on the volume integral method. Finally, the last section details the

objectives of this thesis.



4 I. Context: self powered current sensors

I.1 Introduction

Schneider electric is pioneer in the development of current sensors. These sensors are

devices that allow to measure the current. They have a wide variety of applications: from

detecting defaults in circuit breakers for the protection of people and goods to measure

and control the load in building management systems to ensure network efficiency. They

also foresee the maintenance of a device and supervise adequately a network that tends to

become more complex when the multiplicity of energy sources increases.

In this chapter we explain the context of this thesis: modeling current sensors. To do

that, a first part of industrial challenges introduces the functionality of current sensors,

their classification and characteristics. Then, a second part with the modeling challenges

describes the tools that can be used to model them, mentioning the finite element method

and the volume integral method.

I.2 Industrial challenges

Current sensors can be divided into two categories regarding their functionality:

• Metering sensors. The main quality of these sensor is their high accuracy in mea-

suring a quantity. The accuracy of a current sensor is certified by an accuracy class,

which defines the maximum error that the device could have in a specified range of

a given variable for some specific environmental conditions. For instance, regarding

the current, class 1 for a reference current Ib = 25 A in a current range of 5 % of Ib
to Ib means that the error can’t be higher to 1 % for a current that is between 1.25

A (5 % of 25A) and 25 A. Data is obtained approximately every second to verify it.

This can be extended to other global variables such as the root mean square value

of the current or the voltage, the active power or the reactive power, among others.

Apart from the accuracy, metering sensors are required to have a good immunity

to external electromagnetic sources, meaning that they should not perceive external

signals that could perturb their measuring.

• Protection sensors. The name of these sensors comes from their functionality: they

are made to protect people and goods. They do it by detecting an overcurrent

on the system, that could be either a short circuit or an overload. Their main

quality is their rapidity to react when a malfunction is found, being able to obtain

a measure in roughly a millisecond. They also have to be able to work in difficult

climate conditions such as high temperature or high humidity. Furthermore, they

are conceived self-powered, which complicates their design, given that this adds

many constraints that will be mentioned later. Therefore, two concepts define these

sensors: rapidity and self-power.

To have an idea of importance of these sensors on the market, Schneider Electric sells

several hundreds of thousands metering sensors per year. Studying and understanding the

phenomena behind these current sensors is crucial to be able to develop new sensors and

to optimize the existing ones. The latter includes, for instance reducing their volume to
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make them more compact or changing some components keeping the functionalities and

reducing their cost.

Before diving into the sensors that we will address in this thesis, let us explain the

different existing current sensors.

I.2.a The current measurement

In order to measure the current, there exist many sensor families depending on the

physical principle used. The traditional current sensors are Rogowski coils, shunts and

current transformers [2]. There are other types that obtain the current by measuring the

magnetic field with magnetic sensors, such as magnetoresistive sensors, hall effect sensors

or fluxgate [3], but they are not the interest of this thesis, therefore we will not get into

further details. Let us explain the traditional ones.

I.2.a-i Rogowski sensors

Rogowski sensors are metering sensors for Alternating Current (AC) that provide high

accuracy [4]. They play an important role in this thesis, which is why we will explain in

detail the different types of Rogowski sensors, their requirements to be accurate and the

different manufacturing options.

They consist of a primary conductor with a given current and a coil around it. Depending

on their structure, two types of coils can be differentiated, classic and hybrid:

- Classic Rogowski coils are made exclusively of a coil of copper wire with helical

shape. There are two ways of making them: the first one is the most simple one, and

it consists of going from one point to almost the same point, covering the whole torus

shape. The second one covers the form of the Rogowski twice: it first goes from the

lead to the end and then it comes back from the end to the lead so that the start and

the finish are placed at the same point, this is called counter-wound, Figure I.1, and

it is more interesting to have a good immunity of the sensor. The main advantage

of these sensors is that they are linear because there is no magnetic core, therefore

they have a wide current range. In manufacturing terms, another advantage is that

they have an open end that makes it flexible to wrap it around a conductor, which

is practical for many applications. Their cost is low given that there is no magnetic

material.

- Rogowski hybrid coils differ from classic Rogowki coils in the presence of magnetic

material. They form a loop with magnetic sheets that are wedged with the coils

(usually two coils and two magnetic parts, Figure I.2a). Their main advantage

with respect to the classic ones is the compactness. The drawback of this design is

that it is not linear given that the magnetic material can saturate. Moreover, the

link between the magnetic sheets and the coils has to be done carefully, and often

compensation turns have to be considered at the extremities of the coils to balance

the gap between the coil and the magnetic sheet. Figure I.2b shows the Rogowski
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Figure I.1: Classic Rogowski sensor representation, image extracted from [7].

hybrid sensor PowerTag designed by Schneider Electric, formed by two magnetic

sheets and two coils that have a shield.

(a) General representation. (b) PowerTag.

Figure I.2: Rogowski hybrid sensors.

Often, Rogowski sensors are not placed alone, but inside a system with other components.

The requirements for accurate and robust Rogowski sensors are the following:

- High gain. It is important to have high gain of the sensor to send the information

perceived to the electronic components that will process it. If there is not enough

gain, then they cannot analyse it. This can be achieved with an abundant number

of turns forming the coil.

- Low crosstalk. The aim of Rogowski metering sensors is to measure the current

perceived, but it is important to avoid signals that are out of the Rogowski, such

as conductors that could be part of another components that are placed next to it.

This is the reason why the hybrid sensor PowerTag (Figure I.2b) has a shielding

around its coils. We say that the crosstalk is low when the external signals interfere

the measuring of the Rogowski in less than 1 %.

- Low off-centre. A Rogowski sensor provides the current accurately if the primary

conductor is placed at the centre of it. This is straightforward for classic Rogowski
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coils with a circular shape, but it might not be that easy for hybrid Rogowski sensors

that have a different topology, which is not always symmetric. Furthermore, when

designing a sensor in a circuit breaker, there are other position constraints coming

from different elements that might force a position of the primary conductor that

is not centred. It is then important to ensure that the off-centre of the primary

conductor doesn’t change the measuring of the sensor. Ideally, the off-centre value

obtained should be inferior to 1 %.

- Linearity. For the case of hybrid Rogowski sensors in which there is a magnetic

material, it is essential to ensure a wide current range in which the material provides

a linear response to avoid possible problems that come from the saturation.

To ensure the low crosstalk and off-centre it is crucial to have winding regularity [6].

This is fairly important when there are other elements around the Rogowski, because if

there are more turns on one side than on the other, the imbalance might disturb other

components as well as the sensor measurement. Winding regularity is simple in theory

but it is not that easy when manufacturing a Rogowski coil with, for instance, 2000 turns

(Figure I.3b), in which turns overlap and they might slide and change the position.

Now, regarding the manufacturing options, there are different alternatives:

- Only with a copper coil that is winded around a plastic piece. This is straightfoward

when the coil follows a segment (I.3a) but it is not simple to do the winding when

it follows a circular shape (Figure I.3b), because the machine used to create the

winding needs to pass through the center to do the turns. Furthermore, the inner

radius of the coil is different to the external radius, which might affect the tension

or stress of the wire, as well as the square section of the coil.

(a) Line classic Rogowski. (b) Circular classic Rogowski.

Figure I.3: Copper coil manufacturing.

- A winding printed on a PCB, Figure I.4, which allows to measure the current with

very few copper turns that are printed tracks on a PCB, being linear, simple an

efficient.



8 I. Context: self powered current sensors

Figure I.4: Rogowski coil printed on PCB

- Plastronics or MID (Model Interconnect Device), which is a piece of plastic with an

additive in which a laser traces tracks that are filled with copper, being this copper

the winding of the Rogowski coil. This manufacturing option is still in development.

Finally, for any Rogowski sensor the current is computed following:

I(t) = C

∫
e(t)dt (I.1)

where I is the current, e(t) is the voltage produced by the coil and C is a constant that

depends on the number of turns, the area of the smallest loop, the vacuum permeability

and the length of the winding.

I.2.a-ii Shunt resistor sensors

Shunt resistor sensors are based on Ohm’s law, where the voltage drop across the

shunt is proportional to the current going through it. Therefore the current is computed

following:

I(t) =
U(t)

R
(I.2)

where R is the resistance and U(t) is the voltage.

The shunt resistor is chosen to have low resistance so that the circuit is barely affected

(Figure I.5 shows a shunt resistor sensor for a circuit breaker, with a resistance of 5µΩ.),

but enough to measure a voltage drop. Their simplicity makes them reliable and of low

cost. They can be used for AC and Direct Currents (DC) applications.

I.2.a-iii Current transformer sensors

Current transformer sensors are based on the transformer principle, converting high

primary current into lower secondary current [5]. It is composed of a primary winding (np

turns), a secondary winding (ns turns) and a magnetic core, Figure I.6. The core is often

made of silicon steel, nickel iron or nanocrystalline and the windings are made of copper

wire. Ideally, the current on the secondary winding (Is) is proportional to the current
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Figure I.5: Shunt resistor sensor.

imposed on the primary winding (Ip) on a wide current range, therefore Is is computed

following the equation:

Ip(t) =
ns

np
Is(t). (I.3)

Figure I.6: Current transformer representation, extracted from 1.

Their main advantage is that they are not very sensitive to the off-centre of the primary

coil and to the external fields that there could exist. Their main drawback occurs when

the current is so high that it saturates the magnetic core, then the hysteresis phenomenon

decreases its accuracy until the material is demagnetized. Furthermore, there are iron

losses caused by eddy currents.

All the mentioned current sensors: Rogowski, shunt and current transformers need a

source of power for the primary conductor, which can be either external or they can be

self-powered with another sensor. Conventionally, to ensure the protection, the idea of an

external power supply is not appreciated, being self-powered sensors the preferred option,

which is the topic of the next section.

1https://en.wikipedia.org/wiki/Current transformer
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I.2.b Difficulties for self-powered sensors

In order to have an autonomous system, having a self-powered sensor is essential. This

is very valuable when the application is related to protection, such as circuit breakers,

where self-powered sensors provide an extra layer of security, which is corroborated by the

international norm IEC 60947-2.

Self-powered sensors are sensors that don’t require an external power supply. They are

powered, for instance, by a current or voltage loop. In general, we refer to Current Trans-

formers (CT), Figure I.7.

Figure I.7: Current transformer.

Let us notice that they differ from the measuring CT explained before in their func-

tionality, for the latter the most important requirement is to ensure the relation Ipnp =

Isns for a wide current range to measure the current, whereas for self-powered CT the key

is to avoid an external source of power and to provide energy to other components of the

system. Therefore, the size and number of turns of the coils has to be carefully chosen to

provide enough energy.

The two main difficulties arising in self-powered sensors are: supplying enough power

to other components of the system and limiting the power carefully to avoid overloading

the sensor, which could lead to burning the secondary coil.

Once we have seen the current sensors context, let us specify and explain more thor-

oughly the ones that we will address in this thesis.

I.2.c Current sensors of interest

In this thesis, we focus on current sensors that are embedded in a circuit breaker and

have a double functionality: ensuring the protection with a fast measurement of the cur-

rent; and a high accuracy metering function. We say that a measurement is fast when

it is computed in less than a millisecond and that the accuracy is high when it has less

than 1% of error. Furthermore, to go one step further in the protection, they have to be
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self-powered. To this aim, we consider sensors that are composed of two parts: a current

transformer (self-powered) and a metering sensor of Rogowski type (protection and me-

tering) as Figure I.8 shows.

Figure I.8: Current sensor with composed of a CT and a metering coil.

In order to design these type of sensors, there are many features and difficulties to take

into account:

• Obtain an accurate measurement of the current with the Rogowski coil, avoiding

that the CT interferes in the measure, which is not simple because the Rogowski coil

and the CT are placed next to each other.

• Provide enough power to other electronic components. This is done by the CT in

different ways: increasing the section of the core to have more amount of electro-

magnetic material, considering more turns on the secondary coil or changing the

core material to another one with higher permeability. It is important to have a fast

response of the circuit breaker, because if the Rogowski coil detects fast an overcur-

rent but there is not enough power on the electronic components, the circuit breaker

cannot open the circuit.

• Apart from ensuring enough power, the CT has to avoid overloading the electronic

components, which would lead to burning them. This could be done increasing the

volume of the secondary coil with a higher number of turns.

• Be able to mechanically conceive both CT and Rogowski together, taking into ac-

count other constraints of the device, for instance, the space available, that could be

limited if there is a need of compactness.

An example of a Schneider Electric sensor with these characteristics is NSX (Figure

I.9), where the current transformer and the Rogowski coil are assembled together. Let us

get into further depth about this sensor. The ferromagnetic core is made of silicon steel

sheets to reduce eddy currents. The Rogowski coil is made of copper and it has square

shape, making a loop with four straight segments that are connected. This configuration
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(a) Current transformer (b) Rogowski coil

(c) Simulation model assembling both parts

Figure I.9: NSX sensor.

is not easy to manufacture because the winding machine has to keep the same tension on

the wire all along the process and the squared shape of the section with right angles makes

it hard to keep it homogeneous. The connection between the four segments is smoothed

with some extra compensation turns on the ends of each segment. There are three air gaps

in the ferromagnetic core: a large air gap that is created by design in the middle to force

the magnetic flux to make a loop following the external border of the geometry and two

other air gaps that are much thinner, which arise from welding two parts of the magnetic

core in order to be able to introduce the secondary coil. This sensor will be used lately in

chapter 2 and 3 to validate the developments of this thesis.

Electromagnetic modeling and simulation is a highly valuable tool that helps to un-

derstand how these sensors work and fully control the electromagnetic phenomena around

them. This leads to the scientific challenges of the thesis that are not yet reached to-

day with classic methods: realistic electromagnetic simulations of the sensors of Schneider

Electric that are embedded in a circuit breaker.

I.3 Modeling challenges

Electromagnetic modeling and simulation is key to develop the desired sensors. There

are three main advantages:

• It is easier to understand the phenomena because it allows to create a model, change
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the parameters as needed and obtain a result in few minutes or hours to know the

validity and limits of a feature.

• It helps to save time in the prototype phase of a product. Indeed, without a simula-

tion model a new prototype has to be created each time a feature has to be tested.

Simulation helps to obtain results of the feature reducing the number of prototypes,

which accelerates the design and reduces the cost.

• It allows to have a model that can help to optimize the sensor once it is released, for

instance simplifying its geometry, changing a material to another one with different

properties, making it more compact or reducing its cost.

Nowadays, there are many electromagnetic simulation software that provide the tools to

model and simulate low frequency electromagnetic devices, sensors included: Altair Flux,

Ansys Maxwell or COMSOL among others. Most of these are based on the well-known

finite element method.

I.3.a The traditional method and its weakness

The most popular method to solve low frequency electromagnetic problems is the Finite

Element Method (FEM). It allows to solve partial differential equations (such as Maxwell’s

equations) by subdividing the space of study into smaller parts called finite elements.

This method was introduced in the 1940s [8] [9] and it has been largely studied by

the scientific and engineering community in order to develop accurate formulations and

optimize calculations. It has many advantages:

• It allows to solve numerous types of electromagnetic problems: electrostatic, mag-

netostatic, quasi-static and coupled circuit-field among others.

• Any type of material can be considered: homogeneous and non homogeneous, isotropic

and anisotropic, linear and nonlinear materials.

• The matrices arising from FEM are sparse: the interaction between the elements is

given for those that are close to each other but not for those that are far.

In general, it is an efficient method to solve Maxwell’s equations and it provides accu-

rate results. Nevertheless, for some specific cases there are some limitations, for example,

for the computation of magnetic flux through coils that are placed in the air. This limita-

tion is linked to the mesh of the problem. The FEM needs a mesh of the active region of

study (magnetic, conductor, dielectric...) and the air around to capture the electromag-

netic behaviour in the air that might impact the rest of the domain. For instance, in the

case of the described sensors there is a need of accuracy on the air elements next to the

metering coil where the magnetic flux is computed, then the mesh has to be refined to

increase the number of elements and it has to be adapted to the shape of the coil, which

is not always feasible. But as the number of mesh elements increases, so does the matrix

describing the problem, which raises the computational load.
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This mesh limitation in the air region complicates the computation of the magnetic

flux through metering coils of the sensors previously explained, composed of a current

transformer and a Rogowski metering coil. As a matter of fact, the FEM can accurately

model the current transformer alone, or the Rogowski metering coil alone. Nevertheless,

when they are together separated by a low distance, a very thin mesh is needed to capture

the effect of the current transformer on the Rogowski metering coil, which creates a large

number of unknowns in the system describing the problem. This becomes too expensive

computationally, and the accuracy is compromised.

In order to solve the mesh limitation given to obtain accurate results of the magnetic

flux through coils that are in the air, which endangers the accuracy of our metering sensors,

we propose the use of the volume integral method.

I.3.b The alternative method and its strength

An alternative to the FEM is the use of the Volume Integral Method (VIM). It is part

of integral methods, which only need to mesh the active regions, avoiding to mesh the air

around them and providing in general accurate results with a coarse mesh. The accuracy

of this method is very competitive when the volume of the air involved in the problem is

high compared to the volume of the active region.

Integral methods appeared in the 1970s with the Magnetic Moment Method (MMM),

which is based on uniform magnetization on each element, formalized by Harrington [10]

and tested on academic codes such as GFUN [11] or RADIA [12]. There are other integral

methods, such as the boundary element method (BEM), which is limited to linear mate-

rials, for instance for electrostatic problems [13]. Another integral method is the Partial

Element Equivalent Circuit (PEEC) for the magnetoharmonic case, which takes into ac-

count capacitive or even propagative effects [14].

These methods are appealing in terms of accuracy given the huge reduction of unknowns:

only the active domains are meshed, meaning volume elements for MMM and PEEC and

surface elements for BEM.

The main drawback is that the matrices arising from these methods are fully populated

because, contrary to the FEM in which the matrices only take into account the interaction

between two elements that are next to each other, in the VIM all the interactions between

elements are considered. This translates in complexity O(n2) for matrix operations such as

products and in intensive memory RAM storage on the computer. Another difficulty is the

presence of singular Green kernels in the matrix system terms arising from the problem,

for which integration strategies have to be adopted.

Those are the reasons why integral methods weren’t widely employed until last decade,

when two main improvements changed their popularity:

1. Matrix compression algorithms to deal with fully populated matrices. For instance,

Fast Multipole Method (FMM) [15] or Hierarchical matrices (H-matrices) such as

Adaptive Cross Approximation (ACA) [16] or Hybrid Cross Approximation (HCA)
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[18]. They reduce the matrix complexity of matrix-vector products from O(n2)

to O(nlogn), shortening efficiently the computation time and reducing the RAM

memory space needed.

2. Advanced integral formulations, either H-conforming based, for instance, on the

magnetic scalar potential [19, 20] or B-conforming based on the magnetic induction

[1].

In this thesis we focus on the volume integral method because only the active regions

have to be discretized, avoiding to mesh the air and for its accuracy as well as its versatility

for nonlinear materials. It will provide precision in the computation of the magnetic flux

through coils that are surrounded by air, as it is the case of Rogowski metering coils.

The scientific challenge consists in proving that the desired sensors can be modeled

using the volume integral method while obtaining high accuracy in the calculation of the

magnetic flux through in the air (metering coils). To achieve this, the model needs to keep

a good description of the nonlinear behaviour of the material, the field-circuit coupling

and the self-powered functionality.

Within the VIM there could be many different formulations, depending on the physi-

cal quantity that is approximated on the mesh elements: B-conforming or H-conforming;

and depending on the shape functions used: edge or facet base functions. We choose a

B-conforming formulation because these type of formulation usually have a better conver-

gence rate than H-conforming ones for nonlinear problems [24]. Facet based functions will

be considered following the encouraging results of the thesis of Vinh Le-Van [21].

The new developments are built over MIPSE library, which is the acronym of Mod-

eling of Interconnected Power SystEms. It is created and developed at G2Elab and it is

used for numerical simulation dedicated to electromagnetism of low and medium frequency.

I.4 Objectives of the thesis

The objective of this thesis is to develop a simulation tool that allows to model the

current sensors previously shown in section I.2.c, composed of a current transformer and

a Rogowski metering sensor, and consequently have the full simulation description. These

sensors have to be accurate and self-powered. We need this tool to provide accuracy in

the computation of the magnetic flux through metering coils that are in the air and to

be robust with the rest of the elements: nonlinear behaviour, field-circuit coupling and

self-powered aspect.

We aim at developing the tool using the volume integral method, given that it is a

good candidate to obtain accuracy in the computation of the flux through metering coils.

Nevertheless, we also have to make sure that we can use the volume integral method for the

other requirements of the sensor that ensure the protection and the self-power function.

In this thesis, we focus on the following aspects:
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• First, create a basis model, which is a magnetostatic case for linear and nonlinear

materials.

• Then, take into account thin air gaps, because they arise in almost every sensor,

particularly when two ferromagnetic materials are welded, and they affect the current

transformer. Thin air gaps are not easy to model because a very thin mesh is needed

to accurately perceive its effect. We will propose an alternative to this that does

not need to mesh the air gap as a volume element but as a surface element with a

numerical treatment.

• Obtain an accurate computation of the magnetic flux through coils that are in the

air to ensure that the metering coil makes its function correctly.

• Finally, in order to have a more realistic model, we will describe the extension of the

magnetostatic case to a time stepping (transient) field-circuit coupled formulation

incorporating the previous features: the presence of thin air gaps and nonlinear

materials.



Chapter II

Volume integral method for nonlinear

magnetostatic problems

Summary

This chapter has two parts, the first one details a magnetostatic volume integral for-

mulation used to simulate current sensors. This formulation is B-conforming and it

is based on the discretization of the induction in facet-shape functions and a Galerkin

projection. The second part develops a method to model thin air gaps withing the pre-

viously explained formulations. The thin air gaps are treated as surface regions with

a numerical treatment instead of volume regions. The validation of both parts is done

with NSX current sensor.
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II.1 Introduction

In order to develop new sensors and to improve them, electromagnetic modeling and

simulation are particularly useful tools. Electromagnetism phenomena are understood

through Maxwell’s equations, therefore a library that solves these partial differential equa-

tions is needed. In this chapter we will consider the magnetostatic case, meaning that

there is no time variable on the equations and there is no circuit coupling.

The magnetostatic volume integral formulation for nonlinear problems, B-conforming

and based on facet functions as in [1] will be explained, having special emphasis in how

the magnetic flux through coils is computed. An application to NSX sensor (Fig. I.9)

comparing it with another simulation software is then shown. The aim of this formulation

is to be practical for devices such as current sensors, and a frequent feature appearing in

this devices is the presence of air gaps, therefore the second part of this chapter will be

focused on the development of an air gap model using the previous formulation. It will

also be applied to an academic case and NSX sensor.

II.2 VIM formulation

Let us consider a problem formed by a ferromagnetic non conductive region Ωm defined

by a magnetic permeability µ(H), source regions Ωc associated to current densities jc such

as conductor coils and the air encompassing the previous regions as Fig. II.1 shows. Before

explaining the volume integral formulation, let us introduce Maxwell’s equations.

Figure II.1: General magnetostatic problem.

II.2.a Maxwell’s equations for magnetostatic problems and constitutive law

Maxwell’s equations are the foundation of electromagnetism, they were published in

1861. The macroscopic equations in continuous, local form under magnetostatic assump-

tions are the following:



II.2. VIM formulation 19

– Gauss’s law for magnetism:

∇ · B = 0 (II.1)

– Ampere’s law:

∇×H = jc (II.2)

where B is the magnetic flux density (T), H is the magnetic field strength (A/m) and jc
is the electric current density (A/m2).

B and H are linked by the constitutive equation. Without considering permanent magne-

tization (no magnetic coercivity) and for isotropic materials, their relation is given by:

B = µ(H)H (II.3)

where µ(H) is expressed in H/m and µ(H) = µ0µr(H), being µ0 the vacuum permeability

and µr the relative permeability that is specific to each material. It can also be expressed

as:

H = ν(B)B (II.4)

where ν(B) is the inverse of the permeability.

The magnetization M (A/m) is defined as B = µ0(H+M), therefore:

M = (ν0 − ν(B))B (II.5)

where ν0 is the inverse of the vacuum permeability, also called reluctivity.

We aim at solving the system of equations formed by eq. (II.1) and eq. (II.2) using

the constitutive equation. We will then obtain the value of B that will allow to compute

other global values such as the magnetic flux through coils.

II.2.b Magnetostatic VIM formulation

H can be decomposed by the sum of two terms, the source field H0 created by source

currents and the reduced field Hr created by the ferromagnetic materials:

H = H0 +Hr. (II.6)

The source field verifies∇×H0 = j, therefore given Ampere’s law, eq. (II.2),∇×Hr = 0.

Then, a reduced magnetic scalar potential φr can be written as:

Hr = −∇φr (II.7)

where

φr =
1

4π

∫
Ω
M · ∇(1

r
)dΩ (II.8)

and r is the distance between the integration point and the observation point. Applying

this expression of Hr on eq. (II.6) we obtain:

H = H0 −∇φr. (II.9)
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Now, using the definition of the reduced magnetic scalar potential:

H = H0 −∇
(

1

4π

∫
Ω
M · ∇(1

r
)dΩ

)
. (II.10)

This is the basis equation of the reasoning. Let us explain the formulation choice to

continue.

II.2.c Formulation choice

Equation (II.10) is the basis equation of many integral formulations. For instance,

defining the magnetization, a formulation of the magnetic moment method can be devel-

oped [23]. There are also two other types of formulations, H-conforming and B-conforming:

• H-conforming formulations verify strongly Ampere’s law, eq. (II.2), and weakly

Gauss’s law for electromagnetism, eq. (II.1). They are widely studied in the liter-

ature and they can be based on the interpolation of H [26], the reduced magnetic

scalar potential φr or the total magnetic scalar potential φ [27, 28]. Let us note

that the reduced potential will experience a connexity problem for simply connected

domains that is usually solved with a magnetic cut.

• B-conforming formulations verify strongly Gauss’s law, eq. (II.1), and weakly Am-

pere’s law, eq. (II.2) and they are less studied in the literature. They can be based

on the interpolation of induction B [1] or the magnetic vector potential A [21, 22],

such that B = ∇×A.

For this thesis, we choose a B-conforming formulation based on induction B using facet

shape functions. The main reason for this is that at G2Elab we have already worked with

this type of formulation and we have more experience with it. Another reason is that the

convergence for nonlinear problems is usually better for B-conforming formulations than

for H-conforming ones [24].

In this chapter the formulation for the magnetostatic case as it has been developed in [1]

will be explained, and as a second stage, in chapter 3, we will show that this formulation

can be extended to the transient case, taking into account the field-circuit coupling.

Let us explain the facet-shape functions before getting into the development of the

formulation.

II.2.c-i Facet-shape functions

Facet-shape functions are key in the development of the formulation because they will

be used to create an interpolation of induction B and to apply a Galerkin projection. It

is then important to fully understand these functions and their properties, which are dis-

tinctive of the formulation.

To introduce facet-shape functions, let us consider a tetrahedron which is part of the

mesh of a domain, with vertices v1, v2, v3 and v4, let x a point belonging to the tetrahedron,

then for each vertex v1, v2, v3 and v4 there is a nodal function λvi(x) that designates the
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weight of the barycenter of x in the tetrahedron, with value 1 at the corresponding vertex

vi and zero at the other vertices. λvi is then a continuous piece-wise function verifying:{
x =

∑
i λvi(x)xi∑

i λvi = 1
(II.11)

Now, let us focus on the facet formed by vertices v1, v2 and v3 that we call f , its

facet-shape function wf (or Whitney 2-form [34] function) is defined by:

wf = 2(λv1∇λv2 ×∇λv3 + λv2∇λv3 ×∇λv1 + λv3∇λv1 ×∇λv2). (II.12)

In general, facet-shape functions wj verify two properties:

wj · nj = ±
1

Sj
(II.13)

∇ ·wj = ±
1

VEj

, (II.14)

where nj is the normal vector to the surface of facet j, Sj is the surface of facet j and

VEj is the volume of element E in which facet j is placed. The sign is defined with the

orientation of the normal vector, which can be incoming or outgoing. We define this

orientation depending on the position of the facet:

• For external facets, the normal vector has positive orientation if the normal vector

is outgoing.

• For internal facets, the normal vector has positive orientation if it goes from the

volume element with lower index to the volume element with higher index, given

that all volume elements have an index number assigned.

For instance, for two elements such as the ones represented in Figure II.2, the normal on

the external facet i of element E2 (Fig. II.2a) is positive because it is outgoing, therefore:

(wi · n i)|E2 = +
1

Si
(∇ · wi)|E2 = +

1

VE2

.

The normal represented on the internal facet j that is shared with the two elements is

positive for the shared facet belonging to E1 and negative for the share facet belonging to

E2, hence:

(wj · nj)|E1 = +
1

Sj
(∇ · wj)|E1 = +

1

VE1

.

(wj · nj)|E2 = − 1

Sj
(∇ · wj)|E2 = − 1

VE2

.

As a remark, it is important to note that for a given mesh element, for instance a

tetrahedron, for a chosen facet i with facet-shape function wi, Figure II.3, as mentioned

before wi · n i =
1
Si

for facet i, but for the normal vector of the three remaining facets j of

the tetrahedron wi · nj = 0.

Let us notice that each facet shape function wj is defined piecewise on each facet

element.
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(a) External facet. (b) Internal facet.

Figure II.2: Facets representation.

Figure II.3: wi facet-shape function representation of a tetrahedron.

II.2.c-ii Discretization and interpolation

Once the facet shape functions have been introduced, let us create a discretization of

the ferromagnetic domain Ωm with boundary Γ subdividing it into volume elements, we

call it primal mesh. Let Nf be the number of facet elements of the mesh.

An interpolation of the magnetic induction B with facet elements is made such that:

B =

Nf∑
j=1

wjΦj (II.15)

where wj are facet-shape functions of the primal mesh and Φj is the magnetic flux across

facet j. This interpolation ensures the continuity of magnetic flux between two adjacent

elements. Let us remark that the unknown of the matrix system that we will create to

define the problem will be Φj , the flux crossing each facet.

II.2.c-iii Galerkin projection and internal system

Coming back to the basis equation (II.9), the constitutive equation is applied to obtain:

ν(B)B = H0 −∇φr. (II.16)



II.2. VIM formulation 23

Then, the Galerkin method is used to project it on the magnetic region using as test

functions the same facet-shape functions wi employed for the interpolation of induction

B, obtaining ∫
Ωm

wi · ν(B)BdΩm =

∫
Ωm

wi ·H0dΩm −
∫
Ωm

wi · ∇φrdΩm. (II.17)

This procedure allows to project on tests functions instead of a more simple collocation

method that projects on points, which has shown more accuracy [35]. Let us analyse the

last term more in detail. Using the divergence theorem and the properties of facet-shape

functions we have:∫
Ωm

wi · ∇φrdΩm =

∫
Γi

φrwi · ndΓi −
∫
Ωm

φr∇ ·widΩm. (II.18)

Now, we can differentiate two cases, depending on the position of facet i:

1. If facet i is in the interior of the domain Ωm the surface integral vanishes given that

the facet is shared by two volume elements Ej and Ek with j < k and the normal

vector of the two elements has opposite sign. Hence, we write:∫
Ωm

wi · ∇φrdΩm =

∫
ΩEk

φr∇ ·widΩEk
−
∫
ΩEj

φr∇ ·widΩEj (II.19)

where ΩEj is the volume element Ej that is in the ferromagnetic region Ωm. Using

the property of facet functions (II.14), the previous expression can be written as:∫
Ωm

wi · ∇φrdΩm =
1

VEk

∫
ΩEk

φrdΩEk
− 1

VEj

∫
ΩEj

φrdΩEj . (II.20)

We notice that 1
VEk

∫
ΩEk

φrdΩEk
represents the average reduced scalar potential of

element Ek, that we denote as φrEk
, thus:∫

Ωm

wi · ∇φrdΩm = φrEk
− φrEj

= ∆φrinti
(II.21)

where subscript inti means that the facet i belongs to the interior of the domain

Ωm. Then, ∆φrinti
represents the difference of the average reduced scalar potential

of two volume elements that share facet i, which is in the interior of the domain.

2. If facet i is a boundary facet that belongs to volume element Ej , meaning that it

is on the boundary of Ωm, the surface integral doesn’t vanish. Using the two facet

properties (II.13) and (II.14) we write:∫
Ωm

wi ·∇φrdΩm =
1

Si

∫
Γi

φrdΓi−
1

VEj

∫
ΩEj

φrdΩEj = φrΓi
−φrEj

= ∆φrbi
(II.22)

where φri is the average reduced scalar potential of facet i and subscript bi means that

the facet i is at the boundary of the ferromagnetic region. Then, ∆φrbi
represents

the difference of the average reduced scalar potential between the boundary facet i

and the volume element to which facet i belongs.
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After considering the two possible facet positions, the last term of eq. (II.17) can be

expressed as: ∫
Ωm

wi · ∇φrdΩm =

∆φrinti
if i ∈ Ωm

∆φrbi
if i ∈ Γ.

(II.23)

Let us now take into account all the terms of eq. (II.17). Considering the interpolation

of B on it and eq. (II.23) on the left hand side, we can write (II.17) in the following matrix

form:

RmΦ +

(
∆φrinti

∆φrbi

)
= UH0 (II.24)

where Φ is the vector containing the magnetic flux through facets, R is a finite element

matrix defined as

Rmij
=

∫
Ωm

wi · ν(B)wjdΩm (II.25)

i = 1, 2, ..., Nf , j = 1, 2, ..., Nf and UH0 is a vector coming from the source term

UH0 =

∫
Ωm

wi ·H0dΩm (II.26)

i = 1, 2, ..., Nf . The system (II.24) shows the interactions given in the ferromagnetic region

and within its boundary without taking into account the air, we call it the internal system.

II.2.c-iv Equivalent electric circuit approach and external system

Let us consider an equivalent electric circuit approach creating a dual mesh of the

primal one previously explained. Then, as Fig. II.4 shows:

- The branches of the dual mesh are the facets of the primal mesh.

- The nodes of the dual mesh are the elements of the primal mesh.

Figure II.4: Primal and dual mesh representation of a square domain in 2D.
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With the equivalent circuit approach, the internal system (II.24) can be seen differ-

ently, being R an internal reluctance matrix for the magnetic material, ∆φrinti
and ∆φrbi

potential differences and UH0 a source term. We notice that the unknowns of the system,

Φj that we defined previously as the magnetic flux across facet j correspond to the flux

on the branches of the dual mesh.

The final step is to take into account the contribution in the air region. Instead of

meshing the air, a common agreement in integral methods is to consider an outer node

called infinity node in which we set a null magnetic scalar potential. This infinity node is

linked to the border elements Γ of the ferromagnetic region.

Figure II.5: Primal and dual mesh representation of a square domain in 2D with the

infinity node.

Given that the average reduced scalar potential at the infinity node is null, the differ-

ence of the average reduced scalar potential between a boundary facet i and the infinity

node writes:

∆φrΓi∞
= φrΓi

− φ∞ =

∫
Γi

φr

Si
dΓi. (II.27)

Using (II.5) and eq. (II.8), φr can be expressed as

φr =
∑

ΩE∈Ω

1

4π

∫
ΩE

(ν0 − νE(B))B · ∇
(
1

r

)
dΩE , (II.28)

where ΩE is each of the mesh volume elements. Now, injecting the expression of φr in

eq.(II.27) and assuming a constant reluctance per element we have:

∆φrΓi∞
= − 1

4π

∫
Γi

1

Si

 ∑
ΩE∈Ωm

δνj

∫
ΩE

B · ∇
(
1

r

)
dΩE

dΓi, (II.29)

where δνj is the difference of the reluctance of element E to which facet j belongs and the
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vacuum reluctance. Using the divergence theorem on the inner integral

∆φrΓi∞
= − 1

4π

∫
Γi

1

Si

 Nf∑
j=1

(
δνj

∫
Γj

B · n
(
1

r

)
dΓj

)dΓi. (II.30)

Finally, applying the interpolation of induction B and the fact that wj ·n j =
1
Sj

we obtain:

∆φrΓi∞
= − 1

4π

∫
Γi

1

Si

 Nf∑
j=1

(
δνj
Sj

∫
Γj

1

r
dΓj

)
Φj

dΓi. (II.31)

The latter expression can be written in matrix form as:

∆φrΓ∞
+PmΦ = 0 (II.32)

where Pm is what we call a volume integral matrix, which is associated to the border facets

and containing the magnetic flux leakage. With the previously mentioned assumption of

constant reluctance per element Pm writes:

Pmij
=

δνj
4π

1

Si

1

Sj

∫
Γi

∫
Γj

1

r
dΓidΓj (II.33)

with i = 1, 2, ..., NfEXT
the number of external facets and j = 1, 2, ..., Nf all the facets.

We will explain the dimension of Pm in the next section.

System (II.32) shows the interactions given between the boundary of the ferromagnetic

region and the infinity point, we call it external system. Let us remark that matrix Pm

not only provides the link between external branches of a ferromagnetic region and the

infinity point, but it also shows the connection between external facets of two different

ferromagnetic regions, in case there is more than one.

II.2.c-v The resulting matrix system

The final matrix system of this magnetostatic volume integral formulation is the sum of

the contributions of the internal, eq. (II.24), and external branches, eq. (II.32), obtaining

the equivalent electric circuit system:

(Rm +Pm)Φ +∆φ = UH0 (II.34)

where

Rmij
=

∫
Ωm

wi · ν(B)wjdΩm, (II.35)

Pmij
=

δνj
4π

1

Si

1

Sj

∫
Γi

∫
Γj

1

r
dΓidΓj , (II.36)

∆φ =

(
∆φrint

∆φrb
+∆φrΓ∞

)
, (II.37)

UH0 =

∫
Ωm

wi ·H0dΩm, (II.38)
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and Φ is the unknown, the magnetic flux crossing the facets of the primal mesh, corre-

sponding to the branches of the dual mesh. Let us remark that the boundary branches

are merged with the branches going to the infinity point, that we call external branches,

obtaining the primal and dual mesh that Figure II.6 shows.

Figure II.6: Primal and dual mesh representation of a square domain in 2D merging the

boundary and infinity branches.

Regarding the dimmension of the matrices:

• Rm is a finite element matrix, square of size Nf ×Nf and sparse.

• Pm is a volume integral matrix that is rectangular and fully populated, of size

[NfEXT
×NfINT

], NfEXT
is the number of external branches andNfINT

is the number

of internal branches.

• ∆φ is the difference of potential on the branches of the dual mesh and it is a vector of

size Nf that contains the internal branches, the boundary branches and the branches

going to the infinity point.

• UH0 is a source term, which is a vector of size Nf .

Figure II.7 shows the dimension of the matrices of system (II.34) for nonlinear problems.

For linear problems, a simplification can be done on matrix Pm because the reluctivity of

two elements of a linear material is the same, therefore the jump of reluctivity δνj that

is a factor in matrix Pm is 0, and all the terms of the internal branches are null. Then,

the size of matrix Pm is [NfEXT
×NfEXT

] plus the branches between regions that have

different reluctivity (if there are), for which we add a block of size [NfEXT
×NfBET

], where

NfBET
is the number of branches between regions. Figure II.8 shows this structure.

For the resolution, system (II.34) is solved with a circuit solver through the equivalent

electric circuit approach, using either Kirchhoff’s voltage law or Kirchhoff’s current law.
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Figure II.7: Representation of the matrices dimension for system (II.34), nonlinear case.

Figure II.8: Representation of the matrices dimension for system (II.34), linear case.

Let us introduce Kirchhoff’s voltage law for this case. It states that the directed sum of

the potential differences around a closed loop is zero, therefore

MI∆φr = 0 (II.39)

where MI is the incidence matrix showing the link between the independent loops and the

circuit branches of size Nf ×Nl, being Nl the number of independent loops of the problem

and

MIij =

{
±1 if branch j is in loop i

0 otherwise
(II.40)

The sign of 1 depends on the orientation of the branch in the loop. Then, with graph

theory we can find the independent loops on the mesh using tree and co-tree techniques

that need the topological description of the circuit. The size of MI is [the number of

independent loops, number of independent branches], such as the one shown in Figure

II.9 for the 2D example previously presented. Taking this into account, the magnetic flux

through the branches can be decomposed as:

Φ = MI
TΦl (II.41)

whereMI
T is the transpose of the incidence matrixMI and Φl is the flux of the independent

loops.
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Figure II.9: Kirchhoff’s voltage independent loops for a 2D case.

Using equations (II.39) and (II.41), system (II.34) writes:

MI(Rm +Pm)MI
TΦl = MIU

H0 . (II.42)

We remark that this procedure ensures the free divergence of B, given that the circuit

representation allows to write:

∇ · B = ∇ · (
Nf∑
i=1

wiΦi) =

Nf∑
i=1

∇ · (wiΦi) =
1

VE

Nf∑
i=1

Φi (II.43)

Verifying any of the two Kirchhoff’s rules
Nf∑
i=1

Φi = 0 holds, therefore ∇ · B = 0.

In practice, the resolution of system (II.42) is carried out with a Generalized Minimal

RESidual (GMRES) iterative solver. For the nonlinear case, an additional imbricated

Newton-Raphson (NR) loop is considered. To do that, the computation of the jacobian

matrices is needed:

• The jacobian contribution of Rm matrix is expressed as:

J(Rmij
) =

∫
Ωm

wi ·
[
∂H

∂B

]
wjdΩm (II.44)

where J is the jacobian and
[
∂H
∂B

]
is the tensor containing the partial derivative of

each component of H with respect to each component of B [25].

• The jacobian contribution of Pm matrix would be very time consuming to compute

at each iteration. Contrary to the case of Rm, Pm matrix does not depend strongly

on B. This happens because of the reluctivity jump δν present in its expression,

for which there are two cases, either δν = (νE1 − νE2) for two adjacent elements E1
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and E2, which is a very low value; or δν = νEb
− ν0, where Eb is an element on the

boundary, and it that case ν0 is the dominant term. Then the dependency of Pm

matrix on B is very low and we approximate the contribution of the jacobian of Pm

by itself, without any further computation:

J(Pm) ≈ Pm. (II.45)

To summarize, until now we have found the matrix system for a B-conforming formula-

tion based on the induction and we have used an equivalent electric circuit approach that

allows to solve the system with Kirchhoff’s current or voltage rule that ensures the free

divergence of the induction. Finally, we have explained how to deal with nonlinear prob-

lems computing the jacobian matrices. Now, let us provide various strategies to perform

some specific computations.

II.2.d Other considerations of the VIM facet formulation

There are some additional considerations to take into account to solve system (II.42),

making this formulation more efficient and reducing the computation time:

• Starting from the computation of Pm,

Pmij
=

δνj
4π

1

Si

1

Sj

∫
Γi

∫
Γj

1

r
dΓidΓj , (II.46)

where we supposed a constant reluctance assumption per element. This assumption

is already true for simplex elements, which is the case of tetrahedrons. It is not

the case of hexahedrons, but again, since the dominant term of Pm matrix for the

reluctivity jump δν = (νEb
− ν0) is ν0, the fact of assuming a constant reluctivity

per element is not very significative.

• Let us notice that Pm has a singularity on Green’s function. It is important to be

careful with the computation of the numerical integration, for which there are two

options:

1. The external integral is computed numerically using Gauss points and the in-

ternal one is computed with the analytical integration [40, 41].

2. The external integral is computed numerically using Gauss points and the in-

ternal one is computed numerically as well but taking different Gauss points

(shifted Gauss points).

In general, the first option provides better results, because the shifted Gauss points

could be very close to each other. For the nonlinear case, thanks to the assumption of

constant reluctivity per element, Pm matrix is computed only once, being updated

at each Newton-Raphson iteration without re-computing the terms.

• Another remark regardingPm matrix is to notice that δνj is null for internal elements

of a ferromagnetic region that is composed of a linear material. Furthermore, if

the problem that we are considering has only one ferromagnetic region and it is
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linear, then Pm will be a square matrix as we can see on Fig. II.8 that shows the

representation of the matrices dimensions.

• Given a mesh, there are multiple possibilities to construct the incidence matrix MI

to apply Kirchhoff’s voltage law [38, 39]. Then, the number of unknowns of the

system is the number of independent loops of the mesh. The computation time of

the system also depends on how the independent loops are created. Let us note that

this process can also be carried out with Kirchhoff’s current law.

• In order to speed the computations, a matrix compression technique can be used, such

as the Fast Multiple Method (FMM) [15], Adaptive Cross Approximation (ACA) [16]

or Hybrid Cross Approximation (HCA) [18] on matrix Pm. To do that, the use on

an iterative solver is compulsory, in our case of GMRES type, and it is accelerated

with a LU type preconditioner on matrix Rm as in [36], which is included in the

code using MUMPS library [37].

Once we know how to solve the matrix system defining the problem and we have taken

into account these considerations to speed up the computations, let us explain how the

solution Φ is used for the computation of other variables.

II.2.e Extraction of the induction at each point

The value of the flux through each facet of the mesh Φi is obtained by solving system

(II.34). Now, to obtain the induction B on all the domain, there are some calculations to

do.

For a point p in the interior of the ferromagnetic regions, induction B is computed

simply by using the interpolation formula that we have explained previously:

B(p) =

Nf∑
j=1

wj(p)Φj(p) (II.47)

For a point q that is not in the ferromagnetic region we can compute the value of H

field and use the constitutive relation (II.4) to obtain the induction B. Following equation

(II.9) we have:

H(q) = −∇q(φr) +H0(q). (II.48)

We saw in eq. (II.8) the expression of φr:

φr =
∑

ΩE∈Ωm

1

4π

∫
ΩE

M · ∇
(
1

r

)
dΩE ,

taking into account that ∇ ·M = 0 at each element given that ∇ · B = 0 and a constant

permeability per mesh element, the following expression holds:

∇ ·
(
1

r
M

)
= ∇

(
1

r

)
·M+

1

r
∇ ·M = ∇

(
1

r

)
·M = M · ∇

(
1

r

)
. (II.49)
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Then, the divergence theorem can be applied to φr, obtaining:

φr(q) =
1

4π

Nf∑
j=1

∫
Γj

δMnj

(
1

r

)
dΓj (II.50)

that is to say, the integral over all the facets elements Γj , where Mnj is the magnetization

difference between the two volume elements E1 and E2 that share facet j, having δMnj =

MnE1 − MnE2 = (νE2 − νE1)B · n where n is the outgoing normal from E1. Since in

equation (II.50) only 1
r depends on point q, we can write the gradient of φr as follows:

∇qφr(q) =
1

4π

Nf∑
j=1

∫
Γj

δMnj

(
∇q

1

r

)
dΓj =

Nf∑
j=1

1

4π

∫
Γj

δMnj

(
− r

r3

)
dΓj . (II.51)

Finally, injecting the latter expression (II.51) in (II.48), the value of H in q is given by:

H(q) =
1

4π

Nf∑
j=1

∫
Γj

δMnj

(
− r

r3

)
dΓj +H0(q). (II.52)

If the ferromagnetic region is composed of an isotropic linear material, then δMnj = 0

for the facets in the ferromagnetic region, and the only facets considered in the sum of the

previous expression are the external facets of the regions.

Once we have H(q), given that q is in the air, the value of the induction B at q is:

B(q) = µ0H(q). (II.53)

II.2.f Magnetic flux computation through coils

The value of the induction at each point is now known. For the post-treatment of the

solution, we focus on the computation of the magnetic flux through coils, given that it

is the measurement of interest for the current sensors application, which will ensure their

accuracy. To have a precise computation we will use the result of [42] which states that

given a coil Ωck for k = 1, 2, ..., Nc where Nc is the number of coils, the magnetic flux

through a coil k is computed by:

ΦΩck
=

∫
Ωck

jck
·AdΩck =

∫
Ωck

jck
·A0dΩck +

∫
Ωck

jck
·AmdΩck

[42]
=

µ0

4π

∫
Ωck

jck

(
Nc∑
l=1

Il

∫
Ωcl

jcl

r
dΩcl

)
dΩck + µ0

∫
Ωm

hck
·MdΩm

(II.54)

where jck
is the current density produced by coil k with an imposed current of 1 A, hck

is the magnetic field generated by coil k with 1 A in vacuum, which can be obtained

with Biot-Savart law, A is the magnetic vector potential, A0 and Am are the magnetic

vector potential generated by coils in vacuum and in magnetic regions respectively, Il is

the current flowing in coil l and r is the distance between the integration point in coils

and the computation point of the vector potential. Let us notice that the two terms to

compute (final expression of (II.54)) are fairly different:



II.2. VIM formulation 33

1. The first term has a double integral over the coil regions, therefore a mesh of the coils

is needed. For the inner integral, there are analytical formulas if the coil is circular

[40, 41, 43, 44, 45]. If it is not circular, a mesh of the coil can be created with for

example hexahedra or tetrahedra, and assuming that j0k is uniform at each mesh

element, there are also analytical expressions to compute the inner integral. For the

outer integral in general there is no analytical formula and a numerical integration

is needed.

2. The second term is integrated over the magnetic region, and the definition of the coil

is used to evaluate hck
.

We remark that when a coil is not encircled by a magnetic circuit the first term has

more impact than the second one, and its computation is very precise, using analytical

expressions for the inner integral. This is where the volume integral method shows its

potential compared to the finite element method, because the finite element method would

compute the magnetic flux through coils with an integral over the mesh elements that are

around the coils, which has to be very thin to obtain good accuracy, but the mesh of the

air around a coil is a vast area and a thin mesh would take long computation time.

II.2.g NSX sensor application

To validate the magnetostatic linear and nonlinear volume integral formulation, we

consider NSX sensor, previously presented in I.2.c.

Figure II.10: NSX simulation model, meshed with 46 000 volume elements.

It is a current transformer with a metering coil on top of it, divided in four parts.

The current transformer has a ferromagnetic region with a large air gap in the middle,

a primary coil and a secondary coil, as shown in Fig. II.10. The two thin air gaps are

not considered in this application. We aim at computing the magnetic flux through the
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Figure II.11: Primary conductor dimen-

sion of NSX sensor.

Figure II.12: Dimension of NSX sensor.

secondary coil and through the four parts of the metering coil.

Regarding the characteristics and parameters of the model:

- For the ferromagnetic region, two cases are considered with different materials. The

first case is an isotropic linear material with µr =1000 and the second one is a

nonlinear material following an isotropic analytic saturation of arc tangent type

with two coefficients: µr =1000 and saturation magnetization = 1.2 T.

- The primary conductor has imposed current of 1 A for the linear case and for the

nonlinear case we consider a set of imposed currents {0.1, 0.5, 1, 2, 5, 10, 20, 50,
100, 200} A. It is defined as a closed loop of dimension 1 meter times 1 meter. Its

large length avoids the return of the conductor to have an effect on the ferromagnetic

region (Figure II.11).

- The secondary coil has 980 turns and no imposed current.

- The four parts composing the metering coil have 825 turns each, making 3300 turns

in total. They are called down, up, right and left as in Figure II.10. There is no

current imposed on them.

- The main dimension of the sensor are shown in Figure II.12.

The result of our implementation of the VIM is compared with the commercial software

Flux3D of Altair [30], which is based on FEM. Let us show the results for the linear case

and the nonlinear case separately.

Linear case

To test the linear material, we have created four different meshes with 12000, 24000,

46000 and 96000 elements to perceive the convergence of the mesh. For VIM the number
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of mesh elements given corresponds to the number of elements of the ferromagnetic region

(the current transformer in this case, CT), for FEM the number of mesh elements given

also corresponds to the elements of the ferromagnetic region, but there are many more

elements meshing the air around the ferromagnetic region, which don’t exist in VIM case.

For a given mesh we compute the relative difference between FEM and VIM as

relative difference =
abs(valueFEM− valueVIM)

valueVIM
,

where abs denotes the absolute value. Figure II.13 shows the flux through the secondary

coil for FEM and VIM with their relative difference. We see that the results get closer

as the number of mesh elements increases: for a mesh of 46000 the relative difference is

0.38% whereas for 96000 elements the relative difference is inferior to 0.1%. Both methods

converge at the same ratio approximately.
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Figure II.13: Mesh convergence for linear material computing the flux through the sec-

ondary coil.

Figures II.14a and II.14b show the flux through up and down metering coils and through

right and left metering coils repectively for each of the four different meshes of 12000,

24000, 46000 and 96000 elements. Values obtained for down and right metering coils are

negative but we have represented them as positive to have a narrower scale on the y axis

that allows to appreciate better the differences between FEM and VIM. At a first glimpse

we see that left and right coils provide results that are quite similar given that NSX sensor

is symmetric with respect to x-axis. We notice that VIM results are homogeneous for the

four metering coils (horizontal lines) whereas FEM results vary with the number of mesh

elements, meaning that VIM converges for a coarse mesh.

Figure II.14 shows the relative difference between FEM and VIM for each of the four

parts of the metering coil. We see that the difference is higher for a coarse mesh, and it

gets lower as the number of mesh elements increases, for instance the metering coil right

has 18.6% of relative difference for a mesh of 12000 elements and 2.63% for a mesh of

96000 elements. The lowest relative difference is obtained for a mesh of 96000 elements,

having 2.63%, 2.64%, 3.27% and 4.30% for the left, right, down and up coil respectively.

We conclude that VIM is more stable to compute the flux through the metering coil of

NSX sensor.
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Figure II.14: Mesh convergence for linear material with the flux through the metering

coils.

Given these results, we validate the magnetostatic linear model, where we have seen

two different types of coils:

• For coils that are around a magnetic material VIM and FEM show similar results,

with a relative difference inferior to 0.1% on the secondary coil of NSX with a mesh

of 96000 elements.

• For coils that have a higher contribution of the magnetic flux in the air, as it is the

case of the metering coils, VIM shows more stable results for all the meshes shown.

Nonlinear case

For the nonlinear material we have selected the mesh previously presented with 96000

elements because it is the one that provides better results. The computation of the flux

through the secondary coil is shown in Figure II.15 for imposed currents {0.1, 0.5, 1, 2, 5,
10, 20, 50, 100, 200, 500} A on the primary coil.
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Figure II.15: NSX results for nonlinear material, secondary coil.

The relative difference obtained between FEM and VIM on the flux through the sec-

ondary coil is inferior to 0.6%.

The flux through each of the four metering coils with FEM and VIM are given in Fig-

ure II.16a. We notice again that left and right coils show almost the same flux because of

the x-axis symmetry. We also notice that the metering coil doesn’t show a high saturation

effect, this occurs because when computing the flux of these coils, the contribution of the

part that is in the air, first term of eq. (II.54), is much higher than the contribution of the

magnetic circuit.

In Figure II.16b we can see the relative difference between FEM and VIM for the four

metering coils, obtaining values in the range [0, 3.5]%. The magnitude of these values is

consistent with the ones obtained in the linear case for a mesh of 96000 elements.
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Figure II.16: NSX results for nonlinear material, metering coils.

We then validate the magnetostatic nonlinear model, having again two cases:
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• For coils that are placed around the ferromagnetic material, the relative difference

between FEM and VIM is inferior to 0.6%.

• For coils that have a higher contribution of the magnetic flux in the air as it is the

case of the metering coils, the relative difference between FEM and VIM is higher,

obtaining the convergence for VIM but less accurate results for FEM.

II.3 Thin air gaps model for magnetostatic VIM

When modeling ferromagnetic devices, a popular feature is the presence of air gaps.

We distinguish two types of air gaps: the ones that are very thin, arising for instance when

two ferromagnetic parts are welded; and large air gaps that are thicker. An air gap will

be classified as thin or large depending on the dimension of the device that is part of, for

example, in our sensors of a few centimeters of length and width, a thin air gap would

be of a thickness inferior to 50 µm and a large air gap would have a thickness of a few

millimeters.

Thin and large air gaps usually have a different purpose. In general, thin air gaps are a

side effect that occurs when positioning the secondary winding of the current transformer:

the ferromagnetic region is formed by two pieces in order to insert the secondary coil and

then the two pieces are welded to close the region, creating an air gap where the welding

has been made. Large air gaps are different and they are often created consciously to force

the magnetic flux to go in a specific direction. In any case, the presence of air in these

regions changes the electromagnetic behaviour therefore it is important to have a specific

numerical treatment for them. In terms of modeling, large air gaps don’t cause many

troubles, nevertheless, thin air gaps do due to the proximity of the two air gap faces. In

this section, we focus on modeling thin air gaps.

Since we are using the VIM method and we don’t necessarily need to mesh the air

region, there are two options to model a thin air gap: the first one is to not mesh the air

gap, but the proximity of the two air gap faces leads to inaccurate integral computations of

Green’s kernel, eq. (II.36). The second option is to mesh the air gap as a volume element,

this case is more accurate than not meshing the air gap but it also leads to difficult integral

calculations on the mesh elements of the air gap due to the proximity of the two air gap

faces and to the elongated shape mesh elements that model the air gap.

We propose an alternative to model thin air gaps, which consists in meshing the air

gap as a face region and apply a numerical treatment that depends on the thickness of

the air gap. This alternative avoids the numerical difficulty that arises when the air gap is

not meshed. It also allows to prevent the difficult integrals computation that arise when

meshing it as a volume element. The three air gap mesh options are shown in Figure II.17

for the case of a ferromagnetic region with an air gap and a coil.
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Figure II.17: Air gap mesh options.

II.3.a Face air gap model development

In order to consider that the air gap is a face region instead of a volume region, let us

consider the following assumptions:

1. The thickness of the air gap is small compared to the dimension of the ferromagnetic

region.

2. There is no lateral flux leakage from the face of the air gap to the air.

3. Flux inside the air gap has perpendicular direction to the air gap. This occurs because

the vacuum permeability is much lower than the ferromagnetic region permeability

and the thickness of the air gap is small.

Figure II.18 shows the mesh difference when considering the air gap as a volume ele-

ment and as a face element.

The air gap modeling strategy will be made adding the air gap contribution to matrices

Rm and Pm of system (II.34). For the finite element matrix Rm, a reluctance on the

branches i that cross the air gap is added, expressed by µ0e
Si

, therefore for branches i that

belong to the air gap we have

Rmij =

∫
Ωm

wi · ν(B)wjdΩm +
µ0e

Si
, (II.55)

where e is the thickness of the air gap and Si the surface of element i. It can also be seen

as the reluctance of a parallelepiped of surface Si and depth e. The contribution of the
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Figure II.18: Equivalent magnetic circuit of a region with an air gap as a volume element

(left) and as a face element (right).

volume integral matrix Pm is more elaborated: we consider that the air gap is defined by

two parallel faces Γ1 and Γ2 separated by a distance e and we aim at obtaining the link

between a branch crossing Γ1 face and a branch crossing Γ2 face (Fig. II.19). We name

the evaluation between these two branches Pmi,Γ12j
:

Pmi,Γ12j
=

1

4π

∫
Γi

1

Si

∫
Γ1j

1

Sj
(ν1 − ν0)

1

r1
dΓ1jdΓi−

1

4π

∫
Γi

1

Si

∫
Γ2j

1

Sj
(ν2 − ν0)

1

r2
dΓ2jdΓi

(II.56)

Figure II.19: Two parallel faces defining the air gap.

where i = 1, 2, ..., Nb are the boundary elements of the ferromagnetic region, therefore Γi

are external branches going to the infinity point and Γ1j and Γ2j are the facet elements j

that are on face Γ1 and Γ2 respectively. Minus sign between the two terms arises from the

orientation of the faces, going from Γ1 to Γ2 by agreement. ν1 and ν2 are the magnetic
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reluctivity on face Γ1 and Γ2. Let us express the reluctivity as:

ν1 = ν +
δν

2
ν2 = ν − δν

2
(II.57)

where ν = ν1+ν2
2 and δν = ν1 − ν2. Then rearranging the terms, eq. (II.56) reads:

Pmi,Γ12j
=

1

4π

∫
Γi

1

Si

δν

2

1

Sj

[ ∫
Γ1j

1

r1
dΓ1j +

∫
Γ2j

1

r2
dΓ2j

]
dΓi−

1

4π

∫
Γi

1

Si
(ν − ν0)

1

Sj

[ ∫
Γ1j

1

r1
dΓ1j −

∫
Γ2j

1

r2
dΓ2j

]
dΓi = A− B.

(II.58)

Let us comment the latter equation. It shows the link between two faces that are in

front of each other, and it would appear in the two unsatisfying air gap modelizations

explained before: if the air gap is not meshed and if it is meshed with volume elements.

When the air gap is thin, then distances r1 and r2 are almost identical, and the difference

that is in brackets in each of the two terms can lead to inaccuracy. The difference between

the two cases is that if the air gap is not meshed, the inaccuracy is given on both matrices

Rm and Pm, whereas if the air gap is meshed as a volume element, the inaccuracy is only

given on matrix Pm.

For the face air gap model, we will do a numerical approximation of each of the two terms

of eq. (II.58).

1. First term: we use a Taylor expansion on r1 and r2 such that

1

r1
+

1

r2
=

2

r
+ ε(O2) ≈ 2

r
,

then we write the first term as:

A =
1

4π

∫
Γi

1

Si

∫
Γj

1

Sj

δν

r
dΓjdΓi. (II.59)

2. Second term: we use ∇(1r ) · n = d
dn (

1
r ) ≈ lim

e→0

1
r1

− 1
r2

e , to obtain

1

r1
− 1

r2
≈ e∇(1

r
) · n ,

then we write the second term as:

B =
1

4π

∫
Γi

1

Si

∫
Γj

(ν − ν0)
1

Sj
e∇(1

r
) · ndΓjdΓi. (II.60)

Assembling both terms, we have:

Pmi,Γ12j
=

1

4π

∫
Γi

1

Si

∫
Γj

1

Sj

δν

r
dΓjdΓi +

1

4π

∫
Γi

1

Si

∫
Γj

(ν − ν0)
1

Sj
e∇(1

r
) · ndΓjdΓi. (II.61)

Let us notice that the first term of Pmi,Γ12j
is Pmij

obtained in the magnetostatic for-

mulation without considering air gaps, eq. (II.36), being the second term the additional
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contribution of the air gaps. This new contribution describing the air gap will be added

to Pm matrix in the terms that represent the branches crossing the air gaps.

Therefore, the face air gap model is composed of two contributions, one on matrix Rm

and another in matrix Pm. We remark that when the thickness of the air gap is small, the

correction of matrix Rm can be enough to capture the air gap behaviour. Nevertheless,

when the air gap is thicker, it is important to consider correction of matrix Pm too.

II.3.b Applications

In order to validate the face air gap model we will present two applications, an academic

case and NSX sensor previously shown. We will compare the results of the face air gap

model with the volume air gap model.

II.3.b-i Academic case

The academic case is composed of a ferromagnetic region with an air gap and a coil

around the region as Figure II.20 shows. A current is imposed on the coil and the result

will be the computation of the magnetic flux through the same coil. The aim is to compare

the results obtained for different air gaps thicknesses with the face air gap model and with

the volume air gap model.

Regarding the characteristics of the model:

• There will be two different material cases, a linear one with an isotropic linear ma-

terial with µr = 1000 and a second case with a nonlinear material that follows

an isotropic analytical saturation of arc tangent type defined by two coefficients:

µr = 1000 and magnetization saturation of 1.2 T.

• The coil will have an imposed current of 1 A for the linear case and a set of currents

{0.001, 0.01, 0.05, 0.1, 0.2} A for the nonlinear case.

• The air gap widths tested will be of 20 µm and 50 µm.

• There will be three models, the air gap face model including the contribution of

matrices Rm and Pm (called VIM face RP), the air gap face model only including

the contribution of matrix Rm (called VIM face R) and the air gap volume model

(called VIM volume). Since we don’t have a reference, we will compare VIM face

RP with VIM volume and VIM face R with VIM volume.
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Figure II.20: Geometry of the academic case with a mesh of 40 000 elements.

The convergent mesh chosen has 40000 elements as Figure II.20 shows.

For the linear case, the flux through the coil for air gaps of thickness 20 µm and 50 µm

and without air gap is given in Figure II.21a. We see that the flux decreases as the air gap

thickness increases, which is logical because the air gap hampers the flux route through

the ferromagnetic region and it disperses in the air.

Figure II.21b shows the relative difference between VIM volume and VIM face RP;

and between VIM volume and VIM face R depending on the air gap thickness. We notice

that both relative differences increase as the air gap gets thicker, where the VIM face RP

model has less relative difference with VIM volume method than the VIM face R with

VIM volume. This result suggest that VIM face RP is more accurate than VIM face R, as

expected because we haven’t considered one of the terms.
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Figure II.21: Air gap results of the academic case, linear.

For the nonlinear case, the flux through the coil imposing the currents {0.001 , 0.01,

0.05, 0.1, 0.2} A for air gaps of thicknesses 20 µm and 50 µm and without air gap is given

in Figure II.22a. We notice that without air gap the flux obtained is higher, and as the
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air gap thickness increases the flux obtained is lower, obtaining less flux for an air gap of

20 µm of thickness and even less for an air gap of 50 µm. We also notice that the more

the material saturates, the less impact the air gap has, obtaining values that are quite

different for the two air gap thicknesses if the current is {0.001 , 0.01, 0.05, 0.1} A and a

smaller difference between thicknesses when the imposed current is 0.2 A, for which the

material is very saturated. The three methods provide results that are quite similar for

each of the air gap thicknesses as we can see in Figure II.22a in which the three methods

are overlapped (the three green lines and all the three blue lines are overlapped).

In order to notice the difference between methods for each of the two air gap thickness,

Figure II.22b represents the relative difference between VIM volume method and VIM

face RP method and between VIM volume method and VIM face R method. We see that

the difference is higher for an air gap of 50 µm than for an air gap of 20 µm because the

thicker the air gap, the less accurate the air gap method. We also notice that VIM face

RP method is closer to VIM volume method than VIM face R, suggesting that VIM face

RP is more accurate than VIM face R, as expected.
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Figure II.22: Air gap results of the academic case, nonlinear.

II.3.b-ii NSX sensor

A second application for the air gap model is NSX sensor. As explained before, this

sensor has three air gaps: two thin ones arising when two parts of the magnetic region

are welded to be able to insert the secondary coil (Fig. II.23) and a large air gap that is

consciously designed to force the electromagnetic flux to flow along A loop and not B loop

represented in Fig. II.24.
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Figure II.23: NSX current transformer before welding to insert the secondary coil.

Figure II.24: NSX loop A forced by the large air gap.

The large air gap, with thickness 500 µm, is too large to apply the thin air gap de-

velopment and it is simply meshed as a volume region of air, with no specific treatment.

Some other considerations of this application are:

• We will study two different material cases, a linear one with an isotropic linear

material of µr = 1000 and a second case with a nonlinear material that follows

an isotropic analytical saturation of arc tangent type defined by two coefficients:

µr = 1000 and magnetization saturation of 1.2 T.

• For simplicity, we will only consider the primary conductor and the secondary coil,

which are enough to show the air gap effect, omitting the Rogowski coil.

• The primary conductor will have an imposed current of 1 A for the linear case and

100 A for the nonlinear case, for which the material is already saturated (as we have

shown previously testing the magnetostatic formulation in Figure II.15).

• Three air gap thicknesses will be tested: 20 µm, 30 µm and 50 µm.

• Similarly to the academic case, we will run three models: VIM face RP, VIM face R

and VIM volume, comparing VIM face RP with VIM volume and VIM face R with

VIM volume.
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• Calculations are done with a mesh of 46000 elements on the ferromagnetic region.

An example of the air gap mesh when it is modeled as a volume element is shown in

Figure II.25 for 50 µm of thickness, having 545 mesh elements.

Figure II.25: NSX, air gap meshed as a volume region of thickness 50 µm.

For the linear case, the flux through the secondary coil imposing 1 A on the primary

conductor is shown in Figure II.26a. We notice that the thicker the air gap, the more dif-

ference between models. Figure II.26b shows that the relative difference between VIM Face

R and VIM volume is higher than the one between VIM RP and VIM volume, suggesting

that VIM face RP is more accurate than VIM face R. The relative difference between

methods increases as the air gap thickness does, having for instance a relative difference

between VIM face RP and VIM Volume of 0.27 % for an air gap of 20 µm of thickness

and 0.89 % for an air gap of 50 µm.
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Figure II.26: Linear results for NSX thin air gap

We repeat the same process for the nonlinear material obtaining the flux through the

secondary coil in Figure II.27a and the relative difference between methods in Figure II.27b.

We notice that the difference between methods is higher as the thickness of the air gap

increases because one of the assumptions of the thin air gap model is that the thickness is

small, and as it gets larger, the model is less accurate. For instance, the relative difference

between VIM face RP and VIM volume is 0.13 % for an air gap of 20 µm and it increases

to 0.55 % for an air gap of 50 µm.



II.4. Conclusion 47

(a) Flux through secondary coil.
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Figure II.27: Nonlinear results for NSX thin air gap

II.4 Conclusion

This chapter presents the magnetostatic volume integral formulation that is the basis

of this thesis. The choice of a B-conforming formulation using facet elements is explained

and the formulation is developed using an equivalent electric circuit approach. The matrix

system of a general problem is shown on eq. (II.34) and it is formed of two main matrices

that we name Rm and Pm. Rm matrix holds the links between the internal elements of

the ferromagnetic region and it is a finite element method matrix, which is sparse. Pm

matrix provides the modelization of the flux exiting the magnetic material to the air, and

it is fully populated. Then, the method used to compute the magnetic flux through coils

is shown. The formulation is applied to the current transformer of NSX sensor and it is

compared to the results of a FEM software. This application demonstrates that the devel-

oped formulation is suitable for the current sensor application that we needed, providing

accuracy in the computation of the magnetic flux through coils.

The second part of the chapter is centred in modeling air gaps using the previously

explained formulation, more precisely thin air gaps, which are difficult to model as a vol-

ume element given its narrow thickness. The concept behind the suggested approach is

to mesh the air gaps as a face element and use a numerical procedure to prevent meshing

it as a volume element. The method translates in adding a contribution to Rm and Pm

matrices on the branches that cross the air gap. Then, two applications to an academic

case and to the current transformer of NSX sensor are exhibited, comparing the face air

gap model with the volume air gap model. The results show that the face air gap model

is accurate for thin air gaps, but the thicker the air gap is, the less accurate the model

happens to be, which is natural given the assumptions.

As a summary of these two parts, this chapter shows that we can model and obtain

accurate results of current sensors for magnetostatic phenomena with nonlinear materials

and air gaps.





Chapter III

Time stepping volume integral formula-

tions for nonlinear field-circuit coupled

problems

Summary

This chapter develops two different time stepping volume integral formulations for non-

linear field-circuit coupled problems. The first one is a weak coupling formulation in

which the magnetic field and the circuit are treated separately in the time stepping pro-

cess. For this case two algorithms are explained, one for linear materials and another

one for nonlinear materials. The second formulation is a strong coupling formulation

in which the magnetic field and the circuit equations are written together obtaining

a system that treats both simultaneously and it is adapted to include circuit lumped

elements. Both formulations are validated on NSX current sensor.
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III.1 Introduction

Modeling the Rogowski metering coil isolated requires only the use of a magnetostatic

volume integral method shown in chapter 2. However, this metering sensor interacts with

other elements that require transient models. This is particularly important in the case of

self-powered sensors, as we place a current transformer next to the Rogowski coil. Then,

the secondary coil of the current transformer is linked to an external circuit and it is nec-

essary to determine the currents flowing in this secondary coil. These currents have an

impact on the operation of the current transformer and also on the whole current sensor

formed by the Rogowski metering coil and the current transformer.

Figure III.1: NSX sensor connected to a PCB.

To account for this, there are two different possible scenarios:

1. Harmonic regime.

Many harmonic formulations have already been developed using the VIM [52], for in-

stance the Partial Element Equivalent Circuit (PEEC) that allows to analyse electro-

magnetic devices such as busbars, PCBs or integrated circuit interconnects. PEEC

was introduced by A. E. Ruehli [51] and it has been extended to be used in con-

ductive regions [55], for dielectric materials [56] and for magnetic ones [57]. Other

applications include thin conductive shells coupled with external circuits [54] or in-

ductive coupling in a transmission line right-of-way [58]. Nevertheless, the harmonic

formulations have some limitations, being the main drawback that they cannot be

applied to nonlinear problems. In addition, they can only be used for a source of

sinusoidal waves. Therefore, they allow to simulate the current sensors that we are

treating for low current and sinusoidal sources, without saturation of the material,

but they don’t model the nonlinear behaviour for higher current.

2. Time-domain regime.

These methods are more time consuming than harmonic ones, since (at least) one
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resolution of the system defining the problem has to be done at each time step. Their

advantage is that they can be used in a wide variety of situations, such as considering

nonlinear materials or sources of any shape (not limited to sinusoidal waves as it is

the case of the harmonic regime). Unfortunately, the bibliography of time stepping

formulations using the VIM is very limited. Indeed, it wasn’t until a few years ago

that the increase of memory and power of the computers, the advanced formulations

and the matrix compression algorithms allowed to further develop the VIM, and

static and harmonic regimes have been the main research focus the recent years.

To our knowledge, there is no VIM formulation developed to deal with field-circuit

coupling using a time stepping strategy.

In this chapter we extend the magnetostatic volume integral formulation of the pre-

vious chapter to a time stepping one for nonlinear non conductive ferromagnetic materials.

This will allow to obtain transient simulations of the current sensors of interest. We

present the development of two methods:

1. The first one is a weak field-circuit coupling, meaning that the magnetic field sim-

ulation and the circuit one are treated as separate systems in the time stepping

process. It is specifically adapted to current transformers, and well adapted to linear

materials.

2. The second one is a strong field-circuit coupling which is a more general method

where the field and circuit equations are written together to form an equation system,

consequently they are solved simultaneously. It also allows to consider more elements

in the external circuit such as voltage sources or resistive circuit elements.

Both methods are explained and validated with NSX sensor.

III.2 General problem definition

A generic problem is composed of the following elements: ferromagnetic non conductive

regions Ωm defined by a magnetic permeability µ(H) and inductive coils Ωc characterized

by a current density jc that are split in two categories: those with a current flowing

through them and the ones linked to an external circuit coupled with lumped elements

such as current sources, voltage sources or resistive circuit elements. Figure III.2 shows a

representation of it.

The formulation is based on the time dependant Maxwell’s equations, let us state them.
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Figure III.2: Representation of a general problem definition for strong field-circuit cou-

pling.

III.2.a Time dependant Maxwell’s equations and constitutive law

The time dependant macroscopic Maxwell’s equations in differential form are the fol-

lowing:

– Gauss’s law:

∇ ·D = ρ (III.1)

– Ampere’s law:

∇×H = jc +
∂D

∂t
(III.2)

– Gauss’s law for electromagnetism:

∇ · B = 0 (III.3)

– Maxwell’s-Faraday’s law:

∇× E = −∂B

∂t
(III.4)

where D is the electric displacement field (C/m2),

ρ is the electric charge density (C/m3),

H is the magnetic field (A/m),

jc is the electric current density (A/m2),

B is the magnetic field (T ) and

E is the electric field (V/m).
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In our case, we do not consider electric displacement field, therefore D = 0. Further-

more, we only work with non conductive regions, being only magnetic.

The magnetic field part of the formulation will use the static equations:{
∇×H = jc

∇ · B = 0.
(III.5)

whereas the circuit part will consider Maxwell’s-Faraday’s law.

The constitutive law allows to write a relation between the magnetic field H and the

magnetic induction B. We consider the coercive field to obtain the following relation:

H(B) = ν(B)B+Hc (III.6)

where ν is the reluctivity of the material and Hc is the coercive field of the magnetic

materials.

III.3 Weak field-circuit coupling

This case is specifically designed to be used in the field-circuit coupling of a current

transformer with a core, a primary conductor and a secondary coil, which is our case of

interest to model current sensors. We have only developed it for the situation in which the

secondary coil has an external circuit with a resistance R as Figure III.3 shows for a specific

current transformer. We consider that the primary conductor is a current source, and that

the current flowing through it is not perturbed by the secondary coil. The development is

based on the magnetostatic formulation of chapter 2 and it depends on the nature of the

material, that can be linear or nonlinear.

Figure III.3: Example of a case to apply the weak field-circuit coupling formulation.
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III.3.a Weak field-circuit coupling for linear materials

Let us consider a ferromagnetic core with a linear material. The idea is to obtain the

current through the secondary coil Is given that there is a field-circuit coupling with the

primary conductor in which there is an imposed current Ip that is known.

The time variable t is observed in a simulation time range [0, T ] divided in N intervals of

the same length ∆t: t = [t0, t1, ..., tN ] = [0,∆t, 2∆t, 3∆t, ..., N∆t].

For linear materials, the magnetic flux through the secondary coil Ωc is computed as:

ΦΩc = MpIp +MsIs (III.7)

where

Mp = ΦΩc |Ip=1;Is=0 Ms = ΦΩc |Ip=0;Is=1 (III.8)

that is to say, the magnetic flux through the coil given that the primary current Ip is 1

A and the secondary current Is is 0 A; or 0 A on the primary current and 1 A on the

secondary current respectively. These two values can be computed only one time for the

whole simulation and they can be used at each step, multiplying them by Ip and Is to

compute the flux through the coil. The magnetic flux is computed using the VIM magne-

tostatic formulation explained in chapter 2.

Given Faraday’s law, the voltage induced in the secondary coil is e = −dΦΩc
dt . Now,

applying Ohm’s law to the circuit of the secondary coil:

RIts = −
dΦΩc

dt
≈ −

Φt
Ωc
− Φt−1

Ωc

∆t
= −

MpI
t
p +MsI

t
s − Φt−1

Ωc

∆t
(III.9)

where the superscript t indicates that the function is evaluated at time step t for t =

t1, ..., tN and t− 1 = t−∆t. The resistance R is the sum of the resistance component of

the circuit and the resistance of the winding of the secondary coil. Finally, the current of

the secondary coil at time step t is approximated by:

Its ≈ −
MpI

t
p − Φt−1

Ωc

∆tR+Ms
= −

MpI
t
p − (MpI

t−1
p +MsI

t−1
s )

∆tR+Ms
. (III.10)

Let us notice that this is an explicit formula given that Itp, Mp and Ms are known

and the value of It−1
s has been computed in the previous time step. The latter expression

(III.10) is the one that we have coded to obtain the secondary current. A pseudocode is

presented in Algorithm 1.
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Algorithm 1 weak field-circuit coupling for linear materials

Require: Ip
t← t0
It0s ← 0

Φt0
Ωc
← ΦΩc(I

t0
p , 0)

Mp ← ΦΩc(1, 0)

Ms ← ΦΩc(0, 1)

t← t1
while t ≤ T do

Its = −
MpItp−(MpI

t−1
p +MsI

t−1
s )

∆tR+Ms

t← t+∆t

end while

return Its for t = {t0, t1, ..., tN}

This is the method used for linear materials. Let us now introduce the development

made for nonlinear materials.

III.3.b Weak field-circuit coupling for nonlinear materials

The previous method is not valid for nonlinear materials given that the computation of

the magnetic flux through the secondary coil cannot be computed following (III.7) when

the ferromagnetic materials saturate. This section develops a weak field-circuit coupling

formulation for nonlinear materials.

Let us start with Ohm’s and Faraday’s law:

RIts = −
dΦΩc

dt
. (III.11)

The Newton-Raphson method is considered, defining a residual Res as:

Res(It,is ) = RIt,is +
Φt,i
Ωc
(Itp, I

t,i
s )− Φt−1

Ωc
(It−1

p , It−1
s )

∆t
, (III.12)

where the superscript t refers to the time step, the superscript i corresponds to the Newton-

Raphson nested loop and the magnetic flux ΦΩc through the secondary coil is computed

using the magnetostatic VIM formulation developed in chapter 2. Now, for the Newton-

Raphson method we have to write:

∂Res(I)

∂I

∣∣∣∣
I=It,i−1

s

(It,is − It,i−1
s ) = −Res(It,i−1

s ). (III.13)

The partial derivative of the residual is computed as:

∂Res(I)

∂I

∣∣∣∣
I=It,i−1

s

= R+
1

∆t

∂ΦΩc(I)

∂I

∣∣∣∣
I=It,i−1

s

. (III.14)
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Then, using the expression of the derivative (III.14) and the definition of the residual

(III.12) in (III.13), the Newton-Raphson expression reads:(
R+

1

∆t

∂ΦΩc(I)

∂I

∣∣∣∣
I=It,i−1

s

)
(It,is − It,i−1

s ) = −

(
RIt,i−1

s +
Φt,i−1
Ωc

− Φt−1
Ωc

∆t

)
. (III.15)

In order to compute
∂ΦΩc (I)

∂I

∣∣∣∣
I=It,i−1

s

, we consider an approximation with the previous step

with respect to i, having:

∂ΦΩc(I)

∂I

∣∣∣∣
I=It,i−1

s

=
Φt,i−1
Ωc

− Φt,i−2
Ωc

It,i−1
s − It,i−2

s

. (III.16)

Injecting the latter expression in (III.15), the Newton-Raphson expression is written:(
R+

1

∆t

Φt,i−1
Ωc

− Φt,i−2
Ωc

It,i−1
s − It,i−2

s

)
(It,is − It,i−1

s ) = −

(
RIt,i−1

s +
Φt,i−1
Ωc

− Φt−1
Ωc

∆t

)
. (III.17)

Finally, isolating the secondary current at time step t and iteration i:

It,is = It,i−1
s − Res(It,i−1

s )

B
(III.18)

where

Res(It,i−1
s ) = RIt,is +

Φt,i−1
Ωc

− Φt−1
Ωc

∆t
, (III.19)

B = R+
1

∆t

Φt,i−1
Ωc

− Φt,i−2
Ωc

It,i−1
s − It,i−2

s

. (III.20)

The latter expression provides the current flowing through the secondary coil when there

is a field-circuit coupling with a resistance and the magnetic core has nonlinear behaviour.

A pseudocode is shown in Algorithm 2.

In order to obtain a better convergence rate, a line search strategy is considered [63].

For each It,is , the line search value It,i∗s is computed such that

It,i∗s = It,i−1
s + α∆It,is = It,i−1

s + α(It,is − It,i−1
s ) (III.21)

for three values of α that are equidistant α = {1/3, 2/3, 1}, keeping as It,is the It,i∗s value

obtained with the α that minimizes more the residual (III.12). To speed the computations,

the same α obtained is used for the next four i iterations.

As a final remark, we have imposed that the Newton-Raphson method has converged

when the difference between two consecutive i iterations is inferior to 10−10.

An application case is considered to test the accuracy of the two models explained for

weak field-circuit coupling.
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Algorithm 2 weak field-circuit coupling for nonlinear materials

Require: Ip
t← t0
i← 0

ϵ← 10−10

It0s , I
t1,0
s , It1,1s ← 0

Φt0
Ωc
← ΦΩc(I

0
p, 0)

Φt1,0
Ωc

,Φt1,1
Ωc
← 0

while t ≤ T do

while (It,is − It,i−1
s ) ≥ ϵ do

Find It,i+1
s with expression (III.18)

i← i+ 1

end while

t← t+∆t

end while

return Its for t = {t0, t1, ..., tN}

III.3.c Application to NSX current sensor

Let us apply the weak field-circuit coupling method developed for linear and nonlinear

materials to NSX current sensor. To validate the models, we will compare them with the

software Flux3D of Altair that also implements a field-circuit coupling, which will be the

reference.

Regarding NSX model, we consider the current transformer, given that the secondary

coil is connected to a circuit and there will be field-circuit coupling and we do not keep

the Rogowski metering coil for this test.

The secondary coil has an external circuit with a resistance of 63 Ω as shown in Figure

III.4, it is there that the field-circuit coupling will arise.

The characteristics of the model are the following:

- The ferromagnetic region follows an isotropic linear material of µr =1000 for the lin-

ear case and an isotropic analytic saturation of arc tangent type with two coefficients

µr =1000 and saturation magnetization = 1.2 T for the nonlinear case.

- The primary conductor has imposed current of Ip = 300 sin(2πft), where f is the

frequency, which we set to 50 Hz, and t is the time. This conductor is again defined

as a closed loop of dimension 1 meter times 1 meter as explained in the magnetostatic

case for simulation accuracy purposes (Figure II.11), to avoid to perceive the return

of the conductor.

- The secondary coil has 980 turns and no imposed current. It is linked to an external

circuit that has a resistance of 63 Ω.

- The output is the current through the secondary coil.
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Figure III.4: weak field-circuit coupling model for NSX, mesh 12000 elements.

The mesh considered for this simulation is the most coarse that we showed in the

magnetostatic case, which consists in 12000 elements. We have chosen this mesh to have

the same for the weak coupling of the linear and nonlinear case, and it is the simulation

time of the nonlinear case that limits the mesh, although for the linear case computations

are considerably faster. The simulation is made for 3 time periods, and given that the

frequency is 50 Hz, the time interval of the simulation is t ∈ [0, 0.6]. We use a fixed time

step of ∆t = 0.0004 s, therefore there are 150 time steps in total, 50 per period.

Figure III.5 shows the result for the linear material, providing the current through the

secondary coil for the explained parameters. The black line represents the reference and

the green line displays the developed method called VIM weak which stands for VIM weak

field-circuit coupling, both of them correspond to the left y-axis. The blue line shows the

difference between the two methods for each point divided over the maximum value of the

reference, and it is linked to the right y-axis.

We see that the difference between the methods is inferior to 0.6 %, which validates the

weak field-circuit coupling model for linear materials. Regarding the computation time,

the implemented model is remarkably fast, taking 50 seconds, given that it only needs two

resolutions of the system for the whole transient simulation. The reference took 2h 10

minutes because it solves the system defining the problem at each time step.

We conclude that the weak field-circuit coupling method is accurate in the results and

it is much faster than the reference. However, it is restricted to problems with the topology

defined in Figure III.3.
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Figure III.5: Weak field-circuit coupling model validation for NSX, linear case.

The validation of the weak field-circuit coupling for nonlinear materials is shown in

Figure III.6. Again, on the left y-axis the reference is represented with a black line and our

developed method, called VIM weak, in green. On the right y-axis we plot the difference

point by point divided over the maximum value of the reference, in blue.
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Figure III.6: Weak field-circuit coupling model validation for NSX, nonlinear case.

This difference over the maximum is inferior to 1 %, which validates the model. Never-

theless, in terms of computation time, the difference between the methods is not negligible.

The reference took 45 hours whereas our implemented method took 70 hours. This is par-

tially due to the multiple evaluations needed for the line search strategy, which could

be optimized to reduce the time. In conclusion, the weak VIM field-circuit coupling is

validated with the reference given the low difference between both methods, but the com-

putation time is considerably longer.
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As summary, two methods for the weak field-circuit coupling have been developed,

one for linear materials and another one for nonlinear materials. When tested on a cur-

rent transformer, they have both shown accuracy, obtaining less than 1 % difference with

respect to the reference. Nevertheless, in terms of time, only the linear case is efficient,

reducing considerably the computation time of the reference.

Once the weak field-circuit coupling has been explained, let us describe the strong one.

III.4 Strong field-circuit coupling

The strong field-circuit coupling method allows to write a system with both the mag-

netic field and the circuit equations to solve them together. This method has been devel-

oped in a more general setting that the weak field-circuit coupling previously presented,

being adapted to include more elements in the external circuit, such as voltage sources or

capacitors.

III.4.a Time stepping field-circuit coupled formulation for volume regions with

circuit coils

This formulation is the assembly of two different types of equations:

1. The equations defining the contribution of the magnetic field.

2. The equations describing the contribution of the electric circuit, linking the currents

and the voltages of the coils.

Each of them is explained separately to after gather them in a system.

III.4.a-i Magnetic field contribution

Let us start decomposing H by the reduced field generated by the ferromagnetic ma-

terials Hr and the magnetic field created by the circuit coils Hb:

H = Hr +Hb. (III.22)

A reduced magnetic scalar potential φr can be written as:

Hr = −∇φr. (III.23)

Thus, the magnetic field can be expressed as:

H = −∇φr +Hb. (III.24)

The magnetic field created by circuit coils Hb can be discretized:

Hb =
∑
k

hbk
Ibk

(III.25)

where hbk
is the magnetic field created by coil k with current 1 A and Ibk

is the current

flowing on coil k.
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Now, a discretization of the ferromagnetic domain is considered, subdividing it into

Nv volume elements that form the primal mesh and Nf facet elements, which correspond

to the number of branches of the dual mesh (Figure III.7). Then, facet-shape functions

associated to that mesh (as explained in section II.2.c-i) are taken, and induction B is

discretized with these functions wj such that:

B =

Nf∑
j=1

wjΦj (III.26)

where Φj is the magnetic flux across facet j, which corresponds to the branches of the dual

mesh.

Figure III.7: Primal and dual mesh of a ferromagnetic region with the infinity node.

Making use of the constitutive relation and the discretization of B on equation (III.24):

ν(B)

Nf∑
j=1

wjΦj = −∇φr +Hb −Hc. (III.27)

where we remind that Hc is the coercive field of the magnetic materials.

For the contribution of the internal branches, let us project the latter equation with

facet-shape functions wi (Galerkin projection) as we did in the magnetostatic case in

chapter 2, the discretization of Hb and the strategy followed in section II.2.c-iii for ∇φr

to obtain:

RmΦ+ LmbIb = ∆φr +UHc (III.28)

where

Rmij
=

∫
Ωm

wi · ν(B)wjdΩm, (III.29)

Lmbik
= −

∫
Ωm

wi · hbk
dΩm, (III.30)
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∆φr =

(
∆φrint

∆φrb

)
(III.31)

is the average potential difference between two elements that are inside the magnetic region

(int) or between an internal element and a boundary element (b) and UHc is a term coming

from the coercive field

UHc
i = −

∫
Ωm

wi ·HcdΩm. (III.32)

The system has to be completed to consider the contribution of the flux exiting the

magnetic region, going to the infinity point (Figure III.8).

Figure III.8: Primal and dual mesh of a ferromagnetic region with the infinity node.

To that aim, we write the magnetic potential φr in terms of the magnetization M:

φr =
1

4π

∫
Ωm

M · ∇
(
1

r

)
dΩm, (III.33)

where r is the distance between the evaluation point of φr and the integration point in Ωm.

Let us assume a constant reluctivity per mesh element to be able to use the divergence

theorem on the previous equation. Then, taking into account that the magnetization

is defined as B = µ0(H+M), it can be expressed by M = (ν0 − ν(B))B + Hc, and an

approximation of φr can be written using the divergence theorem on the first part of the

equation:

φr ≈
1

4π

∑
j

∫
Γj

δνjB · n
r

dΓj +
1

4π

∫
Ωm

Hc · ∇
(
1

r

)
dΩm, (III.34)

where δνj is the reluctivity difference of the two elements that share facet j or (νj − ν0)

if facet j belongs to the border of the ferromagnetic region. Using the definition of the

magnetic flux passing through a surface of area Sj , φr approximation reads:

φr ≈
1

4π

∑
j

∫
Γj

1

Sj

δνj
r

dΓjΦj +
1

4π

∫
Ωm

Hc · ∇
(
1

r

)
dΩm. (III.35)
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Then, assuming null potential at the infinity node, the average potential of the external

facets that are going to the infinity point, named φrΓi∞
, is computed by:

φrΓi∞
=

1

Si

∫
Γext

φrdΓext, (III.36)

where the over line means average and Γext refers to the external branches, which are the

ones going from the border of the magnetic region to the infinity point, Fig. III.8.

The potential difference between the average potential of the external facets in matrix

form reads:

∆φrΓi∞
= PmΦ+UI (III.37)

where

Pmij
=

1

4π

∫
Γexti

1

Si

(∫
Γj

1

Sj

δνj
r

dΓj

)
dΓi, (III.38)

UI
i =

1

4π

∫
Γexti

1

Si

(∫
Ωm

Hc · ∇
(
1

r

)
dΩm

)
dΓi. (III.39)

Let us notice that matrix Pm links the external branches with the rest of the branches, it

has rectangular shape and it is similar to the one obtained in the magnetostatic case.

Finally, combining the contribution of the internal branches and the branches linked

to the infinity point, the general system for the magnetic field contribution writes:

RmΦ+PmΦ+ LmbIb = ∆φr +Um (III.40)

where

∆φr =

(
∆φrint

∆φrb
+∆φrΓi∞

)
, (III.41)

Um = UHc +

(
0

UI

)
(III.42)

the contribution of the branches going from the interior of the magnetic region to a bound-

ary element have been added with the branches going from the boundary to the infinity

point. This is the reason why we see on the vector ∆φr the sum of ∆φrb
and ∆φrΓi∞

,

finally having the mesh representation of Figure III.9, which merges the boundary and

infinity point branches, calling them external branches.
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Figure III.9: Primal and dual mesh representation.

The size of Rm and Pm matrices is represented in Figure III.10 for linear and nonlinear

problems. If the problem is linear, Pm matrix will be null for all the internal branches

because δνj is 0, being non null only for the external branches and the branches that

go between regions of a different reluctivity. For nonlinear problems Pm matrix is fully

populated and rectangular. We remind that Nf the number of all the branches, and we call

NfINT the number of internal branches of the ferromagnetic regions, NfEXT the number

of external branches, which are going to the infinity point and NfBET the number of

branches that are between two regions of different reluctivity.

Figure III.10: Size of matrices Rm and Pm for linear (left) and nonlinear (right) problems.

System (III.40) provides the magnetic contribution for internal and external branches

of the magnetic region, which is the first contribution of the field-circuit coupling. Let us



III.4. Strong field-circuit coupling 65

now explain the circuit contribution.

III.4.a-ii Electric circuit contribution

For the electric circuit contribution, a circuit relation for each coil k is needed, linking

the voltage, the resistance, the current and the magnetic flux [64]:

∆Vck = Rck
Ick

+
dΦck

dt
(III.43)

where ∆Vck is the voltage of coil k, Rck
is the resistance of coil k and Φck is the flux

through coil k. The latter flux can be computed by

Φck =

∫
Ωck

jck
·AdΩck (III.44)

where jck
is the current density imposed on coil k and A is the magnetic vector potential,

defined by B = ∇×A. The magnetic vector potential A can be split in two terms, the

contribution of the coils in vacuum A0 and the contribution of the magnetic regions Am,

with A = A0 +Am, then Φck = Φ0k +Φmk
where

Φ0k =

∫
Ωck

jck
·A0dΩck and Φmk

=

∫
Ωck

jck
·AmdΩck . (III.45)

A0 can be expressed as

A0 =
µ0

4π

∑
l

(

∫
Ωcl

jcl

r
dΩcl)Il (III.46)

where Il is the current of coil l and r is the distance between the integration point of the

coils and the point where the vector potential is calculated. Then, the flux contribution

coming from the coils in vacuum writes:

Φ0k =
µ0

4π

∫
Ωck

jck
·

(∑
l

Il

∫
Ωcl

jcl

r
dΩcl

)
dΩck . (III.47)

The inner integral can be computed with analytical expressions on the coil as explained in

section II.2.f, whereas the external integral can be approximated with Gauss points. For

the contribution of the magnetic region to the flux, following [42], the integration over the

coil can be transformed in an integration over the magnetic region with:

Φmk
=

∫
Ωck

jck
·AmdΩck = µ0

∫
Ωm

hck
·MdΩm (III.48)

where hck
is the magnetic field generated by coil k with 1 A. Then, considering M =

(ν0−ν(B))B+Hc and the discretization of B, the contribution to the flux of the magnetic

regions can be written as:

Φmk
= µ0

∫
Ωm

hck
· [(ν0 − ν(B))B+Hc] dΩm =∫

Ωm

hck
· (ν0 − ν(B))wjdΩmΦj +

∫
Ωm

hck
·HcdΩm.

(III.49)
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Coming back to equation (III.43), when applying the derivative with respect to time of

Φmk
, the second term, which depends on the coercive field will vanish, being the first time

the only one remaining. Then, equation (III.43) for a coil k can be written as:

∆Vck = Rck
Ick

+
d

dt

[
µ0

4π

∫
Ωck

jck
·

(∑
l

Il

∫
Ωcl

jcl

r
dΩcl

)
dΩck

]
+

d

dt

[∫
Ωm

hck
· (ν0 − ν(B))wjdΩmΦj

]
.

(III.50)

This equation can be extended to a matrix system that considers all the circuit coils with

the following expression:

d

dt
(LcmΦ) +RcIc +

d

dt
(LcIc) = ∆Vc (III.51)

where Rc is a diagonal matrix that contains the resistance of the coils, Lcm is the contri-

bution of the magnetic region to the flux of the coils, with

Lcmkj
=

∫
Ωm

hck
· (ν0 − ν(B))wjdΩm (III.52)

and Lc is the self and mutual inductance of the coils

Lckl =
µ0

4π

∫
Ωck

jck

(∫
Ωcl

jcl

r
dΩcl

)
dΩck (III.53)

which is computed between coils k and l.

System III.51 provides the electric circuit coils equations for the field-circuit coupling

formulation. Let us gather it with the magnetic field contribution to obtain the general

system.

III.4.a-iii Assembly of the magnetic field and circuit contributions

Finally, assembling the magnetic field and the circuit coils, therefore systems (III.40)

and (III.51), the coupling system of the magnetic field and the electric circuit contributions

with the volume integral formulation reads:{
RmΦ+PmΦ+ LmcIc = ∆φr +Um

d
dt(LcmΦ) +RcIc +

d
dt(LcIc) = ∆Vc

(III.54)

We will approach this system with a circuit form in order to solve it with a circuit solver.

III.4.b Circuit formulation

We aim at obtaining an expression of the time stepping formulation in a generic circuit

form that looks like the following equation:

S(X)X+
d

dt
(T(X)X) = Q(X) (III.55)
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In our situation, this generic form is constituted of a primal mesh of the ferromagnetic

region with nodes and branches (Figure III.8) and a dual mesh, which allows to link the

quantities of type flux associated to potential differences. The generic circuit structure

adapted to our case reads:

R(I)I +
d

dt
(L(I)I) = ∆V+Usc (III.56)

where

• I is composed of two parts: the electric currents, which are given in the coils and

external circuit sources, and the magnetic flux of an equivalent circuit given a dis-

cretization of the magnetic regions. In practice, the latter flux is the one flowing

through each branch of the dual mesh as explained in the magnetostatic case.

• ∆V is the electric or magnetic potential difference between the branches of the electric

and magnetic circuit respectively.

• R and L matrices come from the magnetic circuit and they are obtained integrating

on the primal mesh. These two matrices also contain the information of the coils

resistance, the coupling terms between magnetic regions and coils and the external

circuit components.

• Finally,Usc is a term coming from the sources, such as the coils with current imposed.

The formulation system III.54 can be written in the circuit form (III.56) with

R =

Rm +Pm Lmc 0

0 Rc 0

0 0 Rex

 , L =

 0 0 0

Lcm Lc 0

0 0 Lex

 , I =


Φ

Ic
Iex

 ,

∆V =


∆φr

∆Vc

∆Vex

 and Usc =


Um

0

0

 .

(III.57)

where subscript ex refers to the external circuit, being Rex and Lex the resistance and

inductance components of the external circuit, Iex the current of the external circuit and

∆Vex the potential difference of the external circuit. The remaining matrices come from

system III.54.

Given that the circuit representation takes into account the physical regions, the coils

and the external circuits, the couplings between these elements is made with a topological

description of the circuits, where the eventual connections between them are executed with

common electric nodes. We distinguish two types of components regarding the implemen-

tation convenience:

1. Ferromagnetic regions, coils, resistance and inductance components, which are treated

directly as shown in (III.57).

2. Current sources, voltage sources and capacitors of external circuits whose contribu-

tions will be explained one by one in the next section III.4.b-i.
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III.4.b-i Circuit solver

The circuit form in which system (III.54) is written allows to solve it with a circuit

solver using either Kirchhoff’s voltage law or Kirchhoff’s current rule, which automatically

ensures the free divergence of B (Maxwell’s equation III.3).

For instance, Kirchhoff’s voltage law can be defined with an incidence matrix of indepen-

dent loops MI such that MI∆V = 0. An example of independent loops of the mesh was

shown in the magnetosatic case in Figure II.9. When the incidence matrix is applied to

the circuit formulation, the system to solve reads:

MIR(I)MI
TIM +

d

dt

(
MIL(I)MI

TIM
)
= MIUsc (III.58)

where IM represents the flux on the independent loops, with MT
I IM = I.

Let us explain how to include the current sources, voltage sources and capacitors of

external circuits at this stage of the solving process.

Voltage sources

The electric branches in which the voltage is imposed are placed on the right-hand side of

the system (where the sources are located). We then consider the following partition of

the incidence matrix:

MI = [MRL MUS] (III.59)

where MRL is the partial incidence matrix corresponding to the branches coming from

ferromagnetic regions, coils and external circuit components and MUS are the branches

of the external circuits where the voltage is imposed. We can then write:

MI∆V = MRLUsc +MUSUs (III.60)

Then, system (III.58) can be written taking into account the voltage sources as:

MRLR(I)MT
RLIM +

d

dt

(
MRLL(I)M

T
RLIM

)
= MRLUsc +MUSUs (III.61)

where Us is the potential difference of the branches with voltage imposed.

Current sources

For current sources the incidence matrix is split in three blocks, detaching the circuit

branches of the current sources MIS, such that:

MI = [MRL MIS MUS]. (III.62)

Then, the unknowns of the system remain the voltage difference on the current source

branches and the currents of the mesh loops. Let us remark that

MT
IS · IM = IIS (III.63)

where IIS are the currents on the branches of the current source. Then, system of equations

(III.58) including the voltage and current sources writes:
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{
MRLR(I)MT

RLIM + d
dt

(
MRLL(I)M

T
RLIM

)
+MIS∆VIS = MRLUsc +MUSUs

MT
ISIM = IIS

(III.64)

Capacitors of external circuits

For an external circuit, a capacitance branch verifies the following equation:

Cex
d

dt
∆Vc = Ic (III.65)

where Cex is the capacitance of the external circuit, Ic is the current of the capacitance

branch and ∆Vc are the voltage difference on the capacitance branches. This equation

cannot be included in the system with the mesh currents, therefore ∆Vc are included as

additional unknowns.

A new partition of the incidence matrix is introduced:

MI = [MRL MIC MIS MUS] (III.66)

where MIC refers to the capacitance branches of the circuit.

Let us remark thatMT
IC · IM = Ic. Then, system of equations (III.58) including the voltage

sources, current sources and capacitors of external circuits writes:


MRLR(I)MT

RLIM + d
dt(MRLL(I)M

T
RLIM) +MIC∆Vc +MIS∆VIS = MRLUsc +MUSUs

MT
ICIM −Cex

d
dt∆Vc = 0

MT
ISIM = IIS

(III.67)

This system can be written in the circuit explained before:

S(X)X+
d

dt
(T(X)X) = Q(X)

where

S =

MRLRMT
RL MIC MIS

MIC 0 0

MT
IS 0 0

 , X =


IM
∆Vc

∆VIS

 ,

T =

MRLLM
T
RL 0 0

0 −Cex 0

0 0 0

 , Q =


MRLUsc +MUSUs

0

IIS

 .

(III.68)

This is the final system describing the field-circuit coupling formulation written in

circuit form with its incidence matrix and that includes all the possible elements of the

external circuit: current sources, voltage sources and capacitors.

Once this system has been defined, its resolution is carried out with a θ scheme time

stepping method with a nested Newton-Raphson (NR) loop to solve the nonlinear term,

which uses the jacobian matrices that have been explained previously in section III.4.b-ii.

Let us explain the nonlinear resolution and the time scheme more in detail.
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III.4.b-ii Nonlinear resolution

In order to deal with nonlinear materials, we will use the Newton-Raphson method to

solve the obtained system, which defines a residual Res of the problem and then computes:

∂Res(In)

∂I
(In+1 − In) = −Res(In) (III.69)

Then, derivative of the residual Res with respect to the unknowns is needed, and more

precisely, the one of matrices RmΦ,PmΦ, and LcmΦ given that the other matrices of

system (III.54) don’t depend on the unknown I. As explained in the magnetostatic case,

for the contribution of matrix Rm to the jacobian matrix, the reluctivity is changed by

the differential reluctivity tensor
[
∂H
∂B

]
:

J(Rmi,j
) =

∫
Ωm

wi ·
[
∂H

∂B

]
·wjdΩm, (III.70)

where J is the contribution to the jacobian matrix. For the contribution to the jacobian

of Pm and Lmb matrices, in order to speed up the computations, and knowing that for

both matrices the reluctivity ν has significant less weight than ν0 in its expression (III.79)

then (ν0− ν) is approximated by ν0, which is constant at each NR iterations, therefore we

approximate their influence to the jacobian matrices by themselves, without deriving the

reluctivity tensor:

J(Pm) ≈ Pm and J(Lmb) ≈ Lmb. (III.71)

Let us remark that these approximations don’t deteriorate the accuracy of the solution

because the equation of Newton-Raphson method is defined by a residual. Nevertheless,

they can affect to the convergence speed of the resolution.

We then have all the elements to carry out the nonlinear resolution. Let us explain the

theta time stepping method used to obtain a solution in time of system (III.54).

III.4.b-iii Theta scheme time stepping method

We have considered a theta scheme time stepping method to solve system (III.58).

However, many others time schemes could have been selected to achieve the time stepping

resolution such as Runge-Kutta family of methods or predictor-corrector strategies. There

exist examples of other methods applied to FEM formulations, such as the Newmark-beta

time stepping strategy [60] or a predictor-corrector method that divides over two the time

step if the difference between the predictor and the corrector is higher than a certain error

[59]. As a first choice, we have decided to implement the theta scheme given that it is the

most well-known temporal discretization method, whose convergence is proven [50] and

because of its simplicity.

We then start with the time dependent circuit form that has been already described:

S(X, t)X+
d

dt
(T(X, t)X) = Q(X, t) (III.72)

where t is the time variable and t ∈ [0, T ]. Sorting the terms, it can also be written as:

d

dt
(T(X, t)X) = −S(X, t)X+Q(X, t) (III.73)
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Let us group the terms on the right hand side with F(X, t) = −S(X, t)X+Q(X, t), then:

d

dt
(T(X, t)X) = F(X, t). (III.74)

We discretize the time t with a fixed time step ∆t such that t = [0,∆t, 2∆t, ..., N∆t] =

[t0, t1, ..., tN ]. We approximate the derivative of T(X, t)X with respect to time as:

d

dt
(T(X, t)X) ≈ T(Xn+1, tn+1)Xn+1 −T(Xn, tn)Xn

∆t
(III.75)

where Xn refers to the value of X at time tn, that is to say, X(tn) and tn+1 = tn + ∆t.

The theta schema for equation (III.74) using (III.75) writes:

T(Xn+1, tn+1)Xn+1 −T(Xn, tn)Xn

∆t
= θF(Xn+1, tn+1) + (1− θ)F(Xn, tn) (III.76)

which can be developed using the definition of F(X, t):[
T(Xn+1, tn+1)

∆t
+ θS(Xn+1, tn+1)

]
Xn+1 =

T(Xn, tn)Xn

∆t
+ θQn+1 + (1− θ) [−S(Xn, tn)Xn +Qn]

(III.77)

We notice that Qn+1 is written on the right hand side of the equation because it is

known at every time step.

θ is a fixed parameter θ ∈ [0, 1] that is chosen depending on the nature of the equation,

the most common choices are:

• θ = 0, then the only explicit scheme is found, known by the name Euler explicit or

forward method.

• θ = 1 holds the Euler implicit or backward scheme, which is very stable for stiff

problems.

• θ = 1
2 obtaining the Crank-Nicolson method [49], which is the only θ scheme of

accuracy order 2, contrary to Euler explicit or Euler implicit that have accuracy

order 1. Therefore, it is interesting to use it in terms of precision of the solution.

Let us note that any value of θ belonging to the internal [0, 1] can be considered.

We now have all the elements needed to solve the field-circuit coupling formulation.

The next section provides several strategies to improve the computation time.

III.4.c Considerations on the resolution strategy

To summarize, given a generic problem of the form that Figure III.2 shows, we have

obtained the system that assembles the magnetic field and the circuit contribution in a

circuit form. We applied either Kirchhoff’s voltage law or Kirchhoff’s current law, which

automatically ensures the free divergence of B and that makes use of an incidende matrix

to obtain system (III.58), in this case with Kirchhoff’s voltage rule. We then took into
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account separately some circuit elements: current sources, voltage sources and capacitors

explaining the obtained matrices. We have also explained how the resolution is performed,

using a time stepping θ-method with a nested Newton-Raphson loop to solve nonlinear

problems for which we have obtained the jacobian matrices.

Let us finish with some additional considerations in the resolution stage to improve

the computation time:

1. For the computation of Pm matrix, that we remind:

Pmij
=

1

4π

∫
Γexti

1

Si

(∫
Γj

1

Sj

δνj
r

dΓj

)
dΓi, (III.78)

we consider a decomposition in two factors such that:

Pmi,j
= δνjQij , where Qij =

1

4π

1

Si

1

Sj

∫
Γexti

(∫
Γj

1

r
dΓj

)
dΓi (III.79)

being Q a matrix that only depends on the geometry of the problem. Then, Q can

be computed one time in the whole resolution time and be multiplied by δνj for each

time step.

2. In order to speed the computations, a matrix compression technique can be used,

such as fast multipole method on matrix Pm. A GMRES iterative solver is then

considered.

3. Another technique to accelerate the computations is to use a LU type preconditioner.

This preconditioner can be applied to matrices R and L that are described in system

(III.68). Then, these two matrices will be approximated by R∗ and L∗, and the

definition of S and T matrices of the system written in the circuit form (III.68) will

be:

S =

MRLR
∗MT

RL MIC MIS

MIC 0 0

MT
IS 0 0

 , T =

MRLL
∗MT

RL 0 0

0 −Cex 0

0 0 0

 (III.80)

where the preconditioned matrices R∗ and L∗ are defined by:

R∗ =

Rm 0 0

0 Rc 0

0 0 Rex

 , L∗ =

0 0 0

0 diag(Lc) 0

0 0 Lex

 (III.81)

where diag(Lc) is a matrix of the same size as Lc that only contains its diagonal

terms.

4. The time stepping method has been explained for a fixed time step. However, we

have also implemented an adaptive time step strategy using a predictor-corrector

method with the aim or reducing the computation time. This scheme works well but

needs two resolutions for each time step (Heun’s method), which is why we could

not reduce the computation time with this scheme. Nevertheless, another predictor-

corrector method that only needs one resolution per time step could be implemented

to reduce the computation time.
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These are all the remarks regarding the time stepping nonlinear volume integral formu-

lation based on facet elements for magnetic non conductive regions. It is worth mentioning

that we have also extended the thin air gap model explained in chapter 2 for the magne-

tostatic case to work in the strong field-circuit coupling time stepping formulation.

Given that the formulation has been explained, let us now show an application of it

with NSX sensor.

III.4.d Application to NSX sensor

The explained formulation is applied to NSX sensor that we have previously explained.

We only consider the current transformer. The secondary coil is linked to a resistance of

63 Ω, forming an external circuit where the field-circuit coupling appears.

The results of the strong coupling developed with the VIM are compared to the ones

obtained with the commercial software Flux3D of Altair, which is based on the FEM.

The characteristics of the model are the same than for the weak coupling, let us reca-

pitulate them:

- The ferromagnetic region will consist of a linear material that follows an isotropic

model of permeability µr =1000 for the linear case and an isotropic analytic satura-

tion of arc tangent type with two coefficients: µr =1000 and saturation magnetization

= 1.2 T for the nonlinear case.

- The primary conductor will impose a current of Ip = 300 sin(2πft), where f is the

frequency, which is set to 50 Hz, and t is the time. This conductor is again defined

as a closed loop of dimension 1 meter times 1 meter, which is large compared to the

sensor size, in order to avoid to perceive the return of the conductor.

- The secondary coil has 980 turns and no imposed current. It is linked to an external

circuit that has a resistance of 63 Ω, Figure III.11.

- The output is the current through the secondary coil.
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Figure III.11: Field-circuit coupling model for NSX, mesh of 46 000 elements.

For this implementation, a thinner mesh could be chosen given the computation time.

We then consider the mesh of 46000 elements in the current transformer that was used in

the magnetostatic case to obtain the mesh convergence (Figure II.13). Then, for the VIM

method 46 000 is the total number of mesh elements whereas for the FEM there are 46

000 elements modeling the current transformer of second order and 308 000 modeling the

air around it.

For the linear case, the results obtained for strong VIM field-circuit coupling (VIM str,

green line) and the FEM (Ref, black line) are shown in Figure III.12 on the left y-axis.

In blue the relative difference point by point over the maximum value of the reference is

displayed on the right y-axis.
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Figure III.12: Strong Field-circuit coupling model validation for NSX, linear case.

Let us notice that both methods, Ref and VIM str, have a similar initialization, since



III.5. Conclusion 75

the first period shows lower values that stabilise on the third period. The difference over

the maximum of the reference is inferior to 0.5 %, which validates the strong VIM field-

circuit coupling implementation for linear materials.

Regarding the computation time, the reference took 2 hours and 10 minutes whereas our

VIM implementation took 1 hour and 18 minutes, being VIM faster.

For the nonlinear case, for which the only change is the material of the ferromag-

netic region, the results are shown in Figure III.13. The difference over the maximum of

the reference is always inferior to 0.6 %, which validates the strong field-circuit coupling

implementation for nonlinear materials. Again, the computation time of the reference is

improved with our method, taking 45 hours for the reference (Ref) and 26 hours for our

VIM implemented method. This is mainly due to slow convergence using FEM, which

does not occur with VIM.
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Figure III.13: Strong Field-circuit coupling model validation for NSX, nonlinear case.

III.5 Conclusion

An extension of the volume integral magnetostatic formulation of chapter 2 to a time

stepping one has been developed. This advanced formulation takes into account the field-

circuit coupling. The domain considered is composed of nonlinear non conductive magnetic

regions and coils that are linked to external circuits. Two approaches were considered:

1. A first weak method which is restricted to current transformers with a simple circuit

composed of a resistance on the secondary coil.

2. A strong formulation that is more general, it is not restricted to current transformers

and it includes more elements on the external circuits linked to the coils, such as

voltage sources or capacitors.

The weak method presents two algorithms, one for linear materials, which is very ef-

ficient in time, and another for nonlinear materials, which uses Newton-Raphson method

and happens to be more time consuming than the reference taken. Both algorithms have
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been validated with the current transformer of NSX sensor, showing very little difference

in accuracy with the reference.

The strong coupling method is expressed in circuit form, and it is carefully developed

to assemble the magnetic field equations with the external circuit equations in a final ma-

trix system that can take into account external circuit elements such as voltage sources,

current sources or capacitors. For the time discretization, it uses a θ scheme and for the

non linearity of the materials, the Newton-Raphson method is considered. It is validated

with the current transformer of NSX sensor comparing it with a reference resolution for

a linear and a nonlinear material. For both materials, our implementation shows faster

results than the reference.

The validation case of NSX has shown that these time stepping field-circuit coupling

formulations based on the volume integral method allow to obtain accurate simulations

of the sensors of interest, taking into account phenomena such as: nonlinear materials,

field-circuit coupling or thin air gaps.

Both methods, the weak and the strong coupling, are based on the same equations and

they provide similar results. Nevertheless, the weak coupling has been less developed, be-

ing restricted to current transformers with a resistance linked to the secondary coil. Then,

if the problem that we are treating has this structure and it is linear, we encourage to use

the weak field-circuit coupling, given that it is accurate and fast. However, if the problem

is nonlinear, we promote the strong field-circuit coupling method, due to the computation

time.

Next chapter uses the strong field-circuit coupling for the application of MTZ sensor,

given that it is nonlinear, for which we don’t only consider the current transformer but

we also take into account the Rogowski metering coil, obtaining accurate results that we

couldn’t obtain with the FEM.



Chapter IV

Application case: self-powered sensor of

MTZ Masterpact circuit breaker

Summary

This chapter shows an application case of the formulations developed in chapter 2 and

chapter 3 to prove that they can accurately model the current sensors of interest. The

sensor considered is part of the MTZ Masterpact circuit breaker and it is composed of

a current transformer and a classic Rogowski coil. First, a validation of the current

transformer model is shown, comparing simulation data with experimental data. Then,

the robustness of the Rogowski metering coil is tested with simulations linked to the

off-centre and the crosstalk. Further understanding of the Rogowski metering coil is

examined by finding the distribution of the flux along it. Finally, an idea to homogenize

this flux distribution is proposed with the use of a shielding technique.
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IV.1 Introduction

The purpose of this thesis is to develop a volume integral formulation that allows

to model with accuracy self-powered current sensors composed of a current transformer

(power supply) and a metering coil, which ensure the protection and the metering function.

To that aim, chapter 2 shows a magnetostatic volume integral formulation for nonlinear

materials with thin air gaps and chapter 3 extends this formulation to a time stepping

one that takes into account the field-circuit coupling if coils are connected to external cir-

cuits. In this chapter, we present an industrial application of the formulations previously

explained, obtaining results that allow to model accurately a sensor of Schneider Electric

taking into account its environment. They also show the validity of the developed formu-

lations to model current sensors.

The current sensor chosen for this application is the one embedded in Masterpact MTZ

circuit breaker, which has been developed by Schneider Electric and it is commercially

available since 2016 (Figure IV.1).

Figure IV.1: Masterpact MTZ circuit breaker.

This circuit breaker is known for its high accuracy in active power, reactive power,

current and voltage. In general, a circuit breaker takes action in 3 steps:

1. Detection of a defect, that could be over currents or insulation defects. Over currents

include overloads and short-circuits. This is perceived with a current sensor.

2. Opening the contacts to interrupt the circuit with an actuator. The contacts have to

carry the load current without heating too much, moreover, they have to withstand

the heat of the arc generated when opening the circuit.

3. Control the arc that has been produced. It has to be contained and cooled so that

the contacts are closed again and the power is restored.

A self-powered current sensor is a crucial part of the circuit breaker, which has three

functions: first, supply power to the electronic components to analyse the signal; second,
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(a) Front view. (b) Profile view. (c) Lateral view.

Figure IV.2: Masterpact MTZ current sensor.

have a fast measuring of the instantaneous current; and third obtain an accurate value

of the electric characteristic magnitudes. In Masterpact MTZ circuit breaker, the current

sensor is composed of two parts that are assembled together: a current transformer and

a Rogowski metering coil as Figure IV.2 shows. Let us explain each of the parts more in

detail:

• The Rogowski metering coil is of classic type with circular shape and it has a plastic

core that allows to wind the copper wire around it without interfering with the

magnetic field. It is first winded in one direction and then a counter wound (as

explained in section I.2.a-i) finishes the winding of 1600 turns, keeping a small space

without any turns to connect the electronics to the Rogowski coil. To compensate

this space that is not winded, compensation turns are added on the right and the

left of this gap, as indicated in Figure IV.3, on the right image.

Figure IV.3: Rogowski metering coil of Masterpact MTZ current sensor.

• The current transformer is made out of sheets to avoid eddy currents. In this case,

23 sheets of 0.35 mm of thickness, which are made of is silicon steel. The secondary

coil is winded along a straight segment with 2000 turns, as shown in Figure IV.4.
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Figure IV.4: CT of Masterpact MTZ current sensor.

Inside Masterpact MTZ circuit breaker, each phase is measured using this current sen-

sor, having three of them placed as in Figure IV.1 with a current phase shift of 120 degrees.

The aim of this chapter is to launch simulations with the previously developed formu-

lations. The model will be useful to analyse certain characteristics of the sensor in order

to increase its robustness. They will also be interesting to identify key design parameters

that might arise in the development of future sensors.

There are indeed some aspects that are not easy to control in the manufacturing pro-

cess. For instance, a uniform winding distribution of the Rogowski metering coil is not

simple. This is partly due to the circular shape of the coil, for which the winding machine

needs robotic arms to pass the wire through the center of the coil. Additionally, the inner

and the outer radius are different and the tension of the wire has to be controlled at each

moment, which is not easy. Moreover, some wire turns might slide on others, creating very

small areas in which the density of turns is lower or higher than others. This might lead

to a non uniform distribution of the turns along the coil. Finally, for the metering coil,

the start and the end are placed at the same place due to the counter-wound and there

is a small area next to it that is not winded. Then, compensation turns around the area

that is not winded are considered to balance that portion where there are no turns, which

creates a small region of the coil where the density of turns is higher.

Apart from manufacturing challenges, there are other design difficulties that have to

be addressed, such as the fact that the current transformer and the Rogowski metering

coil are next to each other, placed at a very low distance (0.4mm), which can perturb the

metering function of the Rogowski coil. Indeed, the Rogowski metering coil is accurate

when it is perfectly winded, nevertheless, if there is a small defect, the current transformer

that is placed close to it will amplify the defects.

In this chapter we analyse three different aspects related to the robustness of Mas-

terpact MTZ circuit breaker current sensor. Two of them are related to the effect of the
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current transformer on the Rogowski metering coil, which is very important because cur-

rent transformer is not perturbed by the Rogowski coil, but the Rogowski coil is indeed

perturbed by the presence of the current transformer. We aim at modeling better this

phenomenon and the possible manufacturing defects that might occur with the following

inquiries:

1. The first one is a validation of the current transformer simulation model with exper-

iments, which ensures that the simulation model is indeed realistic.

2. We then study the off-centre of the Rogowski coil, that is to say, what is the effect of

having a small displacement on the Rogowski coil for the accuracy of the metering

sensor. This is part of the requirements of a robust Rogowski sensor that is explained

in section I.2.a-i.

3. Another requirement of a robust Rogowski sensor is having low crosstalk, we then

study the crosstalk magnitude when there are three sensors placed next to each other

that are out of phase. This is to make sure that the primary conductor of a sensor

does not perturb the other two sensors.

Before getting into them, let us explain more details of the current sensor model.

IV.2 Further explanation of the current sensor model

There are some details of Masterpact MTZ current sensor that we haven’t detailed

before, more precisely:

• The current transformer has two air gaps, the first one is a thin one (7·10−6 m) at the

bottom left of Figure IV.5 that arises when welding two magnetic parts in order to be

able to introduce the secondary coil. The second air gap is thicker (1.8 ·10−3 m) and

it is deliberately created by design for the right functioning of the sensor so that the

secondary coil produces high voltage without getting burnt. Indeed, when a current

flows through the primary conductor a magnetic field is created and it spreads along

the magnetic core to produce a voltage in the secondary coil. If the thick air gap

didn’t exist, the magnetic flux would flow along loop B presented in Figure IV.5 and

not much of it would reach the secondary coil. However, thanks to the thick air gap,

the magnetic flux flows along the loop A of Figure IV.5, producing higher voltage in

the secondary coil, which will power the electronic circuit connected to it. Moreover,

when the material is saturated, the magnetic flux stops following along loop A (given

the saturation) and flows along loop B, which is positive because the secondary coil

will have enough voltage at that stage to power the electronic elements, and it avoids

overpowering them, which could lead to burn the coil.
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Figure IV.5: Geometry MTZ.

• The primary conductor of the current transformer is a straight bar, although in the

simulations we will create a closed loop that is far enough to avoid that the return

of the conductor affects to the measuring of the sensor, with a length of 1 meter as

Figure IV.6a shows. The usual imposed currents on the primary conductor to test

are 20
√
2 A, 50

√
2 A and 2000

√
2 A. The general dimensions of the sensor are shown

in Figure IV.6b.

(a) Dimension of primary conductor. (b) Dimension of MTZ, in millimeters.

Figure IV.6: Geometry of Masterpact MTZ sensor and dimension.

• The magnetization curve of the current transformer core made out of silicon steel

(FeSi) will be simulated with the magnetization curve defined by splines that Figure

IV.7 shows. This curve has been obtained with experimental measures on one of the

material’s sheet composing the magnetic core and they have been manually calibrated

to make sure that the curve is monotonic and to have a slope similar to µ0 for a very

high value of H.
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Figure IV.7: Magnetization curve of FeSi defined by splines.

• The Rogowski metering coil is placed 0.4 mm over the current transformer and it has

1600 turns. For the simulations, we will be interested in knowing the distribution of

the flux along the coil. The way of simulating this distribution will be to create a

coil with only one turn of rectangular shape every two degrees in order to be able to

obtain the magnetic flux through each of these 180 small coils, then the flux through

the Rogowski coil will be the flux sum of these coils. Figure IV.8 shows these 180

rectangular coils.

Figure IV.8: Rogowski metering coil modeling with 180 rectangular coils of 1 turn.

These are the main characteristics taken into account for the model of the current

sensor. We can now start the simulations.

IV.3 Simulation model validation with experiments

The first simulation case takes into account the current transformer of the sensor. The

aim is to run simulations and compare them with real data experiments to validate the
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model, giving credibility to the remaining simulations of this chapter.

The simulations will use the strong coupling time stepping formulation of chapter 3 and

the air gap model explained in chapter 2. The parameters considered are the following:

• There are three cases of current applied in the primary conductor: A sin(2πft), for

A = 20
√
2, 50

√
2, 2000

√
2 where t is the time and f is the frequency, chosen to be 55

Hz. The frequency is 55 Hz in this section instead of 50 Hz because the measuring

devices provided more precision with 55 Hz than with 50 Hz in the experiments.

The data will be obtained for 5 periods, therefore t ∈ [0, 0.0909]. For the simulation

there will be 80 time steps per period.

• The secondary coil is linked to a resistance of 1 Ω where the field-circuit coupling

will arise as shown in Figure IV.9.

Figure IV.9: Masterpact MTZ sensor meshed with 9000 elements.

• The simulation model has a mesh of 9000 elements for the core of the current trans-

former, as shown in Figure IV.9. The geometry of the simulation model is simplified,

skipping small details created for mechanical constraints, such as two holes created

to keep the sensor in place. Simplified geometry elements are represented with blue

circles in Figure IV.10.

Figure IV.10: Masterpact MTZ current transformer, geometry elements in blue that are

simplified in the simulation model.

• Both air gaps are considered in the model. The thin air gap uses the model of chapter

2, meshing it as a surface element with a numerical treatment.
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• The shape of the primary conductor is a straight bar for the experiments, as in Figure

IV.11, and a thin conductor that forms a loop of 1 m for the simulations as shown

before in Figure IV.6a, which ensures that the model doesn’t perceive the return of

the conductor because it is 1 meter far.

Figure IV.11: Experiments setting.

The results for an applied current in the primary conductor of Ip = 20
√
2 sin(2πft),

Ip = 50
√
2 sin(2πft) and Ip = 2000

√
2 sin(2πft) are shown in Figures IV.15a, IV.15b and

IV.14 respectively, where the black line refers to the experiments data and the green line

to the simulation data.
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Figure IV.12: Current through the secondary coil for Ip = 20
√
2 sin(2π50t) A.

Let us remark that for the three cases, the first and second period show more difference

between the experiments and the simulations, because the initialization of the simulations

are not exact and they take two periods to stabilize. We also notice that the first two cases

show linear behaviour of the material whereas the third case shows nonlinear behaviour.

For the three cases, we see that the results obtained with the experiments and simulations

are fairly close. To explain the low difference between experiments and simulations we can

enumerate the model differences given by:

• The material is modeled with the curve shown in Figure IV.7. This curve has been
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Figure IV.13: Current through the secondary coil for Ip = 50
√
2 sin(2π50t) A.
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Figure IV.14: Current through the secondary coil for Ip = 2000
√
2 sin(2π50t) A.

obtained with measures on the material and a later manual calibration. The initial

measures are not fully smooth and this curve probably does not fully describe the

behaviour of the real material.

• The simulation model considers a massive material whereas experiments are made

with sheets.

• The simulations geometry of the current transformer core is simplified, avoiding

sharp edges and omitting some geometry details, as shown in Figure IV.10.

• The experiments use measuring devices that have errors: the current sensor that

verifies the current in the primary conductor (Ip) might have an error up to 1%.

Given these differences and the results graphs, we conclude that the simulation model

is validated.

Finally, in terms of computation time, the first two simulation cases take around 11

hours whereas the nonlinear case takes 15 days. Let us note that the simulation chosen is
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challenging: time stepping regime, presence of air gaps, nonlinear behaviour of the material

defined by splines and field-circuit coupling with the resistance linked to the secondary coil.

These are the reasons why the simulation time is considerable.

IV.4 Rogowski metering coil: off-centre study

When the Rogowski metering coil principle was presented in chapter 1, there was a list

of requirements needed to have a robust sensor. Two of them were the off-centre and the

crosstalk. This section and the following one study these two aspects.

If we consider the ideal case when the Rogowski metering coil is alone and its manu-

facturing is perfect, without any defects, the off-centre of the primary conductor or of the

Rogowski metering coil won’t change the result. Nevertheless, given that it is placed next

to the current transformer, the current transformer will amplify the possible manufactur-

ing defects that occur in the Rogowski. It is in that case that it might become sensitive

to the off-centre of the coil itself or of the primary conductor.

Then, we decided to study the effect of shifting the Rogowski metering coil in its flux

computation. To do that, we suppose that the rest of the elements remain still (the cur-

rent transformer, primary conductor, secondary coil) and only the Rogowski metering coil

shifts a maximum of 1 mm, which is realistic from an industrial point of view. We suppose

that the shift can only be given in the X and Y direction, omitting a Z shift. We define

four different scenarios:

1. The shift is given in the X direction while Y is fixed.

2. The shift is given in the Y direction while X is fixed.

3. The shift is given in the X and Y direction simulta-

neously with the same value for each direction.

4. The shift is given in the X and Y direction simulta-

neously with opposite value for each direction.

We define a shift interval of 0.2 mm, meaning that we will compute the cases {−1,−0.8,
−0.6,−0.4,−0.2, 0,+0.2,+0.4,+0.6,+0.8,+1}mm, for instance Figure IV.15 shows an off-

centre in the X axis of +1 mm and an off-centre in the Y axis of +1 mm. The material

considered is the nonlinear one defined with the magnetization curve of Figure IV.7.

The simulation model used for this section employs the magnetostatic formulation

shown in chapter 2 with the thin air gap model. The geometry is modeled with a mesh of

8700 volume elements as in Figure IV.15. The current imposed on the primary conductor

is 20
√
2 and the output will be the flux through each of the 180 coils, being the total flux

of the Rogowski coil the sum of the 180 coils. This computation is done for each off-centre

position, comparing them with the value obtained without an off-centre, with the following

expression:

relative difference =abs(
OffCentreValue− CentreValue

CentreValue
) · 100,
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(a) Off-centre X direction 1mm. (b) Off-centre Y direction 1mm.

Figure IV.15: Off-centre of the Rogowski metering coil.

expressed in percentage value, where abs is the absolute value.
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Figure IV.16: Rogowski coil off-centre results

The relative difference obtained for each scenario is given in Figure IV.16. First, we

notice that the values are not fully symmetric (for instance scenario 3) because the geome-

try of the current transformer is not symmetric. We also notice that the highest values are

given for scenario 1, in which there is an off-centre along the X axis. The highest relative

difference is given for a shift of -0.8 and 0.8 mm. The lowest values are given for scenario

2. Scenarios 3 and 4 are quite similar and they follow the same pattern for negative values:

the relative difference increases up to a shift of 0.6 mm and then it decreases, having a

very low relative difference for an off-centre of -1 mm.

In any case, the relative difference is always inferior to 0.1 %, which is low with respect

to the potential errors of the model.



IV.5. Crosstalk study 89

The same procedure has been done for the nonlinear case, imposing on the primary

conductor 2000
√
2 A. In this case, the relative difference for each scenario is extremely

low, always inferior to 0.001 %, which occurs because the current transformer is saturated.

We conclude that an off-centre along X axis has more decentering error than Y axis

one, but for the four scenarios the values are very low, always inferior to 0.1 % for an

off-centre lower than 1 mm. Then, the model of Rogowski metering coil of Masterpact

MTZ circuit breaker is robust in terms of off-centre.

IV.5 Crosstalk study

Another requirement of a robust Rogowski metering coil is to have low crosstalk. In

general, the crosstalk is defined as the presence of other undesired signals on a system. In

our specific case, given that there are three current sensors out of phase with a shift of

120 degrees, the crosstalk is produced among the primary conductors of the three sensors.

Then, given the three current sensors, the aim of this section is to study the effect of a

primary conductor of a current sensor on the Rogowski metering coil of another sensor.

Figure IV.17d shows the three sensors with the current transformer each and only one

Rogowski metering coil on the current sensor that is placed at the center. Let us note that

the distance between two current sensors is 11.5 cm.

We focus on analysing the effect of the primary conductor of the left disturber and

the right disturber on the Rogowski coil placed in the middle sensor. To do that, we will

consider four different scenarios, being each of them representative of an industrial case.

The geometry of each scenario is the following:

1. The current sensor placed in the middle is complete, with the current transformer

core, the primary conductor, the secondary coil and the Rogowski metering coil. The

left and right disturber have the current transformer core and the secondary coil, but

no primary conductor.

2. The current sensor placed in the middle is complete. The left and right disturber

have the current transformer core and the secondary coil. The left disturber also

has the primary conductor, which is out of phase 180 degrees with respect to the

primary conductor of the middle current sensor.

3. Similar to the previous case but instead of considering the primary conductor of the

left disturber we consider the primary conductor of the right disturber, also out of

phase 180 degrees.

4. The current sensor placed in the middle is complete. The left and right disturber

have the current transformer core, the primary conductor and the secondary coil.

The three primary conductors are out of phase 120 degrees.

Figure IV.17 shows these four scenarios.
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(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

Figure IV.17: Scenarios to obtain the crosstalk.

The procedure to compute the crosstalk is the following:

• A time stepping simulation of scenario 1 is considered. We compute the flux through

each of the 180 coils defining the Rogowski metering coil. Then, the discrete root

mean square (rms) value of each coil with:

Φcrms =

√
1

T

∑
t

Φ2
ct (IV.1)

where T is the period, and Φct is the flux of coil c at time t. This root mean square

value provides a good insight of the flux seen by a coil in transient case. We sum

the rms value of the 180 coils to obtain the reference value.

• The same process is repeated for scenarios 2, 3 and 4, running a time stepping

formulation considering the left, right or left and right disturber primary conductors

respectively. Again, the computation of the flux through each of the 180 coils of the

middle Rogowski coil is done and their rms value obtained. The addition of the 180

coils rms values provides a single flux value for each scenario, which is the flux of the

whole Rogowski coil.

• Scenarios 2, 3 and 4 are compared with scenario 1 computing the relative difference

as:
valueScenarioi − valueScenario1

valueScenario1
,
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for i = 2, 3, 4 obtaining a value for each comparison, which we call crosstalk.

The time stepping formulation considered has three periods and frequency f = 50 Hz,

therefore t ∈ [0, 0.06], with 40 time steps per period. The rms value is computed with

the data of the third period. We again consider three different currents that will be im-

posed on the primary conductors with Ip = A sin(2π50t) for A = 20
√
2, 50
√
2 and 2000

√
2.

We remind that the material is nonlinear following the magnetization curve of Figure IV.7.

The crosstalk values obtained for each scenario 2, 3 and 4 (that are compared with

the referece value of scenario 1) and for each current are presented in Figure IV.18. The

maximum value accepted to have a sensor with low crosstalk is 1 % and the scale is de-

liberately set to a maximum of 0.5 % (half of the maximum value accepted) to show that

the results are very low.
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Figure IV.18: Crosstalk values.

Indeed, the results are not only inferior to 1 %, but also lower than 0.1 %, which

ensures that the primary conductors of the three sensors don’t interfere with each other.

They show that the model is accurate, and it could be used in the future to provide the

crosstalk that occurs if there is a defect in the coil, such as missing one turn of the coil at

a given position, or having a different coil density on a given part of the coil.

Let us note that these results couldn’t have been found using the FEM given the large

air region that has to be modeled between the Rogowski coil and the CT of each sensor

and also between the 3 sensors. This section corroborates the robustness of the Rogowski

metering sensor in the presence of the current transformer that is inside Masterpact MTZ

circuit breaker.
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IV.6 Conclusion

In this chapter we have shown an application case of the current sensor of Masterpact

MTZ circuit breaker, which is formed by a current transformer and a classic Rogowski

metering coil. The aim is to have an accurate model to increase the robustness of the cur-

rent sensor with simulations that use the formulations developed in chapter 2 and chapter

3. Moreover, we want to exhibit that these formulations are not just theoretical, but they

can also be used to simulate real life sensors while obtaining accurate results.

We have explained the manufacturing challenges of this sensor, especially the ones re-

garding the winding process of the Rogowski metering coil and the fact that the current

transformer might affect to its metering function. We then proposed to analyse three fea-

tures, each of them constitutes a section.

The first one is a validation of the current transformer model with experiments, which

ensures that the simulation model indeed represents the current sensor. The results are

successful, showing that the model stands for the real sensor. There is a small difference

between the simulations and the experiments, which is given by the simplification of the

model, mainly due to the consideration of a massive core instead of sheets and the simpli-

fication of the geometry.

The second and third features are part of the Rogowski coil requirements to be ro-

bust. The simulations are done not only with the Rogowski coil but also with the current

transformer next to it, which affects its behaviour. These features are the off-centre of the

Rogowski coil and the crosstalk. Regarding the off-centre, we have studied a shift of up to

1 mm of the Rogowski coil, which is the maximum reasonable shift that could occur with

these sensors. The results obtained show a relative difference inferior to 0.1 % comparing

it with the neutral position, which is low. For the crosstalk, we have analysed different

scenarios for three sensors that are placed next to each other, perceiving the effect of a

primary conductor of one of these sensors on the others. The crosstalk value obtained

is inferior to 0.1 % for all the cases, meaning that the results are in line with the 1 %

threshold that we aim at having, and they show a very good immunity of the sensor. Now,

further simulations could be done in the future to obtain the crosstalk is there are some

defects that occur on the Rogowski metering coil, such as having different coil density in

some specific areas.

Let us note that the latter two elements studied have been carried out with a model

that represents the Rogowski metering coil with 180 turns and these turns are perfectly

placed in ideal conditions (uniform winding density, no turns sliding over the others...).

Nevertheless, in real life the winding is not perfect and an analysis of the possible defects

could be done with this model, obtaining the off-centre and the crosstalk for a given de-

fect. Some examples of realistic defects could be the effect of a turn missing in a specific

region of the Rogowski coil, the misplacement of them or a different coil density in some

parts of the coil. Quantifying these effects would allow to have more information of the

Rogowski behaviour. We also remark that the simulation model has 180 turns as opposed
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to 1600 turns of the real Rogowski coil, therefore a more complete simulation model could

be considered, but it would definitely increase the computation time.

These simulations could not have been done without the volume integral method for-

mulations, that allow to obtain accurate results on the Rogowski metering coil. Indeed, in

the past some initiatives to model the sensor using the FEM conducted to vague results

that had high numerical noise and weren’t accurate. This is due to the very thin mesh that

the finite element method needs to model all the air region around the Rogowski metering

coil, which is not needed for the volume integral method.





Conclusion and perspectives

This thesis is focused on the development of modeling tools that allow to have simula-

tions of current sensors. The current sensors targeted are placed in circuit breakers, and

their aim is to ensure the metering function (high accuracy), the protection (fast response)

and to provide energy for other components (self-powered).

The modeling tool contemplated in this thesis is the use of the volume integral method.

This choice is made to have high accuracy in the computation of magnitudes through coils

that are placed in the air, not surrounded by a magnetic material, given that this method

does not need to mesh the air, and in particular, the air around these coils. Nevertheless,

part of the difficulty of this thesis is to make sure that, apart from the expected improve-

ment of this method with respect to others, the rest of the elements of the sensor can also

be modeled. These elements are, among others: presence of thin air gaps, non linearity of

the material, field-circuit coupling...

This thesis is divided in four chapters. The first one explains the context and the

challenges of modeling current sensors. We start explaining the main functionalities of a

current sensor and the different types that exist to after narrow them down to the current

sensors that are placed inside circuit breakers. These sensors are formed of two parts: a

current transformer, which will provide the power to the circuit breaker and a Rogowski

coil that will ensure the metering and protection functions. Once the current sensors are

introduced, we explain the interest in having simulation tools that allow to model these

current sensors on the computer. The classic method, the Finite Element Method is men-

tioned as it is very powerful in many cases, but the thin mesh needed around the Rogowski

metering coil makes us choose a different method to model the desired current sensors:

the Volume Integral Method. The latter method does not need to mesh the air, being

the active regions the only ones that are discretized, which is the reason why it is a good

competitor to provide more accurate results that the FEM. Finally, a list of objectives of

the thesis is given, that can be summarised as: develop a volume integral formulation that

allows to model current sensors with high accuracy in the computation of the magnetic

flux, taking into account nonlinear materials, thin air gaps and the field-circuit coupling

with a circuit that has lumped elements.

The second chapter explains a nonlinear magnetostatic volume integral formulation

based on the discretization of induction B using facet-shape functions and a Galerkin pro-

jection to obtain a matrix system defining the problem [1]. The formulation is written
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in an equivalent circuit approach to be able to solve the matrix system with a circuit

solver. Furthermore, the extraction of the value of the induction at each point, including

the points that are placed in the air, is explained, as well as the strategy used to compute

the magnetic flux through coils. The second part of this chapter focuses on modeling thin

air gaps, which are common features that appear when welding two parts of the current

transformer core. The thin air gap region is considered as a surface region with a specific

numerical treatment instead of a volume region. This allows to obtain accurate results

avoiding imprecision in the computation of certain integrals and skipping a thin mesh of

the air gap volume that could lead to very large matrix systems. An application of the

formulation and the thin air gap model to NSX sensor is shown, obtaining accurate results

and validating them.

The third chapter describes two time stepping volume integral formulations for field-

circuit coupled problems, which are developed for nonlinear non conductive materials.

They are an extension of the magnetostatic regime shown in chapter 2. The first one is a

weak formulation, which treats the magnetic field and the circuit as separate systems in

the time stepping process. Two algorithms, one for linear and another one for nonlinear

materials are explained, and they are restricted to the topology of the problem explained

(external circuit composed of a coil connected to a resistance). The second formulation

presented is called strong field-circuit coupling, and it writes the equations describing the

magnetic field and the circuit together to create a matrix system. This matrix system

is again written in an equivalent circuit form to obtain a solution with a circuit solver.

Two important characteristics are that the time stepping method uses a theta scheme

and nonlinear materials are treated with the Newton-Raphson method. In this case, the

topology of the problem considered is more flexible, being able to introduce more elements

in the external circuit, such as current sources, voltage sources or capacitors. Both formu-

lations, the weak and the strong coupling are validated with NSX sensor, comparing the

results to the ones obtained with FEM. We found that the two formulations have similar

accuracy, therefore, if the problem that we are treating has the topology considered in the

weak field-circuit case and it is linear, we encourage to use it, given that it provides faster

results. Otherwise, the strong field-circuit coupling should be chosen.

In the future, the weak field-circuit coupling formulation could be developed further to in-

clude more elements in the external circuit. Regarding the strong field-circuit coupling, the

time stepping technique could be done with a different scheme to reduce the computation

time. For instance, an adaptive time step could be considered with a predictor corrector

method. Model order reduction techniques could also be developed in order to speed up

the computation time. However, the treatment of the non-linearity would certainly be

challenging.

Furthermore, the formulations could be extended to deal with conductive materials. This

would allow to quantify eddy currents that occur on the current transformer. Initially it

could be done for massive materials and then it could be adjusted to model sheets, as it

is the case of the current transformer cores that we usually consider.

Finally, the fourth chapter is a true industrial application of the formulations developed

in chapter 2 and chapter 3 to evidence that they are able provide a model that corrob-
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orates the robustness of the sensors. The sensor chosen for this application is placed in

Masterpact MTZ circuit breaker and it is composed of a current transformer and a classic

Rogowski metering coil. The most sensitive part is the Rogowski metering coil, because it

can be perturbed by the presence of the current transformer, whereas the current trans-

former is not perturbed by the Rogowski. For the robustness of the Rogowski metering

coil, we study the off-centre and the crosstalk, obtaining very low results that corroborate

the reliability of the sensor. Furthermore, to show that the simulation model reflects well

the real one, we have compared experimental data of the current transformer with simula-

tion data to demonstrate that the simulations done are an accurate representation of the

current sensor. Nevertheless, the model of the Rogowski metering coil is made with 180

turns, which is different to the 1600 turns of the real one. In the future, the model could

be refined to consider all the turns, which will be more time consuming but also more

accurate for features such as the crosstalk. Moreover, the simulations shown in chapter 4

are in ideal conditions in which the Rogowski metering coil does not have any defect and

the turns are perfectly placed. In order to further information about the behaviour of the

Rogowski metering coil, other situations could be simulated, considering defects on the

coil, such as a non uniform winding density.

We conclude that the volume integral formulations developed allow to model the cur-

rent sensors of interest that are embedded in a circuit breaker and composed of a current

transformer and a Rogowski metering coil, taking into account thin air gaps, nonlinear

materials and field-circuit coupling.
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Méthode integral de volume pour la modelisation
électromagnetique des capteurs de courant autonomes.

Résumé Cette thèse présente le développement de la méthode intégrale de volume pour

modéliser les capteurs de courant de Schneider Electric contenus dans un disjoncteur. Ces

capteurs sont composés de deux parties : un transformateur de courant (auto-alimentation)

et une bobine de mesure Rogowski (précision). La conception de ces capteurs de courant

n’est pas simple, et l’utilisation de la modélisation comme outil qui aide à leur développe-

ment et robustesse est avantageuse.

Le transformateur de courant seul peut être modélisé avec la méthode des éléments finis

(FEM). Néanmoins, la modélisation de la bobine de mesure Rogowski isolée a besoin d’un

maillage très fin de l’ait autours. Également, lorsque les deux capteurs sont ensemble un

maillage très fin de l’air autours le Rogowsi et entre le transformateur de courant et le

Rogowski est nécessaire, étant donné que le transformateur de courant perturbe la bobine

de Rogowski. Pour cette raison, nous avons choisi la méthode intégrale de volume (VIM),

qui contrairement à FEM, n’a pas besoin d’une discrétisation de l’air.

Cette thèse présente une formulation magnétostatique et deux formulations transitoires

avec la présence des entrefers fins en utilisant VIM. Une application au capteur de courant

du disjoncteur MTZMasterpact est exposé, montrant la précision des formulations dévelop-

pées.

Mots clés Méthode integral de volume, couplage champ magnétique-circuit, entrefer fin,

capteurs de courant, mesure, autonome, formulation, magnetostatique, magnetotransitoire.

Volume integral method for electromagnetic modeling
of self-powered current sensors.

Abstract This thesis presents the development of volume integral formulations to model

Schneider Electric current sensors that are embedded in a circuit breaker. These current

sensors are composed of two parts: a current transformer (self-power) and a Rogowski

metering coil (accuracy). The design of these current sensors is not straightforward, and

simulation models are useful tools to help to their conception and robustness.

The current transformer alone can be modeled with the Finite Element Method (FEM).

Nevertheless, the Rogowski metering coil isolated needs a very thin mesh to be modelled.

Similarly, when both parts of the sensor are together, a thin mesh of the air around the

Rogowski coil and between them is needed, given that the current transformer perturbs

the Rogowski coil. For this reason, we choose the Volume Integral Method (VIM) to model

these sensors, which does not need to mesh the air.

This thesis presents a magnetostatic formulation and two time-stepping formulations with

the presence of thin air gaps using the VIM. An application to the current sensor of MTZ

Masterpact circuit breaker is exhibited, showing their accuracy.

Keywords Volume integral method, modeling, magnetic field-circuit coupling, thin air

gap, current sensors, metering, self-powered, Rogowski, current transformer, magneto-

static, time-stepping formulation.
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