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Apprentissage de modèles de géométrie stochastique et réseaux de
neurones convolutifs. Application à la détection d’objets multiples

dans des jeux de données aérospatiales.

Résumé

Les drones et les satellites en orbite basse, dont les CubeSats, sont de plus en plus utilisés pour
la surveillance, générant d’importantes masses de données à traiter. L’acquisition d’images
satellitaires est sujette aux perturbations atmosphériques, aux occlusions et à une résolution
limitée. Pour détecter de petits objets, l’information visuelle est limitée. Cependant, les objets
d’intérêt (comme les petits véhicules) ne sont pas uniformément répartis dans l’image, présen-
tant des configurations spécifiques. Ces dernières années, les Réseaux de Neurones Convolutifs
(CNN) ont montré des compétences remarquables pour extraire des informations, en particu-
lier les textures. Cependant, modéliser les interactions entre objets nécessite une complexité
accrue. Les CNN considèrent généralement les interactions lors d’une étape de post-traitement.
En revanche, les Processus Ponctuels permettent de modéliser la vraisemblance des points par
rapport à l’image et leurs interactions simultanément. La plupart des modèles stochastiques
utilisent des mesures de contraste pour la correspondance à l’image ; elles sont adaptées aux
objets à contraste fort et faible complexité du fond. Cependant, les petits véhicules sur les
images satellitaires présentent divers niveaux de contraste et une grande variété d’objets de
fond et de fausses alarmes. Cette thèse de doctorat propose d’utiliser les CNN pour l’extraction
d’informations, combinées aux Processus Ponctuels pour modéliser les interactions, en utili-
sant les sorties CNN comme données. De plus, nous introduisons une méthode unifiée pour
estimer les paramètres du modèle de Processus Ponctuel. Nos résultats montrent l’efficacité de
ce modèle sur plusieurs jeux de données de télédétection, avec régularisation géométrique et
robustesse accrue pour un nombre limité de paramètres.

Mots-clés : Géométrie Stochastique, Modèles à Base d’Énergies, Détection, Objets Multiples,
Images Satellitaires, Très Haute Résolution.
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networks. Application to multiple object detection in aerospatial data

sets.

Abstract

Unmanned aerial vehicles and low-orbit satellites, including CubeSats, are increasingly used
for wide-area surveillance, generating substantial data for processing. Satellite imagery acqui-
sition is susceptible to atmospheric disruptions, occlusions, and limited resolution, resulting in
limited visual data for small object detection. However, the objects of interest (e.g., small ve-
hicles) are unevenly distributed in the image: there are some priors on the structure of the con-
figurations. In recent years, convolutional neural network (CNN) models have excelled at ex-
tracting information from images, especially texture details. Yet, modeling object interactions
requires a significant increase in model complexity and parameters. CNN models generally
treat interaction as a post-processing step. In contrast, Point Processes aim to simultaneously
model each point’s likelihood in relation to the image (data term) and their interactions (prior
term). Most Point Process models rely on contrast measures (foreground vs. background) for
their data terms, which work well with clearly contrasted objects and minimal background
clutter. However, small vehicles in satellite images exhibit varying contrast levels and a diverse
range of background and false alarm objects. In this PhD thesis, we propose harnessing CNN
models information extraction abilities in combination with Point Process interaction models,
using CNN outputs as data terms. Additionally, we introduce a unified method for estimating
Point Process model parameters. Our model demonstrates excellent performance on multiple
remote sensing datasets, providing geometric regularization and enhanced noise robustness, all
with a minimal parameter footprint.

Keywords: Stochastic Geometry, Energy Based Models, Detection, Multiple objects, Satellite
Images, Very High Resolution.

viii



Remerciements

L’équipe d’encadrement et moi-même tenons tout d’abord à remercier BPI France pour le
financement de cette thèse de doctorat via le projet LiChIE. Nous remercions aussi l’infrastructure
OPAL de l’Université Côte d’Azur pour avoir fourni son support et les ressources de calcul.

Je tiens aussi à remercier toutes les personnes ayant contribué au bon déroulement de ma
thèse : les collaborateurs d’Airbus pour leur accueil et retours utiles lors de mes visites à Toulouse ;
l’équipe du SI de Sophia (tout particulièrement Francis) pour avoir sauvé mon ordinateur plus
d’une fois ; nos assistantes d’équipe Nathalie N., succédant Nathalie B.

Aussi, je tiens particulièrement à remercier ma directrice de thèse Josiane Zerubia ainsi que
mon co-encadrant Mathias Ortner pour leurs conseils éclairés et directions avisées.

Je remercie par ailleurs les membres du jury, Pr Alin Achim, Pr Pierre Chainais, Pr Xavier
Descombes et Pr Yann Gousseau, pour s’être rendus disponibles, pour leurs questions propices à
une riche discussion et leurs retours positifs.

Je tiens à exprimer ma gratitude envers ma famille et mes amis pour leur soutien à distance,
mais infaillible. Enfin, mes collègues (et amis) de laboratoire furent aussi d’une grande aide : je
tiens à remercier les membres de l’ADSTIC qui m’ont accueillie parmi eux ; les camarades de
l’I3S Tomas & Pati, Nina, Romain, Amélie, Laetitia, Juliette, Baptiste, Marie, Margaux, François
et bien d’autres ; et bien sûr les collègues de l’Inria Bilel, Camilo, Jhonatan, Louis, Yanick, Priscilla
et Martina.

Merci à tous·tes ♡

ix





Table of contents

My publications 1

Notations & Acronyms 3

Résumé long en français 5

Introduction

1 Introduction 15
1.1 Computer vision in remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Satellite image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Image probability model . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Point Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 State of the art 25
2.1 Convolutional Neural Networks for object detection . . . . . . . . . . . . . . . . 28

2.1.1 The rise of CNN models for object detection . . . . . . . . . . . . . . . 28
2.1.2 CNN for detection in remote sensing . . . . . . . . . . . . . . . . . . . . 30
2.1.3 Remote sensing datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Point Processes for object detection . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Point Process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Sampling the Point Process . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Point Process parameter estimation . . . . . . . . . . . . . . . . . . . . 36

2.3 Energy Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Energy Based Models as generative models . . . . . . . . . . . . . . . . 36
2.3.2 Learning EBMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 EBM applications to computer vision . . . . . . . . . . . . . . . . . . . 37

Model foundations

3 Foundations for Point Processes and Convolutional Neural Networks 41
3.1 Point Process fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Poisson Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Markov Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.3 Markov marked Point Processes . . . . . . . . . . . . . . . . . . . . . . 46

xi



xii CONTENTS

3.1.4 Stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Point Process for object detection . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Sampling the Point Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Reversible Jump Monte Carlo Markov chain . . . . . . . . . . . . . . . 52
3.3.3 Jump diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.4 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.5 Stopping conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 CNN fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Contributions

4 Building an Energy Based Model for object detection 67
4.1 Point Process as an energy model . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Data terms from a CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Contrast measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 CNN data terms for unmarked points . . . . . . . . . . . . . . . . . . . 73
4.2.3 Data energy on marks . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Priors on configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.1 Point priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Interaction priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 Triplet priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Resulting model and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Model pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Point Processes as Energy Based Models 93
5.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Data driven kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Parallel sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.3 Sampling method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Parameters estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.1 Learning energy weights with local perturbations . . . . . . . . . . . . . 103
5.2.2 Maximum likelihood learning . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Papangelou intensity as a score . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Computing the detection score . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 Contrastive divergence loss and Papangelou intensity . . . . . . . . . . . 113

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xii



TABLE OF CONTENTS xiii

6 Experimental results 117
6.1 Parameters estimation with Contrastive Divergence . . . . . . . . . . . . . . . . 119

6.1.1 Training example: Filtering out irrelevant terms . . . . . . . . . . . . . . 119
6.1.2 Stable perturbation kernel . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Results on optical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.1 COWC with non-marked Point Process . . . . . . . . . . . . . . . . . . 121
6.2.2 Point Process of rectangles on DOTA and ADS data . . . . . . . . . . . 124

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusion and Perspectives 133
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 137

List of Figures 155

List of Tables 157

List of Definitions 159

List of Algorithms 161

Appendices 163
A Jacobian for the local transform kernel . . . . . . . . . . . . . . . . . . . . . . . 163
B Training a CNN for small object detection in remote sensing data . . . . . . . . . 164
C Marks data energy derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
D Fast computation of overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
E Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.1 Minimum cell size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
E.2 Acceptance ratio for a move in a cell . . . . . . . . . . . . . . . . . . . . 169

F Buffer: size and chain length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
G Towards generic (learnable) energy terms . . . . . . . . . . . . . . . . . . . . . 173
H Algorithmic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

H.1 Cost per energy term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
H.2 Cost per kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
H.3 Total cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

I Implementation: data structures and parallelism . . . . . . . . . . . . . . . . . . 183
I.1 Batch computation of cells . . . . . . . . . . . . . . . . . . . . . . . . . 183
I.2 Generic energy models . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
I.3 Miscellaneous methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

xiii





My publications

National and international conferences

Mabon, J., Ortner, M., & Zerubia, J. (2021, September). Processus ponctuels et réseaux de
neurones convolutifs pour la détection de véhicules dans des images de télédétection. In ORASIS
2021 - 18èmes Journées francophones des jeunes chercheurs en vision par ordinateur. Saint
Ferréol, France: CNRS. Retrieved from https://hal.science/hal-03339656

Mabon, J., Ortner, M., & Zerubia, J. (2022a, August). CNN-Based Energy Learning for MPP
Object Detection in Satellite Images. In 2022 IEEE 32nd International Workshop on Ma-
chine Learning for Signal Processing (MLSP) (pp. 1–6). doi: 10.1109/MLSP55214.2022
.9943312

Mabon, J., Ortner, M., & Zerubia, J. (2022b, September). Point process and CNN for small
object detection in satellite images. In SPIE, Image and Signal Processing for Remote Sensing
XXVIII. doi: 10.1117/12.2635848

Mabon, J., Ortner, M., & Zerubia, J. (2022c, September). Processus ponctuels marqués et réseaux
de neurones convolutifs pour la détection d’objets dans des images de télédétection. In GRETSI
2022 - XXVIIIème Colloque Francophone de Traitement du Signal et des Images. Nancy, France.
Retrieved from https://inria.hal.science/hal-03715337

Mabon, J., Ortner, M., & Zerubia, J. (2023a, August). Apprentissage contrastif de mod-
èles de processus ponctuels pour la détection d’objets. In GRETSI 2023 - XXIXème Col-
loque Francophone de Traitement du Signal et des Images. Grenoble, France. Retrieved from
https://inria.hal.science/hal-04177141

Mabon, J., Ortner, M., & Zerubia, J. (2023b, November). Learning point process models for
vehicles detection using CNNs in satellite images. In 17th International Conference on Signal-
Image Technology &Internet-Based Systems (SITIS). Retrieved from https://inria.hal
.science/hal-04250535

International journal

Mabon, J., Ortner, M., & Zerubia, J. (2023, November). Learning Point Processes and Convo-
lutional Neural Networks for object detection in satellite images. Retrieved from https://
inria.hal.science/hal-04250540 (to be submitted to IEEE TGRS)

1

https://hal.science/hal-03339656
https://doi.org/10.1109/MLSP55214.2022.9943312
https://doi.org/10.1109/MLSP55214.2022.9943312
https://doi.org/10.1117/12.2635848
https://inria.hal.science/hal-03715337
https://inria.hal.science/hal-04177141
https://inria.hal.science/hal-04250535
https://inria.hal.science/hal-04250535
https://inria.hal.science/hal-04250540
https://inria.hal.science/hal-04250540


2

Seminars and presentations

• Presentation at Centre Inria d’Université Côte d’Azur PhD seminars, October 2021.

• Presentation at journées du RT Geosto-MIA, Rouen, September 2022.

• Presentation to the Airbus Defense and Space teams, Toulouse, September 2022.

• Presentation to the CNES data Campus team visiting Centre Inria d’Université Côte d’Azur,
September 2022.

Other activities

• Update and maintenance of the Ayana team website (2020-2023).

• Helping in the editing of the yearly Ayana team activity report (2020-2023).

• Organizing member (2021-2022) and secretary (2022-2023) of the Association Doctorale
du campus STIC (ADSTIC).

https://team.inria.fr/ayana/
https://team.inria.fr/ayana/activity-report/
https://adstic.i3s.univ-cotedazur.fr/
https://adstic.i3s.univ-cotedazur.fr/


Notations & Acronyms

Notations

Point Process
S Image space Sec. 3.1.1
M Mark space Def. 3.1.8
Sd ,Md Discretized image and mark spaces Eq. (5.6)
y Point configuration Eq. (3.1)
n(y) Number of points in y Def. 3.1.2
Y, Yn Set of all configurations with any number of points / n

points
Eq. (3.2)

N lf Set of all locally finite configurations Sec. 3.1.1
µ, ν Density/intensity measure of the Poisson Point Process Def. 3.1.4
f, h Normalized / unnormalized density of the Point Process Eq. (3.5),

(3.8)
∂A

B ,NA
B Neighborhood of B in A for a relation ∼ Def. 3.1.5

λ(y; y) Papangelou intensity Def. 3.1.7

Sampling

π Stationary measure of the Markov chain Eq. (3.32)
K transition kernel for the Markov chain Def. 3.3.3
Q,Qm perturbation kernel / sub-kernel for the RJMCMC Sec. 3.3.2
α(y,y′), r(y,y′) Acceptance probability / Green ratio for move y→ y′ Sec. 3.3.2
Tt Temperature at step t Sec. 3.3.4

Energy model

U(y, X) Energy function defining density h Sec. 3.2.1
Ve Energy term Eq. (4.3)
V Energy of a point: sum of energy terms Eq. (4.3)
ve Interaction potential Eq. (4.35)
Fe Aggregation function for interaction potential ve Eq. (4.35)
ξ Set of energy terms Sec. 3.2.1

Generic
A[i, j, k], A[ρ] For a tensor A, the value at coordinates (i, j, k) (interpolated if not

integer values). By extension indexing with pixel ρ returns the value at
location (ρi, ρj).

3



4

Acronyms

ADS Airbus Defense and Space Sec. 6.2.2
BCE Binary Cross Entropy Sec 4.2.2.2
CNN Convolutional Neural Network Def. 3.4.1
EBM Energy Based Model Def. 5.2.1
FCN Fully Convolutional Network Def. 3.4.3
GAN Generative Adversarial Network Sec. 2.3
GCD Greatest Common Divisor Sec. 3.3.1
GPU Graphical Processing Unit Sec. 5.1.2
GT Ground Truth Sec. 2.1.2
MAP Maximum A Posteriori Sec. 1.3.1
MLP Multi Layer Perceptron Sec. 4.4.2.2
MSE Mean Square Error Sec. 4.2.2.2
n.d. No Date Bibliography
NLL Negative Log-Likelihood Sec. 5.2.2
NLP Natural Language Processing Sec. 2.1.1
PP Point Process Def. 3.1.2
RGB Red, Green, Blue Sec. 1.2
(RJ)MCMC (Reversible Jump) Monte Carlo Markov Chain Sec. 3.3.2
SAR Synthetic Aperture Radar Sec 1.2
SOTA State Of The Art Sec. 1.5
SVM Support Vector Machine Sec. 2.1.1
TP/FP/FN True Positive/False Positive/False Negative Sec. 6.2.1.4
VAE Variational Auto Encoder Sec. 2.3
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Introduction

La télédétection, dont les racines remontent jusqu’à la photographie en ballon à la fin du XIXe
siècle, a considérablement évolué depuis, pour devenir essentielle pour la recherche, les applica-
tions commerciales ou la défense. Au fil des années, les capteurs sont devenus plus sophistiqués,
cette tendance a été en partie motivée par l’escalade du renseignement militaire dans le contexte
de la Seconde Guerre mondiale, puis de la guerre froide. Cela s’ajoute à un besoin accru de sur-
veiller notre environnement à l’échelle mondiale, à mesure que les effets de l’humanité sur celui-ci
deviennent plus préoccupants. Ce faisant, la quantité croissante de données produites par ces cap-
teurs exige des solutions informatiques avancées pour le traitement. Les progrès de la télédétection
correspondent à l’essor de la vision par ordinateur : depuis ses débuts dans les années 1950, en
passant par le Perceptron en 1958 (Rosenblatt, 1958) et la transformée de Hough en 1972 (Duda
& Hart, 1972) jusqu’à la résurgence des réseaux de neurones à la fin des années 1980 et l’essor
des réseaux de neurones à convolution (CNN), enfin plus récemment l’adoption du Deep Learning
avec AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) ou RCNN (Girshick, Donahue, Darrell, &
Malik, 2014) par exemple.

À première vue, la télédétection peut être comprise comme “la collecte d’informations à dis-
tance” (Campbell & Wynne, 2011). Cependant, cette définition trop large engloberait la micro-
scopie jusqu’à l’enregistrement audio. Le domaine de la télédétection se concentre plutôt sur
“l’observation des surfaces terrestres et aquatiques de la Terre au moyen de l’énergie électro-
magnétique réfléchie ou émise” (Campbell & Wynne, 2011). En pratique, les données considérées
sont constituées d’images optiques (ou proches-optiques comme l’infrarouge), ainsi que d’images
SAR (Synthetic Aperture Radar, ou Radar à Synthèse d’Ouverture, RSO, en français) ou Lidar
(Laser Imaging, Detection, and Ranging) prises depuis des drones, des avions, des ballons ou des
satellites.

Les images satellitaires contiennent de nombreux artefacts et occultations inhérentes à leur
acquisition (voir (Tupin, Inglada, & Nicolas, 2014)), ce qui les distingue des images usuelles ;
c’est-à-dire des photographies que nous rencontrons quotidiennement, prises à la hauteur d’œil,
généralement avec un sujet proche du centre, où les objets d’intérêt représentent une proportion
importante de l’image. Compte tenu de la faible résolution spatiale des images satellitaires (autour
de 0, 5 m par pixel), les objets d’intérêt ne mesurent parfois que quelques pixels. Les informations
visuelles étant limitées, les opérateurs humains ont souvent recours à leur connaissance a priori
de l’objet d’intérêt lors de l’analyse d’une image. De la même façon, nous visons à construire des
modèles qui prennent en compte cet a priori.

Le but de cette thèse est d’étudier la combinaison d’approches modernes de réseaux de neu-
rones convolutifs (CNN) avec des modèles géométriques utilisant des a priori ou des contraintes.
Bien que les modèles CNN se soient révélés très efficaces pour extraire des informations sur la
texture, ils ne parviennent pas à prendre en compte les interactions à plus longue portée entre les
objets sans augmenter considérablement la complexité et le nombre de paramètres. D’autre part,
les modèles de Processus Ponctuels (PP) proposent de modéliser des configurations d’objets géo-
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métriques comme un processus stochastique : premièrement, la construction du Processus Ponc-
tuel elle-même définit le type de géométries extraites. De plus, le modèle stochastique contient des
a priori qui peuvent guider le modèle vers des configurations plus probables a priori.

Modèle d’observation de l’image. L’approche par Processus Ponctuel dérive de modèles
stochastiques d’analyse d’images. En considérant l’image comme un ensemble de pixels dans
Sd ⊂ Z2, nous pouvons la modéliser comme une variable aléatoire X dans l’espace de probabilité
(Ω,A,P), où les valeurs en niveaux de gris correspondent aux réalisations de la fonction X :

X : Ω→ RSd . (0.0.1)

Si l’on considère l’image comme une observation bruitée d’un phénomène sous-jacent Φ, on peut
utiliser le modèle bayésien suivant :

P(X = X) =
∑︂

y
P(X = X|Φ = y)P(Φ = y), (0.0.2)

où l’image X et la configuration y sont respectivement les réalisations de X et Φ. Ici P(X =
X) correspond à la loi marginale des observations, construite à partir de la loi des observations
P(X = X|Φ = y) et de la loi a priori P(Φ = y) sur le processus sous-jacent. Avec la formule
de Bayes, nous pouvons inverser le conditionnement pour étudier la loi de Φ conditionnellement
à l’observation X :

P(Φ = y|X = X) ∝ P(X = X|Φ = y)P (Φ = y). (0.0.3)

Pour minimiser le coût bayésien L(Φ∗,Φ) = 1(Φ ̸= Φ∗), l’estimateur optimal est le Maximum A
Posteriori (MAP) :

y∗ = arg max
y

P(Φ = y|X = X). (0.0.4)

Processus Ponctuels. Les Processus Ponctuels permettent de modéliser de tels phénomènes
Φ, comme un ensemble d’objets paramétriques représentant des objets géométriques tels que des
segments, des cercles, des rectangles, des polygones, etc. Nous revenons plus en détail sur les Pro-
cessus Ponctuels dans le chapitre 3. Ici, nous considérons les configurations y comme un ensemble
{y1, . . . , yn(y)} de n(y)éléments y qui représentent nos objets d’intérêt. Dans le cadre bayésien,
un modèle d’observation peut être construit comme :

P(Xρ = Xρ|Y = y) = 1(ρ ∈ y)P(Xρ = Xρ|ρ ∈ y) + 1(ρ /∈ y)P(Xρ = Xρ|ρ /∈ y). (0.0.5)

Dans cette approche, on applique un modèle d’objet (ρ ∈ y) ou d’arrière-plan (ρ /∈ y) si un pixel
ρ appartient à la silhouette de y ou pas. Un modèle courant si la silhouette correspond à des pixels
clairs sur un fond plus sombre consiste à modéliser le premier plan P(Xρ = Xρ|ρ ∈ y) comme
une loi gaussienne de grande valeur. L’arrière-plan P(Xρ = Xρ|ρ /∈ y) se voit ensuite assigné
une valeur inférieure (Baddeley & Lieshout, 1993; Perrin, Descombes, & Zerubia, 2004).

Cependant, cette approche bayésienne présente certaines limites (Ben Hadj, Chatelain, Des-
combes, & Zerubia, 2010) :

• Les arrière-plans non homogènes sont plus difficiles, voire impossibles à modéliser. Le mo-
dèle gaussien simple pour P(Xρ = Xρ|ρ /∈ y) n’est plus utilisable.
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• La vraisemblance des pixels de la classe de premier plan ne dépend pas des propriétés mor-
phologiques de la classe à extraire. Par exemple, le modèle peut essayer d’insérer autant de
petits objets que possible dans une grande silhouette (Craciun, Ortner, & Zerubia, 2015).

Pour ces raisons, (Ben Hadj et al., 2010) propose un modèle détecteur fondé sur une mesure de
contraste entre l’intérieur et l’extérieur de l’objet. Néanmoins, ces mesures de contraste reposent
sur le contraste élevé de l’objet par rapport à son arrière-plan. Cette approche atteint ses limites
lorsque le fond présente des éléments contrastés qui ne devraient pas être détectés. Nous montrons
un exemple pratique de ces limites dans la partie 4.2.1.1.

Réseaux de Neurones Convolutifs. Alors que le modèle d’image ci-dessus était motivé en
partie par les limitations de calcul, la disponibilité croissante de la puissance de calcul a facilité
l’essor des réseaux de neurones convolutifs (CNN, Convolutional Neural Network). Bien qu’intro-
duit pour la classification d’images en 1989 (LeCun et al., 1989), ce n’est que dans les années 2010
que CNN a été largement adopté avec AlexNet (Krizhevsky et al., 2012) pour la classification ou
RCNN (Girshick et al., 2014) pour la détection d’objets.

Les réseaux de neurones convolutifs traitent les données d’une topologie de type grille via
une séquence d’opérations de convolution et de regroupement (agrégation spatiale). Les modèles
convolutifs profonds apprennent les filtres de convolution pour une tâche spécifique à partir de
grandes bases de données d’images telles que ImageNet (Krizhevsky et al., 2012) par exemple.
Un modèle de segmentation tel qu’Unet (Ronneberger, Fischer, & Brox, 2015) effectue une clas-
sification par pixel. Ceux-ci produisent des cartes à valeurs réelles dans la plage [0, 1], qui sont
interprétées comme des probabilités de classe. Par exemple, la probabilité que le pixel ρ appar-
tienne à la classe C1 (parmi les classes NC) est donnée par :

ˆ︁P (ρ ∈ C1|X) = exp (F (X)[ρ, C1])
∑︁NC

k=1 exp (F (X)[ρ, Ck])
, (0.0.6)

avec F (X) est le tenseur de sortie du CNN appartenant à RSd×J1,NCK, et NC le nombre de classes
(2 dans le cas de la classification objet ou arrière-plan). Ce score ˆ︁P (ρ ∈ C1|X) mesure la présence
ou non d’un objet, avec un modèle convolutif “léger” (faible nombre de paramètres) dont les
noyaux sont appris à partir des données.

Contributions

Le point de départ de notre travail — inspiré de (T. Li, Comer, & Zerubia, 2019) — est d’exploiter
la partition ˆ︁P (ρ ∈ C1|X) et de l’utiliser pour construire l’énergie externe du Processus Ponc-
tuel (attache aux données), remplaçant la mesure de contraste. Dans cette thèse de doctorat, nous
proposons l’incorporation de modèles d’interaction dans les méthodes de détection d’objets, tout
en tirant parti des capacités des réseaux de neurones convolutifs profonds. Les images satellitaires
sont intrinsèquement imparfaites en raison des perturbations atmosphériques, des occultations par-
tielles et de la résolution spatiale limitée. Pour compenser ce manque d’informations visuelles, il
devient essentiel d’incorporer des connaissances préalables sur la disposition des objets d’intérêt.

D’une part, les méthodes basées sur des CNN sont excellentes pour extraire des motifs dans
les images, mais ont du mal à apprendre des modèles d’interaction objet à objet sans avoir à y
introduire des mécanismes d’attention tels que les Transformers qui augmentent considérablement
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la complexité du modèle : par exemple, certaines approches proposent d’inclure les a priori sous
forme de texte descriptif des objets et leurs relations (Lu et al., 2023), tandis que d’autres utilisent
des cascades de modules d’attention (Zeng et al., 2023).

D’autre part, les Processus Ponctuels proposent de résoudre conjointement les vraisemblances
relatives à l’image (terme d’attache aux données), et la cohérence de la configuration d’objets
elle-même (terme a priori). Premièrement, les approches Processus Ponctuel modélisent les confi-
gurations sous forme de géométrie vectorielle, contraignant l’espace d’état par construction. De
plus, ces modèles permettent de formuler des a priori explicites sur les configurations en tant
que fonctions énergétiques. Cependant, dans la plupart de la littérature (Verdié & Lafarge, 2014;
Schmidt, Lafarge, Brenner, Rottensteiner, & Heipke, 2017), les termes d’attache aux données re-
posent sur des mesures de contraste entre les objets d’intérêt et l’arrière-plan. Nous montrons dans
cette thèse les limites de ces mesures sur les données satellitaires.

Au lieu d’augmenter la complexité du modèle en y ajoutant par exemple des Transformers,
nous proposons dans cette thèse de combiner l’extraction de motifs CNN avec l’approche Proces-
sus Ponctuel. Le fondement de cette approche est d’utiliser la sortie d’un CNN comme terme de
données pour un modèle de Processus Ponctuel.

Construction du modèle d’énergie. Nous construisons le Processus Ponctuel de densité h à
travers sa fonction d’énergie U , pour une configuration y et une image X :

h(y) ∝ exp(−U(y, X)) (0.0.7)

Nous écrivons la fonction d’énergie U comme :

U(y, X) =
∑︂

y∈y
V
(︂
y,X,N y

{y}

)︂
, (0.0.8)

où V (y,X,N y
{y}) est l’énergie du point y, sachant l’image X et le voisinage N y

{y} de y dans y.
Cette énergie est une combinaison linéaire de termes d’attache aux données et de terme a priori.

Dans le Chapitre 4, nous montrons d’abord les limites des mesures basées sur le contraste
utilisées comme attache aux données pour les images satellitaires, puis procédons à la construction
d’un terme d’attache aux données à partir de la sortie d’un CNN.

Nous proposons plusieurs manières de construire une carte de potentiel :

• Dans un premier temps, nous proposons d’utiliser une méthode de type contraste (corres-
pondance de motifs utilisant une mesure de corrélation) sur la sortie d’un CNN entraîné
pour transformer les centres des objets en blobs dans sa sortie (Mabon, Ortner, & Zerubia,
2021).

• Nous proposons ensuite une nouvelle méthode utilisant un CNN entraîné pour inférer un
champ de vecteurs pointant vers le centre de l’objet le plus proche. Pour obtenir une carte
de probabilité des centres, il suffit de calculer la divergence de ce champ. Cela permet de sé-
parer facilement des objets proches pour un faible coût de calcul (Mabon, Ortner, & Zerubia,
2022b).

• Enfin, nous montrons comment réinterpréter toute sortie CNN de type heatmap (voir partie
2.1.1 ou (Law & Deng, 2018)) comme une énergie pouvant être utilisée pour notre modèle,
à la fois pour la position et les marques de chaque objet (Mabon, Ortner, & Zerubia, 2023a).
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Avec notre formulation de l’énergie d’attache aux données sous forme d’interpolation d’une carte
de potentiel, nous transformons le calcul de la mesure de contraste en une simple extraction et
interpolation de valeurs dans un tenseur 2D ou 3D.

Échantillonnage. Avec ces cartes de potentiel pré-calculées, nous procédons dans la partie 5.1.1
à l’adaptation des méthodes d’échantillonnage des Processus Ponctuels pour utiliser ces informa-
tions facilement disponibles. En effet, ces tenseurs définissent des densités sur un espace discret
facile à échantillonner et qui se rapproche d’une version tronquée du modèle énergétique (qui est
défini dans un espace continu). Tout d’abord, nous appliquons cet échantillonnage guidé par les
données au noyau de perturbation de transformation locale (Mabon et al., 2021), puis construisons
une carte de naissance pour le noyau de naissance et mort (Mabon et al., 2023a). Ces densités
spatiales nous permettent également de concentrer l’échantillonnage parallèle du Processus Ponc-
tuel sur les zones où le nombre de points est susceptible d’être plus élevé et nécessite donc plus
de propositions. Enfin, nous exploitons les moteurs de différenciation automatique facilement dis-
ponibles pour calculer le gradient d’énergie et effectuer une diffusion pour une exploration plus
efficace de l’espace d’état pour un nombre de points fixé.

Estimation des paramètres. Les méthodes précédentes utilisent la Programmation Linéaire
pour estimer les poids relatifs des énergies du modèle (Q. Yu & Medioni, 2009; Craciun et al.,
2015) à partir d’un ensemble de contraintes. Cependant, cela est sujet à des sur-contraintes et ne
prend en compte qu’un nombre limité de points de données. Notre première approche d’estima-
tion des paramètres consiste à proposer une méthode utilisant un SVM, qui recherche la meilleure
séparation possible entre les échantillons positifs et négatifs. Grâce à sa frontière perméable, cette
méthode permet de considérer beaucoup plus de points de données, même ceux bruités qui contre-
diraient des contraintes strictes (Mabon et al., 2021). Ensuite, nous proposons d’adapter une mé-
thode utilisée pour les modèles basés sur l’énergie (EBM) (Mabon, Ortner, & Zerubia, 2022a) :
la divergence contrastive (Hinton, 2002; Du & Mordatch, 2019). Dans un schéma de descente de
gradient, nous alternons entre la génération d’échantillons contrastifs/négatifs à partir de l’énergie
actuelle et la maximisation de la différence d’énergie entre les échantillons positifs (similaires à
la vérité terrain) et les échantillons contrastifs. Cette procédure permet d’estimer non seulement
les pondérations énergétiques, mais également les différents paramètres internes des termes éner-
gétiques, qui autrement auraient été définis manuellement (ou avec une procédure distincte pour
chacun). Ces deux approches sont détaillées dans la partie 5.2.

Intensité de Papangelou comme score de détection. Pour pouvoir comparer notre modèle
avec d’autres modèles de détection d’objets utilisant des CNN, nous introduisons une fonction de
notation pour les objets déduits par le modèle de Processus Ponctuel dans la partie 5.3. Ce score
est calculé à partir de l’intensité conditionnelle de Papangelou, qui mesure la probabilité d’obtenir
un point compte tenu du reste de la configuration. Il s’agit d’une différence essentielle par rapport
aux fonctions de score classiques qui ne prennent en compte les points qu’individuellement, quel
que soit leur voisinage.

Application. Dans le Chapitre 6, nous appliquons nos méthodes sur des ensembles de données
de télédétection ; à la fois sur les benchmarks COWC (Mundhenk, Konjevod, Sakla, & Boakye,
2016) et DOTA (Xia et al., 2018) qui sont accessibles au public, ainsi que sur certaines données
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fournies par Airbus Defence and Space (ADS). Même avec la complexité limitée de nos modèles,
nous obtenons de bons résultats qualitativement en assurant la régularité de la géométrie déduite.
Quantitativement, nos modèles sont meilleurs sur ces données que les autres méthodes CNN aux-
quelles nous nous comparons. Cette différence de performance est plus prononcé avec des données
d’entrée bruitées : nos modèles fournissent de bons résultats qualitatifs et quantitatifs même dans
des conditions de bruit défavorables sur l’image d’entrée. Nous démontrons également que la mé-
thode d’estimation des paramètres proposée correspond ou surpasse légèrement celle du réglage
manuel des paramètres du modèle, qualitativement et quantitativement, avec l’avantage intrin-
sèque de limiter les fastidieux essais et erreurs manuels. Enfin, nous montrons que notre modèle
peut se généraliser à de nouvelles données en examinant les résultats qualitatifs sur les données
ADS après un entrainement du modèle sur DOTA.

Limitations. Cependant, comme notre implémentation n’est que légèrement optimisée (princi-
palement pour permettre la modularité lors de l’expérimentation) et en raison de la nature itérative
des méthodes d’échantillonnage par chaines de Markov, le temps d’inférence est significativement
plus long que celui des méthodes de détection d’objets purement CNN. Une accélération pourrait
être obtenue en approchant la méthode d’échantillonnage : par exemple en utilisant moins d’itéra-
tions, avec une inférence approximative comme état initial (par exemple la sortie CNN-LocalMax.,
voir la partie 6.2.2) et un recuit simulé plus rapide. Cependant, cela s’éloignerait davantage de la
configuration d’échantillonnage optimale, mais donnerait des résultats plus rapidement. D’autres
solutions existent telles que la discrétisation de l’espace d’état, puis la résolution d’un problème
d’optimisation de variables binaires (T. T. Pham, Hamid Rezatofighi, Reid, & Chin, 2016).

Perspectives. Alors que, dans cette thèse, nous nous sommes concentrés sur la détection de
petits véhicules, le cadre que nous proposons peut être facilement adapté à toute autre modalité
d’objets où les interactions inter-objet sont clés. Par exemple, les réseaux routiers peuvent être mo-
délisés avec des Processus Ponctuels de segments comme dans (Lacoste, Descombes, & Zerubia,
2005), et avoir des a priori importants sur leurs interactions (par exemple un rayon de courbure
limité, physiquement et légalement). Les Processus Ponctuels aussi peuvent être appliqués aux
données temporelles ; (Craciun et al., 2015) effectue un suivi des données de télédétection. Dans
ce cas, les a priori sur la dynamique sont forts et pourraient être capables de compléter le manque
d’information visuelle et même d’occlusions complètes (par exemple une voiture passant sous un
pont). De plus, comme notre modèle est assez résistant au bruit, nous nous attendons à ce qu’il
fonctionne bien sur les données SAR, car le bruit d’entrée (bruit de chatoiement) est plus important
avec ce type de données.

Les travaux futurs pourraient se concentrer sur les capacités de composition de tels modèles
énergétiques : en bref, il est possible d’estimer les fonctions énergétiques d’attache aux données
sur un premier ensemble de données, et le modèle énergétique a priori sur un autre, pour ensuite
composer les deux fonctions d’énergie et former un modèle complet (attache aux données et a
priori). En pratique, cela permettrait d’apprendre un modèle de données sur des annotations impar-
faites, et d’apprendre un modèle a priori sur des données synthétiques parfaites qui reproduisent
les structures attendues ; pour ces données synthétiques nous n’aurions besoin que de configura-
tions d’objets, pas d’images.

Enfin, la méthode d’estimation des paramètres proposée n’est pas nécessairement liée à la
détection d’objets. Comme nous avons noté précédemment la nature générative de notre modèle
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de Processus Ponctuel, nous pouvons donc l’appliquer à l’apprentissage de structures de points afin
de produire un modèle génératif capable d’imiter ces structures, comme cela est fait dans (Hurtut et
al., 2009) par exemple. Ce type d’approche pourrait bénéficier d’un modèle a priori non spécifique
à l’application qui serait appris sur les données, comme nous le proposons en annexe G : utiliser
un approximateur universel pour l’a priori par objet et apprendre les opérateurs d’agrégation sur
les interactions en utilisant les mécanismes d’attention.
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CHAPTER 1
Introduction

Figure 1.1: Nadar Élevant la Photo-
graphie à la Hauteur de l’Art (Honoré
Daumier, 1862).

Remote sensing, a technology with roots dating back
to photography from balloons in the late 19th century
(Figure 1.1), has evolved significantly since, to become
key for research, commercial use or defense. Over the
years, sensors got more sophisticated, in part sparked
by the escalation of military intelligence in the context
of World War II and subsequently the Cold War. This
coupled with an increased need to monitor our environ-
ment globally as humanity’s effects on it became more
concerning. In turns, the growing amount of data pro-
duced by those sensors demanded advanced comput-
ing solutions for processing, analysis and interpretation.
The advancements in remote sensing matches the rise
of computer vision: from the early foundation of com-
puter vision in the 1950s, through the Perceptron in 1958
(Rosenblatt, 1958) and the Hough transform in 1972
(Duda & Hart, 1972) to the resurgence of neural net-
works in the late 1980s and the rise of Convolution Neu-
ral Networks (CNN), and most recently the adoption of
Deep Learning with AlexNet (Krizhevsky et al., 2012)
or RCNN (Girshick et al., 2014) for instance.

At first glance, remote sensing can be understood as
“the gathering of information at a distance” (Campbell & Wynne, 2011). However, this too broad
definition would encompass from microscopy to audio recording. The field of remote sensing,
rather focuses on the “observation of the Earth’s land and water surfaces by means of reflected
or emitted electromagnetic energy” (Campbell & Wynne, 2011). In practice, the considered data
consists of optical (or near-optical such as infrared) imagery, as well as SAR (Synthetic Aperture
Radar) or Lidar (Laser Imaging, Detection, and Ranging) taken from drones, planes, balloons or
satellites; in short “from an overhead perspective” (Campbell & Wynne, 2011).

In this thesis our main goal is to detect small objects, such as vehicles, in satellite images. With
resolutions around 0.5m per pixel and the perturbations inherent to the image acquisition process,
we try to complement the lack of information in the image with priors on the extracted geometries.
We aim at complementing modern CNN approaches with interaction models from Point Processes
to regularize the extracted configurations of objects.

This introductory chapter, first presents some practical applications of remote sensing and
applications of object detection. We then present the key elements of satellite image acquisition
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with its challenges and constraints. Finally, we broadly review approaches for object detection to
finally conclude on the thesis structure.

1.1 Computer vision in remote sensing

Thanks to constant technological advances and the rise of open data, the uses for computer vision
in remote sensing are growing. As a motivation, we present a few examples of practical applica-
tions.

Land use. Satellite images provide a live view of a territory and helps keeping cartographic
resources up to date (IGN, 2020). This allows for instance to monitor urban sprawl at a large scale
(Une carte d’occupation du sol pour faciliter le suivi de l’artificialisation - Institut - IGN, 2023),
which is of great importance as it is a key cause for loss of biodiversity (McKinney, 2002), pol-
lution and heath issues (Jones & Kammen, 2014). Combining object detection in satellite images
with up-to-date land registers can have uses for public finances; recently, the French tax office has
been experimenting with detection of undeclared swimming pools from satellite imagery (“La dé-
tection par intelligence artificielle de piscines non déclarées va être généralisée en France”, 2022).

Disaster monitoring. A live view of large swathes of land can prove crucial in monitoring dis-
asters, both for responding to humanitarian crises or in the long run. Satellites can help monitor the
ongoing climate crisis, from measuring the rising sea surface temperature (European Sea Surface
Temperature, 2023) to producing a live-view of forest fires across the world (“Cartes des incendies
dans le monde : suivez en temps réel les feux de forêt observés sur Terre”, 2023), (see this mon-
itoring tool from NASA with only 3 hours delay (Earth Science Data Systems, 2015)). Optical
satellite imagery is also in use for disaster response: for instance, in September 2023, in response
to the earthquake in Morocco, the available satellites of 8 space agencies where programmed to
produce pictures of the affected area (Bronner, 2023). This data allows identifying and measuring
the extent of the damage, and helps to coordinate the relief efforts.

Military intelligence. As mentioned previously, remote sensing technologies are deeply rooted
in military intelligence. From observation balloons in 1794 during French Revolutionary wars, to
World War I with the first plane photographic reconnaissance missions, and the development of
spy satellite during the cold-war: monitoring — preferably from an overhead perspective — the
presence, amount and nature of military assets is key to any conflict or defense strategy. In recent
years, the wide-spread availability of satellite image resources has lead to the rise of Open Source
Intelligence (OSINT) (OSINT : aux sources d’un nouveau journalisme ?, 2023), which became a
significant source of public information during the recent conflict in Ukraine.

Domestic intelligence. However, it is important to note the global increase in use of automated
acquisition and detection systems aimed towards domestic surveillance; from the NSA global com-
munication eavesdropping programs unveiled in 2013 (Gellman & Poitras, 2013), to the ongoing
growth of the Chinese surveillance state (facial recognition, phone trackers, voice recognition etc.)
(Xiao, Mozur, Qian, & Cardia, 2022), or France’s recent legislation on the usage of police drone
during protests, or the experimentation on automatic facial recognition opening the way for the
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trivialization of such practices (Verdon & Nabat, 2023). Although non-military satellite technol-
ogy is not capable enough yet for these practices, the use of drone systems coupled with automated
recognition algorithms can raise ethical concerns.

1.2 Satellite image acquisition

To better understand the specificities and constraints of detection in satellite images, we present
in this section a few key elements of the image acquisition process. Most of the information in
this section have been sourced from (Tupin et al., 2014), to which we refer the reader for a more
thorough explanation.

Orbits and cycles. Satellites for civilian imagery, usually orbit from 450 to 910 km around the
Earth. The orbital plane is often inclined with respect to the equatorial plane in order to cover
as much ground as possible. For instance a polar orbit passes above the North and South poles,
describing an orbit orthogonal to the equatorial plane. Lower orbits require less fuel to launch and
make for higher resolution images, however as satellites get lower in orbit the effects of atmo-
spheric drag get higher. Even if satellites are loaded with some fuel for trajectory corrections, low
orbits demand more corrections because of the drag. Thus, the lifespan of low orbit satellites is
often limited.

Figure 1.2: Ground track of the Pleiades NEO-4 satellite orbited in August 2021. From
(OrbTrack.Org, 2023).

Due to the combination of the satellite’s orbit and the Earth’s rotation (eastward with North
up), a position on the orbit does correspond to a single position on the ground; at every orbit the
position of the satellite gets shifted to the west (see Figure 1.2). The time a satellite takes to come
back to the same orbit position and location relative to the ground is called the cycle of the orbit
(e.g. 1 day for Formosat-2, 26 days for SPOT or Pleiades NEO). This cycle time will determine
the minimal time difference between two acquisitions of the same area; which plays a key role in
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change detection. This can be mitigated by having constellations of satellites, better covering the
globe at all times.

Passive sensors: Optical. There exists two types of sensors: passive and active. The passive
sensors measure the back scattering of sunlight (or artificial lights) on the surface. For thermal
sensors it can measure the ground radiation. The first sensors where film stock. In the 1960s
US satellite platforms such as GAMBIT-1 or CORONA would drop a reentry canister back into
the atmosphere to be recovered midair by plane or on the ground (60th Anniversary of the First
GAMBIT-1 Photoreconnaissance Satellite Flight, 2023). Modern satellites use a linear array of
Charged Coupled Device (CDD) that scan an area as the satellites moves over it (as a document
scanner does), this is referred to as pushbroom (see Figure 1.3). 2D CCD arrays (that we find in ev-
eryday digital cameras) are marginal in use up to now, although the upcoming CO3D constellation
will embark two 2D CCD sensors, one for RGB bands, the other for NIR (CO3D Constellation,
2023).

Track

y

x

Orbit

CCD array

∆y = VS∆t

∆x

O

S

Figure 1.3: Optical pushbroom: the CCD linear detector acquires at a period ∆t. The interval
between two rows of pixels ∆y is given by the time interval ∆t multiplied the satellite ground
speed VS . Adapted from (Tupin et al., 2014).

The footprint of a satellite and sensor describes the intersection of the perspective cone and
ground surface, in which two objects cannot be resolved. The footprint is dependent on the optical
system and sensor, as well as incidence (angle between ground normal and sensor), altitude and
ground inclination. For a horizontal ground, the lowest footprint is at low altitude and incidence;
i.e. the optical satellite best acquires images at Nadir (satellite pointing towards the center of the
Earth). Off-Nadir images have less spatial resolution, and are more prone to occlusion due to
mountains, trees or tall buildings. Note that for a satellite at Nadir, as we move further from the
optical axis (vector

−→
SO in Figure 1.3), the light paths get progressively off Nadir.
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Active sensors: Synthetic Aperture Radar (SAR). Synthetic Aperture Radar (SAR) satellites
are active sensors; they emit electromagnetic wave with an antenna, that gets reflected on the
surface and measured back by the antenna. The system measures the signal return time, thus
the SAR footprint depends on the temporal resolution and the incidence. Here lower incidence
increases footprint; i.e. SAR satellites are preferably pointing at the ground with an angle. The
movement of the satellite relative to the ground introduces some more subtleties to this system;
we will not go into further details about of SAR acquisition in this thesis, we rather refer the reader
to (Tupin et al., 2014) or (Campbell & Wynne, 2011) for more detailed information.

Spectral resolution. Optical sensor measures the quantity of light within a given range of wave-
lengths. For instance panchromatic images are produced by capturing the visible spectrum from
400 to 700 nm, producing a grayscale image corresponding to the integrated intensity over the
bandwidth, exposure time and sensor area. The bandwidth can be split into bands, to produce
multispectral images. The most common we encounter every day is splitting into Red, Green and
Blue bands (RGB) to be able to reproduce color images for the human eye. Satellites can have
from ten to hundreds of bands. The fine spectral resolution allows discerning different materials
and surfaces given their reflectance properties. Multispectral sensors often include bands beyond
the visible spectrum such as near infrared (NIR), which is strongly reflected by vegetation. For
instance Pleiades NEO satellites (PNEO-3 and PNEO-4) have 7 spectral bands: panchromatic
(450−800 nm), RGB (450−520, 530−590, and 620−690 nm), NIR (770−880 nm), deep blue
(400−450 nm, used for instance for oceanography) and red edge (700−750 nm, used for vegeta-
tion) (Pléiades Neo, n.d.). As bands get finer, the flux of light gets lower, thus the signal-to-noise
ratio worsens. As a compromise narrowband systems often increase sensor surface, at the cost of
increased footprint (i.e. lower spatial resolution). For instance the panchromatic band in Pleiades
NEO has a resolution of 30 cm while the other narrower bands have a resolution of 1.2 m.

Atmospheric Perturbations. “It is necessary to talk about the atmosphere, since it is situated
between the satellite and the surface” (Tupin et al., 2014). The most glaring hindrance to optical
imaging is clouds; those hide the surface and project shadows. Their non-solid edges make them
difficult to isolate and correct for. However, clear skies also interact with the light the satellite is
capturing. The atmosphere both absorbs and scatters the light depending on its chemical composi-
tion and density. Both do not have uniform effect across the light spectrum. We shall also mention,
surface effects, such as specular reflections on mirror like surfaces, which can cause lens flare
artifacts.

Image transmission. Nowadays, satellites beam back the acquisitions by radio; both the bit
rate and transmission window are limited as the satellite is not always in range of the ground
antenna. The size of the transmitted signal depends on the number of bands, pixels and radiometric
resolution (the number of quantized values for the intensity of one pixel in one band). Usually, the
ground to satellite link has a low transmission rate as it only transmits commands to the satellite.
Meanwhile, satellite to ground links have higher throughput to accommodate for the large amounts
of data to send back. Some Earth observation satellites (such as Sentinel) can beam back data
trough higher orbit relay satellites, such as the European Data Relay Satellites, EDRS-A and
C (European Data Relay Satellite System (EDRS) Overview, n.d.). The transmission rate is still
limited due to the distances (loss of signal energy) involved with geostationary satellites.
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Image processing. Once on ground, the image can be processed. Modeling the atmospheric
interactions allows correcting for part of the above-mentioned absorptions. The images are be-
spangled to conform to an orthoimage; i.e. transformed image that corresponds to a cartographic
geometry. To compensate for the limited resolution of fine spectral bands, one can combine the
high spatial resolution of panchromatic images with the fine spectral resolution of multispectral.
This process is known as pansharpening.

From the multispectral output, spectral indices are built. Those combine the information of
multiple bands into a single index that corresponds to a specific element of interest. For instance
NDVI combines red (RR) and near infrared (RNIR) bands. It is a great tool to quickly identify
vegetated areas without any complicated image processing:

NDVI = (RR −RNIR)
(RR +RNIR) (1.1)

1.3 Object detection

As shown previously, satellite images contain many artifacts and occlusions compared to usual
images; i.e. photographs we encounter every day, taken at human eye-level, usually with a close
centered subject, where objects of interest represent a significant proportion of the image. Given
the low spatial resolution of satellite images, the objects of interest may be only a few pixels large.
As the visual information is limited, human operators often resort to their prior knowledge of the
object of interest when analyzing an image. Similarly, we aim to build models that factor in this
prior.

The goal of this thesis is to study the combination of modern Convolutional Neural Network
(CNN) approaches with geometrical models using priors or constraints. While CNN models have
shown to be really efficient at extracting texture information, they fail to encompass longer range
interactions between objects without drastically increasing complexity and parameters count. On
the other hand, Point Process (PP) models propose to model configurations of geometrical objects
as a stochastic process. First, the Point Process construction itself defines the type of geometries
that are extracted. Also, the stochastic model contains priors that can guide the model towards
configurations that are more likely a priori.

1.3.1 Image probability model

The Point Process approach derives from stochastic models of image analysis. Considering the
image as a set of pixels in Sd ⊂ Z2, we can model it as a random variable X in probability space
(Ω,A,P), where grayscale values correspond to the realizations of function X:

X : Ω→ RSd . (1.2)

If we consider the image as a noisy observation of underlying phenomenon Φ, a Bayesian
model for the image is then:

P(X = X) =
∑︂

y
P(X = X|Φ = y)P(Φ = y), (1.3)

where image X and configuration y are respective realizations of X and Φ. Here P(X = X) cor-
responds to the marginal law of observations, built from the law of observations P(X = X|Φ =
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y) and prior law P(Φ = y) on the underlying process. With Bayes formula we can revert the
conditioning to study the law of Φ conditional to the observation X:

P(Φ = y|X = X) ∝ P(X = X|Φ = y)P (Φ = y). (1.4)

The Bayes model provides a class of natural estimators: Bayes estimators. An estimator of Φ
is a function Φ∗(X) of observation X, which we want to best approach the underlying values of
Φ that generated image X. This relies on Bayes cost:

RB(Φ∗) = EΦ
[︂
EX|Φ [L(Φ∗,Φ)]

]︂
. (1.5)

For cost L(Φ∗,Φ) = 1(Φ ̸= Φ∗), the optimal estimator is the Maximum A Posteriori (MAP)
estimator:

y∗ = arg max
y

P(Φ = y|X = X). (1.6)

If we consider all pixels to be independent of each other we get:

y∗ = arg max
y

∏︂

ρ∈Sd

P(Φ = y|Xρ = Xρ). (1.7)

1.3.2 Point Process

Point Processes allow to model such phenomenons Φ, as set of parametric objects representing
geometrical objects such as segments, circles, rectangles, polygons etc... We will go further into
details of Point Processes later on. Here we consider configurations y as a set {y1, . . . , yn(y)} of
n(y) elements y that represent our objects of interest.

Within the Bayesian framework, an observation model can be built as:

P(Xρ = Xρ|Y = y) = 1(ρ ∈ y)P(Xρ = Xρ|ρ ∈ y) + 1(ρ /∈ y)P(Xρ = Xρ|ρ /∈ y). (1.8)

In this formula, we apply a foreground (ρ ∈ y) or background (ρ /∈ y) model whether a pixel
ρ belongs to the silhouette of y or not. A common model if the silhouette corresponds to bright
pixels on a darker background is to model the foreground P(Xρ = Xρ|ρ ∈ y) as a high value
Gaussian law. The background P(Xρ = Xρ|ρ /∈ y) is then mapped to a lower value (Baddeley &
Lieshout, 1993; Perrin et al., 2004).

However, this Bayesian approach has some limitations (Ben Hadj et al., 2010):

• Non-homogeneous backgrounds are harder or impossible to model. The simple Gaussian
model for P(Xρ = Xρ|ρ /∈ y) is no longer usable.

• The likelihood of pixels of the foreground class does not rely on the morphological proper-
ties of the class to extract. For instance the model may try to fit as many small objects it can
in a large silhouette (Craciun et al., 2015) as illustrated in Figure 1.4.

For those reasons, (Ben Hadj et al., 2010) propose a detector model, formulating the external
energy Ud as:

Ud(y,X) = wd

∑︂

y∈y
Vd(y), with (1.9)

P(Φ = y|X = X) ∝ exp (−(Ud(y,X) + Up(y))) , (1.10)
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(a) (b) (c)

Figure 1.4: Limitation of the Bayesian approach: (a) synthetic image; (b) Bayesian model; (c)
detector model using contrast measures. From (Ben Hadj et al., 2010).

where wd is a scalar weight, and Up is the prior model formulated as an energy. Meanwhile, Vd(y)
measures the statistical difference between the inside and outside of object y, with a low value for
high contrast (likely an object) and high values for low contrast (likely not an object). Still these
contrast measures rely on the high and consistent contrast of the object against its background. This
approach reaches its limits when the background start to exhibit contrasted elements that should
not be detected for instance. We show a practical example of these limits in Section 4.2.1.1.

Notably, (T. Li et al., 2019) propose to perform such contrast based approach on the output
of a CNN trained for segmentation; that way the authors fall back into a simple foreground and
background where the contrast measure is efficient.

1.3.3 Convolutional Neural Networks

While the above image model with independent pixel was motivated in part by the computational
limitations, the increasing availability of computational power eased the rise of Convolutional
Neural Networks (CNN). Although introduced for image classification in 1989 (LeCun et al.,
1989), it was only in the 2010s that CNN gained widespread adoption with AlexNet (Krizhevsky
et al., 2012) for classification or RCNN (Girshick et al., 2014) for object detection.

Convolutional Neural Networks process data from a grid-like topology through a sequence
of convolution and pooling (spatial aggregation) operations. We will go further in depth about
CNN later in the thesis. Deep convolutional models learn the convolution filters for a specific task
from large image databases such as ImageNet (Krizhevsky et al., 2012) for instance. Initially those
were built towards classification of images (i.e. assigning a category to the whole image, usually
describing its main content). Then (Girshick et al., 2014) propose RCNN that classifies a series
of bounding boxes to build the first two stages object detector. Segmentation model such as Unet
(Ronneberger et al., 2015) perform pixel-wise classification. Those produce real-valued maps in
the range [0, 1], that are interpreted as class probabilities. For instance, the probability of pixel ρ
belonging to class C1 (amongst NC classes) is given as:

ˆ︁P (ρ ∈ C1|X) = exp (F (X)[ρ, C1])
∑︁NC

k=1 exp (F (X)[ρ, Ck])
, (1.11)

with F (X) is the CNN output tensor in RSd×J1,NCK, and NC the number of classes. This approach
is leveraged in heatmap based object detection such as (X. Zhou, Wang, & Krähenbühl, 2019).
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The heatmap corresponds to a centerness probability map, measuring the probability of each pixel
to be an object center. One has to be careful about the interpretation of these as probabilities: as
(C. Guo, Pleiss, Sun, & Weinberger, 2017) show, these measures are often poorly calibrated and
should rather be considered as scores.

Nonetheless, this score measures the presence or not of an object, with a lightweight convolu-
tional model which kernels are learned from data.

1.4 Proposed approach

The starting point of our work — inspired from (T. Li et al., 2019) — is to leverage the score
ˆ︁P (ρ ∈ C1|X) and use it to build the external energy of the Point Process Vd , replacing the contrast
measure.

In this PhD thesis, we propose the incorporation of interaction models into object detection
methods, while taking advantage of the capabilities of deep convolutional neural networks. Satel-
lite images are inherently imperfect due to atmospheric disturbances, partial occlusions and lim-
ited spatial resolution. To compensate for this lack of visual information, it becomes essential to
incorporate prior knowledge about the layout of objects of interest.

On the one hand, methods based on CNN are excellent for extracting patterns in images, but
struggle to learn object-to-object interaction models without having to introduce attention mecha-
nisms such as Transformers that considerably increase the complexity of the model. For example,
some approaches propose to include a priori information in the form of descriptive text about ob-
jects and their relationships (Lu et al., 2023), while others use cascades of attention modules (Zeng
et al., 2023).

On the other hand, Point Processes propose to jointly solve the likelihood relative to the image
(data term), and consistency of the object configuration itself (prior term). Firstly, Point Process
approaches model configurations as vector geometry, constraining the state space by construction.
In addition, these models allow explicit priors relative to configurations to be specified as energy
functions. However, in most of the literature (Verdié & Lafarge, 2014; Schmidt et al., 2017), data
terms rely on contrast measures between objects of interest and background. We illustrate the
limitations of these measures on satellite data later in this thesis.

Instead of increasing the complexity of the model by adding, for example, Transformers, we
propose in this thesis to combine CNN pattern extraction with the Point Process approach. The
starting point of this approach is to use the output of a CNN as the data term for a Point Process
model. From the latter we derive more efficient sampling methods for the Point Process that do not
rely on application specific heuristics. Finally, we propose to bridge the gap in terms of parameters
estimation using modern learning techniques inspired from Energy Based Models.

1.5 Thesis structure

The thesis is organized as follows. We choose to present our contributions structured into the three
main elements of our models (energy model in Chapter 4, sampling and parameters estimation in
Chapter 5) rather than going through the incremental improvements of each model we published
(which would induce many repetitions) :

• Chapter 2 provides a review of the State Of The Art (SOTA) approaches for object detection
both with CNN and PP based methods, with a focus on remote sensing applications.
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• Chapter 3 goes through the fundamental theory on Point Process and the basics of Convo-
lutional Neural Networks necessary to build our models.

• Chapter 4 introduces several ways to build our Point Process model, in which we contribute
with several novel approaches:

— Building data terms for PP from CNN.

— Interpreting classical CNN output as energy to incorporate in the PP model.

• Chapter 5 develops the methods to sample and estimate the parameters of the model. Our
main contributions are:

— Thanks to CNN output potential maps we adapt sampling methods for more efficiency
(parallel sampling with cell picking, birth with density from truncated model).

— We propose two parameter estimation methods: the first based on Support Vector Ma-
chines ; the second based on gradient descent and contrastive divergence inspired from
the literature related to Energy Based Models.

— We propose using the Papangelou intensity as a per object score value in order to
compute precision recall curves and compare our method to the classical ones.

• Chapter 6 shows application of our model and methods on synthetic and real data on bench-
marks and data provided by Airbus Defense and Space (ADS).

• Chapter 7 summarizes contributions, limitations and perspectives for future works.



CHAPTER 2
State of the art

Dans ce chapitre, nous passons en revue la littérature sur la détection d’objets et ses
méthodes associées. Notre objectif étant de construire un modèle combinant Proces-
sus Ponctuels (PP) et Réseaux de Neurones Convolutifs (CNN), nous nous concentrons
d’abord sur les méthodes utilisant les CNN pour la détection d’objets, et plus spécifique-
ment ceux appliquées aux données de télédétection. Nous nous intéressons ensuite aux
approches fondées sur les PP, appliquées à la détection d’objets. Enfin, nous abordons
le domaine des modèles fondés sur l’énergie, car leur approche sera utile ultérieurement
lors d’apprentissage de notre modèle.

In this chapter we review the literature around object detection and its related methods.
As our aim is to build a model combining Point Processes (PP) and Convolutional Neural
Networks (CNN), we first focus on the methods using CNN models for object detection,
and more specifically applied to remote sensing data. We then look into the approaches
based on PP, applied to object detection. Finally, we delve into the realm of Energy
Based Models as their approach will be of use when training our model later on.
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2.1 – 27

Looking back at the references used for this thesis, we identify three main topics, which we
will explore in this chapter. Figure 2.1 shows relations between publications and topics, as well
as these thematic clusters. As our aim is to build a model combining Point Processes (PP) and
Convolutional Neural Networks (CNN), we first focus on the methods using a CNN for object
detection, and more specifically applied to remote sensing data. We then look into the approaches
based on Point Processes, applied to object detection. Finally, we delve into the realm of Energy
Based Models (EBM) as their approach will be of use when training our model later on.

object detection

mpp

remote sensing

cnn

ebm

Point Process

CNN for obj. detection

EBM

datasets

Figure 2.1: A graph of the bibliographic references, papers are linked together through (most of)
their references and to the themes (or keywords) of these papers. We highlight the main clusters
in this graph.
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2.1 Convolutional Neural Networks for object detection

In this section we review the object detection first through the emergence of Convolutional Neural
Networks (CNN) and then their use for remote sensing. We distinguish usual images — pho-
tographs usually taken at human eye-level with large mostly-centered objects of interest — from
the images seen in remote sensing (or in microscopy for instance), as those have different charac-
teristics that will be discussed further in this chapter.

2.1.1 The rise of CNN models for object detection

This first part presenting a short history of object detection is mainly sourced from (Zou, Chen,
Shi, Guo, & Ye, 2023), in which the reader will find an even more thorough survey of object
detection over the last 20 years. First it is important to mention that object detection is adjacent to
many other computer vision tasks such as segmentation, classification, change detection etc...

Figure 2.2: Example rectangle features shown relative to the enclosing detection window. The sum
of the pixels which lie within the white rectangles are subtracted from the sum of pixels in the gray
rectangles. From (Viola & Jones, 2001).

Initially, classical detection methods were based on handcrafted features such as for (Viola &
Jones, 2001). This real-time face detection algorithm uses a sliding window with some handcrafted
rectangular features (see Figure 2.2) for which a clever use of integral images allows to simplify
the algorithm to a few lookup operations.

As handcrafted features showed their limit, object detection went through a shift with the
arrival of Convolutional Neural Networks. Thanks to previous key works on backpropagation
(LeCun et al., 1989), CNNs took off in computer vision in 2012 with (Krizhevsky et al., 2012)
introducing a large scale training data (ImageNet) and proposing a CNN model (AlexNet) trained
to perform image classification in usual images.

Two stage detectors. In 2014 Girshick et al. propose Region with CNN features (RCNN) in
(Girshick et al., 2014) to bridge the gap from classification to object detection. RCNN works
by proposing a set of objects as boxes. Each box is then translated into a vector of features by a
CNN model trained on ImageNet (Krizhevsky et al., 2012), a Support Vector Machine (SVM) then
predicts the presence and class of the potential object in the box (see Figure 2.3). The large number
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of proposals that overlap is a limitation of that method (over 2000). In later works (Girshick,
2015) propose FastRCNN, simultaneously training the detector and a bounding box regressor
of the model, making for a great improvement in speed and performance. Even though (Ren, He,
Girshick, & Sun, 2015) introduce the region proposal network, computational redundancy remains
due to the high number of proposals. Such approach of box proposal then classification is referred
to as two stage approach.

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 2.3: Region with CNN features method overview. From (Girshick et al., 2014).

From these works, improvements are proposed to alleviate the limitations of the initial two
stage models: for instance, (K. He, Zhang, Ren, & Sun, 2015) propose Spatial Pyramid Pool-
ing (SPP) to bypass the fixed input size restriction of previous CNN models with a new pooling
method. Later on Feature Pyramid network (FPN) proposed in (Lin, Dollar, et al., 2017), uses
features of deeper layers — previous approaches would use only the last layer — introducing top
down and lateral connections. This architecture integrated in FastRCNN gives improved results.

Single stage detectors. The first single stage object detector is introduced in (Redmon, Divvala,
Girshick, & Farhadi, 2016) as YOLO (You Only Look Once). It shows greater performances in
terms of object detection metrics and speed than the two-stage approaches at the time. While
YOLO initially struggles with small objects, the following version, YOLOv4 (Bochkovskiy, Wang,
& Liao, 2020), YOLOv7 (Wang, Bochkovskiy, & Liao, 2023) and so on, incrementally alleviate
these issues.

In their work (Lin, Goyal, Girshick, He, & Dollar, 2017) propose that the reason one stage
detectors kept being outperformed by modern two stage detectors was the imbalance in foreground
and background classes. They propose a new focal loss to put more focus on hard, misclassified
elements when training the single stage CNN model.

For most previous methods, anchor boxes are used as reference box proposals for classification
and regression. As the objects are varied in size and shape, the user has to set up these reference
boxes tailored to the application. CornerNet (Law & Deng, 2018) propose to instead view the
bounding box estimation as a keypoint detection problem: for each object they infer the two points
that would define a bounding box, the points are matched together by some extra embedding
information. The estimation of the points’ location is done though some heatmap: raster maps
corresponding to a pseudo probability map of points presence. Those are used not only for object
localization: for instance (Y. Guo, Wu, Du, & Zhang, 2022) use heatmaps to count vehicles in
satellite images. CenterNet simplifies this approach further (X. Zhou et al., 2019), considering
objects to be a single point (their center) extracted through a heatmap. From the center location is
regressed the other attributes such as size, orientation, location, and pose (see Figure 2.4).
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Figure 2.4: Heatmap for center detection. Here the heatmap resolution is coarser than the image
resolution, the local offset allows compensating for the discretization error. From (X. Zhou et al.,
2019).

Attention and transformers. Attention mechanisms were introduced in Natural Language Pro-
cessing (NLP) (Bahdanau, Cho, & Bengio, 2015) to help learn relations between distant words in
a sentence, and quickly gained popularity in their field. Works in (Vaswani et al., 2017) intro-
duced transformers, a deep neural network block relying on attention mechanisms, that aims to
use global dependencies between input elements, while avoiding recurrence based models1. It did
not take long for the object detection community to adapt this method to object detection. In 2020
(Carion et al., 2020) propose DEtection TRansformer (DETR) — which as the name suggests
uses transformers for object detection — viewing detection as a set prediction problem and using
transformers to learn relations between the elements of these sets; i.e. relations between objects.
We discuss of the limitations of attention mechanisms in next Section 2.1.2.

2.1.2 CNN for detection in remote sensing

We now focus on the application of the object detection methods above to remote sensing data.
We articulate this section through the multiple challenges that remote sensing data exhibits and
the proposed methods to alleviate those.

Small objects. In remote sensing, and more specifically with satellite imagery, objects of in-
terest can be of very small size (only a few pixels). A first approach is to use super-resolution
methods to compensate for the object size limitations of the detection model as in (J. Zhang, Lei,
Xie, Fang, et al., 2023). We see it used also for microscopy images in (Mayo, Anantrasirichai,
Chalidabhongse, Palasuwan, & Achim, 2022) using Pix2Pix (Isola, Zhu, Zhou, & Efros, 2017) for
rescaling images. One limitation of super-resolution approaches is the very large memory foot-
print of resulting images (images being large in the first place, even at low resolution). Moreover,
deep-learning super-resolution models have a risk of hallucinating patterns; i.e. introducing non-
existing and non-relevant information into the scaled-up image. The Feature Pyramid Network
(Lin, Dollar, et al., 2017) introduced previously, is great at improving detection at multiple scale,
as the lateral connections in the architecture allow to maintain a good localization while detecting

1Previous approaches in NLP would build models that would run through each work of the sentence one by one,
while updating a hidden state. This sequential approach limits parallelization and is limited by the memory that the
hidden state represents (Vaswani et al., 2017).
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object at higher scales in the deeper part of the model. This type of architecture is similar to the
Unet introduced in (Ronneberger et al., 2015).

It is to note that small objects induce some issues on the metrics used to evaluate or train the
models. Indeed, the Intersection Over Union (IOU) becomes instable for small objects; (Jeune &
Mokraoui, 2023) propose a more perceptually accurate measure for small objects.

Large images. Satellite images span huge areas of land, resulting in oftentimes very large im-
ages. It requires CNN approaches to be able to handle varied image size, and be able to process
patched images; as memory is limited, one needs to be able to split the image, process each patch
independently, and stitch back the results without inconsistencies in the output. Fully Convolu-
tional Networks (FCN) formalized in (Long, Shelhamer, & Darrell, 2015) for segmentation, then
in (Tian, Shen, Chen, & He, 2019) for object detection (see (Sun et al., 2021) for an application in
remote sensing), use CNN with only convolution and pooling operations, allowing for translation
invariance. FCN are introduced in biomedical image segmentation with the Unet (Ronneberger et
al., 2015).

Limited spatial resolution. In remote sensing, the sensor is intrinsically quite distant from the
observed objects, implying a limited spatial resolution (usually measured in meters per pixel).
This limited resolution in turn induces a limited amount of visual information to perform object
detection from. Combines with sensor noise or atmospheric perturbation, remote sensing detec-
tion methods need to innovate in compensating the limited signal. Approaches such as (LaLonde,
Zhang, & Shah, 2018) (Corsel, van Lier, Kampmeijer, Boehrer, & Bakker, 2023) use the temporal
information from image time series to improve detection of small objects. However, static small
objects remain difficult to detect with that method. Others propose using the multiple modalities of
data the satellite sensor can produce; using the multiple spectral bands instead of optical grayscale
or RGB. For instance (Belmouhcine, Burnel, Courtrai, Pham, & Lefèvre, 2023) propose to fuse
sensors with attention mechanisms, and (J. Zhang, Lei, Xie, Fang, et al., 2023) combined this with
super resolution. The method proposed in (Lu et al., 2023) uses text-modal descriptors to introduce
prior knowledge on the objects into the model and their relation. For instance “An airport consists
of [...] runways for planes to take off and land” introduces a relation between the airport, runway
and plane objects and their co-occurence. Similarly, the model proposed in (K. Zheng, Dong, Xu,
Tan, & Huang, 2023) learns the co-occurence of objects in images in the training data. Another
approach is to model the interaction between objects. Markov Random Field approaches (Moser,
Serpico, & Benediktsson, 2013) model pixel spatial context, which is combined with CNN for
image segmentation in (Pastorino, Moser, Serpico, & Zerubia, 2022). Works in (Z. Zheng, Zhong,
Wang, Ma, & Zhang, 2023) propose to relate foreground and background elements while (Cao,
Bai, Pang, Liu, & Zhang, 2023) use transformer to learn object-level relations. Finally, (Zeng et
al., 2023) use prior on objects alignment (thus considering object level spatial interaction) within
a cascade of attention modules.

Attention models applied to images remain limited in use due to their limitations in terms
of memory footprint: often time the solution would be to sub-sample (loosing spatial precision)
or consider attention locally (loosing longer range interactions) (Cherel, Almansa, Gousseau, &
Newson, 2022). Alternatively (Cherel et al., 2022) propose an efficient attention layer based on a
stochastic algorithm for patch matching which is used for determining approximate nearest neigh-
bors.
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The limited signal-to-noise ratio raises concerns about the robustness of the developed meth-
ods. Works in (Mei et al., 2023) and (H. He, Ding, & Xia, 2023) study the robustness of remote
sensing computer vision methods. (Mei et al., 2023) show the effect of natural perturbations (Gaus-
sian blur, fog, etc...) as well as adversarial attacks including background obfuscation patterns on
which to place objects to make those virtually invisible to the detector.

Oriented objects. The detection of oriented objects raises some challenges compared to the
detection of horizontal (non-oriented) bounding boxes. Importantly the angle parameter defining
the oriented rectangle introduces a discontinuity (or cyclic aspect) to the parameter space which
poses problem when computing the loss over the inferred configurations of rotated objects. To
bypass this limitation (Xu et al., 2023) propose reformulating angles as a circular Gaussian density,
while (Yao et al., 2022) or (D. Yu et al., 2023) propose redefining the oriented bounding box
representation into a continuous one. Finally, (Llerena, Zeni, Kristen, & Jung, 2021) and (Z. Li
et al., 2023) propose a fuzzy formulation of bounding boxes using Gaussian distributions and a
probabilistic IOU. The above-mentioned IOU issues caused by small objects is even more present
with oriented objects, where a small angle error can drastically change the IOU as (Xu et al., 2023)
note.

Annotated data is costly. As for any deep learning approach, annotated data is key to training
models. As data annotation is a time-consuming and arduous task, some methods try to learn
efficient model with limited amounts of data. Weakly supervised methods propose to learn models
on sparsely annotated data to extract more fine-grained information at inference. For instance
(M.-T. Pham, Gangloff, & Lefèvre, 2023) train a Variational Auto-Encoder (VAE) to perform
image reconstruction, and use it to perform detection of marine animals. Similarly, (J. Bai et al.,
2023) train a model to classify images (requiring simpler annotations than object location Ground
Truth (GT)). The authors then use Class Activation Maps (CAM, introduced in (B. Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2016)) to extract the object(s) location in the image looking at which
part of the image activates the classification output. While weakly supervised models are trained on
sparser data, few shot models are built to learn with limited data samples, for instance being able
to categorize never seen classes (as humans can do) (Antonelli et al., 2022). Previously mentioned
works in (Lu et al., 2023) combine few shot model with the text-modal priors.

Lightweight models for onboard processing. A challenge for some applications in remote
sensing is the ability to apply the algorithm in flight, aboard the satellite for instance. Onboard
computing faces multiples challenges: the monetary and energetic cost of launching mass (thus
processing power) in orbit, the necessity of systems to be stable and reliable (no on-site mainte-
nance possible), limitations with power and cooling, etc... Thus, lightweight models for remote
sensing computer vision are key to some applications. For that matter (Hu et al., 2023) propose to
train a model based on YOLO with limited number of parameters. Other methods such as neural
network reduction (Vandame, Karam, Argentier, & Chanussot, 2023) utilize distillation (Hinton,
Vinyals, & Dean, 2014) to transfer knowledge from a larger model to a sparser one. Lastly, quan-
tization (limiting the number of bits the model parameters are stored on) is proposed in (J. Zhang,
Lei, Xie, Li, et al., 2023) using distillation.
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Figure 2.5: Evolution of remote sensing datasets dedicated to machine learning tasks. The vertical
axis represents data volume, while the circle size maps to the number of spatial pixels covered.
From (Schmitt et al., 2021).
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2.1.3 Remote sensing datasets

As data is the key to deep learning approaches for remote sensing, (Schmitt et al., 2021) provide
a review of available datasets in remote sensing (see Figure 2.5). Amongst the object detection
datasets we identify a few where our approach could bring improvements on:

• COWC (Mundhenk et al., 2016): satellite optical images with vehicle position annotations.
As this dataset only provides positions and no geometries, we only use this dataset for the
first non-marked point process models.

• DOTA v2.0 (Xia et al., 2018): aerial and satellite optical images with oriented rectangles
annotations for multiples classes including ground vehicles, planes, boats, peers etc... It
provides a large diversity of contexts and objects density, we use it extensively for training
and estimation of our methods.

• spacenet 4 (Weir et al., 2019): optical satellite images with annotated building footprints.
While not investigated in this thesis, applying point process models to building extraction is
quite relevant as the interaction priors are strong (Ortner, Descombes, & Zerubia, 2008)

• BIRDSAI (Bondi et al., 2020): aerial thermal images from drones, with person tracking an-
notations. Point processes are also useful to take into account priors on dynamics (Craciun
et al., 2015). We thus mention this dataset for future works.

• AU-AIR (Bozcan & Kayacan, 2020): drone optical images with horizontal bounding boxes
for multiple classes of objects. While this dataset would be interesting to model priors over
dynamics, the viewing angle and horizontal bounding boxes make the elaboration of inter-
action priors less pertinent.

• RarePlanes (Shermeyer et al., 2021): synthetic optical images (reproducing satellite data)
with fine plane location and type annotations. The non-oriented bounding boxes this dataset
provides, and the limited interaction between neighboring planes make this dataset of lim-
ited interest to our approach.

• HRSID (Wei et al., 2020): synthetic Aperture Radar (SAR) satellite images, with annotated
oriented ships. This dataset provides a good challenge to test a model robustness to noise.
However, the objects of interest are often isolated, thus the modeling of interaction priors
is of limited interest. Still the dataset exhibits some high density samples that are worth
looking into.

• VisDrone (Zhu et al., 2022): optical drone images with annotated tracks of bounding boxes.
Same as for AU-AIR, the viewing angle and horizontal bounding boxes make the elaboration
of interaction priors less pertinent.

2.2 Point Processes for object detection

Point Processes model the distribution of point in space (Cox & Isham, 1980; Daley & Vere-
Jones, 1988; Lieshout, 2000). These are used for a variety of tasks such as modeling the species
distribution for ecological studies (Renner et al., 2015), random tessellation for image modeling
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(Bordenave, Gousseau, & Roueff, 2006), building fractal-like Poisson cascades for super resolu-
tion (Chainais, Kœnig, Delouille, & Hochedez, 2011), or Determinantal Point Processes (DPP),
a repulsive Point Processes used for efficient sampling of a volume (Macchi, 1975) used for col-
umn subset selection (Belhadji, Bardenet, & Chainais, 2020) or Kernel quadrature (Belhadji, Bar-
denet, & Chainais, 2019). Here we focus on Point Process for image analysis/object detection
(Descombes & Zerubia, 2002; Descombes, 2013).

2.2.1 Point Process models

Multiple flavors of points. While simple Point Processes model the spatial distribution of
points, Marked Point Processes add a random vector to each point modeling some attributes of
the objects; size, angle, color, type of object etc . . . This allows modeling a variety of objects:

• Circles to model flamingos in (Descamps, Descombes, Bechet, & Zerubia, 2008).

• Segments for road detection (Lacoste et al., 2005), to model blood vessels (T. Li, Comer, &
Zerubia, 2020), or networks in general (Schmidt et al., 2017).

• Rectangles in time, adding a persistent label to each object in space and time allows for
tracking objects (Crăciun, 2015).

• Contours as polygons for object detection in microscopy images (Kulikova, Jermyn, De-
scombes, Zhizhina, & Zerubia, 2011) or as a dictionary of precomputed shapes (Descombes,
2017).

• Mix of processes; for instance (Ortner et al., 2008) use a mix of rectangles and segments to
model buildings and the networks separating those.

Energy terms for the Point Process. Point Process models for object detection are defined
from a density that on one side models prior on objects such as their shapes or interactions, and on
the other the fitness of the point configuration against the image. Most of the approaches presented
above use contrast measures. These measures are based on statistical tests between the inner and
outer pixels of an object such as T-test (Student, 1908) or the Bhattacharyya distance (Goudail,
Réfrégier, & Delyon, 2004). These measures perform well on high foreground-to-background con-
trast images with limited clutter in the background. Notably, (T. Li et al., 2019) build a Point Pro-
cess with contrast measures from the output of a CNN model trained for segmentation. It allows
transforming the original image into a highly contrasted map to apply the contrast measure on.

2.2.2 Sampling the Point Process

Sampling a Point Process poses a challenge due to the non-fixed dimension of the space to sample
in; as the number of points (i.e. number of objects) is a random variable too. Using the Reversible
Jump Monte Carlo Markov Chain developed by (Green, 1995) and (Geyer & Møller, 1994) al-
low improving from the classical Metropolis Hasting algorithm (Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953) to jump properly in between dimensions. It involves adding a Birth
and Death perturbation kernel that adds or removes one point at a time. To speed up sampling
(Descombes, Minlos, & Zhizhina, 2009) introduce multiple births and deaths to propose more
than a single point per step, later on improved with graph cuts in (Eldin, Descombes, Charpiat,
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& Zerubia, 2012). For more efficient fixed-dimension exploration (Lafarge, Gimel’farb, & De-
scombes, 2010) and (Tu & Zhu, 2002) (doing image segmentation with data driven MCMC) use
Jump Diffusion from (Grenander & Miller, 1994). It uses the energy gradient to modify the cur-
rent state instead of proposing perturbations independent of the energy (with a simple Gaussian
perturbation for instance). This diffusion process stems from Langevin dynamics (Welling & Teh,
2011). As Point Process exhibit spatial Markovianity, (Verdié & Lafarge, 2014) propose sampling
the Point Process in parallel throughout the image, allowing to process more than one perturbation
per step and making use of multiple core computing. Finally, (T. T. Pham et al., 2016) propose to
approximate the state space into a finite set, the sampling of the most likely configuration of the
Point Process becomes a binary variable optimization problem

2.2.3 Point Process parameter estimation

As any model, Point Process models come with their set of parameters to estimate. One of the most
important is the relative importance/weight of the several priors and data terms of the energy model
that define the Point Process density. In their work (Craciun et al., 2015) and (Q. Yu & Medioni,
2009) generate a set of linear constraints from generated bad configurations, and solve for the
parameters with linear programming. For their model (Chatelain, Descombes, & Zerubia, 2009)
use an approximation of the Expectation Maximisation algorithm (Dempster, Laird, & Rubin,
1977) to learn the Point Process parameters; using pseudo-likelihood estimation and stochastic EM
(SEM) (Celeux, Chauveau, & Diebolt, 1995). Lastly, (Hurtut et al., 2009) propose to synthesize
textures (here arrangements of elements in space), from an example patch. To do that, they extract
a set of perceptually meaningful statistics, and build a Point Process such that its statistics matches
the observed ones by maximizing the pseudo log likelihood.

2.3 Energy Based Models

“Energy-Based Models (EBMs) capture dependencies by associating a scalar energy (a measure
of compatibility) to each configuration of the variables” (LeCun, Chopra, Hadsell, Ranzato, &
Huang, 2006). These models define a distribution over a state space from a Gibbs distribution (also
known as Boltzmann distribution) as proportional to the exponential of an energy h ∝ exp(−U).
As most of the Point Processes are defined through such a distribution, and aim to capture the
dependency between a configuration of points and the image, it makes these Energy Based Models
as defined above; we shall then consider methods developed in the EBMs literature for our Point
Process model.

2.3.1 Energy Based Models as generative models

Recent interest in Energy Based Models sparks from their generative capabilities; as those define
a density, one can sample new elements x ∼ exp(−U(x)). Initially generative models (e.g. im-
age generation) were based on Generative Adversarial Networks (GAN) (Goodfellow et al., 2014)
built from Variational Auto Encoders (VAE) (Kingma & Welling, 2014). However, in recent year,
popular image generation models such as (Ramesh, Dhariwal, Nichol, Chu, & Chen, 2022) lever-
age diffusion models (Ho, Jain, & Abbeel, 2020) that progressively denoise an image into a new
sample (see Figure 2.6). This denoising mimics Langevin dynamics, but instead of computing the
gradient of a learned energy function, (Ho et al., 2020) estimate the gradient value directly.
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Figure 2.6: Diffusion model for image generation. The model learns the transition kernel pθ via
the gradient of an energy within Langevin dynamics. From (Ho et al., 2020).

2.3.2 Learning EBMs

In their work (LeCun et al., 2006) propose to learn EBMs by maximizing their likelihood within
a gradient descent scheme. However, this formulation produces some intractable integrals over
the state space. While those can be approximated with Monte Carlo sampling, (Hinton, 2002)
proposed the Contrastive Divergence method, in short taking a single sample of the Monte Carlo
sampling, initialized at the ground truth to which only a few steps of the Markov Chain is applied.
Later on (Tieleman, 2008) propose persistent divergence, initializing this contrastive sample with
the sample obtained at the previous iteration of the gradient descent. We find this method used for
image generation in (Du, Li, Tenenbaum, & Mordatch, 2021) and (Song & Ermon, 2019). We will
go further in details about these methods in Section 5.2.2.

2.3.3 EBM applications to computer vision

Generative models can seem quite remote from our object detection tasks. However, we see some
interesting works proposing to use the composable nature of EBMs2 such as (R. Zhang et al.,
2022) performing unsupervised object discovery and controllable scene manipulation. EBMs are
intrinsically bound to classification task, as (Grathwohl et al., 2019) note: any classifier with a
Softmax output, can be reinterpreted as an energy model. For instance (Castillo-Navarro, Le Saux,
Boulch, & Lefèvre, 2021) propose a novel model for semi-supervised classification and generation
of images in Earth observations.

2One can easily combine the densities of two EBMs by summing their energies.
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CHAPTER 3
Foundations for Point

Processes and
Convolutional Neural

Networks
Ce chapitre introduit les notions fondamentales sur les Processus Ponctuels et Réseaux
de Neurones à Convolution. Celles-ci sont nécessaires à la construction de nos modèles
de détection dans les chapitres suivants. Pour plus de détails sur les Processus Ponctuels,
le lecteur peut se référer à (Stoyan, Kendall, & Mecke, 1995; Lieshout, 2000), dont est
issu en grande partie ce chapitre. Par la suite, on décrit comment modéliser la détection
d’objets avec des Processus Ponctuels et les méthodes nécessaires pour échantillonner
ces derniers. Enfin, sont présentés les outils relatifs aux réseaux de neurones à convolu-
tion qui seront utilisés dans nos contributions.

In this chapter we introduce the fundamental notions for Point Processes and Convolu-
tional Neural Networks. These are needed to build our models in the later chapters. For
more details on Point Processes please refer to (Stoyan et al., 1995; Lieshout, 2000) from
which most of this chapter is sourced. We describe how to model object detection with
Point Processes, and the necessary methods for sampling the latter. Finally, we define
the necessary tools of Convolutional Neural Network needed for our contributions.
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3.1 Point Process fundamentals

3.1.1 Poisson Point Processes

We first introduce the fundamentals of Point Process. For more details please refer to (Stoyan et
al., 1995; Lieshout, 2000).

We consider configurations of points in the space S ⊆ Rd (e.g. a square in R2). In the rest of
this chapter, we associate a metric d to the space S; e.g. the Euclidean distance in Rd.

Definition 3.1.1. We call configuration, denoted y, a finite unordered set of points yk, k =
1, . . . , n(y) in S , with n(y) denoting the number of points in y:

y = {y1, . . . , yn(y)}. (3.1)

The set of all possible configurations of points in S with any number of points is denoted:

Y =
∞⋃︂

n=0
Yn, (3.2)

where Y0 = ∅ and Yn = {{y1, . . . , yn}, yi ∈ S, ∀i}.
A configuration y is said to be locally finite if for any bounded Borel set A ⊆ S, the number

of points of y in A is finite. The set of locally finite configurations is denoted N lf .

Definition 3.1.2. A Point Process (PP) on S is a mapping Φ from a probability space
(Ω,A,P) into N lf such that for any bounded Borel set A ⊆ S . The number of points that
fall in A, denoted NΦ(A), is a finite random variable.

Practically, a Point Process is a random variable the realization of which is a configuration of
points. If the space S is bounded or NΦ(A) is almost surely finite, we call the Point Process finite.

For most Point Processes, a point pattern will not contain multiple points at exactly the same
location, either because it is impossible, or the multiplicity might be encoded within a mark (see
Definition 3.1.8); i.e. NΦ({y}) ∈ {0, 1} for all y ∈ S . The set of locally finite configurations
composed of distinct points is denoted N lf

s .

Definition 3.1.3. A Point Process is simple if it takes its values in N lf
s almost surely.

Definition 3.1.4. Given a measure ν on space S, such that ν(S) > 0 and ν(A) < ∞ for
all bounded Borel set A. A Point Process Φ on S is a Poisson Point Process of intensity
measure ν if and only if:

1. NΦ(A) is a Poisson random variable of mean ν(A)

2. For k disjoint Borel sets A1, . . . , Ak, random variables NΦ(A1), . . . , NΦ(Ak) are in-
dependent.

The Poisson Point Process is called homogeneous (see Figure 3.1 (a)) when ν is of the form
λ|A|, with |A| the Lebesgue measure of A ⊆ S and λ a strictly positive scalar. The intensity
measure ν can be used to control the point density over the space S as shown in Figure 3.1 (b).
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The law of a Poisson Point Process on intensity measure ν in a window S ⊂ Rd is defined as

µ(A) =
∞∑︂

n=0

ν(S)n exp(−ν(S))
n!⏞ ⏟⏟ ⏞
pn

∫︂

y1∈S
. . .

∫︂

yn∈S⏞ ⏟⏟ ⏞
n times

1A({y1, . . . , yn}) 1
ν(F )n

dy1 . . . dyn (3.3)

µ(A) =
∞∑︂

n=0

exp(−ν(F ))
n!

∫︂

Sn
1A(y)ν(dy1) . . . ν(dyn), (3.4)

where A is part of the sigma-algebra B from Y .

(a) Homogeneous (b) Non-homogeneous

Figure 3.1: Poisson Point Processes on S = [0, 1]2: left is homogeneous with λ = 400; right has
intensity measure ν(i, j) = λ(cos(2πi) + 1)/2.

3.1.2 Markov Point Processes

While this modeling of points in space accounts for a wider variety of distributions, there is still
no consideration for point interactions. We can build a wider range of Point Process models by
means of their probability density with respect to the Poisson process. Here we consider a metric
space (S, d) and the Poisson Point Process on S with density µ, and intensity measure ν. The
probability density f of a Point Process w.r.t. the law µ of a Poisson Point Process is a mapping
from the configuration space Y to [0,∞[ such that:

f : Y ↦→ [0,∞[,
∫︂

Y
f(y)µ(dy) = 1. (3.5)

With density f w.r.t. the measure of a Poisson process, we can now model interactions. While
the density function can take into account interactions between any points in the configuration,
real life spatial processes often only interact locally. This characteristic simplifies the modeling of
the Point Process, and yields some properties that are useful when simulating it. The locality of
the Point Process is formalized through Markov Point Processes:

Definition 3.1.5. We define the neighborhood ∂S
A of a set A ⊆ S in S for reflexive and

symmetric relation ∼ as:

∂S
A = {x ∈ S : x ∼ a for some a ∈ A}. (3.6)
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By extension the set of neighbors of a single point y is ∂S
{y}, and the set of points of configu-

ration y neighboring y is ∂y
{y}.

From the definition of neighborhood, we can define a Markov Point Process:

Definition 3.1.6. Let Φ be a Point Process of density f . Point Process Φ is a Markov Point
Process under the symmetric and reflexive relation ∼ if and only if, for every configuration
y ∈ Y such that f(y) > 0:

1. ∀x ⊂ y, f(x) > 0

2. For every point u ∈ S, f({u} ∪ y)/f(y) only depends on u and its neighborhood in
y, ∂y

{u}.

The Hammersley-Clifford theorem allows the density of the Markov process to be decomposed
as the product of local functions defined on cliques; a clique being a subset of y where all points
are neighbors of each other.

Theorem 3.1.1. A Point Process density f : Y ↦→ [0,∞[ is Markov w.r.t. the relation ∼ if
and only if there is a measurable function Ψ : Y ↦→ [0,∞[ such that:

f(y) =
∏︂

y∈Cy

Ψ(y), (3.7)

where Cy is the set of cliques Cy = {y ⊆ y : ∀{y, y′} ⊆ y, y ∼ y′}

In practice, we often write f as the normalized version of an unnormalized function h:

f(y) = h(y)
Z

, (3.8)

where Z =
∫︁

Y f(y)dy. Markov Point Processes are also known as Gibbs Point Process, since
(3.7) can be written in an energy form, where V (y) represents the potential of a clique :

f(y) ∝ h(y) = exp

⎛
⎝−

∑︂

x∈Cy

V (x)

⎞
⎠ , (3.9)

with ∝ standing for “proportional to” (skipping the normalizing factor
∫︁

Y h(y)dy).
The Markov property of a Point Process comes in useful when the above-mentioned nor-

malizing factor becomes intractable. Indeed, the second property in definition 3.1.6 allows the
normalizing constant to be canceled out; as long as the function h in integrable over Y , we can
skip computing its integral. The density ratio f({u}∪y)/f(y) is in fact the Papangelou intensity,
which we now define:

Definition 3.1.7. The Papangelou intensity λ(·; ·) associated to a simple Point Process Φ,
can be interpreted as:

λ(y; y)dy = p (NΦ(dy) = 1|Φ ∩ (dy)c = y ∩ (dy)c) , (3.10)

i.e. the infinitesimal probability to find a point in region dy around y ∈ S, given the configu-
ration y outside dy ((dy)c being the complement of dy in S).
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We then have the following:

Theorem 3.1.2. For a finite Point Process Φ specified by a density f w.r.t. a Poisson Point
Process with intensity measure ν, the Papangelou conditional intensity is given as:

λ(u; y) = f({u} ∪ y)
f(y) , (3.11)

for u /∈ y.

Example: pairwise interaction process. A typical Markov Point Process is the pairwise inter-
action process, for which the density function is

h(y) = 1
z

∏︂

y∈y
β(y)

∏︂

u,v∈y, u∼v

γ(u, v), (3.12)

where z is the normalizing constant, β : S ↦→ [0,∞[ the intensity function and γ : S×S ↦→ [0,∞[
the pair interaction function.

The Strauss Point Process is one instance of pairwise interaction process. Its density is given
as:

h(y) ∝ βn(y)γs(y), (3.13)

where β > 0 is an intensity parameter, and s(y) the number of pairs of points in y that are at a
distance r or less apart.

Depending on the value of parameter γ, the process exhibits different behaviors illustrated in
Figure 3.2 :

• γ = 0: points cannot be closer than distance r. This is called a hardcore process.

• 0 < γ < 1: the points are repulsive to each other.

• γ = 1: this is the Poisson process of intensity βλ.

• γ > 1: the density is not integrable, the Point Process is not defined. Introducing a limit on
the number of points nmax such that h(y) ∝ 1{n(y) ≤ nmax}βn(y)γs(y), allows defining
this process for which the points are attractive.

3.1.3 Markov marked Point Processes

Marked Point Processes are Point Processes for which a mark is attached to each point. As such,
they are useful for applications where each point or event has some properties attached to it. For
instance marks can encode the radius of a point, or combining radius with height: a cylinder. The
mark can also carry semantic information: the type of object (e.g. species of trees), or multiplicity
(if one point can represent several events). All these descriptors can be combined to enrich the
Point Process.

Definition 3.1.8. Let (S, d) and (M, d′) complete, separable metric spaces, ν a finite Borel
measure on S, η a probability distribution on the sigma-algebra ofM, and fν×η the density
of a Poisson process on S ×M.
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(a) γ = 0 (b) γ = 0.1 (c) γ = 1 (d) γ = 1.1 (nmax = 200)

Figure 3.2: Realizations of the Strauss Point Process for several values of γ with β = 1. The
underlying homogeneous Poisson process intensity over S = [0, 1]2 is λ = 100. The radius of the
circles represent half the interaction distance r.

Let Φ be a marked Point Process with positions in S and marks in M specified by a
density h w.r.t. fν×η. Then Φ is a Markov marked Point Process w.r.t. the symmetric reflexive
relation ∼ on S ×M if for all y such that f(y) > 0,

1. f(x) > 0 for all x ⊆ y;

2. for all (u, l) ∈ S ×M, f(y ∪ {(u, l)})/f(y) depends only on (u, l) and its neighbor-
hood ∂y

{(u,l)}.

The Hammersley-Clifford theorem remains valid for Markov marked Point Processes.

Example: Marked pairwise interaction process. We consider a marked pairwise interaction
process on S ×M, with S a compact window in R2 andM = [0, rmax] a mark representing a
radius, bounded by rmax:

h(y) =
∏︂

(y,k)∈y
β

∏︂

(u,k),(v,l)∈y
γ(||u− v|| − k − l), (3.14)

for some intensity βk > 0 and measurable interaction function γ : [0,∞[ ↦→ [0,∞[. If γ(r) = 1
for r > r0 for some permeability distance r0 else γ(r) = 0, the process is Markov with respect to
the relation

(u, k) ∼ (v, l)⇔ ||u− v|| − k − l ≤ r0. (3.15)

We show the effect of the permeability parameters r0 on some realizations in Figure 3.3.

3.1.4 Stability conditions

As we have seen previously we can build the density of the Point Process f from an unnormalized
density h. This density h needs to be normalizable w.r.t. the reference Point Process. While this
can prove tedious, the Ruelle condition (Ruelle, 1970) allows us to simply bound the density to
make sure it is normalizable.

Condition 3.1.1. A Point Process specified by an unnormalized density h w.r.t. the measure
µ of the Poisson process is Ruelle-stable if there exist M ≤ 1 such that

h(y) ≤Mn(y), ∀y ∈ Y. (3.16)
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(a) r0 = 0 (b) r0 = −0.05

Figure 3.3: Realizations of the marked pairwise interaction process from (3.15) on S × M =
[0, 1]2 × [0.02, 0.2], with β = 1. The mark corresponds to the radius of each circle.

This condition is enough to ensure that h can be normalized:
∫︂

y∈Y
h(y)dµ(y) ≤

∞∑︂

n=0

Mnν(S)
n! = exp(Mν(S)). (3.17)

Secondly, the Monte Carlo Markov Chain sampling (see Section 3.3.2) requires the following
condition:

Condition 3.1.2. A Point Process derived from an unnormalized density h w.r.t. the measure
µ of the Poisson process is locally stable if there exist M ∈ R such that

h(y ∪ {y}) ≤Mh(y), ∀y ∈ Y, ∀u ∈ S. (3.18)

Note that Condition 3.1.2 implies Condition 3.1.1.

3.2 Point Process for object detection

Up to now, we settled the fundamentals of Point Processes, however our goal remains to perform
object detection in an image. How can we use the Point Process to model our objects both with
their geometrical properties, and their relation to the image ?

First, we define configurations such that they represent correctly the objects of interest, where
the point position informs on the location of the object (in space, but also in time if necessary), and
marks add geometrical or semantic information. Tree crowns can be represented as Point Processes
of circles (Perrin et al., 2004), road networks as segments (Lacoste et al., 2005) or buildings as
rectangles (Ortner et al., 2008).

Priors on the interactions (and on the geometry of object themselves) are added; penalizing
overlaps, forbidding some configurations and favoring others. We denote hpriors(y) the priors’
density, also referred as internal energy when using potentials.

Then we take into account the image data. The Bayesian approach is to compute the likelihood
of the observation (or image) X given the configuration y (Rue & Hurn, 1999; Perrin et al., 2004):

hdata(y) = hdata(X|y) =
∏︂

pPX

g(X[ρ]|sρ(y)), (3.19)
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where g(Xρ|ypx) if the likelihood of pixel value X[ρ] given the silhouette of the Point Process
sρ(y) at ρ. However, such approach requires both a foreground and background model to compute
g. Thus, in cases where the background proves to be more complex (presence of other objects,
clutter etc...), the approach is to use data terms for each object of configuration y as an external
field. For instance one can evaluate the homogeneity of the image within the object boundary and
its contrast with nearby background (Descombes, 2017; Schmidt et al., 2017; Lacoste et al., 2005;
Ortner, 2004):

hdata(y) = exp

⎛
⎝−

∑︂

y∈y
Vdata(y,X)

⎞
⎠ . (3.20)

Each potential gets lower as the object better fits the image. With this non-Bayesian approach
we risk overlapping objects by accumulating low potentials, thus high penalization on overlaps is
needed.

Finally, we get:
f(y) ∝ hdata(y)hpriors(y). (3.21)

In the Bayesian case (image model using the likelihood (3.19)) we get the posterior density f(y|X)
instead of f(y).

At inference, one needs to sample the configuration y∗ that maximizes the density h(y) (or
minimizes the energy U for a Gibbs model):

y∗ = arg max
y∈Y

h(y). (3.22)

3.2.1 Energy model

In the following, we define our density h through an energy U(y,X) function of the configuration
y and image X such that h(y) = exp(−U(y,X)). One way to build U is to define potentials for
each object interactions (Ortner, 2004; Crăciun, 2015):

U(y,X) =
∑︂

y∈y
Vext.(y,X) +

∑︂

y,y′∈y
y∼y′

vint.(y, y′). (3.23)

In our work we rather use the following model, the choice of which we explain in Section 4.1:

U(y,X) =
∑︂

y∈y
V
(︂
y,X,N y

{y}

)︂
(3.24)

=
∑︂

y∈y

∑︂

e∈ξ

Ve

(︂
y,X,N y

{y}

)︂
, (3.25)

where V is the energy of a point composed of energy terms Ve, ξ being the set of energy terms. We
purposefully introduce a new neighborhood notationN y

{y} as opposed to ∂y
{y}, as with this model,

the object interaction relation and Markovianity relation may differ.

3.2.1.1 Markovianity relation

We denote∼
n

the interaction relation y ∼
n
y′ ⇔ ||y−y′|| < dmax resulting in neighborhoodN y

{y}.

We need to determine the relation ∼
m

(with associated neighborhood ∂y
{y}) for which the Point
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Process in Markovian. Given Definition 3.1.6, the dependency of ratio h(y∪ {u})/h(y) will give
us the minimal requirement for ∼

m
(i.e. the most restrictive relation that still ensures Markovianity

of the process):

h(y ∪ {u})
h(y) = exp (U(y,X)− U(y ∪ {u}))

= exp

⎛
⎝∑︂

y∈y

[︂
V
(︂
y,X,N y

{y}

)︂
− V

(︂
y,X,N y∪{u}

{y}

)︂]︂
− V

(︂
u,X,N y∪{u}

{u}

)︂
⎞
⎠

= exp

⎛
⎜⎝

∑︂

y∈N y
{u}

[︂
V
(︂
y,X,N y

{y}

)︂
− V

(︂
y,X,N y∪{u}

{y}

)︂]︂
− V

(︂
u,X,N y

{u}

)︂
⎞
⎟⎠

using the fact that y /∈ N y
{u} =⇒ N y

{y} = N y∪{u}
{y} (as ∼

n
is symmetric). This shows the

density ratio depends on u, and the first and second degree neighbors of u. Defining the relation
for Markovianity such as y ∼

m
y′ ⇔ ∃y′′ ∈ y, y ∼

n
y′′ ∼

n
y′ is impractical and depends on y; with

∼
n

derived from dmax , the following is sufficient to have Markovianity w.r.t. relation ∼
m

:

y ∼
m
y′ ⇔ ||y − y′|| < 2dmax . (3.26)

3.2.1.2 Local stability

To build converging simulations of our Point Process, we need to check for Condition 3.1.2; i.e.
we want to find M ∈ R such that h(y ∪ {u})/h(y) ≤M .

We suppose all Ve, e ∈ ξ are built such that:

∃A > 0 |Ve(y,X,N y
{y})| < A, ∀y ∈ y, ∀y ∈ Y, ∀e ∈ ξ. (3.27)

Thus, |V (y,X,N y
{y})| < A|ξ|. From the previous results on the Markovianity relation we have

that:
h(y ∪ {u})

h(y) ≤ exp
(︂
2A|ξ|

⃓⃓
⃓N y

{y}

⃓⃓
⃓+A|ξ|

)︂
. (3.28)

We are left to find an upper bound for the number of neighbors. (Ortner, 2004) use an exclusion
energy that effectively forbids configurations with a number of neighbors above a certain thresh-
old. In our case we use a limit on objects per cell (see Section 3.3.2.4 and 5.1.2 on parallelization)
nc,max . In turn this sets the maximum number of neighbors a point can get up to 4nc,max − 1 (the
worst case being a point in the corner of a cell with neighbors in the 3 neighboring cells of that
corner, as illustrated in Figure 3.4). Finally, we show we meet the Condition 3.1.2 as such:

h(y ∪ {u})
h(y) ≤M, M = exp (A|ξ|(8nc,max − 1)) . (3.29)

3.3 Sampling the Point Process

3.3.1 Markov chains

To sample configurations from the Point Process, we need to build a Markov chain that converges
towards the Point Process distribution.
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c1 c2

c3c4

y

Figure 3.4: Edge case for maximum number of neighbors. Current point is labeled y with its
neighborhood represented as a large dotted circle. Other points in y are represented as small hollow
circles. In this illustration nc,max = 4 for all cells c.

Definition 3.3.1. Let (Yt) be a sequence of random variables, with values taken from a space
Y associated with as sigma-algebra B. (Yn) is a Markov chain if

p(Yt+1 ∈ A|Yt = yt, . . . , Y0 = y0) = p(Yt+1 ∈ A|Yt = yt), ∀A ∈ B. (3.30)

In short, the evolution of the Markov chain only depends on the current state. We will consider
homogeneous Markov chains, defined as such:

Definition 3.3.2. A Markov chain is homogeneous if the evolution does not depend on the
time parameter t.

Definition 3.3.3. A transition kernel is a function K defined on Y × B such that:

• ∀x ∈ Ω, K(x, ·) is a probability measure.

• ∀A ∈ B, K(·, A) is measurable.

The transition kernel K for Markov chain (Yt)t∈N is such that

K(y, A) = p(Yt+1 ∈ A|Yt = y). (3.31)

The Markov chain needs to meet some other properties in order to use it for sampling:

• Stationary: a measure π is stationary for Markov chain (Yt) with transition kernel K if:

π(A) =
∫︂
K(y, A)π(dy), ∀A ∈ B. (3.32)

• Reversible: a Markov chain is reversible if its transition kernel K is such as
∫︂

A
K(y, B)π(dy) =

∫︂

B
K(y′, A)π(dy′), ∀A,B ∈ B. (3.33)

• Irreducible: a Markov chain is irreducible if there is a positive probability to reach any y
from any other y′ in a finite number of steps:

∀y,y′ ∈ Y,∃k <∞, p(Yt+k = y|Yt = y′) > 0. (3.34)
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• Aperiodic: a Markov chain is aperiodic if it exhibits no cycles, i.e.:

GCD {d : p(Yd = y|Y0 = y)} = 1, (3.35)

where GCD is the Greatest Common Divisor.

• Harris recurrent: a Markov chain is Harris recurrent, if for anyA ∈ B such that π(A) > 0,

p(∃t : yt ∈ A|Y0 = y) = 1, ∀y ∈ Y. (3.36)

• Ergodic: an aperiodic Harris recurrent Markov chain is ergodic and converges towards π:
⃦⃦
⃦Kt(x, ·)− π(·)

⃦⃦
⃦ −−−→

t→∞
0, ∀x ∈ Y, (3.37)

with ∥·∥ such as ∥µ1 − µ2∥ = supA |µ1(A)− µ2(A)|.

3.3.2 Reversible Jump Monte Carlo Markov chain

(Green, 1995) build this ergodic Markov chain with a mixture of perturbation kernels Qm(y, A),
m ∈ Q such that :

Q(y, A) =
∑︂

m∈Q
Qm(y, A). (3.38)

It is named Reversible Jump Monte Carlo Markov chain (RJMCMC). For a given state of the
Markov Chain Yt = y, the Metropolis-Hastings update scheme goes as follows:

1. With probability Qm(y,Y) choose a kernel Qm or with probability 1 −∑︁
mQm(y,Y) let the state unchanged.

2. Simulate y′ with the normalized kernel :

y′ ∼ Qm(y, ·)
Qm(y,Y) . (3.39)

3. Compute the Green ratio r(y,y′), see (3.47).

4. Accept perturbation from y to y′ with probability α(y,y′) = min(1, r(y,y′))

As such the transition kernel K for the Markov chain is a function of the perturbation kernel Q
and the acceptance probability α.

Thus, to be able to perform such a procedure, each kernel Qm needs to have the following
properties:

1. We must know the probability of picking Qm; Qm(y,Y).

2. The probabilities of picking each kernel sum to at most 1;
∑︁

m∈QQm(y,Y) ≤ 1, ∀y ∈ Y

3. We can sample state perturbations from the normalized kernel density Qm(y, .)/Qm(y,Y)
for any configuration y ∈ Y .
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4. There exists a symmetric measure ψm(dy, dy′), such that π(dy)Qm(y, dy′) is absolutely
continuous w.r.t. ψm(dy, dy′). The associated Radon-Nikodym derivative is denoted Dm;

Dm(y,y′) = π(dy)Qm(y, dy′)
ψm(dy, dy′) . (3.40)

3.3.2.1 Detailed Balance

The last condition above is here to ensure the reversibility condition of the Markov Chain is met
(implying that π is the stationary measure of the Markov Chain Yt). For the chain to be reversible,
its probability to go from a set A ∈ B towards a set B ∈ B needs to be the same at going from
B to A (see (3.33)). This is known as detailed balance (DB) condition. As the kernel Q is a sum
of kernels Qm, we only need to show DB is maintained for each kernel Qm (Green, 1995; Ortner,
2004). The transition sub-kernel for Qm is

Km(y, A) =
∫︂

A
Qm(y, dy′)α(y,y′). (3.41)

To verify DB we then need :
∫︂

A

∫︂

B
Qm(y, dy′)α(y,y′)π(dy) =

∫︂

A

∫︂

B
Qm(y′, dy)α(y′,y)π(dy′). (3.42)

To find the function α that verifies this equation, (Green, 1995) proposes to find a symmetric
measure ψm on Y × Y , such that πQm is absolutely continuous w.r.t. ψm; i.e.:

ψm(A,B) = 0 =⇒ πQm(A,B). (3.43)

The Radon-Nikodym theorem then tells us a unique function Dm exists called the Radon-
Nikodym derivative (or density) of πQm w.r.t. ψm, such that :

∫︂

A
Qm(y, B)π(dy) =

∫︂

A

∫︂

B
Dm(y,y′)ψm(dy, dy′). (3.44)

Then we can replace πQm in (3.42) to get:
∫︂

A

∫︂

B
α(y,y′)Dm(y,y′)ψm(dy, dy′) =

∫︂

A

∫︂

B
α(y′,y)Dm(y′,y)ψm(dy′, dy). (3.45)

Since we built ψm to be symmetric, we only need:

α(y,y′)Dm(y,y′) = α(y′,y)Dm(y′,y). (3.46)

(Green, 1995) proposes to take:

α(y,y′) = min
{︃

1, D(y,y′)
D(y′,y)

}︃
. (3.47)
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3.3.2.2 Balancing in terms of random numbers

In more recent works (Green & Hastie, 2009) propose an alternative derivation of α for the Markov
Chain in order to maintain detailed balance.

The perturbation is defined as follows: From current configuration y, choose deterministic
function τm with probability jm(y). It generates the new proposed state x as (x, δ′) = τm(y, δ),
where δ is an r-dimentional random number to generate x from y, and δ′ the r′-dimentional
random number used to generate y from x via τ ′, the reverse transform from τm (i.e. τ ′

m(x, δ′) =
(y, δ)). Random numbers δ and δ′ are respectively generated with known densities g and g′. Move
from y to x accepted with probability α(y,x). The Detailed Balance is them given as:

∫︂

y,x∈A×B
h(y)jm(y)g(δ)α(y,x)dydδ =

∫︂

y,x∈A×B
h(x)jm(x)g′(δ′)α(x,y)dxdδ′. (3.48)

If transform τm from (y, δ) to (x, δ′) and τ ′
m are differentiable, we can apply the change-of-

variable formula to the right-hand side of the equation. The equation now holds if

h(y)jm(y)g(δ)α(y,x) = h(x)jm(x)g′(δ′)α(x,y)
⃓⃓
⃓⃓∂(x, δ′)
∂(y, δ)

⃓⃓
⃓⃓ . (3.49)

A valid choice for α is then:

α(y,x) = min
{︃

1, h(x)jm(x)g′(δ′)
h(y)jm(y)g(δ)

⃓⃓
⃓⃓∂(x, δ′)
∂(y, δ)

⃓⃓
⃓⃓
}︃
, (3.50)

with
⃓⃓
⃓∂(x,δ′)

∂(y,δ)

⃓⃓
⃓ the determinant of the Jacobian matrix of τm.

This approach works across dimensions, provided that the transformation from (y, δ) to (x, δ′)
remains a diffeomorphism (Green & Hastie, 2009). Denoting with n and n′ the dimensions y and
x respectively, the diffeomorphism requires that n+ r = n′ + r′. Note that either one or both of r
or r′ might be 0.

3.3.2.3 Perturbation kernels

Here we (re)build the basic perturbation kernels for the RJMCMC. Note that the birth and death
kernel is the minimal requirement for the Markov chain to converge to the stationary distribution.
The demonstration for the birth and death kernel is sourced from (Geyer & Møller, 1994; Lacoste,
2004; Ortner, 2004; Crăciun, 2015).

Birth and Death. The birth and death kernel adds and removes point in the configuration. It is
essential as it allows moving across dimensions in Y . This kernel itself is a mix of two sub kernels:
a birth kernel (that adds new points) and a death kernel (that removes points). The most basic birth
and death kernel proposes new points y with density ν(·)/ν(S) and removes points by picking one
uniformly in y. The resulting kernel is as follows, with pB and pD the probabilities to pick birth or
death respectively:

Q(y,y′) = pB(y)QB(y,y′) + pDQD(y,y′) (3.51)

Both kernels are defined as:

QB(y, A) =
∫︂

y∈S
1A(y ∪ {y})ν(dy)

|S| , (3.52)

QD(y, A) =
∑︂

y∈y
1A(y \ {y}) 1

n(y) . (3.53)
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We now have to find the symmetric measure on Y × Y . Note that both parts of the kernel
only move between Yn to Yn+1, thus we can restrict the study to subsets An ⊆ Yn and Bn+1 ⊆
Yn+1. We can then write measures πQ(An, Bn+1) and πQ(Bn+1, An), with µ the density of the
reference Poisson Point Process

∫︂

An

Q(y, Bn+1)π(dy) = pB

∫︂

An

(︃∫︂

y∈S
1Bn+1(y ∪ {y})ν(dy)

|S|

)︃
f(y)µ(dy) (3.54)

∫︂

Bn+1
Q(y, An)π(dy) = pD

∫︂

Bn+1

⎛
⎝∑︂

y∈y
1An(y \ {y}) 1

n(y)

⎞
⎠ f(y)µ(dy) (3.55)

Splitting ψn into ψ+
n and ψ−

n respectively defined on Yn × Yn+1 and Yn+1 × Yn, we define

ψ+
n (An, Bn+1) =

∫︂

An

∫︂

y∈S
1Bn+1(y ∪ {y})ν(dy)µ(dy) (3.56)

ψ−
n (Bn+1, An) =

∫︂

Bn+1

∑︂

y∈y
1An(y \ {y})µ(dy) (3.57)

We show the symmetry of ψ+
n and ψ−

n by decomposing the Poisson process measure µ using (3.4):

ψ−
n (Bn+1, An) = exp(−ν(S))

(n+ 1)!

∫︂

Sn+1

∑︂

y∈y
1An(y \ {y})1Bn+1(y)νn+1(y)

= exp(−ν(S))
(n+ 1)!

∫︂

Sn+1
(n+ 1)1An({y1, . . . , yn})1Bn+1({y1, . . . , yn+1})νn+1(y)

= exp(−ν(S))
n!

∫︂

Sn

∫︂

S
1Bn+1(x)1An(x ∪ {u})νn(dx)ν(du)

= ψ+
n (An, Bn+1).

Then we can define ψ on Y × Y; more specifically on we define ψ on
⋃︁∞

n=0{{Yn × Yn+1} ∪
{Yn+1 × Yn}}: On each {Yn × Yn+1} ∪ {Yn+1 × Yn}, ψ is equal to ψn. We have ψ(A,B) =
0 =⇒ πQ(A,B) = 0. And the Radon-Nikodym derivatives given for birth and death (deduced
respectively from (3.54), (3.56) and (3.55), (3.57)), are respectively:

D(y,y ∪ {u}) = pBf(y)
ν(S) , (3.58)

D(y,y \ {u}) = pDf(y)
n(y) . (3.59)

The associated Green ratios for birth and death are then

r(y,y ∪ {u}) = pD

pB

ν(S)
n(y) + 1

h(y ∪ {u})
h(y) , (3.60)

r(y,y \ {u}) = pB

pD

n(y)
ν(S)

h(y \ {u})
h(y) , (3.61)

with h the unnormalized density of the process.
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Translation Rotation Scaling All

Figure 3.5: Examples of local perturbations. “All” combines all transforms at once.

Local perturbation kernel. This perturbation does not change the dimension of the current
state, the number of points is fixed. It modifies the parameters of an object, for instance translating,
rotating or scaling as illustrated in Figure 3.5.

While (Ortner, 2004; Crăciun, 2015) use the symmetric measure approach to derive acceptance
probability α, we here use the formalism from (Green & Hastie, 2009) described in Section 3.3.2.2
to show the same result.

We consider a Marked Point Process with dim(M) marks (e.g. 3 for a rectangle or ellipse)
and denote d = dim(M) + dim(S) the dimension of each point (e.g. d = 5 for rectangles in
2D space). We use the random number formalism as described in Section 3.3.2.2. The kernel to
transition from y to x works as follows:

1. The transform kernel is picked with probability pT.

2. The kth object y is picked uniformly in y

3. Generate a perturbation δ ∈ Rd+2

4. Proposed configuration is defined as:

(x, δ′) = τk(y, δ) = ({y1, . . . , yk + δ, . . .}, δ), (3.62)

thus τk(x, δ′) = ({x1, . . . , xk − δ′, . . .}, δ′): then δ′ = δ.

Here we consider a set of n(y) sub kernels, each one modifying the kth object. Each sub-kernel
is picked with probability jk(y) = jk(x) = pT

n(y) . The density of random variable δ is g(δ) and
the one for δ′ is g′(δ′) = g′(δ) = g(−δ). Then Equation (3.50) gives us:

α(y,x) = min
{︃

1, h(x)g(−δ)
h(y)g(δ)

⃓⃓
⃓⃓∂(x, δ′)
∂(y, δ)

⃓⃓
⃓⃓
}︃

(3.63)

The Jacobian is equal to 1, as shown in Appendix A. Thus:

α(y,x) = min
{︃

1, h(x)g(−δ)
h(y)g(δ)

}︃
. (3.64)

For α to be non-zero for a given δ, we need g(−δ) > 0; i.e. there exists a way to reverse the move
defined by δ. The basic approach is to pick a density symmetric around zero, such that g(δ) =
g(−δ) (e.g. Gaussian distribution centered in 0); it also simplifies the acceptance probability. The
above-described approach is still valid if we pick the object y to transform in y with a non-uniform
distribution, requiring to change jk(y) and jk(x) accordingly.
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3.3.2.4 Parallel sampling

Figure 3.6: Independence of cells. On the left the two cells are not independent as c2 is not wide
enough. On the right cells c1 and c3 are independent. From (Verdié & Lafarge, 2014) (Here ϵ
corresponds to 2dmax ).

From the definition of a Markov Point Process (Definition 3.1.6) and the Green ratio (e.g. birth
(3.60)), we see that the ratio h(y′)/h(y) only depends on added point y and its neighborhood
according to ∼. (Verdié & Lafarge, 2014) show that two sequential perturbations for which the
neighborhoods do not intersect can be processed in any order (the resulting Green ratio from each
move not depending on the other ones), thus can be done in parallel (see Figure 3.6).

For a Point Process derived from an energy U(y) =
∑︁

y∈y V1(y) +
∑︁

y′∼y V2(y, y′), two cells
c and c′ are independent if and only if:

min
u∈c,y∈c′

∥u− y∥2 ≥ dmax + 2δmax , (3.65)

with dmax the interaction radius between points (for∼) and δmax the maximum translation distance
performed by any kernel. Each set of mutually independent cells is called a mic-set. While it works
with a regular grid partitioning of space, (Verdié & Lafarge, 2014) use a data driven quad tree
structure to efficiently propose points for non-uniform distributions.

The general transition kernel Q is now a mixture of the usual sub-kernels, restricted to a cell
c. Kernel Qm restricted to c is denoted Qc,m:

∀y ∈ Y, Q(y, ·) =
∑︂

c

∑︂

m∈Q
pc,mQc,m(y, ·), (3.66)

with pc,m the probability to pick cell c and kernel m.

3.3.3 Jump diffusion

Intra-dimensional kernels (i.e. kernels that operate at a fixed dimension) such as the local perturba-
tion kernel (see Section 3.3.2.3) propose transformations randomly to explore nearby configuration
of points. However, the transformations are done with no consideration of the energy landscape;
in (3.64) the perturbation proposal density g is not tied to the current configuration y or density h.

In Section 5.1.1 we propose a data driven local transform kernel inspired from (Ortner, 2004;
Descombes, 2013). It leverages a pre-computed position energy map to sample perturbation δ.
However, this proves costly as it requires producing and sampling from a distribution derived
from the position energy map around the current point y (which needs to be extracted from the
whole map, and normalized locally). Moreover, it only takes into account a part of the energy
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model; interactions are not taken into account, thus it might propose perturbations δ that result in
higher energies due to overlaps. Ideally we would use the local gradient of the energy to update y:
on one hand, it avoids building a density from a large energy map around the current point at each
iteration; the computation is local. On the other we consider the whole energy model, not just a
subset of it.

Jump-diffusion is introduced by (Grenander & Miller, 1994) and was successfully applied to
object detection and tracking (Srivastava, Grenander, Jensen, & Miller, 2002), segmentation (Han,
Tu, & Zhu, 2004), or geometric object extraction (Lafarge et al., 2010) since then.

Jump-diffusion mixes Langevin dynamics (Geman & Hwang, 1986) (also mentioned as dif-
fusion) and the MCMC (Green, 1995). The diffusion explores at fixed number of points, i.e. Yn,
while jumps, passes between subspaces of Y .

The jump process consists of the birth and death kernel of the RJMCMC. Kernels such as
the local transform kernel (Section 3.3.2.3) are no longer needed as the diffusion fulfills the same
purpose.

The diffusion process differs from the usual MCMC procedure as it does not involve an accep-
t/reject mechanism. For a Point Process such that h(y) ∝ exp(−U(y)), the following diffusion
equation converges towards π(dy):

dyt = −∇U(yt)dt+Wt, (3.67)

where Wt is a Brownian motion. This equation is defined over continuous time, the discrete diffu-
sion, with t ∈ N is given by:

yt+1 = yt +−γ∇U(yt) +
√︂

2T (t)wt, wt ∼ N (0, γ), (3.68)

where γ is the step size and T (t) serves as a relaxation temperature; at higher T the Brownian
motion allows exploring more of Yn, while at low T the Brownian motion becomes negligible
and the diffusion dynamics acts as gradient descent. While the jump-diffusion is usually more
effective than the standard MCMC sampler (Descombes, 2013), it requires being able to compute
the gradient of the energy U at any configuration y, with the density function being Lipschitz-
continuous (Geman & Hwang, 1986).

Definition 3.3.4. A real valued function f is Lipschitz-continuous if there exists a positive
real constant k such that for all real x1 and x2:

|f(x1)− f(x2)| ≤ k|x1 − x2|. (3.69)

3.3.4 Simulated annealing

The RJMCMC procedure described here will — given the proper conditions — run a Markov
chain for which the stationary measure is π. In order to get the best fitting configuration y∗ (see
(3.22)) — the configuration that maximizes the posterior density in the case of a Bayesian model
— we use simulated annealing to gradually collapse the Markov chain stationary distribution into
the single global maximum of h.

Simulated annealing consists in running a Markov chain (yt)t∈N with density ht(y) =
h1/Tt(y) as the temperature Tt decreases to 0. Simulated annealing is loosely based on anneal-
ing in metallurgy, where the heating and cooling of a metal can alter its physical properties.
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At high temperature the chain can explore more of the configurations space Y , the stationary
density gets closer to the uniform density over. At temperatures near 0, only perturbations that
increase the density h are accepted. The annealing scheme starts at high temperature to be able to
reach all states of Y , then the temperature slowly decreases (as to maintain stability and explore
different modes), as the chain reaches the global maximum only small steps are accepted until the
stopping condition is reached.

The chain is proved to converge to the global maximum for Reversible Jump MCMC (Stoica,
Gregori, & Mateu, 2005) and birth and death process (Robert & Casella, 2004), but for carefully
chosen decrease function.

Logarithmic decrease.

Tt = C

log(t+ 1) . (3.70)

This decrease scheme ensures the convergence if the constant C is larger than the deepest lo-
cal maximum. In practice this decrease scheme is very slow, often time logarithmic decrease is
replaced by geometric decrease.

Geometric decrease. Given as:
Tt+1 = αTt, (3.71)

with α ∈ [0, 1] driving the speed of the decrease; usually α is picked very close to 1. Contrary
to the logarithmic scheme, this one is not proven to converge. Lower α yields faster temperature
decrease, at the cost of breaking away from the convergence guarantees of low speed temperature
decrease.

Others. (Ortner, Descombes, & Zerubia, 2007) propose to use adaptive annealing, that adapts
the schedule depending on some statistics of the chain at step t. (Guilmeau, Chouzenoux, & Elvira,
2021) propose to mix Fast Simulated Annealing (that modifies the acceptance probability function)
and Sequential Monte Carlo (that simulates a weighted population of particles) into a new scheme.

3.3.5 Stopping conditions

In order to get the exact optimal configuration y∗, the RJMCMC needs to run for an infinite amount
of steps. In practice, we do not have that much time. For some cases exact simulations (Lieshout,
2000) allow to ensure the simulated Markov chain has reached its theoretical optimum. While this
might be necessary for some statistical inference tasks, the application to object detection requires
some compromises towards lower inference times.

(Robert & Casella, 2004) propose using statistics on the configurations such as

st̄ = 1
t

t∑︂

k=0
s(yt), (3.72)

where s(yt) is some measurable characteristic of the configuration at step t; e.g. the number of
points n(yt) or the energy U(yt|X). (Lacoste, 2004) compute this empirical mean every N (i.e.
average for values t ≡ 0 mod N ) as to limit the autocorrelation effect of the Markov chain.
Then, if the empirical mean st̄ does not change more than a set ϵs for more than ntest sequential
computations of st̄, the chain is stopped. For more stability one can monitor more than one statistic.
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One might also monitor the normalized energy change (U(y′)−U(y))/U(y), the running av-
erage of the acceptance ratio (or number of acceptances), and process those as the configurations’
statistics above to produce a stopping condition.

For our application we rather set a fixed amount of iterations, although scaling it with the size
of the image space S to explore and the amount of parallelization. While this means we sometimes
might run more steps than necessary, it alleviates the running of the numerous parameters involved
in using multiple statistics to define a good stopping condition.

(Robert & Casella, 2004) also proposes running parallel chains and computing both inter-
chains and intra-chains statistics to monitor convergence.

3.4 CNN fundamentals

Definition 3.4.1. A Convolutional Neural Network (CNN) is a type of artificial neural
network that uses convolutions to extract information from data with grid like topology
(Goodfellow, Bengio, & Courville, 2016). These models use a combination of convolutions
and pooling operations to extract patterns from the data.

For this approach the data need only be in a grid like structure; while 2D image are the most
usual application, it can be generalized to 3D for instance with electron microscopy scans (Hallou,
Yevick, Dumitrascu, & Uhlmann, 2021). The grid might also not be isotropic, for instance in image
sequence segmentation (LaLonde et al., 2018) the third dimension represents time, and in audio
classification (Hershey et al., 2017) one axis of the spectrogram represents time while the other is
frequency. Closer to our subject, multispectral satellite images (see Chapter 1) can be treated as
3D data, with two spatial dimensions on the last corresponding to electromagnetic frequency.

The convolution operator applies a cross-correlation of the input image (or tensor) and a ker-
nel, the output is often referred to as a feature map (Goodfellow et al., 2016). In short the cross-
correlation of the kernel on the input, returns a signal that can be interpreted as proportional to
the presence of the pattern represented by the kernel at every location of the image. The input
and output can be composed of one or several channels (also referred to as features): e.g. the
color channels for RGB images. Output and input number of features may be different; an in-
put tensor of size (H,W,Cint) (height, width, number of features/channels) with a kernel of size
(K,K,Cint, Cout) will produce a tensor of size (H,W,Cout), modulo some padding applied to the
input.

The pooling operator reduces the size of the input image or tensor by applying an aggregation
function on chunks of the image. For instance for every two-by-two block of pixels, the Max
pooling operation keeps only the maximum value of the block to produce the output map. This
reduces the spatial size of the input, allowing to aggregate spatial information.

The sequential combination of convolutions and pooling allows alternating between pattern
extraction and spatial aggregation, so that steps after steps the extracted patterns grow from low
level textures to larger features in the image. The surge in popularity of CNN models stems from
the ability to learn the convolution kernels for a specific objective (defined by a loss function to
minimize). This is enabled by the ability to back-propagate the gradient of from the loss to the
kernel parameters that can them be updated within a gradient descent learning scheme.

One such model is the Unet (Ronneberger et al., 2015), it combines convolutions and pooling
layers with upsampling (or up-convolutions) that allows to regain spatial resolution, in a sense
reversing the pooling layers. The downward path, alternating convolution blocks with pooling,
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progressively extracts bigger size patterns in the image. The downward path, using convolutions
and upsampling, rebuilds the spatial resolution of the output progressively, with the help of feature
maps transferred from the same depth level of the downward path. This simple architecture allows
for fine detail outputs (the output is of same spatial resolution of the input), and higher scale pattern
matching (thanks to the depth of the network). This makes it a good fit for pixel wise classification
or dense feature extraction.
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Figure 3.7: Unet architecture. From (Ronneberger et al., 2015).

Some deep neural architectures make use of densely connected layers;

Definition 3.4.2. A densely connected layer, computes an output B of shape (. . . , Cout)
from an input A of shape (. . . , Cin) via a matrix multiplication with a weight tensor W of
shape (Cin , Cout) as B = AW.

For instance a classical approach in the first image classification networks such as (Krizhevsky
et al., 2012) is to flatten the image after the last convolution layer; a feature map of shape
(H ′,W ′, F ) gets flattened to a vector of features of size (H ′W ′F ), with F the number of fea-
tures. In turn this vector of features is fed through a sequence of dense layers (in our example
Cin = H ′W ′F ) to finally output a vector of class probabilities through a Softmax. First, this
architecture sets the network input to be of fixed size; since H ′ and W ′ are a direct function of
the CNN model and the input image size (H,W ). Also, as the processed image gets bigger, the
number of elements in the weight W of the dense layer scales quadratically to the image size; for
a bigger image of size (sH, sW ), we get weight tensor W of shape (s2H ′W ′F,Cout).

As satellite images are big and also of varying size, the use of dense layers is prohibitively
expensive in terms of number of parameters and computational cost (if applied over all pixels).
This is why Fully Convolutional Networks are proposed as such:
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Definition 3.4.3. A Fully Convolutional Network (FCN) is a type of CNN architec-
ture making use of locally connected layers such as convolution pooling or upsampling
(Shelhamer, Long, & Darrell, 2017).

Avoiding densely connected layers allows for lower parameter counts, and ensures any in-
put size can be used. Lastly the properties of convolutions and pooling blocks make this type of
architectures inherently translation invariant. This last property is very useful in the context of
biological imagery or remote sensing for instance, where images are large and the processing de-
mands to be translation invariant, as the elements of interest are not necessarily centered as they
most often are in usual images (e.g. photographs, taken at eye-level, with a centered subject).

Remark 3.4.1 – The translation invariance is valid if we disregard edge effects. These can
be dealt with proper padding or cropping since the size of the edge effect can be computed.
To compute a result on big images that do not fit in memory, one has to prepare patches of the
source image with padding for each patch. The inference results on each patch can then be
cropped to remove edge effects and stitched back together without any difference to inferring
on the whole image at once (up to float precision errors). See Appendix B for more details.

By construction these FCN architectures are good at extracting patterns and texture. However,
to build longer range interactions between objects within the image requires further increasing the
depth at an increased cost in number of parameters and computation. Attention mechanism —
originally introduced for natural language processing (Vaswani et al., 2017) and then applied to
object detection (Carion et al., 2020) — propose a mechanism to relate each pixel with every other
pixel in a feature map. This kind of mechanism is done at a great parameter and computational
cost too.

While a lot of work is being done on tuning CNN architecture to any task, in our work we
focus on complementing a basic FCN model with the Point Process framework described in the
first sections of this chapter; we will not go much further in depth in the design of neural networks
but rather consider what we can extract from those.

3.5 Conclusion

In this chapter we first presented the building blocks of Point Process models. Those allow model-
ing configurations of points as a random variable that depend on the underlying image. This model
is defined by a Gibbs density, i.e. through an energy function that measures the compatibility of
a configuration y with the image X. At inference, for a given image X, the estimated configura-
tion ŷ is obtained by approximating the minimum of that energy function, through a Monte Carlo
Markov Chain sampling method combined with simulated annealing.

Meanwhile, Convolutional Neural Networks introduce a broad category of models to trans-
form images into new representations. The key breakthrough of these approaches is to learn the
convolution filter parameters on a training dataset through gradient descent.

While Point Processes model the high level objects and their interactions (here our objects
of interest: vehicles), the CNN methods shine in performing pixel level transformations. Contrast
measures try to bridge this pixel-to-object gap inherent to the Point Process approach, but remain
quite tedious to tune and often fail on more complex applications (see Section 4.2.1.1). This mo-
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tivates us to use CNN methods to transform the image into a representation that is easier to then
factor into the energy function of the Point Process, in a way reducing this pixel-to-object gap.
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CHAPTER 4
Building an Energy

Based Model for object
detection

Dans ce chapitre, nous construisons le Processus Ponctuel à travers sa fonction
d’énergie. Nous montrons d’abord les limites des mesures basées sur le contraste pour
les images satellitaires, puis procédons à la construction d’un terme d’attache aux don-
nées à partir de la sortie d’un CNN. Nous proposons plusieurs manières de construire
une carte de potentiel ; nous constatons qu’une approche à base de vecteurs pointant
vers les centres, puis divergence donne les meilleurs résultats. Nous montrons égale-
ment comment réinterpréter une sortie de pseudo-probabilité classique d’un CNN en
une énergie pour le Processus Ponctuel. De plus, nous proposons un ensemble d’a priori
pour régulariser les configurations de véhicules, tout en étant prudent sur le choix de
l’opérateur d’agrégation des multiples interactions d’un objet. Enfin, nous discutons de
la façon dont l’inférence du CNN est factorisée dans le pipeline de calcul d’énergie pour
un coût de calcul limité.

In this chapter we build the Point Process through its energy function. First we show the
limitations of contrast based measures for satellite images, and proceed to build a data
term from the output of a CNN. We propose several ways to build a potential map; we find
that a center-pointing-vector to divergence approach gives the best results. We also show
how to re-interpret a classical pseudo-probability output of a CNN into an energy for
the Point Process. Furthermore, we propose a set of priors to regularize configurations
of vehicles, while being careful about the choice of the aggregation operator over the
multiple interactions of an object. Lastly, we discuss how the CNN inference is factorized
within the energy computation pipeline for a limited computational cost.
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4.1 Point Process as an energy model

In this chapter we build a Point Process for detecting small objects in remotely sensed images.
This Point Process is derived from an energy function via a Gibbs density (see (3.9)). For a given
image X and configuration y, the unnormalized density of the Point Process is defined as:

h(y) = exp (−U(y,X)) . (4.1)

We now consider a Point Process of rectangles parametrized as follows: A point y in y, has two
spatial coordinates in S, yi and yj . The marks (ya, yb, yα) ∈ M encode respectively the width,
length and angle relative to the

−→
i vector as shown in Figure 4.1. The marks are bounded, and

the angles are defined modulo π such thatM = [amin, amax] × [bmin, bmax] × [0, π]. Describing
rectangles using sizes (yayb) and ratios (ya/yb) is equivalent.

j

i

y1
j

y1
i

y1

y1
b

y1
a

y1
α y2

y3

Figure 4.1: Parametrization of points for a marked Point Process of rectangles.

Classical formulation of a Gibbs Point Process performs the sum of an energy function over
the cliques of configuration y (3.9). But formulating the energy as a sum of energies per point —
that may depend on their neighborhood — is equivalent up to the size of the cliques in question
(see Section 3.2.1.1):

U(y,X) =
∑︂

y∈y
V
(︂
y,X,N y

{y}

)︂
. (4.2)

For object detection, the energy of a point V (y,X,N y
{y}) should encompass both the fitness

of point y against the image X, and the prior knowledge on objects and their interaction. For that
matter we write the energy of a point, as a sum of several energy terms:

V
(︂
y,X,N y

{y}

)︂
= w0 +

∑︂

e∈ξ

weVe

(︂
y,X,N y

{y}

)︂
, (4.3)

with w0, we some weight parameters, and ξ the set of energy terms, split into the following cate-
gories:

• Internal / prior energies encode the internal coherence of the point configuration. Either
at a single point level (e ∈ ξprior−point) or considering the interactions of a point with its
neighborhood (e ∈ ξprior−interact.).
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• External / data energies (e ∈ ξdata) reflects how good the point fits the image data X. With
this formulation, we measure the correspondence of a single point y against the image X.
The Bayesian approach mentioned in Section 3.2, measuring the likelihood of the image X
given the configuration y, would require a term over the Ve (y,X).

Formulating the energy of a point V as a sum of energy terms Ve — albeit classical, see
(Ortner et al., 2007; Lafarge et al., 2010; Descombes, 2017) — remains a modeling choice; we
discuss other possibilities in Section 4.4.2.2.

In the following example we show how the above-described framework allows for easy com-
binations of simple Point Processes to create more complex patterns.

Example 4.1.1 – Let 3 points processes Φ1,Φ2,Φ3 on S ×M = [0, 1]2 × [0.01, 0.1], each
defined to exhibit one basic behavior, and derived from a single energy term V1, V2, V3. We
denote yi, yj , yr respectively the position in the two spatial axes, and the radius of each point.
The processes are defined as such:

• For Φ1, points in the white pixels of image X are more likely to be rejected. For a point
y the energy corresponds to the value of image X (values in [0, 1]) at location (yi, yj):

V1(y,X) = X[yi, yj ].

• Process Φ2 avoids overlaps; with d(y, u) the distance between y and u, energy term
V2 checks if the gap between the two circles is greater than zero with all neighbors, if
not it assigns an energy of 1:

V2(y,N y
{y}) = max

u∈N y
{y}
{1d(y,u)−yr−y′

r<0(y)}.

• Process Φ3 favors circles of growing size as points get higher in the image, within a
margin 0.01:

V3(y) = 1|yr−(0.99yj+0.01)|>0.01(y).

Finally, we define a composite process Φ4, from the sum of the energies V1, V2, V3 (or product
of densities). As illustrated in Figure 4.2, Point Process Φ4 exhibits a combination of all the
constraints set on each Φ1,Φ2,Φ3.

4.2 Data terms from a CNN

The data terms of the Point Process aim to measure the fitness of each point y ∈ y against the
image data X. First we look at contrast measures and their limitations, then we describe our
contribution to use Convolution Neural Networks (CNN, introduced in Section 3.4) for these data
terms.
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(a) Realization of Φ1 (b) Realization of Φ2 (c) Realization of Φ3

(d) Realization of Φ4 (e) Image X

Figure 4.2: Realizations of the processes described in Example 4.1.1. The radius of each circle
corresponds to the radius marks yr.

4.2.1 Contrast measures

Point Process models in (Lacoste et al., 2005; Ortner et al., 2007; Crăciun, 2015; Descombes,
2017) use contrast measures to build a data potential for each point. The idea is to compare statis-
tical properties of pixels values of image X inside and around the object y.

The idea is to compare the distributions inside and outside the shape formed by y. For example
(Lacoste et al., 2005) use the T-test on the values inside shape i(y) and on its contour c(y):

V (y,X) ∝ |µi(y) − µc(y)|√︃
σ2

i(y)
ni(y)

+
σ2

c(y)
nc(y)

, (4.4)

with µi(y), σi(y) the mean and variance of values of image X in interior i(y), similarly for contour
s(y).

Alternatively (Kulikova et al., 2011) propose to check the image gradient ∇X against the
normal vector −→ny(t) along the contour line sy(t), t ∈ [0, 1]:

V (y,X) ∝
∫︂

t∈[0,1]
−→ny(t) · ∇X[sy(t)]√︂

|∇X[sy(t)]|2 + ϵ
dt, (4.5)

where∇X[sy(t)] is the image gradient at contour coordinate t.
While there are many other formulations for contrast measure, most rely on the assumption

of simple backgrounds, limited object of interest variations, and having little to no high contrast
background elements. Moreover, the definition of interior and outside contour of the object y is
to be fine-tuned to the application; e.g. the gap and thickness of considered contours (see Figure
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interior

interior border

exterior border

ρext
δext

ρint
δint

Figure 4.3: Sampling areas to compute contrast for an ellipse. Parameters ρint, ρext, δint, δext drive
the size and locations of these surfaces.

4.3). Similarly, in order to deal with heterogeneity inside the object (Crăciun, 2015) measure the
contrast between an interior contour and exterior one (red and blue in Figure 4.3); as the visual
features inside the boats (e.g. windows, decks, etc...) increase the variance of inside pixels.

On the other hand CNN models have shown to be very efficient at extracting features from im-
ages for object detection and classification. In the following section, we will show how to interpret
a CNN based object detector output to obtain an energy that measures the fitness of a configura-
tion against an image. It allows us to go past the contrast measure design by utilizing a pre-trained
CNN output. The next example shows a basic comparison between contrast measures and a CNN
model.

4.2.1.1 Limitations of contrast measures: example

We compare the performances of contrast measures on both remote sensing images and synthetic
data. We evaluate the performance of each by generating a set of object proposals from the image,
99% of which do not correspond to an object, 1% are actual objects of interest. For a contrast
measure to be effective, it should be able to score high on objects of interest and low on neg-
ative proposals. For every contrast threshold we can assign positive and negative detections to
each proposal, thus compute precision and recall values. Computing precision and recall for every
threshold gives us the precision-recall curve.

We compare the two contrast measures given in (4.4) and (4.5) against our CNN model (see
next sections) and a measure that always returns a constant value1.

This comparison is performed on both a synthetic image and a sample from the dataset DOTA
(Xia et al., 2018) (sampled at 0.5m resolution). The synthetic data consists of bright or dark rect-
angles on a gray background with some additive noise. The data and results are shows in Figure
4.4.

The contrast measure performs excellently on the synthetic data, but struggles on real images.
Indeed, this image contains a lot of high contrast elements that are not objects of interest; air-
conditioning units, pavement features, trees etc...

1For heavily imbalance datasets such a classifier can get decent results (e.g. if we invert the positive to negative
proportions); we introduce it as a baseline check.
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Synthetic data Positive (1%) Negative (99%)
Precision-recall

DOTA0.5 Positive (1%) Negative (99%)
Precision-recall

Figure 4.4: Comparing contrast measures on synthetic (first line) and real data (second line).
Positive and negative samples, represent respectively 1% and 99% of the samples for which the
metric is computed. For precision-recall; blue: T-test; orange: image-gradient; red: CNN output;
green: constant value. On the top right plot, blue and orange plots are overlapping.

4.2.2 CNN data terms for unmarked points

4.2.2.1 Contrast measures on CNN output

To build a data term from a CNN for the Point Process, we aim at inferring from a given image X
(Figure 4.5 (a)) a map of potentials Vpos (Figure 4.5 (b)), so that the data energy Vpos of a point y
can be computed by simply looking up the value of Vpos at the corresponding position.

Previous works on marked Point Processes using contrast measures have shown good results
when applied to high contrast images where background clutter is limited. Thus, our first approach
consists in applying a tailored contrast measure in an image transformed by a FCN model into a
more simple representation. Ideally the image transformation model should produce simple con-
trasted patterns on object positions, while simplifying background to be as close as possible to
uniformity. Applying the pattern matching would in turn provide potential map Vpos. The follow-
ing approach was published in (Mabon et al., 2021).

Inferring heatmaps. First we must determine the output of our CNN. We need to build target
(or Ground Truth, GT) maps with desired properties on training data, for the model to be able to
reproduce such maps on unseen data. Object detection models such as (T. Zhao, Liu, Celik, & Li,
2021; Yi et al., 2021; Huang, Li, Xia, & Tao, 2022) use heatmaps to identify object centers.

Definition 4.2.1. For object detection, a heatmap refers to a map (often 2 dimensional) of
probability-like values measuring the presence of an element or event; in our case object
centers.
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(a) Input image (b) Potential Vpos

Figure 4.5: Example of energy map: (a) input image X from COWC (Mundhenk et al., 2016); (b)
results of F passed through function qpos, red is high positive potential, blue is negative. We show
a zoom on part of the image where nearby blobs clump together.

Remark 4.2.1 – Neural network models — even if returning values in [0, 1] — produce
only estimates of the likelihood: as (C. Guo et al., 2017) shows, these measures are often
poorly calibrated and should rather be considered as scores. We will also refer to those as
probability estimates.

Training the CNN model to infer an exact map such as it returns 1 at object centers and zeros
elsewhere (see Figure 4.6) proves to be impractical; the image data and annotations are sometimes
off by a few pixels (making the sharp target map incorrect) and the labels are too imbalanced to
properly train the model (i.e. the ratio of center pixels to background is close to zero).

Relaxing the heatmap. We propose relaxing the training target, in learning to infer a map H
such that for every pixel ρ in the image:

H[ρ] = max
{︄

1− d(ρ,yGT )
rmax

, 0
}︄
, (4.6)

where d(ρ,yGT ) is the distance of pixel ρ to the nearest point in yGT and rmax a threshold term
(see Figure 4.6). This relaxing produces a relaxed heatmap target to train out model on.

Balancing. The works in (M. Bai & Urtasun, 2017) on inference of discrete watershed map
for instance segmentation propose a solution to alleviate class imbalance issues. Their approach
requires them to infer a distance map in the likes of (4.6); they propose to discretize the distance
values into nc distinct bins or classes (see Figure 4.6). We now have to use the CNN to estimate
the most likely class (or value bin). This allows to re-weight the loss over each class to deal with
the imbalance.

Definition 4.2.2. In image processing, a watershed (Beucher & Lantuejoul, 1979; Vincent
& Soille, 1991) is a transform defined on a grayscale image, where lower levels (lower pixel
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brightness) of the image get progressively flooded to form a segmentation of the image. By
extension the watershed map refers to the image the watershed method is applied on.

The ground truth (or training target) map is then, for every pixel ρ:

Hdscr [ρ, c] =

⎧
⎨
⎩

1 if H[ρ] ∈
[︂

c−1
nc
, c

nc

]︂
,

0 else.
, ∀c = 1, . . . , nc. (4.7)

dmax center dmax

0

1 discrete
relaxed
exact

Figure 4.6: Relaxation and discretization of the target map illustrated for a single object in 1D. For
the discrete plot, values are scaled from range [0, nc] to [0, 1] for ease of reading.

Estimation and training. The Unet estimates scores ˆ︁Hdscr from image X, for each discrete
class of values c, by the application of a Softmax (Goodfellow et al., 2016, 6.2.2.3 Softmax Units
for Multinoulli Output Distributions) on the Unet output Z of size (H,W,nc) as :

Softmax(Z[ρ])c = exp (Z[ρ, c])∑︁nc
c′=1 exp (Z[ρ, c′]) . (4.8)

The CNN model is trained to minimize the cross entropy loss (Kline & Berardi, 2005):

L(Hdscr , ˆ︁Hdscr) = −
∑︂

ρ

nc∑︂

c=1
wcHdscr [ρ, c] log

(︂
ˆ︁Hdscr [ρ, c]

)︂
, (4.9)

with wc = 1 − 1
nc

∑︁
ρ Hdscr [ρ, c] a weighting factor introduced to amplify the loss on the less

frequent classes (i.e. foreground classes in our case).

Building the data potential. Since we know by construction of the target map the aspect of
the map around object centers, we devise a filter K as illustrated in Figure 4.7 (a) to look for
object centers when cross-correlated with the output map ˆ︁Hdscr . When the filter pattern matches
the pattern in the output map we get a high response, otherwise it is low, as shown in Figure
4.7 (b). This approach is akin to using a contrast measure as the filter is looking at a specifically
shaped pattern of contrast in the image. Using cross-correlation to look for this pattern allows to
pre-compute the contrast for every pixel of the image easily. We denote F[ρ] = (K ∗ ˆ︁Hdscr)[ρ]



76 CHAPTER 4 — Building an Energy Based Model for object detection

the cross-correlation response at pixel ρ, and thus define the data potential2 as :

Vpos(y,X) = qpos (F[ρy]) , (4.10)

qpos(x) =

⎧
⎨
⎩

−2(x−d0)
d1−d0

+ 1 if x < d1

exp
(︂

−2(x−d0)
d1−d0

+ 2
)︂
− 2 else,

(4.11)

where ρy is the pixel containing y. The quality function and its two parameters d0, d1 is illustrated
in Figure 4.7. With the data potential defined as such, the map F can be pre-computed for a given
image X from the Unet output, to be then used for any computation of U(y,X), simplifying the
contrast computation to the sampling of an array.

(a) Filter (b) Filter response

d0 d1
x

2

0

q(
x)

(c) qpos(x)

Figure 4.7: Filter and response for energy potential

Limitations. While this first approach allows to extract an energy map, we notice that nearby
blobs formed by objects in the energy map can sometimes clump together. We illustrate this in Fig-
ure 4.5; the clumping of nearby detections into one long blob is quite pronounced for cars parked
side-to-side (as opposed to front-to-back). Moreover, the energy pits around detected centers are
quite wide — as a side effect of the relaxation — making the positioning of object imprecise.

Remark 4.2.2 – The focal loss (Lin, Goyal, et al., 2017) propose to weight the loss for
imbalanced data such as heatmap without any discretization. In our case, learning to infer
the heatmap H directly with focal loss does not improve significantly on the clumping issue.

4.2.2.2 Inferring vector fields

The previous approach to build a data energy is limited in how it can efficiently separate nearby
instances. Here we propose an approach based on vectors and their divergence to better pinpoint
the location of objects. The following approach has been published in (Mabon et al., 2022b) and
(Mabon, Ortner, & Zerubia, 2022c).

2Denoting pos for position, as the model can include a potential for marks too, that will be discussed in a further
Section.
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(a) (b) (c) (d)

Figure 4.8: (a) Closeup image with centers overlay; (b) centers heatmap H; (c) vector field H∇;
(d) divergence. For (b) and (d): red> 0, blue< 0.

Vectors point to object center. To do instance separation (Neven, Brabandere, Proesmans, &
Van Gool, 2019) propose to infer for each pixel of the image the vector from the pixel location to
the center of the object the pixel belongs to. Outside the objects the vectors are not defined.

With our small objects, we rather choose to extend the range at which these vectors are inferred
outside the area of the object; within a radius rmax the model has to infer the unit vector that points
towards the nearest object center as illustrated in Figure 4.8. In short, we look to infer the map:

H∇[ρ] =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
∥y−ρ∥2

[︄
yi − ρi

yj − ρj

]︄
, y = arg min

y′∈yGT
{∥y′ − ρ∥2} if HM [ρ] = 1

[︄
0
0

]︄
otherwise

(4.12)

The map HM is a binary map, equal to one if less than rmax away from an object center, else it is
zero:

HM [ρ] =

⎧
⎪⎨
⎪⎩

1 if arg min
y′∈yGT

{∥y′ − ρ∥2} ≤ rmax

0 otherwise.
(4.13)

Remark 4.2.3 – Note that H∇ can be obtained from the image gradient of H defined in
(4.6):

H∇[ρ] =

⎧
⎪⎪⎨
⎪⎪⎩

∇H[ρ]
∥∇H[ρ]∥2

if HM [ρ] = 1
[︄
0
0

]︄
otherwise

, ∇H[ρ] =
[︄

∂H
∂i [ρ]

∂H
∂j [ρ]

]︄
. (4.14)

The gradient is defined over continuous space, but can be easily approximated in discrete
pixel space by the following cross correlation:

∇H ≃

⎡
⎢⎢⎢⎢⎣

[︂
−1 0 +1

]︂
∗H⎡

⎢⎣
−1
0

+1

⎤
⎥⎦ ∗H

⎤
⎥⎥⎥⎥⎦
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Inference and training. To produce a field of vectors ˆ︁H∇ from image X, we modify the Unet
to output two tensors Z∇ and ZM of respective sizes (H,W, 2) and (H,W, 1). The output ZM
allows estimating HM as such:

ˆ︁HM [ρ] = σ (ZM [ρ]) . (4.15)

Thus, the estimate of H∇ can be obtained as:

ˆ︁H∇[ρ] = ˆ︁HM [ρ] Z∇[ρ]
∥Z∇[ρ]∥2

, (4.16)

with ∥Z∇[ρ]∥2 the norm of 2-dimensional vector Z∇[ρ]. The normalizing allows to consistently
maintain unit vectors in the neighborhood of objects, while the product with ˆ︁HM [ρ] sets to zero all
out-of-range pixels. The model is trained to minimize the Mean Square Error (MSE) between the
estimated and ground truth vectors (inside the rmax -neighborhood of each point) while minimizing
the Binary Cross Entropy (BCE) between the mask and its estimation:

L( ˆ︁H∇, ˆ︁HM ,H∇,HM ) =

MSE(ˆ︁H∇,H∇) where HM [ρ]=1⏟ ⏞⏞ ⏟∑︂

ρ

HM [ρ]
⃦⃦
⃦ ˆ︁H∇[ρ]−H∇[ρ]

⃦⃦
⃦

2

2

−
∑︂

ρ

HM [ρ] ln( ˆ︁HM [ρ])
⏞ ⏟⏟ ⏞

BCE(ˆ︁HM ,HM )

.
(4.17)

We provide some details about the training procedures in Appendix B.

Remark 4.2.4 – In practice, we infer a single tensor Z of size (H,W, 3) and then extract the
relevant features/channels to obtain Z∇ and ZM of respective sizes (H,W, 2) and (H,W, 1).

Divergence as data potential. Given the inferred ˆ︁H∇ for image X, we need to build a scalar
data potential for each element of y. By construction the center of each object corresponds to
a point where vectors converge. It can be seen clearly in Figure 4.8 (c) and (d). Thus, we use
the divergence operator to extract object locations; the object centers get negative values, while
separation lines in between get positive values (see Figure 4.8 (d)). Denoting ˆ︁Hdiv = div ˆ︁H∇:

Vpos(y,X) = ˆ︁Hdiv [ρy]. (4.18)

We show the potential map computed over a real unseen (i.e. not trained on) image in Figure 4.9.

Computing the divergence. The divergence in continuous space over a vector field F in 2D is
defined as:

div F = ∂Fi

∂i
+ ∂Fj

∂j
. (4.19)

The divergence field over in raster grid coordinates can be approximated using the finite difference
approximation for derivatives:

∂Fi

∂i
[yi] ≃

Fi[yi + 1]− Fi[yi − 1]
2 . (4.20)
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The approximate derivate in an image can be obtained by convolution using a Prewitt (Prewitt,
1970) filter:

∂Fi

∂i
≃

⎡
⎢⎣

+1 +1 +1
0 0 0
−1 −1 −1

⎤
⎥⎦ ∗ Fi,

∂Fj

∂j
≃

⎡
⎢⎣
−1 0 +1
−1 0 +1
−1 0 +1

⎤
⎥⎦ ∗ Fj . (4.21)

The computation of the divergence for a vector field defined in a raster grid is detailed in Appendix
I.3.

Interpolation. The energy described in (4.18) only samples the value of the ˆ︁Hdiv at integer
locations (exact pixel locations). However, points y in configuration y have real-valued locations
(yi, yj) ∈ R2. Thus, we propose interpolating values in between exact pixel locations, defining:

Vpos(y,X) = ˆ︁Hdiv [yi, yj ], (4.22)

with ˆ︁Hdiv [yi, yj ] the bilinear interpolation of ˆ︁Hdiv at location (yi, yj).

Remark 4.2.5 – This vector inference approach can be adapted to produce score of ob-
ject centers. Given tensor ˆ︁Hdiv , we can produce an approximated probability p̂(y|X) =
σ(a ˆ︁Hdiv + b), where sigma is the sigmoid function and a, b two scalar parameters (e.g. from
a linear block in the neural network). As the divergence operator is differentiable, the param-
eters a, b can be learned during the training of the whole model.

(a) Input image X (b) Position energy map ˆ︁Hdiv

Figure 4.9: Example of inferred energy map. Image from DOTA (Xia et al., 2018) with corre-
sponding inferred energy map. Blue areas corresponds to negative potentials while red to positive
potentials.

In this section we contributed in proposing an energy map built from the divergence of a field
of vector inferred by a CNN, allowing for better separability of small tightly-packed instances.
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4.2.2.3 Interpreting CNN outputs as energy

Until now, we proposed several network architectures to produce a map of potentials for the data
term of our Point Process. In this section we propose a general framework to use the output of any
CNN model (within some specifications) to produce the required potential. This was published
in (Mabon et al., 2023a) and (Mabon, Ortner, & Zerubia, 2023b) and to be submitted in (Mabon,
Ortner, & Zerubia, 2023). The core idea stems from (Grathwohl et al., 2019) where they propose
to interpret classifier model as Energy Based Models (EBM).

Here we consider a class of CNN model that infers a map of scores of centers for every pixel
of the image such as the heatmap based models (Huang et al., 2022). The model described in
the previous section can also be adapted to produce probability estimates (scores) as explained in
Remark 4.2.5. This class of models produce a probability estimates of center for pixel ρ from a
tensor ˆ︁Zpos inferred by the CNN. The probability estimate p̂(ρ) is obtained through the sigmoid
function as:

p̂(ρ) = σ
(︂
ˆ︁Zpos[ρ]

)︂
= 1

1 + exp
(︂
−ˆ︁Zpos[ρ]

)︂ . (4.23)

Meanwhile, if we consider the simplest Point Process model derived from U(y,X) =∑︁
y∈y Vpos(y,X), Definition 3.1.7 and Theorem 3.1.2 give us:

p (NΦ(dy) = 1|Φ ∩ (dy)c = y ∩ (dy)c) = h({u} ∪ y)
h(y) dy

= exp(−Vpos(y,X))dy
(4.24)

By considering (4.24) over the whole pixel ρ, and relating it the probability estimate in (4.23),
we propose to define Vpos such as:

exp(−Vpos(y,X)) = σ
(︂
ˆ︁Zpos[ρ(y)]

)︂
. (4.25)

This yields:

Vpos (y,X) = qpos
(︂
ˆ︁Zpos[yi, yj ]

)︂
(4.26)

qpos(x) = ln (1 + exp (−x+ tpos)) , ∀x ∈ R, (4.27)

where tpos is a scalar parameter we introduce to offset the inflection point of function x ↦→ ln(1 +
exp(−x)) as shown in Figure 4.10. Once again we can perform bilinear interpolation to have the
potential be defined for any real-valued coordinate in S instead of discrete pixels.

4.2.3 Data energy on marks

For now, we only considered potentials on the position of the objects, in this section we propose a
potential on the marks of the Point Process.

First we discretize each mark κ (κ ∈ {a, b, α} in the case of a Point Process (PP) of rectangles),
into nκ classes (or value bins) in the range [κmin, κmax]. We define the integer class of a value v
for mark κ as:

cκ(v) = nκ
v − κmin

κmax − κmin
, ∀v ∈ [κmin, κmax], (4.28)
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0 tpos

x

0
q(
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Figure 4.10: Illustration of function from (4.27) and its inflection point tpos.
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Figure 4.11: Mark discretization for nκ = 8: here the angle α belongs to class c1
α = ⌈cα(yα)⌉,
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(a) Energy on discrete marks

(b) Energy on continuous marks
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Ẑi,jκ [dcκ(yκ)e]

−+
ln

∑
c
exp

Vκ(y,X)

cκ(yκ)

yj

yi
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Figure 4.12: Energy over discrete marks (a) and continuous marks (b).

with ⌈cκ(v)⌉ the corresponding integer class. We illustrate the discretization in Figure 4.11: here
we pick nκ = 8 for κ ∈ {a, b, α}, a low value for illustration purposes (in practice we pick
nκ = 32). For instance, in this illustration we have ⌈cα(yα)⌉ = c1

α, ⌈ca(ya)⌉ = c3
a etc...

Now, supposing we have a model trained to classify the mark of an object at a given position
(i, j) ∈ S , such model will produce a probability estimate of mark κ to be in class c ∈ J1, nκK,
from model output ˆ︁Zi,j

κ ∈ Rnκ as :

p̂(c|i, j,X) = Softmax(ˆ︁Zi,j
κ )c =

exp
(︂
ˆ︁Zi,j

κ [c]
)︂

∑︁nκ
c′=1 exp

(︂
ˆ︁Zi,j

κ [c′]
)︂ . (4.29)

As in (Grathwohl et al., 2019), we can reinterpret the model output into a potential, giving:

Vκ(y,X) = −ˆ︁Zi,j
κ [⌈cκ(yκ)⌉] + ln

(︄
nκ∑︂

c=1
exp

(︂
ˆ︁Zi,j

κ [c]
)︂)︄

, (4.30)

we justify this formulation in Appendix C. As the CNN outputs a tensor ˆ︁Zκ of shape (H,W,nκ),
we get vector ˆ︁Zi,j

κ by sampling tensor ˆ︁Zκ at location (⌈yi⌉, ⌈yj⌉), as illustrated in Figure 4.12 (a).

Interpolation. Same as the first proposed position energies, the energy on marks defined in
4.30 is defined over the discrete values of the mark. As the marks live in a continuous space, we
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propose using interpolation to defined Vκ in between discrete mark values:

Vκ(y,X) = ˆ︁Z⋆
κ[yi, yj , cκ(yκ)] (4.31)

ˆ︁Z⋆
κ[i, j] = −ˆ︁Zκ[i, j] + ln

nκ∑︂

c=1
exp

(︂
ˆ︁Zκ[i, j, c]

)︂
, ∀i, j ∈ Sd . (4.32)

The above, illustrated in Figure 4.12 (b), has two benefits: first (4.31) defines the energy for con-
tinuous values of the marks using bilinear interpolation, thus ensuring Lipschitz continuity of the
energy. Second we can pre-compute (4.32) once for a given image; making the mark energy com-
putation a simple value lookup and interpolation for each point. This pre-computation is quite fast,
as it is defined as an operation over a tensor, which is implicitly parallelized by tensor computation
libraries such as (PyTorch, n.d.).

Remark 4.2.6 – (Grathwohl et al., 2019) propose to use the extra degree of freedom of the
model output to measure the probability of the observation itself (not its class); indeed the
Softmax function is invariant to any offset on (Softmax(A + b) = Softmax(A), b ∈ R)
which provides a degree of freedom in A.

In our case we can use ln
(︂∑︁nκ

c=1 exp
(︂
ˆ︁Zi,j

κ [c]
)︂)︂

as a position potential; measuring the
probability of an object at that location regardless of the class. While this would allow to join
the position and mark potentials, our experiments have not been conclusive for the moment.

Our contribution in the last two subsections, is to propose to use any classical CNN for detec-
tion as a data term for the Point Process (for both position and marks), based on the suggestion of
(Grathwohl et al., 2019) to interpret classifiers as energy models.

4.3 Priors on configurations

With the data potentials defined, we focus now on the design of priors to regularize the configura-
tions of objects. We first detail the potentials that apply to single points, then those that measure
the interactions. Some priors introduced in this section are illustrated in Figure 4.13.

4.3.1 Point priors

4.3.1.1 Area and ratio priors

As our objects of interest have quite consistent sizes, we favor configurations where shape param-
eters fit within some expected range. The ratio prior, compares the point y width to length ratio
against a parameter µratio

Vratio(y) = − exp

⎛
⎜⎝−

(︂
ya

yb
− µratio

)︂2

2σ2
ratio

⎞
⎟⎠ . (4.33)

Similarly, we define a prior on areas Varea by replacing ya/yb by yayb with corresponding
µarea, σarea .
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Figure 4.13: Illustration of the priors.

4.3.1.2 Joint area and ratio prior

The previous two energy terms Vratio and Varea have a limitation: Let us consider objects that
fall into two groups with typical ratio and area parameters (µarea,1, µratio,1) for the first group and
(µarea,2, µratio,2) for the second. With previously defined area and ratio potentials, we could define
two of each. However, this would create four attraction points, favoring points of geometries close
to (µarea,1, µratio,1) and (µarea,2, µratio,2) as needed, but also shapes close to (µarea,1, µratio,2) and
(µarea,2, µratio,1) that may not exist in reality. This is illustrated in Figure 4.14 (d).

To deal with this issue we propose a joint area and prior potential, that combine the two to
favor points around (µarea, µratio) in the area-ratio subspace as illustrated in Figure 4.14 (e). This
joint area and ratio prior is defined as:

VjntAR(y) = − exp

⎛
⎜⎝−

(︂
ya

yb
− µratio

)︂2

2σ2
ratio

− (yayb − µarea)2

2σ2
area

⎞
⎟⎠ . (4.34)

Measured joint distribution. Plotting the effective distribution of area and prior over the data,
two modes can be identified for each (see Figure 4.14 (a) and (b)). However, using the Varea and
Vratio priors would create four attractive points. As can be seen in Figure 4.14 (c), the data exhibits
only two modes (cars and trucks); justifying the use of two joint priors VjntAR. One approach is
to set parameters (µarea, µratio) manually from looking at the joint distribution in Figure 4.14 (c);
however we propose in Section 5.2.2, to automatically estimate these parameters from the data, in
a unified estimation procedure. We show the results of a model using these automatically estimated
parameters in Section 6.2.2.
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Figure 4.14: Distribution of area and ratio over the training data. (a) and (b) show distributions of
areas and ratios over the data, and (c) their joint distribution. In (d) we propose a setup with two
ratio priors plus two area priors, while (e) uses two joint priors (green is high energy, pink is low).
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4.3.2 Interaction priors

4.3.2.1 Aggregation operators

Some energy models for Point Processes sum all the interactions over the whole configuration as
seen in (3.23). However, we find this creates some problems with attractive potentials: Objects
sometimes accumulate the negative potentials from the interactions, as the number of interactions
grows quadratically relative to the number of points. Meanwhile, isolated points remain at high
energy.

For interaction priors (Ve, e ∈ ξprior−interact.), we propose using a carefully chosen aggrega-
tion operator Fe along a pair-interaction potential v as such:

Ve

(︂
y,N y

{y}

)︂
= Fe

{︂
ve(y, u), u ∈ N y

{y}

}︂
, e ∈ ξprior−interact.. (4.35)

To avoid the quadratic increase of interaction potentials, we choose Fe such that:

∀A > 0, Fe : P([−A,A]) ↦→ [−A,A], (4.36)

where P([−A,A]) is the power set (set of all subsets) of [−A,A]; i.e. if ve is bounded by A, Ve

is too. For instance if Fe is a maximum, minimum, or average the above condition is met (as in
Example 4.1.1). If it is a sum, then the model is equivalent to the above-mentioned (3.23) (up to a
factor 2 on the interaction potentials, as each interaction would be counted twice).

In practice this helps to build some versatile priors; e.g. “the object needs to be aligned with
at least one object”, is easily enforceable with a min over all alignment potentials. Meanwhile, it
helps avoid accumulation of points in attractive neighborhoods. We further discuss the choice of
aggregation function Fe in Section G.

4.3.2.2 Non overlapping prior

The non-Bayesian approach mentioned in Section 3.2, may lead to the accumulation of objects
in areas with low data potential without a strong prior on object not overlapping. For the objects
we study — in most situations — no overlap is permitted. We propose a simple prior to penalize
overlaps:

Vovrlp(y,N y
{y}) = max

u∈N y
{y}
{vovrlp(y, u)}

vovrlp(y, u) = max
{︃

0, Area(u ∩ y)
min{Area(u),Area(y)} − tovrlp

}︃
,

(4.37)

where tovrlp is a positive threshold that may allow some permeability between objects. We use a
maximum to aggregate the interaction potentials vovrlp as we aim at penalizing overlap with any
neighboring objects.

We find there is no simple closed-form formula for the area of intersection of two oriented
rectangles. Thus, in practice, we approximate the intersection measure as described in Appendix
D.
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4.3.2.3 Alignment prior

The objects of interest (small vehicles), tend to be aligned: either parked with the same heading,
or circulating in parallel lanes. We introduce a prior that favors aligned configurations

Valign
(︂
y|N y

{y}

)︂
= min

u∈N y
{y}
{valign(y, u)}

valign(y, u) = − cos (|yα − uα| − talign) ,
(4.38)

where talign ∈ {0, π/2} is a parameter picked to either favor parallel objects (if 0) or orthogonal
objects (if π/2). The aggregation operation over all the interaction potentials valign is picked to be
a minimum to favor being aligned with at least one object.

4.3.2.4 Repulsive and attractive priors

Vehicles often maintain a certain distance, especially when parked close. We introduce two con-
curring priors based on the gap between two rectangles (see (D.16) in Appendix D), one repulsive,
the other attractive; with carefully picked thresholds trepls, tattrc we can favor objects within a
specific distance range (see Figure 4.15):

Vrepls
(︂
y|N y

{y}

)︂
= max

u∈N y
{y}
{vrepls(u, v)}

vrepls(u, v) = max
{︄

0, 1− Gap(y, u)− trepls
dmax − trepls

}︄
,

(4.39)

Vattrc
(︂
y|N y

{y}

)︂
= min

u∈N y
{y}
{vattrc(u, v)}

vattrc(u, v) = max
{︃

0, Gap(y, u)− tattrc
dmax − tattrc

}︃
,

(4.40)

with Gap(y, u), measuring the smallest distance between the two shapes, as defined in (D.16).
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Figure 4.15: Combining attractive and repulsive priors.

4.3.2.5 Zero neighborhood prior

For all the interaction priors defined above, the negative of positive potentials added to interacting
points might offset the overall energy values of interacting points over points that have no interac-
tions. For that matter we introduce a simple prior aimed at compensating this effect; the potential
is 1 when no neighbor is present, else 0:

VzrNbr(y,N y
{y}) = 1|N y

{y}|=0(y). (4.41)
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Here we pick a value of 1 as it we will be able to scale it as needed using the energy weight wzrNbr
(see (4.3)). This extra term acts similarly as the offset term w0, but applies only to objects without
neighbors.

4.3.3 Triplet priors
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Figure 4.16: Illustration of triplet alignment prior.

In (Mabon et al., 2021) we propose a prior on triplets of points. In this work we consider a
non-marked Point Process (i.e. no orientation for the detected objects); there is no possibility to
define alignment with only two objects. Thus, we look at the angle formed by triplets of vehicles
within the neighborhood N y

{y} of each object y in configuration y. We observe that vehicles are
most often stopped or circulating in lines; that is why we choose to enforce an angle of 0 mod π.
This prior is no longer needed once dealing with marked objects, as the simple alignment prior
already favors this type of configurations.

Denoting ∡uyv the value (in radiant) of the angle formed by the triplet of points u, y, v (as
shown in Figure 4.16 (a)), we define δα(y, u, v) the absolute angle, and the triplet alignment po-
tential vtriAl as follows:

δα(y, u, v) = min{|∡uyv|, |π − ∡uyv|}, (4.42)

vtriAl(y, u, v) = qtriAl (δα(y, u, v)) . (4.43)

To turn the absolute difference δα into a potential, we use the following quality function,
parametrized by δα max, which sets a margin for the angle as illustrated in Figure 4.16 (b):

qtriAl(δ) = − 1
δ2

α max

(︄
1 + δ2

α max
1 + min{δ, δα max}2

− 1
)︄

(4.44)

Finally, the potential for point y and its neighborhoodN y
{y} takes the minimum over all poten-

tials; this favors points that are aligned within at least one triplet:

VtriAl(y,N y
{y}) =

⎧
⎪⎪⎨
⎪⎪⎩

min
u,v∈N y

{y}
u̸=v

{vtriAl(y, u, v)} if |N y
{y}| ≥ 2

0 else.

(4.45)
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4.4 Resulting model and discussions

4.4.1 Model pipeline

With all potentials defined above, we can compute the energy for any configuration y. We compute
the energy as follows:

1. For a given image X, pre-compute the potential maps once:

(a) Pass the image X through the CNN model to produce ˆ︁Zpos and ˆ︁Zκ.

2. For any configuration y ∈ Y relative to image X:

(a) Compute data terms for each y ∈ y given ˆ︁Zpos and ˆ︁Zκ.

(b) Compute each prior term for each y ∈ y; each depends at most on N y
{y}.

(c) Combine all terms into U(y,X) as in (4.2) (4.3).

Within a MCMC framework, in which the energy has to be computed for different configurations
with the same image, only steps 2 (a) to (c) have to be repeated as the image and inferred tensors
are unchanged (no need to redo step 1 each time). We illustrate this pipeline in Figure 4.17: the
pre-computed block corresponds to the results from step 1 that needs to be computed only once
per image. The blocks κ ∈ {a, b, α}, e ∈ ξprior−interact., e ∈ ξprior−point are repeated for each
respective mark, point prior and interaction prior. For the interaction prior the distance matrix is
only computed once for all interaction priors. For more precision on the actual implementation of
this pipeline we refer the reader to Appendix I.

4.4.2 Discussions

4.4.2.1 Continuity

In Section 3.3.3, we mention that the energy function has to be Lipschitz-continuous so that dif-
fusion can be used to sample configurations. The data energy terms are made continuous through
interpolation, while the local prior terms are continuous by construction. The interaction energies
ve are continuous too. However, object y moving continuously into (or out of) the neighborhood
of another point u creates a discontinuity as it crosses the boundary of the neighborhood N y

{u}. It
is made obvious when simplifying to only two points, we get:

Ve(y, {u}) = 1d(u,y)≤dmax (y)ve(y, u). (4.46)

Supposing ve is Lipschitz-continuous, the above is made discontinuous at d(u, y) = dmax by the
step function induced by the indicator 1. As such our energy model is Lipschitz-continuous for
one object y everywhere in S ×M except in set ∪u∈y\{y}{x, x ∈ S, d(x, u) = dmax}, i.e. the
union of boundaries of each neighborhood, as shown in mauve in Figure 4.183.

3Within a neighborhood (or intersection of neighborhoods) there are no discontinuities.
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Ẑκ
(H, W, nκ)

y1
i , y1

j , y1
κ

y2
i , y2

j , y2
κ

y3
i , y3

j , y3
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Figure 4.17: Energy model pipeline. The pre-computed section can be reused for computing
different y ∈ Y for a given image X. d(y, y′) is the distance matrix.
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This could be solved by incorporating a smooth weighting function over each interaction po-
tential ve, rewriting (4.35) as:

Ve

(︂
y,N y

{y}

)︂
= Fe

{︂
ς(d(u, y))ve(y, u), u ∈ N y

{y}

}︂
, (4.47)

with d(u, y) the distance between y and u, and ς a Lipschitz-continuous function such that ς(d) =
0 for d ≥ dmax and ς(d) > 0 for d ∈ [0, dmax ].
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Figure 4.18: Energy continuity illustrated for a simple example: on the left, we move continuously
one object through space and marks (trajectory from violet to green). The energy terms Ve are
plotted on the right. The total energy of a point (bottom plot on the right) is V (y) = VjntAR +
Valign+8Vovrlp−0.5VzrNbr. In mauve, we represent the discontinuity surface in S, with t1, . . . , t4
the points where the path of the sliding object intersects. The interaction radius dmax is set at a
low value for illustration purposes.

4.4.2.2 Mixing of energy terms

The classical approach for mixing energy terms via a weighted sum (see (4.3)) has its limitations
as illustrated in Section 4.3.1.2. In (Mabon et al., 2022a) we propose using a hierarchical model,
where the priors are only taken into account if the position potential reaches a certain threshold:

V
(︂
y,X,N y

{y}

)︂
= wposVpos(y) + 1Vpos(y)<tpos

⎛
⎝ ∑︂

e∈ξ, e ̸=pos
weVe

(︂
y,X,N y

{y}

)︂
⎞
⎠ .

The latter induces some more discontinuities in the energy model that do not go well with the
jump-diffusion sampling (Geman & Hwang, 1986) (see Section 3.3.3).

Alternatively, we can see the function V can be any function that transforms the vector of all
energy terms into a scalar energy:

V : R|ξ| → R

vy ↦→ V (vy), vy =
[︂
Ve1(y) . . . Ve|ξ|(y)

]︂⊤ (4.48)
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For instance one could use a Multi Layer Perceptron (MLP) parametrized by θ, such that
V (vy) = MLPθ(vy). As the MLP is a universal approximator (given enough hidden layers)
(Hornik, Stinchcombe, & White, 1989) it could better approach the optimal mixing function. The
criterion for optimality will be discussed in Section 5.2.

4.4.2.3 Towards generic (learnable) energy terms

In this chapter we proposed a series of priors with parameters to either set manually of estimate
from the data. The selection and design of the energy prior functions to put in the total energy
U is by itself a prior on the model, as it restricts the space of energies U(. . . , θ) generated by
parameters θ. As prospective work, we propose in Appendix G to push further the parametrization
of the energy priors in order to bypass the function-design-induced constraints, while allowing to
build energy functions that better fit the data. We first go through a design of per-point priors with
Multi Layer Perceptron (MLP), and then show that attention mechanisms can be used to learn a
generic aggregation function for interaction priors.

4.5 Conclusion

In this Chapter we built the Point Process through its energy function, using a CNN output for the
data term and introducing multiple priors. We summarize our contributions as follows:

• A first data model for non-marked Point Processes, using a heatmap inferred by a CNN
(Section 4.2.2.1).

• We further refine this approach by inferring a map of vectors and computing the divergence;
it achieves better instance separation (Section 4.2.2.2).

• Then we propose a way to interpret most CNN outputs as energies that we can use on our
model, both for object positions and marks (Section 4.2.2.3).

• All the above data terms based on a CNN output benefit from replacing the contrast mea-
sures computation by a simple value lookup and interpolation (Section 4.2.2.2 and 4.2.3),
thanks to the pre-computation of energy maps (Section 4.4.1).

• Joint priors on object parameters to avoid favoring non-existing shapes when dealing with
multiple shape modes (e.g. cars and trucks) (Section 4.3.1.2).

• Carefully chosen aggregation functions on interaction priors to avoid energy explosion and
favor specific configurations (e.g. alignment with at least one other object, no overlap with
any other object) (Section 4.3.2.1).

• As prospective work, we propose a way to solve discontinuities in object interactions (Sec-
tion 4.4.2.1) and new models to mix the energy terms (Section 4.4.2.2).



CHAPTER 5
Point Processes as

Energy Based Models
Dans ce chapitre, nous passons en revue les procédures d’échantillonnage et
d’estimation des paramètres pour le Processus Ponctuel défini au chapitre 4. Nous pro-
posons d’exploiter les cartes de potentiels fournies par le CNN, en élaborant un noyau de
perturbation local et un noyau de naissance, tous deux construits à partir des données.
De plus, nous proposons un schéma de calcul parallèle modifié pour échantillonner de
nouveaux points et perturbations qui se concentre sur les zones de l’image à forte den-
sité d’objets. Pour l’estimation des paramètres du Processus Ponctuel, nous proposons
d’abord une approche fondée sur les séparateurs à vaste marge pour résoudre les limita-
tions des méthodes précédentes. La deuxième approche et contribution majeure consiste
à appliquer des méthodes d’apprentissage de modèles basés sur l’énergie pour estimer
tous les paramètres du Processus Ponctuel au sein d’un algorithme unifié par divergence
contrastive. Enfin, nous proposons un score d’objet pour le calcul de métriques utilisant
l’intensité de Papangelou.

In this chapter we go through the sampling and parameter estimation procedures for
the Point Process defined in Chapter 4. We propose to leverage the potential maps pro-
vided by the CNN, by building a data driven local perturbation kernel and birth kernel.
Moreover, we propose a modified parallel computation scheme to sample new points
and perturbation that focuses on areas of the image with high object density. For the
estimation of the Point Process parameters, we first propose an approach based on Sup-
port Vector Machines to alleviate limitations of previous methods. The second approach
and major contribution of this thesis, consists in applying Energy Based Model learning
methods to estimate all parameters of the Point Process within one unified algorithm
through contrastive divergence. Finally, we propose an object score for metrics compu-
tation based on the Papangelou intensity.
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5.1 Sampling

In Chapter 4 we built our Point Process model through the definition of its energy function U .
This section presents the improvements over the sampling procedures introduced in Section 3.3.
We leverage the pre-computed energy potential maps provided by the CNN model to build more
efficient sampling. First by using local perturbations based on the potential map adapted from
(Ortner, 2004; Descombes, 2013), which we published in (Mabon et al., 2021). We adapt the birth
map from (Lacoste et al., 2005) to our model, and propose using a truncated energy model to
sample new points (Mabon et al., 2023a). We then adapt parallel Point Process sampling from
(Verdié & Lafarge, 2012) with cell picking based on the potential maps, as published in (Mabon
et al., 2023a) and to be submitted in (Mabon et al., 2023). Finally, the resulting sampling proce-
dure is presented in Algorithm 5.1, based on Jump Diffusion while leveraging automatic gradient
computation.

5.1.1 Data driven kernels

5.1.1.1 Local perturbation based on data

The local perturbation kernel introduced in Section 3.3.2.3 usually uses a zero centered Gaussian
distribution to generate the perturbation δ on a point y on configuration y. When computing the
total energy we first infer a position potential map Vpos so that we simply have to sample values
from it to get Vpos. It is defined as:

Vpos[ρ] = Vpos(ρ,X), (5.1)

for any pixel ρ ∈ J0, HK × J0,W K. Similarly, we can define Vκ for each mark κ ∈ {a, b, α}.
Given that we have access to the pre-computed position potential map, we could intuitively use it
to make better move propositions within the Markov chain.

In order to propose more relevant perturbations, we propose to use this potential map. From
(3.64) we have:

α(y,x) = min
{︃

1, h(x)g′(δ′)
h(y)g(δ)

}︃
,

Where g(δ) is the density for picking perturbation vector δ and g′(δ′) the density of the reverse
move.

In (Mabon et al., 2021) we propose a data-based translation kernel adapted from (Ortner, 2004;
Descombes, 2013) using the position potential map Vpos. This proposal is applied to a non-marked
Point Process (thus only performing translations) but can be generalized to a marked Point Process
too.

For a point y in configuration y, y ∈ S, we generate a translation vector δ ∈ J−δmax , δmaxK2,
with δmax ∈ N+ the maximum move distance.

Vector δ is sampled from δ ∼ g(δ), with:

g(δ) = exp(−wposVpos [⌊y⌋+ δ])∑︁
δ′∈J−δmax ,δmaxK2 exp(−wposVpos [⌊y⌋+ δ′]) , (5.2)



96 CHAPTER 5 — Point Processes as Energy Based Models

With ⌊y⌋ the integer coordinates vector of point y. In practice, we build a tensor Dy,X of size
(2δmax + 1, 2δmax + 1) such that:

Dy,X[i, j] = 1
Z

exp
(︄
−wposVpos

[︄
⌊y⌋+

[︄
i
j

]︄]︄)︄
, i, j ∈ J−δmax , δmaxK2,

Z =
∑︂

δ′∈J−δmax ,δmaxK2

exp(−wposVpos
[︁⌊y⌋+ δ′]︁).

(5.3)

2D tensor Dy,X defines a density over the raster space that approximates g. Note that for the return
move from y′ = y + δ to δ, the density is g′(δ′) = Dy′,X[−δi,−δj ].1 To ensure this kernel can
access all real-valued positions within δmax , δ is drawn as δ ∼ Dy,X, then we set:

δ ← δ +
[︄
U([0, 1])
U([0, 1]).

]︄
(5.4)

The change in densities g and g′ gets balanced out in α(y,x). The resulting kernel has the follow-
ing acceptance ratio and is illustrated in Figure 5.1:

α(y,x) = min
{︄

1, h(x)Dy′,X[−⌊δi⌋ ,−⌊δj⌋]
h(y)Dy,X[⌊δi⌋ , ⌊δj⌋]

}︄
.

y

y′
δ ∼ Dy,X

δ′ ∼ Dy′,X

Dy,X

Dy′,X

Figure 5.1: Data-driven translation kernel applied to y. Perturbation δ is generated from the 2D
density map Dy,X. The reverse mode follows density Dy′,X which is centered on y′. The red and
blue centered squares represent the integer positions ⌊y⌋ and ⌊y′⌋ for y and y′.

5.1.1.2 Birth with density

The uniform birth kernel introduced in Section 3.3.2.3 proposes points uniformly in S × M.
However, the density and scattering of objects in the image might not be uniform, making a lot of

1We use negative array indexing for simplicity, one can either offset all indexing by δmax for all indexing to be
positive, or use the Python negative indexing convention A[−i] = A[len(A) − i].
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the object proposals superfluous. In their work, (Crăciun, 2015) use a binary map to restrict the
space S into a smaller subspace; boats being most likely on water, the binary map corresponds to
a detection of water bodies. In (Lacoste et al., 2005), the authors use a map of potentials to build
a proposal density for the birth kernel. This proposal density is built from a pre-computation of
the contrast measure for numerous possible object positions and parameters (i.e. data potentials in
that case).

A density birth kernel QB that proposes a new point u to configuration y with density d(u),
has the following Green ratio:

r(y,y ∪ {u}) = pD

pB

QD(y ∪ {u} → y)
QB(y→ y ∪ {u})

h(y ∪ {u})
h(y)

= pD

pB

λ

d(u)(n(y) + 1)
h(y ∪ {u})

h(y) .

(5.5)

As in (Lacoste et al., 2005), we propose using the data energy to drive this density d using the
pre-computed position and mark tensors Vpos and Vκ.

Discrete points space. The position and mark energy maps Vpos and Vκ, are raster maps (i.e.
defined over integer positions), meanwhile the density has to be defined on S ×M. As it is simple
to sample in a discrete finite space, we define a discrete equivalent of the space S ×M to sample
in. The discretization stems from the pixel space in the image, and mark discretization performed
in Section 4.2.3:

Sd = J0, HK× J0,W K,

Md =
∏︂

κ∈{a,b,α}
{c(κmax − κmin) + κmin, c = 0, . . . , nκ} . (5.6)

Sampling from truncated energy. Ideally we would propose a point u to the current configu-
ration y, sampled with the marginal density p(u|y) as is done within Gibbs sampling. While we
cannot easily compute the marginal density of u knowing y we can approximate it through the
position potential of point y, with p(u|y) ∝ h(y ∪ {u})/h(y):

h(y ∪ {u})
h(y) = exp (U(y,X)− U(y ∪ {u},X)) (5.7)

= exp

⎛
⎜⎜⎝−V (u,N y

{u},X)
⏞ ⏟⏟ ⏞
added point energy

+
∑︂

y∈N y
{u}

V (y,N y
{y},X)− V (y,N y∪{u}

{y} ,X)
⏞ ⏟⏟ ⏞

energy variation of existing points

⎞
⎟⎟⎠ (5.8)

≃ exp
(︂
−V (u,N y

{u},X)
)︂

(5.9)

≃ exp

⎛
⎝−wposVpos(u,X)−

∑︂

κ∈{a,b,α}
wκVκ(u,X)

⎞
⎠ (5.10)

In (5.9) we first neglect the energy variations of the existing points, moreover the cardinality of
N y

{u} is limited by the number of object in a dmax radius. In (5.10) we simplify the energy of point
u to the easy-to-sample energy terms: the position and marks potentials. While for instance the
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non-overlap prior is of great importance, it makes the sampling of a new point u more compu-
tationally expensive. That way our truncated law for point proposal only depends on the image
X.

We derive the following density for sampling new points ρ in discrete space Sd ×Md :

˜︁d(ρ) = 1
Z

exp
(︄
−
wposVpos[ρ] +

∑︁
κ∈{a,b,α}wκVκ[ρ]
Td

)︄
, (5.11)

where Z is a normalizing constant (which we can compute easily as ˜︁d is defined over a discrete fi-
nite space). Density ˜︁d(ρ) can be computed for all pixels ρ in Sd×Md , as the normalizing constant
is simply a sum over HWn3

κ elements; thus this density can be easily sampled from. Temperature
parameter Td > 0 is used to influence the density: high Td tends towards a uniform distribu-
tion, (i.e. getting closer to the uniform birth kernel); low Td makes the birth kernel only propose
low data potential points (i.e. likely higher acceptance rate at the cost of less space exploration).
Eventually, to sample a point u in continuous space S ×M we proceed as follows:

1. Sample a pixel ρ in Sd ×Md with density ˜︁d.

2. Sample u in ρ uniformly (u ∈ S ×M).

This resulting sampling density d of u is:

d(u) = 1
|ρu|

˜︁d(ρu), (5.12)

with ρu the pixel in Sd ×Md containing u, and |ρu| the measure of pixel ρu (= 1 if the unit of
measure is set to a pixel).

5.1.1.3 Jump diffusion

For sampling the Point Process we use the Jump Diffusion mechanism introduced in Section 3.3.3.
It alternates diffusion with birth and death kernels to explore the whole configuration space Y . As
a reminder the discrete diffusion as introduced (3.68) gives:

yt+1 = yt − γ∇U(yt) +
√︂

2T (t)wt, wt ∼ N (0, γ).

The gradient of the energy ∇U is computed thanks to an automatic differentiation engine (see
following paragraph on implementation 5.1.2), lifting the burden of manual gradient derivation,
and allowing to implement and test new energy functions easily (as long as those are defined using
the set of operations for which the automatic differentiation is available).

Diffusion can be seen as a continuation of the local perturbation based on data. While with the
latter we approximate the energy locally with the position potential to sample a new position for a
point, the diffusion approximates the energy locally as U(y + δ) ≃ U(y) + ∂U(y)

∂y δ and samples
a small perturbation in the vicinity of y.

For most of the energy model, the gradient computation is well-defined: for both single point
priors (Ve, e ∈ ξprior−point) and interaction priors (Ve, e ∈ ξprior−interact.) minus the discontinu-
ities discussed in Section 4.4.2.1. For the data terms (Ve, e ∈ ξdata), the computation of the energy
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corresponds to looking up a value at a position in a tensor Z. Thanks to the interpolation used to
obtain values for float pixel coordinates, the operation is made differentiable, both relative to the
configuration y and relative to the potential map Z2.

In practice, as parallelization requires some maximum spatial displacement on points (see next
Section 5.1.2), the step ∆Cc (xt) from xt to xt+1 (Alg. 5.1 line 9) is clipped; For each point y ∈ xt

updated to y′, we bound the i and j components of ∆Cc (xt) within [−δmax , δmax ]:

∆Cc (xt)i ← min (δmax ,max (−δmax ,∆Cc (xt)i)) ,

ensuring |yi − y′
i| ≤ δmax , and similarly for j.

5.1.2 Parallel sampling

In Section 3.3.2.4 we define the basics of parallelization of the Point Process samples, which
allows performing perturbations over multiple independent cells at once. With parallelization, we
aim to take advantage of the spatial Markovianity of the Point Process; i.e., points further than a
certain distance have no effect on each other’s energy. Contrary to (Verdié & Lafarge, 2014) we
use a constant cell size instead of quadtrees.

We build each cell to be a square of size dc, each cell is assigned to a mic-set s, such that
no two cells in set s are neighbors (considering the 8-connectivity). To build such cells on a 2D
plane requires four colors as illustrated in Figure 5.2. We demonstrate in Appendix E.1 that the
minimum cell size necessary to maintain independence of the moves in cells of the same mic-sec
needs to be such that:

dc ≥ 2dmax + 2δmax . (5.13)

To simulate the MCMC, one could pick a mic-set s uniformly and run the perturbations in
parallel over each cell c in set s. However, we might do more perturbations than necessary in some
low density areas of the image. Thus, we propose a selection scheme for the cells to compute, that
aims at reproducing sampling density d introduced in Section 5.1.1.2. For a given configuration y
we do:

1. Pick a kernel Qm with probability Qm(y,Y),

2. pick one mic-set s with probability p(s),

3. keep each cell in mic-set s with probability p(c|s) to form s̃

4. for every cell c in set s̃ run kernel Qm restricted to c (denoted Qc,m).

The process of cell selection (step 3), allows to limit the number of cells processed at once on
big images, hence limiting the computational cost while maintaining the desired sampling density
d.

2The heavy lifting of interpolation and differentiation is handled by the Pytorch library, here the grid_sample
operation (Torch.Nn.Functional.Grid_sample — PyTorch 2.0 Documentation, n.d.)
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Figure 5.2: Mic sets and cells for a Point Process. Each point is represented in the color of the
cell it belongs to. Cell ck

s is the kth cell of mic-set s. We highlight cells of mic-set 0, for which we
represent the radius in which each point can be moved δmax (colored dashed circle). Gray semi-
transparent circles represent each point interaction radius dmax (neighborhood N y

{y}).

Probabilities of picking cells. We now build the probabilities p(s) and p(c|s) with which cells
are picked, with the aim to fit the sampling density d introduced in (5.12). For a density birth
kernel Qc,B, the kernel density over the whole image QB is now:

d(u)
λ⏞ ⏟⏟ ⏞

QB(y→y∪{u})

= p(su)p(cu|su)Qcu,B(y→ y ∪ {u}), (5.14)

with cu and su the cell and mic-set containing u respectively. For the above defined procedure we
have the following conditions stemming from it:

• For step 2, we need p(s) ∈ [0, 1] and
∑︁

s p(s) = 1.

• For step 3, we need p(c|s) ∈ [0, 1].

• Qcu,B is of the form Qcu,B(y→ y∪ {u}) = dc(u)
λ , with dc(u) density we can sample from,

with
∫︁

u∈c dc(u)du = 1.

We propose the following solution that verifies (5.14) and the conditions mentioned above:

p(s) =
∫︂

v∈s
d(v)dv = d(s), (5.15)

p(c|s) =
∫︁

v∈c d(v)dv∫︁
v∈s d(v)dv = d(c)

d(s) , (5.16)

dc(u) = d(u)∫︁
v∈c d(v)dv = d(u)

d(c) , (5.17)
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denoting (by extension) d(s) and d(c) the density d integrated over all cells of mic-set s and cell c
respectively.

Skewing distributions for more parallelism. While the procedure to pick cells s̃ allows sam-
pling points with density d, by construction the expected number of cells in s̃ is 1. In practice,
we skew probability p(c|s) to ensure more cells are kept for simulation, by replacing p(c|s) by
p′(c|s) = min(1, np(c|s)), with n > 1. It increases the amount of parallel computations of cells
(thus reducing simulation time) at the cost of deteriorating the approximation of global sampling
density d.

Acceptance ratio in cells. From the mutual independence of cells we get the following prop-
erty: the acceptance ratio for a move in cell c can be simplified (at least) as such:

α(y,y′) = α(Cc̄ (y) , Cc̄
(︁
y′)︁), (5.18)

where Cc (y) is the set of points from configuration y in cell c, and c̄ the 8 cells neighboring c
and c itself (thus by extension Cc̄ (y) is points in y inside c or its neighbors). More details in
Appendix E.2. This allows making the computation of acceptance ratio local, thus easy to perform
in parallel.

Implementation. Instead of using multiple CPU threads as in (Crăciun, 2015), we defer the par-
allelization to the implicit multithreading capabilities of GPU (Graphical Processing Unit) when
performing matrix/tensor operations. In short, we write the whole energy model in terms of tensor
operations, using an extra batch dimension to process multiple cells at once. Libraries such as
(PyTorch, n.d.) combined with CUDA (CUDA, 2017), allow to transparently run tensor operations
over multiple threads within a GPU. On top of it, granted operations are defined properly, PyTorch
allows to automatically compute the gradient of the energy model; either relative to parameters θ
— which we use for parameters estimation in Section 5.2.2 — or to the configuration y, which
are used for diffusion in Section 3.3.3. We go further into details about the data structure and
implementation of our approach in Appendix I.

5.1.3 Sampling method

The sampling method is summarized into Algorithm 5.1. The input for this algorithm are:

• x0: initial configuration;

• X: image;

• θ: energy model parameters;

• T0: initial temperature;

• ns: number of samples;

• αT : temperature decay rate (see annealing in Section 3.3.4).
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Input: x0,X, θ, T0, ns, αT

1: for t = 0, . . . , ns − 1 do
2: Pick diffusion with probability 0.8, else jump
3: Pick mic-set s with probability p(s)
4: Keep each c in s with probability p(c|s) to make s̃
5: xt+1 ← xt /* unvisited cells will keep previous state */
6: for all c ∈ ˜︁s do
7: if diffusion then
8: dw ∼ N (0, γ)
9: ∆Cc (xt) = −γ∇Cc(xt)U(xt,X, θ) + dw

√
2Tt

10: Cc (xt+1)← Cc (xt) + ∆Cc (xt)
11: else
12: Qc ← Qc,B with probability 0.5 else Qc,D /* pick birth or death */
13: x′ ∼ Qc(x→ ·)
14: r ← Qc(x′→x)

Qc(x→x′) exp
(︂
−U(x′,X,θ)−U(x,X,θ)

Tt

)︂
/* compute Green ratio */

15: Cc (xt+1)← Cc (x′) with probability min(1, r)
16: end if
17: end for
18: Tt+1 ← αTTt

19: end for
Output: xns

Algorithm 5.1: Sampling method Sample(x0,X, θ, T0, ns, αT ).

Alternatively, in Algorithm 5.1 we can run the diffusion kernel interrupted by jumps (birth or
death) after a wait time ω, with ω following a Poisson distribution:

ω ∼ p(ω) = τω

ω! exp(−τ), (5.19)

where τ = E(ω) represents the expected waiting time thus controls the frequency of the jumps
(Descombes, 2013).

In this section we first introduced using the potential map provided by the CNN to first build a
local transform kernel based on the position potential map Vpos. Then we improved on (Lacoste
et al., 2005), by building a birth map from truncated model given by the CNN output instead
of precomputing contrast for numerous objects in the image. In the continuation of data driven
kernels, we implement the diffusion mechanism, by proposing to leverage the modern automatic
differentiation engines. Finally, we adapted the parallel approach from (Verdié & Lafarge, 2012),
proposing a cell selection scheme that simulates the Point Process in parallel given the density
derived from the potential map.

5.2 Parameters estimation

Our model introduced throughout Chapter 4 contains several parameters that require to be set
before sampling configurations. The most important of which being the relative weights on the
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energies introduced in (4.3). We also have a few parameters in the various priors of the model.
We denote by θ the set of parameters and by U(y,X, θ) the resulting energy model. The ideal
parameters θ∗ should be such that the ground truth configuration yGT corresponds to the minimum
of the energy U for an image X:

yGT = arg min
y∈Y

U (y,X, θ∗) . (5.20)

We first present some previous approaches for Point Process parameter estimation, for instance
using linear constraints. Then, we propose a method to learn the weights of the energies θ =
{w0} ∪ {we, e ∈ ξ} based on margin maximization, solving the over-constraint issue of the
previous approach from (Q. Yu & Medioni, 2009; Craciun et al., 2015). This was published in
(Mabon et al., 2021). Eventually we adapt learning methods from energy based models, using
contrastive divergence (Hinton, 2002; Teh, Welling, Osindero, & Hinton, 2003) with a replay
buffer (Du & Mordatch, 2019) to estimate the Point Process parameters with gradient descent.
This approach was first published in (Mabon et al., 2022a) and refined in (Mabon et al., 2023a)
and (Mabon et al., 2023b).

5.2.1 Learning energy weights with local perturbations

5.2.1.1 Linear Programming

In their work (Crăciun, 2015) and (Q. Yu & Medioni, 2009) use random perturbations on the
Ground Truth yGT to generate non-valid configurations and build a set of linear constraints to
estimate the weights we. As a matter of fact, re-formulating (5.20) locally yields:

U
(︂
yGT ,X, θ∗

)︂
< U

(︁
y−,X, θ∗)︁

y− ∼ Q−
(︂
yGT , ·

)︂
,

(5.21)

where y− is a negative configuration, generated from perturbation kernel Q−. The kernel Q− is
build such that the perturbation on yGT results in a perceptually worse configuration. For instance
(Crăciun, 2015) use random translation, rotations and scaling (with a great amplitude) along with
random addition and removal of points.

Once a certain number of linear constraints are built, (Crăciun, 2015) and (Q. Yu & Medioni,
2009) use Linear Programming to solve for the weights we. However, this approach has several
limitations:

First, the number of constraints are to be limited, otherwise this leads to an over-constrained
unsolvable problem. The latter couples badly with the imprecise nature of the ground truth; with
noisy ground truth, some linear constraints can become contradictory, thus making the problem
unsolvable. With noisy input data, one would resort to use more data to compensate the variance
of the input; the latter Linear Programming approach does not offer this possibility. We propose to
address this issue in the following Section 5.2.1.2.

Finally, how the negative sample y− is built from to the ground truth depends on the design
of this kernel Q−. In practice, we find we need to iterate between crafting the perturbation Q−

and solving for we. For instance, given a set of negative samples y−, we obtain weights we and
find out that, at inference, it exhibits some bad characteristics (e.g. too much overlap). We then
proceeded to build a new set of negative configurations y− via a new Q−, with more examples to



104 CHAPTER 5 — Point Processes as Energy Based Models

the bad characteristic (e.g. more overlaps). We obtain a new set of weightswe that would hopefully
produce less of the negative characteristic. Section 5.2.2 proposes to address the Q− kernel design
issues.

5.2.1.2 Margin maximization

With this first approach proposed in (Mabon et al., 2021), we try to find the best linear separation
between ground truth and negative configurations/samples.

First we consider a set of negative samples y− generated — as with the previous method
— from a kernel Q−; y− ∼ Q−(yGT , ·). We also introduce positive samples y+ that are valid
configurations, obtained by small perturbations of the ground truth with a perturbation kernel Q+:
y+ ∼ Q+(yGT , ·). On one hand this models the uncertainty on the ground truth data due to its
noisy nature. This also help to balance the separation problem introduced later on and artificially
augments the dataset. Lastly, introducing energy term V0(y) = 1 and thus ξ′ = {0} ∪ ξ we can
rewrite (4.3) into:

U(y,X, θ) =
∑︂

y∈y

∑︂

e∈ξ′
weVe(y,X,N y

{y}) =
∑︂

e∈ξ′
we

∑︂

y∈y
Ve(y, . . . ) = w · v

w =

⎡
⎢⎣
w0
wpos

...

⎤
⎥⎦ , v =

⎡
⎢⎢⎣

∑︁
y∈y V0(y, . . . )∑︁

y∈y Vpos(y, . . . )
...

⎤
⎥⎥⎦ .

(5.22)

In a sense, we describe any configuration y as a point with coordinates v in the energy terms
space; configuration energy U is a linear function from this space to R, defined as the dot product
of a weight vector w and the coordinates vector v of y in this space.

Given a set of negative and positive samples, we look for a hyperplane defined by w·v−b = 0,
that best separates negative and positive samples. As shown in Figure 5.3, there might be more than
one hyperplane (H1 and H2 in (a)) or no hyperplane that can separate all the data (H3 in (b)).
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Figure 5.3: Separation of energy configurations via hyperplanes in the energy terms space. For
this illustration we only consider two energies Ve1 and Ve2 . (a) shows multiple possible hyper-
planes H1, H2 that perform separation. In (b) there is no linear separation possible. (c) shows the
hyperplane and associated margin; vector −→w shows in which direction the energy increases.
Figures are adapted from (Cortes & Vapnik, 1995) and (Larhmam, 2018).
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Support Vector Machine. With the Support Vector Machine (SVM) (Cortes & Vapnik, 1995)
propose to find the hyperplane that maximizes the gap in between the two categories within a
classification problem. We consider a set of samples yk, k = 1, . . . , n with associated vectors vk,
with labels lk = −1 for positive samples and lk = 1 for negative samples3.

For linearly separable data, the Hard-margin criterion minimize ∥w∥22 (i.e. maximizes the gap
2/ ∥w∥2) with constraint lk(w · vk − b) ≥ 1 for all k = 1, . . . , n; i.e. all configurations lie in the
correct side of the hyperplane (see Figure 5.3 (c)).

However, our data might not be separable: (Cortes & Vapnik, 1995) propose to use the hinge
loss and minimize the following instead:

γ ∥w∥22 + 1
n

n∑︂

k=1
max (0, 1− lk(w · vk − b)) , (5.23)

with γ > 0 a scalar setting the balance between increasing the margin and having points in the
correct side.

Remark 5.2.1 – SVM are often used with nonlinear kernels, allowing for nonlinear sep-
aration functions. In our case the energy model is linear; we discuss the addition of non-
linearities in the energy mixing function in Section 4.4.2.2.

Application and limitations. Minimizing this loss on the training data gives us the weights w
and b. In our case, parameter b in (5.23) is superfluous as the energy needs to be known up a to a
constant.

This method allows learning weights we even from non-separable set of positive and negative
samples. Moreover, we can consider many samples without risking to over-constraint the opti-
mization. However, this method is still reliant on the two perturbation kernels Q− and Q+ that
respectively generate the negative and positive samples. Finally, this does not allow to tune the
energy term parameters such as tpos, µarea, tovrlp, . . .. Those have to be estimated separately or set
manually.

5.2.2 Maximum likelihood learning

In this section we approach our parameter estimation problem from the angle of Energy Based
Models (EBM).

Definition 5.2.1. Energy Based Model (EBM) is a form of generative model; it captures
the dependencies between variables by associating a scalar energy to each configuration of
variables. Importantly it allows for an implicit sample generation procedure, where sample x
is found from x ∼ exp(−U(x)). Learning the EBM consists in finding the energy function
that associates low energies to correct values of the variables. (LeCun et al., 2006; Du &
Mordatch, 2019).

3We swap positive and negative labels due to the reverse ordering on energies; better configurations get lower energy.
That way the equations fall back to the canonical formulations for SVM.
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Formally, a Gibbs Point Process model is an Energy Based Model. The works of (LeCun et
al., 2006) propose to learn EBMs by maximizing the likelihood for the data D:

p
(︂
yGT

1 , . . . ,yGT
nD |X1, . . . ,XnD , θ

)︂
=

nD∏︂

k=1
p
(︂
yGT

k |Xk, θ
)︂
. (5.24)

The latter can be derived into the Negative Log-Likelihood (NLL) loss:

LNLL (θ,D) = 1
nD

nD∑︂

k=1

(︃
U
(︂
yGT

k ,Xk, θ
)︂

+ β log
∫︂

y∈Y
exp

(︂
−β−1U (y,Xk, θ)

)︂)︃
, (5.25)

with β a temperature parameter (from the Gibbs distribution), that has no effect on the position of
the minimum. While the left part U(yGT

k ,Xk, θ) pulls down the energies of ground truth config-
urations, the right part U(y,Xk, θ) pulls up the energies of all configurations in Y .

When minimizing the loss via gradient descent, the gradient at step n for parameters θn and
data sample k = 1, . . . , nD, is given as:

∂LNLL

(︂
θn,yGT

k ,Xk

)︂

∂θn
=
∂U

(︂
yGT

k ,Xk, θn

)︂

∂θn
−
∫︂

y∈Y

∂U (y,Xk, θn)
∂θn

p (y|Xk, θn)
⏞ ⏟⏟ ⏞

Ik,n

, (5.26)

where p(y|Xi, θn) is given from the Gibbs distribution:

p(y|Xi, θn) = exp(−β−1U(y,Xk, θn))∫︁
y′∈Y exp(−β−1U(y′,Xk, θn)) . (5.27)

While the integral Ik,n remains intractable, it can be approximated through Monte Carlo sampling,
where ˜︁y1, . . . , ˜︁yns are ns samples drawn from the law defined by p(·|Xk, θn), yielding:

Ik,n ≃
1
n s

ns∑︂

s=1

∂U (˜︁ys,Xk, θn)
∂θn

. (5.28)

As the law defined by p(·|Xk, θn) is simply the Gibbs Point Process with energy U(y,Xk, θn) at
temperature β, we can use the Point Process sampling procedure we introduced previously.

5.2.2.1 Contrastive divergence

Hinton et al. in (Hinton, 2002; Teh et al., 2003) propose to use a single sample in his contrastive
divergence method. This method also uses few simulation steps for the Monte Carlo Markov chain
(MCMC) to generate y−, starting from the desired answer yGT .

The general idea is to generate contrastive samples y− that follow the density derived from
U(·,X, θn) at step n of the optimization. Then we proceed to update θn to θn+1, by gradient
descent, with the goal to minimize the energy of the valid sample yGT , while maximizing the
energy of the contrastive sample y− (see Figure 5.4). Alternatively we can augment the data and
use positive samples y+ = yGT + N (0, σ+) to replace yGT as in (Du & Mordatch, 2019). The
loss to minimize is then:

L
(︂
θn,y+,y−,X

)︂
= U(y+,X, θn)− U(y−,X, θn) + γRV

RV =
∑︂

y∈{y+,y−}

1
|Y |

∑︂

y∈y

⃓⃓
⃓V
(︂
y,X,N y

{y}, θn

)︂⃓⃓
⃓ , (5.29)
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with γ > 0 the weight of regularization term R. We introduce the regularization term to avoid an
explosion of the per-point energy V (y,X,N y

{y}, θn). To ensure for a sparse weighting of energies
(i.e. minimize the number of non-zero weights we) we can introduce a new regularization term as
an L1 norm on the vectors of weights (Goodfellow et al., 2016):

R1 =
∑︂

e∈ξ

|we| (5.30)

The broad strokes of the estimation procedure for parameters θ are as follows:

1. Pick a pair (yGT ,X) from data D.

2. Generate positive sample y+ = yGT +N (0, σ+).

3. Generate negative sample y− ∼ exp(−β−1U(y−,X, θn)).

4. Compute the loss L (︁θn,y+,y−,X
)︁

(see (5.29)).

5. Update θn to θn+1 according to the gradient ∇L, with the Stochastic Gradient
Descent (SGD) method (Bottou, 2012).

6. Loop back to step 1 until convergence.

U
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,θ
n
0
)

y+

push down

y−

pull up

U
(y
,X

,θ
n
1
)

y+ y−

After

training

θn0 → θn1

Figure 5.4: Effect of training the energy with contrastive samples generated from the current θn.
Figure adapted from (LeCun et al., 2006).

While the local perturbation method (Section 5.2.1) only learns from constraints with states in
the neighborhood of the Ground Truth yGT (or positive samples y+), the contrastive divergence
method allows learning by contrast against any state in Y . It also focuses the contrastive samples
on low energy states (instead of uniformly sampling in Y which would be inefficient).

5.2.2.2 Replay buffer

As sampling contrastive samples y− can be time-consuming, (Du & Mordatch, 2019) propose an
adaptation of Hinton’s method (Hinton, 2002; Teh et al., 2003), making use of a replay buffer. The
replay buffer saves Markov chain results at current optimization step, to use for initialization in the
next steps, thus saving computing time. This allows reducing the long simulation time necessary
to pass the burn-in period of the Markov Chain (Robert & Casella, 2004) and get samples y−. We
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use a sample from the law derived from U(·,X, θn−1) to initialize the chain that samples the law
derived from U(·,X, θn).

The use of the replay buffer within one step n of the optimization loop goes as follows:

1. With probability pB set configuration x0 as a value of the replay buffer B picked
at random. With probability 1− pB (or if the buffer is empty) set configuration x0
as a random configuration in Y .

2. Run the Markov Chain (xt)t=0,...,ns to simulate model of energy U(·,X, θn).

3. Use y− = xns as a negative sample for the loss computation and update of θn to
θn+1.

4. Update buffer B ← B ∪ {y−}.

The buffer allows to virtually run longer chains across the epochs4 as shown in Figure 5.5 (a). At
each epoch we pick the result from a previous chain and continue it for a ns steps before saving the
result to the buffer. We find it is useful to limit the size of the buffer to nB, and update it on a first
in first out fashion; with lower size nB, the Markov chain starts more often from recent contrastive
samples, i.e. likely closer to an energy minimum. At the limit, with nB = 1, the contrastive sample
generations pick up the last sample y−, and updates it with ns MCMC steps (see Figure 5.5 (b)).
This yields an expect cross-epoch chain length of nspB

1−pB
, allowing to run longer chains with fewer

steps. This corresponds to the persistent contrastive divergence proposed by (Tieleman, 2008). We
discuss the effects of the choice of pB and ns on the cross-epoch chain in Appendix F.

Remark 5.2.2 – Contrary to (Du & Mordatch, 2019) — where the authors perform image
generation — our generated configurations y− depend on the current image Xk. Thus, we
define the buffer B as a set of sub-buffers BXk

, each associated to an image Xk. A configu-
ration y− generated from image Xk get added to sub-buffer BXk

.

5.2.2.3 Effect of temperature on samples

In the contrastive divergence method (Section 5.2.2.1), we introduce a temperature parameter β to
generate the negative samples y−. This temperature parameter is the same as the one introduced
for simulated annealing (Section 3.3.4) and has the same effects on the generated samples. At
high temperature the samples get closer to a uniform distribution in Y , and as temperature low-
ers samples get closer to local or global minima. Within the contrastive divergence optimization
scheme:

• Picking a high β allows to increase the energy of configurations far away from yGT . Sam-
ples are not likely to be drawn close to yGT , thus the learned model will not discriminate
efficiently around yGT .

• At low β sample are drawn consistently in local minima around yGT , the ability to discrim-
inate against configurations that differ greatly from yGT will be diminished.

4An epoch designates one iteration of the estimation procedure over the whole data D



5.2 – 5.2.2 Maximum likelihood learning 109

epoch n = 4BX1
at n

BX2
at n

epochs

im
ag

e
sa
m
p
le
s

X1: y−
1,1U(Y)

Kns

θ1

y−
1,2U(Y)

Kns

θ2

y−
1,3Kns

θ3

y−
1,4Kns

θ4

y−
1,5Kns

θ5

X2: y−
2,1U(Y)

Kns

θ1

y−
2,2Kns

θ2

y−
2,3

Kns

θ3

y−
2,4

Kns

θ4

y−
2,5

Kns

θ5

(a) Unlimited buffer size

epoch n = 4BX1
at n

BX2
at n

epochs

im
ag

e
sa
m
p
le
s

X1: y−
1,1U(Y)

Kns

θ1

y−
1,2U(Y)

Kns

θ2

y−
1,3Kns

θ3

y−
1,4Kns

θ4

y−
1,5Kns

θ5

X2: y−
2,1U(Y)

Kns

θ1

y−
2,2Kns

θ2

y−
2,3Kns

θ3

y−
2,4Kns

θ4

y−
2,5Kns

θ5

(b) Buffer size nB = 1

Figure 5.5: Buffer size effect on contrastive samples. Buffers are represented in blue. In this
example the Markov chain starts from y−

·,0 ∼ U(Y), thus the unlimited buffer is only of size 3 at
epoch n = 4. Configuration y−

k,n corresponds to contrastive sample for image Xk at epoch n, and
Kns

θn
is the application of the transition kernel of the RJMCMC ns times with parameters θn.
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We propose using a set of β, {β1, β2, β3} corresponding to low, medium and high temperatures,
allowing to mix samples exploreY while drawing some samples near local minima orU(y,X, θn).

Remark 5.2.3 – As for the previous remark, we further separate the buffer to associate each
sub-buffer to a temperature β. Now the buffer corresponding to image X and temperature β
is BX,β .

Remark 5.2.4 – When estimating weights w0, we we notice that scaling the weights by a
factor ς , is equivalent to scaling the temperature by ς−1:

U(y,X, {w0} ∪ {we, e ∈ ξ})
Tς−1 = U(y,X, {ςw0} ∪ {ςwe, e ∈ ξ})

T
. (5.31)

Thus picking, a temperature might have different effect depending on the weights. In prac-
tice, we find that scaling the energy model to unit variance solves this consistency issue; we
compute the energy model variance given its parameters θ:

Var(UT =∞) = ⟨U2
T =∞⟩ − ⟨UT =∞⟩2, (5.32)

with ⟨UT =∞⟩ the mean of energy U over multiple samples drawn at infinite temperature (i.e.
drawn from U(Y)).

We then simulate the energy model Ū = U/
√︁

Var(UT =∞) (so that Var(ŪT =∞) = 1).
This is equivalent to specifying the temperature for a unit variance energy model and scaling
it to the current energy model it is being applied on. The simple procedure to compute the
scaling factor is presented in Algorithm 5.2, where we pick 10000 as an arbitrary large
number of samples to compute the variance on.

Input: θ,X
1: Values ← ∅
2: for all k = 1, . . . , 10000 do
3: x ∼ U(Y) /* sample random configuration */
4: Values ← Values ∪ {U(x,X, θ)}
5: end for
6: ς ←

√︁
Var(Values)

Output: ς

Algorithm 5.2: Computation of the energy scaling factor, ComputeScaling.

5.2.2.4 Algorithm

Resulting from the above, we have the following algorithm for inferring parameters ˆ︁θ:
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1: B ← ∅, n← 0
2: while not converged do
3: for all (yGT ,X) in D do
4: β ∼ U({β1, β2, β3}) /* select negative sample temperature */
5: x0 ∼ U(BX,β) with probability pB, else U(Y) /* retrieve relevant buffer */
6: ς ← ComputeScaling(θn,X) /* compute energy scale, see Alg. 5.2 */
7: y− ← Sample (x0,X, θn, ςβ,K, 1) /* see Sample(x0,X, θ, T0, ns, αT ) in Alg.

5.1 */
8: y+ ← yGT +N (0, σ+)
9: ∆θn ← ∇θnL

(︁
θn,y+,y−,X

)︁

10: Update θn+1 with ∆θn using SGD
11: BX,β ← {y−} ∪ BX,β /* update the buffer */
12: n← n+ 1
13: end for
14: end while

Algorithm 5.3: Contrastive divergence for parameters estimation.

The sampling method at line 7 is described in Algorithm 5.1. In practice one iteration of the
loop on data at line 3 is done on a mini batch of ground truth and image pair instead of a single
pair; it allows smoothing the gradient between iterations by averaging on data samples.

In this section we contribute in proposing to use contrastive divergence (adapted from energy
based models) to estimate the parameters of the Point Process model. The use of replay buffer
(or persistent contrastive divergence) allows cutting on sampling time when sampling negative
configurations. While previous approaches using linear constraints and linear programming would
often be limited to learning energy weights, and risk over-constraint with too noisy or too many
data points, our method does not suffer from over-constraint, and allows solving for all parameters
of the model at once.

5.2.2.5 Discussions

Relating contrastive divergence to manual methods. In practice, the contrastive divergence
method relates to the empirical trial and error procedure used in previous works to set ˆ︁θ. Indeed,
oftentimes the manual procedure to find weights we goes as follows:

1. the user sets some approximate values to weights w̃e within ˜︁θ,

2. the user simulates configurations ỹ ∼ U(·|X, ˜︁θ),

3. if the inference is of good quality, the procedure ends. Otherwise, the user updates values for
weights w̃e, picked to counteract the observed bad configurations; (e.g., the configuration
has too much overlap→ increase the weight of the overlap energy). Then go back to step 2.

In a broad sense, the repeat of steps 2 and 3 maps to the alternated sampling (Alg. 5.3 line
7) and loss minimization (Alg. 5.3 lines 9 to 10). As step 3 in the manual procedure, attempts to
maximize the energy of the (bad) sampled configuration, minimizing the loss in Algorithm 5.3
tends to increase U(y−,X, θn) and decrease U(y+,X, θn).
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Learning more than just weights. For previous parameter inference method, we could only
infer the weights of the linear combination of energy terms. Here, the only requirement to be able
to learn a parameter is to be able to back propagate the energy model gradient up to that parameter.
This allows to learn not only weights but also energy term parameters so that:

θ = {w0} ∪ {we, e ∈ ξ} ∪ {tpos, µarea, σarea, µratio, µratio, tovrlp, trepls, tattrc}.

We detail in Appendix I the implementation allowing such back propagation of the gradient.
It would be possible to infer the parameters of the whole data energy model (i.e., the backbone

CNN), however this proves quite computationally expensive; training the CNN requires many
epochs as parameters are numerous (> 106 parameters). Meanwhile, the contrastive divergence
method (Algorithm 5.3) requires simulating a few Markov Chain steps in between epochs to gen-
erate contrastive samples, which increases the computational complexity of each epoch.

5.3 Papangelou intensity as a score

5.3.1 Computing the detection score

Classical CNN models for object detection yield a confidence score s(y) ∈ R for each proposed
object y in the image. This confidence score is often interpreted, for each detection, as propor-
tional to the probability of proposed element y to be a true object (true positive), s(y) ∝ p(y|X).
Applying a score threshold ts gives a set of detections, for which metrics such as precision and
recall can be computed by matching the detections with the ground truth. As the threshold has
to be adapted according to the need of the application of the model; i.e. some applications may
require few false positive (high precision) while other need less missed detections (high recall).
To assess the performance independently of the threshold selection, the Average Precision (AP)
metrics sums up the performance as the area under the precision-recall curve.

With the PP approach, the probability of one proposed point being an object of interest depends
on the rest of the inferred configuration ŷ, thus the scoring function should too s(y|ŷ \ {y}) ∝
p(y|ŷ \ {y},X). From Definition 3.1.7 we have that the Papangelou intensity is proportional to
the probability of finding a point y ∈ y in a small neighborhood dy knowing the rest of the
configuration y \ {y}. We propose to use the Papangelou intensity as a score :

λ(y; y \ {y}) = h(y)
h(y \ {y})

= exp
(︂
U(y \ {y},X, ˆ︁θ)− U(y,X, ˆ︁θ)

)︂
.

(5.33)

Pruning sequence. However, the dependency of the score on the current configuration yields a
complication while computing the Average Precision: when applying a threshold ts to prune the
configuration y into y′ ⊂ y, for any y ∈ y′, the score s(y|y \ {y}) may differ from s(y|y′ \ {y}).
With a score of the form s(y), that only depends on y and the image X — such as those from
classical CNN models — the score from one object after pruning is unchanged.

In the PP case, we compute the scores by sequentially removing the lowest scoring point until
none is left; i.e., we build a sequence of configurations y1 ⊃ y2 . . .yn(ŷ)−1 ⊃ yn(ŷ) ⊃ ∅, with
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y1 = ŷ:

yn+1 = yn \ {yn}, yn = arg min
y∈yn

λ(y; yn \ {y}), n = 1, . . . , n(ŷ) (5.34)

s(yn|yn \ {yn}) = s(yn|yn+1) = λ(y; yn+1) (5.35)

Equation (5.34) provides a pruning order y1, . . . , y|ŷ| of points in ŷ. This ordering allows to plot the
precision and recall curve. Indeed, to trace a precision recall-curve, one only requires the sequence
of (Recall(ts),Precision(ts)) pairs, which are obtained by sequentially pruning the lowest scoring
points. Equation (5.35) provides a score to each point yn.

5.3.2 Contrastive divergence loss and Papangelou intensity

On one hand we minimize the loss in (5.29) derived from the likelihood maximization, on the other
we evaluate the performance of our detections with the scoring method in (5.35) sourced from the
Papangelou intensity. In this part we show that while the two are derived differently, minimization
of the loss function leads to good properties on the score function. Here we consider the simplified
loss, as γ in (5.29) is small:

L(θ,y+,y−,X) = U(y+,X, θ)− U(y−,X, θ)
= ∆U(y− → y+),

(5.36)

denoting ∆U(y→ x) = U(x)− U(y).
Theorem 3.1.2 gives us the following expression of the Papangelou intensity:

λ(u; y) = h(y ∪ {u})
h(y)

= exp(U(y)− U(y ∪ {u}))
= exp(∆U(y ∪ {u} → y))

(5.37)

Case 1: single point addition. Considering a basic pair of positive contrastive samples, in
which we add a non-valid point u to y+:

y− = y+ ∪ {u}, u ∈ S ×M, u /∈ y+.

Now we have:

L(θ,y+,y−,X) = ∆U(y+ ∪ {u} → y+)
= log(λ(u; y+)).

We get the expected behavior: minimizing the loss L leads to minimizing the score of point u.

Case 2: single point removal. Now considering the removal of a valid point y from y+ to form
y−:

y− = y+ \ {y}, u ∈ y+.

Then:

L(θ,y+,y−,X) = ∆U(y+ \ {y} → y+)
= −∆U(y+ → y+ \ {y})
= − log(λ(y; y+ \ {y})).

Here we get the expected result that minimizing the loss lead to increasing the score of y.



114 CHAPTER 5 — Point Processes as Energy Based Models

Case 3: Arbitrary sequence of moves. We now consider the generic case where y− is gener-
ated from a sequence of moves from y+. Note that a local transformation (translation, rotation,
scaling etc...) can be formulated as a death followed by a birth. We built a sequence (yk)k=0,...,n

of n configurations as:

∀k = 1, . . . , n, yk =
{︄

yk−1 \ {yk} if yk ∈ y+

yk−1 ∪ {yk} otherwise,

with y0 = y+, y− = yn, and yk elements of either S ×M or y+5. Without loss of generality we
can reorder the sequence to match the pruning order defined in (5.34). The energy change for one
move is given as:

∆U(yk−1 → yk) =
{︄

log(λ(yk; yk−1 \ {yk})) if yk ∈ y+

− log(λ(yk; yk−1)) otherwise.

As we have (by definition) ∆U(x→ x′′) = ∆U(x→ x′) + ∆U(x′ → x′′), the loss is given as:

L(θ,y+,y−,X) = −
n∑︂

k=1
∆U(yk−1 → yk)

=
∑︂

yk /∈y+

log(λ(yk; yk−1)⏞ ⏟⏟ ⏞
(a)

)−
∑︂

yk∈y+

log(λ(yk; yk−1 \ {yk})⏞ ⏟⏟ ⏞
(b)

).

With ordering of the yk,yk matching the pruning order in (5.34) each λ(yk; . . . ) can be matched
to their respective score:

• part (a) corresponds to non-valid points added to y+, their score is minimized as the loss is
decreased;

• part (b) corresponds to valid points removed from y+, their score is increased as the loss is
minimized.

Hereby we show that minimization of the loss at a configuration level leads to the expected
results on object scores.

5.4 Conclusion

In this chapter we presented our methods to sample and estimate parameters of the Point Process
model. We summarize our contributions as follows:

• Adapting data-based perturbation kernels to our pre-computed energy maps: both for local
perturbation kernels (Section 5.1.1.1) and Birth kernels by sampling from a truncated energy
function (Section 5.1.1.2).

• Adapting parallel computation to focus sampling on cells with estimated high density of
object (Section 5.1.2).

5We shall add the condition that (yk)k=1,...,n contains no more than one instance of each element of y+ so that the
set subtraction is properly defined.
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• A simple procedure to estimate energy weight parameters, based on SVM, that avoids the
over-constraint issue of previous approaches (Section 5.2.1.2).

• Another parameter estimation method based on contrastive divergence initially introduced
for EBM. It allows learning internal energy parameters along with energy weights in a uni-
fied procedure. We adapt the replay buffer to the Point Process model, in order to shorten
sampling times during parameter estimation (Section 5.2.2).

• Using the Papangelou intensity as scoring function for the inferred points, to compute
benchmark metrics (Section 5.3).





CHAPTER 6
Experimental results

Dans ce chapitre, nous appliquons sur des données synthétiques et réelles les modèles et
algorithmes proposés dans la thèse. Nous présentons d’abord l’application de la diver-
gence contrastive sur un exemple simple utilisant des données synthétiques pour démon-
trer ses capacités. Nous présentons ensuite nos résultats avec des Processus Ponctuels
non marqués sur un premier jeu de données : Cars Overhead With Context. Un modèle
plus avancé est appliqué sur le jeu de données DOTA, qui montre d’excellents résultats
par rapport à d’autres approches fondées sur les CNN; les configurations inferrées sont
plus régularisées et nos modèles sont plus résilients au bruit additif.

In this chapter we apply on both synthetic and real data the models and algorithms
presented in the thesis. First we present the application of the contrastive divergence
on a simple example using synthetic data to demonstrate its capabilities. We then show
our first results with non-marked Point Processes on a first dataset: Cars Overhead
With Context. A more advanced model is applied on DOTA, which shows great results
compared to other CNN based approaches; inferred configurations are more regularized
and our models are more resilient to additive noise.
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6.1 Parameters estimation with Contrastive Divergence

6.1.1 Training example: Filtering out irrelevant terms

In the following part we demonstrate a use of the contrastive divergence method for parameter
estimation in a simple case, and how it is able to properly weight the energy terms within the
energy model; i.e. the estimated weights reflect the relative importance of energy terms within the
generative model. We proceed as follows:

1. Define an energy model.

2. Sample some configurations given a set of energy weight parameters.

3. Estimate the energy weight parameters from the generated data in order to simulate similar
data.

We consider a Point Process of circles, where each point y ∈ y is such that y ∈ S ×M =
[0, H] × [0,W ] × [rmin , rmax ], with y = (yi, yj , yr). The energy model is composed of the fol-
lowing energy terms:

Vpos(y,X) = X[yi, yj ] (6.1)

Vovrlp(y,N y
{y}) = max

u∈N y
{y}

{︃
max

(︃
0, d(u, y)− yr − ur

yr + ur

)︃}︃
(6.2)

Vexpnd(y) = yr − rmin
rmax − rmin

(6.3)

Vnoise(y) = vy, vy ∼ N (0, 1) (6.4)

The position potential (6.1) samples the value of the image at the object center location, overlap
potential (6.2) assigns high energy to overlapping circles, the expansion potential (6.3) favors
circles of a larger size, and (6.4) gives a random energy to each point of the configuration (and as
such is not a useful potential). To each we assign a corresponding weight wpos, wovrlp, wexpnd and
wnoise. We generate training samples by sampling the energy model with weights set as wnoise =
0, wpos = −2, wovrlp = 8, wexpnd = −1, picked semi-arbitrarily to limit overlap while favoring
big circles: some samples are shown in Figure 6.1 (a) and (b).

With these image and configuration pairs, we now use the contrastive divergence method (Al-
gorithm 5.3) to estimate the weights used for generating the configurations. We plot the energy
for positive samples (y+) and negative samples (y−) through the iterations of the training pro-
cedure (epochs) in Figure 6.1 (d) and the inferred weights in (e). We see that the noise prior –
that is irrelevant to the Point Process energy mixture — remains with an almost zero weight (even
through multiple iterations of the inference procedure, see Figure 6.1 (f)). Although the resulting
weights are not exactly the ones used to generate the training data, both models (the data generator
model, and the model with inferred weights) produce similar results as shown in Figure 6.1 (c);
both models seemingly have similar distributions at low temperature.

Remark 6.1.1 – For usual gradient descent methods, the loss should decrease monotonically
through epochs. In this case, the loss is computed against a set of contrastive samples that is
constantly updated; at each epoch new contrastive samples are generated, hopefully closer to
the ground truth configurations. Here, as the model converges, we expect the positive (U(y+))
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(a) train sample 1
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(c) inference
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Figure 6.1: Example of contrastive divergence for training. (a) and (b) show two training samples,
a synthetic image with configuration of circles in lilac. (c) shows a configuration inferred from
the model using the estimated parameters. In (d) we plot the loss and its components (see (5.29))
through the estimation procedure steps. (e) shows the weights value through the estimation proce-
dure, as in (f) where we compare over multiple random initialization.
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and negative (U(y−)) samples energies to progressively get closer. However, in Figure 6.1
(d) we observe a consistent offset between U(y+) and U(y−) after epoch 30; this is due
to some high temperatures β in the mix used to generated y− (see Section 5.2.2.3). At high
temperatures the samples y− are drawn closer to a uniform distribution in Y , thus get rated
with a higher energy.

6.1.2 Stable perturbation kernel

Within the contrastive divergence training procedure in Algorithm 5.3 the sampling of negative
sample y− is very costly. One can wonder whether we could instead generate negative samples y−

with a static kernel Q− instead; reducing computational time and complexity while maintaining
the advantages of the gradient descent approach to estimate parameters θ.

In this ablation study, we place ourselves in a simple setting similar to the energy model and
training data described in previous Section 6.1.1. We propose three different experimental settings:

• Contrastive: using Algorithm 5.3 as such.

• Static uniform: replacing the costly line 7 in Algorithm 5.3 by y− ∼ Q−(y+, ·), where
perturbation kernelQ− shifts location and marks of points with a random Gaussian, removes
points at random, and proposes new points uniformly in S ×M.

• Static density: same as previously, but new points are proposed with birth density d defined
in (5.12).

We show results in Figure 6.2: from this simple text we see that Algorithm 5.3 fails to learn an
energy that can generate proper point configurations when the negative samples are not generated
with y− ∼ exp(−U(·,X, θ)).

6.2 Results on optical data

Our application goal is the detection of small objects in images from satellites such as Pléiades-
HR (Pleiades-HR, 2012) (0.7m resolution), Pléiades Neo (Pléiades Neo, n.d.) (0.3m resolution)
or CO3D (CO3D Constellation, 2023) (0.5m resolution). Within the LiChIE project and our col-
laboration with Airbus Defense and Space, we set the resolution for our application to 0.5m.

6.2.1 COWC with non-marked Point Process

6.2.1.1 Data

Our first model published in (Mabon et al., 2021) is trained and tested on Cars Overhead With
Context (COWC)1 (Mundhenk et al., 2016).

The dataset contains images of several urban areas, for which the centers of vehicles are labeled
in their center. This dataset is quite diversified as it shows dense urban areas as well as forested
areas or fields.

As we aim to develop detection model for satellite imagery, we sub-sample images to as reso-
lution of 0.50m and refer to the resulting dataset as COWC0.5. We use an anti-aliasing filter when

1Available at: https://gdo152.llnl.gov/cowc/

https://gdo152.llnl.gov/cowc/
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Figure 6.2: Inference results on a test image (a to c) and weights during training (d to f) for each
experimental setup.
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sub-sampling in order to avoid artifacts on object edges and better approximate the acquisition of
a lower resolution image. We only use the RGB images of the dataset (no grayscale). For each
urban area we split it into two thirds for training and one third for testing.

6.2.1.2 Point Process model

As the dataset only contains object location and no geometric data, we consider a Point Process
without marks y ∈ S.

The energy model contains the following energies, with corresponding weights:

• Position potential Vpos as defined in (4.10).

• Overlap prior Vovrlp from (4.37), where each point is considered as a disk of constant diam-
eter a set as the typical car width in pixels at resolution 0.5m.

• Triplet alignment potential VtriAl defined in (4.45).

The total energy is then given as:

U(y,X) =
∑︂

y∈y
wposVpos(y,X) + wovrlpVovrlp(y,N y

{y}) + wtriAlVtriAl(y,N y
{y}). (6.5)

6.2.1.3 Parameter estimation and inference

To estimate the weights wpos, wovrlp, wtriAl , we use the linear SVM methods as described in Sec-
tion 5.2.1.2. We generate positive samples y+ from e ground truth configuration yGT for each
element of the training data with random Gaussian perturbation of low amplitude. Negative sam-
ples y− are generated from uniform sampling of points or high amplitude Gaussian perturbation
or random point removal from yGT .

The estimate ŷ of optimal configuration y∗ = arg miny∈Y U(y,X) is obtained with the
RJMCMC and simulated annealing method using the following kernels:

• Birth and Death kernels as introduced in 3.3.2.3 with non-uniform proposal density based
on Vpos.

• A transform kernel based on data as described in Section 5.1.1, using the energy map from
Vpos.

6.2.1.4 Results

Metrics. To measure the validity of an estimated point configuration ŷ against the ground truth
yGT we try to match every ground truth center with estimated points within a radius r = a/2 as
in (Mundhenk et al., 2016). Thus, an object is considered a detection if it matches to at least one
point from ŷ. An object of yGT is a False Negative (FN) if it corresponds to no point in ŷ. A point
of ŷ is a False Positive (FP) if there is no matching object in yGT . If multiple point in ŷ match
the same element of yGT , we count one True Positive (TP) and every extra matching point as FP.
Lastly if one detected element in ŷ matches to multiple ground truth elements, we set the match
to the closest ground truth object, if the remaining ground truth objects have no other matching
detections they are counted as FN. From the TP, FP and FN we can compute the precision, recall
and F1 score for an estimated configuration ŷ as shown in Table 6.1.
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Precision (Pr), Recall (Rc) and F1 scores for a given score threshold t are given as:

Pr(t) = TP(t)
TP(t) + FP(t) (6.6)

Rc(t) = TP(t)
|yGT | (6.7)

F1 (t) = 2 Pr(t)Rc(t)
Pr(t) + Rc(t) (6.8)

(a) ground truth (b) estimated configuration

nb. objects TP FP FN Precision Recall F1
74 48 17 12 0.73 0.64 0.68

Figure 6.3: Detection on a sample of COWC0.5: (a) ground truth, (yellow : detected vehicle,
orange: false negative) (b) estimated configuration ŷ (green: true positive, red: false positive).
Table shows metrics on this patch.

Location No. obj. Prec. Rec. F1 File
Potsdam 425 0.74 0.66 0.70 top_potsdam_6_9_RGB

Potsdam 262 0.56 0.48 0.52 top_potsdam_6_8_RGB

Potsdam 110 0.76 0.68 0.72 top_potsdam_6_7_RGB

Selwyn 121 0.87 0.50 0.75 Selwyn_BX22_Tile_RIGHT_15cm_0003

Toronto 3969 0.87 0.63 0.74 03747

Table 6.1: Precision, recall and F1 on each test image of COWC0.5.

6.2.2 Point Process of rectangles on DOTA and ADS data

6.2.2.1 Data

DOTA. We compile DOTA0.5, a 0.5 meter per pixel vehicles in remote sensing dataset, from
the DOTA dataset (Xia et al., 2018), and use it to train the CNN backbone, and infer the model
parameters ˆ︁θ. This dataset is built by sub-sampling images from DOTA to the desired spatial
resolution.
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To test the resilience of our models against noise, we test the methods on the same data adding
Gaussian noise (with σ = 0.3 on input image X at inference, see Figure 6.4). We denote this
dataset DOTAN

0.5.

ADS data. Moreover, we evaluate models on data provided by Airbus Defense and Space (ADS)
of two areas around Lyon, this aerial data is sub-sampled to the desired resolution (0.5m ), emu-
lating the CO3D satellite characteristics. This dataset is unlabeled, thus will only serve to evaluate
the models qualitatively, and was not used for training/parameters estimation.

6.2.2.2 Models

In this section we show results both on CNN based models, and PP models on the DOTA0.5 dataset.
The PP models use the following energies from Table 6.2:

Energy term Notation Instances Parameters Eq. No.

D
T

a position Vpos – tpos (4.26)
mark Vκ κ ∈ {a, b, α} – (4.30)

Pr
io

rT
er

m
s

joint area & ratio VjntAR k ∈ {car, truck} µk,ratio, µk,area ,
σk,ratio, σk,area

(4.34)

overlap Vovrlp – tovrlp (4.37)
alignment Valign talign ∈ {0, π

2 } – (4.38)
repulsive Vrepls – trepls (4.39)
attractive Vattrc – tattrc (4.40)
zero neighbor VzrNbr – – (4.41)

a Data Terms

Table 6.2: Energy terms of the model.

To each energy term ewe assign a respective weightwe as in (4.3). For some above-mentioned
energies we use multiple instances; e.g. we have one mark energy for each mark κ ∈ {a, b, α}.
Similarly, we have one alignment ratio for parallel objects (talign = 0) and one for perpendicular
objects talign = π/2.

The models tested on the test dataset are as follows:

• CNN-LocalMax.: naive detection from the CNN backbone (used in the PP models); we find
objects through local maxima in the output probability maps (or local minima in the energy
maps).

• CNN-PP♦: PP model with minimal inferred parameters: inferred parameters θ are the energy
weights {we, e ∈ ξ}. The energy term parameters in the table above are set manually.

• CNN-PP⋆: PP model with parametrized priors: inferred parameters θ include both the en-
ergy weights {we, e ∈ ξ} and the energy term parameters in the table above.

• BBA-Vec. and YOLOV5-OBB: lastly, we compare all of our models above with BBA-Vec.
from (Yi et al., 2021) and YOLOV5-OBB from (Yang & Yan, 2022; Jocher et al., 2022).
These models are trained on the same data as the above-mentioned models.
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6.2.2.3 Parameter estimation and inference

Estimation of energy parameters. The parameters θ for both PP methods CNN-PP♦ and CNN-
PP⋆ are estimated with the Algorithm 5.3. The procedure is applied over 512 epochs (iterations
on the train data which consists of 2048 ground truth patches of size (128, 128)). Temperatures for
sampling negative/contrastive configurations are picked as β1 = 1.0, β2 = 10−2 and β3 = 10−4.
We set the buffer size nB = 1 and its probability pB = 0.99. The regularization weight is set to
γ = 1 for the loss in (5.29).

Inferring configurations from images. At inference, the configuration ŷ is obtained through
Algorithm 5.1. We set a number of iterations per pixel nipp = 2.0, with the expected number of
cells being process in parallel n// = E[|s̃|], we get the number of iterations for an image X of size
(H,W ):

ns = nippHW

n//
. (6.9)

The initial temperature is set to T0 = 0.1ς; i.e. the temperature is set to 0.1 for a unit variance
model, and then scaled with ς computed from Algorithm 5.2. The annealing rate αT is set so that
Tns = 10−10 as:

αT =
(︃
Tns

T0

)︃ 1
ns

(6.10)

6.2.2.4 Results

Method
AP

DOTA0.5 DOTAN
0.5

BBA-Vec. 0.82 0.19
YOLOV5-OBB 0.86 0.10
CNN-LocalMax. 0.86 0.55
CNN-PP♦ 0.91 0.58
CNN-PP⋆ 0.92 0.62

PR DOTA0.5 PR DOTAN0.5

Table 6.3: Average Precision (AP) values, respectively for default DOTA0.5 and noisy DOTAN0.5 data. Right
: Precision Recall (PR) curves, color correspondence in left table.

The above models are evaluated on a test split of the DOTA0.5 dataset. Metrics are computed by
matching the object proposals and Ground Truth using the IOU (Intersection Over Union), with a
0.25 threshold. We show detection results in Figure 6.4, with a score threshold set for each model
to the one maximizing the F1 score. The Average Precision (AP) metrics (which are threshold
independent), are shown in Table 6.3.

We notice in Figure 6.4, that although Ground Truth labels are noisy — which could have
caused over-constraining problem with linear programming (see Section 5.2.1) — our models
infer more regular configurations, that better fit the objects and their physical constraints.

Testing the models on noisy data in Figure 6.5 and on the ADS data in Figure 6.6 (we show
highlights in Figure 6.7), shows that the added priors allow the PP based models to be more
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Figure 6.4: Samples of detection on the test dataset for various models. The score threshold (only
used for display purposes to prune low score objects) is set to maximize the F1 score for each
model.
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Figure 6.5: Samples of detection on the test dataset for various models with added noise in the
input image. The score threshold (only used for display purposes to prune low score objects) is set
to maximize the F1 score for each model.
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Figure 6.6: Models applied to ADS data. [© Airbus Defense and Space]
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Figure 6.7: Model applied to ADS data. The second image (second column) is brightened for
better display legibility. [© Airbus Defense and Space]

resilient to noise or areas of the image with limited information; e.g. low resolution, partial oc-
clusions, shadows, as in Figure 6.6, line 2. The ADS data inference results are obtained with the
models trained on the DOTA0.5 training set which in top shows the capacity of the model to gen-
eralize to unseen (although similar) data.

Lastly, CNN-PP♦ and CNN-PP⋆ show comparable performances (qualitatively and quantita-
tively), demonstrating the capability of the contrastive divergence method to infer the prior/inter-
action model (via the prior parameters), thus limiting the manual setting of parameters via trial
and error.

6.2.2.5 Computational complexity

Our two MPP based methods — running on an Nvidia Quadro RTX 8000 Graphics Processing
Unit — execute in 300s on average, for 16k parallel iterations (equivalent to 77k sequential
iterations) for one image. With an efficient implementation, considering a density of 1.9 × 10−3

(95th percentile of the observed object densities2), we estimate the cost of one iteration to be
around 5 operations per pixel per iteration, thus around 4 × 105 operations per pixel in total. We
show the derivation of those values in Appendix H. As a point of comparison transformer models
for image classification range from 5 × 106 to 1.8 × 107 operations (Y. Zhao et al., 2021). The

2i.e. 95% of observed object densities are below this value.
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complexity could be greatly reduced by reducing the number of iterations of the Point Process
sampler, at the cost of straying away from the proper convergence properties.

6.3 Conclusion

In this chapter we applied our methods on remote sensing data sets; both on COWC (Mundhenk
et al., 2016) and DOTA (Xia et al., 2018) that are publically available, and on some data provided
by Airbus Defense and Space. Even with the limited complexity of our models, we achieved good
qualitative results by ensuring regularity in the inferred geometry. Quantitatively our models show
better results than other CNN based methods. The latter is more pronounced with noisy input data:
our models maintain good qualitative and quantitative results even in adverse noise conditions. We
also demonstrate the proposed parameter estimation method consistently matches or outperforms
slightly the manual setting of model parameters, qualitatively and quantitatively, with the intrinsic
advantage of limiting tedious manual trial and error. Lastly we show our model can generalize to
new data by looking at qualitative results on ADS data after training on DOTA.





CHAPTER 7
Conclusion and

Perspectives
7.1 Conclusion

In this PhD thesis we address the incorporation of interaction models in object detection meth-
ods, while leveraging the capabilities of deep convolutional neural networks. Satellite images are
inherently flawed due to the atmospheric perturbations, partial occlusions and limited spatial reso-
lution. To compensate for this lack of visual information, it becomes essential to incorporate prior
knowledge about the arrangement of objects of interest.

On one hand CNN based methods are great at extracting patterns from images, but strug-
gle to learn object to object interaction models without introducing attention mechanisms such
as Transformers that drastically increase the complexity of the model: for instance, (Lu et al.,
2023) proposed to include priors as text-model descriptors, while (Zeng et al., 2023) made use of
cascades of attention modules.

On the other hand, Point Processes propose to jointly solve for both the object likelihoods rel-
ative to the image (data term), and the coherence of the arrangement of objects itself (prior term).
Firstly, Point Process approaches model the configurations as vectorial geometry, constraining the
state space by construction. Secondly, these models allow formulating explicit priors on configu-
rations as energy functions. However, in most of the literature (Verdié & Lafarge, 2014; Schmidt
et al., 2017), the data terms relied on contrast measures between the foreground and background.
We showed the limitations of those on satellite data in this manuscript. Although we should note
(T. Li et al., 2019) proposed transforming the original image with a CNN trained for classification,
to then compute the contrast measures on that simplified result.

Instead of going the Transformers/complexity route, we proposed in this thesis to combine the
CNN pattern extraction with the Point Process framework. The basic idea of this approach is to use
the CNN output as the data term for a Point Process model. At first, we set up an original contrast-
like method (pattern matching using cross correlation) on the output of CNN trained to map blobs
at object centers. We then proposed a novel method using a CNN trained to infer a field of vectors
that point towards the nearest object center. To obtain a heatmap we simply need to compute the
divergence of this field. This allows to easily separate close objects at a low computational cost.
Finally, we showed how we can reinterpret any heatmap-based CNN output as an energy that
can be used for our model, both for the position and marks of each object. With our formulation
of the data energy as the interpolation of a potential map, we transformed the contrast measure
computation, into a simple lookup and interpolation of values in a 2D or 3D tensor.

133
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With these pre-computed potential maps, we proceeded in adapting the Point Process sampling
methods to make use of that easily available information. Indeed, these tensors define densities
over a discrete space that is easy to sample from, and that approximates a truncated version of the
energy model (which is defined in continuous space). First, we applied this data-guided sampling
with the local transform perturbation kernel, and then built a birth map. These spatial densities also
allow us to focus the parallel sampling of the Point Process to areas where the number of point
is likely to be higher and thus requires more proposals. Finally, we leveraged the easily available
automatic differentiation engines, to compute the energy gradient and perform diffusion for a more
efficient exploration of the state space at a fixed number of points.

Previous methods would use Linear Programming to estimate the relative weights of the en-
ergies of the model (Q. Yu & Medioni, 2009; Craciun et al., 2015) from a set of constraints.
However, this is prone to over-constraining and only takes into account a limited amount of data
points. Our first parameter estimation resulted in an SVM based method, that looks for the best
possible separation between positive and negative samples. Thanks to its permeable boundary, this
method allows to consider many more data points, even noisy ones that would contradict with hard
constraints. Ultimately, we proposed adapting a method used for Energy Based Models: the con-
trastive divergence (Hinton, 2002; Du & Mordatch, 2019). Within a gradient descent scheme, it
alternates between generating contrastive/negative samples from the current energy, and maximiz-
ing the energy difference between positive samples (similar to the ground truth) and the contrastive
samples. The procedure we presented allows estimating not only energy weights, but also the var-
ious internal parameters of the energy terms. Otherwise, those would have to be set manually (by
trial and error) or with a separate procedure for each parameter of each energy term.

To be able to compare our model with other CNN based object detection models we introduced
a scoring function for the objects inferred by the Point Process model. This score is computed
from the Papangelou conditional intensity, which measures the likelihood of a point given the rest
of the configuration. This is a key difference from classical scoring functions that only consider
individual points, regardless of their neighborhood.

We apply our methods on remote sensing data sets; both on COWC (Mundhenk et al., 2016)
and DOTA (Xia et al., 2018) that are publically available, and some data provided by Airbus De-
fense and Space. Even with the limited complexity of our models, we achieved good qualitative
results by ensuring regularity in the inferred geometry. Quantitatively our models are better than
some other recent CNN based methods. The improvement of results is more pronounced with
noisy input data: our models maintained good qualitative and quantitative results even in adverse
noise conditions. We also demonstrated the proposed parameter estimation method consistently
matches or outperforms slightly the manual setting of model parameters, qualitatively and quanti-
tatively, with the intrinsic advantage of limiting tedious manual trial and error procedures. Lastly
we show our model can generalize to new data by looking at qualitative results on ADS data after
training on DOTA.

7.2 Perspectives

Due to the iterative nature of MCMC sampling methods, and the limited optimization of our
model (mainly to allow to modularity while experimenting), the inference time is significantly
longer that state-of-the-art CNN based object detection methods. Speeding up the inference could
be achieved by using fewer iterations, initializing the chain with an approximate inference (e.g.
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the CNN-LocalMax. output shown in Section 6.2.2) along with a faster simulated annealing. This
would yield faster results at the cost of straying further from the optimal convergence conditions.
Other solutions exist such as discretizing the state space and solving a binary variable optimization
problem (T. T. Pham et al., 2016).

While in this thesis we focused on small vehicle detection, the framework we proposed can be
easily adapted to any other modality of objects where interactions between objects of interest are
a key element. For instance road networks can be modeled with Point Processes of segments as
in (Lacoste et al., 2005), and have important priors on their interactions (e.g. limited bend radius).
Point Processes can also be applied to temporal data; (Craciun et al., 2015) performed tracking in
remote sensing data. In this case, priors on dynamics are strong and could be able to complement
the lack of visual information and even complete occlusions (e.g. car going under a bridge). Also,
as our model is quite resilient to noise, we expect it would perform well on SAR data, as the input
noise is more important with this type of data.

Future work could focus on the composition capabilities of such energy models: in short, it
would be feasible to estimate the data energy functions on one set of data, and the prior energy
model on another one, to then compose the two and form a complete model. In practice this would
allow to learn a data model on imperfect annotations, and learn a prior model on perfect synthetic
data that reproduces the expected structures; here we would only need configurations of objects,
no difficult to produce images.

Finally, the proposed parameter estimation method is not bound to object detection: we noted
earlier the generative nature of our Point Process model, thus we could apply it to learning patterns
and structures of points in order to produce a generative model that will be capable of imitating
patterns as done in (Hurtut et al., 2009). The latter could benefit from non-application-specific prior
model that would be learned on the data, such as we propose in Appendix G: using a universal
approximator for the per-object prior, and learning aggregation operators over the interactions
using attention mechanisms.
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Appendices

A Jacobian for the local transform kernel

In Section 3.3.2.3 we consider a Marked Point Process with dim(M) marks and denote d =
dim(M) + dim(S) the dimension of each point.

For a move from y to x, with perturbation δ We denote y = {y1, . . . , yn} and x =
{x1, . . . , xn}, with n = n(y) = n(x). We have xi = yi, i ̸= k and xk = yk + δ, also δ′ = δ.

Here we illustrate a case where n ̸= k for sake of readability, but the reader will easily picture
how the result is similar if n = k. Id and Od respectively denote the identity matrix and zero
matrix of size d× d.

First we have the following partial derivatives:

i = j ̸= k i = j = k i ̸= j
∂xi

∂yj Id Id Od

∂xi

∂δ Od Id -
∂δ′
∂yj Od Od -
∂δ′
∂δ Id

The Jacobian is then computed as:
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∂(y, δ)

⃓⃓
⃓⃓ =

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

∂x1

∂y1 . . . ∂x1

∂yk . . . ∂x1

∂yn
∂x1

∂δ
...

. . .
...

. . .
...

...
∂xk

∂y1 . . . ∂xk

∂yk . . . ∂xk

∂yn
∂xk

∂δ
...

. . .
...

. . .
...

...
∂xn

∂y1 . . . ∂xn

∂yk . . . ∂xn

∂yn
∂xn

∂δ
∂δ′
∂y1 . . . ∂δ′

∂yk . . . ∂δ′
∂yn

∂δ′
∂δ

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

(A.1)

=

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

Id . . . Od . . . Od Od
...

. . .
...

. . .
...

...
Od . . . Id . . . Od Id
...

. . .
...

. . .
...

...
Od . . . Od . . . Id Od

Od . . . Od . . . Od Id

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

(A.2)

= det(Ind) det(Id) (A.3)

= 1 (A.4)
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B Training a CNN for small object detection in remote sensing data

In this section we present a few methods used to train the CNN models to build the data term
regardless of the loss function.

Sampling on objects. When training on large satellite images such as in DOTA0.5, the density of
objects can vary greatly. As we train the CNN with constant size patches (128, 128, 3), we sample
those from the large images of the training dataset. However, sampling those patches uniformly
produces many empty patches (no object of interest). Thus, we sample patches 1/3 of patches
uniformly in space, and 2/3 centered on objects (with a random Gaussian perturbation to avoid
consistently centered objects). This allows maintaining a good number of examples of objects,
while still avoiding over-detection in empty areas. These patches are resampled in the training
dataset every 8 epochs to avoid overfitting.

Augmentations. We perform image augmentations on the training patches to add synthetic
diversity to the data. We implement two sets of augmentations: a realistic one, that produces
images that perceptually fit the aspect of images we get from satellite imagery; and a strong one
that produce images that could not realistically be produced by the sensor (if not for a technical
issue). The strong augmented image remains legible though, for the vast majority (except some
edge cases), the objects can be still be seen in the image. The augmentations are illustrated in
Figure B.1, and composed as follows:

Realistic Strong
rotation (90 degree increments)
flip
histogram matching same
RGB shift or CLAHE 1

blur
Gaussian noise

random shadow patches or fog
channel shuffle or dropout of channels
random brightness and contrast

The augmentations are implemented using Albumentations (Buslaev et al., 2020). We find that
training the CNN model on the strong augmentation gives better results on the validation dataset.
We believe this makes the model more robust thanks to the greater (artificial) variety of data seen
at training.

Sampling hard patches. As training progresses, we focus the training on some hard patches.
After some number of epochs, we compute the loss (or a part of it) on all the training images; for
instance we compute BCE( ˆ︁HM ,HM ) from (4.17) on every image (not patches). We then define a
per pixel density from the error by normalizing it. Difficult patches are sampled using this density.
We find that blurring the density map with a Gaussian blur allows sampling patches with a higher
average error. These difficult patches are mixed in the previously described sampling procedure,
with 1/3 difficult patches, and 2/3 from previous method.

1Contrast Limited Adaptive Histogram Equalization
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(a) Input patches

(b) Realistic augmentations

(c) Strong augmentations

Figure B.1: Image augmentation examples



166 APPENDICES

Inferring on large images. The Fully Convolutional aspect of the Unet allows it to be trans-
lation invariant. When processing a very large image, we cannot always load the full image into
the model at once. We can cut the image into patches, infer on each patch, and stitch those back
together. Given the translation invariant property we expect the same results as if we inferred on
the whole image at once.

However, one has to consider the padding used within the model. When performing a con-
volution with a 3 × 3 kernel, the output will be 2 pixels smaller on both width and height if not
padding is applied, as the convolution kernel reaches the edge. To maintain the same output size,
we apply mirror padding to add 1 pixel on each side on each dimension to ensure the convolution
output is of the same size. This, in turns, introduces some edge artifacts, as the mirror padding tries
to mimic data that is not there, thus losing the translation invariance of the result. This padding
is however useful when processing image, in order to be able to get results on the borders of the
image.

As we can compute the size of this edge effect, we can take it into account when cutting the
image into patches, so that we only keep the non-affected center part. We illustrate the cutting
scheme in Figure B.2. The size of the edge effect s is approximated by:

2s = 2d + 2d+1l + 8(2d−1 − 1) + 4, (B.5)

with d the depth of the Unet (number of pooling operations), and l the number of convolution in a
bloc (l = 2 in the classical implementation of Unet we use). Knowing this edge size, we pad the
image with this amount on each side, then split it into patches so that the inner part of the patches
that have no edge effect connect together.

Figure B.2: Cutting a large image for inference. Right, input image; left, patches overlay, plain
lines are patches boundaries while dotted lines correspond to the center parch with no edge effect.
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C Marks data energy derivation

This Section justifies the formulation of (4.30) in Section 4.2.3. First we consider a simple energy
model with no interactions such that:

U(y,X) =
∑︂

y∈y
Vpos(y,X) + Vκ(y,X) (C.6)

For any configuration of points y we have:

p(y|y,X) = p({y} ∪ y|X)
p(y|X)

=
exp

(︂
−∑︁y′∈{y}∪y Vpos(y′,X) + Vκ(y′,X)

)︂

exp
(︂
−∑︁y′∈y Vpos(y′,X) + Vκ(y′,X)

)︂

= exp (−Vpos(y,X)− Vκ(y,X)) .

(C.7)

Here p(y|y,X) gives the probability of y being a point, given points in the configuration y. With-
out interactions between points in the model, we have p(y|y,X) = p(y|X):

p(y|X) = 1
Z

exp (−Vpos(yX)− Vκ(y,X))

p(yi, yj |X)p(yκ|yi, yj ,X) = 1
Z

exp (−Vpos(y,X)) exp (−Vκ(y,X))
(C.8)

From the position energy definition, we identify p(yi, yj |X) ∝ exp(−Vpos(y,X)), thus:

p(yκ|yi, yj ,X) = 1
Z ′ exp (−Vκ(y,X)) . (C.9)

Meanwhile, the CNN classifier gives us:

p̂(yκ ∈ cκ|yi, yj ,X) = Softmax(ˆ︁Zi,j
κ )c =

exp
(︂
ˆ︁Zi,j

κ [cκ]
)︂

∑︁nκ
c′=1 exp

(︂
ˆ︁Zi,j

κ [c′
κ]
)︂ . (C.10)

We approximate probability p(yκ|yi, yj ,X) over continuous values of yκ, as its discrete coun-
terpart p̂(yκ ∈ ⌈cκ(yκ)⌉|yi, yj ,X) of yκ belonging to the ⌈cκ(yκ)⌉th bin of values (see (4.28)).
Thus we have:

Vκ(y,X) = − ln (p̂(yκ ∈ ⌈cκ(yκ)⌉|yi, yj ,X)) (C.11)

Vκ(y,X) = −ˆ︁Zi,j
κ [⌈cκ(yκ)⌉] + ln

(︄
nκ∑︂

c=1
exp

(︂
ˆ︁Zi,j

κ [c]
)︂)︄

(C.12)
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D Fast computation of overlap

We find there is no simple closed-form formula for the area of intersection of two oriented rect-
angles: Intersec(u, y) = Area(u∩y)

min{Area(u),Area(y)} . In order to be able to compute overlap values over
numerous rectangles without needing to branch the program for each pair of objects, we use a
faster approximation to replace the precise overlap value. This makes use of the hyperplane sep-
aration theorem applied to convex polygons (Polygon Collision - GPWiki, 2012): if two convex
polygons are not intersecting there exists a line that passes between them; such a line exists only
if one of the sides of one of the polygons forms such a line.

For a given pair of rectangles, we project both into one dimension four times; one for each
long and short axis of each of the two rectangles. The 1D overlap can then be easily computed in
each projection. The smallest intersection value approximates the intersection of the two objects.
While is this not exactly the intersection value Intersec(u, y) defined in (4.37), this approximation
returns 0 only when no overlap is present, and increases (continuously) to 1 when a full overlap
happens.

Intersec(u, y) ≃ max

⎧
⎪⎨
⎪⎩

0,−1
c

max
v∈{u,y}
k∈{a,b}

{︂
Gapv,k(u, y)

}︂
⎫
⎪⎬
⎪⎭

(D.13)

c = min
v∈{u,y}
k∈{a,b}

{︂
min

(︂
Projv,k(u),Projv,k(y)

)︂}︂
(D.14)

(D.15)

Where Projy,b(u) is the length of the projection of rectangle u on axis b of rectangle y. The
computation of Gapv,k(u, y) and Projv,k is illustrated in Figure D.3. On top of approximating the
intersection easily, we also get the gap between the two shapes as shown in Figure D.3. For later
use we define:

Gap(u, y) = max
v∈{u,y}
k∈{a,b}

{︂
Gapv,k(u, y)

}︂
. (D.16)

y

yb

u

Projy,b(u)

gap > 0

(a) no intersection

y

Proju,b(y)

u

ub

gap < 0

(b) intersection

Figure D.3: Fast overlap computation illustrated: left has no overlap (gap>0); right has overlap
(gap<0). In dashed orange the current projection axis, in gray the other three axes; the final result
is the maximum over the four projection axes.
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E Parallelism

E.1 Minimum cell size

From Section 3.2.1.1 we know the relation that ensures Markovianity for our model is ∼
m

(i.e. a
2dmax radius). Also, we built all perturbations to only translate objects up to δmax . Moreover, any
complex perturbation can be simplified to a sequence of births and deaths (e.g. moving a point is
one death and one birth). Thus, any perturbation is a combination of the following:

• A death in cell c, given the Markovianity relation the acceptance rate α depends only on
objects less than 2dmax away from c.

• A birth in cell c or within distance δmax of cell c, thus the acceptance ratio if only function
of points within 2dmax + δmax . Note that other cells of the same mic-set as the current cell
might add objects in their δmax -neighborhood.

We illustrate the above in Figure E.4.

“frozen” area

c
δmax

dmax

2dmax + 2δmax

Figure E.4: Determining cell size from basic moves. A point is moved starting from a cell in the
current mic-set. The point can be moved in the δmax -neighborhood. This move might change the
energy of points in the (δmax +dmax)-neighborhood. In short, the Markovianity ensures this move
depends at most on the dashed area.

E.2 Acceptance ratio for a move in a cell

Here we aim to show that for a move from y to y′ in cell c we have:

α(y,y′) = α(Cc̄ (y) , Cc̄
(︁
y′)︁), (E.17)

This derives from:
∆U(y→ y′) = ∆U(Cc̄ (y)→ Cc̄

(︁
y′)︁), (E.18)
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with ∆U(y → y′) = U(y′,X, θ) − U(y,X, θ). Any move in cell c can be decomposed into the
removal of points from y in cell c, and the addition of points in the δmax -neighborhood of cell c.
Considering the series of configurations induced by this decomposition into N simple additions
or removals we have:

∆U(y→ y′) = ∆U(y→ y1 . . .yN−1 → y′) (E.19)

=
N−1∑︂

k=0
∆U(yk → yk+1), (E.20)

with y = y0 and y′ = yN .
From here we only have to show (E.18) for a birth of a single point, as the energy change

of a death is minus the energy of the opposed birth move. So we now need to show (E.18) for
y′ = y ∪ {u}.

c

P0
P1

P2

P3

δmax

dmax

2dmax + 2δmax

Figure E.5: Space partitioning around cells

We consider the following (non overlapping) partition of y illustrated in Figure E.5:

P0 = {y ∈ Y | ∃ỹ ∈ c×M, d(y, ỹ) ≤ δmax} (E.21)

P1 = {y ∈ Y | ∃ỹ ∈ c×M, d(y, ỹ) ≤ dmax + δmax} \ P0 (E.22)

P2 = Cc̄ (y) \ P1 \ P0 (E.23)

P3 = y \ Cc̄ (y) (E.24)

Then we have y = P0 ∪ P1 ∪ P2 ∪ P3. We defined similarly P ′
0, . . . , P

′
3 for y′. Here we suppose

y′ = y ∪ {u}. Since u is placed in cell c or δmax away from c we have P1 = P ′
1, P2 = P ′

2,
P3 = P ′

3, but P0 ̸= P ′
0.
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We split the energy difference into our partitions:

∆U(y→ y′) =
∑︂

y∈Y

V (y|N y′

{y})−
∑︂

y∈y′
V (y|N y

{y}) (E.25)

=
3∑︂

k=0

⎛
⎝∑︂

y∈Pk

V (y|N y′

{y})−
∑︂

y∈P ′
k

V (y|N y
{y})

⎞
⎠ (E.26)

• The difference cancels out between P3 and P ′
3 as P3 = P ′

3 and ∀y ∈ P3, N y
{y} = N y′

{y} ⊆
P3 ∪ P2 by construction (i.e. the dmax -neighborhood of points in P3 in unchanged too).

• The same holds for P2 and P ′
2, as P2 = P ′

2 and ∀y ∈ P2, N y
{y} = N y′

{y} ⊆ P3 ∪ P2 ∪ P1.

• For P1, P
′
1 however we have P1 = P ′

1 but ∀y ∈ P1, N y
{y} ⊆ P2 ∪ P1 ∪ P0 and P0 ̸= P ′

0.
Still we can write the following (also valid for P ′

1 and Cc̄ (y′)):

∀y ∈ P1, N y
{y} = NP0∪P1∪P2

{y}

= NCc̄(y)
{y}

(E.27)

• The above equality is also valid for y ∈ P0 and y ∈ P ′
0

We are now left with what we needed to show (we highlight the changes from (E.26) in red):

∆U(y→ y′) =
1∑︂

k=0

⎛
⎝∑︂

y∈Pk

V (y|NCc̄(y′)
{y} )−

∑︂

y∈P ′
k

V (y|NCc̄(y)
{y} )

⎞
⎠ (E.28)

= U(Cc̄
(︁
y′)︁ ,X, θ)− U(Cc̄ (y) ,X, θ) (E.29)

Remark E.1 – The partition P2 could be reduced further. Indeed, if we set P2 = {y ∈
Y | ∃ỹ ∈ c×M, d(y, ỹ) ≤ 2dmax + δmax} \ P1, the above demonstration still hold, and we
can compute the ∆U on a smaller partition of y. In practice, we use the larger P2, as points
are stored in memory by chunks corresponding to their cell, making it easier to simply pull 9
cells from memory than checking for distances of each point against point u.
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F Buffer: size and chain length

Notations. One step of the contrastive divergence performs ns Markov chain iterations (with
transition kernel Kθ(·, ·), resulting of parametrized energy model U(·, θ)) starting from a config-
uration x resulting in x′. We denote the latter by:

x ns×Kθ−−−−→ x′ (F.30)

We also denote y−
n the negative sample at step n.

Basic contrastive divergence. Without buffer, at epoch n, the negative samples y− is generated
as :

x0
ns×Kθn−−−−−→ y−

n , (F.31)

with x0 = yGT (Hinton, 2002) or x0 ∼ U(Y) (Du & Mordatch, 2019). To increase chain length
(and have negative samples of better quality), one has to increase ns, at a great computational
cost. As we alternate between sampling negative configurations and upgrading the parameters,
this greatly increases the inference time.

Introducing persistent chains. Here we consider a one-sized buffer (or persistent contrastive
divergence (Tieleman, 2008)) as described in Section 5.2.2.2. The resulting procedure for step n
is as such: ⎧

⎨
⎩

yn−1
ns×Kθn−−−−−→ y−

n with probability pB

x0
ns×Kθn−−−−−→ y−

n otherwise,
(F.32)

with yn−1 pulled from the single element buffer. With this use of the buffer, we virtually run a
Markov chain across the epochs/steps, for which the transition kernel is updated every ns steps:

x0
ns×Kθn−l−−−−−−→ y−

n−l

ns×Kθn−l+1−−−−−−−−→ . . .
ns×Kθn−1−−−−−−−→ y−

n−1
ns×Kθn−−−−−→ y−

n (F.33)

For this cross-epoch chain to converge, the updates from each θn to θn+1 has to be small
enough so that the stationary density of the Markov chain at n + 1 is close enough to the density
at n. Otherwise, the burn-in period for the chain to stabilize to its new stationary density might be
longer than the number of Markov chain iterations ns. In practice θn is updated via small gradient
descent steps, and as the energy function U is Lipschitz-continuous w.r.t. to its parameters θ, it
guarantees limited variations in the stationary density.

The size of the chain from an initial state x0 to y−
n depends on the random variable L repre-

senting the consecutive times the memory was picked in a row after a random initialization. The
low of L is simply:

p(L = l) = (1− pB)pl
B. (F.34)

In turn, the chain presented in (F.33) from x0 to y−
n , has an expected length given by:

E[Lns] = nspB
1− pB

. (F.35)

In practice using pB = 0.95 yields an expected length of 19ns. This allows using a lower
ns thus reducing the computational cost, while maintaining qualitative samples from the density
derived from U(·,X, θn).

Increasing the buffer size, inevitably leads to a lower cross-epoch chain length as it introduces
the possibility at each step to resume from a shorter cross-epoch length.
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G Towards generic (learnable) energy terms

In Chapter 4 we proposed a series of priors with parameters to either set manually of estimate
from the data. The selection and design of the energy prior functions to put in the total energy
U is by itself a prior on the model, as it restricts the space of energies U(. . . , θ) generated by
parameters θ. In this section, as a perspective, we propose to push further the parametrization of
the energy priors in order to go beyond the function-design-induced constraints, while allowing to
build energy function that better fit the data. We first go through a design of per-point priors with
MLP, and then show that attention mechanisms can be used to learn a generic aggregation function
for interaction priors.

Generic single-point priors. The above-defined priors on single points (e ∈ ξprior−point), are
of the form Ve(y). As the MLP is a universal approximator, a sufficiently generic prior function
would be:

Vsgl(y) = MLPθsgl (y), (G.36)

this single point prior could replace all single point priors defined previously (e.g. (4.33) or (4.34))
as the MLP can learn an approximation of those functions from the data.

Generic interaction priors. Similarly, we can define a generic form of prior for interaction
energies:

Vint(y,N y
{y}) = Fint

{︂
MLPθint (y, u), u ∈ N y

{y}

}︂
, (G.37)

where MLPθint (y, u) gives a potential per interaction, which are aggregated with the operator
Fint . Here, the choice of the aggregation operator Fint remains. One could set if to a preselected
operator min, max or average. But in the aim to generalize, we instead would need a family
of operators parametrized by θ that can approximate these two operators, preferably within a
continuous parameter space so that we can estimate the operators by gradient descent.

Attention as aggregation operator. In broad strokes, the operator Fint needs to aggregate a set
of point to point interactions into a single value by considering only the relevant elements. This
reminds us of attention mechanisms in (Bahdanau et al., 2015) (Vaswani et al., 2017), where the
goal is to aggregate the query the relevant relations of a word in a sentence with its neighbors.
In that paragraph we will see that the attention mechanism fit our criterion for the design of an
interaction energy prior.

Attention is usually defined as:

Attention(Q,K,v) = Softmax
(︄

QK⊤
√
E

)︄
v, (G.38)

with v a vector of N values K the corresponding keys of shape (N,E) and Q a query matrix of
shape (L,E). The result is of size L, the number of query elements. In short, the keys K represent
each element of v in an embedding space of sizeE. Each query vector Q get compared to each key
in K in the matrix product QK⊤. After normalizing with a Softmax, this result serves to weight
each element on v according to its dot product in the embedding space with the query elements.
Since keys K, are supposed to represent each value in v, we can have them generated from the
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same input matrix V of shape (N,F ). Matrix V represents each of the N elements in a feature
space of size F . Equation G.38 then becomes:

Attention(Q,K,v) = Attention(qQw,VKw,Vvw), (G.39)

with Qw,Kw,vw matrices of weights of respective sizes (F,E), (F,E) and (F, 1), and q a vector
of L queries in feature space (shape (L,F )).

In our case, the elements to apply attention on are the neighbors N y
{y} of y (N = |N y

{y}|),
queried by the current point y (L = 1). To transform each point into feature space if size F we
propose using an MLP. Eventually we have:

Vatt(y,N y
{y}) = Attention(qyQw,Vy,yKw,Vy,yvw), (G.40)

Vy,y[k] = MLPθatt (uk), k = 1, . . . , N, {u1, . . . , uN} = N y
{y} (G.41)

qy = MLPθatt (y) (G.42)

were Qw,Kw,vw are parameters of the model (i.e. part of θ).
The above definition fits within the generic formulation defined in (4.35) for the interaction

potential vatt :
vatt(y, uk) = MLPθatt (uk)vw. (G.43)

Similarly, for the aggregation operator we have:

Fatt(v) =
∑︂

v∈v
ωvv, (G.44)

ωv = Softmax
(︄

qyQw(Vy,yKw)⊤
√
E

)︄
, (G.45)

where the construction of the Softmax operator ensure that have
∑︁

v∈v ωv = 1, thus ensuring
condition (4.36) is met.

Remark G.1 – A careful reader might have noticed the shift from an unordered set represen-
tation to a vector representation in (G.41); it is crucial that the aggregation of interactions
be permutation invariant as there is no inherent ordering of elements in the set of neighbors
N y

{y}. Hopefully the attention as defined above (i.e. without positional encodings) in permu-
tation invariant (Lee et al., 2019).

The greater number of parameters in this proposed energy model combining learned priors and
attention makes the parameter estimation procedure harder to tune. We are still tuning the details
of that approach, and hope to produce meaningful results soon.

Remark G.2 – From going through the proposed attention on neighbors approach, we notice
striking similarities of the resulting model with the graph attention networks proposed in
(Veličković et al., 2018). Indeed, the energy computation over a configuration can be seen
as a node level inference on a graph; each node of the graph is an object y in configuration
y and the links are the neighborhood relationship. Within a message passing framework,
(Veličković et al., 2018) update node

−→
h i into

−→
h ′

i as such:

−→
h ′

i = σ

⎛
⎝ 1
K

K∑︂

k=1

∑︂

j∈Ni

αk
i,jWk−→h ′

j

⎞
⎠ , (G.46)
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where
−→
h i is the feature vector of node i, K the number of attention heads 2 and αk

i,j the
weights resulting from the attention head k as illustrated in Figure G.6.

Considering our current proposed energy model and the similarity it bears with graph
models, future works could look into approaching the energy inference through the lens of
Graph Neural Networks.

Figure G.6: Left: the attention mechanism a(W
−→
h i,W

−→
h j) employed by our model,

parametrized by a weight vector −→a ∈ R2F ′
, applying a LeakyReLU activation. Right: an il-

lustration of multi-head attention (with K = 3 heads) by node 1 on its neighborhood. Different
arrow styles and colors denote independent attention computations. The aggregated features from
each head are concatenated or averaged to obtain

−→
h ′

1. From (Veličković et al., 2018).

2Instead of one attention mechanism they use multiple attention heads at once and average the result.
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H Algorithmic complexity

In this appendix we estimate the number of CPU cycles to perform an inference. Here we do not
consider the parallelization of operations which can save a lot of computation time.

Energy model.
U (Y |X, θ) =

∑︂

y∈Y

θw,0 +
∑︂

e∈ξ

weVk

(︁
y|X,N ,

θ

)︁
(H.47)

Operations costs. We use the values for operations cost in Table 1

Operation Cost
a± b 3
ab 5
a/b 25

log(a) 100
ab 100

cos(a), sin(a) 100
a < b, a > b, . . . 3
lookup value a[b] 3

Bilinear Interpolation (BI) 181
Trilinear Interpolation (TI) 393

Gap (D.16) 73

Table 1: Cycles cost per operation, in number of cycles (approximate).

For F(Gap) we consider the procedure given in Appendix D: One has to compute the max-
imum over 4 Gapv,k(u, y) (v =∈ {u, y}, k =∈ {a, b}). Computing one Gapv,k(u, y) amounts
to projecting the four corners of a rectangle into the axis of the other; i.e. performing a change of
reference axis. Once the corners projected, one has to find the minimum and maximum of those
four values. With the projection bounds found, it is only a matter to subtract values to find the
gap. Considering the heading and orthogonal-heading vectors (long and short axis) of each shape
precomputed, the cost amounts to:

F
(︂
Gapv,k(u, y)

)︂
≃ 4 (2F(ab) + F(a+ b))⏞ ⏟⏟ ⏞

projection

+ 6F(a < b)⏞ ⏟⏟ ⏞
projection min/max

+F (a+ b) (H.48)

The pre-computation of the heading (−→yt ) and orthogonal-heading (−→yn) vectors (for projection)
necessitates computing cos(yα) and sin(yα), thus we approximate a cost of F(−→yt ,

−→yn) ≃ 200 for
one shape. In turn the total cost of Gap becomes:

F (Gap) ≃ 4F
(︂
Gapv,k(u, y)

)︂
+ 3F(a, b)⏞ ⏟⏟ ⏞

max Gapv,k

= 73 (H.49)

The vectors −→yt and −→yn precomputed (to avoid computing those fore each pair of shapes), thus
accounted for in a separate line in Table 2
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Notations.

• nκ: number of classes for mark κ

• Ny = |N y
{y}|: number of neighbors for y in y

• dc: size of cell (see Section 5.1.2)

We assume the distance matrix is precomputed, we only have to update parts of it when new points
are added, or when points are updated.

H.1 Cost per energy term

We give the costs of each energy term (and the precomputing of −→yt ,
−→yn) in Table 2. For interaction

energies, we only specify the cost of computing on one interaction (not computing the reduction
operator yet). With symbol ↑ we signify we use the results from the previous computation thus
only counting it once. Interpolation (trilinear or bilinear), requires several lookups to interpolate
(4 for bilinear, 8 for trilinear).

Term Eq. ± ab a/b log(a) ab cos(a) a < b a[b] BI TI Gap F(·)
Pre-computation

−→yt ,−→yn — 2 200
Local energies

Vpos 4.26 4 1 193
Vκ 4.30 8 1 417
VjntAR 4.34 3 6 2 1 189
VzrNbr 4.41 1 3

Interaction energies
vovrlp 4.37 1 73
valign 4.38 2 1 1 109
vrepls 4.39 2 1 1 ↑ 34
vattrc 4.40 2 1 1 ↑ 34

Table 2: cycles costs for energy terms Vk(y|X,N ,
θ)

We decompose the cost of computing V (y) into the cost of computing the local energies
Ve(y), the cost of computing the Ny = |N y

{y}| interactions ve(y, u), u ∈ N y
{y}, and lastly the cost

of aggregating those interactions with Fe:

F(V (y)) = F(Ve) +NyF(ve) + F(Fe) + |ξ|(F(ab) + F(a+ b)) (H.50)

F(Ve) =
∑︂

e∈{pos,κ,jntAR,zrNbr}
meF(Ve) ≃ 2025 (H.51)

F(ve) =
∑︂

e∈{ovrlp,align,repls,attrc}
meF(ve) ≃ 359 (H.52)

F(Fe) =
∑︂

e∈{ovrlp,align,repls,attrc}
meF(Fe) ≃ 12(Ny − 1) (H.53)

with me the number of instances of each energy, for all terms me = 1 except for malign = 2 and
mκ = 3. Last equation results from all current aggregation functions being a min or max thus
F(Fe) = (Ny − 1)F(a < b). Cost |ξ|(F(ab) + F(a + b)) = 96 corresponds to weighting the
energy terms and summing them.
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H.2 Cost per kernel

H.2.1 Birth kernel

The birth kernel application is split into tree phases : sampling a new point (Ksample), adding the
point to the configuration (Kadd), computing the Green ratio (r) to accept or reject the addition:

F(KB) = F(QB,sample) + F(QB,add) + F(r). (H.54)

Sampling. To sample a new point, we pick one new point in the cell. The new point is picked in
cell c (of size dc) given a density map of size d2

c , the marks are sampled with densities of size nκ

each (3 marks). We approximate the cost of sampling an index in an array of size n to be around
lnnF(a, b): we draw a random number with U([0, 1]) (complexity O(1)) then look in the array
representing the cumulative distribution (that can be seen as a sorted array) where the random
number fits (O(lnn) comparisons).

Considering the cost to sample an array of size n to be n comparisons (3 cycles):

F(QB,sample) ≃ F(a < b) (2 ln(dc) + 3 ln(nκ))
≃ 6 ln(dc) + 9 ln(nκ).

(H.55)

Adding the point to the configuration. Adding a new point requires computing its distance
with the possible neighbors. Computing the distance itself is F(dist(y, u)) = F((yi−ui)2 +(yj−
uj)2) ≃ 16. We also compute the difference of each mark uκ− yκ; the total cost of computing the
distance and marks difference is F(dist, diff ) ≃ 25 When inserting a point we need to compute
the distance with all points in c̄, i.e. |Cc̄ (y) | elements:

F(QB,add) ≃ 25|Cc̄ (y) |. (H.56)

Computing the Green ratio. Computing the Green ratio for the addition of one point y requires
computing the energy change induced by the addition of that point.

F(∆U(y→ y ∪ {y})) = F(Ve) +NyF(ve) + F(Fe) + 96⏞ ⏟⏟ ⏞
local and interaction energies of the added point

+
∑︂

u∈N y
{y}

F(Update(u))

⏞ ⏟⏟ ⏞
update interaction energy of existing points

(H.57)

F(Update(u)) = 96 +
∑︂

e∈{ovrlp,align,repls,attrc}
meF(a < b)

⏞ ⏟⏟ ⏞
check if new interaction updates max or min

≃ 111 (H.58)

Thus:
F(∆U(y→ y ∪ {y})) ≃ 482Ny + 2109. (H.59)

Birth kernel overall cost. It results the following overall cost:

F(KB) ≃ 6 ln(dc) + 9 ln(nκ) + 25|Cc̄ (y) |+ 482Ny + 2109. (H.60)

with Ny = |N y
{y}|.
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H.2.2 Death kernel

F(KD) = F(Qd,sample) + F(QD,remove) + F(r). (H.61)

Sampling. The point to delete is sampled uniformly, we thus approximate:

F(Dsample) ≃ 1, (H.62)

as we simply sample of an integer uniformly in range J1, |Cc (y) |K

Removing the point to the configuration. Removing the point does not require any new com-
putation, we simply set the cost to:

F(Dremove) ≃ 1. (H.63)

Computing the Green ratio. The energy change of the removal y → y \ {y} is the opposite
of the energy of the addition y \ {y} → y. Thus:

F(∆U(y→ y \ {y})) = F(−∆U(y \ {y} → y)) (H.64)

≃ 482(Ny − 1) + 2109 (H.65)

Death kernel overall cost. It results the following overall cost:

F(KB) ≃ 482Ny + 1629, (H.66)

with Ny = |N y
{y}|.

H.2.3 Diffusion

To perform Diffusion on the configuration we have to compute ∂U(y)
∂u for u ∈ y. In our current

code we compute directly ∂U(y)
∂u to facilitate implementation. However, we can simplify the whole

computation as follows. Prior to that, we define two non-overlapping sets of energy terms such
that ξloc. ∪ ξinter . = ξ:

• Local energy terms ξloc., such as Ve, e ∈ ξloc. can be written as a function of y, X and θ
only; such as Vpos, Vκ, VzrNbr ...

• Interaction energy terms ξinter ., such as Ve, e ∈ ξinter . can be written as a function of y,
N y

{y}, X and θ only; such as Valign , Vovrlp...
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∂U(y)
∂u

=
∑︂

y∈y

∂V
(︂
y,X,N y

{y}

)︂

∂u
(H.67)

=
∑︂

y∈y

∑︂

e∈ξ

we

∂Ve

(︂
y,X,N y

{y}

)︂

∂u
(H.68)

=
∑︂

e∈ξ

we

∂Ve

(︂
u,X,N y

{u}

)︂

∂u
+

∑︂

y∈N y
{u}

∑︂

e∈ξ

we

∂Ve

(︂
y,X,N y

{y}

)︂

∂u
(H.69)

=
∑︂

e∈ξ

we

∂Ve

(︂
u,X,N y

{u}

)︂

∂u
+

∑︂

y∈N y
{u}

∑︂

e∈ξinter.

we

∂Ve

(︂
y,X,N y

{y}

)︂

∂u
(H.70)

=
∑︂

e∈ξloc.

we
∂Ve (u,X)

∂u
+

∑︂

e∈ξinter.

∑︂

y∈{u}∪N y
{u}

we

∂Ve

(︂
y,X,N y

{y}

)︂

∂u
(H.71)

To pass from H.68 to H.69, we note that Ve(y,X,N y
{y}) does not depend on u if y ̸= u and

y /∈ N y
{u}. From H.69 to H.70 we note that for e ∈ ξloc., Ve(y,X) does not depend on u if y ̸= u.

To further simplify the computation we look into the interaction energies in the right-hand part
of (H.71). First we specify the form of Fe:

Fe(v1, . . . , vN ) =
N∑︂

k=1
ωk(v1, . . . , vN )vk. (H.72)

This form remains quite general as it encompasses the following aggregation operations (amongst
many others):

• min: with ωk(v1, . . . , vN ) = 1k= arg min
k′=1,...,N

vk
(k)

• max: with ωk(v1, . . . , vN ) = 1k= arg max
k′=1,...,N

vk
(k)

• Average: with ωk(v1, . . . , vN ) = 1
N

• Attention mechanisms as described in Appendix I.2

Moreover we consider symmetrical interaction energies such that ve(y, u) = ve(u, y).
The right-hand part of (H.71) can be then derived as:

∂Ve

(︂
y,X,N y

{y}

)︂

∂u
=

Ny∑︂

k=1

∂ωk(ve(y, y′
1), . . . , ve(y, y′

Ny
))ve(y, y′

k)
∂u

(H.73)

=
Ny∑︂

k=1

∂ωk(. . . )
∂u

ve(y, y′
k) + ∂ve(y, y′

k)
∂u

ωk(. . . ) (H.74)
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with N y
{y} = {y′

1, . . . , y
′
Ny
}, denoting the number of neighbors Ny = |N y

{y}| for simplicity. If we
consider Fe to be a min (or max), as our current model is done, the computation simplifies to:

∂Ve

(︂
y,X,N y

{y}

)︂

∂u
=

Ny∑︂

k=1
1k= arg min

l=1,...,Ny

ve(y,y′
l
)(k)∂ve(y, y′

k)
∂u

(H.75)

=
∂ve(y, y′

ky
)

∂u
, with ky = arg min

l=1,...,Ny

ve(y, y′
l). (H.76)

Equation (H.71) then becomes:

∂U(y)
∂u

=
∑︂

e∈ξloc.

we
∂Ve (u,X)

∂u
+

∑︂

e∈ξinter.

∑︂

y∈{u}∪N y
{u}

we

∂ve(y, y′
ky

)
∂u

(H.77)

With this we can approximate the complexity of computing ∂U(y)
∂u . We approximate

F(∂Ve(u,X)
∂u ) ≃ F(Ve(u,X)) and F(∂ve(y,y′)

∂u ) ≃ F(ve(y, y′)):

F
(︃
∂U(y)
∂u

)︃
≃|ξloc.|(F(a+ b) + F(ab)) +

∑︂

e∈ξloc.

F(Ve(u,X))

+ (Ny + 1)
(︄
|ξinter .|(F(a+ b) + F(ab)) +

∑︂

e∈v

F(ve(y, y′)
)︄
.

(H.78)

Using values in table 2 and (H.51), (H.52):

F
(︃
∂U(y)
∂u

)︃
≃ 399Ny + 2480. (H.79)

To compute diffusion over the whole cell:

F
(︃
∂U(y)
∂Cc (y)

)︃
≃ |Cc (y) |(399Ny + 2480). (H.80)

To compute the diffusion update, we sample |Cc (y) | Gaussian distributed values. We grossly ap-
proximate this sampling to 100 (this is negligible compared to the cost with a Ny|Cc (y) | factor):

F(Diffusionc) ≃ 2580|Cc (y) |+ 399Ny|Cc (y) |. (H.81)

Alternatively the diffusion applied to a single element y ∈ y costs:

F(Diffusiony) ≃ 2580 + 399Ny. (H.82)



182 APPENDICES

H.3 Total cost

We can now compute the cost of one Markov chain step Kc in cell c. In practice, we have dmax =
16 and δmax = 8 thus dc = 48 and nκ = 32. From these and the object density λ we can derive
approximate values for the parameters in the equations above:

Ny ≃ λπd2
max (H.83)

|Cc (y) | ≃ λd2
c (H.84)

|Cc̄ (y) | ≃ 9λd2
c (H.85)

Ny|Cc (y) | ≃ λ2πd2
maxd

2
c (H.86)

We get:

F(Kc) = 0.8F(Diffusionc) + 0.1F(KB) + 0.1F(KD)
≃ 3.8× 102 + 4.9× 106λ+ 5.9× 108λ2.

(H.87)

To get the operations per pixel (ops/px/iter) we compute F(Kc)/d2
c . In practice, we use ns =

77000 iterations of the Markov chain, so the total number of operations (ops/px) is nsF(Kc)/d2
c .

In the testing data we observe a variety of object densities, we report complexity values for the
minimum and maximum, average and 95th percentile (q95) and report those values in Table 3 (a).
For these density values, we compute the cost per pixel with diffusion on whole cells, on single
object and without diffusion in Table 3 (b).

(a) Density values

λ value
λmin 1.4× 10−5
λavg 7.9× 10−4
λq95 1.9× 10−3
λmax 5.2× 10−3

(b) Cost per pixel

λ ops/px/iter ops/px
With diffusion on c

λmin 0.2 1.5× 104

λavg 2.0 1.5× 105

λq95 5.2 4.0× 105

λmax 18.3 1.4× 106

With diffusion on y
λmin 1.1 8.2× 104

λavg 1.2 9.2× 104

λq95 1.4 1.1× 105

λmax 1.9 1.5× 105

Without diffusion
λmin 0.8 6.3× 104

λavg 1.0 8.0× 104

λq95 1.4 1.0× 105

λmax 2.3 1.8× 105

Table 3: Number of operations depending on object density.
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I Implementation: data structures and parallelism

We define all the energy terms in terms of tensor computation with an extra batch dimension so
that we can compute energies over multiple cells at once, and leave the tensor computation library
deal with the parallelization for us.

Example I.1 – Consider a simple sum operation: given a tensor a of size (N), we compute
the sum to return a single scalar

∑︁N
i=1 a[i]. If we want to perform this operation over a batch

of B tensors a1, . . . ,aB , we concatenate those into A of shape (B,N) such that A[j] = aj ,
now the sum operation over the batched tensor is such that the resulting tensor R of size
(B) is R[j] =

∑︁
iA[j, i]. The sum operation is parallelized across the batch dimension

transparently, and results for each input element aj is stored in R[j].

I.1 Batch computation of cells

When performing the RJMCMC in parallel, we have to compute the acceptance ratio for a set s̃ of
B cells in parallel. We have the following property:

α(y,y′) = α(Cc̄ (y) , Cc̄
(︁
y′)︁).

Denoting the point dimension D = dim(S) + dim(M), we can represent the current cells s̃
content as a tensor Y of shape (B,N,D), where N is the maximum number of points in any cells
and its neighbors:

N = max
c∈s̃

n(Cc̄ (y)).

Each element Y[k, l] is a D-dimensional vector, where each value represents (in that order) the
two coordinates, width, length and angle of yc̄k,l.

For instance, considering a set of cells c1, . . . , c4 with yc̄1,1, yc̄1,2, . . . the content of c̄1 and
similarly for the others. Denoting by ∅ the absence of point (since all c̄ do not have the same
number of points necessarily), the following shows an example of Y for B = 4, N = 5, D = 5
(if we consider rectangles, each y is a vector of size D = 5):

Y =

⎡
⎢⎢⎢⎣

yc̄1,1 yc̄1,2 yc̄1,3 ∅ ∅
yc̄2,1 yc̄2,2 yc̄2,3 yc̄2,4 ∅
yc̄3,1 yc̄3,2 ∅ ∅ ∅
yc̄4,1 yc̄4,2 yc̄4,3 yc̄4,4 yc̄4,5

⎤
⎥⎥⎥⎦

We complement Y with a binary mask MY to encode actual values against undefined, as in
practice the ∅ contain some filler values. The mask is of size (B,N). For our example:

MY =

⎡
⎢⎢⎢⎣

1 1 1 0 0
1 1 1 1 0
1 1 0 0 0
1 1 1 1 1

⎤
⎥⎥⎥⎦
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Total energy. Denoting V(·) the equivalent in batched tensor operations of per point energy V
(see (4.3)) we get:

V

(︃
yc̄k,l,N

Cc̄k
(y)

{yc̄k,l} ,X
)︃

= (MY ⊙ V(Y)) [k, l]

U(Cc̄k
(y) ,X) =

(︄
N∑︂

l=1
(MY ⊙ V(Y)) [l]

)︄
[k],

with A ⊙ B the element wise multiplication of matrices A and B. In Python, we get Algorithm
I.1.

1 from torch import Tensor
2 def configuration_energy(Y:Tensor, M:Tensor) -> Tensor:
3 """
4 :param Y: batched configuration Tensor of shape (B,N,D)
5 :param M: batched mask Tensor of shape (B,N)
6 :return: configuration energy Tensor of shape (B)
7 """
8 U = torch.sum(M*V(Y), dim=1)
9 re turn U

Algorithm I.1: Computation of the energy over batched cells.

Point priors. For point-wise priors such as Vratio defined in (4.33), tensor operation Vratio is
defined as a per-point operation (only acts on last dimension D of shape (B,N,D)). We show the
resulting simplified code in Algorithm I.2.

1 from torch import Tensor, nn
2 from torch.nn import Module
3
4 c l a s s RatioEnergy(Module):
5 def __init__( s e l f , mu: f l o a t , sigma: f l o a t):
6 super(RatioEnergy, s e l f ).__init__()
7 s e l f .mu = nn.Parameter(torch.tensor(mu)) # initialize parameters
8 s e l f .sigma = nn.Parameter(torch.tensor(sigma))
9

10 def q_fun( s e l f ,ratios:Tensor) -> Tensor:
11 re turn - torch.exp(- torch.square(ratios - s e l f .mu)/(2*torch.square(

s e l f .sigma)))
12
13 def forward( s e l f ,Y:Tensor,**kwargs) -> Tensor:
14 """
15 :param Y: batched configuration Tensor of shape (B,N,D)
16 :return: ratio energy Tensor of shape (B,N)
17 """
18 ratios = Y[:,:,2] / Y[:,:,3] # compute ratio for each point
19 re turn s e l f .q_fun(ratios) # apply quality function

Algorithm I.2: Computation of the ratio energy over batched cells.

Data terms. Data terms are akin to point priors as they are computed for each point inde-
pendently. We show an example for the position energy term defined in (4.26). Importantly, the
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interpolate function interpolates values over the map Z in a way that the gradient can be back
propagated to the configuration Y. This allows to perform diffusion easily (see Section 3.3.3).

1 from torch import Tensor, nn
2 from torch.nn import Module
3 from torch.nn.functional import grid_sample
4
5 c l a s s PositionEnergy(Module):
6 def __init__( s e l f ,threshold: f l o a t):
7 super(PositionEnergy, s e l f ).__init__()
8 s e l f .threshold = nn.Parameter(torch.tensor(threshold))
9

10 def q_fun( s e l f , Z_values:Tensor) -> Tensor:
11 re turn torch.log(1 + torch.exp( - Z_values + s e l f .threshold))
12
13 def forward( s e l f ,Y:Tensor,Z:Tensor,**kwargs) -> Tensor:
14 """
15 :param Y: batched configuration Tensor of shape (B,N,D)
16 :param Z: energy map Tensor of shape (1,1,H,W)
17 :return: position energy Tensor of shape (B,N)
18 """
19 Z_values = interpolate( # interpolate map values at points positions
20 positions = Y[:,:,:2].view(1, n_cells, n_points, 2),
21 image = Z
22 )
23 re turn s e l f .q_fun(Z_values) # apply quality function
24
25 def interpolate(positions:Tensor,image:Tensor) -> Tensor:
26 """
27 :param positions: Tensor of coordinates (1,B,N,2)
28 :param image: image Tensor (1,C,H,W)
29 :return: tensor of values at positions (1,1,N,C)
30 """
31 a s s e r t l e n(image.shape) == 4
32 a s s e r t l e n(positions.shape) == 4
33 h, w = image.shape[2:]
34 samples = torch.stack([ # remap sample coordinates to range [-1,1]
35 positions[..., 1] / (w - 1),
36 positions[..., 0] / (h - 1)
37 ], dim=-1) * 2 - 1
38 re turn grid_sample(image, samples, mode=’bilinear’, align_corners=True,

padding_mode=’border’)

Algorithm I.3: Computation of the position energy over batched cells.

Interactions. For interaction priors such as the alignment prior (4.38), we compute energies
over interactions as shown in Algorithm I.4. That means handling interaction energy tensors of
shape (B,N,N). The quadratic computation cost is kept in check as N is bounded by the maxi-
mum number of objects in a cell and its neighbors (9nc,max ). The tensor deltas represents the
element-wise differences deltas[k, l, l′, d] = Y[k, l, d] −Y[k, l′, d]. Parameter inbound is a
binary tensor encoding if two points Y[k, l],Y[k, l′] are neighboring each other. Those are com-
puted with the procedure shown in Algorithm I.5. Computing these interaction tensors outside
each energy term module allows those to be re-used for each energy term.
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Remark I.1 – Some optimizations remain to be implemented here: for instance the deltas
tensor could be computed only on its upper triangular part as each deltas[k] is an anti-
symmetric matrix (A⊤ = −A).

1 from torch import Tensor, nn
2 from torch.nn import Module
3 import numpy as np
4
5 c l a s s AlignEnergy(Module):
6 def __init__( s e l f ):
7 super(AlignEnergy, s e l f ).__init__()
8 s e l f .pi = torch.tensor(np.pi)
9

10 def q_fun( s e l f , angles_dist:Tensor)-> Tensor:
11 re turn - torch.cos(2 * (angles_dist))
12
13 def aggregate( s e l f ,align_enr:Tensor, inbound_points: Tensor)-> Tensor:
14 w = torch.where( # set out-of-bounds points to torch.inf
15 condition=inbound_points,
16 input=align_enr, other=torch.tensor([torch.inf])
17 )
18 aggregated_enr, _ = torch.min(w, dim=2) # aggregate w/ minimum
19 re turn torch.nan_to_num( # points w/o neighbors get 0 energy
20 aggregated_enr, nan=0, posinf=0, neginf=0
21 )
22
23 def forward( s e l f , Y:Tensor, deltas: Tensor,inbound: Tensor,**kwargs) ->

Tensor:
24 """
25 :param Y: batched configuration Tensor of shape (B,N,D)
26 :param deltas: delta on each component, Tensor of shape (B,N,N,D)
27 :param inbound: Binary tensor of neighboring points, of shape (B,N,N)
28 :return: alignment energy Tensor of shape (B,N)
29 """
30 angle_deltas = deltas[:,:,:,4] # angle deltas tensor of shape (B,N,N)
31 angles_dist = torch.minimum( # remap angle differences to [0,pi]
32 torch.remainder(angle_deltas, s e l f .pi),
33 s e l f .pi - angles_dist
34 )
35 re turn s e l f .aggregate( # aggregate interactions
36 s e l f .q_func(angles_dist), # apply quality function
37 inbound
38 )

Algorithm I.4: Computation of the alignment energy over batched cells.
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1 from torch import Tensor, nn
2 from torch.nn import Module
3 import numpy as np
4
5 def compute_distances_and_deltas(Y:Tensor, M:Tensor, dmax: f l o a t)-> Tensor:
6 """
7 :param Y: batched configuration Tensor of shape (B,N,D)
8 :param M: batched mask Tensor of shape (B,N)
9 :param dmax: maximum interaction distance

10 :return: deltas (B,N,N,D), distances (B,N,N), inbound (B,N,N)
11 """
12 b = Y.shape[0] # =B
13 n = Y.shape[1] # =N
14 d = Y.shape[2] # =D
15 # use torch boradcasting rules to form a difference tensor of shape (B,N,N,

D)
16 deltas = Y.reshape((b, n, 1, d)) - Y.reshape((b, 1, n, d))
17 distances = torch.sqrt( # compute distances from coordinates difference
18 torch.sum(torch.square(deltas[..., :2]), dim=-1) + 1e-8
19 )
20 mask_1 = ~M.reshape((b, n, 1)) # mask out missing points in dim=1
21 mask_2 = ~M.reshape((b, 1, n)) # mask out missing points in dim=2
22 self_mask = ~torch.eye(n,dtype=bool) # mask out distance to self
23 dist_mask = mask_1 | mask_2 | self_mask
24 # set missing points (or self) to be out of bounds
25 distances = distances + dist_mask * (dmax + 1)
26 inbound = distances < dmax # check who is inbound
27 re turn deltas, distances, inbound

Algorithm I.5: Computation of the distances and component differences for points in batched cells.

I.2 Generic energy models

The above defined modules all join into the GenericEnergyModel module, that computes the
total energy of a configuration. Here we present it stripped of the many debugging and logging
functions our code actually contains in order to convey the main ideas of the implementation:



188 APPENDICES

1 from torch import Tensor, nn
2 from torch.nn import Module,ModuleList
3 import numpy as np
4
5 c l a s s GenericEnergyModel(BaseEnergyModel, Module):
6 def __init__( s e l f ,config):
7 super(GenericEnergyModel, s e l f ).__init__()
8 """
9 [...]

10 """
11 s e l f .energy_modules: ModuleList = load_modules(config)
12 # for instance self.energy_modules is a list of Modules such as

PositionEnergy, AlignEnergy, RatioEnergy etc defined in the
configuration file.

13 s e l f .max_dist = s e l f .config[’maximum_distance’]
14 s e l f .energy_names = [p.name f o r p in s e l f .energy_modules]
15 s e l f .energy_combination_module = LinearCombinator(
16 energy_names= s e l f .energy_names)
17
18 def forward( s e l f , Y:Tensor, M:Tensor, Z:Tensor):
19 deltas, distances, inbound = compute_distances_and_deltas(
20 Y=Y, M=M, dmax= s e l f .max_dist)
21 energy_dict = {}
22 f o r e in s e l f .energy_modules:
23 energy_dict[e.name] = e.forward(
24 Y=Y, M=M, Z=Z, deltas=deltas, inbound=inbound)
25 energy_vector = torch.stack([energy_dict[k] f o r k in s e l f .energy_names

], dim=-1)
26 energy_per_point = s e l f .energy_combination_module.forward(energy_vector

) * M
27 #mask out the energy of non existing points
28 energy_per_cell = torch.sum(energy_per_point, dim=-1)
29 total_energy = torch.sum(energy_per_cell)
30 re turn {’energy_per_point’: energy_per_point,
31 ’energy_per_subset’: energy_per_cell,
32 ’total_energy’: total_energy,
33 **energy_dict}
34
35
36 c l a s s LinearCombinator(Module):
37 def __init__( s e l f ,energy_names:List[ s t r]):
38 s e l f .f = nn.Linear(in_features= l e n(energy_names),out_features=1,bias=

True)
39
40 def forward(x:Tensor):
41 """
42 :param x: tensor (B,N,V) with V the number of energy terms
43 :return: tensor (B,N), energy per point
44 """
45 re turn s e l f .f(x).squeeze(dim=-1) #squeeze to remove the last dim of

size 1

Algorithm I.6: GenericEnergyModel, computes the energies of a batch of cells.
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I.3 Miscellaneous methods

Divergence computation. The divergence (needed for computing position potential (4.22)) is
computed over a field of 2D vectors defined in the image raster space. In Algorithm I.7 we show
how it is computed using Pytorch: using such a library allows to leverage the automatric gradient
computation.

1 from torch import Tensor
2
3 def divergence(f: Tensor, indexing=’ij’):
4 """
5 :param f: vector field compunents of shape (B,C,H,W) where C is the number

of dims
6 :param indexing: indexing type, "xy" or "ij"
7 :return : Divergence, Tensor of shape (B,1,H,W)
8 """
9 b = f.shape[0]

10 n_dims = f.shape[1]
11 spacing = 1.0
12 i f indexing == "xy":
13 stack = [ # for each dim compute the gradient over the corresponding

axis
14 torch.gradient(f[:, n_dims - i - 1], dim=i + 1)[0] f o r i in range(

n_dims)
15 ]
16 e l i f indexing == "ij":
17 stack = [ # for each dim compute the gradient over the corresponding

axis
18 torch.gradient(f[:, i], dim=i + 1)[0] f o r i in range(n_dims)
19 ]
20 e l s e:
21 r a i s e ValueError # sorry but you did not read the doc !
22 stack = torch.stack(stack, dim=1)
23 re turn torch.sum(stack, dim=1, keepdim=True) # sum each gradient over each

dim

Algorithm I.7: Computation of the divergence of a vector field in PyTorch.







Apprentissage de modèles de géométrie stochastique et
réseaux de neurones convolutifs. Application à la détection
d’objets multiples dans des jeux de données aérospatiales.

Jules MABON

Résumé

Les drones et les satellites en orbite basse, dont les CubeSats, sont de plus en plus utilisés pour
la surveillance, générant d’importantes masses de données à traiter. L’acquisition d’images
satellitaires est sujette aux perturbations atmosphériques, aux occlusions et à une résolution
limitée. Pour détecter de petits objets, l’information visuelle est limitée. Cependant, les objets
d’intérêt (comme les petits véhicules) ne sont pas uniformément répartis dans l’image, présen-
tant des configurations spécifiques. Ces dernières années, les Réseaux de Neurones Convolutifs
(CNN) ont montré des compétences remarquables pour extraire des informations, en particu-
lier les textures. Cependant, modéliser les interactions entre objets nécessite une complexité
accrue. Les CNN considèrent généralement les interactions lors d’une étape de post-traitement.
En revanche, les Processus Ponctuels permettent de modéliser la vraisemblance des points par
rapport à l’image et leurs interactions simultanément. La plupart des modèles stochastiques
utilisent des mesures de contraste pour la correspondance à l’image ; elles sont adaptées aux
objets à contraste fort et faible complexité du fond. Cependant, les petits véhicules sur les
images satellitaires présentent divers niveaux de contraste et une grande variété d’objets de
fond et de fausses alarmes. Cette thèse de doctorat propose d’utiliser les CNN pour l’extraction
d’informations, combinées aux Processus Ponctuels pour modéliser les interactions, en utili-
sant les sorties CNN comme données. De plus, nous introduisons une méthode unifiée pour
estimer les paramètres du modèle de Processus Ponctuel. Nos résultats montrent l’efficacité de
ce modèle sur plusieurs jeux de données de télédétection, avec régularisation géométrique et
robustesse accrue pour un nombre limité de paramètres.

Mots-clés : Géométrie Stochastique, Modèles à Base d’Énergies, Détection, Objets Multiples, Images
Satellitaires, Très Haute Résolution.

Abstract

Unmanned aerial vehicles and low-orbit satellites, including CubeSats, are increasingly used
for wide-area surveillance, generating substantial data for processing. Satellite imagery acqui-
sition is susceptible to atmospheric disruptions, occlusions, and limited resolution, resulting in
limited visual data for small object detection. However, the objects of interest (e.g., small ve-
hicles) are unevenly distributed in the image: there are some priors on the structure of the con-
figurations. In recent years, convolutional neural network (CNN) models have excelled at ex-
tracting information from images, especially texture details. Yet, modeling object interactions
requires a significant increase in model complexity and parameters. CNN models generally
treat interaction as a post-processing step. In contrast, Point Processes aim to simultaneously
model each point’s likelihood in relation to the image (data term) and their interactions (prior
term). Most Point Process models rely on contrast measures (foreground vs. background) for
their data terms, which work well with clearly contrasted objects and minimal background
clutter. However, small vehicles in satellite images exhibit varying contrast levels and a diverse
range of background and false alarm objects. In this PhD thesis, we propose harnessing CNN
models information extraction abilities in combination with Point Process interaction models,
using CNN outputs as data terms. Additionally, we introduce a unified method for estimating
Point Process model parameters. Our model demonstrates excellent performance on multiple
remote sensing datasets, providing geometric regularization and enhanced noise robustness, all
with a minimal parameter footprint.

Keywords: Stochastic Geometry, Energy Based Models, Detection, Multiple objects, Satellite Images,
Very High Resolution.
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