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Introduction

The theory of General Relativity and the ΛCDM model are widely regarded as the most
successful frameworks for understanding gravitational interaction and cosmological obser-
vations. However, their development was not without challenges. Albert Einstein’s ground-
breaking contributions, starting with the discovery of Special Relativity in 1905 and later
General Relativity in 1915, revolutionized our understanding of space and time. Einstein
showed that space and time are not separate entities but form a dynamic entity called
space-time, influenced by the matter within it. Despite its significant advancements, GR
initially faced skepticism, even after resolving the problem of Mercury’s perihelion advance
and confirming the deflection of light during a solar eclipse in 1919, due to uncertainties
surrounding Arthur S. Eddington’s observations.

One remarkable consequence of General Relativity is its first solution to the Einstein field
equations, which suggested the existence of black holes. Karl Schwarzschild discovered this
solution, now bearing his name, in 1916, just a year after the theory’s publication. The
Schwarzschild metric describes a non-rotating, uncharged, spherically symmetric black hole
and introduced the concept of an event horizon—the boundary beyond which no information
can escape from the black hole’s interior. The theoretical discovery of black holes sparked
extensive investigations into their properties and behaviours. Observational evidence has
since confirmed their existence, solidifying black holes’ status as captivating celestial entities
that continue to intrigue scientists and inspire further inquiry.

Even though they appear as very simple objects in the Schwarzschild approach, black
holes have not yet revealed all their secrets. Their complexity was first put forward when
Hawking radiation was discovered in a first attempt to mix quantum field theory and gravity
in a semi-classical description. We had long known that black holes could grow by accreting
surrounding matter and together with their newly predicted ability to shrink, it makes
them intriguing dynamical objects. Unfortunately, the Schwarzschild solution assumes a
static horizon and faces challenges in rapidly evolving conditions, when surrounded by a
very dense fluid for example. In this thesis, we will examine the evolving behaviour of the
event horizon of a Schwarzschild black hole bathed in a test fluid at thermal equilibrium.
The limitations of such a model will be investigated as well.

One could try to relax the static assumption, at the cost of more complex calculations.
Two approaches for that purpose have been attempted. One can make an educated guess
on the form of the metric and later match the corresponding energy-momentum tensor
through the Einstein field equations, an approach followed to design the McVittie and the
generalized McVittie metrics. The latter solution being closer to realistic phenomena as it
describes black holes surrounded by an imperfect fluid. However, in the context of cosmology
black holes are expected to be embedded in a perfect fluid instead. One could then rather
keep the most general isotropic metric and try to solve the Einstein field equations for such a
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perfect fluid. In this work, we will quickly describe the generalized McVittie solution and we
will study in more depth the second approach, initiated by Nielsen and Visser, to describe
dynamical black holes.

While the first direct detection of gravitational waves from a black hole binary has been
made only recently by LIGO, their existence was already confirmed in 1974 using the de-
caying orbit of the Hulse-Taylor binary system of pulsars. As opposed to pulsars, black
holes’ mass is expected to decrease through Hawking radiation and the resulting effect is
an expansion of the orbit of a binary system. In a recent paper included in this thesis, we
studied in depth the competition between the loss of energy through gravitational waves
emission and the loss of mass not only from Hawking radiation, but also from phantom dark
energy, a cosmological fluid violating the equivalence principle.

The study of cosmology in the framework of General Relativity also began shortly after
the discovery of the Einstein field equations. Friedmann developed in the 1920s the first
equations for a homogeneous and isotropic Universe. Lemaître used these equations to pro-
pose an expanding Universe, later confirmed by Hubble’s observation in 1929. Lemaître
also predicted that the universe was very hot and dense at early times and the discovery
of the big bang nucleosynthesis brought the big bang model on the front scene. Further
observations, such as the cosmic microwave background in the sixties, reinforced the status
of General Relativity and the Big Bang model. However, the cosmological journey faced its
first hurdles in the mid-1930s with the discovery of dark matter by Zwicky, later confirmed
by Vera Rubin in 1970. The discovery of accelerated expansion in 1998 led to another
revolution in the cosmology community and the ΛCDM model was born. Combining data
from the cosmic microwave background and other independent cosmological surveys, scien-
tists determined that the known Universe consists of approximately 68.9% dark energy and
31.1% matter, with dark matter being the primary component. This suggests that we have
only understood about 5% of the observable Universe, despite the current model’s success.

The best model that we have so far in order to describe dark energy is the cosmological
constant. However this model is not without theoretical flaws. For a start, the cosmological
constant is very small and an extreme fine-tuning is needed. Moreover, while a constant
contribution to the Einstein field equations fits the experimental observations relatively
well, the constraints on the dynamics of dark energy remain loose. These considerations
led cosmologists to study dynamical approaches to dark energy and a natural candidate for
that purpose is a scalar field. Such a choice is motivated by several factors. It naturally
satisfies Lorentz invariance and the isotropic principle used in cosmology. In addition, a
scalar field naturally emerges in theories with extra dimensions such as the Dvali Gabadadze
Porrati (DGP) model or string theory, making scalar-tensor theories compelling extensions
to General Relativity. Although string theory can be described as a scalar-tensor theory
in the low energy effective approach, it has proven so far impossible to construct such
an effective theory that could sustain a long period of de Sitter expansion. This led to
the postulation of the de Sitter conjecture by Vafa, which restricts the form of the scalar
potential in order to be consistent with string theory. While the conjecture is already in
slight conflict with current constraints on the dynamics of dark energy, future surveys, such
as the Euclid satellite or the Vera Rubin observatory, are expected to exacerbate the tension.
A detailed analysis of the expected constraints on the de Sitter conjecture from the predicted
precision of future surveys is conducted in this work.



3

Scalar-tensor theories derived from string theory are not the only candidates that are
explored. The cubic Galileon theory for example, the effective theory describing the DGP
model or ghost-free massive gravity in the decoupling limit, is a well studied candidate. It
belongs to the larger set of all non-minimally coupled scalar-tensor theories gathered un-
der the general Horndeski theory. An interesting property of the cubic Galileon theory,
shared with other viable Horndeski models, is its ability to hide the effect of the scalar
field on astrophysical scales through a screening mechanism, making the theories exhibit-
ing such a mechanism consistent with solar system tests of General Relativity. However,
screening mechanisms are non-linear behaviours of a theory, which makes them difficult to
deal with in a post-Newtonian approach, often used for astrophysical tests or gravitational
waves emissions from a binary system. The recent development of an effective approach to
screening mechanisms led by Gabadadze, McManus and others, allowed the derivation of a
post-Newtonian expansion for screened Horndeski theories. These results in turn made it
possible to describe the waveform generated by a binary system of compact objects. The
calculations of the waveform, using Will’s post-Newtonian approach to gravitational waves,
in the case of Vainshtein and Chameleon screening are exposed in this thesis. The now
numerous detections of binary mergers by the LIGO/VIRGO collaboration, together with
the calculated waveform, open a new perspective to test screened Horndeski theories.

Beyond the lack of understanding of dark matter and dark energy, the ΛCDM model
faces other conceptual issues. For one thing, the current concordance model of cosmology
is plagued with a big bang singularity at the origin of the universe, as proven by Hawking
and Penrose. Moreover, the universe appears to be extremely flat and regions of space, that
have never been in causal contact, happened to have the same temperature. An inflationary
period of exponential growth at the beginning of the universe naturally resolves both prob-
lems and is so far supported by experimental evidence in the cosmic microwave background.
Even though inflation is very effective at flattening the spatial sections, it does not tell if
the universe is closed or infinite. In the former case of a positively curved universe, one
can actually show that the big bang singularity is naturally replaced by a bounce, without
the need of quantum gravity or exotic physics. Under this reasonable postulate, one could
hope that the prediction of inflation for the cosmic microwave background are altered by
the curvature bounce. In this thesis we will study in details the pre-bounce universe and the
bounce behaviour as well as the scalar and tensor primordial power spectra resulting from
this bouncing scenario.

Of course, there is no guarantee that our universe is closed and other solutions to the big
bang singularity should be explored. At very early times when the energy density of the
universe approaches the Planck scale, quantum gravity effects are expected to kick in. The
canonical approach to quantizing gravity, loop quantum gravity, predicts that there exists
a smallest area, resulting in the cosmological consequence of modified Friedmann equations
at early times. Loop quantum cosmology, the theory described by these modified equa-
tions, also resolves the big bang singularity with a bounce and is also so far consistent with
the cosmic microwave background power spectrum. However, as is common in quantum
mechanics, several ambiguities might alter the quantum corrections to the Friedmann equa-
tions as predicted by the theory. Therefore, it is important to take these ambiguities into
consideration by studying more general modified Friedmann equations. In a series of papers
that are included to this thesis, we scrutinized the consistency of the predictions of loop
quantum cosmology, when taking different form of quantum corrections to the Friedmann
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equations.
This thesis is organized as follow. In chapter 1, we introduce the fundamental princi-

ples of General Relativity as well as the most famous solutions to the theory, namely the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric and the Schwarzschild metric. The
limitations of the Schwarzschild solution for black holes immersed in a thermal bath are
exposed and potential extensions to dynamical black holes using the generalized McVittie
metric or Painlevé-Gullstrand coordinates are given. It is also in Chap. 1 that the compe-
tition between the effect of the loss of mass and loss of energy due to radiation for binary
black holes is studied. The main successes on the current ΛCDM model to cosmology are
described at the beginning of chapter 2. In this chapter, we also introduce the concept
of Quintessence, before deriving the predicted constraints from Euclid and the Vera Rubin
observatory on the de Sitter conjecture. Later on in the same chapter, we derive the gravi-
tational waveform sourced by a binary system for screened Horndeski models, after a short
introduction on Horndeski theories and screening mechanism. The third and last chapter,
is dedicated to early universe cosmology and bouncing scenarii. We first show how one
can generate an inflationary period using a single scalar field and we describe cosmological
perturbation theory. We then discuss the curvature bounce and its potential imprints in
the cosmic microwave background. Later on in Chap. 3, we give a brief introduction to
loop quantum gravity and its cosmological consequences. The last chapter ends with the
study of the effect of generalized holonomy corrections on the predictions of loop quantum
cosmology. We finally end the thesis with a conclusive note.

Throughout the thesis, we adopt the signature (−,+,+,+) for the metric. Greek indices
run from 0 to 3 and Latin indices from 1 to 3. A comma indicates a partial derivative,
A,µ ≡ ∂µA, while a semicolon denotes a covariant derivative associated with the Levi-
Civita connection, Aµ;ν ≡ ∇νAµ. Bold symbols x represent three-dimensional vectors.
Symmetrization of indices follows the notation T(µ1...µn) ≡ 1

n!

∑
Tσi(µ1...µn), where the sum is

made on the set of all permutations of {µ1, . . . , µn} and similarly for anti-symmetrization.
Units are such that c = G = ~ = 1, unless otherwise stated.



Chapter 1

The theory of gravity

1.1 General Relativity

Since the discovery of special relativity in 1905 [1], Albert Einstein was puzzled by the
inconsistency of Newton’s theory of universal gravitation with his newly born relativistic
mechanics. In particular, the gravitational force between two bodies was thought to act
instantly, which was conflicting with the postulate of finite speed of "causality". Moreover,
Einstein realized that there are no local experiments that can be done to differentiate be-
tween a freely falling observer subjected to gravity and an observer floating in empty space.
This hypothesis is often called the Einstein equivalence principle (EEP). To formalize these
two ideas, pseudo-Riemannian geometry comes in handy. While the Lorentzian metric gµν

solves the problem of faster than light travel, the property of differentiable manifold to be
locally flat satisfies the EEP.

Once we understood that spacetime should be described by a curved manifold, we can
start to build physics on top of it. The first step is to describe the path xµ(λ) of a free
point-like object of mass m embedded in such a spacetime. Its action can be defined as

S[x] = −m
∫ √

−gµν
dxµ

dλ

dxν

dλ
dλ , (1.1)

and using the principle of least action we find that free particles follow the geodesic equation

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0, (1.2)

where Γµαβ is the connection associated to the metric gµν . In order for the connection to
be uniquely defined, we are required to add two additional conditions: metric compatibility
∇αgµν = 0, the covariant derivative of the metric is zero and Γµαβ = Γµβα, the connection is
symmetric in its lower indices, or in other word, the manifold is torsion-free. These imply
that we can write

Γσµν =
1

2
gσα(∂µgνα + ∂νgνα − ∂αgµν) , (1.3)

which are commonly called the Christoffel symbols. If one compares the equation of motion
(1.2) for a massive particle in curved spacetime to the flat case d2xµ

dλ2
= 0, one can deduce that

to move from the former case to the latter, we can promote partial derivatives to covariant
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6 CHAPTER 1. THE THEORY OF GRAVITY

ones, namely ∂µ → ∇µ. This idea is sometimes called the covariance principle, but it is in
fact a direct consequence of the EEP.

Now that we learned gravity is described by curved spacetime and that we discovered
the principle of covariance, how do we relate the curvature tensor Rσ

ρµν to matter, as it is
done in Newton’s theory, where gravity is related to the mass of the objects? Let us first
remind ourselves what we mean by curvature. It is defined as the shift of a vector when
parallel transported along a closed curve. In terms of the Christoffel symbols, the Riemann
or curvature tensor can be written as

Rσ
ρµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ . (1.4)

Then, one can specify how we describe the matter sector. As it was understood a decade
before GR was developed, the concept of mass and energy are completely related in special
relativity and one can expect energy to also affect the curvature of spacetime. Therefore,
it is natural to consider the energy-momentum tensor T µν to be the quantity describing
matter. This tensor is symmetric and in the flat case, it is conserved, i.e. ∂µT

µν = 0.
Using the covariance principle, we deduce that the energy-momentum tensor needs to satisfy
∇µT

µν = 0 and thus, it must be related to a spacetime quantity satisfying the same condition
as well as being symmetric. We have a handful of straightforward choices such as the metric
itself or the Ricci tensor Rµν := Rσ

σµν . However the gµν = κTµν would lead to instantaneous
gravitational influence or other inconsistencies and Rµν = κTµν to ∇µT = ∂µT = 0 using
Bianchi identities, meaning T is constant through spacetime (this would also be the case
with the metric). An other tensor satisfying the required criteria is the Einstein tensor
Gµν := Rµν − gµνR/2, with R = Rα

α being the Ricci scalar. Remarkably, by choosing the
relation

Rµν −
1

2
gµνR = 8π Tµν , (1.5)

one can recover Newtonian gravity in the weak field limit and the precession of Mercury is
correctly predicted using this new theory. This was in a nutshell the historical discovery
of General Relativity (GR) by Albert Einstein and the field equations (1.5) now bear his
name [2].

At the same time than the discovery of GR, David Hilbert addressed the question of
gravity using the approach of symmetries and Lagrangian mechanics [3]. He found that the
diffeomorphism invariant action

SEH[g] :=
1

2κ

∫ √−gR d4x , (1.6)

where κ = 8π, leads to the Einstein field equations in vacuum by applying the principle
of least action. To take matter into account, one simply add the Einstein-Hilbert action
(1.6) with the relevant matter action to get the full theory. More recently, David Lovelock
showed [4] that the most general diffeomorphism and Lorentz invariant action for a tensor
field with field equations of degree two can be written as

SEH[g] :=
1

2κ

∫ √−g(R− 2Λ) d4x , (1.7)
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where Λ a constant, named the cosmological constant, and the factor −2 in front of it is
included by convention. The derived field equation is simply

Rµν −
1

2
gµνR + Λgµν = 8π Tµν , (1.8)

and it still converges to Newtonian gravity in the weak field limit, if Λ is small.
It is interesting to note at this point that the choice of describing gravity using the

curvature tensor, while keeping the torsion and non-metricity ∇ρgµν to be zero is historical
and often considered the most elegant. However, one can construct equivalent theories (up
to boundary terms in the action) using only non-zero torsion (while keeping curvature and
non-metricity to be zero) [5] or only non-zero non-metricity [6]. In addition, GR can be
viewed as a gauge theory with the gauge group being the general linear group GL(4,R).
The fact that GR can be described as a geometrical phenomenon and not the other gauge
interactions is directly related to the equivalence principle. For a detailed description of the
different interpretations of GR, we refer to Ref. [7] and a detailed description of General
Relativity as well as related topics can be found in Refs. [8–12].

1.2 Homogeneity and isotropy: the FLRW universe

While the Einstein field equations (1.8) look elegant at first, their complexity is hidden
behind clever notations. Exact solutions to these equations are hard to come by and only
exist for highly symmetric systems. Fortunately for cosmologists, one such system is our
observable universe. From a close perspective, the space around us looks clumpy with most
of the matter concentrated in stars and galaxies, while the rest seem to be empty space.
However, the distribution of galaxies on very large scales, more than 60 or 70 Mpc, can
be safely assumed homogeneous with high precision [13]. In a similar way, the universe
looks the same independently of the line of sight, hence it can be regarded as isotropic [14].
The assumptions of homogeneity and isotropy of space make up together the cosmological
principle. Thankfully, under this fundamental principle the Einstein field equations simplify
tremendously and one can study the evolution of the universe. In this section, we introduce
the fundamental elements of modern cosmology and discuss the physical interpretations of
different approaches. In the following we make extensive use of the lecture notes from Daniel
Baumann [15–17] as well as the book by Sean Carroll [9].

1.2.1 The metric and coordinate systems

In this part, we would like to understand how the degrees of freedom of the metric gµν
reduce under the symmetries of the cosmological principle. In General Relativity, it is
common practice to display the components of the metric using the squared line element
ds2, namely

ds2 := gµνdx
µdxν , (1.9)

where dxµ are the differential of the coordinate functions. We will sometimes refer to ds2

as being the metric for simplicity. Since our spacetime manifold is only homogeneous and
isotropic in space and not in time, this means that one can foliate the manifold into spacelike
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hypersurfaces, where each spatial slice satisfies the symmetries. In other words, one can say
that spacetime has a topology R× Σ, where R represents the time direction, while Σ is the
remaining homogeneous and isotropic three-manifold. Under such conditions, the metric
becomes

ds2 = −dt2 + a2(t)γijdx
idxj , (1.10)

where t is the time coordinate, a(t) is a function of time that is called the scale factor and γij
is the three-metric of Σ. The remaining three-metric carries six degrees of freedom, while the
space of symmetries of the spatial manifold is six dimensional (in short, three translations
for homogeneity and three rotations for isotropy), meaning that Σ is maximally symmetric.
This has the useful consequences that γij must have no remaining degree of freedom and
the three-Ricci scalar must be equal to a constant, let us say 6k (this choice of the constant
will be justified later on). Using the fact that Σ is spherically symmetric, one can write the
three-metric using the spherical coordinates (r, θ, φ)

γijdx
idxj = e2f(r)dr2 + r2(dθ2 + sin2 θdφ2) := e2f(r)dr2 + r2dΩ2 , (1.11)

and the function f(r) is found using the constancy of the Ricci scalar. The result gives us
the well-known Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −dt2 +
a2(t)

1− kr2
dr2 + a2(t)r2dΩ2 . (1.12)

Starting from the ten degrees of freedom contained in the metric gµν , we reduced them to
only the scale factor a(t) and the constant k, which is known as the curvature parameter.

The resulting FLRW metric (1.12) retains a residual symmetry, it is invariant under the
re-scaling

a→ λa, r → r/λ, k → λ2k , (1.13)

hence one can choose to have a dimensionless scale factor that can be set to one at a particular
instant. Such a choice, which we adopt in the work, would make the curvature constant of
dimension [length]−2. The radial coordinate r is what is called a comoving coordinate. as
one can deduce from the FLRW metric (assuming k = 0), physical quantities are calculated
using the physical coordinate rϕ = a(t)r. Figure 1.1 shows the difference between comoving
and physical coordinates. It is also interesting to look at the physical velocity of an object

vϕ =
d(a(t)r)

dt
= a(t)

dr

dt
+

da

dt
r = vpec +HR , (1.14)

with R = ar the comoving radius. In other word, the physical velocity of an object can be
decomposed into a peculiar velocity vpec and the effect of the expansion of the universe, the
Hubble flow, described by the Hubble constant H = ȧ/a, with the dot notation standing for
the time derivative.

Moreover, the topology of the spatial section Σ depends on the sign of k. If k = 0,
the three-metric γij is in fact the euclidean metric δij written in terms of the spherical
coordinates. This means that space is globally flat and we usually associate it with the
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Figure 1.1: Evolution of the comoving and physical distance in an expanding uni-
verse. The comoving distance between the two black points is constant and equal
to one, while the physical distance between them increases with the expansion. Re-
trieved from [17].

topology Σ = R3, even though this is not the only choice. In the case where the curvature
parameter is positive, space is closed and its topology is the sphere, Σ = S3. To see this,
one can change the radial coordinate

√
kr → sin(

√
kχ) to get the three-metric

γijdx
idxj = dχ2 + k−1 sin2(

√
kχ) dΩ2 , (1.15)

which is the metric describing the sphere. Finally when k < 0, we use a similar trick as the
closed space case and make the coordinate change

√
kr → sinh(

√
kχ) to get the three-metric

γijdx
idxj = dχ2 + k−1 sinh2(

√
kχ) dΩ2 , (1.16)

describing a three-dimensional space with constant negative curvature. Such a space is often
called open because it necessarily extends to infinity and can thought off having the shape
of a saddle.

Once the coordinate system has been chosen, it is useful to move on and choose an observer
as well. In general relativity, we define an observer as a time-like future pointing worldline
γ on the space-time manifold, together with an orthonormal basis eµα which includes the
tangent vector field V µ, otherwise also named velocity vector field, to the worldline. A
particular and interesting choice that can be made is the Eulerian observer. It is defined as
the observer which is at rest on spatial slices [18, 19]. This means that the velocity field of
the Eulerian observer is aligned with the normal vector nµ to the spatial slices of constant
time coordinate and can be written as

Vµ = (−
√
−g00, 0, 0, 0) . (1.17)

Using the coordinate system leading to the FLRW metric (1.12), we get the velocity field

Vµ = (−1, 0, 0, 0) =⇒ V µ = (1, 0, 0, 0) . (1.18)

As an example, we arbitrarily give other vectors that could complete the orthonormal basis
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defining the observer

eµα =(V µ, Sµ, θµ, φµ) , (1.19)

with Sµ = (0,
√
g11, 0, 0) , θµ = (0, 0,

√
g22, 0) , φµ = (0, 0, 0,

√
g33) . (1.20)

The Eulerian observer plays a particular role in cosmology as it is the frame in which the
fluid describing the energy content of the universe is at rest. This can be understood from
the assumption that the universe is homogeneous and isotropic. An other equivalent way to
define the cosmological principle is to say that the universe appears isotropic from any given
point in space-time and a fluid in motion with respect to the observer at rest would violate
this assumption. It will be shown later on in Sec. 1.4.3 that assuming isotropy with respect
to a single point together with the fluid at rest from the point of view of the Eulerian observer
is in fact equivalent to the cosmological principle. While this statement could appear trivial
in the context of cosmology, it is less straight forward when one wants to add a black hole
in the central point. The above equivalence basically means that one cannot have a black
hole surrounded by an Eulerian fluid except if the fluid describes a cosmological constant.

An other point that is often heard in cosmology is the fact that galaxies are not moving
away from each other, but it is the space between them that expands. This statement can
be understood from the velocity field of the fluid (1.18), which shows the fluid at rest, and
the expansion of the spatial slices ds2

3 := a2(t)/(1 − kr2)dr2 + a2(t)r2dΩ2. However, as
we will see in Sec. 1.2.4 this point of view is merely a coordinate artifact. Moreover, as
it was already discussed by Lemaître and others [20, 21], if the universe was composed of
an expanding large gas cloud siting in empty space, we would not be able to differentiate
it from an FLRW universe, provided that the gas cloud we live in is large enough. This
somewhat contradicts the common saying that the big bang does not look simply like an
explosion. From today’s perspective, we could very well assume that it is the case and as
for the expansion of space, it is a matter of interpretation.

1.2.2 Dynamics

So far, we have only discussed the geometrical part of the Einstein field equations and
informally introduced how we model the energy content of the universe as a fluid. One of
the prime candidates to model this energy fluid is perfect fluids. They have the property of
being isotropic in their rest frame, which naturally satisfies the cosmological principle. The
energy-momentum tensor of a perfect fluid can be written as

Tµν = (p+ ρ)UµUν + pgµν , (1.21)

where p and ρ are the pressure and the density of the fluid, respectively, and Uµ is the four-
velocity of the fluid. In the case of a comoving fluid Uµ = (−1, 0, 0, 0), the energy-momentum
tensor of a perfect fluid reduces to

T µν = diag(−ρ, p, p, p). (1.22)

As we have seen earlier in the historical approach to GR, the conservation of the energy-
momentum tensor plays an important role. In the context of cosmology, one can apply the
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concept of conservation to find the continuity equation of the fluid. This reads

∇µT
µ

0 = ∂µT
µ

0 + ΓµµνT
ν

0 − Γνµ0T
µ
ν = 0 (1.23)

=⇒ ρ̇+ 3
ȧ

a
(ρ+ p) := ρ̇+ 3

ȧ

a
(1 + w)ρ = 0 (1.24)

=⇒ ρ̇

ρ
= −3(1 + w)

ȧ

a
, (1.25)

where we used the equation of state p = wρ in the last line.
Our universe is filled with different types of perfect fluid, satisfying different equations

of state. We summarize here the list of fluids contained by the universe as accepted by the
current standard model of cosmology.

Dust This type of matter is constituted by the stars or galaxies, for example, and is
characterized by its collisionless property. This implies that the pressure of the fluid can be
neglected and the equation of state reduces to

ρ̇

ρ
= −3

ȧ

a
=⇒ ρ ∝ a−3 . (1.26)

As expected, this means that the density of dust is diluted with the expansion. There is an
overwhelming amount of clues that the dust content of the universe is dominated by some
invisible matter, called dark matter, and the study of this dark sector is one of the biggest
puzzle of modern physics [22].

Radiation One cannot neglect the pressure of electromagnetic radiation or gases of parti-
cles with relativistic velocities. This can be seen using the energy-momentum tensor of the
electromagnetic field, i.e.

T µν =
1

4π

(
F µαF ν

α −
1

4
gµνFαβFαβ

)
=⇒ T µµ = 0 , (1.27)

but as a perfect fluid, the tensor also satisfy Eq. (1.21). Therefore one can relate the density
and the pressure as

T µµ = −ρ+ 3p = 0 =⇒ p =
1

3
ρ . (1.28)

The continuity equation further leads us to ρ ∝ a−4, meaning that the energy density of
radiation decreases faster with the expansion than the density of dust, due to the loss of
energy of individual photons through redshift.

Dark energy While the cosmological constant is included in the Einstein field equations
(1.8) as an additional term, it can be considered as an other form of energy. It also behaves
as a perfect fluid and its equation of state can be easily derived as

Tµν = − Λ

8π
gµν =⇒ ρ = −p =

Λ

8π
, (1.29)

meaning that w = −1. A fluid with such an equation of state has the particularity that
its energy stays constant with the expansion of space, ρ ∝ a0. One could wonder, if such a
constant is needed in our theory and it seems to be the case in today’s cosmological paradigm.
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There are numerous evidences that the expansion of our universe is accelerating [23–25] and
the cosmological constant is the best model we have so far to explain this behaviour.

Next we would like to understand how a coupled system, composed of the gravitational
field and a perfect fluid, evolves. For that purpose, we need to reduce the Einstein field
equations using the symmetries at hand. This is simply done by substituting what we know
about perfect fluids and the FLRW metric. Using the equations for the 00-component and
the ij-component, we can find

ä

a
=− 4π

3
(ρ+ 3p) (1.30)

(
ȧ

a

)2

:=H2 =
8π

3
ρ− k

a2
, (1.31)

the Raychaudhuri and Friedmann equations, respectively. Together with the continuity
equation (1.25), the system of three differential equations for the two functions ρ(t) and a(t)

is not linearly independent and one can discard one of the equations. This is useful in the
case where one considers several fluids composing the matter sector. In this case, we can
use the additive property of the density to rewrite the Friedmann equation as

H2 =
8π

3
(ρdust + ρrad + ρΛ)− k2

a2
, (1.32)

while each individual perfect fluid still satisfies its continuity equation. Therefore, one can
further improve the Friedmann equation as

H2 =
8π

3

(
ρdust,0

a3
0

a3
+ ρrad,0

a4
0

a4
+ ρΛ

)
− k2

a2
, (1.33)

with ρdust,0, ρrad,0 and a0 being the initial conditions at time t0 of the relevant variables.
This last equation only depends on the scale factor and can be solved using the initial
condition a(t0) = a0. Another version of the Friedmann equation that can often be seen
in the literature involves the density parameters Ωm, Ωr, ΩΛ and Ωk of dust, radiation, the
cosmological constant and the curvature, respectively. This equation is dimensionless and
is obtained by dividing Eq. (1.33) by the initial condition H2

0 of Hubble constant squared
at some instant t0, giving

H2

H2
0

= (Ωm + Ωr + ΩΛ + Ωk) , with Ωi :=
8πρi,0
3H2

0

, (1.34)

where we also set a0 = 1 and defined ρk,0 = −3k/(8π).

1.2.3 Cosmological horizons

In today’s cosmological paradigm, the universe started at a finite past time and its expansion
is accelerating. This means that there are patches of the universe that either didn’t have
time or will never reach us. The surface that separates the region are called horizons. There
are different types of horizons depending on what is meant by “observable” and if we work
with global or local horizons. This section is largely inspired by the book of Faraoni [26].
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Particle horizon This is often the first type of horizons that is encountered in cosmology
textbooks since its interpretation is relatively straightforward. It is the largest distance RP

from which light had time to reach us since the beginning of the universe. The light that
travelled the furthest before reaching us was following radial null geodesics, which means
that the line element with k = 0 becomes

ds2 = −dt2 + a2(t)dr2 = 0 , (1.35)

giving us the infinitesimal comoving radius dr = −dt/a(t). We can integrate these quantities
between the emission of the light ray at r = RP at the time of the big bang tbb and its
detection here r = 0 and today at time t. In physical coordinates, this gives

a(t)

∫ 0

RP

dr = −a(t)

∫ t

tbb

dt′

a(t′)
=⇒ RP (t) = a(t)

∫ t

tbb

dt′

a(t′)
. (1.36)

We found the proper particle horizon RP .

Event horizon An other question that can arise naturally in cosmology is to wonder
how far can we ever send signals to. Or in an other perspective, at which distance lies the
furthest object that one can ever observe from earth. This is the cosmological definition
of event horizons. At first, one can think that in an infinite amount of time one will be
able to observe everything, but this is not the case because of the accelerating nature of the
expansion. In physical coordinates, the proper event horizon for a spatially flat universe is

RE(t) = a(t)

∫ tmax

t

dt′

a(t′)
, (1.37)

where tmax is the time of the end of the universe and is tmax =∞ in most cases. For fluids
with w > −1, one can show that the comoving event horizon is

RE(t) = t2/(3(w+1))

[
3(w + 1)

3w + 1
t′(3w+1)/(3(w+1))

]t′=∞

t′=t

. (1.38)

we see that for w > −1/3 we have RE →∞ meaning that there are no event horizons, while
RE is finite for w < −1/3. This latter inequality coincides with the condition required for
an accelerated expansion ä > 0.

Event horizons are also very important in the context of black hole physics. In this
context, we also introduce the more formal definition of an event horizon. It is defined as
the connected component of the boundary of the causal past of future null infinity. In other
words, it is the boundary of all the null geodesics that reaches infinity. One can also say
that an event horizon arises from the null geodesics that fails to reach infinity.

Hubble horizon Due to the expansion of the universe, the further away an object is
the faster it moves away from us. One can therefore wonder where lies the limit for which
objects moves at the speed of light with respect to us. We can deduce this distance using
the physical velocity of objects (1.14), assuming no peculiar velocity and k = 0. We find
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that the Hubble horizon is

RH =
1

H(t)
. (1.39)

Apparent horizon We found the Hubble horizon by fixing the velocity of comoving
objects to the speed of light. However, this approach is not appropriate for more complicated
system and it is not mathematically well defined. One can treat this type of local horizon
with the more formal concept of apparent horizons. A future apparent horizon is defined
as surface where future-pointing and outgoing geodesics stop propagating outward of the
horizon [26,27]. This is usually quoted as the surface from which light cannot escape. Let lµ

and nµ be the two future-pointing null vectors normal to this surface. Let’s assume without
loss of generality that lµ is pointing in the radial direction with increasing r, while nµ is
pointing in the opposite direction, towards decreasing r. what we mean by that if we define
the radial vector in the FLRW coordinate system (1.71)

Sµ = (0, 1, 0, 0), (1.40)

we have lµSµ > 0 and nµSµ < 0. We further define the expansions θl and θn of the normal
vectors lµ and nµ respectively

θl = hµν∇µlν and θn = hµν∇µnν , (1.41)

with hµν = gµν +
lµnν + lνnµ

−lµnµ
. (1.42)

hµν is the induced metric on the surface of normal vectors lµ and nµ. In short, when the
expansion of a vector is negative, it means that the geodesic tangent to this vector is evolving
inward, towards decreasing r, while a positive expansion leads to an outward propagation of
the geodesic. When both expansions of the normal vectors are negative, null geodesics are
trapped and drifting toward r = 0. One therefore define a cosmological apparent horizon as
the limiting case, which is the marginally outer trapped surface for which we have

θl > 0 and θn = 0 . (1.43)

These conditions mean that the geodesic tangent to the vector nµ stops propagating inward,
while the geodesic associated to the vector lµ still propagate outward.

Coming back to the FLRW metric (1.12), the two future pointing normal vectors are

lµ = (1,
√

(1− kr2)/a2, 0, 0) and nµ = (1,−
√

(1− kr2)/a2, 0, 0) , (1.44)

giving us the expansions

θl = 2

(√
1− kr2

a2r2
+H

)
and θn = 2

(
−
√

1− kr2

a2r2
+H

)
. (1.45)
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If one chooses the comoving radius

RA =
√
H2 + k/a2

−1
, (1.46)

we can show that we have indeed θl > 0 and θn = 0. RA is therefore the apparent horizon
and we recover the Hubble horizon for k = 0.

In the case of black hole, we would like that null geodesics are drifting towards r → 0,
hence both expansions being negative. The limiting case is then

θn < 0 and θl = 0, (1.47)

which is defined as a black hole apparent horizon, the geodesic tangent to the outgoing
vector lµ stops propagating outwards.

A very interesting property of apparent horizons is that they always lie inside an event
horizon, provided that the null energy condition (NEC), T µνlµlν ≥ 0, for lµ a null vector,
is satisfied [26]. This means that the existence of an apparent horizon is sufficient to show
that there exists an event horizon. In particular, from Penrose and Hawking singularity
theorems [28, 29] we conclude that there is always a singularity included in an apparent
horizon.

1.2.4 Cosmology in Painlevé-Gullstrand coordinates

One of the foundational principle of General Relativity is the invariance under general
coordinate transformation. In choosing the FLRW metric (1.12) we fixed the coordinate
system and therefore the gauge, but we are free to change the coordinates as we like. So far,
we have used the comoving radial coordinate r and we often moved to the proper or physical
coordinate R = a(t)r to describe physical properties. One could instead directly start by
writing the metric in terms of R. For the following, we assume a spatially flat space-time,
k = 0. Using the product rule for derivatives, we find the infinitesimal Schwarzschild radial
coordinate dR, often called this way due to its connection with the radial coordinate used
in the description of black holes with the Schwarzschild metric,

dR = a(t)dr +H(t)R dt . (1.48)

Substituting dr in the FLRW metric we find the metric in Painlevé-Gullstrand coordinates
[19]

ds2 = −
(
1−H2(t)R2

)
dt2 − 2H(t)R dRdt+ dR2 +R2dΩ2 . (1.49)

Under these new coordinates, the metric is no more diagonal, which is a rather unusual
feature. Moreover, the spatial section

ds2
3 = dR2 +R2dΩ2 , (1.50)

is now non-expanding. This is somewhat in conflict with the interpretation that galaxies
move away from each other due to the expansion of space, which is the case with the FLRW
coordinates. To see how and why galaxies recede, we need to look at the velocity field of
the matter fluid. The fluid moves as an Eulerian or comoving observer with the covariant
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velocity Vµ = (−1, 0, 0, 0), which becomes V µ = (1, H(t)R, 0, 0) in the contravariant basis,
because of the non-diagonal term. This means that a galaxy with no peculiar velocity is
moving in this coordinate system. For the readers familiar with the 3+1 decomposition and
the ADM formalism [30], the coordinate transformation (1.48) transfers the dynamics from
the lapse function to the shift vector.

1.3 The Schwarzschild solution and its limitations

A common simplifying assumption used in Newtonian gravity consists of considering a dom-
inating and spherical central mass with orbiting test objects with no gravitational influence.
Moreover, such a system lies in vacuum outside of the central mass and has a static grav-
itational field, which makes the calculations easier. One can adopt similar assumptions,
spherical symmetry and vacuum, in the context of General Relativity in order to describe
the gravitational field outside of spherical objects. Historically, the solution to the Ein-
stein field equations with these symmetries was the first analytic solution that has been
found [31]. Beyond its use in planetary systems or other spherically symmetric models, the
Schwarzschild solution has led to the surprising prediction of black holes. These bizarre ob-
jects, from which light cannot escape, has recently been directly imaged for the first time [32]
strongly supporting their existence. In the context of cosmology, in which the universe is
filled with a perfect fluid, one could try to add a test fluid surrounding a black hole, but
with no gravitational influence. After introducing the Schwarzschild solution, we will look
at the consequences of adding a test fluid around a black hole.

1.3.1 Static and spherically symmetric space-time

Without entering in too many details, one can always reduce a spherically symmetric metric
into the form [9]

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2 , (1.51)

where α and β are the remaining dynamical variables at play. In short, the spherical
symmetry fixes the induced metric on the spherical surfaces to be ds2

2 = r2dΩ2, leaving
only three remaining variables in the metric. An additional reparametrization of the time
coordinate reduces the system to two dynamical functions as in the metric (1.51). One
further chooses an exponential form for these arbitrary functions so as to have a Lorentzian
metric. Finally, α and β cannot depend on the angular coordinates, which would otherwise
break the spherical symmetry. For simplicity in the notation, the radial coordinate is labelled
r, but it is in fact what was called the Schwarzschild radial coordinate earlier in the chapter.

Next we postulate that outside of the spherically symmetric object we have a perfect
vacuum, hence T µν = 0. One can therefore derive the Einstein field equations and we get

1− e2β = 2rβ′ (1.52)
1− e2β = −2rα′ (1.53)

β̇ = 0 . (1.54)

Firstly, we see that β cannot depend on time from the third equation and secondly we have
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that α′ = −β′ using the two first equalities. Furthermore, the first equation can be solved
analytically leading to the solutions

α(t, r) = C(t) +
1

2
ln

(
1 +

µ

r

)
, (1.55)

β(t, r) = −1

2
ln

(
1 +

µ

r

)
, (1.56)

where C(t) and µ are integration constants. In fact, C(t) can simply be absorbed in the time
coordinate with the coordinate transformation eC(t)dt→ dt. In the weak field limit, we need
to recover the Newtonian gravitational potential and therefore make the choice µ = GM ,
with M the mass of the central object. The final result is the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 , (1.57)

where we set again G = 1. Interestingly, in the vacuum solution space-time is static,
even though we haven’t required the source to be static. This means that, as long as the
source stays spherically symmetric, the latter can be evolving in time without affecting the
outside gravitational field. This is known as Birkhoff’s theorem and in particular, this also
implies that the Schwarzschild metric can very well describe the gravitational field outside a
collapsing star or a supernova for example. A striking property of the Schwarzschild metric
(1.57) is its singular behaviour at r → 2M . In fact, there lies an event horizon at the
Schwarzschild radius rS = 2M .

As in the homogeneous and isotropic solution to the Einstein field equations, we can
change the coordinate system, in particular the time coordinate, to express the Schwarzschild
metric (1.57) in the Painlevé-Gullstrand form. Using the new time coordinate

t̃ = t− 2M

(
−2y + ln

(
y + 1

y − 1

))
, y =

√
r

2M
, (1.58)

we find the metric

ds2 = −
(

1− 2M

r

)
dt̃2 + 2

√
2M

r
dt̃dr + dr2 + r2dΩ2 . (1.59)

For illustrative purposes, one can look for the apparent horizon associated to this metric.
The future-pointing light-like vectors that are needed are

lµ =

(
1, 1−

√
2M

r
, 0, 0

)
and nµ =

(
1,−1−

√
2M

r
, 0, 0

)
, (1.60)

from which we derive the expansions

θl =
2

r

(
1−

√
2M

r

)
and θn = −2

r

(
1 +

√
2M

r

)
. (1.61)

therefore we conclude that there exists an apparent horizon for r = 2M and it coincides
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with the event horizon.

1.3.2 Schwarzschild black hole with a test fluid

The spherically symmetric vacuum solution is undoubtedly of crucial importance for plan-
etary systems and to describe with a reasonable accuracy the behaviour of black holes.
However, the surrounding of such objects is not perfectly empty and one could ask how one
can add a fluid in the vicinity of a black hole. In the case where the energy density around
the central object is small, one can make the assumption that such a fluid has negligible
influence on the gravitational field relative to the effect of the central mass. Hence, one
can keep the Schwarzschild solution as a good approximation. Not all perfect fluids can
be used with these assumptions. A fluid made of bosonic matter for example is not well
suited because it is strongly self-interacting and would form an accretion disk, which can
break spherical symmetry or the negligible back-reaction of the test fluid. Dark matter on
the other hand, is usually assumed to be interaction-free or very weakly interacting [22] and
radiation doesn’t interact with itself, hence they could both be of interest in describing a
central black hole surrounded by a test fluid.

A black hole with mass M bathed in a radiation fluid at some possibly varying tempera-
ture T (t) will grow in size and mass as it absorbs matter. To measure the energy flow into
the black hole’s horizon and thus the change in mass, we use the viewpoint of an observer far
away in flat space-time. To this observer, the black hole and its gravitational field appear
as a sphere with a radius of b =

√
27M . b is in fact the impact parameter of the black hole

for photons at infinity. In addition to the physical cross-section, one also need to take into
account the scattering cross-section of photons with larger wavelength for the calculation of
the inward flux. One last ingredient that one can add to fully describe the overall energy
flow is the Hawking radiation [29]. It has been shown that black holes radiate in a similar
way as a black body and its temperature is inversely proportional to its mass. One needs
to take into account this energy loss when computing the overall energy flow across the
horizon. We are now fully equipped to describe the evolution of the mass of a black hole
surrounded by a radiation fluid that is evolving in time as it is the case in an expanding or
contracting universe.
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Using the Schwarzschild metric as a rudimentary toy model, we pedagogically revisit the curious
prediction that the mass of a classical black hole in a constant temperature thermal bath diverges in a finite
amount of time. We study in detail how this instability behaves if the temperature of the bath is allowed to
vary with time and conclude that whatever the background behavior (but for a zero-measure subspace of the
initial conditions), the black hole mass either diverges or vanishes in a finite time if the Hawking radiation is
taken into account. The competition between both effects is subtle and not entirely governed by the
hierarchy of the relevant temperatures. This instability is also shown to be reached before the background
singularity in a contracting universe, which has implications for bouncing models. The results are
generalized to spaces with extra dimensions, and the main conclusions are shown to remain true. The
limitations of the model are reviewed, both from the point of view of the dynamical black hole horizon and
from the point of view of the background space expansion. Comparisons with other approaches are
suggested and possible developments are underlined.
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I. INTRODUCTION

This work does not contain fundamentally new results. It
basically aims at pedagogically “rediscovering” in a wider
way a strange behavior of black holes absorbing a continu-
ous flux of energy and at exploring interesting situations
relevant for cosmology. Most of our points are established
using the Schwarzschild metric in a Bondi-Hoyle-Lyttleton
basic approximation scheme, which can only be considered
as a very rough toy model. Interesting features can be
guessed while neglecting both the background space expan-
sion and the truly dynamical nature of the black hole horizon
but extreme care should be taken when considering the
results literally: technical and conceptual issues should be
addressed before firm conclusions are drawn. Our aim is
therefore not to make any strong claim but to encourage
further studies so as to clarify interesting features and to
attract the attention of the unfamiliar reader to some strange
situations.
A classical black hole in a thermal bath obviously grows

by absorbing the surrounding radiation. If the temperature of
the bath is constant, itmight be naively expected that itsmass
tends to infinity after an infinite amount of time. We show
that, without any exotic assumption, the mass actually
diverges at finite time. This has first been noticed in [1]
(translated in [2]).Manyworkswere devoted to the so-called
self-similar solution, to the investigation of different
equations of state, to the existence of a Friedmann or
quasi-Friedmann asymptotic behavior, and to the separate
universe issue [3–17]. Although those points are of unques-
tionable importance, we do not here deal with these

subtleties and mostly focus on some strange consequences
of a naïve Schwarzschild-based analysis. Our aim is not to
derive reliable conclusions—as a static metric is used
beyond its regime of validity—but to underline some
(maybe) surprising situations that could deserve a closer
look and seem, to the best of our knowledge, quite ignored
by the community.
We show that the pathological behavior depends neither

on the kind of radiation nor on the initial black hole mass. If
the background varies with time, the situation becomes
intricate. Depending both on the speed of the space dilation
and on the initial conditions, the mass of the black hole can
either diverge in a finite amount of time or tend to a finite
asymptotic value. The “natural” expectation (M → ∞ for
t → ∞) actually happens only for a subset of zero measure
in the parameter space (which has already received a great
deal of attention in the literature and will not be our focus).
We compare the critical black hole mass with the Hubble

mass and show that different hierarchies have to be
considered. When the Hawking evaporation is also taken
into account, the mass can vanish for a part of the possible
initial states. This shows that, under the strong simplifica-
tions performed, in all cases, the black hole is unstable and
its mass either diverges or vanishes in a finite amount of
time. The relative value between the initial temperature of
the bath and the initial temperature of the black hole does
not determine the long run behavior.
Importantly, in contracting cosmological solutions, the

black hole instability is always reached before the back-
ground singularity. Some consequences for bouncing
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models are drawn, underlying that this catastrophic behav-
ior can happen before the Planck energy is reached. The
competition between the absorption and the evaporation is
quite involved.
We study how extra dimensions would influence the

picture and conclude that the diverging behavior remains
true although the singularity is reached later when D > 4.
Finally, some comparisons with analog black holes are

suggested, and links with chemistry and statistical physics
are pointed out. The limitations of the toy model used in this
work are discussed in detail and possible developments are
underlined, focusing on some relevant generalized metrics.
We stress that the curious results—some already well
known, others quite new—shown in this work are more
to be understood as a strangeness of the Schwarzschild
solution pushed beyond what it was intended for than as
realistic physical effects. Still, they can be useful to discover
situations deserving deeper investigations.

II. ABSORPTION BY A BLACK HOLE
IN A THERMAL BATH AT

CONSTANT TEMPERATURE

To fix ideas, let us begin by considering a black hole in a
constant temperature thermal bath of photons, disregarding
the Hawking evaporation. Throughout the article we use
Planck units except as otherwise stated. The energy density
of the equilibrium distribution is given by

ρ ¼ g
2π2

Z
∞

0

E

e
E−μ
T − 1

E2dE; ð1Þ

where g is the number of internal degrees of freedom, E is
the energy, and μ is the chemical potential assumed to be
negligible in the following. This leads to the standard
relation

ρ ¼ π2

15
T4: ð2Þ

The radius of a static1 nonspinning and uncharged black hole
of mass M is 2M. Photons will fall in the black hole if
they approach its center at a distance smaller that 3M in
Schwarzschild coordinates. This corresponds to an impact
parameter at infinity b ¼ ffiffiffiffiffi

27
p

M. Assuming that the wave-
length of the background radiation is much smaller than the
size of the black hole, that is, assuming that the optical limit
holds, the effective cross section is simply given by 108M2

(the factor π being lost by averaging over the isotropic
distribution). Themass evolution therefore immediately reads

dM
dt

¼ 36

5
π2T4M2: ð3Þ

The energy density given by Eq. (2) and entering Eq. (3) is
defined at infinity. The equation is trivially integrated in

1

Mi
−

1

M
¼ 36

5
π2T4t; ð4Þ

where Mi is the initial mass of the black hole and t is time
elapsed since its formation. Interestingly (and maybe
surprisingly), the mass does not diverge in the limit
t → ∞ but at finite time:

td ¼
5

36π2T4Mi
; ð5Þ

such that

lim
t→td

M ¼ ∞: ð6Þ

This basically means that any black hole in a thermal bath,
described at this level of approximation, is unstable.
(Alternatively, this also means, with the same limitations,
that any steady-state cosmological scenario—relying on an
infinitely old universe and trying to account for a black-
body radiation usually assumed to be at constant temper-
ature—is basically incompatible with the existence of black
holes in the usual sense.)
This result remains true if the initial mass of the black

hole is such that the wavelength of the surrounding
radiation is much larger than the Schwarzschild radius.
In this case, the scattering cross section is given by [18]

σ ¼ 64πM4E2

3
: ð7Þ

This new behavior is due to the fact that the incoming wave
cannot be approximated to a point particle anymore. The
additional E2 factor shows that the greybody factor is, as
expected, suppressed in the limit ME → 0. In this regime,
and assuming E ∼ T, the evolution equation becomes

dM
dt

¼ 256

45
π2T6M4: ð8Þ

Calling λ the mean wavelength of the thermal radiation, we
define the equilibrium time (corresponding to the transition
between a black hole smaller than the typical photons to a
black hole larger than the typical photons) te such that
MðteÞ ∼ λ ∼ 1=T. This defines the change of regime
between the optical cross section ∝ M2 and the low-energy
cross section ∝ M4E2. Neglecting the oscillations (which
would not change the order of magnitude), te can be
estimated to be given by integrating Eq. (8):

1Once again, we emphasize that this hypothesis is not fulfilled
in our calculation, hence the “toy model” qualification.
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te ¼
15

256π2T6
ðM−3

i − T3Þ; ð9Þ

with Mi < 1=T by hypothesis.
After the time te, the black holes are in the usual regime

and the remaining time before divergence is

Δt ¼ 5

36π2T3
: ð10Þ

The full time between formation and divergence is
therefore in this case

td ¼
5

36π2T3
þ 15

256π2T6
ðM−3

i − T3Þ ð11Þ

¼ 186

2304π2T3
þ 15

256π2T6M3
i
; ð12Þ

which is again finite for any value of Mi and T. The
dependence upon the initial mass is, as expected, stronger
than before as the absorption at the beginning is highly
suppressed. This phenomenon, however, does not prevent
the mass divergence at finite time.
If the thermal bath is made of relativistic fermions

instead of photons, the result is mostly the same in the
case of a black hole larger that the mean wavelength of the
radiation. The energy density of the bath is simply modified
by a factor of 7g=16 and

td ¼
20

63π2gT4Mi
: ð13Þ

The “small mass regime,” however, strongly differs from
the case of photons. The scattering cross section for
fermions in the E → 0 limit is [18]

σ ¼ 2πM2: ð14Þ

The same reasoning as previously leads to

te ¼
30

7π2gT4
ðM−1

i − TÞ: ð15Þ

And the full divergence time reads

td ¼
20

63π2gT3
þ 30

7π2gT4
ðM−1

i − TÞ ð16Þ

¼ 30

7π2gT4Mi
−

256

63π2gT3
: ð17Þ

This shows that, in all cases, the mass of a classical black
hole in a constant temperature bath tends to infinity in a
finite amount of time.

This unusual behavior is, of course, entirely rooted in the
specific mass-radius relation of black holes. A ball of
standard matter with a cross section proportional to M2=3

would grow gently as M ∝ t3 and would never experience
any singularity.

III. ABSORPTION IN A THERMAL BATH
AT DECREASING TEMPERATURE

Although the mass divergence in finite time might come,
at first sight, as a physical surprise, it is a mathematically
obvious consequence of having dM=dt ∝ Mδ with δ > 1. It
is now worth considering the case of a classical black hole
immersed in a thermal bath with decreasing temperature.
Let us assume that

T ¼ T0

�
t
t0

�
α

: ð18Þ

The constants T0 and t0 could be absorbed in a single
parameter but keeping both of them helps the physical
intuition. The exponent α is negative (otherwise the
divergence is just trivially amplified). The evolution equa-
tion (focusing on the case of an initial mass larger than the
radiation mean wavelength) is

dM
dt

¼ kT4M2 ¼ kT4
0

�
t
t0

�
4α

M2; ð19Þ

with k ¼ 36π2=5 for photons. This leads to

1

M
¼ 1

Mi
−

kT4
0

ð4αþ 1Þt4α0
ðt4αþ1 − t4αþ1

i Þ; ð20Þ

where ti is the formation time of the black hole and Mi its
corresponding mass. Calling β ¼ 4αþ 1, the mass diverges
ð1=M ¼ 0Þ at time

td ¼ e
1
β ln ð

βtβ−1
0

kMiT
4
0

þtβi Þ
: ð21Þ

This will actually happen if the argument of the logarithm is
positive. If β > 0, this is always true. Otherwise stated, if
the cooling of the universe in slow enough (T ∝ tα with
α > −1=4), the mass divergence at finite time happens
whatever the initial conditions. On the other hand, if β < 0,
the divergence requires Mi > Mc with

Mc ¼ −
βtβ−10 t−βi
kT4

0

ð22Þ

¼
�

8

3ð1þ wÞ − 1

�
t
− 8
3ð1þwÞ

0

kT4
0

t
ð 8
3ð1þwÞ−1Þ
i : ð23Þ

In a cosmological setting, T ∝ a−1—with a the scale

factor–that is, T ∝ t−
2

3ð1þwÞ with w ¼ p=ρ the equation of
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state parameter for the dominant fluid. The condition β>0,
or equivalently α > −1=4, translates into w > 5=3. This
value, greater than one, corresponds to “superstiff” matter.
Although quite exotic, this behavior can be encountered in
realistic models such as Horava-Lifshitz gravity (see [19]).
In this case, even if the temperature is decreasing, the black
hole mass diverges whatever its initial value. If α < −1=4,
the divergence is associated with the condition given by
Eq. (23). The important point is that there always exists an
initial mass beyond which the divergence does occur.
In this sense, part of the parameter space is unavoidably
unstable.
It is interesting to compare Mc with the Hubble mass

MH. At time ti, the latter is of orderMH ∼ ti. The condition
Mc < MH is always fulfilled when β > 0, which means
that the considered black hole can form without any
causality issue. On the other hand, if β < 0, the condition
reads

t−β−1i <
kT4

0

−βtβ−10

: ð24Þ

Let us define the critical crossing time

tcH ¼
�

kT4
0

−βtβ−10

� −1
βþ1

: ð25Þ

If − β − 1 > 0 (that is, α < 1=2 or w < 1=3), the condition
translates into ti < tcH, whereas if −β − 1 < 0 (that is,
α > 1=2 or w > 1=3), the condition translates into ti > tcH.
For content with an equation of state softer than radiation,
unstable (with diverging mass) black holes can be causally
formed early in the history of the Universe, while for a
background equation of state stiffer than radiation, unstable
black holes can form late in the cosmological history. If
w ¼ 1=3 exactly, the condition simply reads −βtβ−10 < kT4

0.
In all cases a part of the parameter space leads to diverging
black holes. The detailed investigation of hierarchy
between the horizon of the black hole and the cosmological
horizon (particle horizon before the inflation, Hubble
horizon after the inflation) has been extensively studied,
e.g., in [3,6,11], and we will not repeat the analysis here.
Interestingly, the naively expected behavior (M → ∞ for

t → ∞), which is also the one that has generated some
interest from the point of view of general relativity, happens
only for a zero measure parameter space. In the general case
where the instability is avoided, the mass tends to a finite
asymptotic value M∞ in the remote future:

M∞ ¼
�

1

Mi
þ kT4

0t
β
i

βtβ−10

�−1

: ð26Þ

This is illustrated in Fig. 1. Depending on the initial mass
and on the speed at which the temperature of the thermal

bath decreases, the evolution of the black hole mass
corresponds to one of the two cases displayed.

IV. SWITCHING ON THE EVAPORATION

Obviously, the full picture requires one to also take into
account the Hawking evaporation [20] which is mandatory
to have a consistent thermodynamical understanding
(although the truly dynamical horizon is still ignored).
The evolution equation now reads

dM
dt

¼ kT4M2 − γM−2: ð27Þ

In principle, the γ parameter depends on the mass M as the
number of degrees of freedom available increases with the
black hole temperature TBH ¼ 1=ð8πMÞ. New channels are
opened each time the temperature becomes higher than the
rest mass of a given particle species. For this study it is
clearly sufficient to assume γ to be constant [21]. Its
numerical value can be straightforwardly calculated by
integrating the Hawking spectrum (multiplied by the
energy Q of the emitted particle):

dMevap

dt
¼ −

Z
Γ
2π

ðe Q
TBH − ð−1Þ2sÞÞ−1QdQ; ð28Þ

where s is the spin of the particle and Γ ¼ Q2σ=π is the
greybody factor.
The Hawking evaporation has an immediate conse-

quence. If the black hole happens to be in an initial state
where the evaporation dominates over the absorption, it
automatically remains in this regime: the mass decreases
and the M−2 term becomes more and more important with
respect to the absorption one. The situation considered at
the end of the first section is therefore purely academic: in
practice, if the size of the black hole is smaller than the
wavelength of the surrounding radiation, the black hole
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FIG. 1. Evolution of the mass of a black hole in a perfect fluid
with w ¼ 0. The blue curve corresponds to a black hole with an
initial mass slightly lower than the critical mass Mc, whereas the
yellow curve corresponds to a mass slightly higher. Dashed lines
represent asymptotic behaviors. No “in-between” dynamics is
possible.
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behavior is dominated by the evaporation. Its mass vanishes
in a time

tevap ¼
M3

i

3γ
: ð29Þ

This means that, in a thermal bath, a black hole is anyway
unstable: its mass either diverges or reaches zero2 in a finite
amount of time. The Hawking time scales as M3

i and the
divergence time scales as M−1

i .
The reciprocal of the previous statement is, however, not

true in an expanding universe. If the absorption initially
dominates, this does not mean that it will remain so forever.
Actually, it cannot remain true in most cases. If the cooling
of the Universe is “usual” (e.g., associated with an equation
of state w ¼ 1=3 or w ¼ 0) and the initial black hole mass
is such that the divergence is avoided (Mi < Mc), the
evaporation will inevitably dominate at some point. In the
absorption-dominated regime, the mass of the black hole
increases and its temperature decreases. However, as
previously shown, the mass necessarily tends to a finite
value in the remote future. This means that, as far as
absorption is concerned, dM=dt → 0. On the other hand,
the mass variation due to the evaporation has a constant
asymptotic value dM=dt ¼ −γM−2

∞ . After some time t� this
latter term will dominate. This basically means that the
naive idea according to which, in a dynamical thermal bath,
a black hole either absorbs radiation or evaporates depend-
ing only on the respective (initial) values of the bath and of
the black hole temperatures is wrong. If the initial temper-
ature of the black hole is smaller than the initial temperature
of the background, the black hole temperature will first
decrease (it will grow by absorption), in accordance with
the usual view. However (if the dynamics is not the
diverging one), after a finite time t�, the temperature will
start to increase again (the black hole will shrink by
evaporation). Once the evaporation dominates, the behavior
will not reverse until the disappearance of the black hole.
The minimum temperature reached by the black hole is

Tmin ¼
1

8π

�
1

Mi
þ kT4

0t
β
i

βtβ−10

�
: ð30Þ

The transition time t� is such that
ffiffiffi
γ

k

r
t2α0

T2
0t

2α�

�
1

Mi
−

kT4
0

ð4αþ 1Þt4α0
ðt4αþ1� − t4αþ1

i Þ
�

ð31Þ

¼ ðM3
i − 3γðt� − tiÞÞ13: ð32Þ

If the dynamics of the background spacetime is, how-
ever, such that the black hole mass should diverge due to

absorption, the situation is quite subtle. For most of the
parameter space, the black hole just grows and the
evaporation does not play any role. But it can be shown
that for highly tuned initial conditions the second time
derivative of the mass can vanish and the evaporation can
overcome the growth. This corresponds to a very particular
case worth being mathematically pointed out but most
probably without any phenomenological consequences.
This shows why black holes in a thermal bath are

unstable. The mass either diverges or vanishes in a finite
amount of time. Figure 2 illustrates the typical behavior in
the case where the absorption initially dominates without
being diverging: the mass first increases quite fast, then
remains close to its asymptotic value for most of the
evolution, and then decreases until it completely vanishes.
The very highly tuned case where the mass would
diverge without evaporation but where the dynamics is
finally overcome by the Hawking effect is exhibited
in Fig. 3.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

log10(t/ti)

M
(t

)/
M

(t
i)

FIG. 2. Evolution of the mass of a black hole in a perfect fluid
with w ¼ 0 taking into account Hawking radiation. The blue
curve corresponds to a black hole with an initial mass slightly
lower than the critical mass Mc, whereas the yellow dashed line
corresponds to the time when evaporation starts to dominate.
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FIG. 3. Very special case where the absorption initially domi-
nates in an expanding space—in a regime such that the mass
should diverge without evaporation—but where the Hawking
effects still finally overcome the evolution.

2There are countless arguments and models in quantum or
extended gravity to avoid the naked singularity—see references
in [22]—but this is not the point we wish to make here.
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Let us summarize:
(i) If the initial black hole temperature is higher than the

background temperature, the black hole simply
evaporates and vanishes.

(ii) If the initial black hole temperature is smaller
than the background temperature and α > −1=4
(or α < −1=4 and M > Mc), the black hole mass
generically diverges (however, there exists a tiny set
of parameters—corresponding to initial conditions
highly tuned close to the critical values—where the
evaporation finally dominates).

(iii) If the initial black hole temperature is smaller than
the background temperature (and α < −1=4 and
M < Mc), the black hole mass vanishes after having
reached a “plateau” where it stayed for the vast
majority of its lifetime.

The important feature is that the infinite or vanishing mass
is always reached in a finite amount of time. Let us
mention, although this is not the point of this study, that
even if some kind of remnant or relic is formed at the end of
the evaporation, they are anyway usually expected to
disappear at some point [23].

V. THE DE SITTER CASE

When the scale factor expands exponentially, the temper-
ature evolution can be written as

T ¼ T0e−κt: ð33Þ

The mass evolution (when the black hole initial mass is
such that the absorption dominates over evaporation) then
reads

1

M
¼ 1

Mi
þ kT4

0

4κ
ðe−4κt − e−4κtiÞ: ð34Þ

As expected, no divergence occurs in this case and the mass
always reaches its asymptotic value,

M∞ ¼
�

1

Mi
−
kT4

0

κ
e−4κti

�−1
: ð35Þ

Once again, the evaporation unavoidably dominates at
some time t� such that

ffiffiffi
γ

k

r
kT−2

0 e2κt�
�

1

Mi
þ kT4

0

4κ
ðe−4κt� − e−4κtiÞ

�
¼ ð36Þ

ðM3
i − 3αðt� − tiÞÞ13: ð37Þ

The de Sitter horizon is endowed with a temperature

TdS ¼
1

2π

ffiffiffiffi
Λ
3

r
; ð38Þ

where Λ is the cosmological constant. This, however, does
not change the picture in any noticeable way as the black
hole temperature always remains higher than the de Sitter
temperature.

VI. THE CONTRACTING
UNIVERSE CATASTROPHE

Quite a lot of theories beyond general relativity predict a
cosmological bounce instead of the big bang singularity
(see e.g., [24–26] for reviews). This is even possible in
general relativity without exotic matter [27,28]. In such
models, the Universe was contracting before entering the
current expanding branch. If space was, before the bounce,
filled with black holes and radiation,3 the catastrophic
growth of black hole masses that we have established in a
constant-temperature bath will even be worsened.
It makes sense to evaluate the time taken by a black hole

to reach its absorption singularity. Contracting spaces are
known to exhibit some paradoxes (see [29,30]), and it is
interesting to compare how long it takes for the black hole
to become unstable when compared to the time required for
the background radiation to reach the Planck density
(triggering quantum gravity effects). If the contracting
branch is filled with relativistic matter, the dynamics of
the black hole reads

1

Mi
−

1

M
¼ kT4

0t
2
0

�
1

ti
−
1

t

�
; ð39Þ

where t is now negative and the conventions are the same as
previously. (Contrary to what is sometimes believed, if a
cosmological variable scales as tq in an expanding uni-
verse, it will not behave as t−q in a contracting one.)
Although this expression is formally the same as in the
expanding universe, it does induce, due to the fact that t is
now negative, a far faster divergence, all the other param-
eters being the same, as it can be seen in Fig. 4. The
background energy density varies as ρ ∝ ð−tÞ−2, and Fig. 4
shows that the black hole mass divergence can (depending
on the initial conditions) be reached before the energy
density becomes Planckian. This means that the singularity
resolution provided by the bounce in quantum gravity
models (see e.g., [31]) might not solve this specific problem
which should be seriously considered. To be more illus-
trative, let us once again consider a prebounce universe
similar to our expanding one, i.e., such that the temperature
was T ∼ 3 × 103 K at time t ∼ −3 × 105 years before the
bounce. Then a stellar mass black hole with an initial
mass M ∼ 10 M⊙ would diverge at time td ∼ −10−5 s

3There are no motivations for this assumption often made in
the framework of bouncing models. This is only justified by the
desire of studying a symmetric situation that might be the less
unjustified guess. It remains hazardous from the causality point
of view.
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when the temperature was TðtdÞ ∼ 1012 K, well before the
Planck era.
This also leads to an important remark. Let us consider

the contracting solution to the Friedmann equation

H ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
8πGρ
3

r
; ð40Þ

whereH is the Hubble parameter. This describes a universe
which reaches a singularity at t ¼ 0. It is, however, clear
from Eq. (39) that the point 1=M ¼ 0 will inevitably be
reached before t ¼ 0, whatever the initial conditions. The
black hole instability precedes the big crunch singularity.
As long as there is a black hole in a contracting universe
filled with radiation, this phenomenon will take place
before the breakdown of the smooth background evolution.
In a contracting space, if the absorption initially domi-

nates, the evaporation obviously never plays any role and
the mass diverges. What, however, happens if the evapo-
ration is dominant at the formation time? One might
naïvely expect that a severe competition takes place
between absorption (which increases at a given mass
due to the increase of the temperature) and evaporation
(which increases due to the decrease of the mass). This,
however, is not the case in general. One can straightfor-
wardly show that the absorption overcomes the evaporation
if the background temperature satisfies

Tback >

�
γ

k

�1
4 1

M
: ð41Þ

The background temperature, however, diverges at t ¼ 0.
This means that—once again except for a tiny and mostly
irrelevant part of the parameter space corresponding to fine-
tuned initial conditions—the Hawking evaporation remains

dominant if the Hawking time is smaller than the time
available before the crunch (or the bounce).

VII. EXTRA DIMENSIONS

Gravity with more than three spatial dimensions is far
richer. This is the case for mathematical reasons: the
rotation group SOðDÞ has Cartan subgroup Uð1ÞN with
N ¼ E½D=2�. This is also the case for physical reasons: the
radial falloff of the Newtonian potential scales as rD−2,
whereas the centrifugal barrier does not depend on D. Let
us consider a spacetime with D spatial dimensions and
define

μ ¼ 16πM
ðD − 1ÞΩD−1

; ð42Þ

where Ωd−1 ¼ 2πD=2=ΓðD
2
Þ is the area of a unit (D − 1)-

sphere. The generalized Schwarzschild metric reads [32,33]

ds2 ¼ −
�
1 −

μ

rD−2

�
dt2 þ dr2

1 − μ
rD−2

þ r2dΩ2
D−1: ð43Þ

It is straightforward to show that, in this framework, the
time evolution of the black hole mass becomes (in a
constant temperature background)

dM
dt

∝ M
D−1
D−2: ð44Þ

This diverges at finite time if ðD − 1Þ=ðD − 2Þ > 1, which
is always true. However, the higher the number of extra
dimensions, the less drastic the divergence becomes. Care
should be taken when using Planck units with D > 3. The
full expression of the radius of the horizon is

RD ¼ 1ffiffiffi
π

p
M�

�
M
M�

� 1
D−2

�
8ΓðD

2
Þ

D − 1

� 1
D−2

: ð45Þ

In this expression M� is the fundamental Planck scale and
not the usual (3þ 1)-dimensional one. The Hawking
temperature of the black hole reads

TBHD
¼ D − 2

4πRD
: ð46Þ

The behavior is qualitatively the same as in the four-
dimensional case. Whatever the number of extra dimen-
sions, the black hole mass diverges at finite time in a static
thermal bath. If, however, the temperature of the bath
decreases with time and the black hole is not too large at the
initial time, the black hole mass will also tend to an
asymptotic value. The dynamics will then, at some point,
be dominated by the evaporation and the mass will vanish.

(t)/ (ti)

M(t)/M(ti) contraction

M(t)/M(ti) expansion

–1.0 –0.5 0.0 0.5 1.0
0

10

20

30

40

50

60

Time t in billion years

FIG. 4. The blue curve in the left panel and the yellow curve in
the right panel represent the time evolution of black holes with the
same initial masses in a radiation-dominated universe which is,
respectively, contracting (left) and expanding (right). The dashed
green curves correspond to the evolution of the background
density.
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VIII. ANALOGIES

The simple approach we have chosen here is obviously
oversimplified. The dynamics of Eq. (3) reads, for the
radius of the black hole,

dR
dt

¼ 72

5
π2T4R2: ð47Þ

This means that dR=dt → ∞ as the critical time is
approached. This is also true in the other backgrounds
considered as far as the instability occurs. Is this physical?
We will come back to this question at a more fundamental
level in the next sections, and we remain here at the level of
the simple consistency of the toy model. Obviously, if a
particle of total energy ϵ falls into a large black hole of
radius R, it does not make sense to assume that the horizon
jumps instantaneously to a perfect sphere whose radius is
simply increased by 2ϵ. The intricate relaxation procedure
through quasinormal modes should, in principle, be con-
sidered to accurately describe the time evolution of the
shape of the horizon. For obvious causality reasons the
horizon cannot globally vary in shape “faster than light” as
a consequence of a local deformation. The situation
considered in this work is, however, different. One deals
with a nearly continuous background of ingoing energy.
The very notion of a event horizon is, in nature, global

and teleological (see e.g., [34]). It is the boundary of future
null infinity. This, however, does not prevent the change of
the horizon shape, at tþ dt, due to an incoming flux of
energy on a black hole preexisting at time t, to be locally
determined. Associated conceptual and technical consid-
erations were studied, e.g., in [35,36], following [37]. The
growth of the horizon is locally driven by the global past
history and the recent local events. There is, then, no reason
to discard a “faster than light” expansion of the horizon.
This is no stranger than a wave crest moving arbitrarily fast:
no matter or information is transported. The region from
which (in the black hole case) light rays can escape to
infinity might, without violating causality, shrink faster
than light. This eventually happens when a black hole is fed
by a continuous and homogeneous flux of energy.
Let us consider for example analog black holes (see

e.g., [38]). The position of the horizon is determined both
by nonlinear effects and by the environment, whereas the
speed of sound is an entirely linear property. The speed of
the first can therefore be higher than the speed of the
second. Concretely, this would clearly be possible with a
two-component Bose-Einstein condensate. The sound
speed for the two species, respectively c1 and c2, are
a priori different. If they do interact, the position of the
horizon for the first will depend on the density of the
second (and the other way around). As there are nonlinear
solutions—such as grey solitons—moving close to sound
speed, there can be, from the viewpoint of the first species,

a horizon moving at a speed close to c2, which can be
greater than c1.
With the obvious limitations of the metric used, the

growth of the horizon at an arbitrary high speed is not
inconsistent in the considered framework. This, by the way,
also happens when considering the Hawking evaporation
where dR=dt → ∞ when M → 0. In this case, one could
argue that the semiclassical formula should be modified by
quantum gravity effects in this regime but the divergence of
the speed is not the reason why a better description should
be searched for. The phenomenon underlined in this work
has no reason not to be possibly real. Although a kind of
“bubble nucleation” (at the speed of light) similar to a
tunneling effect from a false vacuum to the true vacuum
(see e.g., [39]) would also make sense, the considered
process can be faster and even more catastrophic.
Finally, it is important to notice that the phenomenon

exhibited in this article is not unique in physics. One could
first think about the disorder correlator. Functional renorm-
alization shows that its curvature explodes at a finite scale
lc (developing a cusp at the origin). This can be interpreted
through shocks and avalanches [40].
Closer to our situation is probably the case of cubic

autocatalysis (that is, of order n ¼ 2). In such chemical
processes, one of the reaction products is also a catalyst for
the same reaction. This reads 2Aþ B → 3A. If the rate of
the reverse reaction is vanishing (the rate of the forward
reaction being r) and if the concentration xB of the species
B is kept constant, the number of A particles evolves (in the
large N limit) as ∂N=∂t ¼ rxbN2. This is the same formal
equation as the one we have considered in this work for a
constant temperature bath. In a way, the black hole
corresponds to species A.

IX. THE BLACK HOLE AS AN UNDERDENSITY

Among others, a curious aspect of the situation consid-
ered in this article is the following. When it grows by
absorption of the surrounding radiation, a black hole might
end being less dense that the medium in which it is
embedded. Obviously, the Schwarzschild solution, which
is a vacuum solution to Einstein’s equation, is not appro-
priate to handle this situation. The very meaning of the
Arnowitt Deser Misner (ADM) mass defining the families
of solutions is ill-defined. It is nevertheless worth consid-
ering a simple thought experiment to understand whether it
is possible to make sense out of this. An interesting case is
the one of thick shells collapsing toward a preexisting black
hole [41]. The exact solution was first derived using
comoving coordinates,

ds2 ¼ dτ2 − eω̄ðR;τÞdR2 − eωðR;τÞðdθ2 þ sin2 θdϕ2Þ; ð48Þ

where there is only one nonvanishing component in the
stress-energy tensor. Using the machinery developed by
Oppenheimer [42] and appropriate matching conditions,
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the result can be transformed to the usual coordinates and is
easy to interpret. If several shells collapse on the black hole,
one can show that all the incoming matter but the outermost
layer of the last one do cross the horizon [41] (exact
solutions for null fluid collapse were obtained in [43]). This
does not rely on any assumption about the respective
densities of the black hole and of the shells. The latter
can be denser than the former (the mean density of a black
hole is anyway not a physically relevant quantity). It should
be kept in mind that we do not consider here accretion of
dust, which would be severely impacted, but absorption of
radiation whose penetration in the black hole is (mostly)
not driven by gravitational effects.
Obviously, a black hole does not form in a static

homogeneous space without a triggered gravitational insta-
bility. Otherwise, one would be led to the absurd conclusion
that black holes spontaneously appear in any large enough
static space as a region of size R falls inside its own
gravitational radius as long as R >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð8πρÞp

. This is
clearly wrong as this analysis would only be correct for the
vacuum case. However, once the black hole is formed, there
is no reason to discard the possibility that its mean density
becomes smaller than the average one of the surrounding
medium. Although unusual, this situation is not impossible.

X. FULL DYNAMICS

Two crucial dynamical aspects, beyond the scope of this
article, should be accounted for before any reliable con-
clusion can be drawn: the expansion (or contraction) of the
Universe beyond its consequence on the radiation density
and the evolution of the black hole horizon itself.
Many works are devoted to both aspects but it remains

hard to get a clear and noncontroversial picture. Black holes
in a radiation-dominated universe were, in particular,
studied in detail in [44]. The metric obtained is

ds2 ¼
�
1 −

rg
r
−
1

2
þ t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r3

p
�
dt2 ð49Þ

−
��

1 −
rg
r

�
−1

−
1

2
þ t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r3

p
�
dr2; ð50Þ

in curvature coordinates. This line element develops a
curvature singularity at r ¼ rg and is strictly valid only for
rg < r < t, that is, between the black hole horizon and
the cosmological horizon. The basic behavior, building on
the analysis of [45], is, however, in agreement with the
picture drawn in this article. Many situations beyond the
radiation-dominated background were also considered (see
e.g., [46]—pushed further in [47]—which is very useful for
deriving generalized metrics in a nonvacuum environment).
Some interesting hints can already be found with the
Vaidya metric, describing the absorption (or emission) of
null dust. The very meaning of the associated horizons is,

however, still debated [48]. The most promising approach
to deal with dynamical black holes in the framework we
consider is probably the one advocated in [49]. Event
horizons are indeed not well suited for evolving black
holes, and quite a lot can be inferred from the evolution and
the apparent horizon in Painlevé-Gullstrand coordinates
(that are regular at the horizon).
Although the expansion (or contraction) of the Universe

is not the most important aspect for the points we are
making here, it would in principle make sense to generalize
this study by considering metrics found e.g., in [50,51]. In
particular, when the mass depends on time in a flat
Friedmann-Lemaître-Roberston-Walker (FLRW) back-
ground, the line element—generalizing the McVittie
results—reads [52]

ds2 ¼ −
½1 − MðtÞ

2aðtÞr�2

½1þ MðtÞ
2aðtÞr�2

dt2 þ a2ðtÞ
�
1þ MðtÞ

2aðtÞr
�
4

× ðdr2 þ r2dΩ2Þ: ð51Þ

Interesting paths are also suggested in [53,54].
Two specifically interesting situations were recently

considered in the case of evaporating black holes. The
first one relies on the Thakurta metric [55]. The Thakurta
spacetime is a generalized McVittie black hole with
accretion. This solution approximately corresponds (at
distances such that M ≪ R ≪ 1=H) to a Newtonian point
particle with growing mass, the accretion rate being
proportional to the Hubble rate. Important consequences
were e.g., investigated in [56], deeply changing the LIGO
bounds on primordial black holes. Several concerns were
raised: the energy flux required for this specific mass
growth seems nonphysical [57] and neither an event
horizon nor a trapping horizon seems allowed [58].
Answers were provided in [57], adopting the foliation
associated with the Kodama time. Other counterarguments
were exhibited in [59]. Anyway, the peculiar mass evolu-
tion, _M ¼ HM, associated with this spacetime is very
different from the one of our study, as even the asymptotic
behaviors do not coincide [3,17,44,45].
The second one is based on the Sultana-Dyer spacetime

[60]. It is a Petrov type D metric describing a black hole
embedded in a spatially flat FLRW universe with scale
factor aðtÞ ∝ t2=3, generated by mapping the Schwarzschild
timelike Killing field ξa into a conformal Killing field (for
ξa∇aΩ ≠ 0) [61]. In this framework, an exact model for
evaporating primordial black holes in the cosmological
spacetime was developed in [62], showing potentially
important deviations with respect to the usual behavior.
This approach, however, assumes a matter-dominated
universe which not only is different from the one consid-
ered in this study but also is incompatible with the specific
kind of accretion assumed here.
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The situation is not fully clear. The “correct” horizon to
consider highly depends on the physical properties being
investigated. Apparent horizons are usually advocated for
phenomenological purposes but their foliation-dependence
problem remains mostly unsolved [63] (even though argu-
ments in [57] show that a preferred foliation of the Thakurta
spacetime does exist). There is no consensus [63], and the
question of horizons in a dynamical framework is still an
open one (interesting points are made in [64]).
In this work, we do not pretend to give a fully general

exact and analytical solution for growing black holes in a
radiation-dominated dynamical universe. This goal is still
beyond available models.We simply focus on some specific
features of the Schwarzschild metric in a photon back-
ground. This is obviously an oversimplification but it
exhibits intriguing behaviors that deserve future investiga-
tions.As one can guess from the generalizedMcVittiemetric
(whereMðtÞ is the Hawking-Hayward quasilocal mass), it is
probable that, at late times, the rate of growth of the black
hole mass becomes comparable to the Hubble rate and the
black hole becomes comoving [50]. The situation in which
such a result is derived is, however, different from the one
studied in this article and no firm conclusion can be reached.

XI. CONCLUSION

The behavior of black holes in a thermal bath is
counterintuitive when first encountered. This is simply
grounded in the very special mass/radius relation of
black holes. For standard matter, the area scales as
dA ∝ M−1=3dM, whereas for black holes, dA ∝ MdM.
This is the key point. For usual matter, the area variation
induced by an incoming mass dM decreases with the mass
M of the star (or whatever), whereas for black holes, it
increases with M: the larger the black hole, the larger the

area variation induced by the absorption of a quantum of
given energy. This is the straightforward cause of the
supercritical mass behavior. It is, however, mandatory to
underline that all those “strange” features, when taken
literally, might very well be artifacts of the Schwarzschild
metric used beyond its domain of validity more than real
physical effects. More work is needed and the aim of this
article is mostly to invite the interested readers to inves-
tigate in more detail the curious behaviors presented here.
Within those (strong) limitations, we have established

that for very simple reasons, the evolution of a black hole in
a thermal bath is catastrophic. If the bath is at constant
temperature, the black hole mass inevitably diverges at
finite time (ignoring, of course, cosmological horizon
issues). If the temperature of the bath increases—e.g., in
a contracting space—the phenomenon is (obviously) even
faster and the black hole singularity is reached before the
background singularity. If the temperature decreases—e.g.,
in an expanding space—the mass can either diverge or
vanish, in finite time once again. For tuned initial con-
ditions a (questionable) self-similar solution is possible. In
the vanishing case, the black hole spends most of its life on
a long “plateau.”
The popular expression “black hole bomb” [65] is

strengthened and acquires a wider meaning. As a possible
nongravitational development of this work, it would be
interesting to investigate how the studied phenomenon
can be viewed as a phase transition. Analogies with an
appropriate Ising model should be fruitful.
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30 CHAPTER 1. THE THEORY OF GRAVITY

1.4 Beyond Schwarzschild for cosmological black holes

As we have seen in the previous section, the Schwarzschild solution is not suited to describe
the evolution of a black hole horizon when it is evolving too quickly. This was of course
expected since a Schwarzschild black hole is supposedly static. To go beyond, we need
to relax the static or vacuum assumption for the metric. Several approaches have been
explored [33] and we will discuss two of them that have recently been put forward. The
generalized McVittie metric [34], which describes a central mass in an imperfect fluid and
has the advantage of being relatively easy to work with. We will also discuss an other more
general approach developed in Ref. [35], which is more complicated, but allows us to work
with perfect fluids.

1.4.1 The case of the generalized McVittie metric

A common metric that is used to describe cosmological black holes is called the generalized
McVittie (gMcVittie) metric [33,34,36–38]

ds2 = −B
2(T, R̄)

A2(T, R̄)
dT 2 + a2(T )A4(T, R̄)

(
dR̄2 + R̄2dΩ

)
, (1.62)

where

A(T, R̄) = 1 +
M(T )

2R̄
, B(T, R̄) = 1− M(T )

2R̄
, (1.63)

and is directly inspired from the older McVittie metric [39]. While the latter metric suffers
from physical and conceptual problems [40], it was shown that the gMcVittie metric can in
fact describe a spherically symmetric mass with an apparent horizon bathed in an imperfect
fluid. This metric contains two arbitrary functions a(T ) and M(T ), which depend only on
the time coordinates. According to [38] and reference therein, the domain of validity of the
gMcVittie metric should be black holes embedded in an imperfect fluid, whose stress-energy
tensor is defined as

Tµν =
(
ρ(T,R) + p(T,R)

)
UµUν + p(T,R)gµν + fµ(T,R)Uν + fν(T,R)Uµ , (1.64)

where Uµ is the velocity field of the fluid and one can interpret ρ, p and fµ as the density,
pressure and energy flux, respectively, of the fluid as measured by the observer in the
reference frame of the fluid. The energy flux must satisfy fµUµ = 0. Before moving further,
we note that for large R̄ the gMcVittie metric (1.62) reduces to the FLRW metric and the
function a(T ) can be interpreted as the scale factor. While the perfect fluid, often used
in cosmology, is a special case of the fluid described above with fµ = 0, the gMcVittie
metric can only account for perfect fluids satisfying p = −ρ, representing a cosmological
constant [33]. This is the case even if one considers that the fluid is not at rest with respect
to the Eulerian observer. In this section, we quickly review from [34] how the black hole
and cosmological horizons evolve. We only look at the case where the energy flux is of
the form fµ = (0, q(T,R), 0, 0) and the velocity field is following the Eulerian observer
Uµ = (−1, 0, 0, 0)

√−g00.
First, we assume that we recover the FLRW behaviour far from the black hole, which



1.4. BEYOND SCHWARZSCHILD FOR COSMOLOGICAL BLACK HOLES 31

means we can set

a(T ) ∝
√
T , (1.65)

we chose to have the big bang singularity at T = 0. This comes from the fact that we recover
the FLRW metric for R̄→∞ and a(T ) only depends on the time coordinate. Furthermore,
the stress-energy tensor of radiation needs to be traceless [41], which gives us the usual
equation of state p(T,R) = ρ(T,R)/3 even though we are considering an imperfect fluid.
The Einstein field equations give us the behaviour of the density and the energy flux as well
as the field equation for M(T ), namely

q(T, R̄) = −Ṁa+Mȧ

4πR̄2a3A6
(1.66)

ρ(T, R̄) =
3A2

B2

(
ȧ

a
+

Ṁ

R̄A

)2

(1.67)

d

dT

(
ȧ

a
+

Ṁ

R̄A

)
+

(
ȧ

a
+

Ṁ

R̄A

)
2

(
ȧ

a
+

Ṁ

R̄A

)
+

Ṁ

R̄AB


 = 0 . (1.68)

Since both M and a only depend on T , the only solution that can satisfy (1.68) for all R̄
is M(T ) = M0, with M0 constant. Introducing this solution in (1.68) gives the the Ray-
chaudhury equation for the FLRW universe. This was expected since a(T ) was interpreted
as being the usual scale factor. This result does not mean that the central black hole has
a constant mass. In fact, it was discussed in [36] that the relevant quantity describing the
mass of the black hole is M̃(T ) = m(T )a(T ) = M0a(T ). Finally, it was shown in [34] that
one can find the apparent horizons R̄H(T ) of the system with the equations

1− 2M0a(T )

R̄H(T )
± ȧ(T )

a(T )
R̄H(T ) = 0 , (1.69)

where the ± sign corresponds to the contracting or expanding cases, respectively. For
illustrative purposes, we show the evolution of the horizons for the contracting and expanding
branches on Fig. 1.2, with M0 = 0.2 and a(T ) =

√
T . We see that in the contracting phase

both horizons shrink, except right before their merger, where the black hole horizon slightly
grows. In the case of an expanding universe, we have the exact opposite behaviour.

1.4.2 Dynamical apparent horizons in Painlevé-Gullstrand coordinates

The Schwarzschild solution being unsuitable to describe dynamical horizons and the FLRW
metric unfitted for inhomogeneous models, we begin by simply assuming spherical symmetry.
We start again with the most general Lorentzian metric then reads [10,41]:

ds2 = gt̃t̃(t̃, r)dt̃
2 + gt̃r(t̃, r)dt̃dr + grr(t̃, r)dr

2 + r2dΩ2 , (1.70)

with arbitrary functions gt̃t̃(t̃, r) < 0, gt̃r(t̃, r) and grr(t̃, r) > 0, together with dΩ2 = dφ2 +

sin2(φ)dθ2. In order to rewrite the metric in Painlevé-Gullstrand coordinates, we need to
change the time coordinate, t̃ → t(t̃, r), such that the coefficient in front of dr2 becomes
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Figure 1.2: Evolution of a black hole RBH and cosmological CH horizon in a con-
tracting and expanding universe, as predicted by the generalized McVittie approach.
The black hole horizon can increase or decrease with time while the cosmological
horizon is monotonic.

unity. For better comparison with previous works, in particular with Ref. [35], we rewrite
the metric under the form

ds2 = −
(
c2(t, r)− v2(t, r)

)
dt2 + 2v(t, r)drdt+ dr2 + r2dΩ2 . (1.71)

In the following, we will refer to the metric (1.71) as the PG metric. Note that the radial
coordinate r is what we called the Schwarzschild radial coordinate. This metric can be
constructed with the functions c(t̃, r), v(t̃, r) and t(t̃, r) satisfying the system

gt̃t̃ = (c2 − v2)

(
∂t

∂t̃

)2

, (1.72)

gt̃r = 2

(
v + (c2 − v2)

∂t

∂r

)
∂t

∂t̃
, (1.73)

grr = 1− 2v
∂t

∂r
+ v2

(
2
∂t

∂r
− 1

)
∂t

∂r
+ c2

(
1− 2

∂t

∂r

)
∂t

∂r
, (1.74)

which is determined up to boundary conditions for t(t̃, r).
In the effort to describe evolving black hole horizons, it proved useful to substitute

v(t, r) = ±c(t, r)
√

2m(t, r)/r, (1.75)

where m(t, r) is a newly defined positive function, as it is the case in Ref. [35]. In the latter
reference, the +1 convention in v(t, r) was chosen for the calculations. In Ref. [35], c(t, r)
was assumed to be positive at all times, without loss of generality. If c(t, r) was to change
sign, the metric would become either degenerate if v(t, r) = 0 or Euclidean. It was shown
that the function m(t, r) corresponds to the Hernandez-Misner mass function [42] as well as
to the Hawking-Israel quasi-local mass, meaning that m(t, r) represents the mass included
in the radius r at time t. The function rH(t) satisfying 2m(t, rH) = rH was proven to be
the apparent horizon of a black hole, analogous to the Schwarzschild case. Furthermore,
the black hole apparent horizon was shown to be only growing with time if the null energy
condition (NEC) was fulfilled, i.e. Tµν l̃µl̃ν > 0 with Tµν the stress-energy tensor and l̃µ an
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arbitrary light-like vector field. However, the conclusion that has been drawn might not be
as straight forward as it seems. Let us start by briefly reviewing how it was proven that
the black hole horizon cannot shrink. The evolution equation of the apparent horizon, as
derived in Ref. [35], is

ṙH =
8πr2

Hc(t, rH)Tµν l̃
µl̃ν

1− 2m′(t, rH)
, (1.76)

where l̃µ = (c−1, 1 −
√

2m/r, 0, 0) is a light-like vector field. This equation is obtained
from the equality Gµν l̃

µl̃ν = 8πTµν l̃
µl̃ν and using the derivative of the horizon equation

2m(t, rH) = rH . One can show that the denominator in Eq. (1.76) is positive and the NEC
guaranties Tµν l̃µl̃ν > 0 leading to a growing apparent horizon. A first problematic fact is that,
by fixing the sign of v(t, r) one fixes the general behaviour of the universe (either expanding
or contracting). This can be understood by considering the homogeneous limit of the PG
metric with v(t, r) as in Eq. (1.75), which is obtained with the limit m(t, r) → H2(t)r3/2,
where H(t) is the Hubble parameter, and c(t, r) → 1. The Raychaudhuri equation then
reads

±d
∣∣H(t)

∣∣
dt

= 3H2(t) + 8πp(t) = 8π
(
p(t) + ρ(t)

)
, (1.77)

where p is the pressure and ρ the density. The absolute value comes from the square root of
m(t, r) in Eq. (1.75), while the ± sign originates from the sign of v(t, r). We recall that in
spatially flat FLRW cosmology, the universe can either exclusively grow or exclusively shrink
if the NEC is fulfilled, meaning p > −ρ. This behaviour can be mathematically described
using the Hubble horizon |H(t)| −1, which grows or shrinks in the same way the universe
does. From the Raychaudhuri equation (1.77), we can directly see using the last equality
that the evolution of the Hubble horizon is monotonic when the NEC is satisfied. Moreover,
the ± sign tells us if the horizon is shrinking (+1 case) or growing (−1 case). Hence it
can be argued that the proof as in Ref. [35] of growing black hole horizon is restricted to
contracting universe scenarios. Moreover, when one tries to take the other sign convention,
meaning v = −c

√
2m/r, we find that there is no black hole apparent horizon anymore. A

last but crucial objection that can be raised about the choice of fixing v(t, r) as in Eq. (1.75),
when describing the universe as a whole, is the lack of cosmological apparent horizon when
v(t, r) > 0 and the lack of black hole apparent horizon when v < 0.

To see the failure of describing both apparent horizons by fixing the sign of v, we first
choose the future-pointing null vectors that are orthogonal to a spherical surface, namely

lµ = (1, 1− v, 0, 0)/c and nµ = (1,−1− v, 0, 0)/c. (1.78)

One can verify that they are indeed null vectors and lµSµ = 1 and nµSµ = −1, where
Sµ = (0, 1, 0, 0). The expansions associated to these vectors are

θl =
2

cr
(c− v) and θn = − 2

cr
(c+ v). (1.79)

From these alone we can see that if one replaces v → c
√

2m/r, we cannot have a cosmological
apparent horizon, since the equation 1 +

√
2m/r = 0 admits no solution. Conversely,
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with v → −c
√

2m/r, we do not have a black hole apparent horizon. Moreover, from the
expansions (1.79) we see that v(t, r) must change sign to describe both apparent horizons
that should be part of our model.

Even though we expressed some criticism towards the conclusion that were drawn using
Eq. (1.76) for v(t, r), we believe that the method used is of great use and we arrive at the
same conclusion using the more general metric (1.71). Let us follow a similar reasoning as
in Ref. [35] to show that a black hole apparent horizon cannot shrink. First, the horizon
equation for a black hole becomes

v(t, rH) = c(t, rH) =⇒ v̇ + v′ṙH = ċ+ c′ṙH , (1.80)

where dot and prime stand for the partial derivative with respect to t and r, respectively.
Then, using Gµνl

µlν = 8πTµνl
µlν evaluated at the horizon rH(t) as well as the derivative of

the horizon equation above, we find

ṙH(t) =
8πc2(t, rH)rH(t)Tµνl

µlν

2
(
c′(t, rH)− v′(t, rH)

) . (1.81)

We are left to show that the denominator of Eq. (1.81) is indeed positive. Since rH(t)

describes a black hole apparent horizon, we want that θl < 0 for r < rH(t), hence

∂θl
∂r

∣∣∣∣
r=rH

> 0 =⇒ 2
(
c′(t, rH)− v′(t, rH)

)

c(t, rH)rH
> 0, (1.82)

which proves what was needed.
The fact that the apparent black hole horizon must always grow is independent of the form

of the stress-energy tensor, as long as the system is spherically symmetric. This appears to
be in contradiction with the generalized McVittie approach, in which the black hole horizon
decreases right before the merger with the cosmological horizon. The potential solution to
this issue might come from the definition of the apparent horizon, which depends on the
foliation of the 3-surface defining the marginal surfaces. Nonetheless, further investigations
should be pursued.

1.4.3 Perfect fluid moving as an Eulerian observer

Let us now focus on a perfect fluid moving as an Eulerian observer with velocity field
Uµ = (−1, 0, 0, 0). The stress-energy tensor therefore takes the usual form

T µν = (p(t, r) + ρ(t, r))UµUν + p(t, r)gµν . (1.83)

Note that the density and pressure defined here are different from the case of the gMcVittie
case, due to the change of coordinates. The full tetrad basis that defines the observer can
be chosen to be

e µ
a =

(
Uµ, Sµ, θ̂µ, φ̂µ

)
, (1.84)
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with

Uµ = (c−1, v/c, 0, 0) , Sµ = (0, 1, 0, 0) , (1.85)

θ̂µ = (0, 0, r−1, 0) , φ̂µ = (0, 0, 0, r−1 sin−1 θ) . (1.86)

Since the observer is in the rest frame of the fluid, the projection of the stress-energy tensor
onto the tetrad basis is diagonal, meaning that the fluid is isotropic in its rest frame, as it
should for a perfect fluid. Let us now derive the Einstein’s field equations for the system.
Projected on the tetrad basis, the independent equations for r > 0 are

8πr2ρ =
v

c2

(
v + 2rv′

)
, (1.87)

v

r

c′

c
= 0 , (1.88)

4πc2rp = v̇ − v2

2r
− v ċ

c
− vv′ , (1.89)

8πp = − 1

c2

(
r
ċ

c
v′ + v

ċ

c
+ v(2v′ + rv′′)

)
+ c
(
v̇ + vv̇′ − rv′2

)
, (1.90)

where we have kept implicit the dependence of c, v, ρ and p on t and r. The θθ and φφ-
component equations are the same. We have used c′ = 0 to simplify the other field equations.
The continuity equations, ∇µT

µν = 0, are not independent from the field equations, but
they offer a new perspective to the system. In particular, one obtains:

∇µT
µνSν = p′ = 0 , (1.91)

the pressure does not depend on the radial component. Moreover, we fix the continuity
equation such that p = wρ and therefore the density does not depend on r either. This
implies that Eq. (1.87) is now analytically solvable and we get

v(t, r) = ±
√

8π

3
c2(t)r2ρ(t) +

v̄(t)

r
, (1.92)

with v̄(t) an integration constant. With this solution at our disposal, we can look at the
second continuity equation, which gives us

∇µT
µνVν = 0 =⇒ ρ̇(t)

ρ(t)
= ±(1 + w)

3v̄(t) + 16πc2(t)r3ρ(t)

2r2
√
v̄(t)/r + 8πc2(t)r2ρ(t)/3

. (1.93)

The LHS of this equation does not depend on time, so should the RHS. This is possible only
if w = −1 or if v̄(t) = 0. Let’s analyze the latter first. With this new condition and further
defining H2(t) := 8πρ(t)/3, the continuity equation becomes

ρ̇(t)

c(t)
= ±3(1 + w)

∣∣H(t)
∣∣ρ(t) . (1.94)

All the Einstein field equations with these additional conditions give the same equation as
this one. c(t) can be absorbed in the time coordinate with the redefinition c(t)dt → dt.
We recall that in a FLRW universe with no spatial curvature and non-negative cosmological
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constant, the scale factor is monotonic, therefore the Hubble constant keeps the same sign.
This means that Eq. (1.94) is equivalent to the continuity equation of an FLRW universe
and the ± sign decides if we are in an expanding or contracting branch. This can also be
seen if we write the metric using the solution for v(t) (1.92) and the condition v̄ = 0, i.e.

ds2 = −c2(t, r)
(
1−H2(t)r2

)
dt2 ± 2c(t)

∣∣H(t)
∣∣rdrdt+ dr2 + r2dΩ2 , (1.95)

where we can again redefine the time coordinate to get rid of the function c(t). This metric is
the FLRW solution in the Painlevé-Gullstrand form. Therefore we conclude that assuming
a perfect fluid with w > −1 is moving as an Eulerian observer is equivalent to homogeneity
for an isotropic spacetime and therefore cannot describe a cosmological black hole.

We are left with the case w = −1. The equations are then

ρ̇(t) = 0 and 2 ˙̄v(t)c(t) = v̄(t)ċ(t) . (1.96)

We recover the continuity equation of de-Sitter space-time and we find that v̄(t) = 2mc2(t),
withm an integration constant. Once again, we can use the solution (1.92) and a redefinition
of the time coordinate to find the metric

ds2 = −
(

1−H2(t)r2 +
2m

r

)
dt2 ± 2

√
H2(t)r2 +

2m

r
drdt+ dr2 + r2dΩ2 , . (1.97)

This metric is known as the Kottler or Schwarzschild-de Sitter metric and describe a black
hole immersed in a de-Sitter space-time.

1.5 Competition between GWs emissions and mass loss in black
hole binaries

One of the most striking evidence for the existence of black holes has been the observation
of the gravitational waves (GWs) that are emitted when a binary system coalesces [43].
The loss of energy due to the emission of these waves shrinks the orbits of binary black
holes. Moreover, as we have seen earlier in Sec. 1.3.2 Hawking radiation decreases the mass
of black holes and we expect such a mass loss to have the opposite effect on binary black
holes of the one from GWs. While the hawking radiation should be very small for the solar
mass black holes that are observed with current GWs’ observatories, we could still wonder,
as an academic exercise, what is the behaviour of a binary system, in circular orbit, when
both effects are considered. Hawking radiation might not be the only phenomenon that
can decrease the mass of a black hole. If the equation of state parameter of dark energy
can become smaller than −1, a fluid commonly called phantom energy, then the mass of a
black hole immersed in such a fluid could decrease [44]. In the following paper, we study
the competition between the effect of the loss of mass due to Hawking radiation or phantom
energy and the loss of energy from GWs radiation.
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This work provides, at lower order, general analytical solutions for the orbital separation, merging
time, and orbital frequency of binary systems emitting gravitational waves while being submitted to
mass variations. Specific features, depending on the exponent of the mass derivative, are investigated
in details. Two phenomenologically interesting cases are explicitly considered : i) binaries formed
by two light primordial black holes submitted to Hawking evaporation and ii) bodies driven by a
Bondi accretion of phantom dark energy. It is shown that three different regimes arise, including an
intricate non-monotonic behaviour of the system. We study subtle imprints that could be associated
with those phenomena. A careful analysis of the conditions of validity of the different hypotheses
performed is finally carried out.

I. INTRODUCTION

Newtonian orbits are stable for objects with constant
masses. This is obviously not the case anymore if the
considered masses become time-dependent, whatever the
reason for this variation. This also becomes wrong in
General Relativity (GR) when the system radiates energy
through gravitational waves. The very existence of this
energy has been intensively debated, even quite recently
[1], as one might wonder if objects following geodesics
– thus being “force-free” – can dissipate energy. It is
however well settled since the works performed by Pen-
rose, Bondi, and Sachs in the 1960s, although the con-
ceptual arguments are somehow subtle and the technical-
ities quite involved [2]. This work aims at investigating
– at lowest order – the detailed evolution of the orbits of
systems submitted both to the emission of gravitational
waves (GWs) and to mass variations.

One of the most striking sources of GWs is the coales-
cence of black holes (BHs), which has been exhaustively
studied theoretically and has proved to be experimen-
tally fruitful since most of the GW signals detected so far
by LIGO and Virgo collaborations come from this phe-
nomenon (see, e.g., [3, 4]). Although the most simple and
straightforward cases are those of binaries with constant
masses, inspiral binaries with time-varying masses and
their consequences on the emitted gravitational radiation
have also been studied in the literature [5–15]. It is well-
known that the emission of GWs tend to make the two
bodies of the binary come closer to each other, until they
ultimately coalesce [16]. However, the time-varying mass
can have the converse effect, depending on whether the
bodies gain or lose mass. If they gain mass, for instance
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† barrau@lpsc.in2p3.fr
‡ martineau@lpsc.in2p3.fr
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through matter accretion, they inspiral, thus enhancing
the effect of the emission of GWs. On the other hand,
if they lose mass, they outspiral: in that case, mass loss
produces an antagonistic effect to the one of gravitational
radiation.

In this note, we focus on presenting a comprehensive
view of the dynamics induced by the competitive effects
of gravitational radiation and mass loss, using Newto-
nian analysis and treating the binary system as Keple-
rian, as well as the characteristic features of the imprint
it produces on the emitted GWs. In section II, we re-
view how one can theoretically deal with the coupling
between mass variation and the backreaction produced
by the emission of gravitational waves. However, un-
like previous works – see Refs. [7–12] for accreting bod-
ies or Refs. [13–15] for evaporating BHs in the context
of braneworld models and extra-dimensions scenarios –
we present a generic analytic solution of the differen-
tial equation satisfied by the orbital separation when the
mass variation is taken into account. This leads in turn
to analytic solutions for the frequency and strain of the
emitted GWs.

For cosmology and phenomenology, we focus specifi-
cally on two situations that are driven by such a compe-
tition. In section III, we investigate the case of inspiral
binaries of light primordial black holes (PBHs) submitted
to Hawking evaporation. Due to their low mass, they are
good candidates as sources of high-frequency GWs [17] –
in addition to standing as plausible dark matter candi-
dates and valuable probes of the early universe.

The second case of interest is the one of binaries of BHs
accreting phantom energy (i.e. violating energy domi-
nance conditions) which makes their mass decrease [18].
Although the accretion of a fluid onto a black hole is a
long-standing problem in astrophysics [19], the study of
this so-called phantom energy has proved particularly rel-
evant in the context of dark energy [20]. Assuming that
the latter can be described by a perfect fluid of density ρ
and pressure p, an equation of state parameter w = p/ρ
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smaller than -1 would make dark energy behave as phan-
tom energy: accretion would decrease the mass. Coining
down the value of w is a hot spot in modern cosmology
[21] and doing so by examining small-scale systems like
BHs binaries was proposed in [7, 22] and questioned in
[8]. In section IV, we refine the analysis and draw a clear
conclusion.

Beyond the specific examples chosen for their physical
relevance, this study aims at offering an exhaustive clas-
sification of possible behaviors of binary systems emitting
gravitational waves and submitted to mass variation ef-
fects (either accretion or radiation) described by a (pos-
itive or negative) power law. These generic results are
presented in section V

Eventually in section VI, we show how accounting for
a time-varying mass changes the formal expression of the
radiated gravitational power and in section VII we dis-
cuss how the results of section V are changed when con-
sidering non-identical masses presenting a high hierarchy.

II. COUPLING MASS VARIATION AND GWS
EMISSION

The two-body problem with variable mass, for point-
like entities, was extensively studied in Ref. [23, 24].
When the variation of mass is isotropic, the equation of
motion is given by

d2r

dt2
= −Gmtot(t)

R3
r, (1)

where r = r2–r1, thus R ≡ |r| is the orbital separation
between the two bodies of respective mass m1 and m2,
the total mass being mtot(t) ≡ m1(t)+m2(t). For orbital
separations much larger than the Schwarzschild radii of
the black holes, R ≫ Rs = 2Gm/c2, we can describe
the binary system using Keplerian dynamics. If µ ≡
m1m2/(m1+m2) stands for the reduced mass, the orbital
angular momentum of the system, for a circular orbit,
whose generic expression is given by

Jorb = µ
√

GmtotR, (2)

is conserved, even in the case of variable masses [23]. If
we consider that the two bodies have the same massm(t),
then the conservation of the orbital angular momentum
J̇orb = 0 provides

Ṙ = −3
ṁ

m
R, (3)

showing that in the case of mass loss (ṁ < 0) the two
bodies outspiral, i.e. they drive away from each other,
which is consistent with Refs. [14, 15, 23, 25]. From
now on, we shall always assume, unless otherwise stated,
that the two bodies have same mass m(t). This is the
most interesting situation and it is phenomenologically
sound – at least as a first approximation – if the mass
spectrum of PBHs is nearly monochromatic (see [26] for

a review of formation mechanisms). Only in section VII,
will we drop this assumption in order to examine how
certain results presented in the following are modified
when the binary system is made of bodies of different
masses, but presenting a strong hierarchy (typically one
mass dominates over the other).
The mass loss, in addition to separating the two bod-

ies also induces a change in the orbital energy Eorb =
−Gm2/(2R), which is the total energy of the system,
sum of kinetic and potential energy of the orbit. For
variable masses, the variation of orbital energy −dEorb

dt
must be equal to the power associated to mass loss Pml,
thus leading to

Pml =
5

2

Gṁm

R
. (4)

On the other hand, the emission of GWs costs energy
which is taken from the orbital energy of the system,
carried away at a rate [16]

Pgw(t) =
64

5

G4

c5
m5(t)

R5
. (5)

In fact, m having an explicit time-dependence, it affects
the form of the power radiated by GWs thus modifying
Eq. (5), as already noted in [8], through several cor-
rective terms. We discuss this point in further detail in
section V, and show how the choice of the form (5) for
Pgw is connected to the condition of circularity of the
orbit.
To consider the concomitant effect of gravitational ra-

diation and mass variation, one can use the conservation
of energy and write [8]

−dEorbit

dt
= Pml + Pgw, (6)

with Pml and Pgw respectively given by Eqs. (4) and (5).
Taking the derivative of the orbital energy leads to

Ṙ = −128

5

G3

c5
m3

R3
− 3

ṁ

m
R, (7)

which is the general differential equation relevant for our
problem.
This agrees with the result of Ref. [8] – up to the cor-

rected prefactor 3 in the last term. This deserves a brief
specific discussion. Equation (3) holds only if the masses
are identical. There are two other limit cases allowing for
simple formulas (as can immediately be seen from the ex-
pression of the angular momentum). They correspond to
a strong mass hierarchy with asymmetrical losses. We
specifically investigate those cases in the last section of
this work. We will show there that if the varying mass
is the small one, the prefactor 2, inappropriately used
in [8] indeed appears. Hence the probable origin of the
mistake.
If the functions m(t) and ṁ(t) are explicitly known,

this differential equation, although non-linear, can be in-
tegrated since it is a Bernoulli differential equation of
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the form y′ + P (t)y = Q(t)yn with n = −3 whose gen-
eral solution is known. In the following two sections, we
shall focus on mass losses described by rates of the form
ṁ ∝ −1/m2 (see section III) and ṁ ∝ −m2 (see section
IV). More generic results shall be found in section V.

Throughout all this work, we call “merging” or “coa-
lescence” the situation corresponding to the precise van-
ishing of the orbital separation (R = 0), and not to the
“contact” of horizons (R = 4Gm/c2). For most observ-
ables this makes nearly no difference at all, but it is im-
portant when considering the end of the process.

III. INSPIRAL BINARIES WITH
EVAPORATING BHS

Because of their small masses, primordial black holes
can be particularly sensitive to the Hawking evaporation
process (see [27, 28] for pioneering works and [26] for a re-
cent review). Quantum field theory in curved spacetimes
predicts that black holes evaporate with a temperature
[29, 30]

T =
ℏc3

8πGkBm
, (8)

for a BH of mass m, ℏ being the Planck constant, kB
the Boltzmann constant, c the speed of light, and G the
gravitational constant. Even though for typical solar-
mass BHs, Hawking evaporation is too weak to play any
significant role in the dynamics of binaries, for two-body
systems made of PBHs, it could produce non-negligible
effects on the overall dynamics, and leave a possible im-
print on the emitted gravitational waves. The Hawking
process leads to a mass loss at the rate [27, 28]

ṁ = −αH

m2
, (9)

where αH accounts for the degrees of freedom of each
particle contributing to the evaporation. For simplicity,
we shall assume that αH is a constant, which is a good
approximation. In this case, the differential equation is
separable and integrates into

m(t) = m0

(
1− t

tev

)1/3

, (10)

where m0 represents the initial mass of the BH whereas
tev ≡ m3

0/(3αH) corresponds to the time of evaporation,
i.e. the typical time it takes for the BH to evaporate
completely. The other time scale of the problem under
scrutiny is the time of coalescence which accounts for
the limited life duration of the binary system. However,
contrary to tev which only depends on constants fixed
during the initial setup (namely the initial mass m0),
the time of coalescence has an explicit dependence on the
mass m (and not only on the initial mass m0). Otherwise
stated, if tev is not to be altered by the dynamics of
the system, the time of coalescence will necessarily be

affected by the mass loss. Consequently, we will call tcc
the time of coalescence of the binary system if the two
BHs were of constant mass m0, with an initial orbital
separation R0, i.e. [16]

tcc =
5

512

c5R4
0

G3m3
0

, (11)

while tcoal will denote the real time of coalescence, that is
to say the one taking into account the mass loss, which is
likely to be different from tcc and yet to be determined.

A. Evolution of the orbital separation

Specifying (7) to the case of Hawking evaporation pro-
vides

Ṙ = −128

5

G3

c5
m3

R3
+

3αH

m3
R. (12)

Evaluating the above at an initial time t0 = 0 gives

Ṙ

R

∣∣∣∣
t0=0

= − 1

4tcc
+

1

tev
. (13)

If one assumes that the system is prepared – which boils
down to giving ourselves m0 and an initial separation R0

– such that tev < 4tcc, then the evaporation process ini-
tially dominates. Since the evaporation increases R and
since the GW part is in m3/R3 – see Eq. (12) – when
m diminishes and R increases, both these variables con-
tribute to the dwindling of this term, that will thus never
be able to grow again to counterbalance the outspiraling
effect. In conclusion, when tev < 4tcc, the system initially
outspirals and continues to do so until the PBHs eventu-
ally evaporate completely, leading to the disappearance
of the binary.
In the other case, no definite conclusion can be stated

by the sole inspection of Eq. (12). When 4tcc < tev,
we are in a regime where, initially, the radiation of GWs
dominates, thus R decreases. But as R and m diminish,
there might be a counterbalancing effect due to the term
of relative mass loss. Using the explicit expression (10)
and solving the Bernoulli differential equation provides

R(t) = R0

(
tev

tev − t

)(
1 +

1

6

tev
tcc

[(
1− t

tev

)6

− 1

])1/4

.

(14)
When tcc → ∞, the second bracket boils down to unity
and we recover the solution where no gravitational waves
are emitted with the sole effect of mass loss leading to
an outspiralling dynamics. Equation (14) is the exact
analytical solution to the problem under consideration.
The equation R(t) = 0 has for solution

tcoal = tev

(
1−

[
1− 6

tcc
tev

]1/6)
, (15)
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which corresponds to the real time of coalescence. Math-
ematically, this solution is well-defined only if 1 −
6tcc/tev > 0 which leads to the condition

tev > 6tcc. (16)

If Eq. (16) is satisfied, the equation R(t) = 0 always
admits a solution and thus the two PBHs do coalesce,
in a similar fashion to what is observed in the case of
constant masses. However, as shown in Fig. 1, because
of the mass loss which renders the system less tightly
bound, tcoal is always larger than tcc.
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FIG. 1. Effective time of coalescence tcoal as given by Eq.
(15) divided by the time of evaporation tev (purple curve) in
function of the ratio tcc/tev. At tcc/tev = 1/6, this function is
finite equal to 1, and for higher values, it ceases to be math-
ematically well-defined. The grey dashed line is the identity
function.

This immediately raises the question of what happens
in the small window of parameters for which 4tcc < tev <
6tcc. Equation (13) indicates that we are then in a regime
where the emission of gravitational waves initially dom-
inates, thus leading, in a first step, to the decrease of
the orbital separation. However, since the condition (16)
is not fulfilled, the equation R(t) = 0 does not admit
any solution, which indicates that the system will never
merge. This is due to the evaporation term that gets
progressively more important and eventually dominates
the GW emission. Once the evaporation process leads,
there is no coming back and it ultimately makes the two
PBHs outspiral, until they completely disappear. This
is an interesting and highly non-trivial case where the
orbital separation evolution is non-monotonic.

To sum up, there are three distinct regimes (see Fig.
2) :

• If tev < 4tcc, the system outspirals due to the dom-
ination of the evaporation process and R increases
with a final divergence corresponding to the full
evaporation of the two PBHs;

• If 4tcc < tev < 6tcc, the two PBHs come closer
together in a first step due to the emission of GWs

and then, as the evaporation takes the lead back,
they ultimately outspiral as in the first case; and

• If tev > 6tcc the emission of GWs dominates en-
tirely, leading to the merger of the system, in a
similar fashion to what is observed in the case of
constant masses. The only real influence of the
mass loss is to increase the time of coalescence.
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FIG. 2. Evolution of the orbital separation R (normalized
to the initial orbital separation R0) between two evaporating
black holes with initial mass m0 = 1012 kg, as a function of
time (in seconds). Three distinct regimes arise : for tev < 4tcc
(green curve) the binary outspirals whereas for tev > 6tcc
(blue curve) it inspirals following a trend similar to the stan-
dard case of constant masses. For 4tcc < tev < tcc (orange
curve), one has an intermediate regime mixing the two be-
haviours, with an unusual non-monotonic evolution.

The above inequalities can be conveniently expressed
as conditions on the initial orbital separation R0 for a
given initial mass m0 by using Eq. (11). If one defines

R1 ≡
(
256

45

G3

c5αH

)1/4

m
3/2
0 , (17)

and

R2 ≡
(
128

15

G3

c5αH

)1/4

m
3/2
0 , (18)

the ouspiralling regime is reached when R0 > R2, the
inspiralling one when R0 < R1, while the intermediate
regime corresponds to R1 < R0 < R2. This might be
relevant when evaluating the merging rate of PBHs [31–
33].

B. Analysis of the frequency

Since the system is assumed to be Keplerian at ev-
ery step in its evolution, using Kepler’s third law ω2 =
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2Gm/R3 along with Eq. (14) provides an analytical ex-
pression for the orbital frequency ω:

ω(t) = ω0

(
1− t

tev

) 5
3

(
1 +

1

6

tev
tcc

[(
1− t

tev

)6

− 1

])− 3
8

(19)
with ω2

0 ≡ 2Gm0/R
3
0 the initial orbital frequency. As for

the orbital separation, it admits three distinct regimes
(see Fig. 3). The frequency of gravitational waves is
simply twice the orbital frequency.

As expected, when R → ∞ in the outspiralling case,
ω → 0. This basically means that the two bodies are not
sufficiently tightly bound to be considered anymore as a
binary system, hence the very notion of orbital frequency
becomes irrelevant.
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FIG. 3. Evolution of the orbital frequency ω (normalized
to the initial orbital frequency ω0) between two evaporating
black holes with initial mass m0 = 1012 kg, as a function of
time (in seconds). The color of the three different curves
correspond to the ones used in Fig. 2.

When the system actually merges (blue curve in Fig.
3), we recover the familiar chirping trend. To deter-
mine the chirping frequency, we place ourselves at the in-
nermost stable circular orbit (ISCO) which corresponds
to an orbital separation RISCO = 12GmISCO/c

2 where
mISCO is the time-varying mass evaluated at t = tISCO.
Thus one can solve the equation R(t) = RISCO using Eq.
(14), find the corresponding time tISCO and then evaluate
ω(tISCO) with Eq. (19). Since R(t) = RISCO is an im-
plicit equation that doesn’t admit any simple analytical
solution, this should be done numerically.

Nonetheless, two important features can be noticed.
First, as for the standard case, tISCO is very close to
the effective time of coalescence tcoal. Solving R(t) =
RISCO for various values of m0 (typically from 109 kg
to 1020 kg) shows that, if γ is the order of magnitude
of the initial mass, i.e. if m0 ≃ 10γ kg, then tcoal −
tISCO ≃ 10γ−34 s. For PBHS, one can thus legitimately
approximate tISCO ∼ tcoal. Conveniently, we readily have
an explicit expression for tcoal, see Eq. (15). However, by
construction, ω(tcoal) = ∞. Although tiny in itself, the

difference between tISCO and tcoal is, in principle, relevant
to determine the final frequency.
Analytically, the expression (19) is not of great use and

one should simply go back to Kepler’s third law. In fact,
whenever the binary system actually merges, the rela-
tive variation of mass during the process is small ; more
specifically, we shall demonstrate that it is perturbatively
small at ISCO. Let us introduce

ε ≡ m0 −mISCO

m0
= 1−

(
1− tISCO

tev

)1/3

, ε > 0, (20)

where the last equality comes from Eq. (10). Using that
tISCO ∼ tcoal and Eq. (15), we are led to

tISCO

tev
∼ tcoal

tev
= 1−

[
1− 6

tcc
tev

]1/6
. (21)

Looking at Fig. 1, unless we put ourselves right at the
saturated condition tev = 6tcc – this case is treated at
the end of the discussion – we have tISCO/tev ≲ 0.4 which
leads to ε ≲ 0.2 ≪ 1, i.e. the variation of mass is always
small whenever the binary system merges. Consequently,
one can rely on the usual expression for the frequency at
ISCO, but evaluated for bodies that have lost a fraction
ε of their initial masses such that m(tISCO) = m0(1− ε).
If fH

ISCO (resp. f cc
ISCO) denotes the frequency at ISCO for

the evaporating binary system (resp. for a binary system
formed of two constant masses m0), then

fH
ISCO

f cc
ISCO

=
1

1− ε
∼ 1 + ε > 1, (22)

hence for an evaporating binary system, we expect
(slightly) higher frequencies. For numerical estimates,
plugging Eq. (20), supplemented by Eq. (21), into Eq.
(22), one is led to:

fH
ISCO ≃ 1

12π
√
6

(
1− tcoal

tev

)−1/3
c3

Gm

≃ 2200Hz

(
1− tcoal

tev

)−1/3
M⊙
m

,

(23)

whereM⊙ is the stellar mass. As for the strain amplitude
at the ISCO, it is basically given by the usual formula
[34]:

hmax ≈ 2

D

(
GMc

c2

)5/3(
πfISCO

c

)2/3

, (24)

where Mc is the chirp mass – simply given by Mc =
m/21/5 in the case of bodies of identical masses – and D
is the distance to the observer. Applying the same rea-
soning than for the frequency associated with the ISCO,
one easily obtains that hH

max/h
cc
max = 1−ε < 1, i.e. using

again Eqs. (20) and (21):

hH
max ≃

(
1− tcoal

tev

)1/3

hcc
max. (25)
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Let us now examine the specific case for which tev =
6tcc. According to Fig. (1) – or equivalently Eq. (15)
– it means that the system merges concomitantly to the
full evaporation of the two BHs, i.e. tcoal = tev. Further-
more, plugging the condition tev = 6tcc into Eq. (14)
provides

R(t) = R0

√
1− t

tev
, (26)

which proves that in that case, the system does actually
merge. On the other hand, using Eq. (19), it is easy to
see that the frequency is simply given by

ω(t) = ω0

(
1− t

tev

)−7/12

. (27)

We recover that at coalescence, the frequency formally
diverges. The analysis of the frequency reached at the
ISCO can however be here conducted in a fully analytical
way. Solving R(t) = RISCO indeed leads to

tISCO = tev

[
1−

(
12Gm0

R0c2

)6
]
. (28)

One can plug the above expression into Eq. (27) and use
the explicit form of ω0, as well as the condition tev = 6tcc,
which enables to express the initial orbital separation R0

as a function of the initial mass m0 and some constants
(or vice versa), to obtain that the frequency associated
at the ISCO is given by:

ω(tISCO) =

(
c3

G

)3/2
1√

34992αH
. (29)

Nicely, this formula does depend neither on m0, nor
on R0. As the ISCO is reached very late in the process
(one should keep in mind that, in this case, the mass
decreases during the inspiral and vanishes at merging),
the frequency is huge, not far from the Planck frequency.
This is obviously a purely academic situations but it en-
lightens the behaviour of the system in the most extreme
(merging) case. Interestingly, one should notice that the
binary system always reaches its ISCO, which was not
a priori obvious, as RISCO = 12Gm/c2 decreases as R
decreases. The two curves (R(t) and RISCO(t)) however
necessarily intersect each other.

IV. BONDI ACCRETION OF PHANTOM
DARK ENERGY

We now turn to the study of binaries formed of two
black holes accreting phantom dark energy. As in Ref.
[7, 8], to describe the accretion of matter from inter-
stellar medium by a compact object, we shall use the
standard Bondi approximation corresponding to a rate
of mass change ṁ ∝ −m2, which integrates into

m(t) =
m0

1 + t/τ
, (30)

the typical time of evolution τ reading, in the context of
dark energy [8, 18],

τ =
3× 1040 s

|1 + w|

(
ρd
ρc

)−1
M⊙
m0

, (31)

where M⊙ is the Solar mass, w = p/ρ is the equation of
state parameter, ρc ∼ 10−26 kg/m3 is the critical density
of the universe, and ρd(∞) is the dark energy density
(which is of the same order of magnitude as shown by
observations [35]). For numerical estimates, we assume
in the following 1 + w ∼ −0.1.

Several remarks are in order at this point. First, let
us emphasize that we focus here on phantom energy
(w < −1), that is on “anti-accretion” (accretion inducing
a mass decrease) as the case w > −1 leads to a standard
accretion during which the mass increases. Although in-
teresting in itself, this situation does not bring any sig-
nificant new features to the evolution of the orbital sep-
aration: both the effects of gravitational waves and of
accretion play in the same direction. The case of a pure
cosmological constant, that is w = −1, leads to no mass
variation at all.

Second, it should be emphasized that in the case of a
standard accretion, as it will be discussed later in this
article, Eq. (30) would lead to a mass divergence in a
finite amount of time. Although not directly related to
this work, this opens interesting phenomenological fea-
tures [36]. The situation is, in a sense, formally close –
although reversed – to the one of the Hawking evapora-
tion. The deep reason for this is quite simple. In the
case of Hawking evaporation, as in the case of standard
accretion, the mass variation gets amplified by the evo-
lution it generates. When it evaporates, a BH becomes
smaller and smaller, hence hotter and hotter. The phe-
nomenon diverges in finite time. Exactly as what hap-
pens for standard accretion: the more a BH absorbs usual
matter (with w > −1), the larger the cross section gets
and the faster its mass grows, leading to a divergence in
finite time. Both cases are fundamentally unstable and
the relevant question is basically to wonder if the coa-
lescence (if any) happens before or after the singularity
associated with the mass variation. On the other hand,
the case of phantom energy accretion is stable, hence the
regular behaviour of Eq. (30), whatever the value of t.
This is because, when w < −1, as the anti-accretion takes
place, the BH gets smaller and smaller and, therefore,
sees its cross section and, consequently its mass loss rate,
decrease with time. It is a negative feedback whereas the
diverging cases correspond to positive feedbacks.

A. Evolution of the orbital separation

Focusing on the case of phantom dark energy, the same
method as used in section III can be applied. The differ-
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ential equation now reads

Ṙ = −128

5

G3

c5
m3

R3
+

3

τ

m

m0
R, (32)

which clearly shows that, depending on an initial setup
favouring either inspiral or outspiral, there is always one
of the two terms which presents a competitive behaviour
between the time evolution of the mass and its orbital
separation counterpart (in addition to the obvious com-
petition between the two terms themselves, simply due
to the opposite sign). Explicitly: if R decreases, the evo-
lution of the amplitude of the first term is not obvious
as m also decreases, making the fate of m3/R3 a priori
non-trivial. If, the other way round, R increases, the
evolution of the amplitude of the second term is now not
obvious as m still decreases, making the evolution of mR
possibly intricate.

At an initial time t0 = 0, one has

Ṙ

R

∣∣∣∣
t0=0

= − 1

4tcc
+

3

τ
, (33)

and the integration of Eq. (32) provides

R(t) = R0

(
1 +

t

τ

)3
(
1 +

1

14

τ

tcc

[(
1 +

t

τ

)−14

− 1

])1/4

.

(34)
Solving the equation R(t) = 0 gives the following effective
time of coalescence

tcoal = τ

([
1− 14

tcc
τ

]−1/14

− 1

)
, (35)

which is well-defined mathematically only for τ > 14tcc.
As a consequence, the system outspirals for τ < 12tcc,
inspirals when τ > 14tcc and for 12tcc < τ < 14tcc we
recover this so-called intermediate regime beginning with
an initial inspiral but with an ultimate outspiral due to
the time-varying mass. Contrary to the case of Hawking
evaporation though, the outspiralling dynamics does not
lead to any divergence of the orbital separation at finite
time, as it can be seen in Fig. 4. As the evolution law
for the mass – Eq. (30) – does not present any pole, the
orbital radius gently tends to infinity for t → ∞.

B. Evolution of the frequency

It is straightforward, using Kepler’s third law, to ob-
tain an analytical expression for the orbital frequency.
Its evolution is shown in Fig. 5. The ISCO analy-
sis performed in the case of the Hawking evaporation
is still applicable. One can indeed demonstrate that
tISCO ∼ tcoal and plotting the curve tcoal/τ using Eq.
(4) shows that the previously introduced ε parameter is
such that ε ≲ 0.23. Then an approximate formula for the
frequency associated to the ISCO when the system is in
the inspiralling regime is
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FIG. 4. Evolution of the orbital separation R (normalized
to the initial orbital separation R0) between two black holes
submitted to a Bondi-type accretion of phantom dark energy
with initial mass m0 = 1012 kg, as a function of time (in
seconds). We recover the outspiralling dynamics for τ < 12tcc
(green curve), the inspiralling one for τ > 14tcc (blue curve),
and the intermediate non-monotonic regime for 12tcc < τ <
14tcc (orange curve).

fB
ISCO ≃ 1

12π
√
6

(
1 +

tcoal
τ

)
c3

Gm

≃ 2200Hz

(
1 +

tcoal
τ

)
M⊙
m

,

(36)

with the time of coalescence tcoal being given by Eq. (35).
Again, the correction brought by the time-varying mass
is meager. Carrying out the same analysis, but with a
non-phantom dark energy, i.e. with w > −1, shows, as
expected, that the binary system always merges. In addi-
tion, because the mass growth enhances the inspiralling
effect, it does so with a shorter time of coalescence. How-
ever, as we shall show later on, for all ranges of mass, the
difference between these two times of coalescence is too
small in practice to constitute a reliable experimental
criteria to differentiate the case w > −1 from the case
w < −1.

C. Strain - observational distance relation

We now consider the possibility, in the light of our
results and in the same vain as in Ref. [8], to use obser-
vations of a binary system to measure local dark energy
properties. To get an order of magnitude one can safely
assume that, for the accretion of dark energy not to be
negligible, the two terms entering the differential equa-
tion (32) must be of the same order of magnitude. This
implies that the two bodies should be then separated by
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FIG. 5. Evolution of the orbital frequency ω (normalized
by the initial orbital frequency ω0) between two black holes
submitted to Bondi-type accretion of phantom dark energy
with initial mass m0 = 1012 kg, as a function of time (in
seconds). The color of the three different curves correspond
to the ones used in Fig. 4.

(at least) a distance

R ∼
(
128

15

G3

c5
τm0

)1/4 √
m. (37)

Using Kepler’s third law and the above relation to ex-
press the frequency solely in function of the mass, and
injecting the result in the strain formula, Eq. (24), shows
that, given a minimum detectable strain amplitude hmin,
and demanding h > hmin, constrains the distance to the
observer D to be less than

Dmax ≈ 2.9× 10−2 pc

(
m

M⊙

)3/2(
hmin

10−23

)−1

, (38)

where the normalizing value 10−23 corresponds to the
order of magnitude of the minimum measurable strain
amplitude currently reached by gravitational wave de-
tectors (see e.g. [37]). This expression depends only on
the mass as the orbital separation is chosen so that the
anti-accretion term plays a significant role. It should be
stressed that it is very different – not only in prefactors
but also in the mass functional dependence – from the
usual formula encountered in gravitational wave physics,
D < 1.6(m/M⊙)/(h × 1023) Gpc, as the latter assumes
that the system is seen at the merging time. This is far
from being the case for the situation we consider here.

Beyond the distance Dmax, even if the radial change
due to the accretion of dark energy were big when com-
pared to the one due to the emission of GWs, the strain
produced would be too small to be detected. For solar-
mass BHs, with hmin ∼ 10−23, the corresponding order of
magnitude is approximately the size of the solar system.
However, for supermassive black holes with m = 108M⊙,
Eq. (38) gives Dmax ∼ 29Gpc which is more than the
cosmological horizon radius corresponding to the limit of

the observable universe. It therefore seems that wher-
ever a binary system of 108M⊙ BHs, seen early enough
in the inspiralling process, exists, the accretion of phan-
tom dark energy could be measured on Earth. This is
however not that simple.

Whenever phantom dark energy dominates over grav-
itational radiation, the binary system is in an outspi-
ralling regime, the orbital frequency thus decreases (see
the orange and green curves in Fig. 5). This is an ap-
pealing feature as it never happens in standard cases cor-
responding to a dynamics driven only by the emission of
GWs. It could be a “smoking gun” for an effect beyond
the standard model (BSM). For the strain to be high
enough to be detected without requiring the system to
violate obvious bounds (as it would, e.g., be the case if
one assumes the existence solar mass BHs within the so-
lar system), the best candidates are supermassive BHs.
Equation (37) shows that they should be separated by a
distance of order R ∼ 1018 m, corresponding to a time of
merging above the Hubble time. However, although the
strain would actually be measurable and the sign of the
frequency drift would be favourable (that is negative and,
therefore, distinct from any usual phenomenon), the am-
plitude of the variation of frequency – which stands as the
relevant parameter – would be ridiculously small. Fixing
orders of magnitude by assuming constant masses, one
would have |ḟ/f | ∼ 107f8/3 which leads to |ḟ/f | ∼ 10−30

for m = 108M⊙. By inspection of Fig. 5, it is obvious
that taking into account the variation of the mass and
the precise form of the frequency would only worsen the
effect. In addition, the absolute value of the frequency
would also be way below anything measurable in the next
decades.

It should be noticed that, in the context of binaries of
evaporating BHs, the question of the maximum distance
of observation was already considered in Ref. [38]: BHs
undergoing the Hawking effect (with masses typically be-
low M∗ ≡ 1012 kg) would have fully evaporated in a time
smaller than the age of the Universe. There is no chance
to observe them in our necessarily confined scope of ob-
servation. In this case, the phenomenological relevance
of our work is not about the detection of a single event
but, rather, about the statistical features of the expected
merging rate.

V. GENERIC RESULTS

Beyond the examples of (potential) phenomenological
interest given in the previous sections, we now focus on
offering an exhaustive classification of the possible be-
haviours of binaries emitting GWs submitted to mass
variation effects described by either a positive or a neg-
ative power law. The analytical solutions we give – not
previously known in the relevant literature to the best of
our knowledge – can be used in many different situations.
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We consider mass loss rates of the form:

(i) ṁ = − β

mk−1
, k > 0,

(ii) ṁ = −βmk+1, k > 0,

(iii) ṁ = βmk+1, k > 0,

(iv) ṁ =
β

mk−1
, k > 0,

(39)

with β > 0 in all cases. For now, we ignore the cases
for which the above differential equations do not lead to
a mass evolution following a power law – that is corre-
sponding to ṁ ∝ m which implies an exponential trend.
Those specific types of evolution are dealt with at the
end of this section.

Let us comment about the physical signification of
some particular cases. Hawking radiation corresponds
to (i) with k = 3. A constant mass loss rate – as it
would be the case for a star during most of its life – cor-
responds to (i) with k = 1. A standard Bondi accretion
by a black hole – that is to say a spherically symmet-
ric, adiabatic, steady-flow gas accretion – corresponds to
(iii) with k = 1. A Bondi anti-accretion – that is with a
phatom fluid – corresponds to (ii) with k = 1. A naive
mass loss rate proportional to the area of the compact
(non-black hole) object corresponds to (ii) with k = 1/3.
A hypothetical situation where the accretion rate of a BH
would be solely driven by its surface gravity corresponds
to (iv) with k = 2.

Each of these differential equations for β constant are
separable and easily integrate into :

(i) m(t) = m0

(
1− t

tev

)1/k

, tev =
mk

0

kβ
> 0,

(ii) m(t) = m0

(
1 +

t

τ

)−1/k

, τ =
1

mk
0kβ

> 0,

(iii) m(t) = m0

(
1− t

τ∗

)−1/k

, τ∗ =
1

mk
0kβ

> 0,

(iv) m(t) = m0

(
1 +

t

τ̃

)1/k

, τ̃ =
mk

0

kβ
> 0.

(40)

It should be noticed that (ii) and (iv) exhibit behaviours
qualitatively different from (i) and (iii). In the latter two
cases, there is a critical point in the evolution of the mass:
for (i) it corresponds to t = tev, where the mass suddenly
plunges to zero whereas for (iii) it corresponds to the
divergence at finite time t = τ∗. As previously explained,
those cases are physically related to unstable processes
driven by positive feedbacks. Conversely, the cases (ii)
and (iv) correspond, respectively, to a smooth decrease
and a smooth increase of the mass. They are related to
stable processes with negative feedbacks. Then, τ and
τ̃ can be understood as typical time scales on which the
considered body has lost or gained a significant amount
of mass.

The differential equations satisfied by the orbital sep-
aration R are respectively given by :

(i) Ṙ = −128

5

G3

c5
m3

0

R3

(
1− t

tev

)3/k

+
3

k

R

tev − t
,

(ii) Ṙ = −128

5

G3

c5
m3

0

R3

(
1 +

t

τ

)−3/k

+
3

k

R

τ + t
,

(iii) Ṙ = −128

5

G3

c5
m3

0

R3

(
1− t

τ∗

)−3/k

− 3

k

R

τ∗ − t
,

(iv) Ṙ = −128

5

G3

c5
m3

0

R3

(
1 +

t

τ̃

)3/k

− 3

k

R

τ̃ + t
,

(41)

which are all Bernoulli equations. The solutions to these
four differential equations are given by :

(i) R(t) = R0

(
tev

tev − t

)3/k

×
(
1 +

k

15 + k

tev
tcc

[(
1− t

tev

) 15+k
k

− 1

])1/4

,

(ii) R(t) = R0

(
1 +

t

τ

)3/k

×
(
1− k

k − 15

τ

tcc

[(
1 +

t

τ

) k−15
k

− 1

])1/4

,

(iii) R(t) = R0

(
1− t

τ∗

)3/k

×
(
1 +

k

k − 15

τ∗
tcc

[(
τ∗

τ∗ − t

) 15−k
k

− 1

])1/4

,

(iv) R(t) = R0

(
τ̃

t+ τ̃

)3/k

×
(
1− k

15 + k

τ̃

tcc

[(
1 +

t

τ̃

) 15+k
k

− 1

])1/4

.

(42)

The times of coalescence are given by

(i) tcoal = tev

(
1−

[
1− 15 + k

k

tcc
tev

] k
15+k

)
,

(ii) tcoal = τ

([
1− 15− k

k

tcc
tev

] k
k−15

− 1

)
,

(iii) tcoal = τ∗

(
1−

[
1 +

15− k

k

tcc
τ∗

] k
15−k

)
for k < 15,

tcoal = τ∗ for k ≥ 15,

(iv) tcoal = τ̃

([
1 +

15 + k

k

tcc
τ̃

] k
15+k

− 1

)
.

(43)
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The different situations are deeply nonequivalent.

• In the case (i), the system outspirals whenever
tev < 12

k tcc. It first inspirals and, then, outspirals,

for 12
k tcc < tev < 15+k

k tcc. It only inspirals when

tev > 15+k
k tcc.

• The case (ii) has to be dived into two sub-cases:

– If k < 3, the system behaves as previously, but
with different bounds. It outspirals for τ <
12
k tcc. It first inspirals and, then, outspirals,

for 12
k tcc < τ < 15−k

k tcc. It only inspirals when

τ > 15−k
k tcc.

– If, however, k > 3, the system outspirals for
τ < 15−k

k tcc. It first outspirals and, then, in-

spirals for 15−k
k tcc < τ < 12

k tcc. It inspirals

with a monotonic behaviour for τ > 12
k tcc.

This new behaviour was not encountered in
the phenomenological cases presented before.
It is illustrated in Fig. 6 with k = 4 (which
would correspond to a mass loss rate propor-
tional to T 4, with the temperature T pro-
portional to m5/4 as expected in some stellar
models).

– If k = 3, there is no intermediate regime. The
system outspirals for 4tcc < τ and inspirals for
4tcc > τ .

• In the cases (iii) and (iv), there is only one regime
corresponding to a pure inspiralling behavior lead-
ing to the coalescence of the binary system. This
was expected since a gain of mass enhances the ef-
fect due to gravitational waves. In the case (iii),
the mass diverges in a finite amount of time but
the system coalesces anyway, either before (when
k < 15) or precisely at this time (when k ≥ 15).
This is not trivial and this results from the fact
that the very rapidly growing mass also speeds up
the inspiral.

The richness of the solutions encountered lies in the
asymmetrical role played by the different terms entering
the differential equation: the mass variation can either
tend to decrease or increase the orbital separation (de-
pending on the sign of ṁ) and can either be smooth of
catastrophic (depending on the exponent of m) but the
GW term always plays in the same direction, although
with a strength coupled to the mass loss.

Let us now turn to the case where ṁ = ±βm, β > 0
which leads to a mass evolution exponentially decreasing
or increasing, depending on the sign. The above differ-
ential equation integrates into

m±(t) = m0e
±t/t∗ , t∗ = β−1. (44)

The differential equation for the orbital separation simply
reads

Ṙ = −128

5

G3

c5
m3

0

R3
e±t/t∗ ± 3

t∗
R (45)

0 1×1058 2×1058 3×1058 4×1058 5×1058

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t (s)

R
/R

0

(a) Orbital separation in function of time (in seconds)

0 1×1058 2×1058 3×1058 4×1058 5×1058

0.0

0.5

1.0

1.5

2.0

t (s)

ω
/ω

0

(b) Frequency in function of time (in seconds)

FIG. 6. Illustration of the behaviour for the case (ii) with
k > 3. The plot corresponds to k = 4, with initial mass m0 =
1012 kg. Panel (a) shows the orbital separation R (normalized
to the initial orbital separation R0) while panel (b) displays
the corresponding orbital frequency. For τ < 11

4
tcc the bi-

nary system outspirals (green curve) whereas for τ > 3tcc it
inspirals (blue curve). The regime 11

4
tcc < τ < 3tcc presents

a non-monotonic evolution with an initial outspiral followed
by an inspiral when the gravitational radiation takes the lead
and makes the binary coalesce (orange curve).

and integrates into these two solutions (again, depending
on the initially chosen sign):

R±(t) = R0e
±3t/t∗

(
1± 1

15

t∗
tcc

e∓15t/t∗

)1/4

. (46)

In the case R+, The dynamics is always outspiralling.
The exponential accretion overwhelms any effect coming
from gravitational radiation. It can be clearly seen an-
alytically by taking the limit t → ∞ in Eq. (46) for
which the term in brackets vanishes and at large t, the
overall dynamics is dictated by e3t/t∗ . Furthermore, it
is straightforward to notice that the equation R(t) = 0
does not admit any mathematically sound solution. Con-
versely, for R−, the binary system always merges with a
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time of coalescence given by

tcoal =
t∗
15

ln

(
15tcc
t∗

)
. (47)

As it could have been expected, in both cases, the de-
creasing or increasing exponential evolution of the mass
completely overwhelms the effects coming from gravita-
tional radiation. Although mathematically rigorous, this
case of exponential evolution of the mass might suffer
from the fact that the formal expression of the radiated
power by gravitational waves should be modified (beyond
the simple accounting for the m(t) term) when one allows
a time-dependent mass, notably including terms related
to the rate of variation of the mass. This point is dis-
cussed in the following section.

VI. RADIATED GW POWER AND
CIRCULARITY CONDITION

In section II, we have taken into account the radi-
ated power of emitted gravitational waves by substi-
tuting in the standard formula a varying mass. One

should however be careful about the fact that the stan-
dard formula for Pgw is derived with the assumption of
a constant mass. For circular orbits and time-varying
masses, with orbital frequency ω, the second mass mo-
ments M ij = µxi(t)xj(t) read:

M11(t) = m(t)R2 1− cos(ωt)

4
,

M22(t) = m(t)R2 1 + cos(ωt)

4
,

M12(t) = −1

4
m(t)R2 sin(ωt).

(48)

since for identical masses, the reduced mass is given by
µ = m/2. The total radiated power due to the emission
of gravitational waves involves the third temporal deriva-
tives of the second mass moments (48) since it is given,
in the quadrupole approximation, by [16]

Pgw =
G

5c5
⟨
...
M ij

...
M ij −

1

3
(
...
Mkk)

2⟩, (49)

where the average ⟨·⟩ is in the time domain over several
characteristic periods of the gravitational waves. Using
Eq. (48), we get

Pgw =
GR4

10c5

〈 ...
m2

3
+

3

2

(
3

2
m̈2 − ...

mṁ

)
ω2 +

3

2

(
3

2
ṁ2 − m̈m

)
ω4 − ...

mmω3 sin(ωt) cos(ωt) +
1

4
m2ω6

〉
. (50)

If only the last term in the average in Eq. (50) is taken
into account, one recovers the formula (5). All the other
terms involve derivatives (up to order three) of the mass
and are thus the direct consequence of allowing time-
varying masses. If m(n) ≡ dnm

dtn denotes the n-th deriva-
tive of the mass, with n a positive integer, then these
corrective terms can be neglected if

∀n, |m(n)(t)| ≪ mωn, (51)

which imposes that the mass of the bodies is slowly
varying in comparison to the typical orbital evolution
of the binary system. Then, over the temporal window
on which the average is performed, that is to say on a
few characteristic periods of the gravitational waves, the
mass remains nearly constant equal to m(t).

The second assumption used to compute the radiated
GW power thanks to Eqs. (48) and (49) relies on the fact
that the orbit remains circular. In the standard case of
bodies with constant mass, the circularity is ensured by
demanding |ω̇| ≪ ω2 [16]. We investigate if this condition
is changed by the variability of the mass. By taking the
derivative of Kepler’s third law, one has

Ṙ = −2

9
(ωR)

ω̇

ω2
+

1

9

ṁ

m
R. (52)

Making use of the triangle inequality

|Ṙ| ≤ 2

3
(ωR)

|ω̇|
ω2

+
1

3

|ṁ|
m

R. (53)

Since |Ṙ| ≡ v∥ is the radial velocity of the system, while
ωR ≡ v⊥ represents its tangential velocity, Eq. (53)
shows that the orbits are (quasi)-circular, i.e. v∥ ≪ v⊥,
if |ω̇| ≪ ω2 and |ṁ| ≪ mω. This last condition exactly
corresponds to the case n = 1 of Eq. (51). Under those
two conditions, the approximation of a circular orbit with
slowly varying radius is still applicable, even in the case
of a variable mass system.
In conclusion, the slowly varying mass condition, en-

capsulated by the conditions (51), which enables to sim-
plify the radiated GW power (50) to Eq. (5), is linked to
the condition of (quasi-)circularity of the orbital trajec-
tories during the inspiral phase.

To conclude this section, one should emphasize that
the generic results of section V, although perfectly cor-
rect from a mathematical point of view, might suffer some
lack of physical relevance in certain cases. Indeed, for
mass evolutions presenting a stiff variation, the deriva-
tives ṁ, m̈,

...
m cannot be legitimately neglected in the ra-

diated power Pgw and Eq. (50) should be used instead,
thus providing supplementary terms to the differential
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equation on R. Investigating the precise effect of these
additional terms would constitute a work in itself, as it
might as well, as explained just above, have some con-
sequences on the form of the orbital trajectories. Let us
however note that, for instance, in the context of BHs
submitted to Hawking evaporation, the slowly varying
mass assumption is accurately satisfied – except for the
higly fine-tuned case for which tcoal = tev which might
have an influence on the result of Eq. (29).

VII. CASE OF A HIGH HIERARCHY OF MASS

Henceforth, we have examined the case of a binary sys-
tem constituted by two identical masses m(t), following
the same rate of variation. We now turn to the case
where one of the bodies forming the binary has con-
stant mass M whereas the other body has a varying
mass m(t), assuming that the masses obey the hierarchy
∀t,M ≫ m(t). In this case, the orbital angular momen-
tum reads

Jorb ≈ m
√
GMR, (54)

and its conservation leads to

Ṙ

R
= −2

ṁ

m
. (55)

As Kepler’s third law involves the sum of the masses
of the two bodies, it now simply reads ω2 ≈ GM/R3.
Furthermore, the orbital energy is

Eorbit = −GmM

2R
, (56)

so that the power radiated by the mass loss is

Pml =
3

2

GṁM

R
. (57)

One must also be careful about the expression of Pgw in
this case. We established in the previous analysis that,
in full generality, one must take into account the variable
mass through the computations of the derivatives of the
second mass moments. It is still the case for a high hier-
archy because the second mass moments Mij depend on
the reduced mass µ ≈ m for M ≫ m.

Since Kepler’s third law shows that ω2 ∝ M , the circu-
larity condition of the orbit is satisfied only by demand-
ing |ω̇| ≪ ω2, as in the standard case of constant masses.
Consequently, if one still wants to get rid of the higher
derivatives terms ofm in the expression of Pgw (i.e. ṁ, m̈
and

...
m), it boils down to an additional assumption put by

hand, which has – contrary to the case of identical evap-
orating masses – no link whatsoever with the circularity
of the orbit. Under this hypothesis, one can use

Pgw =
32

5

c5

G

(
GMcω

c3

)10/3

≈ 32

5

G4

c5
M3m2

R5
. (58)

The generic differential equation satisfied by the orbital
separation (i.e. the counterpart of Eq. (7)) is conse-
quently

Ṙ = −64

5

G3

c5
M2m

R3
− 2

ṁ

m
R, (59)

which is again a Bernoulli differential equation which can
be analytically integrated given an explicit expression of
the mass. If one takes the same mass evolutions as the
one given in Eq. (40), then Eqs. (42) and (43) are still
valid up to the following systematic substitution (in the
exponents as well as in some prefactors, the various signs
being unchanged)

3

k
−→ 2

k
and

k

15± k
−→ k

9± k
. (60)

In addition, the typical time tcc now reads

tcc ≡
5

256

c5R4
0

G3m2
totµ0

≈ 5

256

c5R4
0

G3M2m0
. (61)

One can also investigate the converse situation for
which it is the biggest mass that varies in time i.e.
∀t,M(t) ≫ m and m is constant. Let us note that for
Hawking radiation for instance, this situation is physi-
cally irrelevant since bigger BHs are less sensitive to the
effect. For completeness, however, we shall treat all the
cases. The conservation of the orbital angular momen-
tum, using Eq. (54), leads this time to

Ṙ

R
= −Ṁ

M
. (62)

In the expression of the orbital energy, and thus in the
power radiated by the variation of mass, m and M play
symmetric roles, so Eq. (56) is unchanged and we have

Pml =
GṀm

R
. (63)

The conservation of the energy leads to the following
(Bernoulli) differential equation for the orbital separa-
tion

Ṙ = −64

5

G3

c5
M2m

R3
− Ṁ

M
R. (64)

If one takes the same mass evolutions as the ones given
by Eq. (40), then Eqs. (42) and (43) are still valid up to
the following systematic substitution (in the exponents
as well as in some prefactors, the various signs being un-
changed)

3

k
−→ 1

k
and

k

15± k
−→ k

6± k
(65)

and the typical time tcc is still given by Eq. (61).
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VIII. CONCLUSION

Somehow surprisingly, even at lowest order, the dy-
namics of binary systems with varying mass is highly
non-trivial when the emission of gravitational waves is
taken into account.

In this work, we have investigated in details the evolu-
tion of binaries composed of evaporating primordial black
holes with equal masses. We have shown that, depend-
ing on the initial conditions, there exist three different
regimes. Both the orbital separation and the frequency
of emitted gravitational waves are studied under the as-
sumption of circularity. The critical case corresponding
to an evaporation time exactly equal to the coalescence
time was also considered.

Then, we focused on the case of a Bondi accretion of
phantom dark energy. We took this opportunity to cor-
rect a mistake made in the literature and to settle a con-
troversy about possible observations of this effect. This
required to consider the strain, the frequency and the
frequency drift of emitted gravitational waves.

Building on those results, a general study of all pos-
sible (power law) cases, including both mass losses and
mass gains, was proposed. We gave full analytical so-
lutions and, interestingly, suggested a taxonomy based
only on variables easy to determine a priori – that is
the typical variation time-scale and the time the coales-
cence would take with constant masses (not the actual
coalescence time). We have shown that quite a few dif-
ferent situations appear, depending on initial conditions,
on the sign of the mass variation, and on the regular or
“explosive” nature of this variation. The existence of new
non-monotonic regimes is underlined.

Finally, we have carefully stated the domain of valid-
ity of the different assumptions performed throughout
the work and considered also the case of a high mass hi-
erarchy between the inspiralling (or outspiralling) black
holes.

In the future, it would be welcome to extend this work
to the case of eccentric orbits and to investigate deeper
the possible phenomenological consequences.
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[8] J. Enander and E. Mörtsell, Physics Letters B 683, 7
(2010).

[9] S. M. O’Neill, M. C. Miller, T. Bogdanovic, C. S.
Reynolds, and J. Schnittman, Astrophys. J. 700, 859
(2009), arXiv:0812.4874 [astro-ph].

[10] C. F. B. Macedo, P. Pani, V. Cardoso, and L. C. B.
Crispino, Astrophys. J. 774, 48 (2013), arXiv:1302.2646
[gr-qc].

[11] A. Sarkar, K. Rajesh Nayak, and A. S. Majumdar, Phys.
Rev. D 100, 103514 (2019), arXiv:1904.13261 [astro-
ph.CO].

[12] A. Sarkar, A. Ali, K. R. Nayak, and A. S. Majumdar,
Phys. Rev. D 107, 084038 (2023), arXiv:2210.12502 [gr-
qc].

[13] K. Yagi, N. Tanahashi, and T. Tanaka, Phys. Rev. D
83, 084036 (2011), arXiv:1101.4997 [gr-qc].

[14] J. H. Simonetti, M. Kavic, D. Minic, U. Surani,
and V. Vijayan, Astrophys. J. Lett. 737, L28 (2011),
arXiv:1010.5245 [astro-ph.HE].

[15] C. Yuan, R. Brito, and V. Cardoso, Phys. Rev. D 104,
124024 (2021), arXiv:2107.14244 [gr-qc].

[16] M. Maggiore, Gravitational Waves. Vol. 1: Theory and

Experiments (Oxford University Press, 2007).
[17] N. Aggarwal et al., Living Rev. Rel. 24, 4 (2021),

arXiv:2011.12414 [gr-qc].
[18] E. Babichev, V. Dokuchaev, and Y. Eroshenko, Phys.

Rev. Lett. 93, 021102 (2004), arXiv:gr-qc/0402089.
[19] H. Bondi, Monthly Notices of the Royal

Astronomical Society 112, 195 (1952),
https://academic.oup.com/mnras/article-
pdf/112/2/195/9073555/mnras112-0195.pdf.

[20] E. Babichev, V. Dokuchaev, and Y. Eroshenko, J. Exp.
Theor. Phys. 100, 528 (2005), arXiv:astro-ph/0505618.

[21] S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev.
D 68, 023509 (2003), arXiv:astro-ph/0301273.

[22] X. He, B. Wang, S.-F. Wu, and C.-Y. Lin, Phys. Lett.
B 673, 156 (2009), arXiv:0901.0034 [gr-qc].

[23] J. D. Hadjidemetriou, Icarus 5, 34 (1966).
[24] F. Verhulst, Celestial Mechanics 11, 95 (1975).
[25] S. T. McWilliams, Phys. Rev. Lett. 104, 141601 (2010),

arXiv:0912.4744 [gr-qc].
[26] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Rept.

Prog. Phys. 84, 116902 (2021), arXiv:2002.12778 [astro-
ph.CO].

[27] J. H. MacGibbon, Phys. Rev. D 44, 376 (1991).
[28] F. Halzen, E. Zas, J. H. MacGibbon, and T. C. Weekes,

Nature 353, 807 (1991).
[29] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975),

[Erratum: Commun.Math.Phys. 46, 206 (1976)].
[30] N. D. Birrell and P. C. W. Davies, Quantum Fields in

Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge Univ. Press, Cambridge, UK, 1984).

[31] B. Kocsis, T. Suyama, T. Tanaka, and S. Yokoyama,
Astrophys. J. 854, 41 (2018), arXiv:1709.09007 [astro-
ph.CO].

[32] M. Raidal, C. Spethmann, V. Vaskonen, and
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Chapter 2

Testing exotic models of dark energy

2.1 The standard cosmological model

It has been almost one hundred years since we discovered that the universe is expanding [45],
giving rise to the big bang model. The big bang model is a widely held theory of the
evolution of the universe. It proposes that the universe emerged from a state of extremely
high temperature and density, the so-called big bang that occurred 13.8 billion years ago.
The nucleosynthesis process that took place within roughly the first 10 minutes after the big
bang is called big bang nucleosynthesis (BBN) or primordial nucleosynthesis. At this early
epoch, the universe was dense and hot enough to allow for nuclear reactions to take place,
producing the lightest elements such as hydrogen, helium and lithium [46].

After BBN, the universe was filled with a hot plasma of particles and radiation. As it
expanded and cooled, protons and electrons combined to form neutral hydrogen atoms. This
process is called recombination and it occurred about 380,000 years after the big bang [47,48].
It released photons that have now been redshifted to microwave frequencies, forming the
cosmic microwave background radiation [49], which provides us with a snapshot of the
universe when it was just a few hundred thousand years old.

Over the next few hundred million and billion years, gravity caused matter in the universe
to clump together, forming the first structures, such as galaxies, and clusters of galaxies.
However, baryons are not sufficient to explain the large scale structures, the rotation curve
of galaxies or the gravitational lensing from galaxy clusters that we observe today [50].
These observations requires the existence of additional non-relativistic matter called dark
matter [50].

In the late 1990s, observations of distant supernovae revealed that the expansion of the
universe is accelerating, rather than slowing down as expected [23]. This unexpected accel-
eration is thought to be caused by a cosmological constant or more generally dark energy,
which makes up about 68% of the energy density of the universe.

In this section we will introduce further the necessary ingredients of the standard model
of cosmology: BBN, recombination, dark matter and dark energy, as well as discuss their
observational signatures. Refs. [50–58] were the primary sources for this short introduction.

2.1.1 From nucleosynthesis to recombination

Today, the observations tell us that matter is much more abundant than radiation, the latter
being dominated by the cosmic microwave background. However, this picture was reversed in
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the early universe, because radiation density, which evolves as ρ ∝ a−4, is more diluted than
matter, which scales as ρ ∝ a−3, with the expansion. It is during the radiation dominated
era that the BBN took place, while the cosmic microwave background was emitted around
its end. To better understand the reactions that took place at early times, we start be
introducing thermodynamic equilibrium and decoupling.

The early universe was characterized by a high-density and high-temperature state. Par-
ticle interactions during this period were mainly described by the reaction rate denoted as
Γ. If the reaction rate was much larger than the Hubble rate H, particles could remain in
thermodynamic equilibrium. Under these conditions, particles could be treated as perfect
Fermi-Dirac and Bose-Einstein gases with a distribution given by

Fi(E, T ) :=
gi

2π3

1

e(E−µi)/T ± 1
(2.1)

where E is the energy of a single particle, T is the temperature, gi is the degeneracy factor
and µi is the chemical potential. In general, different types of particles can have different
temperatures. But all the species that interact with photons will have the same temperature
T , the temperature of radiation, which at this epoch is also the temperature of the universe.
Using the distribution (2.1), one can find the macrostate variables such as the number
density or the density, namely

Ni =

∫
Fi(p, T )d3p , ρi =

∫
Fi(p, T )E(p)d3p . (2.2)

In particular, we used in the paper in section 1.3.2 the following relation between energy
density and temperature,

ρ(T ) = g∗
π2

30
T 4 . (2.3)

If the cross-section of a reaction varies with temperature as σ ∼ T x (for example x = 2

for the electroweak interaction), then the reaction rate, which is proportional to both the
number density of particles N and the cross-section, varies as Γ ∼ Nσ ∼ T x+3. On the other
hand, during the radiation period of the universe the Hubble parameter varies as H ∼ T 2.
Hence, as long as x+ 1 > 0, there will always be a temperature below which the interaction
becomes less efficient and decouples as the universe cools down. This decoupling process
occurs because the interaction can no longer maintain the equilibrium between different
particles due to cosmic expansion. This property is fundamental to the thermal history of
the universe and the existence of relics, particles left over from early stages of the universe.

Big bang nucleosynthesis is one of the observational pillar of the standard model of
cosmology, describing the early universe. It is the process by which light elements, such as
helium, deuterium, and lithium, were synthesized during the first few minutes after the Big
Bang. Its importance lies in its ability to constrain the baryonic density together with the
abundance of light elements. The standard BBN scenario can be divided into three main
steps:

Neutron-proton equilibrium At temperatures above 1 MeV, for t < 1 s, the weak inter-
action rates are rapid enough to maintain the neutron-proton equilibrium through reactions
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such as n ↔ p + e− + ν̄e. As long as statistical equilibrium holds, the neutron to proton
ratio is given by n/p = exp

(
−Qnp/T

)
, where Qnp is the neutron-proton mass difference.

Weak interaction freeze-out Around temperatures of 0.8 MeV for t ∼ 2 s, the weak
interaction rates become slower than the expansion rate of the Universe, Γ . H, and the
neutron-proton ratio freezes out. The number of neutrons and protons changes only from
the neutron β-decay until the temperature drops to about 0.1 MeV (t ∼ a few minutes),
when the production of deuterium D is faster than its dissociation.

Synthesis of light elements For temperatures between 0.6 MeV and 0.05 MeV, or 3 s
to 6 min after the big bang, the synthesis of light elements occurs, but only through two-
body reactions. This is one reason why only an insignificant number of elements heavier
than lithium were created. They require triple collisions to be formed such as the triple-
alpha process producing carbon, but very high density and long period of time are needed,
conditions only found in stars. Two-body reactions require the formation of deuterium
through p+ n→ D and a negligible photo-dissociation. This happens roughly when ND ∼
Nγ, the number density of deuterium becomes significant compared to the number density
of photons or equivalently when the energy of photons is lower than the binding energy of
deuterium. In order to find the relative abundance of the elements D, H, 3He, 4He, 7Li,
etc., one needs to solve a system of coupled differential equations. Other observations fix
the cosmological behaviour, therefore the time-dependent temperature and we have a good
understanding of the nuclear cross-sections. This leaves only one free parameter to constrain,
which is the baryon-photon ratio η, which is well constrained by the Planck satellite [24].
In Fig. 2.1, we show the comparison between the theoretical prediction of abundances of
the light elements and the observational results. We note that there is a discrepancy for the
abundance of 7Li, which is one of the main mysteries of modern cosmology.

At temperatures higher than the hydrogen ionization energy, matter remains ionized,
and photons are tightly coupled to electrons through Compton scattering. However, as the
universe expands and cools, the formation of neutral atoms becomes favoured from a ther-
modynamical perspective. At this point, Compton scattering becomes less efficient, and
radiation decouples from matter, leading to the formation of the CMB. This decoupling
marks the point at which the universe becomes transparent to photons, and they can freely
propagate in all directions. This process called recombination involves the transition of ion-
ized hydrogen (protons and electrons) to neutral hydrogen atoms. The equilibrium between
ionization and recombination is governed by the Saha equation,

X2
e

1−Xe

=

(
meT

2π

)3/2 e−EI/T

Np +NH

, (2.4)

which relates the relative abundances Xe of electrons Ne, protons Np, and neutral hydrogen
atoms NH, namely

Xe =
Ne

Np +NH

, (2.5)

in terms of temperature T and the hydrogen ionization energy EI = mp+me−mH , which is
the difference between the mass of the constituents and the mass of the atom. Recombination
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Figure 2.1: abundances of 4He, D, 3He, and 7Li as a function of the baryon-photon
ratio η. The blue line corresponds to the theoretical prediction. The vertical regions
are the constraints on η derived from WMAP (dotted black) and Planck (yellow).
The horizontal green shaded regions correspond to the observed abundances of the
light elements. The red dot-dashed lines correspond to the range of values for the
effective number of neutrino families Neff obtained from Planck, with the extreme
values being Neff = 3.02 and Neff = 3.70. Retrieved from [52].
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Figure 2.2: Power spectrum of the temperature anisotropies of the CMB. The red
dots represent the experimental results with the standard deviation. The blue line
follows the best fit from the Λ-CDM to the measurements. Retrieved from [24].

occurs when the temperature drops significantly below the hydrogen ionization energy (T <

EI), leading to a sudden drop of the ionization fraction Xe. Using today’s observations of the
average temperature T0 of the CMB and the photon number density Nγ0, we can predict that
recombination happened around redshift z = 1200. This is derived using the Saha equation
with the relationsNb := Np+NH = ηNγ0(1+z)3 and T = T0(1+z). The average temperature
of the CMB, denoted as T0, has been measured with precision by the COBE satellite, yielding
a value of T0 = 2.725 ± 0.001 K at 2σ confidence level [59]. The observed spectrum of the
CMB closely resembles a black body spectrum. The nearly perfect agreement with a black
body spectrum indicates that the CMB has undergone thermalization, primarily through
interactions with electrons. Any energy injection at redshifts lower than z = 106 would
distort the Planck spectrum and can be constrained by observations.

After the removal of the monopole and dipole components from the cosmic microwave
background (CMB), where the dipole arises from our local velocity relative to the CMB
frame, small temperature anisotropies persist with a relative amplitude of approximately
10−5. These anisotropies result from fluctuations in the radiation fluid during recombination,
which have been redshifted due to the expansion of the universe. These anisotropies can be
analyzed using spherical harmonics decomposition:

δT

T
(θ, φ) =

∑

l

l∑

m=−l
almYlm(θ, φ), , (2.6)

where alm are the coefficients corresponding to the spherical harmonics Ylm(θ, φ). The
angular power spectrum Cl = 〈|alm|2〉 is derived from these coefficients, which involves av-
eraging the squared coefficients over m. Figure 2.2 displays the angular power spectrum
Dl = l(l + 1)Cl as measured by the Planck satellite [24]. The blue line corresponds to the
prediction from the Λ-CDM model described in this section with a quasi-invariant primor-
dial power spectrum, which will be discussed in more details in the next chapter 3. The
experimental results represented by the red dots show us the angular power spectrum as
observed in the CMB. The large error bars at low multipole, or equivalently for large angles,
originate from the lack of a sufficient amount of coefficients alm per multipole and could
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never be alleviated. Understanding the origin and properties of these fluctuations is crucial
in modern cosmology and will be a central part of the next chapter 3.

The current concordance model of cosmology, the Λ-CDM, is characterised by seven
parameters that must be constrained experimentally. First, there are the density parameters
in the Friedmann equation (1.34). The spatial curvature is assumed to be zero, hence there
are three independent parameters that must be considered, radiation density Ωr, matter
density Ωm and the Hubble parameter H0. the cosmological constant can be recovered
from these three parameters through the Friedmann equation. The model also distinguishes
between baryonic matter Ωb and cold dark matter Ωc, raising the number of background
parameters to 4. The photons from the CMB were affected by the ambient matter during the
billion years long travel through Thomson scattering. This effect is summarized in the optical
depth parameter τ . Finally, the initial conditions for the fluctuations that are observed in
the CMB must be set. It appears that power spectrum of these primordial fluctuations is
almost scale invariant. Hence, the primordial power spectrum can be describe using only
two parameters: the amplitude As and the small tilt ns of the primordial power spectrum.
Together, these 7 parameters are enough to describe the current standard model of cosmology
and the CMB allows us to constraint all of them, provided that some priors are given. This
is the role of other independent experiments that are designed to measure one or several
parameters, such as type Ia SNe for dark energy, galaxy lensing for dark matter or BBN for
baryonic matter. The radiation parameter is constrained using the average temperature of
the CMB, while the other parameters are constrained using the temperature anisotropies.
The most recent constraints can be found in Ref. [24].

2.1.2 Main evidences for dark matter

The observation of the abundance of light elements as predicted from the BBN hypothesis
was able to tightly constrain the baryon-photon ratio η ∼ 6 · 10−10. If one extrapolates this
value to today’s density parameters using Friedmann’s equations, we obtain that baryons
should represent roughly 5% of the energy content of the universe, i.e. Ωb ∼ 0.05. Using
the angular power spectrum of the CMB displayed on Fig. 2.2, one can indeed confirm
that baryons constitute 5% of the content, but one also needs the existence of some exotic
matter, five times more abundant than baryons, that do not interact with radiation. This
sort of non-interacting matter is necessary to explain the observed density fluctuations of the
CMB. Hence, the known particles of the standard model, hereby baryons, are not sufficient
to explain the observed CMB temperature anisotropies power spectrum. This important
signature of dark matter is far from being the only evidence suggesting the existence of such
exotic matter. Some attempts at modifying our theory of gravity to explain dark matter has
been made, such as MOND theory [60, 61], but such modified theories struggle to explain
the observed CMB as well as other measurements that will be described in this section and
the community favours the matter hypothesis.

Historically, the first signs of dark matter has been found in 1933 by Fritz Zwicky [62].
He observed that the Coma galaxy cluster does not satisfy the virial theorem using its
estimated mass and kinetic energy. Nowadays, galaxy clusters are great probes for dark
matter, because their mass can be well estimated using various methods. First, one can
study the velocity profile of galaxies within the cluster and derive the gravitational field
or equivalently the mass distribution of the cluster. Its mass can also be extracted from
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the gravitational lensing on distant sources. At last, the mass profile can also be found
by measuring the gas cloud temperature and density using X-ray observatories. From the
temperature, one can derive the pressure profile and therefore the mass of the cluster through
the virial theorem, assuming hydrostatic equilibrium. In the other hand, the mass of baryons
can be estimated from the luminosity of the cluster and observations lead to a 5-to-1 share
of dark to baryons, agreeing with the CMB measurements. A particular cluster, called
the bullet cluster, resulting from the collision of two clusters of galaxies has given strong
evidence towards dark matter as opposed to modified gravity theories. Indeed, it has been
observed that the distribution of dark matter of both clusters passed through each other
without being affected, while baryons was slowed through interactions during the collision.
The distributions of both type of matter do not overlap in this particular cluster, a fact that
is hard to satisfy using modified gravity theories [63]. Furthermore, constraints on dark
matter self-interactions could be inferred [64].

It was not before the 70s and the measurement of the rotation curve of the Andromeda
galaxy by Vera Rubin [65], that dark matter was seriously studied. Since then, thousands
of rotation curves of galaxies have been measured suggesting that there is ten times more
dark matter than baryons in galaxies. These results somehow predicts more dark matter
than CMB and cluster mass measurements, but the mass of galaxies only accounts for a
small fraction of the total mass of matter in the universe. Therefore, we do not expect the
amount of dark matter in galaxies to be representative of the distribution on cosmological
scales. Recently, the discovery of dwarf galaxies without dark matter [66,67] also disfavours
modified gravity theories, due to the difficulty to explain such a phenomenon.

2.1.3 Late time universe and dark energy

We saw earlier that dark matter constitutes roughly 30% of the energy content of the uni-
verse, we have yet to talk about the remaining 70%. While the measurements by the Planck
satellite have been a cornerstone of modern cosmology, the fit of the Λ-CDM parameters is
not unique and it requires the input of priors. The value of the cosmological constant is no
exception and other independent observations are necessary. Fortunately, since the discov-
ery of the accelerated expansion in the late 90s [23], there has been numerous evidences of
the existence of a positive cosmological constant.

At first, the accelerated expansion of the universe was observed using type Ia supernovae
as standard candles to measure the expansion rate with respect to the distance. The ex-
pansion rate is measured using the redshift and the distance is deduced from the luminosity
of the standard candle. In Fig. 2.3 we show the relation between the luminosity distance
and the redshift for the Supercal compilation [68] of supernovae data and compare it to
different model of expansion. ∆ stands for the normalized difference in magnitude. We see
that the data strongly favour a small cosmological constant, since the expansion was first
decelerating when matter was dominating, but is now accelerating due to the dark energy
contribution.

A very useful property of the type Ia supernovae is their ability to behave as a standard
ruler allowing us to measure distances. In a cosmological setting, a very useful ruler was
created at recombination in a process called baryon acoustic oscillations (BAO). During
the radiation era, the universe was filled with a photon-baryon plasma and dark matter.
The energy content was very close to being homogeneous, but small fluctuations persisted
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Figure 2.3: Evidence of past deceleration transitioning to present-day acceleration.
The blue line represents a well-fitting model with late acceleration. In green, a
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geometries without dark energy. The red curve represents a constant acceleration
model. Black data points are binned distance moduli from the Supercal compilation
[68] of 870 supernovae, while three red data points represent distances inferred from
recent BAO measurements [69]. Retrieved from [57].

and in particular fluctuations in the dark matter fluid. The latter being decoupled from
the plasma, the fluctuations of dark matter grew from the action of gravity and attracted
with it the baryon-photon plasma creating high density and high pressure regions. The
pressure in these over-dense regions were such that sound waves travelling at the speed of
sound cs ≈ c/

√
3 in the plasma were emitted outward. These sound waves travelled until

recombination happened, when the speed of sound drastically dropped and effectively froze
the over-dense spheres created by the wave. The size of the spheres rBAO at recombination
can be easily calculated from the distance the sound waves had time to travel in roughly
380000 years, namely

rBAO =

∫ trec

0

cs
a(t)

dt ∼ 145Mpc . (2.7)

With time and the expansion of the universe, these over-dense regions grew and influenced
the distribution of galaxies in the universe. Using galaxy catalogues such as the Sloan digital
sky survey (SDSS) [70] listing galaxies and their redshift, one can map the distribution of
galaxies and observe the over-dense spheres. Because we know the size of the sphere at
recombination and one can measure their size as observed from earth today, we can derive
the expansion history of the universe. In Fig. 2.3, the red dots represent the results from the
measurements of these spheres and confirms the scenario of late time acceleration. Moreover,
we show in Fig. 2.4 the over-density at comoving distance rBAO.

The effect of dark energy is effective at large scales and it is natural to look for its
contribution on the evolution of large scale structures. These structures, primarily composed
of dark matter, distort the image we have of distant objects through gravitational lensing.
In particular, they deform the shape of galaxies. The goal is to reconstruct the source of
the lensing, i.e. the dark matter structures and derive the dark energy contribution. The
distortion is measured using the convergence κ and the complex shear (γ1, γ2), which acts
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Figure 2.4: Large-scale redshift-space correlation function of the SDSS sample in
black with the error bars. Models: Ωmh

2 = 0.12 (green), 0.13 (red), 0.14 (blue with
peak); all with Ωmh

2 = 0.024, n = 0.98, and mild non-linear prescription. Magenta
line: pure CDM model (Ωmh

2 = 0.105) without acoustic peak. Retrieved from [71].

as a coordinate transformation namely

δxS =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
δxI , (2.8)

where δxS,I is the displacement vector in the plane of the source and the image, respectively.
When studying gravitational lensing at large scale, we are mainly interested in weak lensing,
which is characterized by κ,

√
γ2

1 + γ2
2 � 1. The main statistical signal that can be extracted

from averaging over the shape of galaxies is the power spectrum of the shear, which turns
out to be identical to the convergence power spectrum [72]

P κ
l (zs) =

∫ zs

0

(1 + z)2

dL(z)H(z)
W 2(z)P

(
k =

(1 + z)2l

dL(z)
, z

)
, (2.9)

where zs is the redshift of the source, dL(z) the luminosity distance and P (k, z) the matter
power spectrum. W (z) is the weight function that describes the efficiency of the lensing from
galaxies in the foreground and is the highest for lenses lying at roughly half the distance
between the source and the observer. Dark energy influences the shear power spectrum at
different levels. Evidently, it affects the Hubble constant, but also the luminosity distance,
the weight function and the matter power spectrum through the redshift evolution. On
the left panel of Fig. 2.5, we show the resulting cosmic shear from a mass distribution that
has been derived using a N-body simulation. On the right panel, we plot the shear power
spectrum with the projected statistical errors from the future LSST, renamed Vera Rubin,
observatory.

Dark energy is yet well described by a cosmological constant, but the constraints on its
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Figure 2.5: Left panel: Cosmic shear field (white lines) overlaying a projected mass
distribution from a cosmological N-body simulation. Bright areas represent over-
dense regions, while dark areas represent underdense regions. Right panel: Angular
power spectrum of cosmic shear with statistical errors expected for LSST in light
blue. Shown for source galaxies in two redshift bins: 0 < zs < 1 (first bin) and
1 < zs < 3 (second bin). The cross-power spectrum between the bins (cross term) is
also displayed. Retrieved from [57].

dynamics are still loose and the nature of dark energy remains under scrutiny. Current and
future cosmological surveys measuring the CMB, supernovae or galaxies aim at constraining
the dynamics of dark energy to confirm or reject the cosmological constant hypothesis. There
are mainly two variables of interest when studying the accelerated expansion, the density
parameter of dark energy ΩΛ(a) and its equation of state parameter wΛ(a), both potentially
evolving with time and therefore with the scale factor a. More precisely, cosmological surveys
set constraints on the value of the density parameter today ΩΛ,0 ∼ 0.7, as well as the value
of wΛ(a0) = w0 and small variation around its current value wa = w′(a0), with prime being
the derivative with respect to a. According to the Λ-CDM model, we have w0 = −1 and
wa = 0. Current constraints on w0−wa as well as w0−Ωm (recall that Ωm ∼ 1−ΩΛ) using
the previously mentioned experimental evidences are exposed in Fig. 2.6. We see indeed
that the constraints on the dynamics of dark energy are loose and there is a need for new
cosmological observations, such as galaxy surveys.

2.2 Dark energy as quintessence and future constraints

Even though the cosmological constant model is well fitted to describe the accelerated ex-
pansion of the universe, it still suffers from some theoretical issues. First and foremost,
its existence and more importantly its very small value appears somewhat arbitrary and
bizarrely fine-tuned. A more problematic issue emerges from an other side of fundamental
physics and the description of subatomic particles using quantum field theory (QFT). QFT
predicts that the energy density of the vacuum is non-zero and would remarkably behave
as a positive cosmological constant in the context of cosmology [58]. The vacuum energy
density originates from the creation of particle-antiparticle pairs and its strength is there-
fore related to the mass of the known elementary particles. However, rough estimates of
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Figure 2.6: Cosmological parameter constraints from our analysis of three key probes:
SNe Ia [73], BAO [69], and CMB [74]. Left panel displays constraints on Ωm and w,
while the right panel shows constraints on w0−wa, marginalized over Ωm. Contours
represent likelihood regions of 1-σ, 2-σ and 3-σ. Retrieved from [57].

the cosmological constant derived from vacuum energy is off by over 50 orders of magni-
tude [75, 76]. Of course, one could claim that this vacuum energy is unphysical and QFT
predictions are wrong, but it has been experimentally observed in the Lamb shift [77] or
the Casimir effect [78] for example. The erroneous prediction for dark energy as vacuum
energy is sometimes coined as the cosmological constant problem, even though the issue lies
deeper in the QFT approach [58]. Through the renormalization procedure commonly used
in QFT, one has some freedom in choosing the counter-terms that are used to get rid of
infinities plaguing the theory. We can therefore make the cosmological constant as small as
we like with finely tuned counter-terms in the one-loop correction, which would bring the
cosmological constant problem back to a fine tuning problem. Unfortunately, the story does
not end here. The counter-terms are not safe from higher order loop corrections, leading
to an infinite tower of finely tuned counter-terms [58]. This tells us that the cosmological
constant is very sensitive to UV physics and we do not have at present a UV-complete theory
describing the standard model of particle physics.

A solution that is often brought forward consists in assuming some yet unknown sym-
metries that would render null the effect of vacuum energy on the expansion of space-time.
But one is left to explain the observed accelerated expansion in other ways. Since the pri-
mary goal is to get rid of the cosmological constant and explain why the acceleration of the
expansion happened late in the history of the universe, dark energy is made dynamical. The
simplest field that we have at our disposal in order to make dark energy dynamical is the
scalar field. It has the advantage of being simple and respects the cosmological principle,
since it is naturally isotropic and can be made homogeneous. Of course, the random ad-
dition of a scalar degree of freedom feels somewhat arbitrary, but there are well-motivated
arguments to postulate the existence of a scalar field. If the graviton carries a small mass for
example, then the gravitational field propagate five degrees of freedom, including a scalar
field. Moreover in the small graviton mass limit, the vector degrees of freedom are negligible
and one is left with a scalar-tensor theory [7,79,80]. We will introduce the resulting scalar-
tensor theory in Sec. 2.3.2. More generally, It was recently shown that [81–84] a scalar-field
naturally emerges as a Goldstone boson when the time translation symmetry is broken.
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Hence, studying scalar-tensor theories is part of the search of potential violations of the
strong equivalence principle and the symmetry breaking of the time translation could ex-
plain the accelerated expansion. Such an approach to dark energy has been named effective
field theory (EFT) of dark energy.

Quintessence is a scalar-tensor theory with minimal coupling between the scalar and
tensor sector. It has gained considerable attention in theoretical cosmology thanks to
its simplicity and ability to describe the accelerated expansion. The scalar field used in
quintessence can of course be derived using the EFT approach to dark energy. Nevertheless,
some suggested that in its low energy limit, string theory could give rise to a quintessence
model [85, 86]. String theory is known to have an absurd number of different possible low
energy EFT, called the landscape and it is no surprise that quintessence could emerge from
such a vast theory. However, it has proven so far impossible to find an EFT compatible with
a lasting period of accelerated expansion and this led, together with many other arguments,
to the conjectured de-Sitter condition [85]

dV/dφ

V
& O(1) , (2.10)

where V (φ) the potential of the scalar field, for a theory to be part of the landscape.
Scalar-tensor theories that do not satisfy this condition (and other similar conditions that
has been postulated [87]) are said to be part of the swampland of string theory. Such
a condition on the behaviour of dark energy can in fact be measured experimentally and
current results using the constraints on w0 − wa lead to dV/dφ < 0.6V , already in slight
conflict with the de-Sitter conjecture.

In the coming years, several new missions with the possibility to study the behaviour of
dark energy are expected to be launched. The square kilometer array (SKA) is an array
of radio-telescopes, which is expected to observe a large amount of galaxies at low redshift.
This will allow the refinement of the BAO constraints on the dynamics of dark energy [88].
Moreover, the future space-based Euclid and the ground-based Vera Rubin observatories will
be able to catalog the shape and redshift of a lot of new galaxies, improving the constraints on
the equation of state parameter from weak lensing [89,90]. The following paper pedagogically
introduces the notion of swampland and quintessence, and studies the future constraints that
we will be able to set on the de-Sitter conjecture using these future observatories.
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Abstract

This article aims to draw the attention of astronomers to the ability of future cosmological surveys to put
constraints on string theory. The fact that “quantum gravity” might be constrained by large-scale astrophysical
observations is a remarkable fact that has recently concentrated a great amount of interest. In this work, we focus
on future observatories and investigate their capability to put string theory, which is sometimes said to be
“unfalsifiable,” under serious pressure. We show that the combined analysis of the Square Kilometer Array, Euclid,
and the Vera Rubin observatory—together with Planck results—could substantially improve the current limits on
the relevant string swampland parameter. In particular, our analysis leads to a nearly model-independent
prospective upper bound on the quintessence potential, ¢ <∣ ∣V V 0.16, in strong contradiction of the so-called de
Sitter conjecture. Some lines of improvements for the very long run are also drawn, together with generic
prospective results, underscoring the efficiency of this approach. The conjectures used in this work are discussed
pedagogically, together with the cosmological models chosen in the analysis.

Unified Astronomy Thesaurus concepts: Cosmology (343); Dark energy (351); Quintessence (1323)

1. Introduction

String theory might be the only available and viable
candidate “theory of everything”. It features many unique
and appealing properties (see, e.g., Polchinski 2007; Daniels-
son 2001; Becker et al. 2006; Blumenhagen et al. 2013 for
pedagogical introductions). Replacing point particles with one-
dimensional quantum objects leads to a completely new
paradigm that has been built over the last five decades. Among
many others, an important consequence of this fundamental
shift is the natural appearance of a massless spin-2 particle, the
graviton. In a sense, (quantum) gravity is therefore an
unavoidable prediction of string theory. The long history of
string theory (see, e.g., Rickles 2014) went through several
revolutions, from the discovery of superstrings—and the
understanding that the theory might be capable of describing
all elementary particles as well as all the interactions between
them—to the unification of different versions of the model into
the M-theory framework (see, e.g., Schwarz 1996). The ideas
of string theory have far-reaching consequences in mathema-
tical physics, cosmology, condensed matter physics, particle
physics, nuclear physics, and black hole physics. More than a
well-defined axiomatic model, string theory, in a broad sense,
is a kind of rich and intricate framework (see, e.g., Tong 2009)
made of many interconnected subfields.

In spite of its extraordinary mathematical elegance—
beginning with the historical Green–Schwarz anomaly cancel-
lation mechanism (Green & Schwarz 1984), which led to the
first revolution—string theory raises questions about its
falsifiability. One might provocatively argue that all the
predictions made so far were somehow contradicted by
observations. First, the number of dimensions required is not
the one we know in nature (Lovelace & Lett 1971). Second, the
world should be supersymmetric (Gliozzi et al. 1977). Third,
the cosmological constant is expected to be negative (see, e.g.,
arguments in Witten,). Fourth, non-Gaussianities are to be
observed in the cosmological microwave background (CMB;
Lidsey & Seery 2007). Of course, ways out of those naïve

expectations are well known, and it is not the purpose to
describe them here in detail: compactified extra dimensions are
possible, supersymmetry can be broken at a high-energy scale,
the introduction of membranes as new fundamental objects
might stabilize a positive cosmological constant, moduli fields
might not contribute simultaneously to the inflation dynamics,
etc. Without going into the quantitative arguments (the
interested and unfamiliar reader can get a flavor of the main
ideas in, e.g., Gubser 2010), it is fair to conclude that, at this
stage, string theory is not in contradiction with observations.
The main concern is different. Just the other way round, one
might wonder if string theory is actually falsifiable (see, e.g.,
references in Smolin 2006; Rovelli 2013). It might be feared
that the intrinsic richness of the paradigm is such that basically
anything happening in nature could be accounted for by string
theory. The very scientific nature of string theory could then be
questioned, at least in a Popperian sense. Although quite a lot
of possible “tests” were considered in the past (see, e.g.,
Kane 1998; Casadio & Harms 2000; Hewett et al. 2005;
Kallosh & Linde 2007; Durrer & Hasenkamp 2011), the great
novelty now emerging is that cosmological surveys might
severely constrain—if not exclude—string theory. This work
aims to derive new results on the limits that could be obtained
in the next decade and to drive, pedagogically, the attention of
astronomers on this somehow unexpected importance of the
study of large-scale structures for fundamental high-energy
physics.
As far as surveys are concerned, we focus on the following

three main experiments: Euclid (Laureijs et al. 2011; Amendola
et al. 2013, 2018), the Vera Rubin observatory (Abell et al.
2009; Alonso et al. 2018), and the Square Kilometer Array
(SKA; Yahya et al. 2015; Maartens et al. 2015; Santos et al.
2015). Euclid is a European Space Agency mission using a
Korsch-type space telescope. Its diameter is 1.2 m with a focal
length of 24.5 m. The instruments are a visible-light camera
(VIS) and a near-infrared camera/spectrometer (NISP). The
Vera Rubin observatory, previously called LSST, is a ground-
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based telescope whose diameter is 8.4 m with a focal length of
10.3 m. The focal plane is made of a 3.2 billion pixel matrix,
and the redshifts will be determined photometrically. Both are
scheduled for 2022. Finally, SKA is a radio telescope array
project with stations extending out to a distance of 3000 km
from a concentrated central core. It will be operated in several
successive stages, and the fully completed array is expected
around 2027. In the following, Euclid and LSST will often be
mixed as they provide basically the same information in a
complementary way.

We first explain, as intuitively as possible, the main ideas of
the string theory swampland program that allow a connection
between quantum gravity and very large-scale—ultra-low-
energy—astronomical observations. This is rooted in the
apparent impossibility of producing a real de Sitter space
(positive cosmological constant) in string theory. According to
the de Sitter conjecture, if we were to measure a scale factor
behavior resembling too much a pure cosmological constant,
the whole edifice might be in trouble. We then focus on
quintessence models for dark energy and explain the specific
potentials we choose together with the motivations underlying
those choices to test the conjecture. The next section is devoted
to the presentation of the results for each considered class. The
aim is to answer this question: could the next generation of
experiments show that we live in the so-called swampland,
therefore excluding string theory (if the de Sitter conjecture,
which will be described in detail, is correct)? We conclude by
underscoring the limitations of the approach and possible
developments to be expected for the future.

2. The String Theory Swampland

Although string theory is a tentative unification theory, it
actually leads to a huge amount of false (metastable) vacua: the
so-called landscape (see, e.g., Susskind 2003; Banks et al.
2004; Polchinski 2006; Arkani-Hamed et al. 2007). Techni-
cally, the tremendously large number of possibilities comes
from choices of Calabi–Yau manifolds and of generalized
magnetic fluxes over different homology cycles. More
intuitively, this landscape represents a vast collection of
effective low-energy theories. Otherwise stated, although the
fundamental equations of string theory are often simple and
elegant, their solutions are extraordinarily complex and diverse.
This diversity is not necessarily a failure of physics. It may help
in understanding some curious features of our universe. Just as
Earth is a very specific—and anthropically favored—place in
the observable universe, the observable universe could be a
special sample in the “multiverse” (see, e.g., Stoeger et al.
2004; Garriga et al. 2006; Vilenkin 2007; Barrau 2007;
Carr 2007; Hall & Nomura 2008). In principle, the idea of a
multiverse, generated for example—but not necessarily—by
inflation, filled with different low-energy landscape realizations
of string theory is not outside of the usual scientific arena:
probabilistic predictions can be made and tested (Freivo-
gel 2011). Having a single sample at our disposal (our
universe) makes things complicated but not radically different
from the usual situation in physics where the amount of
information available is always finite and incomplete (Car-
roll 2018). It has never been mandatory to check all the
predictions of a theory to make it scientific. Of course,
providing clear predictions in a string landscape multiverse is,
to say the least, challenging: from the clear definition of a
measure to the accurate estimate of the anthropic weight, many

questions remain open (Stoeger et al. 2004). Still, the idea that
string theory generates a landscape of solutions—which can be
considered as a set of effective physical theories—remains
central to the field. Although often associated with the
multiverse, this wide variety of solutions can, of course, be
also meaningfully considered in a single universe, which is the
framework of this study.
The situation changed drastically with the emergence of the

swampland idea (Vafa 2005; Ooguri & Vafa 2007). The
swampland refers to the huge space of theories that seem
compatible with (or possibly derived from) string theory but
which, actually, are not. The landscape corresponds to the,
more restricted, space of “possibly correct” theories, in the
sense that they really emerge from string theory, which is here
assumed to be the framework. The swampland corresponds to
theories that are not consistent when considered in detail,
although they appear to be correct at first sight. The landscape
is a much smaller subset of the space of theories than the
swampland: the island of consistent theories in a sea of
incoherent proposals, even if those proposals were looking like
viable candidates from a simple field theory point of view. In
many works, the strategy consists in guiding the construction of
effective field theories so that they belong to the landscape and
not to the swampland. This is a valuable help in low-energy
model building. In this article, we take a different view. We try
to determine the correct description of the cosmological
dynamics and show that it might actually correspond to a
swampland theory. If the real world were to lie in the
swampland, it might strongly suggest that either string theory
itself or the swampland program is wrong.1 This is a unique—
although still intensively debated and clearly controversial—
way of possibly falsifying a candidate theory of quantum
gravity. Surprisingly, the detailed features of the acceleration of
the universe are a privileged way to address this outstanding
question.
Let us be slightly more specific. Excellent reviews of the

swampland ideas can be found in Brennan et al. (2017), Palti
(2019). We simply give here a flavor of the arguments to fix the
ideas of the unfamiliar reader. In the space of theories, the
swampland would be vastly larger than the landscape. Theories
in the swampland are apparently fine. They can be used to
make predictions and look like good physics. But, when
looking more carefully, they cannot be consistently completed
in the ultraviolet (that is, at high energy). This does not mean
that they are not quantum theories of gravity, but rather, that
they cannot appear consistently as a low-energy limit of a
“string-theory-inspired” quantum gravity model. Otherwise
stated: the coupling to gravity is problematic for those theories.
One way of using this information is to discard such theories
and focus on other models. However, as explained before, an
interesting situation would be the one where our universe is
described by a theory belonging to the swampland: the logic
could then be reversed and the framework suggesting the
theory to be discarded should be revised or abandoned. The
swampland program is very wide and uses at the same time
rigorous string theory arguments, general quantum gravita-
tional ideas, and microphysics inputs.
Illustratively, one can consider an effective quantum field

theory (EQFT) self-consistent up to a scale Eself. If gravity is
added to the game (with its own finite scale

1 We will resist the temptation to consider the possibility that string theory is
correct and that it is the real world that is wrong!
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= E c GPlanck
5 ), the new theory will exhibit a new limit

energy scale Eswamp. This is basically the energy above which
the theory has to be modified if it is to become compatible with
quantum gravity at very high energies. An interesting situation
(Palti 2019) is one where Eswamp< Eself< EPlanck. Even better,
if Eswamp is smaller than any characteristic energy scale
involved in the theory, it means that the whole theory lies in the
swampland. This can be very helpful as a guide in a model-
building approach.

At this stage, the swampland program is mostly an ensemble
of conjectures. Some of them are very reliable and—to some
extent—demonstrated. They are theorems (even if the hypoth-
eses are sometimes stronger than one would like). Others are
speculative and grounded in extrapolations (for example, from
known vacua to all vacua). They rely on many different kinds
of arguments, from very formal ones to qualitative gedanke-
nexperiments involving black holes.

Among others, the following swampland conjectures are
intensively being considered: the distance conjecture (Ooguri
& Vafa 2007; Klaewer & Palti 2017; it is not possible to move
too much in the field space), the weak gravity conjecture
(Arkani-Hamed et al. 2007; Cheung & Remmen 2014; gravity
is always the weakest force), the species scale conjecture
(Veneziano 2002; Dvali et al. 2002; there is a bound on the
cutoff scale that depends on the number of particles), the no
global symmetry conjecture (Banks & Dixon 1988, 1988; there
cannot be an exact global symmetry in a theory with a finite
number of states), the completeness conjecture (Pol-
chinski 2004; if there is gauge symmetry, the theory has to
incorporate states with all possible charges), the emergence
conjecture (Harlow 2016; Heidenreich et al. 2018; Grimm et al.
2018; Ooguri et al. 2019; the kinetic terms for all fields are
emergent in the low-energy limit by integrating out states up to
a finite scale), the non-supersymmetric AdS instability
conjecture (Ooguri & Vafa 2017; non-supersymmetric anti–
de Sitter space is unstable), the spin-2 conjecture (Klaewer
et al. 2019; any theory with spin-2 massive fields has a cutoff
scale2), etc. In this work, we shall focus on the so-called de
Sitter conjecture (Obied et al. 2018; Andriot 2018; Garg &
Krishnan 2019; Ooguri et al. 2019). It basically encodes the
fact that it is very hard to build something resembling a positive
cosmological constant in string theory. Let us describe the
underlying idea.

The key point is that in the 11-dimensional supergravity
theory arising as a low-energy limit of M-theory, there is no
cosmological constant. What is usually described as a
cosmological constant actually corresponds, in this framework,
to the local minimum of a scalar potential. This results from the
compactification of the higher-dimensional (supersymmetric)
theory. A de Sitter space does not here refer to a “real” positive
cosmological constant but, instead, to the (meta)stable state of a
scalar field with a positive value of the potential. Anything
looking like a positive cosmological constant is extremely hard
to construct in string theory. The profound reasons behind this
are, on the one hand, the instability of the so-called moduli3 in
the de Sitter vacuum and, on the other hand, the non-
supersymmetric nature of the de Sitter space. The heart of the
conjecture lies in the bet that the tremendous difficulties arising

when trying to build a de Sitter vacuum are hints that such a
state does not exist at all in the theory (Danielsson &
Riet 2018).
This would not mean that the de Sitter–like behavior of the

contemporary universe—that is, its accelerated expansion (see
Riess et al. 1998 for the historical detection and Mortonson
et al. 2013 for a brief and recent review)—is in radical conflict
with the conjecture. Just as it was probably the case for the
primordial inflation (see Senatore 2017 for an excellent
introduction), it might be that the current acceleration is
obtained dynamically by a scalar field rolling down a potential.
In such a case, the conjecture might hold but would constrain
the shape of the potential. Although they suffer from serious
drawbacks and are obviously more complicated than a pure
cosmological constant (Bianchi & Rovelli 2010), such
quintessence models must not appear as too strange or
unnatural. Indeed, if a true cosmological constant happens to
become dominant in the cosmic dynamics, it will automatically
remain so forever as it does not dilute, whereas the other fluids
of the universe do. It is therefore impossible that inflation was
driven by the cosmological constant and the introduction of
something like a scalar field evolving in an appropriate
potential is required. It makes sense to assume that the
contemporary phase of acceleration, which resembles the
primordial one, is due to the same cause. Quintessence models
for dark energy are precisely focused on this idea (see
Brax 2018) and receive strong support from both particle
physics and EQFTs. This might provide a solution that pleases
string theory and remains compatible with what we observe.
For the sake of completeness, we should however mention that
quintessence is not the only alternative to a cosmological
constant.
However, it is not sufficient to choose a dynamical dark

energy model instead of a pure cosmological constant to avoid
falling in the swampland. The very interesting aspect of the de
Sitter conjecture is that it provides a constraint that has to be
satisfied by the potential. Let us consider the usual action for
gravity and scalar field f with a potential V:

ò f f f= - - ¶ ¶ -mn
m n⎡

⎣
⎤
⎦

( ) ( )S d x g R g V
1

2
, 14

where R is the Ricci scalar.4 Unless otherwise stated, we use
Planck units throughout this work. The original de Sitter
conjecture (Obied et al. 2018) states that

l
¢

>
∣ ∣ ( )V

V
, 2c

where λc is a constant of order one, and the derivative is to be
understood with respect to the field. Interestingly, recent
studies set a clear numerical value on the large field limit
(Bedroya & Vafa 2020; Andriot et al. 2020a):
l > »2 3 0.82c . It has already been shown (Agrawal
et al. 2018) that current observations lead to ¢ <∣ ∣V V 0.6,
which is in tension with the conjecture. We will show that the
Euclid/Rubin/SKA generation of experiments should lead to a
clear improvement of this limit and potentially show that the

2 In a way, this simple fact about effective field theories significantly predates
the entire Swampland program (Arkani-Hamed et al. 2003).
3 Moduli fields are scalar fields with properties often associated with
supersymmetric systems. They arise naturally in string theory.

4 The forthcoming statements can be generalized to a set of scalar fields,
introducing a supermetric Gij in the field space, but we prefer to keep the
notations simple at this stage.
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actual behavior of the universe unambiguously does not satisfy
the conjecture.

This simple version of the de Sitter conjecture is, however,
not sufficient. The well-understood Standard Model of particle
physics allows one to extrapolate the existence of other critical
points of the potential. This argument was first made for the
Standard Model Higgs potential (Denef et al. 2018) where
some loopholes were pointed out in the argument. It was then
elaborated on in Murayama et al. (2018) and extended in Choi
et al. (2018) to consider the pion potential, leading to the firm
conclusion that there is no way that a quintessence model
coupled to the Standard Model can be consistent with the
original de Sitter swampland conjecture that bounds only
¢∣ ∣V V . Avoiding a critical point of the pion potential would

require a large quintessence coupling in violation of stringent
fifth-force constraints. These arguments led to a refined form of
the bound so that the potential has tachyonic directions in the
regions where ¢V is too small.5

The refined conjecture reads (Ooguri et al. 2019; Garg &
Krishnan 2019)

l a
¢

>

< -

∣ ∣ ( )V

V

V

V
or , 3c c

where λc and αC are both positive numbers of order 1. In
addition to the previously given arguments, the second
condition also comes from the fact that when it is satisfied,
an instability develops, leading to a breakdown of the entropy-
based argument for the first condition. In the following, we first
consider the original conjecture and then comment on the
refined version. It should also be mentioned that several other
improvements are also being considered (Garg & Krish-
nan 2019; Andriot 2018; Ben-Dayan 2019; Dvali et al. 2019;
Garg et al. 2019; Andriot & Roupec 2019).

Why are we to expect the derivative of the potential
(normalized to the potential) not to be too small in string
theory? The reasons are subtle (Ooguri et al. 2019; Garg &
Krishnan 2019), and no obvious argument can be given. The de
Sitter space is a highly nontrivial structure. It has a horizon and
is endowed, analogously to what happens for black holes, with
a temperature and entropy. This is expected not to be stable in
quantum gravity. The de Sitter conjecture can be seen as
resulting from the distance conjecture (Ooguri et al. 2019;
Geng 2020). Very loosely speaking, this is because the distance
traveled in the field space is linked to the dimension of the
Hilbert space of the theory, which is itself (potentially) linked
to the entropy of the considered de Sitter space. It can also be
approached from thermodynamical considerations (Seo 2019):
under several assumptions, it might be that when the number of
degrees of freedom is enhanced as the modulus rolls down the
potential, the bound on ¢∣ ∣V V becomes equivalent to the
condition for the positive temperature phase. As mentioned
before, the original de Sitter conjecture has been refined
(Andriot 2018, 2019; Andriot & Roupec 2019), and there are
now quite a lot of arguments supporting its validity although
the accurate value of the bound λc is still debated. Let us
introduce l º - ¢V V (which depends on f, hence on time)

and summarize: if a potential resembling too much a
cosmological constant (that is |λ|= 1) were to be measured,
it would hardly be compatible with string theory if the
conjecture is correct.
In principle, studying the primordial inflation leads to more

stringent constraints on λ than considering the contemporary
acceleration of the universe. Although inflation is unquestion-
ably part of the cosmological paradigm, it is, however, fair to
note that other scenarios are also being considered: strictly
speaking, inflation is not proven. Several alternatives are
described in Durrer & Laukenmann (1996), Hollands & Wald
(2002), Veneziano (2003), Brandenberger (2011), Creminelli
et al. (2010), Popławski (2010), Wilson-Ewing (2013), Lilley
& Peter (2015), and references therein. If a study aims to
investigate how the actual behavior of the universe constrains
—or even might exclude—string theory, it is mandatory to rely
on established facts. For this reason, we focus on the late-time
acceleration that is being directly observed.

3. Dark Energy Potentials

3.1. General Picture

The acceleration of the universe is now unquestionable. This
has been observed using Type Ia supernovae (Perlmutter et al.
1999), using the cosmological microwave background (CMB)
(Aghanim et al. 2020), and using baryon acoustic oscillations
(BAOs; Blake et al. 2011). In a way, a pure cosmological
constant—as a part of the full Einstein’s equations according to
Lovelock’s theorem—works well to explain this acceleration
(Bianchi & Rovelli 2010). If the quantum vacuum fluctuations
are taken into account the question becomes merely the one of
a suitable renormalization. This, however, raises many
questions (see, e.g., Brax 2018) and the idea of quintessence
is intensively studied to overcome most coincidence problems
(see Zlatev et al. 1999; Martin 2008; Tsujikawa 2013 for
reviews). Any model of quintessence must not only produce a
scalar field potential that is sufficiently flat but also fine-tune
away the cosmological constant. From the point of view of our
approach, it is important to consider such models, as a pure
cosmological constant lies trivially in the swampland if the de
Sitter conjecture holds. To be conservative on a possible
“exclusion” of string theory, it is necessary to focus on
dynamical models.
It is not possible to derive limits on λ that are strictly model

independent, in exactly the same way as it is not possible to
obtain observational limits on the equation of state (EOS) of
dark energy as a function of the redshift without assuming a
given parameterization. One needs to consider a specific
quintessence model that is the potential on which the scalar
field is rolling and compare the cosmological trajectories with
current—or future—data to derive limits on λ. We shall discuss
the precise methodology in the next section, but it is worth
emphasizing now the deep limitation of our approach. We will
consider different classes of quintessence models that are the
main paths discussed and conservatively assume that the bound
to keep for the analysis is the less stringent one. It is, however,
not possible to exclude that a future model might relax our
limits. To minimize this risk, we investigate very different
potentials corresponding to extremely different philosophies.
The second Friedmann equation, obtained by combining the

first one with the trace of Einstein’s equations reads, without a

5 One should remain careful to avoid a possible loophole in the reasoning. If
the conjecture is modified each time a model correctly describing our world
contradicts it, there is no way it can be used to falsify the framework in which
the conjecture is established. It is therefore mandatory to strengthen, in the near
future, the theoretical ground on which the de Sitter conjecture is derived.
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cosmological constant and for a flat space:

å r= - +
̈ ( ) ( )a

a
p

1

6
3 , 4

i
i i

where a is the scale factor and ρi and pi are, respectively, the
energy density and pressure for the fluid of type i. In a universe
filled with matter (pm=0), radiation (pR/ρR= 1/3), and a scalar
field f (with energy density ρf and pressure pf), this means

r r r= - + + +f f
̈ ( ) ( )a

a
p

1

6
2 3 . 5m R

A dark energy quintessence model must therefore ensure that
the scalar field dominates over the other components and
exhibits a negative enough pressure to achieve >̈a 0. In
Equation (5), the field pressure f= -f

p V1

2

2 is the only term
that can be negative. In practice, this is realized by the
domination of the potential energy over the kinetic energy of
the field, hence the usual reference to flat enough potentials.
The tricky part lies in the fact that this domination of the
negative pressure of the scalar field over all other components
has to happen very late in cosmological history. And, if
possible, for a wide range of initial conditions. This set of
constraints has basically led to three classes of relevant
potentials that we have used to study the de Sitter conjecture
in this work. For all of them, we define the EOS parameter
w≡ pf/ρf. Intuitively speaking, in freezing models, the motion
of the field gradually slows down because the potential
becomes flat at low redshift. In the thawing model, the field
was initially frozen due to the Hubble friction (as during
inflation), and it started evolving when the Hubble rate became
small enough. Thawing models have a value of w which began
near –1 and increased with time, whereas freezing models have
a value of w which decreased, usually (but not necessarily)
toward –1 (Scherrer & Sen 2008; Chongchitnan &
Efstathiou 2007; Duary & Banerjee 2019). In a way, freezing
models more obviously answer the question of producing the
required behavior of the universe but thawing models are easier
to build and, in this sense, more natural.

Using the Friedmann and Klein–Gordon (K-G) equations,
one can write first-order differential equations for the
parameters w, Ωf= ρf/(3H

2), and λ, with respect to the
number of e-folds N:

l= - + - + Wf( )[ ( ) ( ) ] ( )w

N
w w w1 3 1 3 1 , 6

W
= - W - Wf

f f( ) ( )
N

w3 1 , 7

l
l= - + W G -f( ) ( ) ( )

N
w3 1 1 , 82

where G º  ¢( )VV V 2. Rewriting the equations of motion
under the form of Equations (6)–(8) is very useful as we are
ultimately interested in constraining |λ| using constraints on

º - =∣w dw dNa N 0 and w0≡w|N=0 (with a0= 1). Further-
more, as observations show that Ωf,0∼ 0.7 (Aghanim et al.
2020), where the subscript 0 refers to contemporary values, we
consider that physical trajectories have to fulfill Ωf,past= 1 and
Ωf,0∼ 0.7, which is easily implementable with
Equations (6)–(8). In addition, these differential equations

describe directly the parameters in which we are interested, as
opposed to the Friedmann and K-G equations, thus improving
the intuitive interpretations.

3.2. Tracking Freezing Models

A very effective class of potentials fulfilling the previous
conditions leading to tracking freezing solutions is the Ratra–
Peebles potentials (Peebles & Ratra 1988; Ratra & Pee-
bles 1988):

f f= a a+ -( ) ( )V M , 94

where M is a characteristic energy scale and α> 0. The
remarkable feature of those potentials lies in the fact that the
scalar field “tracks” the background evolution. This means that
the EOS parameter of the field, w, changes at the transition
between radiation domination and matter domination. The field
adapts itself to the scale factor behavior. The density of the
field can be shown to decrease less rapidly than that of the
surroundings, ensuring the late-time domination.
In addition to being a tracker, this solution is also an

attractor. Impressively, the attractor solution is joined before
present times for more than 100 orders of magnitude in the
initial energy density of the field (Martin 2008). If α is large
enough, it is possible that the energy scale M of the theory
becomes high whereas the energy scale of the acceleration
remains very small, which has far-reaching consequences for
naturalness. This is somehow reminiscent of the so-called see-
saw mechanism in particle physics. General considerations on
tracking solutions are given in Steinhardt et al. (1999), where it
is, in particular, shown that the very existence of a tracker
depends on the behavior of the function Γ(f), which needs to
be greater than one at any time. In the case of the potential
described by Equation (9), Γ= 1+ 1/α, and the tracker
condition is always satisfied.
The dynamics makes the system nearly insensitive to initial

conditions. Whatever the reasonable choices made in the
remote past, at the initial time Ni, trajectories converge to the
tracker solution before N= 0. One aspect of this behavior is
illustrated in Figure 1. In addition, because the parameter λ is
directly related to w and dw dN through Equation (6), the
stability of the EOS parameter under changes in the initial
conditions is reflected in the behavior of λ. It can be shown,
using Equations (6)–(8), that when the EOS parameter w is

Figure 1. Stability of the solution for tracking freezing models. The blue curve
represents the tracker trajectory, while the yellow, green, and orange curves
represent trajectories starting with various initial conditions for w(Ni).
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quasi-constant—that is, in the tracker regime—one has

a
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When adding the requirement that Ωf,0≈ 0.7, the system is
fully determined.

As a side effect, this raises a quite interesting epistemolo-
gical question. In the limit t→∞, this potential leads to
w→−1 and - ¢ V V 0. This will inevitably violate the de
Sitter conjecture at some point in the future. Does it, however,
make sense to use a cosmological behavior that has not yet
taken place to rule out a model? Or, at least, should we use the
expected future dynamics in our sets of constraints? Although
the answer is not obvious and deserves to be debated, we will
remain conservative and resist the temptation to extrapolate
beyond the contemporary epoch. First, because, strictly speak-
ing, the future is not written. With the cosmic fluids considered
so far, the evolution is obviously known but nothing prevents
surprises (other fields, exotic matter, etc.). Second, because the
de Sitter space might be unstable and “decay” before the
conjecture is violated. Third, because it is a kind of “safe”
principle to assume that physics is to describe what does exist
and not what might or will exist.

3.3. Scaling Freezing Models

The so-called scaling freezing models typically rely on
potentials of the form (Ferreira & Joyce 1998)

f = lf-( ) ( )V V e , 110

where V0 and λ are constants. The scaling solution itself
corresponds to W W =f/ constantm , where the Ωk are the
densities normalized to the critical density. It was shown
(Copeland et al. 1998) to be realized at the fixed point

f
l

=
+ ( )

H

w

6

3

2

1
, 12m

l
=

-( ) ( )V

H

w

3

3 1

2
. 13m

2

2

Such a potential also exhibits a tracking-like solution that acts
as an attractor for physical trajectories with different initial
conditions. In this case, the function- ¢V V is constant and can
be seen as a simple parameter. The system is solely described
by Equations (6) and (7). Moreover, the stable tracking solution
has a quasi-constant EOS parameter w≈wi≈−1 and, as Ωf is
initially set to have Ωf,0∼ 0.7, the system is fully determined.

More refined models were constructed (Sahni & Wang 2000;
Albrecht & Skordis 2000), involving two exponential functions

f = +l f l f- -( ) ( )V V e V e , 141 21 2

where Vi and λi are constants. Constraints on the parameters
have been derived (Chiba et al. 2013) for the model to be
consistent with CMB and BAO data. Contrary to the previous
potentials, neither λ nor Γ is independent of f, and
Equations (6)–(8) are ill defined. Fortunately, one can easily
show that λ(f) is bijective, which allows one to consider Γ as a
function of λ without affecting the system. Once again, the
attractor nature of the tracking solution also allows the set of
initial conditions to be properly defined. In this case, the EOS

parameter w is quasi-constant for
l l» » » Wf⟹ ≔ ( )w w N0 3i i i , with Ωf(Ni) being set

so that Ωf,0∼ 0.7.

3.4. Thawing Models

In thawing models, the field is initially frozen with w≈−1
and then begins to evolve. This is typically produced by
potentials like (Frieman et al. 1995)

f f= +( ) ( ( )) ( )V V f1 cos 2 or 150

f f=( ) ( ) ( )V V fcos , 160

where V0 and f are constants. Although the phenomenologies
associated with those potentials are very close, we keep both
expressions as some subtleties might differ. In this case, the
evolution begins at late times but has to remain weak to
account for data. Constraints were derived in Dutta & Scherrer
(2008) and Gupta et al. (2012). The behavior of the thawing
dynamics around the redshift interval 0.6< z< 1 is quite
sensitive to deviations from a pure cosmological constant (Sen
et al. 2010). The potentials we choose here are not the only
possible ones but allow most of the dynamics for this kind of
model to be caught.
To study the behavior of w(N) with the potentials given by

Equations (15) and (16), we use an analytical approximation
from Dutta & Scherrer (2008) and Scherrer & Sen (2008),
which reads

» - + + - ( ) ( ) ( ) ( )( )w a w a a1 1 , 17K
0

3 1 2

where

º
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- W W + + + W W -f f f f
- - - -
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4

3
, 19i

2

º + W -f
- -( ) ( ) ( )F a a1 1 . 20,0

1 3

In addition, one introduces f f= - ( ) ( )c V Vi i i
2 . The approx-

imation is valid when w≈−1 and the scalar field is close to the
top of its potential, which is suitable for the considered case. It
is then easy to show that c2=−Γλ2. In the slow-roll regime, λ
(f) is bijective and can be inverted to get Γ(λ), leading to a
useful relation between c2 and λ for the potentials of
Equations (15) and (16):

l
=

-
+ ( )c

f2

1
, 212

2

2

= ( )c
f

1
, 222

2

respectively.
In the previously considered models, the parameter |λ(N)|

was found to be decreasing (or constant) with N through
Equation (8). Using the contemporary constraints on the
swampland conjecture was therefore the most efficient way to
go. This is not the case for thawing models, where
l >∣ ∣d dN 0 requires the past evolution of λ(N) to be taken
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into account. To obtain Equation (17), the de Sitter solution for
Ωf(N) was used, namely

W =
W

W + - W
f

f

f f
( ) ( )a

a

a 1
. 23

,0
3

,0
3

,0

Approximations given by Equations (17) and (23), together
with the ordinary differential equation (ODE), Equation (8),
give the past evolution of - ¢V V .

4. Results

Links between the swampland ideas and astronomical
observations have already been studied in Agrawal et al.
(2018), Raveri et al. (2019), Akrami et al. (2019), and Arjona
& Nesseris (2021). In this work, however, we do not focus on
existing data or question the validity of the de Sitter conjecture
but, instead, we try to probe its exclusion power from the
viewpoint of future surveys, as initiated in Heisenberg et al.
(2018).

4.1. Experimental Projections

We consider, on the one hand, the Vera Rubin (formerly
called LSST) observatory and the Euclid satellite, which we
shall refer to as Large Optical Surveys (LOSs) and, on the other
hand, the SKA radio-astronomy interferometric project. The
aim is to investigate the limits they shall put on ¢∣ ∣V V and if
the dramatic improvement in sensitivity might establish that we
actually live in the Swampland (under the assumption that the
de Sitter conjecture is correct), therefore suggesting that the
string-inspired ideas behind this concept are incorrect.

Establishing in detail the sensitivity of future surveys to a
given cosmological observable is tricky. In the specific case we
are interested in, it is tempting to use as much information as
possible and, in particular, to take into account the observa-
tional constraints obtained on the EOS parameter as a function
of the redshift, w(z), so as to compare the resulting curve with
the expectations calculated for a given dark energy potential.
This is the strategy followed in Zlatev et al. (1999). This,
however, cannot be straightforwardly extrapolated to future
experiments for which such detailed investigations are not yet
available and, more importantly, this anyway relies on an
assumed parameterization for the evolution of the EOS
parameter. For those reasons, we prefer to, conservatively,
use only the information on w0 and wa, assuming the usual
form w(a)=w0+ (1− a)wa (Chevallier & Polarski 2001),
where a is the scale factor. We have checked that the results
obtained using exclusively w0 and wa, with the exponential
potential, are extremely close to those derived in Zlatev et al.
(1999): the sensitivity remains practically the same.

The main difficulty when focusing on forecasts is to evaluate
correctly the theoretical uncertainties on nonlinear scales,
which become particularly relevant for the next generation of
instruments that will probe the details of the growth of large-
scale structures with extraordinary precision, up to redshifts of
order 3. Billions of galaxies will be precisely located by the
LOSs. The reionization era and the cosmic dawn, up to z= 20,
are even expected to be probed by SKA. The accurate
evaluation of the constraints put on dark energy crucially
depends on the way small scales are taken into account. This is
a highly complex problem that involves general relativistic
corrections to the structure formation mechanisms (Tansella
et al. 2018), the galaxy nonlinear bias (Jennings et al. 2016),

the intrinsic alignment problem (Hilbert et al. 2017), the
feedback of baryons (Schneider & Teyssier 2015), etc. The
usual strategy has been to implement a cutoff scale below
which data cannot be used. This obviously misses quite a lot of
potentially relevant information, and it has been shown that
nonlinear scales could be used in a controlled way (Baldauf
et al. 2016). The key point lies in the correct estimation of the
evolution of theoretical uncertainties at very high
wavenumbers.
Instead of crude assumptions relying on either fully

correlated or totally uncorrelated errors at small scales, a
realistic numerical method to estimate uncertainties on the
nonlinear spectrum was developed in Sprenger et al. (2019),
following the ideas of Audren et al. (2013). A reasonable
improvement of the modeling of nonlinear effects is obtained
by taking into account the increase of numerical resources
expected by the time the real data will be available. To this aim,
a Bayesian Markov Chain Monte Carlo (MCMC) was used
instead of the Fisher matrix formalism, subject to numerical
instabilities. As massive neutrinos play an important role in the
nonlinear growth of structures, in addition to w0 and wa, the
total neutrino mass Mν is also left as a free parameter. It is
marginalized over in the (w0, wa) contour that we use. We
basically consider three cases extracted from Sprenger et al.
(2019): scenario 1 is “Planck+SKA1,” scenario 2 is “Planck
+LOSs+SKA1,” and scenario 3 is “Planck+SKA2.” The
details of the SKA1 and SKA2 programs are given in Sprenger
et al. (2019), Bull (2016), Harrison et al. (2016), and Bonaldi
et al. (2016). Three probes are included: galaxy clustering,
weak lensing (for LOSs and SKA), and HI intensity mapping
(for SKA) at low redshift—probing the reionized universe. We
draw in Figure 2 the comparison between current constraints on
w0 and wa (Scolnic et al. 2018) and what is to be expected in
the future. Throughout this study, we approximate the
constraints by ellipses that match closely the numerical results.
Although the actual path might slightly differ in some cases

(as will be detailed below), the methodology is as follows. To

Figure 2. Comparison of the 95% CL constraints on w0–wa: current results (in
orange) and expected improvements (in blue, green, and yellow).
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evaluate the “exclusion power” of future surveys, we assume
that the actual cosmological behavior will be de Sitter–like and
investigate how this might contradict the relevant swampland
conjecture. For a given potential family, we vary both the initial
conditions (leading to trajectories compatible with the known
features of the universe) and the values of the parameters
entering the model. For each simulation, we evaluate
l = ¢∣ ∣ ∣ ∣V V along the trajectory and keep its most relevant
(that is, smallest) value. Then, to remain conservative, we keep
the highest of those |λ| values within a given confidence level
(CL) ellipse in the w0−wa plane for different forecasts. This
sets the result given in the corresponding table. To summarize
intuitively: for each parameter choice and initial conditions, we
compute (w0, wa) and- ¢V V , and evaluate how observational
constraints on the first can constrain the second, in the most
reliable and conservative way. In practice, the effect of the
initial conditions—provided that the model accounts for the
current observations—can hardly be noticed.

4.2. Model-independent Analysis and Single-exponential
Potential

From the differential Equation (6) evaluated at N= 0, we can
directly relate w0, wa, and λ0 := λ(0) as measured today. We
draw in Figure 3 the isolines l = constant against the future
constraints from Plank, Euclid, and SKA, with Ωf,0≈ 0.7. As a
first observation, one can see that for higher values of λ, the
isoline is getting closer to the line w0=−1 with Î -wa . In
the limit λ→∞, one recovers the vertical axis. This seemingly
constitutes a drawback for constraining ¢∣ ∣V V today using a
w0–wa analysis. However, this conclusion fails to capture the
dynamics of the system. In practice, models leading to w0≈−1
and wa< 0 suffer from a major conceptual problem. Because
the EOS parameter is bounded from below, w(N)>−1 (we do
not consider here exotic phantom models known to exhibit an
unstable vacuum filled with negative mass particles), such a
configuration is highly unstable, which raises strong

coincidence and fine-tuning problems. It is, however, not
possible to define a model-independent constraint on |λ| from
this straightforward analysis, and one needs to study different
potentials to test the swampland conjecture. This is the aim of
the next sections. Nonetheless, it is possible to understand from
Figure 3 that producing a theoretical prediction for w0 and wa

for a specific model leads to a direct constraint on the parameter
λ0.
To better understand the method used to test the de Sitter

conjecture, we start with the simplest model based on a single-
exponential potential given by Equation (11). As mentioned
earlier, the initial conditions are set to follow the tracker
solution and to get Ωf,0≈ 0.7. Numerical simulations with the
parameter λ ranging from 0 to 0.5 are displayed in Figure 4.
Simulations for higher values of λ were also carried out to
ensure that the results follow the same trend. It is not useful to
scan the parameter space for arbitraryl Î + , as for λ 2, one
cannot reach Ωf,0≈ 0.7. It can indeed be shown (Tsuji-
kawa 2013) that for λ2> 3, the fixed point is w= 0, and for
λ 2, it is reached before Ωf approaches 0.7. Interestingly, the
numerical results for the current values of w and−dw/da, for
different values for λ, are aligned on a straight line (at least up
to the point for λ= 2). The intersections between this line and
the ellipses of Figure 4 representing the expected 67% and 95%
CL of three different future experiments lead to constraints on
l = ¢∣ ∣ ∣ ∣V V . The results are summarized in Table 1.

Figure 3. Relation between w0, wa and l = ¢∣ ∣ ∣ ( )∣ ( )V V0 00 . The ellipses
represent the expected 67% and 95% CL constraints on w–wa from various
future experiments, while the dashed lines are the isolines l = constant as
calculated with Equation (8) evaluated at N = 0.

Figure 4. Comparison between the expected 67% and 95% CL constraints on
w0–wa for various future experiments (blue, green, and yellow ellipses)
together with numerical results for |λ| for an exponential potential, as given by
Equation (11) (orange dots). The parameter λ varies from 0 to 0.5.

Table 1
Expected Constraints on ¢∣ ∣V V for an Exponential Potential, as Given by

Equation (11)

Pl. + SKA1 Pl. + LOSs + SKA1 Pl. + SKA2

67% CL |λ|< 0.28 |λ| < 0.17 |λ| < 0.16
95% CL |λ| < 0.36 |λ| < 0.22 |λ| < 0.20

Note. Those constraints are also valid for generic scaling freezing models
described by Equation (14).
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Remarkably, the higher upper bound obtained (|λ|< 0.16 at
67% CL when using all the cosmological information that will
be available) is significantly better than the limit currently
available (|λ|< 0.6) and much smaller than the lower bound
suggested by the de Sitter conjecture (|λ|> 0.8).

Nontrivially, as we shall notice for each model, and as we
have just mentioned, numerical results are “aligned.” One can
then calculate the constraint on |λ0| (which is, for the potentials
considered so far, the most stringent case) by evaluating the
intersection between the line and the ellipses. This is actually
not obvious from the shape of the isolines l = constant0 in
Figure 3. One could indeed have expected that if the line of
numerical results was exhibiting a strong positive slope, the
intersection between the ellipses and the line would not be the
relevant constraint on λ0 but would instead be weaker.
However, one can show that this is not the case, as the slope
would have to be greater than 6, which is actually the slope of
the isoline λ0= 0. Furthermore, one can notice that the lower
the slope of the line of numerical results, the weaker the
constraint on ¢∣ ∣V V .

4.3. Tracking Freezing Models

From the initial conditions given by Equation (10), for the
tracker solution, together with the requirements Ωf,0≈ 0.7,
numerical solutions can be computed for different values of the
free parameter α. The results are displayed in Figure 5.
Numerical results for the λ parameter correspond to αä [0.001,
0.08]. Because the EOS parameter w(N)≈−2/(2+ α) is
nearly constant and began to unfreeze quite recently, numerical
simulations for α> 0.08 are unnecessary as they fall outside
the 95% CL constraint on (w0, wa). One can observe this
behavior in Figure 1, where α= 1 was chosen. As previously,
the numerical solutions—that is, the points in the (w0, wa) plane
associated with different λ—are aligned. The upper bounds on

|λ| are summarized in Table 2. In this case also, they are very
relevant for the swampland program.

4.4. Scaling Freezing Models

In the case of the scaling freezing model, the potential given
by Equation (14) has three independent parameters, λ1, λ2, and
V1/V2, making the exhaustive scan a priori subtler. However,
the value of the ratio between V1 and V2 has nearly no effect on
the behavior of the system, hence one can safely set V1= V2

and λ1> λ2 without loss of generality. It was shown in
Barreiro et al. (2000) and Gupta et al. (2012) that in order to
have an asymptotic freezing solution with a transition from w
(N→−∞)≈ 0 to l ¥ » - +( )w N 1 32

2 , it is necessary
that l > 31

2 and l < 32
2 . The problem therefore basically

consists of exploring the cosmological dynamics, and the
subsequent minimum of ¢∣ ∣V V , along each track and for
values of (λ1, λ2) satisfying the previous constraints. The
results for the parameters (10, [0, 0.25]), (13, [0, 0.3]), (16, [0,
0.3]), (22, [0, 0.35]), and (50, [0, 0.4]) are displayed in
Figure 6. Models with λ1< 9.4 are disfavored from nucleo-
synthesis analysis (Bean et al. 2001), and simulations for

l< <0.25, 0.3, 0.35, 0.4 32 (respectively, depending on
the value of λ1) are omitted for clarity as they fall outside the
w0–wa constraints.
As expected, the higher the parameter λ1, the closer the

results to those obtained with the single-exponential potential

Figure 5. Comparison between the expected 67% and 95% CL constraints on
w0–wa for various future experiments (blue, green, and yellow ellipses)
together with numerical results for |λ| for tracking freezing models with
potentials given by Equation (9). The parameter α

( aG =  ¢ = +( )VV V 1 12 ) ranges from 0.001 to 0.08, and the labels of
the points are the values of |λ|.

Table 2
Expected Constraints on ¢∣ ∣V V for Tracking Freezing Models, Based on the

Potential Given by Equation (9)

Pl. + SKA1 Pl. + LOSs + SKA1 Pl. + SKA2

67% CL |λ| < 0.16 |λ| < 0.11 |λ| < 0.11
95% CL |λ| < 0.21 |λ| < 0.14 |λ| < 0.15

Figure 6. Comparison between the expected 67% and 95% CL constraints on
w0–wa from various future experiments (blue, green, and yellow ellipses)
together with numerical results for |λ| for scaling freezing models with
potentials given by Equation (14). The parameters (λ1, λ2) are, respectively,
(10, [0, 0.25]), (13, [0, 0.3]), (20, [0, 0.35]), and (50, [0, 0.4]), and the labels of
the points are the values of |λ|.
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represented by the dashed line in Figure 6. Interestingly, for all
finite values of λ1, the generic trend is such that the constraints
obtained are more stringent than for the single exponential—
that is, for a constant ¢V —case. To remain conservative, it is
therefore possible to keep the results obtained for a single
exponential, and given in Table 1, as generic constraints for
scaling freezing models described by the potential given by
Equation (14).

4.5. Thawing Models

Unlike previous models, for which numerical solutions on w
(N) can be fully trusted, thawing models described by
potentials given by Equations (15) and (16) are better
understood using the analytical approximation of
Equation (17). In this approximation, both potentials are
equivalent up to the parameter ci

2 and differ by a term l- 2i
2 ,

with l f f= - ¢( ) ( )V Vi i i . Starting with the potential given by
Equation (16), where = =c c f1i

2 2 2 is constant, one can find
an explicit relation between w0 and wa for different values of f
using the approximation given by Equation (17). The result is
shown in Figure 7.

The dashed lines represent the allowed values of w0 and wa

for different values of the parameter f. In particular, this means
that by varying the initial conditions of the system, any point
on the line can be reached. As discussed earlier, the slope of
these lines defines the constraint on the contemporary value of
l = - ¢V V : the steeper the slope, the weaker the constraint.
This is problematic as Figure 7 shows that choosing small
enough values of f will lead to a very weak constraint on the de
Sitter conjecture. However, in this case, the function |λ| is
increasing with time. This suggests focusing on the remote past
so as to set relevant constraints. It might appear meaningless as
the quintessence scalar field was then subdominant and the
behavior of the universe was not yet de Sitter–like. If correct,
the de Sitter conjecture must however hold at all points in the
field space, as long as the effective field theory description is

valid. Interesting constraints on the swampland conjecture can
therefore be obtained using a contemporary observation of (w0,
wa) but taking into account the past behavior of the function λ.
Let us call λ0( f ) the current value of - ¢V V for a given f

parameter. A bound can be derived from the intersection
between the dashed lines and the ellipses in Figure 7 together
with Equation (6). Using the approximations of Equations (17)
and (23), as well as the ODE given by Equation (8), one can
calculate the behavior of λ with respect to the time N
(expressed as e-folds) for any parameter f. In Figure 8, as an
example, λ(N) is plotted with the approximation mentioned
above, for f= 1, considering the constraint on λ0(1) from the
95% CL based Planck+SKA1 observations. The numerical
solution is superimposed.
An interesting feature that can be observed on this figure is

the stability of - ¢V V in the past. The parameter λ(N) is
indeed quasi-constant for N<−2 and one can obtain the
constraint of the de Sitter parameter for f= 2, that is,
¢ <∣ ∣V V 0.34. It is also possible to check in the figure that

the approximation of λ(N) is strongly reliable.
This shows the path to the derivation of a constraint that is

actually independent of the parameter f. We first find the
current constraint on - ¢V V , i.e. λ0( f ), we then find the
behavior of λ(N) and fix N=−10 to obtain the constraint on
the swampland conjecture. We have checked that considering
earlier times does not improve the results. The procedure is
repeated for different values of f and for the different
experimental scenarios. The results are shown in Figure 9
where the limit on |λ(N=−10)| is given with respect to f. The
numerical values are given in Table 3. In this case also, they are
very stringent and meaningful for the swampland program.

4.6. Summary

This establishes that whatever the (reasonable) potential
considered, the future generation of experiments should be able
—if the actual behavior of the universe is as driven by a
cosmological constant—to put string theory under pressure. At
least, the sensitivity is such that the original de Sitter conjecture
will be tested in the interesting regime where the measured
value is in strong conflict with the theoretical limit. We have
shown that for all the classes of models considered, the SKA2
observations are expected to lead to ¢ <∣ ∣V V 0.16 at 67% CL

Figure 7. Comparison between the expected 67% and 95% CL constraints on
w0–wa from various future experiments (blue, green, and yellow ellipses) and
the w0–wa relation for the thawing model described by the potential given in
Equation (16) for different values of the parameter f.

Figure 8. Comparison between the analytical approximation and the numerical
solution of λ(N) for the thawing model given by Equation (16) with f = 2. The
value λ(0) is found using the expected 95% CL constraint on w0–wa from the
Planck+SKA1 experiment.
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and to ¢ <∣ ∣V V 0.20 at 95% CL, whereas the de Sitter
conjecture requires ¢∣ ∣ V V 1.

We have also checked that varying the value of Ωf,0 within
the observational uncertainties does not change the constraints
at the level of accuracy of this work. To summarize, all the
considered scenarios for future experiments will contradict the
original de Sitter conjecture at a quite high confidence level
(unless, of course, the actual dynamics of the universe is
revealed not to be driven by a true cosmological constant).

If we consider the refined de Sitter conjecture, results are
unchanged for tracking freezing and scaling freezing models.
They always fail to satisfy the new condition. However, in the
case of thawing models, the system is satisfied and no
constraint can be put if both conditions are taken into account:
when one condition is violated, the other is satisfied. This is an
important issue that should be addressed in the future.
However, particle physics arguments are expected to allow,
in the future, to constrain the f parameter of the potential,
therefore breaking the degeneracy (Marsh 2016).

5. Prospects

Although this work is devoted to the actual estimate of the
Vera Rubin, Euclid, and SKA capabilities to improve
constraints on the de Sitter conjecture, it is also worth trying
to go beyond those experiments. We therefore provide
estimates of the upper bound on |λ| that could be derived
from hypothetical even larger observatories to be possibly
constructed in the long run. This also allows one to get an
accurate limit on |λ| for contours in the w−wa plane that might
differ from the simulations used in this study. We, however,
still assume an elliptic approximation for the confidence level
isolines and denote, respectively, swa

and sw0 the uncertainties

on the semimajor and semiminor axes, which are considered
aligned with the w0–wa axes, similarly to the Planck+SKA2
constraint. Obviously, other hypotheses could be made but this
allows the main features to be captured.
In Figure 10, we display the 67% CL limit on |λ|, keeping

the shape of the ellipse, i.e., the ratio between swa and sw0,
unchanged. For comparison, this ratio ranges between 7.2 and
9.3 for the various expected constraints from the Planck
+SKA1, Planck+LOSs+SKA1, and Planck+SKA2 simula-
tions. In Figure 11, we display the limit as a function of sw0 for
different values of swa

. The other way round, in Figure 12, we

Figure 9. Constraints from various future experiments on |λ(N = − 10)| as a
function of f for thawing models given by Equation (16).

Table 3
Expected Constraints on ¢∣ ∣V V from Different Sets of Experiments for

Thawing Models with the Potential Given by Equation (16)

Pl. + SKA1 Pl. + LOSs + SKA1 Pl. + SKA2

67% CL |λ| < 0.27 |λ| < 0.17 |λ| < 0.16
95% CL |λ| < 0.35 |λ| < 0.22 |λ| < 0.20

Note.
Unlike previous models the limit is obtained in the past. To remain
conservative, the limit f→ ∞ was considered, which corresponds to the less
stringent case.

Figure 10. Evolution of the constraint on the de Sitter conjecture with respect
to the standard deviation on w0. The standard deviation on wa is set such that
the shape of the ellipse is unchanged.

Figure 11. Evolution of the constraint on the de Sitter conjecture with respect
to the standard deviation on w0 for different values of the standard deviation
on wa.

Figure 12. Evolution of the constraint on the de Sitter conjecture with respect
to the standard deviation on wa for different values of the standard deviation
on w0.
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plot the limit as a function of swa for different values of sw0. We
always consider the less constraining potential.

This shows that there is still room for improving the limits
beyond the next generation of experiments. This also under-
lines that ameliorating the sensitivity on w0 or wa changes the
situation differently. Although reducing the error on w0 has a
monotonic and quite regular effect on the improvement on the
limit, the swa behavior exhibits a “plateau” as soon
as s > 0.01wa .

6. Remarks and Conclusion

6.1. Is the de Sitter Conjecture Reliable?

The de Sitter conjecture is just a conjecture. How reliable is
it (see the introduction of Raveri et al. 2019)? It is known that
the landscape of string theory does contain Minkowski
solutions. The richness of the structure is nearly infinite. Each
geometry can support more than 10105

flux vacua (Taylor &
Wang 2015) and the number of compactification geometries is
higher than 101000 (Taylor & Wang 2018). However,
constructing metastable de Sitter solutions from this huge
landscape still appears to be highly problematic, and this is the
main underlying motivation for the conjecture. It is indeed
known that the de Sitter space is excluded as a solution of
fundamental supergravity theories (Maldacena & Nunez 2001).
It is also neither a solution of type I/heterotic supergravity
(Green et al. 2012; Gautason et al. 2012), nor of heterotic
world-sheet conformal field theory (Kutasov et al. 2015).
Basically, it seems quite well established that de Sitter solutions
cannot be found in regions of parametric control in string
theory (Dine & Seiberg 1985a, 1985b). Interesting attempts to
evade this conclusion do exist in type IIB string theory
(Giddings et al. 2002; Andriot et al. 2020b), together as in type
IIA and M-theory. None of them is, however, conclusive either
because of the lack of control on the quantum corrections to the
effective spacetime action (they ignore the fact that the
background is non-static; Sethi 2018) or because of the
absence of fully explicit constructions.

Although anti–de Sitter vacua are well understood in string
theory, it is a fact that de Sitter space is surprisingly hard to
control. Many no-go theorems (see, e.g., Dass 2002; Russo &
Townsend 2019; Shukla 2020; Basile & Lanza 2020) were
derived and quite a lot of concrete examples support the
possibility that string theory just cannot admit any de Sitter
vacuum. Still, counterarguments are being built around the
Kachru–Kallosh–Linde–Trivedi (KKLT) proposal (Kachru
et al. 2003; Kallosh et al. 2019) using a Kähler moduli
stabilization or with large volume scenarios (see Cicoli et al.
2008 and references therein). The full picture is still unclear.

The de Sitter swampland program is an active and highly
controversial field of research (Andriot 2019). It might very
well be that there is enough complexity in the space of string
theory vacua and sufficient richness in the unexplored sectors
of the model for a landscape of de Sitter solutions to indeed
exist. The extraordinary difficulty in exhibiting any convincing
de Sitter solution, in spite of the huge number of explored
solutions, however, suggests that the de Sitter space lies in the
swampland, and that the conjecture holds. Recently, interesting
links with trans-Planckian censorship were even built (Bedroya
& Vafa 2020). This is not a theorem but, in our opinion, a
reasonable guess. The conjecture constitutes, at least, an
outstanding way to possibly put string theory under pressure,

something that has proven to be extremely difficult in the last
decades.

6.2. Other Approaches to Quantum Gravity

In most studies devoted to the swampland (see, e.g.,
Palti 2019), including this article, the words “string theory”
and “quantum gravity” are used as if they were synonymous or,
at least, as if quantum gravity was to be understood as a sector
of string theory only. This is obviously exaggerated. There are
many other roads toward quantum gravity (see Oriti 2009 for
an overview): loop quantum gravity (see, e.g., Rovelli 2011),
noncommutative geometry (see, e.g., Chamseddine & Con-
nes 1997), group field theory (see, e.g., Baratin & Oriti 2012),
causal sets (see, e.g., Bombelli et al. 1987; Sorkin 2009),
asymptotic safety (see, e.g., Weinberg 2009; Gubitosi et al.
2019), causal dynamical triangulation (see, e.g., Loll &
Quant 2020), etc. Those models are unquestionably spec-
ulative—the semiclassical limit is often not known or not clear
—but all have preliminary predictions for cosmology (Bar-
rau 2017). Most of them have no problem with de Sitter spaces.
The existence of a small and positive cosmological constant
was even predicted, before it was observed, by Sorkin within
the causal sets framework (see references in Dowker &
Zalel 2017). It could also be that gravity does not need to be
quantized (Tilloy 2019).
It should therefore be made clear that the de Sitter conjecture

is not about any theory of quantum gravity but only about
string theory. This is why we believe that it makes sense, as we
did here, to evaluate whether this can be useful to potentially
falsify string theory in the future. It is however much more
hazardous, as sometimes advertised, to use swampland
conjectures to rule out some low-energy models. The fact that
they lie in the swampland of string theory does not mean they
are intrinsically wrong6: string theory is far from being
established. Although intensively debated, the claimed none-
mpirical corroboration of string theory is not sufficient to make
it a universal paradigm (Dawid 2017; Chall 2018; Cab-
rera 2018). It seems to us much more fruitful to use the
swampland ideas as a first—and very welcome—step toward a
possible proof of the effective falsifiability of string theory.
This is, however, not even obvious: from the point of view of
string theory, it is not clear that one should expect dark energy
to be described by a scalar field.

6.3. Conclusion and Future Developments

In this work, we have considered three classes of potentials
as benchmarks for quintessence models. We have shown that
the SKA network of radio antennas, the Vera Rubin ground-
based telescope, and the Euclid satellite could be able to derive
a limit on the first de Sitter conjecture, ¢ <∣ ∣V V 0.16, that
contradicts the most reliable theoretical estimates (Andriot et al.
2020a). This shows that if the swampland conjecture holds,
string theory might be on the road of “falsification” in the next
decade. This conclusion would require the inclusion of
multifield scenarios (Achúcarro & Palma 2019; Bravo et al.
2020; Lin & Solomon 2021).
Our main result is nearly model independent in the sense that

the upper bound mentioned above is the less stringent one

6 Some swampland arguments are very generic and based on solid quantum
field theory conclusions about the UV completion. They have to be
distinguished from string-inspired guesses.
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among the three classes of potential considered here. Scaling
tracking, scaling freezing, and thawing models are the main
ideas currently on the table for quintessence. We have therefore
scanned the panel of intensively discussed models. It is
however not impossible that other potentials, in agreement with
the cosmological dynamics but less constrained from the
viewpoint of the de Sitter conjecture, might be found. Our
result is therefore not a theorem but a reasonable conclusion
based on consistent potentials. It should however be mentioned
that, in principle, the actual potential could be reconstructed by
a combined cosmological analysis (Boisseau et al. 2000). This
opens the possibility of deriving a precise measurement of
- ¢V V and V″/V.

We have also investigated possible long run constraints as a
function of the shape and size of the ellipse of uncertainty,
beyond the main surveys considered in most of this work.

Showing that the real world does not fulfill the de Sitter
conjecture would unquestionably not be enough to discard
string theory. But, among other indications, it might play a role
in a possible paradigm shift. Low-scale supersymmetry as a
fully natural solution to the hierarchy problem was not
abandoned by part of the community just after one unsuccess-
ful run at the Large Hadron Collider, but after many arguments,
the edifice was weakened. Every sign counts.

Obviously, it could also be that string theory is correct, that
the de Sitter conjecture holds and that our universe does not
conflict with it but follows a not purely de Sitter dynamics. We
leave for a future study the investigation of the detection
capability (i.e., a measurement l¢ ~∣ ∣V V D with λD not too
small) of future surveys at the level required by the conjecture.
Is it still possible to measure a “nearly but not exactly” de Sitter
behavior marginally compatible with the Swampland criteria?
The interval of possible values λD, not conflicting with any
known data, is quite narrow. It would also be important to take
into account the Hubble constant tension in this framework
(Banerjee et al. 2020).

Finally, on the purely theoretical side, not only should the
very validity of the conjecture be better understood but the
actual value λc would have to be better evaluated. The latest
estimates are encouraging but one might also argue that our
limit of 0.16 is not that far from the expected value of order 1.
Precise numbers from the string side are now needed beyond
orders of magnitude.

We thank David Andriot for enlightening comments on the
de Sitter conjecture. We also thank the anonymous referee, who
helped a lot in improving the article.

Appendix
Intuitive remarks

In this section, we summarize some qualitative arguments, to
guide the unfamiliar reader, on the reasons why de Sitter spaces
are so problematic in string theory. There are no straightfor-
ward and fully intuitive explanations. Rather, there are many
“indications” that build up together. The following list
(borrowing from Akrami et al. 2019; Raveri et al. 2019;
Heisenberg et al. 2021) does not pretend to be exhaustive, and
the arguments do not try to be rigorous.

1. As we have explained before, supersymmetry and de
Sitter spaces are not easy to reconcile. Exact

supersymmetry is incompatible with the de Sitter
symmetries. Finding solutions with spontaneously broken
supersymmetry is the natural way to go. In principle, it is
possible to start with a theory that explicitly breaks
supersymmetry but then one generically encounters
stability and divergence issues.

2. In the string framework, the AdS/CFT correspondence
plays a central role in paths toward quantum gravity as it
states that a strongly coupled n-dimensional gauge theory
is equivalent to a gravitational theory in an (n+ 1)-
dimensional anti–de Sitter spacetime. It, however, cannot
be (at least not in a known and controlled way) extended
to de Sitter spacetimes.

3. Stability is not ensured. If a de Sitter solution is defined
as a positive extremum in the field space, it is not clear
that it can correspond to a minimum for all the fields.
This question has been addressed statistically from the
viewpoint of “random supergravity potentials” and
“random matrices” and is not yet fully clear.

4. Some generic arguments suggest that scalar potentials
tend to 0 when the string coupling constant (or the
volume of internal dimensions) goes to infinity. But if
one constructs a de Sitter vacuum—that is, with a positive
potential—while the potential vanishes at infinity, it can
only be metastable. The relevant question becomes that of
the lifetime of this vacuum, but it is expected that the
nonperturbative quantum effect will destabilize it.

5. It might be than one of the most “physical” reasons
behind the unsuitability of de Sitter spaces in string
theory is rooted in the trans-Planckian censorship
conjecture (previously mentioned in the text). Some
explicit calculations show that it seems strongly related
with the de Sitter conjecture.

6. Finally, whatever the detailed framework within string/
M-theory, it becomes clear that the question of
constructing de Sitter solutions is extremely constrained.
Relying on either the KKLT scenario or on more classical
approaches, constraints are accumulating, making con-
structions incredibly difficult—if not totally impossible.
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78 CHAPTER 2. TESTING EXOTIC MODELS OF DARK ENERGY

2.3 Extension to Horndeski theories

At first, it is interesting to restrict ourselves to theories with minimal coupling between
the scalar and tensor sectors such as in Quintessence or more generally in Brans-Dicke
theories [91]. But one should eventually consider all possible ways to include a scalar field
in order to be exhaustive. In the context of the EFT of dark energy, non-minimal couplings
allow for non-linear terms in the perturbations of the time-time component of the metric [92].
To be more precise, in the EFT approach the time-translation symmetry is broken and
hence it is possible to add more terms in the Einstein-Hilbert action that are invariant
under the remaining spatial diffeomorphism, such as g00. Since we are interested only in
small contributions, we proceed with a perturbative expansion in δg00 around the FLRW
background. At zeroth and linear order, one can recover the action of quintessence and
Brans-Dicke models, while at quadratic order one finds non-minimal coupling terms when
reconstructing scalar-tensor theories from the EFT of dark energy [92].

Therefore, if we are interested in understanding the whole range of possible time sym-
metry breaking, we need to study the most general scalar-tensor theory that is invariant
under diffeomorphism and Lorentz transformation. It might feel somewhat confusing that
we can describe a gravity theory with broken time symmetry using a diffeomorphism in-
variant scalar-tensor theory. But the invariance under general coordinate transformations
can be restored using the Stueckelberg trick [84, 93] at the cost of an extra scalar degree
of freedom. Both approaches can be seen as complementary. Beyond diffeomorphism and
Lorentz invariance, we limit ourselves to theories with second order equations of motion in
order to avoid Ostrogradsky instabilities [94]. The resulting general scalar-tensor theory is
called Horndeski theory and it is described by the action [95]

SH
[
φ, g
]

=
M2

p

2

∫
d4x
√−g

{
G2(φ,X)−G3(φ,X)�φ

+G4(φ,X)R +G4X(φ,X)[(�φ)2 − (∇µ∇νφ)2]

+G5(φ,X)Gµν∇µ∇νφ− G5X(φ,X)

6
[(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3]

}

+ Sm[g] , (2.11)

where Gi(φ,X), with i = 2, ..., 5 are arbitrary functions of the scalar field φ and the kinetic
term X = −∂µφ∂µφ/2 and the notation GiX stands for the derivative with respect to X.

Such a flexible theory allows for a wide range of possible behaviour for dark energy,
but a large subset of Horndeski theories has already been tightly restricted not to say
excluded by experiments. The recent detection of the binary neutron star merger through
gravitational waves and electromagnetic signal set a very solid constraint on the speed of
gravitational waves, 1 − cg/c < 10−15 [96, 97]. This measurement has the consequence
that G4X = G5 = 0, hence strongly reducing the set of possible scalar-tensor theories [98].
Moreover, the numerous pulsars and solar system experiments restrict a lot the dynamics of
the scalar field [99, 100]. This means that the remaining modified gravity theories that are
still studied seriously exhibit what is called a screening mechanism. It is a non-linear feature
of a theory that hides the scalar field at short range, strongly reducing its observability in
astrophysical experiments. There are different types of screening mechanisms that have been
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discovered so far, large field value screening such as the chameleon mechanism and kinetic
screening such as the Vainshtein mechanism. In the following subsection, we introduce these
mechanisms using the following resources [7, 101–105].

2.3.1 Large field value screening

A screening mechanism can already emerge from a scalar-tensor theory of the Brans-Dicke
type, with a suitable scalar potential V (φ) and coupling A(φ) to the matter field ψm. The
general action of the Brans-Dicke theory can be written under the form

SBD
[
φ, g, ψm

]
=

∫
d4x
√−g

(
M2

p

2
R +X − V (φ)

)
+ Sm

[
A2(φ)gµν , ψm

]
. (2.12)

A scalar-tensor theory under this form is said to be in the Einstein frame, which means
that the gravitational and scalar sectors are only minimal coupled, but the scalar field is
directly coupled to the matter field in the matter action Sm through the Jordan frame metric
g̃µν = A2(φ)gµν . Note that the matter field is coupled minimally to the Jordan frame metric.
It is possible to decouple the scalar field from the matter field using the change of variables
gµν → g̃µν and φ→ ϕ = A−2(φ), at the cost of introducing non-minimal couplings between
the new scalar and tensor fields. The resulting scalar-tensor theory is said to be in the
Jordan frame.

In the limit of non-relativistic matter, i.e. T ≈ −ρ, the scalar field equation becomes

�φ = Veff,φ(φ) , Veff(φ) = V (φ) + ρ lnA(φ) , (2.13)

with � = ∂µ∂µ, taking the Newtonian limit for simplicity, and the subscript , φ representing
the derivative with respect to the scalar field. The dependence of the effective potential Veff
on the matter density makes it possible to hide the scalar field in high density regions by
choosing suitable potential and coupling to matter. In the chameleon mechanism, this is
achieved by making the effective mass of the scalar field large in high density regions. To
see this, let’s take a simple example where we have

V (φ) =
Λn+4

φn
and A(φ) = eξφ/Mp , (2.14)

where n > 0 is an integer, leading to the effective potential

Veff(φ) =
Mn+4

φn
+ ξφρ . (2.15)

We call the minimum of this effective potential φmin(ρ) and it obviously depends on the
density. Let’s now assume that we have a large and massive object of radius R and mass
M with density ρin bathed in a low density region ρout, such that ρin � ρout. The goal
is then to calculate the contribution δφ of the massive object on the outside scalar field,
which takes the form φ(r) = φ∞ + δφ(r), φ∞ being the scalar field far from the object. It
is further fair to assume that far away, the scalar field corresponds to the minimum of the
effective potential φ∞ = φmin(ρout), while deep within the massive object, the scalar field
is φ0 = φmin(ρin). The potential and coupling to matter of the chameleon theory is chosen
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such that the effective mass meff(φ) = Veff,φφ(φ) of the scalar field inside the object is much
greater than the effective mass of the outside scalar field, min � mout. We are interested
in looking at the strength of the contribution of different volume element dV (r) = 4πr2dr.
The contribution from the core of the object δφc behave as a massive scalar field of mass min

and therefore its effect is exponentially suppressed with the distance to the source, namely

δφc(r̃) ∼ e−minr̃ , (2.16)

r̃ being the distance between the core and the outside region. This means that inner regions
of the massive object do not significantly contribute to δφ and only a thin layer of thickness
∆R near the surface does. The contribution from the thin shell also behaves as a massive
scalar field, but with mass mout and the exterior solution to the scalar field is then well
approximated by

φ(r) ≈ − ξ

4πMp

3∆R

R

M

r −Re
−mout(r−R) + φ∞ . (2.17)

We see than since only a thin shell contributes to the outside scalar field, ∆R/R � 1, the
force associated to its presence, Fφ ∼ φ′(r), can be neglected.

2.3.2 Cubic Galileon theory and Vainshtein mechanism

In the realm of Horndeski theories, the cubic Galileon theory stands out by its attractiveness
in the modified gravity community. This popularity emerged for several reasons. First, it
is the simplest scalar field theory that is invariant under a Galilean transformation, which
makes the theory stable under radiative quantum correction [7]. When promoted to a scalar-
tensor theory, the cubic Galileon theory is the decoupling limit of DGP models [106] and
massive gravity [79]. In the context of massive gravity, the decoupling limit corresponds to
taking a small graviton mass mg → 0 compared to the Planck Mp →∞, while keeping the
energy scale Λ = (Mpm

2)1/3 constant. Having a small graviton mass relative to the Planck
mass is justified experimentally, since one requires mg ∼ 10−33 eV to explain the observed
accelerated expansion and so far experimental constraints lie at mg < 10−27 eV [107].

An other important feature of the cubic Galileon theory is its ability to screen the scalar
field at short scales through the Vainshtein mechanism [108] and make it negligible in
astrophysical experiments. To see this, let us start with the Lagrangian of the theory,
namely

L = 6X +
2

Λ3
X�φ+M−1

p φT µµ , (2.18)

with � = ∂µ∂µ. We further derive the equation of motion using the Euler-Lagrange equation

6�φ+
2

Λ3

(
(�φ)2 − (∂µ∂νφ)2

)
= −M−1

p T µµ . (2.19)

Note that we study the scalar sector in flat space-time for simplicity. Let us now assume
spherical symmetry and staticity, such as it is the case in the solar system for example. The
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field equation becomes

∇ ·
(

6∇φ+ r̂
4

Λ3

(∇φ)2

r

)
=

M

Mp

δ(x) , (2.20)

where we set the energy-momentum tensor of a point mass object, T µµ = −Mδ(x). This
equation can be integrated and taking into account that the scalar field only depends on the
radial coordinate, we find

6φ′(r) +
4

Λ3r
φ′2(r) =

M

4Mpπr2
, (2.21)

which can be solved algebraically for φ′(r) leading to

φ′(r) =
3Λ3r

4


−1 +

√
1 +

1

9π

(
rV
r

)3

 , (2.22)

with rV = (M/Mp)
1/3/Λ the Vainshtein radius. In the limit where we are well within the

Vainshtein radius, r � rV , the force due to the scalar field behaves as

Fφ(r) :=
1

Mp

φ′(r) ∼ Λ3rV
4
√
πMp

√
rV
r
, (2.23)

while the gravitational force Fg is well approximated by Newtonian gravity, leading to

Fφ
Fg
∼ 2
√
πMp

(
r

rV

)3/2

. (2.24)

The scalar force is negligible in the limit r � rV . For the case of the decoupling limit
of massive gravity, the Vainshtein radius of a sun-like object is expected to be ∼ 104 pc,
making the planets far within the region where the scalar field can be neglected.

2.4 Testing screened Horndeski models with gravitational waves

The cosmological behaviour of Horndeski theories is well understood, in part thanks to
the EFT approach to dark energy. However, in order to use the numerous astrophysical
tests of General Relativity in the context of Horndeski theories, we need a post-Newtonian
(PN) formalism that includes all possible candidates for dark energy. Until recently, this
has proven to be a difficult task due to the non-linear nature of screening mechanisms and
only theory dependent approaches were developed [109, 110]. New effective approaches to
screening mechanisms emerged in recent years. First using a dual Lagrangian obtained with
a Legendre transformation [111] and later using what is called the scaling method [112],
which describes screening effects in a perturbative way. The latter method was later used
to derive the parameterized post-Newtonian (PPN) parameters for the cubic Galileon and
chameleon theories [113], hence leading the way to a general PN approach of Horndeski
theories with screening mechanisms. Ultimately, one would like to constrain the set of all
possible EFTs of dark energy, that are compatible with current cosmological observations,
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using solar system and pulsar tests of GR. Therefore, we are interested in the development
of a PN formalism for Horndeski theories that are reconstructed from the EFT approach.
A PN formalism for all Horndeski theories is not necessary. Moreover, only reconstructed
Horndeski theories exhibiting screening mechanisms can reasonably satisfy astrophysical
tests. The PN formalism for screened reconstructed Horndeski theories, the most relevant
scalar-tensor theories describing dark energy, was developed by Renevey et al. [114] with
the use of the scaling method.

Heuristically the scaling method can be understood as follow. Let’s assume that the
scalar field equation takes the general form

αsF1

[
φ,X

]
+ αtF2

[
φ,X

]
=

T

M2
p

, (2.25)

where F1,2 depend on the scalar field and its derivatives, s, t ∈ R and α is a coupling
constant that controls the scale at which F1 or F2 is dominant. The scaling parameter
α could represent for example some distance that separate the screened region from the
cosmological scale or an energy density scale above which screening is at play. The scaling
method consists in making a perturbative expansion of the scalar field as

φ(xµ) ≈ φ0

(
1 + αqψ(xµ)

)
, (2.26)

where the exponent q ∈ R is added because we do not know yet how the scaling parameter
is related to the remaining dynamical scalar perturbation ψ. One can show [112] that q can
only take a finite number of possible values in order for the expansion to be well-defined and
the goal is to choose the unique value for q such that in the regime ψ � α−q =⇒ αqψ � 1,
we recover Einstein gravity as desired in the screened region. This regime can also be set
by taking α→∞ or α→ 0, depending on the sign of q.

To better understand the use of the scaling method, one can apply it on the cubic Galileon
and chameleon theories. Starting with the latter, its action in the Jordan frame can be
written as

S[φ, g] =
M2

p

2

∫
d4x
√−g

(
φR +

2ω

φ
X − α(φ− φ0)n

)
, (2.27)

where ω and α are coupling parameters, n > 0 and φ0 some background value of the scalar
field. The scaling method consists in making a perturbative expansion of the scalar field as

φ(xµ) ≈ φ0

(
1 + αqψ(xµ)

)
, (2.28)

which we can insert in the action to get

S =
M2

p

2

∫
d4x
√−g

(
φ0R + φ0α

qψR + 2ωφ0α
2qX̃ − α1+nq(φ0ψ)n

)
, (2.29)

with X̃ = −∂µψ∂µψ/2. We see that in the limit αqψ � 1 we indeed recover the Einstein-
Hilbert action. We are left to find the dynamics of the scalar field and show that we can
indeed find q such that the expansion (2.28) is well defined. In order to have a well defined
action in expansion of αq, we need that the last term on the RHS to have an integer power
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of αq, thus 1 + nq = mq, m ∈ N+. If m > 1, the resulting scalar field equation at leading
order would be R = 0, which is in contradiction with the Einstein field equations. This
implies that the only choice we have left is q = (1− n)−1. Deriving the scalar field equation
at leading order αq using the Euler-Lagrange equation gives

nψn−1 = R(0) ≈ T

M2
p

, (2.30)

the second equality is coming from the leading order field equations for the metric g(0)
µν ,

which are the Einstein field equations. We see that if we want chameleon screening to be
effective, i.e. ψ ∼ 0, in a high density regime we need the exponent in Eq. (2.30) to be
negative, n − 1 < 0. Hence q is in fact positive and the screened regime is found with the
limit α→ 0.

Next we can use the scaling method in the case of a derivative screening such as in the
cubic Galileon theory. The Jordan frame action is

S[φ, g] =
M2

p

2

∫
d4x
√−g

(
φR +

2ω

φ
X − α X

4φ3
�φ
)
, (2.31)

and plugging in the scalar field expansion, we get

S =
M2

pφ0

2

∫
d4x
√−g

(
R + αqψR + 2ωα2qX̃ − α1+3q X̃

4φ0

�ψ
)
. (2.32)

Once again, we recover GR in the limit αqψ, but we need to show that the scalar field
expansion is well defined by finding a unique q. Using a similar argument as in the previous
paragraph, we only have one choice for the exponent, q = −1/2. The screened regime is
therefore described using the limit α → ∞. The scalar field equation at leading order can
then be found using the Euler-Lagrange equation. One can of course compare this approach
to the previous section 2.3.2. We found that the cubic Galileon field behaves as

φ′(r) ∼ Λ3/2

√
r
, (2.33)

in the screened regime, for a spherically symmetric source. By comparing both actions, we
know that α = Λ−3. Furthermore, one can show by solving the Euler-Lagrange equation
with spherical symmetry that the scalar perturbation ψ(r) behaves as

ψ(r) ∼ √r , (2.34)

in the same regime. Comparing both approaches we get

φ′(r) ≈ αqψ′(r) ∼ Λ−3q

√
r
∼ Λ3/2

√
r
, (2.35)

indeed recovering the same behaviour.
Using the scaling method, we constructed a perturbative approach to screening mech-

anisms, where the scalar field and the metric decouple at leading order and we recover
General Relativity in the screened regime. At this level of precision, the PN formalism of
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the screened model is equivalent to the PN expansion of GR, but we are not restricted to
leading order. One can also expand the metric in powers of αq, namely gµν ≈ g

(0)
µν + αqg

(q)
µν ,

where g(0)
µν solves the Einstein field equations and one can find the field equation for g(q)

µν with
the Euler-Lagrange equation with respect to the metric for the term proportional to αq. It is
then possible to build a PN expansion for the metric correction term g

(q)
µν and build the PN

formalism for screened theories at next-to-leading order [113,114], which includes the small
effect of the scalar field on the metric. A PN approach deriving the gravitational waveform
produced by two compact objects was developed in Ref. [115] for GR and in Ref. [116]
for Brans-Dicke theories. Hence, one direct application of the PN formalism of screened
Horndeski theories is the calculation of the gravitational waveform produced by a compact
binary system for theories with screening mechanism. In the following article, we made use
of the scaling method and the derived PN formalism for screened theories to calculate the
gravitational waves resulting from the coalescence of two compact objects.
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Scalar-tensor theories leaving significant modifications of gravity at cosmological scales rely on
screening mechanisms to recover general relativity (GR) in high-density regions and pass stringent tests
with astrophysical objects. Much focus has been placed on the signatures of such modifications of gravity
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Particularly, we derive the leading-order corrections to a fully screened emission to first PN order in the
near zone, and we also compute the modifications in the unscreened radiation zone to second PN order. For
a concrete example, we apply our results to a cubic Galileon model. The resulting GW amplitude from a
binary black hole inspiral deviates from its GR counterpart at most by one part in 102 for the modifications
in the radiation zone and at most one part in 1011 due to next-order corrections to the fully screened near
zone. We expect such modifications to be undetectable by the current generation of GW detectors, but the
deviation is not so small as to remain undetectable in future experiments.
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I. INTRODUCTION

General relativity (GR) and quantum field theory con-
stitute the cornerstones of theoretical physics and allow for
precise predictions which have been successfully tested
experimentally [1–3]. In the context of cosmology, the
observational viability of GR invokes a universe domi-
nated by dark fluids [4]: a dark energy, explaining the late-
time accelerated expansion of our Universe, and cold dark
matter, describing the cosmic microwave background
anisotropies, galaxy clustering and lensing, as well as
galactic rotation curves. For a dark energy in the form
of a cosmological constant this composition constitutes the
concordance cosmology, the Λ-cold-dark-matter (ΛCDM)
model. Despite its observational success, a number of
smaller and larger tensions have recently arisen that remain
unexplained to date [5–13]. Perhaps an even larger enigma

is posed by our lack of understanding of the cosmological
constant. If attributed to the quantum fluctuations of
vacuum energy, theoretical estimates for its magnitude
from quantum field theory are off by more than 50 orders of
magnitude [14–17]. One of the leading hypotheses for this
discrepancy is the existence of new symmetries that are
thought to cancel vacuum fluctuations. This, however,
leaves the need for an explanation of the small residual
cosmological constant driving the observed late-time
accelerated cosmic expansion.
In this context, a range of alternative explanations for

cosmic acceleration to this residual cosmological constant
has (re)emerged over the past two decades, which involve
adding new degrees of freedom to the gravitational action
[18–23]. Of these alternative theories of gravity, the
Horndeski action [19] constitutes the most general class
of Lorentz-invariant four-dimensional scalar-tensor theo-
ries that lead to second-order equations of motion, which
turns out to be sufficient [24] but not necessary [25–27] to
avoid Ostrogradski instabilities. A significant para-
meter space of this class of models has traditionally been
explored as an explanation of cosmic acceleration. Often, a
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significant modification of gravity on cosmological scales
was invoked as the driver of cosmic acceleration, while so-
called screening mechanisms would allow a recovery of
GR in high-density environments or at short distances such
as in galaxies or in the Solar System, where tight con-
straints on deviations from GR have been established
[1,28–33]. However, this concept has become severely
challenged by the luminal propagation of gravitational
waves (GWs) [34,35], and cosmic acceleration may be
limited to the dark energy aspects of a Horndeski field
rather than its direct dynamical change of gravity.
Nevertheless, dark energy fields may be accompanied by
cosmologically significant universal interactions with the
matter fields, which require screening on small scales and
for which screening effects can provide distinctive obser-
vational signatures [33].
Prominent screening mechanisms include the chameleon

[36], k-mouflage [37], and Vainshtein [38] mechanisms,
which rely on nonlinear terms in the equations of motion
to recover GR in their respective screened regimes.
Consequently, the nonlinearity renders post-Newtonian
approaches difficult to implement due to the linearization
of the relevant field equations. However, it was shown that
this problem can be circumvented with the employment
of the so-called scaling method [39–42] that enables an
expansion in screened regions. More specifically, the
method can be used to identify both the leading cor-
rections from the scalar field to the metric field equations
in the screened small-scale regions or conversely of the
unscreened theory on large scales.
The first direct detection of GWs in 2015 [43] has

opened a new observational window on gravity. To exploit
this new wealth of data, a range of analytical and numerical
techniques has been developed to study the inspiral-merger
ringdown of two heavy compact objects [44–46]. Among
them is the post-Newtonian (PN) formalism for the inspiral
phase, where a term in the waveform is said to be of PN
order n if it is of order Oððv=cÞ2nÞ, abbreviated OðϵnÞ,
where v is the speed of any of the two objects. In GR, the
waveform from an inspiral system has already been
determined to 5PN [47,48], with multiple complementary
methods of calculation. In the case of Brans-Dicke theories
[18], the calculations have been performed up to 2PN by
Lang [49] following the method developed by Will and
Wiseman [50]. In this study, we will use these two
references extensively and refer to them from now on as
Lang14 and WW96, respectively. In the context of modi-
fied gravity, numerous studies have explored how propa-
gation effects modify the amplitude or polarization of the
GW [51–64]. Predominantly, these studies assume that the
generation of the waveform can be modeled according to
GR, invoking the operation of a screening mechanism at the
source as motivation for that.
In this paper, we compute the leading-order corrections

to the GWwaveform expected for the three aforementioned

screening mechanisms [65], including effects on both
propagation and the leading correction to the screened
GW generation. To this end, we follow the method of
WW96 and cast the field equations in their relaxed form,
i.e., as a flat-space wave equation sourced by quadratic self-
interactions and the stress-energy tensor. In this form, the
solutions are retarded Green’s integrals, for which the
integrands depend on the GW itself, the quantity we are
trying to solve for. The problem can be solved perturba-
tively by first neglecting the self-interactions, providing an
approximate solution hμνð1Þ, where the only source is the

energy-momentum tensor, and introducing those in the
retarded integrals to obtain a new, more accurate solution
hμνð2Þ. In practice, the integrals are split between the so-called
near and radiation zones, which are depicted in Fig. 1.
These are complementary spacelike volumes with their
boundary carrying no physical meaning. In GR, the volume
separation is introduced to cancel apparently divergent
surface integrals between the near and radiation zones. In
this work, we use this splitting in a physically motivated
sense such that the near zone corresponds to a screened
region, where nevertheless small deviations with respect to
GR may arise at the next-to-leading order, and where an
unscreened scalar-tensor modification applies in the radi-
ation zone. Besides determining the overall modified
waveform, this strategy enables us to compute the lead-
ing-order corrections on the generation of the waveform in
modified gravity theories, which so far has typically been
assumed fully screened and abiding exactly by GR.
The paper is organized as follows. In Sec. II, we derive

the equations of motion for a subset of Horndeski theories

FIG. 1. Adapted from [50]. The past light cone C of a field point
far from the binary system. The near zone, N , is the intersection
of the past light cone and the world tube of the system’s world
line with radiusR. The radiation zone, C −N , is the remainder of
the light cone. We assume that the metric field equations take on
their screened form within N , whereas they assume their
unscreened form in C −N . When calculating the waveform at
the field point, we treat the contribution from the near zone and
radiation zone separately.
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that describe tensorial GWs propagating at light speed
and that have sufficient freedom to allow for one of the
three types of screening mechanisms. We express those in
their relaxed form, briefly review the scaling method, and
explain how it applies to the retarded integrals of Green’s
function. In Sec. III, we combine the results of Lang14 and
WW96, assuming first the fully screened scenario, where
the scalar field has no effect in the near zone and GR
applies exactly. We compute the leading terms that arise
from Brans-Dicke corrections in the radiation zone to 2PN.
In Sec. IV, we then compute the leading correction to the
fully screened case from the scalar field in the near zone by
employing the scaling method. Further, we calculate the
gravitational waveform up to 1PN beyond the quadrupole
formula. In Sec. V, we compute those corrections for a
black hole binary system and apply it to an example of
Galileon cosmology. Finally, Sec. VI is dedicated to our
conclusions, and Appendix provides further details on our
calculation of the gravitational waveform from a binary
system in the case of GR.
Throughout the paper, we adopt the signature

ð−;þ;þ;þÞ for the metric. Greek indices run from 0 to
3 and Latin indices from 1 to 3. A comma indicates a partial
derivative, A;μ ≡ ∂μA, while a semicolon denotes a covar-
iant derivative associated with the Levi-Civita connec-
tion, Aμ;ν ≡∇νAμ. Bold symbols x represent Euclidean
three-dimensional vectors with Euclidean norm jxj. Sym-
metrization of indices follow the notation Tðμ1���μnÞ≡
1
n!

P
i∈Sn Tσiðμ1���μnÞ, where fσigi∈Sn is the set of all permu-

tations of fμ1;…; μng. Units are such that c ¼ ℏ ¼ 1.

II. MODIFIED FIELD EQUATIONS IN THE
PRESENCE OF SCREENING

We will consider scalar-tensor theories that can be
described by the following action:

S½g;ϕ� ¼ 1

16πG

Z ffiffiffiffiffiffi
−g

p �
ϕRþ 2

ωðϕÞ
ϕ

X þ αδCVðϕÞ

þ αδKΓ2ðϕÞX2 þ αδVΓ3ðϕÞX□ϕ

�
; ð1Þ

where R is the Ricci scalar of the metric gμν with
determinant g≡ det gμν. V;ω;Γ2;Γ3 are arbitrary functions
of the scalar field ϕ, X ¼ −gμν∂μϕ∂νϕ=2 is its kinetic term,
and□≡ gμν∇μ∇ν. The action (1) corresponds to a reduced
set of Horndeski theories [19] with luminal propagation of
tensor gravitational waves [39], satisfying arrival time
constraints [51] from GW170817 [35]. The functions
VðϕÞ, Γ2ðϕÞ, and Γ3ðϕÞ allow for large field value as
well as first and second derivative screening, respectively
[22]. The parameters δC, δK , and δV are unity when
implementing the chameleon [36], k-mouflage [37], and
Vainshtein [38] screening mechanisms, respectively, and

vanish otherwise. While Eq. (1) in principle admits a
superposition of screening mechanisms, in this work, we
assume that exactly one of the screening effects is operating
at a time. One can impose this condition by requiring
δC þ δK þ δV ¼ 1. We emphasize that therefore our results
are not applicable to basic Brans-Dicke models that do not
screen such as treated in Lang14. The scaling parameter α
will be utilized to identify the most relevant terms beyond
GR in the screened regime. The field equations derived
from the action (1) are of the form

ϕGμν ¼ 8πGTμν þ
ωðϕÞ
ϕ

�
ϕ;μϕ;ν −

1

2
gμνϕ;λϕ

;λ

�
þ ð∇μ∇νϕ − gμν□ϕÞ þ αAμν½g;ϕ�; ð2Þ

□ϕ ¼ 1

3þ 2ωðϕÞ ð8πGT − 16πGϕ
∂T
∂ϕ − dω

dϕ
ϕ;λϕ

;λ

þ αAλ
λ½g;ϕ�Þ þ αB½g;ϕ�; ð3Þ

whereGμν is the Einstein tensor, Tμν is the stress-energy (or
energy-momentum) tensor of the matter fields and T ≡
gμνTμν denotes its trace. The second term on the right-hand
side of the scalar field equation of motion appears if we
assume that the energy-momentum tensor effectively
depends on the scalar field [69]. The additional two
functionals Aμν½g;ϕ� and B½g;ϕ� include the contributions
of the functions V;Γ2, and Γ3, namely

Aμν ¼ δC
1

2
gμνVðϕÞþ δKΓ2ðϕÞ

�
1

2
gμνX2þX∇μϕ∇νϕ

�

þ δV
∂Γ3

∂ϕ X∇μ∇νϕþ δVΓ3ðϕÞ
�
1

2
gμν∇αϕ∇β∇αϕ∇βϕ

þ□ϕ∇μϕ∇νϕ−∇αϕ∇α∇ðμϕ∇νÞϕ
�
; ð4Þ

B ¼ −δC
∂V
∂ϕ − δKΓ2ðϕÞð2X□ϕ − 2∇αϕ∇βϕ∇α∇βϕÞ

þ 3δK
∂Γ2

∂ϕ X2 − δVΓ3ðϕÞðð□ϕÞ2 −∇α∇βϕ∇α∇βϕÞ

þ 2δV

�∂Γ3

∂ϕ ∇αϕ∇βϕ∇α∇βϕþ ∂2Γ3

∂ϕ2
X2

�
: ð5Þ

The role of screening mechanisms is to suppress the
gravitational effect of the scalar field in high-density
regions. Therefore, the functionals Aμν and B are expected
to have a significant effect in the near zone, so as to recover
GR, whereas they are expected to vanish far away from the
source.
For the matter source, we consider a collection of point

particles, labeled with capital indices, which are described
by the following energy-momentum tensor at the field point
xγ ¼ ðt; xÞ:
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TαβðxγÞ ¼
X
A

mAðϕÞð−gÞ−1=2
uαAu

β
A

u0A
δ3ðx − xAðtÞÞ; ð6Þ

where uαA is the four-velocity of body A, xAðtÞ is its time-
dependent spatial position, and mA its gravitational mass
including the gravitational binding energy of the Ath body.
An unfortunate consequence of modeling the matter source
as point particles is that we neglect tidal effects, but see [70]
for recent work on tidal deformability of black holes.
Note that the masses can depend on the scalar field, even

in the Jordan frame we have adopted [69]. With the
assumption of massive pointlike objects, we neglect non-
trivial effects of ϕ on the matter content, which violate the
strong equivalence principle. For Brans-Dicke theories, one
needs to take into account the dependence of the gravita-
tional constant on the scalar field since it affects the total
gravitational energy. As suggested in Ref. [69], when
considering the inertial mass of objects in the Jordan
frame, the masses of compact objects are replaced with
functions of the scalar field where the total mass is given by

m≡X
A

mAðϕÞ: ð7Þ

The inertial mass can then be expanded about the local
background value of the scalar field ϕ0,

mAðϕÞ ≈mAðϕ0Þð1þ sAðϕ − ϕ0Þ=ϕ0Þ; ð8Þ

where

sA ¼ −
∂ lnmA

∂ lnGN

����
ϕ0

¼ ∂ lnmA

∂ lnϕ
����
ϕ0

ð9Þ

is the sensitivity of compact objects in scalar-tensor
theories and, in particular, sA ¼ 1=2 for black holes.
However, for theories exhibiting Vainshtein or k-mouflage
mechanisms the scalar field equation in the screened region
effectively becomes a total derivative. One can then use the
generalized Gauss theorem to stipulate that the scalar field
cannot depend on the composition of the object, but only on
its total mass [71]. Therefore, we only need to take the
sensitivity into account in the case of the chameleon
mechanism and the inertial mass becomes

mAðϕÞ ≈mAð1þ δCsAðϕ − ϕ0Þ=ϕ0Þ; ð10Þ

where we renamed mAðϕ0Þ → mA for simplicity.
With the equations of motion at hand and an explicit

matter source specified, we proceed to compute the wave-
form at a generic spacetime point far away from the source,
in the so-called radiation zone. To this end, we make use of
the field equations (2) and (3) in their relaxed forms. These
are obtained through a series of field redefinition. As the
scalar field couples nonminimally to the metric, their

derivation is different from that in GR and we follow
Ref. [72] to find them. The scalar field is redefined as

φðt; xÞ≡ ϕðt; xÞ
ϕ0

: ð11Þ

We assume it to be static for the purpose of this calculation
as the timescales over which the background value varies
are much larger than the orbital timescales of the system.
Note that a change in the scalar field value between the
spacetime positions of the source and observer may be
detected as an effective modification of the luminosity
distance [57,58]. We define the following symmetric
rank-two tensor, which describes the deviation from flat
space [73]:

hμν ¼ ημν − φ
ffiffiffiffiffiffi
−g

p
gμν: ð12Þ

Note that we have not yet assumed that hμν is small. Next,
we impose the flat-space harmonic gauge on hμν,

hμν;ν ¼ 0: ð13Þ

The purpose for the field redefinition (12) is to rewrite the
metric field equation (2) as a flat-space wave equation,

□ηhμν ¼ −16πGτμν − 2αð−gÞAμν ϕ

ϕ0

≡ Sμν; ð14Þ

where □η ≡ ημν∂μ∂ν and

τμν ≡ ð−gÞφTμν þ 1

16πG
ðΛμν þ Λμν

s Þ: ð15Þ

One can think of Λμν and Λμν
s as the stress-energy tensors

held in the gravitational wave and scalar field, respectively.
These in turn are given by

Λμν ≡ 16πGð−gÞtμνLL þ hμα;βhνβ ;α − hαβhμν;αβ; ð16Þ

where

ð−gÞtμνLL ≡ 1

16πG

�
gλαgβρhμλ;βhνα;ρ þ

1

2
gλαgμνhλβ ;ρhρα;β

− 2gαβgλðμhνÞβ ;ρhρα;λ þ
1

8
ð2gμλgνα − gμνgλαÞ

× ð2gβρgστ − gρσgβτÞhβτ ;λhρσ ;α
�

ð17Þ

is the Landau-Lifshitz tensor and
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Λμν
s ≡ 3þ 2ω

φ2
φ;αφ;β

�
ðημα − hμαÞðηνβ − hνβÞ

−
1

2
ðημν − hμνÞðηαβ − hαβÞ

�
: ð18Þ

The scalar field satisfies the equation

□ηφ ¼ −8πGτs þ αB≡ S; ð19Þ

where the source of the scalar field equation is given by

τs ¼ −
1

3þ 2ω

ffiffiffiffiffiffi
−g

p
φ

�
T − 2φ

∂T
∂ϕ

�
−

1

8πG
hαβφ;αβ

þ 1

16πG
d
dφ

�
ln
�
3þ 2ω

φ2

��
φ;αφ;βðηαβ − hαβÞ: ð20Þ

One may worry that second-order derivatives of the
metric and scalar fields appear within both Aμν and B in
Eqs. (14) and (19). However, the α prefactor in both terms
ensures that the system in the screened and unscreened
regime is appropriately diagonalized with respect to the
second derivatives, with those appearing within Aμν and B
acting as source terms for the next order in α corrections to
the metric and scalar fields.
Since the field equations take the form of a flat-space

wave equation, one can express them as retarded integrals
with the appropriate Green’s function, namely

hμνðt; xÞ ¼ −
Z
C

Sμνðt − jx − x0j; x0Þ
4πjx − x0j d3x0; ð21Þ

φðt; xÞ ¼ −
Z
C

Sðt − jx − x0j; x0Þ
4πjx − x0j d3x0; ð22Þ

where C is the past light cone of the field point xμ. Note that
the source terms S depend on both φ and hμν, which make
Eqs. (21) and (22) coupled integral equations for φ and hμν.
As a first step, in this work, we specify to cases where the

contribution of the scalar wave can be neglected. We leave
the computations for the more general case to future work.
Depending on the screening mechanism, the effect of an
incoming scalar wave on our detectors may or may not be
attenuated by screening in the Solar System. For example,
in the chameleon screening mechanism, the suppression of
scalar waves depends on the ratio between the effective
mass of the scalar field and the GW frequency [74].
However, not all mechanisms screen incoming scalar
waves. For example, the Vainshtein mechanism does not
[75], and scalar waves might play an important role in such
scenarios, even if their amplitude at emission has been
shown numerically to be suppressed [66].
For an observer located far away from the source, in the

radiation zone, the contributions of Aμν and B to the field
equations can be neglected as we adopted a Brans-Dicke

field at large scales. This reduces the integrands to Sμν →
−16πτμν and S → −8πτs. The assumption of Brans-Dicke
behavior at leading order on cosmological scales can be
motivated by the effective field theory (EFT) approach to
dark energy [76–85]. Under this formalism, the cosmo-
logical behavior of Horndeski theories is described as an
expansion in the metric perturbations and the scalar field
represents the Goldstone boson of the symmetry breaking
of time translation. The leading-order terms of a general
Horndeski action at low energies are then equivalent to
those of a Brans-Dicke theory with scalar field potential
[86–88]. Furthermore, we split the integration domain into
two parts: the near zone N , which we assume to be
screened, and the radiation zone C −N , assumed
unscreened. For the tensor wave, this splitting reads

hμνðt; xÞ ¼ 4

Z
N

τμνN ðt − jx − x0j; x0Þ
jx − x0j d3x0

þ 4

Z
C−N

τμνC−N ðt − jx − x0j; x0Þ
jx − x0j d3x0: ð23Þ

Importantly, the effective stress-energy tensor takes differ-
ent forms in the two different regions, represented by τμνN
and τμνC−N for the near and radiation zones, respectively. The
latter is given by the Brans-Dicke effective stress-energy
tensor in Eq. (15), and we describe τμνN in the following.
In the near zone, screening shall operate and we expect a

close recovery of GR. However, while the effect of the
scalar field is strongly attenuated, it nevertheless does not
completely vanish. One can describe this contribution of
the scalar field using the scaling method developed in
Refs. [39–42], in which the metric and the scalar field are
expanded as

ϕðt; xÞ ¼ ϕ0ð1þ αqψðt; xÞ þOðα2qψ2ÞÞ; ð24Þ

gμνðt; xÞ ¼ gð0Þμν ðt; xÞ þ αqgðqÞμν ðt; xÞ þOðα2qψ2Þ: ð25Þ

Here, ϕ0 is the local background value of the scalar field
sourced by the local environment. It varies sufficiently
slowly so as to be treated as a constant. The dynamical
contribution of the scalar field is captured by ψ. The scaling
parameter α is the relevant quantity describing the oper-
ation of a screening mechanism and was already introduced
in Eq. (1), where it represents the couplings to different
terms in the scalar-tensor action. Finally, the exponent q ∈
R is uniquely determined for each screening mechanism
[39]. In particular, the exponent is chosen such that we have
consistent equations of motion recovering GR in the limit
αqψ → 0 and that the scalar field is sourced by matter,
ensuring a viable perturbative expansion in powers of αqψ .
Describing the screened regime with the scaling method
[39–42] was shown to be equivalent, but significantly less
cumbersome, to techniques employing a dual Lagrangian
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[89] or Lagrange multipliers [90] and was carefully studied
in the context of the Vainshtein mechanism [91].
The metric is decomposed into two parts. The first

contribution gð0Þμν satisfies the Einstein field equations,
where the local background scalar field effectively modifies
the coupling to matter,

Gð0Þ
μν ¼ 8πG

ϕ0

Tμν: ð26Þ

The second term gðqÞμν includes the leading contributions to
the metric of the correction to the scalar field αqψ . Its
equation of motion is found by substituting ϕ → ϕ0ð1þ
αqψÞ in Eq. (2) and keeping only the leading contributions
that are proportional to αq. The equation for ψ is found
using the same substitution in Eq. (3), where the functional
B½g;ψ � becomes the leading contribution together with the
stress-energy tensor. The resulting expressions are

GðqÞ
μν ¼ ψGð0Þ

μν þ∇μ∇νψ − gð0Þμν □ψ þ δC
1

2
gð0Þμν V0ϕ

nV−1
0 ψnV

þ δKϕ
3
0Γ2ðϕ0Þ

�
1

2
gð0Þμν X̃2 þ X̃∇μψ∇νψ

�

þ δVϕ
2
0Γ3ðϕ0Þ

�
1

2
gð0Þμν ∇αψ∇β∇αψ∇βψ

þ□ψ∇μψ∇νψ −∇αψ∇α∇ðμψ∇νÞψ
�
; ð27Þ

8πG
ϕ0

�
T − 2

∂T
∂ϕ

�
¼ δCnV

ψnV−1

ϕnV−1
0

V0 þ 2δKϕ
3
0Γ2ðϕ0Þ

× ðX̃□ψ þ∇μX̃∇μψÞ þ δVϕ
2
0Γ3ðϕ0Þ

× ðð□ψÞ2 −∇μ∇νψ∇μ∇νψÞ; ð28Þ

where X̃ ¼ −1=2gð0Þμν ∂μψ∂νψ and the covariant deriva-
tives as well as the contractions are obtained using

gð0Þμν . Allowing for an embedding of the chameleon,
k-mouflage, and Vainshtein screening mechanisms, we
have assumed that VðϕÞ ¼ V0α

nVqψnV with 0 < nV < 1,
Γ2ðϕÞ ¼ Γ2ðϕ0Þ ≠ 0, and Γ3ðϕÞ ¼ Γ3ðϕ0Þ ≠ 0 at leading
order in αqψ [39–42,92]. For the remainder of this
work, we shall furthermore adopt a normalization of the
gravitational constant by G=ϕ0 ¼ 1. By looking at the
right-hand side of Eq. (28), one can see that in the case of
k-mouflage and Vainshtein screening, the scalar contribu-
tion enters as a total derivative. In these cases, this holds
true for any matter distribution, and therefore only the total
mass of the objects can affect the scalar field. Under the
scaling formalism, one can expand the near-zone effective
stress-energy tensor τμνN as

τμνN ¼ τμνGR þ αqτμνðqÞ þOðα2qψ2Þ; ð29Þ

where τμνGR is the part fully described by GR and τμνðqÞ will be
calculated to first post-Newtonian order (1PN) in Sec. IVA.
We also note that in both regions, N and C −N , the
effective stress-energy tensor is conserved to leading order
in α, i.e., τμν;μ ¼ 0þOðαÞ.
The gravitational waveform hij can be decomposed into

three parts,

hijðt;xÞ ¼ hijð0Þðt;xÞþhijBDðt;xÞþαqhijðqÞðt;xÞþOðα2qψ2Þ:
ð30Þ

Hereby, hijð0Þ denotes the contribution that is described by

GR, corresponding to the result of the retarded integral of
τμνGR in the near zone and the GR part of τμνC−N in the
radiation zone. This term has been computed to 2PN
beyond the quadrupole formula in WW96. In Sec. III,
we also calculate the contribution from the scalar part of
τμνC−N to 2PN, namely hijBD. The last term, αqhijðqÞ, originates
from the screened effect of the near-zone scalar field, and
it will be derived to 1PN in Sec. IV. In models where
gravitational objects can be self-screened relative to an
ambient scalar field, such as is the case for the chameleon
mechanism, black holes are, in fact, insensitive to this extra
degree of freedom [93,94]. Such behavior motivates the
distinction between the fully screened case where the near-
zone contribution αqhijðqÞ is neglected and the case where it

is not.

III. GRAVITATIONAL WAVEFORM OF THE
FULLY SCREENED THEORY

We shall first consider the case where a system is
completely screened in the near zone; i.e., it is fully
described by GR in this region, and reduces to Brans-
Dicke theory in the unscreened radiation zone. We deter-
mine the gravitational waveform up to 2PN for an arbitrary
source distribution in this scenario. Hereby, we differentiate
between the waveform described by GR and the extra terms
from the Brans-Dicke scalar field, namely hij ¼ hijð0Þ þ hijBD
with αqhijðqÞ → 0. The solution hijð0Þ can be found in WW96,

and we calculate hijBD. In Sec. III A, we find the instanta-
neous metric and stress-energy tensor in the near zone. In
Sec. III B, we derive the metric and scalar fields in the
radiation zone as sourced by the near zone. Finally in
Sec. III C, we calculate the waveform contribution from the
Brans-Dicke scalar field.

A. Metric and effective stress-energy tensor
in the near zone

To compute the gravitational waveform to 2PN beyond
the quadrupole approximation, one must determine the
gravitational field in the near zone. The contributions made
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to the waveform by the metric in the near zone are twofold.
First, they directly act as a source for higher-order con-
tributions to the gravitational stress-energy tensor as
Λμν ∈ τμν. See the first term in Eq. (23). Second, they
contribute indirectly by sourcing the metric at a generic
point in the radiation zone, which in turn is used in the
second part of Eq. (23). This can be understood as the light
cone being modified by the gravitational field, changing the
propagation of the gravitational wave.
For a many-body system, we define its characteristic size

S ¼ maxfrAB ¼ jxA − xBj; ∀ A;Bg as being the largest
distance between any pair of point particles. The radius R
of the near zone is defined to match the scale below which
the screening mechanism is effective and where we assume
that GR applies exactly. We will also refer to it as the
screening radius. Since any object in the system lies well
within the screening radius, R ≫ S, the retardation of the
fields is negligible at short scale and time derivatives can be
treated as a higher-order term as in the standard PN
approximation. In other words, the metric can be found
in terms of instantaneous potentials. We denote the constant
spacelike hypersurface at time u ¼ t − R asM, with R the
distance between the source and the observer, and it is
bounded by a sphere of radiusR. We have assumed that the
near zone is fully screened and, hence, that the metric field
equations in the screened region are equivalent to those of
GR (see Sec. II). We skip the calculation of the metric and
reproduce here the results of Sec. III of WW96. The
gravitational field components are given by

h00 ¼ 4

�
U þ 1

2
∂2
tX − Pþ 2U2

�
þOðϵ5=2Þ; ð31aÞ

h0i ¼ 4Ui þOðϵ5=2Þ; ð31bÞ

hij ¼ 4Pij þOðϵ5=2Þ; ð31cÞ

where we recall that ϵ ¼ v2=c2 and for the background
metric

g00 ¼ −ð1þ 2U þ ∂2
tX þ 2U2Þ þOðϵ5=2Þ; ð32aÞ

g0i ¼ −4Ui þOðϵ5=2Þ; ð32bÞ

gij ¼ ð1 − 2U − ∂2
tXÞδij þOðϵ2Þ; ð32cÞ

from which the determinant is found to be

ð−gÞ ¼ 1þ 4

�
Uþ 1

2
∂2
tX

�
− 8ðP−U2ÞþOðϵ5=2Þ: ð33Þ

The instantaneous potentials are defined as

Uðu; xÞ≡
Z
M

d3x0

jx − x0j ðT
00 þ TiiÞðu; x0Þ; ð34aÞ

Xðu; xÞ≡
Z
M

d3x0jx − x0jðT00 þ TiiÞðu; x0Þ; ð34bÞ

Uiðu; xÞ≡
Z
M

d3x0

jx − x0jT
0iðu; x0Þ; ð34cÞ

Pijðu; xÞ≡
Z
M

d3x0

jx − x0j
�
Tij þ 1

4π

�
U;iU;j −

1

2
δijU;kU;k

��
× ðu; x0Þ: ð34dÞ

With the metric in the near zone found to Oðϵ5=2Þ, the
stress-energy tensor can also be found to Oðϵ5=2Þ, which
will be required to determine the metric in the radiation
zone. The stress-energy tensor is given by

T00 ¼
X
A

mA

�
1 −U þ 1

2
∂2
tX þ 1

2
v2A þ 1

2
U2 þ 3

2
Uv2A

þ 4Pþ 3

8
v4A − 4UiviA þOðϵ5=2Þ

�
δ3ðx − xAðtÞÞ;

ð35aÞ

Tij ¼
X
A

mAviAv
j
A

�
1 − U þ 1

2
v2A þOðϵ2Þ

�
δ3ðx − xAðtÞÞ;

ð35bÞ

T0j ¼
X
A

mAv
j
A

�
1 −U −

1

2
∂2
tX þ 1

2
v2A þOðϵ5=2Þ

�

× δ3ðx − xAðtÞÞ: ð35cÞ

We will only need the source τμν for the calculations
performed here to the orders OðρϵÞ for τ00, OðρϵÞ for τij,
andOðρϵ3=2Þ for τ0i, where ρ ∼OðϵÞ. With the background
stress-energy tensor determined by Eq. (16), we are left
with finding Λμν to the appropriate orders. The noncompact
part of the effective stress-energy tensor in Eq. (16) with the
near-zone metric of Eqs. (31) and (32) at the background
level is given by

Λ00 ¼ 14

�
Uþ 1

2
∂2
tX

�
2

;k
þ 16

�
−UÜþU;k

_Uk − 2Uk
_U;k

þ 5

8
_U2 þ 1

2
Um;kðUm;k þ 3Uk;mÞ þ 2P;kU;k −PklU;kl

−
7

2
UU2

;k

�
þOðρϵ3Þ; ð36aÞ

Λ0i ¼ 16

�
ðU þ ∂2

tXÞ;kðUk;i − Ui;kÞ þ
3

4
_UðU þ ∂2

tXÞ;i
�

þOðρϵ5=2Þ; ð36bÞ
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Λij ¼ 4

�
ðU þ ∂2

tXÞ;iðU þ ∂2
tXÞ;j

−
1

2
δijðU þ ∂2

tXÞ;kðU þ ∂2
tXÞ;k

�
þ 16½2U;ði _UjÞ −Uk;iUk;j −Ui;kUj;k þ 2 − Uk;ðiUjÞ;k

− δijð3=2 _U2 þU;k
_Uk − Um;kU½m;k�� þOðρϵ5=2Þ:

ð36cÞ

We do not needΛs in this region as we have assumed that
it vanishes due to screening. In Sec. III B, we will also need
τs evaluated in the near zone. Neglecting the effect of the
near-zone scalar field, i.e., φ → 1, the scalar source term
substantially simplifies to

τs ¼ −
ffiffiffiffiffiffi−gp

ð3þ 2ω0Þ
�
T − 2

∂T
∂ϕ

�

¼ 1

ð3þ 2ω0Þ
X
A

mA

�
1 − 2δCsA −

1

2
v2A þ U

�

× δ3ðx − xAðtÞÞ: ð37Þ

B. Metric in the radiation zone

At leading order, there is no contribution to the gravi-
tational waveform from the radiation zone. This is due
to the leading order GW being sourced by the compact
matter component, which lies solely in the near zone.
However, as we calculate the gravitational wave to higher
orders, the noncompact stress-energy components, Λij and
Λij
s in Eq. (15), contribute to the waveform through the

scattering of gravitational waves on the background. As
such, we need to compute the metric in the radiation zone
as sourced by the near zone, which we will denote by hμνN in
line with Refs. [49,72]. To find hμνN , we compute the
retarded integral

hμνN ðt0; x0Þ ¼ 4

Z
N 0

τμνðt0 − jx0 − x00j; x00Þ
jx0 − x00j d3x00: ð38Þ

Since the integration is performed over the screened
region, one should expect that the results that we thereby
obtain mimic those of GR. Note that the domain N 0 of the
integral is slightly different from the near zone N as it is
part of the past light cone of another field point, x0μ instead
of xμ. The main difference resides in the modification of
the time component in the near zone, which becomes
x00 ¼ t0 − jx0 − x00j and x00 ∈ N 0. We define the distance
and the direction of the arbitrary field point x0μ as R0 and
N̂0i ¼ x0i=R0, respectively. The metric at the detector is then
found by taking R0 ¼ R, and the detector lies in the
direction N̂ from the source.

In the screened region, the source τμν takes the same
form as in GR, and hence the metric solution in the
radiation zone is the same as in WW96. As we will see,
deviations from GR still arise from the radiation zone. We
omit the details of such a calculation and restrict the
discussion here to an outline of how this computation is
performed. The retarded integral (38) is evaluated over the
domainN 0 and so it can be expressed as a sum of moments.
This expansion is valid as long as the distance to the field
point, R0, is much greater than the characteristic size of the
system, S, leading to an expansion in R0−1. As such,

hμνðt; xÞ ¼ 4
X∞
q¼0

ð−1Þq
q!

�
1

R0M
μνk1���kq

�
;k1���kq

; ð39Þ

where

Mμνk1���kq ¼
Z
M0

τμνx0k1 � � � x0kqd3x0: ð40Þ

We evaluate these moments across a constant time hyper-
surface M0 at the retarded time u ¼ t0 − R0. Since the
integral is still performed over the near zone, the effective
stress-energy tensor takes its GR form and Λs does not
contribute.
To 2PN beyond the quadrupole formula only the

compact part of τμν contributes, where higher-order com-
pact contributions arise through inserting the instantaneous
potentials into the determinant −g in Eq. (15). This renders
these integrals relatively simple because of the Dirac
δ-functions in the stress-energy tensor. Furthermore, many
of the higher-order moments can be written in terms of the
lower moments together with the momentum currents

J iQ ¼ ϵiab
Z
M

τ0bxaQd3x; ð41Þ

where ϵiab is the Levi-Civita symbol. Following the deriva-
tions in WW96 [Eq. (5.5)] and Lang14 [Eq. (4.33)], we find

h00N ¼ 4
m̃
R0 þ 7

�
m
R0

�
2

þ 2

�
Mij

R0

�
;ij
−
2

3

�
Mijk

R0

�
;ijk

; ð42aÞ

h0iN ¼ −2
�

_Mij − ϵijaJ a

R0

�
;j
þ 2

3

�
_Mijk − 2ϵikaJ aj

R0

�
;jk
;

ð42bÞ

hijN ¼
�
m
R0

�
2

N̂0ij þ 2
M̈ij

R0 −
2

3

�
M̈ijk − 4ϵðijka _J ajjÞ

R0

�
;k
;

ð42cÞ

where N̂0ij ¼ N̂0iN̂0j, all moments are evaluated on
the constant u0 − R0 hypersurface M0, m̃ ¼ P

A mA þ
1
2
mAv2A − 1

2
mAUA, andUA is the total gravitational potential
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at the point xA neglecting the infinite self-energy contribution
of body A.
We are left with finding the scalar field in the radiation

zone, φN , to 2PN. The integral (22) evaluated over the near
zone can also be expanded into the sum of moments,

φN ðt; xÞ ¼ 2
X∞
q¼0

ð−1Þq
q!

�
1

R
M

k1…kq
s

�
;k1…kq

ð43Þ

with

M
k1…kq
s ¼

Z
M

τsx0k1…x0kqd3x0; ð44aÞ

where τs is given by Eq. (20). The calculation is otherwise
equivalent to that of the metric expansion. The Oðρϵ3=2Þ
moments are found to be

Ms ¼
1

ð3þ 2ωÞ
X
A

mA

�
1 − 2δCsA −

1

2
v2A þ UA

�
; ð44bÞ

Mi
s ¼

1

ð3þ 2ωÞ
X
A

mAxiA

�
1 − 2δCsA −

1

2
v2A þ UA

�
;

ð44cÞ

Mij
s ¼ 1

ð3þ 2ωÞ
X
A

mAx
ij
A ð1 − 2δCsAÞ; ð44dÞ

Mijk
s ¼ 1

ð3þ 2ωÞ
X
A

mAx
ijk
A ð1− 2δCsAÞ: ð44eÞ

We will not need moments larger than the octopole. Note
that these differ from the results of Lang14 [Eq. (6.11)]
since the scalar part of the stress-energy tensor Λμν

s is
modified due to the screening effect. Because of this
modification, when evaluated in the center of mass frame
corrected to 2PN, the scalar dipole moment vanishes,
unlike in the Brans-Dicke case. We will see in Sec. III
C 2 that this has a major effect on the waveform as many
terms present in Brans-Dicke theory no longer contribute.
The scalar field in the radiation zone is then determined by
inserting these moments into Eq. (43),

φN ðt; x0Þ ¼ 2
Ms

R0 − 2

�
Mi

s

R0

�
;i
þ
�
Mij

s

R0

�
;ij
−
1

3

�
Mijk

s

R0

�
;ijk

:

ð45Þ

C. Finding the waveform

With the metric in the near and radiation zones at
hand, we are fully equipped to compute the gravitational
waveform. As we are only interested in the metric waves,
we focus our attention on the retarded integral of the

gravitational field in Eq. (21) to 2PN beyond the quadru-
pole approximation. Moreover, the calculation applies to a
field point where R ≫ R ≫ S. As a result, we may discard
terms that decay faster than 1=R and will refer to this region
of spacetime as the far zone to distinguish it from the
radiation zone.
In Sec. III C 1, we outline how the near zone contributes

to the gravitational wave. No further calculation is needed
as the source in the near zone is equivalent to that of GR
and we can use the results of WW96. In Sec. III C 2, we
discuss the contribution from the radiation zone. As the
metric found from Λij again takes a form equivalent to GR,
we refer to WW96 for the bulk of the calculation. However,
unlike in GR, the wave is also sourced by Λij

s , which leads
to new terms.

1. Waveform contribution from the near zone

The calculation of the gravitational waveform to 2PN
beyond the quadrupole at the detector is a continuation of
the calculation performed in Sec. III B. The main difference
is that now we only need to keep terms in the metric
expansion that decay as R−1 since terms decreasing faster
are negligible if the observer lies sufficiently far from the
source. Furthermore, as we are evaluating the waveform
and not the whole metric, we must remember that only the
spatial part of the metric solution is needed and perform a
transverse and traceless projection. This projection more-
over cancels terms proportional to either δij or the direc-
tional vector to the detector N. The calculation of the
gravitational waveform due to the near zone is analogous to
WW96, and so we refer to Ref. [50] for the details, only
providing here a brief overview of the derivation.
The moments in the expansion (39) can be expanded in

R−1, and since we are calculating the metric in the far zone,
only the leading order is required. The expansion can then
be expressed in terms of Epstein-Wagoner moments [95]
by employing the conservation of the effective stress-
energy tensor. This simplifies Eq. (39) to

hijN ¼ 2

R
d2

dt2
X∞
m¼0

N̂ki � � � N̂kmI
ijk1���km
EW ; ð46Þ

where

IijEW ¼
Z
M

τ00xixjd3xþ IijEW ðsurfÞ; ð47aÞ

IijkEW ¼
Z
M
ð2τ0ðixjÞxk− τ0kxixjÞd3xþ IijkEW ðsurfÞ; ð47bÞ

Iijk1���kmEW ¼ 2

m!

dm−2

dtm−2

Z
M
τijxk1 � � �xkmd3x ðm≥ 2Þ; ð47cÞ

and
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d2

dt2
IijEW ðsurfÞ ¼

I
∂M

ð4τlðixjÞ − ðτklxixjÞ;kÞR2n̂ld2Ω; ð48aÞ

d
dt
IijkEW ðsurfÞ ¼

I
∂M

ð2τlðixjÞxk − τklxixjÞR2n̂ld2Ω ð48bÞ

with n̂ denoting a radially outward-directed unit vector.
The explicit calculation of these moments is an involved

task, making up the bulk of both the WW96 and Lang14
articles. Because of the similarity between the calculation
performed in WW96 and here, we will not replicate it.
In brief, τij is expressed in terms of the instantaneous
potentials using the results in Eqs. (35) and (36). The
potentials are themselves found using the matter distribu-
tion in Eq. (6). Finally, the Epstein-Wagoner moments are
inserted in the expansion (46).
The solutions for the Epstein-Wagoner moments are

given in Eqs. (6.6) of WW96. However, in their calculation
of the gravitational waveform, terms from the near-zone
and the radiation-zone contributions that depend on R
cancel out. There is no guarantee for this in our model, and
so we highlight the terms proportional to R,

IijEW ⊃ −
14

5
mRM̈ij

¼ −
28

5
mμRðvij − xðiajÞÞ; ð49aÞ

IijklEW ⊃ −
8

35
mRM̈ijδkl

¼ −
8

35
mμRðvij − xðiajÞÞδkl; ð49bÞ

Iijklmn
EW ⊃ −

2

315
mRM̈ijδðklδmnÞ

¼ −
2

315
mμRðvij − xðiajÞÞδðklδmnÞ: ð49cÞ

These terms depend on the size of the near zone R,
which we have set to the screening radius. In GR these
terms were not expected to appear in the final waveform as
the value of R is unphysical. Their cancellations with the
boundary terms of the radiation-zone integration is checked
in the following.

2. Waveform contribution from the radiation zone

When determining the metric in the radiation zone in
Sec. III B, we found that the metric sourced by the near
zone remains equivalent to that in GR. Deviations in the
metric occur due to the self-interaction in the radiation
zone. The modification of the gravitational theory in the
radiation zone by Brans-Dicke gravity only begins to affect
the metric of this region at Oðϵ2Þ.
We first want to know if the extra terms (49a)–(49c)

remain in the gravitational waveform or are canceled by

contributions from the radiation zone. The relevant part of
Λij in the radiation zone up to Oðϵ3Þ is found to be

Λij⊃−h00ð1Þḧ
ij
ð2Þ þ

1

4
h00ð1Þ;ðih

00

ð2Þ;jÞ þ
1

2
h00ð1Þ;ðih

kk
ð2Þ;jÞ þ2h00;ðið1Þ _hjÞ0ð2Þ;

ð50Þ
where the subscripts denote the PN orders used. We may
use the results in Eq. (5.8) of WW96 for the metric
components hij to 2PN beyond the quadrupole order,

hij ⊃
4m
R

Z
∞

0

ds∂4
t Mijðu − sÞ

�
ln

�
s

2Rþ s

�
þ 11

12

�
: ð51Þ

This is the first tail term arising from the interaction of the
gravitational wave with the background Newtonian poten-
tial and is of order 1.5PN. Therefore, only one more
iteration is required to reach the desired precision of
2PN. The components of the gravitational stress-energy
tensor that we need to consider are

Λij ⊃ −h00ð1Þḧ
ij
ð1.5Þ þ

1

2
h00ð1Þ;ih

00
ð1.5Þ;j þ

1

2
h00ð1Þ;ðih

kk
ð1.5Þ;jÞ: ð52Þ

As can be seen with Eq. (46), the first term, the source is
proportional to δij and so is not transverse-traceless. For the
second and third terms, the monopole-monopole couplings
scale as R−1

;ðiR−1
;jÞ, and when the derivatives are evalu-

ated, they have an angular dependence of the form N̂ij,
which is not transverse-traceless. Hence, only the terms
from monopole-quadrupole and monopole-current quadru-
pole are relevant in Λij. The metric components due to the
near zone again mimic those of GR, leading to the
following result:

hij ⊃
4m
3R

n̂k
Z

∞

0

ds∂5
t Mijkðu− sÞ

�
ln

�
s

2Rþ s

�
þ 97

60

�

−
16m
3R

ϵðijkan̂k
Z

∞

0

ds∂4
t JajjÞðu− sÞ

�
ln

�
s

2Rþ s

�
þ 7

6

�

þ 1912

315

m
R
∂4
t MijðuÞR; ð53Þ

which is the remainder of Eq. (5.8) in WW96. We can
check that the extra contributions linear in R from the
boundary exactly cancel the contributions from Eq. (49).
This means that to 2PN, the radius R does not enter the
waveform as in GR.
The remaining contributions arise from Λij

s in Eq. (18).
The calculation is similar to that performed in Sec. VI C of
Lang14, but with differing prefactors. In Sec. III B, we
found that the spatial part of the gravitational field hij scales
as R−2 to leading order, leaving no contribution at the
quadrupole order to the gravitational waveform in the far
zone. For the next order, we expand Λs to 0.5PN beyond
the quadrupole to find
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τijBD ¼ π

16
ð3þ 2ωÞφ;ði

monoφ
;jÞ
di þOðϵ2Þ: ð54Þ

We denote by φmono, φdi, φquad, and φoct, the monopole,
dipole, quadrupole, and octopole contributions to φ in
Eq. (45), respectively. The subscript BD refers to the
corrections from the Brans-Dicke field. Since the dipole
term vanishes in the center of mass frame, Λs does not
contribute at this order. At 1PN, we find

τijBD ¼ π

16
ð3þ 2ωÞðφ;ði

monoφ
;jÞ
quad þ φ;ði

monoφ
;jÞ
monoÞ þOðϵ5=2Þ;

ð55Þ
where the cross-term monopoles are evaluated atOðϵÞ. The
expansion in terms of the moments of the scalar field is
analogous to that in Eq. (6.29) of Lang14 and leads to the
1.5PN contribution to the waveform

P1.5hijBD ¼ 4ms

R

�
−

1

12
∂3
t M

ij
s

�
; ð56Þ

where Pk stands for the kth PN order beyond the quadru-
pole formula and ms ¼

P
mAð1 − 2δCsAÞ. This term

enters at 1.5PN beyond the quadrupole and is an extra
contribution to the waveform arising from the scalar
quadrupole. Interestingly, in pure Brans-Dicke theory there
is a new tail term that arises from the dipole-dipole
interactions, which, however, does not appear in our
screened theory as in the near zone we are sourced by
the GR solution for the metric.
Finally, to find the contribution to the metric attributed to

Λs at 2PN beyond the quadrupole, we need to consider only
the monopole-octopole terms as all other contributions at
this order vanish when taking the transverse-traceless
projection,

τijBD ⊃
π

16
ð3þ 2ωÞφ;ði

monoφ
;jÞ
oct þOðϵ3Þ; ð57Þ

where φoct is the octopole term. Calculating the relevant
contributions, we are left with the final 2PN term of the
waveform,

P2hijBD ¼ 4ms

R

�
−

1

60
∂4
t M

ija
s N̂a

�
; ð58Þ

which enters at 2PN beyond the quadrupole. Again, we lose
the additional tail terms found in Brans-Dicke theory due to
the vanishing scalar dipole moment. Therefore, the wave-
form up to 2PN beyond the quadrupole formula corre-
sponds to that of GR with the additional contributions at
1.5PN and 2PN from Λμν

s of the form

hijBD ¼ 4ms

R

�
−

1

12
∂3
t M

ij
s

�
þ 4ms

R

�
−

1

60
∂4
t M

ija
s N̂a

�

þOðP2.5hijBDÞ: ð59Þ

IV. LEADING CORRECTIONS TO THE
WAVEFORM FROM THE NEAR-ZONE

SCALAR FIELD

We have now established that the effect of a scalar field
on the gravitational waveform from a fully screened source
enters at 1.5PN beyond the quadrupole formula and is due
to its radiation-zone contribution. In the following, we shall
compute the leading correction of the near-zone scalar field
on the waveform of a screened source. In a Brans-Dicke
model with no screening, the near-zone scalar field affects
the waveform formula at 1PN [49]. We expect the screened
scalar field to also impact the system at 1PN, but this effect
should be smaller than in the unscreened model, attenuated
by the scaling parameter αq. Thus, αq is expected to
suppress the new near-zone contributions to the waveform
formula. In this work, we shall neglect higher-order con-
tributions Oðα2qψ2Þ, and we limit the post-Newtonian
calculations to 1PN. In Sec. IVA, we find the scalar
contributions to the instantaneous metric and stress-energy
tensors in the near zone. Then in Sec. IV B, we show that
the radiation-zone self-interactions do not affect the gravi-
tational waveform, and we find the scalar corrections to the
Epstein-Wagoner moments.

A. Corrections to the metric and effective stress-energy
tensors in the near zone

Similar to the fully screened case in Sec. III, we first need
to find the near-zone metric gμν and gravitational field hμν

up to 1PN. These tensor fields are described by GR with
the added corrections, αqgμνðqÞ and α

qhμνðqÞ, respectively. From
there, we may calculate the leading α correction to the
stress-energy tensors τμν and τs at the required PN order.
Starting with the metric, the 1PN formalism in the

screened regime was introduced in Ref. [41] and later
extended to Horndeski theories with luminal propagation of
gravitational waves in Ref. [42]. One can use these results
to write the correction to the metric field up to 1PN,

αqgðqÞ00 ¼ αqðψ þ Φ̃1 − 3Aψ − Bψ þ 6Φ̃2 þΦScÞ þOðϵ3Þ;
ð60aÞ

αqgðqÞ0i ¼ αqγ0i þOðϵ5=2Þ; ð60bÞ

αqgðqÞij ¼ ð−αqψÞδij þOðϵ2Þ: ð60cÞ

The post-Newtonian retarded potentials involving the
scalar field are of the form

Φ̃1ðxÞ ¼ −
1

4π

Z
ψðx0Þvðx0Þ2
jx − x0j3 d3x0;

AψðxÞ ¼ −
1

4π

Z
ψðx0Þ½vðx0Þ · ðx − x0Þ�2

jx − x0j5 d3x0; ð61Þ
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Φ̃2ðxÞ ¼
Z

ρðx0Þψðx0Þ
jx − x0j d3x0;

BψðxÞ ¼ −
1

4π

Z
ψðx0Þ½aðx0Þ · ðx − x0Þ�

jx − x0j3 d3x0; ð62Þ

∇2γ0i ¼ −1=2∂i _ψ ; ð63Þ

∇2ΦSc ¼ −δC
V0

2ϕ−nV
0

ψnV þ δK
ϕ4
0

2
Γ2ðϕ0Þð∇ψ · ∇ψÞ2

− δVϕ
3
0Γ3ðϕ0Þ∇2ψð∇ψ · ∇ψÞ; ð64Þ

where∇ is the three-gradient,∇2 is the three-Laplacian, and
the α-order of the scalar field ψ ∼ ψ ðqÞ is kept implicit
throughout this work.
Notice that the scalar field ψ appears abundantly in the

1PN correction to the metric, but we have not yet described
its behavior in the near zone, which we shall resolve now.
We recall the effective scalar field equation in the screened
region as exposed in Eq. (28),

8π

�
T−2

∂T
∂ϕ

�
¼ δCnV

ψnV−1

ϕnV−1
0

V0

þ2δKϕ
3
0Γ2ðϕ0ÞðX̃□ψþ∇μX̃∇μψÞ

þδVϕ
2
0Γ3ðϕ0Þðð□ψÞ2−∇μ∇νψ∇μ∇νψÞ;

ð65Þ
where X̃ ≡ −gμνð0Þ∂μψ∂νψ=2 and all contractions or covar-

iant derivatives are made using the GR metric gð0Þμν . At first
sight, the PN order of the scalar field appears to be
inconsistent among the three different terms on the right-
hand side of Eq. (65). This prevents us from considering a
superposition of screening mechanisms. Since the leading
PN order of the trace of the stress-energy tensor and its
derivative is OðϵÞ, the leading PN order of the scalar
dynamical part ψ depends on the screening mechanism at
play. As discussed in Refs. [42,91], the scaling parameter α
actually carries a PN order, so that the full scalar field term
αqψ has the leading order OðϵÞ. The PN order of the scalar
field OðϵkÞ is determined through Eq. (65), which in turn
determines the PN order of αq ∼Oðϵð1−kÞÞ. From now on,
we refer to the leading PN contribution of the scalar field as
ψk, such that ψ ¼ ψk þOðϵkþ1Þ. The field equation
describing the behavior of ψk then reads

8π
X
A

mAð1 − 2δCsAÞδ3ðx − xAðtÞÞ

¼ −δCnVϕ
nV−1
0 ψnV−1

k V0 − δKϕ
3
0Γ2ðϕ0Þðð∇ψk · ∇ψkÞ∇2ψk

þ ∇ð∇ψk · ∇ψkÞ · ∇ψkÞ − δVϕ
2
0Γ3ðϕ0Þðð∇2ψkÞ2

−∇i∇jψk∇i∇jψkÞ: ð66Þ
Since nV < 1, the field equation for theories exhibiting the
chameleon mechanism is ill-defined. This is due to the fact

that we considered the matter content to be described by
massive pointlike objects. In chameleon screening, compact
objects with high energy densities are screened against the
ambient scalar field. In the pointlike approximation, we
assume vacuum everywhere, while the density of the body
follows aDirac delta distribution, which is incompatiblewith
the screening mechanism at play. Because GWs that are
presently detected originate from very compact objects, one
can simply assume that the scalar degree of freedom is fully
screened by the very high internal density ψk ∝ ρ1−nV ∼ 0,
and we recover the case developed in Sec. III.
We now have all the ingredients to proceed with the

calculation of the α correction to the gravitational field
hðqÞμν as well as the effective stress-energy tensors τðqÞμν

and τðqÞs in the near zone. Starting with the former, we can
use Eq. (12) to deduce its correction term. However, at 1PN
only the 0i-components are affected,

hðqÞ00 ¼ hðqÞij ¼ 0þOðα−qϵ2Þ; ð67aÞ
hðqÞ0i ¼ −γðqÞ0i þOðα−qϵ5=2Þ: ð67bÞ

Note that we included α−q in the neglected PN orders
since the scale parameter carries a PN order itself. Once we
take the full correction term αqhðqÞij, we recover the usual
PN orders. The effective stress-energy tensors τðqÞμν and τqs
are then found by inserting Eqs. (60) and (67) into Eqs. (16)
and (20). For the tensor Λμν, no contribution from the scalar
field is present at 1PN. Furthermore, corrections to Λμν

s are
of Oðα2qψ2Þ and we neglect them. The compact part of the
effective stress-energy tensor in terms of the scalar field and
gravitational potentials can be computed at 1PN using
Eq. (6), which gives

TðqÞ00 ¼
X
A

mAδ
3ðx − xAðtÞÞ

5

2
ψk þOðα−qρϵ2Þ; ð68aÞ

TðqÞ0i ¼ TðqÞij ¼ 0þOðα−qρϵ3=2Þ: ð68bÞ
We notice that only the compact part of the stress-energy

tensor is modified at 1PN, which allows for a straightfor-
ward integration. The 1PN contribution of the near-zone
scalar field to the effective stress-energy tensors can
therefore be obtained using Eqs. (15) and (20):

τðqÞ00 ¼ −
X
A

mAδ
3ðx − xAðtÞÞ

ψk

2
þOðα−qρϵ2Þ; ð69aÞ

τðqÞ0i ¼ 0þOðα−qρϵ3=2Þ; ð69bÞ
τðqÞij ¼ 0þOðα−qρϵ2Þ; ð69cÞ
and

τðqÞs ¼ 3

2ð3þ 2ω0Þ
X
A

mAð1 − 2δCsAÞδ3ðx − xAðtÞÞψk

þOðα−qρϵ2Þ: ð70Þ
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B. Metric and scalar field corrections in the radiation
zone and contribution to the waveform

The metric in the radiation zone is found using a sum
of moments as defined in Eq. (39). The leading correc-
tions from the near-zone scalar field can be calculated from

the stress-energy tensor τðqÞμν and, at 1PN, only the 00-
component of the gravitational field is affected. The Dirac
δ-function in the compact part of the stress-energy tensor
ensures that we can easily integrate the moments and find

hðqÞ00N ðt; x0Þ ¼ −
2

R0
X
A

mAψkðxAðtÞÞ þOðα−qρϵ2Þ: ð71Þ

We recall that R0 is the distance between an arbitrary field
point x0μ in the radiation zone and the source. When taking
the transverse-traceless gauge, this correction term vanishes
and therefore does not contribute to the gravitational
waveform.
One follows a similar strategy to find the corrected scalar

field in the radiation zone. Its moment expansion is defined
in Eq. (43) and at 1PN, we find

φðqÞ
N ¼ 3

2ð3þ 2ω0ÞR0
X
A

mAð1 − 2δCsAÞψkðxAðtÞÞ

þOðα−qρϵ2Þ: ð72Þ
The corrected radiation-zone scalar field is important to
take into account the scalar wave. However, this correction
only affects the gravitational wave beyond 1PN, and we do
not need to compute its contribution to the gravitational
waveform.
As we are restricting ourselves to the leading corrections

at 1PN beyond the quadrupole formula, the radiation-zone
contributions can be neglected. Therefore, we focus our
attention to the near-zone effects and the Epstein-Wagoner
moments. Only the 00-component of the stress-energy
tensor is corrected at this order, and this means that the
near-zone scalar field does not significantly affect the
moments beyond the quadrupole. Furthermore, the con-

tributing part of τðqÞμν is compact and easy to integrate over
the near zone. The result is simply

IðqÞijEW ¼ −
1

2

X
A

xiAx
j
AmAψkðxAðtÞÞ: ð73Þ

This term is to be added to the usual GR result of the
Epstein-Wagoner moments and additional terms in the
waveform emerge from a modification of the equations
of motion of the source as will become clear in Sec. V.

V. BLACK HOLE BINARY WAVEFORM

In Secs. III and IV, we have derived the deviation from
the GR waveform for the N-body problem. However, the
targeted sources of the LIGO-Virgo Collaboration are the

late inspirals of binary objects, composed of black holes
and/or neutron stars. In the following, we shall restrict our
discussion to the case of black hole–black hole binaries on
quasicircular orbits. The quasicircular assumption is well
motivated by the continuing loss of angular momentum
circularizing the orbits [96] for the late inspiral.
In Sec. VA, we treat the case of the fully screened

source, which is described by GR, and give the corrections
to 2PN beyond the quadrupole approximation to the
waveform from a Brans-Dicke scalar field in the radiation
zone. In Sec. V B, we find the effect of the near-zone scalar
field on the equations of motion of the two-body problem.
In Sec. V C, we give the contributions up to 1PN beyond
the quadrupole formula of the screened near-zone scalar
field to the gravitational waveform. Finally, in Sec. V D, we
calculate the order of magnitude of the correction in the
fully screened case as well as in the case with an effective
screened scalar field for the cubic Galileon model [97].

A. Fully screened behavior at 2PN

Since the scalar field in the near zone is first assumed to
be fully screened with no effect on the binary system, we
can use the equations of the two-body system in GR to
describe the behavior of the source to 2PN (see Appendix
or Ref. [31]). We work in the center of mass coordinates
that are valid to second PN order. We define the usual two
body variables: the total mass m ¼ m1 þm2, mass differ-
ence δm ¼ m1 −m2, reduced mass μ ¼ m1m2=m, sym-
metric mass ratio η ¼ μ=m, relative position x ¼ x1 − x2,
relative distance r ¼ jxj, unit vector n̂ ¼ x=r, relative
velocity v ¼ _x, and direction to the observer N̂. The GR
equations of motion to second PN order are presented
in Eq. (A4a).
With these quantities in the center of mass frame and the

equations of motion for the two-body system, we are now
equipped to find the new contributions to the GW in terms
of the Newtonian parameters. We recall that the sensitivity
of black holes is 1=2 and, hence, the scalar field in the
chameleon case leaves no contribution to the gravitational
waveform. Up to 2PN beyond the quadrupole approxima-
tion, the gravitational waveform becomes

hij ¼ hijGR þ hijBD þOðαqψÞ; ð74Þ

hijGR ¼ μ

2R
ðQij

GR þ P0.5Qij
GR þ P1Qij

GR þ P1.5Qij
GR

þ P2Qij
GR þ � � �Þ; ð75Þ

hijBD ¼ ð1 − δCÞ
μ

2R
ðP1.5Qij

BD þ P2Qij
BD þ � � �Þ; ð76Þ

where

P1.5Qij
BD ¼ 8m2

3ð3þ 2ω0Þr2
½2n̂ðivjÞ − _rn̂in̂j�; ð77Þ
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P2Qij
BD ¼ 2mδm

15ð3þ 2ω0Þr2
�
−12ðN̂ · n̂Þvivj − 24ðN̂ · vÞn̂ðivjÞ þ 16

r
_rðN̂ · vÞn̂ðixjÞ

þ 12m
r2

ðN̂ · n̂Þn̂ðixjÞ þ 16_r
r

ðN̂ · n̂ÞvðixjÞ − 16

r
ðN̂ · vÞvðixjÞ − 2m

r3
ðN̂ · n̂Þxixj

−
15_r2

r2
ðN̂ · n̂Þxixj þ 3v2

r2
ðN̂ · n̂Þxixj þ 6_r

r2
ðN̂ · vÞxixj þ 6m

r2
ðN̂ · xÞn̂in̂j

þ 16_r
r

ðN̂ · xÞn̂ðivjÞ − 8

r
ðN̂ · xÞvivj − 4m

r3
ðN̂ · xÞn̂ðixjÞ − 30_r2

r2
ðN̂ · xÞn̂ðixjÞ

þ 6v2

r2
ðN̂ · xÞn̂ðixjÞ þ 12_r

r2
ðN̂ · xÞvðixjÞ

�
: ð78Þ

In Eq. (76), the factor ð1 − δCÞ ensures that only the k-
mouflage and Vainshtein cases are taken into account. We
note that these contributions to the gravitational waveform
originate from the scattering of the GW with the radiation-
zone scalar field, which is itself sourced by the matter
source in the near zone. The waveform hijGR can be found in
WW96 (Sec. VI), where the gravitational constant should
be modified as G → G=ϕ0.

B. Two-body problem and the effect
of the near-zone scalar field

The screened scalar field effectively modifies the metric
at Newtonian and 1PN order; hence, it is expected to affect
the motion of the two black holes at these orders as well.
Since we restrict the calculations of the scalar contribution
to 1PN, we do not need higher PN orders of the two-body
problem. Following the strategy in WW96 and Lang14, we
need to find the relative acceleration a between the two
black holes using their equations of motion. Furthermore,
using the effective Lagrangian that recovers the equations
of motion, we find the positions xj and velocities vj of

black holes j ¼ 1 and j ¼ 2 with respect to the relative
position x and velocity v in the center of mass frame.
Starting with the relative acceleration, it can be found

using the geodesic equation for both black holes and taking
the difference between the two. Mathematically this gives

a ¼ ẍ1 − ẍ2; ð79Þ
ẍi1;2 ¼ −Γi

αβ _x
α
1;2 _x

β
1;2 þ Γ0

αβ _x
α
1;2 _x

β
1;2 _x

i
1;2; ð80Þ

where Γμ
αβ are the Christoffel symbols. We recall that the dot

notation represents the derivative with respect to coordinate
time t, such that the geodesic equation is expressed using
coordinate time, rather than proper time, thus taking a
different form than the usual geodesic equation. Rewriting
the equations of motion at Newtonian and PN order leads to
the result

a ¼ að0ÞN þ αqaðqÞN þ að0ÞPN þ αqaðqÞPN; ð81Þ

aðqÞN ¼ −
1

2
ðψ 0

1ðrÞ þ ψ 0
2ðrÞÞn̂; ð82Þ

aðqÞPN ¼ 1

r2
ðm2ψ1 þm1ψ2 þ 3m1ψ1 þ 3m2ψ2Þn̂þ _rðγ01 − γ02Þ þ ðΦSc;1

0 þΦSc;2
0Þn̂

þ 1

r
ðm2ψ

0
1 þm1ψ

0
2 − 3m1ψ

0
1 − 3m2ψ

0
2Þn̂þ ðm2

2ψ
0
1 þm2

1ψ
0
2Þ
�

v2

2m2
n̂ −

1

2m2
_rv

�

−
1þ μ

2m
ðm2ψ

0
1 þm1ψ

0
2Þ_rvþ

m2

2m
ð_rγ01 − ðv · γ01Þn̂Þ −

m1

2m
ð_rγ02 − ðv · γ02Þn̂Þ

−
1

m2
ðm2

2ψ
0
1 þm2

1ψ
0
2Þ_rv −

1

2πr5

�
m1ψ1 þm2ψ2 −

r
4
m1ψ

0
1 þ

r
4
m2ψ

0
2

�
n̂

þ 1

8m2πr4
½ðm2

2ψ1 þm2
1ψ2Þð6_rvþ 9_r2n̂Þ − 3ðm2

2ψ
0
1 þm2

1ψ
0
2Þr_r2n̂

þ 16πðm2
1ψ2 þm2

2ψ1Þv2n̂ − 4πðm2
2ψ

0
1 þm2

1ψ
0
2Þrv2n̂�; ð83Þ

and að0ÞN and að0ÞPN are the Newtonian and post-
Newtonian accelerations from GR and can be found in
Appendix. Primes denote derivatives with respect to r.

When calculating the Christoffel symbols, we made use of
the Newtonian relations a1 ¼ −m1=r2n̂ and a2 ¼ m2=r2n̂
as well as
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∂v1
∂xj2

¼ 1

2r
v1n̂j and

∂v2
∂xj1

¼ −
1

2r
v2n̂j ð84Þ

from jvij ∝ 1=
ffiffiffi
r

p
.

To find thevelocities vj, j ¼ 1, 2with respect to the relative
velocity, we can make use of the vanishing total momentum
P ¼ 0 in the center of mass frame. The latter is derived from
the total Lagrangian that is deduced using the equations of
motion (80). Since we are only interested in the waveform at
1PN, it is sufficient to find the velocities at Newtonian order.
The Lagrangian at this order can be written as

LN ≡ Lð0Þ
N þ αqLðqÞ

N ¼ m1

2
v21 þ

m2

2
v22 þ

m1m2

r

− αq
1

2
ðψ1ðrÞ þ ψ2ðrÞÞ; ð85Þ

where LðqÞ
N can easily be found using Eq. (82). Therefore,

since we take the derivative of the Lagrangian with respect to

thevelocities to find themomentum andLðqÞ
N only depends on

the position of both objects, we recover Newtonian gravity,
namely

PN ≡ ∂LN

∂v1 þ ∂LN

∂v2 ¼ Pð0Þ
N : ð86Þ

Hence, thevelocitieswith respect to the relativevelocity at the
required order simply become

v1 ¼
m2

m
v and v2 ¼ −

m1

m
v: ð87Þ

The individual positions xj with respect to the relative
position are found by integrating the velocities (87) and we
simply find

x1 ¼
m2

m
x and x2 ¼ −

m1

m
x: ð88Þ

C. Near-zone corrections at 1PN beyond
quadrupole formula

The equations of motion for the binary system are

already modified at Newtonian order through aðqÞN ≠ 0 in
Eq. (83). Therefore, we expect the quadrupole formula at
0PN to be affected. Nonetheless, the effect of this extra
scalar force is suppressed by the small parameter αq with
respect to the GR contribution. Using the correction term
(73) to the Epstein-Wagoner quadrupole moment and
the results from Sec. V B, we can find the gravitational
waveform up to 1PN beyond the quadrupole approximation
of a binary black hole inspiral affected by a screened scalar
field. The part of the waveform hijGR described by GR can be
found in WW96 (Sec. VI), where the gravitational constant
is replaced by G → G=ϕ0 and h

ij
BD enters only at higher PN

order. We calculate the extra scalar contributions αqhðqÞij
for which the result to 1PN is

hij ¼ hijGR þ αqhðqÞij þOðα2qψ2Þ; ð89Þ

hðqÞij ¼ μ

2R
½QðqÞij þ P0.5QðqÞij þ P1QðqÞij þ � � ��; ð90Þ

where

QðqÞij ¼ −rðψ 0
1 þ ψ 0

2Þn̂in̂j; ð91Þ

P0.5QðqÞij ¼ δmr
2m

½ðψ 0
1 þ ψ 0

2Þððv · N̂ − _r n̂ ·N̂Þn̂in̂j

− 6ðn̂ · N̂Þvðin̂jÞÞ þ ðn̂ · N̂Þr_rðψ 00
1 þ ψ 00

2Þn̂in̂j�;
ð92Þ

P1QðqÞij ¼ 2raðqÞðiPN n̂jÞ þ n̂in̂j

12
½ð16 − 42ηþ ð2 − 6ηÞðn̂ · N̂Þ2Þmðψ 0

1 þ ψ 0
2Þ − 6ð1 − 3ηÞr2 _r2ðψ 00

1 þ ψ 00
2Þ

þ6ð1 − 3ηÞðψ 0
1 þ ψ 0

2Þðr_rðN̂ · vÞ − 2rv2 þ 4ðn̂ · N̂ÞmÞ

þ 6

m
ððmþ rð_r2 − v2ÞÞðm1ψ

0
1 þm2ψ

0
2Þ − r2 _r2ðm1ψ

00
1 þm2ψ

00
2ÞÞ�

þ rn̂ðivjÞ½ð3η − 1Þðψ 0
1 þ ψ 0

2Þð2_rþ ðn̂ · N̂Þð4N̂ · v − _r n̂ ·N̂ÞÞ

−
2_r
m

ðm1ψ
0
1 þm2ψ

0
2Þ þ ð3η − 1Þðn̂ · N̂Þr_rðψ 00

1 þ ψ 00
2Þ�

−
vivj

2m
½2ðm1ψ1 þm2ψ2Þ þ 4ð1 − 3ηÞmrðn̂ · N̂Þ2ðψ 0

1 þ ψ 0
2Þ�: ð93Þ

The corrections at 0PN and 0.5PN are only due to the
modification of the equations of motion of the binary
system at Newtonian order, while the scalar contributions at

1PN originate from the extra scalar force at 0PN and 1PN
as well as from the modification of the Epstein-Wagoner
quadrupole moment.
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D. Example: Galileon cosmology

With the leading corrections to GR from a scalar field in
the fully screened case and in the case where near-zone
effects are considered at hand, we are ready to give an order
of magnitude estimate of those. As mentioned earlier, the
near-zone scalar field affects the waveform at the quadru-
pole order, but the modification is suppressed with αq.
Some of the most frequently studied models exhibiting the
Vainshtein mechanism are the Galileons [97]. We focus on
the cubic Galileon model described by the action

S½ϕ; g� ¼ M2
p

2

Z
d4x

�
ϕRþ 2

ω

ϕ
X −

α

ϕ2
X□ϕ

�
; ð94Þ

where α and ω are real parameters. To have an impact on
late-time cosmology and contribute to cosmic acceleration
(cf. [34]), a possibility is to have α ∼H−2

0 , when1 ω ∼ −10
[98]. This is the same order of magnitude as in Ref. [71],
where the cubic Galileon associated with the Dvali-
Gabadadze-Porrati (DGP) model [99,100] is considered.
We therefore use these orders of magnitude for our
comparison. In the following, we adopt units such
that G=ϕ0 ¼ c ¼ ℏ ¼ 1.
We start by calculating the near-zone contribution of the

scalar field. Following the scaling method [39], we find that
the unique value for q in the case of the Vainshtein
mechanism is q ¼ −1=2 and, hence, the damping param-
eter is of the order αq ∼H0. The field equation for the PN
scalar field ψ is found using Eq. (66) and is written as

4π
X2
A¼1

mAδ
3ðx − xAÞ ¼ ðð∇2ψÞ2 −∇i∇jψ∇i∇jψÞ: ð95Þ

To solve this equation for the binary case, we follow
the strategy presented in Ref. [101] and we define
ψðxÞ ¼ ψ1ðxÞ þ ψ2ðxÞ þ ψΔðxÞ, where ψ1;2 is the scalar
field generated by thebody1,2, respectively, andψΔ includes
the nonlinearities. ψ 0

1;2ðrÞ are obtained from Eq. (95) assum-
ing spherical symmetry, and we solve them for each body
separately. Then, we find ψ 0

ΔðrÞ by substituting the solutions
ψ 0
1;2ðrÞ into Eq. (95), and we assume cylindrical symmetry

around the axis perpendicular to the orbital plane for the
whole system. We require the solution to vanish asymptoti-
cally, setting an integration constant to zero, and get

ψ 0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þm2

2r

r
; ð96Þ

for which the PN order isOðϵ1=2Þ, which is what we expect
from Eq. (95). The contribution of this extra degree of
freedomon thegravitationalwaveform is given byEq. (91) as

αqQðqÞij ¼ −αqrðψ 0ðx1Þ þ ψ 0ðx2ÞÞn̂in̂j

¼ −αqm

ffiffiffiffiffi
2r
μ

s
n̂in̂j; ∀ r < R: ð97Þ

We recall that αq also carries a PN order, in this caseOðϵ1=2Þ,
so that the overall PN order of the correction to the quadru-
pole formula is the same as that of GR.
The leading contribution from the radiation zone in the

fully screened case can be found directly from the wave-
form formula (77). We consider quasicircular orbits, for
which the relative velocity v is perpendicular to the relative
position x at Newtonian order and _r ≃ 0. Furthermore,
using Newtonian approximation, the norm of the relative
velocity is v ≈

ffiffiffiffiffiffiffiffi
μ=r

p
. The correction to the gravitational

waveform is then given by

P1.5Qij
BD ¼ 16

3ð3þ 2ωÞ
m2

r2
μ

r
n̂ðiv̂jÞ; ð98Þ

where v̂≡ v=kvk is the unit velocity vector. This correction
is comparable to the 1.5PN order terms of GR. In
comparison, the GR quadrupole of the gravitational wave-
form may be approximated as

Qij
GR ¼ 2

�
vðivjÞ −

m
r
n̂in̂j

�
≃ −2

m
r
n̂in̂j: ð99Þ

The relative amplitude of each contribution, Eqs. (97) and
(98), may be compared to Eq. (99) by neglecting factors of
order unity. We obtain

jαqQðqÞijj ¼ αqffiffiffi
μ

p r3=2jQij
GRj; ð100Þ

jP1.5Qij
BDj ¼

1

3þ 2ω

mμ

r2
jQij

GRj: ð101Þ

By comparing αqQðqÞij and Qij
GR, one can deduce that for a

binary system with higher masses and higher orbital period
(i.e., higher r), the effect of the screened scalar field is
maximized compared to the GR quadrupole formula. The
scalar contribution is also strengthened when the difference
between the two masses is high, minimizing μ in the
denominator of Eq. (100). In contrast, the effect of the
Brans-Dicke scalar field in P1.5Qij

BD is amplified compared
to that of GR for smaller and heavier systems, but
attenuated for asymmetric masses.
Hence, we consider two different systems for the

comparison: the binary black holes that produced the
first detected GW [43] and the inspiral of a stellar black
hole with m1 ¼ 10m⊙ around Sagittarius A� with m2 ¼
4 × 106m⊙, as may be observed in the close future by LISA
[102,103]. The maximal amplitudes for GW150914 are

1The cubic interaction gives an additional contribution to the
kinetic term, avoiding ghost instabilities [98].
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αqQðqÞij ∼ 4 × 10−20Qij
GR; ð102Þ

P1.5Qij
BD ∼ 3 × 10−3Qij

GR ð103Þ

for the frequency range 35–200 Hz. In particular, Brans-
Dicke effects are stronger at higher frequencies, while near-
zone contributions are amplified at lower ones. In the case
of a stellar black hole around Sagittarius A�, the observable
frequency range of LISA is expected to be between
0.1 mHz and 1 Hz, which leads to

αqQðqÞij ∼ 5 × 10−12Qij
GR; ð104Þ

P1.5Qij
BD ∼ 5 × 10−9Qij

GR: ð105Þ

In the second case, the radiation-zone contribution is
weakened due to the mass asymmetry, but in the case of
a supermassive black hole merger with objects of compa-
rable masses, the Brans-Dicke effects would be of the order
ð10−3 − 10−2ÞQij

GR. The long-range effect of the scalar field
has therefore a stronger impact on the gravitational wave-
form with the 1.5PN term lying about 1 order of magnitude
below LISA sensitivity [104]. The near-zone correction on
the waveform of the screened scalar field can be considered
negligible in all cases of interest.

VI. CONCLUSIONS

In this work, we have investigated the impact of screen-
ing mechanisms on the GW waveform from compact
sources. Our results are explicitly applicable to the three
most prominent screening mechanisms: the Vainshtein,
k-mouflage, and chameleon effects. For our calculations
we employed the modified field equations in their relaxed
form and solved them with retarded integrals over the
manifold. We first considered the case where the system is
fully screened, i.e., described by GR in the near zone and
Brans-Dicke theory in the radiation zone. The radius
distinguishing these zones is identified as the screening
radius of the underlying gravity theory. It was found that
the boundary terms exactly cancel between the near and
radiation zones and the screening radius does not enter the
waveform. The deviations from the GR waveform that this
model induces appear at 1.5PN beyond the quadrupole
formula.
Further, we found the leading corrections in the near

zone to the fully screened results induced by the scalar
field. In this case, we derived the leading corrections in
the stress-energy tensor modifying the Epstein-Wagoner
moments at 1PN. The near-zone metric was also found to
be modified at Newtonian and post-Newtonian orders,
leading to 0PN, 0.5PN, and 1PN corrections beyond the
quadrupole formula from the scalar force. Although these
contributions have low PN order, they are suppressed by the
nature of screening, which consequently makes these

deviations subdominant to the Brans-Dicke corrections
found at 1.5PN from the unscreened radiation zone.
Importantly, in Chameleon models the waveform is unaf-
fected for a black hole source by the scalar field, but the
effect is present for other compact objects, such as
neutron stars.
Finally, we applied our results to a Galileon cosmology

toy model and estimated the amplitude of the deviation
from GR for a black hole binary. We found that in the most
optimistic scenarios the waveform amplitude, and hence
luminosity distance, deviates from its GR counterpart by
one part in 1011 from the modification of the near-zone
metric by the screened scalar field and one part in 102 from
the radiation-zone Brans-Dicke field. While the near-zone
corrections are not realistically measurable in the foresee-
able future, radiation-zone contributions might be observ-
able with future detectors. In particular, LISA and the
Einstein telescope are forecasted to have an order 10−2

error on the luminosity distance [104,105]. Hence, the
effect of a screened Horndeski theory on the waveform
may be detectable at the 1-σ level in the near future. The
predicted radiation-zone contributions depend on the
Brans-Dicke parameter, and we expect future GW mea-
surements to set new constraints on this parameter.
While the effect of screening on the waveform is small, it

may still play an important role in multiband gravitational
wave detection [106]. The LISAmission will detect binaries
several years before merger [102,103,107]. Consequently, as
the binary evolves, it exits the LISA sensitivity band only to
enter ground-based detectors sensitivity bands a few years to
decades later. The cumulative effect of the modified wave-
form energy emission would accumulate over this time
causing a dephasing of the screened signal and one predicted
by GR. Further analysis on the energy loss due to the
modified GW and the suppressed scalar wave would allow
one to predict a different phase and time of merger in
comparison to GR, a potential test of any given screening
mechanismdespite thedifference in the signal itself being too
small to detect directly in ground-based detectors [108]. In
addition, recent relativistic numerical analysis has shown that
kinetic screening might not play a role in the strong field
regime leaving the scalar contributions as strong as in Brans-
Dicke theories [109,110].
In the analysis presented, we made several simplifying

assumptions. First, we omitted the contribution of the scalar
waves on the detectors, which may play a significant role.
Even though such waves are screened in the emission and
detection regions weakening their effects, future work
should be devoted to their study. We made the standard
assumption that the orbit was circularized for late inspiral
calculations. However, even if the system were elliptical,
one would expect that the modification to the waveform
caused by dropping this assumption remains small since the
system still lies within the screened region. In this work, we
restricted our final calculations to the case of black hole
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binaries, and one may wonder how the results would
change for neutron star binaries or mixed systems. For
the k-mouflage and Vainshtein mechanisms, one can argue
that the field equation governing the behavior of the near-
zone scalar field satisfies Gauss’s law, thus the composition
of the objects does not affect their motion, only their mass
does. This is not the case for the chameleon mechanism,
where the sensitivity to the scalar field varies with the
compactness. For theories with such screening, one would
need to include near-zone effects of the scalar field in
the case of neutron stars, but we expect these contributions
to be strongly negligible compared to the Brans-Dicke
corrections from the radiation zone. Finally, we have not
considered the contributions originating from the intrinsic
spin of each object. In GR, these contributions modify
the Epstein-Wagoner moments and enter in the waveform
formula at 1PN beyond quadrupole order [50]. Therefore,
we expect that, in the fully screened scenario treated in
Sec. III, only GR contributions affect the waveform (see
Appendix F of WW96). When calculating the leading
corrections from the near-zone scalar field in Sec. IV, one
could expect new spin contributions involving the scalar
field entering at 1PN, but these terms would also be
strongly suppressed by the screening mechanism.
In conclusion, this work supports the use of GW

emission processes abiding by GR in the study of screened
modified gravity theories. Nonetheless, we raised the
possibility to probe the effect of a screened scalar field
on GWs with the sensitivity of our future detectors. Even
though we have only investigated cubic Galileon inter-
actions as a specific case, this study offers an efficient
method to check for a wide range of Horndeski theories
whether scalar field effects can be neglected in the GW
emissions of the respective models.
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APPENDIX: TWO-BODY PROBLEM IN
GENERAL RELATIVITY

For completeness we shall provide here the details of the
calculation of the gravitational waveform from a binary
system with masses m1;2 and positions x1;2 conducted in
Sec. VA. In performing this calculation we change

coordinates to place the center of mass of the system at
the origin. This is a common trick in classical physics
where the mass of each body is only its rest mass. However,
we consider PN corrections to the system, and so the
respective mass of an object is also changed by its potential
and kinetic energy. Using the corrected mass changes the
center of mass, and so its definition changes accordingly.
The center of mass is found to be

X ¼ m−1ðm1x1 þm2x2Þ þ f ð1Þ þOðϵ2Þ; ðA1Þ

f ð1Þ ¼ −
1

2
η
δm
m

�
v2 −

m
r

�
ðx1 − x2Þ; ðA2Þ

where m ¼ m1 þm2, μ ¼ m1m2=m, η ¼ μ=m,
δm ¼ m1 −m2, and r ¼ jx1 − x2j. One may worry that
as we are calculating the metric to Oðϵ4Þ, we may need the
center of mass up toOðϵ2Þ, but the only place the correction
enters is in the leading-order quadrupole term, where it
cancels out exactly.
We wish to describe the system in terms of the relative

separation x ¼ x1 − x2 and its derivatives. In the center of
mass coordinate system, X ¼ 0, we find

x1 ¼ ðm2=mÞx − f ð1Þ þOðϵ2Þ; ðA3aÞ

x2 ¼ −ðm1=mÞx − f ð1Þ þOðϵ2Þ: ðA3bÞ

It will be useful to define the system in terms of
Newtonian objects in the final expression. So we define
the Newtonian angular momentum, L ¼ μx × v, and unit
normal to the orbital plane λ̂ ¼ L × n̂.
When computing the time derivatives of the center of

mass coordinates, we will make use of the equations of
motion for the black hole binary. As the near zone is
described by GR, the equations of motion can be taken
readily from sources such as Ref. [96]. The accelerations
due to the gravitational forces to first PN order are found
to be

a ¼ aN þ aPN þOðϵ2Þ; ðA4aÞ

aN ¼ −
m
r2

n̂; ðA4bÞ

aPN ¼ −
m
r2

ðAPNn̂þ BPN _rvÞ; ðA4cÞ

where for convenience we define

APN ¼ −2ð2þ ηÞm
r
þ ð1þ 3ηÞv2 − 3

2
η_r2; ðA5aÞ

BPN ¼ −2ð2 − ηÞ: ðA5bÞ
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Derivatives of the equations of motion are also needed.
In order to calculate _aj and äj, we make use of the identities

_̂n ¼ v
r
−
_rn
r
; ðA6aÞ

̈r ¼ ̈rN þ ̈rPN; ðA6bÞ

̈rN ¼ −
m
r2

þ v2

r
−
_r2

r
; ðA6cÞ

̈rPN ¼ −
m
r2

�
α
m
r
þ βv2 þ ðγ þ σÞ_r2

�
; ðA6dÞ

which give _aj to the required order as

_ai ¼ ð _aNÞiN þ ð _aPNÞiN; ðA7aÞ

ð _aNÞiN ¼ 2m_r
r3

n̂i −
m
r3
vi; ðA7bÞ

ð _aPNÞiN ¼ −18
m2 _r
r4

n̂i þ 4η
m2

r4
vi þ ð3þ 12ηÞm_rv2

r3
n̂i

−
15

2
η
m_r3

r3
n̂i −

�
12 −

15

2
η

�
m_r2

r3
vi

þ ð3 − 5ηÞmv2

r3
vi; ðA7cÞ

and äj to the required order as

äi ¼ ðäiNÞN þ ðäiNÞPN þ ðäiPNÞN; ðA8aÞ

ðäiNÞN ¼ −2
m2

r5
n̂i − 15

m_r2

r4
n̂i þ 3

mv2

r4
n̂i þ 6

m_r
r4

vi;

ðA8bÞ

ðäiNÞPN ¼ ð8þ 4ηÞm
3

r6
n̂i − ð2þ 6ηÞm

2v2

r5
n̂i

þ ð12 − 3ηÞm
2 _r2

r5
n̂i − ð4 − 2ηÞm

2 _r
r5

vi; ðA8cÞ

ðäiPNÞN ¼ −36η
_rm2

r5
vi − ð30 − 42ηÞm_rv2

r4
vi

− ð60 − 45ηÞm_r3

r4
vi þ ð126 − 57ηÞm

2 _r2

r5
n̂i

− ð15þ 165=2ηÞmv2 _r2

r4
n̂i þ 102=2η

m_r4

r4
n̂i

þ ð22þ 2ηÞm
3

r6
n̂i þ ð8 − 10ηÞm

2v2

r5
n̂i

þ ð3þ 15ηÞmv4

r4
n̂i: ðA8dÞ
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Chapter 3

Phenomenology of bouncing scenarios

3.1 The inflationary paradigm

The big bang model of the universe is strongly supported by experimental evidences and well
established in today’s cosmological paradigm. However, it fails to answer some questions
about the way the universe is arranged, which is connected in a way or another to an
initial condition problem. If the big bang model is the final theory to explain the early
universe, then the initial conditions of the universe must be fine tuned to account for the
observed cosmological signatures. One of such peculiarities is the flatness problem. The
spatial curvature is yet unobserved by CMB and BAO experiments and a strong constraint
is already set on the curvature parameter today

∣∣Ωk,0

∣∣ < 0.003 [24], which means that
|Ωk| < 10−16 at the time of nucleosynthesis. It seems that the matter content of the universe
perfectly matches the critical value necessary for a flat space universe, which appears as a
coincidence in the big bang model. Moreover, the temperature of the CMB is almost exactly
isotropic, which means that different regions of the universe, that have never been in causal
contact, happen to have the same temperature. This horizon problem is again a peculiarity
that is unexplained by the big bang model.

Interestingly, both problems are alleviated if the universe had undergone a period of
accelerated expansion at its beginning [117,118]. An accelerated expansion is mathematically
defined as ä > 0, with the dot standing for the derivative with respect to time. This
is achieved if the equation of state parameter of the energy content is small enough, i.e.
w < −1/3 from the Raychaudhury equation. This means that the density parameter of the
universe would evolve as Ω ∼ aq, with q = −3(1 + w) > −2, hence it grows faster than the
curvature parameter Ωk ∼ a−2, which becomes negligible compared to the matter content
for a long enough period of accelerated expansion. Furthermore, one can make far away
regions of the universe in causal contact with such an accelerated expansion. Two regions
in space-time are in causal contact if they lie in each others particle horizon. The comoving
particle horizon was defined as

RP =

∫ t0

tbb

dt′

a(t′)
, (3.1)
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which can be recast under the form

RP =

∫ ln a0

ln 0

(aH)−1d ln a . (3.2)

RH = (aH)−1 is in fact the comoving Hubble horizon and evolves as RH ∼ a(1+3w)/2. Hence,
for w < −1/3 the comoving Hubble horizon increases when going backward in time, making
the comoving particle horizon bigger than it would have been for a universe dominated by
radiation for example. In order to resolve both problems with an accelerated expansion, the
scale factor must grow by at least a factor e60 during that period. If ai is the scale factor at
the onset of the inflationary period and arh the scale factor at the time of reheating, the end
of the period, then arh = eNai, where the number of e-folds N should be greater than 60.
This comes from the fact that, if what we call inflation is the correct model to describe the
very early universe, then the largest scale that are seen in the CMB temperature anisotropies
were created 60 e-folds before the reheating.

While a period of inflation can solve some of the main issues with the big bang model,
we are left to find a physical mechanism that could explain an accelerated expansion. In the
context of dark energy, we already saw that a scalar field can play such a role and popular
models of inflation consist of a universe filled with a scalar field that is commonly called
inflaton [119]. As a first model to understand the dynamics of inflation we can use scalar
field φ with a general potential V (φ). The energy-momentum tensor of such a field is

Tµν = ∂µφ∂νφ+ gµν
(
X + V (φ)

)
, (3.3)

which can then be used in the Einstein field equations. We recall that X = −∂µφ∂µφ/2
is the kinetic term of the scalar field. The resulting field equations for the homogeneous,
isotropic and flat space case gives

H2 =
8π

3

(
1

2
φ̇2 + V (φ)

)
, (3.4)

Ḣ = − 1

16π
φ̇2 , (3.5)

φ̈+ 3Hφ̇+ V,φ(φ) = 0 . (3.6)

Out of these three equations, only two are independent. The scalar field actually behaves
as a perfect fluid with varying equation of state and its fluid properties are

ρφ =
1

2
φ̇2 + V (φ) and pφ =

1

2
φ̇2 − V (φ) . (3.7)

We saw that in order to have an accelerated expansion with w < −1/3, we need

ε := − Ḣ

H2
=

φ̇2

16πH2
< 1 , (3.8)

and since we want the inflationary period to last long enough, we want ε to remain small
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during that period. Hence, we require that

η̄ :=
ε̇

Hε
< 1 . (3.9)

Therefore, we need to choose a scalar potential that satisfies these conditions during a
sustained period.

In what we call the slow roll approximation, we go one step further and require that
ε, η̄ � 1. These more restrictive conditions make it simpler to have a long period of inflation.
One can then show using the field equations that

ε ≈ εV :=
1

2

(
V,φ
V

)2

and η̄ ≈ ηV :=

∣∣V,φφ
∣∣

V
, (3.10)

where εV and ηV are called the slow roll parameters. From the definition of ε (3.8), we see
that during the slow roll phase the universe behaves as a de-Sitter space-time with w ≈ −1,
hence with an exponential growth of the scale factor. To measure how long inflation lasts,
we can derive the number of e-folds by which the scale factor grows

N :=

∫
d ln a ≈

∫ φrh

φi

dφ√
2εV

. (3.11)

While the slow roll approximation and the use of the scalar field in constructing a long
lasting accelerated expansion seem somewhat arbitrary, it is so far well motivated by the
temperature anisotropies of the CMB as we will see in the next section 3.2.

3.2 The origin of structures

The existence of inhomogeneities in the distribution of matter today and the temperature
anisotropies proved us that the universe does not fully satisfy the cosmological principle.
Moreover, these small fluctuations are essential in modern cosmology, from the BAO to the
study of large scale structures. Beyond its ability to solve the flatness and horizon problems,
inflation offers a great explanation for the origin of the fluctuations as quantum perturba-
tions at the onset of the inflationary period. In this section, we introduce the concept of
cosmological perturbation theory in the context of inflation, discuss the experimental con-
sequences of these perturbations on the CMB and explain how all structures in the universe
might have emerged from quantum fluctuations.

3.2.1 Cosmological perturbation theory for inflation

Temperature anisotropies in the CMB are small compared to the background radiation,
supporting the use of perturbation theory in the context of the early universe. During
inflation the universe is assumed to be filled with a scalar field and the action of the system
is

S
[
φ, g
]

=
1

8π

∫
d4x
√−g

(
1

2
R +X − V (φ)

)
. (3.12)
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The goal is now to write this action at linear order in the perturbation of the metric and
scalar field, namely

gµν = ḡµν + δgµν and φ = φ̄+ δφ , (3.13)

where ḡµν is the background FLRW metric and φ̄ is the background scalar field responsible
for the accelerated expansion. As a symmetric rank two tensor, the metric perturbations
δgµν can be decomposed into ten degrees of freedom, four scalars, four vectors and two
tensors. Together with the scalar field perturbation δφ, we have a priori eleven degrees of
freedom. The interesting consequence of this decomposition of the perturbations is that
the perturbations of different spin are decoupled and evolve independently at leading order.
Thanks to the gauge invariance under general coordinate transformation, which is a 4-
dimensional gauge group, we can get rid of 2 · 4 = 8 degrees of freedom. The elimination
of twice the amount of degrees of freedom as compared to the dimensional size of the gauge
group can be understood as follow. Out of the ten Einstein field equations describing the
metric perturbations in their canonical form, four are non-dynamical, meaning that they do
not contain second derivatives. This implies that the momentum associated to the variable
is zero leading to four initial constraint equations. Moreover, the field equations for these
non-dynamical variables add four other constraints, reducing the total number of degrees
of freedom by eight [7]. Eventually, we are left with three degrees of freedom. One can
show that for single scalar field inflation, the vector degrees of freedom don’t propagate [15],
we are therefore left with one scalar and two tensor degrees of freedom. Fortunately, the
tensor perturbations are already gauge invariant, but one needs to make sure that the scalar
perturbation that is used is invariant as well. An interesting but non-unique choice can
be [15]

δφ = 0 , δgij = a2
(
(1− 2R)δij + hij

)
, ∂ihij = hii = 0 , (3.14)

where R is the scalar perturbation and hij the tensor ones.
Since both types of perturbations are decoupled at leading order, we can work on them

independently. Starting with the scalar perturbation, its action at second order is

S(2)

[
R
]

=
1

16π

∫
d4x a3 φ̇

2

H2

(
Ṙ2 − a−2∂iR∂iR

)
, (3.15)

where we renamed φ̄→ φ for simplicity. This action is obtained after expanding the action
(3.12) in powers of R and ∂µR. It is common practice to rewrite the scalar perturbation
using the Mukhanov-Sasaki variable

vS = zR , with z =
aφ̇

H
, (3.16)

and using the conformal time η as the new time coordinate, giving us

S(2)

[
vS
]

=
1

16π

∫
dηd3x

(
v′2S + ∂ivS∂

ivS +
z′′

z
v2

)
, (3.17)

where the prime notation stands for the derivative with respect to the conformal time. Since
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we assume flat space, any functions defined on R3 can be written as a Fourier expansion of
the form

vS(η,x) =
1

(2π)3

∫
d3k vS(η,k)eik·x . (3.18)

The equation of motion for the scalar modes can be found using the Euler-Lagrange equation
of the action for vS (3.17) and we get

v′′S(η, k) +

(
k2 − z′′

z

)
vS(η, k) = 0 . (3.19)

Note that the scalar modes only depend on the norm k := |k| of the wave vector, due to
the isotropic assumption. Eq. (3.19) is also called the Mukhanov-Sasaki equation for scalar
modes.

Let’s now move on to the tensor perturbations. We follow a similar path as in the scalar
case but in a different order, i.e. find the action at second order for the perturbations hij,
rewrite the action in terms of the Fourier modes

hij =
1

(2π)3

∫
d3k

∑

s=+,×
εsijh

s(η,k)eik·x , (3.20)

define the Mukhanov-Sasaki variable vsT (η, k) = ahs(η, k)/
√

32π and find the equation of
motion for the modes using the Euler-Lagrange equation, namely

vs′′T (η, k) +

(
k2 − a′′

a

)
vsT (η, k) = 0 . (3.21)

We found the evolution equation for both types of perturbations in Fourier space. We are
left to describe what are the physical consequences of these perturbations and where do they
come from.

But first, we want to understand how these fluctuations evolve in a quasi-de Sitter space-
time, which is the behaviour during slow roll inflation. If the scale factor grows exponentially
fast, one can show that

z′′

z
≈ a′′

a
≈ 2

η2
. (3.22)

Therefore, both types of fluctuations evolve as

v′′(η, k) +

(
k2 − 2

η2

)
v(η, k) = 0 . (3.23)

Moreover, one can normalize η such that η(trh) = 0, the conformal time is zero at reheating
and η(t→ tbb)→ −∞. This implies that the evolution equation (3.23) can be separated into
two different regimes. At very early times when |η| � k−1, the perturbations oscillate as a
harmonic oscillator and this will be useful in the quantum treatments of the fluctuations.
In the second regime, when the mode k becomes large relative to the Hubble horizon, i.e.
|η| � k−1, the fluctuations can behave in two different ways, either v(a) ∼ a or v(a) ∼ a−2.
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We will see in Sec. 3.2.2 that in the case of perturbations that are created by quantum
fluctuations of the Bunch-Davies vacuum, the perturbations behave as the former case and
they are said to be adiabatic. This means that the quantities

R(η, k) ∼ vS(η, k)

z(η)
and hs(η, k) ∼ vsT (η, k)

a(η)
, (3.24)

are frozen at super-Hubble scales until inflation comes to an end at reheating. These are
therefore interesting properties to study and constrain using CMB measurements.

3.2.2 Quantum origin of the perturbations

In the previous subsection, we found the equations (3.19) and (3.21) that describe the
evolution on a flat FLRW space-time of the scalar and tensor perturbations, respectively,
during the inflationary period, when the universe was assumed to be dominated by the
inflaton field. The theory of single field inflation predicts that the universe started with
a quasi-de Sitter phase, with the scale factor growing exponentially fast. In particular,
we showed that if we go far enough in the past η → −∞, we can find a time when all
the relevant modes k were far inside the Hubble horizon and the fluctuations behaved as a
harmonic oscillator. This is fortunate because we know very well how to quantize a Harmonic
oscillator and we can therefore describe the fluctuations quantum mechanically.

Let’s proceed to the canonical quantization of the general perturbation vk(η) := v(η, k),
whose evolution equation is Eq. (3.23), and which can represent both scalar and tensor
perturbations. The fluctuation vk and its canonical momentum πk := ∂L/∂v′k are promoted
to operators, which satisfy the commutation relation

[v̂k, π̂k′ ] = iδ(k + k′) . (3.25)

Furthermore, the fluctuations can be expanded into a creation and annihilation operator,
namely

v̂k(η) = vk(η)âk + v∗k(η)â†k , (3.26)

with v∗k the conjugate of vk, the latter satisfying the classical equation of motion (3.23). The
operators âk and â†k must satisfy the commutation relation

W (vk)
[
âk, â

†
k

]
= 1 , (3.27)

where

W (vk) = i
(
v∗kv
′
k − v∗′k vk

)
, (3.28)

is the Wronskian of vk. Through a renormalisation of v̂k, we can choose W (vk) = 1, without
loss of generality. This gives us the first initial conditions for the function vk(η). With the
use of the creation operator, provided that we define a vacuum state |0〉, we can construct the
Hilbert space of quantum states. The last ingredient to fully describe the quantum behaviour
of the fluctuations is therefore the vacuum state. In the case of the harmonic oscillator the
vacuum state is uniquely defined as the minimum energy eigenstate of the Hamiltonian
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operator. The requirement that the vacuum state is an eigenstate of the Hamiltonian fixes
the second initial condition for vk(η). We can see this from

Ĥ |0〉 =
1

2

(
v′2k + k2v2

k

)∗
â†kâ

†
k |0〉+

(∣∣v′2k
∣∣+ k2|vk|2

)
|0〉 ∝ |0〉 , (3.29)

which implies that

v′k = −ikvk . (3.30)

With these two initial conditions, the quantum fluctuation operator v̂k that defines a unique
vacuum when |η| � k−1 is fully determined and its mode functions are

vk(η → −∞) =
1√
2k
e−ikη . (3.31)

This choice of mode functions is called the Bunch-Davies or Minkowski vacuum. We have
found a great candidate for the initial condition of our fluctuations. We can now evolve the
mode functions using Mukhanov-Sasaki equation in quasi-de Sitter space-time (3.23) and
the only solution satisfying the initial condition (3.31) is

vk(η) =
e−ikη√

2k

(
1− i

kη

)
. (3.32)

When the fluctuations of mode k exit the Hubble horizon, i.e. |η|k � 1, we indeed have
that the mode functions behave as

vk(η) ∝ η−1 =⇒ vk(a)

a
∼ 1 . (3.33)

The curvature and tensor perturbations are frozen on super-Hubble scales.
We have found the quantum operator v̂k(η) describing the evolution of the perturbations

after unambiguously defining the vacuum state |0〉. We have made the assumption that
the space-time evolution was quasi-de Sitter so that the Mukhanov-Sasaki equations for
both types of perturbations are the same, but the derivation of the quantum fluctuations
is analogous when using the different equations of motion for scalar and tensor modes. We
stress out here that this is only valid if in the far past, there was a time when the fluctuations
could be described by a time-independent harmonic oscillator. While this holds in flat space
single field inflation, this is not always guaranteed in bouncing models for example, in which
there often is a non quasi-de Sitter phase before the inflationary period. One needs to be
careful to initiate quantum fluctuations at a time when the visible modes are far within
the Hubble horizon in order to guarantee the uniqueness of the prediction. If this is not
possible, one needs to keep in mind that the vacuum state is not unique and the predictions
are ambiguous [15,120].

3.2.3 Primordial power spectra from inflation

It is now time to calculate the cosmological consequences of the quantum fluctuations.
The measurable quantities are the expectation values of operators and in particular the
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probabilistic moments of the fluctuation operator

v̂(η,x) =

∫
d3k

(2π)3/2
v̂k(η)eik·x . (3.34)

The first order moment 〈v̂〉, or in other word the mean of v̂, is zero. This is expected since
we assumed small perturbations around the background. The variance can be calculated as
follows,

〈0| v̂†(η,x)v̂(η,x) |0〉 =

∫
d3k

(2π)3/2

∫
d3k′

(2π)3/2
fk(η)f ∗k′(η) 〈0| âkâ†k′ |0〉 ei(k−k′)·x (3.35)

=

∫
d3k

(2π)3/2

∫
d3k′

(2π)3/2
fk(η)f ∗k′(η)δk′k (3.36)

=

∫
d ln k

k3

2π2
|fk|2 (3.37)

:=

∫
d ln k Pv(k, η) , (3.38)

where we defined the dimensionless power spectrum Pv(k, η). We saw that the curvature
perturbation R is frozen at super-Hubble scales, which makes it an interesting and easy
variable to work with. The same is true for the tensor perturbations hs. We therefore give
the prediction of inflation for the primordial power spectra at reheating of the curvature
fluctuation and the gravitational waves. The former is found to be

PR,rh(k) =
k3

2π2

∣∣∣∣
vk(η)

zS(η)

∣∣∣∣
2
∣∣∣∣∣
η=η?

=
H4
?

4π2φ̇2
?

. (3.39)

Thanks to the freezing effect at horizon crossing η = η? = k−1, we can evaluate the power
spectrum only up to that time and not all the way to reheating. Similarly for the primordial
power spectrum for the tensor modes, we get

PT,rh(k) = 2Phs,rh(k) =
H2
?

4π3
. (3.40)

One could now calculate the next order moment, but in the case of single field inflation,
all higher order moments cancel. This is the behaviour of a Gaussian statistics, it is fully
defined by its two first moments. At present, there is no evidence of non-Gaussianities from
cosmological surveys [24].

Using what we know about the slow-roll behaviour of inflation, we can make a prediction
on the shape of the primordial power spectra. Starting with the scalar perturbations, we
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have

PR,rh(k) =
H2
?

64π3ε?
(3.41)

=⇒ dPR,rh
dk

=

(
2ḢH

64π3ε
− H2ε̇

64π3ε2

)

t=t?

dt?
dk

(3.42)

=
(
−2H?ε?PR,rh −H?η̄?PR,rh

)
a?k

−2 (3.43)

= (−2ε? − η̄?)k−1PR,rh(k) , (3.44)

where we used dt = adη and η? = k−1 =⇒ a?H? = k. This means that the primordial
power spectrum for the scalar perturbations behaves as

PR,rh(k) = As

(
k

k∗

)ns−1

, (3.45)

where As is the amplitude of the power spectrum at the pivot scale k = k∗, with k∗ = 0.05

Mpc−1, and ns − 1 = −2ε? − η̄?, ns being the scalar spectral index. Slow-roll inflation
predicts a small but non-zero value for ns − 1 and current observations from the Planck
satellite confirms that prediction with ns = 0.9665 ± 0.0038 [24]. The amplitude of the
scalar primordial power spectrum has been measured to be ln

(
1010As

)
= 3.047± 0.014 [24].

A similar reasoning can be made for the primordial power spectrum of the tensor modes.
It follows a power law of the form

PT,rh(k) = At

(
k

k∗

)nt
, (3.46)

where nt = −2ε and At is its amplitude at the pivot scale. The tensor perturbations have
so far not been observed, the spectral index is therefore still unknown, but should be small
according to slow-roll inflation. A constraint on its amplitude can be made and is expressed
by the tensor-to-scalar ratio r0.002 at the scale k = 0.002 Mpc−1, namely

r0.002 =
PT,rh(k = 0.002)

PR,rh(k = 0.002)
< 0.06 . (3.47)

The prediction and confirmation of the small scalar spectral index as well as the absence of
non-Gaussianities have been great successes of the theory of inflation and put it in the front
scene of early universe cosmology. The observation of the tensor perturbations as predicted
by the theory would easily place it in the concordance model.

3.3 Bounce from positive curvature and inflation

In our introduction of the theory of inflation, we have so far assumed that the universe
is spatially flat. After all, one of the reasons to hypothesize an inflationary period is the
extreme flatness of space. On the other hand, this means that we do not expect the curvature
of space to be small at the onset of inflation. Assuming no priors on the initial conditions
of the universe, the latter is equally likely to have a positive or a negative curvature, but an
almost flat spatial section is very unlikely. Once again, inflation has been invented so that
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no finely tuned priors are needed to explain cosmological observations. Today’s constraint
on the curvature parameter, ΩK = 0.0007 ± 0.0019, gives us almost no clue about the
sign of the spatial curvature. A potential conflict between Planck’s measurement and other
cosmological surveys about the curvature was risen in Ref. [121] and the increasing number
of cosmological tensions [122–124] might shift tomorrow’s cosmological paradigm. However,
the consensus concerning the value of ΩK is still favouring a flat universe [125].

In this context, it makes sense to look for other cosmological signatures of a possible
positive curvature and the early inflationary period, where the effect of the spatial curvature
is at its highest, is an interesting place to start. Ignoring for now the perturbations, the
Friedmann equations of an inflaton field bathed in a closed universe read

ä

a
=− 4π

3
(ρφ + 3pφ) (3.48)

H2 =
8π

3
ρφ −

K

a2
. (3.49)

During inflation, the density of the scalar field is roughly constant since the equation of
state parameter is w ≈ −1. Therefore, when going backward in time, the curvature term
grows faster than the quasi-constant density term. In particular, this explains why inflation
is efficient at reducing the contribution of curvature to the energy content of the universe.
But this also implies that at very early times, the Hubble parameter might have been zero,
or in other words, our expanding universe, if closed, started with a big bounce instead of
a big bang [126]. Beyond solving the big bang singularity problem, the curvature bounce
would happen at the energy scale of inflation, which is expected to be several orders of
magnitude higher than the Planck scale, and therefore the need of a quantum theory of
gravity would be alleviated. It is remarkable that one can resolve the big bang singularity
only with the use of non-exotic physics. It is fair to say that inflation is part of today’s
cosmological paradigm and we emphasize that from our understanding of physics, assuming
the initial conditions of the universe are randomly set, the existence of a positive curvature
is reasonably likely.

Depending on today’s value of the curvature parameter ΩK,0 and the energy scale of
inflation Einfl, one can predict the number of e-folds as [126]

N ≈ 1

2
ln


ΩR,0

ΩK,0

(
(1 + zeq)

Tinfl
Teq

)2

 , (3.50)

where the subscript "eq" stands for the time of matter-radiation equilibrium and ΩR,0 is
the radiation parameter evaluated today. This prediction is derived using the assumptions
that the energy density of the inflaton is constant and ρφ(tb) = K/a2(tb) at the onset of
inflation, which is at the time of the bounce tb. Using the constraint on the curvature density
parameter and Einfl ∼ 1015 GeV, we find that the inflationary period must have lasted at
least N > 68, if the universe is positively curved.

Thanks to the background dynamics, one can solve the big bang singularity and make
further predictions on the duration of inflation. However, in order to see potential signatures
of the big bounce we need to move towards cosmological perturbation theory. When calcu-
lating the evolution of the perturbations in a closed universe as opposed to the spatially flat
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case, several differences emerge [127–130]. While the number of degrees of freedom stays
the same, the action and the equations of motion in position space are different. Moreover,
we cannot perform a Fourier expansion of the perturbations, but we must use the hyper-
spherical harmonics Qnlm(x) to decompose the solutions to the equations. Such expansions
for both modes are

v(η,x) =
∞∑

n=2

n−1∑

l=0

l∑

m=−l
vnlmQnlm(x) (3.51)

hij(η,x) =
∞∑

n=2

n−1∑

l=0

l∑

m=−l

2∑

s=1

hnlm,sij Qnlm,sij (x) (3.52)

and are now discrete. Overall, this means that the Mukhanov-Sasaki equations take the
form

v′′S(η, n) + An(η)v′S(η, n) +Bn(η)vS(η, n) = 0 (3.53)

vs′′T (η, n) +

(
(n2 − 1)K − a′′

a

)
vsT (η, n) = 0 , (3.54)

where the functions An and Bn are defined later in this section. Interestingly, the scalar and
tensor mode equations do not depend on the wave number l or m as well as the polarisation
s for the tensor case, which simplifies the calculations. While the form of the equation
for the tensor modes is basically unchanged, the scalar mode equation has become much
more complex to work with. In both cases, the fact that the Hubble horizon does not only
increase when going backward in time can be a problem when choosing the vacuum state.
In the pre-bounce universe, the Hubble horizon decreases when going backward in time. In
the case of the scalar perturbations, both An and Bn need to satisfy the conditions of the
Minkowski vacuum in order to have an unambiguous definition of the vacuum state. The
derivation of the tensor primordial power spectrum is made in the first paper below. The
analysis of the behaviour of the bounce at the background level is also explored in the same
paper, where we show in particular that a period of deflation in the pre-bounce universe
is necessary. The calculation of the scalar primordial power spectrum as well as the power
spectrum of the temperature anisotropies in the CMB is exposed in the second paper below.
In the latter paper, we also look at the behaviour of the pre-bounce universe and its effect
on the scalar perturbations depending on the length of the pre-bounce deflation.
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1 Introduction

It is often argued that, unless radically new physics is used, the classical origin of the Universe
is a singularity. This is not rigorously true. Following arguments given in [1–3], we show that
a curvature bounce might have occurred in the past. This does not require any exotic physics.
The key ingredients of this scenario are the existence of an inflationary period — which is
obviously part of the standard cosmological model — and a positive curvature for the spatial
sections of the Universe. Although still actively debated and not fully consensual, a positive
curvature seems to be favored by cosmological microwave background (CMB) measurements.
If not truly established, this hypothesis is anyway compatible with current data and this
constitutes the core of this work. The idea of a “curvature bounce” is not new but deserves
a fresh look, taking into account the latest analyses.

This obviously raises some “fine-tuning” issues. Although meaningful, those consider-
ations are extremely difficult to formalize rigorously, due to the ambiguity associated with
any arbitrary chosen measure. In this article, we do not address in details the naturalness of
the model, instead we try to evolve backward in time the current state of the Universe and
investigate the resulting history.

Many different bouncing models have been considered in cosmology (see [4–6] for re-
cent reviews). In particular, the bounce can be associated with an inflationary phase (see,
e.g., [7–15]). This leads to a wide phenomenology depending on the detailed physical pro-
cesses involved in the scenarii. This work focuses on the specific case were no new physics in
involved, which possible thanks to the curvature.

The consequences of a positive curvature are profound for the history of the Universe and
might change the way we understand its “origin”. We first explain what are the motivations
for a positive curvature. We then study in details the background behavior. The primordial
tensor power spectrum is finally calculated. Throughout all the article we use Planck units.

2 On the curvature of space

The question of the spatial curvature of the Universe is an old one. It has been debated for
decades. Although a flat space is usually considered as one of the key prediction of inflation,
the actual situation is not that simple. Obviously, whatever the “initial” curvature, inflation

– 1 –
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will make it negligible at the reheating. However, as the Universe expands, the curvature
contribution to the Friedmann equation will decrease more slowly (∝ a−2) than the matter
(∝ a−3) and radiation (∝ a−4) ones. Curvature will then eventually dominate in the future,
unless — as it is the case in our Universe — the cosmological constant (∝ a0) overwhelms
everything before this happens.

Otherwise stated: the end of inflation might be the moment in cosmic history when the
curvature contribution to the dynamics of the Universe is the smallest one.

As recalled above, whatever its non-vanishing value, the relative contribution of the cur-
vature increases as time goes on after inflation. But, importantly, it also increases when going
backward in time during inflation: while the scalar field density remains roughly constant
in the quasi-de Sitter stage, the curvature contribution increases (as it still scales as ∝ a−2)
when the scale factor decreases. This might trigger a bounce instead of the singularity.

This question becomes especially important in the current context. First, the Planck
data suggests that, using the CMB alone, the Universe might be positively curved [16]. The
statistical significance of this result is weak. However, in addition, recent analyses presented
in [17–19] considerably strengthen this possibility. In particular, it is shown in [19] that the
enhanced lensing amplitude in primordial power spectra, when compared to the prediction
of the standard ΛCDM model, can be explained by this effect. This would also remove the
tension within the Planck data about the values of cosmological parameters measured at
different angular scales. The study concludes that Planck data favor a closed Universe with
a probability of nearly 99.99%.

Counter-arguments where given in [20]. The actual conclusion heavily depends on the
priors used for the analysis. At this stage, it is fair to say that a positive curvature is not
firmly established but is worth being seriously considered. First, because some studies — in
particular using the CMB alone — point in this direction and, second, because theoretical
arguments — in particular grounded in quantum gravity — favor this hypothesis.

3 Background behavior of a closed Universe

We assume a homogeneous and isotropic background with closed spatial sections. The topol-
ogy is R × S3, where S3 represents a hypersphere. The spatial curvature parameter K > 0
is related to the physical radius r(t) of the 3-sphere by r2(t) = a2(t)/K, where a(t) is the
dimensionless scale factor. Under these assumptions, the FLRW metric can be written as

ds2 = −dt2 +
a2(t)

K

(
dχ2 + sin2(χ)dΩ2

)
. (3.1)

The matter content of the Universe is represented by a perfect fluid of density ρ and pressure
p, such that the Einstein field equations lead to the Friedmann and Raychaudhury equations

H2 =
8π

3
ρ− K

a2
, (3.2)

Ḣ = −4π(ρ+ p) +
K

a2
, (3.3)

where H = ȧ/a is the usual Hubble parameter. During the inflationary period, the matter
content of the Universe can be described by a scalar field. In this work, we assume the
inflaton to be a massive scalar field, that is to be described by the potential V = m2φ2/2.
In principle, it would make sense to consider other potentials — a few remarks will be made

– 2 –
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on this point in the last section — but the massive case makes the comparison with other
models easier and captures most of the relevant phenomenology. The Klein-Gordon equation
in the expanding (or contracting) Universe reads

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0. (3.4)

The density and pressure of the inflaton field can be written as

ρ =
1

2
φ̇2 + V (φ) and p =

1

2
φ̇2 − V (φ). (3.5)

As well known, eqs. (3.2), (3.3) and (3.4) are not independent and only two of them are
necessary to solve the system.

Let us first state that, when going backward in time, if the curvature density dominates
the dynamics, while the Universe was in a de Sitter phase (or nearly so), a bounce inevitably
takes place, as shown by the trivial analytical solution of the equations of motion:

a =

√
3K

Λi
cosh

(√
Λi
3
t

)
, (3.6)

where Λi = 8πρvac, with ρvac the vacuum-like energy density of the field. Among bouncing
models [4–6], this one is specific in the sense that it does not require any exotic physics.

Following [3], it can easily be shown that the number of inflationary e-folds between the
bounce and the reheating is here given by:

N ≈ 1

2
ln

(
ρR,0
ρK,0

[
(1 + zeq)

TRH
Teq

]2
)
, (3.7)

where ρR,0 and ρK,0 are respectively the current densities of radiation and curvature, zeq is the
redshift at the equilibrium time, TRH is the reheating temperature and Teq is the equilibrium
temperature. The sudden reheating approximation is obviously crude [21] but sufficient for
this study. This formula does not use any dynamical feature of inflation: it just counts
the amount of contraction (when thinking backward in time) “needed” for the curvature
density to equal the scalar field density (with the opposite sign in the Friedmann equation),
which ensures the vanishing of the Hubble parameter at some point. When normalizing the
curvature density at the value suggested in [19], this leads to N ≈ 65 for TRH ≈ 1016 GeV.
The inflation energy scale cannot be much above, otherwise this would conflict with current
data, in particular with the tensor-to-scalar ratio upper limit. On the other hand, the number
of e-folds cannot be much below this value so as to solve the usual cosmological paradoxes.1

This basically means that those parameters are somehow fixed in this model, which is to
be contrasted with the usual cosmological framework where no upper bound exists on the
number of inflationary e-folds and where the lower bound ont the reheating temperature is
extremely weak.

As a consequence, from the purely numerical viewpoint, the value of the curvature can
therefore be tuned so that the number of e-folds fits eq. (3.7), at the considered density:

1In principle, one could relax this constraint by just requiring the number of inflationary e-folds to be equal
to the number of post-inflationary e-folds but, in this specific framework, this also conflicts with data if it is
much below 65, as shown in [3].

– 3 –
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Figure 1. In blue: scale factor (variation measured in e-folds) during the inflationary period; In
purple: w = p/ρ during the same period. The density at t0 has been chosen such that the number of
e-folds during inflation is N ≈ 65.

this will automatically account for the (possibly) observed curvature. We have checked that
it is indeed possible to find an initial value for the field — associated with a given energy
density — so that the duration of inflation predicted by the model coincides with the intrinsic
inflationary dynamics.

In order to have a strong control on the behavior of the inflationary period, we set the ini-
tial conditions (IC) of the background close to the onset of inflation, when w0 := p0/ρ0 ≈ −1
at t0.

Interestingly, the amount of inflation predicted in this framework is both high enough
to be compatible with the observational lower bound and small enough so that non-trivial
effects associated with the bounce could be seen in the CMB. In most bouncing models, the
duration of inflation is so high [15, 22, 23] that subtle footprints of the bounce are deeply
super-Hubble and therefore non-observable. In this model, one might expect non-trivial
features at large, but sub-Hubble, physical scales, that is in the low-k part of the primordial
spectra.

In the case of a massive scalar field, the number of e-folds can easily be analytically
calculated and is given by N = 2πφ2 − 1/2 in flat space. As the effect of the curvature is
only relevant very close to the bounce, this result can also be safely used in a closed universe
at the level of accuracy required here. At t0, the onset of inflation, N is directly connected
to the density of the scalar field, using eq. (3.5). In order to have N ≈ 65, as required
for consistency, we choose ρ0 = 7.3 × 10−12. Finally, we normalize the scale factor so that
a(t0) := a0 = 1. Figure 1 shows the usual inflationary behavior, with K = 0. Expanding the
timeline to earlier times, t < t0, would exhibit a singularity, where the scale factor tends to
zero. At the time of reheating tRH , the parameter w starts to oscillate, as expected.

A positively curved Universe filled with an inflaton field can avoid the Big Bang singu-
larity if the curvature density ρK := 3K/(8πa2) is strong enough to compensate for the scalar
field density at some point. This is basically due to the form of the Friedmann equation (3.2),
where the curvature density appears with the opposite sign (for a positive curvature) than
the field density ρ. Furthermore, during inflation one has w ≈ −1, which means that matter
density is evolving as ρ ∝ a0 whereas ρK ∝ a−2. Hence, there should be have been a time in
the past when H2 = 8π

3 (ρ− ρK) vanishes, which represents a bounce. However, close to the
singularity, the parameter w is rising when going backward in time and if its value reaches
w = −1/3 before both densities cancel each other, the Big Bang scenario is inevitable. This
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is analytically obvious as, if w ≥ −1/3, the inflaton density varies faster than the curvature
one. If the curvature density is high enough at t0, there will be a time in the past tB < t0,
where ρK(tB) = ρ.

The strategy of this study should now be clear: we basically fix a positive curvature for
the spatial sections of the Universe and “impose” (as suggested by countless arguments) the
existence of an inflationary stage. When evolving the equations of motion toward the past, a
bounce takes place. Of course, if one thinks from the state of the Universe in the contracting
branch, it is well known that the bounce will not be dynamically favored. The strong potential
energy domination required for the (contracting) quasi-de Sitter stage to emerge, which is
itself required for the bounce, is possible only for a small fraction of the phase space. We
believe that two different questions should be disentangled. One is to figure out what the past
of the Universe was. Taking into account what we know, the answer provided here makes
sense ans strongly suggest the existence of a bounce. Another one is to try to understand why
things happened in this way. We do not address here this second question which is extremely
complicated and often ill-defined, in particular because of problems appearing when trying
to deal with a reliable measure in cosmology. This issue is discussed in [3]. We anyway stress
here that, whatever its probability, the bouncing trajectory is indeed possible and even likely,
if we think backward in time from our current knowledge. The instability with which it is
associated when thinking forward in time [24] is a very relevant question, but distinct from
the viewpoint adopted here.

To ivestigate the likelihood of a bouncing trajectory when going backward in time, we
consider the interval of K values leading to this scenario. A first upper limit for the curvature
comes from the consistency of the Friedmann equation. Indeed, since the left-hand side of
eq. (3.2) is squared, the right-hand side must be positive. Taking this condition at the time
t0 leads to the requirement

K ≤ 8π

3
ρ0a

2
0 ≈ 6.1× 10−11. (3.8)

The lower bound to the curvature parameter is set by requiring the existence of a bounce
instead of the usual singularity. As the non-linearity of the equations of motion makes the
analytical study of w with respect to a tedious, we have turned to numerical computations
to determine the bound. The numerical study leads to the lower limit

1.9× 10−11 . K. (3.9)

Importantly, the values given by eqs. (3.8) and (3.9) are close to one another. This interval
is only valid when we take w(t0) = −1. If one sets w > −1, it is possible to generate a longer
period of inflation, before the initial conditions, as we will see later on.

A range of possible values for K leading to a bouncing scenario has therefore been
found, when considering the initial conditions stated above. As expected, different values
of K lead to different bouncing solutions. In particular, the duration of the pre-bounce
deflation is impacted by the strength of the curvature at the bounce. This is an important
feature. In figure 2, we have drawn the deflation period for different values of K. The weaker
the curvature at the initial time t0 = 0, the shorter the deflation period. This raises an
interesting point. One of the appealing features of this bouncing scenario is to avoid the
Big Bang singularity. However, if the deflation period was too brief, one will inevitably face
another singularity in the past. The cosmological constant will indeed never dominate over
the curvature density when going backward in time before the bounce. Another bounce (at
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Figure 2. Deflation behavior (e-folds) for different values of the curvature K.
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Figure 3. Bouncing scenario with K = 3 × 10−11. In blue: scale factor (variation measured in
e-folds) close to the bounce; In purple: w = p/ρ.

low density) will take place, leading to a contraction — still thinking backward in time —
and to a singularity when going further to the past. This might be evaded by selecting very
specific conditions, but the argument cannot be meaningfully repeated for each contracting
phase. A long enough deflation is therefore mandatory so that the cosmological constant
protects the Universe from a re-contraction in the remote past. Figure 2 shows that this is
possible. There also exist scenarios where the period of deflation is longer than the period of
inflation. One can indeed notice on figure 3 that the behavior of w is not symmetric around
the bounce, which causes the difference in duration between deflation and inflation. If one
sets w slightly over −1 at the initial time t0, it is possible to flip the behavior of w and to
obtain a longer period of deflation. This effect can be seen in figures 4 and 5.

It is obviously important to check that the allowed interval for K, corresponding to a
bouncing scenario, is consistent with experimental data. Having a concrete answer to this
question is however difficult. Since the experimental curvature is measured in the contem-
porary Universe, one needs to know the number of e-folds from the beginning of inflation to
the present time to set the initial value which, itself, influences the dynamics. Some specific
initial conditions were suggested in [25, 26], where the effect of curvature during inflation
was also studied (but ignoring the presence of a bounce). In particular, the time t? at which
the modes k = 0.05 Mpc−1 exited the horizon is used to set the initial conditions. If one
normalizes the scale factor at the time t? and uses Ωk,0 = −0.044 [19], the resulting curva-
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Figure 4. Bouncing scenario with the experimentally valid curvature and inflation parameters. In
blue: scale factor (variation measured in e-folds) close to the bounce; In purple: w = p/ρ.
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Figure 5. Deflation and inflation with experimentally valid curvature and inflation parameters at
time t? = 0.

ture is K̄ ≈ 5 × 10−17. The other parameters, such as the density and w, are also different
from what we used. Even though the density is slightly less than what was used earlier,
leading to a number of e-folds N ≈ 60, the experimental curvature K̄ is way lower than
the range we previously calculated. However the initial conditions of [25, 26] are not set at
the onset of inflation, but at a later time when w > −1. Due to the difference in evolution
between ρ and ρK , there is no inconsistency. We thus rely on numerical computations to
check the plausibility of the bouncing scenario. Simulating a long period of inflation when
going backward in time is unstable, even in flat space. Very fine-tuned initial conditions can
lead to a long period of inflation in the past, but in most cases, inflation stops abruptly in a
singularity. Varying the values of φ? and φ′? given in [25, 26] within a 1% interval does indeed
lead to bouncing scenarios with a long enough inflation period, as shown in figures 4 and 5.
However, as explained before and as pointed out in [3], the interval considered here for K is
anyway compatible with data by construction of the model. It indeed leads to the amount of
inflation precisely needed for the current curvature to be given by the value estimated in [19].

4 Primordial power spectrum for tensor modes

The calculation of perturbations in a closed Universe has been considered in many studies.
Interesting results were recently derived, e.g. in [27–29], to cite only a few. We shall here focus
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specifically on the approach developed in [25, 26]. One considers a family of metrics gµν(ε):

gµν(ε) = a2(η) (ḡµν + εhµν) , (4.1)

where a2ḡµν is the background metric, hµν is a linear perturbation, ε is a small parameter,
and η is the conformal time. The relevant spatial components read:

∇̄2hTTij − 2
a′

a
h

′ TT
ij − 2

r2
o

hTTij = 0 , (4.2)

where the prime denotes here a derivative with respect to η, r2
o = 1/K, and i, j = 1, 2, 3.

Instead of expanding the equation of motion in Fourier space, as usually done, one expands
the perturbations on the tensor hyperspherical harmonics Qnlm,sij (χ, θ, φ) [30]. They are

eigenfunctions of the Laplacian operator D2:

D2Qnlm,sij (χ, θ, φ) = −(n2 − 3)

r2
o

Qnlm,sij (χ, θ, φ) . (4.3)

Importantly, the factor (n2 − 3)/r2
o plays a role equivalent to the one of the wavenumber

squared k2 in flat space [31]. Rescaling the coefficients of the development of h (we skip here
the integer labels for simplicity) by µ = a(η)h and promoting the resulting field to be an
operator, one is led for the coefficients of the creation and annihilation operators to:

e
′′
n +

(
n2 − 1

r2
o

− a
′′

a

)
en = 0 , (4.4)

with the normalization

ee?′ − e′e? = i . (4.5)

The main effects of curvature are therefore twofolds. First, the curvature obviously changes
the background evolution which leaves a footprint on the perturbations. Second, it discretizes
the effective wavenumber.

Setting initial conditions for the perturbations is a key question when evaluating power
spectra. The problem is known for being very difficult in bouncing models. In particular
the case of scalar perturbations is problematic because the term z′′(η)/z(η) entering the
harmonic oscillator equation does not generically tends to zero in the remote past (see,
e.g., [32]). This means that it is hard to disentangle effects specifically due to the bounce
from effects associated with the lack of a unique privileged vacuum. In addition, the equation
of motion is usually very complicated and the relation between z and a is non-trivial and
depends on the potential. For those reasons, we focus here on tensor modes.

In a bouncing scenario, there is stricto sensu no possibility to define an “initial time”.
In the specific context of loop quantum cosmology, the point of view that the bounce time
should be chosen to set initial conditions was advocated, e.g., in [33], whereas the opposite
vision was proposed, e.g., in [34].

In the set-up considered here, there is necessarily a deflation stage before the bounce.
This is obviously necessary for the bounce to take place and this is anyway necessary for the
curvature to dominate: without deflation, any amount of (pre-bounce) matter or radiation
density would grow faster than curvature. This deflation stage makes it impossible to set
initial conditions in the past as a′′(η)/a(η) does not anymore decrease when going backward
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Figure 6. Potential of the tensor modes for different values of the curvature.

in time before the bounce and no Bunch-Davis-like vacuum is approached. However, the
a′′(η)/a(η) term is very small close to the bounce and this selects, at least at the heuristic
level, a preferred time to set initial conditions. The behavior of a′′(η)/a(η) is shown for
different values of K in figure 6.

Considering eq. (4.4), one can recognize a harmonic oscillator with a time-dependent
frequency

ω2
n(η) =

n2 − 1

r2
o

− a′′(η)

a(η)
:= keff(n)− a′′(η)

a(η)
.

In our case, since r2
o ∼ 1010 and a′′(tB)/a(tB) ∼ 10−10, one cannot use a rigorous Minkowski

vacuum keff � a′′/a at the initial time tB for small discret wavenumbers n. As in [26], we
choose an instantaneous vacuum state that minimizes the Hamiltonian at the initial time.
In order for waves to propagate with a positive frequency and using the normalization of
eq. (4.5), we can set the basic mode functions at tB as

en(tB) =
1√

2ωn(tB)
, (4.6)

e′n(tB) = −i
√
ωn(tB)

2
. (4.7)

In order to compute the primordial power spectrum for tensor modes PT (n), we will
proceed in the usual way. Starting from the initial time tB, we simulate the mode func-
tions en(t) up to te, where keff = a(te)H(te). The primordial power spectrum can then be
calculated [35]:

PT (n) =
32k3

eff

π

∣∣∣en
a

∣∣∣
2
∣∣∣∣
t=te

. (4.8)

The results of this analysis for different values of K are shown in figure 7. The power
spectra for different values of K are nearly parallel for n > 20. As the initial time when
we set the initial conditions varies with respect to K, the amplitude of the power spectra
differs slightly. More importantly, one can notice that the curvature significantly affects the
large-scale modes. They are damped due to the effect of the closure of space, which is in
concordance with the result of [26], where the bounce itself is however not considered.

It is interesting to try to figure out whether the non-trivial effects appearing in the
low-keff part of the power spectrum are observable in the cosmological microwave back-
ground (CMB). To this aim, one needs to relate the comoving wavenumber kc(tr) ≡ keff(tr)
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Figure 7. Primordial power spectrum for the tensor modes for different values of the curvature. The
discrete wavenumber n has been calculated with k2 = (n2 − 1) 2× 10−11.

with its physical counterpart kp(tr) at the time of recombination tr. Using N ≈ 65 and
TRH ≈ 1016 GeV one can get the orders of magnitude. The physical wavenumber observed in
the CMB are of the order k̄p ≈ 0.05 Mpc−1 ≈ 3×10−59 and the scale factor at recombination
can be estimated using a(tr) ≈ eN × TRH/Tr, where Tr ≈ 0.3 eV [16]. Straightforwardly, it
follows that k̄c ≈ 2× 10−5 and with a curvature constant of the order K ∼ 10−11, we obtain
the discrete comoving wavenumber of the CMB, n̄ ≈ 4. This is just in the range where
the dampening effect is observable. This result is however very sensitive to the number of
e-folds. As the tensor modes have not yet been observed, we leave the accurate simulation for
future studies. This work however shows that some features of the curvature bounce might
be observable thanks to the limited number of inflationary e-folds inherent to this model.

5 Curvature bounce with different potentials

The massive scalar field is a good toy model to study the inflationary period, but it is
disfavored by recent data, relatively to other more realistic potentials, such as the Starobinsky
one [36, 37]. It is therefore meaningful to study the cosmological background behavior in the
presence of spatial curvature, as well as the likelihood of a bouncing scenario, with such a
potential. In addition, a flat potential is expected to make the bounce more “likely” when
starting from the contracting phase. Another flat potential especially designed to this aim
was also considered in [38].

The Starobinsky potential is of the form

V (φ) =
3M2

32π

(
1− e−

√
16π/3φ

)2
, (5.1)

where M is a mass scale parameter. A realistic value of the parameter M can be determined
following the reasoning of [39], that is using the slow-roll parameters as well as the spectral
index ns and the amplitude As. The potential (5.1) was also studied in [26], where no
bouncing scenario was encountered. However, following the same strategy as we did before,
i.e. varying the initial conditions for the scalar field at the initial time t? in a small interval,
one can generate a sufficiently long period of inflation prior to the initial time to have a
curvature bounce. This shows, as expected, a high sensitivity to initial conditions.
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Figure 8. Scalar potential (5.2) for different values of the parameters α, β and γ, where we set V0 = 1.

It is extremely difficult to have a quantitative estimate for the “probability of the
bounce” for a given potential. It is well known (see, e.g., the discussion in [23]) that de-
pending on the chosen measure and selected surface for the initial conditions one can be led
to completely opposite conclusions. This is a lively debate in cosmology [40]. Nevertheless,
it is possible to get a vague qualitative idea of the likelihood of the bounce scenario for the
Starobinsky potential compared to the massive scalar field case. We set the initial conditions
at time t0, the onset of inflation, where w = −1 and the initial density ρ0 is chosen such that
we have N ≈ 65 e-folds. In this new case, this means ρ0 ≈ 1.6×10−13. As before, one can find
a range of possible spatial curvature K such that a bounce takes place. The upper bound is
found using (3.8), leading to K < 13× 10−13, and using numerical computations we find the
lower bound K > 1.1×10−13. Relatively to the density, the range of curvature values is indeed
larger in the case of a Starobinsky potential than for the massive scalar field. It, however,
remains quite narrow. The behavior of the background is similar to the previous case.

A potential of the form

V (φ) = V0

(
tanh2

[
φ√
6α

]
+ β tanh

[
φ√
6α

]
+ γ

)
, (5.2)

where V0 > 0, α > 0, −1 < β < 1 and −1 < γ ≤ 0, was proposed in [38] to make the
bounce “natural”. The effect of varying the parameters is illustrated in figure 8. As one can
see, α controls the steepness of the drop at φ = 0, β changes the symmetry of the potential
and γ sets the amplitude. We have indeed checked that some values of the parameters, e.g.
γ = β = 0 and V0 ≈ K, do indeed systematically ensure a bounce. This is an important
way to circumvent the apparent fine-tuning of the model when thinking forward in time. In
principle, if this bouncing scenario were established, this might even allow one to select some
families of potentials compatible with a reasonable probability of occurence of the bounce.

6 Conclusion

In this article, we have shown that under the experimentally valid assumption of a positively
curved space (and of an inflationary stage in the past), a bounce might have naturally
taken place. This basically fixes the number of e-folds — which can be anything above
65 in standard cosmology — and the reheating temperature. This removes the Big Bang
singularity without any exotic physics. The view adopted here is the one of a historian who
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tries to figure out what was the past knowing what we know. We have not addressed the
question of determining why the Universe might have followed this specific trajectory, which
is a different question.

It should be noticed that the model is consistent in the sense that the density never
approaches the Planck density. It is therefore legitimate to neglect quantum gravity effects.
The physical size of the Universe also remains much larger than the Planck length, even
at the bounce time. Both from the density and from the size points of view, the quantum
geometry regime is never reached.

We have studied in details the way in which the background behavior depends on the
contingent parameters and on the inflaton potential. We have also calculated the primordial
tensor power spectrum and shown that footprints of the curvature bounce might be observable
at large scales. We have checked that some potentials make the bounce apparently more
“natural”.

Many open questions remain to be addressed in the future. The issue of fine-tuning
and the backreaction effect of fluctuations should obviously be considered seriously. Both
because of the measurement problem and because of possible anthropic considerations those
points are clearly difficult to answer. The primordial scalar power spectrum should also
be calculated. The main trend — that is a suppression of power in the infrared part —
is expected to be the same than for tensor modes. This should make the agreement with
data even better (although not significantly, due to the cosmic variance) than in the usual
model. In the spirit of [41, 42], the question of non-gaussianities should be addressed. Our
predictions should also be confronted to the ones obtained in [43] for a symmetric bounce.
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Abstract If the spatial sections of the Universe are posi-
tively curved, extrapolating the inflationary stage backward
in time inevitably leads to a classical bounce. This simple sce-
nario, non-singular and free of exotic physics, deserves to be
investigated in details. The background dynamics exhibits
interesting features and is shown to be mostly insensitive to
initial conditions as long as observational consequences are
considered. The primordial scalar power spectrum is explic-
itly computed, for different inflaton potentials, and the sub-
sequent CMB temperature anisotropies are calculated. The
results are compatible with current measurements. Some
deviations with respect to the standard paradigm can how-
ever appear at large scales and we carefully disentangle what
is associated with the vacuum choice with what is more fun-
damentally due to the bounce itself.

1 Introduction

The question of the shape of the spatial sections of the Uni-
verse is an old one. It is still unanswered but it has attracted a
lot of attention recently, based on the refined observations
of the cosmic microwave background (CMB). The latest
data released by the Planck collaboration [1] might favor a
positively curved universe, described by a curvature density
�K = −0.044, with a high confidence level [1–4]. Although
quite convincing when using CMB data alone, this result is
in tension with other measurements, such as the baryonic
acoustic oscillations. It is also dependent upon specific sta-
tistical priors that can be questioned [5]. A balanced discus-
sion can be found in [6–8]. Nonetheless, even ignoring the
claims of [4], the possibility that the universe is positively
curved is worth being phenomenologically considered as a
possible situation. Especially when taking into account, as we

a e-mail: barrau@in2p3.fr (corresponding author)

shall see, that this might cure naturally the initial singularity
problem. Not to mention that some – speculative but rea-
sonable – arguments from quantum gravity also favor this
possibility (a finite space is a natural infrared regulator).

It is believed in the standard cosmological paradigm that
at its earliest stage the universe grew exponentially fast in a
quasi-de Sitter phase. While not fully confirmed, the theory of
inflation is supported by strong observational evidences [9],
the most obvious being the slightly red-tilted spectrum of pri-
mordial fluctuations. Strong constraints on non-Gaussianities
in the CMB [10] favor a single field scenario.

In the inflationary model, the temperature anisotropies
observed in the CMB are explained by quantum fluctuations
of the inflaton scalar field. These initial fluctuations can be
evolved using the theory of gauge-invariant linear perturba-
tions [11] and the primordial power spectrum can then be
unambiguously calculated. The study of scalar and tensor
perturbations was carried out in the case of a closed universe
in [12,13]. It was concluded that a smaller-than-usual power
is to be expected at very large scales.

Although straightforward to show, it is often forgotten that
a de Sitter space-time with closed spatial sections evades the
big bang singularity and instead, naturally leads to a bounce.
The possible implementations of this scenario were stud-
ied in [14–16]. The singular origin of our universe is natu-
rally regularized thanks to the positive curvature combined
with inflation. A further numerical investigation was carried
out in [17]. Quite impressively, the usual claims about the
need of a quantum (or modified) theory of gravity to escape
the unavoidable singularity are simply contradicted using
only the hypotheses of the standard cosmological scenario (if
space is positively curved). This happens without any exotic
physics. In [17], we have studied the primordial tensor power
spectrum with quantum fluctuations originating prior to the
bounce. No noticeable difference was found when compared

0123456789().: V,-vol 123



  775 Page 2 of 11 Eur. Phys. J. C           (2022) 82:775 

to the no-bounce version of [13]. However, the equation of
motion for the scalar perturbations being very different from
the one of the tensor modes, we must investigate the scalar
sector to predict reliably the possible imprint of the model
on the CMB temperature anisotropies. This is the main goal
of this work which builds on our previous papers [16,17].
The key-point consists in disentangling the effects due to the
curvature (as in [12]) from those due to the bounce itself.

This paper is organized as follows. First, we describe the
behaviour of the background dynamics during the period of
inflation, around the bounce, and during the pre-bounce con-
tracting universe. We analyze in details the dependence of the
background dynamics upon initial conditions. Two different
inflationary models are considered : a massive scalar field –
which is disfavoured by data but useful for comparisons –
and the Starobinsky potential [18–20]. Then, we introduce
the theory of linear perturbations in curved space and dis-
cuss the meaning of the Bunch–Davies vacuum before and
after the bounce. Finally, we move on to the calculation of
the primordial power spectra of scalar perturbations, consid-
ering different cases for the initial vacuum. We compare our
results with previous works, mainly with [12], and with the
available CMB data.

Planck units are used throughout the paper except other-
wise stated.

2 Background dynamics

To describe the background behaviour, homogeneity and
isotropy, together with the closure of the spatial sections, are
assumed. The topology of space-time is therefore R × S3,
where S3 represents a hypersphere. The spatial curvature
parameter K > 0 is related to the physical radius r(t) of the
3-sphere by r2(t) = a2(t)/K , where a(t) is the dimension-
less scale factor. Under these hypotheses, the FLRW metric
can be written as

ds2 = −dt2 + a2(t)

K

(
dχ2 + sin2(χ)d�2

)
. (1)

The matter content of the universe is represented by a perfect
fluid of density ρ and pressure p, such that the Einstein field
equations lead to the Friedmann and Raychaudhury equa-
tions:

H2 = 8π

3
ρ − K

a2 , (2)

Ḣ = −4π(ρ + p) + K

a2 , (3)

where H = ȧ/a is the Hubble parameter and the dot notation
stands for the derivative with respect to the cosmic time. From
Eq. (2), it can immediately be seen that during an inflationary
period, described by a quasi-constant energy density ρ, the

curvature term on the right hand side (RHS) increases when
the scale factor decreases. This behaviour inevitably leads to
a bounce, at the time when H = 0, instead of a singularity.
A detailed analysis of the basic ingredients of the curvature
bounce is given in [16,17]. Once again, it is worth empha-
sizing that the curvature of the universe is not yet firmly
measured and could actually be positive, negative or null.
A recent study [4] claimed that the CMB measurements do
favor a closed universe with �K := −K/(3H̄2) = −0.044,
H̄ = 54.4 km/s/Mpc being the current Hubble parameter.
While the validity of this result is strongly debated [5], we
assume here that it is correct. Even if it is not, a positive
curvature remains anyway a possible situation – somehow
favored by theoretical arguments and not excluded by data –
deserving attention.

During the inflationary period, the matter content is
described by a scalar field φ. In this work, we consider two
commonly used potentials for the inflaton: the quadratic and
Starobinsky potentials, respectively given by

V (φ) = 1

2
m2φ2; V (φ) = 3M2

32π

(
1 − e−√

16π/3φ
)2

, (4)

where m and M are free parameters that can be constrained
by CMB measurements, as we shall see below. The Klein-
Gordon equation in the homogeneous FLRW metric given
Eq.(1) reads

φ̈ + 3H φ̇ + ∂V (φ)

∂φ
= 0. (5)

The density and pressure of the inflaton field can be written
as

ρ = 1

2
φ̇2 + V (φ) and p = 1

2
φ̇2 − V (φ). (6)

As well known, Eqs. (2), (3) and (5) are not independent.
To perform the simulation, the initial conditions (IC) for

the background are set at the bounce, which is chosen to be
the origin of the time coordinate, t = 0. This is only a mat-
ter of convenience and this does not mean that the system
“looses” memory of the pre-bounce phase. At the bounce,
the derivative of the scale factor vanishes, ȧ(0) = 0, and we
choose, without any loss of generality, to set a(0) = 1, fully
fixing the IC for the homogeneous gravitational sector. In
order to set the IC for the matter sector (and to fix the free
parameter), we use the measurements of the amplitude of the
scalar power spectrum As and its running ns . Those parame-
ter shed light, in particular, on the cosmological behavior at
the time t∗, when the pivot scale k∗ = 0.05 Mpc−1 exited the
horizon. At that time, the universe can be considered as flat
[12] and we further assume that the slow-roll approximation
is satisfied [19], i.e.
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ε∗ := − Ḣ∗
H2∗

� 1

16π

(
V,φ(φ∗)
V (φ∗)

)2

� 1, (7)

η∗ := dln ε

dN

∣∣∣∣
t∗

� 4 ε∗ − 1

4π

V,φφ(φ∗)
V (φ∗)

� 1, (8)

where N is the number of e-folds and the subscript “, φ”
means a derivative with respect to the scalar field. Using
the standard definitions of As and ns , together with the field
equations at the time t∗, namely

H∗ � √
π Asε, ns∗ � 1 − 2ε∗ − η∗, (9)

3H∗φ̇∗ + V,φ(φ∗) � 0 , (10)

H2∗ � 8π

3

(
φ̇2∗
2

+ V (φ∗)
)

, (11)

one can solve for φ∗, φ̇∗, and for the free parameter included
in the definition of V (φ), either m or M . It is then possible
to choose φ(t = 0) and φ̇(t = 0) at the time of the bounce
so as to satisfy conditions (9), (10) and (11) at the time t∗.

Actually, because inflation is a strong attractor, some free-
dom is left in choosing the IC at the time of the bounce. To
better understand the physical meaning of the IC, we discuss
them using the energy density of the scalar field ρ and the
equation of state w := p/ρ, instead of φ and φ̇. The density
ρ allows one to immediately read the energy scale of the con-
sidered phase, while w quantifies how far away from a pure
de Sitter space-time the universe is. In practice, whatever the
chosen value at the bounce w(t = 0) ∈ [−1,−1/3], infla-
tion does occur. Should the initial value of w be higher than
−1/3, the bounce would simply not happen. On the other
hand, the energy density at the bounce ρ(0) is constrained
by the physical conditions at the time t∗, which in turn con-
strain the number of e-folds N of inflation for a given model.
As shown in details in [17], when w > −1/3 the energy den-
sity of matter strongly dominates at the origin of our universe
and the big bang singularity cannot be avoided. To be more
precise, since dw/dt �= 0 at t = 0 and since the requirement
w < −1/3 needs to be satisfied right before the bounce, the
actual practical upper limit for w(0) is slightly smaller than
−1/3. Setting the IC for ρ and w is in fact equivalent to set-
ting the IC for φ and

∣∣φ̇∣∣. We therefore are also free to choose
the sign of the derivative of the scalar field. The background
IC are given by {w(0), sgn(φ̇(0))}, ρ(0) being fixed by the
conditions at t∗.

Figure 1 illustrates the consequences of different choices
of IC, by displaying the evolution of the scale factor dur-
ing the pre-bounce phase and during the inflationary period
(with the Starobinsky potential), for different choices of IC.
First, one can indeed see that the choice of w and sgn(φ̇)

at the bounce has no influence on the inflationary period, as
long as ρ(0) is chosen accordingly. Remarkably, while the
post-bounce behaviour is unaffected by the choice of IC, the

Fig. 1 Evolution of the scale factor a(t) before, during and after the
bounce, for different initial conditions

pre-bounce universe, more precisely the duration of deflation,
significantly is. For φ̇(0) > 0 the deflationary period is short-
ened, while for φ̇(0) < 0 it is lengthened. The choice of w

affects the asymmetry between deflation and inflation. Since
deflation (just before the bounce) and inflation (just after it)
are both required by the model, the scalar field lies high on its
potential at the time of the bounce. The choice φ(0) > 0 can
therefore be made without loss of generality. Furthermore,
the derivative of the scalar field being non-vanishing at t = 0,
φ is not at its maximum value, but is instead slightly offset.
This is the origin of the asymmetry between the length of
deflation and the length of inflation. The quadratic potential
leads to similar behaviours.

The critical aspect of this otherwise very appealing sce-
nario – built only on the standard model of cosmology
together with a positive spatial curvature – is obviously the
deflation phase. It raises two important questions that are
both physical and philosophical.

The first question is about the probability for this defla-
tion phase to take place and last long enough. Deflation is
unstable. If one thinks from the causal viewpoint of the pre-
bounce phase, driving the universe to a de-Sitter contrac-
tion (the effective cosmological constant remaining positive)
requires a large amount of fine-tuning. Some specific choices
of potentials may overcome this difficulty [21] but, clearly,
the deflationary stage generally remains a repulsor. Is this a
problem? Not necessarily. The a priori probability for most
phenomena around us is extraordinary small. The viewpoint
adopted here is the one of an archaeologist trying to figure out
what has happened taking into account the laws we know and
the facts we see. Not the one of a historian trying to deter-
mine the deep causes of a strange political event. There is
nothing odd with discovering phenomena whose probability
of occurrence was a priori incredibly small [16]. The point
is not to find an explanation for the path followed by the
universe but to determine what this path might have been
considering the knowledge we have.
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The second question is related to the favored duration
of deflation. Only a few e-folds are required for the model
to work. This however raises an interesting point. If defla-
tion was brief, it means that, when going backward in time
prior to the bounce, the curvature term happened to dominate
before the cosmological constant had a chance to overcome
the dynamics. This implies that – still thinking backward in
time – the universe was contracting again. The whole ques-
tion of the singularity resolution therefore reappears. A new
curvature bounce is obviously possible but still needs fine-
tuning. The situation repeats itself as long as the deflation
stages last only a few e-folds. On the other hand, if defla-
tion was long enough (typically as long as inflation but the
accurate value obviously depends on the unknown content of
the contracting branch), the cosmological constant protects
the pre-bounce phase from any re-contraction (once again
in a time decreasing view). Only one bounce takes place.
This might indicate that a single long period of deflation is
somehow theoretically preferred. But this highly depends on
arbitrary probability priors.

It is worth recalling here that, as we have shown in a pre-
vious article [16], the number of inflationary e-folds and the
reheating temperature are fixed in this model. Consistency
reasons impose N ∼ 70 and TRH ∼ TGUT . It is quite impres-
sive that the number of e-folds precisely coincides with the
minimum value required to account for observations and that
the bounce energy scale (which is the same than the inflation
scale) is substantially sub-Plankian, implying a well con-
trolled classical behavior.

3 Linear perturbations

In order to compare the predictions of the model with the
temperature anisotropies measured by Planck [1], one needs
the theory of linear perturbations. In the following, we very
briefly summarize the procedure for positively curved spaces
[11,22]. On top of the homogeneous and isotropic back-
ground, small perturbations are added according to

gμν � g̊μν + δgμν ; φ � φ̊ + δφ, (12)

g̊μν and φ̊ being the background quantities. As a symmetric
rank two tensor, the metric perturbations can be decomposed
into four scalar, four vector and two tensor degrees of free-
dom. Some of these degrees of freedom are gauge artifacts
ans gauge-invariant quantities have to be constructed. In the
case of scalar perturbations of the metric, this leads to the
well-known Bardeen variables [23], usually denoted � and
. The tensor degrees of freedom are naturally gauge invari-
ant. The matter fluctuations described by δφ have to be con-
nected to the metric fluctuations through the Einstein field
equations. Using the perturbed version of the equations, one

can show that, for a perfect fluid having no anisotropic stress
at linear order, the Bardeen variables are equal: � = . The
perturbed equations of motion also give the evolution equa-
tions for the two remaining scalar perturbations, linking � to
δφ. The quantization of the remaining scalar degree of free-
dom is performed in the canonical form using the Mukhanov–
Sasaki (MS) variable [24,25], which can be written as

v(t, x) = a

(
δφ + φ̊′

H�

)
, (13)

where a prime represents the derivative with respect to the
conformal time η (such that dη = dt/a) and H = a′/a.
The canonical scalar perturbation is directly related to the
curvature perturbation R, through

v = a φ̊′

H R. (14)

So far, we have worked in position space, where the fluctu-
ations are functions of time and spatial coordinates v(η, x).
As opposed to the spatially flat case, where one describes
functions of spatial coordinates using Fourier expansions,
when the positive curvature is taken into account, the dis-
crete basis of hyperspherical harmonics Qnlm(x) has to
be used, since the manifold is closed. The detailed proce-
dure is explained in [12]. In short, the hyperspherical har-
monics can be separated into a radial part fnl(χ) and a
spherical harmonic Ylm(θ, ϕ) part according to Qnlm(x) =
fnl(χ) · Ylm(θ, ϕ). Using this basis, any function defined on
the 3-sphere, including the MS variable v, can be expanded
as

v(η, x) =
∞∑
n=2

n−1∑
l=0

l∑
m=−l

vnlm(η)Qnlm(x). (15)

The perturbed field equations describing the behaviour of the
MS variable can now be written in momentum space, leading
to an equation of motion for each mode vnlm , namely [12,13]

v′′
nlm + An(η)v′

nlm + Bn(η)vnlm = 0 , (16)

where

An(η) =
(

32πa3ȧφ̇Vφ(φ) + 48πa2ȧ2φ̇2

−8πa2φ̇2
(

8πa2
(
φ̇2 − 2V

)
+ 2K

))

×
(

2ȧ
(

2(n2 − 4)ȧ2 + 8πa2φ̇2
))−1

, (17)

and

123



Eur. Phys. J. C           (2022) 82:775 Page 5 of 11   775 

Bn(η) = 8π

ȧ2
(
2

(
n2 − 4

)
ȧ2 + 8πa2φ̇2

)

×
[
ȧ4(n2 − 4)

(
(n2 − 1)K + a2Vφφ

)

4π

+
(

4n2 − 7
)
a3ȧ3φ̇Vφ − π

n2 − 1

n2 − 4
a4φ̇4

×
[
8πa2

(
φ̇2 + 2V

)
− 6K

]
+ (n2 − 1)a2ȧ2

×
(

− 6π
n2 − 5

n2 − 4
a2φ̇4 + 4πa2φ̇2V

+ 3K

2
φ̇2 + 9

2
ȧ2φ̇2

)

+ a3ȧ
[
aȧφ̇2Vφφ + 2aȧV 2

φ

+4πa2φ̇Vφ

(
φ̇2 + 2V

)
− K φ̇Vφ

] ]

− H
(
H + An(η)/a

) − ä

a
, (18)

Analogies with the flat case can easily be drawn. Usually,
scalar functions are expanded using the basis Qklm(x) =
jl(kr)Ylm(θ, ϕ), where jl(kr) are the Bessel functions and
k ∈ R spans a continuous spectrum. In fact, in the limit where
n is large and χ is small (that is when positively curved spatial
sections are nearly flat), the radial part of the hyperspherical
harmonics fnl(χ) behaves as jl(kr). Moreover, when com-
paring the equations of motion for the scalar modes, one can
identify

(n2 − 1)K → k2. (19)

Hence,
√

(n2 − 1)K can be understood as the curved space
counterpart of the flat space wave number k. From now on,
we define the “flat case limit wave number” to be kn =√

(n2 − 1)K .
The scalar perturbations are to be understood as due to

quantum fluctuations taking place close to the bounce. To
implement this, we follow the standard quantization tech-
niques of cosmological perturbations, setting the initial quan-
tum state for vn(η) in the so-called Bunch–Davies vacuum. It
is unique and equivalent to the minimum energy state if and
only if the quantum fluctuations behave as in Minkowski
space-time, i.e. An → 0 and Bn → k2

n , at the initial time
ti [26]. Those requirements are not trivial in the considered
scenario, as we shall see later on. When they are fulfilled, the
IC for the perturbations can be set as

v(ti ) = 1

kn
& v′(ti ) = −i

kn√
2
. (20)

To check the validity of the Bunch–Davies vacuum
approximation, the functions An(t) for a massive inflaton

Fig. 2 Behaviour of the functions An(t) around the bounce, t = 0, for
different wave numbersn and initial conditions, in the case of a quadratic
potential. top left: evolution from the IC {−0.99,+1}, top right:
{−0.467,+1}, bottom left: {−0.99,−1}, bottom right: {−0.41,−1}

Fig. 3 Behaviour of the functions Bn(t) around the bounce t = 0, for
different wave numbersn and initial conditions, in the case of a quadratic
potential. top left: {−0.99,+1}, top right: {−0.467,+1}, bottom left:
{−0.99,−1}, bottom right: {−0.41,−1}

are drawn in Fig. 2, for different values of {w(0), sgn(φ̇(0))}
and n. The “deviations”, Bn(t)/k2

n − 1 are shown in Fig. 3.
The case of a Starobinsky potential is considered in Fig. 4.
We do not show the functions An(t) in the latter case as
they are similar to those of the quadratic potential. The val-
ues w(0) = −0.467 and w(0) = −0.5, respectively for
the quadratic and starobinsky potentials, with φ̇(0) > 0, are
chosen to minimize the number of e-folds of deflation. It is
as low as only 1 to 2 e-folds in both cases (we recall that
the bounce cannot occur without deflation). For a negative
scalar derivative φ̇(0) < 0, the values w(0) = −0.41 and
w(0) = −0.5 are chosen, leading to a very high number
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Fig. 4 Behaviour of the functions Bn(t) around the bounce t = 0,
for different wave numbers n and initial conditions, in the case of a
Starobinsky potential. top left: evolution from the IC {−0.99,+1}, top
right: {−0.5,+1}, bottom left: {−0.99,−1}, bottom right: {−0.5,−1}

of deflationnary e-folds: 185 and 760, respectively, for the
quadratic and the Starobinsky potentials. Clearly, in all cases,
the functions An(t) and Bn(t) are non-trivial and even diver-
gent at the bounce. This is, partly, why when the fluctuations
are initiated before the bounce, they might leave a signif-
icant imprint on the scalar perturbations and consequently
on the scalar power spectrum. Furthermore, the functions
An(t) become very small close the bounce, therefore satis-
fying the first requirement for the Bunch–Davies vacuum. It
should also be noticed that they do not significantly vary with
respect to the wave number n and to the shape of the inflaton
potential. The second requirement, Bn(ti ) ≈ k2

n , is harder to
fulfill for small values of n, as it can be seen in Figs 3 and
4 – even more so for higher values of w(0). In particular, in
the case of the quadratic potential with IC {−0.467,+1}, the
Minkowski vacuum can hardly be met with a precision bet-
ter than 50%. Although this is not problematic for the model
itself, it makes the clear analysis of the power spectra less
obvious. For the vast majority of IC, it however remains pos-
sible to define a time ti before or after the bounce, such that
Bn is close enough to the desired value k2

n . For larger wave
numbers, e.g. n ≥ 10, the Bunch–Davies vacuum is always
very well defined for an appropriate choice of IC.

It should be stressed that, in this model, the Bunch–Davies
vacuum can only be chosen for a limited amount of time,
either before or after the bounce. We assume that it makes
sense to select the minimum energy state when the instanta-

neous Minkowski vacuum is met. Although reasonable and
usual, this is not a straightforward assumption.

Beyond the specific model considered in this study, the
question of the origin of cosmological perturbations in
bouncing models is a difficult one. For example, in the case
of loop quantum gravity, some authors advocate the idea that
IC should be implemented at the bounce [27], whereas oth-
ers insist on putting them in the contracting branch [28]. This
raises questions both on the practical side and on the concep-
tual side. Practically, the issue is the one of the most conve-
nient way to proceed. Conceptually, the question is the one
of causality. If time flows in the same direction before and
after the bounce,1 and if the word “initial” is meant literally,
the IC should be defined before the bounce. Of course, the
detailed underlying process, leading to the inflaton domina-
tion (anti-reheating) is still to be described. It is our opinion
that, even at the heuristic level, it is meaningful to initiate
the perturbations before the bounce, at the time when the
Bunch–Davis vacuum is approached as closely as possible.

4 Primordial power spectrum and temperature
anisotropies

In previous sections, we have discussed the background
behaviour leading to a curvature bounce instead of the big-
bang singularity and explained how the cosmological evo-
lution depends upon the IC. We have also introduced the
theory of cosmological perturbations in a closed universe
and showed that quantum fluctuations can be initiated either
before or after the bounce, using in all cases the Bunch–
Davies vacuum. The primordial scalar power spectrum and
the subsequent effects on the temperature anisotropies mea-
sured in the CMB can now be calculated for different
hypotheses that will be described later.

To compute the primordial power spectrum, we first evolve
the perturbations vn(t) from the initial time ti to the reheat-
ing using the equation of motion (16). At the reheating, the
curvature term is completely negligible when compared to
the other fluids and one can use the standard definition of the
power spectrum of the scalar perturbations, namely

PS(n) = k3
n

2π2

∣∣∣∣
vn

z

∣∣∣∣
2
∣∣∣∣∣
t=trh

, (21)

trh being the reheating time.

1 This hypothesis is not obvious. If, as suggested by Penrose [29], irre-
versibility is driven by processes that takes place while approaching
(nearly) singular points, it could be that time – in this particular sense
(as there are actually many different times at play [30]) – flows in two
opposite directions from the bounce.
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To calculate the spectrum of temperature anisotropies, we
use the Boltzmann code CAMB, which is well suited to take
into account a positive curvature and a discrete primordial
power spectrum [31].

4.1 Post-bounce origin of structures

We start with the assumption that the anisotropies observed
in the CMB originates from quantum fluctuations generated
after the bounce. This situation is nearly analogous to the
one considered in the work of [12] (where no bounce occurs),
with the exception of the numerical value of curvature param-
eter (�K = −0.005 in their case). The specific time at which
the IC for the background and for the perturbations are set
is also different. One of the main results of [12] was the
prediction of a decrease of the primordial power spectrum
amplitude at low values of n and, consequently, a decrease
of the temperature anisotropies at low multipolar numbers �.
In [12], the background IC are chosen at the time t∗, when the
modes with k∗ = 0.005 Mpc−1 exited the horizon. The scale
factor and the scalar field are then evolved both in the future,
t > t∗, and in the past, t < t∗. Although fully legitimate, this
approach might miss the “standard” behaviour as the slow-
roll solution is not an attractor when going backward in time
(which is equivalent to going forward in time in a contract-
ing universe). This leads to instabilities (the same than those
responsible for the low likelihood of a long lasting deflation
in the contracting branch) and to the big bang singularity.
The fluctuations are set in the Bunch–Davies vacuum before
the time t∗, when all the modes are sub-Hubble. However,
at that time, the requirements of the Bunch–Davies vacuum
are in fact not fully satisfied for low wave numbers n and it
might very well be that this is the reason for the calculated
damping of the primordial power spectrum at low multipolar
numbers.

To support this last argument, we have calculated the pri-
mordial scalar power spectrum for both potentials and for dif-
ferent values of the background IC. In each case, we select the
best post-bounce time ti > 0, where the requirements for a
Bunch–Davies vacuum are satisfied, to initiate the quantum
fluctuations. The results for the quadratic and Starobinsky
potentials are exposed in Figs. 5 and 6, respectively. It can
be seen that, if one chooses the most appropriate time to set
the IC for the perturbations, the primordial power spectra
for the scalar modes in a positively curved space are almost
identical to those of a flat universe, described by as a power
law PS(k) = As(k/k∗)ns−1. Even for the IC {−0.99,−1},
where the Minkowski vacuum conditions are not exactly met,
Fig. 3 shows that one closely recovers the flat space power
spectrum. To further support that the lack of power of the pri-
mordial power spectrum at low n found in [12] might be due
to an ill-defined Bunch–Davies vacuum, one can calculate
the scalar power spectrum with a sub-optimal initial time ti .

Fig. 5 Primordial scalar power spectrum for different set of back-
ground initial conditions, for a quadratic potential, and with fluctuations
initiated after the bounce (blue dots). The standard power law is repre-
sented as a dashed black line. The IC for the background are: top left
{−0.99,+1}, top right {−0.467,+1}, bottom left {−0.99,−1}, bottom
right {−0.41,−1}

Fig. 6 Primordial scalar power spectrum for different set of back-
ground initial conditions, for a Starobinsky potential, and with fluc-
tuations initiated after the bounce (blue dots). The standard power law
is represented as a dashed black line. The IC for the background are:
top left {−0.99,+1}, top right {−0.5,+1}, bottom left {−0.99,−1},
bottom right {−0.5,−1}

Fig. 7 Comparison between the primordial power spectra of scalar
modes from a well-defined (left) and ill-defined (right) Bunch–Davies
vacuum. The calculation is performed for the quadratic potential with
IC {−0.99,+1}

The comparison between the power spectra initiated from a
well-defined and an ill-defined Bunch–Davies vacuum for the
quadratic potential with background IC {−0.99,+1} is show
on Fig. 7. A significant deficit of power for the ill-defined vac-
uum, similar to the one of [12], is indeed observed. We do not
show the temperature anisotropies for the primordial power
spectra shown in Figs. 5 and 6, since they are the same as in
the flat space case.
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4.2 Pre-bounce origin of quantum fluctuations

In most cases, the Minkowski vacuum requirements are met
before the curvature bounce and it is reasonable to investigate
the situation where the quantum fluctuations are initiated in
their minimum energy state at that time. If this assumption is
correct, one has to evolve perturbations through the bounce –
the later leaving a characteristic imprint. To compute the pri-
mordial power spectrum, we proceed as before, i.e. choosing
the best initial time ti < 0 to set the IC for the perturba-
tions – that is corresponding to a good quality vacuum. They
are then propagated up to the end of inflation and the power
spectrum is calculated. This procedure is repeated for both
potentials and for different background IC. The divergence
of the functions An and Bn is an additional numerical dif-
ficulty. Fortunately, the divergence being well localized and
well behaved, one can always find a time interval around
t = 0, where both functions can be accurately approximated
by An(t) ≈ an/t and Bn(t) − k2 ≈ bn/t , where an and
bn can be well determined. With these approximations, the
equation for the perturbations (16) can be solved analyti-
cally using Bessel functions. Outside this specific time inter-
val around the bounce, the perturbations are evolved with
numerical techniques.

The Bunch–Davies vacuum cannot be properly defined
in the case of the quadratic potential with background IC
{−0.467,+1}, hence we expect a decline in the primordial
scalar power spectrum at low wave numbers. For the other
power spectra, we expect the shape to be only modified by the
bounce. The primordial power spectrum for scalar fluctua-
tions initiated before the curvature bounce, in the case of the
quadratic and Starobinsky potentials, are shown in Figs. 8
and 9 respectively. For both potentials, when the duration
of the deflation is similar to the duration of inflation, repre-
sented by w(0) = −0.99, it can be seen that the primordial
power spectrum is not significantly affected. As expected,

Fig. 8 Primordial scalar power spectrum for different sets of back-
ground initial conditions, in the case of the quadratic potential and with
fluctuations initiated before the bounce (blue dots). The dashed black
line represents the standard power law. The IC for the background are:
top left {−0.99,+1}, top right {−0.467,+1}, bottom left {−0.99,−1},
bottom right {−0.41,−1}

Fig. 9 Primordial scalar power spectrum for different sets of back-
ground initial conditions, in the case of the quadratic potential and with
fluctuations initiated before the bounce (blue dots). The dashed black
line represents the standard power law. The IC for the background are:
top left {−0.99,+1}, top right {−0.5,+1}, bottom left {−0.99,−1},
bottom right {−0.5,−1}

for a massive inflaton generating a very short period of defla-
tion, corresponding to IC {−0.467,+1}, we indeed observe
a decline in the power spectrum amplitude at low wave num-
bers. However, we also observe this behaviour in the case
of the Starobinsky potential, for which the vacuum is well-
defined. It can then be safely conjectured that the short period
of deflation is the origin of the lack of power at low n. When
the period of deflation is longer than the period of inflation,
the result significantly differ, depending on the potential. For
the massive scalar field, the primordial power spectrum at low
n is amplified when compared to the flat space case, while
for the Starobinsky scalar field, it is not drastically affected.

Three of the eight primordial scalar power spectra devi-
ate from the standard power law PS(k) = As(k/k∗)ns−1,
hence we focus on those for the calculation of the temper-
ature power spectra CTT

L . The deviation mainly appears at
low wave number n and the CTT

� are therefore affected at
low values of �, where the cosmic variance makes it difficult
to have statistically significant measurements. Nonetheless,
strong deviations could lead to inconsistencies. Although not
statistically significant, it might also be argue that explain-
ing the slight lack of power observed in the CMB at large
scales [32] would be welcome. To calculate the CTT

� , or
more precisely the DTT

� := �(� + 1)/(2π)CTT
� , for the

three different non-trivial cases, namely quadratic potential
with IC {−0.467,+1} and {−0.41,−1}, and the Starobinsky
potential with IC {−0.5,+1}, we proceed as follow. We use
the Boltzmann code CAMB, modifying the cosmological
parameters for the spatial curvature and for the Hubble con-
stant according to [4]. With these appropriate values and the
standard power law for the primordial power spectrum, one
recovers almost exactly the prediction made with the usual
parameters �K = 0 and H0 = 67.3 km/s/Mpc, as found in
[1] (this is why, in [4], it can be argued that a positively curved
universe is compatible with CMB measurements). We then
compute two different power spectra. The first one, named
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Fig. 10 Temperature angular power spectra DTT
� for a pre-bounce

and for a post-bounce origin of structures, with background IC
{−0.467,+1}, and a quadratic potential.Top: DTT

L ,post-b in black, DTT
�,pre-b

in dashed red, Planck data in blue.Bottom:Ratio of the spectra in dashed
red

DTT
�,post-b, is calculated using the standard power law for the

primordial spectrum, which will serve as a comparison. As
the name suggests, it is equivalent to the result calculated for
the primordial power spectra derived with post-bounce initial
conditions. The second temperature power spectrum DTT

�,pre-b
is computed with the modified primordial power spectra from
the pre-bounce initial perturbations.

The temperature power spectra for the quadratic poten-
tial with a short period of deflation, a long period of defla-
tion, and for the Starobinsky potential with a short period
of deflation are shown in Figs. 10, 11 and 12, respectively.
While the important increase of power at low values of �,
as can be observed in Fig. 11 for a long period of deflation,
is disfavored by Planck measurements, the slight decrease
at low � for the short deflation fits well the data. It should
be underlined that we present here the extreme cases only
(either an identical duration for deflation and inflation, or
a very long/brief period of deflation). One can of course
choose background IC in between these extremes and obtain
a weaker deviation. Overall, Planck data do slightly favor
a shorter period of deflation than inflation. When compared
to the post-bounce initial conditions, the pre-bounce initial
conditions with a short period of deflation decrease the χ2

per degree of freedom by, respectively, 2.25 and 1.40 for a
quadratic potential and a Starobinsky potential (performing
the analysis with points before the first acoustic peak only).
Those numbers are to be considered as indications of the
trend and not treated as statistically significant results.

Overall, the curvature bounce hypothesis agrees with cur-
rent data. Depending on the IC, it can fit slightly better or
slightly worst the CMB observations, when compared to the
standard model. For the vast majority of IC, it is hardly dis-
tinguishable from the usual scenario, which makes it reliable
and consistent but hard to falsify. Some non-CMB ideas for
experimental probes were however suggested in [16].

Fig. 11 Temperature angular power spectra DTT
� for a pre-bounce and

for a post-bounce origin of structures, with background IC {−0.41,−1},
and quadratic potential. Top: DTT

�,post-b in black, DTT
�,pre-b in dashed red,

Planck data in blue. Bottom: Ratio of the spectra in dashed red

Fig. 12 Temperature angular power spectra DTT
� for a pre-bounce and

for a post-bounce origin of structures, with background IC {−0.5,+1},
and Starobinsky potential. Top: DTT

�,post-b in black, DTT
�,pre-b in dashed

red, Planck data in blue. Bottom: Ratio of the spectra in dashed red

5 Conclusion

In the first part of this article, we have discussed the back-
ground behaviour in the pre-bounce universe, at the bounce
and during the inflationary period. In particular, we have
shown that widely different pre-bounce dynamics can lead
to the same inflationary stage, due to the strong attractor sta-
tus of the slow-roll inflation trajectory for the background
equations of motion. To be more precise, the duration of the
period of deflation can be chosen freely, without affecting the
physics in the expanding universe at the background level.
This raises interesting theoretical questions. From the view-
point of stability for a single bounce, a brief deflation period
is favored. But from the viewpoint of the avoidance of mul-
tiple bounces, a long deflation is favoured. It should, once
again, be emphasized that this work does not focus on the
“naturalness” of the considered cosmic evolution. The other
way round, it tries to determine the correct solution – what-
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ever its a priori probability – taking into account what we
know about the Universe.

After having introduced the theory of linear perturba-
tions in curved space and shown that the quantum fluctu-
ations can be initiated in the Bunch–Davies vacuum either
before or after the bounce, we have calculated the primor-
dial power spectrum of scalar perturbations for both the
quadratic and Starobinsky potentials, for different values of
the duration of the deflation stage. We have reached the con-
clusion that when the initial conditions for the fluctuations
are set after the bounce, the standard power law spectrum,
PS(k) = As(k/k∗)ns−1, derived from the flat space case, is
recovered nearly exactly. This result is in tension with [12]
where a power decrease at low wave numbers was pointed
out. We believe that the difference is (maybe partially) due to
the fact that the requirements for the Bunch–Davies vacuum
are not satisfied at the time when fluctuations are initiated in
[12] .

Later on, we have explicitly computed the primordial
power spectrum for perturbations that are initially set before
the bounce. We have found that, in the case of the quadratic
potential, the results significantly differ from the standard
power law, when the deflation period is either very long
(typically around 185 e-folds) or very short, (around 1 or
2 e-folds). The primordial power spectrum decreases at low
wave numbers n for a very short deflation, which is partly
explained by an ill-defined Bunch–Davies vacuum. On the
other hand, the power is increased at low n for a very long
deflation. In the case of the Starobinsky potential, the power
spectrum is attenuated at low n for a short deflation, but
it is equivalent to the standard power spectrum for a long
deflation, as opposed to the massive case. These modified
primordial power spectra only affect the temperature power
spectrum CTT

� at low values of �, where it is difficult to reach
a definitive conclusions due to the cosmic variance. Nonethe-
less, Planck data slightly favor a short duration of deflation,
due to the power decrease at low wave numbers.

It is rather remarkable that, while the pre-bounce dynamics
has no effects on the background behaviour of the expanding
universe, the duration of the period of deflation can affect the
temperature anisotropies observed in the CMB. To reach this
conclusion, one needs to assume that fluctuations originate
from the Bunch–Davies vacuum before the bounce. While it
is a plausible hypothesis, this is obviously not the only pos-
sible choice. In addition, in this work, we have extensively
used the values of the parameters given in [4] but other pos-
sibilities should be considered in future studies.

Finally, it is worth recalling that this entire scenario is
also appealing because the density of the Universe never
approaches the Planck density. The bounce takes place for
ρ � ρPl and the use of standard quantum field theory tech-
niques is therefore much safer than in quantum gravity sce-
narios.

Some of the points made in this work are quite generic
to bouncing models (see [33] for a review). In particular,
the issues that have to be dealt with are basically always the
same as far as initial conditions are concerned. The details
are however highly depending on the equation of state around
the bounce (w = −1 in our case), which is different from the
one typically encountered in the ekpyrotic bounce (w ≥ 1)
[34], matter bounce [35] (w = 1/3) or typical loop quan-
tum cosmology bounce [36] (w varies fast close to bounce).
The techniques can therefore be easily generalized to other
bouncing paradigms but not the results.
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3.4 A bounce in loop quantum cosmology

Quantizing our theory of gravity has been a century long problem in theoretical physics. Due
to the non-renormalizability of General Relativity, common QFT techniques are unavailable
and the absence of experimental evidence makes it difficult to move towards a quantum de-
scription of gravity. Nonetheless, different approaches to quantize General Relativity have
emerged. On one side, string theory uses the perturbative techniques of QFT, but in the
context of a UV-complete theory. On another side, Loop quantum gravity (LQG) applies
the well-studied and robust technique of canonical quantization. While observing quantum
gravity in particle physics experiments remains out of reach, one could hope to observe
imprints of its effect at very early times. As discussed earlier, if the universe is closed and
started with a period of inflation, there might be no need for a quantum theory of gravity.
However, the spatial curvature is so far unobserved and our universe is equally likely to be
infinitely large. In this case, another solution to the big bang singularity problem must be
found and it might lie in the quantum description of General Relativity. In the attempt to
understand the very early universe, the techniques of LQG where used on the restricted the-
ory of General Relativity together with the homogeneity and isotropy assumptions, leading
to the theory of loop quantum cosmology (LQC). However, several ambiguities, common
in quantum mechanics, might be plaguing the predictions of LQC and a consistency check
for more general quantum corrections from LQC to classical cosmology should be made.
Refs. [7, 131,132] were used extensively in this section.

3.4.1 Loop quantum gravity in a nutshell

In order to quantize gravity "à la Dirac", we need to find the Hamiltonian of the theory
and express it in terms of the canonical variables. In the context of General Relativity, this
is not an easy task, because space and time are dissociated in Hamiltonian mechanics, as
opposed to relativistic theories. Nonetheless such a separation can be done if we proceed as
follows. First, we observe that in the Einstein-Hilbert action

SEH [g] =
1

16π

∫
d4x
√−gR , (3.55)

g00 and g0i appear without a time derivative. This means that they can be considered as
Lagrange multipliers and they are non-dynamical, their associated field equations behave as
constraints. Moreover, if one writes the metric as

ds2 =
(
−N2 +NiN

j
)

dt2 + 2Nidtdx
i + qijdx

idxj , (3.56)

the action takes the interesting form [30]

SADM [qij, N,Ni] =
1

16π

∫
dt

∫
dx3

(
πij q̇

ij −NC −NiCi
)
, (3.57)
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where q̇ij = Ltqij is the Lie derivative of the induced metric qij of the hyper-surfaces Σt with
normal vector nµ = (N, 0, 0, 0),

πij =
δL

δq̇ij
=
√
q
(
Kij −K l

lqij

)
(3.58)

is the conjugate momentum of qij, with Kij = Lnqij/2 the extrinsic curvature of Σt,

C =
(
qikqjl + qilqjk − qijqkl

)
πijπklR (3.59)

is the scalar constraint with R the Ricci scalar of Σt and

Ci = −2
√
q ∇l

(
πli√
q

)
(3.60)

is the vector constraint. With the action (3.57) written in terms of the variables qij, N and
Ni, several properties become apparent. N and Ni are directly connected to the components
g00 and g0i of the metric and they are trivially behaving as Lagrangian multipliers. Their
associated field equations straightforwardly give the constraint equations C = Ci = 0. Since
the remaining dynamical variable qij must be symmetric, it contains a priori six degrees
of freedom. But together with the constraints, we are indeed down to two propagating
degrees of freedom as expected. The form of the action (3.57) is canonical and so are the
variables qij and πij. Hence one could proceed with the canonical quantization procedure,
which would lead to the Wheeler-DeWitt equation [133] for the wave function Ψ(qij) of
the three-metric qij. One major issue with this approach is that the inner product on the
state space is ill-defined and it makes it difficult to derive predictions [132]. Moreover in
the context of quantum cosmology, where we reduce the phase-space from the three-metric
to the scale factor alone before quantization, different initial conditions lead to different
meaningful cosmological predictions [134–136], therefore spoiling the utility of the theory.

In order to evade the problems of the Wheeler-DeWitt approach, one can find new canon-
ical variables with which we then proceed to the Dirac quantization. This is possible if we
introduce the concept of triads and co-triads, denoted eia and eai , respectively. They are
three-vectors defined such that we can decompose the dynamical part of the metric as

qij = eai e
b
jδab . (3.61)

In particular, the triads connect what we call an internal space represented by the indices
a, b, ..., to the hyper-surfaces Σt with indices i, j, ... . We can also observe that the metric is
invariant under any rotation of the internal space, i.e. the physics is gauge invariant under
the algebra su(2). The theory expressed in terms of the triads and co-triads is therefore
very similar to a Yang-Mills theory. The consequence of this gauge symmetry is that we
need to add three constraints to the action when describing the physics using the co-triads.

In order to work with objects that have internal indices, e.g. the vector V a, we need to
define a covariant derivative Di as

DiV
a = ∂iV

a + ω a
i bV

b , (3.62)

where ω a
i b is called the spin connection. If the object has mixed indices, e.g. Ea

j , then the
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covariant derivative reads

DiE
a
j = ∂iE

a
i + ω a

i bE
b
j − ΓkijE

a
k . (3.63)

We would like that the covariant derivative of the metric cancels, therefore we have the
useful condition Die

a
j = 0.

The action is the integral of a densitized expression, such as the volume form √qdx3.
This means that the densitized triad

Ea
i =
√
q eai , (3.64)

is better suited as a candidate canonical variable. In fact, together with the Sen-Ashtekar-
Barbero (SAB) connection

Aai = ωibcε
bca + βKij

Eja

√
q
, (3.65)

where γ ∈ C is called the Barbero-Immirzi parameter and εabc is the Levi-Civita tensor, they
form a canonical pair. Therefore, their Poisson brackets are

{
Aai (x), Ajb(y)

}
= 0 (3.66)

{
Ea
i (x), Ej

b (y)
}

= 0 (3.67)
{
Aai (x), Ej

b (y)
}

= 8πβδji δ
b
aδ

3(x− y) , (3.68)

and the action in terms of these new variables takes the form

SSAB[Aai , λ
a, N,Ni] =

1

16π

∫
dt

∫
dx3

(
Ei
aȦ

a
i −NC −NiCi − λaGa

)
, (3.69)

with the Gauss, vector and scalar constraints, respectively

Ga = DiE
i
a (3.70)

Ci = F a
klE

l
a − (1 + β2)Ka

i Ga (3.71)

C =
Ei
aE

j
b√

detE

(
ε abc F c

ij − 2(1 + β2)Ka
[iK

b
j]

)
, (3.72)

and the curvature tensor of the SAB connection being

F a
ij = ∂iA

a
j − ∂jAai + εabcA

b
iA

c
j . (3.73)

The Hamiltonian density is then easily found using H = Ei
aȦ

a
i − LSAB.

We have now all the ingredients to proceed with the Dirac quantization, in which we
promote the canonical variables to operators on the Hilbert space of states, or similarly on
the space of wave functions, the Poisson brackets become commutation relations and we
promote the Hamiltonian to an operator as well. In order to define the space of the wave
functions, one can use the very useful Giles’ theorem [137]. To understand the theorem, we
need the concept of holonomy. The holonomy hγ[A] of the SAB connection Aai on a closed
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curve γ is defined as

hγ[A] = P
[
e
∮
γ A

a
i τadxi

]
, (3.74)

the path ordered integral of the exponential of the connection associated to the su(2) gen-
erators τa. We recall that the theory in terms of the triad is symmetric under SO(3) and,
similarly to Yang-Mills theories, the connection Ai = Aai τa is used to make it a gauge
symmetry. Hence the full connection Ai is an element of the vector space su(2) and its
components with respect to the basis {τa}a are what we refer to as the connection Aai . In
the context of Yang-Mills theories, Giles has shown that any function of the connection,
such as a wave function Ψ(A), can be decomposed into of sum over all possible loops γ of
the traces of the holonomies, namely

Ψ(A) =
∑

γ

Ψ(γ)Wγ[A] , (3.75)

withWγ[A] = Tr
(
hγ[A]

)
. In the same way, one can work either in momentum or in position

space in quantum mechanics, we can work in the connection or in the "loop" space with
Ψ(γ). It is this loop representation that allows one to resolve the problem of ill-defined inner
product encountered in the Wheeler-DeWitt approach. We do not extend the detail of the
calculation further, as it is not necessary for the rest of the text, but we must discuss the
main consequence of the LQG approach to quantum gravity. Once the kinematical Hilbert
space with its inner product has been defined and we promoted the canonical variables as
well as the Hamiltonian to operators, we can find the area and volume operators. The
minimum value in the spectrum of both operators for physical states is non-zero, meaning
that there exists a smallest area and a smallest volume in LQG. The minimum area that
one can have is Amin = 4

√
3πβl2pl, with lpl the Planck length, and it will become important

later on.

3.4.2 Loop quantum cosmology with a general holonomy correction

Loop quantum gravity is an attempt to quantize the full theory of General Relativity and
we saw that the concept of holonomy is an essential part of the success of the theory.
One of the main era when we would expect quantum gravity to be relevant is the early
universe. Therefore, one could try to apply LQG techniques on the restricted theory where
the cosmological principle of homogeneity and isotropy is considered. When restricting
ourselves to this minisuperspace, where the metric in flat space is of the form

ds2 = −N2(t)dx2
0 + a2(t)δabdx

adxb , (3.76)

the triads and co-triads simplify to

eai = a(t)δai and eia = a−1(t)δia , (3.77)

respectively. We see that the cosmic time t commonly used in cosmology is connected to the
00-component of the metric as dt = Ndx0. We now quickly summarize the main steps and
cosmological consequences of LQG reduced to the minisuperspace of FLRW cosmology, or
otherwise named loop quantum cosmology (LQC). The introductory sections of the following
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two papers contain additional details concerning the derivation of the background dynamics
of LQC. The densitized triads and the SAB connection can also be rewritten in terms of
the scale factor and it is common practice in LQC to work with the new canonical variables
c(t) and p(t) defined as follow,

Ei
a = a2(t)δia :=

p(t)

V
2/3

0

δia and Aai = βȧ(t)δia :=
c(t)

V
1/3

0

δai . (3.78)

The fiducial volume V0 is the volume on which we integrate the Hamiltonian density and is
introduced in order to avoid a divergent Hamiltonian. Once its density is integrated on the
fiducial volume, the total Hamiltonian including the gravity and scalar sectors is

H = N

(
− 1

16πβ2
p1/2V

2/3
0 δiaδ

j
bε

ab
c F c

ij + p3/2ρ

)
. (3.79)

Beware that p(t) stands for one of the canonical variables and not the pressure of the scalar
fluid. If one uses the definition (3.73) for the curvature of the SAB connection, we find the
Hamiltonian

H = N

(
− 3

8πβ2

√
pc2 + p3/2ρ

)
, (3.80)

and the Hamiltonian equations give us the usual Friedmann and Raychaudhury equations.
However, in a similar way one can define the Riemann curvature with the parallel transport
of a vector around an infinitesimal loop, one can use the trace of the holonomy of a loop
to find the curvature F a

ij. Let’s take a squared loop denoted � with the sides of length µ.
Then the curvature tensor can be written as

F c
ij = −2 lim

µ→0

1

β2µ2
Tr
(
τ c(h�ab[A]− 1d)

)
eai e

b
j , (3.81)

where d is the dimension of the representation used for the generators τa. In particular, if
one chooses the fundamental representation where the generators are the Pauli matrices, we
get the following result

F c
ij = −2 lim

µ→0

sin2(cµ)

β2µ2
εcabe

a
i e
b
j . (3.82)

Now, we learned for LQG that the smallest area possible is non-zero, meaning that taking
the limit µ→ 0 does not make sense in this context. Instead one should take

µ→ µ̄ =

√
4
√

3πβ/p lp :=

√
∆

p
lp , (3.83)

which is the square root of the minimum physical area. The effect of such a change on the
Hamiltonian (3.80) is the modification

c2 → sin2(cµ̄)

µ̄2
, (3.84)
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Figure 3.1: Comparison between the quantum evolution as derived in LQC and the
classical evolution of the volume observable. The scalar field φ is used as the time
variable. Unlike classical trajectories leading to singularities, the LQC trajectory is
non-singular and leads to a bounce in the Planck regime. The dispersion across the
bounce for the quantum approach are included. The state remains peaked and the
dispersion approaches a constant at large volumes. Retrieved from [131].

which is called the holonomy correction. Using the Hamiltonian equations together with the
Hamiltonian constraint H = 0 gives us the modified Friedmann of LQC, namely

H2 =
8π

3
ρ

(
1− 8πβ2∆

3
ρ

)
:=

8π

3
ρ

(
1− ρ

ρc

)
. (3.85)

We see that in the limit where ρ � ρc we recover the standard Friedmann equation. The
critical density ρc is expected to be of order of the Planck density, hence this inequality is
satisfied for most of the history of the universe. However, when ρ ≈ ρc the Hubble parameter
cancels, which implies that we have a bounce instead of the big bang singularity.

One could worry that the above derivation of the Friedmann equation employs no quan-
tization techniques. We described here the effective approach to LQC, but a quantum
mechanical description can be made. The quantization of the minisuperspace follows the
usual canonical method, but on the canonical variables b = cµ̄ and V = a3 instead, the
latter representing the volume. First, the canonical variables are promoted to operators, as
well as the Hamiltonian Ĥ and the wave function Ψ(V, ψ) is defined. The evolution equation
of the wave function is found with the quantum constraint equation ĤΨ = 0. Numerical
calculations of the evolution of the wave function, initiated with a sharply peaked initial
condition on the classical solution, were made and the results for the volume observable
are exposed in Fig. 3.1. We see that the dispersion of the volume observable stays small,
validating the effective approach described earlier, and we indeed have a bounce instead of
a big bang.

Another argument in favor of the effective approach to LQC arises when including inho-
mogeneities. As opposed to the standard cosmological perturbation theory introduced in the
previous chapter, we would like to describe quantum fluctuation on a quantum background.
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Heuristically, this means that the total wave function would be

Ψ(a, φ, vS, vT ) = Ψback(a, φ)⊗Ψpert(a, φ, vS, vT ) . (3.86)

In the absence of back-reactions of the perturbations on the background, an assumption that
is commonly used and checked to be consistent [138], the wave function of the background
Ψback(a, φ) behaves as discussed in the previous paragraph. We are left to find the evolution
equation for the wave function of the perturbations. In the case of the tensor modes, one
can show that the wave function follows the behaviour

Ψback ⊗ i~
∂Ψpert

∂φ
= HT

pert

(
Ψback ⊗Ψpert

)
, (3.87)

where HT
pert is the Hamiltonian for the tensor perturbations. By taking the inner product

with respect to Ψback, one can show that the tensor quantum fluctuations evolve as

v̂′′T +

(
k2 − ã′′

ã

)
v̂T = 0 , (3.88)

where ã(η) is an effective scale factor that follows the LQC Friedmann equations. This
means that, from the point of view of the perturbations, the quantum background behaves
as a classical effective background described by LQC, supporting the effective approach
derived earlier. A similar argument can be made for the scalar perturbations.

One issue with the above approach, named dressed metric, is that the constraint algebra
is distorted at the level of the perturbations, meaning that the Poisson brackets of the
constraints do not give a constraint again. An other approach, called deformed algebra,
to perturbation theory on an LQC background was developed with the requirements that
the evolution of the perturbations must be chosen such that the constraint algebra remains
closed. For the holonomy correction derived above (3.84), the equations for the perturbations
that keep the algebra closed are

v′′T +

(
Ω2k2 − ã′′

ã

)
vT = 0 and v′′S +

(
Ω2k2 − z̃′′

z̃

)
vS = 0 , (3.89)

where

Ω = cos(2µ̄c) = 1− 2
ρ

ρc
, (3.90)

the scale factor from LQC ã and z̃ = ã ˙̃φ/H̃. While this approach resolves the distortion
of the constraint algebra and recovers the Euclidean period as in Hawking’s approach to
quantum cosmology [139], it suffers from observational issues. First, one can show that
during the phase when Ω is negative, meaning ρc/2 < ρ < ρc, the effective metric "felt" by
the perturbations is in fact Euclidean [140]. This makes it complicated to interpret what is
the time evolution of the perturbations during that early epoch, but is conceptually inter-
esting as already discussed by Hawking. However, this Euclidean period also prevents the
primordial power spectra from being scale invariant, which is in contradiction with observa-
tions. However, the problem of time and the problem of inconsistent power spectra might
be connected and a better understanding of the effect of the bounce on the perturbations
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in the deformed algebra approach is necessary to draw conclusions.
In order to derive the standard behaviour of LQC, several assumptions were made, start-

ing with, for example, the choice of the fundamental representation of su(2) for the calcula-
tion of the holonomy. This means in particular that the derived holonomy correction (3.84)
is far from unique and a more general expression

c2 → g2(c, p) , (3.91)

should be studied. However, several properties of the standard holonomy corrections remain.
First, we should still recover General Relativity and FLRW cosmology in the limit ρ� ρc,
otherwise the theory is excluded by observations. It has also been previously discussed that
the general holonomy correction must be periodic if derived from LQG arguments [141,142].
This last condition is in fact sufficient to show that the existence of the bounce in LQC
does not depend on the holonomy correction. Nonetheless, other predictions of LQC might
differ depending on the correction and the robustness of these predictions must be tested.
This is the goal of the two following papers. in the first paper, the dependence of the
background dynamics on the holonomy correction is studied as well as the scalar primordial
power spectrum as predicted by the dressed metric method. In the second paper, the tensor
and scalar primordial power spectra in the deformed algebra approach are tested for different
holonomy corrections.
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Most of the phenomenology of loop quantum gravity in the cosmological sector is based on the so-called
holonomy correction to the Hamiltonian constraint. It straightforwardly modifies the Friedmann equations.
In this work, we investigate the influence of corrections generalizing the one usually used in loop quantum
cosmology. We find that a long enough inflation phase can be generated by purely quantum geometrical
effects but we also underline the limitations of this scenario. In addition, we study the effects of generalized
holonomy corrections on an inflationary phase generated by a massive scalar field. At the level of
perturbations, we investigate in detail the consequences on the primordial scalar power spectrum. The
results are actually quite general and can be used beyond the “loop” framework.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a nonperturbative
framework [1] providing a tentative quantization of
general relativity (GR). It has been expressed both in
the canonical form [2] and in a covariant way [3]. As for
all speculative theories the challenge is twofold. On
the one hand, one has to check internal consistency.
This is far from being a trivial requirement, especially in
quantum gravity. From gauge issues to infrared correc-
tions, quite a lot of questions remain—at least partially—
open (see, e.g., [4]). On the other hand, it is mandatory to
face the outstanding question of phenomenological con-
sequences [5]. Making links with observations is the key
missing ingredient for all attempts in quantum gravity,
including string theory [6].
In this article, we address the question of the robustness

of some predictions of LQG in the cosmological sector.
Many different aspects have already been investigated,
taking into account in particular (see, e.g., [7–15])

(i) the way initial conditions are set,
(ii) the validity of the minisuperspace approximation,
(iii) the backreaction effects,
(iv) the deformation of the algebra of constraints,
(v) the inclusion of shear and curvature,
(vi) the quantization of operators associated with neg-

ative powers of the volume operator,
(vii) the inclusion of effects inferred from quantum

reduced loop gravity or group field theory,
(viii) numerical results beyond the semiclassical approxi-

mation, etc.
Here, we tackle a different and somehow underestimated
question: the consequences of a generalized holonomy
correction. The point is not to invent what would be a
superexotic theory, with new free parameters, to boost the

phenomenological richness. Just the other way round, the
aim is to investigate how reliable are the predictions made
so far, taking into account implicit assumptions that went
mostly unnoticed and may play an important role.
The issue of quantization ambiguities in this frame-

work was pointed out in [16]. Those associated with the
quantization of the connection-based holonomy variable
might deeply influence the dynamics and constitute the
subject of this article. New theoretical arguments are being
given in [17], while the present work focuses on potential
observable effects. The question is especially important and
meaningful when considered from a renormalization point
of view.
In the following, the basics of loop quantum cosmology

(LQC) are first briefly reminded. We then go into the details
of generalized holonomy corrections. In the next section,
we show that a long period of inflation can be generated
using only a modified holonomy correction, without any
massive scalar field. We also highlight the limits of such
a model. The consequences of generalized holonomy
corrections on both the background inflationary dynamics
generated by a massive inflaton field and the scalar
primordial power spectrum are finally exposed.

II. FLRW LOOP QUANTUM COSMOLOGY

In order to set the notations and remind the basics to the
unfamiliar reader, we summarize the main ideas behind
LQC. This also allows the article to be self-contained. In
the fully constrained Ashtekar-Barbero formulation of GR,
the canonical variables are

Ai
a ≡ Γi

a þ γKi
a and Ea

i ≡ 1

2
εabcεijke

j
be

k
c; ð1Þ
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where Γi
a is the suð2Þ spin connection, γ the Barbero-

Immirzi parameter, Ki
a the extrinsic curvature, εabc the

totally anti-symmetric tensor, and eia the triads. In this
work, we use a, b, c as spacetime indices and i, j, k as
internal suð2Þ algebra indices. Both sets run from 1 to 3.
These canonical variables satisfy the relations

fAi
aðxÞ; Eb

j ðyÞg ¼ κγδijδ
b
aδ

3ðx − yÞ; ð2Þ

with κ ¼ 8πG.
As GR is a fully constrained theory, its Hamiltonian is

written as a sum of constraints, respectively called scalar,
vector and Gauss constraints. When homogeneity is
assumed, the scalar contribution Cg is the only one to
remain. The Hamiltonian can then be written using the
lapse function N as

CN
g ¼

Z
Σ
dx3NCg ð3Þ

¼ 1

2κ

Z
Σ
dx3

Nffiffiffi
q

p Ea
i E

b
j ðεijk Fk

ab − 2ð1þ γ2ÞKi
½aK

j
b�Þ; ð4Þ

with Σ a compact hypersurface. In a homogeneous,
isotropic, and flat space, the metric reduces to the form

ds2 ¼ −dt2 þ a2ðtÞδabdxadxb; ð5Þ

where the cosmic time is related to the 0-coordinate by
dt ¼ Ndx0. To avoid divergent integrals and an ill-defined
symplectic geometry, we perform the integration on an
arbitrary cubic fiducial cell of comoving volume V0. As
the homogeneity assumption also implies that spatial
derivatives vanish, the spin connection disappears and
the canonical variables become simply

Ai
aðtÞ ¼ γ _aðtÞδia ≡ cðtÞ

V1=3
0

δia; ð6Þ

where the dot represents a derivative with respect to the
cosmic time t, and

Ea
i ðtÞ ¼ a2ðtÞδai ≡ pðtÞ

V2=3
0

δai ; ð7Þ

with the relation

fc; pg ¼ κγ

3
: ð8Þ

Finally, the scalar constraint in this setting reduces to the
simple form

CN
g ¼ −

3

κγ2
N

ffiffiffiffi
p

p
c2: ð9Þ

The lapse function N represents a gauge freedom.
In addition to the gravitational sector, we introduce a

scalar field ϕ with an arbitrary potential VðϕÞ to investigate
an early inflationary period. Using the canonical variables
for the scalar field, namely ϕ and πϕ ¼ p3=2 _ϕ, such that
fϕ; πϕg ¼ 1, the total Hamiltonian describing the coupled
system can be written as

CN ¼ CN
g þ CN

m ¼ N

�
−

3

κγ2
ffiffiffiffi
p

p
c2 þ p3=2ρ

�
; ð10Þ

where ρ ¼ π2ϕ=ð2p3Þ þ VðϕÞ. The first Friedmann equa-
tion can easily be recovered using the evolution equation—
that is _p ¼ fp;CNg—with the choice N ¼ 1 and the
Hamiltonian constraint. In its usual form, it is written as

H2 ≡
�
_a
a

�
2

¼ κ

3
ρ: ð11Þ

Up to now, we have simply recovered the usual GR
result within a specific framework. An effective
Hamiltonian including corrections from LQG is yet to
be constructed. The first step toward canonical quantiza-
tion with well-defined operators in the quantum theory is
to rewrite the Hamiltonian constraint using the holonomy
of the connection. In other words, instead of deriving the
curvature operator Fi

ab directly from the connection c,
we use the holonomy h□ij

of the connection on a fiducial

square curve □ij of length μV1=3
0 , with edges in the

directions i, j. The holonomy measuring the extent to
which the parallel transport of a vector around closed
loops fails to preserve the transported vector, its form
depends on the chosen SUð2Þ representation for the
parallel transport along the curves. This is known as
the spin ambiguity. In standard LQC, the holonomy is
calculated using the fundamental 2D representation of
SUð2Þ, but the holonomy correction has been calculated
for arbitrary representations in [18]. In this section, we
describe the procedure for the fundamental spin 1=2
representation and we recall the procedure to follow for
general corrections.
In the harmonic gauge, whereN ¼ p3=2, the Hamiltonian

constraint in terms of the curvature operator reads

Ch
g ¼ −

1

2κγ2
p2V2=3

0 ēai ē
b
jF

k
ab; ð12Þ

where the superscript h stands for the harmonic gauge and ēai
are the cotriads such that qab ¼ a2ðtÞēiaējbδij. The holonomy
corrected curvature operator in the fundamental representa-
tion is
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Fk
ab ¼ lim

μ→0

−2
μ2V2=3

0

Trfh□ij
τkgēiaējb; ð13Þ

where τk are the generators of the suð2Þ algebra and, in this
case, are represented by the Pauli matrices. By taking the
limitμ → 0, the usual definition of the curvature operator and
of the Hamiltonian of standard GR are recovered. However,
LQG teaches us that the lowest nonzero eigenvalue of the
quantum area operator is λ2 ¼ 4

ffiffiffi
3

p
πγl2pl, hence taking the

limit down to zero is in principle not allowed. One therefore
chooses μ → μ̄ ¼ λ=

ffiffiffiffi
p

p
as an estimator of the smallest

possible length for the edge of the square curve. The
holonomy can then be calculated along a closed curve
defined by

h□ij
¼ hi∘hj∘h−i∘h−j; ð14Þ

where hϵi ≔ expfϵμcτig; ð15Þ

with ϵ ¼ �1. Putting everything together, one obtains
the Hamiltonian constraint of LQC coupled to a scalar field,
that is

Ch ¼ −
3

κγ2μ̄2
p2 sin2ðμ̄cÞ þ p3ρ: ð16Þ

This modified Hamiltonian can be recovered from the
Hamiltonian of GR using the substitution

c2 →
sin2ðμ̄cÞ

μ̄2
; ð17Þ

usually called “the holonomy correction.” Finally, it is
possible to derive the modified Friedmann equation of LQC
using _p ¼ fp;Chg, together with the Hamiltonian con-
straint Ch ¼ 0. This leads to:

H2 ¼ κ

3
ρ

�
1 −

ρ

ρc

�
; ð18Þ

with ρc ¼ 3=ðκγ2λ2Þ. The remarkable feature of this
new equation is the resolution of the big bang singularity.
When ρ → ρc the Hubble parameter vanishes, as obvious
from Eq. (18), and a bounce occurs instead of the GR
singularity.1 When choosing the usual value for the
Barbero-Immirzi parameter γ ¼ 0.2375, the critical density
is of the order of ρc ≈ 0.41ρPl.
The general case for the curvature operator, calculated

using an arbitrary d-dimensional irreducible representation
of SUð2Þ, was studied in [21,22]. A new closed formula for

the Hamiltonian of flat FLRW models regularized with
arbitrary spins was found in [18] and happens to be
polynomial in the basic variables, which corresponds to
well-defined operators in the quantum theory (taking also
into account the inverse-volume corrections). The key-
point lies in the fact that the computation in a representation
of spin j of the trace of an SUð2Þ group element does not
require the explicit knowledge of all its matrix elements and
can be reduced to an expression involving only the trace in
the fundamental representation and the class angle. The
curvature operator can then be written as

Fk
ab ¼

−3
dðd2 − 1Þ

1

μ̄2V2=3
0

sin2ðμ̄cÞ
sin θ

∂
∂θ

�
sinðd · θÞ
sin θ

�
εkijē

i
aē

j
b;

ð19Þ

with

θ ¼ arccos

�
cosðμ̄cÞ þ 1

2
sin2ðμ̄cÞ

�
: ð20Þ

This was derived with a technique quite similar to the one
described previously for the holonomy regularization.
Another technique to find the curvature operator, called
connection regularization, can also be effectively consid-
ered [18]. In this approach, a new definition of the curvature
operator, only valid in homogeneous space, is used and the
result for Fk

ab is slightly different. In the literature, higher
order holonomy corrections were also investigated in
details [22–24]. They arise when higher order terms in
powers of μ̄, usually neglected, are taken into account in the
expression for the regularized curvature. There could exist a
link between these higher order holonomy corrections and
the contribution of higher spin representations. However, it
was shown in [18] that these effects have actually very
different physical consequences. At any order in holonomy
corrections, a physical Hilbert space can be rigorously
constructed and a complete family of Dirac observable can
be identified [22].
It is therefore mandatory to understand the cosmological

implications of more general holonomy corrections.

III. COSMOLOGY WITH ARBITRARY
HOLONOMY CORRECTIONS

Instead of focusing on specific cases within the LQC
framework with either different spin representations or
higher order terms, we remain as general as possible for the
expression for the holonomy correction. This can be
studied by the substitution

c2 → g2ðc; pÞ; ð21Þ

where gðc; pÞ is an arbitrary function such that, in the low
energy limit, standard GR is recovered, that is gðc; pÞ → c.

1We however want to emphasize that contrary to what is often
believed, a past singularity is not unavoidable in GR, even
without exotic matter contents [19,20].
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It should be emphasized that this is not only a way of
taking into account the lessons from specific situations
in LQC, but that this also make sense from a fully
generic quantization ambiguity/renormalization viewpoint.
Furthermore, in the totally constrained Hamiltonian for-
malism of GR, all the constraints are first class. We do not
relax this requirement so that the evolution operator keeps
the subspace of physical states invariant. As shown in [25],
keeping only first class constraints and following the usual
Dirac prescriptions adds an extra condition on the function
gðc; pÞ:

gðc; pÞ ¼ 1

μ̄
fðbÞ; ð22Þ

where fðbÞ is an arbitrary function of b ¼ μ̄c, which must
behave as fðbÞ ≈ b at low energies (i.e., when b ≪ 1). As
opposed to [25], we used the parameter λ to respect the
units of length of gðc; pÞ and be consistent with LQC.
Fortunately, this is fully compatible with the correction
given in Eq. (19), ensuring that any holonomy modification
coming from an arbitrary spin-representation will keep
the algebra of constraints consistent. It is quite remarkable
that the “anomaly freedom” requirement (see [26–28] for
general considerations) allows one to sharpen the general
expression, in a way precisely compatible with known
corrections expected in the loop framework. The simple—
and mandatory—fact that the evolution vector is asked to
be parallel to the submanifold of constraints severely
reduces the a priori freedom.
The modified equations of motion for the canonical

variables c and p are calculated using Hamilton’s equa-
tions. It is more natural to write them in terms of p and b.
Together with the Hamiltonian constraint, they take the
form

_b ¼ −
λκγ

2
ρð1þ wÞ; ð23Þ

_p ¼ 2

γλ
pfðbÞf0ðbÞ; ð24Þ

ρ

ρc
¼ f2ðbÞ; ð25Þ

where f0ðbÞ should be understood as dfðbÞ=db, w ¼ P=ρ
and P ¼ π2ϕ=ð2p3Þ − VðϕÞ. To derive Eq. (23) we used the
continuity equation

_ρ ¼ −3
_p
2p

ρð1þ wÞ: ð26Þ

A general modified Friedmann equation can be found using
H ¼ _p=ð2pÞ together with the constraint (25) and can be
written as

H2 ¼ κ

3
ρðf0ðbÞÞ2: ð27Þ

Since, by construction, fðbÞ → b when b → 0, we indeed
recover the usual Friedmann equation H2 ¼ κρ=3 in this
limit. Let us now investigate the behavior of the model
starting in a regime where GR is valid and going backward
in cosmic time t, toward a classical singularity associated
with ρ → ∞ in GR. Using the null energy condition,
w ≥ −1 together with Eqs. (23) and (24) one can easily
show that db=dt < 0∀ t. Hence, if we start with b > 0 in
the GR regime, b is always positive and increasing when
going backward in time. This is expected as, in the GR
limit, the proportionality relation ρ ∝ b is satisfied and the
density increases in the past direction. Furthermore, since
one has fðbÞ ≈ b in the GR regime, the function f is
monotonic and strictly increasing with b around b ¼ 0. In
the case where there exists a local maximum bbounce > 0,
implying f0ðbbounceÞ ¼ 0, one can see with Eqs. (25) and
(27) that the density has to reach a critical value ρb, where
the Hubble parameter vanishes. It is therefore meaningful
to conclude that the big bang singularity is resolved by a
bouncing scenario of geometrical origin if and only if
the holonomy correction reaches a local maximum. If the
function f is strictly monotonic, two different scenarios
have to be considered. Either lim

b→∞
fðbÞ ¼ ∞, in which case

the singularity is not resolved, or lim
b→∞

fðbÞ < ∞ and the

situation is similar to eternal inflation where ρ tends to a final
constant value behaving as a positive cosmological constant.

IV. FIRST REMARKS ON INFLATION FROM
THE HOLONOMY CORRECTION

A natural question arising in this framework is to wonder
whether it is possible to describe a long-lasting phase of
inflation using only a modification of the holonomy
correction without the need for a fluid satisfying the
equation of state w < −1=3. In the usual LQC framework,
the quantum geometrical super-inflation occurring after
the bounce cannot account for more than a few e-folds
and most of the known inflationary features are due to a
hypothetical massive scalar field filling the Universe.
Furthermore, one should also investigate if the inflation
associated with generalized holonomies could explain the
quasi-scale invariance of the power spectrum observed in
the cosmological microwave background (CMB). The
answer turns out to be positive. However, important
drawbacks inherent to the construction will be mentioned
in this section. We assume here that the content of the
Universe is a massless scalar field, that is w ¼ 1 at all
scales. We also restrict ourselves to holonomy corrections
such that there exists a bounce so as to keep the huge
benefit of the singularity resolution.
First of all, the correction fðbÞ has to be chosen so as to

ensure an exponential growth of the scale factor a. This is
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achieved by _H ≃ 0: the Hubble parameter is nearly constant
during inflation. From the modified Friedmann equa-
tion (27) and the Hamiltonian constraint (25), one can
easily conclude that the holonomy correction should take
the following form:

fðbÞ ∼
ffiffiffi
b

p
: ð28Þ

We assume that fðπÞ ¼ 0 and call bbi the value of b at the
beginning of inflation. We set b ¼ brh at the reheating,
when classical cosmology is recovered. It is therefore
necessary to find a function fðbÞ such that: (i) fðbÞ ∼ b
around b ¼ 0, to recover GR, (ii) fðbÞ ∼ ffiffiffi

b
p

for brh <
b < bbi during the inflationary period, and (iii) fðbÞ
reaches a maximum between bbi and b ¼ π to induce a
bounce. In order to make explicit that such a function can
be constructed, we give an arbitrary example:

f2ðbÞ ¼ ð1þ C1bÞ1−α sin2ðbÞ
1

C1 þ 1

XC1

n¼0

cos2nðbÞ ð29Þ

¼ ð1þ C1bÞ1−α
1þ C1

ð1 − cos2ðC1þ1ÞðbÞÞ; ð30Þ

where C1 can be chosen in accordance with the parameters
bbi and brh so as to obtain the desired inflationary duration.
The parameter α can be chosen to make the power spectrum
slightly red. To illustrate the behavior of this holonomy
correction, Eq. (30) is plotted on Fig. 1 for different values
of C1, assuming α ¼ 0. The higher the value of C1, the
lower the value of b at the end of inflation (denoted brh) and
the closer bbi to π. Let us take a closer look at Eq. (30)
in the case C1 ≫ 1. If b ≫ 1=

ffiffiffiffiffiffi
C1

p
, one indeed recovers

f2ðbÞ ∼ b, because the cosine term is small compared to 1
and C1b ≫ 1. On the other hand, when b ≪ 1=C1 one has
ð1þ C1bÞ → 1 while ð1 − cos2C1ðbÞÞ ∼ C1b2, leading to
f2ðbÞ ∼ b2. However, in the intermediate case, 1=C1 ≪
b ≪ 1=

ffiffiffiffiffiffi
C1

p
, ð1þ C1bÞ ∼ C1b while ð1 − cos2C1ðbÞÞ still

behaves as C1b2, leading to f2ðbÞ ∼ b3. Hence, the
transition at reheating does not straightforwardly go from

f2ðbÞ ∼ b to f2ðbÞ ∼ b2, but goes through transition phase,
behaving as f2ðbÞ ∼ b3. This is not problematic for our
purpose, but it is worth being pointed out. Equation (25)
shows that in order to haveN e-folds of inflation in a matter
dominated universe, one needs f2ðbrhÞe3N ¼ f2ðbbiÞ ∼ 1.
Therefore, if one chooses C1 ∼ e6N , the inflationary period
ends when brh ∼ e−3N ⇒ f2ðbrhÞ ∼ e−3N , leading to the
desired N e-folds. Then, the transition phase takes place
while e−6N < b < e−3N—that can call reheating—and
finally we recover classical cosmology for b < e−6N.
Obviously, a quite strong fine-tuning is needed but sol-
utions matching all the requirements can be found. We shall
discuss this issue later.
Another potential problem to consider is related with the

evolution of the energy density. In usual models of
inflation, where the exponentially accelerating expansion
is produced by a negative pressure fluid, the density of
the latter stays roughly constant around (slightly above)
the density of reheating ρ ∼ ρrh. However, the density of
radiation, dust or a massless scalar field evolve as a−4, a−3,
and a−6, respectively, thus increase exponentially during
inflation as well (when thinking backward in time). If
inflation is of quantum geometrical origin and not caused
by the standard mechanism of a field slowly rolling on
its potential, there is no reason to assume that the usual
“contents” are not present and possibly dominant. This
means that if one requires a reheating around the GUT scale
TGUT ∼ 1015 GeV and imposes roughly N ¼ 65 e-folds of
exponential expansion, the energy at the beginning of
inflation Tbi would be vastly trans-Planckian. On the other
hand, one can impose the maximum energy at the Planck
scale Tbi ∼ Tpl and simply ask for more e-folds before
the reheating than after, to solve the usual cosmological
problems. However this translates into Trh ≤ 1 TeV.
Although unusual, this value is not strictly ruled out by
observations.
Finally, it is worth emphasizing that the scalar power

spectrum, as observed in the CMB, cannot be easily
recovered for other contents than a massive scalar field.
To see this, let us consider a massless scalar field and
a holonomy correction of the form (30) with a sufficiently
long inflationary phase. In this example, we choose
Tbi ∼ Tpl and roughly N ¼ 35 e-folds. The gauge invariant
scalar perturbation can, in this context, be described by the
Mukhanov-Sasaki (MS) variables vkðηÞ and zðηÞ ¼ _ϕa=H,
where η is the conformal time, satisfying the equation

v00kðηÞ þ
�
k2 −

z00ðηÞ
zðηÞ

�
vkðηÞ ¼ 0: ð31Þ

It should be noticed that this classical equation is also the
one fulfilled by perturbations in the dressed metric/hybrid
quantization approach to LQC [29,30]. The scalar power
spectrum is obtained by
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FIG. 1. Holonomy corrections as described by Eq. (30) for
different values of the parameter C1.
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PSðkÞ ¼
k3

2π2

���� vkz
����
2
����
k¼aH

≡ k3

2π2
jRkj2jk¼aH; ð32Þ

where, in the standard inflation theory, the curvature
perturbation Rk is constant for super-Hubble modes
k ≤ aH. The scalar power spectrum therefore keeps a
low amplitude matching the observed value. In the case
of the massless scalar field with an inflationary stage due to
the holonomy correction, one can show using Eq. (31) that
Rk is not constant for super-Hubble modes anymore.
During the inflationary period, the Hubble parameter H
is constant, a ∝ eHt and _ϕ ¼ 2

ffiffiffi
ρ

p
, meaning that the second

MS variable behaves as

zðaÞ ∼ a−1=2ð1þ3wÞ: ð33Þ

In the considered example w ¼ 1 but we keep the equation
of state arbitrary so that the conclusion remains general.
Rewriting the Mukhanov-Sasaki equation (31) with respect
to a and taking the limit of large values of a, as one might
expect for super-Hubble modes, we get

d2vk
da2

þ 1

a
dvk
da

−
2

a2
vk ¼ 0; ð34Þ

with solutions vðaÞ ∼ a and vðaÞ ∼ 1=a2. In standard
inflation with a massive scalar field, where w ≈ −1,
choosing the Bunch-Davies vacuum comes down to select-
ing the behavior vðaÞ ∼ a in quasi–de Sitter space, hence
one recovers Rk ¼ vk=z ∼ a0. In the case of a massless
field (w ¼ 1), such a choice of vacuum leads to the
behavior Rk ∼ a3 and therefore the scalar perturbations
with super-Hubble modes exponentially increase during
inflation. To illustrate this, the scalar power spectrum
computed from Eq. (31) for an inflation induced by a
holonomy correction with massless scalar field is shown
in Fig. 2. As one can see, the spectrum is scale invariant in

the UV and keeps its usual shape but the amplitude is
meaningless. In principle, there might exist another vacuum
selecting vðaÞ ∼ 1=a2 and one would recover Rk ∼ a0.
However, in the case of other matter contents, such as
radiation (w ¼ 1=3) or dust (w ¼ 0), the scalar perturba-
tions Rk cannot be frozen for k ≥ aH in geometric
inflation. This is an important point, often forgotten, which
should be taken into account in phenomenological studies.
It should however be emphasized that perturbations

were, more than a decade ago, reunderstood in the
framework of the effective theory of inflation [31]. This
“new” approach somehow disentangles the question of
perturbations themselves from the question of the process
which generates them. From this point of view, this work is
anyway interesting as the perturbations can be treated even
without any use of a scalar field. All that is needed is a
background and an effective “clock”.

V. FOCUS ON THE DURATION OF INFLATION

Detailed studies of the duration of inflation as predicted
by LQC have already been made in [14,32,33] for initial
conditions set in the remote past. In the case of a massive
scalar field playing the role of the inflaton, it was shown
that the number of e-folds, as predicted by LQC, is around
N ¼ 140. Interestingly, the number of e-folds varies only
slightly with respect to most contingent parameters. This
can easily be seen by studying trajectories in the potential

energy xðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðϕðtÞÞ=ρc

p
versus kinetic energy yðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ϕ=ð2ρcÞ
q

plane. The number N ¼ 140 corresponds to a

quadratic potential VðϕÞ ¼ m2=2ϕ2 with a mass parameter
m ∼ 1.2 × 10−6. For other potentials, the number of e-folds
can be different, but remains of this order of magnitude as
long as one deals with confining potentials. Although
anisotropies can slightly decrease this value, the duration
of inflation is a robust property of the background in LQC
(a different proposal was however suggested in [34] but
relies on conditions set at the bounce, a path that we do not
follow here). The fact that this number is way smaller than
naïve expectations is a key feature of bouncing scenarios.
One can therefore naturally wonder if this prediction
changes for different shapes of the holonomy correction.
The set of initial prebounce conditions ðx0; y0Þ is described
using a phase parameter δ ∈ ½0; 2π½ such that

x0 ¼
ffiffiffiffiffi
ρ0
ρc

r
cos δ and y0 ¼

ffiffiffiffiffi
ρ0
ρc

r
sin δ; ð35Þ

where ρ0 is the initial energy density and defines how far
away in the past initial conditions are set. It has been
checked that the chosen distribution for δ is conserved over
time. For completeness, we reproduce the probability
distribution function (PDF) using the settings of [32] in
Fig. 3 with a uniform distribution of the phase parameter δ.
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FIG. 2. Scalar power spectrum obtained with a massless scalar
field from a stage of “geometrical” inflation entirely produced by
the modified holonomy correction.
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In the following, the mean value of the number of e-folds
for different holonomy corrections is calculated using such
a PDF.
In this section, we investigate the effect of the form of the

holonomy correction on the duration of inflation. For this
purpose, we follow the strategy described in [14,33]: we
assume a uniformly distributed set of initial conditions for δ
and the initial time t ¼ 0 sufficiently far in the contracting
branch so as to remain away from the quantum gravitational
regime. In order to stay conservative about the holonomy
correction shape, we study different general properties such
as an asymmetry, an increase of the maximum of f2, and a
flattening of the correction on the length of inflation. Overall,
we want to keep the asymptotic behavior of LQC, i.e.,
fð0þ δbÞ ¼ fðπ þ δbÞ ¼ δbþOðδb2Þ, hencewechoose a
correction of the form

f2ðbÞ ¼ sin2ðbÞð1þ A1bn1ðb − πÞn2Þ; ð36Þ

where ni ≥ 1, i ¼ 1, 2 and A1 ≥ 0, or

f2ðbÞ ¼ sin2ðbÞ 1

C1 þ 1

XC1

n¼0

cos2nðbÞ; ð37Þ

where C1 ≥ 1. Such parametrizations ensure the desired
behavior at the fix points b ¼ 0; π.
The results of the numerical simulations for different left

and right asymmetries are shown in Figs. 4 and 5. The left
panels represent the chosen holonomy corrections whereas
the right panels display the mean value of the PDF of the
number of e-folds when scanning the full range of initial
phases. It should be pointed out that the PDF is narrow
enough (σ ∼ 10 e-folds) so that its first moment gives the
relevant information. The strength of the asymmetry is
measured by the ratio I2=I1 between the integral of f2ðbÞ
on ½0; bmax� and the integral on ½bmax; π�, where bmax is the
value that maximizes f2ðbÞ. The general trend is a decrease
of the number of e-folds (although this is not true for very
small deformations).
The results of the simulations for different amplitudes

and plateaulike functions are displayed in Figs. 6 and 7,
respectively. In general, increasing the energy density at the
bounce decreases the number of e-folds and flattening the
correction (or reducing the energy of the bounce) increases
the length of inflation. Since the bounce energy density
grows up with max f2, as shown by Eq. (25), this result
seems counter-intuitive at first sight. It is true that the
inflation duration generally increases with the bounce
energy scale, but this is not the only important ingredient
relevant for the number of inflationary e-folds. Another key
parameter is the ratio between potential and kinetic energies
at the bounce xðtbÞ=yðtbÞ. For kinetic energy dominated
bounces, more time will indeed be required before the
potential energy finally dominates and the slow-roll
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FIG. 3. Probability distribution function of the number of
e-folds of inflation for a quadratic potential with m ¼ 1.2 × 10−6

in LQC.
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FIG. 4. Left: asymmetric holonomy corrections. Right: mean
value of the PDF of the number of inflationary e-folds.
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FIG. 5. Left: asymmetric holonomy corrections. Right: mean
value of the PDF of the number of inflationary e-folds.
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FIG. 6. Left: amplitude-varying holonomy corrections. Right:
mean value of the PDF of the number of inflationary e-folds.
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conditions are met. This leads to a lower inflation energy
scale than for potential energy dominated bounces. Thus,
bounces dominated by kinetic energy will actually lead to
shorter inflation phases. This is the reason why the PDF of
the number of inflationary e-folds in LQC is peaked around
low values of N, close to the experimental lower bound.
Setting initial conditions in the remote past of the con-
tracting branch with a flat PDF on the initial phase of the
scalar field leads to trajectories with kinetic energy domi-
nated bounces, with ratios xðtbÞ=yðtbÞ typically of order
10−6. In the present study, the higher max f2, the more
kinetic energy dominated the bounce is. This phenomenon
is shown in Fig. 8. First, this indeed confirms in the top
right and middle left plots, representing respectively
max f2 with respect to xðtbÞ=yðtbÞ and the number of
e-folds with respect to xðtbÞ=yðtbÞ, that max f2 has a
significant effect on this ratio, which in turn affects the
number of e-folds as expected. Using the middle and
bottom right plots, one can see that it takes longer for a
kinetic energy dominated bounce to start the inflationary
period, leading to a lower energy density at inflation, thus
lowering the number of e-folds.
There are several lessons to be learnt from this analysis.

There is an obvious loss of predictivity associated with a
possible generalization of the holonomy correction. This
can hardly come as a surprise. Whether this should be
considered as good or bad news depends on the point of
view. This obviously makes the theory less easily falsifi-
able. But this also opens up interesting possibilities. It
shows that desired cosmological behaviors can be obtained
by purely geometrical effects, relaxing the need for exotic
matter contents. This also means that, in principle, a good
knowledge of the cosmological dynamics can severely
constrain the shape of the holonomy correction. In par-
ticular, the minimum number of e-folds N > 60 required to
solve the horizon problem sets a constraint on the maxi-
mum of f2ðbÞ as N decreases when the maximum density
at the bounce increases. Most arbitrary shapes are prob-
lematic. It should however be underlined that as long as one
deals with moderate corrections to the usual sin2ðμ̄cÞ=μ̄2,
the effects on the background dynamics remain quite small
and the core of the known LQC predictions remains valid.

The ambiguities considered in this work do not, by
themselves, reveal a theoretical failure. So as to regularize
quantum operators associated with nonlinear functionals of
the fundamental fields, one relies on the diffeomorphism
invariant prescription of “point-splitting” [16]. It happens
to be that the regulator can be removed without encounter-
ing UV divergences. One is then left with a well defined
quantum Hamiltonian constraint, at the price of having
many different quantum theories. This is obviously rem-
iniscent of the usual problem of renormalization of quan-
tum fields: the correct theory must be fixed by the
renormalization conditions.

VI. EFFECTS ON THE PRIMORDIAL
POWER SPECTRA

We now analyze the effects of a modified holonomy
correction on the scalar power spectrum when considering
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FIG. 7. Left: plateau-like holonomy corrections. Right: mean
value of the PDF of the number of inflationary e-folds.
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FIG. 8. Top left: amplitude-varying holonomy corrections. Top
right: maximum of f2ðbÞ with respect to the ratio of potential to
kinetic energy of the scalar field at the bounce, xðtbÞ=yðtbÞ.
Middle left: mean value of the PDF of the number of inflationary
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xðtbÞ=yðtbÞ. Bottom left: mean value of the scalar field at the
beginning of inflation with respect to xðtbÞ=yðtbÞ. Bottom right:
mean value of the ratio of the density at the beginning of inflation
over the one at the bounce with respect to xðtbÞ=yðtbÞ.
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an inflationary period generated by a massive scalar
field of mass m ¼ 1.2 × 10−6mPl. We keep the form of
the Mukhanov-Sasaki equation for the scalar perturbations
unchanged. This allows to specifically investigate the
effects of the modification of the background dynamics,
due to the new holonomy correction, on the shape of the
spectra, independently of possible modifications of the
perturbations propagation equation (which is anyway
beyond the scope of this study).
Figures 9 and 10 display comparisons of the usual LQC

spectrum (in gray) with spectra obtained using new back-
ground dynamics due to modified holonomy corrections
(in blue). Figure 9 represents a double bounce while a
single bounce at higher energy is shown in Fig. 10. The new
features in the spectra corresponding to the modified
dynamics are hardly distinguishable from the usual spec-
trum. The spectra remain (almost) scale invariant and
consistent with CMB data in the so-called ultraviolet
region, that is the region corresponding to the highest
presented wave numbers (and even higher values of kc), in
which the observable scales are located for almost all the
parameter space. The modifications to f2ðbÞ only impact
the details of the oscillations in the intermediate regime.

This was expected as those oscillations are mainly asso-
ciated with the bounce and their details depend on the
detailed dynamics at this time. The ultraviolet regime, i.e.,
the one of interest for comparison with data, is mostly
independent of the bounce dynamics as the wave numbers
of the corresponding modes are much greater than the
potential z00=z during the bounce phase. In other words,
those modes do not even feel the presence of the bounce(s)
It is however worth emphasizing that, as highlighted in
[35], the position of the oscillations is dictated by the value
of the potential z00=z evaluated at the bounce. Thus, sharper
bounces would lead to oscillations in the spectra located
further away in the ultraviolet regime. It is also worthwhile
to underline that modifications of f2ðbÞ around b ≈ 0 or π
would modify the low energy behavior and have a deeper
impact on the spectra.
We have previously seen that an asymmetry (in b) of the

holonomy correction can have a significant influence on the
evolution of the inflaton in the high energy regime. It is
therefore important to estimate the effects of asymmetries
in f2ðbÞ on the spectra. Associated results are shown in
Figs. 11 and 12. The main noticeable effect is an extension
of the oscillatory regime toward higher wave numbers.
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FIG. 9. Left: holonomy corrections for standard LQC (in gray)
and for a double bounce (in blue). Right: comparison between the
associated scalar power spectra (standard LQC in gray and with
modified holonomy correction in blue).
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FIG. 10. Left: holonomy corrections for standard LQC (in gray)
and for a higher energy bounce (in blue). Right: comparison
between the associated scalar power spectra (standard LQC in
gray and with modified holonomy correction in blue).
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FIG. 11. Left: holonomy corrections for standard LQC (in gray)
and for a left asymmetric bounce (in blue). Right: comparison
between the associated scalar power spectra (standard LQC in
gray and with modified holonomy correction in blue).
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FIG. 12. Left: holonomy corrections for standard LQC (in gray)
and for a right asymmetric bounce (in blue). Right: comparison
between the associated scalar power spectra (standard LQC in
gray and with modified holonomy correction in blue).
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This extension is however (for all the functions tested) not
sufficient to be game changing for the noticeable features
of primordial power spectra in loop inspired cosmologies.
All usual conclusions still hold. This effect only makes a
possible detection/invalidation of the bounce in CMB data
slightly more probable as it decreases a little the level of
fine tuning required to bring the window of comoving wave
numbers associated with CMB observations toward the
oscillatory regime.
It should be underlined that the situation might be totally

different in the case of the deformed algebra (DA) approach
to perturbations, where the equation of propagation of
perturbations is usually given by [36,37]:

v00kðηÞ þ
�
ΩðηÞk2 − z00ðηÞ

zðηÞ
�
vkðηÞ ¼ 0; ð38Þ

withΩ ¼ 1–2ρ=ρc. The change of sign ofΩ at high energies
can be interpreted as a switch from a Lorentzian to an
Euclideangeometry [38]. The apparition of thisΩ function in
theMSequation comes from its presence in the anomaly-free
algebra of constraints, more precisely in the Poisson bracket
between scalar constraints [28]:

fSa:f ½M�; Sa:f ½N�g ≈ΩDa:f ½qabðM∂bN − N∂bMÞ�; ð39Þ

where S and D correspond respectively to the scalar and
diffeomorphism constraints, the label a.f stands for
“anomaly-free,” and the ≈ symbol means that this relation
is satisfied on the hypersurface of constraints. But the Ω
function appears in this algebra as a consequence of the
modification of the kinetic term in the scalar constraint (by
the holonomy correction, that is Eq. (17) in the usual case).
If we assume a 1þ 1 dimensional toy model then Ω ¼
ð1=2Þd2f2ðbÞ=db2, which, in the case f2ðbÞ ¼ sin2ðbÞ, and
using the Hamiltonian constraint, gives back the previous
expression Ω ¼ cosð2bÞ ¼ 1–2ρ=ρc. It is thus clear that
modifying the form of fðbÞ would unavoidably modify the
expression of Ω and therefore the Mukhanov-Sasaki equa-
tion. As a consequence, the shape of the primordial power
spectra could be modified in a much more important way in
the deformed algebra scheme than in the approach presented
in this manuscript. This point definitely requires deeper
investigations that are not the purpose of this paper.
We have focused on the scalar spectrum which is the

more interesting one from the viewpoint of observations
(and the more intricate to calculate). The general trends
however obviously remain true for the tensor spectrum as

the new features are due to the modified background
dynamics.

VII. CONCLUSION

Quantization ambiguities are unavoidable. The only
serious requirement in this framework is to recover general
relativity (or the Wheeler-DeWitt equation) in the low
energy limit of the theory. This leaves an infinite dimen-
sional set of ambiguities in the choice of the function f.
Investigating few of its phenomenological properties was
the goal of this study.
We have shown that a long enough inflationary stage can

be generated by an appropriate generalized holonomy
correction without the need for matter violating the energy
conditions. This however requires a serious amount of fine-
tuning in the choice of the parameters entering the definition
of the function. Nevertheless this concept is ill-defined when
no natural measure is available. More profoundly, it is worth
emphasizing that the fine-tuning is a real issue onlywhen it is
required to produce a situation which is a priori singular or
specific (in a Bayesian sense). Otherwise, it is just a mere
versionof thenonproblematic tautology “if the lawshadbeen
different, theWorldwould be different.” In addition, we have
shown that even though a nearly scale invariant primordial
power spectrum can be generated, there are some (often
forgotten) associated issues to face, making the spectrum
hardly compatible with data.
The influence of the shape and amplitude of the holo-

nomy correction on the background dynamics has also been
investigated in details. The effects are quite weak and do
not change drastically the usual conclusions of LQC as
long as the used function remains close enough to the
standard case. Interestingly some new effects tend to
decrease the number of e-folds. This is a good news for
phenomenology. With 140 inflationary e-folds, all the
subtle quantum gravitational effects are deeply super-
Hubble today. Smaller values bring back the hope that
some footprints of the bounce might be seen in the CMB,
especially when taking into account nonlinear effects where
different modes fail to fully decouple one from the other.
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The propagation of perturbations is studied with generalized holonomy corrections in a fully consistent
way, ensuring that the deformed algebra of constraints remains closed. The primordial cosmological power
spectra are calculated. It is shown that, although the detailed form of the correction does unavoidably
impact the observables, the main known results of loop quantum cosmology are robust in this respect.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a background-indepen-
dent quantization of general relativity (GR) [1]. It can be
expressed in the canonical form [2] or in the covariant
way [3]. The theory has been successfully applied to both
black holes and the early universe. Many consistency
checks—mostly encouraging—have been carried out,
although some important questions remain open [4]. An
excellent philosophical introduction is given in [5].
The cosmological sector of the theory has received

particular attention and numerous complementary aspects
were investigated in details (see, e.g., [6–15], and refer-
ences therein). The main conclusions are the following. The
existence of a bounce replacing the usual big bang is a
robust result. It has been shown analytically in simplified
situations and proven to survive when a cosmological
constant is added, when spatial curvature is taken into
account, and when quite general potentials for the inflaton
field are considered. In addition, the semiclassical states
were demonstrated to remain sharply peaked, allowing the
safe use of effective equations. Importantly, the duration of
inflation is statistically predictable in this framework.
Generic features for the primordial power spectra were
also derived.
This work deals with a specific—and somehow under-

estimated—point: the consequences of a generalized hol-
onomy correction. The outstanding issue of quantization
ambiguities in LQG was mentioned in [16]. New argu-
ments were recently given in [17]. In particular, the
question was addressed from the interesting point of view
of renormalization. The quantization ambiguity of the
connection-based holonomy variable might influence the
associated cosmological predictions. This has been studied
in [18]. The main effects are quite weak on the background
dynamics and do not change substantially the usual
conclusions of loop quantum cosmology (LQC).

Interestingly, most new effects tend to decrease the number
of e-folds. This makes the situation more phenomenologi-
cally promising. Perturbations were also considered in this
work. However, the usual Mukhanov-Sasaki equations for
gauge-invariant perturbations were used, which are not
fully consistent with the underlying deformed algebra. The
effects of the holonomy modifications were accounted for
at the level of the background and at the level of the
potential, but not in the core of the propagation equation.
This article fills this gap and shows the calculation of fully
reliable primordial spectra (in the deformed algebra
approach). The main conclusion is that the known results
of LQC are robust.
In the first section, we review the basics of LQC so that

this article is self-contained for nonspecialists. Then, the
deformed algebra and the propagation equations for per-
turbations are defined. Finally, the results are shown for
different parametrizations of the holonomy correction.
Throughout all the article, we use Planck units.

II. BASICS OF LOOP QUANTUM COSMOLOGY

Loop quantum cosmology is an attempt to perform a
symmetry reduction of LQG, mimicking the quantization
used in the full theory [19,20]. This section explains the
basic ideas for the unfamiliar reader.
The canonical formulation of LQG is based on the

Ashtekar connection,

Ai
a ≔ Γi

a þ γKi
a; ð1Þ

where γ is the Barbero-Immirzi parameter and the extrinsic
curvature coefficients are given byKi

a ¼ Kabebjη
ij for triads

defined such that qab ¼ eai e
b
jδ

ij at each x ∈ Σt. The spin
connection Γi

a reads
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Γi
a ¼ −

1

2
ϵijkebj ð∂½aekb� þ δklδmsecl e

m
a ∂bescÞ; ð2Þ

eai being the inverse triads such that eai e
j
b ¼ δji . In order to

complete the set of canonical variables, one defines the
densitized triads Ea

i ≔ j det ej−1eai that are conjugate to the
Ashtekar connection,

fAi
aðxÞ; Eb

j ðyÞg ¼ κγδbaδ
i
jδ

3ðx − yÞ; ð3Þ

with, κ ¼ 8πG.
The dynamical equations appear as constraints. Namely,

the Gauss constraint,

G½Λ� ¼ ðκγÞ−1
Z
Σt

d3xΛið∂aEa
i þ ϵlikA

k
aEa

lÞ; ð4Þ

the diffeomorphism constraint,

D½Na� ¼ ðκγÞ−1
Z
Σt

d3xNaFi
abE

b
i ; ð5Þ

where Fi
ab ¼ 2∂½aAi

b� þ ϵijkA
j
aAk

b is defined as the curvature

of the Ashtekar connection, and the scalar constraint,

C½N� ¼ ð2κγÞ−1
Z
Σt

d3xNj det Ej−1=2ðϵijkFi
abE

a
jE

b
k

− 2ð1þ γ2ÞKi
½aK

j
b�E

a
i E

b
j Þ: ð6Þ

For an isotropic, homogeneous, and flat universe, the
Friedmann-Lemaître-Robertson-Walker metric can be writ-
ten as

ds2 ¼ −N2ðdx0Þ2 þ a2ðtÞdxadxbδab: ð7Þ

The Ashtekar variables are rewritten as

Ai
aðxÞ ¼ γ _aðtÞδia ≡ cðtÞδia;

Ea
i ðxÞ ¼ a2ðtÞδai ≡ pðtÞδai ; ð8Þ

where a dot denotes a derivative with respect to the cosmic
time dt ¼ Ndx0. Only the scalar constraint contributes to
the dynamics of this system. Taking into account the
symmetries, it can be written as

C½N� ¼ −
3NV0

κγ2
p1=2c2; ð9Þ

where V0 is a fiducial volume element.
The matter sector is assumed to be a scalar field ϕ with

an arbitrary potential VðϕÞ. The full Hamiltonian is

Ht½N� ¼ NV0

�
−

3

κγ2
p1=2c2 þ p3=2ρ

�
; ð10Þ

which, after setting Ht½N� ¼ 0, leads to the usual
Friedmann equation.
The holonomy around the closed fiducial square□ij can

be written as

h□ij
¼ hlihljh

−1
li
h−1lj ; ð11Þ

with

hli ¼ expfjljkτig; ð12Þ

where τi are base matrices of the fundamental SUð2Þ
representation, which is arbitrary at this point. Hence,
the holonomy-corrected curvature is

Fk
ab ¼ −2lim

l→0
tr

�
h□ij

− 1

l2
τk
eiae

j
b

γ2

�
; ð13Þ

which is equivalent to

Fk
ab ¼ lim

l→0

sin2ðjljkÞ
jlj2 ϵkij

eiae
j
b

γ2
: ð14Þ

The presence of a minimal area in the theory, given by the
smallest nonzero eigenvalue of the area operator in LQG,
leads to the introduction of the μ̄ ¼ lPlð4

ffiffiffi
3

p
πγÞ1=2p−1=2

parameter which allows to introduces the so-called hol-
onomy correction substitution,

c2 → μ̄−2 sin2 ðμ̄cÞ: ð15Þ

Gathering everything, the holonomy-corrected
Hamiltonian constraint becomes

Ht½N� ¼ NV0

�
−

3

κγ2μ̄2
p1=2sin2ðμ̄cÞ þ p3=2ρ

�
; ð16Þ

which leads to the LQC-modified Friedmann equation,

H2 ¼ κ

3
ρ

�
1 −

ρ

ρc

�
; ð17Þ

where ρc ¼
ffiffiffi
3

p
=ð4πκγ3Þ is usually assumed to be close to

the Planck density. This is the usual bounce solution.
Many arguments (see, e.g., [21,22]) were given for

considering seriously LQC with arbitrary spin representa-
tions or higher-order terms. In this work, we will remain as
general as possible. To this aim, we will focus on a so-
called polymerization defined by the substitution

c2 ⟶ g2ðc; pÞ: ð18Þ
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Details about the construction of suitable semiclassical
states and associated Dirac observables are given in [6],
where the only restriction on the (periodic) gðc; pÞ function
is the low-curvature limit, in which GR should be recov-
ered, i.e., gðc; pÞ ⟶ c.
In order to set notations let us recall some known results

for the polymerized background dynamics in LQC. As
shown in [23], the background dynamics is described by
the set of equations

_c ¼ −
3N
2

ffiffiffiffi
p

p g2ðc; pÞ þ Nkffiffiffiffi
p

p Gð1Þðc; pÞ − N
κ

2

ffiffiffiffi
p

p
P;

_p ¼ 2N
ffiffiffiffi
p

p
Gð1Þðc; pÞ;

_ϕ ¼ Nπp−3=2;

_π ¼ −Np3=2
∂ϕVðϕÞ; ð19Þ

where, as defined above, dots correspond to derivatives
with respect to the cosmic time t, fϕ; πg are the canonical
variables for a given minimally coupled scalar field with
potential VðϕÞ and pressure P. We also used the nota-
tion Gð1Þðc; pÞ ≔ ∂cg2ðc; pÞ=2.
The background Hamiltonian constraint can be rewrit-

ten as

3
ffiffiffiffi
p

p
g2ðc; pÞ ¼ κρ; ð20Þ

where ρ ¼ π2

2p3 þ VðϕÞ. We make the usual gauge choice

N ¼ 1, which allows us to rewrite the above set of
equations as a generalized Friedmann equation, together
with the usual Klein-Gordon equation for the inflation
field:

H2 ¼ κ

3
ρð∂cgðc; pÞÞ2;

ϕ̈þ 3H _ϕþ ∂ϕVðϕÞ ¼ 0; ð21Þ

where H ≔ 1
2
_pp−1 is the Hubble parameter.

For the background dynamics given above, four initial
conditions are needed: the scale factor a, the Hubble
parameter H, the scalar field ϕ, and its time derivative
∂tϕ, have to be determined at some specific time. The
Ashtekar school has usually advocated the (reasonable)
idea that the bounce time should be chosen, whereas the
Grenoble school prefers the prebounce classical universe.
The dynamics at the bounce being dominated by quantum
effects, we adopt this second choice (which is anyway
meaningful if the bounce state is to be understood as the
result of causal evolution from the contracting branch). In
addition, in the prebounce phase, one can define a clear
measure for probabilities [14,24,25] relying on “safe”
equations.
We impose aðtiÞ ¼ 1. Far in the prebounce phase, the

universe is mostly classical and the Hubble parameter is

then given by the usual Friedmann equation, i.e.,
HðtiÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρðtiÞ=3

p
. To discuss initial conditions for

the matter sector, we introduce two parameters x and y
defined by

x ¼ ðVðϕÞ=ρcÞ1=2;
y ¼ ð _ϕ2=2ρcÞ1=2; ð22Þ

satisfying the relation

x2 þ y2 ¼ ρ

ρc
: ð23Þ

In this study, we assume a quadratic potential (that is a
simple mass term) for the field. Even though this potential
is not favored by observational data [26], it allows easy
comparisons with other studies. Our results do not, in any
case, significantly depend on the shape of the potential. We
have explicitly checked this with the Starobinsky potential.
In the remote contracting universe, the dynamics of x and y
is described by a harmonic oscillator,

xðtÞ ≈
�
ρðtiÞ
ρc

�
1=2

sin ðmtþ δÞ;

yðtÞ ≈
�
ρðtiÞ
ρc

�
1=2

cos ðmtþ δÞ; ð24Þ

where the phase parameter δ has been studied in [27] and
is not of particular importance in this work. The initial
density is

ρðti ¼ 0Þ ≈ ρc

�
Γ
α

�
2

½1 − ð4αÞ−1 sin ð2δÞ�; ð25Þ

with Γ the ratio of the classical timescale over the quantum
one and α a free parameter (set, as usually, to α ¼ 17π þ 1
to ensure that the scalar field oscillates enough during the
contracting phase for our approximations to be valid).

III. DEFORMED ALGEBRA
AND PERTURBATION EQUATIONS

A. The deformed algebra approach

The treatment of perturbations is less consensual than the
one of the background. On the one hand, the so-called
dressed metric approach (see [28,29] for an introduction)
was developed to account for quantum effects as deeply as
possible. It is basically equivalent to the hybrid quantiza-
tion one [30] and the propagation equation is the usual one.
On the other hand, the deformed algebra framework
(see [31] for an introduction) was suggested to put
emphasis on covariance. It is the main focus of this study
as it constitutes the natural path to investigate the specific
effects of the generalized holonomy correction in a self-
contained way.
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Basically, the deformed algebra approach is a
conservative one which relies on consistency. In the
canonical formulation of GR, the smeared constraints form
a first-class algebra. This closure property—that is, the fact
that each Poisson bracket between constraints is propor-
tional to another constraint—ensures that the evolution
vectors always remain tangent to the submanifold of
constraints. In other words, this makes the constraints
compatible with themselves. When holonomy corrections
are implemented, the resulting quantum gravity effective
constraints do, however, not close anymore for perturba-
tions (the closure is automatically ensured for the back-
ground). In the seminal work [32], an elegant and
consistent way out was found. The interested reader can
find details, e.g., in [33,34]. Important consequences were
derived on the allowed shapes of the correction in [35]. To
cancel the so-called anomalies, that is AIJ terms appearing
in Poisson brackets between (smeared) corrected con-
straints CQ

I ,

fCQI ; CQJ g ¼ fKIJðAj
b; E

a
i ÞCQK þAIJ; ð26Þ

one adds counterterms physically encoding the deformation
of the algebra. A pictorial representation is given in [33].
Those terms are required to vanish in the classical limit and
are uniquely determined by the full system of equations
(including matter). Quite amazingly, similar conclusions
were reached in [23], with a more general holonomy
substitution. The fact that an anomaly-free algebra can
still be constructed, always requiring the μ̄ scheme, is a
strong hint in favor of the consistency of this path.
The idea, when considering linear perturbations, is to

perturb constraints (and so the Hamiltonian) up to the
quadratic order and to add counterterms (vanishing in the
classical limit) to prevent anomalies. The Poisson brackets
between all constraints are explicitly calculated. The
calculations are quite involved but the final result is
surprisingly elegant and simple:

fG½Λ�; G½Λ0�g ¼ 0; ð27Þ

fDtot½Na�; G½Λ�g ¼ 0; ð28Þ

fHtot½N�; G½Λ�g ¼ 0; ð29Þ

fDtot½Na
1�; Dtot½Na

2�g ¼ 0; ð30Þ

and

fHtot½N�; Dtot½Na�g ¼ −Htot½δNa
∂aδN�; ð31Þ

together with

fHtot½N1�; Htot½N2�g ¼
�
1

2

∂
2g2ðc; pÞ
∂c2

�
ð32Þ

×Dtot

�
N
p
∂
aðδN2 − δN1Þ

�
: ð33Þ

The factor 1
2

∂
2g2ðc;pÞ
∂c2 tends to 1 in the classical limit. When

this factor becomes negative, the signature of spacetime
changes to Euclidean, in agreement with what happens in the
μ̄ scheme near the bounce. This has far-reaching conse-
quences, from a specific phenomenology [9,11,12,36–46] to
unforeseen links with the Hartle-Hawking proposal [47,48].
A contradiction with data was noticed in [49] due to

the power increase in the UV part of the spectrum,
associated with the Euclidean phase. It is very important
to underline—as this point is often misunderstood—that
this result does not mean, in any way, that the deformed
algebra approach to LQC is discarded. Just the other way
around, it shows that this framework is suited at making
potentially testable predictions. It could very well be that
the deformed algebra captures the main features of loop
gravity and that LQC in itself is falsified. It could also be
that the observational window does not fall in the altered
part of the comoving spectrum (if inflation is brief). It could
finally be that the way perturbations are propagated in the
“timeless phase” is incorrect, which has nothing to do with
the deformed algebra framework itself [50]. It might even
be that initial conditions are not properly set [41].
The main point that has to be underlined at this stage is

that as long as the function g2ðc; pÞ changes concavity, a
signature change in unavoidable in this (conservative)
approach, as mentioned in [23]. As g2ðc; pÞ ∼ c2 near
the origin (to recover GR) and as the function is periodic,
the change of concavity automatically happens. This is a
strong conclusion. However, contrarily to what is written
in [23], this does not necessarily happen near the maximum
of the function. Otherwise stated, for generalized holonomy
corrections, the signature change is unavoidable but the
energy density at which it takes place does not need to be
close to the one of the bounce.

B. Perturbation equations

Quite a few results were derived both for the background
and the perturbations in [18]. However, the equation for
perturbations was not fully consistent. This is what we
correct here.
The perturbed Einstein equations for a flat Universe

filled with a scalar field in the polymerization framework
has already been derived in the deformed algebra
approach [23]. The Hamilton equation of motion for
background variables is written thanks to the elementary
Poisson brackets, as previously explained. Following the
standard procedure, the equations of motions for the
perturbed variables are decomposed in scalar, vector, and
tensor modes. The physical part is then extracted by

DE SOUSA, MARTINEAU, RENEVEY, and BARRAU PHYS. REV. D 107, 126008 (2023)

126008-4



considering terms invariant under both Gauss and diffeo-
morphism transformations. This results in

v00S=T − Gð2Þðc; pÞ∇2vS=T −
z00S=T
zS=T

vS=T ¼ 0; ð34Þ

where the prime denotes a derivation with respect to the
conformal time dη ¼ p−1=2dt and vS=T is the Mukhanov
variable for, respectively, scalar and tensor modes. We
have also defined Gð2Þðc; pÞ ≔ ∂cGð1Þðc; pÞ. This is in
agreement with what was previously found for the usual
correction [35].
By performing a Fourier decomposition on the k modes

and introducing the variables hk ¼ vk=z and g̃k ¼ffiffiffiffi
p

p _hk=Gð2Þðc; pÞ, it is possible to rewrite Eq. (34) as a
set of first-order coupled differential equations. For tensor
modes, one gets

_hk ¼
Gð2Þðc; pÞffiffiffiffi

p
p g̃k;

_̃gk ¼ −2Hg̃k − ak2hk; ð35Þ
whereas, for scalar modes, the equations are

_hk ¼
1ffiffiffiffi
p

p g̃k;

_̃gk ¼ −2Hg̃k − aKðk; t; c; pÞhk; ð36Þ

with Kðk; t; c; pÞ ¼ Gð2Þðc; pÞk2a−2 −H_zSz−1S − ̈zSz−1S .

C. Initial conditions for perturbations

Following the logic of causality (and remaining consistent
with the background evolution), the initial conditions for
perturbations are set in the prebounce contracting branch.
The perturbations are thereafter propagated through the
bounce and the Euclidean phase until they exit the horizon
during the inflationary stage. This approach is different from
the one depicted in [23] in which the authors set initial
conditions for the perturbations at the onset of inflation. In
this latter case, by construction, the perturbations never feel
the high-energy quantum regime and the Euclidean phase.
This is why our results are deeply different.
The usual canonical quantization procedure is applied

for each mode vk. In the Heisenberg picture,

v̂kðηÞ ¼ vkðηÞâk þ v�kðηÞâ†−k; ð37Þ

where âk, â
†
k are, respectively, the annihilation and creation

operators, satisfying the usual commutation relation. This
leads to the so-called Wronskian condition:

vk
dv�k
dη

− v�k
dvk
dη

¼ i; ð38Þ

implying restrictions for the mode coefficients. In particu-
lar, the Minkowski vacuum can be rewritten (in the case of
tensors modes) as

hkðtiÞ ¼ ð2kÞ−1=2a−1ðtiÞ;
g̃kðtiÞ ¼ −iðk=2Þ−1=2a−1ðtiÞ − ð2kÞ−1=2HðtiÞ: ð39Þ

Initial conditions for scalar modes are way harder to
derive, in particular due to the shape of the potential in the
contracting branch of (all) bouncing models [45]. One can
however rely on an appropriate WKB approximation [42].
In this approach, we constrain the mode coefficients from
the Wronskian equation and choose the coefficients to
describe a wave propagation in the positive time direction.
One is then able to derive the initial conditions of hk and gk
for scalar modes.

IV. NUMERICAL RESULTS AND DISCUSSIONS

For Gaussian perturbations, the full statistical informa-
tion is given by the 2-point correlation function. In a very
standard manner, the scalar and tensor primordial power
spectra are expressed as functions of the Mukhanov
variable and the associated potentials evaluated at the
horizon crossing:

PSðkÞ ¼
k3

2π2

���� vkzS
����2
����
k¼aH

ð40Þ

and

PTðkÞ ¼
4k3

π2

���� vkzT
����2
����
k¼aH

: ð41Þ

In order to study the polymerization effects on those
primordial power spectra, one needs to choose explicit
expressions for the gðk; pÞ function. There are not many
constraints on the shape of g: mainly the low-energy limit
and periodicity. Still, following [23], solving the anomalies
in the algebra of constraints imposes g to be of the
following form:

gðc; pÞ ¼ p1=2φðcp−1=2Þ; ð42Þ

φðcp−1=2Þ being an arbitrary function of ðcp−1=2Þ. For
the rest of this work we rewrite

gðc; pÞ ≔ μ̄−1fðxÞ; ð43Þ

where μ̄ is the parameter already introduced in Eq. (15).
With this notation, one can easily retrieve the usual LQC
prescription with fðxÞ ¼ sinðxÞ.
Several functions have been considered in [18], for

example

fsqrðxÞ ¼ sinðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A1xn1ðx − πÞn2

p
; ð44Þ
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with ni ≥ 1, i ∈ f1; 2g and A1 ≥ 0, together with

fcosðxÞ ¼ sinðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ C1Þ−1

XC1

n¼0

cos2nðxÞ
vuut ; ð45Þ

with C1 ≥ 1. One can easily show that such parametriza-
tions have the correct behavior in the low-energy limit.
To specifically study the effects of the change of

signature, we introduce a new function fζðxÞ which has
GR as a limit and allows to parametrically control the
Gð2Þ ≤ 0 region. It reads

fζðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2 þ π2

ζ2 þ 4ðx − π=2Þ2

s
sinðxÞ; ð46Þ

where ζ is the free parameter associated with the signature
change. Figure 1 shows how the parameter changes the
shape of the function.

A. Tensor primordial power spectrum

For illustrative purposes, the numerical computation of
the time evolution of the tensor mode amplitude squared
jvkj2 is displayed in Fig. 2 for the fζ polymerization choice
with ζ ¼ 1. As for other plots, Planck units are used. The
contraction phase can easily be seen, together with the
bounce, close to t ¼ 2.275 × 107tP, and the inflationary
phase on the right side of the plot.
Tensor primordial power spectra for the polymerization

choices defined in the previous section are presented in
Figs. 3–5. Those spectra are evaluated at the end of the
slow-roll inflationary phase, when slow-roll hypotheses
break down. We ensure that all modes of interest, i.e., those
represented on the spectra, are outside the horizon at that

FIG. 1. Graphical representation of the fζ polymerization
choice for various values of ζ (ζ ¼ 5 in black with short dashes,
ζ ¼ 1 in gray with intermediate dashes, and ζ ¼ 0.1 in light gray
with big dashes). The usual sin2ðxÞ prescription is represented in
solid blue line.

FIG. 3. Tensor primordial power spectrum for the fsqr polym-
erization (black dots) with A1 ¼ 1 and ni ¼ 1 (i ∈ f1; 2g),
together with the usual sin2ðxÞ prescription (smaller blue dots).
A zoom on the oscillatory regime is also represented.

FIG. 2. Time dependence of the tensor mode amplitudes jvkj2,
in the fζ polymerization framework, with ζ ¼ 1, for the comobile
wave numbers k ¼ 10−6, k ¼ 10−2, and k ¼ 10 from top to
bottom.

FIG. 4. Tensor primordial power spectrum for the fcos polym-
erization (black dots) withC1 ¼ 2, together with the usual sin2ðxÞ
prescription (smaller blue dots). A zoom on the oscillatory regime
is also represented.
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moment. Whatever the polymerization choice, the spectra
exhibit three regimes:
(1) A scale-invariant behavior in the infrared limit

ðk ∈ � −∞; 10−4�Þ;
(2) An oscillatory behavior (associated with the bounce)

for ðk ∈ ½10−4; 2�Þ; and
(3) An exponential divergence in the ultraviolet limit

ðk ∈ ½2;þ∞½Þ.
The infrared (IR) regime corresponds to the largest

wavelengths. Those modes do exit the horizon during
the contracting phase (before slow-roll inflation takes
places) and remain frozen during the bounce and the
subsequent phase of inflation. However, during contraction,
the comoving Hubble radius (hence the tensor potential)
behaves similarly as it does during the slow-roll phase
aH ∼ 2=η and z00T=zT ∼ 2=η2. Moreover, the tensor potential
converges towards 0 when going backward in time in the
contracting branch and those modes can initially be
normalized using the usual Bunch-Davies vacuum. This
situation therefore corresponds to the classical solution of
inflation and the associated tensor power spectrum is scale
invariant. Those perturbations are not impacted by the
presence of the bounce. As will be discussed further in this
paper, the situation is more complicated for scalar pertur-
bations as the scalar potential does not vanish when going
backward in time in the contracting branch, leading to a
scale-dependent behavior of the scalar spectra in the IR.
This issue has been investigated in [45], but is however not
of high importance as, for the vast majority of the parameter
space, those modes cannot be observed in the cosmological
microwave background (CMB). A more exhaustive inter-
pretation of those results has been widely studied in
previous articles [12,39,43,44,49]. It basically means that
depending on the number of inflationary e-folds, the model
is either indiscernible from GR1 (brief inflation),

marginally compatible with GR, or fully different from
GR (long inflation). We insist once more that the UV
increase is not in itself inconsistent as the power spectrum
does anyway not describe the real world in the k → ∞
limit. Nonlinear local effects rule in this regime. In
addition, it should be pointed out that modes are propagated
in the Euclidean regime using their Fourier expansion,
which remains conceptually unclear.
The results displayed in the previously mentioned

figures are not difficult to interpret (within the assumptions
of the model). For tensor modes, the potential z00T=zT
depends only on the scale factor a and its derivatives.
In other words, the potential depends only upon back-
ground variables. Even with quite exotic generalized
holonomy corrections, those variables are mostly equiv-
alent to the usual loop quantum cosmology ones (see [18]).
Nevertheless, some deviations from the standard behavior
can be observed in the ultraviolet. This is due to the
maximum value of f: if it differs from unity, the bounce-
energy density is not exactly the same than the one of the
usual sin2ðxÞ bounce. This can be explicitly seen in Fig. 6
for the fζ polymerization choice.

B. Scalar primordial power spectrum

The numerical results for the scalar primordial power
spectra are given in Figs. 7–9 for the same polymerization
choices. Three regimes can still be identified:
(1) A power law (∝k3) in the infrared ðk ∈ � −∞; 10−3�Þ;
(2) Oscillations for ðk ∈ ½10−3; 2�Þ; and
(3) A divergence in the ultraviolet ðk ∈ ½2;þ∞½Þ.
Once again, the meanings of the main features have

already been studied (see, in particular, [42]).
Starting from the definition of zS ≔ a2 _a−1 _ϕ, one obtains

z00S
zS

¼ −a2ð∂2ϕVÞ þ 2_a2 − 2κf00 _ϕð∂ϕVÞa4 _a−2

−
7

2
a2κf00 _ϕ2 þ 3a2κ _ϕ4 þ 1

2
a4 _a−2κ2f002 _ϕ4: ð47Þ

FIG. 6. ζ dependence of the bounce-energy density for a
background described by the fζ polymerization choice.

FIG. 5. Tensor primordial power spectrum for the fζ polym-
erization with ζ ¼ 1 (black dots) and ζ ¼ 0.1 (gray dots),
together with the usual sin2ðxÞ prescription (blue dots). A zoom
on the oscillatory regime is also represented.

1We do not consider here the subtle normalization effects
associated with the preceding deflation.
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This complicated expression is what makes the case of
scalar perturbations specific. In addition to the previously
explained issues with initial conditions (that are not related
with this specific model but inherent to all bouncing
models), the fact that the polymerization choice also
appears in the z00S=zS term of the propagation equation is
what makes the study of scalar modes subtle. This is
however the most interesting part of the game as they are
directly related with CMB measurements.
To allow a direct comparison with data, one needs to

convert comobile values into physical ones. In this work, as
usual and useful when studying bouncing models, we
normalized the scale factor to unity at the bounce time.
The conversion therefore requires to know the number
of e-folds between the bounce and the decoupling. In
particular, it requires the knowledge of the number of
inflationary e-folds Ninf , which cannot be fully fixed by the
model but depends on contingent parameters (such as the
phase of the scalar field during the contraction phase).
Extensive discussions can be found in [49] and [51,52]. In
practice, the physical wave number kphys is related to the
comobile wave number k used in the different plots of this
article by

kphys ¼ k

�
eNinf

TRH

Tdec

�
−1
; ð48Þ

where TRH and Tdec are, respectively, the reheating and
decoupling temperatures.
The main conclusion that can be drawn from all the plots

is that the spectra remain remarkably close one to the other,
and similar to the “standard” deformed algebra sin2ðxÞ one.
In the scalar case, this was not an a priori expected result.
This shows that the precise shape of the holonomy
correction has a very weak influence on the details of
the observables, even if initial conditions are set in the
contracting branch, and the perturbations propagated
through the bounce and the Euclidean phase. This is an
important point for the reliability of the model.
This work focuses on the shape of the power spectrum as

this is precisely where effects of generalized holonomy
corrections are expected to play a significant role. General
considerations on the amplitude of the spectrum and on
the scalar-tensor ratio in this framework can be found
in [43,49].

V. FALSIFIABILITY

In principle, it could be that measurements allow to
constrain the inflaton potential. In this case, the duration of
inflation would somehow be predicted by the model (see,
in [18], the extension to generalized holonomy correction
of the results from [25]). Should the latter be high enough
so that the observational window falls in the UV part of the
spectrum, the model would be discarded. What conclusions
could then be drawn? Obviously, the situation is intricate as

FIG. 7. Scalar primordial power spectrum for the fsqr polym-
erization (black dots) with A1 ¼ 1 and ni ¼ 1 (i ∈ f1; 2g),
together with the usual sin2ðxÞ prescription (blue dots). A zoom
on the oscillatory regime is also represented.

FIG. 8. Scalar primordial power spectrum for the fcos polym-
erization (black dots) withC1 ¼ 2, together with the usual sin2ðxÞ
prescription (smaller blue dots). A zoom on the oscillatory regime
is also represented.

FIG. 9. Scalar primordial power spectrum for the fζ polym-
erization with ζ ¼ 1 (black dots) and ζ ¼ 0.1 (gray dots),
together with the usual sin2ðxÞ prescription (blue dots). A zoom
on the oscillatory regime is also represented.
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quite a few explicit and implicit hypotheses are always at
play in a cosmological scenario. At the heuristic level, this
would discard a specific approach to generalizing gravity
through a periodization of the Ashtekar connection (with
the suitable low-curvature limit). More deeply, the delicate
and important point would be to clarify the link between
this specific approach and LQG in general.
On the one hand, it is true that the deformed algebra

framework does not retain much of the complicated structure
of loop quantum gravity. It particular, it is obviously “less
quantum” than the dressed metric approach.
On the other hand, it could be argued that it actually

captures the core ingredients. Gauge fixing before quan-
tization is often harmless. However, the constraints con-
sidered here are not of the kind of those encountered in
Yang-Mills theories. When quantum corrected, the gauge
transformation they generate are not of the usual form.
Therefore, gauge fixing before quantization might lead to
choose the gauge according to transformations that need to
be modified; hence, the inconsistency.
In addition, in the case of gravity, the dynamics is part of

the gauge system [53,54]. Consistency therefore imposes
to quantize gauge transformations and the dynamics
simultaneously. It is not correct to fix the gauge in order
to derive the dynamics. The deformed algebra approach
solves both of those issues [31] and should therefore be
taken seriously.
The relation between this approach and the full theory is

still unclear. If it was, in the future, shown to be reliably
related to LQG, possible conflicts with data would rule out
the main theory. On the other hand, if this framework was
demonstrated to miss key features of the full theory, it
would discard only this specific way to describe the
cosmological dynamics.
It is fair to underline that this remains an open question at

this stage. It should however be stressed that the unforeseen
link between the deformed algebra approach and the
disappearance of time, as predicted by the Hartle-
Hawking proposal [55], is quite remarkable. Even more
impressive is the way it might cure the weaknesses of the
original proposal [47,48].
Finally, as previously reminded, it could also be that

modes are not correctly propagated in the Euclidean phase.
In this work, we make minimalist assumptions and work in
Fourier space to avoid obvious problems with the definition
of a wave in a timeless space. Another interesting view was
suggested in [50].

VI. CONCLUSION

In this work we have considered generalized holonomy
corrections, as the usual harmonic choice made in loop
quantum cosmology is far from being the only possible
one. It has even been recently argued that there is no
fundamental reason for focusing on this specific shape [17].
We have studied three different generic functions having

general relativity as their low-energy limit and satisfying
the basic loop gravity requirements. One of them is
specifically parametrized so that the position of the
Euclidean region, corresponding to a change of concavity,
can be easily varied and probed.
The generalized holonomy correction appears both at the

background level and in the propagation equation for
perturbations. In addition, for scalar modes, it also enters
the z00S=zS term. This leads to an intricate situation which
cannot be fully understood intuitively.
To clarify the situation, we have numerically calculated the

primordial power spectra in all cases, setting initial conditions
in the prebounce contracting branch. Since in this setting
(motivatedbygeneral arguments), cosmological perturbations
are propagated through the bounce and the Euclidean phase, a
bigger sensitivity of the spectra to the shape of the holonomy
correction than the one established in [23] could have been
expected. However, we have shown that whatever the
(reasonable) formof the function andvalues of the parameters,
the overall shape of the spectra remains unchanged with
respect to the usual deformed algebraLQCresults. This shows
that the known conclusions are robust.
Obviously, the actual content of the Universe in the

contraction phase is not known and this constitutes a
weakness for all bouncing models. As pointed out
in [56,57] this might raise some interesting paradoxes.
In this work, the only assumption required is that a scalar
field dominates over all the other possible contents at high
energy before the bounce. Although speculative, this
assumption makes sense as it both leads to the desired
phase on inflation and seems favored by grand unified
models of particle physics [58]. Obviously, a detailed
description on an “inverse-reheating” process is still miss-
ing. More important than the actual content is the question
of anisotropies, extensively discussed, e.g., in [14].
In the future, it would be interesting to generalize this

investigation to the dressed metric approach. In this case,
the way the new holonomy correction might alter the
propagation equation is, however, less clear and requires
further investigations.
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174 CHAPTER 3. PHENOMENOLOGY OF BOUNCING SCENARIOS



Conclusion

General Relativity has been a very successful theory of gravity for over a century and there
is so far no sign of its decline. Nonetheless, its lack of consistency with the quantum
sector together with some of the issues that have emerged from its application to cosmology
and black hole physics, led fundamental physicists to find alternative approaches to the
standard description of the gravitational sector. In this thesis, we focused our attention on
the phenomenology of several of these issues in the context of black holes, dark energy and
early universe cosmology.

We started with the study of the evolution of black holes when surrounded by an isotropic
fluid. As a first attempt, we used the Schwarzschild solution outside of its domain of validity
to better understand the evolution of event horizons when a black hole is bathed in a fluid
at thermal equilibrium. We showed in particular that the behaviour of the Schwarzschild
black hole is catastrophic in the context of cosmology, meaning that either its mass diverges
in a finite time or it falls down to zero, due to Hawking radiation. We expect the divergent
trajectory to be due to the inappropriate use of the Schwarzschild solution, at least from
the time when the black hole horizon reaches the cosmological horizon. To go beyond this
simple solution, we relaxed the vacuum assumption and assumed an isotropic metric in
Painlevé-Gullstrand coordinates. We showed that two different apparent horizons emerge, a
cosmological and a black hole horizons. Furthermore, we demonstrated for the most general
case that a black hole horizon never shrinks, which is in contradiction with the generalized
McVittie metric. We then tried to solve the Einstein field equations for the simpler case of
an Eulerian perfect fluid and concluded that this cannot describe a fluid around a central
mass, except in the case of a cosmological constant. In the future, the connection between
the Schwarzschild approach and the isotropic solution should be made with simplifying
assumptions applied to the Nielsen Visser metric. It would also be very interesting to show,
in the general approach, that the cosmological and black hole horizons indeed merge in
extreme conditions.

Cosmology, as derived from the homogeneous and isotropic solutions of General Relativity,
has been greatly successful to describe the history of the universe. However, the description
of the late time accelerated expansion with a cosmological constant suffers some conceptual
issues. String theory is sometimes coined as a non-falsifiable theory, due to the very large
set of low energy effective theories that can be derived from it, but recently its experimental
fallibility has been put forward with the swampland program and cosmological surveys
measuring the equation of state of dark energy. In this thesis, we saw that thanks to the
Euclid satellite, the Vera Rubin observatory and the SKA, the de Sitter conjecture will
be in strong tension with observations, if the constant nature of dark energy is confirmed.
It is remarkable that string theory, which is believed to be almost unfalsifiable, might be
excluded, or at least disfavored, using cosmological surveys. Nonetheless, this will not be the
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case until the de Sitter conjecture has been proven to be correct and the upper value for the
de Sitter condition has been found. While such future works are left to string theorists, this
thesis focused on developing new tests for other dynamical dark energy theories, in particular
screened Horndeski models, through gravitational waves. The effect of the screened scalar
field on the waveform of the gravitational waves sourced by a binary system of compact
objects were derived. Interestingly, it has been found that even a fully screened scalar field,
having no direct effect on the binary system and near zone metric, would still influence the
gravitational waveform through long range effects. The direct effect of the screened scalar
field on the behaviour of the system has been shown to be completely negligible for the cubic
Galileon theory. The long range effects, entering at the 1.5PN order in the waveform, are
so far unobservable using current detectors. However, with multi-band observations, which
will be made possible with LISA, together with pulsar constraints on the radiative power
of gravitational waves, one could hope to observe the accumulative effect of the long range
correction. Hence, further work in this direction should be made as well as the calculation
of the waveform of the scalar waves, which are also detectable using interferometers.

On the other side of the cosmological time scale, the concordance model is plagued with
the big bang singularity. However, together with the theory of inflation, we saw that it
actually contains all the necessary ingredients to resolve the singularity with a curvature
bounce. Even though the bouncing solution of a closed de Sitter space-time has been know
for a while, its application to inflation has been so far neglected. It is rather fascinating that
no exotic physics or quantum gravity is needed to solve the big bang singularity problem
and the hypothesis of a positive spatial curvature remains highly plausible with current
observations. Such potential resolution of the big bang singularity is a strong motivation to
consider a non-zero curvature density parameter and settle the question of the shape of the
universe that has been revived with Planck’s CMB data that are in need of an anomalous
lensing amplitude. Nevertheless, the spatial curvature is so far still consistent with a flat
universe and we looked at the possible signature of the bounce in the CMB. We saw that
potential future detection of the tensor power spectrum would not be able to highlight the
curvature bounce, but a small signature might be present in the temperature anisotropies, if
the fluctuations of the CMB were initiated prior to the bounce. A better understanding of the
origin of the perturbations in bouncing scenarii is needed to confirm the small effects of the
pre-bounce universe on the CMB, even though these effects are not statistically significant.
Beyond the significance of these effects, the fact that the length of the deflationary period of
the pre-bounce universe can have an effect on the expanding phase is also quite remarkable.
Even though single field inflation predicts Gaussian fluctuations, so far favored by Planck’s
data, a bounce can be the origin of non-Gaussianities and further work should be made in
this direction. Additionally, we also believe that our work has an indirect consequence on
quantum cosmology theories that use the Wheeler-DeWitt approach. Such theories often
require a closed universe to be consistent, but as we saw, the bounce would then happen
well above the Planck regime, before the need of quantum gravity effects.

Nevertheless, a non-zero curvature is still unobserved and it is sadly likely to stay that
way if inflation lasted more than 75 e-folds. Therefore, other scenarii for the origin of the
universe, such as the bounce predicted by LQC, are also plausible and their phenomenology
must be studied. Inherent to all quantum theories, ambiguities can affect the predictions
of LQC and a consistency check should be made. This was done in the last two papers
included in this thesis and the predictions of LQC has been proven to only be insignificantly
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altered by different holonomy corrections. While this is a first step in the the proof of a
consistent LQC, a more general approach should be pursued for that purpose. In particular,
the holonomy corrections emerging from the use of different representations of su(2) might
lead to a pre-bounce universe that does not behave as the post-bounce universe, i.e. the
correction g(c, p) does not tend to c2 for small energy density. This type of corrections
were not included in our work and should be investigated. While the study of modified
Friedmann equations for different holonomy corrections was conducted in the context of
LQC, such modified equations could emerge from very different assumptions and therefore
also be used in other models of modified or quantum gravity.

Beyond some conceptual and theoretical issues, the concordance model of cosmology
together with the theory of inflation, are extremely successful to describe the observed
cosmological phenomena. The lack of experimental signature of beyond standard model
physics gives a hard time to fundamental theoretical physicists and thousands of different
models trying to explain dark energy or the origin of the universe have be invented. With
such a rise of alternative theories to General Relativity, the need for phenomenological
studies has never been greater and this thesis is intended as a step in this direction. The
hope to discover the signature of exotic physics in a recent future is still far from lost.
The era of precision cosmology is at its beginning and already several tensions between the
concordance model and observation have been identified. Some of the most famous are the
Hubble tension, the S8 tension, the Lithium problem or the lensing anomaly. Impressive
future cosmological surveys are expected to bring crucial new data for astrophysics and
cosmology, starting with the recently launched Euclid satellite, but also LISA, SKA, the Vera
Rubin observatory or the ELT. The future of cosmology appears bright, full of excitements
and hopefully full of new discoveries.
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