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Résumé

Les systèmes de recommandation (SRs) sont devenus une composante essentielle du web intelligent à l'ère d'Internet, trouvant des applications dans de nombreux systèmes pratiques. Alors que les SRs sont de plus en plus intégrés dans la vie quotidienne des gens, ils sont devenus des outils essentiels d'aide à la décision ayant un impact significatif sur le processus décisionnel des utilisateurs [START_REF] Lu | Recommender system application developments: a survey[END_REF][START_REF] Ricci | Recommender systems: introduction and challenges[END_REF]. Par conséquent, une demande croissante des utilisateurs émerge pour comprendre la logique derrière les recommandations, en particulier dans des domaines à haut risque tels que la médecine et la finance, afin de réduire les risques. Les SRs explicables, qui fournissent des recommandations personnalisées et offrent des explications pour justifier ces recommandations, ont attiré une attention significative à la fois de l'industrie et du monde académique [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF][START_REF] Nunes | A systematic review and taxonomy of explanations in decision support and recommender systems[END_REF][START_REF] Daher | A review on explanations in recommender systems[END_REF]. L'exemple 0.1 est une explication typique dans un scénario de recommandation de films. Il a été reconnu que les explications sont cruciales pour améliorer l'efficacité, l'efficience, la persuasivité, la transparence, la confiance et la satisfaction des SRs [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF]. Malgré l'émergence de diverses méthodes d'explication, peu de recherches ont été menées sur la généricité des SRs explicables. Dans cette thèse, nous contribuons à ce sujet en proposant un cadre explicatif général et en l'instanciant sous deux scénarios d'explication: les explications intrinsèques au modèle et les explications post-hoc. L'objectif de ce chapitre est de fournir le contexte de recherche, de décrire les principaux problèmes et défis de recherche, leur importance pratique et valeur scientifique, de décrire les principales contributions de cette thèse, et d'en présenter la structure.

Example 0.1 Nous vous recommandons ce film car c'est un film de Tom Hanks et vous avez auparavant attribué de bonnes notes à ses films.

Antécédents D'une perspective plus large, l'Intelligence Artificielle (IA) est définie comme un domaine de l'informatique qui se concentre sur la conception, le développement et la mise en oeuvre de machines intelligentes capables d'émuler et d'exécuter des tâches qui nécessitent généralement une intelligence humaine [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. Ces tâches comprennent, entre autres, la résolution de problèmes, la prise de décision, l'apprentissage, la perception et le traitement du langage naturel. L'IA a rapidement évolué pour devenir une technologie centrale avec une large gamme d'applications dans divers domaines du monde réel, tels que la santé, la finance, la recommandation et la communication [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. Ses avancées ont contribué à des améliorations et innovations significatives, révolutionnant les industries et impactant la société de nombreuses manières. D'une part, l'IA a connu un succès remarquable grâce à l'utilisation de modèles complexes tels que les réseaux neuronaux profonds (Liu et al., 2017) ou les modèles d'ensemble [START_REF] Sagi | Ensemble learning: A survey[END_REF], qui ont la capacité d'effectuer des tâches complexes. D'autre part, le déploiement de tels modèles opaques avec des milliers, voire des millions, de paramètres peut être à double tranchant. La complexité des systèmes d'IA rend difficile la justification des résultats qu'ils génèrent, et sans explications convaincantes, il se peut que ces systèmes ne soit pas vraiment utile pour aider les humains à prendre de meilleures décisions [START_REF] Zhu | Explainable ai for designers: A human-centered perspective on mixed-initiative co-creation[END_REF]. De nombreux chercheurs ont souligné le rôle crucial de la recherche dans la formulation d'explications visant à promouvoir une IA responsable. [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] a introduit les critères clés pour la recherche centrée sur la génération d'explications, comprenant la confiance, la causalité, la transférabilité, l'informativité, et la prise de décision équitable et éthique. S'appuyant sur ces principes, [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF] a approfondi la logique derrière la recherche sur les explications en IA, mettant l'accent sur la promotion de la confiance, de la causalité, de la transférabilité, de l'informativité, de la confiance, de l'équité, de l'accessibilité, de l'interactivité et de la conscience de la vie privée. D'un point de vue pratique, [START_REF] Hall | An introduction to machine learning interpretability[END_REF] a avancé que l'élan pour la recherche en explication peut être efficacement condensé en deux catégories: intellectuelle et sociale.

Motivé par les raisons susmentionnées, une attention significative a été accordée tant par le monde académique que par l'industrie au développement de systèmes d'IA capables de générer des explications pour justifier leurs résultats [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF]. Selon [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF], deux stratégies peuvent être utilisées pour expliquer les sorties d'un système d'IA : (1) L'utilisation de modèles transparents, dont le fonctionnement interne peut être facilement expliqué (explications intrinsèques au modèle), tels que les modèles linéaires simples et les règles d'association; (2) La fourniture d'explications a posteriori sans élucider précisément comment les modèles fonctionnent. Le terme eXplainable Artificial Ingelligence (XAI) a rapidement gagné en popularité après que la DARPA (Defense Advanced Research Projects Agency) ait lancé un appel à propositions de recherche sur l'explicabilité de l'IA. Il se réfère aux technologies de l'IA capables de fournir des justifications pour leur processus de prise de décision. La demande croissante des utilisateurs et des réglementations telles que le Règlement Général sur la Protection des Données (RGPD) [START_REF] Voigt | The eu general data protection regulation (gdpr). A Practical Guide[END_REF] a suscité un intérêt de recherche significatif pour l'XAI ces dernières années. Cependant, il n'y a pas de consensus sur les définitions explicites de l'XAI et de l'intelligence artificielle interprétable, certains travaux les utilisant de manière interchangeable, tandis que d'autres les distinguent. Souvent, ces distinctions sont basées sur les intuitions subjectives des chercheurs sans soutien théorique solide [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. L'utilisation mal définie et ambiguë des termes "interprétabilité" et "explicabilité" a rendu difficile la formulation de problèmes pour définir, concevoir et évaluer les systèmes d'IA pouvant fournir des explications pour leurs résultats. Pour faire progresser le domaine, il est crucial de formaliser et de clarifier ces termes (Doshi-Velez and Kim, 2017).

Les SRs sont fréquemment utilisés comme outils d'aide à la décision, leur rôle étant d'atténuer l'impact de la surcharge d'informations en fournissant des suggestions pertinentes. Dans des situations où la prise de décision a des implications importantes, le besoin d'explications justifiables soutenant ces recommandations s'intensifie. Parallèlement, dans le domaine des SRs, une sousdivision notable de l'IA, il y a eu un intérêt croissant pour le développement de SRs dotés de la capacité de fournir des explications pour leurs recommandations. Cependant, à l'instar des défis dans le domaine de l'IA, les termes "recommandations interprétables" et "recommandations explicables" manquent de définitions claires, rendant difficile la comparaison et la généralisation des méthodes existantes pour fournir des explications. En conséquence, il y a un besoin urgent d'un cadre général pour développer des SRs capables de générer des explications pour les recommandations, malgré les nombreuses recherches menées dans ce domaine.

Motivations de recherche

Comme exploré précédemment, il y a eu une forte augmentation des efforts de recherche axés sur le développement de systèmes IA capables de fournir des explications pour leurs résultats. Les SRs, un sous-ensemble essentiel de l'IA, ont connu une croissance correspondante dans les efforts visant à les doter de facultés explicatives. Cependant, malgré l'attention considérable attirée par ce domaine, il subsiste un manque notable de consensus concernant les définitions de termes fréquemment utilisés tels que "explicabilité" et "interprétabilité". Cette ambiguïté pose des défis en matière de formalisation, de comparaison et d'évaluation des différentes méthodes d'explication. Par conséquent, il est essentiel d'établir des définitions claires pour ces termes avant de se plonger dans l'étude. En d'autres termes, un cadre général capable de clarifier des termes fréquemment utilisés, mais vaguement définis, en accord avec l'aspect "généricité" mentionné dans le titre de cette thèse. À cet égard, la première question de recherche que nous souhaitons aborder est:

RQ1, "Quelles sont les différences entre 'interprétabilité' et 'explicabilité' dans le contexte de l'IA, et plus spécifiquement dans le contexte des SRs?"

Pour répondre pleinement à cette question, les deux points suivants doivent être clarifiés:

• RQ1.1, "Que signifient respectivement 'explicabilité' et 'interprétabilité'?" Les définitions existantes de ces deux termes sont généralement basées sur des intuitions subjectives des chercheurs sans un solide soutien théorique [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], ce qui rend difficile la formulation de problèmes pour définir, concevoir et évaluer des systèmes IA pouvant fournir des explications pour leurs résultats.

• RQ1.2, "À qui s'adressent 'explicabilité' et 'interprétabilité'?" Il est essentiel de déterminer le public cible pour ces explications [START_REF] Vilone | Notions of explainability and evaluation approaches for explainable artificial intelligence[END_REF]Longo, 2021, Arrieta et al., 2020). Les explications destinées aux développeurs de modèles, aux experts du domaine et aux entités/agences réglementaires diffèrent considérablement de celles destinées aux utilisateurs non experts.

En résumé, notre premier objectif est de clarifier et de fixer la signification des termes "explicabilité" et "interprétabilité" afin de faciliter la comparaison et l'évaluation des différentes méthodes d'explication dans le contexte de l'IA, en particulier au sein des SRs. Une fois que nous aurons établi l'utilisation des termes "explicabilité" et "interprétabilité" dans les SRs, il serait pertinent de préciser :

RQ2, "Pourquoi 'explicabilité' et 'interprétabilité' sont-elles particulièrement demandées dans les SRs?"

Nous détaillerons davantage les objectifs d'explication des recommandations formulées par les SRs grâce à une revue approfondie de la littérature dans la Section 3.7: promouvoir l'efficacité, la pertinence, le pouvoir de persuasion, la transparence, la confiance, la satisfaction et la scrutabilité des SRs [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF]. Notez que ces objectifs sont également utilisés pour évaluer les explications dans les SRs [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF]. Par la suite, nous arrivons à la question de recherche centrale de cette thèse:

RQ3, "Comment expliquer les recommandations?" À l'instar du domaine de l'IA, les explications dans les SRs, qui constituent une branche importante de l'IA, sont classées en deux principales catégories [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]: (1) adopter des modèles transparents; et (2) adopter des techniques d'explication post-hoc pour générer des explications post-hoc. Les modèles transparents, tels que la régression linéaire et les règles d'association, sont faciles à comprendre. Cependant, ils souffrent souvent d'une moindre précision de prédiction, ce qui est connu comme le compromis entre complexité et précision [START_REF] Doshi-Velez | Towards a rigorous science of interpretable machine learning[END_REF]. D'autre part, les techniques d'explication post-hoc, telles que SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] et LIME (Local Interpretable Model-agnostic explanations) [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF], peuvent être appliquées pour expliquer n'importe quel modèle, offrant ainsi plus de flexibilité. Cependant, une préoccupation majeure avec l'application de ces techniques est que les explications post-hoc ne représentent pas toujours fidèlement les SRs originaux [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. Par conséquent, les deux stratégies ont leurs mérites, et ce n'est pas une situation binaire. Cela nous amène naturellement à nous demander:

• RQ3.1, "Comment construire des modèles transparents capables d'expliquer les recommandations tout en garantissant la précision de ces recommandations?" Construire directement des SRs capables de générer des recommandations précises et d'expliquer ces recommandations est un sujet important. Les SRs existants reposent souvent sur des modèles à facteurs latents tels que la factorisation matricielle [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], la machine de factorisation [START_REF] Rendle | Factorization machines[END_REF], les méthodes basées sur l'apprentissage profond [START_REF] Liu | Deep learning based recommendation: A survey[END_REF], etc. Ces modèles peuvent faire des prédictions de notation précises. Néanmoins, la sémantique explicite des facteurs latents appris reste ambiguë, compliquant ainsi la tâche de générer des explications cohérentes et convaincantes pour les recommandations.

• QR3.2, "Comment expliquer les SRs complexes existants à l'aide de techniques d'explication post-hoc tout en atténuant les limites de ces techniques?" Conserver les SRs complexes existants en production et adopter des techniques d'explication post-hoc [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] pour expliquer les recommandations est pratique. Cela permet de réutiliser les SRs existants, de réduire les coûts d'ingénierie et ces SRs obtiennent généralement de meilleures performances que ceux qui adoptent des modèles simples. SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] et LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] sont parmi les outils les plus en vue qui sont capable de fournir des explications post-hoc dans la littérature. Certains travaux [START_REF] Guo | Online product feature recommendations with interpretable machine learning[END_REF][START_REF] Singh | Exs: Explainable search using local model agnostic interpretability[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] expliquent les recommandations en appliquant directement l'importance de chaque caractéristique calculée par LIME et SHAP.

Les principales limites et préoccupations de l'application directe de ces méthodes sont : (1) Il se peut que les explications post-hoc ne soient pas fidèles aux SR originaux et parfois ces explications sont même erronées [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF] ; (2) Pour les utilisateurs ordinaires, comprendre l'importance des caractéristiques retournées par de telles méthodes n'est pas évident car des connaissances mathématiques complexes sont nécessaires. Par exemple, les sorties de SHAP incluent la figure "force_plot", cela nécessite que les utilisateurs aient des connaissances de base en théorie des jeux. Par conséquent, SHAP et LIME sont de bons outils pour que les développeurs de modèles visualisent les comportements des modèles et peuvent les aider à déboguer les modèles. Cependant, pour les utilisateurs ordinaires, il se peut que ces figures ne soient pas faciles à comprendre. La question cruciale qui se pose alors est: Comment pouvonsnous exploiter les méthodes d'explication post-hoc pour élucider n'importe quel modèle de recommandation tout en évitant ces contraintes ?

Différentes méthodes d'explication ont été proposées dans le domaine des SRs, mais il reste incertain quelle est la meilleure façon de fournir des explications dans un contexte donné pour une tâche donnée [START_REF] Zhou | Evaluating the quality of machine learning explanations: A survey on methods and metrics[END_REF]. Cela nous amène à notre dernière question de recherche : QR4, "Comment évaluer les explications dans les SRs?" Évaluer les explications est difficile car les explications sont centrées sur l'humain [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], et les explications de référencent pour une tâche d'apprentissage automatique est souvent inconnue [START_REF] Molnar | Interpretable machine learning-a brief history, state-of-the-art and challenges[END_REF], ce qui est également le cas pour les SRs. Pour répondre à cette question, nous évaluons la qualité des explications dans les SRs en mesurant dans quelle mesure les explications satisfont aux objectifs identifiés par [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF], [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF].

Résumé des contributions

Dans cette thèse, nous apportons des contributions aux domaines de la généricité et de l'explicabilité dans les SRs en abordant les aspects suivants: (1) nous proposons un Schéma Interpréter/Expliquer (SIE) qui permet de désambiguïser les termes essentiels utilisés en IA, notamment dans les SRs, pour éviter la confusion et clarifier leurs significations. Sur la base du SIE, nous construisons un Cadre Général pour la Génération d'Explications (CGGE) qui peut intégrer les méthodes existantes de génération d'explications dans le contexte de l'IA; (2) nous résumons les motivations pour la recherche liée aux explications en IA et fournissons un aperçu des méthodes d'évaluation des explications dans les SRs; (3) nous instancions le cadre avec deux scénarios d'explication dans les SRs pour démontrer son efficacité et son applicabilité; (4) nous menons une étude préliminaire auprès des utilisateurs pour évaluer la qualité des explications.

Désambiguïsation de l'utilisation des termes (QR1): Nous examinons en profondeur et comparons les travaux existants sur l'utilisation de l'« explicabilité » et de l'« interprétabilité » dans le contexte de l'IA. Il est essentiel de noter les aspects sociaux des explications, car elles impliquent le transfert de connaissances par le biais de conversations ou d'interactions [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF]. Pour éclairer ce point, nous nous appuyons sur des concepts de gestion des connaissances [START_REF] Arduin | Information and knowledge system[END_REF], où les humains possèdent un schéma d'interprétation [START_REF] Jones | Mental models: an interdisciplinary synthesis of theory and methods[END_REF] (également connu sous le nom de modèle mental [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF]) qui leur permet d'interagir avec leur environnement par « sense-reading » et « sense-giving » [START_REF] Polanyi | Sense-giving and sense-reading[END_REF]. À partir de cela, nous proposons le SIE [START_REF] Zhong | Ai: To interpret or to explain?[END_REF] dans les systèmes d'IA. Nous proposons la définition de l'« explicabilité » et de l'« interprétabilité » basée sur le SIE et précisons davantage ce que signifient respectivement « explicabilité » et « interprétabilité »; à qui s'adressent l'« explicabilité » et l'« interprétabilité ». Avec les définitions proposées, la formulation de problèmes tels que la définition, la conception et l'évaluation de l'IA explicable peut être sérieusement abordée, ce qui rendra le système d'IA plus transparent lors de la prise de décisions. Avec le SIE et nos définitions, nous construisons le CGGE dans le contexte de l'IA. Dans notre cadre, les deux stratégies [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] (Utilisation de modèles transparents et fourniture d'explications post-hoc) appliquées pour expliquer la sortie des systèmes d'IA peuvent être intégrées ensemble. Notez que le cadre s'applique également aux SRs, car les SRs sont une branche importante de la recherche en IA, et nous instancierons le cadre en appliquant les deux stratégies dans le contexte des SRs.

Motivations pour la recherche dans le domaine (QR2, QR4): Nous passons en revue en profondeur la littérature existante sur les explications en IA et les classons en trois motivations [START_REF] Zhong | Ai: To interpret or to explain?[END_REF]: (1) La motivation commerciale qui provient des demandes des utilisateurs; (2) La motivation réglementaire qui vient des exigences réglementaires; (3) La motivation technique qui concerne le débogage et l'amélioration des systèmes d'IA existants. Nous résumons également les objectifs des explications dans les SRs : aider les utilisateurs à comprendre comment le système fonctionne (transparence), augmenter la confiance des utilisateurs dans le système (confiance), aider les utilisateurs à prendre de meilleures décisions (efficacité) plus rapidement (efficience), persuader l'utilisateur d'essayer ou de consommer (persuasivité), permettre aux utilisateurs d'indiquer au système quand les recommandations ne sont pas appropriées (scrutabilité) et augmenter la facilité d'utilisation ou le plaisir (satisfaction). Notez que ces objectifs sont souvent utilisés pour évaluer la qualité des explications dans les SRs (Gedikli et al., 2014, Tintarev and[START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF].

Deux scénarios d'explication (QR3): Nous instancions le CGGE en appliquant les deux stratégies d'explication:

• Pour aborder la question du rôle de la transparence (QR3.1): nous nous tournons vers les Cadres d'Argumentation (CAs), qui ont été utilisés pour améliorer l'explicabilité de l'IA [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF](Vassiliades et al., , Čyras et al., 2021)). Les SAs peuvent représenter le processus de prise de décision de manière graphique, et les propriétés prédéfinies aident à raisonner comment parvenir aux meilleures décisions [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF]. Le CA comprend également des moyens de définir des arguments pondérés et des relations dialectiques entre les arguments, qui contiennent des sémantiques pour décider de la force et de l'acceptabilité de ces arguments (Čyras et al., 2021).

-Sans contexte spécifique: Nous proposons le modèle Attribute-Aware Argumentative Recommender (A 3 R) (Zhong and Negre, 2022a), une méthode qui combine les techniques basées sur la factorisation et les SAs. Grâce à l'aide des SAs, chaque étape de A 3 R est dotée d'une sémantique explicite, permettant à A 3 R de générer des explications pour les recommandations qui sont faciles à comprendre. Pour chaque interaction utilisateurarticle, nous définissons un SA, où les caractéristiques des articles sont considérées comme des arguments, et les évaluations des utilisateurs envers ces caractéristiques sont définies comme la force des arguments. Des explications intrinsèques au modèle peuvent être générées pour chaque interaction utilisateur-article grâce aux SAs.

-Sensible au contexte: Une croyance dominante dans le domaine des SRs est que le contexte des utilisateurs peut influencer leurs préférences [START_REF] Adomavicius | Context-aware recommender systems[END_REF]. Nous pensons que cela s'applique également aux SAs. Certains arguments « bons » dans un contexte particulier deviennt moins précis dans un autre contexte. Cependant, A 3 R ne prend pas en compte les contextes des utilisateurs qui peuvent fortement influencer leurs préférences. Nous étendons cette idée en prenant en compte le contexte des utilisateurs: Context-Aware Feature Attribution Through Argumentation) [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF]. Les caractéristiques de CA -F AT A incluent: (1) CA -F AT A combine des modèles de facteurs latents et le SA, donc chaque étape de calcul est dotée d'une sémantique explicite, ce qui aide à expliquer les recommandations générées; (2) Puisque les contextes des utilisateurs sont pris en compte, le CA correspondant est également sensible au contexte, ce qui signifie que CA -F AT A peut générer des explications adaptées au contexte (Zhang et al., 2020, Zhong andNegre, 2022e). Ainsi, CA -F AT A peut générer et expliquer des recommandations de manière argumentative et sensible au contexte.

• Pour répondre à la question de l'utilisation des explications post-hoc (RQ3.2): nous nous inspirons des recherches connexes en psychologie, philosophie et sciences cognitives.

Au lieu de demander directement pourquoi un événement P s'est produit, les gens préfèrent souvent demander pourquoi l'événement P s'est produit plutôt qu'un événement Q, où Q est une alternative [START_REF] Lipton | Contrastive explanation[END_REF][START_REF] Lim | Assessing demand for intelligibility in context-aware applications[END_REF][START_REF] Mackie | The cement of the universe: A study of causation[END_REF]. Générer des explications contrefactuelles [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF] qui sont facilement compréhensibles [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF] et de haute fidélité [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF] est une solution potentielle. Contrairement à LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] et SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF], qui approximent les modèles originaux, les explications contrefactuelles cherchent les changements minimaux nécessaires pour modifier les sorties des modèles originaux. Par conséquent, les explications contrefactuelles ont une haute fidélité [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF]. Une explication contrefactuelle typique décrit une situation causale comme "Si A ne s'était pas produit, alors B ne se serait pas produit' [START_REF] Molnar | Interpretable machine learning[END_REF]. Nous avons proposé Shap-Enhanced Counterfactual Explanation (SECE) (Zhong and Negre, 2022c) et montré que SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] peut être adapté pour générer des explications contrefactuelles qui sont contrastives et sélectionnées (Zhong and Negre, 2022c). À notre connaissance, il s'agit du premier travail qui combine la méthode de la valeur de Shapley et la méthode contrefactuelle pour aborder les explications dans les SRs: nous appliquons SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] pour sélectionner les candidats possibles d'explications contrefactuelles. Notre méthode peut générer des explications contrefactuelles fidèles et facilement compréhensibles.

La qualité de l'explication (RQ4): Nous résumons également les proxies prédéfinis couramment utilisés pour évaluer les explications dans les SRs (Zhong and Negre, 2022e). En même temps, étant donné que l'explication est centrée sur l'humain, nous menons une étude utilisateur [START_REF] Zhong | Context-aware explanations in recommender systems[END_REF] pour évaluer la qualité des explications générées par nos méthodes d'explication: dans quelle mesure les explications satisfont les objectifs des explications: transparence, confiance, efficacité, efficience, scrutabilité, satisfaction, persuasivité (Gedikli et al., 2014, Tintarev and[START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF].

Guide de lecture

Le reste de cette thèse est organisé comme suit :

• Dans le Chapitre 2, nous présentons l'état de l'art lié à l'explication du point de vue de l'IA.

Nous couvrons les concepts fondamentaux des explications en IA, comment les explications en IA ont pu être influencées par la recherche d'autres domaines tels que la philosophie, la psychologie, la science cognitive, comment générer des explications et comment les évaluer.

• Dans le Chapitre 3, nous passons en revue les travaux liés aux recommandations explicables en appliquant les notions introduites dans le Chapitre 2.

• Dans le Chapitre 4, nous décrivons SIE, qui permet de lever l'ambiguïté des termes: « explicabilité » et « interprétabilité ». Sur la base de SIE, nous construisons le CGCE. Nous montrons que les méthodes existantes pour générer les explications peuvent être intégrées dans ce cadre.

• Dans le Chapitre 5, nous présentons quelques bases techniques qui seront utilisées pour instancier le CGCE dans les Chapitres 6, 7 et 8.

• Dans le Chapitre 6, nous instancions le cadre général dans le scénario d'explication intrinsèque au modèle, où les recommandations peuvent être expliquées intrinsèquement par la conception. En commençant par un scénario sans contexte, nous introduisons A 3 R qui utilise des cadres d'argumentation pour fournir à chaque calcul une sémantique explicite. Nos évaluations indiquent que A 3 R surpasse de manière significative les modèles de recommandation basés sur l'argumentation existants et rivalise efficacement avec d'autres modèles de recommandation plus opaques et en boîte noire.

• Dans le Chapitre 7, nous développons davantage le modèle introduit dans le Chapitre 6 en intégrant le contexte des utilisateurs dans un nouveau modèle appelé CA -F AT A. Comme ce modèle prend en compte le contexte des utilisateurs, le CA qu'il utilise devient également sensible au contexte. Cela signifie que CA -F AT A est capable de générer des explications sensibles au contexte. Par conséquent, CA -F AT A peut à la fois générer des recommandations et fournir des explications pour celles-ci de manière argumentative et consciente du contexte.

• Dans le Chapitre 8, nous instancions le cadre général dans le scénario d'explication post-hoc, où les modèles en boîte noire sont conservés et les explications post-hoc sont générées. Plus spécifiquement, nous utilisons SHAP pour sélectionner les candidats possibles aux explications contrefactuelles.

• Dans le Chapitre 9, nous comparons les deux scénarios d'explication et présentons le résultat d'une étude utilisateur qui évalue différents types d'explications. 5.1 A demo of LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] Recommender systems (RSs) have become an integral component of the intelligent web in the internet era, finding applications in numerous practical systems. As RSs are increasingly being integrated into people's daily lives, they have become critical decision-support tools that can significantly impact users' decision-making process [START_REF] Lu | Recommender system application developments: a survey[END_REF][START_REF] Ricci | Recommender systems: introduction and challenges[END_REF]. Consequently, there is a growing demand from users to understand the rationale behind recommendations, particularly in high-stakes domains such as medicine and finance, to mitigate risks. Explainable RSs, which provide recommendations and offer explanations to justify those recommendations, have gained significant attention from both industry and academia [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF][START_REF] Nunes | A systematic review and taxonomy of explanations in decision support and recommender systems[END_REF][START_REF] Daher | A review on explanations in recommender systems[END_REF]. "We recommend you this movie because it is a movie starred by Tom Hanks and you gave high ratings to his movies before" is a typical explanation in a movie recommendation scenario. It has been recognized that explanations are crucial for improving the efficiency, effectiveness, persuasiveness, transparency, trust, and satisfaction of RSs [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF]. Despite the emergence of various explanation methods, little research has been conducted on the generality of explainable RSs. In this thesis, we contribute to this topic by proposing a General Framework for Generating Explanations (GFGE) and instantiating this framework under two explanation scenarios: model-intrinsic explanations and post-hoc explanations. The aim of this chapter is to provide the research background, outline the research problems and main challenges, their practical significance and scientific value, describe the main contributions of this thesis, and outline its structure.

Background

From a broader perspective, Artificial Intelligence (AI) can be defined as a field of computer science that focuses on the design, development, and implementation of intelligent machines capable of emulating and performing tasks that typically require human intelligence [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. These tasks include but are not limited to problem-solving, decision-making, learning, perception, and natural language processing. AI has rapidly evolved to become a core technology with a wide range of applications in various real-world domains, such as healthcare, finance, recommendation, and communication [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. Its advancements have contributed to significant improvements and innovations, revolutionizing industries and impacting society in numerous ways. On one hand, AI has achieved remarkable success through the use of complex models such as deep neural networks (Liu et al., 2017) or ensemble models [START_REF] Sagi | Ensemble learning: A survey[END_REF], which possess the ability to perform complex tasks. On the other hand, the deployment of such opaque models with thousands, or even millions, of parameters can be a double-edged sword. The complexity of AI systems1 makes it challenging to justify the outputs they generate, and without cogent explanations, these systems may not truly assist humans in making better decisions [START_REF] Zhu | Explainable ai for designers: A human-centered perspective on mixed-initiative co-creation[END_REF]. Numerous scholars have underscored the critical role of research in formulating explanations aimed at fostering responsible AI. [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] introduced the key desiderata for research centered on generating explanations, comprising trust, causality, transferability, informativeness, and equitable and ethical decision-making. Building on these principles, [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF] advanced the rationale behind the research in explanations, emphasizing the promotion of trustworthiness, causality, transferability, informativeness, confidence, fairness, accessibility, interactivity, and privacy consciousness. From a practical standpoint, [START_REF] Hall | An introduction to machine learning interpretability[END_REF] posited that the impetus for research in explanation can be effectively condensed into two categories: intellectual and social.

Motivated by the aforementioned reasons, there has been significant attention from both academia and industry in developing AI systems capable of generating explanations to justify their outputs [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF]. According to [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF], two strategies can be used to explain the outputs of an AI system: (1) utilizing transparent models, where the inner workings of the models can be easily explained (model-intrinsic explanations), such as simple linear models and association rules;

(2) providing post-hoc explanations without elucidating precisely how the models work. The term eXplainable Artificial Intelligence (XAI) quickly gained popularity after the DARPA2 (Defense Advanced Research Projects Agency) called for research proposals on AI explainability, it refers to AI technologies that can provide justifications for their decision-making process. The increasing demand from users and regulations such as the General Data Protection Regulation (GDPR) [START_REF] Voigt | The eu general data protection regulation (gdpr). A Practical Guide[END_REF] has sparked significant research interest in XAI in recent years. Some researchers also use the term Interpretable Artificial Intelligence to refer to a similar concept. However, there is a lack of consensus on the explicit definitions of XAI and Interpretable Artificial Intelligence, with some works using them interchangeably while others distinguish between them. Often, these distinctions are based on researchers' subjective intuitions without solid theoretical support [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. The ill-defined and ambiguous use of the terms interpretability and explainability has made it challenging to formulate problems in defining, designing, and evaluating AI systems that can provide explanations for their results. To advance the field, it is crucial to formalize and clarify these terms (Doshi-Velez and Kim, 2017).

RSs are frequently employed as decision-support tools, their role being to alleviate the impact of information overload by delivering pertinent suggestions. In circumstances where decision-making carries significant implications, the requirement for explanations supporting these recommendations intensifies. Concurrently, within the realm of RSs, a notable subdivision of AI, there has been a mounting interest in the development of RSs equipped with the capacity to furnish explanations for their recommendations. However, similar to the challenges in the field of AI, the terms interpretable recommendations and explainable recommendations lack clear definitions, making it difficult to compare and generalize the existing methods for providing explanations. As a result, there is an urgent need for a general framework for developing RSs that can generate explanations for recommendations, despite the extensive research conducted in this area.

Research motivations

As explored in the previous section, there has been a marked upswing in research endeavors focused on the development of AI systems capable of offering explanations for their outputs. RSs, a crucial subset of AI, have seen corresponding growth in efforts toward equipping them with explanatory faculties. However, notwithstanding the considerable attention attracted by this field, there remains a noticeable absence of consensus regarding the definitions of frequently employed terms such as explainability and interpretability. This ambiguity poses challenges in the formalization, comparison, and evaluation of different explanation methods. Hence, it is crucial to establish clear definitions for these terms before delving into the study. In other words, a general framework capable of clarifying frequently employed, yet vaguely defined terms, aligning with the generality aspect mentioned in the title of this thesis. In this regard, the first research question we aim to address is:

RQ1, "What are the differences between interpretability and explainability in the context of AI, and more specifically in the context of RSs?"

To fully answer this question, the following two issues should be clarified:

• RQ1.1, "What does explainability and interpretability mean respectively?" Existing definitions on the two terms are usually based on researchers' subjective intuitions without solid theoretical support [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], which has made it challenging to formulate problems in defining, designing, and evaluating AI systems that can provide explanations for their results.

• RQ1.2, "To whom explainability and interpretability is concerned?" It is crucial to determine the target audience for these explanations [START_REF] Vilone | Notions of explainability and evaluation approaches for explainable artificial intelligence[END_REF]Longo, 2021, Arrieta et al., 2020). Explanations directed at model developers, domain experts, and regulatory entities/agencies differ significantly from those intended for non-expert users.

In a nutshell, we first aim to disambiguate and settle the meaning of explainability and interpretability to facilitate the comparison and evaluation of different explanation methods in the context of AI, particularly within RSs. Having settled the use of terms explainability and interpretability in RSs, it would be pertinent to specify: RQ2, "Why explainability and interpretability are remarkably demanded in RSs?" While we have summarized some desiderata in Section 1.1, when it comes to RSs, we will lay out more details about the goals of explaining recommendations derived by RSs by a thorough literature review in Section 3.7: promoting the efficiency, effectiveness, persuasiveness, transparency, trust, satisfaction and scrutability of RSs [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF]. Note that these goals are also applied to evaluate explanations in RSs [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF]. In sequence, we arrive at the core research question of this thesis:

RQ3, "How to explain recommendations?"

Similar to the field of AI, explanations in RSs, which is an important branch of AI, can be broadly classified into two main categories [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]: (1) adopting transparent models; and (2) adopting post-hoc explanation techniques to generate post-hoc explanations. Transparent models, such as linear regression and association rules, are easy to understand. However, they often suffer from lower prediction accuracy, which is known as the trade-off between complexity and accuracy (Doshi-Velez and Kim, 2017). On the other hand, post-hoc explanation techniques, such as SHAP (SHapley Additive exPlanations) [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] and LIME (Local Interpretable Model-agnostic explanations) [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF], can be applied to explain any models thus offering more flexibility. However, one major concern with applying such techniques is that posthoc explanations may not always faithfully represent the original RSs and may even be inaccurate [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. Hence, both strategies have their merits, and it is not an either-or situation. This naturally leads us to ask:

• RQ3.1, "How to build transparent models that can explain recommendations while ensuring the accuracy of recommendations?" Directly building RSs capable of generating accurate recommendations and explaining such recommendations is an important topic. Existing RSs often rely on latent factor models such as matrix factorization [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], Factorization Machine [START_REF] Rendle | Factorization machines[END_REF], deep learning-based methods [START_REF] Liu | Deep learning based recommendation: A survey[END_REF], etc. These models can make accurate rating predictions. Nevertheless, the explicit semantics of the learned latent factors remain ambiguous, thereby complicating the task of generating coherent and cogent explanations for the recommendations.

• RQ3.2, "How to explain existing complex RSs using post-hoc explanation techniques while mitigating the limitations of such techniques?" Retaining existing complex RSs in production and adopting post-hoc explanation techniques [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] to explain recommendations is practical. It allows for the reuse of existing RSs, reducing engineering costs and these RSs usually gain higher performances than those that adopt simple models. SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] and LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] are among the most prominent tools that can provide post-hoc explanations in literature. There are some works [START_REF] Guo | Online product feature recommendations with interpretable machine learning[END_REF][START_REF] Singh | Exs: Explainable search using local model agnostic interpretability[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] that explain recommendations by directly applying the importance of each feature calculated by LIME and SHAP. The major limits and concerns of applying directly such methods are: (1) post-hoc explanations may not be faithful to the original RSs and sometimes such explanations may even be wrong [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]; (2) for plain users, understanding the importance of features returned by such methods is non-trivial since complex background mathematical knowledge is required. For example, the outputs of SHAP include the force_plot figure (used to visualize how a prediction is achieved by showing the contribution of each feature please refer to [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]), this requires that users have basic knowledge in game theory. Therefore, SHAP and LIME are good tools for model developers to visualize the behaviors of models and may help them debug models, however, for plain users, such figures may not be easy for them to understand. The pivotal question then emerges: how can we harness post-hoc explanation methods to elucidate any recommender model while sidestepping these constraints?

Various explanation methods have been proposed in the domain of RSs, however, it remains unclear what the best way is to provide explanations under a given context for a given task [START_REF] Zhou | Evaluating the quality of machine learning explanations: A survey on methods and metrics[END_REF]. This leads us to our final research question: RQ4, "How to evaluate explanations in RSs?" Evaluating explanations is challenging as explanations are human-centered [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], and the ground truth explanation for a machine learning task is often unknown [START_REF] Molnar | Interpretable machine learning-a brief history, state-of-the-art and challenges[END_REF], which is also the case for RSs. To address this question, we assess the quality of explanations in RSs by measuring the extent to which explanations satisfy the goals identified by [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF] and [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF].

Summary of contributions

In this thesis, we make contributions to the fields of generality and explainability in RSs by addressing the following aspects: (1) we propose an Interpret/Explain Schema (IES) that allows disambiguating the essential terms used in AI, particularly in RSs, to avoid confusion and clarify their meanings. Based on IES, we construct GFGE that can integrate existing methods for generating explanations in the context of AI; (2) we summarize the drives for research related to explanations in AI and provide an overview of methods for evaluating explanations in RSs; (3) we instantiate the framework with two explanation scenarios in RSs to demonstrate its effectiveness and applicability; (4) we conduct a preliminary user study to evaluate the qualities of explanations.

Disambiguating the use of terms (RQ1): we thoroughly review and compare existing works on the use of explainability and interpretability in the context of AI. It is crucial to note the social aspects of explanations, as they involve the transfer of knowledge through conversations or interactions [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF]. To shed light on this, we draw upon concepts from knowledge management [START_REF] Arduin | Information and knowledge system[END_REF], where humans possess an interpretative framework [START_REF] Jones | Mental models: an interdisciplinary synthesis of theory and methods[END_REF] (also known as mental model [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF]) that enables them to interact with their environment through sense-giving and sense-reading [START_REF] Polanyi | Sense-giving and sense-reading[END_REF]. With this, we propose the IES [START_REF] Zhong | Ai: To interpret or to explain?[END_REF] in AI systems. We propose the definition of explainability and interpretability based on the IES and further specify what does explainability and interpretability means respectively; to whom explainability and interpretability is concerned. With the proposed definitions, problem formulation such as definition, design, and evaluation of explainable AI can be seriously engaged, which will make the AI system more transparent when making decisions. With IES and our definitions, we construct the GFGE in the context of AI. Under our framework, the two strategies [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] (Utilizing transparent models and providing post-hoc explanations) applied to explain the output of AI systems can be integrated together. Note that the framework also applies in RSs, since RSs is an important branch of AI research, and we will instantiate the framework by applying the two strategies in the context of RSs.

Drives for research in the area (RQ2, RQ4): we thoroughly review existing literature on explanations in AI and classify them into three drives [START_REF] Zhong | Ai: To interpret or to explain?[END_REF]: (1) commercial drive that comes from the demands of users; (2) regulatory drive that comes from regulatory demands; (3) technical drive that concerns debugging and improving existing AI systems. We also summarize the goals of explanations in RSs: helping users understand how the system works (transparency), increasing user's confidence in the system (trust), helping users make better (effectiveness) decisions more quickly (efficiency), persuading the user to try or consume (persuasiveness), allowing users to tell the system when recommendations are not appropriate (scrutability) and increasing the ease of use or enjoyment (satisfaction). Note that these goals are often used to evaluate the quality of explanations in RSs (Gedikli et al., 2014, Tintarev and[START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF].

Two explanation scenarios (RQ3):

we instantiate GFGE by applying the two explanation strategies:

• To address the question of the role of transparency (RQ3.1): we turn to Argumentation Frameworks (AFs), which have been applied to enhance the explainability of AI [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF](Vassiliades et al., , Čyras et al., 2021)). AF can represent the decision-making process in a graphical way, and the predefined properties help to reason how to reach the best decisions [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF]. AF also includes ways to define weighted arguments and dialectical relations between arguments, which contain semantics to decide how strong and acceptable these arguments are (Čyras et al., 2021).

-Context-free: we propose Attribute-Aware Argumentative Recommender (A 3 R) (Zhong and Negre, 2022a), a model that combines factorization-based methods and AFs. With the help of AFs, each step of A 3 R is endowed with explicit semantics, allowing A 3 R to generate explanations for recommendations that are easy to understand. For each useritem interaction, we define an AF, where features of items are regarded as arguments, and users' ratings towards features are defined as the strength of arguments. Modelintrinsic explanations can be generated for each user-item interaction with the help of the AFs.

-Context-aware: a prevailing belief in the domain of RSs is that users' context can influence their preferences [START_REF] Adomavicius | Context-aware recommender systems[END_REF]. We believe that this also applies to AFs. Some good arguments under particular contexts may become less accurate given another context. Nevertheless, A 3 R does not consider users' contexts that can strongly influence users' preferences. We extend this idea by considering users' context and propose Context-Aware Feature Attribution Through Argumentation) [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF]. The traits of CA-F AT A include: (1) CA-F AT A combines latent factor models and AFs, therefore, each computation step is endowed with explicit semantics, which helps to explain the generated recommendations; (2) since users' contexts are considered, the corresponding AF is also context-aware, which means that CA -F AT A can generate context-aware explanations (Zhang et al., 2020, Zhong andNegre, 2022e), therefore, CA -F AT A can generate and explain recommendations in an argumentative and context-aware way.

• To answer the question of using post-hoc explanations (RQ3.2): we draw inspiration from related research in psychology, philosophy, and cognitive science. Instead of directly asking why an event P happened, people often prefer asking why event P happened rather than an event Q, where Q is a foil [START_REF] Lipton | Contrastive explanation[END_REF][START_REF] Lim | Assessing demand for intelligibility in context-aware applications[END_REF][START_REF] Mackie | The cement of the universe: A study of causation[END_REF]. Generating counterfactual explanations [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF] that are easily understandable [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF] and of high fidelity [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF] is a potential solution. Unlike LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF], which approximate original models, counterfactual explanations seek the minimum changes necessary to alter the outputs of the original models. Therefore, counterfactual explanations have high fidelity [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF]. A typical counterfactual explanation describes a causal situation as "If A did not occur, then B would not have happened" [START_REF] Molnar | Interpretable machine learning[END_REF]. We proposed Shap-Enhanced Counterfactual Explanation (SECE) (Zhong and Negre, 2022c) and show that SHAP (Lundberg and Lee, 2017) can be adapted to generate counterfactual explanations that are contrastive and selected (Zhong and Negre, 2022c). To the best of our knowledge, this is the first work that combines the Shapley value method and counterfactual method to address explanations in RSs: we apply SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] to select possible candidates of counterfactual explanations. Our method can generate counterfactual explanations that are faithful and easily understandable.

The quality of explanation (RQ4): we also summarize existing predefined proxies frequently used for evaluating explanations in RSs (Zhong and Negre, 2022e). At the same time, since explanation is human-centered, we conduct a user study [START_REF] Zhong | Context-aware explanations in recommender systems[END_REF] to evaluate the qualities of explanations generated by our explanation methods: the extent to which explanations satisfy the goals of explanations: transparency, trust, effectiveness, efficiency, scrutability, satisfaction, persuasiveness (Gedikli et al., 2014, Tintarev and[START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF] 

Guide to read

The rest of this thesis is organized as follows:

• In Chapter 2, we depict state-of-art related to explanation from the view of AI. We cover the fundamental concepts of explanations in AI, how explanations in AI may have been influenced by research from other domains such as philosophy, psychological science, cognitive science, how to generate explanations and how to evaluate explanations.

• In Chapter 3, we review related work about explainable recommendations by applying the notions introduced in Chapter 2.

• In Chapter 4, we depict the IES, which allows disambiguating the use of terms: explainability and interpretability. Based on the IES, we construct GFGE. We show that existing methods for generating explanations can be integrated into this framework.

• In Chapter 5, we lay out some technical background that will be used to instantiate GFGE in Chapters 6, 7, and 8.

• In Chapter 6, we instantiate GFGE in the model-intrinsic explanation scenario, where recommendations can be explained inherently by design. Starting with a context-free scenario, we introduce A 3 R which utilizes AFs to endow each computation with explicit semantics.

Our experiments indicate that A 3 R significantly surpasses (in terms of prediction accuracy) existing argumentation-based recommendation models and competes effectively with other more opaque, black-box recommendation models. In this chapter, we offer an exhaustive review of studies focusing on explanations within the realm of Artificial Intelligence (AI). Our aim is to guide readers in comprehending the fundamental principles of explanations in AI, which will subsequently be utilized in our discussion on explainable recommendations. The chapter is organized as follows: Section 2.1 provides a general overview of research related to explanations in AI, emphasizing some frequently used yet ill-defined notions. Section 2.2 discusses existing work that attempts to disambiguate the terms interpretability and explainability. Section 2.3 introduces research on explanations from social science, cognitive science, philosophy, and knowledge management, which will contribute to the development of the Interpret/Explain Schema (IES) and the General Framework for Generating Explanations (GFGE) in Chapter 4. Section 2.4 summarizes the motivations behind research on explanations in AI. Section 2.5 reviews two primary families of techniques employed for generating explanations in AI. Section 2.6 examines existing approaches for evaluating the quality of explanations in AI. Finally, we compare the two families of techniques and provide four guiding principles for selecting between them.

A general view

In recent years, AI has been widely applied, bringing significant changes to people's daily lives and becoming a core technique in various real-world applications, including Recommender Systems (RSs) [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. However, some people may question the reliability of these techniques in deployment. In particular, when AI is used for making high-stakes decisions in areas such as healthcare and criminal justice, individuals often want to know why a system makes certain decisions to mitigate risks, as it can be difficult to trust a system without explanations. Moreover, since 2018, the European Union has mandated that algorithms used in decision-support systems must provide explanations, a principle known as the "right to explanation" [START_REF] Voigt | The eu general data protection regulation (gdpr). A Practical Guide[END_REF]. People desire AI systems that can provide high-quality results and reasonable explanations simultaneously. The definition, design, optimization, and evaluation of such AI systems have attracted significant attention. Researchers often claim that their models are interpretable or explainable, referring to interpretability and explainability, respectively. However, no strict definitions of these terms have been achieved. Some researchers distinguish between them [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Doshi-Velez | Towards a rigorous science of interpretable machine learning[END_REF][START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF], while others use them interchangeably [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Molnar | Interpretable machine learning[END_REF][START_REF] Du | Techniques for interpretable machine learning[END_REF][START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF]. These claims are typically based on researchers' subjective intuitions [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] without solid theoretical support, and so far, no consensus has been reached. The vague definitions and ambiguity in using the terms interpretability and explainability have made it difficult to formulate problems in defining, designing, and evaluating AI systems that can provide explanations for the generated results. To advance research on interpretability and explainability in AI, it is imperative to critically engage with and rigorously define these terms [START_REF] Doshi-Velez | Towards a rigorous science of interpretable machine learning[END_REF].

To explain or to interpret?

In the AI research community, there is no common consensus or strict definitions concerning interpretability and explainability, despite significant efforts devoted to this research subject. Numerous discussions have taken place about the definitions of these two terms.

According to [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF], interpretable models can be classified into two categories. The first category is transparent models, which means that how the models work can be explained and understood by humans. The second category is models that can provide post-hoc explanations, meaning that they can offer explanations after generating results, without necessarily elucidating precisely how the models work. Lipton distinguishes between interpretability and explainability, in that the former enhances the latter. [START_REF] Gilpin | Explaining explanations: An approach to evaluating interpretability of machine learning[END_REF] argue that interpretability and explainability should be distinguished because explainable models are interpretable by default, but the reverse is not always true. They propose that explaining explanations is an approach to evaluating interpretability. In another line of research, some researchers use interpretability and explainability interchangeably. [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] discusses explanations in AI from a social science perspective. This is the first attempt to link explanation research in AI to psychology, social science, and cognitive science. The author surveys philosophy, psychology, and cognitive research related to explanation. According to Miller, interpretability is the degree to which an observer can understand the cause of a decision and is widely cited. The author equates interpretability and explainability. The surveys and reviews listed above are not exhaustive, but they represent three different relationships concerning interpretability and explainability identified from state-of-the-art works, as presented in Figure 2.1. For more reviews and surveys about interpretability and explainability in the context of AI, see the work of [START_REF] Hoffman | Metrics for explainable ai: Challenges and prospects[END_REF], [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF] and [START_REF] Mittelstadt | Explaining explanations in ai[END_REF].

Figure 2.1(a) illustrates that interpretability is a subset of explainability, meaning that interpretability enhances explainability. This relationship has been suggested by several works such as [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF], [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF], [START_REF] Guidotti | A survey of methods for explaining black box models[END_REF], [START_REF] Mittelstadt | Explaining explanations in ai[END_REF], Rudin (2019). In these works, the authors argued that interpretation pertains to the internal mechanisms of models and how they work, while explanation pertains to why certain results have been generated. An interpretable model is explainable by default, since the reasoning process behind the results (e.g., a recommendation or a classification) is clear, indicating that the results can be explained using understandable logic. Figure 2.1(b) shows another suggested relationship between interpretability and explainability that distinguishes them, with the reverse implication. This view is presented by [START_REF] Gilpin | Explaining explanations: An approach to evaluating interpretability of machine learning[END_REF], which defines explainable models as interpretable by default, but not the other way around. This suggests that explainability implies interpretability. In this sense, the correctness of explanations should be justified, revealing the causal relationships behind them. Figure 2.1(c) illustrates that the terms interpretability and explainability can be used interchangeably. According to [START_REF] Molnar | Interpretable machine learning[END_REF] and [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF], the term interpretable is more often used when referring to models, while explainable is more often used when referring to results. Interpreting a model can also mean producing explanations for individual predictions [START_REF] Molnar | Interpretable machine learning[END_REF].

To summarize, no consensus has been achieved upon the use of interpretability and explainability. A lack of agreement on what is explanation may have been the reason why researchers use the terms differently.

Explanation: what?

To clarify ambiguity, it is important to note that scholars from a variety of disciplines have investigated the concept of explanation long before the advent of AI. Philosophers have delved into the nature, purpose, and structure of explanations, while cognitive and social psychologists have examined how individuals attribute and evaluate the behavior of others in physical environments. Additionally, cognitive psychologists and scientists have studied how people generate and evaluate explanations.

What is explanation? [START_REF] Lewis | Causal explanation[END_REF] (one of the most significant philosophers of the XX th century) posited that: "To explain an event is to provide information about its causal history 3 . In Figure 2.2: Sense-giving and sense-reading in knowledge management [START_REF] Arduin | Information and knowledge system[END_REF], where P1 and P2 are two different persons.

explaining, someone possessing explanatory information about an event's causal history attempts to convey it to someone else." According to [START_REF] Josephson | Abductive inference: Computation, philosophy, technology[END_REF]: "An explanation is an assignment of causal responsibility." [START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF] claimed that regarding explanations: "Explanations involve social interactions, such as creating a shared meaning of something, transferring knowledge, influencing people's beliefs, and so on." [START_REF] Lombrozo | The structure and function of explanations[END_REF] and Miller (2019) observed that explanation is both a process and a result. An explanation can be viewed as a product as it can function as an answer to a why question [START_REF] Dennett | The intentional stance[END_REF][START_REF] Lewis | Causal explanation[END_REF][START_REF] Lipton | Contrastive explanation[END_REF]. On the other hand, an explanation can also be seen as a process that involves abductive inference to identify an appropriate explanation for a given event [START_REF] Chin-Parker | Background shifts affect explanatory style: How a pragmatic theory of explanation accounts for background effects in the generation of explanations[END_REF]. Additionally, the process of explanation requires knowledge transfer (through conversations or interactions [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF]) between the explainer and the explainee.

In fact, the assertions of [START_REF] Lombrozo | The structure and function of explanations[END_REF] and [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] are remarkably consistent with the concepts in knowledge management [START_REF] Despres | Knowledge management (s)[END_REF]Chauvel, 1999, Arduin et al., 2015). Human beings possess an interpretative framework [START_REF] Jones | Mental models: an interdisciplinary synthesis of theory and methods[END_REF], also known as a mental model [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF], through which new information is filtered and stored. This allows them to interact with the world, process information, and ultimately create knowledge. Each individual has their own unique interpretative framework, leading to different interpretations of the same data even when two people see the same thing. [START_REF] Arduin | Information and knowledge system[END_REF] further emphasize that interpretation is central to knowledge management. Continuously, humans interpret information through the process of sense-reading [START_REF] Polanyi | Sense-giving and sense-reading[END_REF]. For instance, at this moment, as I send this text to you, each recipient interprets the information based on your own interpretative framework. I use my interpretative framework to give meaning to the information I create, a process called sensegiving [START_REF] Polanyi | Sense-giving and sense-reading[END_REF]. In turn, each of you will perceive and interpret the information, creating your own knowledge through sense-reading [START_REF] Polanyi | Sense-giving and sense-reading[END_REF]. Thus, it is through interpretation that humans select and process data to create their own knowledge. The combination of sense-giving and sense-reading results in an explanation, as illustrated in Figure 2.2. This aligns with Miller's assertion [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] that explanations are social and involve conversations. From a philosophical standpoint, interpretation is a subjective action, while explanation entails interaction. With this, we will propose the Explain/Interpret Schema in Chapter 4.

What are the desired properties of explanations? A summary of existing research on explanations in social science, cognitive science, and philosophy reveals three common desired properties of explanations:

• Explanations are contrastive: people often prefer to ask "why did event P occur rather than event Q?" instead of simply questioning "why did event P occur?" Here, P and Q represent the fact and the foil, respectively. This distinction results in two types of questions: plain-fact and contrastive. Plain-fact questions require a comprehensive explanation with an uninterrupted causal chain across time [START_REF] Van Bouwel | Remote causes, bad explanations?[END_REF], while contrastive questions focus on the differences between P and Q, which are easier to derive [START_REF] Lipton | Contrastive explanation[END_REF]. As a result, desired explanations tend to emphasize these differences rather than providing a complete causal analysis, leading to the observation that explanations are selective by nature.

• Explanations are selected: instead of pursuing the entire cause of an event, people typically choose a limited number of causes to form an explanation. One possible reason is that comprehensive causal analyses can be too complex to grasp [START_REF] Hilton | Social attribution and explanation[END_REF]. Contrasts or differences between facts and foils serve as the primary criteria for selecting explanations, suggesting that explanations should be tailored to address the specific needs of the explainees.

• Explanations are social: explanations serve as a conduit for knowledge transfer during conversations or interactions, taking into account the explainer's perception of the explainee's beliefs [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF]. Consequently, it is essential to consider human involvement when developing explanation methods [START_REF] Vilone | Notions of explainability and evaluation approaches for explainable artificial intelligence[END_REF]. Considering that explanations generally involve interactions, it is crucial to determine the target audience for these explanations [START_REF] Vilone | Notions of explainability and evaluation approaches for explainable artificial intelligence[END_REF]Longo, 2021, Arrieta et al., 2020). Explanations directed at model developers, domain experts, and regulatory entities/agencies differ significantly from those intended for non-expert users. In this thesis, our main emphasis is on explanations targeted at non-expert users, unless stated otherwise. Additionally, it is worth noting that the analyses presented in this section stem from a broader perspective (in AI), yet they remain applicable to the domain of RSs.

The above three properties are desired when designing explanations in the context of AI [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. In this thesis, we will design models to generate explanations in RSs that fulfill at least one of the aforementioned properties.

Explanation: why?

Numerous researchers have synthesized and enumerated the reasons (or desiderata of explanation) for research on explanations in AI [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF][START_REF] Hall | An introduction to machine learning interpretability[END_REF]. We further categorize these desiderata into three driving forces: commercial drive, regulatory drive, and technical drive [START_REF] Zhong | Ai: To interpret or to explain?[END_REF].

Commercial drive: a key driving force for explanation in AI is the commercial drive. In today's competitive landscape, many companies rely on AI techniques as their core competency Increase the ease of use or enjoyment Scrutability Allow users to tell the system when recommendations are not appropriate to provide innovative services. However, humans are naturally curious and tend to trust decisions backed by logical reasoning. When AI is used to make high-stakes decisions, consumers seek explanations or reasoning to support their decision-making process, as explanations play a crucial role in building trust [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF]. For instance, users are more likely to trust a well-explained recommendation compared to one generated by a black-box model, as it provides transparency and justification for the recommendation [START_REF] Tintarev | Beyond explaining single item recommendations[END_REF]. In this context, trustworthiness (promoting users' trust) [START_REF] Kim | ibcm: Interactive bayesian case model empowering humans via intuitive interaction[END_REF][START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF], fairness (avoiding biased decisions) (Chouldechova, 2017, Voigt and[START_REF] Voigt | The eu general data protection regulation (gdpr). A Practical Guide[END_REF], and interactivity (promoting scrutability) [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF] fall under this category.

Regulatory drive: regulations such as the General Data Protection Regulation (GDPR) [START_REF] Voigt | The eu general data protection regulation (gdpr). A Practical Guide[END_REF]) also drive the need for explainable AI, as they mandate that consumers have the legal right to obtain explanations. This makes providing explanations to users necessary, especially when decision-making processes are influenced by RSs [START_REF] Edwards | Slave to the algorithm? why a'right to an explanation'is probably not the remedy you are looking for[END_REF].

Technical drive: finally, the technical drive is another driving force. After years of research and real-world applications, researchers have realized that a model solely based on prediction accuracy cannot always be trusted, as accuracy is an incomplete description of real-world tasks (Doshi-Velez and Kim, 2017). Not knowing the reasoning process behind result generation may lead model builders to create erroneous models. In contrast, understanding the true reasoning behind models assists designers in debugging and improving models [START_REF] Louizos | Causal effect inference with deep latent-variable models[END_REF].

More specifically, the primary objectives (or benefits) of explanations in RSs include promoting transparency, effectiveness, efficiency, persuasiveness, trust, satisfaction, and scrutability [START_REF] Tintarev | Beyond explaining single item recommendations[END_REF]. In practical terms, explanations can assist users in identifying items that truly align with their interests (effectiveness) more efficiently (efficiency), persuading users to try or consume items (persuasiveness), increasing users' loyalty to the system (trust), enhancing the understandability of RSs (transparency), improving ease of use or enjoyment (satisfaction), and enabling users to communicate with the system when recommendations are unsuitable (scrutability). Table 2.1 summarizes these aims, primarily from the users' perspective, which is the central focus of this thesis. These goals are commonly used as metrics to evaluate the quality of explanations in RSs (Tintarev andMasthoff, 2015, Gedikli et al., 2014), and we will revisit these objectives (metrics) in Section 3.7.

Explanation: how?

Upon reviewing the literature, it appears that existing works identify two primary strategies for generating explanations [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Guidotti | A survey of methods for explaining black box models[END_REF]: (1) employing transparent models, where the inner workings of the models can be readily explained (model-intrinsic explanations), such as simple linear models and association rules [START_REF] Kotsiantis | Association rules mining: A recent overview[END_REF]; (2) offering post-hoc explanations without explicitly detailing the underlying mechanisms of the models. In the following, we will provide an overview of the two broad categories of methods and their applications in the realm of RSs.

Transparent models: model-intrinsic explanations

Transparency encompasses three distinct levels: simulatability (encompassing the entire model), decomposability (pertaining to individual components such as parameters) and algorithmic transparency (related to the training algorithm) [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF].

• Simulatability: in the context of model transparency, it refers to the ability of a person to understand the entire model at once. This often implies that simpler models are more interpretable. For instance, sparse linear models produced by lasso regression are considered more interpretable than dense linear models. An interpretable model should be easily presented to the user through visual or textual artifacts.

• Decomposability: when users cannot simulate an entire model, they may still seek to understand the meaning of each component within the model. Decomposability refers to the capacity to provide intuitive explanations for each part of a model, encompassing input, parameter, and calculation. This characteristic, also referred to as intelligibility [START_REF] Lou | Intelligible models for classification and regression[END_REF], enhances the understanding and interpretation of a model's behavior. For example, General Additive Model (GAM) [START_REF] Hastie | Generalized additive models[END_REF] falls into this category. However, not all models can achieve decomposability, as it necessitates that each input be readily interpretable, thus excluding models with highly engineered or anonymous features. For instance, each node in a decision tree could correspond to a plain text description, while parameters in a linear model might represent the strengths of associations between features and labels.

• Algorithmic transparency: algorithmic transparency involves a user's ability to comprehend the process a model utilizes to generate the output from input data. For instance, linear models are deemed transparent as their error surfaces can be understood and rationalized, enabling users to anticipate the model's behavior in different situations. Conversely, contemporary deep learning methods, including deep architectures, do not possess this degree of algorithmic transparency. The loss landscape of these models may be obscure, and their solutions require approximation using heuristic optimization techniques like stochastic gradient descent [START_REF] Datta | Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems[END_REF].

It is important to recognize that models generally regarded as transparent may not always exhibit transparency. The trade-offs between model size and computation for generating a single prediction can vary among models. For instance, in the case of decision trees, the time required for inference might expand considerably in comparison to the model size.

Post-hoc explanations

When models become overly complex, such as deep neural networks, it becomes necessary to develop separate methods to extract valuable information and explain the model's decisions. This approach may stem from human cognitive science, wherein individuals may make intuitive decisions and subsequently seek explanations for those decisions [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], Zhang et al., 2020), which falls within the realm of post-hoc explanation approaches. Depending on the scope of explanations, post-hoc explanations can be roughly divided into two levels: [START_REF] Shrikumar | Learning important features through propagating activation differences[END_REF], a global explanation technique, measures the contribution of each input feature to the model's output by comparing it to a reference input, thus exposing the model's overall feature importance structure. Permutation feature importance [START_REF] Breiman | Random forests[END_REF] is another global technique, providing an overall metric of feature importance by assessing the increase in the model's prediction error after permuting the feature's values. While local explanations can be invaluable in understanding case-specific decisions and debugging outliers, they may not give a complete picture of the model's functioning and might sometimes be inconsistent across instances [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]. In contrast, global explanations provide a comprehensive overview but can be overly generalized and fail to explain specific, nuanced decisions [START_REF] Gilpin | Explaining explanations: An approach to evaluating interpretability of machine learning[END_REF]. As such, an ideal approach might involve a combination of both local and global techniques, providing both instance-level insights and an overall understanding of the model's operation [START_REF] Molnar | Interpretable machine learning[END_REF].

• Model-specific vs model-agnostic: model-specific explanation techniques are designed with particular types or classes of models in mind. As such, they exploit the inherent properties and structures of these models to elucidate their internal workings. For example, TreeSHAP [START_REF] Lundberg | Consistent individualized feature attribution for tree ensembles[END_REF] is actually a variant of SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. It allows computing the marginal contribution of each feature in a more efficient way but only applies to tree-based models. [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF] developed a filter and activation-based method to explain the behavior of convolutional neural networks. In contrast, model-agnostic explanation techniques are not restricted to a specific type of model. They aim to understand the relationship between the model's inputs and outputs, without delving into the model's internal structure. These techniques can be used across a wide variety of models, adding a layer of versatility to their applications. LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] Thus, the choice between these techniques should be informed by the particular use-case and the model in question [START_REF] Molnar | Interpretable machine learning[END_REF].

Explanation: how to evaluate?

The evaluation methods can be generally classified into three strategies, as proposed by Doshi-Velez and Kim (2017). These approaches aim to offer a systematic means of assessing the quality of explanations produced by AI systems:

• Application-grounded evaluation: in this approach, the evaluation of explanations is performed by conducting user studies with real-world users in a specific domain. The idea is to measure how well the explanations provided by the AI system help users achieve their goals, such as making better decisions, debugging, or understanding the model's reasoning. By testing the explanations with real users in a practical setting, this evaluation method ensures that the explanations are relevant and useful for the intended audience. For instance, [START_REF] Zhang | Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[END_REF] conducted an A/B test to verify how explanations can influence the sales of mobile phones in an online shopping website called JingDong4 .

• Human-grounded evaluation: this approach involves simulating the target user population by conducting user studies with laypeople or domain experts who are not involved in the development of the AI system. The participants are asked to perform tasks or answer questions based on the explanations provided by the AI system. This evaluation method assesses the quality of the explanations in terms of understandability, informativeness, and usability for the intended audience without relying on real-world application scenarios. Conducting user studies is a typical evaluation method that falls into this type. For instance, [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF] conducted a user study to compare and evaluate different explanations in RSs.

• Functionally-grounded evaluation: in contrast to the first two approaches, functionallygrounded evaluation does not involve human participants. Instead, this approach uses quantitative proxies or automated metrics to evaluate the quality of explanations. The idea is to design tasks that can be automatically performed and evaluated, such as measuring the consistency of explanations, their fidelity to the underlying model, or their ability to predict human judgments. This evaluation method provides a scalable and objective way to assess explanations, but it may not capture all aspects of human interpretability and usability. When explanations take the form of text, BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] and ROUGE [START_REF] Rouge | A package for automatic evaluation of summaries[END_REF] scores and typically used to evaluate the quality of the text. [START_REF] Tan | Counterfactual explainable recommendation[END_REF] defined Probability of Necessity (PN) and Probability of Sufficiency (PS) for assessing the qualities of counterfactual explanations.

In summary, the three strategies provide complementary methods for evaluating explanations in AI systems. Researchers and practitioners may opt for one or a combination of these evaluation techniques, taking into account the context and objectives of the AI system to ensure that the generated explanations are comprehensible, valuable, and reliable for the target users. For a more comprehensive review of explanation evaluation approaches, refer to [START_REF] Mohseni | A multidisciplinary survey and framework for design and evaluation of explainable ai systems[END_REF] and [START_REF] Hoffman | Metrics for explainable ai: Challenges and prospects[END_REF].

Conclusions

It is not possible to definitively say which is better-model-intrinsic explanation techniques or post-hoc explanation techniques in AI-because the suitability of these techniques depends on the specific context and goals of a given project. Here are some comparisons between the two:

• Model complexity: model-intrinsic explanation techniques emphasize inherently interpretable models by incorporating explanations directly into the model's structure, thereby providing clear insights into the decision-making process. Examples of such models include linear regression [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF], GAMs [START_REF] Hastie | Generalized additive models[END_REF], decision trees [START_REF] Breiman | Random forests[END_REF], and argumentation-based methods [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF]. However, when dealing with complex models like deep neural networks, post-hoc explanation techniques might be more suitable, as they can offer insights into the model's decision-making process after training [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF].

• Performance trade-offs: model-intrinsic explanations provide enhanced transparency, but they may result in lower predictive performance compared to more complex models (Doshi-Velez and Kim, 2017). Conversely, post-hoc explanations can be applied to a broad range of models, including those with high predictive performance; however, they might not deliver the same level of transparency as model-intrinsic explanations [START_REF] Gilpin | Explaining explanations: An approach to evaluating interpretability of machine learning[END_REF].

• Domain knowledge: model-intrinsic explanation techniques are often more suitable when domain knowledge is crucial for comprehending and validating the model's decision-making process [START_REF] Guidotti | A survey of methods for explaining black box models[END_REF]. In contrast, post-hoc explanation techniques can be valuable for investigating relationships within the data that may not be captured by simpler models [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF].

• Stakeholder requirements: when stakeholders require a clear understanding of a model's reasoning, model-intrinsic explanations are often more appropriate [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. These techniques are typically more intuitive and easier to comprehend since they are designed with interpretability in mind. On the other hand, if predictive performance is a higher priority and stakeholders are comfortable with complex models, post-hoc explanation techniques may be a better choice [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]. These techniques can be applied to a wide variety of models, including complex ones like deep neural networks, which increases their flexibility [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]. However, a significant concern with post-hoc explanation techniques is that they may not always accurately represent the original reasoning process and could even be misleading [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF].

In conclusion, this chapter has provided a comprehensive examination of explanations in the context of AI, equipping readers with a robust understanding of the key concepts and techniques. By elucidating the distinctions between interpretation and explanation, delving into the nature of explanations, and exploring various methods for generating and evaluating explanations, this chapter imparts essential knowledge about existing research related to explanations in AI. The prevalence of a lack of consensus on notions (particularly interpretability and explainability) in the AI domain is apparent. To tackle this issue, we have presented concepts from knowledge management to disambiguate existing notions. Furthermore, the interdisciplinary perspectives presented in this chapter contribute to a more comprehensive understanding of explanations and their applications in AI. These notions are also applicable to RSs, which will be discussed in the following chapter. In the previous chapter, we presented several fundamental and essential concepts related to explanations within the context of AI. In this chapter, we will review the state-of-the-art in explainable recommendations. Generally, explainable recommendations have two primary goals [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]: (1) generating high-quality recommendations, and (2) providing explanations to justify the rationale behind the generated recommendations. The structure of this chapter is as follows: Section 3.1 introduces the definition of the recommendation problem, evaluation of recommendations, and several commonly used approaches. Section 3.2 provides a review of research in explainable recommendations. We then introduce various methods for generating explainable recommendations, applying the concepts discussed in Chapter 2. For each method, we first present the corresponding models for generating recommendations, followed by the techniques employed for explaining the recommendations. In Section 3.7, we introduce existing methods for evaluating explanations in Recommender Systems (RSs). Section 3.8 summarizes some recurring challenges in this field and serves as a transition to the subsequent chapters, where we propose our solutions to address these issues.

Recommender systems

RSs are a class of software tools and techniques designed to provide personalized recommendations of items that are likely to be of interest to individual users [START_REF] Ricci | Recommender systems: Techniques, applications, and challenges[END_REF][START_REF] Burke | Hybrid web recommender systems. The adaptive web: methods and strategies of web personalization[END_REF][START_REF] Resnick | Recommender systems[END_REF]. The "item" could be products (e.g. movies, commodities) or services (e.g. financial, medical). To formalize the recommendation, we introduce the following notations. U denotes the set of users in the RS; I denotes the set of item; R denotes the user-item interaction records, r ui denotes the rating a user u ∈ U gives to an item i ∈ I, where r ui ∈ S and S can be explicit ratings given by users (e.g. [1,5]) or binary interactions (e.g. S = {like, dislike}); r(u,i) denotes the predicted rating a user u may give to item i when S are explicit ratings given by users; rel ui denotes the predicted relevance of item i to user u when S are binary interactions; U i denotes the set of users that have rated item i; similarly, I u denotes the items rated by user u; intuitively, U ij denotes the users that have rated both item i and j, I uv denotes the items that have been rated by both user u and v; N i (u) denotes the set of similar users that have rated item i; N u (i) denotes the set of similar items rated by user u.

Recommendation problem

The task of RSs is either to predict the rating that users may give to items or the relevance of items to users, which is called prediction of ratings and prediction of top-K items respectively [START_REF] Nikolakopoulos | Trust your neighbors: a comprehensive survey of neighborhood-based methods for recommender systems[END_REF]. In particular, the rating prediction task gained widespread popularity after the Netflix Prize competition [START_REF] Bennett | The netflix prize[END_REF]. Scenario 3.1 The rating prediction scenario involves the task of a RS to learn a utility function f : U × I → S that predicts the rating r(u,i) that a user u might assign to an item i.

Typically, the values in S are continuous numbers within the range of [1, 5], while r(u,i) reflects the preferences of users towards items. Consequently, items are ranked based on their values of r(u,i) , and recommendations are made based on this order.

In many real-world scenarios, RSs only recommend a small subset of items that are likely to be of interest to the users, known as top-K recommendation [START_REF] Deshpande | Item-based top-n recommendation algorithms[END_REF]. In such cases, it is more suitable to predict whether a user will like an item or not. Scenario 3.2 In the top-K recommendation scenario, the goal of a RS is to learn a utility function f : U × I → S that predicts the relevance rel ui of an item i to a user u, indicating how likely it is that the user will like the item.

Algorithm 1: A general recommendation algorithm

Input : A user u, set of items I,the number of items to be returned K A prediction function P redict Output: A list of K items 1 for i ∈ I\I u do 2 r(u,i) or rel ui = P redict (u, i) 3 Order I\I u according to r(u,i) or rel ui in a descending manner 4 Return K first items in I\I u

The values in S fare typically binary variables, such as like, dislike. In both rating prediction and top-K recommendation scenarios, the main task of a RS is to learn a utility function f . Algorithm 1 (adapted from Negre (2017)) presents a general recommendation algorithm that can be applied to both scenarios described above. This approach is considered general because it does not require a specific method for data preprocessing, candidate recommendation generation, or ordering (i.e., the utility function f ). Instead, these actions are considered as parameters of the approach, which can be instantiated in various ways to alter the method of calculating recommendations. By changing these parameters, the method of calculating recommendations is modified.

Evaluating recommendations

The quality of recommendations is a crucial aspect of explainable RSs. Therefore, we will review approaches for evaluating recommendations. Application designers face a wide array of RSs to choose from when integrating such a system into their applications. Consequently, selecting the most appropriate RSs largely depends on the designer's goals. Designers typically rely on experiments that evaluate the quality of recommendations to make informed decisions. Based on these evaluations, the designer can choose the best-performing RS that meets the structural constraints of the real-world application, such as the type, timeliness, and reliability of available data, as well as memory limitations [START_REF] Gunawardana | Evaluating recommender systems[END_REF].

Evaluation strategies

From existing works, three evaluation strategies can be identified: offline, user studies and online experiments [START_REF] Gunawardana | Evaluating recommender systems[END_REF].

Offline experiments:

Offline experiments utilizing existing datasets and a protocol that models user behavior are frequently employed to estimate RS performance measures such as prediction accuracy. This approach assumes that user behavior during data collection will closely resemble user behavior when the RS is deployed, thus allowing for reliable comparisons. When conducting offline experiments, the data is typically divided into two parts: a training set used for learning the utility function and a test set for assessing the RS's performance. Two common conventions for splitting data are the Random split and Chronological split [START_REF] Gunawardana | Evaluating recommender systems[END_REF]. In the Random split, user interactions are shuffled, and a certain percentage is randomly selected for each set (e.g., 80% for training and 20% for testing) (Balog et al., 2019, Kim and[START_REF] Kim | Enhancing vaes for collaborative filtering: flexible priors & gating mechanisms[END_REF]. If timestamps are available for interactions, an alternative method for splitting the dataset is to partition the interactions occurring before a specific time threshold into the training set and those occurring afterward into the test set. This approach simulates a scenario in which the utility function is learned at the time threshold and applied to provide recommendations without incorporating subsequent interactions [START_REF] Wu | Graph convolution machine for context-aware recommender system[END_REF][START_REF] Unger | Context-aware recommendations based on deep learning frameworks[END_REF]. A key assumption of offline evaluation is that user behavior during data collection will closely resemble user behavior during the RS's deployment. Consequently, the results obtained from this evaluation may not accurately reflect the actual performance in a real-world RS. Additionally, the available data might not be adequate for carrying out a comprehensive evaluation. In such situations, conducting user studies can provide valuable insights into the system's performance.

User studies: a typical user study involves recruiting a group of test subjects who are assigned to perform a set of interactions with the RS [START_REF] Pu | Evaluating recommender systems from the user's perspective: survey of the state of the art[END_REF]. Throughout the interaction, the subjects' behavior is quantitatively measured and recorded, capturing metrics such as task completion percentage, accuracy, and time taken to complete the task. Additionally, qualitative questions can be employed to assess recommendation quality by collecting subjective feedback about the user's experience [START_REF] Gunawardana | Evaluating recommender systems[END_REF]. These questions offer insights into aspects like user interface enjoyment and perceived ease of task completion, which may not be directly observable through quantitative measurements.

Online evaluation: an RS's true effectiveness depends on several factors, including the user's intent, personality, and context, such as their familiarity with certain items and the interface through which recommendations are presented. As a result, the most compelling evidence of the system's true value comes from online evaluations, where real users perform actual tasks using the system. One commonly used online evaluation method is A/B testing [START_REF] Amatriain | Mining large streams of user data for personalized recommendations[END_REF], which involves redirecting a small percentage of users to different alternative RSs and recording their interactions with these systems.

Online evaluations have the distinct advantage of reflecting real users' preferences towards recommendations. However, the cost of such evaluations can be prohibitive, and there is a risk of negatively impacting the user experience by testing underperforming approaches. As a solution, some companies adopt an offline-online testing process that leverages the strengths of both evaluation types [START_REF] Amatriain | Mining large streams of user data for personalized recommendations[END_REF]. In this process, offline evaluations are used as an initial indicator to make informed decisions, followed by A/B testing to validate hypotheses previously tested through offline evaluations.

Evaluation criteria and metrics

When assessing the quality of recommendations, several criteria are typically considered, including coverage and serendipity [START_REF] Ge | Beyond accuracy: evaluating recommender systems by coverage and serendipity[END_REF], novelty [START_REF] Konstan | Lessons on applying automated recommender systems to information-seeking tasks[END_REF], diversity [START_REF] Zhang | Avoiding monotony: improving the diversity of recommendation lists[END_REF], accuracy [START_REF] Gunawardana | Evaluating recommender systems[END_REF], and explainability [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. Among these criteria, accuracy [START_REF] Gunawardana | Evaluating recommender systems[END_REF] is the most extensively discussed in the literature. In this section, we will review the commonly used metrics for evaluating accuracy. Metrics for evaluating explainability [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF] will be discussed in Section 3.7. The metrics for evaluating accuracy can be further divided according to the recommendation scenarios: rating prediction and top-K recommendations (defined in Scenarios 3.1 and 3.2 in Section 3.1.1).

Rating prediction: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) [START_REF] Gunawardana | Evaluating recommender systems[END_REF] are perhaps the most widely used metrics for evaluating the accuracy of rating prediction, compared to MAE, RMSE disproportionately penalizes large errors.

RM SE

= 1 |T | (u,i)∈T (r (u,i) -r ui ) 2 (3.1) M AE = 1 |T | (u,i)∈T |r (u,i) -r ui | (3.2)
where T denotes the test set.

Top-K ranking: in this scenario, it is important to evaluate the relevance of recommendations. HR@K [START_REF] Gunawardana | Evaluating recommender systems[END_REF] and NDCG@K [START_REF] Järvelin | Cumulated gain-based evaluation of ir techniques[END_REF] are two such metrics. HR@K indicates whether the tested items are among the top-K recommended items and NDCG@K quantifies the position of the tested items. The larger HR@K and NDCG@K are, the better the performance.

HR = 1 |T | |T | o=1 hits(o) (3.3)
where N is the total number of positive interactions in the test set; o is the o th interaction in the test set; hits(o) = 1 means that the target item (the item in the o th interaction in the test set) appears in the top-K recommendation list other hits(o) = 0 indicates that the target item is not in the top-K recommendation list.

HR@K only consider the presence of relevant item among the top-K recommendations without considering the rank of the relevant. Ideally, relevant items should be ranked on first. NDCG@K further quantifies the rank of relevant items and is defined in the following way:

For each user u in the test set T , Discounted Cumulative Gain (DCG) quantifies the rank of relevant items:

DCG u @K = K j=1 r uj log 2 (j + 1) (3.4)
where rel uj indicate the relevance of the j th item among the top-K recommendations to user u. rel uj = 1 indicates that the j th item is relevant to user u; rel uj = 1 indicates that the j th item is irrelevant to user u. Then NDCG@K is computed as follows:

N DCG@K = 1 |T | (u,i)∈T DCG u @K DCG * u @K (3.5)
where DCG * u @K denotes the best DCG u @K: the more relevant an item, the higher it rank among the top-K recommendations. In an ideal scenario, the most relevant item is ranked first, followed by the second most relevant item, and so on. Usually, for each user in the testset, only one item is considered to be relevant, therefore, Equation 3.5 can be further simplified as follows: where p j is the position of the target item in the top-K recommendation list (starting from 1) for the j th interaction in the testset.

N DCG = 1 |T | |T | j=1 1 log 2 (p j + 1) (3.6)
Precision@K, Recall@K, and F1@K are often employed to evaluate the quality of top-K recommendations. Table 3.1 illustrates all possible outcomes for the top-K recommendations. True positive refers to recommended items that are truly relevant to users; False positive denotes recommended items that are actually irrelevant to users; False positive indicates items that are relevant to users but not recommended; lastly, True negative means items that are irrelevant and are not recommended. The frequently used metrics are computed as follows:

P recision = #tp #tp + #f p (3.7) Recall = #tp #tp + #f n (3.8) F 1 = 2 * P recision * Recall P recision + Recall (3.9)
Precision measures the percentage of relevant items among the items recommended; Recall measures the percentage of items recommended among the relevant items to users; F1 score summarizes the Precision-Recall by the harmonic mean of them where Precision and Recall are equally weighted. It is noteworthy that additional measures exist for assessing the accuracy of RSs. These include the mean average precision [START_REF] Baeza-Yates | Modern information retrieval[END_REF], the area under the ROC curve [START_REF] Bradley | The use of the area under the roc curve in the evaluation of machine learning algorithms[END_REF], the expected reciprocal rank [START_REF] Chapelle | Expected reciprocal rank for graded relevance[END_REF], and the average reciprocal hit rank [START_REF] Deshpande | Item-based top-n recommendation algorithms[END_REF]. For a more comprehensive examination of these measures, we direct readers to the survey by [START_REF] Gunawardana | Evaluating recommender systems[END_REF].

Recommendation approaches

Algorithm 1 (on Page 43) depicts a general approach for generating recommendations. Depending on how the utility function f is learned, the following approaches can be identified from existing works according to the dimension of the utility function (Adomavicius andTuzhilin, 2005, Adomavicius et al., 2005).

• 2-D utility function: traditionally, RSs cater to applications that exclusively involve two types of entities: users and items. Therefore, the utility function is bi-dimensional (f : U × I → S)

-Content-Based Recommender Systems (CBRSs) rely on descriptive features to construct representations of both items and users, which are then utilized to generate personalized recommendations [START_REF] Musto | Semantics and content-based recommendations[END_REF].

-Collaborative filtering (CF) methods generate recommendations for users by analyzing their patterns of ratings or usage (such as purchases), without requiring any additional information about either the items or users [START_REF] Koren | Advances in collaborative filtering[END_REF]. The neighborhood approach and latent factor models are the two main techniques that belong to this approach.

-Hybrid approaches [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF] usually combines the two approaches above.

• 3-D utility function: in numerous applications, from recommending restaurants to suggesting vacation packages, it may be insufficient to only account for users and items. The contextual information of users is a critical factor that should not be overlooked when generating recommendations. For example, a restaurant RS that incorporates users' companionship could suggest entirely different restaurants based on whether users are dining with colleagues or family. Similarly, when proposing vacation packages, a user's preferences can drastically differ depending on the season -summer or winter. Therefore, it's imperative to offer recommendations that are relevant and carefully tailored to these diverse contexts.

Context-Aware Recommender Systems (CARSs) are designed to integrate contextual information into the recommendation process to suggest items to users based on specific circumstances [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF]. In such cases, the utility of CARSs is multidimensional

(f : U × I × Context → S).
The classification mentioned above is based on the work of Adomavicius and Tuzhilin (2005). It is important to note that there are alternative classifications, such as knowledge-based approaches [START_REF] Burke | Knowledge-based recommender systems[END_REF], social network-based approaches [START_REF] Papadimitriou | A generalized taxonomy of explanations styles for traditional and social recommender systems[END_REF], and deep-learningbased approaches [START_REF] Liu | Deep learning based recommendation: A survey[END_REF], among others. However, these additional approaches can, to a certain extent, be integrated into the classification outlined above.

Explainable recommendations: an overview

In recent years, explainable recommendations (sometimes also called interpretable recommendations) have garnered considerable attention from both academia and industry [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. From a human-computer interaction (HCI) perspective, explainable recommendations can be classified based on information resources or display styles. These classifications primarily include relevant user [START_REF] Herlocker | Understanding and improving automated collaborative filtering systems[END_REF] or relevant item explanations [START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF], feature-based explanations [START_REF] Vig | Tagsplanations: explaining recommendations using tags[END_REF], Rago et al., 2018, Zhong and Negre, 2022a), social relation explanations [START_REF] Sharma | Do social explanations work? studying and modeling the effects of social explanations in recommender systems[END_REF]Cosley, 2013, Park et al., 2017), and auto-generated explanations by deep learning models [START_REF] Costa | Automatic generation of natural language explanations[END_REF].

From a machine learning perspective, the explanations generated strongly depend on the models utilized in RSs. For instance, recommendations generated by CBRSs typically employ item features for explanations [START_REF] Vig | Tagsplanations: explaining recommendations using tags[END_REF], Rago et al., 2018), while recommendations generated by Collaborative Filtering (CF) generally rely on relevant user [START_REF] Herlocker | Understanding and improving automated collaborative filtering systems[END_REF] or relevant item explanations [START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF]. CARSs often explore the effects of contexts for explanations [START_REF] Sato | Explaining recommendations using contexts[END_REF], Zhang et al., 2020, Zhong and Negre, 2022e).

Similar to AI, explainable recommendation research follows two strategies: (1) developing transparent models that allow for easy tracing of the recommendation generation process, and (2) retaining complex models and adopting post-hoc explanation techniques. This taxonomy is also in line with the one proposed by [START_REF] Friedrich | A taxonomy for generating explanations in recommender systems[END_REF]. Deep learning recommenders [START_REF] Costa | Automatic generation of natural language explanations[END_REF] can be explained by applying post-hoc explanation techniques (Zhong and Negre, 2022c[START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF][START_REF] Peake | Explanation mining: Post hoc interpretability of latent factor models for recommendation systems[END_REF].

In the following sections, we will introduce several typical recommender models and their corresponding explanation methods.

Content-based recommender systems

CBRSs operate under the premise that user preferences remain consistent over time, even as these preferences are constructed during the user's interactions with the system, such as in conversational settings. This is attributed to the fact that CBRSs recommend items that exhibit similarity to those the user has previously shown interest in, utilizing descriptive features of the items. In this section, we begin by examining the techniques employed for generating recommendations, followed by an introduction to feature explanation methods that are closely related to CBRSs.

CBRSs: generating recommendations

Typically, three components can be identified for CBRSs [START_REF] Musto | Semantics and content-based recommendations[END_REF]:

• Content analyzer: this component represents the content of items coming from information sources in a form suitable for the next processing steps. As a running example, a movie can be characterized by its features like actors, directors and genres.

• Profile learner: this module collects data to model user preferences and builds a user profile, which is a model that generalizes the observed data. User preferences are typically collected as ratings on a discrete scale (e.g. [1, 5]) or as binary variables (e.g. {like, dislike}).

• Filtering Component: this component predicts the utility r(u,i) , which is usually quantified as the similarity between u and i.

CBRSs: explaining recommendations

One advantage of CBRSs is that recommendations can be easily explained. Depending on the application scenario, content-based recommendations can be generated and explained by leveraging the features of items. [START_REF] Ferwerda | Explaining content-based recommendations[END_REF] conducted a user study, and the results demonstrated that content-based explanations fostered user trust and satisfaction in the system. Similar conclusions were reported by [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF]. [START_REF] Symeonidis | Moviexplain: a recommender system with explanations[END_REF] employed movie features (e.g., director, category, and actor) to generate and explain recommendations. More specifically, recommendations were explained by showing users the relevance of each feature to their preferences. Similarly [START_REF] Vig | Tagsplanations: explaining recommendations using tags[END_REF] proposed Tagsplanations that explain movie recommendation by leveraging tags of movies. [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] recently proposed explaining recommendations through an argumentative approach, where each feature is considered an argument that may support, neutralize, or oppose recommending items. We extend this idea by incorporating factorization-based methods (Zhong and Negre, 2022a), which will be detailed in Chapter 6. In these works, the process of generating items can be traced, making these methods part of the transparent models we introduce in Chapter 2.

Recommendations can also be explained after the recommendation process through a method known as post-hoc explanations, which are introduced in Section 2.5. [START_REF] Musto | Combining text summarization and aspect-based sentiment analysis of users' reviews to justify recommendations[END_REF] employed text summarization techniques to automatically generate summaries of relevant review excerpts to explain recommendations. [START_REF] Singh | Exs: Explainable search using local model agnostic interpretability[END_REF] applied LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] to identify the most relevant words for document classification, where predictions were generated by neural networks. Similarly, [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] used LIME to determine important features that influenced predictions in a movie recommendation scenario, with recommendations generated by Factorization Machine (FM) [START_REF] Rendle | Factorization machines[END_REF]. Note that FM also falls under the category of latent factor models, a topic we will delve into in Section 3.4.2.1. Although post-hoc explanations offer more flexibility since they are independent of the recommendation process, they may not always accurately represent the original reasoning systems and could potentially be misleading [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF].

Summary of CBRSs

CBRSs offer several advantages, we list some of these advantages as following:

• User-independence: CBRSs leverage only the ratings provided by target users and the features of items, without relying on other users' rating records. As a result, CBRSs are less susceptible to issues of data sparsity.

• Explainability: recommendations can be explained (made more understandable to users) by providing a list of item features that they may prefer, even for those without expertise, as suggested by [START_REF] Vig | Tagsplanations: explaining recommendations using tags[END_REF].

CBRSs, however, have several shortcomings:

• Limited content availability: the effectiveness of CBRSs is directly linked to the quantity and quality of the features that are associated with items. However, gathering sufficient information about items to differentiate them can be challenging, as it often requires domain knowledge and not all necessary information may be readily available.

• Over-specialization: these systems recommend items that have high scores when compared to the user's profile, resulting in recommendations that are similar to those the user has already rated. This shortcoming is commonly referred to as the "serendipity problem" [START_REF] Kotkov | A survey of serendipity in recommender systems[END_REF] which highlights the limited degree of novelty in recommendations generated by content-based systems. For instance, if a user has only rated horror movies, the system will recommend only similar movies.

• User cold-start: CBRSs require a sufficient amount of ratings in order to accurately model a user's profile. If a user has provided only a limited number of ratings, it becomes a challenging task to model their preferences.

The models we propose in Chapters 6 and 7 both leverage the content (termed as feature) of items for the natural explainability of CBRSs. However, we combine this approach with latent factor models to promote the performance of prediction.

Collaborative filtering (CF)

There are primarily two categories of collaborative filtering approaches: the neighborhood approaches and latent factor models [START_REF] Koren | Advances in collaborative filtering[END_REF]. In this section, we will introduce both families of CF approaches along with their respective explanation techniques.

Neighborhood approaches

Neighborhood approaches, also known as memory-based methods, operate under the assumption that similar users rate items similarly, and similar items appeal to the same users. These approaches are referred to as User-Based Collaborative Filtering and Item-Based Collaborative Filtering, respectively (Koren et al., 2021, Deshpande and[START_REF] Deshpande | Item-based top-n recommendation algorithms[END_REF].

Neighborhood approaches: generating recommendations

User-Based Collaborative Filtering This approach predicts r(u,i) by leveraging the ratings given to i by u's similar users. Formally, it is written as:

r(u,i) = v∈N i (u) sim (u,v) r vi v∈N i (u) |sim (u,v) | (3.10)
where sim (u,v) is the similarity between user u and v. Usually, sim (u,v) can be computed by Pearson Correlation or Cosine Similarity.

Item-Based Collaborative Filtering

This approach exploits the ratings given to similar items by the target user. The idea is formalized as follows:

r(u,i) = j∈Nu(i) sim (i,j) r ui j∈Nu(i) |sim (i,j) | (3.11)
where sim (i,j) is the similarity between item i and j. Usually, sim (i,j) can be computed by Pearson Correlation or Cosine Similarity.

Neighborhood approaches: explaining recommendations

Explaining recommendations based on similar users or similar items can be relatively straightforward. For instance, "This item is similar to the items you interacted with before" [START_REF] Linden | Amazon. com recommendations: Item-to-item collaborative filtering[END_REF] is an example of a relevant-item style explanation. Additionally, explanations can be presented to the user by highlighting the resemblance between the recommended item and other items they have previously enjoyed. [START_REF] Herlocker | Understanding and improving automated collaborative filtering systems[END_REF] proposed explaining recommendations by aggregating the histogram of neighbors' ratings, which falls under the category of relevant-user style explanations. Generally, relevant-item explanations are more readily comprehensible to users, as they are acquainted with items they have previously interacted with [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. As a result, these items can serve as plausible explanations for users. Conversely, relevant-user explanations might be less convincing, since the target user may lack knowledge about other "similar" users, which could potentially undermine the credibility of the explanations. Furthermore, revealing information about other users might also pose privacy issues.

Summary of Neighborhood approaches

Neighborhood approaches are widely used in the early days of RSs [START_REF] Deshpande | Item-based top-n recommendation algorithms[END_REF][START_REF] Linden | Amazon. com recommendations: Item-to-item collaborative filtering[END_REF][START_REF] Herlocker | Understanding and improving automated collaborative filtering systems[END_REF], the merits of these approaches include the following:

• Ease of implementation, as we introduce above, neighborhood approaches assume that similar users rate items similarly, and similar items appeal to the same users. These ideas of predicting ratings are rather easy and intuitive, which leads to the next merit: simple to explain.

• Simplicity to explain recommendations, recommendations are generally explained by indicating the "similar users" or "similar items" [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF][START_REF] Linden | Amazon. com recommendations: Item-to-item collaborative filtering[END_REF].

There are limitations to neighborhood-based approaches:

• Limited expressiveness [START_REF] Herlocker | Understanding and improving automated collaborative filtering systems[END_REF], as the performance of these methods heavily depends on the measurement of similarity between users (or items) and the number of the most similar users (or items) to be considered.

• Sensitivity to data sparsity, as the accuracy of these approaches deteriorates when there are limited available ratings. For instance, when the number of user-item interactions is limited, two users or items may not have any common ratings, which is especially the case when new users or new items are added to the system.

Latent factor models

Latent factor models, also known as model-based approaches [START_REF] Koren | Advances in collaborative filtering[END_REF], aim to discover underlying features that can be utilized to forecast ratings. Latent factor models comprise pLSA [START_REF] Hofmann | Latent semantic models for collaborative filtering[END_REF], Latent Dirichlet Allocation [START_REF] Blei | Latent dirichlet allocation[END_REF], and matrix factorization [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]. Among these models, matrix factorization (MF) has gained popularity due to its attractive accuracy and scalability, particularly after the Netflix Prize competition [START_REF] Bennett | The netflix prize[END_REF]. In the following, we will compare several existing MF-based methods.

Latent factor models: generating recommendations

Vanilla MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF] is the inner product of vectors that represent users and items. Each user is represented by a vector p u ∈ R d , each item is represented by a vector q i ∈ R d , and r(u,i) is computed by the inner product of p u and q i . The core idea of Vanilla MF is depicted in Figure 3.1.

r(u,i) = p u q i T (3.12)
Factorization machine (FM) [START_REF] Rendle | Factorization machines[END_REF] takes into account user-item interactions and other features, such as users' contexts and items' attributes. It captures the second-order interactions of the vectors representing these features (see Equation 3.13), thereby enriching FM's expressiveness. However, interactions involving less relevant features may introduce noise, as all interactions share the same weight [START_REF] Xiao | Attentional factorization machines: Learning the weight of feature interactions via attention networks[END_REF]. where X ∈ R n is the feature vector, n denotes the number of features, w 0 is the global bias, w j is the bias of the j-th feature and v T j v k denotes the bias of interaction between j-th feature and k-th feature, v j ∈ R d is the vector representing j-th feature.

ŷF M (X) = w 0 + n j=1 w j x j + n j=1 n k=j+1 v T j v k x j x k (3.13)
Neural Factorization machine (NFM) (He and Chua, 2017) is essentially derived from FM [START_REF] Rendle | Factorization machines[END_REF] and extends FM with a Bilinear Interaction:

f BI (V x ) = n j=1 n k=j+1 x i v j v k x k , where
denotes the element-wise product. The primary idea is that the Bilinear Interaction encodes the second-order interactions of vectors representing features. Subsequently, a stack of fully connected layers is incorporated to capture the high-order interactions of vectors, as shown in Equation 3.14.

ŷNF M (X) = w 0 + n j=1 w j x j + h T σ L (W L (. . . σ 1 (W 1 f BI (V x ) + b 1 ) . . . ) + b L ) (3.14)
where L is the number of fully connected layers. It is trivial to see that by setting L to 0 and h T to 1, FM is exactly recovered. Attentional Factorization Machines (AFM) [START_REF] Xiao | Attentional factorization machines: Learning the weight of feature interactions via attention networks[END_REF] captures the second-order interactions of vectors representing users, items, and other features, similar to FM. Additionally, it models the attention of each interaction using a multi-layer perceptron (see Equation 3.15).

ŷAF M (X) = w 0 + n j=1 w j x j + p T n j=1 n k=j+1 a jk (v j v k )x j x k (3.15)
where a jk is the importance of feature interaction, is the element-wise product. By setting p T to 1 and a jk to 1, FM is exactly recovered.

Latent factor models: explaining recommendations

Vanilla MF gained popularity following the Netflix Prize competition [START_REF] Bennett | The netflix prize[END_REF] due to its simplicity and efficiency. However, it does not account for other information, such as item features, and using this straightforward operation to model user preferences may be inadequate when user-item interactions are sparse. Furthermore, the latent factors learned by Vanilla MF lack explicit semantics, complicating the explanation of generated recommendations. Explanations for Vanilla MF recommendations typically involve identifying "relevant-user" or "relevant-item" [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF], but these explanations are not personalized and might not be intuitive to users. In particular, "relevant-user" explanations can be difficult to understand, as users often have no knowledge of other users' interactions [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. [START_REF] Abdollahi | Using explainability for constrained matrix factorization[END_REF] introduced Explainable Matrix Factorization (EMF) to generate and explain recommendations. The fundamental assumption is that if an item i is explainable for a user u, then the representations of i and u in the latent space should be close to each other: p u -q i → 0. More specifically, an explainability regularizer is added to the target function, forcing p u and q i to be close. As a result, recommendations can be explained by highlighting relevant-user or relevant-item. For example, a recommendation might be explained as, "This item is recommended because similar users also bought this item." [START_REF] Heckel | Scalable and interpretable product recommendations via overlapping co-clustering[END_REF] proposed factorizing the co-clustering information of users and items. Based on the co-clustering results, relevant-user or relevant-item explanations can be generated. [START_REF] Abdollahi | Using explainability for constrained matrix factorization[END_REF], [START_REF] Heckel | Scalable and interpretable product recommendations via overlapping co-clustering[END_REF] designed models that are algorithmically transparent; however, these methods are neither simulatable nor decomposable.

Concurrently, Vanilla MF can be elucidated through a post-hoc method, signifying that Vanilla MF is regarded as a black-box. [START_REF] Wang | Explainable recommendation via multi-task learning in opinionated text data[END_REF] introduced an association rule mining technique to clarify Vanilla MF. For each user, the recommendation model uses the user's history as input and produces recommendations as output. The combined input and output create a transaction, and transactions from all users are used to derive association rules. These association rules can subsequently be applied to explain the recommendations generated by Vanilla MF if an item suggested by the black-box model can also be recommended using the association rules, this item is explainable by the rules, such as "{X ⇒ Y }: Because you watched X, we recommend Y".

FM captures the second-order interactions of the vectors representing these features (see Equation 3.13). However, interactions involving less relevant features may introduce noise, as all interactions share the same weight [START_REF] Xiao | Attentional factorization machines: Learning the weight of feature interactions via attention networks[END_REF]. Explainability is another concern, as the explicit semantics of some interactions between features are unclear. FM is typically explained in a post-hoc way. For instance, [START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] applied LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] to identify the most important item features, which falls under feature-based explanation.

NFM Although NFM can capture higher-order interactions of vectors, the explicit semantics of such interactions remain unclear. As a result, providing explanations for recommendations is a challenging task.

AFM Like FM and NFM, the explicit semantics of interactions between features remain unclear. Consequently, the learned attention is not beneficial for semantically explaining the predictions. Moreover, it has been argued that attention and explanation are distinct concepts [START_REF] Jain | Attention is not explanation[END_REF], suggesting that the effectiveness of the attention mechanism for generating explanations may have been overestimated.

Summary of latent factor models

Latent Factor Models contain a wide range of models and are a widely used approach in RSs, leveraging dimensionality reduction to identify latent features to explore observed user-item interactions.

Here is a summary of their advantages:

• Predictive Power: latent Factor Models often exhibit strong predictive performance, capa-ble of capturing complex patterns of user-item interactions. They are particularly effective at discovering the latent features that underpin user preferences, which can help with predictions [START_REF] Koren | Advances in collaborative filtering[END_REF].

• Scalability: latent Factor Models are computationally efficient and can be scaled to handle large datasets, making them well-suited for real-world applications with millions of users and items [START_REF] Rendle | Factorization machines[END_REF][START_REF] Rendle | Factorization machines with libfm[END_REF].

• Implicit Feedback Handling: latent Factor Models can handle both explicit and implicit feedback, which increases their versatility in various application scenarios [START_REF] Hu | Collaborative filtering for implicit feedback datasets[END_REF][START_REF] Koren | Advances in collaborative filtering[END_REF].

The following are the disadvantages of latent factor models:

• Explainability of recommendations: explaining recommendations generated by latent factor models is non-trivial. The latent features they identify do not have a clear, humanunderstandable meaning, which can make the recommendations they produce difficult to explain (Zhang et al., 2020, Goodman and[START_REF] Goodman | European union regulations on algorithmic decision-making and a "right to explanation[END_REF]. Often, researchers turn to posthoc explanation techniques to explain recommendations [START_REF] Wang | Explainable recommendation via multi-task learning in opinionated text data[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF], Zhong and Negre, 2022c).

• Cold Start Problem: these models struggle with new users or items that have little to no interaction data, a challenge known as the cold start problem [START_REF] Schein | Methods and metrics for coldstart recommendations[END_REF].

• Over-Specialization: these models may overfit to the observed user-item interactions, leading to a lack of diversity in recommendations. They may recommend too many similar items, failing to explore user preferences broadly [START_REF] Celma | A new approach to evaluating novel recommendations[END_REF].

Hybrid approaches

Hybrid approaches [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF] have been proposed to combine the advantages of CBRSs and CF-based approaches while minimizing the disadvantages of both. This blended approach aims to mitigate the limitations of individual methods and increase the overall effectiveness and accuracy of recommendations.

Hybrid approaches: generating recommendations

In hybrid RSs, recommendations can be made based on a weighted combination or sequencing of different recommendation techniques. For instance, a system could apply collaborative filtering to find users with similar preferences and then use content-based filtering to find items similar to those the user has rated highly before [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF]. As summarized by [START_REF] Jannach | Recommender systems: an introduction[END_REF], there are primarily three types of hybrid approaches:

• Monolithic exploitation of different features: this approach integrates features or knowledge sources from various paradigms into a single, cohesive recommendation component.

• Parallel utilization of multiple systems: this method involves the concurrent application of several existing recommendation techniques, with their outputs combined using a weighting or voting scheme.

• Pipelined invocation of different systems: this strategy consists of a sequence of recommendation techniques executed consecutively. In this pipeline, the recommendations of each subsequent technique are informed by its predecessor, suggesting that one RS preprocesses input for the subsequent system.

Hybrid approaches: explaining recommendations

Providing explanations for hybrid RSs can be challenging due to the mixture of techniques. The explanations typically need to incorporate reasoning from each method used. For example, a system might explain that a recommendation was made because it was liked by similar users (reflecting the collaborative filtering component) and because it matches the user's preferences for certain item features (reflecting the content-based component) [START_REF] Tintarev | A survey of explanations in recommender systems[END_REF]. For instance, [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] combined CF and content-based approaches, enabling the use of similar users and item features to explain recommendations in an argumentative way.

Summary of hybrid approaches

Hybrid approaches, which integrate multiple information sources for generating recommendations, inherently inherit the diverse array of advantages and disadvantages associated with these sources (see Sections 3.3.3,3.4.1.3 and 3.4.2.3).

One of the main advantages of hybrid approaches is their ability to compensate for the weaknesses of individual methods, improving the accuracy and coverage of recommendations. For instance, they can help mitigate the cold start problem that's common in CF, where the system struggles to make accurate recommendations for new users or items due to a lack of historical data. By incorporating content-based components, which don't rely on past user-item interactions, hybrid systems can still make relevant recommendations in these scenarios [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF].

The main disadvantage of hybrid approaches is their complexity. Implementing and maintaining multiple recommendation techniques can be challenging, requiring more computational resources and potentially leading to longer response times. Furthermore, effectively combining results from different methods is non-trivial, as it often requires careful tuning or machine learning methods. Also, generating user-friendly explanations in hybrid systems is more complex due to the need to combine reasoning from multiple techniques [START_REF] Tintarev | A survey of explanations in recommender systems[END_REF].

Context-aware recommender system

CARSs assume that users' preferences are dynamic and change over different contexts. Incorporating such information in RSs helps improve recommendation quality, as more personalized propositions can be generated (Adomavicius et al., 2005).

CARSs: generating recommendations

In this section, we introduce how CARSs generate recommendations: what is context? and how CARSs use context to generate more personalized recommendations. 

What is context?

Context has been investigated in various research disciplines, including computer science (especially in Artificial Intelligence (AI) and ubiquitous computing), cognitive science, and linguistics, as it is a multifaceted concept (Dourish, 2004, Bazire and[START_REF] Bazire | Understanding context before using it[END_REF]. However, there is no common consensus on the definition of context among researchers from various domains, such as psychology, AI, and information retrieval. Context has been studied in RSs from different viewpoints, depending on the application domain [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF]. [START_REF] Abowd | Towards a better understanding of context and context-awareness[END_REF] defined context as any information that can be used to characterize the situation of an entity. For example, in a movie RS, factors such as time (e.g., workday, weekend), companion (e.g., friends, lovers, or alone), and mood (happy, sad, or neutral) can influence a user's choice of movies. In a trip RS, weather (sunny, rainy), season (spring, summer), and distance (near, far) can influence a user's choice of destination. The "time", "companion" and "season" are contextual factors and each contextual factor, it can have several possible values, these values are contextual conditions and the contextual conditions compose contextual situations.

Paradigms for incorporating context

In 2-D RSs, the utility function is bi-dimensional (f : U × I → S), while in CARSs it is multidimensional (f : U × I × Context → S). There are mainly three approaches for incorporating context into RSs: pre-filtering, post-filtering and contextual modeling [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF], which is illustrated in Figure 3.2.

Pre-filtering: in this paradigm, context is used to select a set of relevant data that is then used to learn any canonical two-dimensional RSs (e.g., MF). Adomavicius et al. (2005) proposed a reduction-based approach in which a data filtering query is constructed using the specified context. Baltrunas andRicci (2009, 2014) propose a different approach to contextual pre-filtering through the item splitting technique, which involves splitting each item into multiple fictitious items based on the different contexts in which they can be consumed. [START_REF] Baltrunas | Towards time-dependant recommendation based on implicit feedback[END_REF] propose the concept of micro-profiling (also known as user splitting) in which a user profile is divided into multiple sub-profiles, each representing the user's preferences in a specific context. Instead of using a single user model, the predictions are made using these contextual micro-profiles. For more surveys on the pre-filtering approach please refer to [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF].

Post-filtering: In the post-filtering paradigm, as illustrated in Figure 3.2, context-free approaches are initially used to predict utility (refer to Section 3.4 and 3.3). Subsequently, context is employed to adjust the recommendation list either by filtering out irrelevant recommendations for a given context or re-ranking the recommendation list based on a particular context (Adomavicius and Tuzhilin, 2005[START_REF] Panniello | Experimental comparison of pre-vs. post-filtering approaches in context-aware recommender systems[END_REF][START_REF] Villegas | Characterizing context-aware recommender systems: A systematic literature review[END_REF].

Contextual modeling: the contextual modeling approach integrates context directly into the recommendation function as an explicit predictor of a user's utility for an item. This essentially involves using predictive models (such as decision trees, regressions, probabilistic models, deep learning models, or other techniques) or heuristic calculations that incorporate context in addition to the user and item data. Various contextual modeling methods have been proposed. CAMF-C [START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF], FM [START_REF] Rendle | Factorization machines[END_REF], AFM [START_REF] Xiao | Attentional factorization machines: Learning the weight of feature interactions via attention networks[END_REF] are factorization-based methods. More recently, there have been attempts that apply neural networks to better capture users' preferences under different contextual situations [START_REF] Unger | Towards latent context-aware recommendation systems[END_REF][START_REF] Unger | Context-aware recommendations based on deep learning frameworks[END_REF]. Explaining recommendations generated by these methods is non-trivial, we, therefore, turn to argumentation, which is intuitively understandable and explainable.

Contextual modeling, which has demonstrated its proficiency in enhancing the performance of recommendations in comparison to alternative pre-and post-filtering methods in numerous instances, stands out among the three paradigms [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF][START_REF] Panniello | Comparing context-aware recommender systems in terms of accuracy and diversity[END_REF]. As such, it has gained substantial popularity as a preferred approach for integrating context into RSs. The model we propose in Chapter 6 falls into contextual modeling.

CARSs: explaining recommendations

Users' preferences can vary across contexts, and CARSs can capture these differences [START_REF] Adomavicius | Context-aware recommender systems[END_REF]. Naturally, this concept can be applied when explaining recommendations, leading to context-aware explanations [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF], Zhong and Negre, 2022e, Baltrunas et al., 2011a[START_REF] Sato | Explaining recommendations using contexts[END_REF]. To the best of our knowledge, Baltrunas et al. (2011a) were the first to explore context-aware explanations. Through a user study, they demonstrated that context-aware explanations were preferred over context-free explanations in travel recommendations. However, the user study only involved 20 participants, which may limit the statistical credibility of the conclusion. [START_REF] Misztal | Explaining contextual recommendations: Interaction design study and prototype implementation[END_REF] proposed a prototype to explain recommendations by identifying the most relevant context for each movie type. Following this concept, explanations for recommendations of the same type are always the same, lacking personalization. [START_REF] Sato | Explaining recommendations using contexts[END_REF] modeled users' preferences under various contextual situations using factorization machines [START_REF] Rendle | Factorization machines[END_REF]. Recommendations can be explained through item-context pairs. Their user study results indicated that incorporating contextual information in explanations enhances user-perceived persuasiveness and usefulness.

Context-aware explanations can also be generated using a post-hoc approach. [START_REF] Musto | Exploiting distributional semantics models for natural language context-aware justifications for recommender systems[END_REF] proposed post-hoc context-aware natural language explanations for recommendations produced by a CBRS. Participants were asked to provide basic demographic data to indicate their interests in movies. Explanations were generated by leveraging distributional semantics in reviews posted by other users. For instance, if a participant indicates that they are watching a movie with their partner and a movie is recommended by the content-based recommender, the system can analyze the distributional semantics in other users' reviews about the movie. If the item description "romantic ending" frequently appears in the context of "watching with a partner", then an explanation such as "We recommend this movie for you and your partner because it is a good choice, as it has a romantic ending" can be generated. Their user study suggested that users favored context-aware explanations over context-free ones.

Summary of CARSs

We now summarize the advantages and disadvantages of CARSs. The following are the advantages of CARSs:

• Increased personalization and a better understanding of user preferences: by leveraging the context, CARSs gain a deeper understanding of user preferences, which can vary based on different situations or contexts. Therefore, CARSs can provide more personalized and relevant recommendations [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF].

• Improved User Experience: CARSs can enhance user experience by delivering timely and situation-specific recommendations, contributing to user satisfaction and system trustworthiness (Baltrunas andRicci, 2009, Adomavicius et al., 2021).

However, there are some challenges that remain to be resolved:

• Increased Complexity: incorporating context adds an additional dimension to the recommendation problem, making the system more complex. It may also require more computational resources [START_REF] Baltrunas | Context-dependent items generation in collaborative filtering[END_REF].

• Data Sparsity: with more dimensions to consider, there might not be enough data available for each specific context-user-item combination, which can lead to data sparsity issues and affect the quality of recommendations [START_REF] Adomavicius | Context-aware recommender systems[END_REF].

• Context-aware explanations: various context-aware models have been proposed, however, context-aware explanation is less explored [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. Current research focusing on context-aware explanations primarily revolves around conceptualizing prototypes and conducting user studies. These pioneering efforts underscore the significance of providing context-aware explanations for recommendations; however, few have actually constructed CARSs capable of generating such context-aware explanations. In conclusion, the domain of context-aware explanations in RSs merits deeper investigation.

Evaluating explanations in RSs

Explainable recommendations address the rationale behind item suggestions, promoting transparency, effectiveness, efficiency, persuasiveness, trust, satisfaction, and scrutability [START_REF] Tintarev | Beyond explaining single item recommendations[END_REF]) (Ultimately, these goals also address the second research question: "Why explainability and interpretability are remarkably demanded in RSs?"). As such, the evaluation of these explanations is critical for gauging model appropriateness and aiding in model selection.

Nevertheless, this task poses significant challenges, primarily due to the complexities in securing ground truth and emulating human emotional responses [START_REF] Chen | Measuring" why" in recommender systems: a comprehensive survey on the evaluation of explainable recommendation[END_REF]. Over the past few decades, numerous promising evaluation strategies have been developed to address these challenges. Notably, recommendation explanations may target various audiences, such as users, providers, and model designers. Different evaluation perspectives are needed for these distinct targets. In this thesis, our primary focus is on explanations aimed at non-expert users. Consequently, the evaluation is also specifically tailored for non-expert users' explanations.

The objectives of explanations include enhancing transparency, effectiveness, efficiency, persuasiveness, trust, satisfaction, and scrutability [START_REF] Tintarev | Beyond explaining single item recommendations[END_REF]. These goals are commonly employed as metrics for evaluating the quality of explanations in RSs (Tintarev andMasthoff, 2015, Gedikli et al., 2014). In the following, we examine existing research that assesses explanation quality through these objectives.

• Efficiency: in RSs, an explanation is deemed efficient if it assists users in more rapidly selecting the best-recommended item [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF]. The evaluation of efficiency depends on the methods employed by the RS. For instance, in knowledge-based RSs, explanations can be generated by illustrating the trade-offs between item properties, and the efficiency of these explanations can be gauged by the number of interactions required for users to make a decision. In the case of conversational RSs, efficiency can be measured by the total number of dialogue steps needed before a recommendation is accepted [START_REF] Mccarthy | Experiments in dynamic critiquing[END_REF]. In other situations, efficiency is typically assessed by the amount of time a user takes to make a decision, such as the time required to select an item or provide a rating [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF].

• Effectiveness: an effective explanation in RSs aids users in making better decisions, particularly in evaluating the quality of the recommended items [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF]. Generally, effectiveness can be assessed by measuring the extent to which users' preferences for recommended items change before and after consumption [START_REF] Bilgic | Explaining recommendations: Satisfaction vs. promotion[END_REF]. In the study conducted by Bilgic and Mooney [START_REF] Bilgic | Explaining recommendations: Satisfaction vs. promotion[END_REF], users rated a book twice: first, when presented with an explanation, and second, after having read the book. In this scenario, the smaller the difference between the two ratings, the more effective the explanation is considered to be.

• Persuasiveness: recall that the persuasiveness of explanations in RSs refers to the ability to convince users to try or consume the recommended items. A common evaluation approach approximates persuasiveness by calculating the difference between users' liking of the recommended item before and after consumption, as mentioned by [START_REF] Bilgic | Explaining recommendations: Satisfaction vs. promotion[END_REF]. A positive difference implies high persuasiveness, while a small or negative difference suggests low persuasiveness. A more intuitive method is proposed by [START_REF] Cosley | Is seeing believing? how recommender system interfaces affect users' opinions[END_REF], where users are asked to rate an item twice: first without an explanation and then with an explanation. Persuasiveness is measured by the difference between the two ratings. To the best of our knowledge, no existing work has compared these two approaches, which could be an interesting future research direction. Both approaches require users to rate the same items twice, a design known as a Within-Subject study [START_REF] Keren | Between-or within-subjects design: A methodological dilemma[END_REF]). An alternative strategy, known as a Between-Subject study [START_REF] Keren | Between-or within-subjects design: A methodological dilemma[END_REF], would involve randomly assigning users to two groups, with one group receiving explanations and the other group not. Both groups would be asked to rate the same items. By examining the differences in ratings between the two groups, the persuasiveness of explanations can be quantified. Furthermore, since explaining is a human-centered process, it could be beneficial to assess whether explanations are perceived as efficient, effective [START_REF] Vig | Tagsplanations: explaining recommendations using tags[END_REF], and persuasive [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF] through self-reports from users.

• Trust: defined as users' perceived confidence in RSs [START_REF] Chen | Trust building in recommender agents[END_REF]. Explanations that clearly articulate why a particular item was recommended can make the system appear more transparent and trustworthy [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF]. Likert-scale questionnaires are a common method for assessing trust. These questionnaires provide quantitative data that can be easily analyzed to discern trends or patterns in user trust. For instance, questions like "I trust the recommendations given by this system" could be rated on a scale of 1 to 5, with 5 being "Strongly Agree" and 1 being "Strongly Disagree". However, it is worth noting that while Likert scales provide an easy-to-interpret metric, they may not capture all the nuances of user trust, such as cultural or individual variations [START_REF] Wang | Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs[END_REF].

• Transparency in RSs encompasses two aspects [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF]: (i) objective transparency, which involves explaining the system's actual algorithm; and (ii) user-perceived transparency, which concerns the degree to which users perceive a system as transparent. It may be more appropriate to present user-oriented explanations rather than actual algorithms [START_REF] Vig | Tagsplanations: explaining recommendations using tags[END_REF] for several reasons: algorithms can be too complex for users to comprehend, and they may contain intellectual properties that should be protected. Consequently, transparency is typically assessed via Likert-scale questionnaires, with participants directly asked about their perception of a system's transparency when accompanied by the explanation being evaluated.

• Satisfaction: users' loyalty [START_REF] Mcnee | Interfaces for eliciting new user preferences in recommender systems[END_REF] or the likelihood of using the system to find items of interest [START_REF] Cramer | The effects of transparency on trust in and acceptance of a content-based art recommender[END_REF] can serve as indirect indicators of satisfaction. Greater loyalty and a higher likelihood of users utilizing the system for search tasks imply increased satisfaction. Satisfaction can also be assessed directly by asking users whether they prefer the system with explanations or not. Typically, these evaluations are conducted using Likert-scale questionnaires.

• Scrutability: refers to the ability of users to inform the system when recommendations are deemed inappropriate. It is usually evaluated through user studies, as demonstrated in various research [START_REF] Balog | Transparent, scrutable and explainable user models for personalized recommendation[END_REF][START_REF] Tintarev | Beyond explaining single item recommendations[END_REF][START_REF] Wasinger | Scrutable user models and personalised item recommendation in mobile lifestyle applications[END_REF].

Various predefined proxies have been employed for evaluating explanations in RSs, such as Mean Explainability Precision (MEP) and Mean Explainability Recall (MER) defined by [START_REF] Abdollahi | Using explainability for constrained matrix factorization[END_REF], Model Fidelity introduced by Peake and Wang (2018), and Probability of Necessity (PN) and Probability of Sufficiency (PS) for assessing counterfactual explanations [START_REF] Tan | Counterfactual explainable recommendation[END_REF]. When explanations take the form of text, evaluation metrics like BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] and ROUGE [START_REF] Rouge | A package for automatic evaluation of summaries[END_REF] scores can be used.

In the previous chapter, we introduced three levels of approaches for evaluating explanations in the context of AI: application-grounded evaluation, which involves real-world users; humangrounded evaluation, which necessitates simplified tasks; and functionally-grounded evaluation, which uses predefined quantitative proxies. Table 3.2 summarizes some existing methods for evaluating explanations in RSs and classifies them according to the three levels of evaluation. Due to the limit of table length, we list only the representative for each category. Some works actually adopt more than one metric. For instance, [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF] evaluated and compared different explanation methods in terms of efficiency, effectiveness, persuasiveness, trust, satisfaction, and transparency. Actually, there are fewer studies conducting application-grounded evaluation compared to those employing user studies and proxies-based evaluation. The main reason is that carrying out real-world evaluations can be expensive, and at times, inappropriate explanations may undermine the system owners' benefits (Tintarev andMasthoff, 2022, Chen et al., 2022). As a result, most existing works assess the quality of explanations in RSs through user studies or predefined proxies. Note that Table 3.2 only presents some representative works or those that will be mentioned later in this thesis. For a more comprehensive survey, please refer to [START_REF] Chen | Measuring" why" in recommender systems: a comprehensive survey on the evaluation of explainable recommendation[END_REF] and [START_REF] Tintarev | Beyond explaining single item recommendations[END_REF].

Conclusions

Throughout this chapter, we have delved into the realm of explainable recommendations, a crucial area of research that aims to generate high-quality recommendations while providing understandable explanations for users. We have systematically reviewed the state-of-the-art in explainable recommendations, including different recommender approaches, such as content-based, collaborative filtering, hybrid, and context-aware methods. In addition, we have discussed the evaluation strategies, criteria, and metrics for recommendations and explanations in RSs. This comprehensive review has shed light on the key challenges that the field of explainable recommendations faces:

1 Lack of consensus on the definition and the use of some notions related to explanations; 2 The comprise between the accuracy and transparency of RSs is still worth more effort; 3 New techniques to incorporate user feedback and preferences to create context-aware recommendations and context-aware explanations to justify such recommendations worth further exploration;

4 Given the comprise between accuracy and transparency, retaining complex models does help to achieve higher performances. Is it possible to make use of post-hoc explanation methods to explain any RSs while avoiding the limits of these methods?

5 Evaluating the qualities of explanations is another challenging task.

In the following chapters of this thesis, we propose solutions to address some of the challenges and contribute to the ongoing progress in the field. Chapter 4 tackles the first challenge and addresses the ambiguity of commonly used terms, introduces Interpret/Explain Schema (IES) that helps clarify these terms, and constructs a General Framework for Generating Explanations (GFGE) in the context of AI. Chapter 6 tackles the comprise between accuracy and transparency, where we instantiate GFGE in a model-intrinsic explanation scenario. Concretely, we develop a model that can generate accurate recommendations and devise argumentative explanations to justify such recommendations. Chapter 7 addresses the third challenge and presents an extension of the model introduced in Chapter 6, we combine argumentation frameworks with context-aware methods. Chapter 8 concentrates on the fourth challenge and instantiates GFGE in a post-hoc explanation scenario. Chapter 9 leverages the fifth challenge by comparing the two explanation scenarios and presenting the preliminary results of a user study that compares different explanation methods. BLEU and ROUGE scores [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF][START_REF] Rouge | A package for automatic evaluation of summaries[END_REF] PN and PS [START_REF] Tan | Counterfactual explainable recommendation[END_REF] Model Fidelity (Zhong and Negre, 2022c) MEP and MER [START_REF] Abdollahi | Using explainability for constrained matrix factorization[END_REF] Length [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF] Chapter 4 In this chapter, we focus on developing the General Framework for Generating Explanations (GFGE) within the context of Artificial Intelligence (AI), which is also applicable to Recommender Systems (RSs) because RSs is an important branch of AI. We begin by revisiting certain concepts discussed in Chapter 2 and Chapter 3 to emphasize the significance of using general terms consistently when developing explainable AI techniques. Subsequently, we present an Interpret/Explain Schema (IES) [START_REF] Zhong | Ai: To interpret or to explain?[END_REF] designed to clarify the often-used yet ambiguously-defined notions. Ultimately, this chapter seeks to address the first research question outlined in Chapter 1: "What are the differences between interpretability and explainability in the context of AI, and more specifically in the context of RSs?" We will further clarify "What does explainability and interpretability mean respectively?" and "To whom explainability and interpretability is concerned?"

General framework for generating explanations

The publication related to this chapter is: 

The importance of generality

As introduced in Chapter 2, AI technologies have become increasingly prevalent, profoundly impacting various aspects of human life, including RSs [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. However, concerns about AI's effectiveness and reliability persist, especially in high-stakes domains like healthcare and financial services, which drive commercial interest. Furthermore, the European Union requires decision support systems to provide explanations under the "right to explanation" principle [START_REF] Voigt | The eu general data protection regulation (gdpr). A Practical Guide[END_REF], adding a regulatory dimension to the demand for explainable AI. Additionally, understanding the reasoning behind AI systems aids designers in debugging and improving models, providing a technical incentive for the development of AI systems that deliver accurate results and justifiable explanations. Researchers often claim that their models are either interpretable or explainable, yet precise definitions remain elusive. Some researchers distinguish between the two [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Doshi-Velez | Towards a rigorous science of interpretable machine learning[END_REF][START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF], while others use them interchangeably [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Molnar | Interpretable machine learning[END_REF][START_REF] Du | Techniques for interpretable machine learning[END_REF][START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF]. Despite extensive efforts, the AI research community has not yet reached a consensus on the definitions of interpretability and explainability. [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] categorizes interpretable models into transparent models, which can be easily understood by humans, and those that provide posthoc explanations, which offer explanations after generating results without necessarily elucidating their inner workings. Lipton distinguishes between interpretability and explainability, asserting that interpretability serves as the foundation for explainability. [START_REF] Gilpin | Explaining explanations: An approach to evaluating interpretability of machine learning[END_REF] also argue that interpretability and explainability should be differentiated, as explainable models are inherently interpretable, but not all interpretable models are explainable. However, some researchers use the terms interpretability and explainability interchangeably [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Molnar | Interpretable machine learning[END_REF][START_REF] Du | Techniques for interpretable machine learning[END_REF][START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF], further complicating the issue, as depicted in Figure 2.1. The lack of clear definitions obstructs the efforts to define, design, and evaluate AI systems capable of providing meaningful explanations (Doshi-Velez and Kim, 2017).

The lack of consensus on definitions and criteria for interpretability and explainability has led to a diverse landscape of approaches in the field. Some focus on creating inherently interpretable models, while others work on developing techniques for extracting explanations from existing models. These approaches include local explanation methods, such as LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF], which attempt to provide explanations for individual predictions. Additionally, global explanation methods, like feature importance rankings and rule extraction techniques, seek to provide insights into the overall behavior of models [START_REF] Guidotti | A survey of methods for explaining black box models[END_REF]. The ongoing research and development of these methods underscore the importance of achieving a deeper understanding of interpretability and explainability in AI, as well as addressing the current challenges and limitations in their definitions and applications.

A general definition

The ambiguity surrounding the use of interpretability and explainability may stem from their linguistic origins. According to the Merriam-Webster Dictionary, "interpret" 5 means to explain or present the meaning of something in understandable terms, while "explain" 6 means to make something plain or understandable, or to give the reason for or cause of something. Although the two words have similar meanings, which may have led to their interchangeable usage, subtle differences do exist between them. For instance, interpreting certain articles in the General Data Protection Regulation (GDPR) might involve understanding them as the "right to explanations," while explaining the GDPR could entail providing reasons for the specific regulations in place. It appears that interpreting answers a "what" type question, while explaining tends to address a "why" type question. Consequently, if something is interpretable, it has an assigned meaning that can be presented in understandable terms; if something is explainable, it can be made comprehensible.

In Section 2.3, we reviewed existing literature on the definition of explanation in the context of AI. The concept of explanation has roots in various disciplines, such as philosophy, cognitive and social psychology, and cognitive science. [START_REF] Lewis | Causal explanation[END_REF] posited that explaining an event involves providing information about its causal history. [START_REF] Josephson | Abductive inference: Computation, philosophy, technology[END_REF] defined explanation as assigning causal responsibility, while [START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF] emphasized the social interaction aspect of explanation. [START_REF] Lombrozo | The structure and function of explanations[END_REF] and [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] observed that explanation can function both as a process and a result, serving as an answer to a "why" question or as a process involving abductive inference.

Lombrozo and Miller's assertions align with concepts in knowledge management [START_REF] Despres | Knowledge management (s)[END_REF]Chauvel, 1999, Arduin et al., 2015), where individuals possess unique interpretative frameworks [START_REF] Jones | Mental models: an interdisciplinary synthesis of theory and methods[END_REF] or mental models [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF] for filtering and storing information. [START_REF] Arduin | Information and knowledge system[END_REF] emphasized the importance of interpretation in knowledge management through sensereading (interpreting information) and sense-giving (assigning meaning to created information), as illustrated in Figure 2.2 on Page 32. The combination of these two processes results in an explanation. According to [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], explanations are inherently social and involve conversations. From a philosophical standpoint, interpretation is a subjective action, while explanation involves interaction.

Integrating the linguistic definitions and interpretative framework, we provide the following definition for 'explainability' from a general and philosophical perspective: Definition 4.1 Explainability: the ability to make an event understandable; the ability to give the reason or cause of an event.

Existing literature on explanations presents us with three key dimensions: (1) a focus on either causal explanations (Lewis, 1986, Josephson and[START_REF] Josephson | Abductive inference: Computation, philosophy, technology[END_REF] or non-causal explanations [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF][START_REF] Lombrozo | The structure and function of explanations[END_REF]; (2) from a cognitive science perspective, humans' decision-making process can be categorized into two types: decisions based on explicit reasoning, which can be readily explained, and decisions where explanations are sought post-hoc [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF];

(3) Given that explanations often involve human interactions [START_REF] Lewis | Causal explanation[END_REF][START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], the social aspects of explanations are significant and should be given due attention. We will now discuss how our proposed Definition 4.1 aligns with these three dimensions:

Causal or non-causal? The definition provided above takes cues from the works of [START_REF] Lewis | Causal explanation[END_REF], [START_REF] Josephson | Abductive inference: Computation, philosophy, technology[END_REF], [START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF], [START_REF] Lombrozo | The structure and function of explanations[END_REF][START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. When it comes to explanations, [START_REF] Lewis | Causal explanation[END_REF] and [START_REF] Josephson | Abductive inference: Computation, philosophy, technology[END_REF] underscore the significance of causality, while [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], [START_REF] Malle | How the mind explains behavior: Folk explanations, meaning, and social interaction[END_REF] and [START_REF] Lombrozo | The structure and function of explanations[END_REF] highlight the role of interactions and knowledge transfer and suggest that explanations need not always identify the causes of an event. Our definition of 'explainability' encompasses both causal and non-causal explanations. The phrase "give the reason or cause of an event" is reflective of a causal explanation, while making an event "understandable" pertains to a non-causal explanation.

Intrinsic or post-hoc? Our definition incorporates the cognitive processes underlying human decision-making. At times, humans use thoughtful, systematic reasoning to make decisions and are able to clearly express the reasoning behind their choices -aligning with the "give the reason or cause of an event" aspect of our definition. However, in other circumstances, humans may make decisions first and then seek justifications to support or legitimize their actions [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF]. This corresponds to the "make an event understandable" part of our definition. These cognitive processes potentially explain why two strategies have evolved: the use of modelintrinsic explanations and the generation of post-hoc explanations. For a more comprehensive comparison, please refer to Sections 2.5 and 2.7.

Social aspects: our definition also underscores the social dimensions of explanations. The phrase "make an event understandable" and the articulation of reasoning behind choices both involve interactions between the explainer and the explainee, indicating a transfer of knowledge. This aligns with the perspectives of [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] and [START_REF] Lombrozo | The structure and function of explanations[END_REF]. As such, our concept of explainability naturally paves the way for our definition of interpretability.

As for interpretability, we give the following definition: Definition 4.2 Interpretability: the degree to which an observer can understand the meaning of an event.

The definition of interpretability is based on our concept of explainability and is inspired by knowledge management literature [START_REF] Despres | Knowledge management (s)[END_REF]Chauvel, 1999, Arduin et al., 2015). Humans utilize a unique interpretative framework [START_REF] Jones | Mental models: an interdisciplinary synthesis of theory and methods[END_REF] or mental model [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF] to filter, process, and store information. This framework influences how individuals interact with the world, create knowledge, and lead to varied interpretations of the same data. [START_REF] Arduin | Information and knowledge system[END_REF] emphasize the significance of interpretation in knowledge management, referring to the process of making sense of information as sense-reading [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF]. When information is shared, each recipient interprets it based on their own mental model. The sender, through their interpretative framework, assigns meaning to the information in a process known as sense-giving [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF]. The combination of sense-reading and sense-giving results in individualized knowledge creation and forms an explanation, as illustrated in Figure 2.2 on Page 32. In summary, interpretation is a subjective action, while explanation involves interactions.

Interpret/Explain Schema in AI system

Considering that the goal of AI technologies is to emulate human intelligence within machines, thereby enabling them to mimic human thought processes and actions, it is logical to define interpretability and explainability within the context of AI, drawing from the concepts of interpretative frameworks and mental models.

AI: to interpret or to explain?

An AI system typically comprises three elements, aside from human involvement: input data, the model, and the produced results, as illustrated in Figure 4.1. The system's outcomes are made visible to users through an interactive interface. In this structure, system developers play a crucial role in interpreting the data, model, and results through their interpretative frameworks -a process referred to as sense-reading [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF]. The interpreted information is then conveyed to the end-users through the same lenses, in what is described as sense-giving [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF]. Users, in turn, perceive and make sense of this information, an act of sense-reading through their interpretative frameworks. This chain of information flow -from developers to users through the interface -forms the explanation within the AI system, as depicted in Figure 4.1. To summarize, within an AI system, developers interpret the information drawn from data, model, and results, and convey explanations to the users, justifying the generation of particular results (Doshi-Velez and Kim, 2017[START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. These interactions within an AI system and its stakeholders highlight the crucial role of explainability and interpretability in AI, which are key for trust, transparency, and user satisfaction [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF][START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]. It also underscores the need for a robust and user-friendly interface that effectively bridges the gap between the AI system's internal operations and its external users [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF].

Definitions in the context of AI

Consequently, within the context of AI, we posit that an explanation is fundamentally useroriented7 , addressing the question of why specific results have materialized. The process of interpretation encompasses the following facets: (1) interpretation of input data; (2) interpretation of the model; (3) post-hoc interpretation following model training; and (4) interpretation of the explanation itself. The interpretation of results is inextricably linked with the interpretation of data and models. By synthesizing the general definitions of interpretability and explainability in Definition 4.1 and Definition 4.2 respectively, we propose the subsequent definitions. Definition 4.3 Interpretability of data: the degree to which one (mainly a developer) can understand the information contained in data, which usually consists of data analysis and data visualization.

In an AI system, as depicted in Figure 4.1, input data is considered interpretable, given that developers can extract insights from it using statistical analysis or data visualization techniques.

However, this interpretability (Definition 4.3) may sometimes be constrained by the complexity and volume of the data, which could make extracting meaningful insights challenging. Techniques like dimensionality reduction or clustering can help make large and complex datasets more interpretable (Van der [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF]. Definition 4.4 pertains to the ease with which an AI system's results can be explained. Readers may have noticed that we do not include post-hoc explainability, this is because explaining the results of AI systems can be realized either through the interpretability of the models themselves, as outlined in Definition 4.5, or via post-hoc explanation techniques, as described in Definition 4.6. In the first case, the explanations can be referred to as model-intrinsic explanations while in the second case, the explanations can be referred to as post-hoc explanations. Detailed exploration of model-intrinsic explanations and post-hoc explanations can be found in Sections 2.5 and 2.7. Definition 4.7 Interpretability of explanations: the degree to which one (mainly a user) can understand a given explanation.

Definition 4.7 is concerned with the perception and understanding of explanations generated by an AI system, predominantly from the viewpoint of the users. This implies that Definition 4.7 is also an indicator of the quality of explanations produced by the AI system. The process and importance of evaluating explanations within the broader scope of AI is extensively discussed in Section 2.6. The targeted audience is explicitly stated in each of these definitions: Definitions 4. 3, 4.4, 4.5, 4.6, and 4.7. These definitions serve to maximize clarity by ensuring that the intended audience understands the context and applicability of each definition. It further underscores the various levels of engagement and understanding that different stakeholders -from developers and system architects to end-users -have with AI systems.

Drawing upon the aforementioned definitions, it becomes evident that there is a need to distinguish between the terms "interpret" and "explain". Interpretation is a subjective process, whereas explanation inherently involves interactions. Consequently, an Explainable AI System can be characterized as an AI system capable of elucidating the rationale behind specific results it generates.

In cases where the model deployed within this system possesses interpretability, the system may be classified as an Interpretable AI system. If the model within the system facilitates post-hoc interpretation, then the system can be referred to as a Post-hoc Interpretable AI system. The interrelationships between these concepts are visually depicted in Figure 4.2.

Discussions

In refining the definitions of interpretability and explainability in the realm of AI, the following three pivotal questions can be clarified: (1) who is the target audience for interpretation and explanation? (2) what motivates the need for interpretability and explainability? and ( 3) under what circumstances should we favor interpretable or explainable models? Figure 4.2: Explainable AI system, Interpretable AI system, Post-hoc interpretable AI system

• The first question relates to the target audience for interpretation and explanation. System developers, given their role in designing the system, are typically interested in every component of an AI system. They are expected to understand the function and significance of each part. Conversely, plain users are predominantly concerned with understanding why certain results are produced. The interpretability of data, which focuses on unraveling the information embedded in the data, caters mainly to developers. Similarly, the interpretability of models, addressing the internal workings of models, is primarily targeted at developers. When the internal mechanics of models are unclear, post-hoc interpretability becomes crucial, also aimed at developers. The interpretability of explanations is mainly directed at users, focusing on the quality of explanations. Therefore, the user's ability to interpret an explanation could reflect the quality of the explanation itself. Explainability of model results, chiefly targeting users, addresses the rationale behind specific results (Doshi-Velez and Kim, 2017[START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF].

• The second question examines the reasons behind the necessity for interpretability and explainability. As discussed in Section 2.4, humans require interpretability and explainability for a variety of reasons, including trust, fairness, and accountability among others [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF], which can be grouped into commercial drives, regulatory drives, and technical drives [START_REF] Zhong | Ai: To interpret or to explain?[END_REF].

• The third question investigates the appropriate circumstances for employing interpretable or explainable models. In scenarios where the consequences of a decision made by the system are inconsequential, less transparent models such as deep learning techniques could be utilized to assure result quality, with explanations provided to users using post-hoc explanation techniques. This might apply to situations like movie recommendations. However, when the cost of a wrong decision is significant, interpretable models are often favored over black-box models to allow for more control and understanding of the decision-making process [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF][START_REF] Carvalho | Machine learning interpretability: A survey on methods and metrics[END_REF].

The aforementioned considerations, which are essential to the wider field of AI, hold equally sig-nificant relevance to the field of RSs. In the context of RSs, the explainability of recommendations aligns closely with Definition 4.4. This explainability can be realized either through the inherent interpretability of the RSs-anchored in Definition 4.5-or through the application of post-hoc explanation techniques, as delineated in Definition 4.6. Moreover, the interpretability of explanations in RSs pertains to the users' ability to comprehend the generated recommendations effectively. Therefore, it serves as an insightful metric for the quality of explanations provided by these systems. For a more granular dissection of explanation evaluation within the field of RSs, the reader is directed to Section 3.7, where we delve deeper into the methods for evaluating explanations in RSs.

General framework for generating explanations

Building upon the IES shown in Figure 4.1 and the definitions provided in Section 4.3.2, we introduce a GFGE, as illustrated in Algorithm 2, which follows the IES detailed in Figure 4.1: developers interpret information from the data, model, and outcomes, subsequently translating these insights into explanations for users, which serve to explain the production of specific results (Doshi-Velez and Kim, 2017[START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. What sets this framework apart is its inherent versatility. It does not prescribe specific methodologies for data preprocessing, the model under scrutiny, or the explanation approach. Instead, these components serve as parameters within Algorithm 2. They can be instantiated in various ways, affording the flexibility to adapt the explanation scenario for the outputs produced by any given model.

The input of Algorithm 2 includes M, P, InterpretData, InterpretM odel, InterpretOutput, P ostHocInterpretation and Aggregation. InterpretData, InterpretM odel and InterpretOutput correspond to the sense-reading process indicated in Figure 2.2 on Page 32 and Aggregation relates to the sense-giving process.

• M: the model in deployment

• D: the input data whose outputs given by M is to be explained.

• P: a function that does data pre-treatment, since the data at hand may not always satisfy the requirement of M.

• InterpretData: a function that interprets information from D, which corresponds to the interpretability of data in Definition 4.3.

• InterpretM odel: a function that interprets information from M, which corresponds to the interpretability of models in Definition 4.5.

• InterpretOutput: a function that interprets information from output of M, which actually concerns how easily the output of M can be explained: explainability of model results in Definition 4.4.

• P ostHocInterpretation: a function that interprets information from data and outputs without elucidating the internal mechanisms of M. Typically, when M is not interpretable, it indicates that InterpretM odel(M) simply returns a prediction. For instance, the semantics of the latent factors of Vanilla Matrix Factorization (see Equation 3.12) remain unclear. Under such a situation, post-hoc interpretation is needed. For example, a surrogate Algorithm 2: General Framework for Generating Explanations (GFGE) Input : M: a model in deployment D: a single data point or a set of data points whose outputs given by M is to be explained P: a function that does data pre-treatment InterpretData: a function that interprets information from data InterpretM odel: a function that interprets information from model InterpretOutput: a function that interprets information from the output of M P ostHocInterpretation: a function that interprets information from M without elucidating its inner mechanism.

Aggregation: a function that aggregates information from InterpretData, InterpretOutput, InterpretM odel and P ostHocInterpretation to generate an explanation for the output. [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]). Therefore, P ostHocInterpretation corresponds to post-hoc interpretability in Definition 4.6.

• Aggregation: a function that aggregates information from InterpretData, InterpretOutput, InterpretM odel and P ostHocInterpretation to generate an explanation for the output.

In Section 2.6 of Chapter 2, we have surveyed existing explanation methods from the following aspects: model-intrinsic vs post-hoc; local vs global; model-specific vs model-agnostic. In the following, we will show how these discussions can be integrated into our framework depicted by Algorithm 2.

Model-intrinsic vs Post-hoc: the models used in an AI system can range from transparent to opaque. Transparent models, such as linear models, are easily interpretable because developers can readily understand the explicit meanings of the model parameters, such as the weights. This allows for a straightforward explanation of why a particular result or a group of results has been generated, and even how the overall system functions [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF][START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF]. In this case, results can be explained by interpreting the model itself, see Figure 4.1 and line 4 in Algorithm 2. In this case, no post-hoc explanation method is needed. On the contrary, when dealing with opaque models like deep neural networks, the explicit meanings of parameters are not immediately apparent, making interpretation more challenging. In these cases, developers often turn to post-hoc explanation techniques to explain the system's outputs. These techniques essentially in-volve establishing connections between input data features and the resulting outputs [START_REF] Wang | Explainable recommendation via multi-task learning in opinionated text data[END_REF], constructing a simpler, interpretable model to mimic the behavior of the original, more complex model (Lundberg andLee, 2017, Ribeiro et al., 2016), utilizing data visualization methods to reveal patterns and correlations (Van der [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF], or employing counterfactual reasoning to explain the decision-making process [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF]. In essence, these post-hoc techniques are inherently linked to the interpretation of data, providing an added layer of transparency to model operations, see Figure 4.1 and line 6 in Algorithm 2.

Local vs Global:

As discussed in Section 2.5.2, local and global explanations play distinct roles in interpreting the decision-making process of AI models, which is presented from line 3 in Algorithm 2. Local explanation techniques such as counterfactual explanations [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF], LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF], and SHAP (Lundberg and Lee, 2017) concentrate on individual instances, thus illuminating the rationale behind particular AI determinations. In contrast, global explanation methods like DeepLIFT [START_REF] Shrikumar | Learning important features through propagating activation differences[END_REF] and permutation feature importance [START_REF] Breiman | Random forests[END_REF] proffer a comprehensive understanding of the model's behaviors across all instances. In the context of Algorithm 2, if the input data comprises a single data point8 , the ensuing explanation is inherently local. However, if the data encompasses a group of data points, the generated explanations should encompass the general behavior across all these points. For transparent models, explanations can be furnished for both individual data points and the entire data set. However, opaque models, such as neural networks, pose challenges when it comes to explaining their behavior across all data points. Consequently, these models are typically explained by locally inspecting individual data points through techniques such as LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF], and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF].

Model-specific vs Model-agnostic: model-specific techniques are tailored for a specific type or family of models. In this sense, model-intrinsic explanations are model-specific because they originated from interpretable models. As a matter of fact, this aspect mainly exists in post-hoc explanation scenarios (see line 6 in Algorithm 2). Examples of model-specific explanation techniques include TreeSHAP [START_REF] Lundberg | Consistent individualized feature attribution for tree ensembles[END_REF], visual explanation for convolutional network [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF], etc. In contrast, model-agnostic explanations are independent of the underlying model and can be applied to various types of models. These explanations focus on understanding the input-output relationships of the model without necessarily relying on the model's internal structure. Examples of model-agnostic explanation techniques include LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. In the context of Algorithm 2, if the model is interpretable then explanations are model-specific. On the contrary, models applied to explain results returned by black-box models could be model-specific or model-agnostic. For more discussions, please refer to Section 2.5.2.

The framework depicted in Algorithm 2 is generic in the sense that it does not require a specific method for data preprocessing, the results to be explained, or the explanation method. Instead, they are considered as parameters of Algorithm 2, which can be instantiated in various ways to alter the way of explaining the results returned by a model. Besides, it seamlessly integrates the different facets of existing explanation methods in the context of AI. These facets range from model-intrinsic vs post-hoc explanations, to local vs global perspectives, and from model-specific vs model-agnostic 

Conclusions

In this chapter, we embarked on the task of constructing GFGE within the context of AI [START_REF] Zhong | Ai: To interpret or to explain?[END_REF]. This work was motivated by the first research question presented in Chapter 1, which sought to unravel the differences between interpretability and explainability in AI. Our objective is to provide a clear understanding of the meanings of explainability and interpretability as well as to identify the target audience for these concepts. The importance of generality in this discussion was emphasized in section 4.1, where we highlighted the pervasive influence of AI technologies, their profound impact on various aspects of human life, including RSs, and the consequential demand for explainable AI. Recognizing this demand, we acknowledged the confusion in the AI research community surrounding the use of interpretability and explainability, which this chapter aimed to alleviate.

In response to this challenge, we proposed general definitions for these two terms in Section 4.2 and proceeded to develop the Interpret/Explain Schema (IES) for AI systems in Section 4.3. IES offers a logical structure to define interpretability and explainability, drawing from the concepts of interpretative frameworks [START_REF] Jones | Mental models: an interdisciplinary synthesis of theory and methods[END_REF] and mental models [START_REF] Tsuchiya | Improving knowledge creation ability through organizational learning[END_REF]. In the ensuing discussions, we addressed three pivotal questions regarding the target audience for interpretability and explainability (See Table 4.1), the motivations for needing interpretability and explainability, and the circumstances under which we should favor model-intrinsic explanations or post-hoc explanations. We then propose GFGE in Algorithm 2, this framework seamlessly integrates the two explanation scenarios: through interpretable models (inherently explainable) or through post-hoc explanations. The aforementioned considerations, which are essential to the broader field of AI, hold equally significant relevance to the specialized field of RSs.

In conclusion, this chapter has offered a structured approach to understanding interpretability and explainability in AI, which is also applicable in the domain of RSs (since RSs is a branch of AI), providing clear definitions and discussing their implications. This sets the stage for the further exploration of these concepts in the subsequent chapters, where we aim to instantiate the two explanation scenarios.

The General Framework for Generating Explanations (GFGE) we present in section 4.3.4 seamlessly integrates the two explanation scenarios: through interpretable models (model-intrinsic explanations) or through post-hoc explanations. In this part, we will instantiate GFGE under two explanation scenarios. We detail the first explanation scenario, emphasizing the design of interpretable models whose predictions can be explained inherently. To this end, we introduce the Attribute9 -Aware Argumentative Recommender (A 3 R) (Zhong and Negre, 2022a). However, recognizing that certain arguments deemed "good" in a particular context might become less persuasive in a different context, we extend the idea of A 3 R and propose Context-Aware Feature Attribution Through Argumentation (CA-FATA) [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF]. CA-FATA leverages users' contexts, resulting in more accurate predictions like CARSs [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF], and ensuring that the explanations are adapted to users' contexts.

We then instantiate GFGE in the post-hoc scenario. The diversity of explanation methods for different RSs increases engineering costs, and the increasing complexity of RSs sometimes makes direct explanations unfeasible. This has led to the popularity of post-hoc explanation methods, such as SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF], that generate explanations via simpler surrogate models. However, these methods present challenges, such as potentially lacking fidelity10 to the original RSs [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF] and requiring an understanding of complex mathematical concepts, making them less user-friendly. To address these issues, we propose Shap-Enhanced Counterfactual Explanation (SECE) that generates counterfactual explanations using SHAP, drawing on relevant research in psychology, philosophy, and cognitive science.

This part is organized as follows: Chapter 5 provides the foundational background for the A 3 R, CA-FATA, and SECE. The development of the A 3 R model will be explored in Chapter 6, and the details of the CA-FATA model will be presented in Chapter 7. The instantiation of post-hoc explanation scenario will be introduced in Chapter 8. Chapter 9 compares the models proposed in Chapters 6, 7, 8, and presents the results of a primary user study where we evaluate different explanations methods in RSs. Having identified the differences between interpretability and explainability, we arrive at the core research question of this thesis "How to explain recommendations?" defined in Chapter 1. More specifically, we first answer this question by addressing "How to build transparent models that can explain recommendations while ensuring the accuracy of recommendations?" We propose Attribute Aware Argumentative Recommender (A 3 R) (Zhong and Negre, 2022a) in Chapter 6 and Context-Aware Feature Attribution Through Argumentation (CA-FATA) [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF] in Chapter 7. A 3 R and CA-FATA are two instantiations of the General Framework for Generating Explanation (GFGE) highlighted by Algorithm 2 in Section 4.3.4, focusing on model-intrinsic explanations. We will then answer the question from another perspective: "How to explain existing complex RSs using post-hoc explanation techniques while mitigating the limitations of such techniques?" To this end, we propose generating counterfactual explanations guided by SHAP: SHAP-Enhanced Counterfactual Explanations (SECE) (Zhong and Negre, 2022c). SECE is also an instantiation of the general framework for generating explanation depicted in Algorithm 2 in Section 4.3.4, focusing on post-hoc explanations.

This chapter lays out the technical background for developing A 3 R in Chapter 6, CA-FATA in Chapter 7 and SECE in Chapter 8. Central to the three approaches is the concept of explainable recommendations framed as a feature attribution problem, which entails identifying the contribution of individual features or variables to a model's overall output. A 3 R leverages on the power of argumentation by viewing each feature as an argument that can either support, attack or remain neutral to a prediction. More precisely, A 3 R defines feature attribution as an argumentation process in which each computation has explicit semantics, making it inherently interpretable. However, acknowledging that the persuasiveness of certain arguments labeled as "good' may decrease in a different context, we propose an extension of A 3 R: CA-FATA. SECE generates counterfactual explanations guided by SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF], it identifies the minimal changes to features such that the output of the model in deployment is different. In this sense, SECE also applies the notion of feature attribution, while the important features returned by SHAP are validated by counterfactual reasoning.

Introduction

The models we present in Chapters 6, 7 and 8 identify the contribution of individual features or variables to a model's output, transforming explainable recommendations into feature attribution problems. The process of feature attribution, a long-standing practice in machine learning, demystifies model behaviors by pinpointing influential features for an outcome and potential areas for model enhancement [START_REF] Afchar | Making neural networks interpretable with attribution: application to implicit signals prediction[END_REF], Zhong and Negre, 2022a, Rago et al., 2018[START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF][START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF][START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF], Zhong and Negre, 2022c). The lineage of feature attribution methods traces back to General Additive Models (GAMs) [START_REF] Hastie | Generalized additive models[END_REF]. Despite GAMs' inherent interpretability, they are often criticized for their limited expressivity [START_REF] Molnar | Interpretable machine learning[END_REF]. To understand complex Artificial Intelligence (AI) systems, some recent works employ gradient-based methods [START_REF] Li | Deep-lift: deep label-specific feature learning for image annotation[END_REF][START_REF] Selvaraju | Gradcam: Visual explanations from deep networks via gradient-based localization[END_REF][START_REF] Ancona | Gradient-based attribution methods[END_REF]. These approaches quantify a feature's significance in a function by calculating the derivative of the function with respect to that feature. However, such methods may fail on tasks necessitating a moderately local understanding [START_REF] Bilodeau | Impossibility theorems for feature attribution[END_REF]. Furthermore, the interpretation of such gradients can prove daunting for non-experts. Surrogate models like LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] emerged to counter gradient-based methods' limitations. Despite their prominence, they too present drawbacks. LIME inherently grapples with stability issues [START_REF] Visani | Statistical stability indices for lime: Obtaining reliable explanations for machine learning models[END_REF]. As for SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF], the attribution of feature importance via formally definable properties -such as local accuracy, missingness, and consistency -may misalign with users' explanation expectations [START_REF] Kumar | Problems with shapley-value-based explanations as feature importance measures[END_REF]. More existing works on feature attribution will be reviewed in Section 5.2.

In light of the challenges associated with existing feature attribution methods, it is reasonable to explore new avenues for improving the explainability of recommendations. Since argumentation inherently offers interpretability, one such approach is to leverage argumentation techniques to attribute feature importance, which addresses RQ3.1: "How to build transparent models that can explain recommendations while ensuring the accuracy of recommendations?". This part introduces two such argumentation-based models: A 3 R, which operates without context, and CA-FATA, which builds upon A 3 R by incorporating user contexts. Both A 3 R and CA-FATA attribute importance to item features by treating them as arguments that either support, attack, or neutralize a prediction. This process takes place under Argumentation Frameworks (AFs), offering explicit semantics to each computation and thus ensuring the interpretability of the model. Experiments carried out on four datasets from two distinct domains-movies and books-demonstrate that A 3 R offers competitive rating prediction performance compared to existing methods and significantly improves prediction accuracy over current state-of-the-art argumentative recommendation methods. Additionally, CA-FATA permits the integration of user contexts, leading to more accurate predictions. Experiments on two real-world datasets show that CA-FATA outperforms existing argumentation-based methods, matching the performance of existing context-free and context-aware methods. Furthermore, CA-FATA ensures the explainability of its recommen-dations, marking it as a promising framework for practical applications.

It would also be reasonable to build on existing feature attribution methods and avoid the limits they represent. Among the existing feature attribution methods, we are interested in surrogate models. To avoid their limits, we apply counterfactual reasoning to validate the important features returned by the surrogate models, which addresses RQ3.2: "How to explain existing complex RSs using post-hoc explanation techniques while mitigating the limitations of such techniques?" More concretely, we propose generating counterfactual explanations guided by SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. The main idea is to apply SHAP first to identify features that are potentially important. These important features serve as intelligent starting for searching counterfactual explanations.

The remainder of this chapter is structured as follows: Section 5.2 introduces feature attribution methods; Section 5.3 presents the essential concepts pertaining to argumentation, the two desired properties of argument strength function (weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF])) that will be further explored in Chapters 6 and 7. Section 5.4 discusses more details on the two most prominent surrogate models: LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. Finally, Section 5.5 introduces how these concepts relate to our work.

Feature attribution

There are numerous methods available to identify the most important features in the field of machine learning. Chronologically, feature attribution can be traced back to GAMs [START_REF] Hastie | Generalized additive models[END_REF]. Recently, gradient-based methods [START_REF] Li | Deep-lift: deep label-specific feature learning for image annotation[END_REF][START_REF] Selvaraju | Gradcam: Visual explanations from deep networks via gradient-based localization[END_REF][START_REF] Smilkov | Smoothgrad: removing noise by adding noise[END_REF] have gained popularity due to the widespread use of deep neural networks. Developing surrogate models (Lundberg andLee, 2017, Ribeiro et al., 2016) to approximate black-box models by humaninterpretable models is another approach that has been widely adopted.

GAMs extend linear regression models by incorporating non-linear relationships between dependent and independent variables and are typically in the following form:

g(y) = f 1 (x 1 ) + f 2 (x 2 ) + f 2 (x 2 ) + • • • + f i (x i ) + • • • + f n (x n ) (5.1)
where x 1 , x 2 , . . . , x i , . . . , x n are the features applied to make predictions, x i is the i th feature and i ∈ [1, n], n is the number of features utilized to make predictions; y is the target value to be predicted, g is called the link function and f i is the shape function [START_REF] Lou | Intelligible models for classification and regression[END_REF]. GAMs have a built-in interpretability feature that allows tracing the contribution of each feature, thereby facilitating the identification of the most important features. In this sense, GAMs can, to some extent, generate model-intrinsic explanations. Nevertheless, the expressivity of GAMs is limited compared with more complex models such as ensemble models [START_REF] Molnar | Interpretable machine learning[END_REF].

Gradient-based methods have become a popular means of identifying important features in predictive functions f (x 1 , x 2 . . . x i . . . x n ) by computing the derivative of f with respect to the feature x i : ∂f ∂x i [START_REF] Li | Deep-lift: deep label-specific feature learning for image annotation[END_REF][START_REF] Selvaraju | Gradcam: Visual explanations from deep networks via gradient-based localization[END_REF][START_REF] Ancona | Gradient-based attribution methods[END_REF]. This is based on the intuition that the sensitivity of the model output to changes in the input, as quantified by ∂f ∂x i , reveals the importance of the feature. However, as noted by [START_REF] Ancona | Gradient-based attribution methods[END_REF], gradientbased methods can be sensitive to noisy gradients and may struggle with simple tasks that require understanding a moderately local region [START_REF] Bilodeau | Impossibility theorems for feature attribution[END_REF]. Additionally, interpreting these gradients can be challenging for non-experts.

Surrogate models aim to approximate the behavior of black-box models with more interpretable ones, without revealing the internal workings of black-box models. Among the many surrogate models available, LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] have emerged as two prominent methods. LIME and SHAP can both be regarded as additive feature attribution methods and can be unified as shown in Equation 5.1 [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. However, since LIME and SHAP are post-hoc methods, it has been argued that the explanations may not accurately reflect the reasoning of black-box models, and may even be misleading [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. Additionally, studies have demonstrated that LIME and SHAP can be easily deceived into producing explanations that do not reveal underlying biases [START_REF] Slack | Fooling lime and shap: Adversarial attacks on post hoc explanation methods[END_REF].

In view of the limits of existing feature attribution methods, we first define a novel feature attribution framework that leverages argumentation. Specifically, the framework maps the prediction process into argumentation procedures, treating features as arguments and incorporating a strength function that reflects how each argument (feature) influences the prediction. Another approach we propose is to avoid the limits of existing post-hoc explanation methods through counterfactual reasoning.

Argumentation

In this section, we will introduce the basic notions related to argumentation, the weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] that will be applied in Chapters 6 and 7.

Argumentation frameworks (AFs)

To standardize the terminology used in the rest of this part, we present the key notions in Table 5.1. Among the existing AFs, three types can be identified: Abstract Argumentation Framework (AAF) [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], Bipolar Argumentation Framework (BAF) [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF], Tripolar Argumentation Framework (TAF) [START_REF] Gabbay | Logical foundations for bipolar and tripolar argumentation networks: preliminary results[END_REF]). An AAF is composed of a set of pairs < A, R ->, where R -denotes a set of attack relations between arguments such that ∀a 1 , a 2 ∈ A, (a 1 , a 2 ) ∈ R -denotes that argument a 1 attacks argument a 2 . The relation "attacks" indicates a contradiction between two arguments. For example, considering a 1 "This user does not like the feature of this item (one actor of a movie)" and a 2 "This item can be recommended to this user". It is evident that a 1 attacks a 2 . BAFs contain a set of triplets, < A, R -, R + >, R -represents attack as in AAF. Similarly, R + denotes a set of support relations between arguments such that ∀a 1 , a 2 ∈ A, (a 1 , a 2 ) ∈ R + denotes that argument a 1 supports argument a 2 . TAFs contain a set of quadruples: < A, R -, R + , R 0 >, where R -represents the attack relations, R + denotes the support relations and R 0 means neutralizing relations. In this work, we have chosen to adopt TAFs that comprise three types of relations between arguments: attack, support, and neutralizing. This is because features of items may support, attack, or neutralize the recommendation of items, indicating users' preferences towards features. As we will discuss in Chapters 6 and 7, the strength of the arguments in the TAFs presented in this chapter is based on the users' ratings towards features. Consequently, the TAFs in this chapter can be viewed as instances of Weighted Argumentation Frameworks as defined by [START_REF] Bistarelli | A labelling semantics and strong admissibility for weighted argumentation frameworks[END_REF] where the weight denotes the strength of arguments. Argumentation-based methods have gained attention for building decision-support Argument a attacks argument b, the same for "+" and "0" A A set of arguments rec i

An argument stating "the item can be recommended to the target user" at i

The features of item

i R + (a) = {b|(b, a) ∈ R + } The arguments (features) that support a R -(a) = {b|(b, a) ∈ R + } The arguments (features) that attack a R 0 (a) = {b|(b, a) ∈ R + } The arguments (features) that neutralize a < A, R -, R + , R 0 > A tripolar argumentation framework < A, R -, R + > A bipolar argumentation framework < A, R -> An abstract argumentation framework σ(a)
The strength of argument a λ

A black-box model to be explained l An interpretable linear model L A set of simpler linear models g x = {x 1 , x 2 , x 3 . . . x p } An instance to be explained p

The number of features used in λ δ x (x )

Proximity between x and instance x Ω(l)

The complexity of l X A set of instance x's neighbors φ j Margin contribution of feature x j tools due to their natural explainability. In the field of RSs, such methods have received increasing attention. For example, [START_REF] Briguez | Towards an argument-based music recommender system[END_REF][START_REF] Briguez | Argument-based mixed recommenders and their application to movie suggestion[END_REF] proposed a music RS based on Defeasible Logic Programming (DeLP) rules [START_REF] García | Defeasible logic programming: An argumentative approach[END_REF], which can handle incomplete and contradictory information in RS. [START_REF] Toniolo | Dialogue games for explaining medication choices[END_REF] proposed a decision-making system that provides medical treatments to patients with multiple chronic health problems. To justify the recommended treatments during argumentation dialogues, they employed Satisfiability Modulo Theories [START_REF] Barrett | Satisfiability modulo theories[END_REF].

In recent years, the prominence of argumentation-based methods in eXplainable Artificial Intelligence (XAI) has grown significantly [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF][START_REF] Čyras | Argumentative xai: a survey[END_REF][START_REF] Zeng | Context-based and explainable decision making with argumentation[END_REF]. This is primarily attributable to the clarity of relationships presented by AFs, such as support and attack. AFs deliver explicit semantics to computations, allowing for a visual depiction of decision-making processes and an explanation of optimal decisions via well-defined properties [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF]. Weighted arguments represent the strength and dialectical relationships between arguments, encapsulating elements like support and attack. The strength function of arguments can be carefully constructed to satisfy generalized notions of weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. These notions characterize how arguments influence the decision-making process (we will further discuss these in Section 5.3.2). These methods offer graphical representations of the decision-making process, aiding in explaining decisions. The A 3 R (Zhong and Negre, 2022a) we propose is closely related to a recently proposed argumentation recommender: the Aspect-Item framework (A-I) introduced by [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. Both A-I and A 3 R use argumentation to predict users' ratings towards items, treating items and features as arguments that may attack or support each other to explain recommendations in an argumentative manner. A 3 R can largely improve the performance of recommendations in terms of prediction accuracy. Context-Aware Recommender Systems (CARSs) [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF]) (more details have been presented in Section 3.6), an essential research area in recommender systems (RSs), can model users' preferences in various contexts with increased granularity, thereby generating personalized recommendations that are contextually apt for users. We argue that context is equally crucial in AFs since the effectiveness of certain arguments may fluctuate across different contexts. Therefore, incorporating context when employing argumentation is a critical consideration (Teze et al., 2018, García and[START_REF] García | Defeasible logic programming: An argumentative approach[END_REF]. CA-FATA extends A 3 R by considering users' contexts to generate context-aware recommendations and explanations.

Concretely, to study how arguments influence each other, the strength function of arguments can be carefully designed to satisfy desired properties such as weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. In the next subsection, we will detail the two properties.

Weak balance and weak monotonicity

The concept of weak balance, as defined by [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF], is a generalization of the notion of "strict balance" proposed by [START_REF] Baroni | How many properties do we need for gradual argumentation[END_REF]. Similarly, the idea of weak monotonicity, defined by [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF], is a generalization of the concept of "strict monotonicity" as defined by [START_REF] Baroni | From fine-grained properties to broad principles for gradual argumentation: A principled spectrum[END_REF]. The two properties allow for deriving intuitive explanations in an argumentative way. At their core, weak balance and weak monotonicity utilize counterfactual reasoning to analyze the influence of arguments. Specifically, the concept of weak balance concerns the impact of an argument on its affectees when the argument is the sole factor affecting them, while the idea of weak monotonicity focuses on how the potency of an argument changes when one of its affecters is silenced relative to the neutral point. In the following, we will delve into these concepts, providing comprehensive definitions and detailing their implications.

Weak balance: One potential approach to analyze the effects of one argument on another is to isolate the affecter and examine its impact on the affectee. The intuition behind this approach is that if the affecter increases the strength of the affectee, then it supports the affectee. This idea has been formalized as weak balance by [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF]. According to weak balance, relations under AFs such as attacks (or supports, neutralizes) can be characterized as connections among affecters and affectees in the following way: if one affecter is isolated as the single argument that affects the affectee, then the former reduces (or increases, does not change) the latter's predicted rating with respect to the neutral point. In other words, relations under AFs can be analyzed by examining the connections between affecters and affectees. Formally, weak balance can be defined as follows: Definition 5.1 Given a TAF < A, R -, R + , R 0 >, σ(at) satisfies the property of weak balance if, for any x, y ∈ A :

• if R + (x) = {y}, R -(x) = ∅ and R 0 (x) = ∅ then σ(x) > 0; • if R -(x) = {y}, R + (x) = ∅ and R 0 (x) = ∅ then σ(x) < 0; • if R 0 (x) = {y}, R + (x) = ∅ and R -(x) = ∅ then σ(x) = 0.
Weak monotonicity: To study the effects of one argument on another, another alternative approach is to mute the affecter, setting its strength to 0, and observe how the strength of the affectee changes. This idea is intuitive: if the affecter supports the affectee, then muting the affecter would decrease the strength of the affectee; if the affecter attacks the affectee, then muting the affecter would increase the strength of the affectee; if the affecter neutralizes the affectee, then muting the affecter would not change the strength of the affectee. This intuition has been formalized as weak monotonicity by [START_REF] Baroni | From fine-grained properties to broad principles for gradual argumentation: A principled spectrum[END_REF]. This property is formulated for two TAFs: from < A, R -, R + , R 0 > to < A , R -, R + , R 0 > after modifying certain arguments (e.g. muting certain features). Formally, weak monotonicity is defined as follows:

Definition 5.2 Given two TAFs < A, R -, R + , R 0 > and < A , R -, R + , R 0 >, (x, y) ∈ (R -∪ R + ∪ R 0 ) ∩ (R -∪ R + ∪ R 0 ). σ satisfies weak monotonicity at (x, y) if, as long as σ(x) = 0 in < A , R -, R + , R 0 > and ∀z ∈ [(R -(y) ∪ R + (y) ∪ R 0 )(y) ∩ (R -(y) ∪ R + (y) ∪ R 0 )(y)]\{x} and for σ(z) = s in < A, R -, R + , R 0 > and σ(z) = s in < A , R -, R + , R 0 >, s = s . Then the following holds for σ(y) = v in < A, R -, R + , R 0 > and σ(y) = v in < A , R -, R + , R 0 > • if x ∈ R -(y) ∩ R -(y), then v > v; • if x ∈ R + (y) ∩ R + (y), then v < v; • if x ∈ R 0 (y) ∩ R 0 (y), then v = v.
To summarize, weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] characterize how arguments influence the decision-making process, which will be applied to explain recommendations in Chapters 6 and 7.

LIME and SHAP

As we presented in Section 2.5, to understand the increasingly inscrutable AI models, one popular way is to train a simpler model to approximate the original complex model. LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] are two state-of-art model-agnostic methods that adopt this strategy. In this section, we compare the two methods and show why we have chosen SHAP. LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] belongs to local interpretation methods. It is model-agnostic, which means that LIME can be applied to any model. It explains the result of a single instance x by approximating the original black-box model λ with a linear model l. The problem can be solved by the following optimization problem:

arg min l∈L L(λ, l, δ x ) + Ω(l) (5.2)
where Ω(l) is the number of coefficients in l that is not zero and the loss function:

L(λ, l, δ x ) = x ∈X (λ(x ) -l(x )) 2 δ x (x ) (5.3)
where δ x (x ) is usually cosine similarity or l2 distance [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]. Figure 5.1 is a demo of LIME, showing the general idea of LIME. The blue/pink is the original black-box model λ. The bold red cross is the instance that we are interested in (to be explained). The dashed line is the human-understandable model l to explain the instance x. The main steps include: • (1) Generate new data points, according to the distribution of p features in the original dataset. The features are assumed to: follow a normal distribution; be independent of each other. Then get the predictions of new data points using the black-box model λ.

• (2) Assign weights to each new data point using a Gaussian Kernel [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]. The weights are decided by the distance of each new data point to the instance x to be explained. Like in Figure 5.1, the weights are represented by their size, the larger the size the larger the weight.

• (3) A linear model (e.g. Ridge Regression [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]) l which uses a limited number of features is built for these newly created data points including the red cross. The linear model l is used to approximate the black-box model λ to explain the behavior of complex model λ around instance x, it is locally faithful, however, it is not globally faithful.

SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] basically originated from shapley value [START_REF] Hart | Shapley value[END_REF] in game theory. This method can provide global and local interpretations based on game theory. It considers each feature as a "player", and the "game" itself is the task of prediction. Therefore, the problem becomes calculating the contribution of each "player". SHAP calculates the average of the marginal contributions across all permutations for each feature.

Lundberg and Lee (2017) proved that Equation 5.2 can be solved by properly selecting Ω(l), δ x (x ) and L(λ, l, δ x ) to guarantee desired properties such as local accuracy and consistency. After calculating the contribution of each feature for each instance, the global contribution can be calculated as the average of each feature over all instances, offering a global insight into each feature [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. Besides, the values of λ(x) can be written as Equation 5.4, where φ 0 is the average prediction of the complex model λ and φ 1 , φ 2 , φ 3 , . . . , can be calculated using the SHAP package implemented in Python [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. For more details, we refer to [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF].

λ(x) = φ 0 + φ 1 + φ 2 + • • • + φ p (5.4)
Comparison With the introduction above, we now compare LIME and SHAP. Table 2 summarizes the similarities and differences between the two methods.

The similarities between LIME and SHAP: (1) LIME and SHAP can both generate post-hoc explanations for a single instance to be explained without the need to elucidate the internal mechanism of models; (2) LIME and SHAP can be used to interpret any models. Although SHAP has The differences between LIME and SHAP: (1) LIME can only provide local interpretations, meaning that it can only explain a single instance at a time. However, SHAP can not only zoom in on a single instance but also interpret the complex model from a global point of view; (2) Every time LIME is applied, it selects a limited number of features and generates new data points, therefore, the linear models (e.g. Ridge Regression) generated can be different (aka. the features used and the coefficients returned), raising concerns about the stability of LIME (Visani et al., 2020, Zafar and[START_REF] Zafar | Deterministic local interpretable model-agnostic explanations for stable explainability[END_REF]. SHAP is basically grounded on game theory, which allows a fair computation of the contribution of each feature. Besides, desired properties such as local accuracy and consistency (Lundberg and Lee, 2017) are guaranteed. Table 5.2 summarizes the above comparison between LIME and SHAP. To summarize, the advantages of SHAP compared to LIME include (1) the global interpretation it provides, which allows developers to understand the behaviors of models from a global point of view; (2) since desired properties such as consistency are satisfied, there is no concern about stability issues. Therefore, we have chosen SHAP to generate post-hoc explanations.

Relation to our work

In this chapter, we have established the foundational knowledge required to develop A 3 R (discussed in Chapter 6), CA-FATA (covered in Chapter 7), and SECE (elaborated in Chapter 8). The core of A 3 R, CA-FATA, and SECE is the idea of explainable recommendations, conceptualized as a feature attribution problem. This involves discerning the influence of individual features or variables on the total output of a model. Given the difficulties surrounding conventional feature attribution methods, our first solution is to harness the potential of AFs, wherein item features are perceived as arguments. Specifically, A 3 R (Zhong and Negre, 2022a) serves as a context-free instantiation of the general framework for generating explanations that we outline in Section 4.3.4. CA-FATA [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF]) is a context-aware extension of A 3 R that considers users' contexts. Our second solution is to expand on existing feature attribution methods that build surrogate models and validate the important features by counterfactual reasoning (Zhong and Negre, 2022c). This idea will be developed in Chapter 8.

A 3 R: The primary task of RSs is to recommend relevant items to users u. To realize this goal, we make the following intuitive claims: (1) It is reasonable to assert that the features of an item, such as the actors or directors of movies, can influence users' preferences towards items. The influences can be positive, negative, or neutral; (2) In this regard, the features (at i ) can be viewed as arguments, along with another argument stating "the item can be recommended to the target user", rec i ; (3) Such a scenario can be seamlessly integrated into a TAF [START_REF] Gabbay | Logical foundations for bipolar and tripolar argumentation networks: preliminary results[END_REF]. For a user-item interaction (u, i), the TAF tailored to this interaction is a quadruple: < A, R -, R + , R 0 >, where A contains at i and rec i . Intuitively, R + (at, rec i ) denotes that feature at has a positive effect on the recommendation of item i to user u; R -(at, rec i ) denotes that feature at has a negative effect on the recommendation of item i to user u; R 0 (at, rec i ) denotes that feature at does not influence the recommendation of item i to user u. Hence, the objectives are as follows and will be further detailed in Chapter 6

• Predicting the rating assigned by a target user u to a particular item i.

• Determining the contribution of each item feature to a prediction.

• Assessing the polarity of each argument (feature) in the TAF.

• Designing the strength function of arguments that comply with the conditions of weak balance and weak monotonicity as defined in Section 5.3.2.

CA-FATA: A 3 R does not consider users' contexts, which can influence users' preferences [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF]. Considering the following recommendation scenario: for a target user u under a contextual situation cs. Like the context-free case, we make the three claims. As a result, for a user-item interaction (u, i) under cs, the TAF tailored to this interaction is a quadruple: < A, R -, R + , R 0 >, where A contains at i and rec i . The only difference with the context-free case is that the polarity of arguments is adapted to users' contexts. Hence, the objectives are as follows and will be further discussed in Chapter 7:

• Predicting the rating assigned by a target user u to a particular item i in a given contextual situation cs.

• Determining the contribution of each item feature to a prediction under this contextual situation cs.

• Assessing the polarity of each argument (feature) in the TAF.

• Designing the strength function of arguments that comply with the conditions of weak balance and weak monotonicity as defined in Section 5.3.2.

SECE: direct application of SHAP raises substantial concerns and limitations: (1) explanations returned by SHAP may not accurately represent the original RSs, and in some cases, these explanations can even be incorrect [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]; (2) for lay users, comprehending the significance of features as determined by these methods is challenging, given the prerequisite of intricate mathematical knowledge. For instance, the output of SHAP includes a "force_plot" figure (used to visualize how a prediction is achieved by showing the contribution of each feature please refer to Lundberg and Lee (2017)), necessitating a fundamental understanding of game theory on the part of the users. While SHAP serves as a useful tool for model developers, enabling them to visualize model behaviors and potentially aiding in model debugging, such graphical representations may prove difficult for lay users to interpret. Our solution is to validate the important features returned by SHAP through counterfactual reasoning. Under this setting, we apply existing recommender models, which are treated as black boxes. Therefore, the accuracy of prediction is out of our scope. That said, the objectives are as follows and will be further developed in Chapter 8:

• Identify the features that are potentially important to a recommender model This chapter provides an instantiation of the General Framework for Generating Explanation (GFGE) highlighted by Algorithm 2 in Section 4.3.4 on Page 73, focusing on model-intrinsic explanations. We introduce the Attribute-Aware Argumentative Recommender (A 3 R) (Zhong and Negre, 2022a), which reframes explainable recommendations as a feature attribution problem. Essentially, this means discerning the impact of each feature on a given prediction. Specifically, A 3 R conceives feature attribution as an argumentation process, treating features as arguments that can support, attack, or remain neutral to a prediction. Experimental results on four datasets spanning two distinct domains-movies and books-validate A 3 R's ability to generate accurate predictions. The structure of argumentation underscores A 3 R's capacity to explain recommendations in an argumentative manner. Simultaneously, we are aware that users' context can significantly influence their preferences [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF], and that certain arguments deemed compelling in one context might lose their persuasive power in another. This chapter begins with an implementation that does not take into account users' context. A context-aware application will be presented in the next chapter.

The publication related to this chapter is:

• Zhong, J. and Negre, E. (2022). A 3 R: Argumentative explanations for recommendations. In 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pages 1-9. IEEE.

Introduction

Latent factor models have gained popularity since the Netflix challenge (2007) [START_REF] Bennett | The netflix prize[END_REF].

From a chronological point of view, after the Netflix challenge, various factorization-based models have been proposed. Matrix factorization (MF) [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]) models users' preferences by simply adopting the dot product of user embedding and item embedding. More precisely, each user is represented by a vector p u , each user is represented by a vector q i T . u' rating toward i is predicted as r(u,i) = p u q i T , see Equation 3.12 in Section 3.4.2.1. Factorization machine (FM) [START_REF] Rendle | Factorization machines[END_REF]) extends this idea by capturing the second-order interactions of other features such as features of items (e.g. actors of a movie). Neural Factorization Machine (NFM) (He and Chua, 2017) proposes a Bilinear Interaction pooling operation to increase the expressivity of FM. Attentional Factorization Machines (AFM) [START_REF] Xiao | Attentional factorization machines: Learning the weight of feature interactions via attention networks[END_REF] further add an attention mechanism to model the importance of feature interactions. Neural Matrix Factorization (NeuMF) (He et al., 2017) proposes generalizing MF by multi-layer perceptron (MLP). These factorization-based methods have been proven to be effective in rating prediction and ranking prediction. NeuMF (He et al., 2017) has become a strong baseline in many papers [START_REF] Mattson | Mlperf training benchmark[END_REF][START_REF] Zamani | Learning a joint search and recommendation model from user-item interactions[END_REF][START_REF] Jawarneh | A pre-filtering approach for incorporating contextual information into deep learning based recommender systems[END_REF][START_REF] Qin | Sequential recommendation with dual side neighbor-based collaborative relation modeling[END_REF][START_REF] Hu | Leveraging meta-path based context for top-n recommendation with a neural co-attention model[END_REF], Zhao et al., 2020). Nevertheless, as we introduce in Section 3.4.2, the explicit meanings of the learned latent factor remain unclear and the use of MLP makes factorization-based even more opaque, which makes it difficult to know users' preference toward the features of an item. Explaining recommendations generated by such techniques is non-trivial. Finding "relevant-user" is the common strategy applied to explain recommendations generated by factorization-based recommender techniques. Indeed, users usually have little knowledge (e.g. the items other users have interacted with before) about "relevant-user", which could hinder the trustworthiness of explanations [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF]. At the same time, using other users' interactions may lead to privacy concerns.

In another line of research, argumentation frameworks (AFs) have been applied to enhance the explainability of results generated by AI systems [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF](Vassiliades et al., , Čyras et al., 2021)). AF can represent the decision-making process in a graphical way, the predefined properties help to reason how to reach the best decisions [START_REF] Vassiliades | Argumentation and explainable artificial intelligence: a survey[END_REF]. AF also includes ways to define weighted arguments and dialectical relations between arguments, which contain semantics to decide how strong and acceptable these arguments are (Čyras et al., 2021). Argumentation-based methods have been applied in laws [START_REF] Karafili | An argumentation-based reasoner to assist digital investigation and attribution of cyber-attacks[END_REF], medical treatment [START_REF] Sassoon | Explainable argumentation for wellness consultation[END_REF] and cyber-security (Bench-Capon, 2020). In the domains of RSs, there have been several works [START_REF] Teze | Improving argumentationbased recommender systems through context-adaptable selection criteria[END_REF], Rago et al., 2018[START_REF] Bandy | Problematic machine behavior: A systematic literature review of algorithm audits[END_REF], 2020) that build explainable RSs through AFs.

In our work (Zhong and Negre, 2022a), we aim to build a latent factor model that can provide model-intrinsic explanations. To this end, A 3 R, which reframes explainable recommendations as a feature attribution problem. Essentially, this means discerning the impact of each feature on a given prediction. Specifically, A 3 R conceives feature attribution as an argumentation process, treating features as arguments that can support, attack, or remain neutral to a prediction. The key idea of A 3 R is that users' ratings towards items depend on items' features. For example, in movie recommendations, movies' features mainly include actors, genres, and directors. The importance of feature types varies across users. Some users may especially prefer certain genres of movies, while some users may prefer movies starred by certain actors. Therefore it is important to capture this difference to accurately model users' preferences. A 3 R computes the importance of different feature types (e.g. the feature types of a movie include the actors, the directors and the genres of the movie.). The importance is further applied to compute users' ratings towards item features (e.g. the value of the feature type "actors" of a movie can be Tom Hanks). Users' ratings towards different item features are weighted by the importance of feature types and are aggregated to compute the final ratings towards items. We define an interaction-tailored AF where features of items are arguments and users' ratings towards features are the strength of these arguments, these arguments may support, attack, or remain neutral users' ratings towards items depending on users' ratings. This means that the computation of A 3 R is endowed with explicit semantics, therefore, the prediction of ratings can be traced, which leads to model-intrinsic explanations.

We show that with the help of AFs, the rating prediction of A 3 R can be mapped into an argumentation procedure, and each step is endowed with explicit and intuitive semantics. More precisely, A 3 R has the following applications in generating explanations: (1) generating toy templates for explaining recommended items and those not recommended; (2) generating interactive explanations that take into account immediate user feedback; (3) generating contrastive explanations that explain recommendations by comparing the differences between the recommended item and the one not recommended. Besides, A 3 R can achieve competitive performances compared with some strong baselines such as NeuMF (He et al., 2017), etc. A 3 R performs encouragingly better than existing argumentation-based model Aspect-Item (A-I) [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentation as a framework for interactive explanations for recommendations[END_REF]. To summarize, A 3 R can generate intuitive explanations in an argumentative way while not sacrificing the accuracy of prediction.

The rest of this chapter is organized as follows: Section 6.2 introduces existing works that generate recommendations through argumentation. Section 6.3 details A 3 R: how it predicts ratings. Section 6.4 details how it explains recommendations. Section 6.5 presents the datasets, the experiment setup, and the results of experiments on four datasets from two domains and the analyses related to the results. Finally, Section 6.6 concludes this chapter and bridges it to the next chapter.

Recommendations through argumentation

Owing to the inherent interpretability of argumentation, the recommendations produced by models based on argumentation naturally come with built-in explanations. For instance, [START_REF] Toniolo | Dialogue games for explaining medication choices[END_REF] use argumentation to create a decision-support system capable of advising medical treatments to patients grappling with multiple chronic health conditions. Recommendations are substantiated via Satisfiability Modulo Theories [START_REF] Barrett | Satisfiability modulo theories[END_REF], and patients receive justifications for these recommendations through argumentation dialogues, enhancing patient understanding and trust in the suggested treatments. In another application, [START_REF] Teze | Improving argumentationbased recommender systems through context-adaptable selection criteria[END_REF] employ Defeasible Logic Programming (DeLP) [START_REF] García | Defeasible logic programming: An argumentative approach[END_REF] to generate context-adapted recommendations, highlighting the importance and influence of context in the decision-making process. The predicted rating of user u towards feature at R + , R -, R 0 Support, attack and neutral relations among arguments R -(a,b)

Argument a attacks argument b, the same for "+" and "0" A A set of arguments rec i

An argument stating "the item can be recommended to the target user"

R + (rec i ) = {at|(at, rec i ) ∈ R + } The arguments (features) that support rec i R -(rec i ) = {at|(at, rec i ) ∈ R + } The arguments (features) that attack rec i R 0 (rec i ) = {at|(at, rec i ) ∈ R + } The arguments (features) that neutralize rec i < A, R -, R + , R 0 > A tripolar argumentation framework σ(a)
The strength of argument a Furthermore, [START_REF] Briguez | Argument-based mixed recommenders and their application to movie suggestion[END_REF] put forth a movie RS driven by a set of pre-established recommendation rules, offering an instance of rule-based argumentation in the recommendation space.

In a more recent work, [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentation as a framework for interactive explanations for recommendations[END_REF] introduce the explainable Aspect-Item (A-I) framework, which computes users' ratings toward items argumentatively. Specifically, this framework predicts users' ratings for the features of items (e.g., actors of a movie, genres of a movie, etc.), which are then consolidated to compute users' overall ratings toward the items. Our proposed A 3 R model draws inspiration from the A-I framework and further expands upon it. We delve into a detailed comparison of these two models in Section 6.4.3, following a comprehensive introduction of the A 3 R model.

Our model

In this section, we detail our model A 3 R, the key notions used in this chapter are listed in Table 6.1.

Problem setting

To predict the rating that user u may give to item i, we make the following intuitive assumptions: (1) features of an item, such as the actors or directors of movies, can influence users' preferences towards items. The influences can be positive, negative, or neutral; (2) fn this regard, the features can be viewed as arguments, along with another argument stating "the item can be recommended to the target user", rec i ;

(3) such a process can be seamlessly integrated into a TAF [START_REF] Gabbay | Logical foundations for bipolar and tripolar argumentation networks: preliminary results[END_REF]. For a user-item interaction (u, i), the TAF tailored to this interaction is a quadruple: < A, R -, R + , R 0 >, where A contains at i and rec i . To illustrate this idea, consider the following example where R + (at, rec i ) denotes that feature at is an argument that supports the recommendation of item i to user u; R -(at, rec i ) denotes that feature at is an argument that attacks the recommendation of item i to user u; R 0 (at, rec i ) denotes that feature at is an argument that does not influence the recommendation of item i to user u. This idea is visually demonstrated in Figure 6.1. The value on the arc corresponds to the user's rating toward attributes (the argument strength) calculated from Equation 6.3. "+" denotes supports, "-" denotes attacks, "0" denotes neutralizes.

Figure 6.2 is a toy example that shows how A 3 R predicts the rating users may give to items in a book recommendation scenario. The features can be regarded as arguments that support/attack/neutralize (see Section 5.3 for the three relations under a TAF) the recommendation of the item. Intuitively, users' like/dislike/neutralize on features influences their like/dislike/neutralize on items. The essential idea of A 3 R basically originates from content-based approaches in RSs, which assumes that users' ratings toward items depend on items' features. Users' ratings toward items can be computed by aggregating their ratings toward features of items. To summarize, the objectives of A 3 R are the following:

• Estimating the rating that a specified user u would assign to a given item i.

• Determining how each item feature contributes to the predicted rating.

• Assessing the polarity (the positive, negative or neutral influence of each argument (feature))

within the TAF tailored to each user-item interaction.

• Developing the strength function for arguments that adhere to the principles of weak balance and weak monotonicity as outlined in Section 5.3.2. 

Main steps of A 3 R

Before introducing the steps of our model we would like to clarify features types and features that will be frequently mentioned in the following of this chapter:

• Feature type: semantically, it is a high-level concept, which represents the aspects of item features. For example, the feature types of a movie include actors of the movie, genres of the movie, and directors of the movie. Under A 3 R we only consider items that are from the same category, they share the same set of feature types.

• Features: an item can have several values for a feature type. For example, the genres of a movie can be "action" and "comedy" at the same time. "action" and "comedy" are the features of this movie under the feature type "genre" Figure 6.3(a) depicts the three steps of A 3 R: A 3 R first computes the importance of each feature type to each user: the inner product of the vectors (as in Vanilla MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]) that represent users and the vectors that represent feature types; then users' ratings to each feature are computed: the inner product of the vectors (as in Vanilla MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]) that represent users and the vectors that represent feature; in sequence, the ratings toward each feature are aggregated by taking into consideration the importance of each feature type to get the final predicted ratings of user u toward item i. Figure 6.3(b) is a graphical illustration of the operations that compute the predicted rating. For each user-item interaction (u, i), each cube represents the contribution of the features of the same type, which will be computed in Equation 6.4. For example, a movie may have several actors, and the contribution of each actor will be aggregated. In what follows, we present in detail the three steps of A 3 R. The explanation step will be discussed in Section 6.4.1. 

Feature type importance (

Step 1): the feature type in this work is similar to the relations in the knowledge graphs related to items. Knowledge graphs are composed of entity-relation-entity triplets [START_REF] Hogan | Knowledge graphs. Synthesis Lectures on Data[END_REF]). As a concrete example, the triplet (HarryP otter, hasAuthor, J.K.Rowling) states the fact that the movie Harry Potter is written by J. K. Rowling. Here, hasAuthor is a relation in the knowledge graph related to movies. In this chapter, hasAuthor corresponds to the feature type author. To quantify the importance of feature type t to user u, we first compute the score between a feature type t and a user u by an inner product operation (exactly the same operation as Vanilla MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]) between u and t. This operation has also been adopted to define the importance of relations in knowledge graphs related to items (Wang et al., 2019b,a) 11

β t u = u • t (6.1)
where u ∈ R d and t ∈ R d are the vectors that represent user u and feature type t respectively; d denotes the dimension of the vectors.

Next, we normalize the score of each feature type to quantify its importance to each user, we follow the convention suggested by [START_REF] Velickovic | Graph attention networks[END_REF]:

π t u = exp(LeakyReLU (β t u )) t∈t i exp(LeakyReLU (β t u )) (6.2)
Rating of each feature (Step 2): latent factor models [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Rendle | Factorization machines[END_REF][START_REF] Xiao | Attentional factorization machines: Learning the weight of feature interactions via attention networks[END_REF][START_REF] Rendle | Neural collaborative filtering vs. matrix factorization revisited[END_REF] have been proven to be efficient in modeling user-item interactions. To compute the rating toward each feature, we adopt the inner product as in the Vanilla MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]:

P at u = u • at (6.3)
where at denotes the vector that represents feature at.

Aggregating ratings towards features (

Step 3): after calculating the importance of each feature type and users' ratings towards each feature, the next step is to compute the rating of user u towards item i by computing the contribution of each feature type t using the following equation:

contr t = at∈at t i P at u |at t i | (6.4)
where at t i denotes the features belonging to type t of item i, |at t i | denotes the total number of features types of item i. Finally, u's rating towards i is:

r(u,i) = t∈t i π t u * contr t (6.5)
where t i denotes all the feature types of item i. It should be noted that the actual value of the user u's rating for item i is a real number between -1 and 1, as defined by [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. With Equations 6.1 and 6.2, A 3 R first computes the importance of each feature type to users; with Equation 6.3, A 3 R computes the users' ratings toward features of items; with Equation 6.5, A 3 R aggregates these ratings to compute users' ratings toward items. It is noteworthy that Equation 6.5 is remarkably similar to Equation 5.1, indicating that our model belongs to the family of generalized additive models. This similarity allows for easy identification of the contribution of each feature, fulfilling the first two goals: computing users' ratings towards items and determining the contribution of each feature.

In this section, we have presented how A 3 R computes ratings. In the next section, we demonstrate how this process can be seamlessly integrated into an argumentation procedure.

Explaining recommendations using A 3 R

In this section, we will show how A 3 R can explain recommendations.

Argumentation scaffolding

In this subsection, we will show that the computation steps in Section 6.3.2 can actually be mapped into an argumentation procedure. We start by defining the TAF corresponding to each user-item interaction following the steps of A 3 R, then we define the strength function of arguments that satisfies weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF], allowing to derive argumentative explanations.

Argumentation setting

A 3 R first computes users' ratings towards features and then aggregates these ratings to predict ratings toward items. As a result, the features of items can be considered as arguments, and users' ratings towards features can be seen as the strength of these arguments. If A 3 R predicts that a user's rating towards a feature of an item is high, then this feature can be viewed as an argument that supports the recommendation of the item. Conversely, if the predicted rating is low, the feature can be considered as an argument against the recommendation of the item. In cases where features do not attack or support, a neutralizing relation is added, represented by P at u = 0. Therefore, we set σ(at) = P at u and adopt TAF that contains support, attack, and neutralizing. Moreover, we set σ(rec i ) = r(u, i). When r(u, i) > 0, the argument rec i is stronger if r(u,i) is larger12 .

Recall that the true rating r (u,i) is a real number between -1 and 1, then the co-domain of P at u is also expected to be between -1 and 1. Therefore, when P at u > 0, then σ(at) > 0, indicating that at is an argument that supports rec i13 ; when P at u = 0, then σ(at) = 0, indicating that at is an argument that neutralizes rec i ; when P at u < 0, then σ(at) < 0, indicating that at is an argument that attacks rec i . Therefore, the TAF corresponds to a user-item interaction (u, i) can be defined as follows:

Definition 6.1 The TAF corresponding to (u, i) is a 4-tuple: < A, R -, R + , R 0 > such that: • R -= {(at, rec i )|P at u < 0}; • R + = {(at, rec i )|P at u > 0}; • R 0 = {(at, rec i )|P at u = 0}.
According to the definition, P at u determines the polarity of arguments: if P at u is positive then the argument (feature) supports the recommendation of item i to user u; if P at u is negative then the Proof 6.3 By inspecting Equations 6.4, 6.5, Proposition 6.2, it is trivial to see that the corollary holds.

Propositions 6.1 and 6.2 ensure that the fourth objective: designing strength function that satisfies weak balance and weak monotonicity, is fulfilled. The TAF corresponding to the A 3 R shows how each feature influences the final rating prediction (recommendation) in an argumentative manner: each feature may support, attack, or neutralize the recommendation of the item, and the user's rating towards each feature determines its polarity. That being said, A 3 R is decomposable [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] (see Section 2.5 for more details), as each computation has explicit meanings that can also be articulated as intelligible [START_REF] Lou | Intelligible models for classification and regression[END_REF]. In the next section, we will detail A 3 R's potential applications of generating explanations

Explanation applications

Having defined the steps of A 3 R, we will show that, under A 3 R, Algorithm 2 is instantiated as GF GE(A 3 R, (u, i), DataP rocessing, QueryF unction1, ArgumentationP rocedure, QueryF uction2, ∅):

• M becomes A 3 R detailed in Section 6.3.2.
• D becomes user-item interactions: (u, i), which includes users' ratings towards items and items' features.

• P, the pre-treatment function: (1) transforms users' ratings into real numbers between -1 and 1 to ensure the polarity of arguments14 ; (2) maps users, feature types, and features into the same vector space. More details are depicted in Figure 6.3.

• InterpretM odel becomes the argumentation procedure depicted in Section 6.4.1, where features of items are arguments and users' ratings towards items represent the strength and polarity of arguments. The rating predicting process is mapped into an argumentation procedure.

• InterpretData becomes QueryF unction1, InterpretOutput becomes QueryF unction2. They are simple query functions: QueryF unction1(u, i) returns r (u,i) and at i ; QueryF unction2(u, i) returns the predicted ratings r(u,i)

• P ostHocInterpretation is empty since each step possesses explicit semantics, there is no need for conducting post-hoc interpretation.

• Aggregation can have different forms according to the application scenarios.

To illustrate the potential application of argumentative explanations generated by A 3 R, we now introduce the toy explanation templates, interactive explanations, and contrastive explanations, which are actually different forms of Aggregation. 

Toy explanation templates

In Figure 6.1, we utilize the Tripolar Argumentation Framework (TAF) as a demonstration of user-item interaction, originating from the context illustrated in Figure 6.2. Within this TAF, each feature of the book, as seen in Figure 6.2, is designated as an argument. The strength of each argument directly reflects the user's preference for the corresponding feature. For instance, the user's preference towards the genre of science fiction (genre1) is indicated by a rating of +0.77, leading to a corresponding argument strength of +0.77. This strong preference indicates that genre1 functions as a supporting argument for recommending this particular book. Conversely, the user's rating towards historical fiction (genre2) is -0.11, making the strength of genre2 equivalent to -0.11. This negative rating implies a dislike for historical fiction, suggesting that genre2 serves as a counter-argument against the book's recommendation. Moreover, the user's rating for author1 stands at +0.60, assigning an equal strength to the author1 argument. This positive rating implies a preference for books written by author1, hence author1 strengthens the argument for the book's recommendation. Lastly, the user's rating for author2 is neutral, at 0, indicating a neutral argument strength for author2. This suggests that author2 does not influence the user's decision. In practical terms, should this book be recommended, an explanation may be: "The system recommends this book because it falls under the genre of science fiction (genre1) and is authored by author1." If the book is not recommended, an explanation could be: "The system does not recommend this book due to its genre of historical fiction, which may not align with your preferences." After conducting the above analyses, we propose three explanation templates in Table 6.2, similar to the three explanation templates suggested by [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. For "strong recommendation", we propose selecting the two strongest arguments (aka. features) that support the recommendation of the item. In "weak recommendation", we propose selecting the strongest argument that supports the recommendation of the item and the strongest one that attacks the recommendation of the item. In "not recommended", we propose selecting the two strongest arguments (aka. features) that attack the recommendation of the item. Note that the number of features applied in each scenario can reach up to 3 to avoid too much information for users, this is suggested by [START_REF] Pu | Trust-inspiring explanation interfaces for recommender systems[END_REF]. 

Interactive RSs

Another potential application of the A 3 R model lies in its integration with interactive recommender systems (RSs), which take into account immediate user feedback to improve and adapt recommendations on the go [START_REF] He | Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities[END_REF], Rago et al., 2020[START_REF] Bandy | Problematic machine behavior: A systematic literature review of algorithm audits[END_REF]. This idea allows for a more dynamic and customized recommendation process, as compared to traditional, static RSs [START_REF] He | Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities[END_REF]. Following the optimization of A 3 R parameters, the calculation of the importance of feature type (as per Equation 6.1) and users' respective ratings towards each feature (see Equation 6.3) can proceed. When users receive a recommendation i from the RS, it comes with the explanations generated by A 3 R, such as "We recommend this item because you like feature at." If users indicate a disinterest in feature at, the system can subsequently downgrade the rating of this argument. To illustrate, the system could modify P at u to P at u , where P at u < P at u . Consequently, Corallary 6.1 ensures that r(u, i) < r(u, i), thus effectively preventing further recommendations of item i. This process is illustrated in Figure 6.4(a). Conversely, in scenarios where users appreciate item i despite it not being recommended (refer to the N R scenario in Table 6.2), the system explains, "We do not recommend this item because you dislike feature at". If users express that they do indeed favor feature at, the system can then increase the rating of this feature. The system could, for example, alter P at u to P at u , under the condition that P at u > P at u . Consequently, according to Corallary 6.1, r(u, i) > r(u, i). This adjustment ensures that item i is recommended and items possessing feature at are more likely to be favored in future recommendations, which is illustrated in Figure 6.4(b). This mechanism demonstrates that A 3 R allows users to provide feedback when recommendations Algorithm 3: Generating contrastive explanations using A 3 R Input : A 3 R: The recommender model detailed in Section 6.3.2 u: a target user I\I u : a set of items that u has not interacted before Output: Explanations for recommending item 1 i rec ← arg max i∈I\Iu r(u,i) , computed by A 3 R;

A recommended item to be explained are unsuitable, thereby ensuring the scrutability of the explanations as articulated by [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF].

Contrastive explanations

As we detail in Section 5.3.2, at the core of weak balance and weak monotonicity is the counterfactual reasoning to analyze the influence of arguments. Therefore, it would be natural to include contrastive explanations [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], which provide information not just about the features of the recommended item that led to it being recommended, but also how these features differ from those of other similar items that were not recommended (see the N R scenario in Table 6.2). Formally, Algorithm 3 illustrates the process of generating contrastive explanations using A 3 R. Initially, the algorithm identifies a recommendation, denoted as i rec (line 1). Subsequently, it computes the feature contributing the most to i rec 's recommendation (line 2), and identifies this feature type as t pro (line 3). The algorithm then identifies the lowest-rated item by the target user, denoted as i con (line 4). For the comparison to be logical, the algorithm specifies the feature of i con that belongs to t pro and receives the lowest rating from the target user (line 5). The recommendation for i rec can then be contrastively explained in relation to i con : "We recommend i rec over i con because you have a preference for at pro . i rec exhibits at pro , whereas i con exhibits at con ." An example of a contrastive explanation for a movie recommendation could be:

Example 6.1 We recommend Movie A over Movie B due to your preference for action movies. While Movie A fits this genre, Movie B is a drama.

In conclusion, A 3 R is a highly adaptable model that provides explanations for both recommended and non-recommended items. Furthermore, it offers users the flexibility to define their own templates according to their specific requirements. We have also demonstrated that A 3 R can be incorporated into interactive RSs to generate recommendations that align closely with users' preferences. Moreover, the model facilitates the generation of contrastive explanations by leveraging the inherent counterfactual reasoning within A 3 R. [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF], where f 1 and f 2 are movies, other nodes denote feature (actors, directors, and genres) of movies. The user has rated f 2 and the target is to predict this user's rating toward f 1 . In this case, the user has only rated one movie, however, as the number increases the user-tailored TAF grows quickly. Figure 6.6: An example of the TAF taken from [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF], this is a sub-graph of Figure 6.5. Several possible sub-graphs can be extracted to explain the user's rating toward f 1 , which takes additional effort to explain recommendations.

Relations with other models

A-I [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]) is a hybrid approach: it combines collaborative filtering and contentbased method. [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] define users' profiles as "collaborative filtering" and "type importance". "Collaborative filtering" defines how users are influenced by "similar users". The "similar users" are defined as follows:

w u,v = u•v u • v
where u and v are vectors that represent users' preferences toward each genre (in their work, the genre of movies). "type importance" is the same as π t u in our work, which defines how important each feature type is to users. A-I computes users' ratings toward each feature of an item and these ratings are regarded as the strength of arguments that lead to the final ratings of items, which makes recommendations generated by A-I explainable. In this work, we also compute users' ratings toward features of items, see Section 6.3.

We point out the traits of our A 3 R compared with the A-I:

• We do not explicitly explore users' "similar users", which is defined by users' preferences on genres of movies. We argue that this is too limited because users' preferences for actors and directors should be considered, which are two other important feature types.

• Unlike the A-I framework that directly sets the importance to all users (the importance of feature type to all users is the same), A 3 R learns the importance for each user supervised by user-item interactions by leveraging the prediction power of Vanilla MF, which is, in fact, another form of collaborative filtering. In Section 6.5.4, we will show that A 3 R can cluster users according to their preferences (aka, the importance of feature type to users).

• A 3 R maps users' ratings towards items and features on an interaction-tailored AF, while in A-I [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentation as a framework for interactive explanations for recommendations[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] the authors map users' ratings towards items and features on a user-tailored AF (see Figure 6.5), the graphical representation of a user-tailored AF could be rather large. Therefore, a sub-graph (see Figure 6.6) has to be extracted to explain recommendations. In A 3 R, AFs are interaction-tailored (see Figure 6.1). Therefore, all the arguments (features) are directly linked to items and can directly influence users' ratings towards items. As a result, there is no need for extracting sub-graphs of AFs to explain recommendations.

Table 6.3 presents the comparison of A 3 R and other related models. It can be concluded that A 3 R considers both user-item interactions and features of items like F M , N F M , and AF M . For more details about these latent factor models, please refer to Section 3.4.2. Besides, A 3 R can provide model-intrinsic explanations. Compared with state-of-art argumentative explanation model A -I, A 3 R can model the importance of feature types for each user, allowing finer modeling of users' preferences (detailed in the next section).

Generating recommendations using A 3 R

In the last section, we have shown that for each user-item interaction, the steps of A 3 R can actually be mapped into a TAF, where features are regarded as arguments. By setting users' ratings towards these features as the strength of these arguments, weak balance and weak monotocity are satisfied. With this, we have proposed three explanation applications. Since the problem of explainable recommendations also involves generating high-quality predictions. In this section, we will conduct experiments on four real-world datasets to address the following research questions: (1) can A 3 R achieve competitive performance compared to baseline methods? What are the advantages of A 3 R compared to baseline methods? (2) how does the importance of feature type affect the performance of A 3 R? 

Experiments setting

We have conducted experiments on the following real-world datasets: Netflix, a subset of the Netflix challenge15 ; MovieLens Development (Dev.) dataset and MovieLens 100K benchmark dataset [START_REF] Harper | The movielens datasets: History and context[END_REF]; DBook2014 dataset is the dataset for the Linked Open Data-enabled Recommender Systems Challenge16 , to get the types of features (aka. authors and genres) of items, we crawl the DBpedia links17 provided in the original dataset. For the books whose information is missing, we manually complete them according to Goodreads18 , we release the completed dataset and the access is provided19 . Note that for the Netflix, MovieLens Development (Dev.) and the MovieLens 100K we reuse the version reported by [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF], each of them contains three types of features, namely actors, directors and genres of movies. We filter users who have rated at least 10 items, however, we do not set constraints on actors and directors. For DBook2014 we follow the same processing. In all the datasets, the ratings given by users are between 1 and 5. The datasets we have worked on include movie and book recommendations, which show the generality of A 3 R. Table 6.4 shows the detailed statistics of the four datasets applied in this chapter.

The A 3 R we present in Section 6.3 can be applied to miscellaneous predictions such as ranking prediction and explicit rating prediction. This depends on how the objective function tailors to A 3 R. In this chapter, the user-item interactions in the four datasets are explicit ratings given by users, therefore, the datasets are adapted to rating prediction tasks. We use the mean squared loss [START_REF] Gunawardana | Evaluating recommender systems[END_REF] to optimize parameters of models:

LOSS = (u,i)∈T RA (r (u,i) -r (u,i) ) 2 + λ W 2 2 (6.6)
where T RA is the training set, r(u,i) is the predicted rating of user u to item i, λ is the regularization strength to reduce over-fitting, W denotes the parameters to be learned. Traditionally, error metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) [START_REF] Silveira | How good your recommender system is? a survey on evaluations in recommendation[END_REF]) are adopted to evaluate the quality of rating predictions. In many cases [START_REF] Balog | Transparent, scrutable and explainable user models for personalized recommendation[END_REF][START_REF] Kim | Enhancing vaes for collaborative filtering: flexible priors & gating mechanisms[END_REF], Rago et al., 2021) where users give explicit ratings, datasets are randomly divided into a training set and a test set, with a ratio 4 : 1 (80% for training and 20% for test). A 3 R is implemented using Pytorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] and all the parameters are optimized by mini-batch Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. The hyperparameters are optimized through a grid search: the learning rate is tuned on [10 -5 , 5 * 10 -4 , 10 -3 , 5 * 10 -2 , 10 -1 ]; the batch size is tuned on [128,256,512,1024]; regularization strength is tuned on range [10 -6 , 10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 ], the size of vectors is tuned on [4,8,16,32,64]. To further reduce the effects of over-fitting, we adopt Dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF], and the dropout rate is tuned on range [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].

We compare the following baselines designed for rating prediction:

• Vanilla Matrix factorization (MF) [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]: this algorithm wins the Netflix challenge. However, it only models user and item interactions.

• Non-negative Matrix Factorization (NMF) [START_REF] Luo | An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems[END_REF]: is a variant of MF.

• K Nearest Neighbours (KNN) [START_REF] Peterson | K-nearest neighbor[END_REF]: this is a collaborative filtering approach that predicts ratings by finding the most similar users.

• Factorization machine (FM) [START_REF] Rendle | Factorization machines[END_REF]: this is a strong baseline. Unlike MF, FM considers features related to items and users by capturing the second-order interactions of all information.

• Neural factorization machine (NFM (He and Chua, 2017)): generalizes FM by adding a Bilinear Interaction operation.

• Attentional Factorization Machines (AFM) [START_REF] Xiao | Attentional factorization machines: Learning the weight of feature interactions via attention networks[END_REF]: this is another strong baseline, which is a variant of FM. It further computes the importance of each interaction captured by FM.

• Neural matrix factorization (NeuMF) (He et al., 2017): generalizes MF by Multi-Layer Perceptron (MLP). We empirically set the MLP factor size as 8, the sizes of the hidden layer as (64,32,16,8), the GMF (Generalized Matrix Factorization) factor size as 32.

• Aspect-item (A-I) [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]: is a collaborative filtering approach that explores users' similar items and aspects of items. Note that in A-I, [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] simply set the importance of actors, directors, genres, and collaborative factor as 0.1, 0.1, 0.1, 0.7, we thus use the same setting for Netflix, MovieLens Development (Dev.) and MovieLens 100K. For DBook2014 we set the importance of authors, genres, and the collaborative factor as 0.25, 0.25, 0.5, respectively. Note that for DBook2014, we just empirically set the values of each factor, which gives more weight to the collaborative factor like [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF].

Experiment results

Table 6.5 presents the experiment results (aka. RMSE and MAE, note that the lower the values the better the performances) of A 3 R and other baselines. The following are the observations from results:

• Compared with KNN, the traditional collaborative filtering method, A 3 R improves the rating prediction accuracy. This is because KNN only considers user-item interactions, ignoring items' features that can influence users' preferences. Besides, the sparsity of user-item interactions (see Table 6.4) worsens the situation. When user-item interactions are sparse, traditional models cannot accurately predict users' ratings. • A 3 R outperforms Vanilla MF and N M F , our interpretation is similar to that for KN N : Vanilla MF and N M F considers only user-item interactions. It is encouraging to see that A 3 R can achieve competitive performances against some strong baselines such as AF M and N euM F . For example, on MovieLens 100k, A 3 R performs worse than N euM F and gains competitive performances compared with N F M and AF M . Under A 3 R, only the interactions of vectors representing users and features are captured. Nevertheless, each interaction is endowed with explicit semantics: features are mapped into TAF as in Definition 6.1. The strength of arguments in the TAF satisfies weak balance and weak monotonicity, which helps to explain how a prediction has been achieved. Compared with A 3 R, F M , N F M , and AF M add the following interactions: interactions between items and features, interactions among features, etc. We argue that although A 3 R captures fewer interactions, each interaction is endowed with explicit semantics, which reflects users' preferences toward features of items. Besides, the inner product of user vectors and feature vectors are weighted by the importance of the feature type, see Equation 6.5. As opposed to these factorization-based models, A 3 R can generate model-intrinsic explanations (see Section 6.4.2 for more details on explaining recommendations in an argumentative way) while keeping competitive rating prediction performances.

• Compared with A -I, a recent model that can generate model-intrinsic explanations with the help of argumentation frameworks, A 3 R significantly improves rating prediction on the four datasets. Our interpretation is two-fold: (1) A 3 R leverages the power of Vanilla MF to compute users' rating towards features; (2) Besides, A 3 R can learn the importance of feature types guided in a data-driven way, while in A -I, the importance of feature type is set empirically. Therefore, A 3 R can model each user's preference more accurately. Further analyses show that A 3 R can cluster users according to the importance they accord to each feature type, see Section 6.5.4 and Figure 6.7; (3) A 3 R does not explicitly explore "similar users" like A -I. Choosing the most similar k users is a problem that remains unresolved. When k is too small, some "similar users" may be ignored while a too-large k brings noise from less similar users. A 3 R explores features of items, which are directly linked to items. Therefore, correctness can be assured and can avoid noise simultaneously.

Due to the subjective nature of ratings, different users might assign different ratings to the same item, even if they both enjoyed it. For instance, one user might give a rating of 5 stars while another might give it 4 or 4.5 stars. To account for such variations in subjective ratings, we follow the approach proposed by [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] and convert ratings to a binary scale. We report global precision, recall, and F1 score based on the binary scale, and present the results in Table 6.6. The results in Table 6.6 confirm the trends observed in Table 6.5, showing that A 3 R in most cases achieves similar performances compared with the baselines. Furthermore, the advantage of using A 3 R over other methods extends beyond its superior performance. A 3 R provides transparency in the prediction process, allowing for the tracing of the feature attribution procedure. This added interpretability is a crucial advantage compared to other baseline models.

To summarize, the advantages of A 3 R are as follows: (1) it achieves competitive performance compared to both context-free and context-aware baselines. These baselines use factorization-based methods such as MF, FM, and some combine neural networks like NeuMF, which makes them difficult to interpret. On the other hand, A 3 R provides explicit semantics for each computation and generates argumentative explanations (see Table 6.2 for some examples); (2) compared to the argumentation-based method A-I, A 3 R significantly improves prediction accuracy predictions. We also study how the importance of feature type computed in Equation 6.2 may influence the performance of A 3 R. We, therefore, set the importance of each feature type equal for each user in all datasets, keep steps 2 and step 3 the same and do the same experiments. In Netflix, MovieLens Development (Dev.) and the MovieLens 100K, there are three feature types in each dataset, we, therefore, set the importance of each feature as 0.33 for all users; in DBook2014, there are two feature types, we, therefore, set the importance of feature type as 0.5 for all users. We denote the A 3 R after this modification as AV G -A 3 R. Table 6.7 presents the comparison between A 3 R and 

Abalation study

Conclusions

In this chapter, we have expanded upon GFGE, as discussed in Algorithm 2 (refer Section 4.3.4), with our focus primarily on model-intrinsic explanations. Our proposition, the Attribute-Aware Argumentative Recommender (A 3 R) (Zhong and Negre, 2022a), merges factorization-based methods with argumentation frameworks. We have formulated a TAF for each user-item interaction, treating features as arguments and defining user ratings of these features as the strength of the corresponding arguments.

Our comprehensive theoretical analyses (see Section 6.4.1) underscore that the argument strength function within the TAF complies with the principles of weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. This compliance introduces explicit semantics at each progression step, thereby assisting in deciphering the pathway leading to a specific prediction. Consequently, aided by the TAF, we can generate model-intrinsic explanations for every user-item interaction.

To underscore the practical utility of A 3 R, we have proposed three diverse explanation scenarios: "strong recommendation", "weak recommendation", and "not recommended". It is also possible to incorporate A 3 R into interactive RSs and generate contrastive explanations.

Our empirical testing across four diverse datasets from two different domains shows that A 3 R surpasses traditional factorization methods such as KNN and Vanilla MF in terms of performance. Moreover, it is encouraging to see that A 3 R can match the performance of advanced models like N euM F . Significantly, A 3 R outstrips the state-of-the-art argumentative recommender model A-I in terms of rating prediction accuracy.

However, the A 3 R model presents certain limitations. Notably, it does not consider users' contexts, even though such contexts can dramatically influence user preferences [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF]. The development of context-aware explanations, which tailor recommendations to users' contexts, remains an interesting avenue for future research (Zhang et al., 2020, Zhong andNegre, 2022e). Moreover, we must recognize that the persuasive power of arguments can fluctuate depending on the user's context. Thus, future enhancements to the A 3 R model should incorporate these valuable context-based insights. In the next chapter, we will extend the A 3 R model to incorporate and leverage users' contexts. In this chapter, we extend the A 3 R presented in Chapter 6 by leveraging users' contexts. Like A 3 R, it is an instantiation of the General Framework for Generating Explanation (GEGE) highlighted by Algorithm 2 in Section 4.3.4 on Page 73, focusing on model-intrinsic explanations. Following the same idea as A 3 R, we conceive feature attribution as an argumentation process, treating features as arguments that can support, attack, or remain neutral to a prediction. As we introduce in Section 5.2, the history of feature attribution methods can be traced back to General Additive Models (GAMs), which extend linear regression models by incorporating non-linear relationships between dependent and independent variables. In recent years, gradient-based methods and surrogate models have been applied to unravel complex Artificial Intelligence (AI) systems, but these methods have limitations. GAMs tend to achieve lower accuracy, gradient-based methods can be difficult to interpret, and surrogate models often suffer from stability and fidelity issues. Furthermore, most existing methods do not consider users' contexts, which can significantly influence their preferences. To address these limitations and advance the current state-of-the-art, we define a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). Our framework harnesses the power of argumentation by treating each feature as an argument that can either support, attack, or neutralize a prediction. Additionally, CA-FATA formulates feature attribution as an argumentation procedure, and each computation has explicit semantics, which makes it inherently interpretable. Therefore, CA-FATA is an instantiation of GFGE highlighted by Algorithm 2 in Section 4.3.4, focusing on model-intrinsic explanations. CA-FATA also easily integrates side information, such as users' contexts, resulting in more accurate predictions [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF]. Our experiments on two real-world datasets demonstrate that CA-FATA, or one of its variants, outperforms existing argumentation-based methods and achieves competitive performances compared to existing context-free and context-aware methods. CA-FATA also ensures the explainability of recommendations, making it a promising framework for practical applications.

The publications related to this chapter are:

• Zhong, J. and Negre, E. ( 2023). Context-aware feature attribution through argumentation. Accepted by the CARS Workshop at Recsys 2023.

• Zhong, J. and Negre, E. (2022e. Towards improving user-recommender systems interactions.

In 2022 IEEE/SICE International Symposium on System Integration (SII), pages 816-820. IEEE.

Introduction

The Attribute-Aware Argumentative Recommender (A 3 R) that we present in Chapter 6 is closely linked to the recently introduced Aspect-Item framework (A-I) [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. Both A-I and A 3 R employ argumentation to predict user ratings for items, viewing items and features as arguments that can either support or attack each other, providing argumentative explanations for recommendations. Despite its capacity to substantially enhance recommendation performance in prediction accuracy, A 3 R, like A-I, overlooks users' contexts, which can significantly affect their preferences [START_REF] Adomavicius | Context-aware recommender systems: From foundations to recent developments context-aware recommender systems[END_REF]. Indeed, context holds equal importance within argumentation frameworks (AFs), as the potency of specific arguments can vary in different settings. Hence, it is crucial to consider the context when applying argumentation, as this context-sensitive approach can significantly impact the argument's effectiveness (Teze et al., 2018, García and[START_REF] García | Defeasible logic programming: An argumentative approach[END_REF]. Recognizing this, several research studies have attempted to integrate context into argumentationbased methods, yielding some promising yet somewhat limited results. For instance, [START_REF] Teze | An argumentative recommendation approach based on contextual aspects[END_REF] made notable strides by proposing a model that leverages Defeasible Logic Programming (DeLP) [START_REF] García | Defeasible logic programming: An argumentative approach[END_REF] to generate context-aware recommendations. Here, context is encapsulated as a set of conditions that steers concluding expressions. However, this work only provided a preliminary demonstration of the system's capabilities through a prototype in a mobile robotic environment (Luis-Argentina, 2008), suggesting a potential for further development and broader application. In the same vein, [START_REF] Zeng | Context-based and explainable decision making with argumentation[END_REF] put forth a context-based decisionmaking framework, also leveraging DeLP, but with an added nuance. In their model, contexts are cast as rules within an assumption-based AF-an extension of the conventional AF. This structural adaptation allows contexts to moderate the accessibility of goals stemming from decisions, thereby influencing the decision-making procedure. As an illustration, they offered a practical example in a medical scenario, where choosing the right treatment for a patient at risk of blood clotting was at stake. Though both [START_REF] Teze | An argumentative recommendation approach based on contextual aspects[END_REF] and [START_REF] Zeng | Context-based and explainable decision making with argumentation[END_REF] have paved the way for decisionmaking frameworks that accommodate contextual factors via argumentation theory, they failed to address a seminal issue in Recommender Systems (RSs)-rating prediction. This gap is vital as it directly impacts the accuracy and usefulness of recommendations. Turning to a slightly different direction, Budán et al. (2020a) considered the impact of context in argumentation, devising methods to compute the similarity of arguments in different contexts. While this approach is novel, it leaves out a comprehensive examination of how context influences the decision-making process.

In light of these considerations, our proposed model, Context-Aware Feature Attribution Through Argumentation (CA-FATA) [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF], diverges from the approach by Budán et al. (2020a). It centers on a more profound exploration of how contextual elements might steer decisionmaking processes in an argumentative manner. Like in A 3 R we design the strength function of arguments that satisfies the generalized concepts of weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF], which characterize how arguments influence the decision-making process (detailed in Section 5.3.2). Further discussions on this innovative framework will follow in the subsequent sections.

The rest of this chapter is organized as follows: Section 7.2 details CA-FATA: how it predicts ratings. Section 7.3 details how it explains recommendations. Section 7.4 presents the datasets, the experiment setup, and the results of experiments on real-world datasets and the analyses related to the results. Finally, Section 7.5 concludes this chapter and bridges it to the next chapter.

Our model

In this section, we detail our model A 3 R, the key notions used in this chapter are listed in Table 7.1.

Problem Setting

The concept of "context" has been a focal point of extensive investigation across myriad disciplines, despite the absence of a universally accepted definition. In our exploration, we embrace the definition put forth by [START_REF] Abowd | Towards a better understanding of context and context-awareness[END_REF], which considers "context as any information that can be used to characterize the situation of an entity." A context-sensitive situation, symbolized as cs, is typically an amalgamation of numerous contextual conditions. For example, various factors such as "Companion", "Day of the week", and "Location" can shape the context of a user's situation. Each of these contextual factors is comprised of several potential values or contextual conditions. For example, the contextual factor "Companion" could incorporate possible values such as "With family" or "With friends". Consequently, a contextual situation is essentially a confluence of various contextual conditions, such as a user's situation might be described as (Sunday, at_home, with_f amily). In this chapter, we use the terms "context" and "contextual situation" interchangeably. Context-Aware Recommender Systems (CARSs) utilize this contextual information to refine the modeling of users' preferences, enabling the provision of recommendations that are custom-tailored to their specific contextual situations. Numerous context-aware models, including but not limited to CAMF-C [START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF] and FM [START_REF] Rendle | Factorization machines[END_REF], which are built upon factorization-based methods, have been proposed. Recent advancements have seen the application of neural networks to capture users' preferences in a variety of contextual situations [START_REF] Unger | Context-aware recommendations based on deep learning frameworks[END_REF]. However, the The importance of contextual factor cf to user u under cs cs = (cd 1 , cd 2 , cd 3 , . . . )
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The strength of argument a challenge arises in explicating the recommendations generated by these methods, as the semantics of the learned latent factors are typically opaque. As such, we gravitate towards the use of argumentation, given its inherent intuitiveness and applicability.

Considering the following recommendation scenario: for a target user u under a contextual situation cs. The features of an item can have positive, negative, or neutral impacts on the prediction. In this regard, the features of items (at i ) can be viewed as arguments, along with another argument stating "the item can be recommended to the target user", rec i . Such a scenario can be seamlessly integrated into a Tripolar Argumentation Framework (TAF) [START_REF] Gabbay | Logical foundations for bipolar and tripolar argumentation networks: preliminary results[END_REF]. For a user-item interaction (u, i) under cs, the TAF tailored to this interaction is a quadruple: < A, R -, R + , R 0 >, where A contains at i and rec i . To illustrate this idea, consider the following example where R + (at, rec i ) denotes that the feature at has a positive effect on the recommendation of item i. Figure 7.1 visually demonstrates this idea. Hence, the objectives are as follows: (1) to predict the rating assigned by a target user u to a particular item i in a given contextual situation cs; (2) to determine the contribution of each item feature to a prediction under this contextual situation cs; (3) to assess the polarity of each argument (feature) in the TAF; (4) to design the strength function of arguments that comply with the conditions of weak balance and weak monotonicity as defined above.

Main steps of CA-FATA

The core ideas of CA-FATA are as follows: (1) users' ratings towards items depend on the features of items, which is also a fundamental concept of content-based RSs; (2) the importance of feature Each node represents an argument, The value on the arc denotes the strength and polarity of the argument, "+" denotes supports, "-" denotes attacks, and "0" denotes neutralizes.

types varies across users. For instance, when choosing a movie, some users may have specific preferences for certain actors while others may prefer movies of particular directors. In the former case, users pay more attention to the feature type stars_in, while in the latter case, they accord more importance to the feature type directs; (3) CA-FATA further extends this idea by noting that users' preferences also vary across contexts [START_REF] Adomavicius | Context-aware recommender systems[END_REF]. In the context of movie recommendations, some users are more likely to be influenced by companion (e.g., with a lover or children) while others may be more likely to be influenced by location (e.g., home or public place); (4) we map item-features graphs into TAFs, where features of items are regarded as arguments that may attack, support, or neutralize the recommendation of the item; (5) the dialectical relations are learned in a data-driven way and supervised by users' past interactions with items (aka. ratings towards items).

The structure of the Context-Aware Factorization Argumentation Tripolar Analysis (CA-FATA), represented in Figure 7.2, comprises four successive steps. Compared visually with the Attribute-Aware Argumentative Recommender (A 3 R) structure, depicted in Figure 6.3(a) in Section 6.3.2, CA-FATA introduces an additional "Step 0". (0) First, we calculate the representation of target users within the given contextual situation. This initial step is crucial to ensure the tailoring of users' preferences and argument dialectical relations to the contextual circumstances. This step's objective is to procure a distinct user representation for each target contextual situation, ensuring that feature importance for each user is also adapted to the specific context. Additionally, it assures the polarity of the arguments (item features) aligns with the target contextual situation. (1) Next, we discern the significance of feature types relative to the aforementioned contextual situation.

(2) The third step involves computing the users' ratings of item features within the contextual situation under consideration. This data then serves to delineate the dialectical relations. (3) The final step aggregates the ratings derived in the preceding step to generate users' overall item ratings.

Computing user representation (

Step 0): As illustrated in Figure 7.2, the ultimate representation of a user is determined by the user's contextual situation. In this step, our goal is to compute the representation of users that is adapted to the target contextual situation. To achieve this, we begin by computing the score of the contextual factor cf for a user u:

β cf u = g(u, cf) (7.1)
Figure 7.2: Illustration of the steps of CA-FATA. u, t, cf, at are vectors that represent user, feature type, contextual factor, and feature respectively; π t u is the importance of feature type t to user u; π cf u is the importance of contextual factor cf to user u; ⊗ denotes the inner product operation; × denote multiplication; ⊕ denotes addition.

where g is the inner product20 . After calculating the score β cf u of all contextual factors to this user, we normalize the score using Equation 7.2 as described by [START_REF] Velickovic | Graph attention networks[END_REF] to obtain the importance of each contextual factor. The importance computed here is similar to the relevance weight introduced by Budán et al. (2020a,b). However, unlike in these two works, where the relevance weight of the context is set empirically, in our work, the importance of the context is learned in a data-driven way. Intuitively, π cf u characterizes the extent to which user u wants to take contextual factor cf into account. Similar to Equation 6.2 where we compute the importance of feature type, which is proposed by [START_REF] Velickovic | Graph attention networks[END_REF]. We use the following to compute the importance of contextual factors:

π cf u = exp(LeakyReLU (β cf u )) cf ∈C exp(LeakyReLU (β cf u )) (7.2)
In sequence, we compute the representation of the contextual situation cs by summing up all the vectors representing contextual conditions multiplied by π cf u .

cs = cd∈cs π cf u cd (7.3)
where cs is the vector that denotes contextual situation cs. The next step is to aggregate the representation of contextual situation cs with the representation of user u to obtain a specific representation of user u under the contextual situation cs. To avoid having an excessive number of parameters 21 , we sum u and cs. By aggregating information from a contextual situation cs and a user u, each user u gets a specific representation u cs under a contextual situation cs.

u cs = u + cs (7.4)
Having obtained the specific representation for user u under the target contextual situation cs, the other steps follow A 3 R: computing feature type importance, computing users' ratings towards features, and aggregating ratings towards features.

Computing feature type importance (Step 1):

The feature types in this chapter are similar to the relations in knowledge graphs, which are directed graphs consisting of entity-relation-entity triplets [START_REF] Hogan | Knowledge graphs. Synthesis Lectures on Data[END_REF]. For instance, the triplet (HarryP otter, hasDirector, M ikeN ewell) indicates that the movie Harry Potter is directed by Mike Newell. Here, hasDirector is a relation in the knowledge graph that pertains to movies, and in this chapter, it corresponds to the feature type director. We quantify the score between a feature type t and a user u as proposed by Wang et al. (2019a):

β t ucs = g(u cs , t) (7.5)
where u cs is computed in the previous step, t denotes the vector that represents feature type t.

After calculating the score β t ucs of all feature importance to this user, we normalize the score using Equation 7.6 as described by [START_REF] Velickovic | Graph attention networks[END_REF] to obtain the importance of each feature type.

π t ucs = exp(LeakyReLU (β t ucs )) t∈t i exp(LeakyReLU (β t ucs )) (7.6) 

Computing users' ratings towards features (Step 2):

To compute users' ratings towards features, we adopt the inner product again:

P at ucs = g(u cs , at) (7.7)
According to Equations 7.2, 7.3, and 7.4, the representation of a user under one context differs from that under another context. As a result, the representation of user u cs is specific to each context, and the importance of feature type and user's rating towards features is also context-aware.

Aggregating ratings towards features (

Step 3): after calculating the importance of each feature type and users' ratings towards each feature, the next step is to compute the rating of user u towards item i by computing the contribution of each feature type t using the following equation:

contr t = at∈at t i P at ucs |at t i | (7.8)
where at t i denotes the features belong to type t of item i. Finally, u's rating towards i under cs is:

r(u,i) = t∈t i π t ucs * contr t (7.9)
where t i denotes all the feature types of item i. We would like to highlight that the actual user u's rating for item i is a real number ranging between -1 and 1, in accordance with the definitions provided in earlier works [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. Furthermore, the striking resemblance between Equation 7.9 and Equation 5.1 is worth noting, signifying that our model belongs to the extended family of generalized additive models. This correlation facilitates straightforward identification of each feature's contribution, thereby achieving the first two objectives: calculating users' ratings for items and determining each feature's contribution defined in Section 7.2.1.

Explaining recommendations using CA-FATA

In this section, we depict the details for explaining recommendations generated by CA-FATA

Argumentation scaffolding

In the following subsection, we aim to demonstrate how the computational steps outlined in Section 7.2.2 can be accurately mapped onto an argumentation procedure. Our process begins by establishing a Targeted Argumentation Framework (TAF) that corresponds to each user-item interaction. This is accomplished by adhering to the steps outlined in CA-FATA. Subsequently, we delineate a strength function for arguments that aligns with both the principles of weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. This approach paves the way for determining the contribution of individual features.

Argumentation setting

CA-FATA first computes users' ratings towards features and then aggregates these ratings to predict ratings towards items. As a result, the features of items can be considered as arguments, and users' ratings towards features can be seen as the strength of these arguments. If CA-FATA predicts that a user's rating towards a feature of an item is high (under a target contextual situation cs), then this feature can be viewed as an argument that supports the recommendation of the item under cs. Conversely, if the predicted rating is low, the feature can be considered as an argument against the recommendation of the item under cs. In cases where features do not attack or support, a neutralizing relation is added, represented by P at ucs = 0. Therefore, we set σ(at) = P at ucs and adopt TAF that contains support, attack, and neutralizing. Moreover, we set σ(rec i ) = r(u, i). When r(u, i) > 0, the argument rec i is stronger if r(u,i) is larger 22 .

Recall that the true rating r (u,i) is a real number between -1 and 1, then the co-domain of P at ucs is also expected to be between -1 and 1. Therefore, when P at ucs > 0, then σ(at) > 0, indicating that at is an argument that supports rec i23 ; when P at ucs = 0, then σ(at) = 0, indicating that at is an argument that neutralizes rec i ; when P at ucs < 0, then σ(at) < 0, indicating that at is an argument that attacks rec i . Therefore, the TAF corresponds to a user-item interaction (u, i) under cs can be defined as follows:

Definition 7.1 The TAF corresponding to (u, i) under cs is a 4-tuple: < A, R -, R + , R 0 > such that: • R -= {(at, rec i )|P at ucs < 0}; • R + = {(at, rec i )|P at ucs > 0}; • R 0 = {(at, rec i )|P at ucs = 0}.
According to the definition, P at ucs determines the polarity of arguments: if P at ucs is positive then the argument (feature) supports the recommendation of item i to user u; if P at ucs is negative then the argument (feature) attacks the recommendation of item i to user u; if P at ucs is 0 then the argument neutralizes the recommendation. Therefore, the third goal: determining the polarity of each argument (feature) under the target contextual situation defined in Section 7.2.1, is fulfilled.

Proofs

We will now show that by setting σ(at) = P at ucs and σ(rec i ) = r(u, i), TAF corresponding to (u, i) under cs satisfies weak balance and weak monotonicity. Recall that weak balance states that attacks (or supports) can be characterized as links between affecters and affectees in a way such that if one affecter is isolated as the only argument that affects the affectee, then the former reduces (increases, resp.) the latter's predicted rating with respect to the neutral point.

Proposition 7.1 Given the TAF corresponding to (u, i) under cs, σ(at) = P at ucs and σ(i) satisfy weak balance.

Proof 7.1 By inspecting Equations 7.8, 7.9, it can be observed that since users' ratings are transformed into

[-1, 1], the co-domain of σ is also [-1, 1]. Case (i): if R + (rec i ) = {at}, R -(rec i ) = ∅ and R 0 (rec i ) = ∅ then σ(at) > 0, therefore, P at
ucs > 0, according to Equations 7.8 and 7.9,

r(u, i) > 0, indicating that σ(rec i ) > 0. Case (ii): if R -(rec i ) = {at}, R + (rec i ) = ∅ and R 0 (rec i ) = ∅ then σ(at) < 0, therefore, P at
ucs < 0, according to Equations 7.8 and 7.9, r(u, i) < 0,

indicating that σ(rec i ) < 0. Case (iii): if R 0 (rec i ) = {at}, R + (rec i ) = ∅ and R -(rec i ) = ∅ then σ(at) = 0,
therefore, P at ucs = 0, according to Equations 7.8 and 7.9, r(u, i) = 0, indicating that σ(rec i ) = 0.

Similar to weak balance, weak monotonicity characterizes attacks, supports, and neutralizes as links between arguments such that if the strength of one affecter is muted then the strength of its affectees increases, decreases, and remains unchanged, respectively. Therefore, weak monotonicity highlights the positive/negative/neutral effect between arguments. In this way, weak monotonicity reveals the positive, negative, or neutral effect of an argument. Proposition 7.2 Given the TAF corresponding to (u, i) under cs, σ(at) = P at ucs and σ(i) satisfy weak monotonicity.

Proof 7.2 Weak monotonicity is formulated for two TAFs: from

< A, R -, R + , R 0 > to < A , R -, R + , R 0 >,

after modifying certain arguments (e.g. muting certain features). Case (i):

if at ∈ R -(rec i ), then according to Definition 6.1, P at ucs < 0, when at is muted then P at ucs = 0. According to Equations 7.8 and 7.9, r (u,i) > r(u,i) , indicating that σ(rec i ) > σ(rec i ). Case (ii): if at ∈ R + (rec i ), then according to Definition 6.1, P at ucs > 0, when at is muted then P at ucs = 0. According to Equations 7.8 and 7.9, r (u,i) < r(u,i) , indicating that σ(rec i ) < σ(rec i ). Case (iii): if at ∈ R 0 (rec i ), then according to Definition 6.1, P at ucs = 0, when at is muted then P at ucs = 0. According to Equations 7.8 and 7.9, r (u,i) = r(u,i) , indicating that σ(rec i ) = σ(rec i ).

Based on Proposition 7.2, the following corollary holds.

Corollary 7.1 If the predicted rating of on at ∈ at i is increased: P at ucs > P at ucs , then the predicted rating of item i also increases: r (u,i) > r(u,i) . Accordingly, if the predicted rating one at ∈ at i is decreased: P at ucs < P at ucs , then the predicted rating of item i also decreases: r (u,i) < r(u,i) .

Proof 7.3 By inspecting Equations 7.8, 7.9, Proposition 7.2, it is trivial to see that Corallary 6.1 holds.

Propositions 7.1 and 7.2 guarantee that the fourth objective-the formulation of a strength function that complies with weak balance and weak monotonicity defined in Section 7.2.1-is accomplished. In an argumentative fashion, the TAF related to CA-FATA elucidates how each feature sways the final rating prediction (recommendation): each feature may support, attack, or have no impact on the item's recommendation, with its polarity determined by the user's rating towards that feature. Therefore, CA-TAFA can be considered decomposable [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF], as each computation bears explicit meanings, which can be expressed in an intelligent manner [START_REF] Lou | Intelligible models for classification and regression[END_REF]).

As a running example, Figure 7.1 presents the TAF for a user-item interaction under the contextual situation cs (extracted from Figure 7.2). In this TAF, each feature of the item represents an argument. The user's rating towards each feature determines the strength and polarity of the argument, thereby reflecting the user's preference. The strength of argument 1 is +0.52, indicating that the user likes feature 1 (e.g., a movie director or actor), and this feature supports the recommendation of the item to the user. The strength of argument 2 is -0.11, indicating that the user does not like feature 2 and that this feature attacks the recommendation of the item to the user. Finally, the strength of argument 3 is 0, indicating that this feature does not influence the user's rating. Note that, according to the four steps in Section 7.2.2, the prediction score could differ under different contexts, even for the same user and item. Therefore, the corresponding TAFs would also differ.

Explanation applications

Having defined the steps of CA-FATA, we will show that, under CA-FATA, Algorithm 2 is instantiated as GF GE(CA-F AT A, (u, i, cs), DataP rocessing, QueryF unction3, T AF, QueryF uction4, ∅):

• M becomes CA-FATA detailed in Section 7.2.2.

• D becomes user-item interactions under target contextual situation cs: (u, i, cs), which includes users' ratings towards items under target contexts and items' features.

• P, the pre-treatment function: (1) transforms users' ratings into real numbers between -1 and 1 to ensure the polarity of arguments24 ; (2) maps users, feature types, and features into the same vector space. More details are depicted in Figure 7.2.

• InterpretM odel becomes the argumentation procedure depicted in Section 7.3.1, where features of items are arguments and users' ratings towards items represent the strength and polarity of arguments. The rating predicting process is mapped into an argumentation procedure. • InterpretData becomes QueryF unction3, InterpretOutput becomes QueryF unction4. They are simple query functions: QueryF unction3(u, i, cs) returns r (u,i,cs) and at i ; QueryF unction4(u, i) returns the predicted ratings r(u,i,cs) .

• P ostHocInterpretation is empty since each step possesses explicit semantics, there is no need for conducting post-hoc interpretation.

• Aggregation can have different forms according to the application scenarios, which is similar to the case of A 3 R Upon conducting the aforementioned analyses, we introduce three explanation templates encapsulated in Table 7.2. These mirror the three explanation types established for A 3 R in Chapter 6, albeit with the inclusion of user-specific contexts. In every scenario, the most influential contextual condition is selected (as determined by Equation 7.1). Under the banner of "strong recommendation", our approach proposes choosing the two most potent arguments (i.e., features) that support the recommendation for the item in question. Within the "weak recommendation" scenario, we propose the selection of the most influential argument in support of the item's recommendation, paired with the strongest argument against it. For situations where an item is "not recommended", our model suggests identifying the two most compelling arguments (i.e., features) that undermine the item's recommendation. Each of these templates weaves together contextual information and corresponding arguments that either substantiate or contest the item's recommendation. To encapsulate, CA-FATA emerges as a versatile model capable of elucidating not only the reasons behind recommending certain items but also the rationale for discouraging others. In addition, CA-FATA offers the flexibility to create their own templates tailored to real needs. Like A 3 R, CA-FATA can also be integrated into interactive RSs (see Section 6.4.2.2) and employed to generate contrastive explanations (see Section 6.4.2.3). 123 

Relations with other models

Both the A 3 R and CA-FATA models have drawn substantial inspiration from the A -I model, as delineated by [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. The A -I model cleverly merges elements of collaborative filtering and content-based methods, producing a hybrid approach to item recommendation. It introduces the notion of viewing item features as arguments, an idea that is adopted by both A 3 R and CA-FATA. Given that CA-FATA builds upon A 3 R as an extension, as outlined in Chapter 6, it naturally inherits the traits of the A 3 R model. However, beyond the three distinctions outlined in Section 6.4.3, CA-FATA diverges from A -I and A 3 R by leveraging on user contexts. To be specific, CA-FATA computes the representation of each user under specific contextual situations. This means that the importance attributed to each feature type is also adapted to match the target context. At the same time, the TAF designed for user-item interaction is also cognizant of the context. Consequently, CA-FATA has the capability to generate context-aware recommendations and provide explanations that are both aware of the context and based on argumentation. A detailed comparison of A-I, A 3 R, and CA-FATA models can be found in Table 7.3. The A 3 R model improves upon A-I by leveraging the strength of latent factor models to learn the importance of feature types in a data-driven manner and by constructing interaction-tailored AFs to minimize the effort of extracting subgraphs (see Figures 6.5 and 6.6). CA-FATA further enhances A 3 R by harnessing user contexts.

Generating recommendations using CA-FATA

In the last section, we have shown how to explain recommendations generated by CA-FATA and the explanations applications. In this section, we conduct experiments on two real-world datasets to address the following research questions: (1) Can CA-FATA achieve competitive performance compared to baseline methods? What are the advantages of CA-FATA compared to baseline methods? (2) How does context influence the performance of CA-FATA? (3) How does the importance of feature type affect the performance of CA-FATA?

Experiments setting

We have conducted experiments on the following real-world datasets:

Frappé: this dataset is collected by [START_REF] Baltrunas | Frappe: Understanding the usage and perception of mobile app recommendations in-the-wild[END_REF]. This dataset originated from Frappé, a context-aware app recommender. There are 96 303 logs of usage from 957 users under different contextual situations, 4 082 apps are included in the dataset. Following [START_REF] Unger | Context-aware recommendations based on deep learning frameworks[END_REF], we apply log transformation to the number of interactions. As a result, the number of interactions is scaled to 0 -4.46. Each contextual situation is composed of 7 contextual conditions: "daytime", "weekday", "isweekend", "homework", "weather", "country", "city" and each of them corresponds to a contextual factor. The features of each app include: "category", "number of downloads", "language", "price", "average rating (given by other users)". Yelp25 : this dataset contains users' reviews on bars and restaurants in metropolitan areas in the USA and Canada. Consistent with previous studies by [START_REF] Zhou | S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization[END_REF][START_REF] Geng | Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5)[END_REF], we use the records between January 1, 2019 to December 31, 2019, which contains 904 648 observations. As contextual factors, we have derived "month", "day of week", "isweekend", "time of the day" from the timestamp of the records; "alone_or_companion" is extracted from the reviews of users, "state" and "city" are provided. The features available include: "stars" (average ratings given by other users), "review count " ( the number of reviews received), and "item type".

For the two datasets, we have adopted the 10-core setting, following [START_REF] Wang | Neural graph collaborative filtering[END_REF], to ensure data quality. This means that only users with at least 10 interactions are kept. Detailed statistics on the pre-processed datasets are presented in Table 7.4.

We compare the following baselines: (1) Vanilla MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]: this classic collaborative filtering method only considers user-item pairs and computes the inner product of the vectors representing users and items to make predictions, without taking into account additional information such as users' contexts and item features. (2) CAMF-C [START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF]: an extension of Vanilla MF that incorporates the global influence of contexts on ratings. (3) FM [START_REF] Rendle | Factorization machines[END_REF]: a strong baseline that models the second-order interactions between all information related to user-item interactions, including users' characteristics, users' context, and item features. (4) NeuMF (He et al., 2017): a method that combines matrix factorization and MLP (Multi-Layer Perceptron) to model the latent features of users and items. (5) ECAM-NeuMF [START_REF] Unger | Context-aware recommendations based on deep learning frameworks[END_REF]: an extension of NeuMF that integrates contextual information. Note that the authors in [START_REF] Unger | Context-aware recommendations based on deep learning frameworks[END_REF] do not release the implementation detail, for the NeuMF part, we empirically set the MLP factor size as 8, the sizes of the hidden layer as (16, 8, 4), the GMF (Generalized Matrix Factorization) factor size as 16. This setting also applies to pure NeuMF. (6) A-I [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]: an argumentation-based framework that computes users' ratings towards features, which are then aggregated to obtain the ratings towards items. Following [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] 26 , we set the "collaborative factor" as 0.8, 20 most similar users are selected, and all the feature importance is set as 0.1.

In these two datasets, users give explicit ratings towards items, therefore the squared loss is 

L = (u,i,cs)∈T (r (u,i,cs) -r (u,i,cs) ) 2 + λ Θ 2 2 (7.10)
where T is the training set, r(u,i,cs) is the predicted rating and r (u,i,cs) denotes the actual rating, λ denotes the regularization parameter to reduce over-fitting, Θ denotes the parameters of CA-FATA. We implement CA-FATA using Pytorch27 and we optimize the parameters using mini-batch Adam. The testing platform is Tesla P100-PCIE, 16GB memory in CPU. The hyper-parameters are tuned through a grid search: the learning rate is tuned on [10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 ]; the batch size is tuned on [128,256,512,1024,2048,4096]; regularization parameter is tuned on range [5 * 10 -5 , 10 -4 , 5 * 10 -3 , 10 -3 , 10 -2 ]. The embedding size is tuned on [8,16,32,64,128,256]. Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) are selected as the primary evaluation metrics. We follow the convention established by [START_REF] Balog | Transparent, scrutable and explainable user models for personalized recommendation[END_REF], [START_REF] Kim | Enhancing vaes for collaborative filtering: flexible priors & gating mechanisms[END_REF], [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] by splitting the datasets into a training set and a test set with a ratio of 4 : 1.

Experiment results

Table 7.5 presents the results of the rating prediction experiments. We observe that CA-FATA performs better than all baselines on both the Yelp dataset and the Frappé dataset, indicating its superiority in handling complex contextual information. The following are some specific observations: On the Yelp data set:

• CA-FATA surpasses MF in recommendation accuracy due to its consideration of users' contexts and nuanced modelling of their preferences towards features. In comparison, MF solely scrutinizes user-item interactions. NeuMF, despite its combination of matrix factorization and MLP to capture users' and items' latent features, falls short of the performance of CA-FATA. Additionally, CA-FATA's computation steps each possess clear semantics, contributing to the superior explainability of its recommendations. The model further examines the impact of contexts and item features, an aspect that will receive more detailed attention in Section 7.4.3. In conclusion, CA-FATA offers significant advantages that set it apart in the realm of explainable recommendations. Firstly, CA-FATA demonstrates competitive performance, effectively holding its own against both context-free and context-aware baseline models. These baseline models primarily employ latent factor models (MF, FM, and CAMF-C) or integrate neural networks (NeuMF and ECAM-NeuMF) to generate recommendations. However, these methods often obscure interpretability, leaving the reasons behind recommendations opaque to the end-users. CA-FATA, conversely, affords clarity and transparency. It is designed to provide explicit semantics for each computational step, leading to argumentative explanations that users can intuitively comprehend (examples are provided in Table 7.2). Secondly, when contrasted with other argumentation-based methods, namely A-I and A 3 R, CA-FATA excels not only in delivering superior prediction accuracy but also in generating explanations that incorporate context. Such context-aware explanations are more tailored to users' current situation, resulting in more relevant recommendations. Lastly, an essential characteristic of CA-FATA (shared with A 3 R) is the way its AFs are constructed. While in A-I, AFs are built with a user-oriented approach, CA-FATA instead creates these frameworks based on each interaction. This strategic differentiation eliminates the need to extract sub-graphs when generating explanations, making the recommendation process more efficient and the output more understandable. In order to investigate the impact of contextual factors on the performance of CA-FATA, we In this section, we conducted experiments on two real-world datasets to evaluate the performance of our proposed CA-FATA model. The results demonstrate that CA-FATA outperforms some neural network-based models in terms of recommendation accuracy. Additionally, CA-FATA has the advantage of providing explanations for recommendations through arguments, which is not possible with these neural network-based models. Furthermore, our model demonstrates significant improvement compared to existing argumentation-based models. The ablation study conducted on our proposed model highlights the benefits of leveraging users' contexts and modeling the importance of feature types.

Abalation study

Conclusions

In light of the interpretability challenges associated with existing feature attribution methods, we present a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). CA-FATA is a feature attribution framework that treats features as arguments that can either support, attack, or neutralize a prediction using argumentation procedures. This approach provides explicit semantics to each step and allows for easy incorporation of user context to generate context-aware recommendations and explanations. The strength function of arguments in CA-FATA is designed to satisfy two important properties: weak balance and weak monotonicity, which highlights how features influence a prediction. These properties help identify important features and study how they influence the prediction task. Like the A 3 R presented in Chapter 6, we also introduce three explanation scenarios -strong recommendation, weak recommendation, and not recommended, which can be used to explain why items have been recommended or not recommended. Our experimental results show that CA-FATA outperforms several strong baselines regarding RMSE, MAE, precision, recall, and f1 score, highlighting its ability to provide both accuracy and explainability.

In Chapters 6 and 7, we have introduced two recommender models that are intrinsically explainable: A 3 R and CA-FATA. The two models instantiate the GFGE (Lines 3 to 6 in Algorithm 2). A 3 R and CA-FATA are decomposable [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] (see Section 2.5 for more details), as each computation has explicit meanings that can also be articulated as intelligible [START_REF] Lou | Intelligible models for classification and regression[END_REF], which helps to identify the most important feature for the prediction. Therefore, the two models fall into the model-intrinsic explanation scenario.

A 3 R and CA-FATA, both draw inspiration from the A-I model as detailed by [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. A -I incorporates aspects of collaborative filtering and content-based methods, thus creating a hybrid framework for item recommendation. It propounds the concept of treating item features as arguments, a perspective embraced by both A 3 R and CA-FATA. A 3 R model varies from the A-I model in several ways. First, A 3 R does not merely analyze similar users based on movie genre preferences like A-I, which is restrictive and overlooks important features like preferences for specific actors and directors. Second, instead of assigning the same feature importance to all users as A-I does, A 3 R learns each user's feature importance through interactions with items using Vanilla MF, a form of collaborative filtering. Lastly, A 3 R employs interaction-tailored AFs to model the prediction process, unlike the user-tailored AFs used by A-I. This approach removes the need for extracting sub-graphs to explain recommendations as all features directly influence user ratings. Given that CA-FATA builds on the foundations laid by A 3 R, it quite naturally absorbs the characteristics of the A 3 R model. Yet, apart from the three distinctions outlined in Section 6.4.3, CA-FATA separates itself from A -I and A 3 R by taking advantage of user contexts. More specifically, CA-FATA calculates the representation of each user within specific contextual situations. This implies that the importance accorded to each feature type is also adapted to conform to the target context. Concurrently, the TAF designed for user-item interaction remains sensitive to the context. Consequently, CA-FATA is equipped to generate context-aware recommendations and provide explanations that are both context-aware and argumentative. A thorough comparison of A-I, A 3 R, and CA-FATA models is illustrated in Table 7.3.

To summarize, A 3 R model advances over A-I by harnessing the power of latent factor models: instantiating GFGE under the model-intrinsic explanation setting. A 3 R can learn the importance of feature types in a data-driven manner. It further eases the explanation process by constructing interaction-tailored Argumentation Frameworks (AFs), which reduces the effort required to extract subgraphs (as demonstrated in Figures 6.5 and 6.6). Expanding on these strengths, CA-FATA introduces an even more refined approach by effectively utilizing user contexts. This increases the accuracy of recommendations and enhances the adaptability of the explanations generated.

GFGE includes another setting: the post-hoc explanation setting, where the inner working mechanism of models is not elucidated. As we introduce in Chapter 1, retaining existing complex RSs in production and adopting post-hoc explanation techniques [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] to explain recommendations is practical. It allows for the reuse of existing RSs, reducing engineering costs and these RSs usually gain higher performances than those that adopt simple models. In the next chapter, we will contribute to this topic by instantiating the GFGE (depicted in Algorithm 2) in the post-hoc scenario.

131 that approximate the original ones. These methods actually return the features that have contributed the most to a prediction, which is among the feature attribution scope (see Section 5.2 for a comparison with other feature attribution methods). Despite their popularity, the direct application of such methods brings about particular challenges. Firstly, post-hoc explanations may lack fidelity to the original RS due to the absence of a clear elucidation of the system's internal mechanisms. Secondly, the outputs returned by methods like LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] require a foundational understanding of mathematical concepts, making them less accessible to average users. The pivotal question then emerges: how can we harness post-hoc explanation methods to elucidate any recommender model while sidestepping these constraints? In response to this question, we propose to validate the important features returned by post-hoc explanation methods through counterfactual reasoning. We turn to pertinent research in psychology, philosophy, and cognitive science and propose generating counterfactual explanations utilizing SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. We have compared LIME and SHAP in Section 5.4, the reason why we have chosen SHAP is its stability and that SHAP can provide both local and global insights into the behaviors of models.

The publication related to this chapter is:

• Zhong, J. and Negre, E. ( 2022). Shap-enhanced counterfactual explanations for recommendations. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 1365-1372.

Introduction

Explaining recommendations has attracted much more attention in recent years [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF].

Based on the models adopted in systems, a variety of methods for generating explanations in RSs have been developed. Similar user/item style explanations [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF], feature-based explanations [START_REF] Ferwerda | Explaining content-based recommendations[END_REF], social explanations [START_REF] Quijano-Sanchez | Make it personal: a social explanation system applied to group recommendations[END_REF], contextaware explanations [START_REF] Misztal | Explaining contextual recommendations: Interaction design study and prototype implementation[END_REF]Indurkhya, 2015, Li et al., 2020a). However, these methods can be applied to only specific recommender techniques, limiting their adaptability, reusability, and generality. This means that every time a new recommender technique is developed, a corresponding explanation method has to be developed. For more discussions on model-specific and model-agnostic explanations, please refer to Section 2.5.2. A major research topic is: can we find a generic method to explain why recommendations are generated? Recent advances in eXplainable Artificial Intelligence (XAI) shed light on this topic. In order to explain the outputs of an AI system, two strategies can be applied [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF]: (1) adopt transparent models which means that how models work can be easily explained, for example, simple linear models and association rules; (2) provide post-hoc explanations without elucidating precisely how models work. Simple models are easy to understand however they often suffer from lower prediction accuracy, which is known as the trade-off between complexity and accuracy (Doshi-Velez and Kim, 2017). SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] and LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] are among the most prominent tools that can provide post-hoc explanations in literature. They can explain the output of a given instance by estimating the importance of each feature. We note that in RSs, features refer to the variables used to determine a recommendation, for example, it can be users' demographic information or items' characteristics such as prices. There are some works [START_REF] Guo | Online product feature recommendations with interpretable machine learning[END_REF][START_REF] Singh | Exs: Explainable search using local model agnostic interpretability[END_REF][START_REF] Nóbrega | Towards explaining recommendations through local surrogate models[END_REF] that explain recommendations by directly applying the importance of each feature calculated by LIME and SHAP. The major limits and concerns of applying directly such methods are: (1) post-hoc explanations may not be faithful to the original RSs and sometimes such explanations may even be wrong [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]; (2) for plain users, understanding the importance of features returned by such methods is non-trivial since complex background mathematical knowledge is required. For example, the outputs of SHAP include the "force_plot" (used to visualize how a prediction is achieved by showing the contribution of each feature please refer to [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]) figure, this requires that users have basic knowledge of game theory. Therefore, SHAP and LIME are good tools for model developers to visualize the behaviors of models and may help them debug models, however, for plain users, such figures may not be easy for them to understand.

How to make use of post-hoc explanation methods to explain any recommender model while avoiding these limits? Validating the important features returned by these post-hoc explanation methods through counterfactual reasoning is our proposition. More specifically, generating counterfactual explanations that are easily understandable [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF] and are of high fidelity [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF], is a potential solution. Unlike LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP (Lundberg and Lee, 2017) that approximate the original models, counterfactual explanations seek the minimum changes necessary to alter the outputs of the original models. Therefore, counterfactual explanations have high fidelity [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF]. A typical counterfactual explanation describes a causal situation " If A did not occur, then B would not have happened" [START_REF] Molnar | Interpretable machine learning[END_REF]. In this chapter, we show that SHAP can be adapted to generate such explanations. More details about SHAP and LIME have been presented in Section 5.4. The contributions of this chapter include the following: (1) by summarizing state-of-art works, we show that explanations in RSs should be contrastive and selected; (2) we propose Shap-Enhanced Counterfactual Explanation (SECE) in RSs to generate explanations that are contrastive and selected, to the best of our knowledge, this is the first paper that combines Shapley value method and counterfactual method to address explanations in RSs;

(3) we apply our explanation method to interpret a recently proposed context-aware recommender model as a case study to show its effectiveness.

The rest of this chapter is organized as follows: in Section 8.2, we introduce the motivations of our solution; in Section 8.3 we formulate explanations in RSs as counterfactual explanations: list-level explanations and instance-level explanations; in Section 8.4, we present the result of experiments in which we evaluate our method in terms of success rate, time, and length of explanations. In Section 8.5, we conclude and propose perspectives.

Motivations

Desired properties of explanations

Seeking for explanations to support decisions is the nature of human beings, which is also the case for decision-support systems driven by AI. What constitutes good explanations has been extensively studied in social science, cognitive science, and psychology science [START_REF] Lipton | Contrastive explanation[END_REF][START_REF] Lombrozo | The structure and function of explanations[END_REF][START_REF] Nozick | Philosophical explanations[END_REF]. [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] investigated explanations in AI from a social science point of view and concluded that explanations should be contrastive and selected (in a biased manner), for more detailed discussions on the desired properties, please refer to Section 2.3.

• Explanations are contrastive: instead of asking why an event P happened, people prefer asking why event P rather than event Q happened. P and Q refer to the fact and the foil respectively. Accordingly, "why P" type questions and "why P not Q" type questions belong The number of features used in λ δ x (x )

Proximity between x and instance x Ω(l)

The complexity of l X A set of instance x's neighbors φ j

Margin contribution of feature

x j C = {c 1 , c 2 . . . } A set of contextual conditions CS = (c 1 , . . . c p )
A contextual situation to plain-fact questions and contrastive questions. Plain-fact questions should be answered by a "complete" explanation showing details across a "non-interrupted" causal chain across time [START_REF] Van Bouwel | Remote causes, bad explanations?[END_REF]. Explanations that show the differences between fact P and foil Q are easier to derive [START_REF] Lipton | Contrastive explanation[END_REF]. This means that desired explanations usually do not show full causality analysis but the differences between facts and selected foils, which leads to the next finding: explanations are selected.

• Explanations are selected: people rarely seek the entire and actual cause of an event, rather, they select a limited number of causes as an explanation, potential reason could be that complete causality analyses are usually too large to understand [START_REF] Hilton | Social attribution and explanation[END_REF]. And contrasts (differences) between facts and foils are the primary way that people select explanations, which means that explanations should be selected to meet up with explainees' demands.

The model we develop in this chapter satisfies the two properties, which will be discussed in Section 8.3

Counterfactual explanations

In this section, we review counterfactual explanations in AI and show that counterfactual explanations are contrastive and selected. The symbols used in this chapter are presented in Table 8.1.

Counterfactual explanations are defined as the minimum change of feature values of an instance to be made in order to alter the output of a model [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF]. The upsides of counterfactual explanation include the following (also the motivations that we have adopted counterfactual explanations):

• Counterfactual reasoning, which involves constructing alternate versions of reality, is a natural cognitive mechanism that appears early in childhood [START_REF] O'connor | Do children who experience regret make better decisions? a developmental study of the behavioral consequences of regret[END_REF]. This process facilitates learning from experiences, modulates emotional responses, aids decisionmaking, and improves social interactions. It also becomes an almost instinctive reaction in the face of adverse situations [START_REF] Mccrae | Creativity, divergent thinking, and openness to experience[END_REF]. When transposed to the field of AI, counterfactual reasoning bolsters decision-making, especially when the model's predictions are different from the expected outcomes (Doshi-Velez and Kim, 2017), offering a systematic and natural methodology for generating explanations.

• Counterfactual explanations focus on individual instances, elucidating the model's behavior for these specific cases, and hence, are classified under local explanations (refer to Section 2.5.2 for a more detailed discussion). Such explanations, presented through particular instances, have been found to streamline the learning process, particularly when the subject matter is intricate [START_REF] Watson | Using learner generated examples to introduce new concepts[END_REF].

• Counterfactual explanations exhibit a contrastive nature, addressing "why P not Q" type question. They discern the critical modifications necessary for occurrence P and identify the distinguishing elements between fact P and foil Q. Owing to these characteristics, counterfactual explanations demonstrate high fidelity [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF] and are in compliance with the General Data Protection Regulation (GDPR) [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF].

• Moreover, counterfactual explanations are selective, altering only a minor subset of feature values to transition from fact P to foil Q. When compared to other explanation methods, such as LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF], counterfactual explanations are generally more accessible and comprehensible for non-expert users [START_REF] Molnar | Interpretable machine learning[END_REF].

To the best of our knowledge, counterfactual explanations were initially employed for document classification [START_REF] Martens | Explaining data-driven document classifications[END_REF]. The adoption of this explanatory methodology has grown in academic literature due to its user-friendliness, and practical usefulness in deciphering decision rationales [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF]. A naive approach to finding counterfactual explanations is to enumerate all subsets of features within an instance x = x 1 , x 2 , x 3 , . . . , x p (where p denotes the number of features utilized in a black-box model). However, a significant drawback is that the complexity grows exponentially with the increase in the number of features used in the original model.

In the RSs domain, there exist some works that aim to provide counterfactual explanations to explain recommendations. [START_REF] Ghazimatin | Prince: Provider-side interpretability with counterfactual explanations in recommender systems[END_REF] and [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF] defined counterfactual explanations as the user-item interactions to be removed to result in a different top-ranked recommendation. [START_REF] Ghazimatin | Prince: Provider-side interpretability with counterfactual explanations in recommender systems[END_REF] modeled users and items on a heterogeneous information graph. Therefore, the explanation method applies only to specific recommender models. [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF] used normalized length and the importance of a candidate to guide the search for counterfactual explanations. However, candidates are not filtered and the search space is still too large, resulting in a longer search time. We argue that, [START_REF] Ghazimatin | Prince: Provider-side interpretability with counterfactual explanations in recommender systems[END_REF] and [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF] only consider user-item interactions. As a matter of fact, other information such as items' characteristics [START_REF] Ferwerda | Explaining content-based recommendations[END_REF]), social relationships (Quijano-Sanchez et al., 2017), and users' context [START_REF] Misztal | Explaining contextual recommendations: Interaction design study and prototype implementation[END_REF]Indurkhya, 2015, Li et al., 2020a) can be used to generate explanations. In this chapter, we will provide a counterfactual explanation method that can be applied in any recommender model with the help of SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. the situation completely different, which violates the principle that a counterfactual should be as similar as possible to the instance regarding feature values [START_REF] Molnar | Interpretable machine learning[END_REF]. Therefore, we believe that the removed contextual condition should be replaced by other possible values.

For instance-level explanations, we propose Algorithm 4 29 to compute a counterfactual explanation for a single recommendation i in the list {i 1 , i 2 , i 3 , . . . , i max }. x contains the information used for generating the recommendation, for example, they can be characteristics of items, users, or contextual information. When considering a single item i, each feature j's contribution φ j is computed using SHAP. Features with φ j larger than a threshold are selected and are sorted according to their contributions in a descending manner. Since we wish to select more impacting factors, we only consider features whose φ j are positive, which means that the threshold here is 0. We note that, in extreme cases where an instance's feature is close to the reference value in SHAP, the returned contribution of each feature becomes very close to 0, ordering features by their φ j may not be meaningful, we, therefore, suggest using the naive method.

In sequence, the value of the feature that is ranked at the top is changed, in step 14, x j is replaced by x new j . Another list of recommendations {i 1 , i 2 , i 3 , . . . , i max } is computed given x new = {x 1 , x 2 , x new j . . . x p }. If i is no longer in {i 1 , i 2 , i 3 , . . . , i max } then x j can serve as a counterfactual explanation. If i is still in {i 1 , i 2 , i 3 , . . . , i max } after all possible x new j has been tried, then the toptwo 30 ranked features are investigated, and so on, until all features in I p are explored. Lastly, if E = ∅, it means that this item can not be explained by Algorithm 4.

Following the same strategy, list-level explanations can be generated. The difference are: the input i becomes a list of recommendations {i 1 , i 2 , i 3 , . . . , i max }; in step 16, the condition becomes: {i 1 , i 2 , i 3 , . . . , i max } differs {i 1 , i 2 , i 3 , . . . , i max }. The difference between {i 1 , i 2 , i 3 , . . . , i max } and {i 1 , i 2 , i 3 , . . . , i max } can be quantified as the similarity between them. The similarity can be quantified by the overlap coefficient [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]. Overlap coefficient is defined as in Equation 8.1. Different thresholds can be chosen to decide whether a counterfactual explanation has been identified. The threshold also indicates the percentage of recommendation explained, which is referred to as Model Fidelity 31 by [START_REF] Peake | Explanation mining: Post hoc interpretability of latent factor models for recommendation systems[END_REF] and can be calculated by Equation 8.2.

Overlap Coef f icient = |{i 1 , i 2 , i 3 , . . . , i max } ∩ {i 1 , i 2 , i 3 , . . . , i max }| |{i 1 , i 2 , i 3 , . . . , i max }| (8.1) M odel F idelity = |Explainable Items ∩ Recommended Items| |Recommended Items| (8.2)
Having defined the steps of SECE, we will show that, under SECE, Algorithm 2 is instantiated as GF GE(M, (u, i), DataP rocessing, QueryF unction5, T AF, QueryF uction6, SECE):

• M can be any recommender models.

• D becomes user-item interactions: (u, i), which includes users' ratings towards items and items' features.

• P depends on M.

29 We will first consider categorical features as it is much easier to determine the values after modifications. 30 Only modifying x2 may also lead to a counterfactual explanation, we leave this for future work.

31 It seems that the success rate is more appropriate since model fidelity concerns whether explanations are aligned with the internal mechanisms of modes. In the following, we will use the term success rate. • InterpretM odel return simply the output of M and the mechanism of M remains unclear.

• InterpretData becomes QueryF unction5, InterpretOutput becomes QueryF unction6. They are simple query functions: QueryF unction5(u, i) returns r (u,i) and at i ; QueryF unction6(u, i) returns the predicted ratings r(u,i) .

• P ostHocInterpretation becomes SHAP that returns important features according to the marginal contribution of each feature.

• Aggregation becomes Algorithm 4, it returns the important features (according to SHAP) validated by counterfactual reasoning, thus in the form of counterfactual explanations.

Complexity analysis

As in Section 8.3.1, in a recommender model f , p features are considered to generate recommendations. Suppose that the number of possible values for feature x k is n k , then in naive method, the average maximum number of tries will be

(n 1 +1) * (n 2 +1) * (n 3 +1) * ••• * (np+1)-2 p p
. By calculating and ordering the contribution of each feature, possible candidates can be selected. Suppose that after selection, the number of candidate features becomes s then the average number of tries will be (n 1 +1) * (n 2 +1) * (n 3 +1) * ••• * (ns+1)-2 s s , since s is smaller than p after filtering, the time needed for searching is reduced. Therefore, counterfactual explanations can be found more quickly.

Experiments

In this section, we present the experimental setup of a case study to show the effectiveness of our explanation method proposed in Section 8.3.

Dataset and recommender model

In this section, we present an application case of Algorithm 4 in which we explain a context-aware model proposed by us [START_REF] Zhong | Towards better representation of context into recommender systems[END_REF]. The main reason why we choose to explain CARSs is that, contextual information that can significantly influence users' preferences has not been fully inspected to explain recommendations [START_REF] Zhang | Explainable recommendation: A survey and new perspectives[END_REF][START_REF] Musto | Exploiting distributional semantics models for natural language context-aware justifications for recommender systems[END_REF], we wish to contribute to this topic by applying Algorithm 4.

The dataset we apply is LDOS-CoMoDa, a dataset for context-aware movie recommendation [START_REF] Košir | Database for contextual personalization[END_REF]. In this dataset, there are 121 users, 1197 movies, 2296 ratings, and 12 context factors. Each contextual situation is composed of 12 contextual conditions: "time", "daytype", "season", "location", "weather", "social", "end emotion", "dominant emotion", "mood", "physical", "decision", "interaction". We note that we select the 3 most impacting contextual factors [START_REF] Ferdousi | From Traditional to Context-Aware Recommendations by Correlation-Based Context Model[END_REF] to reduce the time required for the experiment. The contextual factors we selected are: "social", "mood", "physical". The possible values for each contextual factor are presented in Table 8.2.

In this dataset, there are some users who have given relatively fewer ratings, which makes it difficult to model their preferences under different contextual situations. Therefore, we only consider users who have given more than 10 ratings. At last, we have 2032 ratings from 33 users. We generate 10 recommendations (aka. max = 10) for the users in the corresponding contextual situations.

The recommendation problem in CARSs can be resumed as generating recommendations for a user u given a target contextual situation CS composed of several contextual conditions {c 1 , c 2 , c 3 . . . c p }. For example, a contextual situation can be CS = {W eekend, At_home, W ith_child} which shows that it is the weekend and this user is at home with his child.

The main steps of the black-box model proposed by [START_REF] Zhong | Towards better representation of context into recommender systems[END_REF] 32 mainly include: (1) select a relevant local dataset by users' contexts; (2) a context-free method is applied on the local dataset to generate a list of top-ranked recommendations. Following Algorithm 4, the recommendations can be explained by computing counterfactual explanations. We note that in step 14 since the values in x are all categorical, x j is replaced by a randomly selected from other possible values for this contextual factor. For example, considering the contextual factor "mood", it has three possible values: "positive", "neutral" and "negative". If x j = positive then x new will be randomly selected from {neutral, negative}. After a counterfactual explanation is identified, say, {mood_positive → mood_negative}. This means that user's mood at the moment of recommendation is positive and it is identified to be the most impacting factor. Changing mood from mood_positive to mood_negative will result in the change of recommendation list from {i 1 , i 2 , i 3 , . . . , i max } to {i 1 , i 2 , i 3 , . . . , i max }.

In an instance-level explanation (Top-1), "You are in good moods, we, therefore, recommend you the following movies {i 1 , i 2 , i 3 , . . . , i max }, however, when you are sad we will recommend you the following movies {i 1 , i 2 , i 3 , . . . , i max }, without movie i 1 ".

In a list-level explanation, recommendations are presented as follows: " You are in good moods, we, therefore, recommend you the following movies {i 1 , i 2 , i 3 , . . . , i max }, however, when you are sad we will recommend you the following movies {i 1 , i 2 , i 3 , . . . , i max }". The whole list of recommendations is changed in list-level explanations, which is not the case in instance-level explanations.

Apparently, in both cases, there is a difference between the two lists. Users can easily notice the differences between the two lists, which could help users better understand how the system works.

Evaluation settings

We assess the quality of our SHAP-enhanced explanation method (S-method hereinafter) from three aspects: (1) the average time consumed to compute a counterfactual explanation. The time needed to find the first explanation set E to measure the efficiency of our method; (2) the length of counterfactual explanation, in our case, it will be the size of E in Algorithm 4. An explanation with a smaller size is easier to understand. Therefore, the smaller the size, the better the explanation is [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF]; (3) the success rate (similar to the model fidelity defined by Peake and Wang (2018)) of our method defined in Equation 8.2. The larger it is, the more recommendations can be explained. This in turn indicates that the explanation method has higher fidelity to the original model.

We will compare the effects of list-level explanations and instance-level explanations as we presented in Section 8.3.1. The baselines that we have chosen are the following:

• The heuristic searching method proposed by Kaffes et al. (2021)(H-method hereinafter). For instance-level explanations, the search is guided by the importance of candidates [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF]; for list-level explanations, the search is guided by the overlap coefficient of {i 1 , i 2 , i 3 , . . . , i max } and {i 1 , i 2 , i 3 , . . . , i max }.

• Like [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF], we also compare the naive method (N-method, hereinafter) that examines candidates in a length-rising order, it first examines candidates whose length is 1 (one contextual factor changed) and then 2 (two contextual factors changed), etc. Values of each contextual factor are randomly selected. Therefore, the difference with Algorithm 4 is that I p = x, which means that candidates are not filtered using SHAP. For this baseline, we call it naive search.

• Another baseline is that adopted by [START_REF] Kaffes | Model-agnostic counterfactual explanations of recommendations[END_REF], called random search (R-method). This method randomly considers the length of candidates and randomly selects values of each contextual factor to replace the original values.

Experiment results

Following the methodology presented in Section 8.4, we compare our S-method with H-method, N-method, and R-method. In Tables 8.3, 8.4 and 8.5, the percentage is the threshold to decide whether a counterfactual explanation has been identified. For example, the 100% means that a counterfactual explanation is identified when two lists of recommendations are totally different. The Top-k means the item to be explained. For example, the Top-1 indicates that the first recommendation in the list is explained.

Time required for searching

Table 8.3 presents the time required for searching. In terms of efficiency, R-method is not as efficient as S-method, N-method, and H-method except for explaining 100% recommendations in list-level explanations. As we presented in Section 8.2, computing the contribution of contextual factors using SHAP is not efficient. In our case, computing the contribution of each contextual factor in a recommendation is about 2.62 seconds, which is included in Table 8.3 for the S-method. Although the S-method can reduce the number of candidates, the time needed for calculating the contribution of each factor takes a longer time. An exception is for list-level explanations, if we want to explain 100% recommendations, counterfactual explanations are strictly defined. This usually means more changes to be made. By reducing the number of candidates, the S-method reaches higher efficiency.

Success rate

Table 8.4 presents the comparison of success rate. In list-level explanations, it can be observed that as the thresholds decrease, the percentage of recommendations explained also declines, which means that the similarity between the original recommendation list and the newly generated recommendation list is higher. As for instance-level explanations, the more the recommendation to be explained is at the back of the recommendation list, the lower the success rate. Since fewer changes are made to features, the original recommendation list changes less (fewer recommendations are explained). We note that the higher success rate here means larger differences between the original recommendation and the newly generated one. As a result, users can see a more evident comparison between the two lists, which may help them better understand how the system models their preferences.

Length of explanations

Table 8.5 presents the comparison of the length of explanations. N-method, S-method, and Hmethod are able to find the shortest counterfactual explanations (only one contextual condition changed). This in turn shows that users' contextual situations can greatly influence their preferences. However, in R-method, since the length of candidates is randomly selected, the final length of counterfactual explanations becomes larger.

Instance-level vs list-level

Comparing list-level explanations and instance-level explanations, it can be observed that instancelevel explanations usually require less time for searching, however, less percentage of recommendations can be explained. Therefore, the advantage of instance-level explanations lies in efficiency.

The advantage of list-level explanations is in success rate. Another potential advantage of list-level explanations is that the differences between {i 1 , i 2 , i 3 , . . . , i max } and {i 1 , i 2 , i 3 , . . . , i max } is larger, this may help users better identify the reason why items are recommended to them. Which one is preferred by users, instance-level or list-level? We leave this for future work.

features are applied. Comparing the instance-level and list-level explanations is another direction that is worth more exploration. Furthermore, applying SECE to explain other black-box models also raises interesting prospects. Chapters 6 and 7 introduce Algorithm 2 in the model-intrinsic setting while this chapter focuses on the post-hoc setting. In the next chapter, we will compare the three instantiations. Furthermore, we are aware that evaluating the qualities of explanations (as we depicted in Definition 4.7) in RSs is as important as generating explanations. In the next chapter, we will present some primary results of a user study that compares different types of explanations.

Chapter 9

Comparison and evaluation of explanation methods In Chapters 6 and 7, we have instantiated the General Framework for Generating Explanations (GFGE) in Section 4.3.4 by introducing Aware Argumentative Recommender (A 3 R) (Zhong and Negre, 2022a) and Context-Aware Feature Attribution Through Argumentation (CA-FATA) [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF] respectively. Both A 3 R and CA-FATA are decomposable [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF], and each step is endowed with explicit semantics. Therefore, model-intrinsic explanations can be generated. In Chapter 8, we have introduced Shap-Enhanced Counterfactual Explanation (SECE), an instantiation of GFGE depicted in Algorithm 2 in the post-hoc setting. In this chapter, we will compare the three instantiations. Considering that explanations involve knowledge transfer through interactions, we have conducted a primary user study that evaluates the qualities of explanations in recommender systems (RSs) [START_REF] Zhong | Context-aware explanations in recommender systems[END_REF].

The following of this chapter is organized as follows, Section 9.1 compares the three instantiations, Section 9.2 presents the results of a primary user study that evaluates the qualities of explanations in RSs, Section 9.3 ends this chapter and bridges to the concluding part of this thesis.

The publications related to this chapter are: 

Comparison

In Chapters 6, 7 and 8, we have specified the components of each instantiation. To facilitate the comparison between them, we will now show the whole instantiation of each method. Algorithm 5 shows how A 3 R (in Chapter 6) instantiates Algorithm 2. In Algorithm 5, the model M is A 3 R; the data D is the user-item interactions; P does data pre-processing; InterpretData becomes QueryF unction1 that returns user's rating toward item and item's features; InterpretM odel becomes an argumentation procedure that returns a Tripolar Argumentation Framework (TAF) tailored to the user-item interaction; InterpretOutput becomes QueryF unction2 that returns the predicted rating; P ostHocInterpretation is empty because there is no need for conducting post-hoc interpretation; Aggregation can be flexible, which depends on the application scenarios (see Section 6.4.2). CA-FATA (in Chapter 7) is an extension of A 3 R, therefore, it instantiates Algorithm 2 in a quite similar way, the difference is that the input data D also contains users' contexts. Algorithm 6 depicts the idea of SECE (in Chapter 8), which instantiates Algorithm 2 in a post-hoc setting. In Algorithm 6, M can be any model; the data D is the user-item interactions; P can be designed adapted to M; InterpretData, InterpretM odel and InterpretOutput all becomes query functions that return users' ratings towards items; P ostHocInterpretation becomes SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] since Algorithm 6 is under the post-hoc explanation setting (M is regarded as black-box and thus not interpretable.); Aggregation becomes Algorithm 4, it returns the important features (given by SHAP) validated by counterfactual reasoning.

In Chapter 2, we have introduced and compared existing explanation methods in the context of AI from the following aspects: model-intrinsic vs. post-hoc; local vs. global; model-specific vs. model-agnostic. Following the same spirit, we will now compare the three instantiations. Table 9.1 depicts a high-level comparison of the three instantiations. 

Model-intrinsic vs Post-hoc

Algorithm 5 is a model-intrinsic instantiation of Algorithm 2. A 3 R approaches explainable recommendations by reframing it as a feature attribution problem, a paradigm that seeks to quantify the contribution of individual features towards a given prediction. A unique aspect of A 3 R is its conceptualization of feature attribution as an argumentation process. In this view, features assume the roles of arguments that can either support, attack or remain neutral towards a prediction. This vision of feature attribution allows for a more nuanced understanding of how different arguments (features of items) within the model influence the final outcome. This argumentation process effectively maps the prediction process into a serie of explicit, semantically meaningful steps, reflecting for the subsequent generation of counterfactual explanations. Consequently, SECE's methodology provides an in-depth investigation into individual instances. Unlike the global perspective offered by A 3 R, SECE's focus remains strictly localized, honing in on specific instances rather than an aggregate view of the user population. In sum, A 3 R and CA-FATA can provide both local and global insights into the model while SECE focuses on the local level.

Model-specific vs Model-agnostic

It is important to highlight that Algorithm 5 is strictly applicable to RSs that utilize item features. For instance, in sequential recommendation scenarios [START_REF] Wang | Sequential recommender systems: challenges, progress and prospects[END_REF], both A 3 R and CA-FATA fall short in applicability34 . Consequently, Algorithm 5 is characterized as a model-specific explanation technique.

In contrast, the framework of Algorithm 6 does not impose any assumptions on the recommender model-M can represent any model. This versatility stems from two fundamental aspects: (1) the initial step of applying SHAP is to identify important features. As a model-agnostic method, SHAP can accommodate any model type; (2) the application of counterfactual reasoning to validate these critical features, again not mandating any model-specific assumptions. One significant advantage of being model-agnostic is the broad applicability-SECE can integrate with any model type, thereby offering enhanced flexibility [START_REF] Molnar | Interpretable machine learning[END_REF].

In summary, while A 3 R and CA-FATA are limited to models that incorporate item features, SECE is characterized by its model-agnostic property, offering a more flexible approach to explanation generation in diverse model contexts.

Algorithm 5 and Algorithm 6, while sharing a common goal of attributing feature importance, represent different paradigms of explanation generation. Each has its strengths and unique capabilities, catering to different scenarios and recommendation models. Algorithm 5 can provide model-intrinsic explanations while Algorithm 6 provides post-hoc explanations. Another advantage of Algorithm 5 over Algorithm 6 is that Algorithm 5 can handle single instances or multiple instances, allowing it to offer both localized, instance-based explanations, and a global understanding of the model's behavior (Zhong and Negre, 2022a). In contrast, Algorithm 6 deals strictly with individual instances, maintaining a localized focus that delves into specific case studies without offering a holistic view. Despite this, Algorithm 6 has its own advantage of being model-agnostic. It does not impose any constraints on the model type, thanks to the flexibility of SHAP and counterfactual reasoning. This broad applicability allows for greater flexibility, accommodating diverse model contexts [START_REF] Molnar | Interpretable machine learning[END_REF]. Therefore, the choice between these two algorithms ultimately depends on the specific context and requirements of the recommendation model in question.

Evaluation of explanations

We recognize that given the inherent human aspect involved in explanations, human involvement is paramount when comparing such explanations. As summarized in Section 3.7, explanations within the realm of RSs aim to enhance various aspects including transparency, effectiveness, efficiency, persuasiveness, trust, satisfaction, and scrutability. These goals often serve as the metric for assessing the quality of explanations in RSs (Tintarev andMasthoff, 2015, Gedikli et al., 2014). In the case of A 3 R, recommendations are explained through argumentation, while CA-FATA enhances this approach by considering user contexts. In the case study of SECE, we demonstrate its capability to generate context-aware explanations.

To facilitate an empirical comparison of explanations with and without contextual information, we developed a web-based questionnaire [START_REF] Zhong | Context-aware explanations in recommender systems[END_REF]. This user study aims to evaluate the impact of these explanations on transparency, effectiveness, efficiency, persuasiveness, trust, and satisfaction. Each of these metrics is detailed in Section 3.7. The motivation for comparing context-aware explanations and context-free explanations lies in two primary considerations:

(1) argumentative explanations have been empirically shown to enhance users' trust and acceptance [START_REF] Naveed | Argumentation-based explanations in recommender systems: Conceptual framework and empirical results[END_REF]; (2) the inclusion of additional explanation types necessitates a larger participant pool and more time commitment from participants to complete the questionnaire.

The design and execution of the user study, along with the experimental setup, are presented in detail in Section 9.2.1. The collected data and the corresponding analysis are reported in Section 9.2.2.

Steps and experiment setup

We adopt the widely used contextual movie recommendation dataset CoMoDa [START_REF] Košir | Database for contextual personalization[END_REF], where there are 121 users, 1197 movies, 2296 ratings and 12 contextual factors. In the CoMoDa dataset, the average number of ratings of each user is about 12. In order to be consistent with the original dataset, participants are required to give their ratings for 12 movies under different contextual situations. In the original dataset, there are 12 contextual factors, some contextual factors could have a more important impact than others [START_REF] Ferdousi | From Traditional to Context-Aware Recommendations by Correlation-Based Context Model[END_REF]. We wish to select the most impacting contextual factors to minimize the efforts of participants to specify his/her contextual situation. According to [START_REF] Ferdousi | From Traditional to Context-Aware Recommendations by Correlation-Based Context Model[END_REF], in the CoMoDa dataset, the 6 most impacting contextual factors are (1) whether users have watched a movie before, (2) users are given a decision or decide themselves, (3) users' physical wellness, (4) users ' moods, (5) users' location and (6) weather. Note that in step 2 of our protocol, we recommend movies that participants have not interacted with in step 1 of our protocol, we do not consider the contextual factor Interaction. Since all the participants are given a movie, we do not consider the contextual factor Decision either. Therefore, in our case, we only consider the following 4 contextual factors: Physical wellness, Mood, Location and Weather.

Major steps

There are mainly four steps in the user study35 : (1) participants are asked to rate 12 randomly selected movies given several contextual situations by applying the data set [START_REF] Košir | Database for contextual personalization[END_REF]. This step is to learn users' preferences under different contextual situations; (2) the system generates recommendations for the participants under a randomly generated contextual situation, for more details we refer to Appendix A; (3) participants are presented with explanations but without detailed information of movies and they are asked to rate the movie, noted as r, the time consumed for giving the rating is noted as t, users are then presented with detailed information of the same Figure 9.1: The number indicates the movie recommended. White indicates that only an explanation is displayed, black indicates that detailed information about the movie is displayed, r and r are the ratings given by participants, and t is the time cost by participants to give a rating. movie and rate them again, noted as r , Figure 9.1 illustrates this process; (4) participants are asked to evaluate the explanations in terms of transparency, effectiveness, efficiency, persuasiveness, trust, and satisfaction by a 1 (lowest) to 5 (highest) rating scale. In all, this user study follows a within-subject design [START_REF] Keren | Between-or within-subjects design: A methodological dilemma[END_REF] to get more data from participants. Therefore, the six metrics can be quantified as below: (1) efficiency: the time used by participants for giving a rating when only presented with explanations; (2) effectiveness: the difference between r and r , if the difference is near 0, it indicates good effectiveness since explanation has helped participants perfectly estimate the rating of recommendation; (3) persuasiveness: r-r > 0 means positive persuasiveness; r-r < 0 means negative persuasiveness; (4) transparency, satisfaction, and trust: they are reflected by users' responses in step 4; (5) in terms of efficiency, effectiveness, and persuasiveness, we will compare the measured effects and human-perceived effects.

The adopted protocol for this user study is largely derived from [START_REF] Bilgic | Explaining recommendations: Satisfaction vs. promotion[END_REF]. This protocol was also used by [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF] to study the influence of different explanation styles in terms of efficiency, effectiveness, persuasiveness, transparency, and satisfaction. Our protocol varies from [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF] in two significant ways:

• We assess the effects of explanations in terms of trust, which was not considered by [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF].

• For efficiency, effectiveness, and persuasiveness, we ask users to evaluate different styles of explanations concerning these three metrics. This is to identify any discrepancies between the human-perceived experiences and actual effects. In contrast, [START_REF] Gedikli | How should i explain? a comparison of different explanation types for recommender systems[END_REF] solely utilized objective methods to measure these three metrics.

Baselines

Concretely, we wish to compare the effects of explanations with and without contextual information. Table 9.2 presents the explanation types we plan to show to participants in the experiment. The Avg style explanation shows users the average rating of the recommended item; Per style explanation presents the distribution of ratings of the recommended item; Simu style explanation presents the average ratings of similar users. Simu, Per, and Avg style explanations are among the 21 explanation styles that [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF] compared in terms of persuasiveness. Since explanations that perform well in one goal may perform poorly in another (trade-off among goals) [START_REF] Tintarev | Explaining recommendations: Design and evaluation[END_REF] and we investigate six different goals, we do not simply select the top-ranking explanation types proposed by [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF]. We selected the top, middle, and end of the ranking list of the 21 explanation styles, namely Simu, Per, and Avg respectively. Simi style explanation simply says the recommended item is similar to the items a participant has interacted with before, which is popular in websites such as Amazon [START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF]; Content style explanation presents the characteristics of recommended items that may be preferred by users, it is widely adopted for the movie, book recommendation [START_REF] Vig | Tagsplanations: explaining recommendations using tags[END_REF] 36 . Context-aware explanation leverages users' contextual information to explain recommendations [START_REF] Sato | Explaining recommendations using contexts[END_REF]. In order that these explanation styles can be compared fairly, they are all in textual forms. 

Results of user study

Given the web-based nature of our questionnaire, we were able to distribute it to researchers both within our laboratory and externally, as well as to students at our university via mailing lists. The questionnaire was available online for a week, allowing participants to respond anonymously. In total, we received 147 responses.

With respect to demographic breakdown, the genders were evenly distributed with almost half of the respondents identifying as male and the other half as female. The majority of participants fell within the age range of 18 to 55 years; over 66% of them had achieved an education level of Bac+5 (equivalent to a master's degree level) or higher. Close to half of the participants were students (ranging from undergraduate to doctoral candidates), while the remainder were either employees of companies or involved in higher education. This distribution is largely due to the fact that our mailing lists primarily consisted of researchers and students. Over half of the participants reported watching movies regularly, indicating a high level of interest in this medium.

In order to analyze the observed differences between the different explanation types, we first applied analysis of variance [START_REF] Tabachnick | Experimental designs using ANOVA[END_REF]. Upon identifying significant differences, we proceeded to employ the Tukey HSD test [START_REF] Abdi | Tukey's honestly significant difference (hsd) test[END_REF] to pinpoint the specific discrepancies. All tests were conducted at a 95% confidence level.

Objective evaluation

In this section, we will present the results of objective evaluation: efficiency, effectiveness, and persuasiveness. Table 9.3 shows the results of these three metrics.

Observations indicate that participants presented with Context-aware explanations tend to take more time to make a decision, with decision-making in our context meaning the assignment of a score (See row Context-aware and column Efficiency (seconds)). While there were no significant differences among the explanation types in terms of r -r , both Content style and Context-aware Table 9.3: Efficiency, effectiveness, and persuasiveness of different types of explanations (the average values). Efficiency is reflected by the time consumed by participants to give a rating (in seconds); effectiveness is reflected by the difference between r and r (as presented in Figure 1), the closer it is to 0 the more effective an explanation is; persuasiveness is also measured by the difference between r and r , r -r > 0 means positive persuasiveness; r -r < 0 means negative persuasiveness. Note that r ∈ [1, 5], r ∈ [1, 5], therefore, r -r ∈ [-4, 4] explanations slightly outperformed others in helping participants estimate the quality of recommendations, as the difference between r and r was closest to zero for these styles. Conversely, Avg and Simi explanation types led users to underestimate the quality of recommendations. The Per and Simu styles were found to be marginally more persuasive than the other styles, suggesting that the presentation of ratings from similar users can enhance persuasiveness.

Subjective evaluation

We now turn to the results of the subjective evaluation, as assessed via a Likert-scale questionnaire. It is important to note that the factors of efficiency, effectiveness, and persuasiveness were also evaluated by directly soliciting feedback from participants. Table 9.4 displays the results for participant-reported efficiency, effectiveness, persuasiveness, satisfaction, trust, and transparency.

In the subjective evaluation, Simi style explanations were perceived as the most efficient, effective, and persuasive. However, this was not mirrored in the objective evaluation (see Table 9.3). In the objective assessment, Avg style explanations were found to be more efficient and persuasive, while Context-aware and Content style explanations proved to be more effective. These results highlight a discrepancy between the actual effects of the explanations and the participants' perceptions. The reasons behind this divergence and strategies to minimize it warrant further investigation. Satisfaction, trust, and transparency are evaluated by directly asking participants. The last 9.4 contain the results of participants-reported satisfaction, trust, and transparency. Simi style explanations achieve the highest level of satisfaction and trust, which shows that participants prefer explanations that compare the present recommendation and the items that they consumed before. Content style explanations provide information about recommendations and help participants understand how the system works. As a result, Content style explanations are perceived to be transparent. Contrary to our hypothesis, context-aware explanations were not perceived as more satisfying or transparent. A potential reason for this could be related to the nature of our user study. Since the contextual situations were randomly generated, they may not have accurately reflected the real situations of the participants when they were responding to the questionnaire. We asked participants to envision themselves in these artificially-created scenarios, which is a non-trivial task. This could also account for why participants took longer to issue a rating when presented with context-aware explanations, as seen in Table 9.3.

Correlation between different metrics

Table 9.5 presents the Spearman Rank Order Correlation of metrics for evaluating Context-aware explanations, it can be observed that these metrics are not independent. For example, in the Context-aware explanation, trust and satisfaction, efficiency and effectiveness are positively correlated. However, transparency and persuasiveness, trust and efficiency are negatively correlated, this leads to the conclusion that it is hard to design explanations that can perform well in all aspects. In order to comprehensively evaluate the qualities of explanations, more metrics should be considered.

Aggregating metrics

The values in Table 9.4 are human perceived, human perception is always fuzzy and the evaluator's opinion by nature comes in linguistic form [START_REF] Zadeh | Computing with words in Information/Intelligent systems 1: Foundations[END_REF], which is the reason why we have specified the meaning of each score when participants respond to the Likert-scale questionnaire, see Figure 9.2. Therefore, the score in our questionnaire can be linked to categorical appraisal grades: "Very poor", "Poor", "Medium", "Good" and "Very good". On the other hand, the metrics are somehow correlated as indicated in Table 9.5, aggregating these metrics by applying the average operation is not realistic. To get a more general evaluation of explanations, we are inspired by the fuzzy synthetic evaluation [START_REF] Lan | Decision support system for rapid prototyping process selection through integration of fuzzy synthetic evaluation and an expert system[END_REF] that provides a fuzzy mapping between each of Figure 9.2: A screenshot of the Likert-scale questionnaire when evaluating the effectiveness of explanations. Participants are indicated that 1 means they think the explanation does not help them make good decision at all while 5 indicates that the explanation help them make good decisions. the evaluation factors (e.g. efficiency, effectiveness, persuasiveness, trust, transparency, and satisfaction in our case) to a set of categorical appraisal grades ("Very poor", "Poor", "Medium", "Good", "Very good" in our case.). For instance, a score such as 3 on a 5-point scale could be classified under both "Medium", "Good" grades. The degree to which the score aligns with each grade can vary, embodying different membership degrees to each grade. This variation depends on the weights attributed to each evaluation factor and the average score given by participants.

Taking an example, one might discern that a score of 3.2 for efficiency could correspond to the fuzzy sets "Medium", "Good" and "Very Good", with respective membership degrees of 0.7, 0.2, and 0.1. Assigning a degree of membership to multiple "fuzzy grades" allows for capturing and preserving more of the inherent uncertainties involved when responding to the questionnaire. We follow the steps given by Zhou and Chan (2017)37 :

• Step 1, determining the set of evaluation factors: evaluation factors can be determined based on the goals of the product evaluation process: F = {f 1 , f 2 , . . . , f s } indicates a set of s factors. In our case, F = {ef f iciency, ef f ectiveness, persuasiveness, trust, transparency, satisf action}.

• Step 2, determining the set of appraisal grades: this set defines the levels of appraisal grades, e.g. V = {v 1 , v 2 , . . . , v p } defines p levels of appraisal grades. In accordance with the linguistic description in the questionnaire, the appraisal grades set is defined as V = {V erypoor, P oor, M edium, Good, V erygood}.

• Step 3, setting the fuzzy mapping matrix: the aim of the evaluation process is to establish a map from set F to set V. For a specific factor f i the fuzzy mapping to the appraisal vector V can be represented by the vector r i = (r i1 , r i2 , . . . , r ik , . . . , r ip ) where p denotes the number of levels of the appraisal grades in Step 2, r ik denotes the fuzzy membership degree of evaluation factor i to grade k. Using the example of efficiency above, r 1 = (0, 0, 0.7, 0.2, 0.1), then the measurement on the evaluation factor "efficiency" has a fuzzy membership of 0.7 in the grade "Medium", a fuzzy membership of 0.2 in the grade "Good" and a fuzzy membership of 0.1 in the grade "Verygood", respectively. Therefore, the size of the fuzzy mapping matrix R is s × p, in our case, the size becomes 6 × 5. Intuitively, we set the r ik as the proportion of participants that have given the score corresponding to the appraisal grade level k in terms of evaluation factor i. Still in the example of efficiency, if 7 out of 10 participants have given a score of 3 then r 13 = 0.7.

• Step 4, determining the weight of each evaluation factor: for a thorough assessment, it's imperative to quantify the relative weight of each evaluation factor on the overall quality. This is particularly relevant as different stakeholders place varying levels of importance on these factors. For instance, service providers, such as online sellers, may place a higher emphasis on the persuasiveness of explanations, whereas users might prioritize the effectiveness of explanations. To this end, the weights can be represented by a vector: W = (w 1 , w 2 , . . . , w s ),

where i=s i=1 w i = 1. To the best of our knowledge, this is the first work that applies fuzzy mapping matrix to aggregate different metrics for evaluating the qualities of explanations. We empirically set the weight of the six metrics the same: W = ( 1 6 , 1 6 , 1 6 , 1 6 , 1 6 , 1 6 )38 .

•

Step 5, getting the overall appraisal result: the final assessment outcome can be computed by considering the relative weights of each evaluation factor. As a result, a singular vector corresponding to the overall evaluation can be expressed as E = (e 1 , e 2 , . . . , e j , . . . , e p ) = W • R, where • is the composition operator. There are typically five types of composition operators [START_REF] Zimmermann | Fuzzy set theory-and its applications[END_REF][START_REF] Lan | Decision support system for rapid prototyping process selection through integration of fuzzy synthetic evaluation and an expert system[END_REF], we have chosen the sum operator:

e j = i=p i=1
w i * r ij . We leave the comparison of the composition operations for future work.

Following the outlined steps, the comprehensive evaluation of the six types of explanations is summarized in Table 9.6. Among the context-free types, the Simi, Content, Per, and Simu classifications fall within the "Good" level, with the Simi type having the highest fuzzy membership. The Avg type is situated within the "Medium" category. These findings align with Table 9.4, where the Simi type scores higher than the other types, barring transparency. Interestingly, despite its fuzzy membership standing at just 0.2857, the Context-aware type falls within the "Very Good" level. We infer that participant evaluations of the Context-aware type could be polarized, given the considerable fuzzy membership for "Very Poor". This discrepancy could arise if the randomly generated contextual situation aligns closely with the participant's real-life situation, leading them to rate this explanation type more favorably.

Discussions

This primary study presents several limits: first, our context-aware explanations were rather simplistic, merely presenting contextual information. They could, in fact, be combined with item features, as we demonstrate in Table 7.2. Second, the contextual situations were randomly generated, therefore, the contextual information might not always align with the participants' real-life situations. Lastly, in relation to argumentative explanations, they were only delivered by showcasing item features, comparable to the toy template in Table 6.2. We did not evaluate interactive explanations (as discussed in Section 6.4.2.2), which permit users to inform RSs when recommendations are inappropriate, nor did we evaluate the contrastive explanations covered in Section 6.4.2.3. Despite these limitations, our user study allows us to derive some valuable insights. First, although context-aware explanations can assist users in better estimating the quality of recommendations, they require more time for users to make a decision. Second, using similar users' ratings to explain recommendations can be persuasive. Third, there may be a discrepancy between the actual effects of explanations and how they are perceived by participants. Lastly, there is an interrelation among the goals of explanations, indicating that it might not be feasible to design explanations that optimize all metrics simultaneously.

Conclusions

In this chapter, we begin by comparing three instantiations of GFGE, as depicted in Algorithm 2. We consider them from three perspectives: Model-intrinsic vs. Post-hoc; Local vs. Global; Modelspecific vs. Model-agnostic. Algorithms 5 (A 3 R in Chapter 6 and CA-FATA in Chapter 7) and 6 (SECE in Chapter 8) are both designed to attribute feature importance during explanation generation, but they employ different paradigms with unique strengths to accommodate various scenarios and recommendation models. Specifically, Algorithm 5 provides model-intrinsic explanations and can handle single or multiple instances, thereby offering localized insights on a case-by-case basis and a more global understanding of the model's behavior. In contrast, Algorithm 6 strictly handles individual instances, offering localized insights into particular case studies without a comprehensive perspective. Despite this, its strength lies in its model-agnostic nature, which does not impose constraints on the model type, thus displaying its broad applicability and flexibility. The choice between these two algorithms ultimately depends on the specific context and requirements of the recommendation model under consideration. Following this, we present the results of a preliminary user study where we compare different explanation types in RSs. Despite some limitations, the user study offers several key insights that can provide guidance for conducting future user studies. In this concluding chapter, we aim to recall and summarize the principal research contributions presented in the preceding chapters of this thesis and also consider potential avenues for further exploration and investigation in this field.

Conclusions

Artificial Intelligence (AI) has seamlessly integrated into daily life, with Recommender Systems (RSs), a subset of AI, serving as pivotal decision-support tools in this digital age. Their influence spans across diverse domains such as medicine and finance, instigating an escalating demand to comprehend the rationale underlying recommendations. The emphasis on explainable RSs, offering justified recommendations, has captivated both industrial and academic spheres aiming to enhance efficiency, transparency, and user satisfaction. Despite the advent of numerous explanation methodologies, a limited scope of research has been devoted to the generality of explainable RSs. This thesis, therefore, navigates through the dimensions of generality and explainability in RSs to foster advancements in this realm.

Upon reviewing existing works on explanations in AI, we have identified several frequently used, yet ill-defined notions, especially interpretability and explainability in the domain of AI [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF]. The same issue exists in the domain of RSs, which is an important branch of AI. The ill definitions of these notions have made comparing and generalizing existing explanation methods challenging. In this regard, the first research question we aim to address is: RQ1, "What are the differences between 'interpretability' and 'explainability' in the context of AI, and more specifically in the context of RSs?" We then clarify RQ2, "Why 'explainability' and 'interpretability' are remarkably demanded in RSs?" In sequence, we arrive at the core research question of this thesis: RQ3, "How to explain recommendations?" Various explanation methods have been proposed in the domain of RSs, however, it remains unclear what the best way is to provide explanations under a given context for a given task [START_REF] Zhou | Evaluating the quality of machine learning explanations: A survey on methods and metrics[END_REF]. This leads us to our final research question: RQ4, "How to evaluate explanations in RSs?"

Overall, this thesis focuses on the topic of developing a General Framework for Generating Explanations (GFGE). Our initial step involves addressing the ambiguity surrounding commonly used terminologies within the field of AI, notably the terms interpretability and explainability, which pose significant challenges to the generality of current explanation generation methods in AI. To overcome this, we employ concepts from knowledge management and propose the Interpret/Explain Schema (IES) in the context of AI, which also applies in the domain of RSs. IES allows distinguishing the two frequently used, yet ill-defined terms. With this, we propose GFGE in AI. This framework seamlessly integrates existing methods for generating explanations. The framework is instantiated under two settings: the model-intrinsic explanation setting and the post-hoc explanation setting. Specifically, under the model-intrinsic explanation setting, we examine two cases: context-free and context-aware. Finally, a primary user study was conducted to explore the influence of contextual information on the impact of explanations within RSs.

IES and GFGE: this contribution addresses RQ1, "What are the differences between 'interpretability' and 'explainability' in the context of AI, and more specifically in the context of RSs?" To resolve the ambiguity of these poorly defined concepts, we expanded our review beyond AI-related literature, as discussions and research on explanations have a rich history predating the rise of AI. By examining works from philosophy, social science, and cognitive science [START_REF] Dennett | The intentional stance[END_REF][START_REF] Lewis | Causal explanation[END_REF][START_REF] Lipton | Contrastive explanation[END_REF], we noted that the process of explanation typically encompasses a knowledge transfer. Consequently, we incorporated concepts from knowledge management [START_REF] Despres | Knowledge management (s)[END_REF]Chauvel, 1999, Arduin et al., 2015): sense-giving and sense-reading [START_REF] Polanyi | Sense-giving and sense-reading[END_REF]. With this, we have proposed the IES in Section 4.3, Chapter 4, which helps to define and disambiguate "interpretability" and "explainability". Under IES, developers interpret information from data, model and outputs of the model (sense-reading), then model developers endow a sense to this information (sense-giving) and convey it to users. Users receive this information, interpret it and get a meaning, thus understanding the output of the model. System developers, given their role in designing the system, are typically interested in every component of an AI system. They are expected to understand the function and significance of each part. Conversely, plain users are predominantly concerned with understanding why certain results are produced. The interpretability of data, which focuses on unraveling the information embedded in the data, caters mainly to developers. Similarly, the interpretability of models, addressing the internal workings of models, is primarily targeted at developers. When the internal mechanics of models are unclear, post-hoc interpretability becomes crucial, also aimed at developers. The interpretability of explanations is mainly directed at users, focusing on the quality of explanations. Therefore, the user's ability to interpret an explanation could reflect the quality of the explanation itself. Explainability of model results, chiefly targeting users, addresses the rationale behind specific results. Building on IES, we proposed GFGE (outlined in Algorithm 2, Section 4.3.4) for generating explanations in AI. This framework modularizes the process of generating explanations in AI, which may assist researchers in conceptualizing their explanatory approaches more effectively. The framework successfully integrates existing works related to explanations in AI, including those that develop interpretable models with clear internal mechanisms, as well as those that generate post-hoc explanations without clarifying models' internal mechanisms. Notably, the framework outlined in Algorithm 2 is generic, placing no specific constraints on data preprocessing methods, the results to be explained, or the explanation method. Rather, these are considered parameters of Algorithm 2, which can be instantiated in various ways to modify how the model's results are explained.

Drives for conducting research related to explanations in AI: in Section 2.4, we categorize these desiderata into three driving forces: commercial drive, regulatory drive, and technical drive [START_REF] Zhong | Ai: To interpret or to explain?[END_REF]. In Section 3.7, we have further summarized the goals of explanations in RSs: promoting transparency, effectiveness, efficiency, persuasiveness, trust, satisfaction, and scrutability [START_REF] Tintarev | Beyond explaining single item recommendations[END_REF]. Ultimately, these considerations also address the second research question: RQ2 "Why 'explainability' and 'interpretability' are remarkably demanded in RSs?" Model-intrinsic instantiations: this contribution addresses RQ3.1, "How to build transparent models that can explain recommendations while ensuring the accuracy of recommendations?" To illustrate the applicability of GFGE, we first instantiate it within a modelintrinsic explanation setting. Consequently, we have proposed Attribute-Aware Argumentative Recommender (A 3 R) in Chapter 6. Under A 3 R, the rating prediction is mapped into Tripolar Argumentation Frameworks (TAFs) tailored to each user-item interaction: items' features are regarded as arguments that may support, attack or neutralize the recommendations of items; users' ratings towards determine the polarity and strengths of arguments. Notably, each step of A 3 R has explicit semantics, signifying the decomposable nature of A 3 R [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF], or what can be otherwise described as intelligible [START_REF] Lou | Intelligible models for classification and regression[END_REF]. Our experiments on four datasets show that A 3 R achieves competitive performances compared with Factorization Machines [START_REF] Rendle | Factorization machines[END_REF], and largely improves the prediction accuracy compared with the existing argumentation-based model [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF][START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. Recognizing the variability of users' preferences across different contexts, we developed Context-Aware Feature Attribution Through Argumentation (CA-FATA) in Chapter 7, which extends A 3 R by leveraging users' contexts. It generates unique user representations under target contextual situations, implying that user ratings towards features are also contextaware. Accordingly, the TAF adapts to users' contexts. Our experiments using two real-world datasets demonstrate that CA-FATA outperforms several strong context-aware baselines that employ neural networks. Similar to A 3 R, CA-FATA shows considerable improvement over the existing argumentation-based model. Furthermore, theoretical analyses indicate that the strength function for argumentation under A 3 R and CA-FATA satisfies two desirable properties under AFs: weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]. These properties enable us to identify at least three applications of A 3 R and CA-FATA: (1) simplified explanation templates for recommending and not recommending items; (2) interactive explanations allowing RSs to adapt recommendations based on users' real-time feedback; and (3) contrastive explanations that compare recommended and non-recommended items in terms of item features.

Post-hoc explanation instantiation: this contribution addresses RQ3.2, "How to explain existing complex RSs using post-hoc explanation techniques while mitigating the limitations of such techniques?" In the realm of post-hoc explanation setting, we instantiate GFGE through the introduction of the Shap-Enhanced Counterfactual Explanation (SECE) in Chapter 8. SECE validates the important features returned by SHAP via counterfactual reasoning, thus generating counterfactual explanations. SECE can be applied to explain any recommender model since we do not make any assumption on the internal mechanism of recommender models. an improvement could be setting a threshold: investigating up to a certain number of features separately, if no counterfactual explanation is found, then starting to modify more than one feature as we do in Algorithm 4.

On evaluating explanations in RSs: Chapter 9 presents the results of a primary user study that compares context-aware and context-free explanations in RSs, which offer some insights for conducting future user studies. In this user study, we have adopted a within-subject design where participants are required to evaluate several types of explanations, this requires a longer time for participants to answer all the questions and may reduce participants' willingness to respond. A between-subject design can be envisaged to reduce the time needed, which will also require a larger pool of participants. Furthermore, it would be interesting to compare more types of explanations such as contrastive explanations and interactive explanations we detailed in Chapter 6.

The aforementioned perspectives represent a short-term view. In the following section, we discuss how our work relates to other contemporary research topics in RSs from a long-term perspective.

Relations to other research topics in RSs

In this thesis, one of our focuses is on the explainability in RSs. In fact, our work also relates to other hot research topics in RSs, including fairness, robustness, and audibility (accountability) in RSs. In the following, we discuss how our work relates to these topics.

Fairness through explainability: fairness in RSs, an emerging field of research, aims to ensure that the system's recommendations do not inadvertently favor specific groups of users, items, or providers due to inherent biases in the data, model, or algorithm [START_REF] Wang | A survey on the fairness of recommender systems[END_REF]. Explanations can provide users with a clearer understanding of the underlying basis of recommendations, potentially exposing any inherent system biases. Such transparency can bolster user trust and afford users the opportunity to refine their interactions with the system to better suit their preferences. In Section 6.4.2.2, we have shown that A 3 R (also CA-FATA) allows users to tell the system when the recommendations are not appropriate: users may indicate that they actually do not like a feature or simply do not care about a feature type (this can be viewed as a potential bias), RS can make corresponding adjustments. This is just an empirical example, we plan to further quantify the fairness offered by A 3 R and CA-FATA. On the other hand, SECE does not make any assumptions about the models, however, it helps to identify the important features that determine a recommendation, which may include biased features.

Robustness through explainability: robustness in RSs pertains to the system's resilience in maintaining its performance, reliability, and integrity in the face of adversarial or malicious activities such as data poisoning or false ratings [START_REF] Mobasher | Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness[END_REF]. In other words, a robust RS can generate reliable recommendations despite the presence of noise, anomalies, or intentional manipulation in the data. Therefore, the robustness of an RS is an intrinsic characteristic to ensure its normal operation, understanding the reasons behind a recommendation may help to debug a model when attacked, especially when the system does not behave as expected (Doshi-Velez and Kim, 2017). There have been some works that show empirically that robustness is positively correlated to explainability in AI systems [START_REF] Noack | An empirical study on the relation between network interpretability and adversarial robustness[END_REF][START_REF] Etmann | On the connection between adversarial robustness and saliency map interpretability[END_REF]. Therefore, it is worth investigating whether A 3 R and CA-FATA can still provide accurate recommendations and explain such recommendations when faced with malicious attacks. In SECE, we apply SHAP for selecting important features, these features are further validated through counterfactual reasoning. We plan to study whether SECE may help to detect malicious attacks, e.g. a sudden change of important features, etc. Auditability (Accountability) through explainability: accountability typically encompasses three dimensions: responsibility, answerability, and sanctionability [START_REF] Loi | Towards accountability in the use of artificial intelligence for public administrations[END_REF]. Auditability aims to scrutinize and understand harmful issues in AI systems [START_REF] Bandy | Problematic machine behavior: A systematic literature review of algorithm audits[END_REF]. With rising interest in these topics due to regulations like the General Data Protection Regulation (GDPR) [START_REF] Voigt | The eu general data protection regulation (gdpr). A Practical Guide[END_REF], understanding the reasoning process behind recommendations becomes critical. It can help determine compliance with regulations and attribute responsibility when harm results from RSs (e.g., in medical applications). However, existing works on auditability or accountability rarely make this connection with explainability, suggesting a promising future research direction.

Additional Promising Perspectives: the above discussions focus on explainable recommendations for individual users. However, during the course of my Ph.D., I also applied the concept of explainable recommendations to public scenarios, specifically in crisis management. In our work (Le Ngoc et al., 2023a, ?), we explored a constraint-based RS to distribute civilian vehicles to rescue points during floods39 . In another work [START_REF] Ngoc | Corec-cri: How collaborative and social technologies can help to contextualize crises?[END_REF], we explore how collaborative and social computing technologies help to contextualize crises. Under such scenarios, high-stakes decisions necessitate clarity for decision-makers about how recommendations (i.e., the distribution plan of vehicles) are made. Furthermore, fairness (how to equitably distribute vehicles to different danger zones?), robustness (how to create a resilient RS capable of handling various emergencies?), and auditability (how to define the responsibility of stakeholders?) also merit discussion. Thus, the concept of explainability in RSs has broader applicability, including in the realm of public recommendations.

List of publications

The publications that are mentioned in this thesis are the following:

• Zhong, J. and [START_REF] Zhong | Ai: To interpret or to explain?[END_REF]. Ai: To interpret or to explain? In Congrès Inforsid(INFormatique des ORganisations et Systèmes d'Information et de Décision). This paper mainly contributes to Chapter 4, where we try to disambiguate the "interpretability" and "explainability", propose IES and GFGE in AI.

• Zhong, J. and Negre, E. (2022e). Towards improving user-recommender systems interactions.

In 2022 IEEE/SICE International Symposium on System Integration (SII), pages 816-820. IEEE. This paper contributes to Section 3.7 in Chapter 3 and Section 9.2 in Chapter 9, where we discuss methods for evaluating explanations in RSs and how to generate context-aware explanations.

• Zhong, J. and Negre, E. (2022a). A 3 R: Argumentative explanations for recommendations. In 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pages 1-9. IEEE. This paper mainly contributes to Chapter 6 where we present A 3 R, an instantiation of Algorithm 2 under the model-intrinsic explanation setting.

• [START_REF] Zhong | Context-aware feature attribution through argumentation[END_REF]. Context-aware feature attribution through argumentation. Accepted by the CARS Workshop at Recsys 2023. This paper contributes to Chapter 7, where we present CA-FATA, an extension of A 3 R.

• Zhong, J. and Negre, E. (2022c). Shap-enhanced counterfactual explanations for recommendations. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 1365-1372. This paper contributes to Chapter 8, where we present SECE, an instantiation of Algorithm 2 under the post-hoc explanation setting. The modification we made is mainly on Step 3, we believe that the representation of a target contextual situation should be personalized to select a more relevant local dataset and generate more accurate recommendations. Therefore, instead of aggregating or concatenating the representation of contextual conditions to represent a target contextual situation, we represent a target contextual situation by directly using the contextual conditions that occur in this contextual situation, in the following of this paper we call this method Relevance. For example, the target contextual situation for a user Mike is CS = (DaytypeW eekday = 1, CompanionF riends = 1, M oodHappy = 1) and we suppose that according to his characteristic information (e.g. sex, age) he is in cluster2. By referring to Table A.2, contextual condition "DaytypeWeekday" is represented by a vector w DaytypeW eekday = (0.18, -0.13, -0.54), contextual condition "CompanionFriends" is represented by a vector w CompanionF riends = (0.51, 0.45, 0.12), contextual condition "MoodHappy" is represented by a vector w M oodHappy = (0.45, 0.67, 0.65).

• If the Aggregation method is adopted, according to Equation A.2, then the representation of this target contextual situation will be w CS-Agg = ( 0.18+0.51+0.45 3 , -0.13+0.45+0.67 3 , -0.54+0.12+0.65

3 ) = (0.38, 0.33, 0.08)

• If the Concatenation method is adopted then w DaytypeW eekday , w CompanionF riends and w M oodHappy are simply concatenated to represent this target contextual situation, the result will be w CS-Con = (0.18, -0.13, -0.54, 0.51, 0.45, 0.12, 0.45, 0.67, 0.65)

• If the Relevance method is adopted, the PCC between "DaytypeWeekday" and ratings for cluster2 is -0.13; the PCC between "CompanionFriends" and ratings for cluster2 is 0.45; the PCC between "MoodHappy" and ratings for cluster2 is 0.67, then the representation of this target contextual situation will be w CS-Rel = (-0.13, 0.45, 0.67).

To summarize, the black-box model we propose here follows the pre-filtering principle.
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 7 Figure 7.3: A case study on Frappé dataset that shows the clustering of users according to the contextual factor importance learned by CA-F AT A. The histogram shows the average importance of each contextual factor in the cluster.
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  In Chapter 8, we instantiate GFGE in the post-hoc explanation scenario, where black-box models are retained and post-hoc explanations are generated. More specifically, we leverage SHAP to select possible candidates of counterfactual explanations • In Chapter 9, we compare the two explanation scenarios and present the result of a user study that evaluates different types of explanations.• In Chapter 10, we conclude the thesis, propose avenues for future work, and list the publications during the Ph.D. program.
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		.1: Potential goals of explanations in RSs
	Aims	Descriptions
	Efficiency	Help users make decisions more quickly
	Effectiveness	Helps users make better decisions
	Persuasiveness	Change users' behaviours
	Trust	Increase user's confidence in the system
	Transparency	Help users understand how the system works
	Satisfaction	

• Local vs Global: local

  

	explanations offer detailed insights into individual instances or pre-
	dictions, allowing users to comprehend the decision-making process behind specific AI pre-
	dictions. Notably, techniques such as counterfactual explanations (Wachter et al., 2017)
	clarify what would need to change in the input for the model's prediction to alter, thereby
	highlighting important factors the model considered. Similarly, LIME (Local Interpretable
	Model-agnostic Explanations) (Ribeiro et al., 2016) generates localized linear approximations
	of the model's decision boundary, and SHAP (SHapley Additive exPlanations) (Lundberg
	and Lee, 2017) provides instance-level feature importance based on cooperative game theory,
	both return features contributing to a specific prediction. On the other hand, global explana-
	tions aim to interpret a model's overall behavior, providing a holistic understanding of how
	the model makes predictions across all instances. DeepLIFT (Deep Learning Important Fea-
	Tures)

  is one such technique that generates explanations by approximating the model locally with an interpretable model. It does not rely on the internal mechanics of the model, making it a flexible tool for various types of models. SHAP[START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]) also falls under this category. It explains the output of any model as a sum of the effects each feature has on the prediction, thus making the model output interpretable. However, both model-specific and model-agnostic techniques have their strengths and limitations. Model-specific techniques can provide deep insights into specific types of models but are not universally applicable. Model-agnostic techniques, on the other hand, offer wide applicability but may not delve as deeply into model-specific structures.
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	.1: Possible results of top-K recommendations
		Recommended	Not recommended
	Relevant	True positive (tp) False positive (fp)
	Irrelevant False negative (fn) True negative (tn)

Table 3 .

 3 2: Evaluation approaches for explanations in RSs

Table 4 .

 4 1: Key notions and their target audience

	Notions	Target audience
	Interpretability of data	Mainly developers
	Explainability of model results	Developers and plain users
	Interpretability of model	Mainly developers
	Post-hoc interpretability of model	Mainly developers
	Interpretability of explanations	Mainly users
	techniques.	

Table 5 .

 5 1: The key notions in Chapter 5

	Notion	Description
	R + , R -, R 0	Support, attack and neutral relations among arguments
	R -(a,b)	

Table 5

 5 It should be noted that for plain users, it is non-trivial to understand the outputs returned by LIME and SHAP since background mathematical knowledge is required.

	.2: Comparison between LIME and SHAP
	Local or Global	Stability concerns Visualization
	SHAP Local and Global No	Yes
	LIME Local	Yes	Yes
	different explainers (Lundberg and Lee, 2017) such as TreeExplainers and DeepExplainers. Basi-
	cally, the KernelShap can be applied to interpret any model; (3) Both LIME and SHAP provide
	intuitive visualization which shows the contribution of each factor, helping developers understand
	how complex models work.		

Table 6 .

 6 1: The key notions in Chapter 6

	Notion	Description
	π t u	The importance of type t to user u
	t i	The feature types of item i
	at i	The features of item i
	at t i P at u	The features of item i of type t (e.g. A movie may have several genres)

Table 6 .

 6 2: Several possible explanation scenarios of A 3 R, SR denotes "strong recommendation", W R denotes "weak recommendation", N R "not recommended".

	Scenario	Content	Example
	SR	at 1 = arg max at∈at i at 2 = arg max	π t u * P at u π t u * P at u	We recommend you this item because you like at 1 and at 2
		at∈at i \at 1		
	W R	at 1 = arg max at∈at i at 2 = arg min	π t u * P at u π t u * P at u	We recommend you this item because you like at 1 although you dislike at 2
		at∈at i \at 1		
	N R	at 1 = arg min at∈at i at 2 = arg min	π t u * P at u π t u * P at u	We do not recommend you this item because you dislike at 1 and at 2
		at∈at i \at 1		

  Explanation ← "We recommend i rec instead of i con because you prefer at pro and i rec is at pro while i con is at pro .

	at∈at irec	π t u * P at u ;	The feature that contributes the most to recommending i rec
	3 t pro ← type of at pro	
	4 i con ← arg min	r(u,i)	
	i∈I\{Iu,irec}	
	5 at con ← arg min icon at∈at tpro	π t u * P at u	
	6		

2 at pro ← arg max

Table 6 .

 6 3: Comparison of M F, F M, N F M, AF M, A-I, A 3 R, indicating Matrix Factorization, Factorization Machine, Neural Factorization Machine, Attentional Factorization Machines, Neural Matrix Factorization, Aspect-Item and Attribute-Aware Argumentative Recommender, respectively.

		User-item interactions Item features Intrinsic explanations
	M F	Yes	No	No
	F M	Yes	Yes	No
	N F M	Yes	Yes	No
	AF M	Yes	Yes	No
	N euM F	Yes	Yes	No
	A -I	Yes	Yes	Yes
	A 3 R	Yes	Yes	Yes

Table 6 .

 6 4: Detailed statistics of the datasets applied in this chapter, | U |, | I |, | F eatures |, | T |, | Ratings | indicates the number of user, items, features, feature types and ratings, respectively.

		| U | | I | | F eatures | | T | | Ratings | Sparsity (% )
	Netflix	5128 528	1154	3	193081	99.26
	MovieLens (Dev) 610	9533 22428	3	100378	98.27
	MovieLens 100k	943	1239 4328	3	86572	92.59
	DBook2014	5576 2680 1712	2	65961	94.35

Table 6 .

 6 5: Rating prediction on four datasets. NB indicates neighborhood-based methods, FB indicates factorization-based methods, AB indicates argumentation-based methods.Table 6.6: Comparison between A 3 R and baselines on precision, recall and f1 score. NB indicates neighborhood-based methods, FB indicates factorization-based methods, AB indicates argumentation-based methods.

			Model		Netflix	MovieLens (Dev) MovieLens 100k DBook2014	
					RMSE MAE RMSE	MAE	RMSE	MAE	RMSE MAE	
		NB	KN N		1.07	0.79	1.01	0.76	1.15	0.84		1.05	0.86	
			Vanilla MF	1.01	0.78	0.99	0.75	1.07	0.78		1.02	0.81	
			N M F		1.06	0.76	1.01	0.75	1.10	0.81		1.03	0.80	
		FB	F M N F M		0.98 0.95	0.76 0.73	0.93 0.91	0.74 0.73	1.01 0.98	0.80 0.79		1.02 0.98	0.81 0.81	
			AF M		0.93	0.72	0.90	0.73	0.96	0.78		0.95	0.79	
			N euM F	0.93	0.73	0.89	0.67	0.96	0.76		0.94	0.73	
		AB	A -I		1.19	0.90	1.19	0.90	1.16	0.91		1.28	1.04	
		Ours	A 3 R		0.95	0.74	0.92	0.71	1.01	0.79		1.01	0.80	
			Over A -I(%)	20.17	17.78	22.68	21.11	12.93	13.18	21.09	23.07	
		Model	Netflix		MovieLens (Dev)		MovieLens 100k			DBook2014
			Precision	Recall	f1	Precision	Recall	f1	Precision	Recall	f1	Precision	Recall	f1
	NB	KN N	0.82	0.99	0.91	0.84	0.94	0.89	0.85	0.97	0.91	0.92		0.98	0.95
		Vanilla MF	0.83	0.98	0.90	0.86	0.94	0.90	0.85	0.99	0.92	0.92		0.99	0.95
		N M F	0.85	0.93	0.89	0.86	0.90	0.88	0.86	0.95	0.90	0.93		0.96	0.94
	FB	F M N F M	0.86 0.88	0.80 0.83	0.83 0.86	0.85 0.87	0.88 0.90	0.86 0.88	0.84 0.82	0.90 0.91	0.87 0.86	0.91 0.93		0.93 0.90	0.92 0.92
		AF M	0.89	0. 85	0.87	0.88	0.90	0.89	0.90	0.86	0.87	0.92		0.94	0.93
		N euM F	0.88	0.79	0.83	0.87	0.90	0.88	0.91	0.86	0.88	0.93		0.94	0.93
	AB	A -I	0.84	0.87	0.85	0.84	0.85	0.85	0.86	0.93	0.89	0.92		0.91	0.91
	Ours	A 3 R	0.87	0.80	0.84	0.90	0.81	0.86	0.88	0.86	0.87	0.94	0.87	0.90

Table 6 .

 6 7: Rating prediction on four datasets.

	Model	Netflix	MovieLens (Dev) MovieLens 100k	DBook2014
		RMSE MAE RMSE	MAE	RMSE MAE RMSE MAE
	AV G -A 3 R	0.99	0.76	0.97	0.72	1.09	0.81	1.06	0.85
	A 3 R	0.95	0.74	0.92	0.71	1.01	0.79	1.01	0.80

Table 7 .

 7 1: The key notions in Chapter 7

	Notion	Description
	cf	A contextual factor
	C	The contextual factors to characterize the situation of users
	cd	A contextual condition
	π cf ucs	

Table 7 .

 7 2: Three explanation templates for user-item interaction under contextual situation cs = (cd 1 , cd 2 , cd 3 , . . . ), SR denotes "strong recommendation", W R denotes "weak recommendation", N R "not recommended".

	Scenario	Content		Example
	SR	at 1 = arg max at∈at i at 2 = arg max	P at ucs P at ucs	When cd, we recommend you this item because you like at 1 and at 2 .
		at∈at i \at 1		
		cd = arg max cd∈cs	π cf u	
	W R	at 1 = arg max at∈at i at 2 = arg min	P at ucs P at ucs	When cd, we recommend you this item because you like at 1 although you
		at∈at i \at 1		
		cd = arg max cd∈cs	π cf u	dislike at 2 .
	N R	at 1 = arg min at∈at i at 2 = arg min	P at ucs P at ucs	When cd, we do not recommend you this item because you dislike at 1 and at 2 .
		at∈at i \at 1		
		cd = arg max cd∈cs	π cf u	

Table 7 .

 7 3: Comparison of A -I, A 3 R and Ca-FATA

		Features type importance	AFs	Context-aware
	A -I	Set empirically	User-tailored	No
	A 3 R	Data-driven	Interaction-tailored	No
	CA-FATA	Data-driven	Interaction-tailored	Yes

Table 7
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	.4: Basic statistics of the two datasets
	Dataset	Frappé	Yelp
	#users	585	9 976
	#items	3 923	52 298
	#interactions	94 716 904 648
	sparsity (users × items) 94.47% 99.84%
	#Contextual factors	7	8
	#Feature types	5	3
	Scale	0-4.46	1-5

Table 7 .

 7 5: Comparison between CA-FATA and baselines on RMSE and MAE, the best are in bold, and the second best are underlined.

	Model		Yelp	Frappé
			RMSE MAE	RMSE MAE
	Context-free	MF NeuMF	1.1809 1.1710	0.9446 0.8815	0.8761 0.6841	0.6470 0.5207
		FM	1.1703	0.9412	0.7067	0.5796
		CAMF-C	1.1693	0.9241	0.7283	0.5727
	Context-aware	LCM	1.1687	0.9294	0.6952	0.5396
		ECAM-NeuMF 1.1098	0.8636	0.5599	0.4273
	Argumentation-based	A-I	1.3978	1.1205	1.1711	0.9848
	Our propositions	CA-FATA	1.1033 0.8519 0.5154 0.3910
	utilized to optimize parameters of CA-FATA:				

Table 7 .

 7 6: Comparison between CA-FATA and baselines on precision, recall and f1 score.

	Model		Yelp			Frappé	
		Precision Recall	f1	Precision Recall	f1
	MF	0.8346	0.8907	0.8617	0.6889	0.7713	0.7278
	NeuMF	0.8962	0.9522	0.9234	0.6882	0.8151	0.7463
	FM	0.8654	0.9028	0.8837	0.6996	0.7896	0.7337
	CAMF-C	0.8701	0.9176	0.8932	0.6913	0.7804	0.7331
	LCM	0.8693	0.9207	0.8942	0.6894	0.7769	0.7305
	ECAM-NeuMF	0.8849	0.9827 0.9313	0.7774	0.8124	0.7945
	A-I	0.8249	0.8828	0.8528	0.6731	0.7658	0.7164
	CA-FATA	0.8888	0.9754	0.9303	0.8043 0.8336 0.8182
	of the feature attribution procedure. This added interpretability is a crucial advantage compared
	to other baseline models.						

Table 7 .

 7 7: Performances of the variants of CA-FATA

	Model	Yelp	Frappé
		RMSE	MAE	RMSE	MAE
	FATA	1.1434	0.9059	0.6950	0.5439
	AVG-FATA	1.1611	0.9314	0.6970	0.5461
	CA-FATA	1.1033 0.8519 0.5154 0.3910
	AVG-CA-FATA 1.1035	0.8637	0.5254	0.4025

Table 8

 8 An interpretable linear model x = {x 1 , x 2 , x 3 . . . x p } An instance to be explained p

		.1: The key notions in this chapter
	Symbol	Meaning
	λ	A black-box model to be explained
	l	

Table 8

 8 

	.2: Details of selected contextual factors in CoMoDa
	Context factors	Contextual conditions
	Physical wellness Healthy, Ill
	Mood	Positive, Neutral, Negative
	Social	Alone, Partner, Friends, Colleagues, Parents
		Public, Family

Table 8 .

 8 3: Time consumed to search for list-level and instance-level counterfactual explanations (in

	seconds)						
			Instance-level			List-level
	Top-1 Top-2 Top-3 Top-4 Top-5 100% 90% 70% 50%
	S-method 4.82	4.68	4.60	4.56	4.35	6.82 4.97 4.29 4.20
	N-method 3.69	3.51	3.42	2.84	1.99	7.07	2.86 1.68 1.54
	R-method 6.49	5.77	4.54	4.01	3.91	12.21 9.32 5.34 4.67
	H-method 3.73	3.64	3.56	2.79	2.20	7.35	3.13 1.94 1.81
	Table 8.4: Percentage of recommendations explained
			Instance-level			List-level
	Top-1 Top-2 Top-3 Top-4 Top-5 100% 90% 70% 50%
	S-method 98%	98%	98%	98%	98%	99%	99% 97% 96%
	N-method 95%	94%	94%	94%	94%	99%	97% 92% 92%
	R-method 92%	91%	90%	90%	90%	94%	93% 92% 91%
	H-method 95%	95%	95%	95%	95%	94%	93% 94% 94%

•

  Zhong, J. and Negre, E. (2022). Context-aware explanations in recommender systems. In International Conference on Deep Learning, Artificial Intelligence and Robotics, pages 76-85. Springer.•Zhong, J. and Negre, E. (2022). Towards better representation of context into recommender systems. International Journal of Knowledge-Based Organizations (IJKBO), 12(2):1-12.

Table 9 .

 9 1: Comparison of A 3 R, CA-FATA and SECE Model-intrinsic vs Post-hoc Local vs Global Model-specific vs Model-agnostic

	A 3 R	Model-intrinsic	Local and Global	Model-specific
	CA-FATA	Model-intrinsic	Local and Global	Model-specific
	SECE	Post-hoc	Local	Model-agnostic

Table 9
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		.2: Explanations to be presented.
	Name	Example
	Avg	The average rating of this movie is 3.8
	Per	80 percent of users rate this movie more than 4
	Simu	The average rating of users whose preferences are similar to yours is 4.1
	Simi	This movie is similar to movies you watched before
	Content	This is a movie directed (acted) by
	Context-	The

system suppose that you would like to watch this movie aware when it shines, healthy you are at home and in good moods

  

Table 9 .

 9 . 4: Subjective evaluation of efficiency, effectiveness, persuasiveness, satisfaction, trust, and transparency. Note that these are the results of the Likert-scale questionnaire, 1-5; the values in the table are the average of the participants.

			Efficiency (seconds) Effectiveness and persuasiveness	
	Avg		4.78		0.30		
	Content	5.37		-0.02		
	Context-aware	8.25		-0.01		
	Per		5.17		0.11		
	Simi		5.99		-0.18		
	Simu		6.89		0.10		
	Efficiency Effectiveness Persuasiveness Satisfaction Trust Transparency
	Avg	3.16	2.98	3.01	3.00	2.85	3.26
	Content	3.25	3.12	3.20	3.19	3.28	3.46
	Context-aware	2.96	3.07	3.24	3.21	3.14	3.26
	Per	3.32	3.26	3.18	3.11	3.04	3.12
	Simi	3.72	3.47	3.52	3.50	3.53	3.42
	Simu	3.49	3.33	3.30	3.36	3.30	3.14

Table 9 .

 9 5: Spearman Rank Order Correlation of metrics in Context-aware explanations. The correlation is between -1 and +1, large positive values indicate that two metrics are positively correlated, and vice versa.

		Efficiency Effectiveness Persuasiveness Satisfaction	Trust	Transparency
	Efficiency	1.0***	0.45***	0.05	-0.17	-0.15	0.01
	Effectiveness	0.45***	1.0***	0.01	-0.08	-0.0	-0.1
	Persuasiveness	0.05	0.01	1.0***	0.04	-0.03	-0.17
	Satisfaction	-0.17	-0.08	0.04	1.0***	0.82***	-0.04
	Trust	-0.15	-0.0	-0.03	0.82***	1.0***	-0.11
	Transparency	0.01	-0.1	-0.17	-0.04	-0.11	1.0***
	three columns in Table					

Table 9 .

 9 6: Overall evaluation of explanation types. Note that, for each type, the largest fuzzy membership is in bold.

		Overall evaluation
	Avg	(0.1054,0.1530,0.3979,0.2176,0.1258)
	Content	(0.0544,0.1632,0.3197,0.3367,0.1258)
	Context-aware (0.1938,0.1667,0.1530,0.2006,0.2857)
	Per	(0.0748,0.1598.0.3299,0.3197,0.1156)
	Simi	(0.0442,0.1292,0.2142,0.4217,0.1904)
	Simu	(0.0714,0.1292,0.3027,0.3537,0.1428)

  • Zhong, J. and Negre, E. (2022b). Context-aware explanations in recommender systems. In International Conference on Deep Learning, Artificial Intelligence and Robotics, pages 76-85. Springer. This paper contributes Section 9.2 in Chapter 9, where we present the results of the primary user study. • Zhong, J. and Negre, E. (2022d). Towards better representation of context into recommender systems. International Journal of Knowledge-Based Organizations (IJKBO), 12(2):1-12. This paper contributes to Appendix A, where we present the detail of a black-box recommender model used in Chapter 8 and 9. • Le Ngoc, L., Zhong, J., Negre, E., and Abel, M.-H. Constraint-based recommender system for crisis management simulations. In The 56th Hawaii International Conference on System Sciences, pages 1778-1789. In this paper, we develop a constraint-based recommender system that can be used for recommending civil vehicles to impacted areas during crisis management, which is mentioned in Chapter 10 where we discuss promising avenues for future work. • Le Ngoc, L., Zhong, J., Negre, E., and Abel, M.-H. (2023b). Corec-cri: How collaborative and social technologies can help to contextualize crises? To appear in SMC 2023. In this paper, we investigate how collaborative and social computing technologies help to contextualize crises, including identifying impacted areas and real-time needs, which are mentioned in future work. • J. Zhong, L. L. Ngoc, E. Negre, and M.-H. Abel, "Ontology-based crisis simulation system for population sheltering management," SIMULATION, p. 00 375 497 231 214 563, 2023. This paper is an extended version of Le Ngoc et al. (2023a), we further explore how ontology-based modeling benefits crisis management and how the evacuation process can be simulated, which are mentioned in future work. Table A.2: Examples of representation of contextual conditions (User-based and user clustered)

	(Step 1)			
		Cluster1 Cluster2 Cluster3
	DaytypeWeekday	0.18	-0.13	-0.54
	DaytypeWeekend	0.45	0.56	0.62
	CompanionFamily	0.67	0.12	-0.34
	CompanionFriends	0.51	0.45	0.12
	CompanionAlone	-0.18	-0.34	0.33
	MoodHappy	0.45	0.67	0.65
	MoodDisappointed	-0.45	-0.32	-0.31
	MoodAngry	-0.24	-0.34	-0.12

A complex and integrated set of components designed to perform tasks or solve problems using AI techniques. It typically consists of three main components: input data, a model or algorithm, and the resulting output or decision.

https://www.darpa.mil/program/explainable-artificial-intelligence

Although causality is crucial in explanation, the analysis of causality lies outside the scope of this thesis.

http://www.jd.com

https://www.merriam-webster.com/dictionary/interpret

https://www.merriam-webster.com/dictionary/explain

In this thesis, our main emphasis is on explanations targeted at non-expert users.

The meaning of a data point varies across different domains. For instance, in the realm of RSs, a data point refers to a user-item interaction.

Note that the "attribute" here is the same as the "feature" in the following when we proposed A 3 R we used the term "attribute". Then we realize that A 3 R actually formulates the feature attribution in an argumentative way.

The explanations generated may not be aligned with the mechanisms of RSs.79

Note that other functions may be adopted, but for simplicity, we adopt the inner product.

Note that if r(u,i) < 0 then the smaller r(u,i) is, the stronger argument "not recommending item i" is

Semantically, users u prefers feature at

The codes for data pre-processing are available on https://github.com/JinfengZh/a3r

https://www.netflixprize.com/

https://2014.eswc-conferences.org/important-dates/call-RecSys.html

https://www.dbpedia.org/

https://www.goodreads.com/

https://github.com/JinfengZh/a3r

Note that other functions (e.g. MLP) may be adopted, but for simplicity, we adopt the inner product.

Note that other aggregation methods such as concatenation are also possible but more parameters are induced. We leave this exploration for future work.

Note that if r(u,i) < 0 then the smaller r(u,i) is, the stronger argument "not recommending item i" is

Semantically, users u prefers feature at

The codes for data pre-processing are available on https://github.com/JinfengZh/ca-fata

https://www.yelp.com/dataset

For detail please refer to https://github.com/CLArg-group/KR2020-Aspect-Item-Recommender-System.

Access to source code is provided in https://github.com/JinfengZh/ca-fata

Since this chapter instantiates Algorithm 2 in Section 4.3.4 on Page 73 in the post-hoc setting, we do not make any assumptions on the recommender model.

Note that this chapter focuses on the post-hoc explanation scenario, therefore, models are treated as a black box. More details about the model we propose[START_REF] Zhong | Towards better representation of context into recommender systems[END_REF] will be provided in Appendix A.

Within the CA-FATA framework, users are represented by vectors which quantify the importance of different contextual factors.

For example, we have not expanded the concepts of A 3 R and CA-FATA to accommodate sequential recommendations.

Here is a demo that shows the procedure of user study: https://drive.google.com/drive/folders/ 1cYiJ8gLPYlMZu4k41gIBqnE2HytbK3KL?usp=sharing

In fact, the content-based explanation also adheres to the argumentative spirit, closely resembling the toy template in Table6.2

In the paper, the authors propose a fuzzy comprehensive evaluation method to determine product usability.

Note that the weight could be set differently according to the main goals of explanations. For example, explanations designed to persuade users to buy or to consume, the weight of persuasiveness can be set higher.

In flood scenarios, people may be trapped in buildings and require evacuation to shelter centers.

We follow[START_REF] Ferdousi | Cbpf: leveraging context and content information for better recommendations[END_REF] and use Vanilla Matrix Factorization

Part II

Theoretical contribution: a general framework for generating explanations Part III Instantiations of the general framework for generating explanations argument (feature) attacks the recommendation of item i to user u; if P at u is 0 then the argument neutralizes the recommendation. Therefore, the third goal: determining the polarity of each argument (feature), is fulfilled.

Proofs

We will now show that by setting σ(at) = P at u and σ(rec i ) = r(u, i), TAF corresponding to (u, i) satisfies weak balance formally defined in Definition 5.1 and weak monotonicity formally defined in Definition 5.2. Recall that weak balance states that attacks (or supports) can be characterized as links between affecters and affectees in a way such that if one affecter is isolated as the only argument that affects the affectee, then the former reduces (increases, resp.) the latter's predicted rating with respect to the neutral point. Proposition 6.1 Given the TAF corresponding to (u, i), σ(at) = P at u and σ(i) satisfy weak balance.

Proof 6.1 By inspecting Equations 6.4, 6.5, it can be observed that since users' ratings are transformed into [-1, 1], the co-domain of σ is also [-1, 1]. Case (i): if R + (rec i ) = {at}, R -(rec i ) = ∅ and R 0 (rec i ) = ∅ then σ(at) > 0, therefore, P at u > 0, according to Equations 6.4 and 6.5, r(u, i) > 0, indicating that σ(rec i ) > 0. Case (ii): if R -(rec i ) = {at}, R + (rec i ) = ∅ and R 0 (rec i ) = ∅ then σ(at) < 0, therefore, P at u < 0, according to Equations 6.4 and 6.5, r(u, i) < 0, indicating that σ(rec i ) < 0. Case (iii): if R 0 (rec i ) = {at}, R + (rec i ) = ∅ and R -(rec i ) = ∅ then σ(at) = 0, therefore, P at u = 0, according to Equations 6.4 and 6.5, r(u, i) = 0, indicating that σ(rec i ) = 0.

Similar to weak balance, weak monotonicity characterizes attacks, supports, and neutralizes as links between arguments such that if the strength of one affecter is muted then the strength of its affectees increases, decreases, and remains unchanged, respectively. Therefore, weak monotonicity highlights the positive/negative/neutral effect between arguments. In this way, weak monotonicity reveals the positive, negative, or neutral effect of an argument. Proposition 6.2 Given the TAF corresponding to (u, i), σ(at) = P at u and σ(i) satisfy the weak monotonicity. Proof 6.2 Weak monotonicity is formulated for two TAFs: from < A, R -, R + , R 0 > to < A , R -, R + , R 0 >, after modifying certain arguments (e.g. muting certain features). Case (i): if at ∈ R -(rec i ), then according to Definition 6.1, P at u < 0, when at is muted then P at u = 0. According to Equations 6.4 and 6.5, r (u,i) > r(u,i) , indicating that σ(rec i ) > σ(rec i ). Case (ii): if at ∈ R + (rec i ), then according to Definition 6.1, P at u > 0, when at is muted then P at u = 0. According to Equations 6.4 and 6.5, r (u,i) < r(u,i) , indicating that σ(rec i ) < σ(rec i ). Case (iii): if at ∈ R 0 (rec i ), then according to Definition 6.1, P at u = 0, when at is muted then P at u = 0. According to Equations 6.4 and 6.5, r (u,i) = r(u,i) , indicating that σ(rec i ) = σ(rec i ).

Based on Proposition 6.2, the following corollary holds. Corollary 6.1 If the predicted rating of on at ∈ at i is increased: P at u > P at u , then the predicted rating of item i also increases: r (u,i) > r(u,i) . Accordingly, if the predicted rating one at ∈ at i is decreased: P at u < P at u , then the predicted rating of item i also decreases: r (u,i) < r(u,i) .

AV G -A 3 R. It can be observed that A 3 R consistently outperforms AV G -A 3 R, this is because users' preferences toward each feature usually are not the same. A 3 R captures this difference and can make more accurate predictions. Our further analysis in Section 6.5.4 verifies this assertion.

Case study

To further analyze the impact of feature importance, we represent each user by the importance computed by Equation 6.2. We take the dataset Netflix as an example. Therefore, in this dataset, each user is represented by a vector of 3 dimensions:

). That said, we put the vectors under a 3-D coordinate system, see Figure 6.7(a). It seems that users from Netflix roughly belong to four clusters. To get more insights on users' behaviors in different clusters, we utilized K-means, which is often applied for clustering for its simplicity and effectiveness [START_REF] Velmurugan | Computational complexity between k-means and kmedoids clustering algorithms for normal and uniform distributions of data points[END_REF]. We, therefore, run K-means and it turns out that 4 clusters fit the dataset best. Then we visualize the results of clustering through PCA (Principal Component Analysis), note that other methods can be applied to reduce dimension, we have chosen PCA for its simplicity, see Figure 6.7. Figure 6.7(b) depicts the four clusters in the Netflix dataset. Users from cluster 0 accord almost all of the importance to the actors of movies (see Figure 6.7(c)) , indicating that users in this cluster consider that when choosing movies, movie genre is the most important factor; users from cluster 1 accord almost all of the importance to the genres of movies (see Figure 6.7(d)); users from cluster 2 accord almost all of the importance to the directors of movies (see Figure 6.7(e)); users from cluster 3 are less polarized, they accord almost all of the importance to the directors and genres of movies (see Figure 6.7(f)) It is clear that users' preferences in the three clusters are different, which further verifies our assertion in Section 6.5.3 that A 3 R can differentiate users' preferences toward different feature types, thus giving more accurate predictions. Note that for other datasets, MovieLens Development (Dev.), MovieLens 100K and DBook2014, users can also be clustered according to the feature type importance as depicted in Figure 6.7. More results on the clustering of users on other datasets can be found through https://github.com/ JinfengZh/a3r. Figure 6.7 provides a comprehensive, global perspective on the operation of A 3 R. Rather than focusing on a singular instance, it embraces the entire user set within its scope. Thus, it demonstrates the dual capacity of A 3 R as a tool for interpretation-it is proficient not only in elucidating individual instances, as discussed in Sections 6. 4.2.1, 6.4.2.2, and 6.4.2.3, but also adept at rendering insights into the overarching behavior of the model on a global scale. This dual function significantly enhances the utility of A 3 R in explainable recommendations, as it allows both granular, instance-based insights and a holistic understanding of the model behavior. These global insights could prove instrumental in uncovering broader patterns, trends, or biases in the AI system [START_REF] Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF], thereby improving transparency and aiding in the refinement of system operations.

• Among context-aware models, CA-FATA notably outshines CAMF-C, FM, LCM, and ECAM-NeuMF. Beyond its performance, CA-FATA also boasts the ability to explain recommendations in an argumentative fashion, as deliberated in Section 7.3.1.

• Compared to the A-I model, CA-FATA significantly enhances prediction accuracy, showing an RMSE improvement of 21.06% and an MAE improvement of 23.97%. This notable enhancement can be attributed to three facets:

-Firstly, CA-FATA leverages the strengths of Vanilla MF, leading to more precise predictions.

-Secondly, CA-FATA learns the significance of different feature types to users under varying contexts, whereas A-I assigns uniform importance to feature types for all users, and does not factor in the users' contexts.

-Thirdly, the selection of the number of the k most similar users in A-I is not straightforward-too few may overlook influential users, while too many can introduce noise from less similar users. In contrast, CA-FATA manages to sidestep this problem.

On the dataset Frappé:

• CA-FATA performs exceptionally well on this dataset, outperforming all baselines. Compared to context-free methods, CA-FATA improves upon MF by 40.86% and 39.56% on RMSE and MAE, respectively. Compared to NeuMF, CA-FATA achieves reductions in RMSE and MAE by 24.28% and 24.03%, respectively.

• Among the context-aware baselines, CA-FATA outperforms FM, CAMF-C, LCM, and ECAM-NeuMF, demonstrating its ability to model users' preferences under different contexts. Another advantage of CA-FATA is the ability to provide argumentative explanations, which is not possible for these baselines.

• Compared to A-I, like on Yelp, CA-FATA achieves a significant reduction in RMSE and MAE by 55.99% and 60.29%, respectively.

A horizontal comparison of Frappé and Yelp datasets: this comparison shows that CA-FATA performs better on Frappé than on Yelp. We attribute this difference to the sparsity of the dataset, as Yelp is still highly sparse even after applying the 10-core setting, with a sparsity of 99.84% (see Table 7.4), while Frappé has a sparsity of 94.47%.

Due to the subjective nature of ratings, different users might assign different ratings to the same item, even if they both enjoyed it. For instance, one user might give a rating of 5 stars while another might give it 4 or 4.5 stars. To account for such variations in subjective ratings, we follow the approach proposed by [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF] and convert ratings to a binary scale. In our case, ratings greater than or equal to 3 in the Yelp dataset are considered positive, while ratings less than 3 are considered negative. For the Frappé dataset, we set the threshold to 0.9030, which is the average rating across all users. We report global precision, recall, and F1 score based on the binary scale, and present the results in Table 7.6. The results in Table 7.6 confirm the trends observed in Table 7.5, showing that CA-FATA and its variants in most cases outperform the baselines. Furthermore, the advantage of using CA-FATA over other methods extends beyond its superior performance. CA-FATA provides transparency in the prediction process, allowing for the tracing propose an alternative approach called FATA, which neglects user contexts and computes ratings using Equations 7.5,7.6, and 7.9, identical to the A 3 R (Zhong and Negre, 2022a) we presented in Chapter 6. Results presented in Table 7.7 and 7.8 (refer to rows 3 and 5) demonstrate that CA-FATA outperforms FATA, indicating that incorporating user contexts enables more nuanced modeling of user preferences and improves prediction accuracy. Note that FATA is basically a variant of CA-FATA, the difference between CA-FATA and FATA is that FATA does not consider users' contexts and is actually the A 3 R (Zhong and Negre, 2022a) model. The version with "AVG" means that the importance of each feature type is set the same for all users. This conclusion is reinforced by the superior performance of CAMF-C over MF and ECAM-NeuMF over NeuMF. To investigate the influence of feature type importance on our proposed model's performance, we introduce AVG-CA-FATA and AVG-FATA for CA-FATA and FATA, respectively (refer to rows 4 and 6 in Tables 7.7 and7.8). In these models, the importance of each feature type is uniformly set for all users. For instance, in Frappé, where there are five feature types, the importance is set to 0.2 for all users, while in Yelp, where there are three feature types, the importance is set to 0.33. Results demonstrate that AVG-CA-FATA performs worse than CA-FATA, as does AVG-FATA when compared to FATA. Furthermore, comparisons between FATA, AVG-FATA, CA-FATA, and AVG-CA-FATA confirm the advantages of incorporating user contexts and modeling feature type importance across users.

Case study

To further visualize the impact of context, we represent each user by their contextual factor importance, computed using Equation 7.2. We use the Frappé dataset as an example, where a vector of seven dimensions represents each user:

Since the vectors are of 7 dimensions, it would not be possible to visualize the projection of users as we did for the Netflix dataset in Chapter 6. We therefore first apply K-means clustering for its simplicity and effectiveness [START_REF] Velmurugan | Computational complexity between k-means and kmedoids clustering algorithms for normal and uniform distributions of data points[END_REF], and find that four clusters best fit the dataset, as illustrated in Figures 7.3(a) and 7.3(b). We then use UMAP [START_REF] Mcinnes | Umap: Uniform manifold approximation and projection for dimension reduction[END_REF] to visualize the clustering results. Note that other dimension reduction techniques (such as PCA and t-SNE (Van der [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF], for the results of these methods please refer to https://github.com/JinfengZh/ca-fata) could also be used, but we choose UMAP because it can preserve the underlying information and general structure of the data. The average importance of each contextual factor for the users in the four clusters is shown in Figures 7.3(c),7.3(d),7.3(e),7.3(f), revealing that users pay different levels of attention to contextual factors in the different clusters. Note that the same visualization applies to the Yelp data, due to limited space, we have omitted the visualization on the Yelp dataset. In this chapter, we answer our research question: "How to explain recommendations?" from another perspective: RQ 3.2 "How to explain existing complex RSs using post-hoc explanation techniques while mitigating the limitations of such techniques?". Concretely, we instantiate the General Framework for Generating Explanations (GFGE), as defined in Algorithm 2 in Section 4.3.4 on Page 73, for the post-hoc setting. Explaining recommendations has become important for enhancing users' trust and satisfaction. However, explanation methods vary across different recommender models, increasing engineering costs. As recommender systems (RSs) become ever more inscrutable, directly explaining RSs sometimes becomes impossible. Post-hoc explanation methods that do not elucidate the internal mechanisms of RSs are popular approaches. State-of-the-art post-hoc explanation methods like LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] generate explanations by constructing simpler surrogate models

Shap-Enhanced Counterfactual Explanations

Problem formulation

In this section, we formulate explanation problems in RSs 28 as counterfactual explanations and present how SHAP can be used to generate contrastive and selected explanations in RSs.

When users require recommendations, RSs usually return a list of top-ranked items. Considering a recommender model λ, the features it uses to generate recommendation for users are x = {x 1 , x 2 , x 3 . . . x p }. The features vary across RSs. For example, in CARSs, the features are users' contextual situations (companion, location, time of the day, etc. ). A target user u submits a request for recommendations, by applying the recommender model λ, a list of items {i 1 , i 2 , i 3 . . . , i max } highly ranked are recommended. We note that the items in the list {i 1 , i 2 , i 3 . . . , i max } are ordered according to the predicted scores. Explanations are used to justify either a single recommendation or a list of recommendations. We call them instance-level explanations and list-level explanations respectively.

Instance-level explanations: if a specific item i is to be explained, this corresponds to an instance-level explanation. Counterfactual explanations consist in identifying the minimum set of feature values x exp ⊆ x to be changed in order that item i is no longer in the top-ranked recommendation list.

List-level explanations: similarly, a list-level explanation can be defined as follows: the minimum set of feature values x exp ⊆ x to be changed in order that another set of items {i 1 , i 2 , i 3 , . . . , i max } is recommended.

Main steps of the framework

As we presented in Section 8.2.1, desired properties of explanations in AI include being contrastive and being selected [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. We now present how SHAP can be applied to generate counterfactual explanations in RSs that satisfy these two properties.

Following SHAP, the "game" is the prediction task, and the "players" are the features that the recommender model λ considers. Based on the analysis in Section 8.2, the contribution φ j of each feature can be calculated using SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. However, interpreting these contributions as counterfactual statements may not be a sensible way to summarize information [START_REF] Kumar | Problems with shapley-value-based explanations as feature importance measures[END_REF]) since φ j is the average marginal contribution of feature j.

Although it is not appropriate to interpret φ j as counterfactual statements, SHAP and the naive approach mentioned above can be combined to compute counterfactual explanations more efficiently. The intuition of this idea is that SHAP formulates explanation problems as computing the SHAP value of each feature. In other words, the SHAP value can represent the importance of features and how a decision has been influenced by these features. Therefore, features whose SHAP values are high may be an "intelligent" start-point for searching [START_REF] Ramon | A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: Sedc, lime-c and shap-c[END_REF]. The authors adopted this strategy and showed its effectiveness. In their work, candidates being investigated (potential counterfactual explanations) are removed. Their approach is practical since the data operated on is behavioral and textual data. However, in some cases replacing values of these features with substitute values would be more appropriate. For example, in context-aware recommender systems (CARSs hereinafter), removing certain contextual information would make Algorithm 4: Generate counterfactual explanations using SHAP Input : Instance-level List-level Top-1 Top-2 Top-3 Top-4 Top-5 100% 90% 70% 50% S-method 1 

Parameter comparison

In list-level explanations, as the threshold decreases, less time is needed for searching for counterfactual explanations. At the same time, counterfactual explanations are less strictly defined, and fewer changes are needed to be made to the original contextual situation. In instance-level explanations, the more the recommended item is at the back of the list the less time is needed to search for counterfactual explanations. Recommended items at the back of the recommendation lists have lower scores, which means that they are less adapted to users' contextual situations. Less time is needed to find counterfactual explanations.

In this section, we presented the results of our experiments. We show that our S-method is able to identify counterfactual explanations in two levels: instance-level and list-level. As we show in Section 8.2.2, the explanations generated are contrastive and are selected, which satisfies the desired properties defined by [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. In most cases, our method is able to explain more than 95% recommendations, showing high success rate. Besides, the explanations generated by our method are faithful to the original recommender model by identifying the key contextual conditions. Another advantage is that these explanations are adapted to users' contextual situations, which could be more convincing.

Conclusions

In this chapter, we introduce an instantiation of GFGE, as outlined in Algorithm 2, within a posthoc context. We employ SHAP (SHapley Additive exPlanations) [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] to determine the individual contributions of each feature. However, instead of using the SHAP outputs as direct explanations, we apply counterfactual reasoning to validate the important features returned by SHAP. Specifically, we harness them to identify potential candidates for counterfactual explanations. Our approach enables the generation of counterfactual explanations that are both faithful to the original model and easily comprehensible. Our experimental results indicate that, under certain conditions, SHAP can expedite the process of locating suitable counterfactual explanations. Additionally, we propose a two-level explanation structure: list-level explanations, which explain a recommendation list as a whole, and instance-level explanations, focusing solely on a single instance within a recommendation list. Notably, while list-level explanations can cover a broader range of recommendations compared to instance-level explanations, this advantage comes at the cost of increased search time.

Several improvements regarding SECE can be envisaged. The present study exclusively focuses on categorical features. It would also be interesting to extend SECE to cases where numerical 

the decomposability property of A 3 R as outlined by [START_REF] Lipton | The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF] (see Section 2.5). In this context, decomposability refers to the capability of breaking down the contributions of individual features, making the model's internal decision-making process transparent: Inf oM odel(A 3 R) returns an interaction-tailored TAF. Additionally, the strength function of arguments within A 3 R has been carefully designed to adhere to the principles of weak balance [START_REF] Rago | Argumentation-based recommendations: Fantastic explanations and how to find them[END_REF] and weak monotonicity [START_REF] Rago | Argumentative explanations for interactive recommendations[END_REF]-the proofs of which are presented in Section 6.4.1.2. These properties show how arguments (features) influence the recommendation, allowing different application scenarios (see Section 6.4.2). Notably, the explanations generated follow the internal mechanism of A 3 R. For a comprehensive examination of A 3 R's application to explanation generation (the Aggregation function), please see Sections 6.4.2 and 6.5.4. Note that the above analyses also apply to CA-FATA since it is an extension of A 3 R.

On the contrary, SECE instantiates Algorithm 2 in a post-hoc setting. This algorithm, too, can be viewed as a feature attribution method. Within the SECE framework, Inf oM odel(M) solely provides the outcome for a given instance to be elucidated, leaving the internal mechanics obscured. The output of Inf oM odel(M) is utilized to construct a surrogate model using SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. This surrogate model helps quantify the marginal contribution of each feature, thereby identifying critical features that shape a prediction. The importance and influence of these features are further validated through counterfactual reasoning. Put differently, Algorithm 6 generates counterfactual explanations under the guidance of SHAP. We have demonstrated that the explanations produced are selected and contrastive in Section 8.2.2, which are identified as desired properties of explanations according to [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] (refer to Section 8.2.2).

In sum, A 3 R, CA-FATA, and SECE all fall into the broader spectrum of feature attribution methods. Notably, A 3 R and CA-FATA exhibit intrinsic interpretability, offering transparent insights into their workings. In contrast, SECE leverages a post-hoc strategy to provide explanations for recommendations, thereby retaining the underlying model's opacity while still offering informa-Algorithm 6: An instantiation of Algorithm 2 by SECE.

Input : M: Any model D: (u, i) or a set of (u, i) P: data processing InterpretData: QueryF unction5 InterpretM odel: M InterpretOutput: QueryF unction6 P ostHocInterpretation: SHAP Aggregation: SECE Output: Explanations for the output returned by the model given

tive and useful explanations.

Local vs Global

Another noteworthy distinction between Algorithm 5 and Algorithm 6 lies in the nature of their input data, denoted as D. Significantly, for Algorithm 5, D could be a single instance (a specific user-item interaction), or a collection of such instances. Operating within the A 3 R framework, each prediction can be explained, which corresponds to localized, or instance-based, explanations. The three specific applications discussed in Section 6.4.2 (also in Section 7.3.2) -toy templates, interactive explanations, and contrastive explanations -all adhere to this principle, each shedding light on individual instances or predictions. In addition, Sections 6.5.4 and 7.4.4 provide a global perspective on the model's behavior. Here, users are depicted as vectors, each composed of the importance weights of various feature types 33 . These vectors are subsequently subjected to a clustering process, and the resulting clusters are visualized (as seen in Figures 6.7 and 7.3). An underlying assumption of A 3 R is that users' preferences can significantly differ across various types of features. The clustering patterns shown in Figures 6.7 and 7.3 confirm that A 3 R can effectively capture these distinctions, thus facilitating a more precise prediction of user ratings (Zhong and Negre, 2022a). Therefore, A 3 R and CA-FATA combine local and global techniques, providing both instance-level insights and an overall understanding of the model's operation.

Within the framework depicted in Algorithm 6, the input data D is strictly a single instance, denoting a specific user-item interaction. This individual-oriented approach begins with the application of SHAP to identify important features, followed by validation of these features through counterfactual reasoning. In essence, these important features serve as informed launching points

Part IV

Concluding remarks

A primary user study: recognizing that explanations are embedded within human interactions, as discussed in Section 4.2, we conducted a user study to address "RQ4, How to evaluate explanations in RSs?". The study employed metrics identified in Section 3.1.2: promoting transparency, effectiveness, efficiency, persuasiveness, trust and satisfaction [START_REF] Tintarev | Beyond explaining single item recommendations[END_REF]. Despite some limitations, the user study allows us to derive some valuable insights, which helps to conceptualize future user studies.

Perspectives for future work

The contributions of this thesis also open promising avenues for future works. We will first introduce several possible direct extensions to our work, then we discuss relations with other research topics in the domain of RSs.

Improvements of our work

Some direct improvements or extensions of our work can be envisaged:

On GFGE: in this thesis, our focus is on explanations designed for end-users. Therefore, under the IES depicted in Figure 4.1, model developers interpret information from data, model, and outputs to generate explanations for the users. However, it is worth considering cases where the target audience is not limited to end-users. For example, other stakeholders such as auditors or service providers could replace users, which would still be aligned with the principles of sense-giving and sense-reading [START_REF] Polanyi | Sense-giving and sense-reading[END_REF].

On A 3 R and CA-FATA: under A 3 R and CA-FATA, we have applied the inner product to compute the importance of feature types (Equation 6.1), of contextual factors (Equation 7.1); the inner product is also utilized for computing users' ratings towards features (Equations 6.3 and 7.7). This means that the inner product operation is endowed with explicit semantics: each step is mapped into Argumentation Frameworks (AFs). More complex functions such as Multi-Layer Perceptron (MLP) could be applied, expecting more accurate rating prediction.

Both A 3 R and CA-FATA follow the spirit of argumentation: features are regarded as arguments and users' ratings towards these arguments determine the polarity and the strength of them. In fully connected layers, each neuron performs a linear transformation on the input vector by utilizing a weights matrix. Regarding neurons as arguments may help to understand how neural networks achieve a prediction: the operations are mapped into AFs. There have been some primary works that integrate the spirit of argumentation into neural networks [START_REF] Proietti | A roadmap for neuro-argumentative learning[END_REF]Toni, 2023, Albini et al., 2020). It would be interesting to explore how such integration benefits RSs.

Both A 3 R and CA-FATA focus on rating prediction, it would also be interesting to extend A 3 R and CA-FATA to ranking prediction problems.

On SECE: SECE only deals with RSs that utilize categorical features, one direct improvement would be to extend SECE to deal with numeric features. In Algorithm 4, after investigating the feature considered to be the most important according to SHAP, if the recommendation remains unchanged, we directly explore the first two most important features. It is possible that modifying only the second (or the third) most important leads to a counterfactual explanation. Therefore, In this section, we will provide more details on the black-box recommender model in the case study presented in Section 8.4, Chapter 8 and Section 9.2 in Chapter 9.

Appendices

We will first introduce the CBPF method proposed by [START_REF] Ferdousi | Cbpf: leveraging context and content information for better recommendations[END_REF] and then present our modification, the symbols used are presented in Table A.1. To be more concrete, in a CARS, suppose there are m users; n items; q contextual factors (e.g. time, companion, location, etc); suppose we have |c k | (e.g. possible condition for companion is family, friend, colleague, etc.) possible conditions for contextual factor c k , then k=q k=1 |c k | = p, where p is the total number of contextual conditions and q is the total number of contextual factors; X k is the k th observation in the dataset, r k is the rating given by user u k to item i k , c tk = 1 means contextual condition c tk appears in k th observation and c tk = 0 means absent. For example, in a movie recommender system where ratings range from 1 to 5, X k = {M ike, HarryP otter, 4, DaytypeW eekday = 1, DaytypeW eekend = 0, CompanionF amily = 0, CompanionF riends = 1, CompanionAlone = 0, M oodHappy = 1, M oodDisappointed = 0, M oodAngry = 0} means that Mike watched the movie Harry Potter with his friends when he was happy in a weekday and he gave a score 4 out of 5 for this movie. A contextual condition c j can be represented by w c j = (w u cluster1 ,c j , w u cluster2 ,c j , . . . ), the values are user-based (or item-based) PCC between contextual condition c j and ratings calculated by Equation A.1; a target contextual situation CS = (c 1 , . . . c q ) is composed of q contextual conditions, which means that for each of the q contextual factors, only one contextual condition occurs in a target contextual situation. Considering a contextual factor "time", it can not be "morning" and "afternoon" at the same time.

The main steps of CBPF include:

• Step 1: calculate the user-based (or item-based) PCC between contextual condition c j and ratings for each user (item) using Equation A.1. Note that for user-based PCC, the contextual conditions and ratings are selected according to users; for item-based PCC, the contextual conditions and ratings are selected according to items.

The k th observation in dataset w c j = (w u cluster1 ,c j , w u cluster2 ,c j , . . . ) Representation of contextual condition c j CS = (c 1 , . . . c q )

A target contextual situation where K is the set of observations X k = {u, i k , r k , c 1k , c 2k . . . c pk } with user u, cu is the mean value of the context condition c j over observations for user u, ru is the mean of the ratings given by the user u. Based on the calculated w u,c j , each contextual condition c j can be represented by a vector whose size is the total number of users (or items) and whose values are the corresponding w u,c j , all between -1 and 1. Considering the large number of users and items, [START_REF] Ferdousi | Cbpf: leveraging context and content information for better recommendations[END_REF] proposed to first cluster the users and items into limited groups to reduce computation costs. For example, the characteristics such as age and/or sex, can be used to cluster users. Table A.2 is an example of this representation method. To be more clear, the values correspond to the PCC between the contextual conditions on the left and the ratings of a user cluster. For example, the first row in Table A.2 is the contextual condition "DaypeWeekday", its PCC with ratings for user cluster1, user cluster2 and user cluster3 is 0.18, -0.13 and -0.54 respectively.

•

Step 2: represent contextual target situation based on its composing context conditions. In this step, [START_REF] Ferdousi | Cbpf: leveraging context and content information for better recommendations[END_REF] used 2 methods:

• Aggregation: The mean of the corresponding representation vector of contextual conditions which compose a target contextual situation:

• Concatenation: The concatenation of the composing contextual conditions:

• Step 3: calculate the similarity between the target contextual situation CS * and the contextual situations CS existing in the original dataset, the similarity here is the cosine similarity between the vectors that represent them. 

ABSTRACT

This thesis focuses on explainable recommendations, often referred to within the context of eXplainable Artificial Intelligence (XAI), which are recommendations made by a system that also provides information to justify why such recommendations have been generated. More specifically, the problem of explainable recommendations involves generating accurate recommendations and generating explanations to justify such recommendations.

We start by addressing the prevalent ambiguity in terms commonly used in AI, such as ''interpretability'' and ''explainability''.

To disambiguate the frequently used yet ill-defined terms, we introduce Interpret/Explain Schema (IES). The IES helps clarify these terms and forms the foundation of a novel, general framework for generating explanations in AI. This framework seamlessly incorporates existing approaches for generating explanations: model-intrinsic and post-hoc explanations. Within the model-intrinsic explanation setting, we introduce two models that instantiate IES: Attribute-Aware Argumentative Recommender (A 3 R) and Context-Aware Feature Attribution Through Argumentation (CA-FATA). Both of them conduct feature attribution through argumentation. A 3 R views item features as arguments that determine recommendations, while CA-FATA extends this approach to consider user contexts. Both models demonstrate competitive performance against existing models, offering transparent and adaptable explanations. In the post-hoc explanation setting, the Shap-Enhanced Counterfactual Explanation (SECE) is introduced, validating feature attribution via counterfactual reasoning. This approach can be applied universally to any recommender model. The thesis also encompasses a primary user study exploring the influence of contextual information on explanations within recommender systems (RSs). This user-centric questionnaire helps to emphasize the goals of promoting transparency, effectiveness, persuasiveness, and trust in RSs.

Overall, this research not only disambiguates key terms in the field but also offers innovative methodologies for explainable recommendations. The instantiations of IES demonstrate its applicability and contribute a vital understanding of explanation generation in RSs and thus in AI, offering new pathways for transparent and trustworthy RSs.
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