La rédaction de cette thèse a été pour moi l'une des épreuves les plus difficiles à laquelle j'ai pu me confronter. Ces pages, lourdement chargées de sens, représentent à la fois une fin et un début. Il est difficile d'exprimer à quel point je suis reconnaissant d'avoir côtoyé durant ces dernières années des personnes toutes plus exceptionnelles les unes que les autres qui m'ont tant appris et m'ont aidé à grandir, scientifiquement, humainement et émotionnellement.

Je voudrais en premier lieu exprimer ma gratitude à tous mes collègues du laboratoire de Chémoinformatique, présents et passés. En particulier, je voudrais remercier mes superviseurs : Pr. Alexandre Varnek et Dr. Gilles Marcou pour leur patience inébranlable, leurs encouragements et leur compréhension dans les moments les plus difficiles. Je suis infiniment reconnaissant d'avoir pu travailler dans un environnement aussi expérimenté, rigoureux, et motivant aux cotés de grands scientifiques. Je voudrais également remercier Dr. Arkadii Lin pour son aide, sa créativité, son expertise et sa rigueur sans relâche, avec qui j'ai tant appris. Je n'oublie pas Dr. Fanny Bonachera, dont la porte est toujours restée ouverte et qui a su me prêter une oreille bienveillante et de précieux conseils, ainsi qu'un support technique inestimable. J'aimerais également remercier Dr. Dragos Horvath, Dr. Olga Klimchuk, Dr. Igor Baskin, Dr. Iuri Casciuc, Dr. Yuliana Zabolotna, Dr. Timur Madzhidov, Dr. Tagir Akhmetshin, Dr. Helena Perez Pena, Sai Prashanth Santhapuri, Louis Plyer, Regina Pikalyova, Karina Pikalyova, Shamkhal Baybekov, Maxim Shevelev et toutes les belles personnes que j'ai pu rencontrer dans ce laboratoire. J'ai bien évidemment une pensée pour mes Pokémons Rares : Mélissa (Psy), Guillaume (Roche), Franck (Ténèbres), Sacha (Feu), Baptiste (Eau), Jordan (Sol), Fred (Poison), Jonathan (Spectre), Ειρήνη (Dragon) et tous les allègres complices qui m'ont accompagné durant mes années d'étude, dans les plus belles joies, les plus grandes tristesses, dans tous ces moments qui font la beauté d'une vie. Une pensée également à tous mes compagnons de basket : Marie, Brice, Clément, et tous les autres avec qui je partage ma passion et bien plus encore.

Je me dois aussi de mentionner Tali, espiègle compagnonne de mon quotidien dont les péripéties et tribulations ne manquent jamais de vivifier mes journées.

Pour conclure, j'aimerais remercier ma famille, et en particulier mes parents, pour m'avoir transmis leurs valeurs et leurs forces qui me permettent de persévérer jour après jour.

Résumé en français 1.Introduction

La recherche de nouveaux composés ayant un potentiel médicamenteux est à la base de la recherche dans le domaine médicinal. Il est nécessaire d'explorer l'espace chimique des molécules afin de pouvoir isoler les médicaments de demain. De ce fait, chaque année, les bases de données chimiques commerciales et publiques voient leur nombre de molécules augmenter significativement grâce, par exemple, à de nouvelles voies de synthèses, à la chimie combinatoire ou aux outils informatiques appliqués au recensement de nouveaux composés.

L'augmentation de la taille de ces bases de données entraîne également une augmentation des coûts computationnel et énergétiques pour leur stockage et lors de leur criblage. Et pourtant, malgré cette croissance exponentielle, l'espace chimique « découvert » qu'elles occupent reste encore minuscule par rapport à la taille de l'espace chimique des molécules « drug-like » potentiellement synthétisables (estimée aux alentours de 10 33 composés [1]). Il est donc important de développer de nouveaux outils permettant l'exploration efficace de l'espace chimique dont le potentiel pour la chimie médicinale est incontestable. L'arrivée de nouveaux outils d'intelligence artificielle en chimie a ouvert la voie à de nouvelles méthodes très performantes dans les domaines du design et de la découverte de nouveaux composés d'intérêt pour la chimie médicinale [START_REF] Tong | Generative Models for de Novo Drug Design[END_REF] . Un type d'architecture en particulier a été plébiscité pour sa simplicité et son efficacité : L'Autoencodeur (AE) [3] . Le principe de ce dernier est d'ajuster simultanément les paramètres de deux processus : l'un codant et l'autre décodant. Le premier est utilisé pour coder des structures de molécules en vecteurs numériques appelés vecteurs latents. Le second doit convertir ces vecteurs latents en structures de molécules. L'espace latent peut ensuite être exploré et utilisé pour générer de nouveaux composés [START_REF] Lim | Molecular generative model based on conditional variational autoencoder for de novo molecular design[END_REF][START_REF] Polykovskiy | Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery[END_REF][START_REF] Prykhodko | A de novo molecular generation method using latent vector based generative adversarial network[END_REF] . Durant ce processus, le choix d'un vecteur latent est critique pour générer une structure chimique pertinente, par exemple un composé actif pour un projet de conception de médicament. Plusieurs architectures dérivées des Autoencodeurs initiaux sont aujourd'hui très populaires dans le domaine de la génération de composés, et peuvent être catégorisés en deux larges familles : D'un côté, les modèles qui sont entraînés avec des librairies de molécules hyper-spécifiques à une application et les modèles plus généraux entraînés sur de larges bases de données diverses. Les modèles très spécifiques ont l'avantage de générer des composés à haut potentiel (activité par rapport une protéine par exemple) mais doivent être réentraînés à chaque changement d'objectif. Les modèles plus généraux, eux, permettent de générer des molécules plus diverses en explorant de plus larges zones de l'espace chimique. Néanmoins, les espaces chimiques latents étant hautement multidimensionnels, ils sont difficiles à visualiser, explorer et échantillonner.

La Cartographie Topographique Générative (GTM) [START_REF] Bishop | The Generative Topographic Mapping[END_REF] est une méthode de réduction de la dimensionalité qui permet de visualiser sur des cartes 2D des espaces multi-dimensionnels.

La GTM assigne en tout point de la carte une probabilité de présence à une molécule au lieu de fixer sa position à un seul point. Ces probabilités peuvent être utilisées pour définir des cartes de densité de l'espace chimique. En prenant en compte les étiquettes (classes « actif » / « inactif », propriétés physico-chimiques, etc.) associées aux données, la GTM produit des paysages, i.e. des cartes représentant les valeurs de ces étiquettes par des codes couleurs, analogues à des cartes de géographie. Il devient trivial de cibler des zones pertinentes de l'espace chimique dans lesquelles la génération de nouveaux composés aura de grandes chances de proposer de nouvelles molécules d'intérêt (Figure 1).

Les vecteurs latents basés sur l'interprétation d'un AE ont montré qu'ils ont la capacité de correctement séparer actifs et inactifs. Néanmoins, étant basée sur une interprétation séquentielle de chaînes de caractères SMILES, l'organisation de l'espace chimique en résultant est segmenté par les règles sémantiques des codes SMILES. Ce n'est pas le cas avec des descripteurs structuraux calculés sur des graphes moléculaires : ces derniers sont donc plus efficaces. De plus, ils sont modulables, ce qui permet de les adapter plus finement à des tâches de modélisation QSAR et d'intégrer des connaissances antérieures. Si des vecteurs de descripteurs moléculaires sont plus efficaces pour prédire des propriétés à partir de structures chimiques, en revanche, il n'existe pas jusqu'à présent de procédure pour générer des structures chimiques correspondant à des vecteurs descripteurs moléculaires. Dans cette optique, il est intéressant de combiner la versatilité et les performances des espaces chimiques construits sur des descripteurs structuraux aux capacités d'un autoencodeur pour générer des structures chimiques.

Cette thèse a donc deux objectifs principaux. Dans un premier temps, des méthodes de cartographie aux espaces latents des AutoEncodeurs ont été combinés pour mieux rationaliser l'organisation de ces espaces latents et en permettre l'exploration. En particulier, pour la première fois, un autoencodeur en combinaison avec la cartographie a été utilisé pour générer de nouvelles transformations chimiques. Dans un second temps, cette thèse présente les résultats des recherches visant à convertir des descripteurs moléculaires structuraux en structures chimiques par l'intermédiaire d'un autoencodeur. Ceci est indispensable quand les vecteurs latents d'un autoencodeur sont moins performants par rapport aux descripteurs moléculaires sélectionnés pour une modélisation QSAR. Une méthode est donc proposée pour permettre la génération de composés avec des propriétés chimiques et des descripteurs structuraux précis.

Résultats et Discussions

Etude de l'espace latent d'un autoencodeur LSTM

Les architectures de type AutoEncodeur (AE) restent des systèmes « boîtes noires » et la compréhension de leur fonctionnement interne est encore incomplète, en particulier pour les applications en chimie. Le but de cette étude était d'approfondir la compréhension de l'entraînement et de l'organisation de l'espace latent d'un AE. Un AE muni de couches Long Short-Term Memory (LSTM) a été entraîné sur la base de données ChEMBL23 -environ 1.5 millions de composés. Les molécules de la base de données ont été utilisées sous forme de SMILES canoniques.

Il a d'abord été montré que l'entraînement des modèles n'était pas entièrement reproductible avec les équipement classiquement utilisés (cartes graphiques) dans ce type de recherches. Malgré ces différences dans la création des espaces latents, l'organisation des molécules dans l'espace chimique reste comparable d'un modèle à l'autre si les paramètres sont les mêmes. De plus, des projections de structures chimiques représentées par des SMILES différents ont été effectuées pour vérifier l'existence d'une dépendance de l'ordre des caractères composant le SMILES dans l'interprétation du réseau de neurones.

De nombreux paysages GTM ont ensuite été construits pour visualiser la répartition de certaines propriétés comme la densité de présence de molécules, la distance au feuillet de la GTM (son centre) et des propriétés physico-chimiques. Il a été possible grâce à ces cartes de prouver que le modèle est capable de regrouper des composés en familles chimiques. Ces paysages ont mis en évidence des différences d'organisation dans l'espace latent de l'AE par rapport à des descripteurs structuraux tels que ISIDA [START_REF] Ruggiu | ISIDA Property-Labelled Fragment Descriptors[END_REF] . Afin d'analyser les capacités génératives de l'AE, 1000 chaînes SMILES ont été systématiquement générées sur chaque noeud de la GTM et comparées aux densités observées dans la base de données ChEMBL23. Des paysages ont ensuite été construits pour visualiser le pourcentage de molécules valides générées ainsi que leur profil de propriété, tels qu'ils résultent de ChEMBL23. Un comparatif entre paysages « réels » et paysages « générés » (Figure 2) a 13 permis de vérifier la capacité du modèle à créer des molécules réalistes, et de comprendre les facteurs pouvant influencer l'efficacité du processus génératif.

Utilisation d'un autoencodeur couplé aux cartes topographiques génératives pour la découverte de nouvelles réactions

La recherche de nouvelles réactions est intimement liée au processus de design de médicaments. L'augmentation des possibilités de transformations chimiques facilite la synthèse des nouveaux composés, pour des applications industrielles par exemple. Les réactions chimiques étant des systèmes impliquant plusieurs molécules et des conditions, elles sont donc plus difficiles à modéliser.

Grâce à la technologie des Condensed Graph of Reaction (CGR) [START_REF] Nugmanov | CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing[END_REF] , il a été possible d'étudier la base de données USPTO [START_REF] Lowe | Extraction of chemical structures and reactions from the literature[END_REF] qui référence presque 2.5 millions de réactions issues d'une base de données de brevets. Un CGR représente une réaction sous forme de pseudomolécule où les réactifs et les produits sont combinés en un seul ensemble. Ces pseudomolécules sont ensuite exprimées sous forme de CGR où les changements dans les liaisons sont inclus à l'aide de caractères spéciaux, reprenant les bases de la grammaire SMILES en incluant des modifications pour tenir compte des spécifications des réactions (Figure 3). Les CGR, couplés à une modification de l'architecture des AutoEncodeurs classiques a permis l'entraînement d'un modèle génératif pour des réactions chimiques. La combinaison de ce modèle avec l'outil GTM a permis de cartographier l'espace chimique des réactions et de générer des types de réactions spécifiques à partir de positions sur une carte. Une grande quantité de réactions de type Suzuki a été générée, puis filtrée à l'aide d'une nouvelle méthode de détection de nouveautés. Cette méthode exploite les « centres de réactions », autrement dit l'ensemble des atomes et liaisons directement impliqués par une transformation chimique. Cette définition a été étendue pour créer les « environnements de réactions » qui eux correspondent non seulement au centre de réaction mais qui incluent également tous les atomes directement liés au centre de réaction.

Parmi les réactions valides restantes après filtrage, 13 réactions ont été identifiées comme potentiellement nouvelles et ne figurant pas dans la base de données USPTO. Parmi celles-ci, 5 ont ensuite été identifiées dans d'autres bases de données, vérifiant la capacité du modèle à générer des réactions cohérentes chimiquement. La faisabilité de ces réactions a été confirmée par des calculs de DFT de l'enthalpie de réaction en phase gazeuse.

Liaison entre l'espace latent d'un AutoEncodeur et un autre espace de descripteurs

La génération de jeux de données possédant certaines propriétés ciblées est un problème central en Chémoinformatique. Plutôt que de générer au hasard des structures moléculaires ou de chercher des composés intéressants dans des bases de données toujours plus grandes, « à la recherche d'une aiguille dans une botte de foin », il est préférable de pouvoir choisir les régions de l'espace chimique susceptibles d'abriter les structures chimiques qui satisfont les critères désirés par un utilisateur et d'échantillonner ces régions pour générer des structures pertinentes.

Les méthodes à base d'AE et de paysages GTM présentées précédemment permettent de biaiser la génération de structures sur des zones riches en composés biologiquement actifs. Mais la sémantique propre au code SMILES des structures chimiques fragmente l'espace chimique de l'AE de façon arbitraire et peu contrôlable ce qui rend plus complexe l'exploration de l'espace latent en résultant. Cela résulte en un contrôle plus difficile des structures générées et de leurs propriétés.

Les descripteurs moléculaires structuraux ne présentent pas ce même défaut. Ils peuvent être adaptés selon le type de structure, le type de cibles et/ou le type d'application. Leur versatilité les rends donc beaucoup plus robustes et applicables efficacement à une plus grande diversité de problèmes. Du fait de leur surjectivité, il est néanmoins impossible d'associer un vecteur de descripteurs à une seule structure. En pratique, plusieurs molécules peuvent avoir le même vecteur de descripteur, ce qui complexifie énormément la tâche d'entraîner un modèle d'AE.

Cependant, les bénéfices potentiels à la réalisation d'un modèle génératif où les propriétés structurelles et physico-chimiques sont solidement contrôlées est très intéressant. Il serait donc utile de combiner la versatilité et la robustesse des descripteurs structuraux classiques avec le pouvoir génératif des réseaux de neurones.

SMI2ISIDA

Une méthode d'inversion directe de modèle de QSAR a été proposée, basé sur une architecture simple. Un réseau de neurones artificiels basé sur une succession de couches LSTM (les mêmes qui sont utilisées dans les AutoEncodeurs) a pour objectif de traduire un vecteur de descripteurs moléculaires ISIDA en SMILES (Figure 5). La difficulté du projet réside dans la problématique de la multimodalité des vecteurs ISIDA par rapport aux chaînes SMILES. Un vecteur de descripteurs ISIDA peut correspondre à plusieurs chaînes SMILES, ce qui rend l'entraînement d'un modèle délicat. Une analyse en profondeur a été réalisée sur l'architecture choisie, et de nombreuses variations de la même idée ont été testées, ainsi qu'un deuxième type d'architecture basé sur l'augmentation de données SMILES. Ces différents tests ont montré que les types d'architectures utilisés étaient dans l'incapacité de faire un lien entre séquences de caractères et compte de descripteurs, les fragments avec le plus de variabilité étant constamment mal prédits.

Machines de Boltzmann

Le projet consiste à créer un modèle capable d'associer aux vecteurs de descripteurs moléculaires structuraux, des vecteurs de l'espace latent d'un AE. Pour cela, une Machine de Boltzmann dite multimodale a été développée.

Une machine de Boltzmann [START_REF] Hinton | A practical guide to training restricted boltzmann machines[END_REF] Les faibles performances des modèles séparés pour la simple tâche de reconstruction des vecteurs et le coût en ressources et en temps nécessaires pour entraîner ce type de modèle étant trop hauts, le projet n'a pas pu aboutir. Encore une fois, le modèle était dans l'incapacité de prédire avec précision les comptes de descripteurs ISIDA à haute variation lors de la reconstruction.

Stargate GTM

Stargate-GTM [START_REF] Gaspar | Stargate GTM: Bridging Descriptor and Activity Spaces[END_REF] est une méthode basée sur la GTM qui permet à deux espaces de descripteurs d'être coentraînés. Deux jeux de données sont présentés au modèle dont les individus se correspondent l'un à l'autre. Une carte GTM est construite sur chaque jeu de données, mais au cours de l'entraînement, chaque carte doit satisfaire les contraintes issues de la topologie de chacun des deux jeux de données, avec une pondération (Figure 7).

Conditional Variational AutoEncoder (CVAE)

Une nouvelle architecture de réseaux de neurones employant la technologie de l'attention retrouvée dans les couches Transformers [START_REF] Vaswani | Attention Is All You Need[END_REF] Ce modèle a été entraîné sur la base de données ChEMBL23 sous forme de SMILES canoniques en combinaison avec des vecteurs ISIDA utilisés pour construire une « carte universelle ». [START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF] Plusieurs méthodes ont été testées pour sélectionner des vecteurs de descripteurs ISIDA correspondant à une haute activité contre la protéine tyrosine kinase ABL (CHEMBL1862).

Des vecteurs optimisés par Algorithme Génétique (GA) basés sur des prédictions des modèles de régression à vecteurs supports (Support Vector Regression, SVR), des vecteurs sélectionnés à partir de molécules étant reconnues comme actives et des vecteurs sélectionnés sur un paysage GTM de l'activité sur CHEMBL1862 ont été utilisé comme « seed » pour la génération. Les différentes méthodes de sélection de vecteurs ont permis la génération de différents profils de molécules (Table 1).

Les molécules générées via l'algorithme génétique montrent une tendance à être très similaires structurellement, avec un potentiel d'activité très élevé. Cette tendance est retrouvée lors de la génération à partir de molécules actives, le potentiel de ces molécules étant légèrement moins élevé qu'avec la méthode algorithme génétique. Les molécules générées à partir de la méthode GTM montrent une plus grande diversité mais un potentiel actif moins haut. Le profil des librairies de molécules générées peut dont être modulé selon la méthode de sélection de vecteurs choisis.

Conclusion

Les outils de cartographie couplés à l'espace latent des AE ont permis de montrer que l'organisation de cet espace permet le regroupement général de familles chimiques et la génération de composés structurellement proches des molécules réelles présentes aux alentours.

Il a aussi été possible de montrer la dépendance de la topologie de l'espace latent des AE à la sémantique du codage SMILES.

Grâce à l'utilisation de graphes condensés de réaction avec un autoencodeur, il a été possible

General Introduction

The continuous search for new potential drugs in medicinal chemistry is a never-ending quest. Far from the early days of medicine and its eat-the-plant-then-see-what-happens approach, today's drug design methods involve the efficient navigation [START_REF] Wetzel | Interactive exploration of chemical space with Scaffold Hunter[END_REF][START_REF] Van Deursen | Chemical space travel[END_REF][START_REF] Oprea | Chemical space navigation in lead discovery[END_REF] of so-called "druglike chemical space" [START_REF] Reymond | The Chemical Space Project[END_REF][START_REF] Coley | Defining and Exploring Chemical Spaces[END_REF][START_REF] Varnek | Chemoinformatics as a Theoretical Chemistry Discipline[END_REF] which designates the ensemble of all drug-like molecules, existing or tangible. Explored areas of chemical space are a result of centuries of research in Chemistry [START_REF] Llanos | Exploration of the chemical space and its three historical regimes[END_REF] , supported by the developments of more and more advanced extraction, synthetic and analytic methods. The more recent advances in computing technologies have accelerated this process, notably thanks to new methods like combinatorial chemistry [START_REF] Hogan | Combinatorial chemistry in drug discovery[END_REF] or high-throughput screening (HTS) [START_REF] Pereira | Origin and evolution of high throughput screening[END_REF] . Each year, the number of new compounds reported increases, constantly expanding the size of the known chemical universe. Historically, Virtual Screening (VS) of existing databases using an arsenal of different tools like pharmacophores [START_REF] Seidel | Strategies for 3D pharmacophore-based virtual screening[END_REF][START_REF] Sun | Pharmacophore-based virtual screening[END_REF] , docking [START_REF] Kontoyianni | Docking and virtual screening in drug discovery[END_REF][START_REF] Kitchen | Docking and scoring in virtual screening for drug discovery: Methods and applications[END_REF] , QSAR [START_REF] Neves | QSAR-based virtual screening: Advances and applications in drug discovery[END_REF][START_REF] Achary | Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review[END_REF][START_REF] Ferreira | Qsar-based virtual screening of natural products database for identification of potent antimalarial hits[END_REF] or molecular dynamics [START_REF] Menchon | Molecular dynamics as a tool for virtual ligand screening[END_REF][START_REF] Nichols | On the use of molecular dynamics receptor conformations for virtual screening[END_REF] has been the dominant method for efficient exploration and hit discovery.

However, not unlike our actual universe, it seems the size of the charted areas amounts to very little compared to the vastness of uncharted territories. The size of drug-like chemical space has been estimated to contain between 10 23 and 10 60 compounds [1,[START_REF] Ertl | Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and Automatic Identification of Drug-like Bioisosteric Groups[END_REF][START_REF] Drew | Size estimation of chemical space: How big is it?[END_REF] . Comparatively, the biggest commercially available database, Enamine REAL [START_REF] Shivanyuk | Enamine real database: making chemical diversity real[END_REF] , contains 29 billion compounds. The novel drugs of the future may be hidden among these yet unknown molecules but most of the current discovery methods rely on existing databases of listed compounds.

Therefore, although very successful, VS methods are, by definition, limited in their scope of research by the borders of current knowledge. Recent studies of chemical space [START_REF] Lipinski | Navigating chemical space for biology and medicine[END_REF][START_REF] Reymond | Chemical space as a source for new drugs[END_REF] have sparked a strong interest in its untapped potential and a renewed interest in methods aiming to explore unknown areas of chemical space.

The most popular of these methods to benefit from this newfound interest was De Novo drug design [START_REF] Schneider | Computer-based de novo design of drug-like molecules[END_REF][START_REF] Mauser | Recent developments in de novo design and scaffold hopping[END_REF][START_REF] Hartenfeller | De novo drug design[END_REF] . De Novo design aims to generate compounds from scratch with desirable physicochemical and physiological properties. Early "structure-based" de novo tools used algorithms to identify and map potential binding zones, then stochastically grow molecular structures inside the pre-mapped protein pockets [START_REF] Danziger | Automated site-directed drug design: a general algorithm for knowledge acquisition about hydrogen-bonding regions at protein surfaces[END_REF][START_REF] Lewis | Automated site-directed drug design using molecular lattices[END_REF][START_REF] Lewis | Automated site-directed drug design: Approaches to the formation of 3D molecular graphs[END_REF] either atom by atom [START_REF] Bohacek | Multiple Highly Diverse Structures Complementary to Enzyme Binding Sites: Results of Extensive Application of a de Novo Design Method Incorporating Combinatorial Growth[END_REF] or fragment by fragment [START_REF] Loving | Computational Approaches for Fragment-Based and De Novo Design[END_REF] and implied the pre-existent knowledge and comprehension of a protein binding pocket through X-Ray crystallography [START_REF] Maveyraud | Protein X-ray crystallography and drug discovery[END_REF][START_REF] Kendrew | A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis[END_REF] , NMR [START_REF] Pickford | NMR studies of modular protein structures and their interactions[END_REF] , or electron microscopy [START_REF] Benjin | Developments, applications, and prospects of cryo-electron microscopy[END_REF][START_REF] Boland | The potential of cryo-electron microscopy for structure-based drug design[END_REF] . Atom-based methods resulted in a much larger and more diverse number of potential candidates but with questionable synthetic accessibility, while fragment-based methods generated a lower number of more feasible compounds but relied on existing fragment datasets which still limits the exploration potential. So-called "Ligand-based" methods were developed in parallel for protein targets with no available solved structures and relied on known ligands to recreate pharmacophore-based pseudo-receptors or perform direct similarity design [START_REF] Waszkowycz | An Approach to de Novo Molecular Design. 2. Design of Novel Molecules from Molecular Field Analysis (MFA) Models and Pharmacophores[END_REF] . The advantage of de novo design is that the generated molecules follow precise binding criteria, have certain designated structural features or physicochemical properties, and are usually novel. With it, the usual QSAR workflow could be inverted to generate compounds from desirable given characteristics. However, the prior knowledge necessary to build a molecule from smaller building blocks in a mapped protein pocket and the computational costs necessary to power the algorithms, have limited the scope of applications of the method.

In parallel with the developments in De Novo design, the "Renaissance" of Artificial Intelligence (AI) took place in the early 21 st century long after the first introductory experiments by Newell and Simon in 1956 [START_REF] Gugerty | Newell and Simon's logic theorist: Historical background and impact on cognitive modeling[END_REF] . Having passed through a couple of "winters" in the 70s and 80s due to the lack of results, lack of funding, and unrealistic expectations of end-users [START_REF] Crevier | AI: The Tumultuous History of the Search for Artificial Intelligence[END_REF] , the field of Artificial Intelligence began to gain some new traction at the beginning of the 21 st century fuelled by the reducing costs and rapid increase in computing power [START_REF] Nordhaus | The Progress of Computing[END_REF] . The popularization of Machine Learning (ML) methods using statistical data to form predictions made its way to the field of chemistry to form Cheminformatics [START_REF] Chan | Advancing Drug Discovery via Artificial Intelligence[END_REF][START_REF] Zhu | Big Data and Artificial Intelligence Modeling for Drug Discovery[END_REF][START_REF] Yang | Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery[END_REF] and very quickly the exponential increase in global data saw the emergence of a new trend in Artificial Intelligence:

Deep Learning (DL).

Deep Learning is a subset of Machine Learning that uses large Artificial Neural Networks (ANN) architectures to handle large amounts of data with reduced preprocessing and gained popularity in the era of Big Data. DL methods have been used in various tasks like natural language processing [START_REF] Otter | A Survey of the Usages of Deep Learning for Natural Language Processing[END_REF] , image recognition [START_REF] Liu | Image Recognition Technology Based on Machine Learning[END_REF] or even protein folding [START_REF] Ruff | AlphaFold and Implications for Intrinsically Disordered Proteins[END_REF] and naturally made its way to chemical applications like drug discovery [START_REF] Chen | The rise of deep learning in drug discovery[END_REF] . One of the many fields impacted by the democratization of DL algorithms was De Novo design. Around 2017, several different types of Deep Generative Models, initially used for language translation [START_REF] Cho | Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[END_REF] or chat bots [START_REF] Serban | Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models[END_REF] , were used in combination with the Simplified Molecular-Input Line-Entry System [START_REF] Weininger | a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules[END_REF] (SMILES) or Graphbased representations to generate new molecules [START_REF] Segler | Generating focused molecule libraries for drug discovery with recurrent neural networks[END_REF][START_REF] Olivecrona | Molecular de-novo design through deep reinforcement learning[END_REF][START_REF] Gupta | Generative Recurrent Networks for De Novo Drug Design[END_REF][START_REF] Blaschke | Application of Generative Autoencoder in De Novo Molecular Design[END_REF][START_REF] Putin | Reinforced Adversarial Neural Computer for de Novo Molecular Design[END_REF][START_REF] Ertl | In silico generation of novel, drug-like chemical matter using the LSTM neural network[END_REF] .

The mass generation of novel chemical compounds via DL algorithms raised the issue of synthetic accessibility. For hits to be considered viable by the pharmaceutical industries, they must be reachable through cheap and simple reactions using readily available building blocks.

Classical rule-based reaction prediction algorithms exist [START_REF] Chen | No electron left behind: A rule-based expert system to predict chemical reactions and reaction mechanisms[END_REF][START_REF] Blurock | Reaction: System for Modeling Chemical Reactions[END_REF] but require the manually-inputted reaction rules and constant expert supervision. To accompany the rise in compound generation, DL models predicting synthetic pathways and synthetic accessibility were developed [START_REF] Blurock | Reaction: System for Modeling Chemical Reactions[END_REF][START_REF] Baylon | Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification[END_REF][START_REF] Segler | Planning chemical syntheses with deep neural networks and symbolic AI[END_REF] . The goal was to not only accelerate the retrosynthesis process to match the speed of molecular generation, but also to harness the strong pattern recognition capabilities of DL algorithms to find new potential reaction pathways, unseen by synthetic chemists.

Nowadays, two main trends of generative methods can be characterized: Models based on specific scoring functions aiming to create highly focused libraries, or more general models based on the creation and exploration of a model-based chemical latent space. Architectures based on scoring functions include Generative Adversarial Networks (GANs) [START_REF] Putin | Reinforced Adversarial Neural Computer for de Novo Molecular Design[END_REF] , Adversarial AutoEncoders (AAEs) [START_REF] Polykovskiy | Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery[END_REF] , or any model based on Reinforcement Learning (RL) [START_REF] Zhou | Optimization of Molecules via Deep Reinforcement Learning[END_REF] or Transfer Learning (TL) [START_REF] Segler | Generating focused molecule libraries for drug discovery with recurrent neural networks[END_REF] . The role of the scoring function is to orient the generation process towards a very specific subset of, for example, active compounds against a specific target. Generated compounds are compared to existing actives using a set of predefined criteria, resulting in high scores if the criteria are met. The advantage is that molecules obtained this way have a strong potential to be highly active and the structural features and properties outputted by the model can be controlled. However, this also implies that each model is hyper-specific to a unique target and must be retrained if the objective changes, increasing computing and temporal costs.

Architectures based on the exploration of a learned latent space are more universal and can be tasked to generate more varied compounds [START_REF] Arús-Pous | Exploring the GDB-13 chemical space using deep generative models[END_REF] since the models are trained with large varied molecular datasets. Even though they may correctly separate classes, navigating these "AIchemical spaces" in search for active clusters remains a challenge due to their highly dimensional nature.

"Chemography", a combination of Chemistry and Geography, is the art of mapping chemical spaces to facilitate their exploration [START_REF] Oprea | Chemography: The art of navigating in chemical space[END_REF] and was initially based on the use of Principal

Component Analysis [START_REF] Jollife | Principal component analysis: a review and recent developments[END_REF][START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF][START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] (PCA). Highly dimensional chemical spaces could therefore be reduced to easily readable and comprehensible 2D maps. Different methods of dimensionality reduction techniques exist like previously stated PCA, LDA [81] , t-SNE [START_REF] Van Der Maaten | Visualizing Data using t-SNE[END_REF] or even Autoencoders [3] , a particular type of Deep Neural Network. Another one of these techniques, Generative Topographic Mapping [START_REF] Bishop | The Generative Topographic Mapping[END_REF] (GTM), based on Self-Organizing Maps [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF] (SOM), is nonlinear and probabilistic which makes it well adapted to handle large amounts of chemical data.

Due to its nature, GTM allows the creation of smooth landscapes, in which areas of chemical spaces can be coloured according to the properties of the compounds residing there, like physicochemical properties or biological activity. QSAR models based on GTM showed the potential of this method to find active zones in chemical space and isolate compounds of interest [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal Tool for Data Visualization[END_REF][START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF] .

GTM has been successfully used before in combination with Deep Neural Networks to navigate the chemical space of a generative model, isolate active areas and generate compounds with good activity potential [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF] for a particular target. Although successful in this particular application, there is no certainty that latent descriptors can be successfully used to separate actives and inactives in all cases. Still today, little is known of the construction mechanism and the organization of NN-based chemical spaces, and the robustness and flexibility of latent descriptors compared to classical structural descriptors. In contrast, ISIDA [START_REF] Ruggiu | ISIDA Property-Labelled Fragment Descriptors[END_REF] descriptors have been shown to be versatile in terms of active and inactive separation for several hundred different biological targets. [START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF] However, the many-to-one nature of classical structural descriptors renders the simple act of going from descriptor vector to molecule impossible.

Therefore, both classical and latent-based methods have strong advantages but each lacks one essential feature. By combining the two, it may be possible to obtain a universal generative model, able to efficiently separate classes for a variety of different targets and navigate latent space in search for active clusters to sample from.

This thesis is therefore dedicated firstly to the analysis of the construction of chemical spaces by deep neural networks, especially Autoencoders, and their generative ability in terms of active compounds and novel reactions. The second part of the thesis is orientated towards the development of a method to harness the generative power of neural networks to couple it with the versatility and efficiency of classical structure based ISIDA molecular descriptors to allow the controlled generation of molecules with desired activities, structures, and properties, reversing the classical QSAR methodology.

Sequence-to-Sequence Neural Networks

Sequence-to-Sequence (Seq2Seq) models are a type of Recurrent Neural Networks [START_REF] Tealab | Time series forecasting using artificial neural networks methodologies: A systematic review[END_REF] (RNN) first introduced by Sutskever and al. in 2014 [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] . The initial function of seq2seq models was Natural Language Processing (NLP), specifically English to French translation. However, the architecture was later derived for many other applications in different domains, like text summarisation [START_REF] Nallapati | Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond. 20th[END_REF][START_REF] Zhang | Abstract Text Summarization with a Convolutional Seq2seq Model[END_REF] , image processing and captioning [START_REF] Ghandi | Deep Learning Approaches on Image Captioning: A Review[END_REF] , conversational models [START_REF] Mnasri | Recent advances in conversational NLP : Towards the standardization of Chatbot building[END_REF][START_REF] Patidar | Automatic conversational helpdesk solution using Seq2Seq and slot-filling models[END_REF] , and even music generation [START_REF] Shih | Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer[END_REF] . These types of models have been extensively used in Cheminformatics and drug design in recent years [START_REF] Olivecrona | Molecular de-novo design through deep reinforcement learning[END_REF] .

Seq2Seq models are composed of two parts: An Encoder and a Decoder, which are two separate entities, but linked and trained simultaneously. The role of the encoder is to process a variable-length input vector and generate a fixed-length "latent" numerical vector which encapsulates contextual information about the input data. The decoder receives the latent vector and regenerates a variable-length sequence from the given context. For example, in the case of an English to French language translation task, the encoder receives a sentence in English and outputs a numerical vector which conceptually represents the sentence in a latent space. Then, a decoder trained to navigate said latent space can use that vector to output a sentence in any language it was trained on, for example, French. Encoders and decoders used to be constructed with simple feed forward RNN architectures when Seq2seq models were first introduced. However, vanishing gradients quickly became an issue when trying to train deep architectures [START_REF] Pascanu | On the difficulty of training Recurrent Neural Networks[END_REF] , causing models to struggle to maintain contextual links between words far apart in a sequence. To tackle that issue, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) "cells" were introduced in 1997 [START_REF] Hochreiter | Long Short-Term Memory[END_REF] and 2014 [START_REF] Cho | Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[END_REF] respectively. LSTM solved the issue of vanishing gradients by allowing the model to selectively access memory states not only from the last input but from earlier inputs as well. GRUs were developed later as a simpler and faster alternative to LSTMs which performed almost comparably [START_REF] Yang | LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example[END_REF] . Some Seq2Seq architectures are trained to simply reconstruct their input while minimizing the reconstruction error. These types of architectures are called Autoencoders, and their main purpose is to learn in an unsupervised manner a "meaningful" higher representation of the input data. However, if the dimensionality of the latent vector, meaning the vector which is given to the decoder by the encoder, is higher than dimensionality of the input, then the model will simply learn an identity function. To avoid the problem of the model learning to simply "copy" its input, different regularization methods exist, like in sparse [START_REF] Makhzani | k-Sparse Autoencoders[END_REF] , denoising [100] or contractive [101] AEs. Those methods work well if the dimensionality of the latent vector is equal or higher to the dimensionality of the data. Another regularization technique consists in making the dimensionality of the latent vector lower than the input data, creating a "bottleneck" which forces some information loss and trains the model to keep the most vital representation and context and infer the missing information (Figure 13).

Even with the introduction of LSTMs and GRUs, a study by Cho and al. [102] showed encoder-decoder architectures still had a strong dip in performance when dealing with very long sentences. The encasement of the entire context into a fixed-length vector was pinpointed as the main source of error and led to the development of Attention-based seq2seq architectures [START_REF] Vaswani | Attention Is All You Need[END_REF]103,104] . During the generation process, the Attention mechanism allows the model to selectively concentrate on relevant parts of the source data where the most important information is located. The model can then predict new words according to the global or local context vectors, depending on the Attention type, as well as all previously generated words, thus improving performance on long sentences and translational efficiency altogether. (i) represents the denoising autoencoder, where a noise vector is added to the input, but the output is compared to the clean input, forcing the model to make the difference between useful information and noise. (ii) represents a sparse autoencoder. Random values are "deactivated" (set to 0) between encoder and decoder, resulting in information loss and forcing the model to infer from incomplete information. (iii) represents an autoencoder with a low-dimensional latent vector, called a "bottleneck" which compresses the information. The decoder must infer the output from this compressed information.

RNNs, LSTMs, GRUs, Attention Recurrent Neural Networks

A Recurrent Neural Network takes as input a sequence of vectors 𝐗 = (𝐗 0 , 𝐗 1 , 𝐗 2 , … , 𝐗 𝑛) and processes the vectors one by one, starting with the first one. At time step 𝑡, the model processes the input 𝐗 𝑡 as well the state vector 𝐡 𝑡-1 resulting from the previous iteration to generate an output 𝐘 𝑡 and an updated state vector 𝐡 𝑡 . Figure 14 shows a schematic representation of the process.

Long Short-Term Memory and Gated Recurrent Units

To solve the problem of long term-dependencies, Hochreiter and Schmidhuber [START_REF] Hochreiter | Long Short-Term Memory[END_REF] introduced the LSTM in 1997. An LSTM works like an RNN but adds different connexions to the cell and a new variable: the cell state. As explained previously, hidden states in RNNs keep the context from previous inputs, but the longer the character chain is, the less effective that context will be. In the LSTM, hidden states work as short-term memory, and cell states as longterm memory which prevents vanishing gradients and greatly strengthens long-term dependencies. Comparative schemes of a regular RNN and an LSTM are shown in Figure 15. In contrast to the regular RNN where hidden states and input are simply concatenated and passed to an activation (tanh) layer, the LSTM takes the input and hidden states and passes that signal through "gates" which are composed of an activation layer and either a multiplicative or additive pointwise operation (three red dots on the bottom line in Figure 15, (ii)). These gates decide how much of the new information 𝑥 𝑡 and short-term memory ℎ 𝑡-1 to add to the cell state 𝑐 𝑡-1 which serves as the long-term memory. 𝑐 𝑡 is then multiplied to ℎ 𝑡-1 to create the output ℎ 𝑡 . The first gate is a "forget" gate, which removes or diminishes the importance of certain information in the cell state; the second and third gates work as a "remember" gate, which adds (via the additive operation) new useful information to the cell state.

GRUs function a bit differently, as they combine long-term and short-term memory in the same hidden states ℎ 𝑡 (Figure 16). The result is a simpler RNN model with less variables and parameters to optimize which makes it faster to train and use.

The complex mathematical equations and functions governing both these models will not be described here since they are not useful for the understanding of the work, however a precise and thorough mathematical explanation of the feed-forward and backpropagation processes can be found in the literature [105] .

Figure 16.

Comparison between schematic representations of the LSTM (i) and the GRU (ii).

The GRU does not have a cell state like the LSTM but combines short-term and long-term dependencies into the hidden states.

Different types of RNNs can be distinguished depending on the input and output dimensionality as well as the time steps. The different types are summed up in Table 2.

Context vectors created when reading a sequence from beginning to end are used by the decoder to generate new items from past context. RNNs using this method are called Unidirectional as they only read information one way. Bidirectional RNNs [106] read the sequence from beginning to end, and from end to beginning and output two hidden states vector, one forward and one backward. The forward vector, just like in a Unidirectional RNN, captures past context during the generation process while the backward vector captures future context.

The combination of both context vectors during the generation process allows past and future context to be considered when sampling new words. General hidden states at time step 𝑡, ℎ 𝑡 are expressed as a concatenation of forward states ℎ 𝑡 𝑓 and backward states ℎ 𝑡 𝑏 such that:

ℎ 𝑡 = [ℎ 𝑡 𝑓 , ℎ 𝑡 𝑏] (2.6)
In traditional RNNs and Autoencoders, the intermediate hidden states of the encoder ℎ 𝑡 are always given to the next time step but are not stored individually. Instead, only the final hidden states (and/or cell states in the case of LSTMs) are given to the decoder. This means that the whole context is stored in a single fixed-length vector as shown in Figure 17.

Attention

The first Attention mechanism was developed by Bahdanau and al. [103] in 2014, to solve the issue of long term dependencies in DNNs. The Attention mechanism is based on using the intermediate hidden states ℎ 𝑡 to create a dynamic context vector which is then given to the decoder instead of the usual final hidden states. This dynamic context vector is different for each time step of the decoder and allows to form localized connections between source and target sequences. Simply put, for each time step, the context vector has a higher influence from elements in the source sequence that are relevant to that time step specifically, instead of having the same context for all time steps.

During decoding, the basic equations of the Bahdanau attention mechanism are as follows: Let 𝑌 𝑡-1 and 𝑠 𝑡-1 respectively be the output of the decoder and the hidden states of the decoder at time step 𝑡 -1. The hidden states ℎ 𝑖 are pre-computed from the input 𝐗 = (𝐗 0 , 𝐗 1 , 𝐗 2 , … , 𝐗 n) by the decoder. At each time step, an attention score 𝑒 𝑡,𝑖 for each hidden state ℎ 𝑖 is calculated with the hidden state of the previous output step 𝑠 𝑡-1 following the equation:

𝑒 𝑡,𝑖 = 𝑓(𝑠 𝑡,𝑖 , ℎ 𝑖) (2.7)
with 𝑓 an alignment function which in this case is additive:

𝑓(𝑠 𝑡,𝑖 , ℎ 𝑖) = 𝐰 𝑇 tanh (𝐖[ℎ 𝑖 ; 𝑠 𝑡-1]) (2.8)
[𝐴; 𝐵] being the concatenation of vectors A and B.

Or

𝑓(𝑠 𝑡,𝑖 , ℎ 𝑖) = 𝐰 𝑇 tanh (𝐖 1 ℎ 𝑖 + 𝐖 2 𝑠 𝑡-1) (2.9)
𝐰, 𝐖 1 and 𝐖 2 are weights which are trained alongside with the rest of the model.

Once the alignment scores 𝑒 𝑡,𝑖 are calculated, a softmax function is applied to obtain the corresponding attention weights:

𝛼 𝑡,𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒 𝑡,𝑖) = exp (𝑒 𝑡,𝑖) ∑ exp (𝑒 𝑡,𝑖) 𝑛 𝑖=0
(2.10) 𝛼 𝑡,𝑖 can therefore be considered as probability or weights values, indicating how important the hidden state ℎ 𝑖 is to the next output 𝑌 𝑡 and next output state 𝑠 𝑡 . Finally, the context vector 𝑐 𝑡 is computed using the combination of 𝛼 𝑡,𝑖 and ℎ 𝑖 as follows:

𝑐 𝑡,𝑖 = ∑ 𝛼 𝑡,𝑖 ℎ 𝑖 𝑛 𝑖=0 (2.11)
The context vector is then given to the decoder along with the previous output 𝑦 𝑡-1 and previous states 𝑠 𝑡-1 to compute the new output 𝑦 𝑡 .

Figure 18. Schematic representation of the process of computing the Bahdanau attention taken from the original publication [103] . This image shows the process for a bidirectional RNN.

The original Bahdanau attention can be considered as additive since the alignment functions concatenate or add the states together. Luong and al. improved on the original design by using multiplicative alignment functions [104] . Attention mechanisms can be separated in two categories: local and global. Global Attention (Bahdanau and Luong) makes use of all intermediate states to generate the context vector while local attention selects the most important hidden states in the source sequence to generate the next word in the target sequence [107] .

In 2017, Vaswani and al. introduced a general attention mechanism which does not require the model to be recurrent [START_REF] Vaswani | Attention Is All You Need[END_REF] and was based only on positional embeddings and multihead attention (multiple instances of single attention vectors are calculated, concatenated, and projected to give a single context vector). These models, called Transformers, achieved great results in many different fields [108] .

Molecular Representations for Seq2Seq architectures

Seq2seq architectures require sequences of data as input, as opposed to graph-based architectures which work with encoded molecular graphs [109,110] . To ensure that seq2seq models can be used in chemical applications, chemical compounds must be converted in sequential machine-readable format. Common molecular names like "propane" or "benzaldehyde" would be simple inputs, however they bring no information on the structure or properties of the compound. In contrast, IUPAC nomenclature would be more systematic and complete, but the resulting names can be lengthy and hardly interpretable. Several different forms of molecular representation were therefore developed throughout the years to try and strike a compromise between chemical information retention, simple interpretability, and performance optimization.

SMILES

The Simplified Molecular Input Line Entry System (SMILES) [START_REF] Weininger | a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules[END_REF] is a method of encoding molecular structures in the form of a sequence of characters representing the succession of atoms in a molecule. SMILES are built by selecting a starting atom and going through connections in the molecular graph, each time adding the corresponding atom character to the chain. Different atoms, bond types, branching, etc… are all handled using simple characters which make SMILES easily readable and a very light option for storage.

Any atom can be selected as the starting point when building SMILES, which means that one molecule can have several different associated SMILES in a one-to-many relationship.

As such, so-called "canonization" algorithms [111,112] were developed to make the generation process systematic and reproducible, so that each molecule is associated with a single "canonical" SMILES.

InChI

The International Chemical Identifier (InChI) [113] represents molecular structures as a unique combination of machine-readable layers of character strings. The basis of the InChI representation is the core layer which describes the "skeleton" of the molecule. Different layers may then be added, separated by a "/", that each provide different chemical information. InChI in essence are a very versatile but quite complex way to represent molecules. Attempts at using InChI to train models showed that the high complexity factor resulted in inferior performance when compared to SMILES-based models [114,115] .

DeepSMILES

SMILES strings may sometimes be very long in the case of structures with several cycles or branching paths. In some of those cases, one opening parenthesis may be at the beginning of the SMILES string when the closing parenthesis is at the end, same with cycle numbers. These placements introduce long-distance dependencies in the sequential representation which are sometimes difficult to apprehend for seq2seq architectures. During reconstruction, small errors can appear when closing cycles or ending branches which can render the SMILES chemically invalid. DeepSMILES [116] were developed to solve this problem by using single symbols for both cycles and branching paths. Branching paths are indicated by closing parentheses, the number of which indicates the size of the branching. The issue of pairing ring closure is handled by using a single symbol at the ring closing location, indicating the number of atoms in the ring.

SELFIES

As previously stated, small differences or changes in SMILES can result in invalid strings which are not associated with any existing chemical structures, which makes this representation quite prone to errors. This is problematic when trying to use generative neural networks as the probability-based reconstruction may incorrectly handle long-term dependencies and place certain characters where they shouldn't be. SELFIES [117] are an adaptation of SMILES, robust to small changes and errors. SELFIES are based on formal Chomsky type-2 grammar and localize branches and rings, so that instead of indicating the beginning and the end of a ring or branch, the corresponding symbols indicate the length of the features. All SELFIES character sequences correspond to valid molecules and every molecule can be expressed as a SELFIE.

Table 3. Example of each type of representation for

(3-chlorophenyl)methanol. 2D Structure SMILES (Unique) OCc1cccc(Cl)c1 InChI InChI=1S/C7H7ClO/c8-7-3-1-2-6(4-7)5-9/h1-4,9H,5H2 DeepSMILES OCcccccCl)c6 SELFIES [O][C][C][=C][C][=C][C][Branch1][C][Cl][=C][Ring1][#Branch1]

One-hot encoding

Seq2Seq architectures cannot directly input sequence of characters or words however, as these are incompatible with the numerical transformations which take place in the model. Instead, they should be "encoded" into machine-readable format in the form of vectors, matrices or tensors which can be manipulated through mathematical functions. Sentences in any language are built using a finite list of words organized in a certain order to create meaning and sense.

When predicting the next word in a sentence, the model must choose between a certain number of possibilities, making this a categorical problem.

By assigning an integer value to each word or character in the dictionary, sentences can be encoded into numerical vectors. This is called "integer encoding" and is easily reversible, making it the simplest encoding method. The latter works well when numerical values assigned to the data maintain an ordinal relationship present initially in the data. For example, if the task is to encode reviews for a movie where the possibilities are "bad", "average", "good", then encoding them as 1, 2 and 3 makes sense since they are ordered. However, when working with data with no ordinal relationship, this method of encoding can cause biases. Encoding "cat", "parrot" and "bison" as 1, 2 and 3 implies that a cat is closer to a parrot than a bison which establishes ordered connections that are not present in the initial data. Moreover, when dealing with large dictionaries or large numbers of possibilities, the encoding integers can become very large which can cause memory and performance issues.

Another method to encode sentences or sequences of characters is called one-hot encoding. In this case, each word or character in the sequence is represented as a vector of length 𝑁, 𝑁 being the size of the dictionary. The vector encodes the presence or absence of each word for the current instance, as shown in Table 4.

Table 4. Example of the one-hot encoding of the word "cute" for a dictionary of size 7. The resulting vector has a dimensionality of 7. Tali cat dog ugly cute a is

0 0 0 0 1 0 0
Using this method, entire sentences can be encoded into matrices of binary values as shown in Table 5. Note that these matrices can get quite large depending on the size of the given dictionary, but the binary values allow for simpler processing and low memory usage.

Furthermore, there is no bias caused by arbitrary values being assigned to random data.

Table 5. Example of the one-hot encoding of a sentence of 5 words with a dictionary of size 7.

Words in blue are the sentence, while words in green represent the dictionary. The resulting matrix has a dimensionality of (7, 5).

Tali is a cute cat Tali 1 0 0 0 0 cat 0 0 0 0 1 dog 0 0 0 0 0 ugly 0 0 0 0 0 cute 0 0 0 1 0 a 0 0 1 0 0 is 0 1 0 0 0
This method can be easily extended to chemical data, particularly SMILES. By considering them as a "sentence" of chemical "words" they can be encoded as naturally as languages. A SMILES database contains a finite number of possible characters which form a dictionary, used to create chemically meaningful sequences. The process is the same as before, as shown in Table 6.

Table 6. Example of the one-hot encoding of the but-3-en-2-ol SMILES with a simple dictionary of 6 characters.

C C (O) C = C C 1 1 0 0 0 1 0 1 O 0 0 0 1 0 0 0 0 N 0 0 0 0 0 0 0 0 (0 0 1 0 0 0 0 0) 0 0 0 0 1 0 0 0 = 0 0 0 0 0 0 1 0
Even though the process of forming the one-hot matrices is the same in both cases, differences in the handling of natural languages and SMILES may be noted. On the one hand, SMILES sequences can be very long, up to hundreds of characters. With each SMILES character being treated as if it were a word, this would be equivalent to having sentences of 100 or 200 words. As a comparison, the average length of a sentence in the "Harry Potter" books is around 12 words [118] , emphasizing the need for very strong long-term dependencies when dealing with chemical information. Errors in natural languages can still lead to understandable sentences if one word is missing, misplaced, or mistranslated, but a single error in a SMILES string can lead to a completely different molecule in certain cases, or more likely to a meaningless character sequence with no chemical meaning. On the other hand, dictionaries for SMILES are much smaller than dictionaries containing words for natural languages. The latter can contain thousands of entries, rendering the one-hot matrices very large, while the former may contain 30-60 possible characters depending on the given task. The problematic of having very long sentences is thus alleviated somewhat by the rather low number of possible atoms and functions.

Molecular generation with Seq2Seq architectures

During training, SMILES are modified to add a start and end character at the beginning and end of the SMILES. For example, the simple "C1CCCCC1" would become "!C1CCCCC1E" if "!" was the start character and "E" the end character. SMILES are then encoded into one-hot vectors and the model is trained, sometimes using the Teacher Forcing (TF) method [119] . As an example for the generation procedure, an Autoencoder which must reconstruct its input will be considered.

The encoder part is only used during training or for generating latent vectors corresponding to inputted molecules. The generation procedure is only done by the decoder.

The latter receives as input a latent vector corresponding to a certain SMILES string along with a start token ("!" in our example). The model then predicts the probability of each possible character to be the next one using the softmax function, based on the given latent vector. The sampled character is added to the sequence and given back to the decoder to predict the next character and so on, until the model predicts an "E" which signifies that the string has ended.

An example of the process is shown in Figure 19. The start character is given to the decoder with the latent vector to predict the next character, based on a probability distribution of all characters (represented by the rectangle). In this case, the most probable character is selected and added to the existing sequence. The latter is then injected back into the neural network to continue predict characters until reaching the "E" which signifies the end.

rewarded for generating molecules which fit the desired properties and punished otherwise.

RNNs coupled with RL have been used to generate potential actives against biological targets [START_REF] Olivecrona | Molecular de-novo design through deep reinforcement learning[END_REF]126] . Forcing the model to generate compounds with desired properties can also be achieved by training the model to make the connection between properties and chemical structure. During training, the model is given, alongside the SMILES string, corresponding properties or structural features associated with the given SMILES. When sampling, the model only takes the property vector and outputs a SMILES corresponding to a compound with the desired properties. These types of models are called Conditional Recurrent Neural Networks (CRNN) and have been used to generate active compounds against the DRD2 receptor [127] .

More complex architectures like AEs became quite popular due to their ability to create an explorable latent space in which any area of interest can be sampled using cartography [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF] or Particle Swarm Optimization (PSO) [128] . Due to the discrete nature of the latent spaces associated to vanilla AEs, VAEs were preferred for latent space navigation [114,129] . VAEs were also coupled with TL [126] to design ligands for the dopamine type 2 and the 5hydroxytryptamine type 1A receptors. CVAEs also achieved good results in the generation of actives against biological targets [START_REF] Lim | Molecular generative model based on conditional variational autoencoder for de novo molecular design[END_REF]130] .

Generative Adversarial Networks [131] are a combination of two separate models trained together: The first model, called the generator, generates compounds that are given to the second model, the discriminator. The discriminator receives the compounds from the generator and compounds from a dataset of real molecules and must learn to make the difference between them. The generator is trained to "fool" the discriminator by creating compounds that resemble the real dataset. Once the discriminator cannot make the difference between real and generated compounds, then sampling the generator gives compounds which are structurally very similar to the real compounds. GANs were successfully used in focused datasets generation [START_REF] Putin | Reinforced Adversarial Neural Computer for de Novo Molecular Design[END_REF][132][133][134] and latent space exploration [START_REF] Prykhodko | A de novo molecular generation method using latent vector based generative adversarial network[END_REF] . Instead of comparing molecular structures like in the case of GANs, an AE can be modified to create an Adversarial Autoencoder which compares the data distribution of the AE with a prior distribution, the goal being to bring prior and latent distributions closer so that the generative process is fuelled by latent vectors in interesting areas of latent space [START_REF] Polykovskiy | Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery[END_REF] .

Figure 20. (i) Variational

Autoencoder. Instead of the unique latent vector generated by a vanilla AE, the encoder generates two vectors: mean and standard deviation of a normal distribution from which the vector given to the decoder is sampled. (ii) Conditional Variational Encoder. A condition vector describing structural fragments or physicochemical properties is given to the encoder at the same time as the molecular structure and concatenated with the latent vector sampled from the gaussian distribution. (iii) Adversarial AutoEncoder. The encoder generates a latent vector which is compared with a prior distribution by a discriminator. (iv) Generational Adversarial Network. The generator creates molecular structures which are compared to real compounds by a discriminator which is trained in parallel.

The developments of sequence-to-sequence architectures achieving target compound design meant that large datasets of potentially new molecules were created. However, being predicted active is not the only requirement for potential drugs. Simple and relatively cheap synthetic pathways must also be found to ensure that the interesting molecules are also easily accessible synthetically. Reactions are a lot more complex than molecules however, since reactions often imply multiple reagents and products, with a correspondence between chemical entities before and after the reaction. This seemingly complex issue can be simplified slightly by thinking of reactions as a translation from reagents to products, and since seq2seq architectures were initially developed for translation tasks, they can naturally be adapted to solve the problem. GRU and LSTM-based seq2seq models were successfully used to predict products directly from reagents [135,136] and retrosynthetically predict reagents from products [137- 139] . Reactions remain very difficult to handle and the prediction of novel reactions through neural networks is still in its infancy.

Generative Topographic Mapping

Generative Topographic Mapping (GTM) is a probabilistic dimensionality reduction technique akin to Self-Organizing Maps [140] , first published by Bishop and al. in 1998 [START_REF] Bishop | The Generative Topographic Mapping[END_REF] . As a method of dimensionality reduction, visualization and analysis of chemical latent space, GTM has successfully been used for the analysis of large data collections [START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal Tool for Data Visualization[END_REF][141][142][143] . The algorithm performs non-linear projections from an initial N-dimensional descriptor space onto a 2D latent space called manifold which is inserted into the data. The manifold itself is a flexible surface of finite size composed of Gaussian Radial Basis Functions (RBFs). It is inserted into the densest regions of the frameset where it adapts by assuming the general shape of the data distribution. Data points are projected onto the manifold via grid points called nodes, and the manifold is then unfolded and flattened into a 2D map.

Each data point is associated to all nodes via a set of responsibilities which encode the position of the data point on the map. The higher the responsibility in regard to a certain node, the closer the data point will be to that location. These responsibility vectors can then be used to create landscapes, 2D maps associated to a certain property or activity where each node is coloured according to the value of the given property or activity.

GTM Algorithm

Generative Topographic Mapping is a probabilistic method, as stated previously. The manifold is composed of a set of 𝑀 Radial Basis Functions (RBFs, Gaussian functions in this implementation), forming a probability distribution sampled using 𝐾 nodes. The mapping function 𝐘 used to map items from the latent space of dimension 𝐿 (in this case, 𝐿 = 2) to the initial space of dimension 𝐷 is the following:

𝐘 = 𝛟W (2.12)
𝛟 corresponds the 𝐾 x 𝑀 matrix regrouping the evaluation of each RBF position in relation to each node with the formula:

Φ 𝑚𝑘 = exp (∥ 𝐱 k -𝛍 m ∥ 2 2𝜎) (2.13)
With 𝐱 k the position of the node, 𝛍 m the fixed position of the RBF, and 𝜎 the variance associated to the Gaussian functions. A set of 𝐾, 𝑀, and 𝜎 parameters are associated to a constant 𝛟 matrix and influence the resolution of the model. The deformation of the manifold to adapt to the data is described by the trainable weight matrix W (2.12) of size 𝑀 x 𝐷, which defines the manifold in the initial 𝐷-dimensional space.

Thus, the multiplication of the 𝛟 matrix (𝐾, 𝑀) defining the relations between RBF centres and nodes in 2-dimensional latent space and the W matrix (𝑀, 𝐷) defining the placement of the RBF centres in the initial 𝐷-dimensional data space gives the 𝐘 matrix (𝐾, 𝐷) defining the shape of the manifold in the initial space. During training, the weights shift to move the nodes closer to the data points, searching for the shape that will best fit the data distribution thus improving the resulting latent representation.

The data distribution is usually defined by a set of 𝑁 data points called a frameset, which is a representative subset of a usually larger dataset, but sufficient for the training process to capture the general shape of the distribution. The first step of training is the initialization of the weight matrix W, which can be done randomly but the application of PCA is the preferred method. Simply put, the manifold is inserted "flat" into the data following the eigenvectors of the two first principal components resulting from a PCA on the frameset. The process is governed by the following equation:

𝐖 = 𝚽 -𝟏 (𝐗𝐔) (2.14)
The 𝐗 matrix (𝐾, 2) defines the position of the nodes following the two eigenvectors resulting from the PCA and 𝐔 (2, 𝐷) defines the two eigenvectors in initial space. The resulting matrix 𝐗𝐔 gives the coordinates of the nodes in 𝐷-dimensional space. To obtain initialized weights, this matrix needs to be multiplied by the inverse of the 𝛟 matrix, essentially defining the positions of the RBF centres in the initial space following the principal components. Once the manifold is inserted into its initial position, each compound of the frameset is projected onto the manifold using the following equation:

𝑝(𝐭|𝐱 k , 𝐖, 𝛽) = (𝛽 2𝜋) - 𝐷 2 exp (- 𝛽 2 ∥ 𝐲 k -𝐭 ∥ 2) (2.
𝐑 = (𝑟 1,1 ⋯ 𝑟 1,𝑁 ⋮ ⋱ ⋮ 𝑟 𝐾,1 ⋯ 𝑟 𝐾,𝑁) (2.20)
The second part of the Expectation step is to calculate, for each node, the sum of responsibilities 𝑔 of the 𝑁 data points. The result of this summation is expressed as a diagonal matrix and not a one-dimensional vector since the basis must be changed in the Maximization step to go from the 2-Dimensional space of the nodes to the 𝐷-dimensional space of the RBF centres via the 𝛟 matrix.

𝑔 𝑘𝑘 = ∑ 𝑟 𝑘𝑛 𝑁 𝑛=1 (2.21) 𝐆 = (𝑔 11 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 𝑔 𝐾𝐾) (2.22)
The Maximization step uses the previously calculated 𝐑 and 𝐆 matrices, the matrix 𝐓 describing the 𝑁 data points in the initial 𝐷-dimensional space, a unit matrix 𝐓 and a regularization coefficient 𝜆 to compute the updated parameter matrix 𝐖′. Based on the latter, a new value 𝛽 ′ for the width is also computed.

𝐖 ′ = (𝚽 T 𝐆𝚽 + 𝜆𝐈) -1 𝚽 T 𝐑𝐓 (2.23) 1 𝛽′ = 1 𝑁𝐷 ∑ ∑ 𝑟 𝑘𝑛 ∥ 𝑦(𝐱 𝑘 , 𝐖 ′) -𝐭 𝑛 ∥ ² 𝐾 𝑘=1 𝑁 𝑛=1 (2.24)
Both updated width and updated parameters are reinjected into the Expectation step for a new iteration. An updated 𝐿𝐿ℎ(𝐖 ′ , 𝛽′) is computed and compared to the initial 𝐿𝐿ℎ(𝐖, 𝛽) using a simple gradient indicated in equation (2.25). The training process is stopped when the gradient becomes smaller than the limit (0.001 in this case).

𝐿𝐿ℎ(𝐖 ′ , 𝛽 ′) -𝐿𝐿ℎ(𝐖, 𝛽) 𝐿𝐿ℎ(𝐖, 𝛽) ≤ 0.001 (2.25)

GTM ReSample

In certain cases, after the manifold has been trained, the number of nodes may be incompatible with certain applications. For example, the number of nodes in a small manifold may be too little for separating some species, leading to confusing graphical representations. It is possible to change the number of nodes in the manifold by simply reassigning a matrix of node positions from the matrix 𝐘 describing the positions of the RBFs in initial space which do not change since the manifold is well trained and embedded into the data. The probability distributions of the data points can then be recalculated using the new set of node coordinates.

GTM Landscapes

Visualization and modelling of the data is done by using the aforementioned responsibilities to create "landscapes" depicting the data distribution, with the possibility to enhance the displayed information by using colour coding related to properties or in the case of chemical information, activity as well. Depending on the goal and the type of model needed, three types of landscapes can be defined: Density, Class, and Property (see Figure 22). (2.27)

Once the property landscape is created it can also serve as a regression tool. By projecting a new data point 𝐭 ′ on the landscape and obtaining its responsibility vector 𝐫 𝑡 ′ with components 𝑟 𝑘𝑡′ for each node, the predicted value for the property of the compound is calculated as follows:

𝑞 𝑡′ = ∑ 𝑞 𝑘 * 𝑟 𝑡′ 𝐾 𝑘=1
(2.28)

In other words, the predicted property is a sum of all properties of the nodes where the data point was projected, weighted by the probability of the data point to be in each node.

In class landscapes, the value for each node is equivalent to the probability of finding a data point of a certain class in it:

𝑃(𝑐 𝑖 |𝑥 𝑘) = 𝑃(

ISIDA descriptors

The basic idea of any QSAR model in chemoinformatics is to link activity or property to structural features with the following general formula: 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 𝑓(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒).

GTM is therefore commonly built on structural fragment descriptors and the landscapes coloured according to chemical properties or activities to achieve that relationship. These descriptors must be carefully selected to have the best possible maps.

ISIDA [START_REF] Ruggiu | ISIDA Property-Labelled Fragment Descriptors[END_REF] descriptors encode molecular structures as specific subgraph counts where nodes correspond to atoms and can be coloured by different local physico-chemical properties such as pH-dependent pharmacophores and electrostatic potential. The vertices in the subgraphs correspond to the bonds; bond information can either be represented or ignored. Different fragmentation schemes can be applied to create different types of subgraphs: linear features, feature pairs, circular features, or feature trees. As such, the different types of colouring, bond information and fragmentation schemes offer a vast range of different levels in which the chemical information may be encoded. This plethora of choices for descriptors allows the creation of very strong GTM models which can be adapted to any biological target.

Combining GTM and Autoencoders

GTM is commonly used with ISIDA descriptors or structural descriptors in general, however the method can technically be applied to any data vector. Using the encoder part of an Autoencoder and SMILES encoded in one-hot-vectors, it is possible to create a highdimensional latent space of chemical structures where each molecule resides with a coordinates vector which can be used as descriptors. These descriptors can then be used like any other to train GTM models. The added benefit of this combination of methods is the ability to "generate" molecules from selected zones of interest on landscapes. Once the manifold is trained and the activity or property landscape is plotted, coordinates in 2D space of any area can be isolated and reverted to high-dimensional initial space using the reversibility of GTM. These coordinates can be used as input for the decoder to generate molecules residing on the manifold in that area of space. A representative scheme of this process is shown in Figure 23. The initial space is defined here with 3 dimensions for readability and ease of understanding, however in practice any dimensionality could be used.

By using this method, it is possible to generate molecules inside a data "cluster" of interest, however the coordinates extracted only belong to the manifold which adapts itself to the data distribution but may not cover it entirely as shown in Figure 24, (i). To improve the generation process to cover more of the data distributions, multiple vectors coordinate around the initial point must be sampled. Let 𝐱 = (𝑥 0 , 𝑥 1 , … , 𝑥 𝐷) be a vector of coordinates in initial space of dimension 𝐷 obtained from the manifold. A new vector 𝐲 is obtained by multiplying each coordinate 𝑥 𝑖 of the initial vector by a random number 𝑟 sampled from a gaussian distribution centered on 1.

𝑦 𝑖 = 𝑥 𝑖 * 𝑟, 𝑟 ∼ 𝒩(1, 𝛽) (2.33)
The distribution is centered on 1 so that the multiplication creates a small shift from the initial position. The width of the gaussian must be carefully selected to fit the data distribution.

The parameter 𝛽 in equation (2.33) is the same as in equation (2.4) and describes the width of the RBF centers of the manifold which are optimized to fit the data. Naturally, this value is reused as a sampling width for the new vectors.

Figure 24. Schematic representation of a manifold passing through a cluster of data points. If that zone on the 2D map is considered of interest, only coordinates on the manifold can be selected for the generation process (i). By multiplying the coordinates of the points of interest in initial space by a gaussian distribution, it is possible to sample not only on the manifold but also the entire data cluster (ii).

3 Exploring the latent space of an Autoencoder

Introduction

The Autoencoder is a classical but still very promising architecture in deep learning [144,145] . Its purpose is to encode an object (e.g. a SMILES string) to a latent vector, and then to decode the latent vector back to the initial object's representation as close as possible.

Thus, two products of the AEs can be delineated: a latent vector, and decoder's prediction. The first one may be used as a vector of descriptors of a new kind in various machine-learning applications, while the second one allows generating new chemical structures.

AEs have been already used to conduct ligand-based virtual screening using reconstruction errors as scoring [146] . Nowadays, various modifications of AEs are mainly employed in training QSAR/QSPR models [147] . In the context of classical QSAR/QSPR models, AEs have no obvious advantage in comparison to classical descriptors (e.g. ISIDA [START_REF] Ruggiu | ISIDA Property-Labelled Fragment Descriptors[END_REF] or ECFP [148]). However, they become a revolutionary technology when they are combined with a machine-learning method that supports producing a vector of descriptors for a given chemical subspace. Namely, AEs can be used to build maps of chemical space by applying dimensionality reduction algorithms to the latent vectors corresponding to chemical compounds. On such a map, a user may delineate a zone with a desired property, and then generate new latent vectors that correspond the selected zone. After, the decoder of the AE can decode it to a set of SMILES strings corresponding to the newly generated latent vectors. The described methodology has been already applied by Sattarov et al. to perform de novo design of molecules with desired properties using GTM [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF] .

AEs can also be used to generate chemical structures by picking them from different parts of the latent space and feeding the latent vectors to the decoder. In this case, VAEs, in which a molecule is mapped to a Gaussian distribution over the latent space from which latent vectors can be sampled, are usually used. This has been implemented by Gόmez-Bombarelli et al. [114] using the latent vectors sampled from the latent space of a VAE. This allows the generation of chemical structures along a trajectory in the latent space either (i) between the latent vectors corresponding to predetermined chemical structures or (ii) from a chosen latent vector in the direction of increase (or decrease) of the considered molecular property (e.g., biological activity). In the latter, the chemical structure is being optimized to achieve the desired properties. In order to conduct optimization in the right direction, Blaschke et al. used an additional Gaussian processes structure-activity model [START_REF] Blaschke | Application of Generative Autoencoder in De Novo Molecular Design[END_REF] . To perform multi-objective optimization in the latent space of a VAE, Zhavoronkov et al. applied reinforcement learning [149] . One can create AEs that can generate chemical structures with desired properties without the need to perform optimization in the latent space. This can be done, in particular, using conditional VAEs in which the property vector is concatenated with the latent vector to feed the decoder [START_REF] Lim | Molecular generative model based on conditional variational autoencoder for de novo molecular design[END_REF] . In this case, the generation of new chemical structures with desired properties can be performed by sampling from the prior distribution in the latent space, augmenting the generated vectors with the vector of desired properties and converting them to chemical structures using the decoder. New chemical structures with desired properties can also be generated using a semi-supervised VAE trained on a set of existing chemical structures with properties known only for a part of them [130] .

AEs can be used not only to produce latent vectors from string representations of chemical structures but also directly from molecular graphs. Several types of VAEs have been developed for this purposes: JT-VAE [150] , CGVAE [151] , GraphVAE [152] , NeVAE [153] . Special types of hetero-encoders can also be used to translate between molecular graphs [154] . An obvious advantage of this approach is the formal correctness of the graphs generated by decoding latent vectors, because in this case AEs do not need to learn the syntax of languages for representing chemical structures, such as SMILES, IUPAC names, etc., using a very large number of examples. For SMILES, this problem can be partially solved with the help of a special autoencoder, GrammarVAE, which is aware of the grammar of the SMILES line notation [155] .

Thus, in the literature there is a significant number of publications devoted to the use of AEs for constructing a chemical latent space and its use to build predictive SPR models and de novo design of chemical compounds with desired properties. Meanwhile, the visualization of chemical latent space using data analysis and visualization methods, i.e cartography are still in infancy. Although some publications reported data distributions on 2-dimensional maps obtained with the dimensionality reduction methods like PCA or GTM, a systematic study of chemical latent space of a Vanilla SMILES-based AEs has not yet been carried out. Such exploration is needed to get answers on the following questions:

1. Is the latent space of an autoencoder consistent? 2. Do similar compounds possess similar latent vectors, and vice versa? 3. Can new chemical structures be generated from any part of the latent space? 4. How novel are the structures generated in different parts of the latent chemical space? 5. What benefits can be gained from the analysis of the latent chemical space? Different types of AEs and different ways of structures representations may lead to different latent spaces. The purpose of this work is to provide an example of such an analysis hoping that the conclusions drawn will be general in nature, and the methodology used to implement this can be applied in other cases. An AE model was combined with GTM to map, visualize and explore the chemical space of a latent space constructed by a neural network, in the hopes to get a better understanding of the rules governing these relatively new spaces.

Methods

Visualizing and sampling latent space of the AutoEncoder using GTM Using the encoder part of the trained AE model developed by Sattarov and al [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF] , the entire ChEMBL23 database was encoded into 256-dimensional latent vectors by extracting the bottleneck vectors associated to each input SMILES. These 256-dimensions latent vectors can be seen as a type of molecular descriptors and as such, can be used to train GTM models. Latent vectors were transformed into SVM format and filtered according to their standard deviation.

Each descriptor with a standard deviation less than 2% of the maximum standard deviation of all descriptors was eliminated. Additionally, a step of minmax scaling was applied. Filtering and scaling are necessary here to ensure the proper training of GTM. Once GTM was trained, density and property landscapes were built to visualize the latent space of the AE in 2D.

Using the reversibility of GTM, selected coordinates in 2D can be reverted to the initial latent space. By making use of this property and reverting the scaling and filtering applied to train the GTM model, new latent vectors can be obtained, which correspond to the coordinates of nodes. These new latent vectors may be given to the decoder part of the AE, which will generate SMILES associated with these new vectors. However, it is not interesting to only sample from the exact coordinates of the node due to the properties of GTM and its data distribution. Compounds projected in a node, often are not located exactly on the exact coordinates of the node but scattered around at a certain distance. During training, the GTM algorithm inserts the manifold through the data distribution and nodes can be seen as a sort of average of data distribution. Therefore, sampling from the exact coordinates of a node would be counterproductive since it means only one vector can be sampled, which may or may not correspond to a valid molecule, and the actual data distribution may be slightly distant from these coordinates. To solve this issue, a latent vector corresponding to a node is multiplied by a random vector, issued from an isotropic multivariate normal (Gaussian) distribution, centered on 1 with a width of β. This β value which corresponds to the optimal sampling distance from the node, is equal to the width of the RBF functions in GTM. 1000 SMILES were generated for each node of the GTM model. Generated SMILES were filtered using RDKit [156] , removing any duplicates and invalid SMILES which would

Shannon Entropy

The Shannon Entropy of GTM landscapes is used to compare the homogeneity of the distribution of data. Comparing this metric over different AE models and therefore different GTM landscapes based on those models indicates if the models have a similar distribution of data or rather have a completely different organization of latent space. Shannon entropy is computed using the accumulated responsibilities of all compounds projected on a map. For each node, the accumulated responsibility is calculated by adding each molecule's contribution to that node and dividing by the total number of molecules projected on the map.

The Shannon entropy is computed as:

𝐸 = ∑ 𝐶𝑢𝑚𝑅 𝑘 log (𝐶𝑢𝑚𝑅 𝑘) 𝐾 log (𝐾) * 100
With 𝐶𝑢𝑚𝑅 𝐾 being the cumulated responsibility vector for each node 𝑘 and 𝐾 the total number of nodes. 𝐸 ranges from 0 to 100, where 0 means that all molecules are projected in the same node, while 100 means that the projections cover the chemical space equally and uniformly.

Results

Reproducibility of latent space

The first step to analyse the chemical space of an AE is to test its consistency. Surprisingly, although extremely similar, the results are different for all 4 models. The most surprising is the difference in the number of descriptors remaining after filtering. A difference of up to 15 descriptors can be seen between models 2 and 4. This indicates that fixing the random number generation and the input data to be the same in all cases was not sufficient to obtain 4 times the same model. On further inspection, it becomes clear that the problem is due to the way the calculations are processed on GPU. Calculations done on GPU have a lower precision (32 vs 64 bits) than CPU in this case, significantly accelerating the calculations.

However, this also means that small differences in calculations can appear due to the loss of precision. This issue has been studied and a solution has been developed [157] which could be implemented in future work to fix it. Over the course of an entire process of AE training, these differences are accentuated to the point where the models become quite different in terms of metrics. To see if these differences in metrics have an impact on the latent space, the 4 density landscapes corresponding to the ChEMBL database for the 4 models were computed and shown in Figure 25.

Even though metrics show the models have different reconstruction rates and significantly different numbers of descriptors, the data distributions in latent space are similar.

High density zones, located in the same areas of latent space can be found in all 4 maps, especially in the corners. The biggest difference is the seemingly "empty" region of space in models 3 and 4 which seems to be less present in models 1 and 2. However, although these Computing the Shannon Entropy (SE) for all 4 models (Table 8) further confirms that the 4 models have a very similar data distribution across latent space. All 4 models have very similar and very high values of SE, indicating that the data is homogeneously distributed across latent space. Model 2 in particular presents no "very low" density zone and few high density areas, making it the most uniformly distributed latent space. In contrast, model 3 shows a lower value of SE (even though still very high) since there is an area of lower density on the right (see Figure 25C) and seemingly more visible high density areas. SE calculations show that even though the 4 models are slightly different in terms of organization of latent space, and uniformity of data distribution, they are still very similar. Thus, in the rest of the analysis only model 1 will be considered.

Order dependance of SMILES strings in data distribution

One essential idea when generating a descriptor set is that similar compounds need to have similar descriptors and thus, similar position in latent space. Since the AE does not function in terms of structural descriptors but character sequence, it is interesting to consider if the similarity principle is kept in latent space. The idea is that, since the AE considers character sequences, character order may be an important factor in the latent vectors calculation process.

Very similar molecules may have very different canonical SMILES strings, with different starting points, which may be a problem for the AE. To test this, the same compound shown in The GTM density landscape constructed for the ChEMBL23 database is shown in Figure 27. The data density is mostly evenly distributed with no empty areas. Some zones of higher density can be observed, mostly located in the corners of the map. The log likelihood value in GTM indicates the "closeness" of a given compound to the manifold. The closer the compound is to the manifold, the higher the loglikelihood will be. The loglikelihood landscape shown in Figure 27 (RIGHT) indicates that compounds on the edge of the map are further from to the manifold than the compounds in the center. Especially the low-density zone on the right side of the map seems to be quite far from the manifold. 10. This type of compound is quite peculiar in terms of SMILES string (long repetitions of "C" character) and somewhat rare, which would explain their distance from the rest of the data distribution.

Node 1219 is more densely populated and contains large cyclic structures or structures with a high number of fused cycles and large amounts of alcohol, carbonyl, or carboxyl functions as well as very low amounts of heteroatoms. The combination of all these factors may have shifted the latent vectors away from the main data cluster and be the cause of the low LLh. Node 2, a high density area (Figure 27), contains steroid-like structures and structures with fused rings but low amounts of aromatic rings (Table 12). As can be seen on Figure 28, there are 6 zones A, B and C (high validity zones) and D, E, F (low validity zones). A quick analysis of the molecules in these zones show a trend and indicate why this phenomenon exists.

82

D, E and F compounds show a recurrent pattern. Molecules generated from low validity zones tend to have fused, sometimes aromatic, ring structures. A simple ring; like in molecules A, B, C; is not intrinsically difficult for the AE to reproduce since the grammar of an isolated ring is fairly simple to realize and it is a pattern easily recognizable for an AE. However, when the rings are fused together, the grammar of the SMILES starts to become more complex with more and bigger numbers being introduced, parentheses, etc. and the model starts struggling to generate correct compounds which are chemically sound, which in turn makes the validity rate go well below the high validity rate of molecules possessing simple, isolated rings.

Distribution of the valid SMILES rate (i.e., percentage of correct chemical structures generated for each of the nodes) is shown in Figure 28, in which the color indicates the percentage of chemically valid structures generated for the corresponding GTM node. Red nodes have high validity percentage, while blue nodes have low percentage. The generative ability of the model is very unevenly distributed on the map, zones as high as 60% validity rate coexist with zones showing about 9-10% validity rate. Interestingly, we can compare this landscape to the property landscapes on the left shown in Table 12. For example, it is possible to observe that the model is performing well in some zones where the number of aromatic rings per molecule is low, which we have explained before. Low number of rings and aromatic rings seem to be playing a big factor in the capacity of the model to generate chemically feasible compounds. Interestingly, the lower left corner of the chemical space is populated with ChEMBL compounds possessing a high number of rings, however, the generated compounds do not possess the same amount of rings. The generation process seems to have bypassed the requirement for a high number of rings and generated compounds with single rings and long carbon chains, which are present just above this area in the ChEMBL latent space.

One important aspect is the ability of the model to generate molecules with properties close to the properties of the ChEMBL compounds. Comparisons shown in Table 12, show that the model can mostly recreate the topology of the ChEMBL landscape although with sometimes different scales. The landscape of number of heavy atoms is well recreated. The two main zones with smaller molecules in the ChEMBL distribution on the left also appear on the right, and the zones containing big molecules also match. These matches can be found on all other property landscapes and confirms the ability of the model to correctly predict molecules which fit the area of latent space selected for sampling.

Neighborhood preservation for generated structures in the chemical latent space

Another important aspect of the generation process is the ability of the model to generate compounds which are located in the area of chemical space they are generated from, meaning that the positions of the initial sampled vector and the positions of the actual generated compounds are close. Figure 29 shows the density landscape of model 1 with 4 sets of generated compounds projected onto them as well as the zone the sampling was done in. These sets of generated compounds were selected from the high and low validity zones presented above. We selected two high validity zones and two low validity zones to compare the impact of a "struggle" from the model on the neighborhood preservation of generated structures. As shown in Figure 29, the generated compounds are all projected in the correct area of chemical space where they were sampled from, showing that the generation of new molecules is correctly calibrated to focus on very specific parts of chemical space.

Conclusion

Combining cartography and structure generation by autoencoders to explore chemical space is a promising method to facilitate the drug discovery. On the one hand, generative models can be built to create novel structures with desired properties due to the ability of GTM landscapes to reveal the most promising zones in the chemical space for generating new molecules. Visualization of the distribution of various important properties over the chemical latent space in autoencoders, their comparison with each other can provide valuable information and lead to a better understanding the performance of generative models. On the other hand, the maps of the chemical space indicate the gaps in the training-set distributions, while the trained autoencoders might be able to fill these gaps and provide us with a more complete vision of the chemical space. Developing this kind of models is critical in the quest to discover interesting, usable, novel structures because not only do we have maps detailing the current state of the universe, but we can now send "explorers" in the areas we seem interesting, either to discover "unfound land" or to search deeper in an already discovered part.

Using this approach applied to the chemical latent space of the sequence-to-sequence autoencoder trained on the ChEMBL structures, we have demonstrated in this work that the chemical structures are very evenly distributed in its latent space. New molecules can be generated by sampling in the latent space from the Gaussian distributions centered at GTM nodes and using the decoder to transform them to the SMILES strings representing chemical structures. Chemical structures generated from a given node are similar to the training structures residing in the same node unless the data density is too small. The generation process depends on several factors, like complex ring structures, aromaticity or branching which seem to play a big part in the ability of the model to generate correct structures.

An Autoencoder coupled with Generative Topographic

Mapping for the discovery of novel reactions

The generation of potentially active compounds using an AE guided by GTM has been achieved before by Sattarov and al. [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF] using an Autoencoder with a Bidirectional LSTM-based encoder and a Unidirectional LSTM-based decoder. Encoder and Decoder were linked by a bottleneck, creating a regularized latent space (Figure 30). The model was trained on the entire ChEMBL23 database and visualized on 2D landscapes via GTM. In particular, the adenosine a2A receptor (ChEMBL251) was selected as the target for the generative process, and the assessment using Balanced Accuracy of the related latentbased activity landscape showed good separation and predictive power, on par with classical descriptors. The model successfully managed to generate potentially active compounds from the coordinates of active clusters identified using GTM.

As stated previously, the handling of chemical reactions by seq2seq architectures is very difficult due to the complexity of chemical reaction systems involving reagents and products.

However, the simplicity and good results obtained with the previous model on molecules prompted an interest in the generation of reactions using a slightly modified architecture.

Reactions, just like molecules, can be expressed as character strings using reaction SMILES, which represent reagents and products separated by "." and ">" characters (Figure 31). This representation can get cumbersome when several reagents, products or conditions are engaged or if the reagents and products are big structures. This causes problems with long-term dependencies and can induce errors in reconstruction or sampling. Condensed Graphs of Reactions [START_REF] Nugmanov | CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing[END_REF] (CGR) are a simpler and much more lightweight alternative to reaction SMILES which allow the representation of reactions in the form of pseudo-molecules which are better adapted to a usage with NN architectures.

In this work, a method of representing reactions as a pseudo-molecule called Condensed Graphs of Reactions was used in combination with a specially adapted AE architecture and GTM to map the latent space of reactions, navigate it and generate novel reactions. Reaction novelty was assessed by the newly introduced concept of Reaction Centre and Reaction Environment which consider the atoms affected by the changes in bonds as a fingerprint for the reaction type.

Several "novel" reactions, absent from the training set were isolated by the filtering process, and their feasibility was assessed by quantum calculations of reaction heat.

Linking the latent space of an Autoencoder with another descriptor space

Ultimately, the goal for any drug design process is to be able to control the activity, structural features, properties, and novelty of the generated compounds, allowing chemists to obtain molecules perfectly fitting the needed profile for a given task. It is difficult with vanilla AEs to generate structures possessing desired properties, since there is no control over the organization of latent space. While still meaningful, the interpretation of SMILES strings by a sequential RNNs can hardly be compared to the level of information coded into structural

descriptors. An autoencoder's latent space is therefore less adapted to tackle the variety of existing targets than a modulable, adaptable range of structural descriptors. However, generative models seeded by these molecular descriptors (like ISIDA) have not yet been developed.

The combination of generative autoencoder models with the robustness and versatility of chemical space built on ISIDA descriptors would allow more control over the generated structures. Easily understandable, robust, and versatile coordinates in ISIDA space, optimally chosen for the needed task could be translated into latent coordinates corresponding to areas in the space of an autoencoder which could then be sampled to generate focused datasets. By using latent vectors as a sort of "middleman", the generation of novel compounds from structural descriptors would be possible. This inverse QSAR process could be more efficient and complement the screening of large databases with more classical methods.

In this chapter, several methods aiming to link ISIDA descriptor spaces with the latent space of an autoencoder were proposed and tested. 3) Stargate-GTM. A GTM-based approach where two manifolds are trained together, one in latent space, one in ISIDA space, describing a mixed probability distribution.

The position of a compound on one landscape results in a distribution in the second landscape via the use of a mapping function.

4) Combination of ISIDA landscapes. A combination of GTM landscapes in ISIDA space, corresponding to desirable properties, were used to build a query vector, used to find a valid position in latent space to sample, which would correspond to the initial ISIDA vector.

5) Constrained Variational Autoencoder (CVAE).

A CVAE architecture was developed, using ISIDA descriptors as condition vectors. It consists in sampling the marginal probability distribution of a variational autoencoder using ISIDA vectors of compounds with desirable properties as conditions.

Insight and knowledge about latent space compatibility and the handling of structural descriptors by classical NN architecture were gathered through the exploration of these many strategies. Finally, a satisfactory architecture has been found capable of linking both chemical spaces with good results.

ISIDA2SMI

In this work, the aim is to create a link between a space of latent descriptors obtained from an AE and another "target" descriptor space. These target descriptors must therefore be carefully selected since the organization of chemical space highly depends on the type of descriptor used.

The first very basic solution proposed to the problem was to simply "translate" ISIDA descriptors into SMILES strings using a LSTM-based model (ISIDA2SMI). ISIDA descriptors used in the construction of previously published Universal Maps (UM) were favoured in this context for their versatility and good predictive power over many biological targets.

The issue with ISIDA descriptors is that they are, as well as most molecular descriptors, not unique. For example, the ChEMBL25 database encoded into UM4 descriptors (e.g., IA-2-7; sequences of 2-7 atoms, dimension 6520) contains around 10% of duplicates: several compounds resulting in the same molecular descriptor vector. A canonical-to-canonical SMILES AE learns to associate in a 1-to-1 relationship, meaning one latent vector corresponds to one SMILES string. However, the bijection is guaranteed only in the frame of the training sets: new SMILES strings may result in the same latent vectors. If one ISIDA vector has two SMILES associated to it, this ambiguity is challenging for training an autoencoder employing categorical cross entropy as the loss function.

To solve this issue, we proposed to generate several SMILES strings for a same ISIDA vector during the training stage. The model would then understand that it does not need to reconstruct one exact SMILES, but that several possibilities exist. The aim was to minimize the smallest squared Euclidian distance between the given ISIDA vector and the ISIDA vectors of the generated compounds. This resulted in a sort of multi-instance learning, to adapt a "one-toone" generative model to work in a "one-to-many" fashion as shown Figure 32.

Figure 32.

Initial idea for a one-to-many ISIDA to SMILES generative model. The initial ISIDA vector is passed through the model, and a corresponding SMILES is generated. Next, its ISIDA vector can be computed and compared to the initial one using the Euclidean distance as a metric. The latter can be used as a loss function which would need to be minimized.

However, problems appeared when trying to compute the ISIDA vector for the predicted SMILES during the training process. The FRAGMENTOR software had to be called repeatedly for every batch to compute the loss. Depending on the type of descriptors used, that would also necessitate colouring by ChemAxon [158] . This resulted in a resource-demanding and computationally inefficient process.

Methods

Data

As input data, the ChEMBL25 database (1,669,377 molecules) was converted into ISIDA descriptors using the UM4 fragmentation scheme. IA-2-7 corresponds to sequences of 2-7 atoms and fit the most with the sequential nature of the processing of character strings by LSTM cells. They also are the most readable and most easily understandable. Training needed to be accelerated since this was a prototyping phase with a great amount of testing needed.

Therefore 500,000 random compounds (about 30% of the database) were selected for the training and validation sets. The 500.000 compounds were split into training and validation sets with a ratio of 90%/10%. 166,597 additional compounds were extracted as an external test set, separate from training and validation. Table 13 summarizes the data separation. SMILES strings above 150 characters were removed, the rest was transformed into canonical form by ChemAxon. Additional filters were applied to remove rare or unsuitable atoms (Mg, K, Ga, Ge, Ti, etc…) and charged atoms or isotopes.

Descriptor filtering

Descriptors were filtered according to their standard deviation using an in-house script to eliminate features which had no variation in their appearance in the database. The script calculates the standard deviation of all descriptors across the dataset (6520 descriptors in this case). A threshold is then selected to identify descriptors with almost no fluctuations. The threshold on the standard deviation was calculated at 0.27 which corresponds to 2% of the maximum overall standard deviation. All descriptors which had a standard deviation value below the threshold were eliminated. 371 descriptors remained after filtering; it is important to keep in mind that this number is rather low since only 500.000 compounds out of the 1.6M

were kept to accelerate training.

The improvement of the model was done in gradual steps: in the early stages, a systematic analysis of all possible combinations of N * LSTM and M * Dense Layers with a fixed set of starting parameters was performed. Using a maximum of 4 LSTMs and 5 Dense layers, 20 models per step were trained. Using this methodology, the best model for the different inputs/starting parameters could be isolated. Filtering and/or standardization of ISIDA descriptors as well as SMILES randomization were also tested to check their influence on model performance.

Parameters initialization

Parameters used across all experiments (unless specifically stated otherwise) are reported in Table 14. Only the dimension of the Dense layers varied, following the size of the ISIDA vectors.

Influence of descriptors on the reconstruction error

Understanding which descriptors induce the most error in the model is an important step in the optimization process. A workflow to isolate the most problematic fragments was designed. 10,000 ISIDA vectors were predicted from random compounds in the test set and compared to the actual vectors calculated from the same compounds. The absolute difference between the initial and predicted ISIDA vectors was then calculated using the following formula:

𝑑 = |𝑥 𝑖𝑛𝑖𝑡 -𝑦 𝑝𝑟𝑒𝑑 |
These calculations resulted in 10,000 "difference" vectors where each element of each vector corresponded to the absolute difference between initial and reconstructed fragment. Mean and standard deviation were then computed for these vectors. A schematic representation of these calculations is shown in Figure 35.

"Raw" descriptors, unique SMILES

The first step of the analysis was to use "raw" descriptors (meaning unfiltered, nonstandardized) with canonical SMILES. The 20 models were trained, and results are reported in Table 15. The dimension of ISIDA descriptor vectors is 6520. Training is stopped when the loss doesn't improve for multiple epochs, meaning some models train faster than others.

Table 15 shows that adding Dense Layers rendered the models less accurate compared to the baseline with 1. However, the increasing depth seemed to accelerate training. On average, with this reduced dataset of 500,000 compounds, one epoch took around 3.5 minutes to be processed which meant that the difference in training time was at least 1.5 hours between a model with 1 Dense layer and a model with 5. These training times were still reasonable even in the eventuality of a bigger dataset; thus, it was decided that the best model in terms of loss reduction -('2L_1D'; Figure 36) -would be selected for further testing.

The initial set of parameters used for the previous analysis were standard parameters regularly used with this kind of neural networks but are not necessarily the best. Thus, another analysis was performed, this time varying Batch Size and Learning rate. Results are shown in Table 16. To understand the fluctuations in the reconstructed data, a small analysis of the initial training data was carried out. The standard deviation of each of the 6520 descriptors was computed, sorted, and plotted in Figure 37. These descriptors were easily predicted to their average and near constant value. However, the good prediction performances might hinder the training to fit those descriptors with larger variance. The low variance descriptors were therefore filtered out in the following.

Filtered descriptors, unique SMILES

The training set was filtered according to standard deviation, leaving 371 descriptors remaining as shown in Figure 38. Comparing Table 17 with Table 20 and Table 18 with Table 21 shows that the filtering process was helpful. The mean of the absolute difference dropped about 0.25 in the top 5 and in general through the data. The most problematic fragment for the standard deviation was the same in both non-filtered and filtered experiments and the error dropped from 1.66 to 1. 22 which is an improvement of 0.4. All other in top 5 showed an improvement of 0.2. Still, the standard deviation and the mean combined meant that descriptors could be predicted up to 2 units away from their real values.

One unexpected issue came to light when metrics for the model according to the length of fragments were computed. The model seemed unable to count single atoms as shown in Counting atoms should be done easily since the correlation between number of characters and number of atoms in the molecule is linear. An inability of the architecture to fulfil the simplest task shed doubt on its ability to reproduce more complex counting. To test that the model could count atoms, the output was modified from ISIDA vectors to only single atom counts with a vector of dimension 9. 9 atoms were considered: C, N, O, S, F, I, Br, Cl, P A counting accuracy of about 95% was achieved. However, looking at the results it was found that the accuracy of the model when counting molecules containing Br and I was 0%, and P was only 68.18%. These high errors appeared because molecules containing these 3 atoms

were not well represented in the dataset. Filtering all molecules containing the Br, I and P atoms from the test set raised the counting accuracy to 99.94%. This shows that the neural network architecture is not able to represent a simple concept such as counting characters in a SMILES string. Shifting the focus from counting atoms to counting sequences of variable lengths induces more errors. One idea to optimize the model was to use standardized descriptors, so that all 371 descriptors had the same mean and standard deviation, which was the next step for the analysis.

The idea was that standardization may help because if all descriptors vary in the same way, the model must learn to understand these variations and link them to the differences in the SMILES string instead of learning by heart possible values for each descriptor according to their standard deviation.

Standardized, filtered descriptors, unique SMILES

The model that performed best on the previous step was used as an initial benchmark (4L_2D). It achieved a validation loss 0.410 which is significantly worse than the with nonstandardized descriptors. The top 5 most problematic descriptors in terms of Mean and Standard Deviation of the absolute difference are reported in Table 22 and Table 23. Note that these differences are recalculated by removing the standardization to be able to compare the results with the non-standardized results which are shown in Table 20 and Table 21. Values for the error are an order of magnitude larger than the errors in unstandardized descriptors. The first explanation for this phenomenon is that reverting the standardization to calculate the absolute differences multiplies the errors in reconstruction by the standard deviation of the descriptor, making them larger. The higher the standard deviation for a descriptor, the higher the calculated absolute difference will be as is shown in Table 22 and Table 23. The highest errors in reconstruction correlate with the highest standard deviation of the actual descriptors. This implies that the standardized error is well balanced across the dataset which could be explained by looking at an example of descriptors represented in Figure 41.

Non-standardized SVM Comparison between non-standardized (blue) and standardized (green) ISIDA descriptors. Note that the standardized have been shortened as they would be too long to represent. The shortened representation is enough to try to explain the switch in tendency. The notation follows the libSVM notation. The data are given as tuples, the first number I the ID of the descriptor and the second one, after the ":" character, is the value of the descriptor. Null values are not written.

In the non-standardized SVM (Figure 41), only fragments which are contained in the molecules are represented, other fragments that have a value of 0 are not represented (and have a 0 value for the model). In the standardized version, ALL descriptors are represented from 1 to 371 and have non-zero values in similar numerical ranges. It might be that since descriptors are always represented no matter what in a similar fashion, the model had trouble associating a certain SMILES pattern with its position in the descriptor vector. With standardized descriptors, all descriptors have the same standard deviation, and thus the model treats them as equivalent and minimizes the loss in an equivalent manner. Which means that when they are converted back to their initial values, the descriptors with the highest standard deviation and mean become the descriptors with the highest error, which is exactly what can be observed in Table 22 and Table 23.

Standardization did not in fact help with the reconstruction error but worsened the model performance by basically confusing it as to which descriptors were associated with which character sequences in the SMILES strings. Understanding why the model could not count simple carbon chains fragments meant that a deeper understanding of the interpretation process of the model was necessary. Figure 42 shows two examples of a possible explanation for the miscounting of simple fragments.

127 In both these molecules and associated SMILES, the NS fragment is highlighted in red.

CC1CC(C)CN(C1)S(=O)(=O)c1ccc2oc(C(=O)NCc3ccccn3)c(C)c2c1 CCCOCC12CN(CCC1=Cc1c(C2)cnn1-c1ccc(F)cc1)S(=O)(=O)c1ccc(cc1)C(F)(F)F
Due to the construction of the SMILES, the N and the S are not adjacent to each other even though they share a bond in the molecule. The model therefore has more difficulty making the connection between them and counting them as a fragment. This is a limitation of SMILES and LSTMs that was already observed in the canonical-to-canonical SMILES autoencoder. When generating large cyclic structures, the model had trouble connecting cycle indicators that were very distant in the SMILES string, in multi-cyclic structures for example where several cycles are opened and then closed.

Filtered descriptors, enumerated SMILES

To solve this issue, a data augmentation strategy was adopted through the randomization of SMILES. Through randomization and using a larger number of SMILES strings for each molecule, fragments that could be separated in a certain SMILES might be adjacent in another Training resulted in a validation loss of 0.370 which is significantly worse than the 0.194 obtained with the best model with non-randomized, non-standardized SMILES. The same data augmentation strategy has not been investigated on the filtered descriptors dataset due to a lack of time.

Another architecture was tried to fit to the 10 enumerated SMILES per compounds: each alternative SMILES being assigned to an independent channel then fused in a dedicated layer.

The architecture tested is shown in Figure 43. Then, all outputs from the 10 LSTM+Dense duos, are either concatenated or averaged (two different models). Then this new vector is passed through the output dense layer to shape it with the corresponding size.

Results of both models are reported in Table 24. This architecture produced worse models than previous attempts.

Conclusion

The aim of this project was to train a model that could compute ISIDA molecular descriptors accurately and faster using a machine learning model. The resulting models produced too many errors to be considered as a replacement to an algorithmic exact calculation.

It was clearly highlighted that SMILES strings combined with LSTM cells have strong limitations. The grammar of SMILES seems to be more complex for a model to apprehend than classical human language grammar. For example, a simple phrase in English will always have:

Subject + verb + agreement in that order. This predictable behaviour is easy to identify and learn for a Deep Neural Network. The language of molecules it seems, is much more complex and a simple architecture was not able to crack the secrets of the SMILES representation.

The impact of SMILES randomization, descriptor filtering and standardization was tested on the process of learning. It seems preferable to work on counts without further transforming the molecular descriptors. Filtering out low variance descriptors seems beneficial to improve both the speed of the training and the accuracy of the model.

Data augmentation using alternative SMILES representation could be a possible solution to improve the model. Complexification and better control over the regularization of the model could also be tested. A graph-based approach could probably be a better fit, since all molecular connections would be considered by the model.

Multimodal Deep Boltzmann Machines

The Multimodal Deep Boltzmann Machine (MDBM) is an architecture that was considered in the scope of Constrained Generation, with the aim to create an ISIDA to SMILES model which would be able to generate SMILES strings from vectors with selected fragment counts and property values. A strategy to approach the problem of constrained generation is to link ISIDA structural descriptors and the latent vectors of an AE, the latter being prepared to decode SMILES strings. The mapping between ISIDA and an AE feature space is ensured, here, by an MDBM.

Boltzmann Machines are models with pairwise interacting units that update their states over time in a probabilistic manner depending on the states of adjacent units. They can be regarded as stochastic versions of Hopfield networks [159] . The most striking feature of this architecture is that it contains only one visible layer that is used as both input and output of the network. Restricted Boltzmann Machines [160] (RBM) and Deep Boltzmann Machines [161] (DBM) are special types of Boltzmann machines in which the interactions are done between layers of units. In the case of a RBM, the interactions are limited to the visible and the hidden set of units, no connections are allowed inside the visible or the hidden layer. A DBM has multiple hidden unit layers communicating sequentially: meaning communication is allowed between layers but still not in the layers.

Isolated Boltzmann Machines can work in the same way as an AE, reconstructing its input from a latent vector, however in this case there is no separation between encoder and decoder since the visible layer serves as both input and output. The visible units take the input and the information travels deeper into the model, layer by layer until reaching the deepest layer, where it can go backwards towards the visible units. The deepest layer serves as a latent representation of the input data, setting the state of the deep hidden layer, the model can generate a data vector that can be read in the visible layer.

Multimodal Deep Boltzmann Machines [162] are a combination of several DBMs trained to reconstruct their input after creating a latent representation of said input. The different DBMs work in different modalities, where the same concepts are expressed in different manners (e.g.

the word "cat", images of cats, sounds of cats). All the deepest layers of the different DBMs are connected by a single layer, which serves as a unique, latent representation of all the modalities of the same concept. Thus, from one latent vector, the model generates new data in any of the input modalities.

ISIDA and latent descriptor vectors can be seen as two different modalities of the same molecule and could therefore be linked by an MDBM. The goal is to generate an AE latent vector, that can be decoded as SMILES from an ISIDA vector representation.

Boltzmann Machines

A classical Boltzmann Machine (BM) is an energy-based neural network, composed of symmetrically connected binary units. The symmetry means that artificial neurons are unique mathematical functions of the values from the adjacent artificial neurons, in contrast to a feedforward neural network (like an autoencoder), where artificial neurons use two different functions, in forward and backward mode. For this reason, there is no direction in a BM, only an arbitrary choice to define which are the visible and the hidden units. Binary units mean that an artificial neuron can have two states: 1 or 0. A classical BM is represented in Figure 44. As can be seen in Figure 44, in a BM all units are connected, and there are interconnections between units of the same layer. This architecture is designed to model an unknown probability density function from a sample dataset. The mathematical form of the modelled probability distribution is a Boltzmann law, hence the Boltzmann Machine name. The energy is a function of the configuration of the units of the model.

𝐸(𝒗, 𝒉

; 𝜃) = - 1 2 𝒗 𝑇 𝑳𝒗 - 1 2 𝒉 𝑇 𝑱𝒉 -𝒗 𝑇 𝑾𝒉 -𝒃 𝒗 𝒗 -𝒃 𝒉 𝒉 (5.1)
With 𝒗, 𝒉 the state of the visible and hidden units respectively, 𝜃 = {𝑳, 𝑱, 𝑾, 𝒃 𝒗 , 𝒃 𝒉 } the parameters of the model to fit. The terms 𝒃 𝒗 , 𝒃 𝒉 are the biases of visible and hidden units respectively (threshold of activation for both units). 𝑳 and 𝑱 account for intra-layer interactions and 𝑾 for visible-hidden layers interactions. Colours in the equation refer to the colours in Figure 44.

From this energy function, and using the Boltzmann Distribution, the probability of activation of each visible and hidden unit can be inferred. In turn this probability Is used to set the state of the corresponding artificial neuron. Unfortunately, BM do not currently benefit from any algorithmic acceleration to train. But RBMs do, and for this reason, are preferred.

Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a version of the Boltzmann Machine where interconnections inside the same layers have been removed as shown in Figure 45. We modified this function to use real valued artificial neurons for the visible layer and binary valued artificial neurons for the hidden layer. The visible layer artificial neurons follow a multivariate normal distribution with the assumption of independence. The energy function becomes:

𝐸(𝒗, 𝒉) = 1 2 (𝒗 -𝒃 𝒗) 𝑇 𝚺 -𝟏 (𝒗 -𝒃 𝒗) -𝒗 𝑇 𝚺 -𝟏 𝑾𝒉 -𝒃 𝒉 𝑇 𝒉 (5.3)
Where 𝚺 = (

𝜎 1 2 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 𝜎 𝑉 2
) is the diagonal covariance matrix of shape (V, V) where V is the number of visible units and 𝜎 𝑖 2 are the variances of each input descriptor (a ISIDA fragment count or one of the AE latent vector coordinate). Now, instead of visible units being restrained to values 0 or 1, the values for each unit 𝑉 𝑖 will be sampled from a gaussian distribution with the corresponding variance. To train the model, we use a process called Gibbs sampling. The variances are pre-computed.

To counter the problem of sampling in real space which might lead to the gaussian distributions to have an area superior or inferior to 1, Hinton suggested to normalize the data to have mean 0 and standard deviation of 1 which has been done. The normalization was done using the following transformation:

𝒚 = 𝒙 -𝑥̅ 𝛿 (5.4)
Here, x is an ISIDA/latent vector, x ̅ is the mean, and 𝛿 the standard deviation of the data.

Training a Restricted Boltzmann Machine

As an example for this explanation, we will use the output of an encoder which are latent vectors of dimension 256. This data will be fed in batches to the RBM, and we will assume a batch size of 100 (i.e. 100 molecules per batch). Therefore, our input matrix 𝑿 has shape (100, 256). We will also assume 256 visible units and 20 hidden units.

The training process is done using Gibbs Sampling as previously mentioned, which works as follows:

1. Sample hidden states from input 2. Sample visible values from hidden states

Sample hidden states from sampled visible values

Steps II-III can be repeated k times if needed (in this example, only one iteration was done because it has been shown that k=1 gives good results).

4. Calculate and apply gradients (from step 2 and 3)

Update parameters

The details of each step will be described in the following chapters.

Sampling hidden states from input passed in visible units

First, we calculate the probabilities for each hidden unit to be activated:

𝑷 = 𝑃(𝑯 = 1 | 𝑿) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒃 𝒉 + 𝑿𝚺 -𝟏 𝑾) (5.5
)

𝒃 𝒉 = (𝑏 ℎ 1 , 𝑏 ℎ 2 , … , 𝑏 ℎ 20)
is the vector of hidden biases 𝑯 corresponds to the states of the hidden units 𝑾 the weights matrix of 𝑠ℎ𝑎𝑝𝑒 = (256, 20)

The decision to activate or not a hidden unit is made by sampling out of the Bernoulli distribution using 𝑷.

As a result, we obtain a matrix of hidden states 𝑯:

𝑯 = 𝑓(𝑷), 𝑠ℎ𝑎𝑝𝑒 = (100, 20) (5.6)

Sampling visible from hidden

The process is rather different because visible units are not binary but real and use a gaussian distribution. The process consists in creating a gaussian distribution to sample from using our newly calculated hidden states.

The probability distribution 𝑸 from which we sample visible states can be expressed as follows:

𝑸 = 𝑃(𝑽 | 𝑯) = 𝒩(𝑽; 𝑯 𝑾 𝑇 + 𝒃 𝒗 , 𝚺), 𝑠ℎ𝑎𝑝𝑒 = (100, 256) (

where 𝒩(𝑥; 𝜇, 𝜎 2) is the gaussian distribution with mean 𝜇 and variance 𝜎 2 ,

𝒃 𝒗 = (𝑏 𝑣 1 , 𝑏 𝑣 2 , … , 𝑏 𝑣 256
) is the vector of visible biases W is the same matrix of weights.

By sampling random numbers from 𝑸 we get 𝑽 of shape (100, 256) which is the matrix of states of the visible units. These states can be reverted to our input space by reverting the normalization process: 𝑽 𝒓𝒆𝒗𝒆𝒓𝒕𝒆𝒅 = 𝛿 𝑽 + 𝑥̅

As the training process is stochastic, it has to be softly ended. To this end, the learning rate is lowered at each epoch in order.

Parameters initialization

From Melchior's publication we gathered the following parameters initialization 𝒃 𝒗 , visible biases, are initialized to the mean of the data because they tend to that value 𝒃 𝒉 , hidden biases, are initialized as:

𝒃 𝒉 = - ||𝒃 𝒗 + 𝑾 * 𝒋 || 2 -||𝒃 𝒗 || 2 𝜎 𝑗 2 + 𝑙𝑛 (𝜏) (5.14)
With 𝜏 = 0.01 and 𝜎 𝑗 2 the variance of the 𝑗 𝑡ℎ column of the matrix 𝚺.

139

𝑤 𝑖𝑗 𝑎𝑟𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑈 (- √6 √20 + 256 , √6 √20 + 256) (5.15)
With 𝑈 a uniform distribution 𝚺 is initialized to a diagonal of 1.

Multimodal Deep Boltzmann Machine

To build the Multimodal Deep Boltzmann Machine, two separate Deep Boltzmann Machines must be built and optimized first. One model specific to latent vectors and one model specific to ISIDA vectors. Both objectives for the models are to reconstruct their input after passing through their respective latent representation layers. Once optimal parameters for both models have been found, they can be connected using a common layer at the top and trained with both inputs.

Data

Two types of experiments were performed with two datasets of different sizes. Type A experiments used 10.000 vectors sampled randomly, either from the output of the encoder of a classical canonical-to-canonical autoencoder or from ISIDA descriptors. In both cases molecules that were encoded were extracted from the ChEMBL23 database. In the case of the latent vectors, SMILES were initially transformed in their canonical form and then given to the encoder.

Latent vectors model efficiency metric: SMILES reconstruction rate

To verify that the model performs well in reconstruction tasks for the latent vectors, a metric was needed since the Euclidian distance between latent vectors used during training is not easily understandable. Both latent vectors and reconstructed latent vectors (after passing through) the RBM/DBM were fed to the decoder and decoded into SMILES. These SMILES were then compared and sorted into three categories: Perfect match, meaning that the SMILES before and after reconstruction was the same; invalid SMILES, meaning the encoder generated a meaningless SMILES string given the reconstructed latent vector; and imperfect reconstruction, meaning the output of the decoder was a valid SMILES string but didn't correspond to the input. Imperfect reconstructions were more thoroughly studied by calculating the Tanimoto coefficient between initial and reconstructed SMILES using Morgan-4

Fingerprints. Figure 48 shows a schematic representation of the comparison process.

ISIDA vectors model efficiency metric: Descriptor fluctuation

The initial ISIDA vector is compared to the ISIDA descriptors vector from the reconstructed SMILES. We term these the "reconstructed ISIDA vectors". The ISIDA descriptor type used contains only fragment counts (i.e., all descriptors have whole numbers), therefore a perfectly reconstructed vector would have the same values as the initial one when all descriptors are rounded to the nearest integers. This means that the error tolerance for correctly reconstructing a descriptor is ≤ 0.5.

Parameters and architecture optimization -Latent vectors

A thorough analysis was performed to find optimal parameters for both types of models, starting with the latent-specific model. The optimization was done layer by layer. The first step was to find good parameters for a one hidden layer model (RBM), then for a two-layer and maybe three-layer model.

The first experiment of the analysis was performed on a simple RBM with 1 hidden layer of a variable dimension as shown in Figure 49. Parameters were initialized to the values shown in Table 25. Figure 50 shows that increasing dimensions in the hidden layer helped decrease the RMSE significantly. A plateau was reached at around RMSE=2.5 for a dimension of 2500-3000.

The hidden layer of the RBM was set at a dimension of 3000 for the computation of the reconstruction analysis. Parameters for the models in the second experiment were slightly modified compared to the first experiment. The number of epochs was scaled up from 1000 to 3000 and the decrease of the learning rate was slowed by modifying the A value in the learning rate function from 300 to 500 as shown in Table 26. with 2500 less hidden units in the first hidden layer. This difference in number of hidden units also implies a difference in computing time. Thus, for timing purposes the fluctuation analysis was computed with the model of experiment 25.

The standard deviation analysis was performed on experiment 25 as explained above: 86% of the descriptors had a fluctuation less than 0.5, meaning that they were correctly reconstructed on the training dataset (Figure 58). The remaining 58 descriptors were above the fluctuation threshold, a large part having an error close to 1 but some of the descriptors had a fluctuation above 2 (Figure 59). This result was not better than our previous attempt. The combination of the errors from the latent model and the ISIDA models seriously hinder the ability to train a MDBM model. In an attempt to improve the ISIDA DBM, a third layer was added to create a deeper DBM in hopes that the increased depth and higher representation would improve the model performance. Initial experiments (1, 2 & 3, Table 28) with large hidden layers did not train well at all. In following experiments (4 to 7), the dimensions of all layers were drastically reduced. The thought process was that in a 2-hidden layer model, the lack of depth was compensated by the large size of the hidden layers. Adding more depth meant that the layers' size could be reduced.

Smaller layers resulted in a reduction of the RMSE by a factor of almost 10, unfortunately, these experiments still did not produce comparable results to the DBM with 2 hidden layers. The deeper DBM did not improve on the 2-hidden layer DBM, therefore the previous architecture was used to train a model on 100.000 training vectors and 10.000 validation vectors. A quick comparison between initial and reconstructed ISIDA vectors of the validation set showed than no vectors was perfectly which amounts to a 0% reconstruction rate. This is expected since about 20% of the descriptors had a general fluctuation above the threshold and the perfect reconstruction implies 397 simultaneous successful predictions -which is very unlikely. To have better insight we computed each descriptor's "occurrence" over the validation dataset. Occurrence is a measurement of how much the descriptor is used in a dataset. It is computed as follows:

𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 𝑖𝑠 𝑛𝑜𝑡 0 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
For example, if the occurrence of a descriptor is 0.5 that means that the fragment is found in 50% of the molecules in the dataset. The occurrence of each descriptor was plotted against its fluctuation, and each descriptor was coloured according to its standard deviation. The results are shown in Figure 63. unlikely that a perfect reconstruction will ever occur, explaining the poor performances in terms of reconstruction rate. This phenomenon is highly reminiscent of the issues caused by the variation of ISIDA vectors in the SMI2ISIDA project where the variation and tendencies of the most frequent fragments were unable to be captured and reproduced by neural network. It seems difficult for these two architectures to link ISIDA descriptors to a different representation, SMILES in the case of SMI2ISIDA or an abstract numerical vector in the case of this project.

A last-ditch effort to improve model performance included adding one more layer which was unsuccessful and upgrading the optimizer of the model from Adam to AdaBelief. The AdaBelief Optimizer is an improvement over the Adam Optimizer which is widely used in many different types of Deep Learning models. The Adam Optimizer improves on the learning by calculating moments which considers not only the current gradients but also the past gradients.

This method helps the model avoid local minima in search of the global minimum. Gradients for the standard deviations, hidden biases, visible biases and weights were calculated using this method instead of the simple gradient descent. The model was trained on the small training set and compared to the best model trained with the Adam optimizer, also on the small training set. A fluctuation analysis was performed on the AdaBelief model and results were compared to the initial model (Figure 64). The addition of the AdaBelief optimizer improved the number of correctly reconstructed descriptors from 85% to 90%, putting 20 more descriptors under the fluctuation threshold.

However, when fluctuation is plotted against occurrence (Figure 65), similar problems appear, mainly that the most popular and important descriptors are miscounted. Each dot is colored according to the standard deviation of the descriptor itself.

Conclusion

Neither of the separate models could reproduce their input with enough precision to be used

Stargate-GTM Training

As previously explained, one of the important parameters for this analysis are the userdefined weights 𝑤 𝐼𝑆𝐼𝐷𝐴 and 𝑤 𝐿𝐴𝑇𝐸𝑁𝑇 . Depending on these values, the impact of one of the two spaces can be more important than the other. The most natural idea would be to give equal importance to both data spaces with 𝑤 𝐼𝑆𝐼𝐷𝐴 = 𝑤 𝐿𝐴𝑇𝐸𝑁𝑇 = 0.5. However, there is no indication that this would ensure good results, or that other combinations may not perform better. After training, the manifolds were resampled using the GTM ReSample tool to a size of 625 nodes since 1600 nodes was an unnecessary large number for displaying such small spaces.

During resampling, the training data was projected on the manifold and 2D map coordinates were calculated. Finally, density landscapes for both manifolds were created using the resampled manifold and the training data.

Results

Each couple of datasets was projected on its corresponding manifolds and the resulting density landscapes are regrouped and compared per experiment in Table 33. The comparison of the two example datasets shows that both density distributions are almost the same. All empty areas and low-density areas are replicated in both landscapes and the high-density area has the same shape and density value in both maps. In comparison to this example, the results obtained with ISIDA, and latent vectors are visually disappointing.

In order to map one space to the other, it is expected that the responsibilities from one space can be decoded using the manifold of the other space. Hence, the localisation of a compound in one map, should correspond to the location of related compounds in the second map.

As an initial experiment to verify this, 9 random molecules were selected and their 2D coordinates in the ISIDA and latent maps from Experiment 3 were extracted. Experiment 3 was chosen because it seemed to be the most similar in terms of visual comparison. The same process was done for the example datasets combining two ISIDA descriptors sets. Results are shown in Figure 67. differences in the dimensions of the two chemical spaces and the significant differences between the two datasets distributions of pairwise distances that can hardly be reconciliated.

Thus, the comparison of the projections of the compounds on the maps is not very relevant and can be misleading. Yet, it reflects strikingly the low correlation between the AE descriptors space and the ISIDA descriptors space. The fragment-oriented interpretation through ISIDA descriptors (or fragment descriptors in general) is very different from the interpretation a Seq2Seq architecture makes of a SMILES string. These two different "interpretations" are more radically different than the difference between for example, sequence-based fragments or centroid-based fragments since they both use molecular fragments. The complexity of the mathematical equations governing the calculations of latent vectors makes it extremely difficult to understand exactly in essence what information is stored inside, however the results of this analysis suggest that they may not describe chemical space in the same manner as a classical fragment-based approach.

Hilbert Schmidt Independence Criterion

To confirm that hypothesis and have a better understanding of the issue, the "compatibility" or dependence of the two descriptor spaces should be measured. For Stargate-GTM to be more relevant, the same similarity principles should apply in both chemical spaces.

If this is not the case, then the basic construction of the spaces are so different that linking the two hardly seems achievable. The normalized HSIC was calculated for the ISIDA/LATENT datasets and the ISIDA/ISIDA datasets and are reported in Table 34 using a cosine kernel. Interestingly however, the HSIC values are slightly higher between latent vectors and sequencebased descriptors (around 0,1 for all instances of sequence-based fragments compared to 0,06-0,07 for atom-centered fragments). This difference, although very slight makes sense in the context of the interpretation of sequences of characters by a neural network. In the case of a carbon chain for example, the sequences of atoms or sequences of characters would describe the same molecule. The difference then would come from the interpretation of ramifications and cycles in the molecule.

Conclusion

The application of Stargate-GTM was not sufficient to create a link between the latent space of an autoencoder and a chemical space based on fragment-based structural descriptors.

The basic principle of the method, which is that the same molecule should have comparable responsibilities on both maps was not observed. Although the projections of the compounds on both maps differ, it is possible that the responsibilities of the AE map could overlap with the responsibilities of the ISIDA. This analysis is left for future work. Yet, this means that an ISIDA vector would be translated in a complicated responsibility pattern in the AE space, that could be translated in a potentially diverse set of chemical structures resulting in a loss of the control of the generated chemical structures to sample a desired region of the chemical space.

These results did however confirm that the interpretation of chemical structures through artificial neural networks and molecular descriptors is completely different and leads to completely different chemical spaces that follow different principles and neighbourhood behaviours. These different organizations suggest an explanation of the difficulties met so far while designing models able to generate chemical structures corresponding to a given molecular descriptor vector.

Combination of ISIDA landscapes

Introduction

Since autoencoder latent space and ISIDA descriptor space behave technically like two independent multidimensional variables, method seeking to find a correlation or dependence between the two cannot be applied. This makes the task of generating compounds with selected properties and structural features through neural networks and cartography challenging.

"Simple" solutions like an artificial neural network or Stargate-GTM could not be used for this application. For this reason it has been proposed to relax the constraints in the definition of the targeted region of an ISIDA chemical space to be sampled. This definition is based on Generative Topographic Mapping, and uses a combination of several ISIDA landscapes to create a "query" vector containing desirable properties, which can then be used with a neural network to generate interesting compounds.

Methodology

The first part of the process was to select a biological target to create an activity landscape, then select an active zone in which molecules should be generated.

Data

The CHEMBL3717 (Hepatocyte growth factor receptor) target was selected for this project. 4176 compounds with known activities were extracted from ChEMBL24 and encoded into ISIDA descriptors using IA-2-7 fragmentation schemes (sequences of atoms, length 2 to 7). 6520 descriptors were filtered down to 728 by removing all descriptors with a standard deviation of less than 2% of the maximum. An activity landscape of the ChEMBL3717 target based on the previously trained Universal Map 4 manifold was created, as well as 728 descriptor value landscape on which the entire ChEMBL24 database was projected and each of the 728 maps were coloured according to the value of one descriptor.

a 1 to nodes which values correspond to the given descriptor range and a 0 in the other case (Figure 71).

Figure 71.

Example of creation of a "node correspondence" vector for a latent landscape representing a particular fragment. Each node is probed for its descriptor value which is compared to the query for that fragment. If the node fits the query, then vector will get a one, else it will be a 0.

Descriptors which had a query range of (0 -0) were removed which left 71 "meaningful" descriptors: for each node, it contains a 0 if the node is not compatible with the range of the molecular descriptor and a 1 otherwise. Adding the 71 "node correspondence" vectors results in a single "cumulated node correspondence" vector. With this vector, one can locate the nodes of the latent landscape having the highest correspondence to the query ranges.

The node with the highest correspondence was selected and used as a seed to generate chemical structures.

Results

Figure 72. Latent landscape coloured using the cumulated "node correspondence vector" generated from the 728 LATENT landscape. Note that only 71 meaningful descriptors remained after filtering. The maximum is found in node 565 with 34 matching descriptors. As shown in Figure 72, one specific area of latent space had the biggest correspondence to the active area in ISIDA space. On average, the correspondence any given point on the landscape was about 21-25%. The red area on the figure has about 48% correspondence which is twice bigger. 10.000 vectors from this node were therefore sampled (node 565) which gave 1662 valid SMILES. These SMILES were reprojected on the initial ISIDA landscape to see if they were in the correct area of ISIDA space (Figure 73).

The ISIDA molecular descriptors of the generated compounds were computed and projected on the ISIDA GTM. However, it appeared that the generated compounds did not cover the initially selected region, the node 273. The selected node has a density equal to 0 and the projections are not in the active area. The compounds with the highest rate of correspondence to the query (about 50%, 35 descriptors out of 71) had strange and chemically non-sensical structures which could be filtered out (Figure 74). Meaningful chemical structures were also obtained but with a lower correspondence rate. (Figure 75)

Conclusion

The more complex approach of the "query" vectors using a combination of ISIDA and latent landscapes was not successful either. The method seems to run into the same issues as previous methods, especially Stargate-GTM. A complete incompatibility of spaces, which makes it impossible for two zones to be similar in terms of molecular structure. We observed that the generated compounds with reasonable structures had very few descriptors in common with the query vector.

Conditional Variational Autoencoder (ACoVAE)

Linking the latent space of an Autoencoder with a separate descriptor space could not be performed by training the Autoencoder space separately. Vanilla Autoencoder latent space based on SMILES string has a completely different latent space construction and structure than structural descriptors, making it impossible to simply create a bridge between the two.

However, by imposing the link during the training of the model using condition vectors, it is possible to force the neural network to adapt to a different set of descriptors.

In this work, a Conditional Variational Autoencoder was developed containing 3 important features: i) A GRU-based variational encoder encodes SMILES into latent vectors.

ii) A descriptor vector corresponding to the inputted SMILES string is transformed into a condition vector and concatenated with the latent vector obtained from the VAE.

iii) A powerful attention-based decoder translates the concatenated vector into a SMILES string.

With a model capable of generating compounds from ISIDA descriptors, the goal was to select the best candidates for the generation of actives against the ChEMBL1862 target. Three methods were used: a) A GTM based on descriptors from a Universal map (force-field type colouring of sequences of atoms) was built and coloured according to the activity against the ChEMBL1862 target. The zones with the highest concentration of actives were selected and the corresponding ISIDA vectors were used as candidates.

b) A Genetic Algorithm based on an SVR model predicting the activity of a descriptor vector against ChEMBL1862 was used to find the optimal candidates. c) The descriptor vector of the best known active against ChEMBL1862 was used as a candidate.

All three candidate selection methods returned "seeds" which were used to generate several thousand compounds, which were screened for their activity potential by pKi calculations using an SVR model, pharmacophore search and docking.

Summary

A novel Conditional Variational Autoencoder (ACoVAE) was successfully developed and specially adapted to ISIDA descriptor vectors. The combination of a GRU-based Variational Encoder with a state-of-the-art Attention-based decoder was trained and used for the generation of molecules with preferred structural features. The model achieved great Tanimoto Similarity when generating from known and unknown ISIDA descriptor vectors.

In order to generate compounds active against the ChEMBL1862 target, different condition selection methods were employed, GTM-based, GA/SVR-based and active-based.

Active-based and SVR-based sampling resulted in the generation of molecules predicted highly active by the activity models (about 40-50% of them had pKi ≥ 7), with some of them going up to pKi ≥ 10, with very specific and similar structures, which could be considered a very focused dataset. GTM-based sampling resulted in more varied structural features with on average a lower pKi value (only 7% had a pKi ≥ 7).

The differences between the two generated sets can be explained by the two condition selection methods: SVR-based and active-based select only the best vectors which are naturally close to the actual active. Small differences in the descriptor vector imply small changes in the predicted pKi and structure which creates a focused dataset. The GTM-based selection method selects indiscriminately any vector with an activity ≥ 7 which is considered active. The nodes are then a lot more varied in terms of structural features and less oriented on pure activity. Both methods were found to generate potential actives however.

So-called Inverse-SVR and Inverse-Lead compounds were validated using a ligand-based and structure-based pharmacophore study as well as docking. Out of the 47 potential hits, 4

were found to be a match by both pharmacophore methods and had reasonable docking scores hinting at a high potential for activity. The model was therefore able to invert the QSAR process and generate active compounds from desirable structural vectors. The model could also be adapted to accept property vectors in combination with structural descriptors to specify conditions even further.

General Conclusion & Perspectives Towards a better understanding of Deep Neural Network Latent Spaces

The introduction and complexification of Deep Learning methods created a new branch of drug design. The generative capabilities and efficiency of neural networks in terms of de novo design have made deep architectures very popular. The ability of these models to create and navigate latent spaces in search of compounds of interest have allowed the discovery of active compounds. However, the complex mathematical equations and the nature of the exact workings of these models remains blurry in the field of Chemistry. There is a clear understanding of latent spaces based on structural descriptors, since they are interpretable and readable, and the rules were carefully hand-crafted and designed. However, latent spaces that neural networks create using their interpretation of character-based or graph-based representations of molecular structures do not follow the same rules.

Therefore, one of the objectives of this thesis was to obtain a better grasp on the construction and organization of neural network latent spaces, and in particular latent spaces of Autoencoders which remain one of the most popular architectures in terms of molecular generation. A LSTM-based Vanilla Autoencoder, based on SMILES strings obtained from the ChEMBL database was trained and its latent space mapped using GTM. Its generative capabilities were tested by sampling compounds in every point of latent space mapped by said GTM. The AE was able to create molecules for each node which were similar in terms of structure and properties to the already existing ChEMBL molecules, showing the already great learning power and adaptability of one of the most basic deep architectures of seq2seq models.

The comparison of property landscapes built on ChEMBL and generated compounds showed that the models are able to reproduce the general outlook and organization of its latent space when mapped by GTM. These models could therefore be used to fill gaps and holes, or less dense areas of chemical space which is an important aspect in the constant search for interesting new compounds.

However, the latent space construction depends on the interpretation of the SMILES string by the model which is order-dependent and can lead to some inconsistencies and activity cliffs.

The generative capabilities also depend greatly on the complexity of the structural features and the density of the training data, making theses latent spaces quite different from structural spaces. The multiple failed attempts to link latent space with ISIDA structural space shows that they are constructed differently, and even though both work in terms of active separations, they are in fact incompatible, as proven by the Hilbert-Schmidt Criterion.

In the future, it would be interesting to perform the same kind of analysis on more complex architectures, like VAEs, CVAEs, Attention-based VAEs and Transformers to compare the results. Small differences in parameters, model architecture, input form result in different chemical spaces so the task of finding generalized rules that govern the organization of these latent spaces is complex. However, by having a deeper understanding of how these algorithms encode and decode chemical information and how this information is interpreted, it could be feasible to find general tendencies like the ones shown in this project to facilitate the exploration of said chemical spaces.

Still, the capabilities of this model could be harnessed by modifying it to accept Condensed Graph of Reactions in order to map the latent space of reactions from the USPTO database and generate potentially new and feasible transformations. Methods of novelty detection and reaction classification were developed using Reaction Centres and Reaction Environments.

Inverting the classical QSAR algorithm

Entering needed properties and structural features and obtaining several potent molecules corresponding to the given restrictions would simplify and accelerate the drug design process significantly. A combination of the generative power of neural networks and the efficient construction and organization of structural descriptor spaces could provide with great candidate features selection and an ability to generate molecules corresponding to these features which would amount to inverse-QSAR.

To that extent, several methods based on Neural Networks and GTM were tested to try and link the latent space of a generative Autoencoder to the structural space of ISIDA descriptors.

A basic LSTM-based translator from SMI2ISIDA was tested as a building block to the bigger model aiming to directly translate ISIDA vectors to corresponding SMILES but failed due to the incapacity of the model to accurately enumerate the ISIDA fragments with high deviation.

A Multimodal Boltzmann Machine was developed as a more complex solution to the previous issue, however showed similar weaknesses during training: ISIDA vectors could not be precisely reproduced which is capital for this task. Stargate-GTM and direct GTM links were applied as an alternative not requiring the processing of ISIDA vectors by sequence-based algorithms but failed due to the incompatibility of the two spaces. Indeed, the evaluation of the Hilbert-Schmidt Criterion between ISIDA and latent spaces showed that those spaces are completely independent meaning no statistical link can be made between them, rendering machine learning methods like GTM essentially useless.

The many attempts did confirm the difference between classical structural spaces and Coupling this with broad, versatile chemical space visualization tools [164] could be a powerful method of chemical space exploration allowing the discovery of new compounds in charted zones, and even the discovery of new uncharted zones of chemical space. Taking a step back and looking at the entire drug discovery process, this tool could also be a part of a larger drug discovery "machine" where every step could be automated, from the setting of structural and physico-chemical properties to fit a given target, to chemical space exploration, synthesis planning and even chemical synthesis using the developments in chemical automation.

Résumé en anglais

This thesis is dedicated to the exploration and understanding of neural network latent spaces, to allow the creation of a link between the latter and classical structural descriptors to perform inverse QSAR. The generative potential of seq2seq architectures often comes with a blurry understanding of the rules governing its chemical spaces. A study of an Autoencoder's chemical space construction showed its ability to recreate existing property distributions and molecular structures with varying degrees of success depending on complexity and density factors. The model was even successfully modified to generate feasible and novel reactions.

However, the sequential interpretation of chemical structures through SMILES strings tend to create weaknesses in the resulting chemical spaces. As such, structural descriptors like ISIDA, which are more robust, are usually preferred to map and identify zones of interest when searching for active compounds. Several methods to harness the efficiency of ISIDA descriptors and combine it with the generative power of an Autoencoder latent space resulted in the development of a new architecture based on Conditional Variational Autoencoders and the Attention Mechanism to generate potent molecules against biological targets.

Figure 1 .

 1 Figure 1. Processus de création d'un espace latent basé sur une base de données chimique encodée en SMILES via un Autoencodeur. L'espace latent est ensuite visualisé à travers la GTM pour permettre l'échantillonnage de l'espace chimique dans les régions plus intéressantes.

Figure 2 .

 2 Figure 2. Nombre d'atomes lourds pour les composés de ChEMBL (à gauche) et pour les composés générés (à droite)

Figure 3 .

 3 Figure 3. (i) Représentation schématique d'une réaction de Suzuki sous forme de CGR. La liaison verte indique une liaison créée lors de la réaction, les liaisons rouges indiquent des liaisons brisées pendant la réaction. (ii) SMILES-CGR correspondant à la réaction (i), [->.] indique une transformation d'une liaison simple vers une absence de liaison. [.>-] indique le passage d'une absence de liaison vers une liaison simple.

Figure 4 .

 4 Figure 4. Processus résumant l'utilisation d'un modèle d'AutoEncodeur couplé au cartes topographiques génératrices pour la génération de nouvelles réactions chimiques. Le modèle est entraîné sur la base de données USPTO sous forme de graphes condensés de réaction (1) puis les vecteurs latents sont utilisés pour la construction d'une carte topographique générative (2). Des zones d'intérêt sont ensuite sélectionnées sur cette carte (3) et sont utilisées pour générer des réactions (4). Après plusieurs filtres (5), on obtient des réactions potentiellement nouvelles et chimiquement vraisemblables, confirmées dans la bibliographie et des calculs DFT.

Figure 5 .

 5 Figure 5. Représentation schématique du processus désiré de passage de vecteur ISIDA à SMILES.

 est un réseau de neurones basé sur un concept d'énergie, et composé d'unités binaires constituant un réseau complètement connexe. Une machine de Boltzmann est un modèle non-supervisé qui optimise la vraisemblance des données d'entraînement. Une machine de Boltzmann peut être inversée : à partir d'un état de la couche cachée (vecteur latent), le vecteur d'entrée correspondant est reconstruit. Par exemple, si le vecteur latent correspond à un benzaldéhyde, une machine pourrait potentiellement le traduire en SMILES, une autre en graphe, et une dernière donner son nom IUPAC. Les différentes machines sont également capables de transformer une modalité en « idée conceptuelle », permettant ainsi la traduction (Figure 6).

Figure 6 .

 6 Figure 6. Représentation schématique du fonctionnement d'une Machine de Boltzmann Multimodale. Le modèle est constitué de différentes Machines de Boltzmann représentant différentes modalités connectées au même vecteur latent. Les liaisons étant dans les deux sens, la traduction d'une modalité à une autre est possible.

Figure 7 .

 7 Figure 7. Processus d'entraînement de Stargate-GTM.

Figure 8 .

 8 Figure 8. Distribution des distances euclidiennes entre les positions d'une même molécule sur deux cartes entraînées ensemble par Stargate-GTM. Aléatoire correspond à la distance entre deux molécules prises au hasard sur deux cartes ISIDA entraînées ensemble.

Figure 9 .

 9 Figure 9. Architecture du modèle CVAE développé qui permet d'échantillonner des structures chimiques dont les descripteurs moléculaires correspondent à une requête. Ici, les descripteurs structuraux ISIDA sont utilisés. La couche d'attention multi-entrée (Multi-Head Attention) est indispensable pour prendre en charge la relation très non-linéaire entre l'espace chimique des descripteurs moléculaires et l'espace latent de la VAE.

Figure 10 .

 10 Figure 10. (a) Modèle pharmacophore aligné avec les structures cristallines des deux ligands existants. (b) Modèle pharmacophore (c) Potentiels hits issus de la génération par GA alignés avec le modèle pharmacophore

Figure 11 .

 11 Figure 11. Pourcentage de molécules générées à partir de la GTM et de la SVR (bleu) et pour les leurres ZINC (orange) ayant un score de docking LeadIT comparable à celui d'actifs validés expérimentalement.

Figure 12 .

 12 Figure 12. Schematic representation of the basic function of a Seq2Seq model on an English to French translation task.

Figure 13 .

 13 Figure 13. Examples of autoencoder regularization techniques.(i) represents the denoising autoencoder, where a noise vector is added to the input, but the output is compared to the clean input, forcing the model to make the difference between useful information and noise. (ii) represents a sparse autoencoder. Random values are "deactivated" (set to 0) between encoder and decoder, resulting in information loss and forcing the model to infer from incomplete information. (iii) represents an autoencoder with a low-dimensional latent vector, called a "bottleneck" which compresses the information. The decoder must infer the output from this compressed information.

Figure 14 .

 14 Figure 14. Schematic representation of a folded (i) and unfolded (ii) RNN. The folded scheme shows the feedback loop, current input and previous states are used to compute the output and the updated states. The unfolded scheme allows more readability and a step-by-step understanding of the process.

Figure 15 .

 15 Figure 15. Schematic representations of a regular RNN (i) and the LSTM (ii). The main difference is the cell state 𝑐 𝑡 which is not present in a regular RNN.

Table 2 .Figure 17 .

 217 Figure 17. Schematic representation of a Classical RNN. At each time step, the input 𝐗 𝑡 and previous hidden states ℎ 𝑡-1 are given back to the model to generate new hidden states ℎ 𝑡 . At the end of the 𝑛 time steps, the hidden states ℎ 𝑛 are transferred to the decoder. The intermediate state ℎ 1 to ℎ 𝑛-1 are discarded.

Figure 19 .

 19 Figure19. Schematic representation of the generative process. The start character is given to the decoder with the latent vector to predict the next character, based on a probability distribution of all characters (represented by the rectangle). In this case, the most probable character is selected and added to the existing sequence. The latter is then injected back into the neural network to continue predict characters until reaching the "E" which signifies the end.

Figure 21 .

 21 Figure 21. General overview of Generative Topographic Mapping. The data point is projected onto the manifold via the RBFs with a probability to reside in each node. The responsibilities for one data point are normalized over the entire map, meaning the sum of responsibilities is equal to 1.

Figure 22 .(2 . 26)

 22226 Figure 22. Examples of density, property, and class landscapes. (i) shows a density landscape with very populated areas represented in dark grey or black and lightly populated/unpopulated areas represented in light grey or white. (ii) shows a property landscape, molecular weight in this case, with heavy molecules coloured in red and lighter molecules coloured in blue. (iii) shows a class landscape with zones containing active molecules coloured in red and zones containing inactive molecules coloured in blue. The zones coloured in green contain both active and inactive molecules with similar cumulated responsibility values.

Figure 23 .

 23 Figure23. Schematic process of the training process of a GTM based on latent vectors and its usage in the case of generating molecules from zones of interest. The initial space is defined here with 3 dimensions for readability and ease of understanding, however in practice any dimensionality could be used.

 correspond to unfeasible chemical structures. Novelty was assessed by comparing the generated compounds to the training database. Any generated molecule absent in the training set was considered novel. The general workflow of the study was the following: 1) Train the AE, 2) Build GTM landscapes, 3) Sample systematically, and 4) Analyze sampled molecules in terms of chemical properties, novelty, and general distribution in latent space.

 areas in models 3 and 4 are not densely populated, they are not completely empty, and similar areas of lower density can be found in the same spot in model 1, albeit smaller, and slightly shifted towards the bottom-right corner in model 2. The comparison of the 4 density landscapes indicates that the model may differ slightly in terms of parameters and metrics, but latent space has a similar organization in the 4 of them.

Figure 25 .

 25 Figure 25. Density Landscapes for the 4 models. (A) model1, (B) model2 (C) model3 (D) model4

Figure 26

 26 Figure26shows the projections of the three SMILES strings on the density landscape of model 1. The same molecule is projected in completely different areas of chemical space, the only reason being the difference in its SMILES representation. This is a consequence of the way AEs deal with input data. Since latent vectors are based on a sequence of characters, changing that sequence of characters also completely changes the values of the latent vectors. Bidirectional LSTM cells read input from both sides, mitigating this problem in some cases where the SMILES starts from the "other side" of the molecule, however, when the SMILES strings are completely different and start from very dissimilar positions, the AE is incapable of relating all the different character strings to the same compound. The similarity principle is therefore not necessarily obeyed in all cases with the latent space of an AE.

Figure 26 .

 26 Figure 26. Projections of SMILES A, B and C on the density landscape of model 1

Figure 27 .

 27 Figure 27. (LEFT) Density landscape for ChEMBL compounds for model 1. (RIGHT) Log Likelihood of projections of the ChEMBL compounds on the map, with nodes of interest annotated.

Table 10 .

 10 The 3 zones of low log likelihood coincide with areas of high molecular weight. Higher molecular weight could imply larger number of characters and further differentiate these clusters from the rest of the data. Interestingly only 3 out of the 4 nodes with high LLh seem to correlate with low molecular weights (815, 1191, 689) with very small molecules in nodes 815 and 689. Node 1191 is populated by molecules containing peptide bonds which are common in drug-like compounds and could explain the good manifold coverage. Node 35 is a very high-density node, containing steroid-like structures although smaller than in node 2. The density of the node and easily repeatable pattern could mean that this area of latent space is very densely packed, meaning the manifold could adapt well to the data. Examples of molecules for the nodes of interest shown in Figure27. The nodes are split in two categories: Low loglikelihood (blue) and high loglikelihood (orange) coverage and the positions of certain functional groups and patterns remains very complex even with GTM landscapes as a visualization tool. Several factors, like molecular weight (which is related to the number of characters in the SMILES string), repeated patterns (peptide bonds, carbonyl groups, etc…), density of the data clusters, aromaticity, branching and overall complexity of the SMILES string seem to influence the data distribution. Although difficult, it is possible by taking all properties into account to somewhat understand the distribution of compounds in latent space, even if a complete understanding is still impossible.Generative abilities of the AEAbove, only the maps indicating the distribution of the chemical compounds taken from the ChEMBL database were considered. Such maps could have been obtained using any other set of molecular descriptors. An important feature of using continuous autoencoder latent vectors as descriptors is the ability to convert them into chemical structures using the decoder, which allows for the generation of new molecules. The questions arise: (1) can correct chemical structures be generated from any point in the autoencoder latent space, and (2) what factors influence the generative process?

Figure 28 .

 28 Figure 28. Distribution of percentage of validity of generated SMILES for each node.

Figure 29 .

 29 Figure 29. Projections of generated compounds back on the density landscape based on model 1. The green circles represent the area where molecules were sampled. (A) Molecules sampled from node 1189. (B) Node 70. (C) Node 923. (D) Node 115.

Figure 30 .

 30 Figure 30. Schematic representation taken from the article of the Autoencoder architecture used.

Figure 31 .

 31 Figure 31. Chemical reaction (i) and its associated reaction SMILES (ii).

1) 2)

 2 ISIDA2SMI. A simple LSTM-based model which aims to directly translate ISIDA descriptor vectors to SMILES of corresponding molecules. Multimodal Deep Boltzmann Machine. A probability-based model composed of two independent reconstructive architectures linked by a "context" layer. One architecture trains to reconstruct ISIDA vector, the other reconstructs latent vectors. They are linked by a "context" layer in which the information can pass, effectively working as a translator between ISIDA and latent spaces.

 110

A

 workaround has been proposed to solve this issue. It consists in building a "FRAGMENTOR neural network" (FRAGMENTOR-NN) model whose task would be to generate a valid ISIDA vector from a given SMILES. The trained FRAGMENTOR-NN model could then replace the actual FRAGMENTOR in the initial model, and significantly speed up the training process as shown in Figure 33. This workaround does mean that errors in the FRAGMENTOR-NN will propagate on the general loss of the ISIDA2SMI model.

Figure 33 .

 33 Figure 33. Updated model with the FRAGMENTOR-NN replacing the actual FRAGMENTOR.

Figure 35 .

 35 Figure 35. Workflow for the calculations of the absolute difference vectors between calculated and predicted ISIDA vectors. The 10,000 resulting vectors are then studied using Mean and Standard deviation to isolate the most problematic descriptors.

Figure 36 .

 36 Figure 36. Validation loss during training for models with 2 LSTM cells and 1-5 Dense layers.Training is stopped when the loss doesn't improve for multiple epochs, meaning some models train faster than others.

Figure 37 .

 37 Figure 37. Graph of standard deviation for each of the 6520 descriptors of the training set (500,000 compounds), sorted by increasing standard deviation. Most of the descriptors from the training set have a standard deviation of 0.

 descriptors from the training set 120 A large portion of descriptors had an almost-0 standard deviation in the training set.

Figure 38 .

 38 Figure 38. Graph of standard deviation for each of the 371 descriptors of the training set remaining after filtering, sorted by increasing standard deviation.

Figure 39 .

 39 Figure 39. Validation loss during training for models with 4 LSTM cells and 1-5 Dense layers.

Figure 39 confirms

 39 Figure 39 confirms the tendency observed in the last experiment. Models with a higher number of Dense layers tend to train faster but are less accurate. Models with 2 or 3 dense layers took around 15 more epochs to train than models with 4 and 5. The model with 1 Dense layer could not reduce validation loss to a performing level, most likely due to overfitting. For further testing, the best model, 4L_2D was retained.

Figure 40 . 123 Figure 40 .

 4012340 Figure 40.

 absolute difference according to length of fragments 124

Figure 42 .

 42 Figure 42. Example of molecules where 2 atoms are adjacent to each other in the molecule but are separated by a variable number of characters in the associated SMILES string.

 different SMILES. The model could therefore detach itself from the SMILES sequence and get a higher representation of the molecule represented by the SMILES. SMILES Randomization was performed using RDKit, by transforming a SMILES string into a molecule object, extracting, and shuffling atom numbers and recreating a SMILES string. For each SMILES in the ChEMBL database, 10 random SMILES were generated and associated with the same filtered, non-standardized SVM. Again, based previous knowledge, a 4 LSTM, 2 Dense layer model was selected.

Figure 43 .

 43 Figure 43. Schematic representation of the changed architecture. Each input corresponds to a different randomized SMILES string. Then, all outputs from the 10 LSTM+Dense duos, are either concatenated or averaged (two different models). Then this new vector is passed through the output dense layer to shape it with the corresponding size.

Figure 44 .

 44 Figure44. Simple scheme of a classical Boltzmann Machine. Orange neurons represent visible units which take the input and give the output. Grey neurons represent hidden units which, similarly to an autoencoder, are supposed to gather higher representations and the underlying "meaning" of the data distribution. Bold lines represent connections between units of the same layer. Coloured lines represent the different interactions between units. Green lines are interconnections inside a hidden layer, the blue line represents the interconnection inside the visible layer and the purple lines represent connections between two layers.

Figure 45 .

 45 Figure 45. Simple scheme of a Restricted Boltzmann Machine. Interconnections between units of the same layer have been removed. As a result, this architecture looks more like a classical feed-forward neural network.

Figure 46 .

 46 Figure 46. Influence of a and b parameters on the evolution of the learning rate. Parameter "a" controls the rate of decrease while "b" controls the starting point.

Figure 47 .

 47 Figure 47. Schematic representation of the Multimodal Deep Boltzmann Machine with both specific models linked by the higher representation layer on top. Details are added to show the model in usage mode, sampling vectors from ISIDA-based GTM, finding their equivalent in latent vectors and decoding them into molecules with controlled structure.

Figure 48 .

 48 Figure 48. Schematic representation of the efficiency metric for the part of the DBM trained for reconstructing latent vectors. Reconstructed SMILES are sorted into three categories according to their validity and comparison to the initial SMILES.

Figure 49 .

 49 Figure 49. Schematic representation of the simple RBM used in the first experiment. The visible layer has a dimension of 256 corresponding to the size of the input latent vectors. The hidden layer has variable dimension.

Figure 50 .

 50 Figure 50. Graph representing the evolution of the RMSE at the end of training in relation the number of hidden units in the model.

Figure 51 .

 51 Figure 51. Graph showing the proportion of perfect matches, imperfect reconstructions, and invalid SMILES for the best RBM found in the systematic analysis.

Figure 51

 51 Figure51shows that the initial version of the model achieved a perfect reconstruction rate of 85.49%. In comparison to classical canonical-to-canonical autoencoders which generally achieve upwards of 95%, this value is disappointing but encouraging considering the simplicity of the model. Tanimoto coefficients were computed (Figure52) and showed that most of the imperfect reconstructions had a Tc around 0.5 -0.7 with a few going above 0.9. Small changes to the latent vectors seemed to induce changes of variable degrees to the closeness of the reconstructed compounds, showing the discrete characteristic of latent space and the tendency of the autoencoders to have a poor chemical space organization in terms of structural similarity.

Figure 52 .

 52 Figure 52. Distribution of Tanimoto coefficients for the 833 imperfect reconstructions.

Figure 53 .

 53 Figure 53. Schematic representation of the DBM evolved from the previous RBM. Visible and first hidden layers are fixed to constant values while the second hidden layer varies.

Table 26 .Figure 54 .Figure 55 .

 265455 Figure 54. Graph representing the evolution of RMSE at the end of training as a function of the dimension of the second hidden layer.

Figure 56 .

 56 Figure 56. Distribution of Tanimoto coefficients for the 345 imperfect reconstructions.

Figure 58 .

 58 Figure 58. Proportion of descriptors according to their reconstruction fluctuation. 85.6% of descriptors have a possible variation of less than 0.5.

Figure 59 .

 59 Figure 59. Histogram of the distribution of reconstruction fluctuation calculated between initial and reconstructed ISIDA vectors. Bars are coloured according to results of Figure 58.

Figure 60 .

 60 Figure 60. Evolution of RMSE for training and validation sets during training of the model.

Figure 61 .

 61 Figure 61. Proportion of descriptors according to their reconstruction fluctuation on the validation dataset.

Figure 62 .

 62 Figure 62. Histogram of the distribution of reconstruction fluctuation calculated between initial and reconstructed ISIDA vectors. Bars are colored according to results of Figure 61.

Figure 63 .

 63 Figure 63. Fluctuation of each descriptor according to its occurrence in the validation dataset. The grey line represents the 0.5 fluctuation limit. Each dot is colored according to the standard deviation of the descriptor itself. The grey line indicates the threshold of fluctuation = 0.5.

Figure 64 .

 64 Figure 64. Proportion of results for a model with the same parameters with AdaBelief (left) and without AdaBelief (right).

5 Figure 65 .

 565 Figure 65. Fluctuation of each descriptor according to its occurrence in the training dataset. Each dot is colored according to the standard deviation of the descriptor itself.

 in a working MDBM. Latent vectors could potentially be optimized to obtain satisfactory results, or at least increase the reconstruction rate with more time. It could have been beneficial to work with a principal component transform of ISIDA descriptors vectors and the AE latent vectors in order for the covariance matrix in equation (5.3) to better describe the distribution of the input. Besides, ISIDA descriptors are counts, so a standard DBM based on integer could have been attempted, for instance, by mapping the counts binary vectors. Defining more relevant metrics and loss function to train these architectures in the context of generating molecular structures could also be explored. Structural descriptors in general seem to be problematic for neural networks to correctly handle. Methods based on manipulating them by having to reconstruct or predict them like SMI2ISIDA and MDBM remain unsuccessful despite the occurence of each descriptor, colored by initial standard deviation

Table 33 .

 33 Comparison between density landscapes for ISIDA (left) and latent (right) datasets for each experiment. Only the 5000 training compounds were projected. All density scales are set to the same values and range from 0 (dark blue/white) to 80 (red). density landscapes for all experiments shows several tendencies. From on map to the other, it is often possible to recognise patterns that are smoothly modified as with weight parameter value. The chemical content of these patterns is stable: the same molecules are found in the map in a consistent manner from one map to the other, with a small change of the weight value. Besides, the effect of the co-training is visible, as pattern structures from the ISIDA maps can be retrieved, in an altered version in the AE maps and reversely. This is most visible between the experiment 3 and 17, with a weight parameter with all values of the weight parameter in the range [0.15, 0.75]. ISIDA landscapes often present areas of high density (80+ red zones) scattered around the map while those high-density zones are a lot rarer in latent landscapes and may only be observed in experiments 10, 12 and 14. This may indicate that AE latent vectors tend to be more spread out in terms of probability distribution compared to ISIDA vectors. White zones corresponding to empty areas of chemical space are more common and well defined in ISIDA landscapes, compared to the AE latent density landscapes. These differences in density distribution mean that, visually, ISIDA and latent landscapes in each experiment do not share obvious similar features. In a more ideal situation, when the two spaces represented are topologically similar, the Stargate-GTM densities can look very much alike. To illustrate it, two example datasets from ChEMBL were used containing the same 1263 compounds with two different sets of ISIDA descriptors (dimensionality 280 and 637). The comparison of the resulting landscapes is shown in Figure 66.

Figure 66 .

 66 Figure 66. Density landscapes created using StargateGTM for the example datasets. Both density scales are the same and range from 0 (dark blue/white) to 45 (red).

Figure 67 .

 67 Figure 67. Positions of 9 randomly selected compounds for the ISIDA / LATENT S-GTM (i) and ISIDA / ISIDA S-GTM (ii). Each molecule has 2 points of the same colour corresponding to their projection in the two spaces (ISIDA/LATENT and ISIDA/ISIDA), which are linked for visualization. The graphs are squares representing the map area. Coordinates range from -1 to 1 on both axes.

 systematically studied in Figure68. The Euclidean distance 𝑑 = √(𝑥 𝑙𝑎𝑡𝑒𝑛𝑡 -𝑥 𝑖𝑠𝑖𝑑𝑎) 2 + (𝑦 𝑙𝑎𝑡𝑒𝑛𝑡 -𝑦 𝑖𝑠𝑖𝑑𝑎) 2 between the position of a molecule on one map and the position of the same molecule on the other map is calculated for all compounds in the dataset. The distribution of the distances is reported for each pairs of maps obtained using the various values of the weight parameter. For comparison, the distance for the ISIDA/ISIDA related maps and when association the coordinate of a compound on the ISIDA map to a random compound position in the AE map.

Figure 68 .

 68 Figure 68. Box plots generated for the distribution of Euclidian distances between the coordinates of the same compounds on the two maps of S-GTM. Blue box plots correspond to ISIDA/LATENT S-GTMs with different combinations of weight parameters (0.05/0.95 means that 𝑤 𝐼𝑆𝐼𝐷𝐴 = 0.05 and 𝑤 𝐿𝐴𝑇𝐸𝑁𝑇 = 0.95. The green box plot shows the results for the ISIDA/ISIDA distances, and the orange box plot shows the results for the randomized ISIDA-ISIDA experiment.

Figure 68 shows

 68 Figure68shows that in terms of Euclidean distances between the same compounds, ISIDA/LATENT S-GTMs perform much worse than the example ISIDA/ISIDA model and are comparable to a random situation. A compound in the ISIDA map is usually localized on the map: the responsibilities are concentrated on a small number of nodes. The AE maps encode the molecules in responsibility patterns that cover large portions of the map. This reflects the

Figure 73 .

 73 Figure 73. Density landscape for the 1662 generated compounds projected on the ISIDA manifold. As we can see, projected compounds are not near the wanted node.

Figure 74 .Figure 75 .

 7475 Figure 74. Three of the compounds with the highest correspondence to the query. (35, 34 and 33 corresponding descriptors from left to right)

 SMILES-based latent spaces and triggered the development of a novel CVAE architecture, which applied ISIDA vectors as condition to VAE latent vectors, eliminating the need for an external link. The model, based on the latest developments in Deep Learning like Multi-Head Attention and a GRU-based encoder was successfully used to generate compounds from selected "seeds". These seeds resulted from the exploration of chemical space using different methods, Genetic Algorithm coupled with activity prediction, and Generative Topographic Mapping. Both methods produced different but equally interesting results, with SVR-based generation giving the most potent generated molecules, as confirmed by pharmacophore, and docking studies. The ACoVAE model, coupled with chemical space exploration techniques allowed the reversing of the classical QSAR method and the generation of active molecules from selected structural features. The model could quite simply be adapted to work with any other structural descriptor and/or property vectors and could even swap SMILES to CGR to function with reactions.

 Cette méthode est uniquement basée sur la GTM. Une carte représentant l'activité sur une cible biologique (CHEMBL3717) construite sur des vecteurs ISIDA a été combinée à une série de cartes de l'espace latent de l'AE colorées par valeurs de descripteurs moléculaires ISIDA. Un vecteur de descripteurs optimum sur la carte CHEMBL3717 est ensuite utilisé pour réaliser des requêtes sur les différentes cartes de l'espace latent. Celles-ci ont permis d'identifier une zone dans l'espace latent de l'AE potentiellement liée à une zone d'activité sur CHEMBL3717 dans l'espace des descripteurs moléculaires ISIDA. Cette zone de l'espace latent de l'AE a été exploitée pour générer 10.000 structures dont la correspondance avec la zone identifiée dans l'espace des descripteurs moléculaires ISIDA a été analysée.

	Combinaison de paysages ISIDA	
		Distribution des distances euclidiennes entre les positions d'une même
			molécule sur deux cartes
		3,00	
	euclidienne	2,00 2,50	
	Distance		
		LATENT/ISIDA	ISIDA/ISIDA	Aléatoire

Ces différentes tentatives n'ont pas été fructueuses. Les molécules générées à partir des vecteurs latents de l'AE ne correspondent pas aux composés décrits avec les descripteurs moléculaires ISIDA. La correspondance entre espace latent d'un AE et les descripteurs moléculaires ISIDA, si elle est théoriquement attendue, apparaît donc très difficile à formaliser.

Cette conclusion est renforcée sans équivoque lorsque sont calculés le coefficient de corrélation de Hilbert-Schmidt entre l'espace latent de l'AE et différents espaces de descripteurs moléculaires. Une telle corrélation n'existe quasiment pas ce qui signifie qu'une relation entre ces deux espaces est nécessairement très non-linéaire.

 a été développée au cours d'une collaboration entre le laboratoire Chemoinformatique et l'Université de Kazan. Les séquences

	SMILES servent d'entrée à un Conditional Variational Autoencoder (CVAE). Un Variational
	Autoencoder (VAE) fait correspondre aux vecteurs d'entrée une distribution de probabilité dans
	l'espace latent. Ceci offre des meilleures garanties de continuité dans l'espace latent d'un VAE
	en comparaison d'un AE : une perturbation d'un vecteur latent est moins susceptible de
	produire de grands changements dans la structure chimique générée correspondante. Cela ne
	résout pas les problèmes de fragmentation de l'espace chimique en raison de la sémantique des

SMILES, mais combiné à une architecture semblable à celle des Transformers, améliore sensiblement les capacités de reconstruction des graphes des molécules. Enfin, les vecteurs de descripteurs ISIDA sont utilisés pour conditionner l'espace latent du VAE. Au travers d'une couche d'attention multi-entrée (Multi-Head Attention, MHA) ces vecteurs de descripteurs biaisent l'échantillonnage de l'espace latent de la VAE (Figure

9

). Un vecteur de descripteurs moléculaires ISIDA peut ensuite être utilisé en requête pour générer des vecteurs latents qui sont ensuite décodés en structures chimiques dont les descripteurs moléculaires ISIDA sont similaires au vecteur demandé. La couche MHA est l'élément qui permet d'introduire la non-linéarité indispensable pour faire correspondre ces espaces chimiques latents et descripteurs moléculaires.

Table 1 .

 1 Exemples de molécules issues de ChEMBL, et de molécules générées à l'aide des différentes méthodes de sélection de vecteurs. Les valeurs correspondent à l'activité prédite sur la cible ChEMBL1862. Examples of ChEMBL and generated compounds (with different vector selection methods) with their associated predicted activity against the ChEMBL1862 target.

		Molécules ChEMBL	
	10.73	10.70	10.70
		Molécules générées à partir du GA	
	10.20	9.84	9.82
	10.08	9.45	
			9.35
		Molécules générées à partir de la GTM	
	7.88	7.84	7.83

Molécules générées à partir d'une molécule existante active

5 Liste des Présentation

 de générer de nouvelles réactions. Les nouveaux types de transformations chimiques ont été identifiées en utilisant des motifs structuraux CGR correspondant aux coeurs de réaction.

	Bort, W., Baskin, I. I., Gimadiev, T., Mukanov, A., Nugmanov, R., Sidorov, P., Marcou,
	G., Horvath, D., Klimchuk, O., Madzhidov, T. & Varnek, A. Discovery of novel chemical
	reactions by deep generative recurrent neural network. GGMM SFCi (Group of Graphism and
	Molecular Modeling & French Society of Chemoinformatics) à Lille, 31 Septembre 2021.

Les tentatives pour faire correspondre des descripteurs moléculaires aux vecteurs latents d'un autoencodeur se sont soldés par des échecs qui ont mis en évidence le caractère non trivial d'une telle relation. Cette observation a été renforcée par les observations effectuées sur les compatibilités des espaces chimiques à l'aide du coefficient d'Hilbert-Schmidt. Ceci a conduit au développement d'une nouvelle architecture combinant espace de descripteurs ISIDA et AE variationnel qui a finalement permis de générer des structures chimiques dont les vecteurs de descripteurs structuraux correspondaient aux contraintes exigées. Il a été possible de montrer que les composés proposés ont montré de bons résultats tant au niveau de la similarité structurelle que de l'activité biologique potentielle. 1.2.Poster Bort, W., Baskin, I. I., Gimadiev, T., Mukanov, A., Nugmanov, R., Sidorov, P., Marcou, G., Horvath, D., Klimchuk, O., Madzhidov, T. & Varnek, A. De novo design of chemical transformations using deep neural networks. Journée Scientifique des doctorants UMR7140 à Strasbourg, 5 Mai 2021. Oral 1.2.

6 Liste des Publications

	Bort, W., Baskin, I. I., Gimadiev, T., Mukanov, A., Nugmanov, R., Sidorov, P., Marcou, G.,
	Horvath, D., Klimchuk, O., Madzhidov, T. & Varnek, A. Discovery of novel chemical reactions
	by deep generative recurrent neural network. Sci Rep 11, 3178 (2021).
	https://doi.org/10.1038/s41598-021-81889-y
	Bort, W., Mazitov, D., Horvath, D., Bonachera, F., Lin, A., Marcou, G., Baskin, I. I.,
	Madzhidov, T., Varnek, A. Inverse QSAR: Reversing Descriptor-Driven Prediction Pipeline

Using Attention-Based Conditional Variational Autoencoder. J. Chem. Inf. Model. 62

(22)

, 5471-5484 (2022). https://doi.org/10.1021/acs.jcim.2c01086

 The current state vector 𝐡 𝑡 is a function of 𝐗 𝑡 and 𝐡 𝑡-1 , and the output vector 𝐘 𝑡 is a function of the current state vector 𝐡 𝑡 . If 𝛉 represents the trainable parameters of the model then 𝐛 ℎ and 𝐛 𝑦 are the biases for the hidden layer and the output respectively, 𝐖 𝑥ℎ , 𝐖 ℎℎ and 𝐖 𝑦ℎ are the weights matrices associated with the layer connections. Φ 𝑠𝑡𝑎𝑡𝑒 and Φ output are

	𝐡 𝑡 = Φ 𝑠𝑡𝑎𝑡𝑒 (𝐖 𝑥ℎ 𝑇 * 𝐗 𝑡 + 𝐖 ℎℎ 𝑇 * 𝐡 𝑡-1 + 𝐛 ℎ)	(2.3)
	𝐘 𝑡 = Φ output (𝐖 𝑦ℎ 𝑇 * 𝐡 𝑡-1 + 𝐛 𝑦)	(2.4)
	non-linear activation functions, usually tanh in the case of Φ 𝑠𝑡𝑎𝑡𝑒 and sigmoid, softmax or the
	rectified linear unit (ReLU) for Φ output depending on the application and the desired output
	form.		
	During training, the loss function 𝐿 of the model is calculated as the sum of losses at each
	time step as follows:		
	𝑇		
	𝐿 = ∑ 𝑙(𝐘 𝑡 data , 𝐘 𝑡 pred)	(2.5)
	𝑡=0		
	The nature of the individual loss function 𝑙 depends on the form of the output, the context
	of training and the required task. When dealing with sequences of words or characters which
	are a classification problem, binary or categorical cross-entropy are common choices. Mean
	Square Error (MSE) or Mean Absolute Error (MAE) are mostly used in regression tasks. The
	loss is backpropagated through the model at each time step. During this step-by-step
	backpropagation, the global gradient which is a multiplication of localized gradients can
	become exponentially high or low if the model is deep (many layers), leading to the exploding
	or vanishing gradients issues respectively. Long-term dependencies between words in a
	the system evolves as follows: sequence can therefore be affected if the gradient becomes smaller, as the sentence gets longer.
	𝐡 𝑡 = 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝐗 𝑡 , 𝐡 𝑡-1 , 𝛉)	(2.1)
	𝐘 𝑡 = 𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 (𝐡 𝑡 , 𝛉)	(2.2)
	Typically, the following equations are used to compute the states and outputs:	

 Summing the likelihood of the 𝑁 data points contained in the frameset gives a global value for the quality of the manifold fit and is used as an objective function to optimize the Based on this objective function, the Expectation-Maximisation algorithm is run to optimize the values of 𝐖 and 𝛽. The Expectation step first evaluates the normalized responsibilities of the 𝑁 data points 𝐭 𝑛 on every node 𝐱 k with equation (2.21), creating a matrix of responsibilities 𝐑 of dimension (𝐾, 𝑁):

	weight matrix 𝐖.			
				𝑁
	𝐿𝐿ℎ(𝐖, 𝛽) = ∑ 𝐿𝐿ℎ(𝐭 𝑛 , 𝐖, 𝛽)	(2.18)
			𝑛=1
	Expectation-Maximization Algorithm			
	𝑟 𝑘𝑛 =	𝑝(𝐭 𝑛 |𝐱 𝑘 , 𝐖, 𝛽) ∑ 𝑝(𝐾 𝑘′ 𝐭 𝑛 |𝐱 𝑘 , 𝐖, 𝛽)	(2.19)
	𝑝(𝐭|𝐖, 𝛽) =	1 𝐾	𝐾 𝑘=1 ∑ 𝑝(𝐭|𝐱 k , 𝐖, 𝛽)	(2.16)
	In practice, the likelihood is not used as is, but its natural logarithm (LLh) is preferred.
	𝐿𝐿ℎ(𝐭, 𝐖, 𝛽) = 𝑙𝑛(𝑝(𝐭|𝐖, 𝛽))	(2.17)

15)

Equation

(2.15)

describes the probability density (or likelihood) of a data point 𝐭 to be associated with the node k of coordinates 𝐱 𝑘 in the latent space. 𝐲 k corresponds to the coordinates of nodes in 𝐷-dimensional space calculated using equation (2.12). 𝛽 is the inverse of the variance of the distribution, initialized based on the third component of the PCA, and optimized during the training procedure. Equation (2.15) can be integrated over all nodes to obtain the likelihood of data point 𝐭 against the entire manifold, which is a quality indicator of the manifold's representation of that particular data point.

 𝑟 𝑛𝑘 𝑐 𝑖 is the responsibility of a data point 𝑛 in node 𝑘 with class 𝑐 𝑖 , 𝑁 𝑐 𝑖 is the number of data points with the 𝑐 𝑖 class and 𝑁 𝑡𝑜𝑡 is the total amount of data points.

	𝐾			
	𝑃(𝑐 𝑖 |𝐭 ′) = ∑ 𝑃(𝑐 𝑖 |𝑥 𝑘) * 𝑟 𝑘𝑡′	(2.32)
	𝑘=1			
	Transparency combined with colouring in both property and class landscapes help visualize
	the data density. It is however sometimes less easily readable in this format, thus the need for a
	density landscape.			
	𝑃(𝑥 𝑘 |𝑐 𝑖) =	∑	𝑟 𝑛𝑘 𝑐 𝑖 𝑁 𝑐 𝑖 𝑁 𝑛=1	(2.30)
	𝑃(𝑐 𝑖) =	𝑁 𝑐 𝑖 𝑁 𝑡𝑜𝑡	(2.31)
	Here, In the same way as property landscapes, class landscapes can also be used as predictions
	tools with a formula resembling the property landscape equation. The value for the class of a
	projected compound 𝐭 ′ can be expressed as:			

𝑥 𝑘 |𝑐 𝑖) * 𝑃(𝑐 𝑖) ∑ 𝑃(𝑥 𝑘 |𝑐 𝑗) * 𝑃(𝑐 𝑗) 𝑗 (2.29)

Table 7 .

 7 It is vital that the results of any experiment be reproducible, and that means that training several AE models from the exact same parameters and training/validation sets should give the exact same results. To verify this, four different AE models were trained, by fixing any random number generation to a given seed in the initialization and selecting the exact same training/validation set split. Results are shown in Table7. Training and validation reconstruction rates, and number of descriptors after filtering according to standard deviation for all 4 models.

	Model	1	2	3	4
	Train Reconstruction	99.23%	99.23%	99.54%	98.88%
	Val Reconstruction	98.61%	98.25%	98.62%	97.94%
	Number of				
	descriptors after	66	60	75	62
	filtering				

Table 8 .

 8 Shannon entropy computed for the density landscapes of the different models. 0 means that all compounds are projected into the same node, 100 means that compounds are evenly spread across latent space.

	Model 1	Model 2	Model 3	Model 4
	98.99	99.22	97.55	98.21

Table 9

 9 was expressed 3 different ways by randomizing the SMILES string using RDKit. Even though they relate to the same molecule, the three SMILES strings are organized differently with very different stating points.

Table 9 .

 9 SMILES A, B, and C randomized from the given ChEMBL molecule.

Table 11 .

 11 Examples of molecules extracted from zones of high validity (A, B, C) and low validity (D, E, F)

	A
	B
	C
	D
	E
	F

Table 12 .

 12 Map comparison for different properties between ChEMBL and generated compounds. The maps are on different scales for better visualization.

	Property	ChEMBL compounds	Generated compounds
	Number of		
	heavy atoms		
	LogP		
	Aromatic Rings		
	Total Rings		

Table 13 .

 13 Summary of the data separation.

	ChEMBL25	1,669,377
	Internal (Training/Validation) Set	500,000 (random)
	Training Set	450,000 (90% of Internal Set, random)
	Validation Set	50,000 (10% of Internal Set, random)
	External Test Set	166,597 (10% of ChEMBL, random)

Table 14 .

 14 Parameters used across all experiments in the SMI2ISIDA models.

	Learning	Batch	Dimension of	Dimension of	Activation	Loss
	rate*	size	LSTM cell	dense layers	function in	function
					Dense layers	
	0.001	256	256	Equal to the	ReLu	MSE
			(Bidirectional)	dimension of		
				ISIDA vectors		

*Learning rate is divided by half every time the validation loss does not improve

Table 15 .

 15 Minimum validation loss achieved during training with the different numbers of LSTM cells and Dense Layers. Green represents the best model, red represents the worse.

	# of				
	LSTMs	1	2	3	4
	# of Dense				
	1	0.0279	0.0209	0.0249	0.0800
	2	0.0348	0.0277	0.0369	0.0468
	3	0.0418	0.0321	0.0316	0.0329
	4	0.0448	0.0342	0.0364	0.0376
	5	0.0588	0.0386	0.0416	0.0370
	The best model isolated in this analysis was 2 LSTM cells and 1 Dense layer. For this
	type of descriptors, deeper models performed worse.		

Table 16 .

 16 Minimum validation loss achieved during training with the 2L_1D model with different combinations of starting parameters. The initial parameters that were used to first train this model are shown in light blue. The best model obtained is shown in green.

	Learning rate Batch size	0.0005	0.001	0.005
	128	0.0222	0.0227	0.0639
	256	0.0220	0.0209	0.0456
	512	0.0190	0.0233	0.1025
	Table 16 shows that the model performance also depended on starting parameters. The
	performance increased when the learning rate was lowered, and the best performance was
	achieved with a batch size of 512 compounds.		

The resulting model was evaluated on 10,000 random compounds out of the 166,597 in the external test set by computing MSE between initial and reconstructed vectors. On the external test set, MSE amounted to 0.0221 which is close to the validation MSE of 0.0190 showing no sign of overfitting.

Table 17 .

 17 Top 5 descriptors with highest mean absolute difference value.

	Fragment number	Fragment SMILES	Mean absolute
			difference
	38	CCCCNCC	1.02868
	208	CCCCCC	1.00118
	20	CCCCC	0.98502
	103	CCCCCNC	0.97515
	211	CCCCCCC	0.96136

Table 18 .

 18 Top 5 descriptors with highest standard deviation of absolute difference value. As is clearly visible in Table 17 and Table 18, reconstruction of longer fragments caused significant errors. Combining the mean and standard deviation of Fragment n°38 for example,

	Fragment number	Fragment SMILES	STD of absolute
			difference
	211	CCCCCCC	1.66083
	697	CCCCCCF	1.37969
	203	CCNCNCC	1.36696
	208	CCCCCC	1.34939
	38	CCCCNCC	1.23589

gave a maximum absolute difference of 2.2. In practice, this meant that the model may predict that such a fragment count is wrong by 2 units or more. Recurring, significant errors in the counting of several descriptors meant the model was not able to reconstruct any ISIDA vectors entirely and perfectly. The model is therefore not satisfactory to replace an algorithmic calculation of the descriptors such as in the FRAGMENTOR software.

Table 19 .

 19 Minimum validation loss achieved during training with different numbers of LSTM cells and Dense Layers. The best validation loss achieved is shown in green.

	#	of			
	LSTMs	1	2	3	4
	# of Dense				
	1	0.514	0.228	0.246	2.965
	2	0.531	0.248	0.221	0.194
	3	0.466	0.263	0.266	0.278
	4	0.555	0.385	0.256	0.317
	5	0.532	0.380	0.291	0.351
	The best isolated model was 4 LSTM and 2 Dense Layers, with a validation MSE of 0.194 (see
	Table 19).				

The model performed an MSE of 0.258 on the external test set.

Table 20 .

 20 Top 5 descriptors with highest mean absolute difference value.

	Fragment	Fragment SMILES	Mean absolute
	number		difference
	10	CCCCC	0.75550
	8	CCCC	0.75093
	135	CCCCCC	0.74331
	28	CCCCNCC	0.72690
	66	CCCCCNC	0.71237

Table 21 .

 21 Top 5 descriptors with highest standard deviation of absolute difference value.

	Fragment	Fragment SMILES	STD of absolute
	number		difference
	137	CCCCCCC	1.21887
	135	CCCCCC	1.18268
	203	CCCSCNCC	1.07405
	150	CCCNNCC	1.05791
	8	CCCC	1.05507

Table 22 .

 22 Top 5 descriptors with highest mean absolute difference value (standardized descriptors) along with their standard deviation in the initial dataset.

	Fragment	Fragment SMILES	Mean absolute	STD in training
	number		difference	set (rank)
	8	CCCC	29.089	13.68 (1 st)
	11	CCC	26.556	10.43 (5 th)
	35	C	24.940	7.688 (6 th)
	12	CC	23.078	7.676 (7 th)
	10	CCCCC	19.028	13.41 (2 nd)

Table 23 .

 23 Top 5 descriptors with highest standard deviation of absolute difference value (standardized descriptors) along with their standard deviation in the initial dataset.

	Fragment	Fragment SMILES	STD of absolute	STD in training
	number		difference	set (rank)
	8	CCCC	28.220	13.68 (1 st)
	11	CCC	26.266	10.43 (5 th)
	35	C	24.938	7.688 (6 th)
	12	CC	23.033	7.676 (7 th)
	10	CCCCC	17.253	13.41 (2 nd)

Table 24 .

 24 Minimum validation loss achieved for both types of model.

	Model type	Minimum validation loss achieved
	Concatenation	0.520
	Average	2.387

Table 25 .

 25 Parameters used for the training of the RBM. Only the dimension of the hidden layer varied.

	Hidden Dimension	Batch size Epochs	A	B	Start Learning Rate
	Variable	256	1000	300	3	0.05

Table 27 .

 27 Results for the training of the DBM with 2 hidden layers on ISIDA vectors. All experiments were done for a visible dimension of 402. Parameters a and b control the decline of the learning rate, a gives the rate of decline and b controls the learning rate start. The lower a is, the faster the learning rate declines. For all experiments, A was set to 500, the batch size was set to 256, and the number of epochs was set to 2000. The best experiment is highlighted in green, the experiment used in the analysis is highlighted in blue.

	Experiment	Hidden	Hidden	B	Start	Euclidian
	Number	dimension	dimension		Learning	Distance
		1	2		Rate	
	1	400	400	3.7	0.025	14.60
	2	400	100	3.7	0.025	14.56
	3	400	10	3.7	0.025	13.62
	4	400	1000	3.7	0.025	14.56
	5	400	2000	3.7	0.025	12.78
	6	400	2000	3	0.05	14.54
	7	400	2000	2.3	0.1	12.78
	8	400	2000	1.61	0.2	11.96
	9	500	2000	1.61	0.2	11.13
	10	750	2000	1.61	0.2	9.62
	11	1000	2000	1.61	0.2	8.61
	12	1500	2000	1.61	0.2	7.33
	13	2000	2000	1.61	0.2	6.53
	14	2000	3000	1.61	0.2	6.44
	15	2000	4000	1.61	0.2	6.41
	16	2000	5000	1.61	0.2	6.43
	17	3000	5000	1.61	0.2	5.43
	18	4000	5000	1.61	0.2	5.04
	19	5000	5000	1.61	0.2	4.85
	20	6000	5000	1.61	0.2	4.76
	21	7000	5000	1.61	0.2	4.65
	22	8000	5000	1.61	0.2	4.53
	23	9000	5000	1.61	0.2	4.49
	24	10000	5000	1.61	0.2	4.38
	25	15000	5000	1.61	0.2	4.01
	26	17500	5000	1.61	0.2	3.98
	27	20000	5000	1.61	0.2	4.03
	28	17500	7500	1.61	0.2	13.11

Table 28 .

 28 Results for the training of the DBM with 3 hidden layers on ISIDA vectors. All experiments were done for a visible dimension of 402. A was set to 500, B to 1.61, the starting learning rate was 0.2. The number of epochs was set to 2000.

	Experiment	Hidden	Hidden	Hidden	RMSE
	Number	dimension	dimension	dimension	
		1	2	3	
	1	15000	5000	1000	111.45
	2	15000	5000	2000	116.13
	3	15000	5000	3000	108.08
	4	500	500	500	18.97
	5	300	300	300	14.85
	6	100	100	100	17.13
	7	100	100	1000	16.87

Table 29 .

 29 Best RMSE achieved during training for training set and validation set.

	Best	training	loss	Best validation loss
	achieved		achieved
		4.16		4.42
	The model used for this phase (experiment 25) achieved a RMSE of 4.01 on the training set
	with 10.000 compounds. Here, with 10x more data, it achieved 4.16 on training and 4.42 on
	validation (

Table 28)

 28 , which is very close to the preliminary results.

Table 30 .

 30 Parameters for the best model found in the initial analysis.Parameters in Table30were found to be the best for the initial analysis and were therefore reused to train the AdaBelief model. Without AdaBelief, the model achieved a Euclidian distance of 4.01 on the training set. The addition of AdaBelief on the same network with the same parameters lowered the final Euclidian distance to 2.22 (Table31).

	Hidden	Hidden	Number	Batch	A	B	Start
	Dimension	Dimension	of	size			Learning
	1	2	epochs				rate
	15000	5000	5000	256	500	1.61	0.2

Table 31 .

 31 RMSE at the end of training with and without the AdaBelief Optimizer for a model with the same parameters on the small training dataset.

	With	Without
	AdaBelief	AdaBelief
	2.22	4.01

Table 32 .Table 32 .

 3232 Therefore, 19 different models were trained, in which only the weights parameters fluctuated while other parameters were set to values known for ensuring a viable training process. The values for 𝑤 𝐼𝑆𝐼𝐷𝐴 and 𝑤 𝐿𝐴𝑇𝐸𝑁𝑇 in each experiment, and other fixed parameters are reported in Weights distribution for all experiments with other fixed GTM parameters. Exp. N° 𝑤 𝐼𝑆𝐼𝐷𝐴 /𝑤 𝐿𝐴𝑇𝐸𝑁𝑇 Exp. N° 𝑤 𝐼𝑆𝐼𝐷𝐴 /𝑤 𝐿𝐴𝑇𝐸𝑁𝑇 Exp. N° 𝑤 𝐼𝑆𝐼𝐷𝐴 /𝑤 𝐿𝐴𝑇𝐸𝑁𝑇

	1	0.05 / 0.95	8	0.40 / 0.60	14	0.70 / 0.30
	2	0.10 / 0.90	9	0.45 / 0.55	15	0.75 / 0.25
	3	0.15 / 0.85	10	0.50 / 0.50	16	0.80 / 0.20
	4	0.20 / 0.80	11	0.55 / 0.45	17	0.85 / 0.15
	5	0.25 / 0.75	12	0.60 / 0.40	18	0.90 / 0.10
	6	0.30 / 0.70	13	0.65 / 0.35	19	0.95 / 0.05
	7	0.35 / 0.65			
	Number of RBFs	Number of Nodes	RBF width		Regularization
	225			1600	0.5		0.63

Table 34 .

 34 Results for the HSIC calculations for both datasets in their respective spaces ISIDA/LATENT ISIDA/ISIDA For the sake of comparison, the HSIC values (the "compatibility" of descriptor spaces) were calculated among different ISIDA descriptors and the AE latent descriptors. Results are shown in Table35.

	0.159	0.642
	The HSIC value between the ISIDA/LATENT descriptors is quite low compared to the
	ISIDA/ISIDA value. This means that ISIDA vectors and LATENT vectors are almost
	completely independent. Since different principles are applied when constructing the respective
	chemical spaces, their organization is completely different.

Table 35 .

 35 Values of HSIC calculated among a set of simple ISIDA descriptors and the latent space. IA(2-𝑛) means sequences of atoms of length 2 to 𝑛. IAB(2-𝑚) means atom-centered fragments with a radius of 2 to 𝑚 atoms.

		Latent	IA(2-2)	IA(2-3)	IA(2-4)	IA(2-5)	IA(2-6)	IA(2-7)	IAB(2-2) IAB(2-3) IAB(2-4)
	Latent	1									
	IA(2-2)	0,102	1								
	IA(2-3)	0,106	0,970	1							
	IA(2-4)	0,099	0,926	0,980	1						
	IA(2-5)	0,099	0,889	0,889	0,989	1					
	IA(2-6)	0,098	0,859	0,859	0,968	0,993	1				
	IA(2-7)	0,096	0,838	0,838	0,950	0,981	0,996	1			
	IAB(2-2)	0,074	0,799	0,799	0,798	0,781	0,762	0,747	1		
	IAB(2-3)	0,057	0,364	0,364	0,428	0,457	0,467	0,468	0,591	1	
	IAB(2-4)	0,06	0,153	0,153	0,201	0,233	0,254	0,267	0,288	0,662	1

All sequence-based chemical spaces have highly correlated descriptor spaces which is expected since the smaller descriptors spaces are contained in the bigger ones so that IA(2-2) ∈ IA(2-3)

∈ IA(2-4) ∈ … ∈ IA(2-7

) and the combinations of smaller fragments can manage to describe bigger fragments. Interestingly, atom-centered fragments of length 2 share very high HSIC values with both longer atom-centered fragments and sequence-based fragments. Due to the short nature of these descriptors, they share many fragments with sequence-based descriptors which is not the case for longer atom-centered fragments. This also explains the rather low HSIC values between IAB(2-2) and other IAB descriptors (0,591 and 0,288 for IAB(2-3) and IAB(2-4) respectively). More importantly, we see that latent vectors have very low HSIC values with both sequence-based and atom-centered descriptors. This confirms that the space of latent vectors is not constructed in the same way at all compared to fragment-based descriptors.

7 List of Abbreviations

	MSE	Mean Squared Error William BORT
	NLP	Natural Language Processing
	AAE NMR	Adversarial AutoEncoder Nuclear Magnetic Resonance
	AE PCA	Autoencoder Principal Component Analysis
	AI PSO	Artificial Intelligence Particle Swarm Optimization
	ANN QSAR	Artificial Neural Network Quantitative Structure-Activity Relationship
	CGR QSPR	Condensed Graph of Reaction Quantitative Structure-Property Relationship
	CRNN RBF	Conditional Recurrent Neural Network Radial Basis Function
	ReLU	Rectified Linear Unit
	CVAE RL	Conditional Variational Autoencoder Reinforcement Learning
	DL RNN	Deep Learning Recurrent Neural Network
	ECFP SE	Extended Connectivity FingerPrint Shannon Entropy
	GAN SELFIES	Generative Adversarial Network SELF-referencing Embedded String
	Seq2Seq	Sequence-to-Sequence
	GRU S-GTM	Gated Recurrent Unit Stargate-GTM
	GTM SMILES	Generative Topographic Mapping Simplified Molecular-Input Line-Entry System
	HSIC SOM	Hilbert-Schmidt Independence Criterion Self-Organizing Map
	SVR	Support Vector Regression
	InChI	International Chemical Identifier
	SVM	Support Vector Machine
	IUPAC TF	International Union of Pure and Applied Chemistry Teacher Forcing
	LDA TL	Linear Discriminant Analysis Transfer Learning
	LLh t-SNE	Log Likelihood t-distributed Stochastic Neighbour Embedding
	UM	Universal Map
	LSTM	Long Short-Term Memory
	USPTO	United States Patent and Trademark Office
	MAE VAE	Mean Absolute Error Variational Autoencoder
	MDBM VS	Multimodal Deep Boltzmann Machine Virtual Screening
	MHA	Multi-Head Attention
	ML	Machine Learning
		200 201 202

Génération de nouvelles molécules et réactions par intelligence artificielle guidée par la chémographie

 RésuméCette thèse est dédiée à l'exploration et à la compréhension des espaces latents des réseaux de neurones, dans le but de créer un lien entre ces derniers et des descripteurs structuraux classiques afin de réaliser du QSAR inverse. Le potentiel génératif des architectures seq2seq est souvent accompagné d'une compréhension partielle des règles qui définissent leurs espaces latents. Une étude de la construction l'espace chimique d'un Autoencodeur a montré son habilité à recréer les propriétés et caractéristiques structurelles de molécules existantes avec différents niveaux de réussite selon la complexité des structures et leur densité dans l'espace. Le modèle a même été modifié pour générer des nouvelles réactions atteignables chimiquement.Cependant, l'interprétation séquentielle des structures chimiques à travers les chaînes SMILES ont tendance à créer des faiblesses dans les espaces chimiques résultants. De ce fait, les descripteurs ISIDA, qui sont plus robustes, sont généralement préférés lors de la cartographie et l'identification de zones d'intérêt lors de la recherche d'actifs. Plusieurs méthodes pour combiner l'efficacité des vecteurs ISIDA avec le pouvoir génératif d'un espace latent d'Autoencodeur ont abouti au développement d'une nouvelle architecture basée sur les Autoencodeurs Variationnels Conditionnels et le mécanisme d'Attention qui a permis la génération ciblée de nouvelles molécules potentiellement actives contre une cible biologique.

2.1.5 Seq2Seq Architectures in Drug Design and Reaction PlanningSegler's work on generating focused libraries with basic RNNs[START_REF] Segler | Generating focused molecule libraries for drug discovery with recurrent neural networks[END_REF] was the first case of molecular generation of focused datasets using a SMILES-based seq2seq architecture. The method was based on an LSTM-based stacked RNN using Transfer Learning (TL)[120] . TL or "fine-tuning" consists in training the model on a large, varied molecular database. Then, the model is retrained on a smaller, more specific dataset according to the given task so that the knowledge acquired on the bigger dataset can be used on the more specific task. Segler and al.trained their RNN on the entire ChEMBL database first, then on the more specific target dataset obtained from ChEMBL. Since the first publication, other teams have used TL with LSTMbased stacked RNN[121][122][123][124] to generate focused datasets. Another method is Reinforcement Learning (RL)[125] . RL is a training algorithm based on applying a scoring function to the output of the model and rewarding or punishing the model according to the score. When applied to drug design, the model generates compounds and a scoring function applies a score to the generated molecule according to preferences in structure, properties, etc… The model is then

Acknowledgements

Distribution of the novelty rate of generated structures in chemical latent space

The comparison of generated compounds with the training database showed that all generated compounds were considered novel. No matches were found within ChEMBL. The model was able to generate completely new structures, that managed to be projected in the correct region of chemical space. It is then possible to imagine that any region of chemical space represented on GTM may be filled with novel compounds using the AE's generative ability.

Summary

In this work, we combine a specially adapted LSTM-based Vanilla Autoencoder with Condensed Graphs of Reactions and Generative Topographic Mapping to create a model capable of encoding chemical reactions in a latent space.

CGR encode whole reaction systems into pseudo-molecules with SMILES-like representation, making them perfectly adapted for seq2seq architectures. A curated dataset extracted and curated from the USPTO database containing about 2.4 million reactions was encoded into CGR and given as input to a vanilla LSTM-based Autoencoder. The Autoencoder achieved a reconstruction rate of around 98% which is on par with the reconstruction rates achieved by Vanilla SMILES-based Autoencoders. Once trained, the created latent space was plotted using GTM and coloured according to reaction type using reaction centres, which classify reactions into certain categories depending on the atoms implied in the bond changes.

The focus was put on Suzuki reactions, of the form:

10.000 Random latent vectors sampled from regions populated in majority by this type of reactions were given to the decoder for the generation process, out of which 1099 were found to be correct (11% validity rate). Among the 1099 correct reactions, 31 had reaction centres not seen in the training database, which indicates some kind of "creativity" from the AI. 13 of these reaction types were found in external databases or published articles, corresponding to 3 different reaction centres, showing that the model can recreate existing reactions without having them in the initial training data.

The feasibility of the 13 reactions was tested using gas-phase DFT calculations of reaction enthalpy, which showed that all the generated chemical reactions were feasible, at least as far as DFT estimations can tell.

Descriptor standardization

The remaining 371 descriptors were standardized across the training set using the following equation:

𝑧 = 𝑥 -𝜇 𝜎

𝜎 and 𝜇 being standard deviation and mean respectively calculated across the whole training set for each descriptor.

Architecture

The architecture is composed of N stacked LSTM, followed by M fully connected Dense layers. The schematic representation of the architecture is depicted in Figure 34. By analogy with the Euclidean distance, we used the Mean Squared Error calculated between the ISIDA vector of the input SMILES and the ISIDA vector received from the output of the model as the loss function.

𝑛 is the size of the ISIDA vector, 𝑋 𝑖 and 𝑌 𝑖 are the components of the initial and resulting ISIDA vectors respectively.

Sampling hidden from the sampled visible layer state

And again, for the third step of Gibbs sampling, new hidden states are calculated the same way as before:

Calculating gradients

The gradients are computed by calculating the derivative of the log-likelihood against every parameter.

Visible bias :

With 𝑙𝑟 the learning rate Means are calculated across the batches.

Hidden bias:

Weights matrix:

Gradients are applied and variables will be changed as:

The training process continues until we reach convergence on RMSE. Reconstruction rate could also be used for ISIDA vectors. In this case, RMSE makes more sense since latent vectors have 10 decimal precision.

for both sets during training and validation. The reconstruction rate analysis was performed on the 10.000 external compounds as shown in Figure 57. Unfortunately, scaling up the databases by a factor of 10 reduced the perfect reconstruction rate to 64.64% which is 30% lower than the previous results. This may be due to overfitting or it could also be the result of a capacity issue for the architecture. It was able to accommodate 10.000 compounds previously, but was not able to encode 10 times more.

Parameters optimization -ISIDA vectors

Having gathered some preliminary results for the latent vectors, the focus was shifted to ISIDA descriptors to compare results. The method for finding the best parameters was slightly changed from a 2-step method to a 1-step method where both dimensions for hidden layer 1 and hidden layer 2 could vary. By using different methods of parameter optimization for ISIDA and latent vectors, the goal was to get a better understanding of the relation between the two hidden layers and the performance of the model. Setting each hidden layer's parameters sequentially could amount to minimizing a two-variable function by freezing one variable, minimizing the other, then doing the opposite. This is an easy solution but with no guarantee to end up in a minimum for the loss function. The parameters obtained this way may not be the most optimal. Therefore, both dimensions of the hidden layers were varied at the same time, effectively minimizing the loss function using the two variables.

Stargate-GTM

Introduction

Stargate-GTM (S-GTM) is a tool based on Generative Topographic Mapping that allows two different descriptor spaces to be connected. On the premise that the same data points are present in both spaces, two manifolds can be trained simultaneously each of them satisfying topological constraints from both datasets. The mapping of the two spaces is done by using the GTM manifold of map 1 with patterns on map 2 and reversely. This procedure actually emphasizes the consistency between the two data spaces which respective GTM are co-trained.

Here, one of the data space is the ISIDA descriptors vector space and the second it the AE latent space -that can be readily decoded as SMILES strings. In this way, a compound represented by an ISIDA descriptors vector is represented by the ISIDA-space GTM responsibilities. These responsibilities are decoded using the manifold of the AE-space GTM in AE latent space vector.

These latent vectors would then be fed to a generative model to create compounds localized in active areas of ISIDA space.

Methodology

Stargate-GTM

Stargate-GTM builds a model using two initial spaces instead of one like in the conventional GTM. Two manifolds are fitted in the two different spaces and the individual probability distributions are combined to obtain a joint probability distribution. The manifolds are constructed so that each node in the 2D latent space is associated with the RBFs of both manifolds.

During training, manifolds are optimized together using joint responsibilities. These are obtained from the individual probability distributions for Space 1 and Space 2 respectively: 𝑝(𝐭 𝑛 𝑆𝑝𝑎𝑐𝑒1 |𝐱 𝑘 , 𝐖 𝑆𝑝𝑎𝑐𝑒1 , 𝛽 𝑆𝑝𝑎𝑐𝑒1) and 𝑝(𝐭 𝑛 𝑆𝑝𝑎𝑐𝑒2 |𝐱 𝑘 , 𝐖 𝑆𝑝𝑎𝑐𝑒2 , 𝛽 𝑆𝑝𝑎𝑐𝑒2) computed using the two mapping functions from the manifolds 𝐘 𝑆𝑝𝑎𝑐𝑒1 and 𝐘 𝑆𝑝𝑎𝑐𝑒2 . In the same way as regular GTM, individual responsibilities are initially computed during the expectation step using the following equations:

𝑤 𝑆𝑝𝑎𝑐𝑒1 and 𝑤 𝑆𝑝𝑎𝑐𝑒2 are user-defined weight parameters governing the importance of each probability distribution. They are real values ranging from 0 to 1 and their combined values always equal to 1 so that: 𝑤 𝑆𝑝𝑎𝑐𝑒2 = 1 -𝑤 𝑆𝑝𝑎𝑐𝑒1 . The shapes of the manifold are adjusted until convergence similarly to a simple GTM.

Data Preparation

5000 compounds were randomly selected from ChEMBL23 and encoded into their corresponding ISIDA vectors (sequences of 2 to 7 atoms, I-A-2-7) and latent vectors. The autoencoder model used to generate the latent vectors was the same that was previously used in the MDBM project. Descriptors were filtered according to standard deviation (2% of max).

This resulted in 421 remaining ISIDA descriptors (out of 6520 initially) and 133 remaining latent descriptors (out of 256 initially). Both these datasets served as Stargate's framesets.

Hilbert-Schmidt Independence Criterion

The Hilbert Schmidt Independence Criterion [163] (HSIC) is value used to measure the independence between two multivariate distributions expressing different modalities. In such situation, only the kernels, measuring the similarity between instances sampled from each distribution can be compared. This allows to account for potential non-linear dependence between the tested distributions. Simply put, the output of the calculation will tend towards 0 if the two spaces are independent, and 1 if they are statistically dependent. As is illustrated in Figure 70, the query gives the values that the descriptors should have if a compound were to be projected in that area. The query cannot be used directly to generate molecules unfortunately; however, it can be linked to the latent space of an autoencoder to try and identify a zone which would have the same descriptor values. If such a zone can be identified, then compounds corresponding the query can be generated. Therefore, the content of each node of the AE latent vectors is checked for its compatibility with the query range of values for the ISIDA molecular descriptors. Each node of the AE latent vectors landscape is compared to the range of the corresponding descriptor, resulting in a "correspondence" vector.

This vector has the same dimension as the number of nodes of the latent landscape and assigns