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1 Résumé en francais

1.1 Introduction

La recherche de nouveaux composés ayant un potentiel médicamenteux est a la base de
la recherche dans le domaine médicinal. Il est nécessaire d’explorer 1’espace chimique des
molécules afin de pouvoir isoler les médicaments de demain. De ce fait, chaque année, les bases
de données chimiques commerciales et publiques voient leur nombre de molécules augmenter
significativement grace, par exemple, & de nouvelles voies de synthéses, a la chimie
combinatoire ou aux outils informatiques appliqués au recensement de nouveaux composés.
L’augmentation de la taille de ces bases de données entraine également une augmentation des
couts computationnel et énergétiques pour leur stockage et lors de leur criblage. Et pourtant,
malgré cette croissance exponentielle, I’espace chimique « découvert » qu’elles occupent reste
encore minuscule par rapport a la taille de ’espace chimique des molécules « drug-like »
potentiellement synthétisables (estimée aux alentours de 10> composés!'). 11 est donc
important de développer de nouveaux outils permettant I’exploration efficace de ’espace

chimique dont le potentiel pour la chimie médicinale est incontestable.

L’arrivée de nouveaux outils d’intelligence artificielle en chimie a ouvert la voie a de
nouvelles méthodes trés performantes dans les domaines du design et de la découverte de
nouveaux composés d’intérét pour la chimie médicinale!. Un type d’architecture en particulier
a été plébiscité pour sa simplicité et son efficacité : L’ Autoencodeur (AE)*. Le principe de ce
dernier est d’ajuster simultanément les parametres de deux processus : I’un codant et I’autre
décodant. Le premier est utilisé pour coder des structures de molécules en vecteurs numériques
appelés vecteurs latents. Le second doit convertir ces vecteurs latents en structures de
molécules. L’espace latent peut ensuite étre exploré et utilis€ pour générer de nouveaux
composés*®l. Durant ce processus, le choix d’un vecteur latent est critique pour générer une
structure chimique pertinente, par exemple un composé actif pour un projet de conception de
médicament. Plusieurs architectures dérivées des Autoencodeurs initiaux sont aujourd’hui tres
populaires dans le domaine de la génération de composés, et peuvent tre catégorisés en deux
larges familles : D’un c6té, les modeles qui sont entrainés avec des librairies de molécules

hyper-spécifiques a une application et les modeles plus généraux entrainés sur de larges bases
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de données diverses. Les modeles trés spécifiques ont 1’avantage de générer des composés a
haut potentiel (activité par rapport une protéine par exemple) mais doivent étre réentrainés a
chaque changement d’objectif. Les modéles plus généraux, eux, permettent de générer des
molécules plus diverses en explorant de plus larges zones de I’espace chimique. Néanmoins,
les espaces chimiques latents étant hautement multidimensionnels, ils sont difficiles a

visualiser, explorer et échantillonner.

La Cartographie Topographique Générative (GTM)!") est une méthode de réduction de
la dimensionalité qui permet de visualiser sur des cartes 2D des espaces multi-dimensionnels.
La GTM assigne en tout point de la carte une probabilité de présence a une molécule au lieu de
fixer sa position a un seul point. Ces probabilités peuvent étre utilisées pour définir des cartes
de densit¢ de I’espace chimique. En prenant en compte les étiquettes (classes « actif »
/ « inactif », propriétés physico-chimiques, etc.) associées aux données, la GTM produit des
paysages, i.e. des cartes représentant les valeurs de ces étiquettes par des codes couleurs,
analogues a des cartes de géographie. Il devient trivial de cibler des zones pertinentes de
I’espace chimique dans lesquelles la génération de nouveaux composés aura de grandes chances

de proposer de nouvelles molécules d’intérét (Figure 1).

Les vecteurs latents basés sur I’interprétation d’un AE ont montré qu’ils ont la capacité de
correctement séparer actifs et inactifs. Néanmoins, étant basée sur une interprétation
séquentielle de chaines de caracteres SMILES, I’organisation de I’espace chimique en résultant
est segmenté par les regles sémantiques des codes SMILES. Ce n’est pas le cas avec des
descripteurs structuraux calculés sur des graphes moléculaires : ces derniers sont donc plus
efficaces. De plus, ils sont modulables, ce qui permet de les adapter plus finement a des taches
de modélisation QSAR et d’intégrer des connaissances antérieures. Si des vecteurs de
descripteurs moléculaires sont plus efficaces pour prédire des propriétés a partir de structures
chimiques, en revanche, il n’existe pas jusqu’a présent de procédure pour générer des structures
chimiques correspondant a des vecteurs descripteurs moléculaires. Dans cette optique, il est
intéressant de combiner la versatilité et les performances des espaces chimiques construits sur
des descripteurs structuraux aux capacités d’un autoencodeur pour générer des structures

chimiques.

Cette these a donc deux objectifs principaux. Dans un premier temps, des méthodes de

cartographie aux espaces latents des AutoEncodeurs ont ét¢ combinés pour mieux rationaliser
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I’organisation de ces espaces latents et en permettre I’exploration. En particulier, pour la
premiére fois, un autoencodeur en combinaison avec la cartographie a été utilisé pour générer
de nouvelles transformations chimiques. Dans un second temps, cette thése présente les
résultats des recherches visant a convertir des descripteurs moléculaires structuraux en
structures chimiques par 1’intermédiaire d’un autoencodeur. Ceci est indispensable quand les
vecteurs latents d’un autoencodeur sont moins performants par rapport aux descripteurs
moléculaires sélectionnés pour une modélisation QSAR. Une méthode est donc proposée pour
permettre la génération de composés avec des propriétés chimiques et des descripteurs

structuraux précis.

identification des
see s

= = - _‘4 20
- .-g )8
Base d_a t_10nnées Molécules
chimique Encodeur Décodeur
(SMILES) Espace latent -— q—_ générées

GTM

Figure 1. Processus de création d’un espace latent basé sur une base de données chimique
encodée en SMILES via un Autoencodeur. L’espace latent est ensuite visualisé a travers la GTM
pour permettre I’échantillonnage de 1’espace chimique dans les régions plus intéressantes.
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1.2 Reésultats et Discussions

1.2.1 Etude de ’espace latent d’un autoencodeur LSTM

Les architectures de type AutoEncodeur (AE) restent des systémes « boites noires » et
la compréhension de leur fonctionnement interne est encore incompléte, en particulier pour les
applications en chimie. Le but de cette étude était d’approfondir la compréhension de
I’entrainement et de I’organisation de I’espace latent d’un AE. Un AE muni de couches Long
Short-Term Memory (LSTM) a été entrainé sur la base de données ChEMBL23 - environ 1.5
millions de composés. Les molécules de la base de données ont été utilisées sous forme de

SMILES canoniques.

Il a d’abord ét¢ montré que I’entrainement des modeles n’était pas entiérement
reproductible avec les équipement classiquement utilisés (cartes graphiques) dans ce type de
recherches. Malgré ces différences dans la création des espaces latents, 1’organisation des
molécules dans I’espace chimique reste comparable d’un modéle a 1’autre si les paramétres sont
les mémes. De plus, des projections de structures chimiques représentées par des SMILES
différents ont été effectuées pour vérifier I’existence d’une dépendance de 1’ordre des caracteres

composant le SMILES dans I’interprétation du réseau de neurones.

De nombreux paysages GTM ont ensuite ¢té construits pour visualiser la répartition de
certaines propriétés comme la densité de présence de molécules, la distance au feuillet de la
GTM (son centre) et des propriétés physico-chimiques. Il a été possible grace a ces cartes de
prouver que le modele est capable de regrouper des composés en familles chimiques. Ces
paysages ont mis en évidence des différences d’organisation dans 1’espace latent de I’AE par

rapport a des descripteurs structuraux tels que ISIDA®!,

Afin d’analyser les capacités génératives de I’AE, 1000 chaines SMILES ont été
systématiquement générées sur chaque nceud de la GTM et comparées aux densités observées
dans la base de données ChEMBL23. Des paysages ont ensuite été€ construits pour visualiser le
pourcentage de molécules valides générées ainsi que leur profil de propriété, tels qu’ils résultent

de ChEMBL23. Un comparatif entre paysages « réels » et paysages « générés » (Figure 2) a
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permis de vérifier la capacité du modele a créer des molécules réalistes, et de comprendre les

facteurs pouvant influencer I’efficacité du processus génératif.

Figure 2. Nombre d'atomes lourds pour les composés de ChEMBL (a gauche) et pour les
composés générés (a droite)

Ces études de densité et de profils de propriétés a permis la mise en évidence d’un « lissage des
propriétés ». Les profils de propriétés physico-chimiques des molécules ChEMBL et des
molécules générées ont une correspondance claire d’une carte a ’autre, néanmoins les profils
de propriétés des molécules générées ont tendances a étre plus lisses et indiquent que la

génération de composés se fait par moyennage des zones peuplées aux alentours.
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1.2.2 Utilisation d’un autoencodeur couplé aux cartes topographiques

génératives pour la découverte de nouvelles réactions

La recherche de nouvelles réactions est intimement liée au processus de design de
médicaments. L’augmentation des possibilités de transformations chimiques facilite la synthése
des nouveaux composés, pour des applications industrielles par exemple. Les réactions
chimiques étant des systémes impliquant plusieurs molécules et des conditions, elles sont donc

plus difficiles a modéliser.

Grace a la technologie des Condensed Graph of Reaction (CGR)™), il a été possible
d’étudier la base de données USPTO!? qui référence presque 2.5 millions de réactions issues
d’une base de données de brevets. Un CGR représente une réaction sous forme de pseudo-
molécule ou les réactifs et les produits sont combinés en un seul ensemble. Ces pseudo-
molécules sont ensuite exprimées sous forme de CGR ou les changements dans les liaisons sont
inclus a I’aide de caracteres spéciaux, reprenant les bases de la grammaire SMILES en incluant
des modifications pour tenir compte des spécifications des réactions (Figure 3). Les CGR,
couplés a une modification de 1’architecture des AutoEncodeurs classiques a permis
I’entrainement d’un modele génératif pour des réactions chimiques.

HO OH

\B/ Br

o | |

N/_ — O—CHy
N\ 7/ \ 7/

(i1) OB(0)[-=.]C:1(:C:C:C:N:C:1)[ .=-]C:2([->.]Br):C:C:C:C(:C:2)S(=0)OC

@]

Figure 3. (i) Représentation schématique d’une réaction de Suzuki sous forme de CGR. La
liaison verte indique une liaison créée lors de la réaction, les liaisons rouges indiquent des
liaisons brisées pendant la réaction. (ii)) SMILES-CGR correspondant a la réaction (1), [->.]
indique une transformation d’une liaison simple vers une absence de liaison. [.>-] indique le
passage d’une absence de liaison vers une liaison simple.

La combinaison de ce modele avec 1’outil GTM a permis de cartographier ’espace

chimique des réactions et de générer des types de réactions spécifiques a partir de positions sur

une carte. Une grande quantité de réactions de type Suzuki a été générée, puis filtrée a 1’aide
14



d’une nouvelle méthode de détection de nouveautés. Cette méthode exploite les « centres de
réactions », autrement dit ’ensemble des atomes et liaisons directement impliqués par une
transformation chimique. Cette définition a été étendue pour créer les « environnements de
réactions » qui eux correspondent non seulement au centre de réaction mais qui incluent

¢galement tous les atomes directement liés au centre de réaction.

Parmi les réactions valides restantes apres filtrage, 13 réactions ont ¢été identifiées
comme potentiellement nouvelles et ne figurant pas dans la base de données USPTO. Parmi
celles-ci, 5 ont ensuite été identifiées dans d’autres bases de données, vérifiant la capacité¢ du
modele a générer des réactions cohérentes chimiquement. La faisabilité de ces réactions a été

confirmée par des calculs de DFT de I’enthalpie de réaction en phase gazeuse.

| Autoencoder ]
encoder decoder
Chemical D Latent variables
database

(CGR/SMILES) » D
il J
) ]

Structures verification and
standardization

Novelties detection

Generative

Topographic Map Chemical filters

Sl

Generalization of transformations
(optional)

W Suzuki reactions
@

Reactions feasibility assessment ‘
Other reactions

(optional)

Figure 4. Processus résumant 1’utilisation d’un modéle d’AutoEncodeur couplé au cartes
topographiques génératrices pour la génération de nouvelles réactions chimiques. Le modele
est entrainé sur la base de données USPTO sous forme de graphes condensés de réaction (1)
puis les vecteurs latents sont utilisés pour la construction d’une carte topographique générative
(2). Des zones d’intérét sont ensuite sélectionnées sur cette carte (3) et sont utilisées pour
générer des réactions (4). Apres plusieurs filtres (5), on obtient des réactions potentiellement
nouvelles et chimiquement vraisemblables, confirmées dans la bibliographie et des calculs
DFT.
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1.2.3 Liaison entre I’espace latent d’un AutoEncodeur et un autre

espace de descripteurs

La génération de jeux de données possédant certaines propriétés ciblées est un probléme
central en Chémoinformatique. Plutdt que de générer au hasard des structures moléculaires ou
de chercher des composés intéressants dans des bases de données toujours plus grandes, « a la
recherche d’une aiguille dans une botte de foin », il est préférable de pouvoir choisir les régions
de I’espace chimique susceptibles d’abriter les structures chimiques qui satisfont les critéres
désirés par un utilisateur et d’échantillonner ces régions pour générer des structures pertinentes.
Les méthodes a base d’AE et de paysages GTM présentées précédemment permettent de biaiser
la génération de structures sur des zones riches en composés biologiquement actifs. Mais la
sémantique propre au code SMILES des structures chimiques fragmente 1’espace chimique de
I’AE de fagon arbitraire et peu contrdlable ce qui rend plus complexe 1’exploration de 1’espace
latent en résultant. Cela résulte en un contrdle plus difficile des structures générées et de leurs

propriétés.

Les descripteurs moléculaires structuraux ne présentent pas ce méme défaut. Ils peuvent
étre adaptés selon le type de structure, le type de cibles et/ou le type d’application. Leur
versatilité les rends donc beaucoup plus robustes et applicables efficacement a une plus grande
diversité de problémes. Du fait de leur surjectivité, il est néanmoins impossible d’associer un
vecteur de descripteurs a une seule structure. En pratique, plusieurs molécules peuvent avoir le
méme vecteur de descripteur, ce qui complexifie énormément la tiche d’entrainer un modele

d’AE.

Cependant, les bénéfices potentiels a la réalisation d’un modele génératif ou les
propriétés structurelles et physico-chimiques sont solidement contrdlées est tres intéressant. Il
serait donc utile de combiner la versatilité et la robustesse des descripteurs structuraux

classiques avec le pouvoir génératif des réseaux de neurones.
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SMI2ISIDA

Une méthode d’inversion directe de modele de QSAR a été proposée, basé sur une
architecture simple. Un réseau de neurones artificiels basé sur une succession de couches LSTM
(les mémes qui sont utilisées dans les AutoEncodeurs) a pour objectif de traduire un vecteur de
descripteurs moléculaires ISIDA en SMILES (Figure 5). La difficulté¢ du projet réside dans la
problématique de la multimodalité des vecteurs ISIDA par rapport aux chaines SMILES. Un
vecteur de descripteurs ISIDA peut correspondre a plusieurs chaines SMILES, ce qui rend

I’entrainement d’un modele délicat.

Xo
X1 Réseau de
e Neurones CC(0)...
Xn—1 (LSTM)
Xn
Vecteur ISIDA SMILES

Figure 5. Représentation schématique du processus désiré de passage de vecteur ISIDA a
SMILES.

Afin de pouvoir vérifier le bon fonctionnement du modéele, le vecteur ISIDA
correspondant au SMILES reconstruit devait étre comparé au vecteur ISIDA initial. Cela
impliqué, durant I’entrainement du mode¢le, le calcul constant de vecteurs ISIDA par un script.
Ce script étant treés chronophage et demandeur en puissance de calcul, il n’était pas envisageable
de le lancer des millions de fois pendant la phase d’entrainement. Une 1dée a donc été introduite
de créer le modeles inverse (SMILES vers ISIDA) qui, une fois entrainé, aurait la tiche de

remplacer ledit script.

Un mode¢le capable de prédire un vecteur ISIDA a partir d’une chaine SMILES ¢était

donc une étape nécessaire au projet global.

Une analyse en profondeur a été réalisée sur 1’architecture choisie, et de nombreuses
variations de la méme idée ont été testées, ainsi qu’un deuxieéme type d’architecture bas¢ sur
I’augmentation de données SMILES. Ces différents tests ont montré que les types

d’architectures utilisés étaient dans 1’incapacité de faire un lien entre séquences de caracteres
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et compte de descripteurs, les fragments avec le plus de variabilité étant constamment mal

prédits.

Machines de Boltzmann
Le projet consiste a créer un modele capable d’associer aux vecteurs de descripteurs

moléculaires structuraux, des vecteurs de 1’espace latent d’un AE. Pour cela, une Machine de

Boltzmann dite multimodale a été développée.

Une machine de Boltzmann!'!) est un réseau de neurones basé sur un concept d’énergie,
et composé d’unités binaires constituant un réseau complétement connexe. Une machine de
Boltzmann est un modéle non-supervisé qui optimise la vraisemblance des données
d’entrainement. Une machine de Boltzmann peut étre inversée : a partir d’un état de la couche
cachée (vecteur latent), le vecteur d’entrée correspondant est reconstruit. Par exemple, si le
vecteur latent correspond a un benzaldéhyde, une machine pourrait potentiellement le traduire
en SMILES, une autre en graphe, et une derni¢re donner son nom IUPAC. Les différentes
machines sont également capables de transformer une modalité en « idée conceptuelle »,

permettant ainsi la traduction (Figure 6).

Vecteur latent

lo
Machine de Boltzmann i]_ Machine de Boltzmann
P e e s > o e
in
| 4
‘ 5
0 PE
i B
B
P .
H g v
' O=Cclcccccel
Graph ' SMILES
benzaldéhyde
Nom

Figure 6. Représentation schématique du fonctionnement d’une Machine de Boltzmann
Multimodale. Le modele est constitué de différentes Machines de Boltzmann représentant
différentes modalités connectées au méme vecteur latent. Les liaisons étant dans les deux sens,
la traduction d’une modalité a une autre est possible.
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Dans le cas présent, deux machines de Boltzmann sont entrainées séparément sur les mémes
structures chimiques : 1’'une utilisant des vecteurs de descripteurs moléculaires ISIDA de ces
structures, 1’autre utilisant les vecteurs latents de I’AE précédemment entrainé. Une couche
intermédiaire, permet de prédire un vecteur latent étant donné un vecteur de descripteurs
moléculaire, et inversement. Cette architecture est dite « multimodale ». Le vecteur latent
fonctionne comme une « idée conceptuelle » de 1’objet en question, et les différentes machines

connectées a ce vecteur latent servent a traduire cette idée dans différentes modalités.

La construction et I’entrailnement de la Machine de Boltzmann Multimodale implique
la construction et 1’entrainement de Machines de Boltzmann individuelles : une pour les
vecteurs latents de I’AE et D’autre pour les vecteurs ISIDA. Ce processus s’est fait
graduellement, en augmentant au fur et a mesure la taille des modeles individuels (passage de
Machines de Boltzmann restreintes a Machines de Boltzmann profondes) tout en optimisant les
parametres au fur et & mesure. Le but final étant de connecter les deux machines et de les

entrainer plus finement en commun en les reliant par la couche latente.

Les faibles performances des modé¢les séparés pour la simple tache de reconstruction
des vecteurs et le colit en ressources et en temps nécessaires pour entrainer ce type de modele
étant trop hauts, le projet n’a pas pu aboutir. Encore une fois, le modele était dans 1’incapacité
de prédire avec précision les comptes de descripteurs ISIDA a haute variation lors de la

reconstruction.
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Stargate GTM

Stargate-GTM!'? est une méthode basée sur la GTM qui permet a deux espaces de
descripteurs d’étre coentrainés. Deux jeux de données sont présentés au modéle dont les
individus se correspondent 1’un a I’autre. Une carte GTM est construite sur chaque jeu de
données, mais au cours de I’entrainement, chaque carte doit satisfaire les contraintes issues de

la topologie de chacun des deux jeux de données, avec une pondération (Figure 7).

Descripteurs Espace 1

—> Manifold Espace 1

Distribution de Probabilités
Espace 1

Répéter jusqu’a convergence
Répéter jusqu’a convergence

Mal des parameétres
Espace 1

Figure 7. Processus d’entrainement de Stargate-GTM.

Finalement, les cartes se correspondent : une localisation sur une carte se traduit par un
ensemble de responsabilités (densité de probabilité de présence d’une donnée) sur ’autre.
Comme précédemment, les vecteurs de descripteurs et les vecteurs latents correspondants du
AE sont utilisés. La projection d’une molécule sur la carte construite sur un espace de
descripteur permet d’estimer les responsabilités correspondantes dans 1’espace latent de I’AE

qui peuvent ensuite étre décodées en structures chimiques.
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La comparaison des cartes basées sur les descripteurs ISIDA et les vecteurs latents d’un
AE ont permis d’observer les différences de distribution de probabilités des deux espaces. Les
deux types de carte présentent des similarités au niveau de la distribution de la densité de
population dans certains cas, mais les zones de haute densité sur les cartes ISIDA sont
systématiquement beaucoup plus concentrées que les zones de haute densité sur les cartes de
vecteurs latents qui sont souvent bien plus étalées. Une étude approfondie des positions des
composés sur les deux types de carte a montré que la correspondance des distributions de
probabilités n’est pas respectée dans le cas d’une Stargate-GTM ISIDA-Latent, suggérant

I’incompatibilité des deux espaces de descripteurs dans le cadre d’un lien direct.

Distribution des distances euclidiennes entre les positions d'une méme
molécule sur deux cartes

3,00
2,50
2,00

1,50

1,00

Distance euclidienne

0,50

0,00 | E— |
LATENT/ISIDA ISIDA/ISIDA Aléatoire

Figure 8. Distribution des distances euclidiennes entre les positions d’une méme molécule sur
deux cartes entrainées ensemble par Stargate-GTM. Aléatoire correspond a la distance entre
deux molécules prises au hasard sur deux cartes ISIDA entrainées ensemble.
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Combinaison de paysages ISIDA

Cette méthode est uniquement basée sur la GTM. Une carte représentant 1’activité sur
une cible biologique (CHEMBL3717) construite sur des vecteurs ISIDA a été combinée a une
série de cartes de 1’espace latent de I’AE colorées par valeurs de descripteurs moléculaires
ISIDA. Un vecteur de descripteurs optimum sur la carte CHEMBL3717 est ensuite utilisé pour
réaliser des requétes sur les différentes cartes de I’espace latent. Celles-ci ont permis d’identifier
une zone dans 1’espace latent de I’AE potentiellement liée a une zone d’activité sur
CHEMBL3717 dans I’espace des descripteurs moléculaires ISIDA. Cette zone de 1’espace
latent de I’AE a été exploitée pour générer 10.000 structures dont la correspondance avec la

zone identifiée dans 1’espace des descripteurs moléculaires ISIDA a été analysée.

Ces différentes tentatives n’ont pas été fructueuses. Les molécules générées a partir des
vecteurs latents de I’AE ne correspondent pas aux composés décrits avec les descripteurs
moléculaires ISIDA. La correspondance entre espace latent d’'un AE et les descripteurs
moléculaires ISIDA, si elle est théoriquement attendue, apparait donc trés difficile a formaliser.
Cette conclusion est renforcée sans équivoque lorsque sont calculés le coefficient de corrélation
de Hilbert-Schmidt entre 1’espace latent de I’AE et différents espaces de descripteurs
moléculaires. Une telle corrélation n’existe quasiment pas ce qui signifie qu’une relation entre

ces deux espaces est nécessairement tres non-linéaire.
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Conditional Variational AutoEncoder (CVAE)

Une nouvelle architecture de réseaux de neurones employant la technologie de
Iattention retrouvée dans les couches Transformers!!3! a été développée au cours d’une
collaboration entre le laboratoire Chemoinformatique et I’Université de Kazan. Les séquences
SMILES servent d’entrée a un Conditional Variational Autoencoder (CVAE). Un Variational
Autoencoder (VAE) fait correspondre aux vecteurs d’entrée une distribution de probabilité dans
I’espace latent. Ceci offre des meilleures garanties de continuité dans 1’espace latent d’un VAE
en comparaison d’un AE : une perturbation d’un vecteur latent est moins susceptible de
produire de grands changements dans la structure chimique générée correspondante. Cela ne
résout pas les problémes de fragmentation de I’espace chimique en raison de la sémantique des
SMILES, mais combiné a une architecture semblable a celle des Transformers, améliore
sensiblement les capacités de reconstruction des graphes des molécules. Enfin, les vecteurs de
descripteurs ISIDA sont utilisés pour conditionner I’espace latent du VAE. Au travers d’une
couche d’attention multi-entrée (Multi-Head Attention, MHA) ces vecteurs de descripteurs

biaisent 1’échantillonnage de 1’espace latent de la VAE (Figure 9).

Un vecteur de descripteurs moléculaires ISIDA peut ensuite étre utilisé en requéte pour
générer des vecteurs latents qui sont ensuite décodés en structures chimiques dont les
descripteurs moléculaires ISIDA sont similaires au vecteur demandé. La couche MHA est
I’¢lément qui permet d’introduire la non-linéarité indispensable pour faire correspondre ces

espaces chimiques latents et descripteurs moléculaires.
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Figure 9. Architecture du modele CVAE développé qui permet d’échantillonner des structures
chimiques dont les descripteurs moléculaires correspondent a une requéte. Ici, les descripteurs
structuraux ISIDA sont utilisés. La couche d’attention multi-entrée (Multi-Head Attention) est
indispensable pour prendre en charge la relation trés non-linéaire entre 1’espace chimique des
descripteurs moléculaires et I’espace latent de la VAE.
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Ce modele a été entrainé sur la base de données ChEMBL23 sous forme de SMILES
canoniques en combinaison avec des vecteurs ISIDA utilisés pour construire une « carte

universelle » .14

Plusieurs méthodes ont été testées pour sélectionner des vecteurs de descripteurs ISIDA
correspondant a une haute activité contre la protéine tyrosine kinase ABL (CHEMBL1862).
Des vecteurs optimisés par Algorithme Génétique (GA) basés sur des prédictions des modeles
de régression a vecteurs supports (Support Vector Regression, SVR), des vecteurs sélectionnés
a partir de molécules étant reconnues comme actives et des vecteurs sélectionnés sur un paysage
GTM de ’activité sur CHEMBL1862 ont été utilisé comme « seed » pour la génération. Les
différentes méthodes de sélection de vecteurs ont permis la génération de différents profils de

molécules (Table 1).

Les molécules générées via 1’algorithme génétique montrent une tendance a étre treés
similaires structurellement, avec un potentiel d’activité tres élevé. Cette tendance est retrouvée
lors de la génération a partir de molécules actives, le potentiel de ces molécules étant [égerement
moins ¢levé qu’avec la méthode algorithme génétique. Les molécules générées a partir de la
méthode GTM montrent une plus grande diversité mais un potentiel actif moins haut. Le profil
des librairies de molécules générées peut dont étre modulé selon la méthode de sélection de

vecteurs choisis.

\ ) ) Hydrogen Bond Donor
\ o, Hydrogen Bond Acceptor

Hydrophobic Interactions

B

Figure 10. (a) Mod¢le pharmacophore aligné avec les structures cristallines des deux ligands
existants. (b) Modele pharmacophore (¢) Potentiels hits issus de la génération par GA alignés
avec le modele pharmacophore
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Le potentiel de ces composés a été confirmé par des études pharmacophoriques (Figure

10) et de docking (Figure 11).
W Generated, with predicetd pKi=7 B Zinc Random Decoys
30

25

20

10

Percentage of respective compound collection docked at
given Leadit score, or better
o

LeaditScore<-25 LeaditScore<-30

Figure 11. Pourcentage de molécules générées a partir de la GTM et de la SVR (bleu) et pour
les leurres ZINC (orange) ayant un score de docking LeadIT comparable a celui d’actifs validés
expérimentalement.

Ainsi, I’architecture développée a permis d’établir un lien entre modéele génératif et

espace de descripteurs structuraux et par conséquent représente un outil efficace pour effectuer

des ¢tudes de QSAR inverse.
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Table 1. Exemples de molécules issues de ChEMBL, et de molécules générées a 1’aide des
différentes méthodes de sélection de vecteurs. Les valeurs correspondent a 1’activité prédite sur
la cible ChEMBL1862. Examples of ChEMBL and generated compounds (with different vector
selection methods) with their associated predicted activity against the ChEMBL1862 target.

Molécules ChEMBL

avYel N i |
RO | B | Qo

10.73 10.70 10.70

Molécules générées a partir du GA

= N T o ~ = N . ™ N— o}

[ i \ N/ !

9.82
10.20 9.84

Molécules générées a partir d’'une molécule existante active

i
= N ‘u -
NP aN )

CH,

10.08

9.45

Molécules générées a partir de la GTM

7.88

7.83
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1.2.4 Conclusion

Les outils de cartographie couplés a ’espace latent des AE ont permis de montrer que
I’organisation de cet espace permet le regroupement général de familles chimiques et la
génération de composés structurellement proches des molécules réelles présentes aux alentours.
I1 a aussi été possible de montrer la dépendance de la topologie de 1’espace latent des AE a la

sémantique du codage SMILES.

Grace a I’utilisation de graphes condensés de réaction avec un autoencodeur, il a été possible
de générer de nouvelles réactions. Les nouveaux types de transformations chimiques ont été

identifiées en utilisant des motifs structuraux CGR correspondant aux cceurs de réaction.

Les tentatives pour faire correspondre des descripteurs moléculaires aux vecteurs latents d’un
autoencodeur se sont soldés par des échecs qui ont mis en évidence le caractére non trivial d’une
telle relation. Cette observation a été renforcée par les observations effectuées sur les

compatibilités des espaces chimiques a 1’aide du coefficient d’Hilbert-Schmidt.

Ceci a conduit au développement d’une nouvelle architecture combinant espace de descripteurs
ISIDA et AE variationnel qui a finalement permis de générer des structures chimiques dont les
vecteurs de descripteurs structuraux correspondaient aux contraintes exigées. Il a été possible
de montrer que les composés proposés ont montré de bons résultats tant au niveau de la

similarité structurelle que de 1’activité biologique potentielle.
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2 General Introduction

The continuous search for new potential drugs in medicinal chemistry is a never-ending
quest. Far from the early days of medicine and its eat-the-plant-then-see-what-happens
approach, today’s drug design methods involve the efficient navigation!>~'7! of so-called “drug-
like chemical space”'®2%1 which designates the ensemble of all drug-like molecules, existing
or tangible. Explored areas of chemical space are a result of centuries of research in
Chemistry?!l, supported by the developments of more and more advanced extraction, synthetic
and analytic methods. The more recent advances in computing technologies have accelerated
this process, notably thanks to new methods like combinatorial chemistry!??! or high-throughput
screening (HTS)?*!. Each year, the number of new compounds reported increases, constantly
expanding the size of the known chemical universe. Historically, Virtual Screening (VS) of
existing databases using an arsenal of different tools like pharmacophores?*?°!, docking!?®7],
QSARZ3% or molecular dynamics!®'*? has been the dominant method for efficient exploration

and hit discovery.

However, not unlike our actual universe, it seems the size of the charted areas amounts to
very little compared to the vastness of uncharted territories. The size of drug-like chemical
space has been estimated to contain between 10> and 10°° compounds!!****. Comparatively,
the biggest commercially available database, Enamine REAL!] contains 29 billion
compounds. The novel drugs of the future may be hidden among these yet unknown molecules
but most of the current discovery methods rely on existing databases of listed compounds.
Therefore, although very successful, VS methods are, by definition, limited in their scope of
research by the borders of current knowledge. Recent studies of chemical space!***7! have
sparked a strong interest in its untapped potential and a renewed interest in methods aiming to

explore unknown areas of chemical space.

The most popular of these methods to benefit from this newfound interest was De Novo
drug design*®*Y. De Novo design aims to generate compounds from scratch with desirable
physicochemical and physiological properties. Early “structure-based” de novo tools used
algorithms to identify and map potential binding zones, then stochastically grow molecular
structures inside the pre-mapped protein pockets!*! ¥ either atom by atom!** or fragment by
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fragment!* and implied the pre-existent knowledge and comprehension of a protein binding
pocket through X-Ray crystallography*®#”), NMR*%, or electron microscopy™-*". Atom-based
methods resulted in a much larger and more diverse number of potential candidates but with
questionable synthetic accessibility, while fragment-based methods generated a lower number
of more feasible compounds but relied on existing fragment datasets which still limits the
exploration potential. So-called “Ligand-based” methods were developed in parallel for protein
targets with no available solved structures and relied on known ligands to recreate
pharmacophore-based pseudo-receptors or perform direct similarity design®!l. The advantage
of de novo design is that the generated molecules follow precise binding criteria, have certain
designated structural features or physicochemical properties, and are usually novel. With it, the
usual QSAR workflow could be inverted to generate compounds from desirable given
characteristics. However, the prior knowledge necessary to build a molecule from smaller
building blocks in a mapped protein pocket and the computational costs necessary to power the

algorithms, have limited the scope of applications of the method.

In parallel with the developments in De Novo design, the “Renaissance” of Artificial
Intelligence (AI) took place in the early 21% century long after the first introductory experiments
by Newell and Simon in 1956521, Having passed through a couple of “winters” in the 70s and
80s due to the lack of results, lack of funding, and unrealistic expectations of end-users>?!, the
field of Artificial Intelligence began to gain some new traction at the beginning of the 21
century fuelled by the reducing costs and rapid increase in computing powerl®*. The
popularization of Machine Learning (ML) methods using statistical data to form predictions
made its way to the field of chemistry to form Cheminformatics®>>7! and very quickly the
exponential increase in global data saw the emergence of a new trend in Artificial Intelligence:

Deep Learning (DL).

Deep Learning is a subset of Machine Learning that uses large Artificial Neural Networks
(ANN) architectures to handle large amounts of data with reduced preprocessing and gained
popularity in the era of Big Data. DL methods have been used in various tasks like natural
language processing!®!, image recognition®” or even protein folding!®”’ and naturally made its

(611 One of the many fields impacted by the

way to chemical applications like drug discovery
democratization of DL algorithms was De Novo design. Around 2017, several different types

of Deep Generative Models, initially used for language translation!®?! or chat bots!®*!, were used
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in combination with the Simplified Molecular-Input Line-Entry System!®*! (SMILES) or Graph-

based representations to generate new molecules®>7%,

The mass generation of novel chemical compounds via DL algorithms raised the issue of
synthetic accessibility. For hits to be considered viable by the pharmaceutical industries, they
must be reachable through cheap and simple reactions using readily available building blocks.
Classical rule-based reaction prediction algorithms exist!’!"’? but require the manually-inputted
reaction rules and constant expert supervision. To accompany the rise in compound generation,
DL models predicting synthetic pathways and synthetic accessibility were developed!’>’#l. The
goal was to not only accelerate the retrosynthesis process to match the speed of molecular
generation, but also to harness the strong pattern recognition capabilities of DL algorithms to

find new potential reaction pathways, unseen by synthetic chemists.

Nowadays, two main trends of generative methods can be characterized: Models based
on specific scoring functions aiming to create highly focused libraries, or more general models
based on the creation and exploration of a model-based chemical latent space. Architectures
based on scoring functions include Generative Adversarial Networks (GANs)!®, Adversarial
AutoEncoders (AAEs)P!, or any model based on Reinforcement Learning (RL)”*! or Transfer
Learning (TL)%*). The role of the scoring function is to orient the generation process towards a
very specific subset of, for example, active compounds against a specific target. Generated
compounds are compared to existing actives using a set of predefined criteria, resulting in high
scores 1f the criteria are met. The advantage is that molecules obtained this way have a strong
potential to be highly active and the structural features and properties outputted by the model
can be controlled. However, this also implies that each model is hyper-specific to a unique target
and must be retrained if the objective changes, increasing computing and temporal costs.
Architectures based on the exploration of a learned latent space are more universal and can be
tasked to generate more varied compounds!’® since the models are trained with large varied
molecular datasets. Even though they may correctly separate classes, navigating these “Al-
chemical spaces” in search for active clusters remains a challenge due to their highly

dimensional nature.

“Chemography”, a combination of Chemistry and Geography, is the art of mapping

chemical spaces to facilitate their exploration!””) and was initially based on the use of Principal

78-80

Component Analysis!’®* (PCA). Highly dimensional chemical spaces could therefore be

35



reduced to easily readable and comprehensible 2D maps. Different methods of dimensionality
reduction techniques exist like previously stated PCA, LDABU t-SNEBY or even
Autoencoders®!, a particular type of Deep Neural Network. Another one of these techniques,
Generative Topographic Mapping!”! (GTM), based on Self-Organizing Maps!®3! (SOM), is non-
linear and probabilistic which makes it well adapted to handle large amounts of chemical data.
Due to its nature, GTM allows the creation of smooth landscapes, in which areas of chemical
spaces can be coloured according to the properties of the compounds residing there, like
physicochemical properties or biological activity. QSAR models based on GTM showed the
potential of this method to find active zones in chemical space and isolate compounds of

interest!84-3¢1,

GTM has been successfully used before in combination with Deep Neural Networks to
navigate the chemical space of a generative model, isolate active areas and generate compounds
with good activity potential®”! for a particular target. Although successful in this particular
application, there is no certainty that latent descriptors can be successfully used to separate
actives and inactives in all cases. Still today, little is known of the construction mechanism and
the organization of NN-based chemical spaces, and the robustness and flexibility of latent
descriptors compared to classical structural descriptors. In contrast, ISIDA®! descriptors have
been shown to be versatile in terms of active and inactive separation for several hundred
different biological targets.!'¥ However, the many-to-one nature of classical structural
descriptors renders the simple act of going from descriptor vector to molecule impossible.
Therefore, both classical and latent-based methods have strong advantages but each lacks one
essential feature. By combining the two, it may be possible to obtain a universal generative
model, able to efficiently separate classes for a variety of different targets and navigate latent

space in search for active clusters to sample from.

This thesis is therefore dedicated firstly to the analysis of the construction of chemical
spaces by deep neural networks, especially Autoencoders, and their generative ability in terms
of active compounds and novel reactions. The second part of the thesis is orientated towards
the development of a method to harness the generative power of neural networks to couple it
with the versatility and efficiency of classical structure based ISIDA molecular descriptors to
allow the controlled generation of molecules with desired activities, structures, and properties,

reversing the classical QSAR methodology.
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2.1 Sequence-to-Sequence Neural Networks

Sequence-to-Sequence (Seq2Seq) models are a type of Recurrent Neural Networks!®®!
(RNN) first introduced by Sutskever and al. in 20143%), The initial function of seq2seq models
was Natural Language Processing (NLP), specifically English to French translation. However,
the architecture was later derived for many other applications in different domains, like text
summarisation®®*!!, image processing and captioning!®?, conversational models***¥, and even
music generation'®). These types of models have been extensively used in Cheminformatics

and drug design in recent years[®®.

Seq2Seq models are composed of two parts: An Encoder and a Decoder, which are two
separate entities, but linked and trained simultaneously. The role of the encoder is to process a
variable-length input vector and generate a fixed-length “latent” numerical vector which
encapsulates contextual information about the input data. The decoder receives the latent vector
and regenerates a variable-length sequence from the given context. For example, in the case of
an English to French language translation task, the encoder receives a sentence in English and
outputs a numerical vector which conceptually represents the sentence in a latent space. Then,
a decoder trained to navigate said latent space can use that vector to output a sentence in any

language it was trained on, for example, French.

Latent representation
(Numerical vector)

Ly

o [ . .
Tali is a cute cat. M BB Decoder Tali est un chat mignon.

ln

Figure 12. Schematic representation of the basic function of a Seq2Seq model on an English to
French translation task.

Encoders and decoders used to be constructed with simple feed forward RNN
architectures when Seq2seq models were first introduced. However, vanishing gradients
quickly became an issue when trying to train deep architectures!®®), causing models to struggle
to maintain contextual links between words far apart in a sequence. To tackle that issue, Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) “cells” were introduced in
19977 and 20141921 respectively. LSTM solved the issue of vanishing gradients by allowing

37



the model to selectively access memory states not only from the last input but from earlier
inputs as well. GRUs were developed later as a simpler and faster alternative to LSTMs which

performed almost comparably!®®].

Some Seq2Seq architectures are trained to simply reconstruct their input while
minimizing the reconstruction error. These types of architectures are called Autoencoders, and
their main purpose is to learn in an unsupervised manner a “meaningful” higher representation
of the input data. However, if the dimensionality of the latent vector, meaning the vector which
is given to the decoder by the encoder, is higher than dimensionality of the input, then the model
will simply learn an identity function. To avoid the problem of the model learning to simply
“copy” its input, different regularization methods exist, like in sparse!®, denoising!'?’! or
contractive!'®!) AEs. Those methods work well if the dimensionality of the latent vector is equal
or higher to the dimensionality of the data. Another regularization technique consists in making
the dimensionality of the latent vector lower than the input data, creating a “bottleneck” which
forces some information loss and trains the model to keep the most vital representation and

context and infer the missing information (Figure 13).

Even with the introduction of LSTMs and GRUs, a study by Cho and al.['% showed
encoder-decoder architectures still had a strong dip in performance when dealing with very long
sentences. The encasement of the entire context into a fixed-length vector was pinpointed as
the main source of error and led to the development of Attention-based seq2seq

13.103.104] "Dyring the generation process, the Attention mechanism allows the

architectures!
model to selectively concentrate on relevant parts of the source data where the most important
information is located. The model can then predict new words according to the global or local
context vectors, depending on the Attention type, as well as all previously generated words,

thus improving performance on long sentences and translational efficiency altogether.
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Figure 13. Examples of autoencoder regularization techniques. (i) represents the denoising
autoencoder, where a noise vector is added to the input, but the output is compared to the clean
input, forcing the model to make the difference between useful information and noise. (ii)
represents a sparse autoencoder. Random values are “deactivated” (set to 0) between encoder
and decoder, resulting in information loss and forcing the model to infer from incomplete
information. (ii1) represents an autoencoder with a low-dimensional latent vector, called a
“bottleneck” which compresses the information. The decoder must infer the output from this
compressed information.
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2.1.1 RNNs, LSTMs, GRUs, Attention

Recurrent Neural Networks

A Recurrent Neural Network takes as input a sequence of vectors X = (X, X4, X5, ..., X;;) and
processes the vectors one by one, starting with the first one. At time step t, the model processes
the input X; as well the state vector h,_; resulting from the previous iteration to generate an
output Y; and an updated state vector h;. Figure 14 shows a schematic representation of the

process.

(1) (i)

Figure 14. Schematic representation of a folded (1) and unfolded (i1)) RNN. The folded scheme
shows the feedback loop, current input and previous states are used to compute the output and
the updated states. The unfolded scheme allows more readability and a step-by-step
understanding of the process.

The current state vector h, is a function of X; and h,_, and the output vector Y; is a

function of the current state vector h,. If @ represents the trainable parameters of the model then

the system evolves as follows:

h; = forate (Xt' h;_q, 0) (2.1)

Y, = foutput (h;,0) (2.2)

Typically, the following equations are used to compute the states and outputs:
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hy = @00 (Wyip * Xp + Wiy oy + by) (2.3)
Y. = cI)output(w;h *he 1 + by) (2.4)

by, and b, are the biases for the hidden layer and the output respectively, W, Wy, and
W,,, are the weights matrices associated with the layer connections. @4, and @y epyc are

non-linear activation functions, usually tanh in the case of @, and sigmoid, softmax or the
rectified linear unit (ReLU) for @, depending on the application and the desired output

form.

During training, the loss function L of the model is calculated as the sum of losses at each
time step as follows:

T
L= Z [(Ygata, yPredy 2.5)
t=0

The nature of the individual loss function [ depends on the form of the output, the context
of training and the required task. When dealing with sequences of words or characters which
are a classification problem, binary or categorical cross-entropy are common choices. Mean
Square Error (MSE) or Mean Absolute Error (MAE) are mostly used in regression tasks. The
loss is backpropagated through the model at each time step. During this step-by-step
backpropagation, the global gradient which is a multiplication of localized gradients can
become exponentially high or low if the model is deep (many layers), leading to the exploding
or vanishing gradients issues respectively. Long-term dependencies between words in a

sequence can therefore be affected if the gradient becomes smaller, as the sentence gets longer.

Long Short-Term Memory and Gated Recurrent Units

To solve the problem of long term-dependencies, Hochreiter and Schmidhuber®”!
introduced the LSTM in 1997. An LSTM works like an RNN but adds different connexions to
the cell and a new variable: the cell state. As explained previously, hidden states in RNNs keep

the context from previous inputs, but the longer the character chain is, the less effective that
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context will be. In the LSTM, hidden states work as short-term memory, and cell states as long-
term memory which prevents vanishing gradients and greatly strengthens long-term

dependencies. Comparative schemes of a regular RNN and an LSTM are shown in Figure 15.

4 .
Concatenation [ ] (‘()py l:| Neural Net. Layer ‘\\ /" Pointwise Operation

hy Ce-1

heo he_1

Xt X

@ (i1)

Figure 15. Schematic representations of a regular RNN (i) and the LSTM (ii). The main
difference is the cell state c; which is not present in a regular RNN.

In contrast to the regular RNN where hidden states and input are simply concatenated and
passed to an activation (tanh) layer, the LSTM takes the input and hidden states and passes that
signal through “gates” which are composed of an activation layer and either a multiplicative or
additive pointwise operation (three red dots on the bottom line in Figure 15, (i1)). These gates
decide how much of the new information x; and short-term memory h;_; to add to the cell state
ct—1 which serves as the long-term memory. c; is then multiplied to h;_; to create the output
h;. The first gate is a “forget” gate, which removes or diminishes the importance of certain
information in the cell state; the second and third gates work as a “remember” gate, which adds

(via the additive operation) new useful information to the cell state.

GRUs function a bit differently, as they combine long-term and short-term memory in the
same hidden states h; (Figure 16). The result is a simpler RNN model with less variables and

parameters to optimize which makes it faster to train and use.

The complex mathematical equations and functions governing both these models will not
be described here since they are not useful for the understanding of the work, however a precise
and thorough mathematical explanation of the feed-forward and backpropagation processes can

be found in the literature!'%!,
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Figure 16. Comparison between schematic representations of the LSTM (i) and the GRU (ii).
The GRU does not have a cell state like the LSTM but combines short-term and long-term
dependencies into the hidden states.

Different types of RNNs can be distinguished depending on the input and output

dimensionality as well as the time steps. The different types are summed up in Table 2.

Context vectors created when reading a sequence from beginning to end are used by the
decoder to generate new items from past context. RNNs using this method are called
Unidirectional as they only read information one way. Bidirectional RNNs!%! read the
sequence from beginning to end, and from end to beginning and output two hidden states vector,
one forward and one backward. The forward vector, just like in a Unidirectional RNN, captures
past context during the generation process while the backward vector captures future context.
The combination of both context vectors during the generation process allows past and future

context to be considered when sampling new words. General hidden states at time step ¢, h, are

expressed as a concatenation of forward states h{ and backward states h? such that:

he = [h{, h?] (2:6)

In traditional RNNs and Autoencoders, the intermediate hidden states of the encoder h;
are always given to the next time step but are not stored individually. Instead, only the final
hidden states (and/or cell states in the case of LSTMs) are given to the decoder. This means that

the whole context is stored in a single fixed-length vector as shown in Figure 17.
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Table 2. Different types of RNNs with their schematic representation and examples of their
usage. T and T, represent the length of the sequences X and Y respectively; two different model types
for different usages can be isolated if the sequences lengths are the same or different.

Type Representative scheme Usage example
Music
One-to- Generation,
Many Image
Xo captioning.
Sentiment
Many-to-
one | el el Tl Analysis, Stock
ne
price forecasting
X() X 1 XZ Xt
Many-to-
iy Named entity
000/ S RNN gy RNN gy RNN
recognition
T,=T,
Xo Xy X2 X¢
Many-to-
Language
WY1\ 20 By RN sty RNN s RNN  pems
translation
T, # T,
Xo X,
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Intermediate states are discarded

Encoder

Final states of the encoder are
set as the initial states of the
decoder

Figure 17. Schematic representation of a Classical RNN. At each time step, the input X; and
previous hidden states h;_; are given back to the model to generate new hidden states h;. At
the end of the n time steps, the hidden states h,, are transferred to the decoder. The intermediate
state h, to h,,_; are discarded.

Attention

The first Attention mechanism was developed by Bahdanau and al.l'%lin 2014, to solve
the issue of long term dependencies in DNNs. The Attention mechanism is based on using the
intermediate hidden states h, to create a dynamic context vector which is then given to the
decoder instead of the usual final hidden states. This dynamic context vector is different for
each time step of the decoder and allows to form localized connections between source and
target sequences. Simply put, for each time step, the context vector has a higher influence from
elements in the source sequence that are relevant to that time step specifically, instead of having

the same context for all time steps.

During decoding, the basic equations of the Bahdanau attention mechanism are as
follows: Let Y;_; and s;_; respectively be the output of the decoder and the hidden states of the
decoder at time step t — 1. The hidden states h; are pre-computed from the input X =
(X0, X1, X, ..., X,) by the decoder. At each time step, an attention score e.; for each hidden
state h; is calculated with the hidden state of the previous output step s,_; following the

equation:
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eri = f (S hy) (2.7

with f an alignment function which in this case is additive:
f (st hi) = wTtanh (W[h;; se_1]) (2.8)
[A; B] being the concatenation of vectors A and B.

Or

f(sei h;) = wltanh (W h; + W,s,_4) (2.9)

w, W, and W, are weights which are trained alongside with the rest of the model.

Once the alignment scores e, ; are calculated, a softmax function is applied to obtain the

corresponding attention weights:

exp (i)

ap; = softmax(er;) = o5————~
l l i=o0 €Xp (er,:)

(2.10)

a.; can therefore be considered as probability or weights values, indicating how
important the hidden state h; is to the next output ¥; and next output state s;. Finally, the context

vector ¢ is computed using the combination of a;; and h; as follows:
n
=0

Ct,i = Z at’ihi (21 1)

The context vector is then given to the decoder along with the previous output y,_4 and

previous states s;_4 to compute the new output y;.
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Figure 18. Schematic representation of the process of computing the Bahdanau attention taken
from the original publication!%®!. This image shows the process for a bidirectional RNN.

The original Bahdanau attention can be considered as additive since the alignment
functions concatenate or add the states together. Luong and al. improved on the original design

[104] " Attention mechanisms can be separated in two

by using multiplicative alignment functions
categories: local and global. Global Attention (Bahdanau and Luong) makes use of all
intermediate states to generate the context vector while local attention selects the most
important hidden states in the source sequence to generate the next word in the target

sequencel %7,

In 2017, Vaswani and al. introduced a general attention mechanism which does not
require the model to be recurrent!!*) and was based only on positional embeddings and multi-
head attention (multiple instances of single attention vectors are calculated, concatenated, and
projected to give a single context vector). These models, called Transformers, achieved great

results in many different fields!!%),

47



2.1.2 Molecular Representations for Seq2Seq architectures

Seq2seq architectures require sequences of data as input, as opposed to graph-based
architectures which work with encoded molecular graphs!%®!1% To ensure that seq2seq models
can be used in chemical applications, chemical compounds must be converted in sequential
machine-readable format. Common molecular names like “propane” or “benzaldehyde” would
be simple inputs, however they bring no information on the structure or properties of the
compound. In contrast, [UPAC nomenclature would be more systematic and complete, but the
resulting names can be lengthy and hardly interpretable. Several different forms of molecular
representation were therefore developed throughout the years to try and strike a compromise

between chemical information retention, simple interpretability, and performance optimization.

SMILES

The Simplified Molecular Input Line Entry System (SMILES)®¥ is a method of
encoding molecular structures in the form of a sequence of characters representing the
succession of atoms in a molecule. SMILES are built by selecting a starting atom and going
through connections in the molecular graph, each time adding the corresponding atom character
to the chain. Different atoms, bond types, branching, etc... are all handled using simple

characters which make SMILES easily readable and a very light option for storage.

Any atom can be selected as the starting point when building SMILES, which means
that one molecule can have several different associated SMILES in a one-to-many relationship.

As such, so-called “canonization” algorithms!!!1-112]

were developed to make the generation
process systematic and reproducible, so that each molecule is associated with a single

“canonical” SMILES.

InChl

The International Chemical Identifier (InChI)!''*! represents molecular structures as a
unique combination of machine-readable layers of character strings. The basis of the InChl
representation is the core layer which describes the “skeleton” of the molecule. Different layers
may then be added, separated by a *“/”, that each provide different chemical information. InChl
in essence are a very versatile but quite complex way to represent molecules. Attempts at using
InChlI to train models showed that the high complexity factor resulted in inferior performance

when compared to SMILES-based models!!!4!!5],
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DeepSMILES

SMILES strings may sometimes be very long in the case of structures with several
cycles or branching paths. In some of those cases, one opening parenthesis may be at the
beginning of the SMILES string when the closing parenthesis is at the end, same with cycle
numbers. These placements introduce long-distance dependencies in the sequential
representation which are sometimes difficult to apprehend for seq2seq architectures. During
reconstruction, small errors can appear when closing cycles or ending branches which can
render the SMILES chemically invalid. DeepSMILES!!!® were developed to solve this problem
by using single symbols for both cycles and branching paths. Branching paths are indicated by
closing parentheses, the number of which indicates the size of the branching. The issue of
pairing ring closure is handled by using a single symbol at the ring closing location, indicating

the number of atoms in the ring.

SELFIES

As previously stated, small differences or changes in SMILES can result in invalid
strings which are not associated with any existing chemical structures, which makes this
representation quite prone to errors. This is problematic when trying to use generative neural
networks as the probability-based reconstruction may incorrectly handle long-term
dependencies and place certain characters where they shouldn’t be. SELFIES!'7! are an
adaptation of SMILES, robust to small changes and errors. SELFIES are based on formal
Chomsky type-2 grammar and localize branches and rings, so that instead of indicating the
beginning and the end of a ring or branch, the corresponding symbols indicate the length of the
features. All SELFIES character sequences correspond to valid molecules and every molecule

can be expressed as a SELFIE.

Table 3. Example of each type of representation for (3-chlorophenyl)methanol.

2D Structure o
SMILES (Unique) OCclccec(Cl)cl
InChI InChI=1S/C7H7CIO/c8-7-3-1-2-6(4-7)5-9/h1-4,9H,5H2
DeepSMILES OCcccccCl)co
SELFIES [O][CIIC][=C][C][=C][C][Branch1][C][CI][=C][Ring] ][#Branch1]
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2.1.3 One-hot encoding

Seq2Seq architectures cannot directly input sequence of characters or words however, as these
are incompatible with the numerical transformations which take place in the model. Instead,
they should be “encoded” into machine-readable format in the form of vectors, matrices or
tensors which can be manipulated through mathematical functions. Sentences in any language
are built using a finite list of words organized in a certain order to create meaning and sense.
When predicting the next word in a sentence, the model must choose between a certain number

of possibilities, making this a categorical problem.

By assigning an integer value to each word or character in the dictionary, sentences can
be encoded into numerical vectors. This is called “integer encoding” and is easily reversible,
making it the simplest encoding method. The latter works well when numerical values assigned
to the data maintain an ordinal relationship present initially in the data. For example, if the task
is to encode reviews for a movie where the possibilities are “bad”, “average”, “good”, then
encoding them as 1, 2 and 3 makes sense since they are ordered. However, when working with
data with no ordinal relationship, this method of encoding can cause biases. Encoding “cat”,
“parrot” and “bison” as 1, 2 and 3 implies that a cat is closer to a parrot than a bison which
establishes ordered connections that are not present in the initial data. Moreover, when dealing

with large dictionaries or large numbers of possibilities, the encoding integers can become very

large which can cause memory and performance issues.

Another method to encode sentences or sequences of characters is called one-hot
encoding. In this case, each word or character in the sequence is represented as a vector of
length N, N being the size of the dictionary. The vector encodes the presence or absence of each
word for the current instance, as shown in Table 4.

Table 4. Example of the one-hot encoding of the word “cute” for a dictionary of size 7. The

resulting vector has a dimensionality of 7.
Tali cat dog ugly cute a is

0 0 0 0 1 0 0

Using this method, entire sentences can be encoded into matrices of binary values as

shown in Table 5. Note that these matrices can get quite large depending on the size of the given
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dictionary, but the binary values allow for simpler processing and low memory usage.
Furthermore, there is no bias caused by arbitrary values being assigned to random data.
Table 5. Example of the one-hot encoding of a sentence of 5 words with a dictionary of size 7.

Words in blue are the sentence, while words in green represent the dictionary. The resulting
matrix has a dimensionality of (7, 5).

Tali IS a cute cat
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

This method can be easily extended to chemical data, particularly SMILES. By
considering them as a “sentence” of chemical “words” they can be encoded as naturally as
languages. A SMILES database contains a finite number of possible characters which form a
dictionary, used to create chemically meaningful sequences. The process is the same as before,
as shown in Table 6.

Table 6. Example of the one-hot encoding of the but-3-en-2-ol SMILES with a simple
dictionary of 6 characters.

1
O

C

o|lo|lo|lo|o|r
o|lo|lo|o|o|(—,|O
o|lo|lr|lo|lo|o|—~
o|lo|lo|lo|r|o|O
olr|lo|lo|o|o|~—
o|lo|lo|lo|lo|rr| O
Ll ololololo
o|o|o|o| ol

Even though the process of forming the one-hot matrices is the same in both cases,
differences in the handling of natural languages and SMILES may be noted. On the one hand,
SMILES sequences can be very long, up to hundreds of characters. With each SMILES
character being treated as if it were a word, this would be equivalent to having sentences of 100
or 200 words. As a comparison, the average length of a sentence in the “Harry Potter” books is

around 12 words!!!®), emphasizing the need for very strong long-term dependencies when
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dealing with chemical information. Errors in natural languages can still lead to understandable
sentences if one word is missing, misplaced, or mistranslated, but a single error in a SMILES
string can lead to a completely different molecule in certain cases, or more likely to a
meaningless character sequence with no chemical meaning. On the other hand, dictionaries for
SMILES are much smaller than dictionaries containing words for natural languages. The latter
can contain thousands of entries, rendering the one-hot matrices very large, while the former
may contain 30-60 possible characters depending on the given task. The problematic of having
very long sentences is thus alleviated somewhat by the rather low number of possible atoms

and functions.

2.1.4 Molecular generation with Seq2Seq architectures

During training, SMILES are modified to add a start and end character at the beginning
and end of the SMILES. For example, the simple “CICCCCC1” would become
“ICICCCCCIE” if “!” was the start character and “E” the end character. SMILES are then
encoded into one-hot vectors and the model is trained, sometimes using the Teacher Forcing
(TF) method""®!. As an example for the generation procedure, an Autoencoder which must

reconstruct its input will be considered.

The encoder part is only used during training or for generating latent vectors
corresponding to inputted molecules. The generation procedure is only done by the decoder.
The latter receives as input a latent vector corresponding to a certain SMILES string along with
a start token (“!” in our example). The model then predicts the probability of each possible
character to be the next one using the softmax function, based on the given latent vector. The
sampled character is added to the sequence and given back to the decoder to predict the next
character and so on, until the model predicts an “E” which signifies that the string has ended.

An example of the process is shown in Figure 19.
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Figure 19. Schematic representation of the generative process. The start character is given to
the decoder with the latent vector to predict the next character, based on a probability
distribution of all characters (represented by the rectangle). In this case, the most probable
character is selected and added to the existing sequence. The latter is then injected back into the
neural network to continue predict characters until reaching the “E” which signifies the end.

2.1.5 Seq2Seq Architectures in Drug Design and Reaction Planning

Segler’s work on generating focused libraries with basic RNNs!®) was the first case of
molecular generation of focused datasets using a SMILES-based seq2seq architecture. The
method was based on an LSTM-based stacked RNN using Transfer Learning (TL)!"?%. TL or
“fine-tuning” consists in training the model on a large, varied molecular database. Then, the
model is retrained on a smaller, more specific dataset according to the given task so that the
knowledge acquired on the bigger dataset can be used on the more specific task. Segler and al.
trained their RNN on the entire ChEMBL database first, then on the more specific target dataset
obtained from ChEMBL. Since the first publication, other teams have used TL with LSTM-
based stacked RNN!2!171241 o generate focused datasets. Another method is Reinforcement
Learning (RL)!!%]. RL is a training algorithm based on applying a scoring function to the output
of the model and rewarding or punishing the model according to the score. When applied to
drug design, the model generates compounds and a scoring function applies a score to the

generated molecule according to preferences in structure, properties, etc... The model is then
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rewarded for generating molecules which fit the desired properties and punished otherwise.
RNNs coupled with RL have been used to generate potential actives against biological
targets'®®12¢. Forcing the model to generate compounds with desired properties can also be
achieved by training the model to make the connection between properties and chemical
structure. During training, the model is given, alongside the SMILES string, corresponding
properties or structural features associated with the given SMILES. When sampling, the model
only takes the property vector and outputs a SMILES corresponding to a compound with the
desired properties. These types of models are called Conditional Recurrent Neural Networks

(CRNN) and have been used to generate active compounds against the DRD2 receptor!!?7],

More complex architectures like AEs became quite popular due to their ability to create
an explorable latent space in which any area of interest can be sampled using cartography™®”! or
Particle Swarm Optimization (PSO)!!?!]. Due to the discrete nature of the latent spaces
associated to vanilla AEs, VAEs were preferred for latent space navigation!!'*!?). VAEs were
also coupled with TL!?¢l to design ligands for the dopamine type 2 and the 5-
hydroxytryptamine type 1A receptors. CVAEs also achieved good results in the generation of

actives against biological targets!*!3%],

Generative Adversarial Networks!!*! are a combination of two separate models trained
together: The first model, called the generator, generates compounds that are given to the second
model, the discriminator. The discriminator receives the compounds from the generator and
compounds from a dataset of real molecules and must learn to make the difference between
them. The generator is trained to “fool” the discriminator by creating compounds that resemble
the real dataset. Once the discriminator cannot make the difference between real and generated
compounds, then sampling the generator gives compounds which are structurally very similar
to the real compounds. GANs were successfully used in focused datasets generation!®-132-134]
and latent space exploration'®!. Instead of comparing molecular structures like in the case of
GANSs, an AE can be modified to create an Adversarial Autoencoder which compares the data
distribution of the AE with a prior distribution, the goal being to bring prior and latent
distributions closer so that the generative process is fuelled by latent vectors in interesting areas

of latent spacel®!.
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Figure 20. (i) Variational Autoencoder. Instead of the unique latent vector generated by a vanilla
AE, the encoder generates two vectors: mean and standard deviation of a normal distribution
from which the vector given to the decoder is sampled. (ii) Conditional Variational Encoder. A
condition vector describing structural fragments or physicochemical properties is given to the
encoder at the same time as the molecular structure and concatenated with the latent vector
sampled from the gaussian distribution. (iii) Adversarial AutoEncoder. The encoder generates
a latent vector which is compared with a prior distribution by a discriminator. (iv) Generational
Adversarial Network. The generator creates molecular structures which are compared to real
compounds by a discriminator which is trained in parallel.
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The developments of sequence-to-sequence architectures achieving target compound
design meant that large datasets of potentially new molecules were created. However, being
predicted active is not the only requirement for potential drugs. Simple and relatively cheap
synthetic pathways must also be found to ensure that the interesting molecules are also easily
accessible synthetically. Reactions are a lot more complex than molecules however, since
reactions often imply multiple reagents and products, with a correspondence between chemical
entities before and after the reaction. This seemingly complex issue can be simplified slightly
by thinking of reactions as a translation from reagents to products, and since seq2seq
architectures were initially developed for translation tasks, they can naturally be adapted to
solve the problem. GRU and LSTM-based seq2seq models were successfully used to predict
products directly from reagents!!3>!3] and retrosynthetically predict reagents from products!!>’-
1391 Reactions remain very difficult to handle and the prediction of novel reactions through

neural networks is still in its infancy.
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2.2 Generative Topographic Mapping

Generative Topographic Mapping (GTM) is a probabilistic dimensionality reduction technique
akin to Self-Organizing Maps!'#", first published by Bishop and al. in 1998[7!. As a method of
dimensionality reduction, visualization and analysis of chemical latent space, GTM has
successfully been used for the analysis of large data collections!®>!*1-1431 The algorithm
performs non-linear projections from an initial N-dimensional descriptor space onto a 2D latent
space called manifold which is inserted into the data. The manifold itself is a flexible surface
of finite size composed of Gaussian Radial Basis Functions (RBFs). It is inserted into the
densest regions of the frameset where it adapts by assuming the general shape of the data
distribution. Data points are projected onto the manifold via grid points called nodes, and the

manifold is then unfolded and flattened into a 2D map.

Each data point is associated to all nodes via a set of responsibilities which encode the
position of the data point on the map. The higher the responsibility in regard to a certain node,
the closer the data point will be to that location. These responsibility vectors can then be used
to create landscapes, 2D maps associated to a certain property or activity where each node is

coloured according to the value of the given property or activity.

N-dimensional data space 2D latent space

Responsibility

® os

0,05

0,01

0

Manifold

Figure 21. General overview of Generative Topographic Mapping. The data point is projected
onto the manifold via the RBFs with a probability to reside in each node. The responsibilities
for one data point are normalized over the entire map, meaning the sum of responsibilities is
equal to 1.
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2.2.1 GTM Algorithm

Generative Topographic Mapping is a probabilistic method, as stated previously. The
manifold is composed of a set of M Radial Basis Functions (RBFs, Gaussian functions in this
implementation), forming a probability distribution sampled using K nodes. The mapping
function Y used to map items from the latent space of dimension L (in this case, L = 2) to the

initial space of dimension D is the following:

Y= ¢W (2.12)

¢ corresponds the K x M matrix regrouping the evaluation of each RBF position in relation to

each node with the formula:

Il X — My 112
D = exp (Tm) (2.13)

With x the position of the node, W, the fixed position of the RBF, and ¢ the variance
associated to the Gaussian functions. A set of K, M, and o parameters are associated to a
constant ¢ matrix and influence the resolution of the model. The deformation of the manifold
to adapt to the data is described by the trainable weight matrix W (2.12) of size M x D, which

defines the manifold in the initial D-dimensional space.

Thus, the multiplication of the ¢ matrix (K, M) defining the relations between RBF
centres and nodes in 2-dimensional latent space and the W matrix (M, D) defining the placement
of the RBF centres in the initial D-dimensional data space gives the Y matrix (K, D) defining
the shape of the manifold in the initial space. During training, the weights shift to move the
nodes closer to the data points, searching for the shape that will best fit the data distribution

thus improving the resulting latent representation.

The data distribution is usually defined by a set of N data points called a frameset, which
is a representative subset of a usually larger dataset, but sufficient for the training process to
capture the general shape of the distribution. The first step of training is the initialization of the
weight matrix W, which can be done randomly but the application of PCA is the preferred

method. Simply put, the manifold is inserted “flat” into the data following the eigenvectors of
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the two first principal components resulting from a PCA on the frameset. The process is

governed by the following equation:

W= & 1(XU) (2.14)

The X matrix (K, 2) defines the position of the nodes following the two eigenvectors
resulting from the PCA and U (2, D) defines the two eigenvectors in initial space. The resulting
matrix XU gives the coordinates of the nodes in D-dimensional space. To obtain initialized
weights, this matrix needs to be multiplied by the inverse of the ¢ matrix, essentially defining
the positions of the RBF centres in the initial space following the principal components. Once
the manifold is inserted into its initial position, each compound of the frameset is projected onto

the manifold using the following equation:

D

p(tlx, W,[) = (2%) : exp <_§ ly, —t ||2) (2.15)

Equation (2.15) describes the probability density (or likelihood) of a data point t to be
associated with the node k of coordinates x, in the latent space. y, corresponds to the
coordinates of nodes in D-dimensional space calculated using equation (2.12). 8 is the inverse
of the variance of the distribution, initialized based on the third component of the PCA, and
optimized during the training procedure. Equation (2.15) can be integrated over all nodes to
obtain the likelihood of data point t against the entire manifold, which is a quality indicator of

the manifold’s representation of that particular data point.

1 K
PCEIW, B) =2 > p(tlxi W, 5) 2.16)
k=1

In practice, the likelihood is not used as is, but its natural logarithm (LLh) is preferred.

LLh(t W, B) = In( p(t|W, 8) ) 2.17)
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Summing the likelihood of the N data points contained in the frameset gives a global
value for the quality of the manifold fit and is used as an objective function to optimize the

weight matrix W.

N
LLh(W, B) = Z LLh(t,, W, 8) 2.18)
n=1

Expectation-Maximization Algorithm

Based on this objective function, the Expectation-Maximisation algorithm is run to
optimize the values of W and f. The Expectation step first evaluates the normalized
responsibilities of the N data points t,, on every node X with equation (2.21), creating a matrix

of responsibilities R of dimension (K, N):

__P(alxi W, B)
YK p(ta X W, B)

i - TNn
R=< : : ) (2.20)

(2.19)

The second part of the Expectation step is to calculate, for each node, the sum of
responsibilities g of the N data points. The result of this summation is expressed as a diagonal
matrix and not a one-dimensional vector since the basis must be changed in the Maximization
step to go from the 2-Dimensional space of the nodes to the D-dimensional space of the RBF

centres via the ¢ matrix.

N

Irk = Z Tkn (2.21)

n=1

Ji1 0
=+ - (222)
0 - gkk
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The Maximization step uses the previously calculated R and G matrices, the matrix T
describing the N data points in the initial D-dimensional space, a unit matrix T and a
regularization coefficient A to compute the updated parameter matrix W'. Based on the latter, a

new value B’ for the width is also computed.

W' = (®TGd + AI) " 1dTRT (2.23)
N K
1 1 ! 2
o N Tin |l :V(Xk’w ) —t, (2.24)
g ND
n=1k=1

Both updated width and updated parameters are reinjected into the Expectation step for a
new iteration. An updated LLh(W’, B") is computed and compared to the initial LLA(W, 3)
using a simple gradient indicated in equation (2.25). The training process is stopped when the

gradient becomes smaller than the limit (0.001 in this case).

LLh(W',B") — LLR(W, B)
LLR(W, B)

< 0.001 (2.25)

GTM ReSample

In certain cases, after the manifold has been trained, the number of nodes may be
incompatible with certain applications. For example, the number of nodes in a small manifold
may be too little for separating some species, leading to confusing graphical representations. It
is possible to change the number of nodes in the manifold by simply reassigning a matrix of
node positions from the matrix Y describing the positions of the RBFs in initial space which do
not change since the manifold is well trained and embedded into the data. The probability

distributions of the data points can then be recalculated using the new set of node coordinates.
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2.2.2 GTM Landscapes

Visualization and modelling of the data is done by using the aforementioned
responsibilities to create “landscapes” depicting the data distribution, with the possibility to
enhance the displayed information by using colour coding related to properties or in the case of
chemical information, activity as well. Depending on the goal and the type of model needed,

three types of landscapes can be defined: Density, Class, and Property (see Figure 22).
. 8000 J s - | active
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Figure 22. Examples of density, property, and class landscapes. (i) shows a density landscape
with very populated areas represented in dark grey or black and lightly populated/unpopulated
areas represented in light grey or white. (ii) shows a property landscape, molecular weight in
this case, with heavy molecules coloured in red and lighter molecules coloured in blue. (ii1)
shows a class landscape with zones containing active molecules coloured in red and zones
containing inactive molecules coloured in blue. The zones coloured in green contain both active
and inactive molecules with similar cumulated responsibility values.

Density landscapes are simply a representation of the cumulated responsibilities in each

node.

N
Q= Tin (226)
n=1

For property landscapes, the property value for each node g, can be calculated by
multiplying the property value g, of each compound in the node by its responsibility 7,

summing all those values per node, and dividing by the cumulated responsibilities.
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N
_ 2n=1 n * Tkn

qx = (2.27)
“ 2%:1 Tkn

Once the property landscape is created it can also serve as a regression tool. By
projecting a new data point t'on the landscape and obtaining its responsibility vector r,s with

components 1y, for each node, the predicted value for the property of the compound is

calculated as follows:

K
Q=) Qi (228)
k=1

In other words, the predicted property is a sum of all properties of the nodes where the data

point was projected, weighted by the probability of the data point to be in each node.

In class landscapes, the value for each node is equivalent to the probability of finding a

data point of a certain class in it:

P(xylci) * P(c;)

P(cilxy) = 2.29
(ciba) % P(xlgi) * P(cy) (229
g:ﬂ"cli
PQle) ==—1— _ = (2.30)
P(c) = Ne, (2.31)
U Neog '

Here, rnc,‘c is the responsibility of a data point n in node k with class ¢;, N, is the number of data

points with the ¢; class and N;,; is the total amount of data points.

In the same way as property landscapes, class landscapes can also be used as predictions
tools with a formula resembling the property landscape equation. The value for the class of a
projected compound t’ can be expressed as:

63



K
P(alt) = ) P(cilx) * i 232)
k=1

Transparency combined with colouring in both property and class landscapes help visualize
the data density. It is however sometimes less easily readable in this format, thus the need for a

density landscape.

2.2.3 ISIDA descriptors

The basic idea of any QSAR model in chemoinformatics is to link activity or property to
structural features with the following general formula: activity /property = f(structure).
GTM is therefore commonly built on structural fragment descriptors and the landscapes
coloured according to chemical properties or activities to achieve that relationship. These

descriptors must be carefully selected to have the best possible maps.

ISIDA®! descriptors encode molecular structures as specific subgraph counts where
nodes correspond to atoms and can be coloured by different local physico-chemical properties
such as pH-dependent pharmacophores and electrostatic potential. The vertices in the subgraphs
correspond to the bonds; bond information can either be represented or ignored. Different
fragmentation schemes can be applied to create different types of subgraphs: linear features,
feature pairs, circular features, or feature trees. As such, the different types of colouring, bond
information and fragmentation schemes offer a vast range of different levels in which the
chemical information may be encoded. This plethora of choices for descriptors allows the

creation of very strong GTM models which can be adapted to any biological target.
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2.2.4 Combining GTM and Autoencoders

GTM is commonly used with ISIDA descriptors or structural descriptors in general,
however the method can technically be applied to any data vector. Using the encoder part of an
Autoencoder and SMILES encoded in one-hot-vectors, it is possible to create a high-
dimensional latent space of chemical structures where each molecule resides with a coordinates
vector which can be used as descriptors. These descriptors can then be used like any other to
train GTM models. The added benefit of this combination of methods is the ability to “generate”
molecules from selected zones of interest on landscapes. Once the manifold is trained and the
activity or property landscape is plotted, coordinates in 2D space of any area can be isolated
and reverted to high-dimensional initial space using the reversibility of GTM. These
coordinates can be used as input for the decoder to generate molecules residing on the manifold

in that area of space. A representative scheme of this process is shown in Figure 23.

3D space
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Figure 23. Schematic process of the training process of a GTM based on latent vectors and its
usage in the case of generating molecules from zones of interest. The initial space is defined
here with 3 dimensions for readability and ease of understanding, however in practice any
dimensionality could be used.
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By using this method, it is possible to generate molecules inside a data “cluster” of
interest, however the coordinates extracted only belong to the manifold which adapts itself to
the data distribution but may not cover it entirely as shown in Figure 24, (i). To improve the
generation process to cover more of the data distributions, multiple vectors coordinate around
the initial point must be sampled. Let X = (x, x4, ..., Xp) be a vector of coordinates in initial
space of dimension D obtained from the manifold. A new vector y is obtained by multiplying
each coordinate x; of the initial vector by a random number r sampled from a gaussian

distribution centered on 1.

Vi =X; *T, r ~ N(1p) (2.33)

The distribution is centered on 1 so that the multiplication creates a small shift from the
initial position. The width of the gaussian must be carefully selected to fit the data distribution.
The parameter f in equation (2.33) is the same as in equation (2.4) and describes the width of
the RBF centers of the manifold which are optimized to fit the data. Naturally, this value is

reused as a sampling width for the new vectors.

. .
Sampling area

(1) (i)

Figure 24. Schematic representation of a manifold passing through a cluster of data points. If
that zone on the 2D map is considered of interest, only coordinates on the manifold can be
selected for the generation process (i). By multiplying the coordinates of the points of interest
in initial space by a gaussian distribution, it is possible to sample not only on the manifold but
also the entire data cluster (i1).

66



67



68



3 Exploring the latent space of an Autoencoder

3.1 Introduction

The Autoencoder is a classical but still very promising architecture in deep

[144.145] 'Tts purpose is to encode an object (e.g. a SMILES string) to a latent vector, and

learning
then to decode the latent vector back to the initial object’s representation as close as possible.
Thus, two products of the AEs can be delineated: a latent vector, and decoder’s prediction. The
first one may be used as a vector of descriptors of a new kind in various machine-learning

applications, while the second one allows generating new chemical structures.

AEs have been already used to conduct ligand-based virtual screening using
reconstruction errors as scoring!!46l. Nowadays, various modifications of AEs are mainly
employed in training QSAR/QSPR models!!*"). In the context of classical QSAR/QSPR models,
AEs have no obvious advantage in comparison to classical descriptors (e.g. ISIDAB! or
ECFP[!*8]). However, they become a revolutionary technology when they are combined with a
machine-learning method that supports producing a vector of descriptors for a given chemical
subspace. Namely, AEs can be used to build maps of chemical space by applying dimensionality
reduction algorithms to the latent vectors corresponding to chemical compounds. On such a
map, a user may delineate a zone with a desired property, and then generate new latent vectors
that correspond the selected zone. After, the decoder of the AE can decode it to a set of SMILES
strings corresponding to the newly generated latent vectors. The described methodology has
been already applied by Sattarov et al. to perform de novo design of molecules with desired

properties using GTM®7!,

AEs can also be used to generate chemical structures by picking them from different parts
of the latent space and feeding the latent vectors to the decoder. In this case, VAEs, in which a
molecule is mapped to a Gaussian distribution over the latent space from which latent vectors
can be sampled, are usually used. This has been implemented by Gémez-Bombarelli et al.l!!¥
using the latent vectors sampled from the latent space of a VAE. This allows the generation of
chemical structures along a trajectory in the latent space either (i) between the latent vectors
corresponding to predetermined chemical structures or (ii) from a chosen latent vector in the

direction of increase (or decrease) of the considered molecular property (e.g., biological
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activity). In the latter, the chemical structure is being optimized to achieve the desired
properties. In order to conduct optimization in the right direction, Blaschke et al. used an
additional Gaussian processes structure-activity model®®l. To perform multi-objective
optimization in the latent space of a VAE, Zhavoronkov et al. applied reinforcement
learning!'*’1. One can create AEs that can generate chemical structures with desired properties
without the need to perform optimization in the latent space. This can be done, in particular,
using conditional VAEs in which the property vector is concatenated with the latent vector to
feed the decoder®. In this case, the generation of new chemical structures with desired
properties can be performed by sampling from the prior distribution in the latent space,
augmenting the generated vectors with the vector of desired properties and converting them to
chemical structures using the decoder. New chemical structures with desired properties can also
be generated using a semi-supervised VAE trained on a set of existing chemical structures with

properties known only for a part of them!!3],

AEs can be used not only to produce latent vectors from string representations of
chemical structures but also directly from molecular graphs. Several types of VAEs have been
developed for this purposes: JT-VAE!>? CGVAE!!1 GraphVAE!">?, NeVAE!!>, Special
types of hetero-encoders can also be used to translate between molecular graphs!'>*. An obvious
advantage of this approach is the formal correctness of the graphs generated by decoding latent
vectors, because in this case AEs do not need to learn the syntax of languages for representing
chemical structures, such as SMILES, IUPAC names, etc., using a very large number of
examples. For SMILES, this problem can be partially solved with the help of a special

autoencoder, GrammarVAE, which is aware of the grammar of the SMILES line notation!!*],

Thus, in the literature there is a significant number of publications devoted to the use of
AEs for constructing a chemical latent space and its use to build predictive SPR models and de
novo design of chemical compounds with desired properties. Meanwhile, the visualization of
chemical latent space using data analysis and visualization methods, i.e cartography are still in
infancy. Although some publications reported data distributions on 2-dimensional maps
obtained with the dimensionality reduction methods like PCA or GTM, a systematic study of
chemical latent space of a Vanilla SMILES-based AEs has not yet been carried out. Such

exploration is needed to get answers on the following questions:
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Is the latent space of an autoencoder consistent?

Do similar compounds possess similar latent vectors, and vice versa?

Can new chemical structures be generated from any part of the latent space?
How novel are the structures generated in different parts of the latent chemical
space?

5. What benefits can be gained from the analysis of the latent chemical space?

b=

Different types of AEs and different ways of structures representations may lead to
different latent spaces. The purpose of this work is to provide an example of such an analysis
hoping that the conclusions drawn will be general in nature, and the methodology used to
implement this can be applied in other cases. An AE model was combined with GTM to map,
visualize and explore the chemical space of a latent space constructed by a neural network, in

the hopes to get a better understanding of the rules governing these relatively new spaces.

3.2 Methods

Visualizing and sampling latent space of the AutoEncoder using GTM

Using the encoder part of the trained AE model developed by Sattarov and al®” the
entire ChEMBL23 database was encoded into 256-dimensional latent vectors by extracting the
bottleneck vectors associated to each input SMILES. These 256-dimensions latent vectors can
be seen as a type of molecular descriptors and as such, can be used to train GTM models. Latent
vectors were transformed into SVM format and filtered according to their standard deviation.
Each descriptor with a standard deviation less than 2% of the maximum standard deviation of
all descriptors was eliminated. Additionally, a step of minmax scaling was applied. Filtering
and scaling are necessary here to ensure the proper training of GTM. Once GTM was trained,

density and property landscapes were built to visualize the latent space of the AE in 2D.

Using the reversibility of GTM, selected coordinates in 2D can be reverted to the initial
latent space. By making use of this property and reverting the scaling and filtering applied to
train the GTM model, new latent vectors can be obtained, which correspond to the coordinates
of nodes. These new latent vectors may be given to the decoder part of the AE, which will
generate SMILES associated with these new vectors. However, it is not interesting to only
sample from the exact coordinates of the node due to the properties of GTM and its data

distribution. Compounds projected in a node, often are not located exactly on the exact
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coordinates of the node but scattered around at a certain distance. During training, the GTM
algorithm inserts the manifold through the data distribution and nodes can be seen as a sort of
average of data distribution. Therefore, sampling from the exact coordinates of a node would
be counterproductive since it means only one vector can be sampled, which may or may not
correspond to a valid molecule, and the actual data distribution may be slightly distant from
these coordinates. To solve this issue, a latent vector corresponding to a node is multiplied by a
random vector, issued from an isotropic multivariate normal (Gaussian) distribution, centered
on 1 with a width of f. This f value which corresponds to the optimal sampling distance from

the node, is equal to the width of the RBF functions in GTM.

1000 SMILES were generated for each node of the GTM model. Generated SMILES
were filtered using RDKit!!*%], removing any duplicates and invalid SMILES which would
correspond to unfeasible chemical structures. Novelty was assessed by comparing the generated
compounds to the training database. Any generated molecule absent in the training set was

considered novel.

The general workflow of the study was the following: 1) Train the AE, 2) Build GTM
landscapes, 3) Sample systematically, and 4) Analyze sampled molecules in terms of chemical

properties, novelty, and general distribution in latent space.
Shannon Entropy

The Shannon Entropy of GTM landscapes is used to compare the homogeneity of the
distribution of data. Comparing this metric over different AE models and therefore different
GTM landscapes based on those models indicates if the models have a similar distribution of
data or rather have a completely different organization of latent space.
Shannon entropy is computed using the accumulated responsibilities of all compounds
projected on a map. For each node, the accumulated responsibility is calculated by adding each
molecule’s contribution to that node and dividing by the total number of molecules projected
on the map.

The Shannon entropy is computed as:

_ Xk CumRlog (CumRy,)

E log (K)

* 100
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With CumRjy being the cumulated responsibility vector for each node k and K the total number
of nodes. E ranges from 0 to 100, where 0 means that all molecules are projected in the same

node, while 100 means that the projections cover the chemical space equally and uniformly.

3.3 Results

Reproducibility of latent space

The first step to analyse the chemical space of an AE is to test its consistency. It is vital
that the results of any experiment be reproducible, and that means that training several AE
models from the exact same parameters and training/validation sets should give the exact same
results. To verify this, four different AE models were trained, by fixing any random number
generation to a given seed in the initialization and selecting the exact same training/validation
set split. Results are shown in Table 7.

Table 7. Training and validation reconstruction rates, and number of descriptors after filtering
according to standard deviation for all 4 models.

Model 1 2 3 4
Train Reconstruction 99.23% 99.23% 99.54% 98.88%
Val Reconstruction 98.61% 98.25% 98.62% 97.94%

Number of
descriptors after 66 60 75 62
filtering

Surprisingly, although extremely similar, the results are different for all 4 models. The
most surprising is the difference in the number of descriptors remaining after filtering. A
difference of up to 15 descriptors can be seen between models 2 and 4. This indicates that fixing
the random number generation and the input data to be the same in all cases was not sufficient
to obtain 4 times the same model. On further inspection, it becomes clear that the problem is
due to the way the calculations are processed on GPU. Calculations done on GPU have a lower
precision (32 vs 64 bits) than CPU in this case, significantly accelerating the calculations.
However, this also means that small differences in calculations can appear due to the loss of

precision. This issue has been studied and a solution has been developed">”! which could be
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implemented in future work to fix it. Over the course of an entire process of AE training, these
differences are accentuated to the point where the models become quite different in terms of
metrics. To see if these differences in metrics have an impact on the latent space, the 4 density
landscapes corresponding to the ChEMBL database for the 4 models were computed and shown

in Figure 25.

Even though metrics show the models have different reconstruction rates and
significantly different numbers of descriptors, the data distributions in latent space are similar.
High density zones, located in the same areas of latent space can be found in all 4 maps,
especially in the corners. The biggest difference is the seemingly “empty” region of space in
models 3 and 4 which seems to be less present in models 1 and 2. However, although these
areas in models 3 and 4 are not densely populated, they are not completely empty, and similar
areas of lower density can be found in the same spot in model 1, albeit smaller, and slightly
shifted towards the bottom-right corner in model 2. The comparison of the 4 density landscapes
indicates that the model may differ slightly in terms of parameters and metrics, but latent space

has a similar organization in the 4 of them.
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Figure 25. Density Landscapes for the 4 models. (A) modell, (B) model2 (C) model3 (D)
model4
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Computing the Shannon Entropy (SE) for all 4 models (Table 8) further confirms that
the 4 models have a very similar data distribution across latent space. All 4 models have very
similar and very high values of SE, indicating that the data is homogeneously distributed across
latent space. Model 2 in particular presents no “very low” density zone and few high density
areas, making it the most uniformly distributed latent space. In contrast, model 3 shows a lower
value of SE (even though still very high) since there is an area of lower density on the right (see
Figure 25C) and seemingly more visible high density areas.

Table 8. Shannon entropy computed for the density landscapes of the different models. 0 means
that all compounds are projected into the same node, 100 means that compounds are evenly

spread across latent space.
Model 1 Model 2 Model 3 Model 4

98.99 99.22 97.55 98.21

SE calculations show that even though the 4 models are slightly different in terms of
organization of latent space, and uniformity of data distribution, they are still very similar. Thus,

in the rest of the analysis only model 1 will be considered.
Order dependance of SMILES strings in data distribution

One essential idea when generating a descriptor set is that similar compounds need to
have similar descriptors and thus, similar position in latent space. Since the AE does not
function in terms of structural descriptors but character sequence, it is interesting to consider if
the similarity principle is kept in latent space. The idea is that, since the AE considers character
sequences, character order may be an important factor in the latent vectors calculation process.
Very similar molecules may have very different canonical SMILES strings, with different
starting points, which may be a problem for the AE. To test this, the same compound shown in
Table 9 was expressed 3 different ways by randomizing the SMILES string using RDKit. Even
though they relate to the same molecule, the three SMILES strings are organized differently
with very different stating points.
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Table 9. SMILES A, B, and C randomized from the given ChEMBL molecule.

CHs

A C
clec(C(NC(C(OC)=0)CCS | N(CclenenlCcleee(C)ecl)e | clee(C)eecclCnlencel CNeleee(
C)=0)c(- lee(- C(=O)NC(CCSO)C(OC)=0)c(-
c2cccec2)eccINCelenenlCe | c2ceccec2)c(C(=O)NC(C(OC c2cceec2)cl
Icee(C)ecl )=0)CCSC)ccl

Figure 26 shows the projections of the three SMILES strings on the density landscape of model
1. The same molecule is projected in completely different areas of chemical space, the only
reason being the difference in its SMILES representation. This is a consequence of the way AEs
deal with input data. Since latent vectors are based on a sequence of characters, changing that
sequence of characters also completely changes the values of the latent vectors. Bidirectional
LSTM cells read input from both sides, mitigating this problem in some cases where the
SMILES starts from the “other side” of the molecule, however, when the SMILES strings are
completely different and start from very dissimilar positions, the AE is incapable of relating all
the different character strings to the same compound. The similarity principle is therefore not

necessarily obeyed in all cases with the latent space of an AE.
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Figure 26. Projections of SMILES A, B and C on the density landscape of model 1

Data distribution in the chemical latent space in model 1

The GTM density landscape constructed for the ChEMBL23 database is shown in
Figure 27. The data density is mostly evenly distributed with no empty areas. Some zones of
higher density can be observed, mostly located in the corners of the map. The log likelihood
value in GTM indicates the “closeness” of a given compound to the manifold. The closer the
compound is to the manifold, the higher the loglikelihood will be. The loglikelihood landscape
shown in Figure 27 (RIGHT) indicates that compounds on the edge of the map are further from
to the manifold than the compounds in the center. Especially the low-density zone on the right

side of the map seems to be quite far from the manifold.
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Figure 27. (LEFT) Density landscape for ChEMBL compounds for model 1. (RIGHT) Log
Likelihood of projections of the ChEMBL compounds on the map, with nodes of interest
annotated.

The zones of low LLh indicate data distributions which the manifold had more difficulty
adapting to. This could mean that the data cluster is located far away from the rest of the data
distribution or that the cluster is very sparse and spread out and the manifold was inserted in
the middle. The low density around node 1205 confirms the hypothesis of a very sparse cluster
being the reason for the low LLh. Molecules located in that node almost always contain one to
four long carbon chains sometimes containing heteroatoms as is shown in Table 10. This type
of compound is quite peculiar in terms of SMILES string (long repetitions of “C” character)
and somewhat rare, which would explain their distance from the rest of the data distribution.
Node 1219 is more densely populated and contains large cyclic structures or structures with a
high number of fused cycles and large amounts of alcohol, carbonyl, or carboxyl functions as
well as very low amounts of heteroatoms. The combination of all these factors may have shifted
the latent vectors away from the main data cluster and be the cause of the low LLh. Node 2, a
high density area (Figure 27), contains steroid-like structures and structures with fused rings
but low amounts of aromatic rings (Table 12). The 3 zones of low log likelihood coincide with
areas of high molecular weight. Higher molecular weight could imply larger number of
characters and further differentiate these clusters from the rest of the data. Interestingly only 3
out of the 4 nodes with high LLh seem to correlate with low molecular weights (815, 1191,
689) with very small molecules in nodes 815 and 689. Node 1191 is populated by molecules
containing peptide bonds which are common in drug-like compounds and could explain the
good manifold coverage. Node 35 is a very high-density node, containing steroid-like structures

although smaller than in node 2. The density of the node and easily repeatable pattern could
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mean that this area of latent space is very densely packed, meaning the manifold could adapt

well to the data.

Table 10. Examples of molecules for the nodes of interest shown in Figure 27. The nodes are
split in two categories: Low loglikelihood (blue) and high loglikelihood (orange)

Type | Node Examples
o] CcH
Y OH
HO, [s] OH
CH s} OH
HOY O ) O
HC s} OH OH

y
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<

1219
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Justifying the manifold coverage and the positions of certain functional groups and
patterns remains very complex even with GTM landscapes as a visualization tool. Several
factors, like molecular weight (which is related to the number of characters in the SMILES
string), repeated patterns (peptide bonds, carbonyl groups, etc...), density of the data clusters,
aromaticity, branching and overall complexity of the SMILES string seem to influence the data
distribution. Although difficult, it is possible by taking all properties into account to somewhat
understand the distribution of compounds in latent space, even if a complete understanding is

still impossible.
Generative abilities of the AE

Above, only the maps indicating the distribution of the chemical compounds taken from
the ChEMBL database were considered. Such maps could have been obtained using any other
set of molecular descriptors. An important feature of using continuous autoencoder latent
vectors as descriptors is the ability to convert them into chemical structures using the decoder,
which allows for the generation of new molecules. The questions arise: (1) can correct chemical
structures be generated from any point in the autoencoder latent space, and (2) what factors

influence the generative process?

Figure 28. Distribution of percentage of validity of generated SMILES for each node.

As can be seen on Figure 28, there are 6 zones A, B and C (high validity zones) and D,
E, F (low validity zones). A quick analysis of the molecules in these zones show a trend and

indicate why this phenomenon exists.
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D, E and F compounds show a recurrent pattern. Molecules generated from low validity
zones tend to have fused, sometimes aromatic, ring structures. A simple ring; like in molecules
A, B, C; is not intrinsically difficult for the AE to reproduce since the grammar of an isolated
ring is fairly simple to realize and it is a pattern easily recognizable for an AE. However, when
the rings are fused together, the grammar of the SMILES starts to become more complex with
more and bigger numbers being introduced, parentheses, etc. and the model starts struggling to
generate correct compounds which are chemically sound, which in turn makes the validity rate

go well below the high validity rate of molecules possessing simple, isolated rings.

Distribution of the valid SMILES rate (i.e., percentage of correct chemical structures
generated for each of the nodes) is shown in Figure 28, in which the color indicates the
percentage of chemically valid structures generated for the corresponding GTM node. Red
nodes have high validity percentage, while blue nodes have low percentage. The generative
ability of the model is very unevenly distributed on the map, zones as high as 60% validity rate
coexist with zones showing about 9-10% validity rate. Interestingly, we can compare this
landscape to the property landscapes on the left shown in Table 12. For example, it is possible
to observe that the model is performing well in some zones where the number of aromatic rings
per molecule is low, which we have explained before. Low number of rings and aromatic rings
seem to be playing a big factor in the capacity of the model to generate chemically feasible
compounds. Interestingly, the lower left corner of the chemical space is populated with
ChEMBL compounds possessing a high number of rings, however, the generated compounds
do not possess the same amount of rings. The generation process seems to have bypassed the
requirement for a high number of rings and generated compounds with single rings and long

carbon chains, which are present just above this area in the ChEMBL latent space.

One important aspect is the ability of the model to generate molecules with properties
close to the properties of the ChEMBL compounds. Comparisons shown in Table 12, show that
the model can mostly recreate the topology of the ChEMBL landscape although with sometimes
different scales. The landscape of number of heavy atoms is well recreated. The two main zones
with smaller molecules in the ChEMBL distribution on the left also appear on the right, and the
zones containing big molecules also match. These matches can be found on all other property
landscapes and confirms the ability of the model to correctly predict molecules which fit the

area of latent space selected for sampling.
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Table 11. Examples of molecules extracted from zones of high validity (A, B, C) and low
validity (D, E, F)
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Table 12. Map comparison for different properties between ChEMBL and generated
compounds. The maps are on different scales for better visualization.
Property ChEMBL compounds Generated compounds
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Neighborhood preservation for generated structures in the chemical latent space

Another important aspect of the generation process is the ability of the model to generate
compounds which are located in the area of chemical space they are generated from, meaning
that the positions of the initial sampled vector and the positions of the actual generated
compounds are close. Figure 29 shows the density landscape of model 1 with 4 sets of generated
compounds projected onto them as well as the zone the sampling was done in. These sets of
generated compounds were selected from the high and low validity zones presented above. We
selected two high validity zones and two low validity zones to compare the impact of a
“struggle” from the model on the neighborhood preservation of generated structures. As shown
in Figure 29, the generated compounds are all projected in the correct area of chemical space
where they were sampled from, showing that the generation of new molecules is correctly

calibrated to focus on very specific parts of chemical space.
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Figure 29. Projections of generated compounds back on the density landscape based on model
1. The green circles represent the area where molecules were sampled. (A) Molecules sampled
from node 1189. (B) Node 70. (C) Node 923. (D) Node 115.
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Distribution of the novelty rate of generated structures in chemical latent space

The comparison of generated compounds with the training database showed that all
generated compounds were considered novel. No matches were found within ChEMBL. The
model was able to generate completely new structures, that managed to be projected in the
correct region of chemical space. It is then possible to imagine that any region of chemical
space represented on GTM may be filled with novel compounds using the AE’s generative

ability.
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3.4 Conclusion

Combining cartography and structure generation by autoencoders to explore chemical
space is a promising method to facilitate the drug discovery. On the one hand, generative models
can be built to create novel structures with desired properties due to the ability of GTM
landscapes to reveal the most promising zones in the chemical space for generating new
molecules. Visualization of the distribution of various important properties over the chemical
latent space in autoencoders, their comparison with each other can provide valuable information
and lead to a better understanding the performance of generative models. On the other hand,
the maps of the chemical space indicate the gaps in the training-set distributions, while the
trained autoencoders might be able to fill these gaps and provide us with a more complete vision
of the chemical space. Developing this kind of models is critical in the quest to discover
interesting, usable, novel structures because not only do we have maps detailing the current
state of the universe, but we can now send “explorers” in the areas we seem interesting, either

to discover “unfound land” or to search deeper in an already discovered part.

Using this approach applied to the chemical latent space of the sequence-to-sequence
autoencoder trained on the ChEMBL structures, we have demonstrated in this work that the
chemical structures are very evenly distributed in its latent space. New molecules can be
generated by sampling in the latent space from the Gaussian distributions centered at GTM
nodes and using the decoder to transform them to the SMILES strings representing chemical
structures. Chemical structures generated from a given node are similar to the training structures
residing in the same node unless the data density is too small. The generation process depends
on several factors, like complex ring structures, aromaticity or branching which seem to play a

big part in the ability of the model to generate correct structures.
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4 An Autoencoder coupled with Generative Topographic

Mapping for the discovery of novel reactions

The generation of potentially active compounds using an AE guided by GTM has been
achieved before by Sattarov and al.®”! using an Autoencoder with a Bidirectional LSTM-based
encoder and a Unidirectional LSTM-based decoder. Encoder and Decoder were linked by a

bottleneck, creating a regularized latent space (Figure 30).
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Figure 30. Schematic representation taken from the article of the Autoencoder architecture
used.

The model was trained on the entire ChEMBL23 database and visualized on 2D landscapes
via GTM. In particular, the adenosine a2A receptor (ChEMBL251) was selected as the target
for the generative process, and the assessment using Balanced Accuracy of the related latent-
based activity landscape showed good separation and predictive power, on par with classical
descriptors. The model successfully managed to generate potentially active compounds from

the coordinates of active clusters identified using GTM.

As stated previously, the handling of chemical reactions by seq2seq architectures is very
difficult due to the complexity of chemical reaction systems involving reagents and products.
However, the simplicity and good results obtained with the previous model on molecules
prompted an interest in the generation of reactions using a slightly modified architecture.
Reactions, just like molecules, can be expressed as character strings using reaction SMILES,

which represent reagents and products separated by “.” and “>” characters (Figure 31).
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Figure 31. Chemical reaction (i) and its associated reaction SMILES (i1).

This representation can get cumbersome when several reagents, products or conditions are
engaged or if the reagents and products are big structures. This causes problems with long-term
dependencies and can induce errors in reconstruction or sampling. Condensed Graphs of
Reactions® (CGR) are a simpler and much more lightweight alternative to reaction SMILES
which allow the representation of reactions in the form of pseudo-molecules which are better

adapted to a usage with NN architectures.

In this work, a method of representing reactions as a pseudo-molecule called Condensed
Graphs of Reactions was used in combination with a specially adapted AE architecture and
GTM to map the latent space of reactions, navigate it and generate novel reactions. Reaction
novelty was assessed by the newly introduced concept of Reaction Centre and Reaction
Environment which consider the atoms affected by the changes in bonds as a fingerprint for the

reaction type.

Several “novel” reactions, absent from the training set were isolated by the filtering

process, and their feasibility was assessed by quantum calculations of reaction heat.
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Discovery of novel chemical
reactions by deep generative
recurrent neural network

William Bort?, Igor I. Baskin®?*, Timur Gimadiev?, Artem Mukanov?, Ramil Nugmanov?,
Pavel Sidorov?, Gilles Marcou?, Dragos Horvath?, Olga Klimchuk?, Timur Madzhidov? &
Alexandre Varnek3*

The “creativity” of Artificial Intelligence (Al) in terms of generating de novo molecular structures
opened a novel paradigm in compound design, weaknesses (stability & feasibility issues of such
structures) notwithstanding. Here we show that “creative” Al may be as successfully taught to
enumerate novel chemical reactions that are stoichiometrically coherent. Furthermore, when coupled
to reaction space cartography, de novo reaction design may be focused on the desired reaction class.
A sequence-to-sequence autoencoder with bidirectional Long Short-Term Memory layers was trained
on on-purpose developed “SMILES/CGR" strings, encoding reactions of the USPTO database. The
autoencoder latent space was visualized on a generative topographic map. Novel latent space points
were sampled around a map area populated by Suzuki reactions and decoded to corresponding
reactions. These can be critically analyzed by the expert, cleaned of irrelevant functional groups and
eventually experimentally attempted, herewith enlarging the synthetic purpose of popular synthetic
pathways.

The discovery of new organic reactions has always been in the focus of synthetic organic chemistry. Each new
reaction enriches the arsenal of synthetic tools and opens new horizons in the development and optimization
of new drugs and materials. Such reactions are often given the names of their discoverers, which is the highest
recognition of their contribution to organic chemistry. Most of the new reactions have been discovered by plain
luck, and it has been up to the chemists to notice the discovery and apply their “chemical intuition” to study it in
detail'. The beginning of a systematic approach to the search for new reactions was laid in 1967 by Balaban, who
applied the graph theory for systematical enumeration of pericyclic reactions proceeding through a 6-membered
transition state’. In the 1970s, these studies were significantly expanded by Hendrickson®, Arens*%, Zefirov, and
Tratch”® who considered various formal schemes describing bonds redistribution for different types of pericy-
clic reactions. Another approach implemented in the IGOR"? and IGOR2" programs concerned the algebraic
model of constitutional chemistry developed by Dugundji and Ugi'!. This approach supports the hierarchical
representation of organic reactions and deals explicitly with heteroatoms and charges, keeps track of rings in
molecules'’. Tts application led to the discovery of previously unknown reactions: the thermal decomposition
of a-formyl-oxy ketones'’, and the formation of a cage molecule from N-methoxycarbonyl homopyrrole and
tropone'. Then, an alternative method based on the generation of the complete sets of non-isomorphic span-
ning subgraphs of a given graph was suggested. With the help of this approach, new carbene reaction'? and two
new elimination reactions leading to the formation of synthetically important dienes'® were discovered. The
formal-logical approach to organic reactions” implemented in the SYMBEQ'* and ARGENT'>!¢ software was
used to discover substituted furans'*.

Despite great expectations, no significant progress in computer-aided reaction design was achieved;
approaches, algorithms, and software tools reported so far have not found any widespread popularity among
organic chemists. The work with those tools required both extensive knowledge in synthetic organic chemistry
and a well-developed intuition to turn abstract schemes of bonds redistribution into specific chemical reactions
with particular reagents, catalysts, and experimental conditions. This explains why all reactions computationally

!Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal,
67000 Strasbourg, France. *Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of
Chemistry, Kazan Federal University, Kremlyovskaya str. 18, 420008 Kazan, Russia. ’Institute for Chemical
Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021,
Japan. “Department of Materials Science and Engineering, Technion — Israel Institute of Technology,
3200003 Haifa, Israel. “'email: varnek@unistra.fr
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Figure 1. An example of Suzuki coupling reaction (fop) and its condensed graph (CGR, bottom). Reaction
SMILES and SMILES/CGR are given underneath. The reaction SMILES features reactants (in orange), and
products (in purple). Atom-to-atom mapping is not provided. In the SMILES/CGR broken single bonds are
encoded as [->.] (in red), while the created C-C bond is [.>-] (in green). The colon (:) represents aromatic
bonds. See Supporting Information for the details.

discovered so far were relatively simple (mainly thermal pericyclic reactions). We believe that real progress in
the discovery of new chemical reactions can be achieved by deep learning from big data'’. Recently, Segler et al.
reported a chemical synthesis planning system based on deep neural networks and symbolic Al trained on a big
collection of known synthetic reactions'®. This tool, however, implements automatic extraction of transformation
rules (“templates”) from known chemical reactions and therefore, in principle, cannot “suggest” not yet seen
transformations. Several template-free techniques based on recurrent neural networks and transformers were
successfully implemented. They operate in sequence-to-sequence translation mode', in which SMILES of prod-
ucts were directly predicted from SMILES of reactants®™?! and vice versa?>-**, Interesting chemistry knowledge
driven approaches aiming to predict organic reactions outcomes from given reactants were proposed by Coley
et al.”® and in Baldi’s group®® . Although, discovery of new chemical transformations cannot be excluded, this
is not an objective of such type of calculations. To our knowledge, no new types of chemical reactions resulted
from the “reactants-to-products” models were reported in the literature so far.

Generative models based on recurrent deep neural networks were successfully used to generate novel chemical
structures®*~*". Recently, we have demonstrated that the structures of molecules possessing desirable properties
could be generated using a combination of autoencoder with Generative Topographic Map built on the latent
vectors®. In order to apply this approach to chemical reactions, they must be encoded by SMILES strings. How-
ever, conventional reaction SMILES can hardly be used because: (i) they are much longer, and (ii) atom-to-atom
mapping (AAM) needed for reaction center identification, adds a further layer of complexity. The autoencoder
would have to learn not only semantics and syntax of SMILES but also the AAM rules.

Earlier, we showed that in silico chemical reaction handling can be significantly simplified by the Condensed
Graph of Reaction (CGR) approach®, in which the structures of reactants and products are merged into a single
r graph (Fig. 1). The CGR edges correspond either to standard chemical bonds or to “dynamic” bonds describing
transformations. In such a way, one can consider a CGR as a pseudomolecule for which some types of molecular
descriptors can easily be computed followed by their application in data analysis and statistical modeling tasks*”.
Thus, this approach was successfully applied to similarity searching in reaction databases™*, building quanti-
tative structure-reactivity models*'~*, assessment of tautomer distributions***, prediction of activity cliffs*’,
classification of enzymatic transformations*, prediction of reaction conditions***’, etc. Here, for the first time,
we introduce dedicated SMILES strings encoding CGRs (SMILES/CGR), see their detailed description in Sup-
porting Information. Moreover, the CGR (and, hence, SMILES/CGR) contains information about the reaction
center and its close neighborhood™.

Basically, CGRs are nothing but “molecules” with “exotic” bond orders for the changing bonds—thus, let us
“teach” de novo molecular design tools on how to generate new reactions! Following a workflow recently used for
the generation of novel molecular structures potentially possessing desirable biological activity*’, we have chosen
to focus here on the generation of “Suzuki-like” putative chemical transformations. The Suzuki coupling reaction
was chosen because this reaction is widely used in organic synthesis, and, therefore, its new variants implying
different leaving groups and reaction centers could be of interest for synthetic chemists. From the technical point
of view, Suzuki reactions constitute a sizeable part of the USPTO database which assures satisfactory knowledge
extraction upon the model training. Reaction center of Suzuki reaction can be represented by a SMILES string
BC.QL>>B.CQL (where Q=C, N, O, §, Si and L is a leaving group). In our simulation we expect that Al may
suggest realistic and unseen combinations of Q and L.
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Figure 2. Modeling workflow for generation of new reactions consists of five main steps: (1) training sequence-
to-sequence autoencoder on the USPTO database of chemical reactions; (2) building of Generative Topographic
Map (GTM) using the autoencoder latent variables and preparation of GTM class landscape; (3) selecting on
GTM a zone populated to Suzuki coupling reactions and identification of related autoencoder latent vectors; (4)
sampling from the autoencoder latent space and generation of new reactions; and, (5) post-processing step. On
the Generative Topographic Map, larger transparency levels correspond to lower density. The color code renders
the (binary: Suzuki vs Other) reaction class distribution. Thus, zones in dark blue are exclusively populated by
Suzuki reactions, zones in dark red are exclusively populated by other types of reactions; while intermediate
colors correspond to reaction space areas hosting both categories, in various ratios. The red circle indicates the
zone from which virtual Suzuki reactions were sampled.

A sequence-to-sequence neural network with Bidirectional Long Short-Term Memory* layers trained on
SMILES/CGR achieved the ability to convert SMILES/CGR to their latent vectors (“encode”) and back (“decode”).
Generative Topographic Mapping (GTM) was used to visualize the latent space in 2D and to detect a cluster
mostly populated with Suzuki reactions (Fig. 2). Then, virtual chemical reactions were generated by sampling
the targeted zone followed by the decoding of associated latent vectors to SMILES/CGR. Notice that visualiza-
tion is not strictly required for clusters identification, but may significantly help to choose a cluster from which
the sampling is performed.

Results

Reaction sampling from generative topographic map. A set of 2 424 306 reactions, extracted and
curated from the USPTO database™, was rendered as CGRs and then as SMILES/CGR strings used to feed the
autoencoder. The latter was trained on some 2 million reactions and validated on 450 thousand reactions. The
reconstruction rate (a ratio of correctly reconstructed SMILES/CGR) was 98.4% and 97.8% at the training and
validation stage, respectively. This is slightly less than reconstruction rates of plain molecular SMILES by state-
of-the-art encoders/decoders, but it can be explained by larger complexity and length of SMILES/CGR and an
additional source of error: the errors of atom-to-atom mapping in some entries. SMILES/CGR is intrinsically
more difficult to learn, with dynamical bonds, dynamical atoms and formal coordination numbers exceeding
atomic valency representing novel degrees of freedom in the syntax. Unbalanced or erroneous entries may pass
the standardization protocols and thus negatively impact generated SMILES/CGR quality. Nevertheless, recon-
struction rates are robust and although LSTM has relatively short memory compared to some other neural net-
works architectures like transformers and, therefore, may fail to learn relatively complex structural motifs, the
bidirectional LSTM used in our work seems to perform acceptably well.

The latent vectors for 100 000 randomly selected reactions were used to construct a Generative Topographic
Map (GTM) using in-house software™. Then the entire USPTO database was projected onto the map, on which
several zones predominantly populated by Suzuki reactions were identified, as shown in Fig. 2.

Random latent vectors were sampled from one of these zones with the highest relative population of Suzuki
reactions. As expected, the sampling procedure led to virtual transformations of a similar type. Finally, 10,000
text strings have been generated, followed by their analysis using a complex post-processing protocol (Fig. 2). At
the structures verification and standardization stage, the CGRtools.v3 tool was used to discard invalid SMILES/
CGR and to perform valence and aromaticity check. This reduced the dataset to 1099 reactions (some 11% of
generated text strings) in which structures of reactants and products were correct. This value is similar to that
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(15-20%) observed for the SMILES strings in our previous studies devoted to generation of individual molecules.
Clearly, not every latent space vector corresponds to a valid structure. However, since invalid SMILES/CGR can
be discarded algorithmically, they are not a liability but a manageable consequence of exploratory sampling.

Also, the USPTO reactions are unevenly distributed in terms of types. Deep learning typically focuses on
dense clusters allowing it to extensively capture their associated syntactic rules. The realibility of different com-
binations of leaving group L and a coupling partner Q in the reaction center BC.QL> > B.CQ.L suggested by AI
depends not only on the training set size but also on its diversity, i.e., on the presence in the training set related
examples. The USPTO dataset contains very few reactions with Q =0, S and Si which may explain the relatively
high rate of invalid SMILES/CGR strings.

Reaction novelty analysis. The main interest of in silico reaction generation is the proposal of novel
reactions that a human mind would not spontaneously think of. However, unlike individual compounds, where
novelties can be identified as unique scaffolds or particular structural motifs®, the definition of reaction novelty
was not discussed in the literature. The most descriptive part is the reaction center (RC)%, i.e. atoms and bonds
directly involved in the transformation. Thus, we consider two levels of reaction novelty: (i) the reaction center is
unknown (not present in the training set); (ii) reaction center is known, but its closest neighborhood (1* atoms
and bonds near the RC, RC + 1) is new. The latter can be extended to a more distant neighborhood (1 atoms and
bonds away, RC + n), but in this work, we only focus on the reaction center and the closest neighbors. To decide
whether a reaction is novel, these substructural reaction motifs are encoded by a hashing function as reaction
signatures and are compared to all signatures extracted from the initial dataset.

Among 1099 reactions selected using the post-processing workflow (Fig. 2), 436 contain new reaction center
RC and 30 reactions are novel at first neighborhood level RC+ 1. Some generated reactions have two or more
distinct reaction centers, i.e. represent multistep transformations. Note that “novelty” defined as the absence
of reaction center from the training set data is per se meaningful, as an illustration of the “creativity” of this
Artificial Intelligence, i.e. its ability to generate original reaction centers which can be submitted for empirical
feasibility assessment to human experts. Unfortunately, “novelty” as the absence of reaction center from both the
training set and public reaction databases is not easy to interpret, for it may both mean that (a) such reactions
were tried, but failed and thus were not published or (b) reactions were never explored, thus represent a real
asset of innovation. The choice not to publish failed reactions is a major drawback in training reactivity models*.

Reactions curation and generalisation. A close look at the generated reactions reveals several seri-
ous drawbacks: (i) unbalanced reaction equations, (ii) presence of likely unstable groups (e.g., R;S(=0)H and
R-PH(=0)-0R)), and, (iii) transformations which require harsh reaction conditions (e.g., breaking of a C-C
bond), or kinetically unfavorable reactions (e.g., cleavage of a leaving group with carbon at attachment point).
Some reactions can be corrected or discarded using some heuristic rules (“Chemical Filters”).

Output of unbalanced reactions is a direct consequence of the training set composition: almost all USPTO
reactions are also unbalanced, e.g., leaving groups are almost never reflected in the reaction equation present
in the database. The application of the CGR technology may implicitly solve that problem. Indeed, within the
CGR formalism,heavy atoms in reactants and products are implicitly conserved—as the same graph is simply
interpreted differently in terms of dynamical bond status in order to convert it to reagents or to products, respec-
tively. Even if the initial reaction was not stoichiometrically balanced (see example in SI), its CGR representation
will be—in so far the conversion of an unbalanced transformation to CGR succeeds to produce the correct CGR
of the balanced process. However, as the exact state of the leaving group cannot be deduced from the training
set, in silico generated CGRs may occasionally decode into reactions by simply substituting a broken bond by a
hydrogen atom, leading to a disbalance in terms of implicit hydrogens. This is seen in the example from Fig. 3A in
which the products contain 2 hydrogens more than reactants. Furthermore, the postulated product BH(OH), is
highly reactive, thus unrealistic. Formally, this is a rather “creative” in silico interpretation of the Suzuki reaction
pattern, in which the organic halide R-X is replaced by an amide group: the acyl fragment is assimilated to “R”
while the benzylamine is the leaving group X. Formally, a balanced Suzuki process could be formulated as either

R—X + R —B(OH); — R—R + X — B(OH), (1)
or, more realistically, with inclusion of the required alkoxy base, typically BuO:

R—X + R —B(OH), + BuO~ — R —R' + BuO — B(OH), + X~ )

Unfortunately, a sketchily written Suzuki transformation, carelessly ignoring the inorganic leaving groups:
R—X + R —B(OH); — R—F (3)

converts to a CGR corresponding to
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Figure 3. Example of generated chemical reaction with a new reaction center as is (A), balanced by the addition
of a water molecule as a reactant (B), and its simplified form (C). Notice that the aminobenzylic leaving group
suggested by the autoencoder for generated reaction looks unrealistic.

R—X + R — B(OH), - R—R + X + B(OH), (4)

in which the unsatisfied valences of X and B are interpreted by chemoinformatics tools as implicit hydrogens. This
explains why the Al tool is inclined to generate formal reactions of type (4), which are nothing but a biased inter-
pretation of Suzuki processes, corrupted by intrisic representation errors in USPTO database entries. The addi-
tion of a water molecule as a “formal” basic species leads to a fully balanced reaction (Fig. 3B). Although water
is not a perfect base for the Suzuki reaction, it helps to correctly represent the boron-containing leaving group
in reaction equations. In silico generated reactions that cannot be “corrected” in this way have been discarded.

We also decided to discard the unfeasible under normal conditions transformations consisting in the cleavage
of a C-C bond and assuming a carbon-centric leaving group. Application of these heuristics reduced a considered
set of novel reactions to 44 including 31 reactions with new RC and 13 reactions with new RC + 1.

The question arises whether we need to consider explicit chemical structures of generated reactants and
products. In our opinion, this is not firmly required if one focuses on the detection of new reaction transforma-
tions identified by RC or RC + I structural motifs. In this case, a “simplified” reaction in which substrates contain
only atoms of reaction center and their closest environment (including second neighbors) could be sufficient, see
Fig. 3C. Notice that such simplified reactions correspond to general reactivity patterns. Particular reactants can be
selected by chemists as a function of availability, intended conditions, reactivity concerns, etc. For example, the
reaction in Fig. 3C looks unfeasible, but it becomes more realistic if the amine leaving group were strengthened
by binding to strong electron acceptors (for example, trifluoromethanesulfonyl) or by quaternization.

Notice that the majority of generated reactions have known RC and RC + 1 motifs. All belong to the Suzuki
coupling type, as exemplified below.
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Reactions with new reaction centers. 31 reactions featuring a total of 13 distinct reaction centers not
seen in USPTO were generated (see Table 1 and Table S3 in Supporting Information). Substructural searching
with RC as a query in the much larger CAS REACT database (SciFinder) resulted in retrieval of several reactions
similar to those “discovered” by Artificial Intelligence. In particular, this concerns reactions with C-Br*® bond
formation and C-Si*” coupling, and C-C coupling with N-containing™ and F* leaving groups, as well as C-O
coupling with organosilicon leaving groups. In total, 5 out of 13 new reaction centers discovered computation-
ally, were found in SciFinder reactions (Table S5 in Supporting Information). Since none of them were used
for the autoencoder training, these generated reactions were pure “imagination” of Al Thus, several “novel”
reactions (4 in Table 1, 5, and 7 in Table S5) correspond to a quite interesting C-N bond cleavage with amine
as leaving group. A similar reaction has recently been discovered experimentally by Weires et al.** who shown
that the formation of amides facilitated nickel-catalyzed cleavage of C-N bonds accompanied by C-C coupling
(reaction 12 in Table $3). Experimental analogues of C-Si coupling reactions generated by the model (reactions 8
and 9 in Table 1, reactions 19-26 in Table S3) were found in SciFiner (reaction 9 in Table 1 and 19 in Table S5). In
the experiment, bromotriarylsilane was used as template® (reaction 19 in Table $5) whereas our tool proposed
less stable di-substituted silane bromide possibly with heteroatoms surrounding silicon (reactions 8 and 9 in
Table 1). The organosilicon leaving group proposed for the C-O coupling (reaction 11 in Table 1) is very similar
to that reported by Kori et al.** Fluoro-Suzuki reaction proposed by the autoencoder (reaction 5 in Table 1) was
observed experimentally in the study by Chi et al.** Reaction 7 in Table 1 is not a coupling but boron substitu-
tion by bromine; it has been experimentally discovered using N-bromosuccinimide as a donor of bromine in the
study by Thiebes et al*® (reaction 17 in Table S5). However, from the structural point of view, its reaction center
looks similar to “classical” Suzuki type reactions (boron substitution by carbon or heteroatom).

Some of the reactions still look unfeasible, e.g., the O-I compound seems quite unstable (reaction 2 in
Table 1). Nonetheless, such compounds are listed as commercially available (e.g. CAS Nos 3240-34-4, 1338247-
47-4). Sulfur-containing compounds are generally unsuitable for Suzuki catalysts. Their generation can be
explained by an excessive model’s “creativity”, which can be hardly controlled in the employed neural network
architecture.

Reactions with a new environment of known reaction centers (RC+1). Following the novelty
detection procedure, 13 reactions that correspond to 3 known reaction centers but an original first environ-
ment (RC + 1) were detected, see Table 2 and Table S4 in SI. Two similar reactions have been found in SciFinder.
Although the simplified reaction 1 in Table 2 looks unfeasible, a more suitable leaving group might render it
possible. For instance, in hydrogenation conditions, a catalyst can facilitate reductive cleavage of C-O bond (in
esters, carbamates, benzyl ethers, etc.) followed by a coupling (as in reaction 10 in Table S6).

The use of alkyl and acyl bromides in C-C coupling in reaction 3 (Table 2), was observed experimentally
(see reaction 13 in Table S6 in SI). Reaction 2 in Table 2 looks quite feasible because synthesis of acyl iodides
was reported in the literature (e.g., CAS 191340-22-4 and CAS 1332596-80-1) whereas carboniodidates can be
provided by some vendors (e.g., Enamine BBV-109267542 or BBV-109267541). Notice that similar reactions
with chloroformates have been also found in Reaxys®.
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Figure 4. Reactions novelty detection workflow. Substructural motifs $#" (RC, RC+ 1, RC+2, ...) are extracted
from the query CGR and compared with those for known reactions {$°*"}. In such a way, motifs belonging to
novel reactions will easily be identified.
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Figure 5. Preparation of a collection of reaction signatures as hash codes. From a CGR generated from a given
reaction, substructural motifs containing reaction center (RC), or reaction center with n neighboring bonds
and atoms (RC+n, here n=1) can be extracted. Each motif is encoded by a hashing function into a unique hash
code—reaction signature. The ensemble of unique hash codes for all reactions in the database is stored in the
hash table.

Reactions feasibility assessment. Strictly speaking, reaction feasibility is defined by both kinetic and
thermodynamic factors. However, according to the Bell-Evans-Polanyi principle®®®’, in a series of similar reac-
tions, the trend of activation energies follows the trend of reaction enthalpies. Thus, favorable thermodynamics,
namely reaction enthalpy (AH), can be considered as weak proof of reaction feasibility. A series of gas-phase
DFT calculations were performed to assess AH for all simplified reactions with new RC and RC + 1. According
to our estimations, almost all reactions are exothermic except for four reactions with Si-containing substrates in
which AH is positive but close to zero (see Tables §3 and $4 in Supporting Information). This shows that all new
computer-generated reactions are feasible, at least, as far as DFT-based thermodynamics estimates can tell. Since
DFT is a rather time-consuming method and can hardly be applied for thousands of generated reactions, we also
performed a rough estimation of AH using the tabulated bond energies in reactants and products®® 7", Although
calculated in such a way reaction enthalpies poorly correlate with the DFT values, they generally provide similar
conclusions concerning reaction feasibility (see Tables S3 and S4 in Supporting Information).

Conclusion

Here we present the first attempt to generate new chemical reactions using a combination of Condensed Graph
of Reaction, Generative Topographic Mapping, and sequence-to-sequence autoencoder. To feed the autoencoder,
special reaction SMILES strings (SMILES/CGR) were conceived and implemented. In order to discard the seem-
ingly unfeasible reactions, a special 4-steps post-processing procedure has been implemented. It includes: (i)
stoichiometric balancing of reaction equations, (ii) reduction of substrates structure to their simplified form,
(iii) discarding chemically infeasible transformations using suggested heuristics (“Chemical filters”), and (iv)
assessment of synthetic feasibility using quantum mechanics calculations. The effectivness of the suggested
approach was demonstrated on the example of Suzuki-like coupling reactions. Among generated reactions we
discovered transformations with 13 new reaction centers which did not occur in the training set. Five out of 13
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transformations were then found in the reaction databases (not used in the model training), thus showing the
reliability of our approach to generate new synthetically feasible reactions.

This study reveals that creativity of Artificial Intelligence is rather limited. Deep learning neural networks,
at least, in their current state, are not able to invent completely new type of chemical transformations but rather
propose unseen and sometimes not trivial variations of existing ones. Thus, in this study novel (in the context of
the training set) C-N, C-0O, C-S and C-Si bond formation reactions, as well as nitrogen- and sulfur-containing
leaving groups have been suggested by the model. We believe that this opens a way to propose putatively new
synthetic pathways in a way that is not affected by the bias of human expertise—with all the benefits and the
pitfalls this may bring. It should also be noted that compared to theory-driven quantum chemical models, data-
driven DNN is much less time consuming and, practically, is not limited by the reactants size. The more data
are used in the neural network training, the more realistic the predicted reactions are. Since the sizes of reaction
databases are rapidly growing up, deep learning approach has an obvious perspective as a tool for discovery of
novel reactions.

Methods

Datasets and data curation. The dataset used in this project comes from United States Patents and Trade-
mark Office database (1976 to 2016) extracted by Lowe™. It contains about 3.5 million reactions. The initial
dataset was preprocessed with in-house scripts based on the CGRtools library®'. The curation includes the stand-
ardization (aromatization and functional group standardization), removal of empty reactions (those where the
products and reactants are the same, or no reactants or products are recorded) and reactions with valence errors.
For curated reactions, atom-to-atom mapping (AAM) was performed using the ChemAxon Automapper tool
which is a part of the JChem toolkit”'. The mapped reactions were converted into CGRs and their reaction cent-
ers were extracted with the CGRtools. In total, 165 879 different reaction centers were obtained. Since AAM
errors lead to incorrect reaction centers, which are usually rare, only highly populated reaction centers were
selected. Thus, the resulting dataset consisted of some 2.5 million reactions (approximately 70% of the initial
dataset) which corresponds to 300 most frequent reaction centers.

According to our estimations’?, the ChemAxon Automapper tool leads to the erroneous AAM for some
25% of USPTO reactions. Most of those concern cycloadditions with complex reaction centers. As far as Suzuki
coupling is concerned, this error is around 3%.

Notice that practically all USPTO reactions are stoichiometrically unbalanced. This doesn’t prevent to build
Condensed Graph of Reaction, but, in some cases, may lead to erroneous atom-to-atom mapping.

Reaction data treatment. CGRtools library (version 3)°' was used for the reactions cleaning, their trans-
formation to CGRs, conversion of CGRs into SMILES/CGR, and processing of generated SMILES/CGR back

into reactions.

SMILES/CGR notation. Generally, SMILES/CGR follows the OpenSMILES rules™. They differ from regu-
lar Daylight SMILES in terms of aromatic atoms and ring closure specification and introduce special “dynamic”
bonds and atoms characterizing chemical transformations. Dynamic bonds in CGR characterizing chemical
transformations have special labels representing changes in bond orders. Dynamic atom corresponds to change
of formal charge or radical state of this atom in reaction. Detailed information about SMILES/CGR syntax
is given in Supporting Information. SMILES/CGR generation and parsing, including preparation of canonic
SMILES/CGR, are implemented into CGRtools Python library®'.

Reaction generation algorithm. The network architecture previously applied for molecular SMILES
generation®® has been used in this study. It is based on the autoencoder architecture introduced by Xu et al.”™.
SMILES/CGR transformed into sequences of one-hot encoded characters with padding to constant length (256)
were used to feed the encoder. Symbols within square brackets (conventional or dynamic atoms or dynamic
bonds) were considered as a single symbol within tokenization. The encoder consists of two bidirectional Long
Short-Term Memory (LSTM)"? layers (128 nodes each), while the decoder is composed of two forward LSTM
layers (256 nodes each). The bottleneck dense layer between the encoder and the decoder transforms the states
of the encoder LSTMs into latent variables to subsequently feed them to the decoder; it consists of 128 nodes.
Finally, the decoder outputs are transformed back to one-hot encoded characters via a single dense layer.

The autoencoder was trained in batch mode, where batches of “one-hot”-encoded sequences were generated
on-the-fly from training set SMILES/ CGR strings. The Adam optimizer was used for training, initial learning rate
was set to 0.005, and batch size was set to 256 samples per batch. The learning rate was reduced during training
if there were no improvement in the validation loss for two epochs. The training was terminated after 34 epochs
when no improvements in test set reconstruction accuracy was observed. To generate latent variable vectors for
eventual decoding, we use the Generative Topographic Mapping method. It is a non-linear dimensionality reduc-
tion method that has been successfully used for chemical space analysis™’#2, comparison of chemical libraries®,
building classification®>7*77#%# ‘and regression®*® models via activity landscapes, as well as for solving the
“inverse” QSAR problem®. The GTM algorithm operates by embedding a nonlinear two-dimensional manifold
into a D-dimensional descriptor space and calculating the distribution of objects of initial space on these two
dimensions. In this work, we utilize the autoencoder’s latent vectors as an initial descriptor space. Once a map
for the entire USPTO database was constructed, the zones corresponding to the desired reaction type (Suzuki
reaction) were located, from which the latent vectors for virtual reactions were sampled. These new vectors fed
the trained decoder resulting in new SMILES/CGR strings.
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Novelty detection. Novelty detection is based on the comparison of hashed reaction signatures cor-
responding to reaction centers (RC) and their environment between the database of known reaction (here,
USPTO database) and the reactions generated by the autoencoder (Fig. 4). Encoding chemical reactions by
CGR significantly simplifies RC detection. Thus, substructural motifs involving the reaction center (RC, RC+1,
RC+2, ...) can easily be extracted from CGR (see Fig. 5). Since any operations with molecular graphs are time-
consuming, each substructural motif was encoded by a unique hash code™—a reaction signature uniquely iden-
tifying given transformation. In this case, the novelty detection is reduced to the comparison of signature (hash
code) of a generated reaction with those of known reactions (Fig. 4). The suggested procedure assures fast and
precise novelty detection.

Reaction enthalpy calculations. The difference in energies between reactants and products is calculated
in several steps®. First, a conformer with the lowest energy is generated for each compound in the reaction
using the ChemAxon cxcalc module. Then, the geometry of each compound was optimized using the Prirodal6
program with PBE exchange and correlation functional®, and the built-in triple-zeta split valence basis set 3z,
which is equivalent to Schifer’s TZVP basis set™. Relativistic and solvent effects were neglected. The Prirodal6
program was chosen as it is one of the fastest DFT software due to the efficient evaluation of density functional
exchange-correlation terms based on the electron density expansion®!. Final energy values were extracted for
optimized structures and used for calculation of reaction enthalpy. The additive scheme for estimating reaction
enthalpies was implemented using the tabulated chemical bonds increments®®-7°,

Data availability

The dataset used in this project comes from the publicly available United States Patents and Trademark Office
database (Lowe, https://doi.org/10.17863/CAM.16293). Curated USPTO dataset is available on GitHub: https://
github.com/Laboratoire-de-Chemoinformatique. All data preprocessing procedures are described in the Methods
section and are based on freely available CGRtools library.

Code availability

CGRtools library is used for data preprocessing and creation and treatment of chemical reactions as SMILES/
CGR, and is freely available (https://github.com/cimm-kzn/CGRtools). Autoencoder model code and the ISIDA/
GTM tool are available upon request.
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4.1 Summary

In this work, we combine a specially adapted LSTM-based Vanilla Autoencoder with
Condensed Graphs of Reactions and Generative Topographic Mapping to create a model

capable of encoding chemical reactions in a latent space.

CGR encode whole reaction systems into pseudo-molecules with SMILES-like
representation, making them perfectly adapted for seq2seq architectures. A curated dataset
extracted and curated from the USPTO database containing about 2.4 million reactions was
encoded into CGR and given as input to a vanilla LSTM-based Autoencoder. The Autoencoder
achieved a reconstruction rate of around 98% which is on par with the reconstruction rates
achieved by Vanilla SMILES-based Autoencoders. Once trained, the created latent space was
plotted using GTM and coloured according to reaction type using reaction centres, which
classify reactions into certain categories depending on the atoms implied in the bond changes.

The focus was put on Suzuki reactions, of the form:

R!— X + R2 — B(OH), » R* — R? + X — B(OH), (4.1)

10.000 Random latent vectors sampled from regions populated in majority by this type of
reactions were given to the decoder for the generation process, out of which 1099 were found
to be correct (11% validity rate). Among the 1099 correct reactions, 31 had reaction centres not
seen in the training database, which indicates some kind of “creativity” from the Al. 13 of these
reaction types were found in external databases or published articles, corresponding to 3
different reaction centres, showing that the model can recreate existing reactions without having

them in the initial training data.

The feasibility of the 13 reactions was tested using gas-phase DFT calculations of reaction
enthalpy, which showed that all the generated chemical reactions were feasible, at least as far

as DFT estimations can tell.
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5 Linking the latent space of an Autoencoder with another

descriptor space

Ultimately, the goal for any drug design process is to be able to control the activity,
structural features, properties, and novelty of the generated compounds, allowing chemists to
obtain molecules perfectly fitting the needed profile for a given task. It is difficult with vanilla
AEs to generate structures possessing desired properties, since there is no control over the
organization of latent space. While still meaningful, the interpretation of SMILES strings by a
sequential RNNs can hardly be compared to the level of information coded into structural
descriptors. An autoencoder’s latent space is therefore less adapted to tackle the variety of
existing targets than a modulable, adaptable range of structural descriptors. However,
generative models seeded by these molecular descriptors (like ISIDA) have not yet been

developed.

The combination of generative autoencoder models with the robustness and versatility of
chemical space built on ISIDA descriptors would allow more control over the generated
structures. Easily understandable, robust, and versatile coordinates in ISIDA space, optimally
chosen for the needed task could be translated into latent coordinates corresponding to areas in
the space of an autoencoder which could then be sampled to generate focused datasets. By using
latent vectors as a sort of “middleman”, the generation of novel compounds from structural
descriptors would be possible. This inverse QSAR process could be more efficient and

complement the screening of large databases with more classical methods.

In this chapter, several methods aiming to link ISIDA descriptor spaces with the latent

space of an autoencoder were proposed and tested.

1) ISIDA2SMI. A simple LSTM-based model which aims to directly translate ISIDA
descriptor vectors to SMILES of corresponding molecules.

2) Multimodal Deep Boltzmann Machine. A probability-based model composed of two
independent reconstructive architectures linked by a “context” layer. One architecture
trains to reconstruct ISIDA vector, the other reconstructs latent vectors. They are linked
by a “context” layer in which the information can pass, effectively working as a

translator between ISIDA and latent spaces.
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3) Stargate-GTM. A GTM-based approach where two manifolds are trained together,
one in latent space, one in ISIDA space, describing a mixed probability distribution.
The position of a compound on one landscape results in a distribution in the second
landscape via the use of a mapping function.

4) Combination of ISIDA landscapes. A combination of GTM landscapes in ISIDA
space, corresponding to desirable properties, were used to build a query vector, used to
find a valid position in latent space to sample, which would correspond to the initial
ISIDA vector.

5) Constrained Variational Autoencoder (CVAE). A CVAE architecture was
developed, using ISIDA descriptors as condition vectors. It consists in sampling the
marginal probability distribution of a variational autoencoder using ISIDA vectors of

compounds with desirable properties as conditions.

Insight and knowledge about latent space compatibility and the handling of structural
descriptors by classical NN architecture were gathered through the exploration of these many
strategies. Finally, a satisfactory architecture has been found capable of linking both chemical

spaces with good results.
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5.1 ISIDA2SMI

In this work, the aim is to create a link between a space of latent descriptors obtained
from an AE and another “target” descriptor space. These target descriptors must therefore be
carefully selected since the organization of chemical space highly depends on the type of

descriptor used.

The first very basic solution proposed to the problem was to simply “translate” ISIDA
descriptors into SMILES strings using a LSTM-based model (ISIDA2SMI). ISIDA descriptors
used in the construction of previously published Universal Maps (UM) were favoured in this

context for their versatility and good predictive power over many biological targets.

The issue with ISIDA descriptors is that they are, as well as most molecular descriptors,
not unique. For example, the ChEMBL25 database encoded into UM4 descriptors (e.g., [A-2-
7; sequences of 2-7 atoms, dimension 6520) contains around 10% of duplicates: several
compounds resulting in the same molecular descriptor vector. A canonical-to-canonical
SMILES AE learns to associate in a 1-to-1 relationship, meaning one latent vector corresponds
to one SMILES string. However, the bijection is guaranteed only in the frame of the training
sets: new SMILES strings may result in the same latent vectors. If one ISIDA vector has two
SMILES associated to it, this ambiguity is challenging for training an autoencoder employing

categorical cross entropy as the loss function.

To solve this issue, we proposed to generate several SMILES strings for a same ISIDA
vector during the training stage. The model would then understand that it does not need to
reconstruct one exact SMILES, but that several possibilities exist. The aim was to minimize the
smallest squared Euclidian distance between the given ISIDA vector and the ISIDA vectors of
the generated compounds. This resulted in a sort of multi-instance learning, to adapt a “one-to-

29

one” generative model to work in a “one-to-many” fashion as shown Figure 32.
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Initial LSTM-based Predicted ISIDA Predicted
ISIDA vector Architecture SMILES Fragmentor ISIDA

Euclidian
> distance «
(loss function)

Figure 32. Initial idea for a one-to-many ISIDA to SMILES generative model. The initial
ISIDA vector is passed through the model, and a corresponding SMILES is generated. Next, its
ISIDA vector can be computed and compared to the initial one using the Euclidean distance as
a metric. The latter can be used as a loss function which would need to be minimized.

However, problems appeared when trying to compute the ISIDA vector for the predicted
SMILES during the training process. The FRAGMENTOR software had to be called repeatedly
for every batch to compute the loss. Depending on the type of descriptors used, that would also
necessitate colouring by ChemAxon['*®. This resulted in a resource-demanding and

computationally inefficient process.

A workaround has been proposed to solve this issue. It consists in building a
“FRAGMENTOR neural network” (FRAGMENTOR-NN) model whose task would be to
generate a valid ISIDA vector from a given SMILES. The trained FRAGMENTOR-NN model
could then replace the actual FRAGMENTOR in the initial model, and significantly speed up
the training process as shown in Figure 33. This workaround does mean that errors in the

FRAGMENTOR-NN will propagate on the general loss of the ISIDA2SMI model.

Initial LSTM-based Predicted Fragmentor Predicted
ISIDA vector Architecture SMILES Neural Net. ISIDA

Fuclidian
distance «
(loss function)

\J

Figure 33. Updated model with the FRAGMENTOR-NN replacing the actual
FRAGMENTOR.
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5.1.1 Methods

Data

As input data, the ChEMBL25 database (1,669,377 molecules) was converted into
ISIDA descriptors using the UM4 fragmentation scheme. [A-2-7 corresponds to sequences of
2-7 atoms and fit the most with the sequential nature of the processing of character strings by
LSTM cells. They also are the most readable and most easily understandable. Training needed
to be accelerated since this was a prototyping phase with a great amount of testing needed.
Therefore 500,000 random compounds (about 30% of the database) were selected for the
training and validation sets. The 500.000 compounds were split into training and validation sets
with a ratio of 90%/10%. 166,597 additional compounds were extracted as an external test set,

separate from training and validation. Table 13 summarizes the data separation.

Table 13. Summary of the data separation.

ChEMBL25 1,669,377

Internal (Training/Validation) Set 500,000 (random)

Training Set 450,000 (90% of Internal Set, random)
Validation Set 50,000 (10% of Internal Set, random)
External Test Set 166,597 (10% of ChEMBL, random)

SMILES strings above 150 characters were removed, the rest was transformed into
canonical form by ChemAxon. Additional filters were applied to remove rare or unsuitable

atoms (Mg, K, Ga, Ge, Ti, etc...) and charged atoms or isotopes.

Descriptor filtering

Descriptors were filtered according to their standard deviation using an in-house script
to eliminate features which had no variation in their appearance in the database. The script
calculates the standard deviation of all descriptors across the dataset (6520 descriptors in this
case). A threshold is then selected to identify descriptors with almost no fluctuations. The
threshold on the standard deviation was calculated at 0.27 which corresponds to 2% of the
maximum overall standard deviation. All descriptors which had a standard deviation value
below the threshold were eliminated. 371 descriptors remained after filtering; it is important to
keep in mind that this number is rather low since only 500.000 compounds out of the 1.6M

were kept to accelerate training.
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Descriptor standardization
The remaining 371 descriptors were standardized across the training set using the

following equation:

o0 and U being standard deviation and mean respectively calculated across the whole

training set for each descriptor.

Architecture
The architecture is composed of N stacked LSTM, followed by M fully connected Dense

layers. The schematic representation of the architecture is depicted in Figure 34.

Output
(ISIDA)

Input
(SMILES)

N *LSTM M * Dense
N € [1:4] N € [1:5]

Figure 34. Schematic representation of the model architecture. During the testing procedure,
the number of consecutive LSTM cells ranged from 1 to 4, followed by 1 to 5 fully connected
Denser layers. The last dense layer had the same dimension as the chosen ISIDA vector and
worked as the output of the model.

By analogy with the Euclidean distance, we used the Mean Squared Error calculated
between the ISIDA vector of the input SMILES and the ISIDA vector received from the output

of the model as the loss function.
n
1 2
MSE =~ (%= 1)
e
n is the size of the ISIDA vector, X; and Y; are the components of the initial and resulting

ISIDA vectors respectively.
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The improvement of the model was done in gradual steps: in the early stages, a
systematic analysis of all possible combinations of N * LSTM and M * Dense Layers with a
fixed set of starting parameters was performed. Using a maximum of 4 LSTMs and 5 Dense
layers, 20 models per step were trained. Using this methodology, the best model for the different
inputs/starting parameters could be isolated. Filtering and/or standardization of ISIDA
descriptors as well as SMILES randomization were also tested to check their influence on model

performance.

Parameters initialization
Parameters used across all experiments (unless specifically stated otherwise) are
reported in Table 14. Only the dimension of the Dense layers varied, following the size of the

ISIDA vectors.

Table 14. Parameters used across all experiments in the SMI2ISIDA models.

Learning | Batch Dimension of Dimension of Activation Loss
rate™® size LSTM cell dense layers function in function
Dense layers
0.001 256 256 Equal to the ReLu MSE
(Bidirectional) dimension of
ISIDA vectors

*Learning rate is divided by half every time the validation loss does not improve

Influence of descriptors on the reconstruction error

Understanding which descriptors induce the most error in the model is an important step
in the optimization process. A workflow to isolate the most problematic fragments was
designed. 10,000 ISIDA vectors were predicted from random compounds in the test set and
compared to the actual vectors calculated from the same compounds. The absolute difference
between the initial and predicted ISIDA vectors was then calculated using the following

formula:
d = |Xinit — ypredl

These calculations resulted in 10,000 “difference” vectors where each element of each vector
corresponded to the absolute difference between initial and reconstructed fragment. Mean and
standard deviation were then computed for these vectors. A schematic representation of these

calculations is shown in Figure 35.
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Predicted ISIDA
Absolute = Mean

V1 difference vector
|1 = y1l
|y — y,| | X10.000 —

X1
(xz) 5
. L Standard

Deviation

Calculated ISIDA

Figure 35. Workflow for the calculations of the absolute difference vectors between calculated
and predicted ISIDA vectors. The 10,000 resulting vectors are then studied using Mean and
Standard deviation to isolate the most problematic descriptors.

5.1.2 “Raw” descriptors, unique SMILES

The first step of the analysis was to use “raw” descriptors (meaning unfiltered, non-
standardized) with canonical SMILES. The 20 models were trained, and results are reported in
Table 15. The dimension of ISIDA descriptor vectors is 6520.

Table 15. Minimum validation loss achieved during training with the different numbers of
LSTM cells and Dense Layers. Green represents the best model, red represents the worse.

# of
LSTMs 1 2 3 4
# of Dense
1 0.0279 0.0249 0.0800
2 0.0348 0.0277 0.0369 0.0468
3 0.0418 0.0321 0.0316 0.0329
4 0.0448 0.0342 0.0364 0.0376
5 0.0588 0.0386 0.0416 0.0370

The best model isolated in this analysis was 2 LSTM cells and 1 Dense layer. For this

type of descriptors, deeper models performed worse.
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Validation loss for models with 2 LSTM and 1-5 Dense layers
03

| —2L 1D 2L 2D 2L 3D 2L 4D —2L_5D|

0,3 \
0,2

0,2

VALIDATION LOSS

0,1

0,1

0,0
0 5 10 15 20 25 30 35
EPOCHS

Figure 36. Validation loss during training for models with 2 LSTM cells and 1-5 Dense layers.
Training is stopped when the loss doesn’t improve for multiple epochs, meaning some models
train faster than others.

Table 15 shows that adding Dense Layers rendered the models less accurate compared
to the baseline with 1. However, the increasing depth seemed to accelerate training. On average,
with this reduced dataset of 500,000 compounds, one epoch took around 3.5 minutes to be
processed which meant that the difference in training time was at least 1.5 hours between a
model with 1 Dense layer and a model with 5. These training times were still reasonable even
in the eventuality of a bigger dataset; thus, it was decided that the best model in terms of loss

reduction - (‘2L_1D’; Figure 36) — would be selected for further testing.

The initial set of parameters used for the previous analysis were standard parameters
regularly used with this kind of neural networks but are not necessarily the best. Thus, another
analysis was performed, this time varying Batch Size and Learning rate. Results are shown in

Table 16.
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Table 16. Minimum validation loss achieved during training with the 2L 1D model with
different combinations of starting parameters. The initial parameters that were used to first train
this model are shown in light blue. The best model obtained is shown in green.

Learning rate
0.0005 0.005
Batch size
128 0.0222 0.0227 0.0639
0.0220 0.0456
512 0.0233 0.1025

Table 16 shows that the model performance also depended on starting parameters. The
performance increased when the learning rate was lowered, and the best performance was

achieved with a batch size of 512 compounds.

The resulting model was evaluated on 10,000 random compounds out of the 166,597 in
the external test set by computing MSE between initial and reconstructed vectors. On the
external test set, MSE amounted to 0.0221 which is close to the validation MSE of 0.0190

showing no sign of overfitting.

Table 17. Top 5 descriptors with highest mean absolute difference value.

Fragment number Fragment SMILES Mean absolute
difference
38 CCCCNCC 1.02868
208 cccecece 1.00118
20 CCcCccC 0.98502
103 CCCCCNC 0.97515
211 cceececce 0.96136
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Table 18. Top 5 descriptors with highest standard deviation of absolute difference value.

Fragment number Fragment SMILES STD of absolute
difference
211 cccceecce 1.66083
697 CCCCCCF 1.37969
203 CCNCNCC 1.36696
208 CCCcccC 1.34939
38 CCCCNCC 1.23589

As is clearly visible in Table 17 and Table 18, reconstruction of longer fragments caused
significant errors. Combining the mean and standard deviation of Fragment n°38 for example,
gave a maximum absolute difference of 2.2. In practice, this meant that the model may predict
that such a fragment count is wrong by 2 units or more. Recurring, significant errors in the
counting of several descriptors meant the model was not able to reconstruct any ISIDA vectors
entirely and perfectly. The model is therefore not satisfactory to replace an algorithmic

calculation of the descriptors such as in the FRAGMENTOR software.

To understand the fluctuations in the reconstructed data, a small analysis of the initial
training data was carried out. The standard deviation of each of the 6520 descriptors was
computed, sorted, and plotted in Figure 37.

; Standard deviation of descriptors from the training set

14’
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Figure 37. Graph of standard deviation for each of the 6520 descriptors of the training set
(500,000 compounds), sorted by increasing standard deviation. Most of the descriptors from
the training set have a standard deviation of 0.
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A large portion of descriptors had an almost-0 standard deviation in the training set.
These descriptors were easily predicted to their average and near constant value. However, the
good prediction performances might hinder the training to fit those descriptors with larger

variance. The low variance descriptors were therefore filtered out in the following.

5.1.3 Filtered descriptors, unique SMILES

The training set was filtered according to standard deviation, leaving 371 descriptors

remaining as shown in Figure 38.

Standard deviation of descriptors from the filtered training set
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Figure 38. Graph of standard deviation for each of the 371 descriptors of the training set

remaining after filtering, sorted by increasing standard deviation.

These descriptors, which can be considered more “meaningful” were used to reproduce
the systematic analysis of the architecture to find the best model. The absence of constant
descriptors induces an increase of the loss function in the inverse proportion of the decrease of
the number of descriptors. The number of descriptors was divided by a factor of almost 2 after
filtering, but the MSE only went up by a factor of 10 which means that the filtering process
allowed for a better model. This difficulty to compare the performances of models trained on
all descriptors and on filtered descriptors only, underlines the defects of the MSE as loss

function.
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Table 19. Minimum validation loss achieved during training with different numbers of LSTM
cells and Dense Layers. The best validation loss achieved is shown in green.

# of
LSTMs 1 2 3 4
# of Dense
1 0.514 0.228 0.246 2.965
2 0.531 0.248 0.221 0.194
3 0.466 0.263 0.266 0.278
4 0.555 0.385 0.256 0.317
5 0.532 0.380 0.291 0.351

The best isolated model was 4 LSTM and 2 Dense Layers, with a validation MSE of 0.194 (see
Table 19).

The model performed an MSE of 0.258 on the external test set.

Validation loss for models with 4 LSTM and 1-5 Dense layers
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Figure 39. Validation loss during training for models with 4 LSTM cells and 1-5 Dense layers.

Figure 39 confirms the tendency observed in the last experiment. Models with a higher
number of Dense layers tend to train faster but are less accurate. Models with 2 or 3 dense layers
took around 15 more epochs to train than models with 4 and 5. The model with 1 Dense layer
could not reduce validation loss to a performing level, most likely due to overfitting. For further

testing, the best model, 4L_2D was retained.
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Exactly like the previous analysis, the reconstruction capacity of the trained architecture
was tested on 10,000 compounds from the external test set. Mean and standard deviation of

absolute difference were computed for all 371 remaining descriptors.

Table 20. Top 5 descriptors with highest mean absolute difference value.

Fragment Fragment SMILES Mean absolute
number difference
10 ccccece 0.75550
8 CCCC 0.75093
135 Cccccece 0.74331
28 CCCCNCC 0.72690
66 CCCCCNC 0.71237

Table 21. Top 5 descriptors with highest standard deviation of absolute difference value.

Fragment Fragment SMILES STD of absolute
number difference
137 ccceececece 1.21887
135 CCccccce 1.18268
203 CCCSCNCC 1.07405
150 CCCNNCC 1.05791
8 CcCccCC 1.05507

Comparing Table 17 with Table 20 and Table 18 with Table 21 shows that the filtering
process was helpful. The mean of the absolute difference dropped about 0.25 in the top 5 and
in general through the data. The most problematic fragment for the standard deviation was the
same in both non-filtered and filtered experiments and the error dropped from 1.66 to 1.22
which is an improvement of 0.4. All other in top 5 showed an improvement of 0.2. Still, the
standard deviation and the mean combined meant that descriptors could be predicted up to 2

units away from their real values.

One unexpected issue came to light when metrics for the model according to the length
of fragments were computed. The model seemed unable to count single atoms as shown in

Figure 40.
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Mean absolute difference according to length of fragments
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Figure 40. Graphs of mean and standard deviation of the absolute difference according to
fragment length. Descriptors are fragment counts. Even some atoms are miscounted by the
model.

Counting atoms should be done easily since the correlation between number of
characters and number of atoms in the molecule is linear. An inability of the architecture to
fulfil the simplest task shed doubt on its ability to reproduce more complex counting. To test

that the model could count atoms, the output was modified from ISIDA vectors to only single

atom counts with a vector of dimension 9.
9 atoms were considered: C, N, O, S, F, I, Br, CI, P

A counting accuracy of about 95% was achieved. However, looking at the results it was
found that the accuracy of the model when counting molecules containing Br and I was 0%,
and P was only 68.18%. These high errors appeared because molecules containing these 3 atoms
were not well represented in the dataset. Filtering all molecules containing the Br, I and P atoms
from the test set raised the counting accuracy to 99.94%. This shows that the neural network
architecture is not able to represent a simple concept such as counting characters in a SMILES
string. Shifting the focus from counting atoms to counting sequences of variable lengths induces

more errors.
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One idea to optimize the model was to use standardized descriptors, so that all 371
descriptors had the same mean and standard deviation, which was the next step for the analysis.
The idea was that standardization may help because if all descriptors vary in the same way, the
model must learn to understand these variations and link them to the differences in the SMILES
string instead of learning by heart possible values for each descriptor according to their standard

deviation.

5.1.4 Standardized, filtered descriptors, unique SMILES

The model that performed best on the previous step was used as an initial benchmark
(4L _2D). It achieved a validation loss 0.410 which is significantly worse than the with non-
standardized descriptors. The top 5 most problematic descriptors in terms of Mean and Standard
Deviation of the absolute difference are reported in Table 22 and Table 23. Note that these
differences are recalculated by removing the standardization to be able to compare the results
with the non-standardized results which are shown in Table 20 and Table 21.

Table 22. Top 5 descriptors with highest mean absolute difference value (standardized
descriptors) along with their standard deviation in the initial dataset.

Fragment Fragment SMILES Mean absolute STD in training
number difference set (rank)
8 CCCC 29.089 13.68 (1%
11 CCC 26.556 10.43 (5™
35 C 24.940 7.688 (6')
12 CcC 23.078 7.676 (™)
10 Cccccc 19.028 13.41 (2™
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Table 23. Top 5 descriptors with highest standard deviation of absolute difference value
(standardized descriptors) along with their standard deviation in the initial dataset.

Fragment Fragment SMILES STD of absolute | STD in training
number difference set (rank)
8 CCccCcC 28.220 13.68 (1%)
11 CcCC 26.266 10.43 (5™
35 C 24.938 7.688 (6™)
12 CcC 23.033 7.676 (7™
10 ccccce 17.253 13.41 (2")

Values for the error are an order of magnitude larger than the errors in unstandardized
descriptors. The first explanation for this phenomenon is that reverting the standardization to
calculate the absolute differences multiplies the errors in reconstruction by the standard
deviation of the descriptor, making them larger. The higher the standard deviation for a
descriptor, the higher the calculated absolute difference will be as is shown in Table 22 and
Table 23. The highest errors in reconstruction correlate with the highest standard deviation of
the actual descriptors. This implies that the standardized error is well balanced across the dataset

which could be explained by looking at an example of descriptors represented in Figure 41.
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Non-standardized SVM

5:3 6:1 7:1 8:8 9:1 10:2 11:9 12:9 13:3 14:1 17:2 18:3 19:2 24:4 26:2 29:5 30:2 33:3
34:1 35:11 36:4 37:2 41:1 45:1 57:1 58:2 59:3 60:3 65:2 66:2 72:2 74:2 75:1 80:2
84:1 87:1 89:2 98:1 99:1 100:1 106:1 127:2 130:2 172:6 173:4 174:2 175:1 220:1 238:3
239:3 244:1 275:6 276:6 297:6 371:0

Standardized SVM (shortened)

1:-0.1711 2:-0.1322 3:-0.1785 4:-0.1876 5:-0.814 6:-0.7348 7:-0.6723 8:0.2532 9:-0.6424
10:0.2281 11:0.0361 12:-0.0694 13:0.3056 14:-0.3779 15:-0.3303 16:-0.4947 17:-0.5584

18:-0.5663 [...] 367:-0.0169 368:-0.0168 369:-0.0458 370:-0.0346 371:-0.0072

Figure 41. Comparison between non-standardized (blue) and standardized (green) ISIDA
descriptors. Note that the standardized have been shortened as they would be too long to
represent. The shortened representation is enough to try to explain the switch in tendency. The
notation follows the 1ibSVM notation. The data are given as tuples, the first number I the ID of

6,99

the descriptor and the second one, after the “:” character, is the value of the descriptor. Null
values are not written.

In the non-standardized SVM (Figure 41), only fragments which are contained in the
molecules are represented, other fragments that have a value of 0 are not represented (and have
a 0 value for the model). In the standardized version, ALL descriptors are represented from 1
to 371 and have non-zero values in similar numerical ranges. It might be that since descriptors
are always represented no matter what in a similar fashion, the model had trouble associating a
certain SMILES pattern with its position in the descriptor vector. With standardized descriptors,
all descriptors have the same standard deviation, and thus the model treats them as equivalent
and minimizes the loss in an equivalent manner. Which means that when they are converted
back to their initial values, the descriptors with the highest standard deviation and mean become
the descriptors with the highest error, which is exactly what can be observed in Table 22 and

Table 23.

Standardization did not in fact help with the reconstruction error but worsened the model
performance by basically confusing it as to which descriptors were associated with which
character sequences in the SMILES strings. Understanding why the model could not count
simple carbon chains fragments meant that a deeper understanding of the interpretation process
of the model was necessary. Figure 42 shows two examples of a possible explanation for the

miscounting of simple fragments.
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CCCOCCl1 2Cl(CCC 1=Cclc(C2)cnnl-clecc(F)eel )I(=O)(=O)c Icee(ecl)C(F)(F)F

Figure 42. Example of molecules where 2 atoms are adjacent to each other in the molecule but
are separated by a variable number of characters in the associated SMILES string.

In both these molecules and associated SMILES, the NS fragment is highlighted in red.
Due to the construction of the SMILES, the N and the S are not adjacent to each other even
though they share a bond in the molecule. The model therefore has more difficulty making the
connection between them and counting them as a fragment. This is a limitation of SMILES and
LSTMs that was already observed in the canonical-to-canonical SMILES autoencoder. When
generating large cyclic structures, the model had trouble connecting cycle indicators that were
very distant in the SMILES string, in multi-cyclic structures for example where several cycles

are opened and then closed.
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5.1.5 Filtered descriptors, enumerated SMILES

To solve this issue, a data augmentation strategy was adopted through the randomization
of SMILES. Through randomization and using a larger number of SMILES strings for each
molecule, fragments that could be separated in a certain SMILES might be adjacent in another
different SMILES. The model could therefore detach itself from the SMILES sequence and get
a higher representation of the molecule represented by the SMILES. SMILES Randomization
was performed using RDKit, by transforming a SMILES string into a molecule object,
extracting, and shuffling atom numbers and recreating a SMILES string. For each SMILES in
the ChEMBL database, 10 random SMILES were generated and associated with the same
filtered, non-standardized SVM. Again, based previous knowledge, a 4 LSTM, 2 Dense layer

model was selected.

Training resulted in a validation loss of 0.370 which is significantly worse than the 0.194
obtained with the best model with non-randomized, non-standardized SMILES. The same data
augmentation strategy has not been investigated on the filtered descriptors dataset due to a lack

of time.

Another architecture was tried to fit to the 10 enumerated SMILES per compounds: each
alternative SMILES being assigned to an independent channel then fused in a dedicated layer.

The architecture tested is shown in Figure 43.
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Figure 43. Schematic representation of the changed architecture. Each input corresponds to a
different randomized SMILES string. Then, all outputs from the 10 LSTM+Dense duos, are
either concatenated or averaged (two different models). Then this new vector is passed through
the output dense layer to shape it with the corresponding size.

Results of both models are reported in Table 24. This architecture produced worse models than

previous attempts.

Table 24. Minimum validation loss achieved for both types of model.

Model type Minimum validation loss achieved
Concatenation 0.520
Average 2.387
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5.1.6 Conclusion

The aim of this project was to train a model that could compute ISIDA molecular
descriptors accurately and faster using a machine learning model. The resulting models

produced too many errors to be considered as a replacement to an algorithmic exact calculation.

It was clearly highlighted that SMILES strings combined with LSTM cells have strong
limitations. The grammar of SMILES seems to be more complex for a model to apprehend than
classical human language grammar. For example, a simple phrase in English will always have:
Subject + verb + agreement in that order. This predictable behaviour is easy to identify and
learn for a Deep Neural Network. The language of molecules it seems, is much more complex

and a simple architecture was not able to crack the secrets of the SMILES representation.

The impact of SMILES randomization, descriptor filtering and standardization was tested
on the process of learning. It seems preferable to work on counts without further transforming
the molecular descriptors. Filtering out low variance descriptors seems beneficial to improve

both the speed of the training and the accuracy of the model.

Data augmentation using alternative SMILES representation could be a possible solution
to improve the model. Complexification and better control over the regularization of the model
could also be tested. A graph-based approach could probably be a better fit, since all molecular

connections would be considered by the model.
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5.2 Multimodal Deep Boltzmann Machines

The Multimodal Deep Boltzmann Machine (MDBM) is an architecture that was
considered in the scope of Constrained Generation, with the aim to create an ISIDA to SMILES
model which would be able to generate SMILES strings from vectors with selected fragment
counts and property values. A strategy to approach the problem of constrained generation is to
link ISIDA structural descriptors and the latent vectors of an AE, the latter being prepared to
decode SMILES strings. The mapping between ISIDA and an AE feature space is ensured, here,
by an MDBM.

Boltzmann Machines are models with pairwise interacting units that update their states
over time in a probabilistic manner depending on the states of adjacent units. They can be

(1391 The most striking feature of this

regarded as stochastic versions of Hopfield networks
architecture is that it contains only one visible layer that is used as both input and output of the
network. Restricted Boltzmann Machines!'*”! (RBM) and Deep Boltzmann Machines!'®!]
(DBM) are special types of Boltzmann machines in which the interactions are done between
layers of units. In the case of a RBM, the interactions are limited to the visible and the hidden
set of units, no connections are allowed inside the visible or the hidden layer. A DBM has

multiple hidden unit layers communicating sequentially: meaning communication is allowed

between layers but still not in the layers.

Isolated Boltzmann Machines can work in the same way as an AE, reconstructing its input
from a latent vector, however in this case there is no separation between encoder and decoder
since the visible layer serves as both input and output. The visible units take the input and the
information travels deeper into the model, layer by layer until reaching the deepest layer, where
it can go backwards towards the visible units. The deepest layer serves as a latent representation
of the input data, setting the state of the deep hidden layer, the model can generate a data vector

that can be read in the visible layer.

Multimodal Deep Boltzmann Machines!!®? are a combination of several DBMs trained
to reconstruct their input after creating a latent representation of said input. The different DBMs
work in different modalities, where the same concepts are expressed in different manners (e.g.
the word “cat”, images of cats, sounds of cats). All the deepest layers of the different DBMs are

connected by a single layer, which serves as a unique, latent representation of all the modalities
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of the same concept. Thus, from one latent vector, the model generates new data in any of the

input modalities.

ISIDA and latent descriptor vectors can be seen as two different modalities of the same
molecule and could therefore be linked by an MDBM. The goal is to generate an AE latent

vector, that can be decoded as SMILES from an ISIDA vector representation.

5.2.1 Boltzmann Machines

A classical Boltzmann Machine (BM) is an energy-based neural network, composed of
symmetrically connected binary units. The symmetry means that artificial neurons are unique
mathematical functions of the values from the adjacent artificial neurons, in contrast to a feed-
forward neural network (like an autoencoder), where artificial neurons use two different
functions, in forward and backward mode. For this reason, there is no direction in a BM, only
an arbitrary choice to define which are the visible and the hidden units. Binary units mean that

an artificial neuron can have two states: 1 or 0. A classical BM is represented in Figure 44.

Figure 44. Simple scheme of a classical Boltzmann Machine. Orange neurons represent visible
units which take the input and give the output. Grey neurons represent hidden units which,
similarly to an autoencoder, are supposed to gather higher representations and the underlying
“meaning” of the data distribution. Bold lines represent connections between units of the same
layer. Coloured lines represent the different interactions between units. Green lines are
interconnections inside a hidden layer, the blue line represents the interconnection inside the
visible layer and the purple lines represent connections between two layers.
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As can be seen in Figure 44, in a BM all units are connected, and there are
interconnections between units of the same layer. This architecture is designed to model an
unknown probability density function from a sample dataset. The mathematical form of the
modelled probability distribution is a Boltzmann law, hence the Boltzmann Machine name. The

energy is a function of the configuration of the units of the model.

1
E(v,h; ) = —EvTLv - —v'Wh - — byh (5.1)

With v, h the state of the visible and hidden units respectively, 8 = {L,J,W, b,,, by} the
parameters of the model to fit. The terms b,, by, are the biases of visible and hidden units
respectively (threshold of activation for both units). L and J account for intra-layer interactions
and W for visible-hidden layers interactions. Colours in the equation refer to the colours in

Figure 44.

From this energy function, and using the Boltzmann Distribution, the probability of
activation of each visible and hidden unit can be inferred. In turn this probability Is used to set
the state of the corresponding artificial neuron. Unfortunately, BM do not currently benefit from

any algorithmic acceleration to train. But RBMs do, and for this reason, are preferred.
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5.2.2 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a version of the Boltzmann Machine where

interconnections inside the same layers have been removed as shown in Figure 45.

Figure 45. Simple scheme of a Restricted Boltzmann Machine. Interconnections between units
of the same layer have been removed. As a result, this architecture looks more like a classical
feed-forward neural network.

Since interconnections have been removed, the energy equation is simpler:

E(w,h; ) =v"Wh—b,v—byh (5.2)

We modified this function to use real valued artificial neurons for the visible layer and
binary valued artificial neurons for the hidden layer. The visible layer artificial neurons follow

a multivariate normal distribution with the assumption of independence. The energy function

becomes:
E(w,h) = — V'S 'Wh-bjh (5.3)
012 e 0
Where 2 = : =~ i ]is the diagonal covariance matrix of shape (V, V) where V is the
o - 01;

number of visible units and 6/ are the variances of each input descriptor (a ISIDA fragment

count or one of the AE latent vector coordinate). Now, instead of visible units being restrained

134



to values 0 or 1, the values for each unit V; will be sampled from a gaussian distribution with
the corresponding variance. To train the model, we use a process called Gibbs sampling. The

variances are pre-computed.

To counter the problem of sampling in real space which might lead to the gaussian distributions
to have an area superior or inferior to 1, Hinton suggested to normalize the data to have mean
0 and standard deviation of 1 which has been done. The normalization was done using the

following transformation:

y=—3 (5.4)

Here, x is an ISIDA/latent vector, X is the mean, and 6 the standard deviation of the data.

5.2.3 Training a Restricted Boltzmann Machine

As an example for this explanation, we will use the output of an encoder which are latent
vectors of dimension 256. This data will be fed in batches to the RBM, and we will assume a
batch size of 100 (i.e. 100 molecules per batch). Therefore, our input matrix X has shape (100,
256). We will also assume 256 visible units and 20 hidden units.

The training process is done using Gibbs Sampling as previously mentioned, which works

as follows:

1. Sample hidden states from input
2. Sample visible values from hidden states
3. Sample hidden states from sampled visible values
Steps 1I-11I can be repeated k times if needed (in this example, only one iteration was

done because it has been shown that k=1 gives good results).

4. Calculate and apply gradients (from step 2 and 3)
5. Update parameters

The details of each step will be described in the following chapters.
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Sampling hidden states from input passed in visible units

First, we calculate the probabilities for each hidden unit to be activated:

P =P(H =1|X) = sigmoid(by, + X2 1W) (5.5)

by = (bi,bZ, ..., b?%) is the vector of hidden biases
H corresponds to the states of the hidden units

W the weights matrix of shape = (256, 20)

The decision to activate or not a hidden unit is made by sampling out of the Bernoulli

distribution using P.
As a result, we obtain a matrix of hidden states H:

H = f(P),shape = (100, 20) (5.6)

Sampling visible from hidden
The process is rather different because visible units are not binary but real and use a
gaussian distribution. The process consists in creating a gaussian distribution to sample from

using our newly calculated hidden states.

The probability distribution Q from which we sample visible states can be expressed as

follows:

Q=P(V|H)=NV; HWT + b, %), shape = (100, 256) (5.7)

where V' (x; u,d?) is the gaussian distribution with mean u and variance o2,
b, = (b}, b2, ..., b%%%) is the vector of visible biases

W is the same matrix of weights.

By sampling random numbers from Q we get V of shape (100, 256) which is the matrix
of states of the visible units. These states can be reverted to our input space by reverting the

normalization process: Vi epertea = 0 V + X
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Sampling hidden from the sampled visible layer state
And again, for the third step of Gibbs sampling, new hidden states are calculated the

same way as before:

P'=P(H =1|V) = sigmoid(b, + VE~1W),shape = (100,20) (5.8)

Calculating gradients
The gradients are computed by calculating the derivative of the log-likelihood against

every parameter.

Visible bias :

Ab,, = mean ((X —b )X 1 — (V- b,,)Z_l) * Ir , shape = (256) (5.9)

With [r the learning rate

Means are calculated across the batches.

Hidden bias:

Aby, = mean(P — P') x lr ,shape = (20) (5.10)

Weights matrix:

AWT = mean(PTE"1X — P'TE7V) * Ir , shape = (256, 20) (5.11)

Gradients are applied and variables will be changed as:

b, = b, + Ab,; by, = by + Aby; W = W + AW (5.12)

The training process continues until we reach convergence on RMSE. Reconstruction
rate could also be used for ISIDA vectors. In this case, RMSE makes more sense since latent

vectors have 10 decimal precision.
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As the training process is stochastic, it has to be softly ended. To this end, the learning rate is

lowered at each epoch in order.

learning rate = f(epoch) =
e

(5.13)

epoch
(EEG+D)

learning rate

012 3 = o B ———
learning rate = f(epoch) = (gpgch+b)
e a

0:1

A=500,B=23

0 200 400 600 800 1000 1200 1400 1600 1800 2000
epochs

Figure 46. Influence of a and b parameters on the evolution of the learning rate. Parameter “a”
controls the rate of decrease while “b” controls the starting point.

Parameters initialization

From Melchior’s publication we gathered the following parameters initialization

b, visible biases, are initialized to the mean of the data because they tend to that value

by, hidden biases, are initialized as:

_ ||b,, + W,

2
- ||bv||2
+

by p In (1) (5.14)
j

With 7=0.01 and of the variance of the j™ column of the matrix X.
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(5.15)

V6 V6 >

w;j are sampled in U (— ,
V20 + 256 V20 + 256

With U a uniform distribution

X is initialized to a diagonal of 1.

5.2.4 Multimodal Deep Boltzmann Machine

To build the Multimodal Deep Boltzmann Machine, two separate Deep Boltzmann
Machines must be built and optimized first. One model specific to latent vectors and one model
specific to ISIDA vectors. Both objectives for the models are to reconstruct their input after
passing through their respective latent representation layers. Once optimal parameters for both
models have been found, they can be connected using a common layer at the top and trained

with both inputs.

Link layer

-
| Latent specific model

oo00]
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ISIDA vector
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Universal map 4

Figure 47. Schematic representation of the Multimodal Deep Boltzmann Machine with both
specific models linked by the higher representation layer on top. Details are added to show the
model in usage mode, sampling vectors from ISIDA-based GTM, finding their equivalent in
latent vectors and decoding them into molecules with controlled structure.

Latent vector
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5.2.5 Data

Two types of experiments were performed with two datasets of different sizes. Type A
experiments used 10.000 vectors sampled randomly, either from the output of the encoder of a
classical canonical-to-canonical autoencoder or from ISIDA descriptors. In both cases
molecules that were encoded were extracted from the ChEMBL23 database. In the case of the
latent vectors, SMILES were initially transformed in their canonical form and then given to the

encoder.

5.2.6 Latent vectors model efficiency metric: SMILES reconstruction

rate

To verify that the model performs well in reconstruction tasks for the latent vectors, a
metric was needed since the Euclidian distance between latent vectors used during training is
not easily understandable. Both latent vectors and reconstructed latent vectors (after passing
through) the RBM/DBM were fed to the decoder and decoded into SMILES. These SMILES
were then compared and sorted into three categories: Perfect match, meaning that the SMILES
before and after reconstruction was the same; invalid SMILES, meaning the encoder generated
a meaningless SMILES string given the reconstructed latent vector; and imperfect
reconstruction, meaning the output of the decoder was a valid SMILES string but didn’t
correspond to the input. Imperfect reconstructions were more thoroughly studied by calculating
the Tanimoto coefficient between initial and reconstructed SMILES using Morgan-4

Fingerprints. Figure 48 shows a schematic representation of the comparison process.
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Figure 48. Schematic representation of the efficiency metric for the part of the DBM trained
for reconstructing latent vectors. Reconstructed SMILES are sorted into three categories
according to their validity and comparison to the initial SMILES.

5.2.7 ISIDA vectors model efficiency metric: Descriptor fluctuation

The initial ISIDA vector is compared to the ISIDA descriptors vector from the
reconstructed SMILES. We term these the “reconstructed ISIDA vectors”. The ISIDA
descriptor type used contains only fragment counts (i.e., all descriptors have whole numbers),
therefore a perfectly reconstructed vector would have the same values as the initial one when
all descriptors are rounded to the nearest integers. This means that the error tolerance for

correctly reconstructing a descriptor is < 0.5.

5.2.8 Parameters and architecture optimization — Latent vectors

A thorough analysis was performed to find optimal parameters for both types of models,
starting with the latent-specific model. The optimization was done layer by layer. The first step
was to find good parameters for a one hidden layer model (RBM), then for a two-layer and

maybe three-layer model.

The first experiment of the analysis was performed on a simple RBM with 1 hidden

layer of a variable dimension as shown in Figure 49.

141



Hidden layer Variable dim.

Visible layer 256 dim.

Figure 49. Schematic representation of the simple RBM used in the first experiment. The
visible layer has a dimension of 256 corresponding to the size of the input latent vectors. The
hidden layer has variable dimension.

Parameters were initialized to the values shown in Table 25.

Table 25. Parameters used for the training of the RBM. Only the dimension of the hidden layer
varied.

Start
Hidden ‘ ‘
) ‘ Batch size | Epochs A B Learning
Dimension
Rate
Variable | 256 1000 300 3 0.05
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RMSE as a function of Number of hidden units

RMSE at end of training

0 1000 2000 3000
Number of hidden units

Figure 50. Graph representing the evolution of the RMSE at the end of training in relation the
number of hidden units in the model.

Figure 50 shows that increasing dimensions in the hidden layer helped decrease the
RMSE significantly. A plateau was reached at around RMSE=2.5 for a dimension of 2500-3000.
The hidden layer of the RBM was set at a dimension of 3000 for the computation of the

reconstruction analysis.
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= Perfect matches

= Invalid SMILES

Figure 51. Graph showing the proportion of perfect matches, imperfect reconstructions, and
invalid SMILES for the best RBM found in the systematic analysis.

Figure 51 shows that the initial version of the model achieved a perfect reconstruction
rate of 85.49%. In comparison to classical canonical-to-canonical autoencoders which generally
achieve upwards of 95%, this value is disappointing but encouraging considering the simplicity
of the model. Tanimoto coefficients were computed (Figure 52) and showed that most of the
imperfect reconstructions had a Tc around 0.5 — 0.7 with a few going above 0.9. Small changes
to the latent vectors seemed to induce changes of variable degrees to the closeness of the
reconstructed compounds, showing the discrete characteristic of latent space and the tendency

of the autoencoders to have a poor chemical space organization in terms of structural similarity.
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Figure 52. Distribution of Tanimoto coefficients for the 833 imperfect reconstructions.
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The second experiment was performed by having the first hidden dimension fixed at

3000 and the second hidden dimension varying as shown in Figure 53.

Hidden layer 2 Variable dim.
Hidden layer 1 3000 dim.
Visible layer 256 dim.

Figure 53. Schematic representation of the DBM evolved from the previous RBM. Visible and
first hidden layers are fixed to constant values while the second hidden layer varies.

Parameters for the models in the second experiment were slightly modified compared
to the first experiment. The number of epochs was scaled up from 1000 to 3000 and the decrease
of the learning rate was slowed by modifying the A value in the learning rate function from 300
to 500 as shown in Table 26.

Table 26. Parameters used for the training of the DBM, only the dimension of the 2™ hidden
dimension varied.

Hidden Hidden Number of | Batch A B
dimension 1 | dimension 2 | epochs size
3000 75 3000 256 500 3
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RMSE as a function of the number of units in
the second hidden layer

RMSE at end of training
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Figure 54. Graph representing the evolution of RMSE at the end of training as a function of the
dimension of the second hidden layer.

Results of the second experiment show that the second hidden layer does not benefit
from a large hidden dimension. The best result was found for a 100-dimension layer as shown
in Figure 54. The Reconstruction rate analysis was again performed using the 10.000 training

compounds.
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Figure 55. Graph showing the proportion of perfect matches, imperfect reconstructions, and
invalid SMILES for the best DBM found in the systematic analysis.

This model achieved a 94.29% perfect reconstruction rate as shown in Figure 55. The

breakdown of the Tc for the imperfect reconstructions shows the same trend as the previous

experiment (Figure 56).
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Figure 56. Distribution of Tanimoto coefficients for the 345 imperfect reconstructions.

Having had satisfying results with a small training database, an upscaling to a bigger
database of 100.000 randomly selected compounds was used to train the model and 10.000

external compounds were used as a validation set. The model achieved a RMSE of around 2.4
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for both sets during training and validation. The reconstruction rate analysis was performed on

the 10.000 external compounds as shown in Figure 57.

=  Perfect matches

= Invalid SMILES

Figure 57. Proportion of perfect matches, imperfect reconstructions, and invalid SMILES for
the best DBM found in the previous analysis.

Unfortunately, scaling up the databases by a factor of 10 reduced the perfect
reconstruction rate to 64.64% which is 30% lower than the previous results. This may be due
to overfitting or it could also be the result of a capacity issue for the architecture. It was able to

accommodate 10.000 compounds previously, but was not able to encode 10 times more.

5.2.9 Parameters optimization — ISIDA vectors

Having gathered some preliminary results for the latent vectors, the focus was shifted
to ISIDA descriptors to compare results. The method for finding the best parameters was
slightly changed from a 2-step method to a 1-step method where both dimensions for hidden
layer 1 and hidden layer 2 could vary. By using different methods of parameter optimization for
ISIDA and latent vectors, the goal was to get a better understanding of the relation between the
two hidden layers and the performance of the model. Setting each hidden layer’s parameters
sequentially could amount to minimizing a two-variable function by freezing one variable,
minimizing the other, then doing the opposite. This is an easy solution but with no guarantee to
end up in a minimum for the loss function. The parameters obtained this way may not be the
most optimal. Therefore, both dimensions of the hidden layers were varied at the same time,

effectively minimizing the loss function using the two variables.
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Table 27. Results for the training of the DBM with 2 hidden layers on ISIDA vectors. All
experiments were done for a visible dimension of 402. Parameters a and b control the decline
of the learning rate, a gives the rate of decline and b controls the learning rate start. The lower
a is, the faster the learning rate declines. For all experiments, A was set to 500, the batch size
was set to 256, and the number of epochs was set to 2000. The best experiment is highlighted
in green, the experiment used in the analysis is highlighted in blue.

Experiment | Hidden Hidden B Start Euclidian
Number dimension | dimension Learning | Distance
1 2 Rate

1 400 400 3.7 0.025 14.60
2 400 100 3.7 0.025 14.56
3 400 10 3.7 0.025 13.62
4 400 1000 3.7 0.025 14.56
5 400 2000 3.7 0.025 12.78
6 400 2000 3 0.05 14.54
7 400 2000 23 0.1 12.78
8 400 2000 1.61 0.2 11.96
9 500 2000 1.61 0.2 11.13
10 750 2000 1.61 0.2 9.62
11 1000 2000 1.61 0.2 8.61
12 1500 2000 1.61 0.2 7.33
13 2000 2000 1.61 0.2 6.53
14 2000 3000 1.61 0.2 6.44
15 2000 4000 1.61 0.2 6.41
16 2000 5000 1.61 0.2 6.43
17 3000 5000 1.61 0.2 543
18 4000 5000 1.61 0.2 5.04
19 5000 5000 1.61 0.2 4.85
20 6000 5000 1.61 0.2 4.76
21 7000 5000 1.61 0.2 4.65
22 8000 5000 1.61 0.2 4.53
23 9000 5000 1.61 0.2 4.49
24 10000 5000 1.61 0.2 438
25 15000 5000 1.61 0.2 4.01
27 20000 5000 1.61 0.2 4.03
28 17500 7500 1.61 0.2 13.11
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The best RMSE obtained was for experiment 26. However, experiment 25 got very close results
with 2500 less hidden units in the first hidden layer. This difference in number of hidden units
also implies a difference in computing time. Thus, for timing purposes the fluctuation analysis

was computed with the model of experiment 25.

The standard deviation analysis was performed on experiment 25 as explained above:

® fluctuation < 0,5
m fluctuation >= 0.5

Figure 58. Proportion of descriptors according to their reconstruction fluctuation. 85.6% of
descriptors have a possible variation of less than 0.5.

86% of the descriptors had a fluctuation less than 0.5, meaning that they were correctly
reconstructed on the training dataset (Figure 58). The remaining 58 descriptors were above the
fluctuation threshold, a large part having an error close to 1 but some of the descriptors had a
fluctuation above 2 (Figure 59). This result was not better than our previous attempt. The
combination of the errors from the latent model and the ISIDA models seriously hinder the

ability to train a MDBM model.
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Distribution of reconstruction fluctuation
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Figure 59. Histogram of the distribution of reconstruction fluctuation calculated between initial
and reconstructed ISIDA vectors. Bars are coloured according to results of Figure 58.

In an attempt to improve the ISIDA DBM, a third layer was added to create a deeper DBM in

hopes that the increased depth and higher representation would improve the model

performance.

Table 28. Results for the training of the DBM with 3 hidden layers on ISIDA vectors. All
experiments were done for a visible dimension of 402. A was set to 500, B to 1.61, the starting
learning rate was 0.2. The number of epochs was set to 2000.

Experiment | Hidden Hidden Hidden RMSE
Number dimension | dimension | dimension
1 2 3

1 15000 5000 1000 111.45
2 15000 5000 2000 116.13
3 15000 5000 3000 108.08
4 500 500 500 18.97
5 300 300 300 14.85
6 100 100 100 17.13
7 100 100 1000 16.87

Initial experiments (1, 2 & 3, Table 28) with large hidden layers did not train well at all. In

following experiments (4 to 7), the dimensions of all layers were drastically reduced. The

thought process was that in a 2-hidden layer model, the lack of depth was compensated by the
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large size of the hidden layers. Adding more depth meant that the layers’ size could be reduced.
Smaller layers resulted in a reduction of the RMSE by a factor of almost 10, unfortunately, these
experiments still did not produce comparable results to the DBM with 2 hidden layers. The
deeper DBM did not improve on the 2-hidden layer DBM, therefore the previous architecture

was used to train a model on 100.000 training vectors and 10.000 validation vectors.

Evolution of RMSE for training and validation sets during training of the

model
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Figure 60. Evolution of RMSE for training and validation sets during training of the model.

No sign of overfitting can be observed on Figure 60. Both training and validation sets achieve

comparable RMSE values.

Table 29. Best RMSE achieved during training for training set and validation set.
Best  training  loss | Best  validation loss

achieved achieved

4.16 4.42

The model used for this phase (experiment 25) achieved a RMSE of 4.01 on the training set

with 10.000 compounds. Here, with 10x more data, it achieved 4.16 on training and 4.42 on

validation (Table 28), which is very close to the preliminary results.
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Results of the fluctuation analysis on the validation
dataset

= fluctuation < 0,5

m fluctuation >= 0,5

Figure 61. Proportion of descriptors according to their reconstruction fluctuation on the
validation dataset.

79% of the descriptors are correctly reconstructed (Figure 61) which is a 7% decrease compared
to the preliminary results on the small training set. 82 descriptors have a fluctuation of more
than 0.5, 22 of them with 2 or more which is a slight increase compared to the 12 before. (Figure
62).
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Figure 62. Histogram of the distribution of reconstruction fluctuation calculated between initial
and reconstructed ISIDA vectors. Bars are colored according to results of Figure 61.
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A quick comparison between initial and reconstructed ISIDA vectors of the validation
set showed than no vectors was perfectly which amounts to a 0% reconstruction rate. This is
expected since about 20% of the descriptors had a general fluctuation above the threshold and
the perfect reconstruction implies 397 simultaneous successful predictions — which is very
unlikely. To have better insight we computed each descriptor’s “occurrence” over the validation
dataset. Occurrence is a measurement of how much the descriptor is used in a dataset. It is

computed as follows:

number of times descriptor is not 0 in data
length of dataset

occurence =

For example, if the occurrence of a descriptor is 0.5 that means that the fragment is found in
50% of the molecules in the dataset. The occurrence of each descriptor was plotted against its
fluctuation, and each descriptor was coloured according to its standard deviation. The results

are shown in Figure 63.

Fluctuation according to the occurence for each of the 397 descriptors,
colored by values of descriptor standard deviation
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Figure 63. Fluctuation of each descriptor according to its occurrence in the validation dataset.
The grey line represents the 0.5 fluctuation limit. Each dot is colored according to the standard
deviation of the descriptor itself. The grey line indicates the threshold of fluctuation = 0.5.
There appears to be a correlation between the occurrence of a descriptor in the dataset,
its fluctuation, and its standard deviation. Descriptors with the biggest occurrences are the most

badly predicted by the model, probably because of their high variation as indicated by the high

values for standard deviation. Since those descriptors are not correctly predicted it is highly
154



unlikely that a perfect reconstruction will ever occur, explaining the poor performances in terms
of reconstruction rate. This phenomenon is highly reminiscent of the issues caused by the
variation of ISIDA vectors in the SMI2ISIDA project where the variation and tendencies of the
most frequent fragments were unable to be captured and reproduced by neural network. It seems
difficult for these two architectures to link ISIDA descriptors to a different representation,

SMILES in the case of SMI2ISIDA or an abstract numerical vector in the case of this project.

A last-ditch effort to improve model performance included adding one more layer which
was unsuccessful and upgrading the optimizer of the model from Adam to AdaBelief. The
AdaBelief Optimizer is an improvement over the Adam Optimizer which is widely used in many
different types of Deep Learning models. The Adam Optimizer improves on the learning by
calculating moments which considers not only the current gradients but also the past gradients.
This method helps the model avoid local minima in search of the global minimum. Gradients
for the standard deviations, hidden biases, visible biases and weights were calculated using this
method instead of the simple gradient descent. The model was trained on the small training set

and compared to the best model trained with the Adam optimizer, also on the small training set.

Table 30. Parameters for the best model found in the initial analysis.

Hidden Hidden Number | Batch A B Start
Dimension | Dimension | of size Learning
1 2 epochs rate
15000 5000 5000 256 500 1.61 0.2

Parameters in Table 30 were found to be the best for the initial analysis and were therefore
reused to train the AdaBelief model. Without AdaBelief, the model achieved a Euclidian
distance of 4.01 on the training set. The addition of AdaBelief on the same network with the
same parameters lowered the final Euclidian distance to 2.22 (Table 31).

Table 31. RMSE at the end of training with and without the AdaBelief Optimizer for a model
with the same parameters on the small training dataset.

With Without
AdaBelief AdaBelief
2.22 4.01
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A fluctuation analysis was performed on the AdaBelief model and results were compared to the

initial model (Figure 64).

Results of the fluctuation analysis for the same parameters with and

without AdaBelief
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Figure 64. Proportion of results for a model with the same parameters with AdaBelief (left) and
without AdaBelief (right).

The addition of the AdaBelief optimizer improved the number of correctly reconstructed
descriptors from 85% to 90%, putting 20 more descriptors under the fluctuation threshold.
However, when fluctuation is plotted against occurrence (Figure 65), similar problems appear,

mainly that the most popular and important descriptors are miscounted.
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Fluctuation according to the occurence of each descriptor, colored by
initial standard deviation
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Figure 65. Fluctuation of each descriptor according to its occurrence in the training dataset.
Each dot is colored according to the standard deviation of the descriptor itself.

5.2.10 Conclusion

Neither of the separate models could reproduce their input with enough precision to be used
in a working MDBM. Latent vectors could potentially be optimized to obtain satisfactory
results, or at least increase the reconstruction rate with more time. It could have been beneficial
to work with a principal component transform of ISIDA descriptors vectors and the AE latent
vectors in order for the covariance matrix in equation (5.3) to better describe the distribution of
the input. Besides, ISIDA descriptors are counts, so a standard DBM based on integer could
have been attempted, for instance, by mapping the counts binary vectors. Defining more
relevant metrics and loss function to train these architectures in the context of generating
molecular structures could also be explored. Structural descriptors in general seem to be
problematic for neural networks to correctly handle. Methods based on manipulating them by
having to reconstruct or predict them like SMI2ISIDA and MDBM remain unsuccessful despite

many attempts.
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5.3 Stargate-GTM

5.3.1 Introduction

Stargate-GTM (S-GTM) is a tool based on Generative Topographic Mapping that allows
two different descriptor spaces to be connected. On the premise that the same data points are
present in both spaces, two manifolds can be trained simultaneously each of them satisfying
topological constraints from both datasets. The mapping of the two spaces is done by using the
GTM manifold of map 1 with patterns on map 2 and reversely. This procedure actually
emphasizes the consistency between the two data spaces which respective GTM are co-trained.
Here, one of the data space is the ISIDA descriptors vector space and the second it the AE latent
space — that can be readily decoded as SMILES strings. In this way, a compound represented
by an ISIDA descriptors vector is represented by the ISIDA-space GTM responsibilities. These
responsibilities are decoded using the manifold of the AE-space GTM in AE latent space vector.
These latent vectors would then be fed to a generative model to create compounds localized in

active areas of ISIDA space.

5.3.2 Methodology

Stargate-GTM

Stargate-GTM builds a model using two initial spaces instead of one like in the
conventional GTM. Two manifolds are fitted in the two different spaces and the individual
probability distributions are combined to obtain a joint probability distribution. The manifolds
are constructed so that each node in the 2D latent space is associated with the RBFs of both

manifolds.

During training, manifolds are optimized together using joint responsibilities. These

are obtained from the individual probability distributions for Space 1 and Space 2
respectively: p(tSP*° |x,, WSPacel, gspace1) and p(t5P2°e? |x,, WSPacez, gspace2)

computed using the two mapping functions from the manifolds Y5P4¢€1 and YSP%¢¢2 In the
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same way as regular GTM, individual responsibilities are initially computed during the

expectation step using the following equations:

rlﬁaacel — p(xkltflpacel’WSpacel’BSpacel) (5.16)

Spacel
P(tnp |Xk: wSpacel' ﬁSpacel)

Spacel — (5 17)
kn Ik{, p( tflpacel X, Wspacel ﬁSpacel) .
rk?aceZ — p(xkltflpacez,wsz)acez’BSpacez) (5.18)
Space2 __ p(tflpacez|XklwspaceZ,BSpace2)
- (5.19)

Ik<r p(tflpacez |Xk , WSspacez ﬁSpaceZ)

Combined responsibilities Ry, are then computed as follows:

p(tipacel Xy, WSpacell ﬁb‘pacel)wsl’“c81 % p(tflpacez Xy, WSpa092’ ﬁSpaceZ)WSpacez

Rkn - wSpace2 (520)
Y p(tipacel|Xk,WSpacel,ﬁSpacel)WSpacel * p(tipacez|Xk’wspace2'[;5pace2)

WSpacel Space?2

and w are user-defined weight parameters governing the importance of each
probability distribution. They are real values ranging from 0 to 1 and their combined values
always equal to 1 so that: w5P4¢€2 = 1 — ySPacel The shapes of the manifold are adjusted

until convergence similarly to a simple GTM.

Data Preparation

5000 compounds were randomly selected from ChEMBL23 and encoded into their
corresponding ISIDA vectors (sequences of 2 to 7 atoms, [-A—2-7) and latent vectors. The
autoencoder model used to generate the latent vectors was the same that was previously used
in the MDBM project. Descriptors were filtered according to standard deviation (2% of max).
This resulted in 421 remaining ISIDA descriptors (out of 6520 initially) and 133 remaining

latent descriptors (out of 256 initially). Both these datasets served as Stargate’s framesets.
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Stargate-GTM Training

As previously explained, one of the important parameters for this analysis are the user-

ISIDA

defined weights w and wl4TENT ‘Depending on these values, the impact of one of the two

spaces can be more important than the other. The most natural idea would be to give equal

ISIDA _

importance to both data spaces with w LATENT = (.5. However, there is no indication

that this would ensure good results, or that other combinations may not perform better.
Therefore, 19 different models were trained, in which only the weights parameters fluctuated

while other parameters were set to values known for ensuring a viable training process. The

ISIDA LATENT ;

values for w and w in each experiment, and other fixed parameters are reported in

Table 32.

Table 32. Weights distribution for all experiments with other fixed GTM parameters.

Exp. N° | wSIDA ) LATENT | Expy N© | wISIDAj, LATENT | Exp N | yy/SIDA}, LATENT
1 0.05/0.95 8 0.40/0.60 14 0.70/0.30
2 0.10/0.90 9 0.45/0.55 15 0.75/0.25
3 0.15/0.85 10 0.50/0.50 16 0.80/0.20
4 0.20/0.80 11 0.55/0.45 17 0.85/0.15
5 0.25/0.75 12 0.60/0.40 18 0.90/0.10
6 0.30/0.70 13 0.65/0.35 19 0.95/0.05
7 0.35/0.65
- |
Number of RBFs Number of Nodes RBF width Regularization
225 1600 0.5 0.63

After training, the manifolds were resampled using the GTM ReSample tool to a size of
625 nodes since 1600 nodes was an unnecessary large number for displaying such small spaces.
During resampling, the training data was projected on the manifold and 2D map coordinates
were calculated. Finally, density landscapes for both manifolds were created using the

resampled manifold and the training data.
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Hilbert-Schmidt Independence Criterion

The Hilbert Schmidt Independence Criterion!'®*! (HSIC) is value used to measure the
independence between two multivariate distributions expressing different modalities. In such
situation, only the kernels, measuring the similarity between instances sampled from each
distribution can be compared. This allows to account for potential non-linear dependence
between the tested distributions. Simply put, the output of the calculation will tend towards 0 if

the two spaces are independent, and 1 if they are statistically dependent.
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5.3.3 Results

Each couple of datasets was projected on its corresponding manifolds and the resulting

density landscapes are regrouped and compared per experiment in Table 33.

Table 33. Comparison between density landscapes for ISIDA (left) and latent (right) datasets
for each experiment. Only the 5000 training compounds were projected. All density scales are
set to the same values and range from 0 (dark blue/white) to 80 (red).

E ISIDA LATENT E ISIDA LATENT
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11

13

15

17

19

The comparison of density landscapes for all experiments shows several tendencies.
From on map to the other, it is often possible to recognise patterns that are smoothly modified
as with weight parameter value. The chemical content of these patterns is stable: the same
molecules are found in the map in a consistent manner from one map to the other, with a small

change of the weight value.

Besides, the effect of the co-training is visible, as pattern structures from the ISIDA

maps can be retrieved, in an altered version in the AE maps and reversely. This is most visible
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between the experiment 3 and 17, with a weight parameter with all values of the weight

parameter in the range [0.15, 0.75].

ISIDA landscapes often present areas of high density (80+ red zones) scattered around
the map while those high-density zones are a lot rarer in latent landscapes and may only be
observed in experiments 10, 12 and 14. This may indicate that AE latent vectors tend to be more
spread out in terms of probability distribution compared to ISIDA vectors. White zones
corresponding to empty areas of chemical space are more common and well defined in ISIDA

landscapes, compared to the AE latent density landscapes.

These differences in density distribution mean that, visually, ISIDA and latent
landscapes in each experiment do not share obvious similar features. In a more ideal situation,
when the two spaces represented are topologically similar, the Stargate-GTM densities can look
very much alike. To illustrate it, two example datasets from ChEMBL were used containing the
same 1263 compounds with two different sets of ISIDA descriptors (dimensionality 280 and

637). The comparison of the resulting landscapes is shown in Figure 66.
D) S ¥

Figure 66. Density landscapes created using StargateGTM for the example datasets. Both
density scales are the same and range from 0 (dark blue/white) to 45 (red).

The comparison of the two example datasets shows that both density distributions are

almost the same. All empty areas and low-density areas are replicated in both landscapes and

164



the high-density area has the same shape and density value in both maps. In comparison to this

example, the results obtained with ISIDA, and latent vectors are visually disappointing.

In order to map one space to the other, it is expected that the responsibilities from one
space can be decoded using the manifold of the other space. Hence, the localisation of a
compound in one map, should correspond to the location of related compounds in the second

map.

As an initial experiment to verify this, 9 random molecules were selected and their 2D
coordinates in the ISIDA and latent maps from Experiment 3 were extracted. Experiment 3 was
chosen because it seemed to be the most similar in terms of visual comparison. The same
process was done for the example datasets combining two ISIDA descriptors sets. Results are

shown in Figure 67.

(i) ISIDA / LATENT (ii) ISIDA/ ISIDA
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Figure 67. Positions of 9 randomly selected compounds for the ISIDA / LATENT S-GTM (1)
and ISIDA / ISIDA S-GTM (ii). Each molecule has 2 points of the same colour corresponding
to their projection in the two spaces (ISIDA/LATENT and ISIDA/ISIDA), which are linked for
visualization. The graphs are squares representing the map area. Coordinates range from -1 to
1 on both axes.

Most compounds extracted from the ISIDA/LATENT S-GTM have highly different
positions on the map except for arguably three (orange, yellow and dark blue). On the other
hand, only 2 of the randomly selected compounds have different positions on the ISIDA/ISIDA

S-GTM maps. This emphasizes that compounds do not share close positions in the

ISIDA/LATENT S-GTM.
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This observation is systematically studied in Figure 68. The Euclidean distance d =

V atent — Xisiaa)? + Diatent — Visiaa)? between the position of a molecule on one map and
the position of the same molecule on the other map is calculated for all compounds in the
dataset. The distribution of the distances is reported for each pairs of maps obtained using the
various values of the weight parameter. For comparison, the distance for the ISIDA/ISIDA
related maps and when association the coordinate of a compound on the ISIDA map to a random

compound position in the AE map.

Distribution of Euclidian distances for all weight combinations and ISIDA/ISIDA S-
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Figure 68. Box plots generated for the distribution of Euclidian distances between the
coordinates of the same compounds on the two maps of S-GTM. Blue box plots correspond to
ISIDA/LATENT S-GTMs with different combinations of weight parameters (0.05/0.95 means
that w!S'P4 = 0.05 and w!4TENT = (0.95. The green box plot shows the results for the
ISIDA/ISIDA distances, and the orange box plot shows the results for the randomized ISIDA-
ISIDA experiment.

Figure 68 shows that in terms of Euclidean distances between the same compounds,
ISIDA/LATENT S-GTMs perform much worse than the example ISIDA/ISIDA model and are
comparable to a random situation. A compound in the ISIDA map is usually localized on the

map: the responsibilities are concentrated on a small number of nodes. The AE maps encode

the molecules in responsibility patterns that cover large portions of the map. This reflects the
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differences in the dimensions of the two chemical spaces and the significant differences
between the two datasets distributions of pairwise distances that can hardly be reconciliated.
Thus, the comparison of the projections of the compounds on the maps is not very relevant and
can be misleading. Yet, it reflects strikingly the low correlation between the AE descriptors
space and the ISIDA descriptors space. The fragment-oriented interpretation through ISIDA
descriptors (or fragment descriptors in general) is very different from the interpretation a
Seq2Seq architecture makes of a SMILES string. These two different “interpretations” are more
radically different than the difference between for example, sequence-based fragments or
centroid-based fragments since they both use molecular fragments. The complexity of the
mathematical equations governing the calculations of latent vectors makes it extremely difficult
to understand exactly in essence what information is stored inside, however the results of this
analysis suggest that they may not describe chemical space in the same manner as a classical

fragment-based approach.

Hilbert Schmidt Independence Criterion

To confirm that hypothesis and have a better understanding of the issue, the
“compatibility” or dependence of the two descriptor spaces should be measured. For Stargate-
GTM to be more relevant, the same similarity principles should apply in both chemical spaces.
If this is not the case, then the basic construction of the spaces are so different that linking the
two hardly seems achievable. The normalized HSIC was calculated for the ISIDA/LATENT
datasets and the ISIDA/ISIDA datasets and are reported in Table 34 using a cosine kernel.

Table 34. Results for the HSIC calculations for both datasets in their respective spaces
ISIDA/LATENT | ISIDA/ISIDA

0.159 0.642

The HSIC value between the ISIDA/LATENT descriptors is quite low compared to the
ISIDA/ISIDA value. This means that ISIDA vectors and LATENT vectors are almost
completely independent. Since different principles are applied when constructing the respective

chemical spaces, their organization is completely different.
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For the sake of comparison, the HSIC values (the “compatibility” of descriptor spaces)
were calculated among different ISIDA descriptors and the AE latent descriptors. Results are
shown in Table 35.

Table 35. Values of HSIC calculated among a set of simple ISIDA descriptors and the latent

space. IA(2-n) means sequences of atoms of length 2 to n. [AB(2-m) means atom-centered
fragments with a radius of 2 to m atoms.

Latent 1A(2-2) IA(2-3) 1A(2-4) 1A(2-5) IA(2-6) 1A(2-7) IAB(2-2) | IAB(2-3) | IAB(2-4)
Latent 1
1A(2-2) 0,102 1
1A(2-3) 0,106 0,970 1
1A(2-4) 0,099 0,926 0,980 1
IA(2-5) 0,099 0,889 0,889 0,989 1
1A(2-6) 0,098 0,859 0,859 0,968 0,993 1
1A(2-7) 0,096 0,838 0,838 0,950 0,981 0,996 1
TIAB(2-2) 0,074 0,799 0,799 0,798 0,781 0,762 0,747 1
TIAB(2-3) 0,057 0,364 0,364 0,428 0,457 0,467 0,468 0,591 1
IAB(2-4) 0,06 0,153 0,153 0,201 0,233 0,254 0,267 0,288 0,662 1

All sequence-based chemical spaces have highly correlated descriptor spaces which is expected
since the smaller descriptors spaces are contained in the bigger ones so that [A(2-2) € [A(2-3)
€ IA(2-4) € ... € IA(2-7) and the combinations of smaller fragments can manage to describe
bigger fragments. Interestingly, atom-centered fragments of length 2 share very high HSIC
values with both longer atom-centered fragments and sequence-based fragments. Due to the
short nature of these descriptors, they share many fragments with sequence-based descriptors
which is not the case for longer atom-centered fragments. This also explains the rather low
HSIC values between IAB(2-2) and other IAB descriptors (0,591 and 0,288 for IAB(2-3) and
[AB(2-4) respectively). More importantly, we see that latent vectors have very low HSIC values
with both sequence-based and atom-centered descriptors. This confirms that the space of latent
vectors is not constructed in the same way at all compared to fragment-based descriptors.
Interestingly however, the HSIC values are slightly higher between latent vectors and sequence-
based descriptors (around 0,1 for all instances of sequence-based fragments compared to 0,06-
0,07 for atom-centered fragments). This difference, although very slight makes sense in the
context of the interpretation of sequences of characters by a neural network. In the case of a
carbon chain for example, the sequences of atoms or sequences of characters would describe
the same molecule. The difference then would come from the interpretation of ramifications

and cycles in the molecule.
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5.3.4 Conclusion

The application of Stargate-GTM was not sufficient to create a link between the latent
space of an autoencoder and a chemical space based on fragment-based structural descriptors.
The basic principle of the method, which is that the same molecule should have comparable
responsibilities on both maps was not observed. Although the projections of the compounds on
both maps differ, it is possible that the responsibilities of the AE map could overlap with the
responsibilities of the ISIDA. This analysis is left for future work. Yet, this means that an ISIDA
vector would be translated in a complicated responsibility pattern in the AE space, that could
be translated in a potentially diverse set of chemical structures resulting in a loss of the control

of the generated chemical structures to sample a desired region of the chemical space.

These results did however confirm that the interpretation of chemical structures through
artificial neural networks and molecular descriptors is completely different and leads to
completely different chemical spaces that follow different principles and neighbourhood
behaviours. These different organizations suggest an explanation of the difficulties met so far
while designing models able to generate chemical structures corresponding to a given molecular

descriptor vector.
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5.4 Combination of ISIDA landscapes

5.4.1 Introduction

Since autoencoder latent space and ISIDA descriptor space behave technically like two
independent multidimensional variables, method seeking to find a correlation or dependence
between the two cannot be applied. This makes the task of generating compounds with selected
properties and structural features through neural networks and cartography challenging.
“Simple” solutions like an artificial neural network or Stargate-GTM could not be used for this
application. For this reason it has been proposed to relax the constraints in the definition of the
targeted region of an ISIDA chemical space to be sampled. This definition is based on
Generative Topographic Mapping, and uses a combination of several ISIDA landscapes to
create a “query” vector containing desirable properties, which can then be used with a neural

network to generate interesting compounds.

5.4.2 Methodology

The first part of the process was to select a biological target to create an activity

landscape, then select an active zone in which molecules should be generated.

Data

The CHEMBL3717 (Hepatocyte growth factor receptor) target was selected for this
project. 4176 compounds with known activities were extracted from ChEMBL24 and encoded
into ISIDA descriptors using IA—2-7 fragmentation schemes (sequences of atoms, length 2 to
7). 6520 descriptors were filtered down to 728 by removing all descriptors with a standard
deviation of less than 2% of the maximum. An activity landscape of the ChEMBL3717 target
based on the previously trained Universal Map 4 manifold was created, as well as 728 descriptor
value landscape on which the entire ChEMBL24 database was projected and each of the 728

maps were coloured according to the value of one descriptor.
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An activity landscape of the ChEMBL3717 was also created based on the latent vectors
of a previously trained Autoencoder model. Additionally, 728 landscapes have been prepared

on the AE GTM, one for each of the ISIDA fragment descriptors

Active zone . l Active
of interest o | B

(1) . Il N (1)

- - > Inactive

l 10 Presence of
' actives

(111) i (1v)

U Absence of
actives

Figure 69. (1) Activity landscape for the ChEMBL3717 target based on the Universal Map 4
manifold. The circled area shows the most clearly separated, dense active area which was
selected as the area of interest. The central node in the circle and the 8 nodes surrounding it
were used to generate the “query” vector. (ii) Activity landscape for the ChEMBL3717 target
based on the latent vectors generated by an autoencoder model. (ii1) Landscape based on the
Universal Map 4 manifold where all compounds from ChEMBL24 were projected and coloured
by the value of one descriptor. This map is one of the 728 generated and shows the occurrence
of the CCCCN descriptor. (iv) Density landscape where only active compounds against
ChEMBL3717 were projected. The darker the area, the denser in terms of actives it is.

Figure 69 shows clear separated active areas on the ChEMBL3717 ISIDA-based. One
of these areas was selected as shown on the figure and 9 nodes were isolated as the target
location. Additionally, the min and max values of the 728 “single descriptor value” were

recorded from the compounds localized in those 9 nodes (an example is shown in Figure 69,
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(ii1)). This resulted in 728 ranges of descriptor values corresponding to the selected active zone

for the ChREMBL3717 target.
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Figure 70. Creation process of the “query”. Each of the 728 descriptors landscape is checked
on node 273 and surrounding (9 nodes in total) for its descriptor value. Maximum and minimum
values of each descriptor in the 9 nodes are extracted which gives a range for a descriptor in
this area of the map. The combination of all 728 ranges gives the query, which corresponds to
the potential values of each descriptor in the active area. The query indicates which values the
descriptors should have so that the compound is projected into the active area.

As is illustrated in Figure 70, the query gives the values that the descriptors should have
if a compound were to be projected in that area. The query cannot be used directly to generate
molecules unfortunately; however, it can be linked to the latent space of an autoencoder to try
and identify a zone which would have the same descriptor values. If such a zone can be
identified, then compounds corresponding the query can be generated. Therefore, the content
of each node of the AE latent vectors is checked for its compatibility with the query range of
values for the ISIDA molecular descriptors. Each node of the AE latent vectors landscape is
compared to the range of the corresponding descriptor, resulting in a “correspondence” vector.

This vector has the same dimension as the number of nodes of the latent landscape and assigns
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a 1 to nodes which values correspond to the given descriptor range and a 0 in the other case

(Figure 71).

Corresponding range
(Descriptor 1) : 4 -

Node 1
I — 3 — 0
Node 2
— " — ]
Node 3
e — ]
Node 4
— 00— 0

Descriptor 1 Node 1225
s o

Descriptor value Correspondence

Latent | ce in each nade to query

Figure 71. Example of creation of a “node correspondence” vector for a latent landscape
representing a particular fragment. Each node is probed for its descriptor value which is
compared to the query for that fragment. If the node fits the query, then vector will get a one,
else it will be a 0.

Descriptors which had a query range of (0 — 0) were removed which left 71
“meaningful” descriptors: for each node, it contains a 0 if the node is not compatible with the
range of the molecular descriptor and a 1 otherwise. Adding the 71 “node correspondence”
vectors results in a single “cumulated node correspondence” vector. With this vector, one can
locate the nodes of the latent landscape having the highest correspondence to the query ranges.
The node with the highest correspondence was selected and used as a seed to generate chemical

structures.
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5.4.3 Results

25
20

15

Figure 72. Latent landscape coloured using the cumulated “node correspondence vector”

generated from the 728 LATENT landscape. Note that only 71 meaningful descriptors remained
after filtering. The maximum is found in node 565 with 34 matching descriptors.

25

)
=]

Figure 73. Density landscape for the 1662 generated compounds projected on the ISIDA
manifold. As we can see, projected compounds are not near the wanted node.

As shown in Figure 72, one specific area of latent space had the biggest correspondence
to the active area in ISIDA space. On average, the correspondence any given point on the
landscape was about 21-25%. The red area on the figure has about 48% correspondence which

is twice bigger. 10.000 vectors from this node were therefore sampled (node 565) which gave
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1662 valid SMILES. These SMILES were reprojected on the initial ISIDA landscape to see if
they were in the correct area of ISIDA space (Figure 73).

The ISIDA molecular descriptors of the generated compounds were computed and
projected on the ISIDA GTM. However, it appeared that the generated compounds did not cover
the initially selected region, the node 273. The selected node has a density equal to 0 and the
projections are not in the active area. The compounds with the highest rate of correspondence
to the query (about 50%, 35 descriptors out of 71) had strange and chemically non-sensical
structures which could be filtered out (Figure 74). Meaningful chemical structures were also

obtained but with a lower correspondence rate. (Figure 75)

Figure 74. Three of the compounds with the highest correspondence to the query. (35, 34 and
33 corresponding descriptors from left to right)

CHs NH

o N -

Figure 75. Two examples of more feasible and stable compounds, which had 11 matching
descriptors (left) and 14 matching descriptors (right).
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5.4.4 Conclusion
The more complex approach of the “query” vectors using a combination of ISIDA and
latent landscapes was not successful either. The method seems to run into the same issues as
previous methods, especially Stargate-GTM. A complete incompatibility of spaces, which
makes it impossible for two zones to be similar in terms of molecular structure. We observed
that the generated compounds with reasonable structures had very few descriptors in common

with the query vector.
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5.5 Conditional Variational Autoencoder (ACoVAE)

Linking the latent space of an Autoencoder with a separate descriptor space could not
be performed by training the Autoencoder space separately. Vanilla Autoencoder latent space
based on SMILES string has a completely different latent space construction and structure than
structural descriptors, making it impossible to simply create a bridge between the two.
However, by imposing the link during the training of the model using condition vectors, it is

possible to force the neural network to adapt to a different set of descriptors.

In this work, a Conditional Variational Autoencoder was developed containing 3

important features:

1) A GRU-based variational encoder encodes SMILES into latent vectors.

i) A descriptor vector corresponding to the inputted SMILES string is transformed into
a condition vector and concatenated with the latent vector obtained from the VAE.

1i1) A powerful attention-based decoder translates the concatenated vector into a

SMILES string.

With a model capable of generating compounds from ISIDA descriptors, the goal was to
select the best candidates for the generation of actives against the ChEMBL1862 target. Three

methods were used:

a) A GTM based on descriptors from a Universal map (force-field type colouring of
sequences of atoms) was built and coloured according to the activity against the
ChEMBL1862 target. The zones with the highest concentration of actives were selected
and the corresponding ISIDA vectors were used as candidates.

b) A Genetic Algorithm based on an SVR model predicting the activity of a descriptor
vector against ChEMBL1862 was used to find the optimal candidates.

c) The descriptor vector of the best known active against ChREMBL1862 was used as a

candidate.

All three candidate selection methods returned “seeds” which were used to generate several
thousand compounds, which were screened for their activity potential by pKi calculations

using an SVR model, pharmacophore search and docking.
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ABSTRACT: In order to better foramize it, the notorious inverse-
QSAR problem (finding structures of given QSAR-predicted
properties) is considered in this paper as a two-step process
including (i) finding “seed” descriptor vectors corresponding to
user-constrained QSAR model output values and (ii) identifying
the chemical structures best matching the “seed” vectors. The main
development effort here was focused on the latter stage, proposing
a new attention-based conditional variational autoencoder neural-
network architecture based on recent developments in attention-
based methods. The obtained results show that this workflow was
capable of generating compounds predicted to display desired

activity while being completely novel compared to the training database (ChEMBL). Moreover, the generated compounds show
acceptable druglikeness and synthetic accessibility. Both pharmacophore and docking studies were carried out as “orthogonal” in
silico validation methods, proving that some of de novo structures are, beyond being predicted active by 2D-QSAR models, clearly
able to match binding 3D pharmacophores and bind the protein pocket.

1. INTRODUCTION

Predictive quantitative structure—activity/property relations
(QSAR/QSPR)' are regression or classification models that
are able to compute, upon input of a molecular structure, an
estimate of the activity/property value the compound is
expected to display. One may formulate the above as activity =
f(structure), where function f needs first to be calibrated in
order to have f(structure) returning accurate approximations of
known activity values. If the above holds, then inverse mapping
would allow to retrieve the “optimal” chemical structure(s),
maximizing the expectancy of having an activity matching the
input argument, that is, the desired activity level needed to
achieve success in the current research project.

Since the first pioneering linear regression model by Hansch
and Leo,” procedures to “fit,” e.g.,, machine learn f{structure),
have progressed to the point of routine calibration of nonlinear
models based on a plethora of machine learning methods
(support vector machines, partition trees, neural networks—to
cite only the most popular3_7).

Typically, the structure argument in f(structure) is the
molecular graph with vertices colored by chemical elements
and edges colored by bond types. Since f(structure) returns a
real number, it is obvious that the information content of the
input molecular graph could first be translated in this process
into some purely numerical representation—a vector of N real
numbers D known as the “molecular descriptor vector.” In
classical QSAR, the two formal steps, descriptor calculation D

© 2022 American Chemical Society
5471
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= @(structure) and model fitting, activity = u(D) are clearly
separated into successive steps, and hence activity = u(6-
(structure)) = f(structure). Hence, the inverse QSAR problem
may be conceptualized as a succession of two formal steps:a_10

1. finding descriptor vectors (“seed vectors”) matching the
desired activity level: D = p~!(activity)

2. finding the structures that correspond to the D above:
structure = 6~'(D)

Since u: RY = R, searching extremal points of ,u(]_j) is a
standard optimization problem, and albeit solving may prove
challenging when y is highly nonlinear or if N is large, this step
of inverse QSAR is conceptually an easy one.

By contrast, step 2 is both technically and conceptually
hard—to the point that, until recently, the typical way to
discover molecules with activity values matching a desired
activity level is to enumerate candidate structures and apply, to
each, the QSAR model until all input candidates were herewith
“virtually screened'""'*” or until enough events f(structure) ~
desired activity occurred, e.g., “virtual hits” were found. Virtual
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screening (VS), however, is limited by the choice of candidate
structures either from public/commercial databases or from
user-designed virtual libraries. In contrast to systematic VS,
sampling techniques of chemical structures con51der mo[ecular
structure as evolvable."*™* This is de novo de51gn, ** which
fundamentally differs from VS by the fact that structures are
not a predefined library but are generated and/or modified “on
the fly” by some automated molecular structure editor.

The recent advent of deep neural networks (DNNs), able to
extract information from arbitrary “brute” data and herewith
learn to recognize patterns, had a major impact in the field of
QSAR.”*"** The idea of DNNs is mimicking a human brain in
which neurons communicate by generating and passing signals.
Along with many applications of DNNs, Rana et al.”” reviewed
the application of the simplest example of DNN models—
multilayer perceptron (MLP)—to disease diagnostics. MLP
was also shown as a method to build successive QSAR
models.*” Later, parsing a chemical structure given in the form
of a SMILES string by DNNs using the natural language
processing technique was proposed as a new approach for
QSAR model training.'gI This success was not the last, and
soon graph convolutional networks were proposed as a
replacement of recurrent neural networks (RNNs) in QSAR
modeling.‘u As the research domain is in full effervescence, an
exhaustive overview of already envisaged DNN architectures is
beyond the scope of this article. The reader is encouraged to
access the most recent reviews.*”

Some DNN architectures, namely, autoencoders, relate
input structure (simply rendered as SMILES™ ) to activity
within a unique computational framework, apparently
bypassing the need for molecular descriptors in QSAR. De
facto, SMILES string encoder architectures first translate
structure to a “latent” real vector L, which the associated
decoder would use to regenerate the SMILES. Thus, I is
nothing but a machine-generated molecular descriptor vector.
Therefore, the decoder is a_deep-learning-based model based
on latent space descriptors L implicitly allowing for a solution
to the inverse problem.

So far, the majority of QSAR models are still based on
classical, human expert-designed descriptors. This is first due
to historical reasons, latent space descriptors L being very new.
However, expert-designed descriptors D may still have a key
advantage over the former g’such as atom order invariance,
which may be an issue in L spaces—and their support of
relatively small training sets in contrast to “big data”-dependent
DNN approaches). So far, only a few attempts to convert
arbitrary descriptor space D back to structure have been
described. One work™ reports two distinct RNN-driven
approaches labeled PCB (physchem-based) and FPB (finger-
print-based). The former inputs a vector of predicted physico-
chemical properties (including a QSAR-predicted bioactivity
value) to generate SMILES strings of compounds matching
these properties. The latter uses Morgan fingerprints for input.
Similarly, a transformer architecture has been implied to
“translate” various classical chemoinformatics fingerprints back
to structure.”® Both works can be considered as examples of
“hard” inverse QSAR approaches and were successfully used to
generate structures in the neighborhood of known actives.
However, they stopped short of coupling “easy” and “hard”
QSAR problems in order to investigate how their approaches
would cope with input vectors corresponding to optima of the
QSAR landscape, not to already known molecules.
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For the above reasons, the current contribution wishes to
explore the feasibility of a genuine solution for the inverse
QSAR problem for models based on classical, expert-defined
molecular descriptors. The core of this work consists in the
development of an attention-based conditional variational
autoencoder (ACoVAE) based on transformer architecture.
Given the seed vectors of ISIDA fragment descriptors, the
ACoVAE generates corresponding molecules.

We have used two types of in-house generated QSAR
models of ABL tyrosine kinase 1 (CHEMBL1862) activity:

1. Support vector regression (SVR) models for the
inhibition constant (pK;) using D = ISIDA*"*® circular
fragment counts. Seed vectors prepared with the help of
a genetic algorithm used to sample D space with
predicted pK; value as fitness.

Additionally, the descriptor vector of the molecule
possessing the highest affinity (“lead molecule” LM) from
the CHEMBL1862 set was also used as a seed vector.

2. Generative topographic mapping (GTM)-based predlc-
tive activity class landscapes using the * umversal map”’
based on D = force field- -type, colored®® ISIDA atom
sequence counts. Sampling of D was performed around
the coordinates of active-enriched nodes of the land-
scape.

The inverse QSAR problem is considered solved if (i) the
obtained structures are valid and chemically feasible and (i)
the obtained structures are submitted to classical forward
QSAR model prediction and return conveniently high activity
values.

Here, the ultimate goal was to obtain de nove structures that
are perceived by a QSAR model to be highly active—whether
they really are active or not is a question of underlying model
quality, not of the quality of the inverse QSAR approach.
Nevertheless, an alternative orthogonal in silico validation of
these structures as ligands of the considered targets has been
performed by pharmacophore analysis with the ngandScout
program and by docking using both LeadIT"* and S4MPLE"*

approaches.

2. METHODS

2.1. ACoVAE. The proposed ACoVAE transformer model
is shown in Figure 1. It consists of three main parts:

(1) During the training procedure, a GRU-based encoder
parametrizes a random latent vector distribution based
on the training set SMILES. Hyperspherical distribution
with zero mean and variance equal to 1 is used as target
latent vector distribution;

(2) A condition vector encoder uses a grouped linear
transformation (GLT) layer™ to transform initial
descriptor vectors to a conditional latent vector;

(3) A standard autoregressive multihead attention decoder™
translates from condition and random latent vectors to
SMILES. A more detailed architecture of the network is
given in Supporting Information, Figures S1 (training
stage) and S2 (inference stage). During the training, a
SMILES strings and their corresponding descriptor
vectors are used to train the ACoVAE. A reparamete-
rization trick for latent vector sampling is used to train
the network end-to-end. In the inference stage, the latent
vector is sampled from a prior (0, 1) hyperspherical
distribution, and a desired descriptor vector is used as

https://doi.org/10.1021/acs.jcim.2c01086
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Figure 1. General scheme of the ACoVAE architecture used in this
study. The GRU-based encoder (top left) parametrizes SMILES into
latent vectors following a hyperspherical distribution, which is used
upon inference for random sampling. The descriptor vector which is
used as a condition in the generation is embedded by a GLT layer
(top right). Autoregressive transformer is used to decode random
latent vectors and combined conditions into SMILES strings. A
detailed representation of all three networks is given in the Supporting
Information.

condition. Based on the random and condition vector,
the decoder generates a wanted SMILES. Notice, that
alternative SMILES for a given condition descriptor
vector can be generated both (i) by running inference
stage with different random vectors sampled from a prior
distribution and (ii) by sampling different text strings
using categorical sampling from token probabilities
predicted by the transformer for a given random and
condition vector.

The proposed architecture of the ACOVAE transformer was
inspired by the one proposed by Lin et al.*® In a similar way, a
random latent vector is fed as a START token. However,
substantial changes were introduced which helped us to
achieve better performance. In our architecture, a random
latent vector is encoded directly using a GRU, while Lin et al.
used a trick with a priori undefined random distribution
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parameterized by a separate network. Additionally, a hyper-
spherical uniform distribution was preferred to a standard
Gaussian one because during the tuning stage, the former
performed better. A von Mises—Fisher distribution is
commonly used for sampling from hyperspherical uniform
distribution”” with the reparameterization trlck However, we
found that the power spherical distribution™® used instead of
von Mises—Fisher one allows a speeding up of the learning
process without loss of the performance. Application of a GLT
transformation layer’’ better translates the descriptor vector
into the internal representation used by the decoder network
than MLP. Finally, inspired by the GELU approximation,”’
new activation function FTSwishG resulted from some
modifications of the previously reported FTSwish®' was used
throughout the ACoVAE network

FTSwishG = RELU(x) X sigmoid(1.702x) — 0.2 (1)

According to our tests, it gives better results compared to the
ReLU, GeLU, and FTSwish activation functions. In such a
way, our ACoVAE transformer architecture is a novel one,
having only a few in common with the one proposed by Lin ef
al*® The designed architecture is implemented using the
TensorFlow framework and can be readily retrained for other
descriptor types. It is available on our GitHub storage https://
github.com/Laboratoire-de-Chemoinformatique/ACoVAE.
2.2. SVR Models. A series of ligands for ABL tyrosine
kinase (CHEMBL1862) from the ChEMBL v.23 database was
standardized using a protocol reported by Sidorov et al.’” SVR
models for thermodynamic instability constants of protein—
ligand complexes (pK ) were generated using the evolutionary
libsym model tuner,”” which supports selection of the best
suited descriptor space yielding to best performance models as
a key hyperparameter. The best-suited ISIDA fragmentation
schemes were defined together with the SVR-specific
parameters (kernel type, cost, 7, etc.) optimizing model quality.
The models were built on a training set containing 739
molecules and validated on a test set of 82 molecules. The test
set data were collected from recent publications posterior to
model training. The best model relies on IIRAB-1-3 ISIDA
fragment count descriptors (7372 atom-centered fragments
with a radius of 1 to 3 atoms with restricted fragmentation)
and the Gaussian kernel option. It displayed a reasonable
performance in cross-validation (R? = 0.79 and RMSE = 0.70)
and on the test set (R* = 0.80 and RMSE = 0.67).
Computation of the “optimal” seed vectors has been
confided to an evolutionary heuristic browsing through the
D space in search of vectors maximizing computed pK; values.
The “chromosome” of the approach is a 20-dimensional
integer vector in which loci may contain either zero or a
number denoting a training set compound. The vector
encoded by such a chromosome is taken as the mean (D) of
descriptor vectors of the training set compounds mentioned in
the chromosome (a compound may be mentioned several
times in different loci, which amounts to increasing its weight
in the computed average). The fitness score of the
chromosome is nothing but the corresponding pK; =
SVR((D)) to be maximized. Hence, the evolutionary algorithm
is bound to find, by applying cross-over and mutation
operators, chromosomes enumerating optimal sets of training
set compounds, with the property that the centroid of the
descriptor vector of the set is predicted to correspond to high
affinity values. The procedure was applied for each SVR model
for 150,000 generations. Sampled “high-affinity” (D) values

https://doi.org/10.1021/acs.jcim.2c01086
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were used as the condition vector for the ACoVAE decoder.
Details about evolutionary model building can be found in our
publication,”” which also provides instruction on how to obtain
and download that tool. Here, it was used with default setup,
meaning 12-fold-repeated three-fold cross-validation (with
steadily reshuffled cross-validation tiers at every iteration).
The model fitness score was the mean cross-validated
determination coefficient (Q?) penalized by 1 standard
deviation, fitness = (Q*) — o(Q%).

2.3. GTM Landscape-Driven Models. GTM is a
dimensionality reduction technique developed by Bishop et
al.>*** The method performs a nonlinear projection of an N-
dimensional space onto a 2D latent space. The former
corresponds to the descriptor space, where each molecule is
defined by an N-dimensional molecular descriptor vector. The
2D latent space corresponds to a manifold which is defined by
a set of radial basis functions and evaluated on sample points
called “nodes.” Simply put, the manifold can be seen as a
rubber band that can be folded in N-dimensions during
training to fit the data distribution in a way maximizing its
coverage of the space zones populated by relevant items (the
“frame set”). Any compound can subsequently be projected on
the manifold. For visualization purposes, the manifold is
“unfolded” into a 2D plane, organizing the nodes into a square
grid. GTM is a probabilistic method, meaning that compounds
are fuzzily projected on all nodes of the manifold. As such, an
item is associated with (“resident in”) each node with different
probabilities. The sum of the probabilities—technically named
responsibilities—over all nodes of the manifold equals 1. In
practice, this means that one compound will be defined by a
responsibility “pattern” potentially involving several nodes
instead of being confined to one node only. When projecting
compounds of experimentally known properties, neighborhood
behavior™ (NB) compliance implies that residents of the same
node should have related property values, so that the node may
be seen to “represent” that local average property, and
“colored” accordingly. Resulting property “landscapes” are
nothing but NB-driven QSAR models: the property of any
external item can be predicted from the “local color” of the
landscape zone onto which it is projected. In this work, the
fuzzy class landscapes (monitoring the likelihood to classify as
“active” with respect to a target) were employed. They were
based on the previously published®® universal map #1
(UM1)—the first of a series of GTMs parameterized (using
ChEMBL data), such as to maximize their “polypharmaco-
logical competence,” that is, their ability to host a large battery
of highly predictive fuzzy class landscapes associated with
diverse biological targets. Note that landscape-based QSAR
models are parameter-free (the landscapes are built by
projection of existing structure—activity data on the given
manifold in an unsupervised manner). Therefore, landscape-
based QSAR models are implicitly available as soon as the
supporting structure—activity data are available.

The structure—activity data set associated with the
CHEMBLI1862 target was projected on the manifold of the
first universal map UM1°® and was seen to “spontaneously”
segregate into zones populated predominantly by “actives” and
“inactives,” respectively. This map was built based on ISIDA*
atom sequence counts with a length of two to three atoms
labeled by CVFF force field types and formal charge status (1A-
FF-2-3-FC). Recall that construction of activity landscapes on
a given GTM manifold is not supervised but a purely
deterministic procedure. The separation proficiency of the
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considered manifold was obtained by repeated leave-1/3-out
cross-validation, in which iteratively two-third of the items are
projected on the map in order to “color” the activity class
landscape, whereas the remaining one-third of compounds a
posteriori projected onto that landscape and have their activity
classes assigned on basis of their residential zones in the
landscape. Cross-validated balanced accuracy was 0.78,
significantly above the randomness threshold of 0.5. The
structure—activity dataset is herewith proven to be robust and
modelable by both machine-learning (SVR) and neighborhood
analysis-based mapping.

Activity class landscape for CHEMBL1862 was used to
identify zones in the chemical space in which “active”
compounds tend to cluster preferentially. Note that the label
“active” was assigned to compounds with the ~25% highest
affinity values according to the initial automated data curation
procedure used for universal map fitting. The GTM nodes n in
which active compounds were seen to preferentially reside
were identified as key points if

EcEActivcs Rf" > NActives
Eall c ch Nall (2)

R,, represents the responsibility of compound ¢ with respect
to node n, summed over actives (numerator) and over all
training compounds (denominator), with the ratio represent-
ing the fuzzy-logic propensity to expect an active “resident” in
node n. This propensity should be much higher than the
baseline propensity to encounter an active throughout the
training set (top nodes were selected according to the ratio of
summed responsibilities). Coordinates of these key nodes
correspond to vectors in ISIDA descriptor chemical space
zones expected to harbor active compounds. The Gaussian
neighborhoods of key node vectors were sampled by
generating a multidimensional Gaussian distribution with a
width of w = 0.05. Several vectors were generated from the
initial node vector using this method.

2.4. Solution of Inverse QSAR Problem: The ACoVAE
Algorithm. Sampling with the ACoVAE transformer is
accomplished by giving a descriptor vector to the trained
decoder part of the model. Each descriptor vector, which
corresponds to the “condition” part of the ACoVAE, is
combined with a batch of random vectors from a power
spherical distribution, which serves as the basis for the latent
space. Each descriptor vector/random latent vector combina-
tion returns a sample of generated SMILES. Categorical
sampling is the preferred method of generation since it allows,
for the same input, to explore different possibilities, thus
maximizing the generative “coverage.” Therefore, the batch of
latent vectors returns a batch of generated SMILES. For
example, for one descriptor vector concatenated with 200
different sampled random vectors with a batch size of 512, the
algorithm returns 200 X 512 = 102,400 generated SMILES. In
such a way, a given descriptor vector can be used several times
leading to different SMILES. In-house CGRtools*” software is
used to verify the validity of the generated text string, directly
removing any incoherent or incorrect SMILES.

The following parameters were analyzed when monitoring
the pertinence of the inverse QSAR approach:

1. Validity = #valid SMILES/#all generated text strings,
which measures success to generate a syntactically valid

SMILES string (assessed by CGRtools), starting from
the input “high-affinity” (D) vectors.

https://doi.org/10.1021/acs.jcim.2c01086
J. Chem. Inf. Model. 2022, 62, 5471-5484
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2. Feasibility assessin% chemical feasibility and drug-likeness
according to ErtI”® and QED"” indices.

3. Novelty. A compound generated with ACoVAE is
considered “novel” if it is not contained in the training
database.

A coherence between the ISIDA descriptor vector
recalculated for the generated SMILES string and the input
vector at the source of that SMILES was assessed using the
Tanimoto similarity score.

2.5. Filtering of Nonvalid SMILES Strings. During the
sampling procedure, output SMILES were parsed and
standardized using CGRtools. Then, they were transformed
into Kekulé form followed by verification of valences. If no
error detected, the SMILES strings were rearomatized and
then written to the output. Failure of any step in this workflow
leads to discarding the given text string as invalid SMILES.

3. RESULTS AND DISCUSSION

3.1. Finding Candidate Descriptor Vectors Associated
with High Affinity. For the SVR model, the evolutionary
sampler of the ISTIDA descriptor space outlined in Section 2.2
is very fast to visit “high-affinity” (D) values. Points in the
ISIDA descriptor space corresponding to predicted pK, values
close to the ones of the most active compounds included in the
training set can be discovered in matter of tens of minutes on
Linux workstations with the following specification: Intel Xeon
Silver 4214 2.20 GHz, 48 cores, 64 GB RAM, Ubuntu 18.04.6
LTS. However, the discovery of points with activities predicted
to be better than the one of the best training compounds was
never achieved despite of the total run times of the order of 48
h, resulting in >150 K visited (D) values. On the one hand, it is
not clear whether such points may actually exist—SVR may
suffer (in particular when based on the Gaussian kernel) from
the “regression towards the mean” effect, consisting of
systematic underestimation of high and overestimation of
low property values. Moreover, it is even less likely that points
where the SVR model nevertheless predicts a value beyond the
largest observed pK; would actually be located within the
“fragment control bounding box” defining the applicability
dgmain54 (AD) of the model. Given the fact that herein visited
(D) values are generated as means of descriptor vectors of
randomly selected subsets of compounds, these points are
guaranteed within the bonding box AD (each vector element
D; will be larger or equal than the minimal and, respectively,
smaller or equal than the maximal D; value ever encountered
within the training set). Third, the top affinities for all these
targets are already within the 0.1 nM range—discovery of
significantly more potent molecules is extremely unlikely in
this context. Therefore, the five visited (D) values correspond-
ing to the highest predicted pK; scores (comparable but not
better than the affinity of the most active compound) were
used to tackle the inverse QSAR problem (see Figure 2).

As a complementary study to the inverse-SVR descriptor
selection, the most active ChREMBL compound shown in Table
2 (compound A) was selected as a seed to show the difference
between the generation from optimized vectors and a real
active molecule.

For the GTM-based activity class predictors, two nodes that
were most highly enriched in “active” residents were selected,
as represented in Figure 3. Candidate descriptor vectors were
obtained by augmenting the D space coordinates of these
nodes with Gaussian noise as described in the Methods section
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Figure 2. Distribution of pK; for the compounds used to train the
model. The dotted line renders the distribution of predicted pK; for
the vectors of the final population emerging from the evolutionary
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Figure 3. Selected nodes for target ChEMBLI1862 on the fuzzy
activity class landscape where color encodes the relative populations
of actives (class 2, red when pure) vs inactives (class 1, blue when
pure). Intermediate color design nodes with residents of both classes
in various proportions. Numbers of the node are represented.

(see 2.3). Projection of these seed vectors on the landscapes
below unsurprisingly assigns quasi-unitary responsibility values
to their “source” nodes, implicitly qualifying them as “probable
actives.”

3.2. ACoVAE Calibration Results. Two distinct ACo-
VAEs were trained—one for each relevant ISIDA descriptor
space:'’ IIRAB-1-3 for the inverse-SVR problem and IA-FF-2-
3-FC for the inverse-GTM challenge. Each training set
contained the same 1,540,615 com&:ounds from ChEMBL-
23, standardized using ChemAxon® standardizer, following
the procedure implemented on the VS server of the Laboratory
of Chemoinformatics in the University of Strasbourg (http://
infochim.u-strasbg.fr/ webserv/VSEngine.html). The following
standardization steps were applied: (i) dearomatization and
final aromatization according to the “basic” setup of the

https://doi.org/10.1021/acs.jcim.2c01086
J. Chem. Inf. Model. 2022, 62, 5471-5484
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ChemAxon procedure (heterocycles like pyridone are not
aromatized), (ii) dealkalization, (iii) conversion to canonical
SMILES, (iv) removal of salts and mixtures, (v) neutralization
of all species, except nitrogen(IV), and (vi) generation of the
major tautomer with ChemAxon. This resulted in 1,540,615
unique, stereochemistry-depleted SMILES strings used for
training (stereochemical information was removed because the
herein used molecular descriptors do not capture it).

Model training was done for 100 epochs and lasted for about
30 h on a QUADRO RTX 6000 graphic card. The loss
function tends to stabilize early during training as shown in
Figure 4; however, the model continues to learn as character-
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Figure 4. Training metrics for the ACoVAE transformer model based
on ISIDA descriptors. “Loss” is the loss function of the model.
“Masked accuracy” corresponds to the character-specific reconstruc-
tion rate. “Reconstruction rate” corresponds to the full SMILES string
reconstruction rate.

specific reconstruction rates and pure reconstruction rates
continue to grow. Arguably, the model could be trained for
somewhat longer since the reconstruction rate (val_rec_rate)
has seemingly not reached a plateau at 100 epochs. However,
we believed that the achieved accuracy—some 50%
reconstruction rate and 98% character-specific reconstruction
rate, was sufficient for the model acceptance. Notice that
variational autoencoders have a tendency for lower recon-
struction rates than their deterministic counterparts because of
the element of randomness introduced by sampling latent
vectors from a given distribution instead of having
deterministic latent vectors.

3.3. Inverse QSAR Results. 3.3.71. [nverse-SVR and
Inverse-Lead Compounds. According to Table 1 displaying
various quality criteria of inverse-SVR compounds, the low
success rate in the sampling procedure can be mitigated if we
consider the time factor. Sampling of 512.000 SMILES strings
(using S conditional vectors corresponding to the 5 vectors of
highest activity predicted by the SVR model) resulting in 6899
valid, unique candidates takes only about 4 to S h on a

QUADRO RTX 6000 GPU. Comparing lead molecule

sampling to inverse-SVR sampling shows that both perform
similarly in terms of unique valid compounds and activity
prediction, although lead molecule sampling scores a bit lower
on the latter metric.

A descriptor vector marking a position in the chemical space
may or may not translate to a chemically meaningful structure,
knowing that the initial vector is typically not a slightly
perturbed position vector of a real molecule but merely a
chemical space point associated with high predicted activity
according to a machine-learned, action mechanism-agnostic
model. However, the ACoVAE decoder process injecting
randomized latent vectors (see Section 2.1) may produce an
arbitrary number of SMILES strings based on a given chemical
space point. For each of the five considered chemical space
points of high predicted affinity, chemically meaningful
molecules were obtained (at a low success rate of 1.34%—
but this is merely an order of magnitude of the likelihood to
draw a random latent vector ie., “compatible” with the current
chemical space position). The complexity of the molecule that
the model is trying to generate is implicitly affecting the chance
to retrieve a valid structure. Since the model generates SMILES
strings, it must conform to a very specific grammar which is
intolerant to errors. Any misplaced character in the SMILES
sequence can render it incorrect and bring up an error—a well-
known problem in chemoinformatics. Without extensive
understanding of the chemical meaning behind a SMILES
string, it can be very difficult to correctly open and close
multiple rings to recreate valid structures with correct
aromaticity and stable behavior. This, in part, explains why
the model may be very successful in some parts of chemical
space and struggle more in other parts. A possible solution to
that problem would be the use of DeepSMILESf’l’f’2
SELFIES® which use a simpler syntax eliminating the risks of
incorrect ring closures and parenthesis errors.

GTM landscapes identify zones enriched in actives,
nevertheless containing some inactives. The sampling is
performed using an ensemble of seeds generated from a
given GTM node. These seeds can occasionally be located in
the vicinity of inactives. In contrast, sampling from the most
active compound generates structures similar to this seed. This
explains the difference in the proportion active/inactive for
different seeds in Table 1.

Generated compounds were filtered to remove both
chemically inconsistent species (by CGRtools) and duplicates
and were compared to the initial training database (ChEMBL)
to compute the “novelty” rate which corresponds to the
percentage of valid unique generated compounds not
appearing in the training set of the model. Table 1 shows
that all generated compounds are novel. The trained SVR
model was used to estimate the pK; values of the generated
compounds, which were then classified as actives or inactives

Table 1. Performance of the ACoVAE Transformer Model for the CHEMBL1862 Target When Sampling from Seed

Descriptor Vectors from Different Sources

seed vector source number (percentage) of valid compounds number (percentage) of unique compounds novelty compared to ChEMBL (%) predicted active” (%)

SVR 12,432 (2.43%) 6,899 (55.49%) 100 48.6
GTM 70,684 (13.8%) 61,342 (86.78%) 99.98 6.9
lead molecule 23,559 (4.60%) 7,600 (32.26%) 99.95 41.6

aw

Predicted active” implies predicted pK; > 7 by the SVR model. This latter is more stringent than GTM landscape-based predictions, which

positions a vast majority of inverse-GTM compounds close to their “source” nodes and herewith classifies them as “actives.”

https://doi.org/10.1021/acs.jcim.2c01086
J. Chem. Inf. Model. 2022, 62, 5471-5484
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Figure S. (A) Distribution of Tanimoto similarity calculated between sampled compounds and the ISIDA descriptors used for their sampling
(obtained via SVR GA and lead molecule). (B) Distribution of predicted activities for inverse-SVR compounds, lead molecule sampled compounds,
training compounds, and vectors optimized by GA. (C) Scatter plot with the x-axis being the Tanimoto similarity between the sampled compound
and the GA vector and the y-axis, the difference in (calculated) pK; between the inverse-SVR compounds and the original GA vector. The different
colors correspond to the five different “seed” vectors used for the sampling procedure.

by using a threshold 7. As such, about half of the generated
compounds were predicted to be active.

Compounds predicted as inactives by the model were
filtered out. Generated compounds were compared to the GA-
optimized vectors used as input to the model. Results in Figure
SA show that most compounds are very similar (T, > 0.85/
0.90) to their “seed,” meaning the model was able to
understand the information contained in the descriptor vector
and translate it in terms of SMILES. Given that the value
contained in the vectors may not be integers or that some of
the descriptor values may be incompatible, an average of T, =
0.9 is a sign that the model was able to extract hidden
knowledge from the ISIDA descriptor and adapt it to a
chemically feasible structure. Some generated compounds
approach the activity values of the GA-optimized vectors as
shown in Figure 5B, although all active compounds have lower
pK;. Figure 5C shows the difference in predicted pK; between
the generated compounds (based on their actual D vectors)

and the “source” GA-optimized vectors (35, plotted against the

Tanimoto coefficient T.(D, (D)). Unsurprisingly, the SVR
QSAR models are neighborhood-behavior compliant: the
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closer the source vector (l_j) remains to the actual compound
descriptor, the higher the likelihood to have the latter
predicted at high affinity levels—(virtual) activity cliffs
notwithstanding (pK; shifts of 2 orders of magnitude may
occasionally happen for 90% similar descriptor vector pairs).

The three most active compounds from ChEMBL, the three
inverse-SVR and three inverse-lead molecules predicted that
the most active were extracted and compared in terms of
structural similarity and pK; values. The most active inverse-
SVR and inverse-lead compounds are structurally very similar
in terms of substructure counts but not necessarily in terms of
overall topology to the most active ChEMBL compounds, as
shown in Table 2. Similar substructures or features like
quinoline, cyclopropane, peptide bonds, and fluoride atoms
appear in both ChEMBL and generated compounds—but they
may be interconnected in a different way. Sampling the
neighborhood of a given compound is likely to witness the
neural network return typical “building blocks” seen in those
compounds, all while recombining them and placing them in
original contexts.

https://doi.org/10.1021/acs.jcim.2c01086
J. Chem. Inf. Model. 2022, 62, 5471-5484
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Table 2. Most Active ChREMBL-Reported Compounds (A, B, C) against the ChEMBL1862 Target as Well as the Most Potent

Structures Generated from the Different Seed Vectors”

ChEMBL compounds

10.73 10.70 10.70
inverse-SVM compounds
= = \I = 2N =, N=
O | DO | OO
é y e
| 9.82
10.20 9.84

inverse-Lead compounds®

=
= =

10.08

9.45

inverse-GTM compounds

000D | AL
7.88 o 7.83
7.84

“The numbers correspond to experimentally measured (for ChEMBL compounds) or predicted with SVR models pK; values. “Compounds
generated for the descriptor vector generated for molecule A, which is the highest affinity molecule (inverse-LEAD) with pK; = 10.73.

3.3.2. “Inverse-GTM” Compounds. Inverse-GTM sampling,
in this case, gives better results in terms of validity and
uniqueness than inverse-SVR compounds.

Compounds generated from a GTM node vector consis-
tently tend to be projected into the same area they were
sampled from. This is not true of all compounds, a minority
being projected in different areas of chemical space—in
inactive-dominated zones (see Figure 6).

In inverse-GTM, random noise is also used to perturb the
input descriptor (GTM node vector), whereas inverse-SVR
compounds were strictly sampled on hand of the five
optimized descriptor vectors. Accordingly, the resulting
compounds are more diverse but less prone to score very
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high predicted pK; values as shown in Table 2. Rather than
focusing on recombination of fragments maximally contribu-
ting to SVR-predicted pK; values, the model incorporates
fragments of all training compounds occupying the vicinity of
the chosen “seed” vector.

3.3.3. “Inverse-SVR” and “Inverse-Lead” Versus “Inverse-
GTM”. Sampling with inverse-SVR and inverse-lead has a
chance to return molecules predicted highly active, which is
not the case for compounds generated with inverse-GTM. This
can be explained by the fact that inverse-SVR (inverse-lead)
vectors served as the generation seed correspond to high
activity values, which is not the case for the GTM node
vectors. Inverse-GTM molecules have lower SVR-predicted

https://doi.org/10.1021/acs.jcim.2c01086
J. Chem. Inf. Model. 2022, 62, 5471-5484
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Figure 6. Projection of the 100 most active compounds predicted by the SVR models, generated in different fashions. See caption of Figure 3 for
landscape color coding. (A) Compounds were generated from “node” vectors obtained from node 1623. (B) Compounds were generated from
“node” vectors obtained from node 1542. (C) Inverse-SVR compounds. (D) Inverse-lead compounds.

pK; values comparatively because “active” GTM landscape
areas were defined to harbor “actives” of pK; > 7, and the
categorical nature of the landscape makes no further
distinction between submicromolars and subnanomolars. The
two methods produce active compounds, but molecules
generated from inverse-SVR tend to be more focused on
specific chemical space zones predicted to stand for very high
affinity. Therefore, they reproduce structural features typical to
the few top actives—the “originality” mostly consisting in the
way in which these features (scaffolds, linkers) are reorganized
in the final structures. Inverse-GTM seeds tend by contrast to
stem from structurally less specific neighborhoods, generating a
more diverse set.

Figure 7 confirms this trend as we see that the distribution of
activities of inverse-SVR and inverse-lead compounds has a tail
in the very active regions, while the distribution of pK; for
GTM-based compounds has a lower mean and is centered.

Interestingly, most of inverse-SVR compounds are projected
in the large active zone where inverse-GTM compounds were
sampled—even though the GTM-driven categorical QSAR is
based on other descriptors than the SVR approach. This is
additional proof that SVR-based and GTM-based models are
not fundamentally divergent in terms of prediction but merely
conflicting in terms of the specific definition of “actives” as
continuous versus categorical magnitudes.

As it follows from Figure 8, synthetic accessibility score for
the generated compounds (inverse-SVR, inverse-lead, and
inverse-GTM) have on average a higher SA score than
ChEMBL compounds. According to this score, generated
structures are more difficult to synthetize than real ChREMBL
molecules. On the other hand, they are still in the range of
ChEMBL distribution (which goes up to 4.5—5) meaning that
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Figure 7. Comparison between the distribution of (SVR-predicted)
activities between inverse-SVR, inverse-lead, and inverse-GTM
compounds.

generated structures are not synthetically unreachable and
therefore viable. The quantitative estimate druglikeness index
shows that on average, inverse-SVR and inverse-lead
compounds are of more interest for medicinal chemists than
inverse-GTM compounds.

3.3.4. Validation of Inverse-SVR and Inverse-Lead
Compounds Using Pharmacophore Modeling. Pharmaco-
phore models were trained using LigandScout’' (4.4) to check
whether the generated compounds would also comply to the
ligand- and structure-based hypothetic binding patterns that
can be inferred on hand of current structure—activity data.

https://doi.org/10.1021/acs.jcim.2c01086
J. Chem. Inf. Model. 2022, 62, 5471-5484
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Figure 8. (A) Synthetic accessibility score for the four datasets calculated. (B) Quantitative estimate druglikeness index distribution for the three

different datasets.

Table 3. Hits Found with Pharmacophore Models and Their Validation with Docking for Inverse-SVM (I—IIT) and Inverse-

Lead (IV) Compounds

Hits calculated pKi / Pharmacophore Docking score
activity rank
(LeadIT)
1 - = e 9.82
M%—@ 3" most active Model 1 -33.2
I 9.34/
16™ most active Model 1 -31.4
I 9.18
25™ most active Model 1 -23.27
v
9.45
Model 2 -31.8

2™ most active

Both structure-based and ligand-based approaches were
applied in an effort to be as comprehensive as possible. The
compounds present in the training set of the SVR model (821
compounds) were used for ligand-based model training.
Ligand-based pharmacophores should reflect consensus
features in highly active binders. Therefore, a threshold of
pK; = 9 was considered here to define “actives,” in contrast to
the default pK; > 7 defining “actives” in other contexts of this
work (GTM landscape, docking studies—vide infra). In
addition, only the inverse-SVR and inverse-lead compounds
with predicted pK; > 9 were screened. This subset of the initial

generated compounds contains 39 inverse-SVR molecules and

5480

8 inverse-lead compounds which makes 47 generated
compounds in total.

For ligand-based pharmacophores, conformations for the
training set compounds were calculated using the pre-loaded
FAST parameters of the software. These settings returned a
maximum of 25 conformations by compound. Ligand-based
pharmacophores were built and clustered by LigandScoul:.41
Pharmacophore models were calculated for two clusters
containing 78 and 5% (163 and 9 molecules, respectively) of
all training set actives (model 1 and model 2, respectively).
Different pharmacophore models were generated for each
cluster using sets of 5 to 10 molecules.

https://doi.org/10.1021/acs.jcim.2c01086
J. Chem. Inf. Model. 2022, 62, 5471-5484
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Figure 9. (A) Pharmacophore aligned with both PDB crystal structure ligands. (B) Shared pharmacophore model. (C) Selected inverse-SVR hits

aligned with the pharmacophore model.

Structure-based pharmacophores were built based on PDB
crystal structures of human proto-oncogene tyrosine-protein
kinase ABL1. 2HZI and 2CQG crystal structures were used to
generate the shared pharmacophore model which was screened
against the 47 generated compounds for which pK; > 9 was
predicted.

3.3.4.1. Ligand-Based Pharmacophore. The screening of
47 inverse-SVR and inverse-lead molecules “hidden” in a set of
328 inactive decoys selected from the training set inactives
allowed to understand if the two ligand-based pharmacophore
models were selective enough to primarily focus on putative
actives. If the considered pharmacophore models were
observed to be as likely to match inactive decoys, it may be
inferred that “matching” the pharmacophore model is no
reliable indicator of putative activity against CHEMBL1862
likely because the ligand-based pharmacophore models are too
generic (easily matched by random compounds).

Model 1 and model 2 returned, respectively, three and one
hits. The hits align well with the gharmacophore model, and
most features match as shown in”’ Figures S4 and S$ in the
Supporting Information. Table 3 shows that the four hits have
relatively high ranking among the most actives, one of them
being the third predicted most active inverse-SVR compound
and another the second most active inverse-lead compound.

3.3.4.2. Structure-Based Pharmacophore Screening. The
shared pharmacophore model computed for two PDB
structures (2HZI and 2GQG) is mostly based on hydrophobic
interactions with one hydrogen bond donor and one hydrogen
bond acceptor as shown in Figure 9B. The ligands contained in
the PDB crystal structures are typically larger than inverse-SVR
molecules. However, Figure 9A shows that crystalized ligands
may include specific moieties not directly involved in binding.
VS with the shared pharmacophore returned eight hits (see
Table S2 in Supporting Information), four of which
correspond to those found with ligand-based pharmacophores
(Table 3). Notice that inverse-SVR compounds nicely match
the pharmacophore, all while being smaller than the PDB
ligands (see Figure 9C). These results show that the generated
compounds are not only predicted active by the SVR models
because they were optimized to do so but also fit the activity
criteria of external validation methods like pharmacophore
models. The fact that these three compounds were found by
both methods and predicted highly active by the SVR model
indicates that these compounds may be good candidates for
further testing.

3.3.5. Validation of Inverse-SVR Compounds Using
Ligand-To-Protein Docking. In the docking challenge, both
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LeadIT and S4MPLE were able to predict the correct binding
geometry of the native ligand of 2E2B (in protein-rigid
redocking mode), and both were seen to significantly prioritize
“actives” (pK, > 7), for LeadIT, the area under the ROC curve
obtained after redocking the 821 training set compounds (out
of which only 816 could be docked) was of 0.77. S4MPLE also
performed reasonably well (ROC AUC = 0.69 after the
docking of 550 of the training set compounds, in random
order). At that point, a quantitative correlation of R* = 0.51
between LeadlT and S4MPLE scores could be observed.
Unfortunately, neither the LeadIT score (R* = 0.21, over 816
redocked compounds) nor S4MPLE (R* = 0.16 over the 550
ligands) can return docking scores that quantitatively correlate
with the experimental pK; values. We refer the reader to the
Supporting Information section for a detailed analysis of the
relationships between docking scores and actual, respective
predicted pK; values. It was observed that 76% of the
experimentally confirmed training set actives (pK; > 7) dock
with LeadIT scores below or equal to —30, whereas LeadIT
score <—25 would retrieve 92% of them. Therefore, the
percentage of a library achieving LeadIT scores better (more
negative) than this order of magnitude is a first rough estimate
of how strongly CHEMBL-1862-focused that library is. Indeed,
these percentages are significantly higher within the mixed
collection of inverse-GTM and inverse-SVR leads (blue in
Figure 10) than within the random subset of ZINC random
decoys (orange bars). It should be noticed that only two out of
three hits selected by pharmacophore models (molecules I, 1I,
and IV, Table 2) were validated in docking calculations as
actives: the LeadIT score for molecule III was larger than the
threshold of —25. The fact that the molecules I, II, and IV were
found by both pharmacophore and docking methods as well as
predicted highly active by the SVR model indicates that these
compounds may be good candidates for further testing. We do
not exclude that application of a docking score correlating with
studied activity (e.g, that reported by Ahmed et al®*) may

better validate generated molecules.

4. CONCLUSIONS AND PERSPECTIVES

This article introduced a new type of architecture based on
state-of-the-art deep learning method which is capable, given a
descriptor type and successful training, to generate compounds
possessing wanted activity and structural features from “seed”
descriptor vectors—where the descriptor vectors are not
“latent” vectors themselves produced by some encoder
architecture but standard, state-of-the-art descriptors typically
used in QSAR (here, ISIDA fragment counts). This provides

https://doi.org/10.1021/acs.jcim.2c01086
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Figure 10. Percentages within the collection of inverse-GTM and
inverse-SVR leads (blue) and the set or random ZINC decoys
(orange) achieving Leadlt docking scores typical of experimentally
validated actives of pK; > 7.

an elegant solution for the inverse QSAR problem—the
inference of novel molecular structures matching model-
predicted high activity zones of the descriptor space. Finding
descriptor “seeds” corresponding to aforementioned interest-
ing zones has been herein addressed in two model-specific
ways: evolutionary search for D vectors corresponding to high
predicted affinity values (pK|) according to SVR models or D
vectors within the immediate neighborhood of GTM nodes
preferentially populated by active compounds. Additionally,
the descriptor vector generated for the highest affinity ligand
from the training set was also used as a seed. Selecting only
descriptor vectors associated with very high predicted affinity
values (pK;) equal or close to the best ever values reported in
ChEMBL lead to inverse-SVR and inverse-lead molecules
being structurally related to already existing top-active
ChEMBL compounds—in the sense that they share significant
common substructures, all while preserving their global
originality. An external pharmacophore study performed on
inverse-SVR compounds shows that several molecules with
high predicted activity show good matches with existing active
molecules in terms of pharmacophores. Selecting the vectors
based on generative topographic mapping is focused on a
binary, class-based definition of activity, and inverse-GTM
molecules appear more diverse, all while predicted to have
remarkable pK; values by the SVR models (better than 100
nM, but not yet close to the top-active ChREMBL compounds).
Original compounds of acceptable synthetic feasibility index
could be readily obtained. Therefore, the inverse QSAR
problem—fast discovery of original feasible compounds
specifically selected for being predicted active by a given
QSAR model—can be considered as conveniently solved, at
least for the (rather widely used) class of fragment-based
molecular descriptor-based QSAR models. Of course, the
ultimate promise of prospective discovery of experimentally
validated actives may only be kept if the “inversed” model lives
up to its promises in terms of prediction—but this is an
altogether different problem, which is not covered by the
present, purely methodological work. It is clearly not expected
to necessarily see inverse-QSAR de novo compounds automati-
cally score well in docking if docking scores are decorrelated
from the QSAR-predicted affinity estimator. In particular,
fragment-count-based QSARs may overrate the importance of
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given molecular fragments if the latter happen to appear by
chance only within the structures of actives, thus establishing
the mechanistically wrong shortcut “presence of key fragments
— activity” simply because inactive counterexamples contain-
ing the same fragments in a different mutual configuration
were not found at the training stage. ACoVAE-based
approaches may, as seen in this work, readily suggest structures
issued by recombining such key fragments—guaranteed to
achieve high ratings by the parent QSAR model but not sure to
still feature a global pharmacophore compatible with the target.
The goal of this work was to present genuine solutions for the
QSAR inversion problem based on “classical” fragment
descriptors rather than on DNN-specific latent space vectors.
Technically, this was a success, but it also clearly reveals that
QSAR inversion alone is too risky a path to take in drug design:
the actual pursuit of the synthesis efforts of sometimes
challenging (but-granted-novel) structures may or may not
pay, given the intrinsically incomplete and error-prone nature
of QSAR models. However, if inverse QSAR is coupled with
orthogonal activity prediction techniques, as done here, it can
be observed that many of compounds alleged to be active by
the initial QSAR models fail to pass the additional,
independent activity assessment tests (pharmacophore match-
ing, docking). This is no surprise because the consensus rate of
chemoinformatics predictors based on premises as radically
different as 2D-QSAR, pharmacophore screening and docking
are typically very low. Nevertheless, we were successful in
discovering some de novo structures which did pass the latter
tests. This shows that the exploration of the initial inverse-
QSAR-relevant chemical space is sufficient to visit areas in
which not only the original QSAR model but also the
alternative approaches indicate that biological activity is likely,
pending experimental validation.
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5.5.1 Summary
A novel Conditional Variational Autoencoder (ACoVAE) was successfully developed and
specially adapted to ISIDA descriptor vectors. The combination of a GRU-based Variational
Encoder with a state-of-the-art Attention-based decoder was trained and used for the generation
of molecules with preferred structural features. The model achieved great Tanimoto Similarity
when  generating from known and unknown ISIDA  descriptor  vectors.
In order to generate compounds active against the ChEMBL1862 target, different
condition selection methods were employed, GTM-based, GA/SVR-based and active-based.
Active-based and SVR-based sampling resulted in the generation of molecules predicted highly
active by the activity models (about 40-50% of them had pKi > 7), with some of them going up
to pKi > 10, with very specific and similar structures, which could be considered a very focused
dataset. GTM-based sampling resulted in more varied structural features with on average a

lower pKi value (only 7% had a pKi > 7).

The differences between the two generated sets can be explained by the two condition
selection methods: SVR-based and active-based select only the best vectors which are naturally
close to the actual active. Small differences in the descriptor vector imply small changes in the
predicted pKi and structure which creates a focused dataset. The GTM-based selection method
selects indiscriminately any vector with an activity > 7 which is considered active. The nodes
are then a lot more varied in terms of structural features and less oriented on pure activity. Both

methods were found to generate potential actives however.

So-called Inverse-SVR and Inverse-Lead compounds were validated using a ligand-based
and structure-based pharmacophore study as well as docking. Out of the 47 potential hits, 4
were found to be a match by both pharmacophore methods and had reasonable docking scores
hinting at a high potential for activity. The model was therefore able to invert the QSAR process
and generate active compounds from desirable structural vectors. The model could also be
adapted to accept property vectors in combination with structural descriptors to specify

conditions even further.
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6 General Conclusion & Perspectives

Towards a better understanding of Deep Neural Network Latent Spaces

The introduction and complexification of Deep Learning methods created a new branch
of drug design. The generative capabilities and efficiency of neural networks in terms of de
novo design have made deep architectures very popular. The ability of these models to create
and navigate latent spaces in search of compounds of interest have allowed the discovery of
active compounds. However, the complex mathematical equations and the nature of the exact
workings of these models remains blurry in the field of Chemistry. There is a clear
understanding of latent spaces based on structural descriptors, since they are interpretable and
readable, and the rules were carefully hand-crafted and designed. However, latent spaces that
neural networks create using their interpretation of character-based or graph-based

representations of molecular structures do not follow the same rules.

Therefore, one of the objectives of this thesis was to obtain a better grasp on the
construction and organization of neural network latent spaces, and in particular latent spaces of
Autoencoders which remain one of the most popular architectures in terms of molecular
generation. A LSTM-based Vanilla Autoencoder, based on SMILES strings obtained from the
ChEMBL database was trained and its latent space mapped using GTM. Its generative
capabilities were tested by sampling compounds in every point of latent space mapped by said
GTM. The AE was able to create molecules for each node which were similar in terms of
structure and properties to the already existing ChEMBL molecules, showing the already great
learning power and adaptability of one of the most basic deep architectures of seq2seq models.
The comparison of property landscapes built on ChEMBL and generated compounds showed
that the models are able to reproduce the general outlook and organization of its latent space
when mapped by GTM. These models could therefore be used to fill gaps and holes, or less
dense areas of chemical space which is an important aspect in the constant search for interesting

new compounds.

However, the latent space construction depends on the interpretation of the SMILES string
by the model which is order-dependent and can lead to some inconsistencies and activity cliffs.
The generative capabilities also depend greatly on the complexity of the structural features and
the density of the training data, making theses latent spaces quite different from structural

spaces. The multiple failed attempts to link latent space with ISIDA structural space shows that
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they are constructed differently, and even though both work in terms of active separations, they

are in fact incompatible, as proven by the Hilbert-Schmidt Criterion.

In the future, it would be interesting to perform the same kind of analysis on more complex
architectures, like VAEs, CVAEs, Attention-based VAEs and Transformers to compare the
results. Small differences in parameters, model architecture, input form result in different
chemical spaces so the task of finding generalized rules that govern the organization of these
latent spaces is complex. However, by having a deeper understanding of how these algorithms
encode and decode chemical information and how this information is interpreted, it could be
feasible to find general tendencies like the ones shown in this project to facilitate the exploration

of said chemical spaces.

Still, the capabilities of this model could be harnessed by modifying it to accept Condensed
Graph of Reactions in order to map the latent space of reactions from the USPTO database and
generate potentially new and feasible transformations. Methods of novelty detection and

reaction classification were developed using Reaction Centres and Reaction Environments.

Inverting the classical QSAR algorithm

Entering needed properties and structural features and obtaining several potent molecules
corresponding to the given restrictions would simplify and accelerate the drug design process
significantly. A combination of the generative power of neural networks and the efficient
construction and organization of structural descriptor spaces could provide with great candidate
features selection and an ability to generate molecules corresponding to these features which

would amount to inverse-QSAR.

To that extent, several methods based on Neural Networks and GTM were tested to try and
link the latent space of a generative Autoencoder to the structural space of ISIDA descriptors.
A basic LSTM-based translator from SMI2ISIDA was tested as a building block to the bigger
model aiming to directly translate ISIDA vectors to corresponding SMILES but failed due to
the incapacity of the model to accurately enumerate the ISIDA fragments with high deviation.
A Multimodal Boltzmann Machine was developed as a more complex solution to the previous
issue, however showed similar weaknesses during training: ISIDA vectors could not be
precisely reproduced which is capital for this task. Stargate-GTM and direct GTM links were

applied as an alternative not requiring the processing of ISIDA vectors by sequence-based
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algorithms but failed due to the incompatibility of the two spaces. Indeed, the evaluation of the
Hilbert-Schmidt Criterion between ISIDA and latent spaces showed that those spaces are
completely independent meaning no statistical link can be made between them, rendering

machine learning methods like GTM essentially useless.

The many attempts did confirm the difference between classical structural spaces and
SMILES-based latent spaces and triggered the development of a novel CVAE architecture,
which applied ISIDA vectors as condition to VAE latent vectors, eliminating the need for an
external link. The model, based on the latest developments in Deep Learning like Multi-Head
Attention and a GRU-based encoder was successfully used to generate compounds from
selected “seeds”. These seeds resulted from the exploration of chemical space using different
methods, Genetic Algorithm coupled with activity prediction, and Generative Topographic
Mapping. Both methods produced different but equally interesting results, with SVR-based
generation giving the most potent generated molecules, as confirmed by pharmacophore, and

docking studies.

The ACoVAE model, coupled with chemical space exploration techniques allowed the
reversing of the classical QSAR method and the generation of active molecules from selected
structural features. The model could quite simply be adapted to work with any other structural
descriptor and/or property vectors and could even swap SMILES to CGR to function with
reactions. Coupling this with broad, versatile chemical space visualization tools!!*¥ could be a
powerful method of chemical space exploration allowing the discovery of new compounds in
charted zones, and even the discovery of new uncharted zones of chemical space. Taking a step
back and looking at the entire drug discovery process, this tool could also be a part of a larger
drug discovery “machine” where every step could be automated, from the setting of structural
and physico-chemical properties to fit a given target, to chemical space exploration, synthesis

planning and even chemical synthesis using the developments in chemical automation.
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7 List of Abbreviations

AAE
AE

Al
ANN
CGR
CRNN
CVAE
DL
ECFP
GAN
GRU
GT™M
HSIC
InChl
IUPAC
LDA
LLh
LSTM
MAE
MDBM
MHA

ML

Adversarial AutoEncoder

Autoencoder

Artificial Intelligence

Artificial Neural Network

Condensed Graph of Reaction
Conditional Recurrent Neural Network
Conditional Variational Autoencoder
Deep Learning

Extended Connectivity FingerPrint
Generative Adversarial Network

Gated Recurrent Unit

Generative Topographic Mapping
Hilbert-Schmidt Independence Criterion

International Chemical Identifier

International Union of Pure and Applied Chemistry

Linear Discriminant Analysis

Log Likelihood

Long Short-Term Memory

Mean Absolute Error

Multimodal Deep Boltzmann Machine
Multi-Head Attention

Machine Learning
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MSE Mean Squared Error

NLP Natural Language Processing

NMR Nuclear Magnetic Resonance

PCA Principal Component Analysis

PSO Particle Swarm Optimization

QSAR Quantitative Structure-Activity Relationship
QSPR Quantitative Structure-Property Relationship
RBF Radial Basis Function

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SE Shannon Entropy

SELFIES SELF-referencing Embedded String
Seq2Seq Sequence-to-Sequence

S-GTM Stargate-GTM

SMILES Simplified Molecular-Input Line-Entry System
SOM Self-Organizing Map

SVR Support Vector Regression

SVM Support Vector Machine

TF Teacher Forcing

TL Transfer Learning

t-SNE t-distributed Stochastic Neighbour Embedding
UM Universal Map

USPTO United States Patent and Trademark Office
VAE Variational Autoencoder

VS Virtual Screening
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Résumé

Cette these est dédiée a I'exploration et a la compréhension des espaces latents des réseaux de
neurones, dans le but de créer un lien entre ces derniers et des descripteurs structuraux
classiques afin de réaliser du QSAR inverse. Le potentiel génératif des architectures seq2seq est
souvent accompagné d’'une compréhension partielle des regles qui définissent leurs espaces
latents. Une étude de la construction I'espace chimique d’'un Autoencodeur a montré son habilité
a recréer les propriétés et caractéristiques structurelles de molécules existantes avec différents
niveaux de réussite selon la complexité des structures et leur densité dans I'espace. Le modele
a méme été modifié pour générer des nouvelles réactions atteignables chimiquement.

Cependant, l'interprétation séquentielle des structures chimiques a travers les chaines SMILES
ont tendance a créer des faiblesses dans les espaces chimigues résultants. De ce fait, les
descripteurs ISIDA, qui sont plus robustes, sont généralement préférés lors de la cartographie et
I'identification de zones d’intérét lors de la recherche d’actifs. Plusieurs méthodes pour combiner
I'efficacité des vecteurs ISIDA avec le pouvoir génératif d’'un espace latent d’Autoencodeur ont
abouti au développement d’'une nouvelle architecture basée sur les Autoencodeurs Variationnels
Conditionnels et le mécanisme d’Attention qui a permis la génération ciblée de nouvelles
molécules potentiellement actives contre une cible biologique.

Résumé en anglais

This thesis is dedicated to the exploration and understanding of neural network latent spaces, to allow
the creation of a link between the latter and classical structural descriptors to perform inverse QSAR.
The generative potential of seg2seq architectures often comes with a blurry understanding of the rules
governing its chemical spaces. A study of an Autoencoder’s chemical space construction showed its
ability to recreate existing property distributions and molecular structures with varying degrees of
success depending on complexity and density factors. The model was even successfully modified to
generate feasible and novel reactions.

However, the sequential interpretation of chemical structures through SMILES strings tend to create
weaknesses in the resulting chemical spaces. As such, structural descriptors like ISIDA, which are
more robust, are usually preferred to map and identify zones of interest when searching for active
compounds. Several methods to harness the efficiency of ISIDA descriptors and combine it with the
generative power of an Autoencoder latent space resulted in the development of a new architecture
based on Conditional Variational Autoencoders and the Attention Mechanism to generate potent
molecules against biological targets.




