
HAL Id: tel-04405740
https://theses.hal.science/tel-04405740

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of novel molecules and reactions by
chemography-guided artificial intelligence

William Bort

To cite this version:
William Bort. Generation of novel molecules and reactions by chemography-guided artificial intelli-
gence. Other. Université de Strasbourg, 2023. English. �NNT : 2023STRAF047�. �tel-04405740�

https://theses.hal.science/tel-04405740
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Chimie

de la matière complexe – UMR7140

THÈSE présentée par :

William BORT
soutenue le : 22 Novembre 2023

pour obtenir le grade de : Docteur de l’Université de Strasbourg

Discipline/ Spécialité : Chimie

Génération de nouvelles molécules et réactions
par intelligence artificielle guidée par la

chémographie

THÈSE dirigée par :

M. VARNEK Alexandre Professeur, Université de Strasbourg

M. MARCOU Gilles Maître de Conférences (HDR), Université de Strasbourg

RAPPORTEURS :

M. MONTES Matthieu Professeur, Conservatoire National des Arts et Métiers

M. LANGER Thierry Professeur, Université de Vienne

AUTRES MEMBRES DU JURY :

Mme. DOUGUET Dominique Chargée de Recherche (HDR), Université Côte d’Azur

2

3

Pour Hélène.

4

5

Acknowledgements

La rédaction de cette thèse a été pour moi l’une des épreuves les plus difficiles à laquelle

j’ai pu me confronter. Ces pages, lourdement chargées de sens, représentent à la fois une fin et

un début. Il est difficile d’exprimer à quel point je suis reconnaissant d’avoir côtoyé durant ces

dernières années des personnes toutes plus exceptionnelles les unes que les autres qui m’ont

tant appris et m’ont aidé à grandir, scientifiquement, humainement et émotionnellement.

Je voudrais en premier lieu exprimer ma gratitude à tous mes collègues du laboratoire

de Chémoinformatique, présents et passés. En particulier, je voudrais remercier mes

superviseurs : Pr. Alexandre Varnek et Dr. Gilles Marcou pour leur patience inébranlable, leurs

encouragements et leur compréhension dans les moments les plus difficiles. Je suis infiniment

reconnaissant d’avoir pu travailler dans un environnement aussi expérimenté, rigoureux, et

motivant aux cotés de grands scientifiques. Je voudrais également remercier Dr. Arkadii Lin

pour son aide, sa créativité, son expertise et sa rigueur sans relâche, avec qui j’ai tant appris. Je

n’oublie pas Dr. Fanny Bonachera, dont la porte est toujours restée ouverte et qui a su me prêter

une oreille bienveillante et de précieux conseils, ainsi qu’un support technique inestimable.

J’aimerais également remercier Dr. Dragos Horvath, Dr. Olga Klimchuk, Dr. Igor Baskin, Dr.

Iuri Casciuc, Dr. Yuliana Zabolotna, Dr. Timur Madzhidov, Dr. Tagir Akhmetshin, Dr. Helena

Perez Pena, Sai Prashanth Santhapuri, Louis Plyer, Regina Pikalyova, Karina Pikalyova,

Shamkhal Baybekov, Maxim Shevelev et toutes les belles personnes que j’ai pu rencontrer dans

ce laboratoire.

J’ai bien évidemment une pensée pour mes Pokémons Rares : Mélissa (Psy), Guillaume

(Roche), Franck (Ténèbres), Sacha (Feu), Baptiste (Eau), Jordan (Sol), Fred (Poison), Jonathan

(Spectre), Ειρήνη (Dragon) et tous les allègres complices qui m’ont accompagné durant mes

années d’étude, dans les plus belles joies, les plus grandes tristesses, dans tous ces moments qui

font la beauté d’une vie. Une pensée également à tous mes compagnons de basket : Marie,

Brice, Clément, et tous les autres avec qui je partage ma passion et bien plus encore.

Je me dois aussi de mentionner Tali, espiègle compagnonne de mon quotidien dont les

péripéties et tribulations ne manquent jamais de vivifier mes journées.

Pour conclure, j’aimerais remercier ma famille, et en particulier mes parents, pour

m’avoir transmis leurs valeurs et leurs forces qui me permettent de persévérer jour après jour.

6

7

Contents

1 Résumé en français ... 9

1.1 Introduction ... 9

1.2 Résultats et Discussions ... 12

2 General Introduction .. 33

2.1 Sequence-to-Sequence Neural Networks .. 37

2.2 Generative Topographic Mapping ... 57

3 Exploring the latent space of an Autoencoder .. 69

3.1 Introduction ... 69

3.2 Methods ... 71

3.3 Results ... 73

3.4 Conclusion ... 87

4 An Autoencoder coupled with Generative Topographic Mapping for the discovery of novel

reactions ... 89

4.1 Summary .. 106

5 Linking the latent space of an Autoencoder with another descriptor space 109

5.1 ISIDA2SMI ... 111

5.2 Multimodal Deep Boltzmann Machines .. 131

5.3 Stargate-GTM .. 158

5.4 Combination of ISIDA landscapes .. 170

5.5 Conditional Variational Autoencoder (ACoVAE) ... 177

6 General Conclusion & Perspectives ... 195

7 List of Abbreviations .. 199

8 References .. 203

8

9

1 Résumé en français

1.1 Introduction

La recherche de nouveaux composés ayant un potentiel médicamenteux est à la base de

la recherche dans le domaine médicinal. Il est nécessaire d’explorer l’espace chimique des

molécules afin de pouvoir isoler les médicaments de demain. De ce fait, chaque année, les bases

de données chimiques commerciales et publiques voient leur nombre de molécules augmenter

significativement grâce, par exemple, à de nouvelles voies de synthèses, à la chimie

combinatoire ou aux outils informatiques appliqués au recensement de nouveaux composés.

L’augmentation de la taille de ces bases de données entraîne également une augmentation des

coûts computationnel et énergétiques pour leur stockage et lors de leur criblage. Et pourtant,

malgré cette croissance exponentielle, l’espace chimique « découvert » qu’elles occupent reste

encore minuscule par rapport à la taille de l’espace chimique des molécules « drug-like »

potentiellement synthétisables (estimée aux alentours de 1033 composés[1]). Il est donc

important de développer de nouveaux outils permettant l’exploration efficace de l’espace

chimique dont le potentiel pour la chimie médicinale est incontestable.

L’arrivée de nouveaux outils d’intelligence artificielle en chimie a ouvert la voie à de

nouvelles méthodes très performantes dans les domaines du design et de la découverte de

nouveaux composés d’intérêt pour la chimie médicinale[2]. Un type d’architecture en particulier

a été plébiscité pour sa simplicité et son efficacité : L’Autoencodeur (AE)[3]. Le principe de ce

dernier est d’ajuster simultanément les paramètres de deux processus : l’un codant et l’autre

décodant. Le premier est utilisé pour coder des structures de molécules en vecteurs numériques

appelés vecteurs latents. Le second doit convertir ces vecteurs latents en structures de

molécules. L’espace latent peut ensuite être exploré et utilisé pour générer de nouveaux

composés[4–6]. Durant ce processus, le choix d’un vecteur latent est critique pour générer une

structure chimique pertinente, par exemple un composé actif pour un projet de conception de

médicament. Plusieurs architectures dérivées des Autoencodeurs initiaux sont aujourd’hui très

populaires dans le domaine de la génération de composés, et peuvent être catégorisés en deux

larges familles : D’un côté, les modèles qui sont entraînés avec des librairies de molécules

hyper-spécifiques à une application et les modèles plus généraux entraînés sur de larges bases

10

de données diverses. Les modèles très spécifiques ont l’avantage de générer des composés à

haut potentiel (activité par rapport une protéine par exemple) mais doivent être réentraînés à

chaque changement d’objectif. Les modèles plus généraux, eux, permettent de générer des

molécules plus diverses en explorant de plus larges zones de l’espace chimique. Néanmoins,

les espaces chimiques latents étant hautement multidimensionnels, ils sont difficiles à

visualiser, explorer et échantillonner.

La Cartographie Topographique Générative (GTM)[7] est une méthode de réduction de

la dimensionalité qui permet de visualiser sur des cartes 2D des espaces multi-dimensionnels.

La GTM assigne en tout point de la carte une probabilité de présence à une molécule au lieu de

fixer sa position à un seul point. Ces probabilités peuvent être utilisées pour définir des cartes

de densité de l’espace chimique. En prenant en compte les étiquettes (classes « actif »

/ « inactif », propriétés physico-chimiques, etc.) associées aux données, la GTM produit des

paysages, i.e. des cartes représentant les valeurs de ces étiquettes par des codes couleurs,

analogues à des cartes de géographie. Il devient trivial de cibler des zones pertinentes de

l’espace chimique dans lesquelles la génération de nouveaux composés aura de grandes chances

de proposer de nouvelles molécules d’intérêt (Figure 1).

Les vecteurs latents basés sur l’interprétation d’un AE ont montré qu’ils ont la capacité de

correctement séparer actifs et inactifs. Néanmoins, étant basée sur une interprétation

séquentielle de chaînes de caractères SMILES, l’organisation de l’espace chimique en résultant

est segmenté par les règles sémantiques des codes SMILES. Ce n’est pas le cas avec des

descripteurs structuraux calculés sur des graphes moléculaires : ces derniers sont donc plus

efficaces. De plus, ils sont modulables, ce qui permet de les adapter plus finement à des tâches

de modélisation QSAR et d’intégrer des connaissances antérieures. Si des vecteurs de

descripteurs moléculaires sont plus efficaces pour prédire des propriétés à partir de structures

chimiques, en revanche, il n’existe pas jusqu’à présent de procédure pour générer des structures

chimiques correspondant à des vecteurs descripteurs moléculaires. Dans cette optique, il est

intéressant de combiner la versatilité et les performances des espaces chimiques construits sur

des descripteurs structuraux aux capacités d’un autoencodeur pour générer des structures

chimiques.

Cette thèse a donc deux objectifs principaux. Dans un premier temps, des méthodes de

cartographie aux espaces latents des AutoEncodeurs ont été combinés pour mieux rationaliser

11

l’organisation de ces espaces latents et en permettre l’exploration. En particulier, pour la

première fois, un autoencodeur en combinaison avec la cartographie a été utilisé pour générer

de nouvelles transformations chimiques. Dans un second temps, cette thèse présente les

résultats des recherches visant à convertir des descripteurs moléculaires structuraux en

structures chimiques par l’intermédiaire d’un autoencodeur. Ceci est indispensable quand les

vecteurs latents d’un autoencodeur sont moins performants par rapport aux descripteurs

moléculaires sélectionnés pour une modélisation QSAR. Une méthode est donc proposée pour

permettre la génération de composés avec des propriétés chimiques et des descripteurs

structuraux précis.

Figure 1. Processus de création d’un espace latent basé sur une base de données chimique

encodée en SMILES via un Autoencodeur. L’espace latent est ensuite visualisé à travers la GTM

pour permettre l’échantillonnage de l’espace chimique dans les régions plus intéressantes.

12

1.2 Résultats et Discussions

1.2.1 Etude de l’espace latent d’un autoencodeur LSTM

Les architectures de type AutoEncodeur (AE) restent des systèmes « boîtes noires » et

la compréhension de leur fonctionnement interne est encore incomplète, en particulier pour les

applications en chimie. Le but de cette étude était d’approfondir la compréhension de

l’entraînement et de l’organisation de l’espace latent d’un AE. Un AE muni de couches Long

Short-Term Memory (LSTM) a été entraîné sur la base de données ChEMBL23 - environ 1.5

millions de composés. Les molécules de la base de données ont été utilisées sous forme de

SMILES canoniques.

Il a d’abord été montré que l’entraînement des modèles n’était pas entièrement

reproductible avec les équipement classiquement utilisés (cartes graphiques) dans ce type de

recherches. Malgré ces différences dans la création des espaces latents, l’organisation des

molécules dans l’espace chimique reste comparable d’un modèle à l’autre si les paramètres sont

les mêmes. De plus, des projections de structures chimiques représentées par des SMILES

différents ont été effectuées pour vérifier l’existence d’une dépendance de l’ordre des caractères

composant le SMILES dans l’interprétation du réseau de neurones.

De nombreux paysages GTM ont ensuite été construits pour visualiser la répartition de

certaines propriétés comme la densité de présence de molécules, la distance au feuillet de la

GTM (son centre) et des propriétés physico-chimiques. Il a été possible grâce à ces cartes de

prouver que le modèle est capable de regrouper des composés en familles chimiques. Ces

paysages ont mis en évidence des différences d’organisation dans l’espace latent de l’AE par

rapport à des descripteurs structuraux tels que ISIDA[8].

Afin d’analyser les capacités génératives de l’AE, 1000 chaînes SMILES ont été

systématiquement générées sur chaque nœud de la GTM et comparées aux densités observées

dans la base de données ChEMBL23. Des paysages ont ensuite été construits pour visualiser le

pourcentage de molécules valides générées ainsi que leur profil de propriété, tels qu’ils résultent

de ChEMBL23. Un comparatif entre paysages « réels » et paysages « générés » (Figure 2) a

13

permis de vérifier la capacité du modèle à créer des molécules réalistes, et de comprendre les

facteurs pouvant influencer l’efficacité du processus génératif.

Figure 2. Nombre d'atomes lourds pour les composés de ChEMBL (à gauche) et pour les

composés générés (à droite)

Ces études de densité et de profils de propriétés a permis la mise en évidence d’un « lissage des

propriétés ». Les profils de propriétés physico-chimiques des molécules ChEMBL et des

molécules générées ont une correspondance claire d’une carte à l’autre, néanmoins les profils

de propriétés des molécules générées ont tendances à être plus lisses et indiquent que la

génération de composés se fait par moyennage des zones peuplées aux alentours.

14

1.2.2 Utilisation d’un autoencodeur couplé aux cartes topographiques

génératives pour la découverte de nouvelles réactions

La recherche de nouvelles réactions est intimement liée au processus de design de

médicaments. L’augmentation des possibilités de transformations chimiques facilite la synthèse

des nouveaux composés, pour des applications industrielles par exemple. Les réactions

chimiques étant des systèmes impliquant plusieurs molécules et des conditions, elles sont donc

plus difficiles à modéliser.

Grâce à la technologie des Condensed Graph of Reaction (CGR)[9], il a été possible

d’étudier la base de données USPTO[10] qui référence presque 2.5 millions de réactions issues

d’une base de données de brevets. Un CGR représente une réaction sous forme de pseudo-

molécule où les réactifs et les produits sont combinés en un seul ensemble. Ces pseudo-

molécules sont ensuite exprimées sous forme de CGR où les changements dans les liaisons sont

inclus à l’aide de caractères spéciaux, reprenant les bases de la grammaire SMILES en incluant

des modifications pour tenir compte des spécifications des réactions (Figure 3). Les CGR,

couplés à une modification de l’architecture des AutoEncodeurs classiques a permis

l’entraînement d’un modèle génératif pour des réactions chimiques.

Figure 3. (i) Représentation schématique d’une réaction de Suzuki sous forme de CGR. La

liaison verte indique une liaison créée lors de la réaction, les liaisons rouges indiquent des

liaisons brisées pendant la réaction. (ii) SMILES-CGR correspondant à la réaction (i), [->.]

indique une transformation d’une liaison simple vers une absence de liaison. [.>-] indique le

passage d’une absence de liaison vers une liaison simple.

La combinaison de ce modèle avec l’outil GTM a permis de cartographier l’espace

chimique des réactions et de générer des types de réactions spécifiques à partir de positions sur

une carte. Une grande quantité de réactions de type Suzuki a été générée, puis filtrée à l’aide

15

d’une nouvelle méthode de détection de nouveautés. Cette méthode exploite les « centres de

réactions », autrement dit l’ensemble des atomes et liaisons directement impliqués par une

transformation chimique. Cette définition a été étendue pour créer les « environnements de

réactions » qui eux correspondent non seulement au centre de réaction mais qui incluent

également tous les atomes directement liés au centre de réaction.

Parmi les réactions valides restantes après filtrage, 13 réactions ont été identifiées

comme potentiellement nouvelles et ne figurant pas dans la base de données USPTO. Parmi

celles-ci, 5 ont ensuite été identifiées dans d’autres bases de données, vérifiant la capacité du

modèle à générer des réactions cohérentes chimiquement. La faisabilité de ces réactions a été

confirmée par des calculs de DFT de l’enthalpie de réaction en phase gazeuse.

Figure 4. Processus résumant l’utilisation d’un modèle d’AutoEncodeur couplé au cartes

topographiques génératrices pour la génération de nouvelles réactions chimiques. Le modèle

est entraîné sur la base de données USPTO sous forme de graphes condensés de réaction (1)

puis les vecteurs latents sont utilisés pour la construction d’une carte topographique générative

(2). Des zones d’intérêt sont ensuite sélectionnées sur cette carte (3) et sont utilisées pour

générer des réactions (4). Après plusieurs filtres (5), on obtient des réactions potentiellement

nouvelles et chimiquement vraisemblables, confirmées dans la bibliographie et des calculs

DFT.

16

1.2.3 Liaison entre l’espace latent d’un AutoEncodeur et un autre

espace de descripteurs

La génération de jeux de données possédant certaines propriétés ciblées est un problème

central en Chémoinformatique. Plutôt que de générer au hasard des structures moléculaires ou

de chercher des composés intéressants dans des bases de données toujours plus grandes, « à la

recherche d’une aiguille dans une botte de foin », il est préférable de pouvoir choisir les régions

de l’espace chimique susceptibles d’abriter les structures chimiques qui satisfont les critères

désirés par un utilisateur et d’échantillonner ces régions pour générer des structures pertinentes.

Les méthodes à base d’AE et de paysages GTM présentées précédemment permettent de biaiser

la génération de structures sur des zones riches en composés biologiquement actifs. Mais la

sémantique propre au code SMILES des structures chimiques fragmente l’espace chimique de

l’AE de façon arbitraire et peu contrôlable ce qui rend plus complexe l’exploration de l’espace

latent en résultant. Cela résulte en un contrôle plus difficile des structures générées et de leurs

propriétés.

Les descripteurs moléculaires structuraux ne présentent pas ce même défaut. Ils peuvent

être adaptés selon le type de structure, le type de cibles et/ou le type d’application. Leur

versatilité les rends donc beaucoup plus robustes et applicables efficacement à une plus grande

diversité de problèmes. Du fait de leur surjectivité, il est néanmoins impossible d’associer un

vecteur de descripteurs à une seule structure. En pratique, plusieurs molécules peuvent avoir le

même vecteur de descripteur, ce qui complexifie énormément la tâche d’entraîner un modèle

d’AE.

Cependant, les bénéfices potentiels à la réalisation d’un modèle génératif où les

propriétés structurelles et physico-chimiques sont solidement contrôlées est très intéressant. Il

serait donc utile de combiner la versatilité et la robustesse des descripteurs structuraux

classiques avec le pouvoir génératif des réseaux de neurones.

17

SMI2ISIDA

Une méthode d’inversion directe de modèle de QSAR a été proposée, basé sur une

architecture simple. Un réseau de neurones artificiels basé sur une succession de couches LSTM

(les mêmes qui sont utilisées dans les AutoEncodeurs) a pour objectif de traduire un vecteur de

descripteurs moléculaires ISIDA en SMILES (Figure 5). La difficulté du projet réside dans la

problématique de la multimodalité des vecteurs ISIDA par rapport aux chaînes SMILES. Un

vecteur de descripteurs ISIDA peut correspondre à plusieurs chaînes SMILES, ce qui rend

l’entraînement d’un modèle délicat.

Figure 5. Représentation schématique du processus désiré de passage de vecteur ISIDA à

SMILES.

Afin de pouvoir vérifier le bon fonctionnement du modèle, le vecteur ISIDA

correspondant au SMILES reconstruit devait être comparé au vecteur ISIDA initial. Cela

impliqué, durant l’entraînement du modèle, le calcul constant de vecteurs ISIDA par un script.

Ce script étant très chronophage et demandeur en puissance de calcul, il n’était pas envisageable

de le lancer des millions de fois pendant la phase d’entraînement. Une idée a donc été introduite

de créer le modèles inverse (SMILES vers ISIDA) qui, une fois entraîné, aurait la tâche de

remplacer ledit script.

Un modèle capable de prédire un vecteur ISIDA à partir d’une chaîne SMILES était

donc une étape nécessaire au projet global.

Une analyse en profondeur a été réalisée sur l’architecture choisie, et de nombreuses

variations de la même idée ont été testées, ainsi qu’un deuxième type d’architecture basé sur

l’augmentation de données SMILES. Ces différents tests ont montré que les types

d’architectures utilisés étaient dans l’incapacité de faire un lien entre séquences de caractères

18

et compte de descripteurs, les fragments avec le plus de variabilité étant constamment mal

prédits.

Machines de Boltzmann

Le projet consiste à créer un modèle capable d’associer aux vecteurs de descripteurs

moléculaires structuraux, des vecteurs de l’espace latent d’un AE. Pour cela, une Machine de

Boltzmann dite multimodale a été développée.

Une machine de Boltzmann[11] est un réseau de neurones basé sur un concept d’énergie,

et composé d’unités binaires constituant un réseau complètement connexe. Une machine de

Boltzmann est un modèle non-supervisé qui optimise la vraisemblance des données

d’entraînement. Une machine de Boltzmann peut être inversée : à partir d’un état de la couche

cachée (vecteur latent), le vecteur d’entrée correspondant est reconstruit. Par exemple, si le

vecteur latent correspond à un benzaldéhyde, une machine pourrait potentiellement le traduire

en SMILES, une autre en graphe, et une dernière donner son nom IUPAC. Les différentes

machines sont également capables de transformer une modalité en « idée conceptuelle »,

permettant ainsi la traduction (Figure 6).

Figure 6. Représentation schématique du fonctionnement d’une Machine de Boltzmann

Multimodale. Le modèle est constitué de différentes Machines de Boltzmann représentant

différentes modalités connectées au même vecteur latent. Les liaisons étant dans les deux sens,

la traduction d’une modalité à une autre est possible.

19

Dans le cas présent, deux machines de Boltzmann sont entraînées séparément sur les mêmes

structures chimiques : l’une utilisant des vecteurs de descripteurs moléculaires ISIDA de ces

structures, l’autre utilisant les vecteurs latents de l’AE précédemment entraîné. Une couche

intermédiaire, permet de prédire un vecteur latent étant donné un vecteur de descripteurs

moléculaire, et inversement. Cette architecture est dite « multimodale ». Le vecteur latent

fonctionne comme une « idée conceptuelle » de l’objet en question, et les différentes machines

connectées à ce vecteur latent servent à traduire cette idée dans différentes modalités.

 La construction et l’entraînement de la Machine de Boltzmann Multimodale implique

la construction et l’entraînement de Machines de Boltzmann individuelles : une pour les

vecteurs latents de l’AE et l’autre pour les vecteurs ISIDA. Ce processus s’est fait

graduellement, en augmentant au fur et à mesure la taille des modèles individuels (passage de

Machines de Boltzmann restreintes à Machines de Boltzmann profondes) tout en optimisant les

paramètres au fur et à mesure. Le but final étant de connecter les deux machines et de les

entraîner plus finement en commun en les reliant par la couche latente.

Les faibles performances des modèles séparés pour la simple tâche de reconstruction

des vecteurs et le coût en ressources et en temps nécessaires pour entraîner ce type de modèle

étant trop hauts, le projet n’a pas pu aboutir. Encore une fois, le modèle était dans l’incapacité

de prédire avec précision les comptes de descripteurs ISIDA à haute variation lors de la

reconstruction.

20

Stargate GTM

Stargate-GTM[12] est une méthode basée sur la GTM qui permet à deux espaces de

descripteurs d’être coentraînés. Deux jeux de données sont présentés au modèle dont les

individus se correspondent l’un à l’autre. Une carte GTM est construite sur chaque jeu de

données, mais au cours de l’entraînement, chaque carte doit satisfaire les contraintes issues de

la topologie de chacun des deux jeux de données, avec une pondération (Figure 7).

Figure 7. Processus d’entraînement de Stargate-GTM.

Finalement, les cartes se correspondent : une localisation sur une carte se traduit par un

ensemble de responsabilités (densité de probabilité de présence d’une donnée) sur l’autre.

Comme précédemment, les vecteurs de descripteurs et les vecteurs latents correspondants du

AE sont utilisés. La projection d’une molécule sur la carte construite sur un espace de

descripteur permet d’estimer les responsabilités correspondantes dans l’espace latent de l’AE

qui peuvent ensuite être décodées en structures chimiques.

21

La comparaison des cartes basées sur les descripteurs ISIDA et les vecteurs latents d’un

AE ont permis d’observer les différences de distribution de probabilités des deux espaces. Les

deux types de carte présentent des similarités au niveau de la distribution de la densité de

population dans certains cas, mais les zones de haute densité sur les cartes ISIDA sont

systématiquement beaucoup plus concentrées que les zones de haute densité sur les cartes de

vecteurs latents qui sont souvent bien plus étalées. Une étude approfondie des positions des

composés sur les deux types de carte a montré que la correspondance des distributions de

probabilités n’est pas respectée dans le cas d’une Stargate-GTM ISIDA-Latent, suggérant

l’incompatibilité des deux espaces de descripteurs dans le cadre d’un lien direct.

Figure 8. Distribution des distances euclidiennes entre les positions d’une même molécule sur

deux cartes entraînées ensemble par Stargate-GTM. Aléatoire correspond à la distance entre

deux molécules prises au hasard sur deux cartes ISIDA entraînées ensemble.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

LATENT/ISIDA ISIDA/ISIDA Aléatoire

D
is

ta
n
ce

 e
u
cl

id
ie

n
n
e

Distribution des distances euclidiennes entre les positions d'une même

molécule sur deux cartes

22

Combinaison de paysages ISIDA

Cette méthode est uniquement basée sur la GTM. Une carte représentant l’activité sur

une cible biologique (CHEMBL3717) construite sur des vecteurs ISIDA a été combinée à une

série de cartes de l’espace latent de l’AE colorées par valeurs de descripteurs moléculaires

ISIDA. Un vecteur de descripteurs optimum sur la carte CHEMBL3717 est ensuite utilisé pour

réaliser des requêtes sur les différentes cartes de l’espace latent. Celles-ci ont permis d’identifier

une zone dans l’espace latent de l’AE potentiellement liée à une zone d’activité sur

CHEMBL3717 dans l’espace des descripteurs moléculaires ISIDA. Cette zone de l’espace

latent de l’AE a été exploitée pour générer 10.000 structures dont la correspondance avec la

zone identifiée dans l’espace des descripteurs moléculaires ISIDA a été analysée.

Ces différentes tentatives n’ont pas été fructueuses. Les molécules générées à partir des

vecteurs latents de l’AE ne correspondent pas aux composés décrits avec les descripteurs

moléculaires ISIDA. La correspondance entre espace latent d’un AE et les descripteurs

moléculaires ISIDA, si elle est théoriquement attendue, apparaît donc très difficile à formaliser.

Cette conclusion est renforcée sans équivoque lorsque sont calculés le coefficient de corrélation

de Hilbert-Schmidt entre l’espace latent de l’AE et différents espaces de descripteurs

moléculaires. Une telle corrélation n’existe quasiment pas ce qui signifie qu’une relation entre

ces deux espaces est nécessairement très non-linéaire.

23

Conditional Variational AutoEncoder (CVAE)

Une nouvelle architecture de réseaux de neurones employant la technologie de

l’attention retrouvée dans les couches Transformers[13] a été développée au cours d’une

collaboration entre le laboratoire Chemoinformatique et l’Université de Kazan. Les séquences

SMILES servent d’entrée à un Conditional Variational Autoencoder (CVAE). Un Variational

Autoencoder (VAE) fait correspondre aux vecteurs d’entrée une distribution de probabilité dans

l’espace latent. Ceci offre des meilleures garanties de continuité dans l’espace latent d’un VAE

en comparaison d’un AE : une perturbation d’un vecteur latent est moins susceptible de

produire de grands changements dans la structure chimique générée correspondante. Cela ne

résout pas les problèmes de fragmentation de l’espace chimique en raison de la sémantique des

SMILES, mais combiné à une architecture semblable à celle des Transformers, améliore

sensiblement les capacités de reconstruction des graphes des molécules. Enfin, les vecteurs de

descripteurs ISIDA sont utilisés pour conditionner l’espace latent du VAE. Au travers d’une

couche d’attention multi-entrée (Multi-Head Attention, MHA) ces vecteurs de descripteurs

biaisent l’échantillonnage de l’espace latent de la VAE (Figure 9).

Un vecteur de descripteurs moléculaires ISIDA peut ensuite être utilisé en requête pour

générer des vecteurs latents qui sont ensuite décodés en structures chimiques dont les

descripteurs moléculaires ISIDA sont similaires au vecteur demandé. La couche MHA est

l’élément qui permet d’introduire la non-linéarité indispensable pour faire correspondre ces

espaces chimiques latents et descripteurs moléculaires.

24

Figure 9. Architecture du modèle CVAE développé qui permet d’échantillonner des structures

chimiques dont les descripteurs moléculaires correspondent à une requête. Ici, les descripteurs

structuraux ISIDA sont utilisés. La couche d’attention multi-entrée (Multi-Head Attention) est

indispensable pour prendre en charge la relation très non-linéaire entre l’espace chimique des

descripteurs moléculaires et l’espace latent de la VAE.

25

Ce modèle a été entraîné sur la base de données ChEMBL23 sous forme de SMILES

canoniques en combinaison avec des vecteurs ISIDA utilisés pour construire une « carte

universelle ».[14]

Plusieurs méthodes ont été testées pour sélectionner des vecteurs de descripteurs ISIDA

correspondant à une haute activité contre la protéine tyrosine kinase ABL (CHEMBL1862).

Des vecteurs optimisés par Algorithme Génétique (GA) basés sur des prédictions des modèles

de régression à vecteurs supports (Support Vector Regression, SVR), des vecteurs sélectionnés

à partir de molécules étant reconnues comme actives et des vecteurs sélectionnés sur un paysage

GTM de l’activité sur CHEMBL1862 ont été utilisé comme « seed » pour la génération. Les

différentes méthodes de sélection de vecteurs ont permis la génération de différents profils de

molécules (Table 1).

Les molécules générées via l’algorithme génétique montrent une tendance à être très

similaires structurellement, avec un potentiel d’activité très élevé. Cette tendance est retrouvée

lors de la génération à partir de molécules actives, le potentiel de ces molécules étant légèrement

moins élevé qu’avec la méthode algorithme génétique. Les molécules générées à partir de la

méthode GTM montrent une plus grande diversité mais un potentiel actif moins haut. Le profil

des librairies de molécules générées peut dont être modulé selon la méthode de sélection de

vecteurs choisis.

Figure 10. (a) Modèle pharmacophore aligné avec les structures cristallines des deux ligands

existants. (b) Modèle pharmacophore (c) Potentiels hits issus de la génération par GA alignés

avec le modèle pharmacophore

A B C

A

26

Le potentiel de ces composés a été confirmé par des études pharmacophoriques (Figure

10) et de docking (Figure 11).

Figure 11. Pourcentage de molécules générées à partir de la GTM et de la SVR (bleu) et pour

les leurres ZINC (orange) ayant un score de docking LeadIT comparable à celui d’actifs validés

expérimentalement.

Ainsi, l’architecture développée a permis d’établir un lien entre modèle génératif et

espace de descripteurs structuraux et par conséquent représente un outil efficace pour effectuer

des études de QSAR inverse.

27

Table 1. Exemples de molécules issues de ChEMBL, et de molécules générées à l’aide des

différentes méthodes de sélection de vecteurs. Les valeurs correspondent à l’activité prédite sur

la cible ChEMBL1862. Examples of ChEMBL and generated compounds (with different vector

selection methods) with their associated predicted activity against the ChEMBL1862 target.

Molécules ChEMBL

10.73 10.70

10.70

Molécules générées à partir du GA

10.20

9.84

9.82

Molécules générées à partir d’une molécule existante active

10.08

9.45

9.35

Molécules générées à partir de la GTM

7.88

7.84

7.83

28

1.2.4 Conclusion

Les outils de cartographie couplés à l’espace latent des AE ont permis de montrer que

l’organisation de cet espace permet le regroupement général de familles chimiques et la

génération de composés structurellement proches des molécules réelles présentes aux alentours.

Il a aussi été possible de montrer la dépendance de la topologie de l’espace latent des AE à la

sémantique du codage SMILES.

Grâce à l’utilisation de graphes condensés de réaction avec un autoencodeur, il a été possible

de générer de nouvelles réactions. Les nouveaux types de transformations chimiques ont été

identifiées en utilisant des motifs structuraux CGR correspondant aux cœurs de réaction.

Les tentatives pour faire correspondre des descripteurs moléculaires aux vecteurs latents d’un

autoencodeur se sont soldés par des échecs qui ont mis en évidence le caractère non trivial d’une

telle relation. Cette observation a été renforcée par les observations effectuées sur les

compatibilités des espaces chimiques à l’aide du coefficient d’Hilbert-Schmidt.

Ceci a conduit au développement d’une nouvelle architecture combinant espace de descripteurs

ISIDA et AE variationnel qui a finalement permis de générer des structures chimiques dont les

vecteurs de descripteurs structuraux correspondaient aux contraintes exigées. Il a été possible

de montrer que les composés proposés ont montré de bons résultats tant au niveau de la

similarité structurelle que de l’activité biologique potentielle.

29

1.2.5 Liste des Présentation

Bort, W., Baskin, I. I., Gimadiev, T., Mukanov, A., Nugmanov, R., Sidorov, P., Marcou,

G., Horvath, D., Klimchuk, O., Madzhidov, T. & Varnek, A. Discovery of novel chemical

reactions by deep generative recurrent neural network. GGMM SFCi (Group of Graphism and

Molecular Modeling & French Society of Chemoinformatics) à Lille, 31 Septembre 2021.

Poster

Bort, W., Baskin, I. I., Gimadiev, T., Mukanov, A., Nugmanov, R., Sidorov, P., Marcou,

G., Horvath, D., Klimchuk, O., Madzhidov, T. & Varnek, A. De novo design of chemical

transformations using deep neural networks. Journée Scientifique des doctorants UMR7140 à

Strasbourg, 5 Mai 2021. Oral

30

1.2.6 Liste des Publications

Bort, W., Baskin, I. I., Gimadiev, T., Mukanov, A., Nugmanov, R., Sidorov, P., Marcou, G.,

Horvath, D., Klimchuk, O., Madzhidov, T. & Varnek, A. Discovery of novel chemical reactions

by deep generative recurrent neural network. Sci Rep 11, 3178 (2021).

https://doi.org/10.1038/s41598-021-81889-y

Bort, W., Mazitov, D., Horvath, D., Bonachera, F., Lin, A., Marcou, G., Baskin, I. I.,

Madzhidov, T., Varnek, A. Inverse QSAR: Reversing Descriptor-Driven Prediction Pipeline

Using Attention-Based Conditional Variational Autoencoder. J. Chem. Inf. Model. 62 (22),

5471-5484 (2022). https://doi.org/10.1021/acs.jcim.2c01086

31

32

33

2 General Introduction

The continuous search for new potential drugs in medicinal chemistry is a never-ending

quest. Far from the early days of medicine and its eat-the-plant-then-see-what-happens

approach, today’s drug design methods involve the efficient navigation[15–17] of so-called “drug-

like chemical space”[18–20] which designates the ensemble of all drug-like molecules, existing

or tangible. Explored areas of chemical space are a result of centuries of research in

Chemistry[21], supported by the developments of more and more advanced extraction, synthetic

and analytic methods. The more recent advances in computing technologies have accelerated

this process, notably thanks to new methods like combinatorial chemistry[22] or high-throughput

screening (HTS)[23]. Each year, the number of new compounds reported increases, constantly

expanding the size of the known chemical universe. Historically, Virtual Screening (VS) of

existing databases using an arsenal of different tools like pharmacophores[24,25], docking[26,27],

QSAR[28–30] or molecular dynamics[31,32] has been the dominant method for efficient exploration

and hit discovery.

However, not unlike our actual universe, it seems the size of the charted areas amounts to

very little compared to the vastness of uncharted territories. The size of drug-like chemical

space has been estimated to contain between 1023 and 1060 compounds[1,33,34]. Comparatively,

the biggest commercially available database, Enamine REAL[35], contains 29 billion

compounds. The novel drugs of the future may be hidden among these yet unknown molecules

but most of the current discovery methods rely on existing databases of listed compounds.

Therefore, although very successful, VS methods are, by definition, limited in their scope of

research by the borders of current knowledge. Recent studies of chemical space[36,37] have

sparked a strong interest in its untapped potential and a renewed interest in methods aiming to

explore unknown areas of chemical space.

The most popular of these methods to benefit from this newfound interest was De Novo

drug design[38–40]. De Novo design aims to generate compounds from scratch with desirable

physicochemical and physiological properties. Early “structure-based” de novo tools used

algorithms to identify and map potential binding zones, then stochastically grow molecular

structures inside the pre-mapped protein pockets[41–43] either atom by atom[44] or fragment by

34

fragment[45] and implied the pre-existent knowledge and comprehension of a protein binding

pocket through X-Ray crystallography[46,47], NMR[48], or electron microscopy[49,50]. Atom-based

methods resulted in a much larger and more diverse number of potential candidates but with

questionable synthetic accessibility, while fragment-based methods generated a lower number

of more feasible compounds but relied on existing fragment datasets which still limits the

exploration potential. So-called “Ligand-based” methods were developed in parallel for protein

targets with no available solved structures and relied on known ligands to recreate

pharmacophore-based pseudo-receptors or perform direct similarity design[51]. The advantage

of de novo design is that the generated molecules follow precise binding criteria, have certain

designated structural features or physicochemical properties, and are usually novel. With it, the

usual QSAR workflow could be inverted to generate compounds from desirable given

characteristics. However, the prior knowledge necessary to build a molecule from smaller

building blocks in a mapped protein pocket and the computational costs necessary to power the

algorithms, have limited the scope of applications of the method.

 In parallel with the developments in De Novo design, the “Renaissance” of Artificial

Intelligence (AI) took place in the early 21st century long after the first introductory experiments

by Newell and Simon in 1956[52]. Having passed through a couple of “winters” in the 70s and

80s due to the lack of results, lack of funding, and unrealistic expectations of end-users[53], the

field of Artificial Intelligence began to gain some new traction at the beginning of the 21st

century fuelled by the reducing costs and rapid increase in computing power[54]. The

popularization of Machine Learning (ML) methods using statistical data to form predictions

made its way to the field of chemistry to form Cheminformatics[55–57] and very quickly the

exponential increase in global data saw the emergence of a new trend in Artificial Intelligence:

Deep Learning (DL).

Deep Learning is a subset of Machine Learning that uses large Artificial Neural Networks

(ANN) architectures to handle large amounts of data with reduced preprocessing and gained

popularity in the era of Big Data. DL methods have been used in various tasks like natural

language processing[58], image recognition[59] or even protein folding[60] and naturally made its

way to chemical applications like drug discovery[61]. One of the many fields impacted by the

democratization of DL algorithms was De Novo design. Around 2017, several different types

of Deep Generative Models, initially used for language translation[62] or chat bots[63], were used

35

in combination with the Simplified Molecular-Input Line-Entry System[64] (SMILES) or Graph-

based representations to generate new molecules[65–70].

The mass generation of novel chemical compounds via DL algorithms raised the issue of

synthetic accessibility. For hits to be considered viable by the pharmaceutical industries, they

must be reachable through cheap and simple reactions using readily available building blocks.

Classical rule-based reaction prediction algorithms exist[71,72] but require the manually-inputted

reaction rules and constant expert supervision. To accompany the rise in compound generation,

DL models predicting synthetic pathways and synthetic accessibility were developed[72–74]. The

goal was to not only accelerate the retrosynthesis process to match the speed of molecular

generation, but also to harness the strong pattern recognition capabilities of DL algorithms to

find new potential reaction pathways, unseen by synthetic chemists.

Nowadays, two main trends of generative methods can be characterized: Models based

on specific scoring functions aiming to create highly focused libraries, or more general models

based on the creation and exploration of a model-based chemical latent space. Architectures

based on scoring functions include Generative Adversarial Networks (GANs)[69], Adversarial

AutoEncoders (AAEs)[5], or any model based on Reinforcement Learning (RL)[75] or Transfer

Learning (TL)[65]. The role of the scoring function is to orient the generation process towards a

very specific subset of, for example, active compounds against a specific target. Generated

compounds are compared to existing actives using a set of predefined criteria, resulting in high

scores if the criteria are met. The advantage is that molecules obtained this way have a strong

potential to be highly active and the structural features and properties outputted by the model

can be controlled. However, this also implies that each model is hyper-specific to a unique target

and must be retrained if the objective changes, increasing computing and temporal costs.

Architectures based on the exploration of a learned latent space are more universal and can be

tasked to generate more varied compounds[76] since the models are trained with large varied

molecular datasets. Even though they may correctly separate classes, navigating these “AI-

chemical spaces” in search for active clusters remains a challenge due to their highly

dimensional nature.

“Chemography”, a combination of Chemistry and Geography, is the art of mapping

chemical spaces to facilitate their exploration[77] and was initially based on the use of Principal

Component Analysis[78–80] (PCA). Highly dimensional chemical spaces could therefore be

36

reduced to easily readable and comprehensible 2D maps. Different methods of dimensionality

reduction techniques exist like previously stated PCA, LDA[81], t-SNE[82] or even

Autoencoders[3], a particular type of Deep Neural Network. Another one of these techniques,

Generative Topographic Mapping[7] (GTM), based on Self-Organizing Maps[83] (SOM), is non-

linear and probabilistic which makes it well adapted to handle large amounts of chemical data.

Due to its nature, GTM allows the creation of smooth landscapes, in which areas of chemical

spaces can be coloured according to the properties of the compounds residing there, like

physicochemical properties or biological activity. QSAR models based on GTM showed the

potential of this method to find active zones in chemical space and isolate compounds of

interest[84–86].

GTM has been successfully used before in combination with Deep Neural Networks to

navigate the chemical space of a generative model, isolate active areas and generate compounds

with good activity potential[87] for a particular target. Although successful in this particular

application, there is no certainty that latent descriptors can be successfully used to separate

actives and inactives in all cases. Still today, little is known of the construction mechanism and

the organization of NN-based chemical spaces, and the robustness and flexibility of latent

descriptors compared to classical structural descriptors. In contrast, ISIDA[8] descriptors have

been shown to be versatile in terms of active and inactive separation for several hundred

different biological targets.[14] However, the many-to-one nature of classical structural

descriptors renders the simple act of going from descriptor vector to molecule impossible.

Therefore, both classical and latent-based methods have strong advantages but each lacks one

essential feature. By combining the two, it may be possible to obtain a universal generative

model, able to efficiently separate classes for a variety of different targets and navigate latent

space in search for active clusters to sample from.

This thesis is therefore dedicated firstly to the analysis of the construction of chemical

spaces by deep neural networks, especially Autoencoders, and their generative ability in terms

of active compounds and novel reactions. The second part of the thesis is orientated towards

the development of a method to harness the generative power of neural networks to couple it

with the versatility and efficiency of classical structure based ISIDA molecular descriptors to

allow the controlled generation of molecules with desired activities, structures, and properties,

reversing the classical QSAR methodology.

37

2.1 Sequence-to-Sequence Neural Networks

Sequence-to-Sequence (Seq2Seq) models are a type of Recurrent Neural Networks[88]

(RNN) first introduced by Sutskever and al. in 2014[89]. The initial function of seq2seq models

was Natural Language Processing (NLP), specifically English to French translation. However,

the architecture was later derived for many other applications in different domains, like text

summarisation[90,91], image processing and captioning[92], conversational models[93,94], and even

music generation[95]. These types of models have been extensively used in Cheminformatics

and drug design in recent years[66].

Seq2Seq models are composed of two parts: An Encoder and a Decoder, which are two

separate entities, but linked and trained simultaneously. The role of the encoder is to process a

variable-length input vector and generate a fixed-length “latent” numerical vector which

encapsulates contextual information about the input data. The decoder receives the latent vector

and regenerates a variable-length sequence from the given context. For example, in the case of

an English to French language translation task, the encoder receives a sentence in English and

outputs a numerical vector which conceptually represents the sentence in a latent space. Then,

a decoder trained to navigate said latent space can use that vector to output a sentence in any

language it was trained on, for example, French.

Figure 12. Schematic representation of the basic function of a Seq2Seq model on an English to

French translation task.

 Encoders and decoders used to be constructed with simple feed forward RNN

architectures when Seq2seq models were first introduced. However, vanishing gradients

quickly became an issue when trying to train deep architectures[96], causing models to struggle

to maintain contextual links between words far apart in a sequence. To tackle that issue, Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) “cells” were introduced in

1997[97] and 2014[62] respectively. LSTM solved the issue of vanishing gradients by allowing

38

the model to selectively access memory states not only from the last input but from earlier

inputs as well. GRUs were developed later as a simpler and faster alternative to LSTMs which

performed almost comparably[98].

Some Seq2Seq architectures are trained to simply reconstruct their input while

minimizing the reconstruction error. These types of architectures are called Autoencoders, and

their main purpose is to learn in an unsupervised manner a “meaningful” higher representation

of the input data. However, if the dimensionality of the latent vector, meaning the vector which

is given to the decoder by the encoder, is higher than dimensionality of the input, then the model

will simply learn an identity function. To avoid the problem of the model learning to simply

“copy” its input, different regularization methods exist, like in sparse[99], denoising[100] or

contractive[101] AEs. Those methods work well if the dimensionality of the latent vector is equal

or higher to the dimensionality of the data. Another regularization technique consists in making

the dimensionality of the latent vector lower than the input data, creating a “bottleneck” which

forces some information loss and trains the model to keep the most vital representation and

context and infer the missing information (Figure 13).

Even with the introduction of LSTMs and GRUs, a study by Cho and al.[102] showed

encoder-decoder architectures still had a strong dip in performance when dealing with very long

sentences. The encasement of the entire context into a fixed-length vector was pinpointed as

the main source of error and led to the development of Attention-based seq2seq

architectures[13,103,104]. During the generation process, the Attention mechanism allows the

model to selectively concentrate on relevant parts of the source data where the most important

information is located. The model can then predict new words according to the global or local

context vectors, depending on the Attention type, as well as all previously generated words,

thus improving performance on long sentences and translational efficiency altogether.

39

Figure 13. Examples of autoencoder regularization techniques. (i) represents the denoising

autoencoder, where a noise vector is added to the input, but the output is compared to the clean

input, forcing the model to make the difference between useful information and noise. (ii)

represents a sparse autoencoder. Random values are “deactivated” (set to 0) between encoder

and decoder, resulting in information loss and forcing the model to infer from incomplete

information. (iii) represents an autoencoder with a low-dimensional latent vector, called a

“bottleneck” which compresses the information. The decoder must infer the output from this

compressed information.

40

2.1.1 RNNs, LSTMs, GRUs, Attention

Recurrent Neural Networks

A Recurrent Neural Network takes as input a sequence of vectors 𝐗 = (𝐗0, 𝐗1, 𝐗2, … , 𝐗𝑛) and

processes the vectors one by one, starting with the first one. At time step 𝑡, the model processes

the input 𝐗𝑡 as well the state vector 𝐡𝑡−1 resulting from the previous iteration to generate an

output 𝐘𝑡 and an updated state vector 𝐡𝑡. Figure 14 shows a schematic representation of the

process.

Figure 14. Schematic representation of a folded (i) and unfolded (ii) RNN. The folded scheme

shows the feedback loop, current input and previous states are used to compute the output and

the updated states. The unfolded scheme allows more readability and a step-by-step

understanding of the process.

The current state vector 𝐡𝑡 is a function of 𝐗𝑡 and 𝐡𝑡−1, and the output vector 𝐘𝑡 is a

function of the current state vector 𝐡𝑡. If 𝛉 represents the trainable parameters of the model then

the system evolves as follows:

 𝐡𝑡 = 𝑓𝑠𝑡𝑎𝑡𝑒(𝐗𝑡, 𝐡𝑡−1, 𝛉) (2.1)

𝐘𝑡 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝐡𝑡, 𝛉) (2.2)

Typically, the following equations are used to compute the states and outputs:

41

 𝐡𝑡 = Φ𝑠𝑡𝑎𝑡𝑒(𝐖𝑥ℎ
𝑇 ∗ 𝐗𝑡 + 𝐖ℎℎ

𝑇 ∗ 𝐡𝑡−1 + 𝐛ℎ) (2.3)

𝐘𝑡 = Φoutput(𝐖𝑦ℎ
𝑇 ∗ 𝐡𝑡−1 + 𝐛𝑦) (2.4)

 𝐛ℎ and 𝐛𝑦 are the biases for the hidden layer and the output respectively, 𝐖𝑥ℎ, 𝐖ℎℎ and

𝐖𝑦ℎ are the weights matrices associated with the layer connections. Φ𝑠𝑡𝑎𝑡𝑒 and Φoutput are

non-linear activation functions, usually tanh in the case of Φ𝑠𝑡𝑎𝑡𝑒 and sigmoid, softmax or the

rectified linear unit (ReLU) for Φoutput depending on the application and the desired output

form.

During training, the loss function 𝐿 of the model is calculated as the sum of losses at each

time step as follows:

𝐿 = ∑ 𝑙(

𝑇

𝑡=0

𝐘𝑡
data, 𝐘𝑡

pred
) (2.5)

The nature of the individual loss function 𝑙 depends on the form of the output, the context

of training and the required task. When dealing with sequences of words or characters which

are a classification problem, binary or categorical cross-entropy are common choices. Mean

Square Error (MSE) or Mean Absolute Error (MAE) are mostly used in regression tasks. The

loss is backpropagated through the model at each time step. During this step-by-step

backpropagation, the global gradient which is a multiplication of localized gradients can

become exponentially high or low if the model is deep (many layers), leading to the exploding

or vanishing gradients issues respectively. Long-term dependencies between words in a

sequence can therefore be affected if the gradient becomes smaller, as the sentence gets longer.

Long Short-Term Memory and Gated Recurrent Units

To solve the problem of long term-dependencies, Hochreiter and Schmidhuber[97]

introduced the LSTM in 1997. An LSTM works like an RNN but adds different connexions to

the cell and a new variable: the cell state. As explained previously, hidden states in RNNs keep

the context from previous inputs, but the longer the character chain is, the less effective that

42

context will be. In the LSTM, hidden states work as short-term memory, and cell states as long-

term memory which prevents vanishing gradients and greatly strengthens long-term

dependencies. Comparative schemes of a regular RNN and an LSTM are shown in Figure 15.

Figure 15. Schematic representations of a regular RNN (i) and the LSTM (ii). The main

difference is the cell state 𝑐𝑡 which is not present in a regular RNN.

In contrast to the regular RNN where hidden states and input are simply concatenated and

passed to an activation (tanh) layer, the LSTM takes the input and hidden states and passes that

signal through “gates” which are composed of an activation layer and either a multiplicative or

additive pointwise operation (three red dots on the bottom line in Figure 15, (ii)). These gates

decide how much of the new information 𝑥𝑡 and short-term memory ℎ𝑡−1 to add to the cell state

𝑐𝑡−1 which serves as the long-term memory. 𝑐𝑡 is then multiplied to ℎ𝑡−1 to create the output

ℎ𝑡. The first gate is a “forget” gate, which removes or diminishes the importance of certain

information in the cell state; the second and third gates work as a “remember” gate, which adds

(via the additive operation) new useful information to the cell state.

GRUs function a bit differently, as they combine long-term and short-term memory in the

same hidden states ℎ𝑡 (Figure 16). The result is a simpler RNN model with less variables and

parameters to optimize which makes it faster to train and use.

The complex mathematical equations and functions governing both these models will not

be described here since they are not useful for the understanding of the work, however a precise

and thorough mathematical explanation of the feed-forward and backpropagation processes can

be found in the literature[105].

43

Figure 16. Comparison between schematic representations of the LSTM (i) and the GRU (ii).

The GRU does not have a cell state like the LSTM but combines short-term and long-term

dependencies into the hidden states.

Different types of RNNs can be distinguished depending on the input and output

dimensionality as well as the time steps. The different types are summed up in Table 2.

Context vectors created when reading a sequence from beginning to end are used by the

decoder to generate new items from past context. RNNs using this method are called

Unidirectional as they only read information one way. Bidirectional RNNs[106] read the

sequence from beginning to end, and from end to beginning and output two hidden states vector,

one forward and one backward. The forward vector, just like in a Unidirectional RNN, captures

past context during the generation process while the backward vector captures future context.

The combination of both context vectors during the generation process allows past and future

context to be considered when sampling new words. General hidden states at time step 𝑡, ℎ𝑡 are

expressed as a concatenation of forward states ℎ𝑡
𝑓
 and backward states ℎ𝑡

𝑏 such that:

ℎ𝑡 = [ℎ𝑡
𝑓

, ℎ𝑡
𝑏] (2.6)

In traditional RNNs and Autoencoders, the intermediate hidden states of the encoder ℎ𝑡

are always given to the next time step but are not stored individually. Instead, only the final

hidden states (and/or cell states in the case of LSTMs) are given to the decoder. This means that

the whole context is stored in a single fixed-length vector as shown in Figure 17.

44

Table 2. Different types of RNNs with their schematic representation and examples of their

usage. 𝑇𝑥 and 𝑇𝑦 represent the length of the sequences 𝐗 and 𝐘 respectively; two different model types

for different usages can be isolated if the sequences lengths are the same or different.

Type Representative scheme Usage example

One-to-

Many

Music

Generation,

Image

captioning.

Many-to-

One

Sentiment

Analysis, Stock

price forecasting

Many-to-

Many

𝑇𝑥 = 𝑇𝑦

Named entity

recognition

Many-to-

Many

𝑇𝑥 ≠ 𝑇𝑦

Language

translation

45

Figure 17. Schematic representation of a Classical RNN. At each time step, the input 𝐗𝑡 and

previous hidden states ℎ𝑡−1 are given back to the model to generate new hidden states ℎ𝑡. At

the end of the 𝑛 time steps, the hidden states ℎ𝑛 are transferred to the decoder. The intermediate

state ℎ1 to ℎ𝑛−1 are discarded.

Attention

The first Attention mechanism was developed by Bahdanau and al.[103] in 2014, to solve

the issue of long term dependencies in DNNs. The Attention mechanism is based on using the

intermediate hidden states ℎ𝑡 to create a dynamic context vector which is then given to the

decoder instead of the usual final hidden states. This dynamic context vector is different for

each time step of the decoder and allows to form localized connections between source and

target sequences. Simply put, for each time step, the context vector has a higher influence from

elements in the source sequence that are relevant to that time step specifically, instead of having

the same context for all time steps.

During decoding, the basic equations of the Bahdanau attention mechanism are as

follows: Let 𝑌𝑡−1 and 𝑠𝑡−1 respectively be the output of the decoder and the hidden states of the

decoder at time step 𝑡 − 1. The hidden states ℎ𝑖 are pre-computed from the input 𝐗 =

(𝐗0, 𝐗1, 𝐗2, … , 𝐗n) by the decoder. At each time step, an attention score 𝑒𝑡,𝑖 for each hidden

state ℎ𝑖 is calculated with the hidden state of the previous output step 𝑠𝑡−1 following the

equation:

46

𝑒𝑡,𝑖 = 𝑓(𝑠𝑡,𝑖, ℎ𝑖) (2.7)

with 𝑓 an alignment function which in this case is additive:

𝑓(𝑠𝑡,𝑖, ℎ𝑖) = 𝐰𝑇tanh (𝐖[ℎ𝑖; 𝑠𝑡−1]) (2.8)

[𝐴; 𝐵] being the concatenation of vectors A and B.

Or

𝑓(𝑠𝑡,𝑖, ℎ𝑖) = 𝐰𝑇tanh (𝐖1ℎ𝑖 + 𝐖2𝑠𝑡−1) (2.9)

𝐰, 𝐖1 and 𝐖2 are weights which are trained alongside with the rest of the model.

 Once the alignment scores 𝑒𝑡,𝑖 are calculated, a softmax function is applied to obtain the

corresponding attention weights:

𝛼𝑡,𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡,𝑖) =
exp (𝑒𝑡,𝑖)

∑ exp (𝑒𝑡,𝑖)
𝑛
𝑖=0

 (2.10)

𝛼𝑡,𝑖 can therefore be considered as probability or weights values, indicating how

important the hidden state ℎ𝑖 is to the next output 𝑌𝑡 and next output state 𝑠𝑡. Finally, the context

vector 𝑐𝑡 is computed using the combination of 𝛼𝑡,𝑖 and ℎ𝑖 as follows:

𝑐𝑡,𝑖 = ∑ 𝛼𝑡,𝑖ℎ𝑖

𝑛

𝑖=0

 (2.11)

The context vector is then given to the decoder along with the previous output 𝑦𝑡−1 and

previous states 𝑠𝑡−1 to compute the new output 𝑦𝑡.

47

Figure 18. Schematic representation of the process of computing the Bahdanau attention taken

from the original publication[103]. This image shows the process for a bidirectional RNN.

The original Bahdanau attention can be considered as additive since the alignment

functions concatenate or add the states together. Luong and al. improved on the original design

by using multiplicative alignment functions[104]. Attention mechanisms can be separated in two

categories: local and global. Global Attention (Bahdanau and Luong) makes use of all

intermediate states to generate the context vector while local attention selects the most

important hidden states in the source sequence to generate the next word in the target

sequence[107].

In 2017, Vaswani and al. introduced a general attention mechanism which does not

require the model to be recurrent[13] and was based only on positional embeddings and multi-

head attention (multiple instances of single attention vectors are calculated, concatenated, and

projected to give a single context vector). These models, called Transformers, achieved great

results in many different fields[108].

48

2.1.2 Molecular Representations for Seq2Seq architectures

Seq2seq architectures require sequences of data as input, as opposed to graph-based

architectures which work with encoded molecular graphs[109,110]. To ensure that seq2seq models

can be used in chemical applications, chemical compounds must be converted in sequential

machine-readable format. Common molecular names like “propane” or “benzaldehyde” would

be simple inputs, however they bring no information on the structure or properties of the

compound. In contrast, IUPAC nomenclature would be more systematic and complete, but the

resulting names can be lengthy and hardly interpretable. Several different forms of molecular

representation were therefore developed throughout the years to try and strike a compromise

between chemical information retention, simple interpretability, and performance optimization.

SMILES

 The Simplified Molecular Input Line Entry System (SMILES)[64] is a method of

encoding molecular structures in the form of a sequence of characters representing the

succession of atoms in a molecule. SMILES are built by selecting a starting atom and going

through connections in the molecular graph, each time adding the corresponding atom character

to the chain. Different atoms, bond types, branching, etc… are all handled using simple

characters which make SMILES easily readable and a very light option for storage.

Any atom can be selected as the starting point when building SMILES, which means

that one molecule can have several different associated SMILES in a one-to-many relationship.

As such, so-called “canonization” algorithms[111,112] were developed to make the generation

process systematic and reproducible, so that each molecule is associated with a single

“canonical” SMILES.

InChI

 The International Chemical Identifier (InChI)[113] represents molecular structures as a

unique combination of machine-readable layers of character strings. The basis of the InChI

representation is the core layer which describes the “skeleton” of the molecule. Different layers

may then be added, separated by a “/”, that each provide different chemical information. InChI

in essence are a very versatile but quite complex way to represent molecules. Attempts at using

InChI to train models showed that the high complexity factor resulted in inferior performance

when compared to SMILES-based models[114,115].

49

DeepSMILES

 SMILES strings may sometimes be very long in the case of structures with several

cycles or branching paths. In some of those cases, one opening parenthesis may be at the

beginning of the SMILES string when the closing parenthesis is at the end, same with cycle

numbers. These placements introduce long-distance dependencies in the sequential

representation which are sometimes difficult to apprehend for seq2seq architectures. During

reconstruction, small errors can appear when closing cycles or ending branches which can

render the SMILES chemically invalid. DeepSMILES[116] were developed to solve this problem

by using single symbols for both cycles and branching paths. Branching paths are indicated by

closing parentheses, the number of which indicates the size of the branching. The issue of

pairing ring closure is handled by using a single symbol at the ring closing location, indicating

the number of atoms in the ring.

SELFIES

 As previously stated, small differences or changes in SMILES can result in invalid

strings which are not associated with any existing chemical structures, which makes this

representation quite prone to errors. This is problematic when trying to use generative neural

networks as the probability-based reconstruction may incorrectly handle long-term

dependencies and place certain characters where they shouldn’t be. SELFIES[117] are an

adaptation of SMILES, robust to small changes and errors. SELFIES are based on formal

Chomsky type-2 grammar and localize branches and rings, so that instead of indicating the

beginning and the end of a ring or branch, the corresponding symbols indicate the length of the

features. All SELFIES character sequences correspond to valid molecules and every molecule

can be expressed as a SELFIE.

Table 3. Example of each type of representation for (3-chlorophenyl)methanol.

2D Structure

SMILES (Unique) OCc1cccc(Cl)c1

InChI InChI=1S/C7H7ClO/c8-7-3-1-2-6(4-7)5-9/h1-4,9H,5H2

DeepSMILES OCcccccCl)c6

SELFIES [O][C][C][=C][C][=C][C][Branch1][C][Cl][=C][Ring1][#Branch1]

50

2.1.3 One-hot encoding

Seq2Seq architectures cannot directly input sequence of characters or words however, as these

are incompatible with the numerical transformations which take place in the model. Instead,

they should be “encoded” into machine-readable format in the form of vectors, matrices or

tensors which can be manipulated through mathematical functions. Sentences in any language

are built using a finite list of words organized in a certain order to create meaning and sense.

When predicting the next word in a sentence, the model must choose between a certain number

of possibilities, making this a categorical problem.

 By assigning an integer value to each word or character in the dictionary, sentences can

be encoded into numerical vectors. This is called “integer encoding” and is easily reversible,

making it the simplest encoding method. The latter works well when numerical values assigned

to the data maintain an ordinal relationship present initially in the data. For example, if the task

is to encode reviews for a movie where the possibilities are “bad”, “average”, “good”, then

encoding them as 1, 2 and 3 makes sense since they are ordered. However, when working with

data with no ordinal relationship, this method of encoding can cause biases. Encoding “cat”,

“parrot” and “bison” as 1, 2 and 3 implies that a cat is closer to a parrot than a bison which

establishes ordered connections that are not present in the initial data. Moreover, when dealing

with large dictionaries or large numbers of possibilities, the encoding integers can become very

large which can cause memory and performance issues.

 Another method to encode sentences or sequences of characters is called one-hot

encoding. In this case, each word or character in the sequence is represented as a vector of

length 𝑁, 𝑁 being the size of the dictionary. The vector encodes the presence or absence of each

word for the current instance, as shown in Table 4.

Table 4. Example of the one-hot encoding of the word “cute” for a dictionary of size 7. The

resulting vector has a dimensionality of 7.

Tali cat dog ugly cute a is

0 0 0 0 1 0 0

 Using this method, entire sentences can be encoded into matrices of binary values as

shown in Table 5. Note that these matrices can get quite large depending on the size of the given

51

dictionary, but the binary values allow for simpler processing and low memory usage.

Furthermore, there is no bias caused by arbitrary values being assigned to random data.

Table 5. Example of the one-hot encoding of a sentence of 5 words with a dictionary of size 7.

Words in blue are the sentence, while words in green represent the dictionary. The resulting

matrix has a dimensionality of (7, 5).

 Tali is a cute cat

Tali 1 0 0 0 0

cat 0 0 0 0 1

dog 0 0 0 0 0

ugly 0 0 0 0 0

cute 0 0 0 1 0

a 0 0 1 0 0

is 0 1 0 0 0

 This method can be easily extended to chemical data, particularly SMILES. By

considering them as a “sentence” of chemical “words” they can be encoded as naturally as

languages. A SMILES database contains a finite number of possible characters which form a

dictionary, used to create chemically meaningful sequences. The process is the same as before,

as shown in Table 6.

Table 6. Example of the one-hot encoding of the but-3-en-2-ol SMILES with a simple

dictionary of 6 characters.

 C C (O) C = C

C 1 1 0 0 0 1 0 1

O 0 0 0 1 0 0 0 0

N 0 0 0 0 0 0 0 0

(0 0 1 0 0 0 0 0

) 0 0 0 0 1 0 0 0

= 0 0 0 0 0 0 1 0

 Even though the process of forming the one-hot matrices is the same in both cases,

differences in the handling of natural languages and SMILES may be noted. On the one hand,

SMILES sequences can be very long, up to hundreds of characters. With each SMILES

character being treated as if it were a word, this would be equivalent to having sentences of 100

or 200 words. As a comparison, the average length of a sentence in the “Harry Potter” books is

around 12 words[118], emphasizing the need for very strong long-term dependencies when

52

dealing with chemical information. Errors in natural languages can still lead to understandable

sentences if one word is missing, misplaced, or mistranslated, but a single error in a SMILES

string can lead to a completely different molecule in certain cases, or more likely to a

meaningless character sequence with no chemical meaning. On the other hand, dictionaries for

SMILES are much smaller than dictionaries containing words for natural languages. The latter

can contain thousands of entries, rendering the one-hot matrices very large, while the former

may contain 30-60 possible characters depending on the given task. The problematic of having

very long sentences is thus alleviated somewhat by the rather low number of possible atoms

and functions.

2.1.4 Molecular generation with Seq2Seq architectures

 During training, SMILES are modified to add a start and end character at the beginning

and end of the SMILES. For example, the simple “C1CCCCC1” would become

“!C1CCCCC1E” if “!” was the start character and “E” the end character. SMILES are then

encoded into one-hot vectors and the model is trained, sometimes using the Teacher Forcing

(TF) method[119]. As an example for the generation procedure, an Autoencoder which must

reconstruct its input will be considered.

The encoder part is only used during training or for generating latent vectors

corresponding to inputted molecules. The generation procedure is only done by the decoder.

The latter receives as input a latent vector corresponding to a certain SMILES string along with

a start token (“!” in our example). The model then predicts the probability of each possible

character to be the next one using the softmax function, based on the given latent vector. The

sampled character is added to the sequence and given back to the decoder to predict the next

character and so on, until the model predicts an “E” which signifies that the string has ended.

An example of the process is shown in Figure 19.

53

Figure 19. Schematic representation of the generative process. The start character is given to

the decoder with the latent vector to predict the next character, based on a probability

distribution of all characters (represented by the rectangle). In this case, the most probable

character is selected and added to the existing sequence. The latter is then injected back into the

neural network to continue predict characters until reaching the “E” which signifies the end.

2.1.5 Seq2Seq Architectures in Drug Design and Reaction Planning

Segler’s work on generating focused libraries with basic RNNs[65] was the first case of

molecular generation of focused datasets using a SMILES-based seq2seq architecture. The

method was based on an LSTM-based stacked RNN using Transfer Learning (TL)[120]. TL or

“fine-tuning” consists in training the model on a large, varied molecular database. Then, the

model is retrained on a smaller, more specific dataset according to the given task so that the

knowledge acquired on the bigger dataset can be used on the more specific task. Segler and al.

trained their RNN on the entire ChEMBL database first, then on the more specific target dataset

obtained from ChEMBL. Since the first publication, other teams have used TL with LSTM-

based stacked RNN[121–124] to generate focused datasets. Another method is Reinforcement

Learning (RL)[125]. RL is a training algorithm based on applying a scoring function to the output

of the model and rewarding or punishing the model according to the score. When applied to

drug design, the model generates compounds and a scoring function applies a score to the

generated molecule according to preferences in structure, properties, etc… The model is then

54

rewarded for generating molecules which fit the desired properties and punished otherwise.

RNNs coupled with RL have been used to generate potential actives against biological

targets[66,126]. Forcing the model to generate compounds with desired properties can also be

achieved by training the model to make the connection between properties and chemical

structure. During training, the model is given, alongside the SMILES string, corresponding

properties or structural features associated with the given SMILES. When sampling, the model

only takes the property vector and outputs a SMILES corresponding to a compound with the

desired properties. These types of models are called Conditional Recurrent Neural Networks

(CRNN) and have been used to generate active compounds against the DRD2 receptor[127].

More complex architectures like AEs became quite popular due to their ability to create

an explorable latent space in which any area of interest can be sampled using cartography[87] or

Particle Swarm Optimization (PSO)[128]. Due to the discrete nature of the latent spaces

associated to vanilla AEs, VAEs were preferred for latent space navigation[114,129]. VAEs were

also coupled with TL[126] to design ligands for the dopamine type 2 and the 5-

hydroxytryptamine type 1A receptors. CVAEs also achieved good results in the generation of

actives against biological targets[4,130].

Generative Adversarial Networks[131] are a combination of two separate models trained

together: The first model, called the generator, generates compounds that are given to the second

model, the discriminator. The discriminator receives the compounds from the generator and

compounds from a dataset of real molecules and must learn to make the difference between

them. The generator is trained to “fool” the discriminator by creating compounds that resemble

the real dataset. Once the discriminator cannot make the difference between real and generated

compounds, then sampling the generator gives compounds which are structurally very similar

to the real compounds. GANs were successfully used in focused datasets generation[69,132–134]

and latent space exploration[6]. Instead of comparing molecular structures like in the case of

GANs, an AE can be modified to create an Adversarial Autoencoder which compares the data

distribution of the AE with a prior distribution, the goal being to bring prior and latent

distributions closer so that the generative process is fuelled by latent vectors in interesting areas

of latent space[5].

55

Figure 20. (i) Variational Autoencoder. Instead of the unique latent vector generated by a vanilla

AE, the encoder generates two vectors: mean and standard deviation of a normal distribution

from which the vector given to the decoder is sampled. (ii) Conditional Variational Encoder. A

condition vector describing structural fragments or physicochemical properties is given to the

encoder at the same time as the molecular structure and concatenated with the latent vector

sampled from the gaussian distribution. (iii) Adversarial AutoEncoder. The encoder generates

a latent vector which is compared with a prior distribution by a discriminator. (iv) Generational

Adversarial Network. The generator creates molecular structures which are compared to real

compounds by a discriminator which is trained in parallel.

56

 The developments of sequence-to-sequence architectures achieving target compound

design meant that large datasets of potentially new molecules were created. However, being

predicted active is not the only requirement for potential drugs. Simple and relatively cheap

synthetic pathways must also be found to ensure that the interesting molecules are also easily

accessible synthetically. Reactions are a lot more complex than molecules however, since

reactions often imply multiple reagents and products, with a correspondence between chemical

entities before and after the reaction. This seemingly complex issue can be simplified slightly

by thinking of reactions as a translation from reagents to products, and since seq2seq

architectures were initially developed for translation tasks, they can naturally be adapted to

solve the problem. GRU and LSTM-based seq2seq models were successfully used to predict

products directly from reagents[135,136] and retrosynthetically predict reagents from products[137–

139]. Reactions remain very difficult to handle and the prediction of novel reactions through

neural networks is still in its infancy.

57

2.2 Generative Topographic Mapping

Generative Topographic Mapping (GTM) is a probabilistic dimensionality reduction technique

akin to Self-Organizing Maps[140], first published by Bishop and al. in 1998[7]. As a method of

dimensionality reduction, visualization and analysis of chemical latent space, GTM has

successfully been used for the analysis of large data collections[85,141–143]. The algorithm

performs non-linear projections from an initial N-dimensional descriptor space onto a 2D latent

space called manifold which is inserted into the data. The manifold itself is a flexible surface

of finite size composed of Gaussian Radial Basis Functions (RBFs). It is inserted into the

densest regions of the frameset where it adapts by assuming the general shape of the data

distribution. Data points are projected onto the manifold via grid points called nodes, and the

manifold is then unfolded and flattened into a 2D map.

Each data point is associated to all nodes via a set of responsibilities which encode the

position of the data point on the map. The higher the responsibility in regard to a certain node,

the closer the data point will be to that location. These responsibility vectors can then be used

to create landscapes, 2D maps associated to a certain property or activity where each node is

coloured according to the value of the given property or activity.

Figure 21. General overview of Generative Topographic Mapping. The data point is projected

onto the manifold via the RBFs with a probability to reside in each node. The responsibilities

for one data point are normalized over the entire map, meaning the sum of responsibilities is

equal to 1.

58

2.2.1 GTM Algorithm

Generative Topographic Mapping is a probabilistic method, as stated previously. The

manifold is composed of a set of 𝑀 Radial Basis Functions (RBFs, Gaussian functions in this

implementation), forming a probability distribution sampled using 𝐾 nodes. The mapping

function 𝐘 used to map items from the latent space of dimension 𝐿 (in this case, 𝐿 = 2) to the

initial space of dimension 𝐷 is the following:

 𝐘 = 𝛟W (2.12)

𝛟 corresponds the 𝐾 x 𝑀 matrix regrouping the evaluation of each RBF position in relation to

each node with the formula:

 Φ𝑚𝑘 = exp (
∥ 𝐱k − 𝛍m ∥2

2𝜎
) (2.13)

With 𝐱k the position of the node, 𝛍m the fixed position of the RBF, and 𝜎 the variance

associated to the Gaussian functions. A set of 𝐾, 𝑀, and 𝜎 parameters are associated to a

constant 𝛟 matrix and influence the resolution of the model. The deformation of the manifold

to adapt to the data is described by the trainable weight matrix W (2.12) of size 𝑀 x 𝐷, which

defines the manifold in the initial 𝐷-dimensional space.

Thus, the multiplication of the 𝛟 matrix (𝐾, 𝑀) defining the relations between RBF

centres and nodes in 2-dimensional latent space and the W matrix (𝑀, 𝐷) defining the placement

of the RBF centres in the initial 𝐷-dimensional data space gives the 𝐘 matrix (𝐾, 𝐷) defining

the shape of the manifold in the initial space. During training, the weights shift to move the

nodes closer to the data points, searching for the shape that will best fit the data distribution

thus improving the resulting latent representation.

The data distribution is usually defined by a set of 𝑁 data points called a frameset, which

is a representative subset of a usually larger dataset, but sufficient for the training process to

capture the general shape of the distribution. The first step of training is the initialization of the

weight matrix W, which can be done randomly but the application of PCA is the preferred

method. Simply put, the manifold is inserted “flat” into the data following the eigenvectors of

59

the two first principal components resulting from a PCA on the frameset. The process is

governed by the following equation:

 𝐖 = 𝚽−𝟏(𝐗𝐔) (2.14)

The 𝐗 matrix (𝐾, 2) defines the position of the nodes following the two eigenvectors

resulting from the PCA and 𝐔 (2, 𝐷) defines the two eigenvectors in initial space. The resulting

matrix 𝐗𝐔 gives the coordinates of the nodes in 𝐷-dimensional space. To obtain initialized

weights, this matrix needs to be multiplied by the inverse of the 𝛟 matrix, essentially defining

the positions of the RBF centres in the initial space following the principal components. Once

the manifold is inserted into its initial position, each compound of the frameset is projected onto

the manifold using the following equation:

 𝑝(𝐭|𝐱k, 𝐖, 𝛽) = (
𝛽

2𝜋
)

−
𝐷
2

exp (−
𝛽

2
∥ 𝐲k − 𝐭 ∥2) (2.15)

 Equation (2.15) describes the probability density (or likelihood) of a data point 𝐭 to be

associated with the node k of coordinates 𝐱𝑘 in the latent space. 𝐲k corresponds to the

coordinates of nodes in 𝐷-dimensional space calculated using equation (2.12). 𝛽 is the inverse

of the variance of the distribution, initialized based on the third component of the PCA, and

optimized during the training procedure. Equation (2.15) can be integrated over all nodes to

obtain the likelihood of data point 𝐭 against the entire manifold, which is a quality indicator of

the manifold’s representation of that particular data point.

𝑝(𝐭|𝐖, 𝛽) =
1

𝐾
∑ 𝑝(𝐭|𝐱k, 𝐖, 𝛽)

𝐾

𝑘=1

 (2.16)

 In practice, the likelihood is not used as is, but its natural logarithm (LLh) is preferred.

𝐿𝐿ℎ(𝐭, 𝐖, 𝛽) = 𝑙𝑛(𝑝(𝐭|𝐖, 𝛽)) (2.17)

60

Summing the likelihood of the 𝑁 data points contained in the frameset gives a global

value for the quality of the manifold fit and is used as an objective function to optimize the

weight matrix 𝐖.

𝐿𝐿ℎ(𝐖, 𝛽) = ∑ 𝐿𝐿ℎ(𝐭𝑛, 𝐖, 𝛽)

𝑁

𝑛=1

 (2.18)

Expectation-Maximization Algorithm

Based on this objective function, the Expectation-Maximisation algorithm is run to

optimize the values of 𝐖 and 𝛽. The Expectation step first evaluates the normalized

responsibilities of the 𝑁 data points 𝐭𝑛 on every node 𝐱k with equation (2.21), creating a matrix

of responsibilities 𝐑 of dimension (𝐾, 𝑁):

𝑟𝑘𝑛 =
𝑝(𝐭𝑛|𝐱𝑘, 𝐖, 𝛽)

∑ 𝑝(𝐾
𝑘′ 𝐭𝑛|𝐱𝑘, 𝐖, 𝛽)

 (2.19)

𝐑 = (

𝑟1,1 ⋯ 𝑟1,𝑁

⋮ ⋱ ⋮
𝑟𝐾,1 ⋯ 𝑟𝐾,𝑁

) (2.20)

 The second part of the Expectation step is to calculate, for each node, the sum of

responsibilities 𝑔 of the 𝑁 data points. The result of this summation is expressed as a diagonal

matrix and not a one-dimensional vector since the basis must be changed in the Maximization

step to go from the 2-Dimensional space of the nodes to the 𝐷-dimensional space of the RBF

centres via the 𝛟 matrix.

𝑔𝑘𝑘 = ∑ 𝑟𝑘𝑛

𝑁

𝑛=1

 (2.21)

𝐆 = (
𝑔11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑔𝐾𝐾

) (2.22)

61

 The Maximization step uses the previously calculated 𝐑 and 𝐆 matrices, the matrix 𝐓

describing the 𝑁 data points in the initial 𝐷-dimensional space, a unit matrix 𝐓 and a

regularization coefficient 𝜆 to compute the updated parameter matrix 𝐖′. Based on the latter, a

new value 𝛽′ for the width is also computed.

𝐖′ = (𝚽T𝐆𝚽 + 𝜆𝐈)−1𝚽T𝐑𝐓 (2.23)

1

𝛽′
=

1

𝑁𝐷
∑ ∑ 𝑟𝑘𝑛 ∥ 𝑦(𝐱𝑘, 𝐖′) − 𝐭𝑛 ∥ ²

𝐾

𝑘=1

𝑁

𝑛=1

 (2.24)

Both updated width and updated parameters are reinjected into the Expectation step for a

new iteration. An updated 𝐿𝐿ℎ(𝐖′, 𝛽′) is computed and compared to the initial 𝐿𝐿ℎ(𝐖, 𝛽)

using a simple gradient indicated in equation (2.25). The training process is stopped when the

gradient becomes smaller than the limit (0.001 in this case).

𝐿𝐿ℎ(𝐖′, 𝛽′) − 𝐿𝐿ℎ(𝐖, 𝛽)

𝐿𝐿ℎ(𝐖, 𝛽)
≤ 0.001 (2.25)

GTM ReSample

In certain cases, after the manifold has been trained, the number of nodes may be

incompatible with certain applications. For example, the number of nodes in a small manifold

may be too little for separating some species, leading to confusing graphical representations. It

is possible to change the number of nodes in the manifold by simply reassigning a matrix of

node positions from the matrix 𝐘 describing the positions of the RBFs in initial space which do

not change since the manifold is well trained and embedded into the data. The probability

distributions of the data points can then be recalculated using the new set of node coordinates.

62

2.2.2 GTM Landscapes

Visualization and modelling of the data is done by using the aforementioned

responsibilities to create “landscapes” depicting the data distribution, with the possibility to

enhance the displayed information by using colour coding related to properties or in the case of

chemical information, activity as well. Depending on the goal and the type of model needed,

three types of landscapes can be defined: Density, Class, and Property (see Figure 22).

Figure 22. Examples of density, property, and class landscapes. (i) shows a density landscape

with very populated areas represented in dark grey or black and lightly populated/unpopulated

areas represented in light grey or white. (ii) shows a property landscape, molecular weight in

this case, with heavy molecules coloured in red and lighter molecules coloured in blue. (iii)

shows a class landscape with zones containing active molecules coloured in red and zones

containing inactive molecules coloured in blue. The zones coloured in green contain both active

and inactive molecules with similar cumulated responsibility values.

Density landscapes are simply a representation of the cumulated responsibilities in each

node.

𝑞𝑘 = ∑ 𝑟𝑘𝑛

𝑁

𝑛=1

 (2.26)

For property landscapes, the property value for each node 𝑞𝑘 can be calculated by

multiplying the property value 𝑞𝑛 of each compound in the node by its responsibility 𝑟𝑘𝑛,

summing all those values per node, and dividing by the cumulated responsibilities.

63

𝑞𝑘 =
∑ 𝑞𝑛 ∗ 𝑟𝑘𝑛

𝑁
𝑛=1

∑ 𝑟𝑘𝑛
𝑁
𝑛=1

 (2.27)

Once the property landscape is created it can also serve as a regression tool. By

projecting a new data point 𝐭′on the landscape and obtaining its responsibility vector 𝐫𝑡′ with

components 𝑟𝑘𝑡′ for each node, the predicted value for the property of the compound is

calculated as follows:

𝑞𝑡′ = ∑ 𝑞𝑘 ∗ 𝑟𝑡′

𝐾

𝑘=1

 (2.28)

In other words, the predicted property is a sum of all properties of the nodes where the data

point was projected, weighted by the probability of the data point to be in each node.

In class landscapes, the value for each node is equivalent to the probability of finding a

data point of a certain class in it:

𝑃(𝑐𝑖|𝑥𝑘) =
𝑃(𝑥𝑘|𝑐𝑖) ∗ 𝑃(𝑐𝑖)

∑ 𝑃(𝑥𝑘|𝑐𝑗) ∗ 𝑃(𝑐𝑗)𝑗

 (2.29)

𝑃(𝑥𝑘|𝑐𝑖) =
∑ 𝑟𝑛𝑘

𝑐𝑖𝑁
𝑛=1

𝑁𝑐𝑖

 (2.30)

𝑃(𝑐𝑖) =
𝑁𝑐𝑖

𝑁𝑡𝑜𝑡
 (2.31)

Here, 𝑟𝑛𝑘
𝑐𝑖 is the responsibility of a data point 𝑛 in node 𝑘 with class 𝑐𝑖, 𝑁𝑐𝑖

 is the number of data

points with the 𝑐𝑖 class and 𝑁𝑡𝑜𝑡 is the total amount of data points.

 In the same way as property landscapes, class landscapes can also be used as predictions

tools with a formula resembling the property landscape equation. The value for the class of a

projected compound 𝐭′ can be expressed as:

64

𝑃(𝑐𝑖|𝐭
′) = ∑ 𝑃(𝑐𝑖|𝑥𝑘) ∗ 𝑟𝑘𝑡′

𝐾

𝑘=1

 (2.32)

Transparency combined with colouring in both property and class landscapes help visualize

the data density. It is however sometimes less easily readable in this format, thus the need for a

density landscape.

2.2.3 ISIDA descriptors

The basic idea of any QSAR model in chemoinformatics is to link activity or property to

structural features with the following general formula: 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 𝑓(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒).

GTM is therefore commonly built on structural fragment descriptors and the landscapes

coloured according to chemical properties or activities to achieve that relationship. These

descriptors must be carefully selected to have the best possible maps.

ISIDA[8] descriptors encode molecular structures as specific subgraph counts where

nodes correspond to atoms and can be coloured by different local physico-chemical properties

such as pH-dependent pharmacophores and electrostatic potential. The vertices in the subgraphs

correspond to the bonds; bond information can either be represented or ignored. Different

fragmentation schemes can be applied to create different types of subgraphs: linear features,

feature pairs, circular features, or feature trees. As such, the different types of colouring, bond

information and fragmentation schemes offer a vast range of different levels in which the

chemical information may be encoded. This plethora of choices for descriptors allows the

creation of very strong GTM models which can be adapted to any biological target.

65

2.2.4 Combining GTM and Autoencoders

GTM is commonly used with ISIDA descriptors or structural descriptors in general,

however the method can technically be applied to any data vector. Using the encoder part of an

Autoencoder and SMILES encoded in one-hot-vectors, it is possible to create a high-

dimensional latent space of chemical structures where each molecule resides with a coordinates

vector which can be used as descriptors. These descriptors can then be used like any other to

train GTM models. The added benefit of this combination of methods is the ability to “generate”

molecules from selected zones of interest on landscapes. Once the manifold is trained and the

activity or property landscape is plotted, coordinates in 2D space of any area can be isolated

and reverted to high-dimensional initial space using the reversibility of GTM. These

coordinates can be used as input for the decoder to generate molecules residing on the manifold

in that area of space. A representative scheme of this process is shown in Figure 23.

Figure 23. Schematic process of the training process of a GTM based on latent vectors and its

usage in the case of generating molecules from zones of interest. The initial space is defined

here with 3 dimensions for readability and ease of understanding, however in practice any

dimensionality could be used.

66

By using this method, it is possible to generate molecules inside a data “cluster” of

interest, however the coordinates extracted only belong to the manifold which adapts itself to

the data distribution but may not cover it entirely as shown in Figure 24, (i). To improve the

generation process to cover more of the data distributions, multiple vectors coordinate around

the initial point must be sampled. Let 𝐱 = (𝑥0, 𝑥1, … , 𝑥𝐷) be a vector of coordinates in initial

space of dimension 𝐷 obtained from the manifold. A new vector 𝐲 is obtained by multiplying

each coordinate 𝑥𝑖 of the initial vector by a random number 𝑟 sampled from a gaussian

distribution centered on 1.

𝑦𝑖 = 𝑥𝑖 ∗ 𝑟, 𝑟 ∼ 𝒩(1, 𝛽) (2.33)

 The distribution is centered on 1 so that the multiplication creates a small shift from the

initial position. The width of the gaussian must be carefully selected to fit the data distribution.

The parameter 𝛽 in equation (2.33) is the same as in equation (2.4) and describes the width of

the RBF centers of the manifold which are optimized to fit the data. Naturally, this value is

reused as a sampling width for the new vectors.

Figure 24. Schematic representation of a manifold passing through a cluster of data points. If

that zone on the 2D map is considered of interest, only coordinates on the manifold can be

selected for the generation process (i). By multiplying the coordinates of the points of interest

in initial space by a gaussian distribution, it is possible to sample not only on the manifold but

also the entire data cluster (ii).

67

68

69

3 Exploring the latent space of an Autoencoder

3.1 Introduction

The Autoencoder is a classical but still very promising architecture in deep

learning[144,145]. Its purpose is to encode an object (e.g. a SMILES string) to a latent vector, and

then to decode the latent vector back to the initial object’s representation as close as possible.

Thus, two products of the AEs can be delineated: a latent vector, and decoder’s prediction. The

first one may be used as a vector of descriptors of a new kind in various machine-learning

applications, while the second one allows generating new chemical structures.

AEs have been already used to conduct ligand-based virtual screening using

reconstruction errors as scoring[146]. Nowadays, various modifications of AEs are mainly

employed in training QSAR/QSPR models[147]. In the context of classical QSAR/QSPR models,

AEs have no obvious advantage in comparison to classical descriptors (e.g. ISIDA[8] or

ECFP[148]). However, they become a revolutionary technology when they are combined with a

machine-learning method that supports producing a vector of descriptors for a given chemical

subspace. Namely, AEs can be used to build maps of chemical space by applying dimensionality

reduction algorithms to the latent vectors corresponding to chemical compounds. On such a

map, a user may delineate a zone with a desired property, and then generate new latent vectors

that correspond the selected zone. After, the decoder of the AE can decode it to a set of SMILES

strings corresponding to the newly generated latent vectors. The described methodology has

been already applied by Sattarov et al. to perform de novo design of molecules with desired

properties using GTM[87].

AEs can also be used to generate chemical structures by picking them from different parts

of the latent space and feeding the latent vectors to the decoder. In this case, VAEs, in which a

molecule is mapped to a Gaussian distribution over the latent space from which latent vectors

can be sampled, are usually used. This has been implemented by Gόmez-Bombarelli et al.[114]

using the latent vectors sampled from the latent space of a VAE. This allows the generation of

chemical structures along a trajectory in the latent space either (i) between the latent vectors

corresponding to predetermined chemical structures or (ii) from a chosen latent vector in the

direction of increase (or decrease) of the considered molecular property (e.g., biological

70

activity). In the latter, the chemical structure is being optimized to achieve the desired

properties. In order to conduct optimization in the right direction, Blaschke et al. used an

additional Gaussian processes structure-activity model[68]. To perform multi-objective

optimization in the latent space of a VAE, Zhavoronkov et al. applied reinforcement

learning[149]. One can create AEs that can generate chemical structures with desired properties

without the need to perform optimization in the latent space. This can be done, in particular,

using conditional VAEs in which the property vector is concatenated with the latent vector to

feed the decoder[4]. In this case, the generation of new chemical structures with desired

properties can be performed by sampling from the prior distribution in the latent space,

augmenting the generated vectors with the vector of desired properties and converting them to

chemical structures using the decoder. New chemical structures with desired properties can also

be generated using a semi-supervised VAE trained on a set of existing chemical structures with

properties known only for a part of them[130].

 AEs can be used not only to produce latent vectors from string representations of

chemical structures but also directly from molecular graphs. Several types of VAEs have been

developed for this purposes: JT-VAE[150], CGVAE[151], GraphVAE[152], NeVAE[153]. Special

types of hetero-encoders can also be used to translate between molecular graphs[154]. An obvious

advantage of this approach is the formal correctness of the graphs generated by decoding latent

vectors, because in this case AEs do not need to learn the syntax of languages for representing

chemical structures, such as SMILES, IUPAC names, etc., using a very large number of

examples. For SMILES, this problem can be partially solved with the help of a special

autoencoder, GrammarVAE, which is aware of the grammar of the SMILES line notation[155].

 Thus, in the literature there is a significant number of publications devoted to the use of

AEs for constructing a chemical latent space and its use to build predictive SPR models and de

novo design of chemical compounds with desired properties. Meanwhile, the visualization of

chemical latent space using data analysis and visualization methods, i.e cartography are still in

infancy. Although some publications reported data distributions on 2-dimensional maps

obtained with the dimensionality reduction methods like PCA or GTM, a systematic study of

chemical latent space of a Vanilla SMILES-based AEs has not yet been carried out. Such

exploration is needed to get answers on the following questions:

71

1. Is the latent space of an autoencoder consistent?

2. Do similar compounds possess similar latent vectors, and vice versa?

3. Can new chemical structures be generated from any part of the latent space?

4. How novel are the structures generated in different parts of the latent chemical

space?

5. What benefits can be gained from the analysis of the latent chemical space?

Different types of AEs and different ways of structures representations may lead to

different latent spaces. The purpose of this work is to provide an example of such an analysis

hoping that the conclusions drawn will be general in nature, and the methodology used to

implement this can be applied in other cases. An AE model was combined with GTM to map,

visualize and explore the chemical space of a latent space constructed by a neural network, in

the hopes to get a better understanding of the rules governing these relatively new spaces.

3.2 Methods

Visualizing and sampling latent space of the AutoEncoder using GTM

Using the encoder part of the trained AE model developed by Sattarov and al[87], the

entire ChEMBL23 database was encoded into 256-dimensional latent vectors by extracting the

bottleneck vectors associated to each input SMILES. These 256-dimensions latent vectors can

be seen as a type of molecular descriptors and as such, can be used to train GTM models. Latent

vectors were transformed into SVM format and filtered according to their standard deviation.

Each descriptor with a standard deviation less than 2% of the maximum standard deviation of

all descriptors was eliminated. Additionally, a step of minmax scaling was applied. Filtering

and scaling are necessary here to ensure the proper training of GTM. Once GTM was trained,

density and property landscapes were built to visualize the latent space of the AE in 2D.

Using the reversibility of GTM, selected coordinates in 2D can be reverted to the initial

latent space. By making use of this property and reverting the scaling and filtering applied to

train the GTM model, new latent vectors can be obtained, which correspond to the coordinates

of nodes. These new latent vectors may be given to the decoder part of the AE, which will

generate SMILES associated with these new vectors. However, it is not interesting to only

sample from the exact coordinates of the node due to the properties of GTM and its data

distribution. Compounds projected in a node, often are not located exactly on the exact

72

coordinates of the node but scattered around at a certain distance. During training, the GTM

algorithm inserts the manifold through the data distribution and nodes can be seen as a sort of

average of data distribution. Therefore, sampling from the exact coordinates of a node would

be counterproductive since it means only one vector can be sampled, which may or may not

correspond to a valid molecule, and the actual data distribution may be slightly distant from

these coordinates. To solve this issue, a latent vector corresponding to a node is multiplied by a

random vector, issued from an isotropic multivariate normal (Gaussian) distribution, centered

on 1 with a width of β. This β value which corresponds to the optimal sampling distance from

the node, is equal to the width of the RBF functions in GTM.

1000 SMILES were generated for each node of the GTM model. Generated SMILES

were filtered using RDKit[156], removing any duplicates and invalid SMILES which would

correspond to unfeasible chemical structures. Novelty was assessed by comparing the generated

compounds to the training database. Any generated molecule absent in the training set was

considered novel.

The general workflow of the study was the following: 1) Train the AE, 2) Build GTM

landscapes, 3) Sample systematically, and 4) Analyze sampled molecules in terms of chemical

properties, novelty, and general distribution in latent space.

Shannon Entropy

The Shannon Entropy of GTM landscapes is used to compare the homogeneity of the

distribution of data. Comparing this metric over different AE models and therefore different

GTM landscapes based on those models indicates if the models have a similar distribution of

data or rather have a completely different organization of latent space.

Shannon entropy is computed using the accumulated responsibilities of all compounds

projected on a map. For each node, the accumulated responsibility is calculated by adding each

molecule’s contribution to that node and dividing by the total number of molecules projected

on the map.

The Shannon entropy is computed as:

𝐸 =
∑ 𝐶𝑢𝑚𝑅𝑘log (𝐶𝑢𝑚𝑅𝑘)𝐾

log (𝐾)
∗ 100

73

With 𝐶𝑢𝑚𝑅𝐾 being the cumulated responsibility vector for each node 𝑘 and 𝐾 the total number

of nodes. 𝐸 ranges from 0 to 100, where 0 means that all molecules are projected in the same

node, while 100 means that the projections cover the chemical space equally and uniformly.

3.3 Results

Reproducibility of latent space

The first step to analyse the chemical space of an AE is to test its consistency. It is vital

that the results of any experiment be reproducible, and that means that training several AE

models from the exact same parameters and training/validation sets should give the exact same

results. To verify this, four different AE models were trained, by fixing any random number

generation to a given seed in the initialization and selecting the exact same training/validation

set split. Results are shown in Table 7.

Table 7. Training and validation reconstruction rates, and number of descriptors after filtering

according to standard deviation for all 4 models.

Model 1 2 3 4

Train Reconstruction 99.23% 99.23% 99.54% 98.88%

Val Reconstruction 98.61% 98.25% 98.62% 97.94%

Number of

descriptors after

filtering

66 60 75 62

Surprisingly, although extremely similar, the results are different for all 4 models. The

most surprising is the difference in the number of descriptors remaining after filtering. A

difference of up to 15 descriptors can be seen between models 2 and 4. This indicates that fixing

the random number generation and the input data to be the same in all cases was not sufficient

to obtain 4 times the same model. On further inspection, it becomes clear that the problem is

due to the way the calculations are processed on GPU. Calculations done on GPU have a lower

precision (32 vs 64 bits) than CPU in this case, significantly accelerating the calculations.

However, this also means that small differences in calculations can appear due to the loss of

precision. This issue has been studied and a solution has been developed[157] which could be

74

implemented in future work to fix it. Over the course of an entire process of AE training, these

differences are accentuated to the point where the models become quite different in terms of

metrics. To see if these differences in metrics have an impact on the latent space, the 4 density

landscapes corresponding to the ChEMBL database for the 4 models were computed and shown

in Figure 25.

Even though metrics show the models have different reconstruction rates and

significantly different numbers of descriptors, the data distributions in latent space are similar.

High density zones, located in the same areas of latent space can be found in all 4 maps,

especially in the corners. The biggest difference is the seemingly “empty” region of space in

models 3 and 4 which seems to be less present in models 1 and 2. However, although these

areas in models 3 and 4 are not densely populated, they are not completely empty, and similar

areas of lower density can be found in the same spot in model 1, albeit smaller, and slightly

shifted towards the bottom-right corner in model 2. The comparison of the 4 density landscapes

indicates that the model may differ slightly in terms of parameters and metrics, but latent space

has a similar organization in the 4 of them.

Figure 25. Density Landscapes for the 4 models. (A) model1, (B) model2 (C) model3 (D)

model4

75

Computing the Shannon Entropy (SE) for all 4 models (Table 8) further confirms that

the 4 models have a very similar data distribution across latent space. All 4 models have very

similar and very high values of SE, indicating that the data is homogeneously distributed across

latent space. Model 2 in particular presents no “very low” density zone and few high density

areas, making it the most uniformly distributed latent space. In contrast, model 3 shows a lower

value of SE (even though still very high) since there is an area of lower density on the right (see

Figure 25C) and seemingly more visible high density areas.

Table 8. Shannon entropy computed for the density landscapes of the different models. 0 means

that all compounds are projected into the same node, 100 means that compounds are evenly

spread across latent space.

Model 1 Model 2 Model 3 Model 4

98.99 99.22 97.55 98.21

SE calculations show that even though the 4 models are slightly different in terms of

organization of latent space, and uniformity of data distribution, they are still very similar. Thus,

in the rest of the analysis only model 1 will be considered.

Order dependance of SMILES strings in data distribution

One essential idea when generating a descriptor set is that similar compounds need to

have similar descriptors and thus, similar position in latent space. Since the AE does not

function in terms of structural descriptors but character sequence, it is interesting to consider if

the similarity principle is kept in latent space. The idea is that, since the AE considers character

sequences, character order may be an important factor in the latent vectors calculation process.

Very similar molecules may have very different canonical SMILES strings, with different

starting points, which may be a problem for the AE. To test this, the same compound shown in

Table 9 was expressed 3 different ways by randomizing the SMILES string using RDKit. Even

though they relate to the same molecule, the three SMILES strings are organized differently

with very different stating points.

76

Table 9. SMILES A, B, and C randomized from the given ChEMBL molecule.

A B C

c1cc(C(NC(C(OC)=O)CCS

C)=O)c(-

c2ccccc2)cc1NCc1cncn1Cc

1ccc(C)cc1

N(Cc1cncn1Cc1ccc(C)cc1)c

1cc(-

c2ccccc2)c(C(=O)NC(C(OC

)=O)CCSC)cc1

c1cc(C)ccc1Cn1cncc1CNc1ccc(

C(=O)NC(CCSC)C(OC)=O)c(-

c2ccccc2)c1

Figure 26 shows the projections of the three SMILES strings on the density landscape of model

1. The same molecule is projected in completely different areas of chemical space, the only

reason being the difference in its SMILES representation. This is a consequence of the way AEs

deal with input data. Since latent vectors are based on a sequence of characters, changing that

sequence of characters also completely changes the values of the latent vectors. Bidirectional

LSTM cells read input from both sides, mitigating this problem in some cases where the

SMILES starts from the “other side” of the molecule, however, when the SMILES strings are

completely different and start from very dissimilar positions, the AE is incapable of relating all

the different character strings to the same compound. The similarity principle is therefore not

necessarily obeyed in all cases with the latent space of an AE.

77

Figure 26. Projections of SMILES A, B and C on the density landscape of model 1

Data distribution in the chemical latent space in model 1

The GTM density landscape constructed for the ChEMBL23 database is shown in

Figure 27. The data density is mostly evenly distributed with no empty areas. Some zones of

higher density can be observed, mostly located in the corners of the map. The log likelihood

value in GTM indicates the “closeness” of a given compound to the manifold. The closer the

compound is to the manifold, the higher the loglikelihood will be. The loglikelihood landscape

shown in Figure 27 (RIGHT) indicates that compounds on the edge of the map are further from

to the manifold than the compounds in the center. Especially the low-density zone on the right

side of the map seems to be quite far from the manifold.

78

Figure 27. (LEFT) Density landscape for ChEMBL compounds for model 1. (RIGHT) Log

Likelihood of projections of the ChEMBL compounds on the map, with nodes of interest

annotated.

 The zones of low LLh indicate data distributions which the manifold had more difficulty

adapting to. This could mean that the data cluster is located far away from the rest of the data

distribution or that the cluster is very sparse and spread out and the manifold was inserted in

the middle. The low density around node 1205 confirms the hypothesis of a very sparse cluster

being the reason for the low LLh. Molecules located in that node almost always contain one to

four long carbon chains sometimes containing heteroatoms as is shown in Table 10. This type

of compound is quite peculiar in terms of SMILES string (long repetitions of “C” character)

and somewhat rare, which would explain their distance from the rest of the data distribution.

Node 1219 is more densely populated and contains large cyclic structures or structures with a

high number of fused cycles and large amounts of alcohol, carbonyl, or carboxyl functions as

well as very low amounts of heteroatoms. The combination of all these factors may have shifted

the latent vectors away from the main data cluster and be the cause of the low LLh. Node 2, a

high density area (Figure 27), contains steroid-like structures and structures with fused rings

but low amounts of aromatic rings (Table 12). The 3 zones of low log likelihood coincide with

areas of high molecular weight. Higher molecular weight could imply larger number of

characters and further differentiate these clusters from the rest of the data. Interestingly only 3

out of the 4 nodes with high LLh seem to correlate with low molecular weights (815, 1191,

689) with very small molecules in nodes 815 and 689. Node 1191 is populated by molecules

containing peptide bonds which are common in drug-like compounds and could explain the

good manifold coverage. Node 35 is a very high-density node, containing steroid-like structures

although smaller than in node 2. The density of the node and easily repeatable pattern could

79

mean that this area of latent space is very densely packed, meaning the manifold could adapt

well to the data.

Table 10. Examples of molecules for the nodes of interest shown in Figure 27. The nodes are

split in two categories: Low loglikelihood (blue) and high loglikelihood (orange)

Type Node Examples

L
o
w

 L
L

h

1205

1219

80

2

H
ig

h
 L

L
h

35

815

689

1191

81

Justifying the manifold coverage and the positions of certain functional groups and

patterns remains very complex even with GTM landscapes as a visualization tool. Several

factors, like molecular weight (which is related to the number of characters in the SMILES

string), repeated patterns (peptide bonds, carbonyl groups, etc…), density of the data clusters,

aromaticity, branching and overall complexity of the SMILES string seem to influence the data

distribution. Although difficult, it is possible by taking all properties into account to somewhat

understand the distribution of compounds in latent space, even if a complete understanding is

still impossible.

Generative abilities of the AE

Above, only the maps indicating the distribution of the chemical compounds taken from

the ChEMBL database were considered. Such maps could have been obtained using any other

set of molecular descriptors. An important feature of using continuous autoencoder latent

vectors as descriptors is the ability to convert them into chemical structures using the decoder,

which allows for the generation of new molecules. The questions arise: (1) can correct chemical

structures be generated from any point in the autoencoder latent space, and (2) what factors

influence the generative process?

Figure 28. Distribution of percentage of validity of generated SMILES for each node.

As can be seen on Figure 28, there are 6 zones A, B and C (high validity zones) and D,

E, F (low validity zones). A quick analysis of the molecules in these zones show a trend and

indicate why this phenomenon exists.

82

D, E and F compounds show a recurrent pattern. Molecules generated from low validity

zones tend to have fused, sometimes aromatic, ring structures. A simple ring; like in molecules

A, B, C; is not intrinsically difficult for the AE to reproduce since the grammar of an isolated

ring is fairly simple to realize and it is a pattern easily recognizable for an AE. However, when

the rings are fused together, the grammar of the SMILES starts to become more complex with

more and bigger numbers being introduced, parentheses, etc. and the model starts struggling to

generate correct compounds which are chemically sound, which in turn makes the validity rate

go well below the high validity rate of molecules possessing simple, isolated rings.

Distribution of the valid SMILES rate (i.e., percentage of correct chemical structures

generated for each of the nodes) is shown in Figure 28, in which the color indicates the

percentage of chemically valid structures generated for the corresponding GTM node. Red

nodes have high validity percentage, while blue nodes have low percentage. The generative

ability of the model is very unevenly distributed on the map, zones as high as 60% validity rate

coexist with zones showing about 9-10% validity rate. Interestingly, we can compare this

landscape to the property landscapes on the left shown in Table 12. For example, it is possible

to observe that the model is performing well in some zones where the number of aromatic rings

per molecule is low, which we have explained before. Low number of rings and aromatic rings

seem to be playing a big factor in the capacity of the model to generate chemically feasible

compounds. Interestingly, the lower left corner of the chemical space is populated with

ChEMBL compounds possessing a high number of rings, however, the generated compounds

do not possess the same amount of rings. The generation process seems to have bypassed the

requirement for a high number of rings and generated compounds with single rings and long

carbon chains, which are present just above this area in the ChEMBL latent space.

One important aspect is the ability of the model to generate molecules with properties

close to the properties of the ChEMBL compounds. Comparisons shown in Table 12, show that

the model can mostly recreate the topology of the ChEMBL landscape although with sometimes

different scales. The landscape of number of heavy atoms is well recreated. The two main zones

with smaller molecules in the ChEMBL distribution on the left also appear on the right, and the

zones containing big molecules also match. These matches can be found on all other property

landscapes and confirms the ability of the model to correctly predict molecules which fit the

area of latent space selected for sampling.

83

Table 11. Examples of molecules extracted from zones of high validity (A, B, C) and low

validity (D, E, F)

A

B

C

D

E

F

84

Table 12. Map comparison for different properties between ChEMBL and generated

compounds. The maps are on different scales for better visualization.

Property ChEMBL compounds Generated compounds

Number of

heavy atoms

LogP

Aromatic Rings

Total Rings

85

Neighborhood preservation for generated structures in the chemical latent space

Another important aspect of the generation process is the ability of the model to generate

compounds which are located in the area of chemical space they are generated from, meaning

that the positions of the initial sampled vector and the positions of the actual generated

compounds are close. Figure 29 shows the density landscape of model 1 with 4 sets of generated

compounds projected onto them as well as the zone the sampling was done in. These sets of

generated compounds were selected from the high and low validity zones presented above. We

selected two high validity zones and two low validity zones to compare the impact of a

“struggle” from the model on the neighborhood preservation of generated structures. As shown

in Figure 29, the generated compounds are all projected in the correct area of chemical space

where they were sampled from, showing that the generation of new molecules is correctly

calibrated to focus on very specific parts of chemical space.

Figure 29. Projections of generated compounds back on the density landscape based on model

1. The green circles represent the area where molecules were sampled. (A) Molecules sampled

from node 1189. (B) Node 70. (C) Node 923. (D) Node 115.

86

Distribution of the novelty rate of generated structures in chemical latent space

The comparison of generated compounds with the training database showed that all

generated compounds were considered novel. No matches were found within ChEMBL. The

model was able to generate completely new structures, that managed to be projected in the

correct region of chemical space. It is then possible to imagine that any region of chemical

space represented on GTM may be filled with novel compounds using the AE’s generative

ability.

87

3.4 Conclusion

Combining cartography and structure generation by autoencoders to explore chemical

space is a promising method to facilitate the drug discovery. On the one hand, generative models

can be built to create novel structures with desired properties due to the ability of GTM

landscapes to reveal the most promising zones in the chemical space for generating new

molecules. Visualization of the distribution of various important properties over the chemical

latent space in autoencoders, their comparison with each other can provide valuable information

and lead to a better understanding the performance of generative models. On the other hand,

the maps of the chemical space indicate the gaps in the training-set distributions, while the

trained autoencoders might be able to fill these gaps and provide us with a more complete vision

of the chemical space. Developing this kind of models is critical in the quest to discover

interesting, usable, novel structures because not only do we have maps detailing the current

state of the universe, but we can now send “explorers” in the areas we seem interesting, either

to discover “unfound land” or to search deeper in an already discovered part.

Using this approach applied to the chemical latent space of the sequence-to-sequence

autoencoder trained on the ChEMBL structures, we have demonstrated in this work that the

chemical structures are very evenly distributed in its latent space. New molecules can be

generated by sampling in the latent space from the Gaussian distributions centered at GTM

nodes and using the decoder to transform them to the SMILES strings representing chemical

structures. Chemical structures generated from a given node are similar to the training structures

residing in the same node unless the data density is too small. The generation process depends

on several factors, like complex ring structures, aromaticity or branching which seem to play a

big part in the ability of the model to generate correct structures.

88

89

4 An Autoencoder coupled with Generative Topographic

Mapping for the discovery of novel reactions

The generation of potentially active compounds using an AE guided by GTM has been

achieved before by Sattarov and al.[87] using an Autoencoder with a Bidirectional LSTM-based

encoder and a Unidirectional LSTM-based decoder. Encoder and Decoder were linked by a

bottleneck, creating a regularized latent space (Figure 30).

Figure 30. Schematic representation taken from the article of the Autoencoder architecture

used.

The model was trained on the entire ChEMBL23 database and visualized on 2D landscapes

via GTM. In particular, the adenosine a2A receptor (ChEMBL251) was selected as the target

for the generative process, and the assessment using Balanced Accuracy of the related latent-

based activity landscape showed good separation and predictive power, on par with classical

descriptors. The model successfully managed to generate potentially active compounds from

the coordinates of active clusters identified using GTM.

As stated previously, the handling of chemical reactions by seq2seq architectures is very

difficult due to the complexity of chemical reaction systems involving reagents and products.

However, the simplicity and good results obtained with the previous model on molecules

prompted an interest in the generation of reactions using a slightly modified architecture.

Reactions, just like molecules, can be expressed as character strings using reaction SMILES,

which represent reagents and products separated by “.” and “>” characters (Figure 31).

90

Figure 31. Chemical reaction (i) and its associated reaction SMILES (ii).

This representation can get cumbersome when several reagents, products or conditions are

engaged or if the reagents and products are big structures. This causes problems with long-term

dependencies and can induce errors in reconstruction or sampling. Condensed Graphs of

Reactions[9] (CGR) are a simpler and much more lightweight alternative to reaction SMILES

which allow the representation of reactions in the form of pseudo-molecules which are better

adapted to a usage with NN architectures.

In this work, a method of representing reactions as a pseudo-molecule called Condensed

Graphs of Reactions was used in combination with a specially adapted AE architecture and

GTM to map the latent space of reactions, navigate it and generate novel reactions. Reaction

novelty was assessed by the newly introduced concept of Reaction Centre and Reaction

Environment which consider the atoms affected by the changes in bonds as a fingerprint for the

reaction type.

Several “novel” reactions, absent from the training set were isolated by the filtering

process, and their feasibility was assessed by quantum calculations of reaction heat.

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

4.1 Summary

In this work, we combine a specially adapted LSTM-based Vanilla Autoencoder with

Condensed Graphs of Reactions and Generative Topographic Mapping to create a model

capable of encoding chemical reactions in a latent space.

CGR encode whole reaction systems into pseudo-molecules with SMILES-like

representation, making them perfectly adapted for seq2seq architectures. A curated dataset

extracted and curated from the USPTO database containing about 2.4 million reactions was

encoded into CGR and given as input to a vanilla LSTM-based Autoencoder. The Autoencoder

achieved a reconstruction rate of around 98% which is on par with the reconstruction rates

achieved by Vanilla SMILES-based Autoencoders. Once trained, the created latent space was

plotted using GTM and coloured according to reaction type using reaction centres, which

classify reactions into certain categories depending on the atoms implied in the bond changes.

The focus was put on Suzuki reactions, of the form:

𝑅1 − 𝑋 + 𝑅2 − 𝐵(𝑂𝐻)2 → 𝑅1 − 𝑅2 + 𝑋 − 𝐵(𝑂𝐻)2 (4.1)

10.000 Random latent vectors sampled from regions populated in majority by this type of

reactions were given to the decoder for the generation process, out of which 1099 were found

to be correct (11% validity rate). Among the 1099 correct reactions, 31 had reaction centres not

seen in the training database, which indicates some kind of “creativity” from the AI. 13 of these

reaction types were found in external databases or published articles, corresponding to 3

different reaction centres, showing that the model can recreate existing reactions without having

them in the initial training data.

The feasibility of the 13 reactions was tested using gas-phase DFT calculations of reaction

enthalpy, which showed that all the generated chemical reactions were feasible, at least as far

as DFT estimations can tell.

107

108

109

5 Linking the latent space of an Autoencoder with another

descriptor space

Ultimately, the goal for any drug design process is to be able to control the activity,

structural features, properties, and novelty of the generated compounds, allowing chemists to

obtain molecules perfectly fitting the needed profile for a given task. It is difficult with vanilla

AEs to generate structures possessing desired properties, since there is no control over the

organization of latent space. While still meaningful, the interpretation of SMILES strings by a

sequential RNNs can hardly be compared to the level of information coded into structural

descriptors. An autoencoder’s latent space is therefore less adapted to tackle the variety of

existing targets than a modulable, adaptable range of structural descriptors. However,

generative models seeded by these molecular descriptors (like ISIDA) have not yet been

developed.

The combination of generative autoencoder models with the robustness and versatility of

chemical space built on ISIDA descriptors would allow more control over the generated

structures. Easily understandable, robust, and versatile coordinates in ISIDA space, optimally

chosen for the needed task could be translated into latent coordinates corresponding to areas in

the space of an autoencoder which could then be sampled to generate focused datasets. By using

latent vectors as a sort of “middleman”, the generation of novel compounds from structural

descriptors would be possible. This inverse QSAR process could be more efficient and

complement the screening of large databases with more classical methods.

In this chapter, several methods aiming to link ISIDA descriptor spaces with the latent

space of an autoencoder were proposed and tested.

1) ISIDA2SMI. A simple LSTM-based model which aims to directly translate ISIDA

descriptor vectors to SMILES of corresponding molecules.

2) Multimodal Deep Boltzmann Machine. A probability-based model composed of two

independent reconstructive architectures linked by a “context” layer. One architecture

trains to reconstruct ISIDA vector, the other reconstructs latent vectors. They are linked

by a “context” layer in which the information can pass, effectively working as a

translator between ISIDA and latent spaces.

110

3) Stargate-GTM. A GTM-based approach where two manifolds are trained together,

one in latent space, one in ISIDA space, describing a mixed probability distribution.

The position of a compound on one landscape results in a distribution in the second

landscape via the use of a mapping function.

4) Combination of ISIDA landscapes. A combination of GTM landscapes in ISIDA

space, corresponding to desirable properties, were used to build a query vector, used to

find a valid position in latent space to sample, which would correspond to the initial

ISIDA vector.

5) Constrained Variational Autoencoder (CVAE). A CVAE architecture was

developed, using ISIDA descriptors as condition vectors. It consists in sampling the

marginal probability distribution of a variational autoencoder using ISIDA vectors of

compounds with desirable properties as conditions.

Insight and knowledge about latent space compatibility and the handling of structural

descriptors by classical NN architecture were gathered through the exploration of these many

strategies. Finally, a satisfactory architecture has been found capable of linking both chemical

spaces with good results.

111

5.1 ISIDA2SMI

In this work, the aim is to create a link between a space of latent descriptors obtained

from an AE and another “target” descriptor space. These target descriptors must therefore be

carefully selected since the organization of chemical space highly depends on the type of

descriptor used.

The first very basic solution proposed to the problem was to simply “translate” ISIDA

descriptors into SMILES strings using a LSTM-based model (ISIDA2SMI). ISIDA descriptors

used in the construction of previously published Universal Maps (UM) were favoured in this

context for their versatility and good predictive power over many biological targets.

The issue with ISIDA descriptors is that they are, as well as most molecular descriptors,

not unique. For example, the ChEMBL25 database encoded into UM4 descriptors (e.g., IA-2-

7; sequences of 2-7 atoms, dimension 6520) contains around 10% of duplicates: several

compounds resulting in the same molecular descriptor vector. A canonical-to-canonical

SMILES AE learns to associate in a 1-to-1 relationship, meaning one latent vector corresponds

to one SMILES string. However, the bijection is guaranteed only in the frame of the training

sets: new SMILES strings may result in the same latent vectors. If one ISIDA vector has two

SMILES associated to it, this ambiguity is challenging for training an autoencoder employing

categorical cross entropy as the loss function.

To solve this issue, we proposed to generate several SMILES strings for a same ISIDA

vector during the training stage. The model would then understand that it does not need to

reconstruct one exact SMILES, but that several possibilities exist. The aim was to minimize the

smallest squared Euclidian distance between the given ISIDA vector and the ISIDA vectors of

the generated compounds. This resulted in a sort of multi-instance learning, to adapt a “one-to-

one” generative model to work in a “one-to-many” fashion as shown Figure 32.

112

Figure 32. Initial idea for a one-to-many ISIDA to SMILES generative model. The initial

ISIDA vector is passed through the model, and a corresponding SMILES is generated. Next, its

ISIDA vector can be computed and compared to the initial one using the Euclidean distance as

a metric. The latter can be used as a loss function which would need to be minimized.

However, problems appeared when trying to compute the ISIDA vector for the predicted

SMILES during the training process. The FRAGMENTOR software had to be called repeatedly

for every batch to compute the loss. Depending on the type of descriptors used, that would also

necessitate colouring by ChemAxon[158]. This resulted in a resource-demanding and

computationally inefficient process.

A workaround has been proposed to solve this issue. It consists in building a

“FRAGMENTOR neural network” (FRAGMENTOR-NN) model whose task would be to

generate a valid ISIDA vector from a given SMILES. The trained FRAGMENTOR-NN model

could then replace the actual FRAGMENTOR in the initial model, and significantly speed up

the training process as shown in Figure 33. This workaround does mean that errors in the

FRAGMENTOR-NN will propagate on the general loss of the ISIDA2SMI model.

Figure 33. Updated model with the FRAGMENTOR-NN replacing the actual

FRAGMENTOR.

113

5.1.1 Methods

Data

As input data, the ChEMBL25 database (1,669,377 molecules) was converted into

ISIDA descriptors using the UM4 fragmentation scheme. IA-2-7 corresponds to sequences of

2-7 atoms and fit the most with the sequential nature of the processing of character strings by

LSTM cells. They also are the most readable and most easily understandable. Training needed

to be accelerated since this was a prototyping phase with a great amount of testing needed.

Therefore 500,000 random compounds (about 30% of the database) were selected for the

training and validation sets. The 500.000 compounds were split into training and validation sets

with a ratio of 90%/10%. 166,597 additional compounds were extracted as an external test set,

separate from training and validation. Table 13 summarizes the data separation.

Table 13. Summary of the data separation.

ChEMBL25 1,669,377

Internal (Training/Validation) Set 500,000 (random)

Training Set 450,000 (90% of Internal Set, random)

Validation Set 50,000 (10% of Internal Set, random)

External Test Set 166,597 (10% of ChEMBL, random)

SMILES strings above 150 characters were removed, the rest was transformed into

canonical form by ChemAxon. Additional filters were applied to remove rare or unsuitable

atoms (Mg, K, Ga, Ge, Ti, etc…) and charged atoms or isotopes.

Descriptor filtering

Descriptors were filtered according to their standard deviation using an in-house script

to eliminate features which had no variation in their appearance in the database. The script

calculates the standard deviation of all descriptors across the dataset (6520 descriptors in this

case). A threshold is then selected to identify descriptors with almost no fluctuations. The

threshold on the standard deviation was calculated at 0.27 which corresponds to 2% of the

maximum overall standard deviation. All descriptors which had a standard deviation value

below the threshold were eliminated. 371 descriptors remained after filtering; it is important to

keep in mind that this number is rather low since only 500.000 compounds out of the 1.6M

were kept to accelerate training.

114

Descriptor standardization

The remaining 371 descriptors were standardized across the training set using the

following equation:

𝑧 =
𝑥 − 𝜇

𝜎

𝜎 and 𝜇 being standard deviation and mean respectively calculated across the whole

training set for each descriptor.

Architecture

The architecture is composed of N stacked LSTM, followed by M fully connected Dense

layers. The schematic representation of the architecture is depicted in Figure 34.

Figure 34. Schematic representation of the model architecture. During the testing procedure,

the number of consecutive LSTM cells ranged from 1 to 4, followed by 1 to 5 fully connected

Denser layers. The last dense layer had the same dimension as the chosen ISIDA vector and

worked as the output of the model.

By analogy with the Euclidean distance, we used the Mean Squared Error calculated

between the ISIDA vector of the input SMILES and the ISIDA vector received from the output

of the model as the loss function.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑋𝑖 − 𝑌𝑖)²

𝑛

𝑖=1

𝑛 is the size of the ISIDA vector, 𝑋𝑖 and 𝑌𝑖 are the components of the initial and resulting

ISIDA vectors respectively.

115

The improvement of the model was done in gradual steps: in the early stages, a

systematic analysis of all possible combinations of N * LSTM and M * Dense Layers with a

fixed set of starting parameters was performed. Using a maximum of 4 LSTMs and 5 Dense

layers, 20 models per step were trained. Using this methodology, the best model for the different

inputs/starting parameters could be isolated. Filtering and/or standardization of ISIDA

descriptors as well as SMILES randomization were also tested to check their influence on model

performance.

Parameters initialization

Parameters used across all experiments (unless specifically stated otherwise) are

reported in Table 14. Only the dimension of the Dense layers varied, following the size of the

ISIDA vectors.

Table 14. Parameters used across all experiments in the SMI2ISIDA models.

Learning

rate*

Batch

size

Dimension of

LSTM cell

Dimension of

dense layers

Activation

function in

Dense layers

Loss

function

0.001 256 256

(Bidirectional)

Equal to the

dimension of

ISIDA vectors

ReLu MSE

*Learning rate is divided by half every time the validation loss does not improve

Influence of descriptors on the reconstruction error

Understanding which descriptors induce the most error in the model is an important step

in the optimization process. A workflow to isolate the most problematic fragments was

designed. 10,000 ISIDA vectors were predicted from random compounds in the test set and

compared to the actual vectors calculated from the same compounds. The absolute difference

between the initial and predicted ISIDA vectors was then calculated using the following

formula:

𝑑 = |𝑥𝑖𝑛𝑖𝑡 − 𝑦𝑝𝑟𝑒𝑑|

These calculations resulted in 10,000 “difference” vectors where each element of each vector

corresponded to the absolute difference between initial and reconstructed fragment. Mean and

standard deviation were then computed for these vectors. A schematic representation of these

calculations is shown in Figure 35.

116

Figure 35. Workflow for the calculations of the absolute difference vectors between calculated

and predicted ISIDA vectors. The 10,000 resulting vectors are then studied using Mean and

Standard deviation to isolate the most problematic descriptors.

5.1.2 “Raw” descriptors, unique SMILES

The first step of the analysis was to use “raw” descriptors (meaning unfiltered, non-

standardized) with canonical SMILES. The 20 models were trained, and results are reported in

Table 15. The dimension of ISIDA descriptor vectors is 6520.

Table 15. Minimum validation loss achieved during training with the different numbers of

LSTM cells and Dense Layers. Green represents the best model, red represents the worse.

 # of

LSTMs

of Dense

1 2 3 4

1 0.0279 0.0209 0.0249 0.0800

2 0.0348 0.0277 0.0369 0.0468

3 0.0418 0.0321 0.0316 0.0329

4 0.0448 0.0342 0.0364 0.0376

5 0.0588 0.0386 0.0416 0.0370

The best model isolated in this analysis was 2 LSTM cells and 1 Dense layer. For this

type of descriptors, deeper models performed worse.

117

Figure 36. Validation loss during training for models with 2 LSTM cells and 1-5 Dense layers.

Training is stopped when the loss doesn’t improve for multiple epochs, meaning some models

train faster than others.

Table 15 shows that adding Dense Layers rendered the models less accurate compared

to the baseline with 1. However, the increasing depth seemed to accelerate training. On average,

with this reduced dataset of 500,000 compounds, one epoch took around 3.5 minutes to be

processed which meant that the difference in training time was at least 1.5 hours between a

model with 1 Dense layer and a model with 5. These training times were still reasonable even

in the eventuality of a bigger dataset; thus, it was decided that the best model in terms of loss

reduction - (‘2L_1D’; Figure 36) – would be selected for further testing.

The initial set of parameters used for the previous analysis were standard parameters

regularly used with this kind of neural networks but are not necessarily the best. Thus, another

analysis was performed, this time varying Batch Size and Learning rate. Results are shown in

Table 16.

0,0

0,1

0,1

0,2

0,2

0,3

0,3

0 5 10 15 20 25 30 35

V
A

L
ID

A
T

IO
N

 L
O

S
S

EPOCHS

Validation loss for models with 2 LSTM and 1-5 Dense layers

2L_1D 2L_2D 2L_3D 2L_4D 2L_5D

118

Table 16. Minimum validation loss achieved during training with the 2L_1D model with

different combinations of starting parameters. The initial parameters that were used to first train

this model are shown in light blue. The best model obtained is shown in green.

Learning rate

Batch size
0.0005 0.001 0.005

128 0.0222 0.0227 0.0639

256 0.0220 0.0209 0.0456

512 0.0190 0.0233 0.1025

Table 16 shows that the model performance also depended on starting parameters. The

performance increased when the learning rate was lowered, and the best performance was

achieved with a batch size of 512 compounds.

The resulting model was evaluated on 10,000 random compounds out of the 166,597 in

the external test set by computing MSE between initial and reconstructed vectors. On the

external test set, MSE amounted to 0.0221 which is close to the validation MSE of 0.0190

showing no sign of overfitting.

Table 17. Top 5 descriptors with highest mean absolute difference value.

Fragment number Fragment SMILES Mean absolute

difference

38 CCCCNCC 1.02868

208 CCCCCC 1.00118

20 CCCCC 0.98502

103 CCCCCNC 0.97515

211 CCCCCCC 0.96136

119

Table 18. Top 5 descriptors with highest standard deviation of absolute difference value.

Fragment number Fragment SMILES STD of absolute

difference

211 CCCCCCC 1.66083

697 CCCCCCF 1.37969

203 CCNCNCC 1.36696

208 CCCCCC 1.34939

38 CCCCNCC 1.23589

As is clearly visible in Table 17 and Table 18, reconstruction of longer fragments caused

significant errors. Combining the mean and standard deviation of Fragment n°38 for example,

gave a maximum absolute difference of 2.2. In practice, this meant that the model may predict

that such a fragment count is wrong by 2 units or more. Recurring, significant errors in the

counting of several descriptors meant the model was not able to reconstruct any ISIDA vectors

entirely and perfectly. The model is therefore not satisfactory to replace an algorithmic

calculation of the descriptors such as in the FRAGMENTOR software.

 To understand the fluctuations in the reconstructed data, a small analysis of the initial

training data was carried out. The standard deviation of each of the 6520 descriptors was

computed, sorted, and plotted in Figure 37.

Figure 37. Graph of standard deviation for each of the 6520 descriptors of the training set

(500,000 compounds), sorted by increasing standard deviation. Most of the descriptors from

the training set have a standard deviation of 0.

0

2

4

6

8

10

12

14

16

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

Descriptors

Standard deviation of descriptors from the training set

120

 A large portion of descriptors had an almost-0 standard deviation in the training set.

These descriptors were easily predicted to their average and near constant value. However, the

good prediction performances might hinder the training to fit those descriptors with larger

variance. The low variance descriptors were therefore filtered out in the following.

5.1.3 Filtered descriptors, unique SMILES

The training set was filtered according to standard deviation, leaving 371 descriptors

remaining as shown in Figure 38.

Figure 38. Graph of standard deviation for each of the 371 descriptors of the training set

remaining after filtering, sorted by increasing standard deviation.

These descriptors, which can be considered more “meaningful” were used to reproduce

the systematic analysis of the architecture to find the best model. The absence of constant

descriptors induces an increase of the loss function in the inverse proportion of the decrease of

the number of descriptors. The number of descriptors was divided by a factor of almost 2 after

filtering, but the MSE only went up by a factor of 10 which means that the filtering process

allowed for a better model. This difficulty to compare the performances of models trained on

all descriptors and on filtered descriptors only, underlines the defects of the MSE as loss

function.

0

2

4

6

8

10

12

14

16

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

Descriptors

Standard deviation of descriptors from the filtered training set

121

Table 19. Minimum validation loss achieved during training with different numbers of LSTM

cells and Dense Layers. The best validation loss achieved is shown in green.

 # of

LSTMs

of Dense

1 2 3 4

1 0.514 0.228 0.246 2.965

2 0.531 0.248 0.221 0.194

3 0.466 0.263 0.266 0.278

4 0.555 0.385 0.256 0.317

5 0.532 0.380 0.291 0.351

The best isolated model was 4 LSTM and 2 Dense Layers, with a validation MSE of 0.194 (see

Table 19).

The model performed an MSE of 0.258 on the external test set.

Figure 39. Validation loss during training for models with 4 LSTM cells and 1-5 Dense layers.

Figure 39 confirms the tendency observed in the last experiment. Models with a higher

number of Dense layers tend to train faster but are less accurate. Models with 2 or 3 dense layers

took around 15 more epochs to train than models with 4 and 5. The model with 1 Dense layer

could not reduce validation loss to a performing level, most likely due to overfitting. For further

testing, the best model, 4L_2D was retained.

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

V
A

L
ID

A
T

IO
N

 L
O

S
S

EPOCHS

Validation loss for models with 4 LSTM and 1-5 Dense layers

4L_1D 4L_2D 4L_3D 4L_4D 4L_5D

122

Exactly like the previous analysis, the reconstruction capacity of the trained architecture

was tested on 10,000 compounds from the external test set. Mean and standard deviation of

absolute difference were computed for all 371 remaining descriptors.

Table 20. Top 5 descriptors with highest mean absolute difference value.

Fragment

number

Fragment SMILES Mean absolute

difference

10 CCCCC 0.75550

8 CCCC 0.75093

135 CCCCCC 0.74331

28 CCCCNCC 0.72690

66 CCCCCNC 0.71237

Table 21. Top 5 descriptors with highest standard deviation of absolute difference value.

Fragment

number

Fragment SMILES STD of absolute

difference

137 CCCCCCC 1.21887

135 CCCCCC 1.18268

203 CCCSCNCC 1.07405

150 CCCNNCC 1.05791

8 CCCC 1.05507

Comparing Table 17 with Table 20 and Table 18 with Table 21 shows that the filtering

process was helpful. The mean of the absolute difference dropped about 0.25 in the top 5 and

in general through the data. The most problematic fragment for the standard deviation was the

same in both non-filtered and filtered experiments and the error dropped from 1.66 to 1.22

which is an improvement of 0.4. All other in top 5 showed an improvement of 0.2. Still, the

standard deviation and the mean combined meant that descriptors could be predicted up to 2

units away from their real values.

One unexpected issue came to light when metrics for the model according to the length

of fragments were computed. The model seemed unable to count single atoms as shown in

Figure 40.

123

Figure 40. Graphs of mean and standard deviation of the absolute difference according to

fragment length. Descriptors are fragment counts. Even some atoms are miscounted by the

model.

Counting atoms should be done easily since the correlation between number of

characters and number of atoms in the molecule is linear. An inability of the architecture to

fulfil the simplest task shed doubt on its ability to reproduce more complex counting. To test

that the model could count atoms, the output was modified from ISIDA vectors to only single

atom counts with a vector of dimension 9.

9 atoms were considered: C, N, O, S, F, I, Br, Cl, P

A counting accuracy of about 95% was achieved. However, looking at the results it was

found that the accuracy of the model when counting molecules containing Br and I was 0%,

and P was only 68.18%. These high errors appeared because molecules containing these 3 atoms

were not well represented in the dataset. Filtering all molecules containing the Br, I and P atoms

from the test set raised the counting accuracy to 99.94%. This shows that the neural network

architecture is not able to represent a simple concept such as counting characters in a SMILES

string. Shifting the focus from counting atoms to counting sequences of variable lengths induces

more errors.

0

0,2

0,4

0,6

0,8

0 1 2 3 4 5 6 7 8M
ea

n
 o

f
ab

so
lu

te
 d

if
fe

re
n

ce

Length of fragment

Mean absolute difference according to length of fragments

0

0,5

1

1,5

0 1 2 3 4 5 6 7 8

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 o
f

ab
so

lu
te

 d
if

fe
re

n
ce

Length of fragment

Standard deviation of absolute difference according to length of fragments

124

One idea to optimize the model was to use standardized descriptors, so that all 371

descriptors had the same mean and standard deviation, which was the next step for the analysis.

The idea was that standardization may help because if all descriptors vary in the same way, the

model must learn to understand these variations and link them to the differences in the SMILES

string instead of learning by heart possible values for each descriptor according to their standard

deviation.

5.1.4 Standardized, filtered descriptors, unique SMILES

The model that performed best on the previous step was used as an initial benchmark

(4L_2D). It achieved a validation loss 0.410 which is significantly worse than the with non-

standardized descriptors. The top 5 most problematic descriptors in terms of Mean and Standard

Deviation of the absolute difference are reported in Table 22 and Table 23. Note that these

differences are recalculated by removing the standardization to be able to compare the results

with the non-standardized results which are shown in Table 20 and Table 21.

Table 22. Top 5 descriptors with highest mean absolute difference value (standardized

descriptors) along with their standard deviation in the initial dataset.

Fragment

number

Fragment SMILES Mean absolute

difference

STD in training

set (rank)

8 CCCC 29.089 13.68 (1st)

11 CCC 26.556 10.43 (5th)

35 C 24.940 7.688 (6th)

12 CC 23.078 7.676 (7th)

10 CCCCC 19.028 13.41 (2nd)

125

Table 23. Top 5 descriptors with highest standard deviation of absolute difference value

(standardized descriptors) along with their standard deviation in the initial dataset.

Fragment

number

Fragment SMILES STD of absolute

difference

STD in training

set (rank)

8 CCCC 28.220 13.68 (1st)

11 CCC 26.266 10.43 (5th)

35 C 24.938 7.688 (6th)

12 CC 23.033 7.676 (7th)

10 CCCCC 17.253 13.41 (2nd)

Values for the error are an order of magnitude larger than the errors in unstandardized

descriptors. The first explanation for this phenomenon is that reverting the standardization to

calculate the absolute differences multiplies the errors in reconstruction by the standard

deviation of the descriptor, making them larger. The higher the standard deviation for a

descriptor, the higher the calculated absolute difference will be as is shown in Table 22 and

Table 23. The highest errors in reconstruction correlate with the highest standard deviation of

the actual descriptors. This implies that the standardized error is well balanced across the dataset

which could be explained by looking at an example of descriptors represented in Figure 41.

126

Non-standardized SVM

5:3 6:1 7:1 8:8 9:1 10:2 11:9 12:9 13:3 14:1 17:2 18:3 19:2 24:4 26:2 29:5 30:2 33:3

34:1 35:11 36:4 37:2 41:1 45:1 57:1 58:2 59:3 60:3 65:2 66:2 72:2 74:2 75:1 80:2

84:1 87:1 89:2 98:1 99:1 100:1 106:1 127:2 130:2 172:6 173:4 174:2 175:1 220:1 238:3

239:3 244:1 275:6 276:6 297:6 371:0

Standardized SVM (shortened)

1:-0.1711 2:-0.1322 3:-0.1785 4:-0.1876 5:-0.814 6:-0.7348 7:-0.6723 8:0.2532 9:-0.6424

10:0.2281 11:0.0361 12:-0.0694 13:0.3056 14:-0.3779 15:-0.3303 16:-0.4947 17:-0.5584

18:-0.5663 […] 367:-0.0169 368:-0.0168 369:-0.0458 370:-0.0346 371:-0.0072

Figure 41. Comparison between non-standardized (blue) and standardized (green) ISIDA

descriptors. Note that the standardized have been shortened as they would be too long to

represent. The shortened representation is enough to try to explain the switch in tendency. The

notation follows the libSVM notation. The data are given as tuples, the first number I the ID of

the descriptor and the second one, after the “:” character, is the value of the descriptor. Null

values are not written.

In the non-standardized SVM (Figure 41), only fragments which are contained in the

molecules are represented, other fragments that have a value of 0 are not represented (and have

a 0 value for the model). In the standardized version, ALL descriptors are represented from 1

to 371 and have non-zero values in similar numerical ranges. It might be that since descriptors

are always represented no matter what in a similar fashion, the model had trouble associating a

certain SMILES pattern with its position in the descriptor vector. With standardized descriptors,

all descriptors have the same standard deviation, and thus the model treats them as equivalent

and minimizes the loss in an equivalent manner. Which means that when they are converted

back to their initial values, the descriptors with the highest standard deviation and mean become

the descriptors with the highest error, which is exactly what can be observed in Table 22 and

Table 23.

Standardization did not in fact help with the reconstruction error but worsened the model

performance by basically confusing it as to which descriptors were associated with which

character sequences in the SMILES strings. Understanding why the model could not count

simple carbon chains fragments meant that a deeper understanding of the interpretation process

of the model was necessary. Figure 42 shows two examples of a possible explanation for the

miscounting of simple fragments.

127

CC1CC(C)CN(C1)S(=O)(=O)c1ccc2oc(C(=O)NCc3ccccn3)c(C)c2c1

CCCOCC12CN(CCC1=Cc1c(C2)cnn1-c1ccc(F)cc1)S(=O)(=O)c1ccc(cc1)C(F)(F)F

Figure 42. Example of molecules where 2 atoms are adjacent to each other in the molecule but

are separated by a variable number of characters in the associated SMILES string.

In both these molecules and associated SMILES, the NS fragment is highlighted in red.

Due to the construction of the SMILES, the N and the S are not adjacent to each other even

though they share a bond in the molecule. The model therefore has more difficulty making the

connection between them and counting them as a fragment. This is a limitation of SMILES and

LSTMs that was already observed in the canonical-to-canonical SMILES autoencoder. When

generating large cyclic structures, the model had trouble connecting cycle indicators that were

very distant in the SMILES string, in multi-cyclic structures for example where several cycles

are opened and then closed.

128

5.1.5 Filtered descriptors, enumerated SMILES

To solve this issue, a data augmentation strategy was adopted through the randomization

of SMILES. Through randomization and using a larger number of SMILES strings for each

molecule, fragments that could be separated in a certain SMILES might be adjacent in another

different SMILES. The model could therefore detach itself from the SMILES sequence and get

a higher representation of the molecule represented by the SMILES. SMILES Randomization

was performed using RDKit, by transforming a SMILES string into a molecule object,

extracting, and shuffling atom numbers and recreating a SMILES string. For each SMILES in

the ChEMBL database, 10 random SMILES were generated and associated with the same

filtered, non-standardized SVM. Again, based previous knowledge, a 4 LSTM, 2 Dense layer

model was selected.

Training resulted in a validation loss of 0.370 which is significantly worse than the 0.194

obtained with the best model with non-randomized, non-standardized SMILES. The same data

augmentation strategy has not been investigated on the filtered descriptors dataset due to a lack

of time.

Another architecture was tried to fit to the 10 enumerated SMILES per compounds: each

alternative SMILES being assigned to an independent channel then fused in a dedicated layer.

The architecture tested is shown in Figure 43.

129

Figure 43. Schematic representation of the changed architecture. Each input corresponds to a

different randomized SMILES string. Then, all outputs from the 10 LSTM+Dense duos, are

either concatenated or averaged (two different models). Then this new vector is passed through

the output dense layer to shape it with the corresponding size.

Results of both models are reported in Table 24. This architecture produced worse models than

previous attempts.

Table 24. Minimum validation loss achieved for both types of model.

Model type Minimum validation loss achieved

Concatenation 0.520

Average 2.387

130

5.1.6 Conclusion

The aim of this project was to train a model that could compute ISIDA molecular

descriptors accurately and faster using a machine learning model. The resulting models

produced too many errors to be considered as a replacement to an algorithmic exact calculation.

It was clearly highlighted that SMILES strings combined with LSTM cells have strong

limitations. The grammar of SMILES seems to be more complex for a model to apprehend than

classical human language grammar. For example, a simple phrase in English will always have:

Subject + verb + agreement in that order. This predictable behaviour is easy to identify and

learn for a Deep Neural Network. The language of molecules it seems, is much more complex

and a simple architecture was not able to crack the secrets of the SMILES representation.

The impact of SMILES randomization, descriptor filtering and standardization was tested

on the process of learning. It seems preferable to work on counts without further transforming

the molecular descriptors. Filtering out low variance descriptors seems beneficial to improve

both the speed of the training and the accuracy of the model.

Data augmentation using alternative SMILES representation could be a possible solution

to improve the model. Complexification and better control over the regularization of the model

could also be tested. A graph-based approach could probably be a better fit, since all molecular

connections would be considered by the model.

131

5.2 Multimodal Deep Boltzmann Machines

The Multimodal Deep Boltzmann Machine (MDBM) is an architecture that was

considered in the scope of Constrained Generation, with the aim to create an ISIDA to SMILES

model which would be able to generate SMILES strings from vectors with selected fragment

counts and property values. A strategy to approach the problem of constrained generation is to

link ISIDA structural descriptors and the latent vectors of an AE, the latter being prepared to

decode SMILES strings. The mapping between ISIDA and an AE feature space is ensured, here,

by an MDBM.

Boltzmann Machines are models with pairwise interacting units that update their states

over time in a probabilistic manner depending on the states of adjacent units. They can be

regarded as stochastic versions of Hopfield networks[159]. The most striking feature of this

architecture is that it contains only one visible layer that is used as both input and output of the

network. Restricted Boltzmann Machines[160] (RBM) and Deep Boltzmann Machines[161]

(DBM) are special types of Boltzmann machines in which the interactions are done between

layers of units. In the case of a RBM, the interactions are limited to the visible and the hidden

set of units, no connections are allowed inside the visible or the hidden layer. A DBM has

multiple hidden unit layers communicating sequentially: meaning communication is allowed

between layers but still not in the layers.

Isolated Boltzmann Machines can work in the same way as an AE, reconstructing its input

from a latent vector, however in this case there is no separation between encoder and decoder

since the visible layer serves as both input and output. The visible units take the input and the

information travels deeper into the model, layer by layer until reaching the deepest layer, where

it can go backwards towards the visible units. The deepest layer serves as a latent representation

of the input data, setting the state of the deep hidden layer, the model can generate a data vector

that can be read in the visible layer.

Multimodal Deep Boltzmann Machines[162] are a combination of several DBMs trained

to reconstruct their input after creating a latent representation of said input. The different DBMs

work in different modalities, where the same concepts are expressed in different manners (e.g.

the word “cat”, images of cats, sounds of cats). All the deepest layers of the different DBMs are

connected by a single layer, which serves as a unique, latent representation of all the modalities

132

of the same concept. Thus, from one latent vector, the model generates new data in any of the

input modalities.

ISIDA and latent descriptor vectors can be seen as two different modalities of the same

molecule and could therefore be linked by an MDBM. The goal is to generate an AE latent

vector, that can be decoded as SMILES from an ISIDA vector representation.

5.2.1 Boltzmann Machines

A classical Boltzmann Machine (BM) is an energy-based neural network, composed of

symmetrically connected binary units. The symmetry means that artificial neurons are unique

mathematical functions of the values from the adjacent artificial neurons, in contrast to a feed-

forward neural network (like an autoencoder), where artificial neurons use two different

functions, in forward and backward mode. For this reason, there is no direction in a BM, only

an arbitrary choice to define which are the visible and the hidden units. Binary units mean that

an artificial neuron can have two states: 1 or 0. A classical BM is represented in Figure 44.

Figure 44. Simple scheme of a classical Boltzmann Machine. Orange neurons represent visible

units which take the input and give the output. Grey neurons represent hidden units which,

similarly to an autoencoder, are supposed to gather higher representations and the underlying

“meaning” of the data distribution. Bold lines represent connections between units of the same

layer. Coloured lines represent the different interactions between units. Green lines are

interconnections inside a hidden layer, the blue line represents the interconnection inside the

visible layer and the purple lines represent connections between two layers.

133

As can be seen in Figure 44, in a BM all units are connected, and there are

interconnections between units of the same layer. This architecture is designed to model an

unknown probability density function from a sample dataset. The mathematical form of the

modelled probability distribution is a Boltzmann law, hence the Boltzmann Machine name. The

energy is a function of the configuration of the units of the model.

𝐸(𝒗, 𝒉; 𝜃) = −
1

2
𝒗𝑇𝑳𝒗 −

1

2
𝒉𝑇𝑱𝒉 − 𝒗𝑇𝑾𝒉 − 𝒃𝒗𝒗 − 𝒃𝒉𝒉 (5.1)

With 𝒗, 𝒉 the state of the visible and hidden units respectively, 𝜃 = {𝑳, 𝑱, 𝑾, 𝒃𝒗, 𝒃𝒉} the

parameters of the model to fit. The terms 𝒃𝒗, 𝒃𝒉 are the biases of visible and hidden units

respectively (threshold of activation for both units). 𝑳 and 𝑱 account for intra-layer interactions

and 𝑾 for visible-hidden layers interactions. Colours in the equation refer to the colours in

Figure 44.

From this energy function, and using the Boltzmann Distribution, the probability of

activation of each visible and hidden unit can be inferred. In turn this probability Is used to set

the state of the corresponding artificial neuron. Unfortunately, BM do not currently benefit from

any algorithmic acceleration to train. But RBMs do, and for this reason, are preferred.

134

5.2.2 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a version of the Boltzmann Machine where

interconnections inside the same layers have been removed as shown in Figure 45.

Figure 45. Simple scheme of a Restricted Boltzmann Machine. Interconnections between units

of the same layer have been removed. As a result, this architecture looks more like a classical

feed-forward neural network.

Since interconnections have been removed, the energy equation is simpler:

𝐸(𝒗, 𝒉; 𝜃) = 𝒗𝑇𝑾𝒉 − 𝒃𝒗𝒗 − 𝒃𝒉𝒉 (5.2)

We modified this function to use real valued artificial neurons for the visible layer and

binary valued artificial neurons for the hidden layer. The visible layer artificial neurons follow

a multivariate normal distribution with the assumption of independence. The energy function

becomes:

𝐸(𝒗, 𝒉) =
1

2
(𝒗 − 𝒃𝒗)𝑇𝚺−𝟏(𝒗 − 𝒃𝒗) − 𝒗𝑇𝚺−𝟏𝑾𝒉 − 𝒃𝒉

𝑇𝒉 (5.3)

Where 𝚺 = (
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑉

2
) is the diagonal covariance matrix of shape (V, V) where V is the

number of visible units and 𝜎𝑖
2 are the variances of each input descriptor (a ISIDA fragment

count or one of the AE latent vector coordinate). Now, instead of visible units being restrained

135

to values 0 or 1, the values for each unit 𝑉𝑖 will be sampled from a gaussian distribution with

the corresponding variance. To train the model, we use a process called Gibbs sampling. The

variances are pre-computed.

To counter the problem of sampling in real space which might lead to the gaussian distributions

to have an area superior or inferior to 1, Hinton suggested to normalize the data to have mean

0 and standard deviation of 1 which has been done. The normalization was done using the

following transformation:

𝒚 =
𝒙 − 𝑥̅

𝛿
 (5.4)

Here, x is an ISIDA/latent vector, x̅ is the mean, and 𝛿 the standard deviation of the data.

5.2.3 Training a Restricted Boltzmann Machine

As an example for this explanation, we will use the output of an encoder which are latent

vectors of dimension 256. This data will be fed in batches to the RBM, and we will assume a

batch size of 100 (i.e. 100 molecules per batch). Therefore, our input matrix 𝑿 has shape (100,

256). We will also assume 256 visible units and 20 hidden units.

The training process is done using Gibbs Sampling as previously mentioned, which works

as follows:

1. Sample hidden states from input

2. Sample visible values from hidden states

3. Sample hidden states from sampled visible values

Steps II-III can be repeated k times if needed (in this example, only one iteration was

done because it has been shown that k=1 gives good results).

4. Calculate and apply gradients (from step 2 and 3)

5. Update parameters

The details of each step will be described in the following chapters.

136

Sampling hidden states from input passed in visible units

First, we calculate the probabilities for each hidden unit to be activated:

𝑷 = 𝑃(𝑯 = 1 | 𝑿) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒃𝒉 + 𝑿𝚺−𝟏𝑾) (5.5)

𝒃𝒉 = (𝑏ℎ
1, 𝑏ℎ

2, … , 𝑏ℎ
20) is the vector of hidden biases

𝑯 corresponds to the states of the hidden units

𝑾 the weights matrix of 𝑠ℎ𝑎𝑝𝑒 = (256, 20)

The decision to activate or not a hidden unit is made by sampling out of the Bernoulli

distribution using 𝑷.

As a result, we obtain a matrix of hidden states 𝑯:

𝑯 = 𝑓(𝑷), 𝑠ℎ𝑎𝑝𝑒 = (100, 20) (5.6)

Sampling visible from hidden

The process is rather different because visible units are not binary but real and use a

gaussian distribution. The process consists in creating a gaussian distribution to sample from

using our newly calculated hidden states.

The probability distribution 𝑸 from which we sample visible states can be expressed as

follows:

𝑸 = 𝑃(𝑽 | 𝑯) = 𝒩(𝑽; 𝑯 𝑾𝑇 + 𝒃𝒗, 𝚺), 𝑠ℎ𝑎𝑝𝑒 = (100, 256) (5.7)

where 𝒩(𝑥; 𝜇, 𝜎2) is the gaussian distribution with mean 𝜇 and variance 𝜎2,

𝒃𝒗 = (𝑏𝑣
1, 𝑏𝑣

2, … , 𝑏𝑣
256) is the vector of visible biases

W is the same matrix of weights.

By sampling random numbers from 𝑸 we get 𝑽 of shape (100, 256) which is the matrix

of states of the visible units. These states can be reverted to our input space by reverting the

normalization process: 𝑽𝒓𝒆𝒗𝒆𝒓𝒕𝒆𝒅 = 𝛿 𝑽 + 𝑥̅

137

Sampling hidden from the sampled visible layer state

And again, for the third step of Gibbs sampling, new hidden states are calculated the

same way as before:

𝑷′ = 𝑃(𝑯 = 1 | 𝑽) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒃𝒉 + 𝑽𝚺−𝟏𝑾), 𝑠ℎ𝑎𝑝𝑒 = (100, 20) (5.8)

Calculating gradients

The gradients are computed by calculating the derivative of the log-likelihood against

every parameter.

Visible bias :

Δ𝒃𝒗 = 𝑚𝑒𝑎𝑛 ((𝑿 − 𝒃𝒗)𝚺−𝟏 − (𝑽 − 𝒃𝒗)𝚺−𝟏) ∗ 𝑙𝑟 , 𝑠ℎ𝑎𝑝𝑒 = (256) (5.9)

With 𝑙𝑟 the learning rate

Means are calculated across the batches.

Hidden bias:

Δ𝒃𝒉 = 𝑚𝑒𝑎𝑛(𝑷 − 𝑷′) ∗ 𝑙𝑟 , 𝑠ℎ𝑎𝑝𝑒 = (20) (5.10)

Weights matrix:

Δ𝑾𝑇 = 𝑚𝑒𝑎𝑛(𝑷𝑇𝚺−𝟏𝑿 − 𝑷′𝑇𝚺−𝟏𝑽) ∗ 𝑙𝑟 , 𝑠ℎ𝑎𝑝𝑒 = (256, 20) (5.11)

Gradients are applied and variables will be changed as:

𝒃𝒗 = 𝒃𝒗 + Δ𝒃𝒗; 𝒃𝒉 = 𝒃𝒉 + Δ𝒃𝒉; 𝑾 = 𝑾 + Δ𝑾 (5.12)

The training process continues until we reach convergence on RMSE. Reconstruction

rate could also be used for ISIDA vectors. In this case, RMSE makes more sense since latent

vectors have 10 decimal precision.

138

As the training process is stochastic, it has to be softly ended. To this end, the learning rate is

lowered at each epoch in order.

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 𝑓(𝑒𝑝𝑜𝑐ℎ) =
1

𝑒(
𝑒𝑝𝑜𝑐ℎ

𝑎
+𝑏)

 (5.13)

Figure 46. Influence of a and b parameters on the evolution of the learning rate. Parameter “a”

controls the rate of decrease while “b” controls the starting point.

Parameters initialization

From Melchior’s publication we gathered the following parameters initialization

𝒃𝒗, visible biases, are initialized to the mean of the data because they tend to that value

𝒃𝒉, hidden biases, are initialized as:

𝒃𝒉 = −
||𝒃𝒗 + 𝑾∗𝒋||

2

− ||𝒃𝒗||
2

𝜎𝑗
2 + 𝑙𝑛 (𝜏) (5.14)

With 𝜏 = 0.01 and 𝜎𝑗
2 the variance of the 𝑗𝑡ℎ column of the matrix 𝚺.

139

𝑤𝑖𝑗 𝑎𝑟𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑈 (−
√6

√20 + 256
,

√6

√20 + 256
) (5.15)

With 𝑈 a uniform distribution

𝚺 is initialized to a diagonal of 1.

5.2.4 Multimodal Deep Boltzmann Machine

To build the Multimodal Deep Boltzmann Machine, two separate Deep Boltzmann

Machines must be built and optimized first. One model specific to latent vectors and one model

specific to ISIDA vectors. Both objectives for the models are to reconstruct their input after

passing through their respective latent representation layers. Once optimal parameters for both

models have been found, they can be connected using a common layer at the top and trained

with both inputs.

Figure 47. Schematic representation of the Multimodal Deep Boltzmann Machine with both

specific models linked by the higher representation layer on top. Details are added to show the

model in usage mode, sampling vectors from ISIDA-based GTM, finding their equivalent in

latent vectors and decoding them into molecules with controlled structure.

140

5.2.5 Data

Two types of experiments were performed with two datasets of different sizes. Type A

experiments used 10.000 vectors sampled randomly, either from the output of the encoder of a

classical canonical-to-canonical autoencoder or from ISIDA descriptors. In both cases

molecules that were encoded were extracted from the ChEMBL23 database. In the case of the

latent vectors, SMILES were initially transformed in their canonical form and then given to the

encoder.

5.2.6 Latent vectors model efficiency metric: SMILES reconstruction

rate

To verify that the model performs well in reconstruction tasks for the latent vectors, a

metric was needed since the Euclidian distance between latent vectors used during training is

not easily understandable. Both latent vectors and reconstructed latent vectors (after passing

through) the RBM/DBM were fed to the decoder and decoded into SMILES. These SMILES

were then compared and sorted into three categories: Perfect match, meaning that the SMILES

before and after reconstruction was the same; invalid SMILES, meaning the encoder generated

a meaningless SMILES string given the reconstructed latent vector; and imperfect

reconstruction, meaning the output of the decoder was a valid SMILES string but didn’t

correspond to the input. Imperfect reconstructions were more thoroughly studied by calculating

the Tanimoto coefficient between initial and reconstructed SMILES using Morgan-4

Fingerprints. Figure 48 shows a schematic representation of the comparison process.

141

Figure 48. Schematic representation of the efficiency metric for the part of the DBM trained

for reconstructing latent vectors. Reconstructed SMILES are sorted into three categories

according to their validity and comparison to the initial SMILES.

5.2.7 ISIDA vectors model efficiency metric: Descriptor fluctuation

The initial ISIDA vector is compared to the ISIDA descriptors vector from the

reconstructed SMILES. We term these the “reconstructed ISIDA vectors”. The ISIDA

descriptor type used contains only fragment counts (i.e., all descriptors have whole numbers),

therefore a perfectly reconstructed vector would have the same values as the initial one when

all descriptors are rounded to the nearest integers. This means that the error tolerance for

correctly reconstructing a descriptor is ≤ 0.5.

5.2.8 Parameters and architecture optimization – Latent vectors

A thorough analysis was performed to find optimal parameters for both types of models,

starting with the latent-specific model. The optimization was done layer by layer. The first step

was to find good parameters for a one hidden layer model (RBM), then for a two-layer and

maybe three-layer model.

The first experiment of the analysis was performed on a simple RBM with 1 hidden

layer of a variable dimension as shown in Figure 49.

142

Figure 49. Schematic representation of the simple RBM used in the first experiment. The

visible layer has a dimension of 256 corresponding to the size of the input latent vectors. The

hidden layer has variable dimension.

 Parameters were initialized to the values shown in Table 25.

Table 25. Parameters used for the training of the RBM. Only the dimension of the hidden layer

varied.

Hidden

Dimension
Batch size Epochs A B

Start

Learning

Rate

Variable 256 1000 300 3 0.05

143

Figure 50. Graph representing the evolution of the RMSE at the end of training in relation the

number of hidden units in the model.

Figure 50 shows that increasing dimensions in the hidden layer helped decrease the

RMSE significantly. A plateau was reached at around RMSE=2.5 for a dimension of 2500-3000.

The hidden layer of the RBM was set at a dimension of 3000 for the computation of the

reconstruction analysis.

0

2

4

6

8

10

12

14

0 1000 2000 3000

R
M

S
E

 a
t

en
d

 o
f

tr
ai

n
in

g

Number of hidden units

RMSE as a function of Number of hidden units

144

Figure 51. Graph showing the proportion of perfect matches, imperfect reconstructions, and

invalid SMILES for the best RBM found in the systematic analysis.

Figure 51 shows that the initial version of the model achieved a perfect reconstruction

rate of 85.49%. In comparison to classical canonical-to-canonical autoencoders which generally

achieve upwards of 95%, this value is disappointing but encouraging considering the simplicity

of the model. Tanimoto coefficients were computed (Figure 52) and showed that most of the

imperfect reconstructions had a Tc around 0.5 – 0.7 with a few going above 0.9. Small changes

to the latent vectors seemed to induce changes of variable degrees to the closeness of the

reconstructed compounds, showing the discrete characteristic of latent space and the tendency

of the autoencoders to have a poor chemical space organization in terms of structural similarity.

Figure 52. Distribution of Tanimoto coefficients for the 833 imperfect reconstructions.

145

The second experiment was performed by having the first hidden dimension fixed at

3000 and the second hidden dimension varying as shown in Figure 53.

Figure 53. Schematic representation of the DBM evolved from the previous RBM. Visible and

first hidden layers are fixed to constant values while the second hidden layer varies.

Parameters for the models in the second experiment were slightly modified compared

to the first experiment. The number of epochs was scaled up from 1000 to 3000 and the decrease

of the learning rate was slowed by modifying the A value in the learning rate function from 300

to 500 as shown in Table 26.

Table 26. Parameters used for the training of the DBM, only the dimension of the 2nd hidden

dimension varied.

Hidden

dimension 1

Hidden

dimension 2

Number of

epochs

Batch

size
A B

3000 75 3000 256 500 3

146

Figure 54. Graph representing the evolution of RMSE at the end of training as a function of the

dimension of the second hidden layer.

Results of the second experiment show that the second hidden layer does not benefit

from a large hidden dimension. The best result was found for a 100-dimension layer as shown

in Figure 54. The Reconstruction rate analysis was again performed using the 10.000 training

compounds.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000 1100

R
M

S
E

 a
t

en
d

 o
f

tr
ai

n
in

g

Size of hidden layer 2

RMSE as a function of the number of units in

the second hidden layer

147

Figure 55. Graph showing the proportion of perfect matches, imperfect reconstructions, and

invalid SMILES for the best DBM found in the systematic analysis.

This model achieved a 94.29% perfect reconstruction rate as shown in Figure 55. The

breakdown of the Tc for the imperfect reconstructions shows the same trend as the previous

experiment (Figure 56).

Figure 56. Distribution of Tanimoto coefficients for the 345 imperfect reconstructions.

Having had satisfying results with a small training database, an upscaling to a bigger

database of 100.000 randomly selected compounds was used to train the model and 10.000

external compounds were used as a validation set. The model achieved a RMSE of around 2.4

148

for both sets during training and validation. The reconstruction rate analysis was performed on

the 10.000 external compounds as shown in Figure 57.

Figure 57. Proportion of perfect matches, imperfect reconstructions, and invalid SMILES for

the best DBM found in the previous analysis.

Unfortunately, scaling up the databases by a factor of 10 reduced the perfect

reconstruction rate to 64.64% which is 30% lower than the previous results. This may be due

to overfitting or it could also be the result of a capacity issue for the architecture. It was able to

accommodate 10.000 compounds previously, but was not able to encode 10 times more.

5.2.9 Parameters optimization – ISIDA vectors

Having gathered some preliminary results for the latent vectors, the focus was shifted

to ISIDA descriptors to compare results. The method for finding the best parameters was

slightly changed from a 2-step method to a 1-step method where both dimensions for hidden

layer 1 and hidden layer 2 could vary. By using different methods of parameter optimization for

ISIDA and latent vectors, the goal was to get a better understanding of the relation between the

two hidden layers and the performance of the model. Setting each hidden layer’s parameters

sequentially could amount to minimizing a two-variable function by freezing one variable,

minimizing the other, then doing the opposite. This is an easy solution but with no guarantee to

end up in a minimum for the loss function. The parameters obtained this way may not be the

most optimal. Therefore, both dimensions of the hidden layers were varied at the same time,

effectively minimizing the loss function using the two variables.

149

Table 27. Results for the training of the DBM with 2 hidden layers on ISIDA vectors. All

experiments were done for a visible dimension of 402. Parameters a and b control the decline

of the learning rate, a gives the rate of decline and b controls the learning rate start. The lower

a is, the faster the learning rate declines. For all experiments, A was set to 500, the batch size

was set to 256, and the number of epochs was set to 2000. The best experiment is highlighted

in green, the experiment used in the analysis is highlighted in blue.

Experiment

Number

Hidden

dimension

1

Hidden

dimension

2

B Start

Learning

Rate

Euclidian

Distance

1 400 400 3.7 0.025 14.60

2 400 100 3.7 0.025 14.56

3 400 10 3.7 0.025 13.62

4 400 1000 3.7 0.025 14.56

5 400 2000 3.7 0.025 12.78

6 400 2000 3 0.05 14.54

7 400 2000 2.3 0.1 12.78

8 400 2000 1.61 0.2 11.96

9 500 2000 1.61 0.2 11.13

10 750 2000 1.61 0.2 9.62

11 1000 2000 1.61 0.2 8.61

12 1500 2000 1.61 0.2 7.33

13 2000 2000 1.61 0.2 6.53

14 2000 3000 1.61 0.2 6.44

15 2000 4000 1.61 0.2 6.41

16 2000 5000 1.61 0.2 6.43

17 3000 5000 1.61 0.2 5.43

18 4000 5000 1.61 0.2 5.04

19 5000 5000 1.61 0.2 4.85

20 6000 5000 1.61 0.2 4.76

 21 7000 5000 1.61 0.2 4.65

22 8000 5000 1.61 0.2 4.53

23 9000 5000 1.61 0.2 4.49

24 10000 5000 1.61 0.2 4.38

25 15000 5000 1.61 0.2 4.01

26 17500 5000 1.61 0.2 3.98

27 20000 5000 1.61 0.2 4.03

28 17500 7500 1.61 0.2 13.11

150

The best RMSE obtained was for experiment 26. However, experiment 25 got very close results

with 2500 less hidden units in the first hidden layer. This difference in number of hidden units

also implies a difference in computing time. Thus, for timing purposes the fluctuation analysis

was computed with the model of experiment 25.

The standard deviation analysis was performed on experiment 25 as explained above:

Figure 58. Proportion of descriptors according to their reconstruction fluctuation. 85.6% of

descriptors have a possible variation of less than 0.5.

86% of the descriptors had a fluctuation less than 0.5, meaning that they were correctly

reconstructed on the training dataset (Figure 58). The remaining 58 descriptors were above the

fluctuation threshold, a large part having an error close to 1 but some of the descriptors had a

fluctuation above 2 (Figure 59). This result was not better than our previous attempt. The

combination of the errors from the latent model and the ISIDA models seriously hinder the

ability to train a MDBM model.

151

Figure 59. Histogram of the distribution of reconstruction fluctuation calculated between initial

and reconstructed ISIDA vectors. Bars are coloured according to results of Figure 58.

In an attempt to improve the ISIDA DBM, a third layer was added to create a deeper DBM in

hopes that the increased depth and higher representation would improve the model

performance.

Table 28. Results for the training of the DBM with 3 hidden layers on ISIDA vectors. All

experiments were done for a visible dimension of 402. A was set to 500, B to 1.61, the starting

learning rate was 0.2. The number of epochs was set to 2000.
Experiment

Number

Hidden

dimension

1

Hidden

dimension

2

Hidden

dimension

3

RMSE

1 15000 5000 1000 111.45

2 15000 5000 2000 116.13

3 15000 5000 3000 108.08

4 500 500 500 18.97

5 300 300 300 14.85

6 100 100 100 17.13

7 100 100 1000 16.87

Initial experiments (1, 2 & 3, Table 28) with large hidden layers did not train well at all. In

following experiments (4 to 7), the dimensions of all layers were drastically reduced. The

thought process was that in a 2-hidden layer model, the lack of depth was compensated by the

152

large size of the hidden layers. Adding more depth meant that the layers’ size could be reduced.

Smaller layers resulted in a reduction of the RMSE by a factor of almost 10, unfortunately, these

experiments still did not produce comparable results to the DBM with 2 hidden layers. The

deeper DBM did not improve on the 2-hidden layer DBM, therefore the previous architecture

was used to train a model on 100.000 training vectors and 10.000 validation vectors.

Figure 60. Evolution of RMSE for training and validation sets during training of the model.

No sign of overfitting can be observed on Figure 60. Both training and validation sets achieve

comparable RMSE values.

Table 29. Best RMSE achieved during training for training set and validation set.

Best training loss

achieved

Best validation loss

achieved

4.16 4.42

The model used for this phase (experiment 25) achieved a RMSE of 4.01 on the training set

with 10.000 compounds. Here, with 10x more data, it achieved 4.16 on training and 4.42 on

validation (Table 28), which is very close to the preliminary results.

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
M

S
E

 (
lo

g
 s

ca
le

)

Epochs

Evolution of RMSE for training and validation sets during training of the

model

train

val

153

Figure 61. Proportion of descriptors according to their reconstruction fluctuation on the

validation dataset.

79% of the descriptors are correctly reconstructed (Figure 61) which is a 7% decrease compared

to the preliminary results on the small training set. 82 descriptors have a fluctuation of more

than 0.5, 22 of them with 2 or more which is a slight increase compared to the 12 before. (Figure

62).

Figure 62. Histogram of the distribution of reconstruction fluctuation calculated between initial

and reconstructed ISIDA vectors. Bars are colored according to results of Figure 61.

315

82

Results of the fluctuation analysis on the validation

dataset

fluctuation < 0,5

fluctuation >= 0,5

154

A quick comparison between initial and reconstructed ISIDA vectors of the validation

set showed than no vectors was perfectly which amounts to a 0% reconstruction rate. This is

expected since about 20% of the descriptors had a general fluctuation above the threshold and

the perfect reconstruction implies 397 simultaneous successful predictions – which is very

unlikely. To have better insight we computed each descriptor’s “occurrence” over the validation

dataset. Occurrence is a measurement of how much the descriptor is used in a dataset. It is

computed as follows:

𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 𝑖𝑠 𝑛𝑜𝑡 0 𝑖𝑛 𝑑𝑎𝑡𝑎

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

For example, if the occurrence of a descriptor is 0.5 that means that the fragment is found in

50% of the molecules in the dataset. The occurrence of each descriptor was plotted against its

fluctuation, and each descriptor was coloured according to its standard deviation. The results

are shown in Figure 63.

Figure 63. Fluctuation of each descriptor according to its occurrence in the validation dataset.

The grey line represents the 0.5 fluctuation limit. Each dot is colored according to the standard

deviation of the descriptor itself. The grey line indicates the threshold of fluctuation = 0.5.

 There appears to be a correlation between the occurrence of a descriptor in the dataset,

its fluctuation, and its standard deviation. Descriptors with the biggest occurrences are the most

badly predicted by the model, probably because of their high variation as indicated by the high

values for standard deviation. Since those descriptors are not correctly predicted it is highly

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

F
lu

ct
u
at

io
n

Occurence

Fluctuation according to the occurence for each of the 397 descriptors,

colored by values of descriptor standard deviation

Descriptor stddev value

[0, 0.5]

[0.5, 1]

[1, 1.5]

>1.5

155

unlikely that a perfect reconstruction will ever occur, explaining the poor performances in terms

of reconstruction rate. This phenomenon is highly reminiscent of the issues caused by the

variation of ISIDA vectors in the SMI2ISIDA project where the variation and tendencies of the

most frequent fragments were unable to be captured and reproduced by neural network. It seems

difficult for these two architectures to link ISIDA descriptors to a different representation,

SMILES in the case of SMI2ISIDA or an abstract numerical vector in the case of this project.

 A last-ditch effort to improve model performance included adding one more layer which

was unsuccessful and upgrading the optimizer of the model from Adam to AdaBelief. The

AdaBelief Optimizer is an improvement over the Adam Optimizer which is widely used in many

different types of Deep Learning models. The Adam Optimizer improves on the learning by

calculating moments which considers not only the current gradients but also the past gradients.

This method helps the model avoid local minima in search of the global minimum. Gradients

for the standard deviations, hidden biases, visible biases and weights were calculated using this

method instead of the simple gradient descent. The model was trained on the small training set

and compared to the best model trained with the Adam optimizer, also on the small training set.

Table 30. Parameters for the best model found in the initial analysis.
Hidden

Dimension

1

Hidden

Dimension

2

Number

of

epochs

Batch

size

A B Start

Learning

rate

15000 5000 5000 256 500 1.61 0.2

Parameters in Table 30 were found to be the best for the initial analysis and were therefore

reused to train the AdaBelief model. Without AdaBelief, the model achieved a Euclidian

distance of 4.01 on the training set. The addition of AdaBelief on the same network with the

same parameters lowered the final Euclidian distance to 2.22 (Table 31).

Table 31. RMSE at the end of training with and without the AdaBelief Optimizer for a model

with the same parameters on the small training dataset.

With

AdaBelief

Without

AdaBelief

2.22 4.01

156

A fluctuation analysis was performed on the AdaBelief model and results were compared to the

initial model (Figure 64).

Figure 64. Proportion of results for a model with the same parameters with AdaBelief (left) and

without AdaBelief (right).

The addition of the AdaBelief optimizer improved the number of correctly reconstructed

descriptors from 85% to 90%, putting 20 more descriptors under the fluctuation threshold.

However, when fluctuation is plotted against occurrence (Figure 65), similar problems appear,

mainly that the most popular and important descriptors are miscounted.

361 341

41
61

0

50

100

150

200

250

300

350

400

450

AdaBelief No AdaBelief

Results of the fluctuation analysis for the same parameters with and

without AdaBelief

fluctuation <= 0,5

fluctuation > 0,5

157

Figure 65. Fluctuation of each descriptor according to its occurrence in the training dataset.

Each dot is colored according to the standard deviation of the descriptor itself.

5.2.10 Conclusion

Neither of the separate models could reproduce their input with enough precision to be used

in a working MDBM. Latent vectors could potentially be optimized to obtain satisfactory

results, or at least increase the reconstruction rate with more time. It could have been beneficial

to work with a principal component transform of ISIDA descriptors vectors and the AE latent

vectors in order for the covariance matrix in equation (5.3) to better describe the distribution of

the input. Besides, ISIDA descriptors are counts, so a standard DBM based on integer could

have been attempted, for instance, by mapping the counts binary vectors. Defining more

relevant metrics and loss function to train these architectures in the context of generating

molecular structures could also be explored. Structural descriptors in general seem to be

problematic for neural networks to correctly handle. Methods based on manipulating them by

having to reconstruct or predict them like SMI2ISIDA and MDBM remain unsuccessful despite

many attempts.

0

0,5

1

1,5

2

2,5

3

3,5

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

F
lu

ct
u
at

io
n

Occurence

Fluctuation according to the occurence of each descriptor, colored by

initial standard deviation

158

5.3 Stargate-GTM

5.3.1 Introduction

Stargate-GTM (S-GTM) is a tool based on Generative Topographic Mapping that allows

two different descriptor spaces to be connected. On the premise that the same data points are

present in both spaces, two manifolds can be trained simultaneously each of them satisfying

topological constraints from both datasets. The mapping of the two spaces is done by using the

GTM manifold of map 1 with patterns on map 2 and reversely. This procedure actually

emphasizes the consistency between the two data spaces which respective GTM are co-trained.

Here, one of the data space is the ISIDA descriptors vector space and the second it the AE latent

space – that can be readily decoded as SMILES strings. In this way, a compound represented

by an ISIDA descriptors vector is represented by the ISIDA-space GTM responsibilities. These

responsibilities are decoded using the manifold of the AE-space GTM in AE latent space vector.

These latent vectors would then be fed to a generative model to create compounds localized in

active areas of ISIDA space.

5.3.2 Methodology

Stargate-GTM

Stargate-GTM builds a model using two initial spaces instead of one like in the

conventional GTM. Two manifolds are fitted in the two different spaces and the individual

probability distributions are combined to obtain a joint probability distribution. The manifolds

are constructed so that each node in the 2D latent space is associated with the RBFs of both

manifolds.

During training, manifolds are optimized together using joint responsibilities. These

are obtained from the individual probability distributions for Space 1 and Space 2

respectively: 𝑝(𝐭𝑛
𝑆𝑝𝑎𝑐𝑒1|𝐱𝑘, 𝐖𝑆𝑝𝑎𝑐𝑒1, 𝛽𝑆𝑝𝑎𝑐𝑒1) and 𝑝(𝐭𝑛

𝑆𝑝𝑎𝑐𝑒2|𝐱𝑘, 𝐖𝑆𝑝𝑎𝑐𝑒2, 𝛽𝑆𝑝𝑎𝑐𝑒2)

computed using the two mapping functions from the manifolds 𝐘𝑆𝑝𝑎𝑐𝑒1 and 𝐘𝑆𝑝𝑎𝑐𝑒2. In the

159

same way as regular GTM, individual responsibilities are initially computed during the

expectation step using the following equations:

𝑟𝑘𝑛
𝑆𝑝𝑎𝑐𝑒1 = 𝑝(𝐱𝑘|𝐭𝑛

𝑆𝑝𝑎𝑐𝑒1, 𝐖𝑆𝑝𝑎𝑐𝑒1, 𝛽𝑆𝑝𝑎𝑐𝑒1) (5.16)

𝑟𝑘𝑛
𝑆𝑝𝑎𝑐𝑒1 =

𝑝(𝐭𝑛
𝑆𝑝𝑎𝑐𝑒1|𝐱𝑘 , 𝐖𝑆𝑝𝑎𝑐𝑒1, 𝛽𝑆𝑝𝑎𝑐𝑒1)

∑ 𝑝(𝐾
𝑘′ 𝐭𝑛

𝑆𝑝𝑎𝑐𝑒1|𝐱𝑘, 𝐖𝑆𝑝𝑎𝑐𝑒1, 𝛽𝑆𝑝𝑎𝑐𝑒1)
 (5.17)

𝑟𝑘𝑛
𝑆𝑝𝑎𝑐𝑒2

= 𝑝(𝐱𝑘|𝐭𝑛
𝑆𝑝𝑎𝑐𝑒2

, 𝐖𝑆𝑝𝑎𝑐𝑒2, 𝛽𝑆𝑝𝑎𝑐𝑒2) (5.18)

𝑟𝑘𝑛
𝑆𝑝𝑎𝑐𝑒2 =

𝑝(𝐭𝑛
𝑆𝑝𝑎𝑐𝑒2|𝐱𝑘 , 𝐖𝑆𝑝𝑎𝑐𝑒2, 𝛽𝑆𝑝𝑎𝑐𝑒2)

∑ 𝑝(𝐭𝑛
𝑆𝑝𝑎𝑐𝑒2|𝐱𝑘

𝐾
𝑘′ , 𝐖𝑆𝑝𝑎𝑐𝑒2, 𝛽𝑆𝑝𝑎𝑐𝑒2)

 (5.19)

Combined responsibilities 𝑅𝑘𝑛 are then computed as follows:

𝑅𝑘𝑛 =
𝑝(𝐭𝑛

𝑆𝑝𝑎𝑐𝑒1|𝐱𝑘, 𝐖𝑆𝑝𝑎𝑐𝑒1, 𝛽𝑆𝑝𝑎𝑐𝑒1)𝑤𝑆𝑝𝑎𝑐𝑒1
∗ 𝑝(𝐭𝑛

𝑆𝑝𝑎𝑐𝑒2|𝐱𝑘, 𝐖𝑆𝑝𝑎𝑐𝑒2, 𝛽𝑆𝑝𝑎𝑐𝑒2)𝑤𝑆𝑝𝑎𝑐𝑒2

∑ 𝑝(𝐭𝑛
𝑆𝑝𝑎𝑐𝑒1

|𝐱𝑘, 𝐖𝑆𝑝𝑎𝑐𝑒1, 𝛽𝑆𝑝𝑎𝑐𝑒1)𝑤𝑆𝑝𝑎𝑐𝑒1
∗ 𝑝(𝐭𝑛

𝑆𝑝𝑎𝑐𝑒2
|𝐱𝑘, 𝐖𝑆𝑝𝑎𝑐𝑒2, 𝛽𝑆𝑝𝑎𝑐𝑒2)𝑘′

𝑤𝑆𝑝𝑎𝑐𝑒2 (5.20)

𝑤𝑆𝑝𝑎𝑐𝑒1 and 𝑤𝑆𝑝𝑎𝑐𝑒2 are user-defined weight parameters governing the importance of each

probability distribution. They are real values ranging from 0 to 1 and their combined values

always equal to 1 so that: 𝑤𝑆𝑝𝑎𝑐𝑒2 = 1 − 𝑤𝑆𝑝𝑎𝑐𝑒1. The shapes of the manifold are adjusted

until convergence similarly to a simple GTM.

Data Preparation

5000 compounds were randomly selected from ChEMBL23 and encoded into their

corresponding ISIDA vectors (sequences of 2 to 7 atoms, I-A—2-7) and latent vectors. The

autoencoder model used to generate the latent vectors was the same that was previously used

in the MDBM project. Descriptors were filtered according to standard deviation (2% of max).

This resulted in 421 remaining ISIDA descriptors (out of 6520 initially) and 133 remaining

latent descriptors (out of 256 initially). Both these datasets served as Stargate’s framesets.

160

Stargate-GTM Training

 As previously explained, one of the important parameters for this analysis are the user-

defined weights 𝑤𝐼𝑆𝐼𝐷𝐴 and 𝑤𝐿𝐴𝑇𝐸𝑁𝑇. Depending on these values, the impact of one of the two

spaces can be more important than the other. The most natural idea would be to give equal

importance to both data spaces with 𝑤𝐼𝑆𝐼𝐷𝐴 = 𝑤𝐿𝐴𝑇𝐸𝑁𝑇 = 0.5. However, there is no indication

that this would ensure good results, or that other combinations may not perform better.

Therefore, 19 different models were trained, in which only the weights parameters fluctuated

while other parameters were set to values known for ensuring a viable training process. The

values for 𝑤𝐼𝑆𝐼𝐷𝐴 and 𝑤𝐿𝐴𝑇𝐸𝑁𝑇 in each experiment, and other fixed parameters are reported in

Table 32.

Table 32. Weights distribution for all experiments with other fixed GTM parameters.

Exp. N° 𝑤𝐼𝑆𝐼𝐷𝐴/𝑤𝐿𝐴𝑇𝐸𝑁𝑇 Exp. N° 𝑤𝐼𝑆𝐼𝐷𝐴/𝑤𝐿𝐴𝑇𝐸𝑁𝑇 Exp. N° 𝑤𝐼𝑆𝐼𝐷𝐴/𝑤𝐿𝐴𝑇𝐸𝑁𝑇

1 0.05 / 0.95 8 0.40 / 0.60 14 0.70 / 0.30

2 0.10 / 0.90 9 0.45 / 0.55 15 0.75 / 0.25

3 0.15 / 0.85 10 0.50 / 0.50 16 0.80 / 0.20

4 0.20 / 0.80 11 0.55 / 0.45 17 0.85 / 0.15

5 0.25 / 0.75 12 0.60 / 0.40 18 0.90 / 0.10

6 0.30 / 0.70 13 0.65 / 0.35 19 0.95 / 0.05

7 0.35 / 0.65

Number of RBFs Number of Nodes RBF width Regularization

225 1600 0.5 0.63

After training, the manifolds were resampled using the GTM ReSample tool to a size of

625 nodes since 1600 nodes was an unnecessary large number for displaying such small spaces.

During resampling, the training data was projected on the manifold and 2D map coordinates

were calculated. Finally, density landscapes for both manifolds were created using the

resampled manifold and the training data.

161

Hilbert-Schmidt Independence Criterion

 The Hilbert Schmidt Independence Criterion[163] (HSIC) is value used to measure the

independence between two multivariate distributions expressing different modalities. In such

situation, only the kernels, measuring the similarity between instances sampled from each

distribution can be compared. This allows to account for potential non-linear dependence

between the tested distributions. Simply put, the output of the calculation will tend towards 0 if

the two spaces are independent, and 1 if they are statistically dependent.

162

5.3.3 Results

Each couple of datasets was projected on its corresponding manifolds and the resulting

density landscapes are regrouped and compared per experiment in Table 33.

Table 33. Comparison between density landscapes for ISIDA (left) and latent (right) datasets

for each experiment. Only the 5000 training compounds were projected. All density scales are

set to the same values and range from 0 (dark blue/white) to 80 (red).

E ISIDA LATENT E ISIDA LATENT

1

2

3

4

5

6

7

8

9

10

163

11

12

13

14

15

16

17

18

19

The comparison of density landscapes for all experiments shows several tendencies.

From on map to the other, it is often possible to recognise patterns that are smoothly modified

as with weight parameter value. The chemical content of these patterns is stable: the same

molecules are found in the map in a consistent manner from one map to the other, with a small

change of the weight value.

Besides, the effect of the co-training is visible, as pattern structures from the ISIDA

maps can be retrieved, in an altered version in the AE maps and reversely. This is most visible

164

between the experiment 3 and 17, with a weight parameter with all values of the weight

parameter in the range [0.15, 0.75].

ISIDA landscapes often present areas of high density (80+ red zones) scattered around

the map while those high-density zones are a lot rarer in latent landscapes and may only be

observed in experiments 10, 12 and 14. This may indicate that AE latent vectors tend to be more

spread out in terms of probability distribution compared to ISIDA vectors. White zones

corresponding to empty areas of chemical space are more common and well defined in ISIDA

landscapes, compared to the AE latent density landscapes.

These differences in density distribution mean that, visually, ISIDA and latent

landscapes in each experiment do not share obvious similar features. In a more ideal situation,

when the two spaces represented are topologically similar, the Stargate-GTM densities can look

very much alike. To illustrate it, two example datasets from ChEMBL were used containing the

same 1263 compounds with two different sets of ISIDA descriptors (dimensionality 280 and

637). The comparison of the resulting landscapes is shown in Figure 66.

Figure 66. Density landscapes created using StargateGTM for the example datasets. Both

density scales are the same and range from 0 (dark blue/white) to 45 (red).

The comparison of the two example datasets shows that both density distributions are

almost the same. All empty areas and low-density areas are replicated in both landscapes and

165

the high-density area has the same shape and density value in both maps. In comparison to this

example, the results obtained with ISIDA, and latent vectors are visually disappointing.

In order to map one space to the other, it is expected that the responsibilities from one

space can be decoded using the manifold of the other space. Hence, the localisation of a

compound in one map, should correspond to the location of related compounds in the second

map.

 As an initial experiment to verify this, 9 random molecules were selected and their 2D

coordinates in the ISIDA and latent maps from Experiment 3 were extracted. Experiment 3 was

chosen because it seemed to be the most similar in terms of visual comparison. The same

process was done for the example datasets combining two ISIDA descriptors sets. Results are

shown in Figure 67.

Figure 67. Positions of 9 randomly selected compounds for the ISIDA / LATENT S-GTM (i)

and ISIDA / ISIDA S-GTM (ii). Each molecule has 2 points of the same colour corresponding

to their projection in the two spaces (ISIDA/LATENT and ISIDA/ISIDA), which are linked for

visualization. The graphs are squares representing the map area. Coordinates range from -1 to

1 on both axes.

Most compounds extracted from the ISIDA/LATENT S-GTM have highly different

positions on the map except for arguably three (orange, yellow and dark blue). On the other

hand, only 2 of the randomly selected compounds have different positions on the ISIDA/ISIDA

S-GTM maps. This emphasizes that compounds do not share close positions in the

ISIDA/LATENT S-GTM.

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

(i) ISIDA / LATENT

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

(ii) ISIDA / ISIDA

166

This observation is systematically studied in Figure 68. The Euclidean distance 𝑑 =

√(𝑥𝑙𝑎𝑡𝑒𝑛𝑡 − 𝑥𝑖𝑠𝑖𝑑𝑎)2 + (𝑦𝑙𝑎𝑡𝑒𝑛𝑡 − 𝑦𝑖𝑠𝑖𝑑𝑎)2 between the position of a molecule on one map and

the position of the same molecule on the other map is calculated for all compounds in the

dataset. The distribution of the distances is reported for each pairs of maps obtained using the

various values of the weight parameter. For comparison, the distance for the ISIDA/ISIDA

related maps and when association the coordinate of a compound on the ISIDA map to a random

compound position in the AE map.

Figure 68. Box plots generated for the distribution of Euclidian distances between the

coordinates of the same compounds on the two maps of S-GTM. Blue box plots correspond to

ISIDA/LATENT S-GTMs with different combinations of weight parameters (0.05/0.95 means

that 𝑤𝐼𝑆𝐼𝐷𝐴 = 0.05 and 𝑤𝐿𝐴𝑇𝐸𝑁𝑇 = 0.95. The green box plot shows the results for the

ISIDA/ISIDA distances, and the orange box plot shows the results for the randomized ISIDA-

ISIDA experiment.

Figure 68 shows that in terms of Euclidean distances between the same compounds,

ISIDA/LATENT S-GTMs perform much worse than the example ISIDA/ISIDA model and are

comparable to a random situation. A compound in the ISIDA map is usually localized on the

map: the responsibilities are concentrated on a small number of nodes. The AE maps encode

the molecules in responsibility patterns that cover large portions of the map. This reflects the

0,00

0,50

1,00

1,50

2,00

2,50

3,00

E
u
cl

id
id

an
 d

is
ta

n
ce

Distribution of Euclidian distances for all weight combinations and ISIDA/ISIDA S-

GTM

167

differences in the dimensions of the two chemical spaces and the significant differences

between the two datasets distributions of pairwise distances that can hardly be reconciliated.

Thus, the comparison of the projections of the compounds on the maps is not very relevant and

can be misleading. Yet, it reflects strikingly the low correlation between the AE descriptors

space and the ISIDA descriptors space. The fragment-oriented interpretation through ISIDA

descriptors (or fragment descriptors in general) is very different from the interpretation a

Seq2Seq architecture makes of a SMILES string. These two different “interpretations” are more

radically different than the difference between for example, sequence-based fragments or

centroid-based fragments since they both use molecular fragments. The complexity of the

mathematical equations governing the calculations of latent vectors makes it extremely difficult

to understand exactly in essence what information is stored inside, however the results of this

analysis suggest that they may not describe chemical space in the same manner as a classical

fragment-based approach.

Hilbert Schmidt Independence Criterion

To confirm that hypothesis and have a better understanding of the issue, the

“compatibility” or dependence of the two descriptor spaces should be measured. For Stargate-

GTM to be more relevant, the same similarity principles should apply in both chemical spaces.

If this is not the case, then the basic construction of the spaces are so different that linking the

two hardly seems achievable. The normalized HSIC was calculated for the ISIDA/LATENT

datasets and the ISIDA/ISIDA datasets and are reported in Table 34 using a cosine kernel.

Table 34. Results for the HSIC calculations for both datasets in their respective spaces

ISIDA/LATENT ISIDA/ISIDA

0.159 0.642

The HSIC value between the ISIDA/LATENT descriptors is quite low compared to the

ISIDA/ISIDA value. This means that ISIDA vectors and LATENT vectors are almost

completely independent. Since different principles are applied when constructing the respective

chemical spaces, their organization is completely different.

168

For the sake of comparison, the HSIC values (the “compatibility” of descriptor spaces)

were calculated among different ISIDA descriptors and the AE latent descriptors. Results are

shown in Table 35.

Table 35. Values of HSIC calculated among a set of simple ISIDA descriptors and the latent

space. IA(2-𝑛) means sequences of atoms of length 2 to 𝑛. IAB(2-𝑚) means atom-centered

fragments with a radius of 2 to 𝑚 atoms.
 Latent IA(2-2) IA(2-3) IA(2-4) IA(2-5) IA(2-6) IA(2-7) IAB(2-2) IAB(2-3) IAB(2-4)

Latent 1

IA(2-2) 0,102 1

IA(2-3) 0,106 0,970 1

IA(2-4) 0,099 0,926 0,980 1

IA(2-5) 0,099 0,889 0,889 0,989 1

IA(2-6) 0,098 0,859 0,859 0,968 0,993 1

IA(2-7) 0,096 0,838 0,838 0,950 0,981 0,996 1

IAB(2-2) 0,074 0,799 0,799 0,798 0,781 0,762 0,747 1

IAB(2-3) 0,057 0,364 0,364 0,428 0,457 0,467 0,468 0,591 1

IAB(2-4) 0,06 0,153 0,153 0,201 0,233 0,254 0,267 0,288 0,662 1

All sequence-based chemical spaces have highly correlated descriptor spaces which is expected

since the smaller descriptors spaces are contained in the bigger ones so that IA(2-2) ∈ IA(2-3)

∈ IA(2-4) ∈ … ∈ IA(2-7) and the combinations of smaller fragments can manage to describe

bigger fragments. Interestingly, atom-centered fragments of length 2 share very high HSIC

values with both longer atom-centered fragments and sequence-based fragments. Due to the

short nature of these descriptors, they share many fragments with sequence-based descriptors

which is not the case for longer atom-centered fragments. This also explains the rather low

HSIC values between IAB(2-2) and other IAB descriptors (0,591 and 0,288 for IAB(2-3) and

IAB(2-4) respectively). More importantly, we see that latent vectors have very low HSIC values

with both sequence-based and atom-centered descriptors. This confirms that the space of latent

vectors is not constructed in the same way at all compared to fragment-based descriptors.

Interestingly however, the HSIC values are slightly higher between latent vectors and sequence-

based descriptors (around 0,1 for all instances of sequence-based fragments compared to 0,06-

0,07 for atom-centered fragments). This difference, although very slight makes sense in the

context of the interpretation of sequences of characters by a neural network. In the case of a

carbon chain for example, the sequences of atoms or sequences of characters would describe

the same molecule. The difference then would come from the interpretation of ramifications

and cycles in the molecule.

169

5.3.4 Conclusion

The application of Stargate-GTM was not sufficient to create a link between the latent

space of an autoencoder and a chemical space based on fragment-based structural descriptors.

The basic principle of the method, which is that the same molecule should have comparable

responsibilities on both maps was not observed. Although the projections of the compounds on

both maps differ, it is possible that the responsibilities of the AE map could overlap with the

responsibilities of the ISIDA. This analysis is left for future work. Yet, this means that an ISIDA

vector would be translated in a complicated responsibility pattern in the AE space, that could

be translated in a potentially diverse set of chemical structures resulting in a loss of the control

of the generated chemical structures to sample a desired region of the chemical space.

These results did however confirm that the interpretation of chemical structures through

artificial neural networks and molecular descriptors is completely different and leads to

completely different chemical spaces that follow different principles and neighbourhood

behaviours. These different organizations suggest an explanation of the difficulties met so far

while designing models able to generate chemical structures corresponding to a given molecular

descriptor vector.

170

5.4 Combination of ISIDA landscapes

5.4.1 Introduction

Since autoencoder latent space and ISIDA descriptor space behave technically like two

independent multidimensional variables, method seeking to find a correlation or dependence

between the two cannot be applied. This makes the task of generating compounds with selected

properties and structural features through neural networks and cartography challenging.

“Simple” solutions like an artificial neural network or Stargate-GTM could not be used for this

application. For this reason it has been proposed to relax the constraints in the definition of the

targeted region of an ISIDA chemical space to be sampled. This definition is based on

Generative Topographic Mapping, and uses a combination of several ISIDA landscapes to

create a “query” vector containing desirable properties, which can then be used with a neural

network to generate interesting compounds.

5.4.2 Methodology

The first part of the process was to select a biological target to create an activity

landscape, then select an active zone in which molecules should be generated.

Data

The CHEMBL3717 (Hepatocyte growth factor receptor) target was selected for this

project. 4176 compounds with known activities were extracted from ChEMBL24 and encoded

into ISIDA descriptors using IA—2-7 fragmentation schemes (sequences of atoms, length 2 to

7). 6520 descriptors were filtered down to 728 by removing all descriptors with a standard

deviation of less than 2% of the maximum. An activity landscape of the ChEMBL3717 target

based on the previously trained Universal Map 4 manifold was created, as well as 728 descriptor

value landscape on which the entire ChEMBL24 database was projected and each of the 728

maps were coloured according to the value of one descriptor.

171

An activity landscape of the ChEMBL3717 was also created based on the latent vectors

of a previously trained Autoencoder model. Additionally, 728 landscapes have been prepared

on the AE GTM, one for each of the ISIDA fragment descriptors

Figure 69. (i) Activity landscape for the ChEMBL3717 target based on the Universal Map 4

manifold. The circled area shows the most clearly separated, dense active area which was

selected as the area of interest. The central node in the circle and the 8 nodes surrounding it

were used to generate the “query” vector. (ii) Activity landscape for the ChEMBL3717 target

based on the latent vectors generated by an autoencoder model. (iii) Landscape based on the

Universal Map 4 manifold where all compounds from ChEMBL24 were projected and coloured

by the value of one descriptor. This map is one of the 728 generated and shows the occurrence

of the CCCCN descriptor. (iv) Density landscape where only active compounds against

ChEMBL3717 were projected. The darker the area, the denser in terms of actives it is.

 Figure 69 shows clear separated active areas on the ChEMBL3717 ISIDA-based. One

of these areas was selected as shown on the figure and 9 nodes were isolated as the target

location. Additionally, the min and max values of the 728 “single descriptor value” were

recorded from the compounds localized in those 9 nodes (an example is shown in Figure 69,

172

(iii)). This resulted in 728 ranges of descriptor values corresponding to the selected active zone

for the ChEMBL3717 target.

Figure 70. Creation process of the “query”. Each of the 728 descriptors landscape is checked

on node 273 and surrounding (9 nodes in total) for its descriptor value. Maximum and minimum

values of each descriptor in the 9 nodes are extracted which gives a range for a descriptor in

this area of the map. The combination of all 728 ranges gives the query, which corresponds to

the potential values of each descriptor in the active area. The query indicates which values the

descriptors should have so that the compound is projected into the active area.

As is illustrated in Figure 70, the query gives the values that the descriptors should have

if a compound were to be projected in that area. The query cannot be used directly to generate

molecules unfortunately; however, it can be linked to the latent space of an autoencoder to try

and identify a zone which would have the same descriptor values. If such a zone can be

identified, then compounds corresponding the query can be generated. Therefore, the content

of each node of the AE latent vectors is checked for its compatibility with the query range of

values for the ISIDA molecular descriptors. Each node of the AE latent vectors landscape is

compared to the range of the corresponding descriptor, resulting in a “correspondence” vector.

This vector has the same dimension as the number of nodes of the latent landscape and assigns

173

a 1 to nodes which values correspond to the given descriptor range and a 0 in the other case

(Figure 71).

Figure 71. Example of creation of a “node correspondence” vector for a latent landscape

representing a particular fragment. Each node is probed for its descriptor value which is

compared to the query for that fragment. If the node fits the query, then vector will get a one,

else it will be a 0.

Descriptors which had a query range of (0 – 0) were removed which left 71

“meaningful” descriptors: for each node, it contains a 0 if the node is not compatible with the

range of the molecular descriptor and a 1 otherwise. Adding the 71 “node correspondence”

vectors results in a single “cumulated node correspondence” vector. With this vector, one can

locate the nodes of the latent landscape having the highest correspondence to the query ranges.

The node with the highest correspondence was selected and used as a seed to generate chemical

structures.

174

5.4.3 Results

Figure 72. Latent landscape coloured using the cumulated “node correspondence vector”

generated from the 728 LATENT landscape. Note that only 71 meaningful descriptors remained

after filtering. The maximum is found in node 565 with 34 matching descriptors.

Figure 73. Density landscape for the 1662 generated compounds projected on the ISIDA

manifold. As we can see, projected compounds are not near the wanted node.

As shown in Figure 72, one specific area of latent space had the biggest correspondence

to the active area in ISIDA space. On average, the correspondence any given point on the

landscape was about 21-25%. The red area on the figure has about 48% correspondence which

is twice bigger. 10.000 vectors from this node were therefore sampled (node 565) which gave

175

1662 valid SMILES. These SMILES were reprojected on the initial ISIDA landscape to see if

they were in the correct area of ISIDA space (Figure 73).

The ISIDA molecular descriptors of the generated compounds were computed and

projected on the ISIDA GTM. However, it appeared that the generated compounds did not cover

the initially selected region, the node 273. The selected node has a density equal to 0 and the

projections are not in the active area. The compounds with the highest rate of correspondence

to the query (about 50%, 35 descriptors out of 71) had strange and chemically non-sensical

structures which could be filtered out (Figure 74). Meaningful chemical structures were also

obtained but with a lower correspondence rate. (Figure 75)

Figure 74. Three of the compounds with the highest correspondence to the query. (35, 34 and

33 corresponding descriptors from left to right)

Figure 75. Two examples of more feasible and stable compounds, which had 11 matching

descriptors (left) and 14 matching descriptors (right).

176

5.4.4 Conclusion

The more complex approach of the “query” vectors using a combination of ISIDA and

latent landscapes was not successful either. The method seems to run into the same issues as

previous methods, especially Stargate-GTM. A complete incompatibility of spaces, which

makes it impossible for two zones to be similar in terms of molecular structure. We observed

that the generated compounds with reasonable structures had very few descriptors in common

with the query vector.

177

5.5 Conditional Variational Autoencoder (ACoVAE)

 Linking the latent space of an Autoencoder with a separate descriptor space could not

be performed by training the Autoencoder space separately. Vanilla Autoencoder latent space

based on SMILES string has a completely different latent space construction and structure than

structural descriptors, making it impossible to simply create a bridge between the two.

However, by imposing the link during the training of the model using condition vectors, it is

possible to force the neural network to adapt to a different set of descriptors.

 In this work, a Conditional Variational Autoencoder was developed containing 3

important features:

i) A GRU-based variational encoder encodes SMILES into latent vectors.

ii) A descriptor vector corresponding to the inputted SMILES string is transformed into

a condition vector and concatenated with the latent vector obtained from the VAE.

iii) A powerful attention-based decoder translates the concatenated vector into a

SMILES string.

With a model capable of generating compounds from ISIDA descriptors, the goal was to

select the best candidates for the generation of actives against the ChEMBL1862 target. Three

methods were used:

a) A GTM based on descriptors from a Universal map (force-field type colouring of

sequences of atoms) was built and coloured according to the activity against the

ChEMBL1862 target. The zones with the highest concentration of actives were selected

and the corresponding ISIDA vectors were used as candidates.

b) A Genetic Algorithm based on an SVR model predicting the activity of a descriptor

vector against ChEMBL1862 was used to find the optimal candidates.

c) The descriptor vector of the best known active against ChEMBL1862 was used as a

candidate.

All three candidate selection methods returned “seeds” which were used to generate several

thousand compounds, which were screened for their activity potential by pKi calculations

using an SVR model, pharmacophore search and docking.

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

5.5.1 Summary

A novel Conditional Variational Autoencoder (ACoVAE) was successfully developed and

specially adapted to ISIDA descriptor vectors. The combination of a GRU-based Variational

Encoder with a state-of-the-art Attention-based decoder was trained and used for the generation

of molecules with preferred structural features. The model achieved great Tanimoto Similarity

when generating from known and unknown ISIDA descriptor vectors.

 In order to generate compounds active against the ChEMBL1862 target, different

condition selection methods were employed, GTM-based, GA/SVR-based and active-based.

Active-based and SVR-based sampling resulted in the generation of molecules predicted highly

active by the activity models (about 40-50% of them had pKi ≥ 7), with some of them going up

to pKi ≥ 10, with very specific and similar structures, which could be considered a very focused

dataset. GTM-based sampling resulted in more varied structural features with on average a

lower pKi value (only 7% had a pKi ≥ 7).

The differences between the two generated sets can be explained by the two condition

selection methods: SVR-based and active-based select only the best vectors which are naturally

close to the actual active. Small differences in the descriptor vector imply small changes in the

predicted pKi and structure which creates a focused dataset. The GTM-based selection method

selects indiscriminately any vector with an activity ≥ 7 which is considered active. The nodes

are then a lot more varied in terms of structural features and less oriented on pure activity. Both

methods were found to generate potential actives however.

So-called Inverse-SVR and Inverse-Lead compounds were validated using a ligand-based

and structure-based pharmacophore study as well as docking. Out of the 47 potential hits, 4

were found to be a match by both pharmacophore methods and had reasonable docking scores

hinting at a high potential for activity. The model was therefore able to invert the QSAR process

and generate active compounds from desirable structural vectors. The model could also be

adapted to accept property vectors in combination with structural descriptors to specify

conditions even further.

193

194

195

6 General Conclusion & Perspectives

Towards a better understanding of Deep Neural Network Latent Spaces

 The introduction and complexification of Deep Learning methods created a new branch

of drug design. The generative capabilities and efficiency of neural networks in terms of de

novo design have made deep architectures very popular. The ability of these models to create

and navigate latent spaces in search of compounds of interest have allowed the discovery of

active compounds. However, the complex mathematical equations and the nature of the exact

workings of these models remains blurry in the field of Chemistry. There is a clear

understanding of latent spaces based on structural descriptors, since they are interpretable and

readable, and the rules were carefully hand-crafted and designed. However, latent spaces that

neural networks create using their interpretation of character-based or graph-based

representations of molecular structures do not follow the same rules.

 Therefore, one of the objectives of this thesis was to obtain a better grasp on the

construction and organization of neural network latent spaces, and in particular latent spaces of

Autoencoders which remain one of the most popular architectures in terms of molecular

generation. A LSTM-based Vanilla Autoencoder, based on SMILES strings obtained from the

ChEMBL database was trained and its latent space mapped using GTM. Its generative

capabilities were tested by sampling compounds in every point of latent space mapped by said

GTM. The AE was able to create molecules for each node which were similar in terms of

structure and properties to the already existing ChEMBL molecules, showing the already great

learning power and adaptability of one of the most basic deep architectures of seq2seq models.

The comparison of property landscapes built on ChEMBL and generated compounds showed

that the models are able to reproduce the general outlook and organization of its latent space

when mapped by GTM. These models could therefore be used to fill gaps and holes, or less

dense areas of chemical space which is an important aspect in the constant search for interesting

new compounds.

However, the latent space construction depends on the interpretation of the SMILES string

by the model which is order-dependent and can lead to some inconsistencies and activity cliffs.

The generative capabilities also depend greatly on the complexity of the structural features and

the density of the training data, making theses latent spaces quite different from structural

spaces. The multiple failed attempts to link latent space with ISIDA structural space shows that

196

they are constructed differently, and even though both work in terms of active separations, they

are in fact incompatible, as proven by the Hilbert-Schmidt Criterion.

In the future, it would be interesting to perform the same kind of analysis on more complex

architectures, like VAEs, CVAEs, Attention-based VAEs and Transformers to compare the

results. Small differences in parameters, model architecture, input form result in different

chemical spaces so the task of finding generalized rules that govern the organization of these

latent spaces is complex. However, by having a deeper understanding of how these algorithms

encode and decode chemical information and how this information is interpreted, it could be

feasible to find general tendencies like the ones shown in this project to facilitate the exploration

of said chemical spaces.

Still, the capabilities of this model could be harnessed by modifying it to accept Condensed

Graph of Reactions in order to map the latent space of reactions from the USPTO database and

generate potentially new and feasible transformations. Methods of novelty detection and

reaction classification were developed using Reaction Centres and Reaction Environments.

Inverting the classical QSAR algorithm

Entering needed properties and structural features and obtaining several potent molecules

corresponding to the given restrictions would simplify and accelerate the drug design process

significantly. A combination of the generative power of neural networks and the efficient

construction and organization of structural descriptor spaces could provide with great candidate

features selection and an ability to generate molecules corresponding to these features which

would amount to inverse-QSAR.

To that extent, several methods based on Neural Networks and GTM were tested to try and

link the latent space of a generative Autoencoder to the structural space of ISIDA descriptors.

A basic LSTM-based translator from SMI2ISIDA was tested as a building block to the bigger

model aiming to directly translate ISIDA vectors to corresponding SMILES but failed due to

the incapacity of the model to accurately enumerate the ISIDA fragments with high deviation.

A Multimodal Boltzmann Machine was developed as a more complex solution to the previous

issue, however showed similar weaknesses during training: ISIDA vectors could not be

precisely reproduced which is capital for this task. Stargate-GTM and direct GTM links were

applied as an alternative not requiring the processing of ISIDA vectors by sequence-based

197

algorithms but failed due to the incompatibility of the two spaces. Indeed, the evaluation of the

Hilbert-Schmidt Criterion between ISIDA and latent spaces showed that those spaces are

completely independent meaning no statistical link can be made between them, rendering

machine learning methods like GTM essentially useless.

The many attempts did confirm the difference between classical structural spaces and

SMILES-based latent spaces and triggered the development of a novel CVAE architecture,

which applied ISIDA vectors as condition to VAE latent vectors, eliminating the need for an

external link. The model, based on the latest developments in Deep Learning like Multi-Head

Attention and a GRU-based encoder was successfully used to generate compounds from

selected “seeds”. These seeds resulted from the exploration of chemical space using different

methods, Genetic Algorithm coupled with activity prediction, and Generative Topographic

Mapping. Both methods produced different but equally interesting results, with SVR-based

generation giving the most potent generated molecules, as confirmed by pharmacophore, and

docking studies.

 The ACoVAE model, coupled with chemical space exploration techniques allowed the

reversing of the classical QSAR method and the generation of active molecules from selected

structural features. The model could quite simply be adapted to work with any other structural

descriptor and/or property vectors and could even swap SMILES to CGR to function with

reactions. Coupling this with broad, versatile chemical space visualization tools[164] could be a

powerful method of chemical space exploration allowing the discovery of new compounds in

charted zones, and even the discovery of new uncharted zones of chemical space. Taking a step

back and looking at the entire drug discovery process, this tool could also be a part of a larger

drug discovery “machine” where every step could be automated, from the setting of structural

and physico-chemical properties to fit a given target, to chemical space exploration, synthesis

planning and even chemical synthesis using the developments in chemical automation.

198

199

7 List of Abbreviations

AAE Adversarial AutoEncoder

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

CGR Condensed Graph of Reaction

CRNN Conditional Recurrent Neural Network

CVAE Conditional Variational Autoencoder

DL Deep Learning

ECFP Extended Connectivity FingerPrint

GAN Generative Adversarial Network

GRU Gated Recurrent Unit

GTM Generative Topographic Mapping

HSIC Hilbert-Schmidt Independence Criterion

InChI International Chemical Identifier

IUPAC International Union of Pure and Applied Chemistry

LDA Linear Discriminant Analysis

LLh Log Likelihood

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MDBM Multimodal Deep Boltzmann Machine

MHA Multi-Head Attention

ML Machine Learning

200

MSE Mean Squared Error

NLP Natural Language Processing

NMR Nuclear Magnetic Resonance

PCA Principal Component Analysis

PSO Particle Swarm Optimization

QSAR Quantitative Structure-Activity Relationship

QSPR Quantitative Structure-Property Relationship

RBF Radial Basis Function

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SE Shannon Entropy

SELFIES SELF-referencing Embedded String

Seq2Seq Sequence-to-Sequence

S-GTM Stargate-GTM

SMILES Simplified Molecular-Input Line-Entry System

SOM Self-Organizing Map

SVR Support Vector Regression

SVM Support Vector Machine

TF Teacher Forcing

TL Transfer Learning

t-SNE t-distributed Stochastic Neighbour Embedding

UM Universal Map

USPTO United States Patent and Trademark Office

VAE Variational Autoencoder

VS Virtual Screening

201

202

203

8 References

1. Polishchuk, P. G., Madzhidov, T. I. & Varnek, A. Estimation of the size of drug-like

chemical space based on GDB-17 data. J. Comput. Aided. Mol. Des. 27, 675–679 (2013).

2. Tong, X., Liu, X., Tan, X., Li, X., Jiang, J., Xiong, Z., Xu, T., Jiang, H., Qiao, N. &

Zheng, M. Generative Models for de Novo Drug Design. J. Med. Chem. 64, 14011–

14027 (2021).

3. Lopez Pinaya, W. H., Vieira, S., Garcia-Dias, R. & Mechelli, A. Autoencoders. Mach.

Learn. Methods Appl. to Brain Disord. 193–208 (2020).

4. Lim, J., Ryu, S., Kim, J. W. & Kim, W. Y. Molecular generative model based on

conditional variational autoencoder for de novo molecular design. J. Cheminform. 10, 31

(2018).

5. Polykovskiy, D., Zhebrak, A., Vetrov, D., Ivanenkov, Y., Aladinskiy, V., Mamoshina,

P., Bozdaganyan, M., Aliper, A., Zhavoronkov, A. & Kadurin, A. Entangled Conditional

Adversarial Autoencoder for de Novo Drug Discovery. Mol. Pharm. 15, 4398–4405

(2018).

6. Prykhodko, O., Johansson, S. V., Kotsias, P. C., Arús-Pous, J., Bjerrum, E. J., Engkvist,

O. & Chen, H. A de novo molecular generation method using latent vector based

generative adversarial network. J. Cheminform. 11, 74 (2019).

7. Bishop, C. M., Svensén, M. & Williams, C. K. I. GTM: The Generative Topographic

Mapping. Neural Comput. 10, 215–234 (1998).

8. Ruggiu, F., Marcou, G., Varnek, A. & Horvath, D. ISIDA Property-Labelled Fragment

Descriptors. Mol. Inform. 29, 855–68 (2010).

9. Nugmanov, R. I., Mukhametgaleev, R. N., Akhmetshin, T., Gimadiev, T. R., Afonina,

V. A., Madzhidov, T. I. & Varnek, A. CGRtools: Python Library for Molecule, Reaction,

and Condensed Graph of Reaction Processing. J. Chem. Inf. Model. 59, 2516–2521

(2019).

10. Lowe, D. M. (Thesis) Extraction of chemical structures and reactions from the literature.

(University of Cambridge, 2012).

11. Hinton, G. E. A practical guide to training restricted boltzmann machines. Lecture Notes

in Computer Science (2012).

12. Gaspar, H. A., Baskin, I. I., Marcou, G., Horvath, D. & Varnek, A. Stargate GTM:

Bridging Descriptor and Activity Spaces. J. Chem. Inf. Model. 55, 2403–2410 (2015).

13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.

& Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 5999–

6009 (2017).

14. Casciuc, I., Zabolotna, Y., Horvath, D., Marcou, G., Bajorath, J. & Varnek, A. Virtual

Screening with Generative Topographic Maps: How Many Maps Are Required? J.

Chem. Inf. Model. 59, 564–572 (2019).

204

15. Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T. I., Mutzel, P. & Waldmann, H.

Interactive exploration of chemical space with Scaffold Hunter. Nat. Chem. Biol. 5, 581–

583 (2009).

16. Van Deursen, R. & Reymond, J. L. Chemical space travel. ChemMedChem 2, 636–640

(2007).

17. Oprea, T. I. Chemical space navigation in lead discovery. Curr. Opin. Chem. Biol. 6,

384–389 (2002).

18. Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res. 48, 722–730 (2015).

19. Coley, C. W. Defining and Exploring Chemical Spaces. Trends Chem. 3, 133–145

(2021).

20. Varnek, A. & Baskin, I. I. Chemoinformatics as a Theoretical Chemistry Discipline. Mol.

Inform. 30, 20–32 (2011).

21. Llanos, E. J., Leal, W., Luu, D. H., Jost, J., Stadler, P. F. & Restrepo, G. Exploration of

the chemical space and its three historical regimes. Proc. Natl. Acad. Sci. U. S. A. 116,

12660–12665 (2019).

22. Hogan, J. C. Combinatorial chemistry in drug discovery. Nat. Biotechnol. 15, 328–330

(1997).

23. Pereira, D. A. & Williams, J. A. Origin and evolution of high throughput screening. Br.

J. Pharmacol. 152, 53–61 (2007).

24. Seidel, T., Ibis, G., Bendix, F. & Wolber, G. Strategies for 3D pharmacophore-based

virtual screening. Drug Discov. Today Technol. 7, (2010).

25. Sun, H. Pharmacophore-based virtual screening. Curr. Med. Chem. 15, 1018–1024

(2008).

26. Kontoyianni, M. Docking and virtual screening in drug discovery. Methods Mol. Biol.

1647, 255–266 (2017).

27. Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual

screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 3, 935–

949 (2004).

28. Neves, B. J., Braga, R. C., Melo-Filho, C. C., Moreira-Filho, J. T., Muratov, E. N. &

Andrade, C. H. QSAR-based virtual screening: Advances and applications in drug

discovery. Front. Pharmacol. 9, (2018).

29. Achary, P. G. R. Applications of Quantitative Structure-Activity Relationships (QSAR)

based Virtual Screening in Drug Design: A Review. Mini-Reviews Med. Chem. 20,

1375–1388 (2020).

30. Ferreira, L. T., Borba, J. V. B., Moreira-Filho, J. T., Rimoldi, A., Andrade, C. H. &

Costa, F. T. M. Qsar-based virtual screening of natural products database for

identification of potent antimalarial hits. Biomolecules 11, 1–12 (2021).

31. Menchon, G., Maveyraud, L. & Czaplicki, G. Molecular dynamics as a tool for virtual

ligand screening. Methods Mol. Biol. 1762, 145–178 (2018).

205

32. Nichols, S. E., Baron, R. & McCammon, J. A. On the use of molecular dynamics receptor

conformations for virtual screening. Methods Mol. Biol. 819, 93–103 (2012).

33. Ertl, P. Cheminformatics Analysis of Organic Substituents:  Identification of the Most

Common Substituents, Calculation of Substituent Properties, and Automatic

Identification of Drug-like Bioisosteric Groups. J. Chem. Inf. Comput. Sci. 43, 374–380

(2002).

34. Drew, K. L. M., Baiman, H., Khwaounjoo, P., Yu, B. & Reynisson, J. Size estimation of

chemical space: How big is it? J. Pharm. Pharmacol. 64, 490–495 (2012).

35. Shivanyuk, A. N., Ryabukhin, S. V., Bogolyubsky, A. V., Mykytenko, D. M., Chupryna,

A. A., Heilman, W., Kostyuk, A. N. & Tolmachev, A. A. Enamine real database: making

chemical diversity real. Chim. Oggi 25, 58–59 (2007).

36. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature

432, 855–861 (2004).

37. Reymond, J. L., Van Deursen, R., Blum, L. C. & Ruddigkeit, L. Chemical space as a

source for new drugs. Medchemcomm 1, 30–38 (2010).

38. Schneider, G. & Fechner, U. Computer-based de novo design of drug-like molecules.

Nat. Rev. Drug Discov. 4, 649–663 (2005).

39. Mauser, H. & Guba, W. Recent developments in de novo design and scaffold hopping.

Curr. Opin. Drug Discov. Devel. 11, 365–374 (2008).

40. Hartenfeller, M. & Schneider, G. De novo drug design. Methods Mol. Biol. 672, 299–

323 (2011).

41. Danziger, D. J. & Dean, P. M. Automated site-directed drug design: a general algorithm

for knowledge acquisition about hydrogen-bonding regions at protein surfaces. Proc. R.

Soc. London. Ser. B, Biol. Sci. 236, 101–113 (1989).

42. Lewis, R. A., Roe, D. C., Huang, C., Ferrin, T. E., Langridge, R. & Kuntz, I. D.

Automated site-directed drug design using molecular lattices. J. Mol. Graph. 10, 66–78

(1992).

43. Lewis, R. A. Automated site-directed drug design: Approaches to the formation of 3D

molecular graphs. J. Comput. Aided. Mol. Des. 4, 205–210 (1990).

44. Bohacek, R. S. & McMartin, C. Multiple Highly Diverse Structures Complementary to

Enzyme Binding Sites: Results of Extensive Application of a de Novo Design Method

Incorporating Combinatorial Growth. J. Am. Chem. Soc. 116, 5560–5571 (1994).

45. Loving, K., Alberts, I. & Sherman, W. Computational Approaches for Fragment-Based

and De Novo Design. Curr. Top. Med. Chem. 10, 14–32 (2010).

46. Maveyraud, L. & Mourey, L. Protein X-ray crystallography and drug discovery.

Molecules 25, (2020).

47. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. & Phillips, D. C.

A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis.

Nature 181, 662–666 (1958).

206

48. Pickford, A. R. & Campbell, I. D. NMR studies of modular protein structures and their

interactions. Chem. Rev. 104, 3557–3565 (2004).

49. Benjin, X. & Ling, L. Developments, applications, and prospects of cryo-electron

microscopy. Protein Sci. 29, 872–882 (2020).

50. Boland, A., Chang, L. & Barford, D. The potential of cryo-electron microscopy for

structure-based drug design. Essays Biochem. 61, 543–560 (2017).

51. Waszkowycz, B., Clark, D. E., Frenkel, D., Li, J., Murray, C. W., Robson, B. &

Westhead, D. R. PRO_LIGAND: An Approach to de Novo Molecular Design. 2. Design

of Novel Molecules from Molecular Field Analysis (MFA) Models and Pharmacophores.

J. Med. Chem. 37, 3994–4002 (1994).

52. Gugerty, L. Newell and Simon’s logic theorist: Historical background and impact on

cognitive modeling. Proc. Hum. Factors Ergon. Soc. 50, 880–884 (2006).

53. Crevier, D. AI: The Tumultuous History of the Search for Artificial Intelligence.

(BasicBooks, 1993).

54. Nordhaus, W. D. The Progress of Computing. Cowles Found. Discuss. Pap. (2001).

55. Chan, H. C. S., Shan, H., Dahoun, T., Vogel, H. & Yuan, S. Advancing Drug Discovery

via Artificial Intelligence. Trends Pharmacol. Sci. 40, 592–604 (2019).

56. Zhu, H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annu. Rev.

Pharmacol. Toxicol. 60, 573–589 (2020).

57. Yang, X., Wang, Y., Byrne, R., Schneider, G. & Yang, S. Concepts of Artificial

Intelligence for Computer-Assisted Drug Discovery. Chem. Rev. 119, 10520–10594

(2019).

58. Otter, D. W., Medina, J. R. & Kalita, J. K. A Survey of the Usages of Deep Learning for

Natural Language Processing. IEEE Trans. Neural Networks Learn. Syst. 32, 604–624

(2021).

59. Liu, L., Wang, Y. & Chi, W. Image Recognition Technology Based on Machine

Learning. IEEE Access (2021).

60. Ruff, K. M. & Pappu, R. V. AlphaFold and Implications for Intrinsically Disordered

Proteins. J. Mol. Biol. 433, (2021).

61. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of deep

learning in drug discovery. Drug Discov. Today 23, 1241–1250 (2018).

62. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.

& Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for

Statistical Machine Translation. in Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) 1724–1734 (Association for

Computational Linguistics, 2014).

63. Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. & Pineau, J. Building End-To-End

Dialogue Systems Using Generative Hierarchical Neural Network Models. in 30th AAAI

Conference on Artificial Intelligence 3776–3783 (AAAI press, 2015).

207

64. Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction

to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

65. Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused molecule

libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120–131

(2018).

66. Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design

through deep reinforcement learning. J. Cheminform. 9, 48 (2017).

67. Gupta, A., Müller, A. T., Huisman, B. J. H., Fuchs, J. A., Schneider, P. & Schneider, G.

Generative Recurrent Networks for De Novo Drug Design. Mol. Inform. 37, (2018).

68. Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. & Chen, H. Application of

Generative Autoencoder in De Novo Molecular Design. Mol. Inform. 37, (2018).

69. Putin, E., Asadulaev, A., Ivanenkov, Y., Aladinskiy, V., Sanchez-Lengeling, B., Aspuru-

Guzik, A. & Zhavoronkov, A. Reinforced Adversarial Neural Computer for de Novo

Molecular Design. J. Chem. Inf. Model. 58, 1194–1204 (2018).

70. Ertl, P., Lewis, R., Martin, E. & Polyakov, V. In silico generation of novel, drug-like

chemical matter using the LSTM neural network. ArXiv (2017).

71. Chen, J. H. & Baldi, P. No electron left behind: A rule-based expert system to predict

chemical reactions and reaction mechanisms. J. Chem. Inf. Model. 49, 2034–2043

(2009).

72. Blurock, E. S. Reaction: System for Modeling Chemical Reactions. J. Chem. Inf.

Comput. Sci. 35, 607–616 (1995).

73. Baylon, J. L., Cilfone, N. A., Gulcher, J. R. & Chittenden, T. W. Enhancing

Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction

Classification. J. Chem. Inf. Model. 59, 673–688 (2019).

74. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep

neural networks and symbolic AI. Nature 555, 604–610 (2018).

75. Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of Molecules via Deep

Reinforcement Learning. Sci. Rep. 9, 10752 (2019).

76. Arús-Pous, J., Blaschke, T., Ulander, S., Reymond, J. L., Chen, H. & Engkvist, O.

Exploring the GDB-13 chemical space using deep generative models. J. Cheminform.

11, 1–14 (2019).

77. Oprea, T. I. & Gottfries, J. Chemography: The art of navigating in chemical space. J.

Comb. Chem. 3, 157–166 (2001).

78. Jollife, I. T. & Cadima, J. Principal component analysis: a review and recent

developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, (2016).

79. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space . London,

Edinburgh, Dublin Philos. Mag. J. Sci. 2, 559–572 (1901).

80. Hotelling, H. Analysis of a complex of statistical variables into principal components. J.

Educ. Psychol. 24, 417–441 (1933).

208

81. Cohen, J. Applied Multiple Regression/Correlation Analysis for the Behavioral

Sciences. Appl. Mult. Regression/Correlation Anal. Behav. Sci. 1, (2013).

82. Van Der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res.

9, 2579–2605 (2008).

83. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol.

Cybern. 43, 59–69 (1982).

84. Lin, A., Horvath, D., Marcou, G., Beck, B. & Varnek, A. Multi-task generative

topographic mapping in virtual screening. J. Comput. Aided. Mol. Des. 33, 331–343

(2019).

85. Kireeva, N., Baskin, I. I., Gaspar, H. A., Horvath, D., Marcou, G. & Varnek, A.

Generative Topographic Mapping (GTM): Universal Tool for Data Visualization,

Structure-Activity Modeling and Dataset Comparison. 31, 301–312 (2012).

86. Gaspar, H. A., Baskin, I. I., Marcou, G., Horvath, D. & Varnek, A. GTM-Based QSAR

Models and Their Applicability Domains. Mol. Inform. 34, 348–356 (2015).

87. Sattarov, B., Baskin, I. I., Horvath, D., Marcou, G., Bjerrum, E. J. & Varnek, A. De Novo

Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with

Generative Topographic Mapping. J. Chem. Inf. Model. 59, 1182–1196 (2019).

88. Tealab, A. Time series forecasting using artificial neural networks methodologies: A

systematic review. Futur. Comput. Informatics J. 3, 334–340 (2018).

89. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural

networks. Adv. Neural Inf. Process. Syst. 4, 3104–3112 (2014).

90. Nallapati, R., Zhou, B., dos Santos, C., Gulçehre, Ç. & Xiang, B. Abstractive Text

Summarization Using Sequence-to-Sequence RNNs and Beyond. 20th SIGNLL Conf.

Comput. Nat. Lang. Learn. Proc. 280–290 (2016).

91. Zhang, Y., Li, D., Wang, Y., Fang, Y. & Xiao, W. Abstract Text Summarization with a

Convolutional Seq2seq Model. Appl. Sci. 9, 1665 (2019).

92. Ghandi, T., Pourreza, H. & Mahyar, H. Deep Learning Approaches on Image

Captioning: A Review. ArXiv (2022).

93. Mnasri, M. Recent advances in conversational NLP : Towards the standardization of

Chatbot building. ArXiv (2019).

94. Patidar, M., Agarwal, P., Vig, L. & Shroff, G. Automatic conversational helpdesk

solution using Seq2Seq and slot-filling models. Int. Conf. Inf. Knowl. Manag. Proc.

1967–1976 (2018).

95. Shih, Y. J., Wu, S. L., Zalkow, F., Muller, M. & Yang, Y. H. Theme Transformer:

Symbolic Music Generation with Theme-Conditioned Transformer. IEEE Trans.

Multimed. (2022).

96. Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training Recurrent Neural

Networks. in 30th International Conference on Machine Learning 2347–2355

(International Machine Learning Society (IMLS), 2012).

209

97. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Comput. 9, 1735–

1780 (1997).

98. Yang, S., Yu, X. & Zhou, Y. LSTM and GRU Neural Network Performance Comparison

Study: Taking Yelp Review Dataset as an Example. in 2020 International Workshop on

Electronic Communication and Artificial Intelligence 98–101 (Institute of Electrical and

Electronics Engineers Inc., 2020).

99. Makhzani, A. & Frey, B. k-Sparse Autoencoders. in 2nd International Conference on

Learning Representations (International Conference on Learning Representations,

ICLR, 2013).

100. Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P. A. Extracting and composing

robust features with denoising autoencoders. Proc. 25th Int. Conf. Mach. Learn. 1096–

1103 (2008).

101. Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y. & Glorot, X.

Higher order contractive auto-encoder. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

vol. 6912 LNAI (2011).

102. Cho, K., Van Merriënboer, B., Bahdanau, D. & Bengio, Y. On the Properties of Neural

Machine Translation: Encoder-Decoder Approaches. ArXiv (2004).

103. Bahdanau, D., Cho, K. & Bengio, Y. Neural Machine Translation by Jointly Learning to

Align and Translate. ArXiv (2014).

104. Luong, M. T., Pham, H. & Manning, C. D. Effective Approaches to Attention-based

Neural Machine Translation. in Conference on Empirical Methods in Natural Language

Processing 1412–1421 (Association for Computational Linguistics (ACL), 2015).

105. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-

Term Memory (LSTM) Network. Phys. D Nonlinear Phenom. 404, (2020).

106. Schuster, M. & Paliwal, K. K. K. Bidirectional recurrent neural networks. IEEE Trans.

Signal Process. 45, 2673–2681 (1997).

107. Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S. &

Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual

Attention. in 32nd International Conference on Machine Learning vol. 3 2048–2057

(International Machine Learning Society (IMLS), 2015).

108. Lin, T., Wang, Y., Liu, X. & Qiu, X. A Survey of Transformers; A Survey of

Transformers. ArXiv (2021).

109. Akhmetshin, T., Lin, A., Mazitov, D., Zabolotna, Y., Ziaikin, E., Madzhidov, T. &

Varnek, A. HyFactor: A Novel Open-Source, Graph-Based Architecture for Chemical

Structure Generation. J. Chem. Inf. Model. 62, 3524–3534 (2022).

110. Abate, C., Decherchi, S. & Cavalli, A. Graph neural networks for conditional de novo

drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. (2023).

111. O’Boyle, N. M. Towards a Universal SMILES representation - A standard method to

generate canonical SMILES based on the InChI. J. Cheminform. 4, 1–14 (2012).

210

112. Weininger, D., Weininger, A. & Weininger, J. L. SMILES. 2. Algorithm for Generation

of Unique SMILES Notation. J. Chem. Inf. Comput. Sci. 29, 97–101 (1989).

113. Heller, S. R., McNaught, A., Pletnev, I., Stein, S. & Tchekhovskoi, D. InChI, the IUPAC

International Chemical Identifier. J. Cheminform. 7, 1–34 (2015).

114. Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-

Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P. &

Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous

Representation of Molecules. ACS Cent. Sci. 4, 268–276 (2018).

115. Winter, R., Montanari, F., Noé, F. & Clevert, D. A. Learning continuous and data-driven

molecular descriptors by translating equivalent chemical representations. Chem. Sci. 10,

1692–1701 (2019).

116. O’boyle, N. M. & Dalke, A. DeepSMILES: An Adaptation of SMILES for Use in

Machine-Learning of Chemical Structures. ChemRxiv (2018).

117. Krenn, M., Häse, F., Nigam, A. K., Friederich, P. & Aspuru-Guzik, A. Self-referencing

embedded strings (SELFIES): A 100% robust molecular string representation. Mach.

Learn. Sci. Technol. 1, (2020).

118. Literature Statistics. https://www.tylervigen.com/literature-statistics.

119. Goyal, A., Lamb, A., Zhang, Y., Zhang, S., Courville, A. & Bengio, Y. Professor

Forcing: A New Algorithm for Training Recurrent Networks. Adv. Neural Inf. Process.

Syst. 4608–4616 (2016).

120. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. & He, Q. A

Comprehensive Survey on Transfer Learning. Proc. IEEE 109, 43–76 (2019).

121. Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative molecular

design in low data regimes. Nat. Mach. Intell. 2, 171–180 (2020).

122. Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De Novo Design of Bioactive Small

Molecules by Artificial Intelligence. Mol. Inform. 37, (2018).

123. Merk, D., Grisoni, F., Friedrich, L. & Schneider, G. Tuning artificial intelligence on the

de novo design of natural-product-inspired retinoid X receptor modulators. Commun.

Chem. 1, 1–9 (2018).

124. Blaschke, T., Arús-Pous, J., Chen, H., Margreitter, C., Tyrchan, C., Engkvist, O.,

Papadopoulos, K. & Patronov, A. REINVENT 2.0: An AI Tool for De Novo Drug

Design. J. Chem. Inf. Model. 60, 5918–5922 (2020).

125. Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. A Brief Survey of

Deep Reinforcement Learning. ArXiv (2017).

126. Blaschke, T., Engkvist, O., Bajorath, J. & Chen, H. Memory-assisted reinforcement

learning for diverse molecular de novo design. J. Cheminform. 12, 1–17 (2020).

127. Kotsias, P.-C. C., Arús-Pous, J., Chen, H., Engkvist, O., Tyrchan, C. & Bjerrum, E. J.

Direct steering of de novo molecular generation with descriptor conditional recurrent

neural networks. Nat. Mach. Intell. 2, 254–265 (2020).

211

128. Winter, R., Montanari, F., Steffen, A., Briem, H., Noé, F. & Clevert, D. A. Efficient

multi-objective molecular optimization in a continuous latent space. Chem. Sci. 10,

8016–8024 (2019).

129. Griffiths, R.-R. R. & Hernández-Lobato, J. Constrained Bayesian optimization for

automatic chemical design using variational autoencoders. Chem. Sci. 11, 577–586

(2020).

130. Kang, S. & Cho, K. Conditional Molecular Design with Deep Generative Models. J.

Chem. Inf. Model. 59, 43–52 (2019).

131. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. & Bengio, Y. Generative Adversarial Networks. Commun. ACM 63, 139–

144 (2014).

132. Putin, E., Asadulaev, A., Vanhaelen, Q., Ivanenkov, Y., Aladinskaya, A. V., Aliper, A.

& Zhavoronkov, A. Adversarial Threshold Neural Computer for Molecular de Novo

Design. Mol. Pharm. 15, 4386–4397 (2018).

133. Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L. & Aspuru-Guzik, A. Optimizing

distributions over molecular space. An Objective-Reinforced Generative Adversarial

Network for Inverse-design Chemistry (ORGANIC). ChemRxiv (2017).

134. Guimaraes, G., Sanchez-Lengeling, B., Outeiral, C., Luis, P., Farias, C. & Aspuru-

Guzik, A. Objective-Reinforced Generative Adversarial Networks (ORGAN) for

Sequence Generation Models. ChemRxiv (2017).

135. Nam, J. & Kim, J. Linking the Neural Machine Translation and the Prediction of Organic

Chemistry Reactions. ArXiv (2016).

136. Schwaller, P., Gaudin, T., Lányi, D., Bekas, C. & Laino, T. “Found in Translation”:

predicting outcomes of complex organic chemistry reactions using neural sequence-to-

sequence models. Chem. Sci. 9, 6091–6098 (2018).

137. Liu, B., Ramsundar, B., Kawthekar, P., Shi, J., Gomes, J., Luu Nguyen, Q., Ho, S.,

Sloane, J., Wender, P. & Pande, V. Retrosynthetic Reaction Prediction Using Neural

Sequence-to-Sequence Models. ACS Cent. Sci. 3, 1103–1113 (2017).

138. Karpov, P., Godin, G. & Tetko, I. V. A Transformer Model for Retrosynthesis. Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics) 817–830 (2019).

139. Schwaller, P., Petraglia, R., Zullo, V., Nair, V. H., Haeuselmann, R. A., Pisoni, R.,

Bekas, C., Iuliano, A. & Laino, T. Predicting Retrosynthetic Pathways Using a

Combined Linguistic Model and Hyper-Graph Exploration Strategy. Chem. Sci. 11,

3316–3325 (2020).

140. Kohonen, T., Kaski, S., Somervuo, P., Lagus, K., Oja, M. & Paatero, V. Self-organizing

map. in Proceedings of the IEEE 1464–1480 (1990).

141. Gaspar, H. A., Sidorov, P., Horvath, D., Baskin, I. I., Marcou, G. & Varnek, A.

Generative topographic mapping approach to chemical space analysis. ACS Symp. Ser.

1222, 211–241 (2016).

142. Gaspar, H. A., Baskin, I. I. & Varnek, A. Visualization of a multidimensional descriptor

212

space. ACS Symp. Ser. 1222, 243–267 (2016).

143. Gaspar, H. A., Baskin, I. I., Marcou, G., Horvath, D. & Varnek, A. Chemical data

visualization and analysis with incremental generative topographic mapping: big data

challenge. J. Chem. Inf. Model. 55, 84–94 (2015).

144. Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2, 1–55

(2009).

145. Bengio, Y., Courville, A. & Vincent, P. Representation learning: A review and new

perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

146. Karpov, P. V., Osolodkin, D. I., Baskin, I. I., Palyulin, V. A. & Zefirov, N. S. One-class

classification as a novel method of ligand-based virtual screening: the case of glycogen

synthase kinase 3β inhibitors. Bioorg. Med. Chem. Lett. 21, 6728–6731 (2011).

147. Xu, Z., Zhu, F., Wang, S. & Huang, J. Seq2seq fingerprint: An unsupervised deep

molecular embedding for drug discovery. in Proceedings of the 8th ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics 285–294

(Association for Computing Machinery, Inc, 2017).

148. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50,

742–754 (2010).

149. Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase

inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

150. Jin, W., Barzilay, R. & Jaakkola, T. Junction Tree Variational Autoencoder for

Molecular Graph Generation. in 35th International Conference on Machine Learning

vol. 5 3632–3648 (2018).

151. Liu, Q., Allamanis, M., Brockschmidt, M. & Gaunt, A. L. Constrained Graph Variational

Autoencoders for Molecule Design. Adv. Neural Inf. Process. Syst. 7795–7804 (2018).

152. Simonovsky, M. & Komodakis, N. GraphVAE: Towards Generation of Small Graphs

Using Variational Autoencoders. Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics) 412–422 (2018).

153. Samanta, B., De, A., Jana, G., Chattaraj, P. K., Ganguly, N. & Rodriguez, M. G. NeVAE:

A Deep Generative Model for Molecular Graphs. Proc. AAAI Conf. Artif. Intell. 33,

1110–1117 (2019).

154. Jin, W., Barzilay, R. & Jaakkola, T. S. Multi-Resolution Autoregressive Graph-to-Graph

Translation for Molecules. ChemRxiv (2019).

155. Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar Variational Autoencoder.

in 34th International Conference on Machine Learning 1945–1954 (PMLR, 2017).

156. RDKit. http://www.rdkit.org/.

157. Lim, H., Kim, T. H. & Kang, S. Prediction-based error correction for gpu reliability with

low overhead. Electron. 9, 1–18 (2020).

158. Chemaxon. https://chemaxon.com/.

159. Hopfield, J. J. Neural networks and physical systems with emergent collective

213

computational abilities. Proc. Natl. Acad. Sci. U. S. A. 79, 2554–2558 (1982).

160. Montúfar, G. Restricted Boltzmann Machines: Introduction and Review. Springer Proc.

Math. Stat. 252, 75–115 (2018).

161. Salakhutdinov, R. & Hinton, G. Deep Boltzmann machines. in Proceedings of the Twelth

International Conference on Artificial Intelligence and Statistics vol. 5 448–455 (PMLR,

2009).

162. Srivastava, N. & Salakhutdinov, R. Multimodal learning with Deep Boltzmann

Machines. J. Mach. Learn. Res. 15, 2949–2980 (2014).

163. Wang, T., Dai, X. & Liu, Y. Learning with Hilbert–Schmidt independence criterion: A

review and new perspectives. Knowledge-Based Syst. 234, 107567 (2021).

164. Zabolotna, Y., Bonachera, F., Horvath, D., Lin, A., Marcou, G., Klimchuk, O. & Varnek,

A. Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug

Discovery. J. Chem. Inf. Model. 62, 4537–4548 (2022).

William BORT

Génération de nouvelles molécules et
réactions par intelligence artificielle

guidée par la chémographie

Résumé

Cette thèse est dédiée à l’exploration et à la compréhension des espaces latents des réseaux de
neurones, dans le but de créer un lien entre ces derniers et des descripteurs structuraux
classiques afin de réaliser du QSAR inverse. Le potentiel génératif des architectures seq2seq est
souvent accompagné d’une compréhension partielle des règles qui définissent leurs espaces
latents. Une étude de la construction l’espace chimique d’un Autoencodeur a montré son habilité
à recréer les propriétés et caractéristiques structurelles de molécules existantes avec différents
niveaux de réussite selon la complexité des structures et leur densité dans l’espace. Le modèle
a même été modifié pour générer des nouvelles réactions atteignables chimiquement.

Cependant, l’interprétation séquentielle des structures chimiques à travers les chaînes SMILES
ont tendance à créer des faiblesses dans les espaces chimiques résultants. De ce fait, les
descripteurs ISIDA, qui sont plus robustes, sont généralement préférés lors de la cartographie et
l’identification de zones d’intérêt lors de la recherche d’actifs. Plusieurs méthodes pour combiner
l’efficacité des vecteurs ISIDA avec le pouvoir génératif d’un espace latent d’Autoencodeur ont
abouti au développement d’une nouvelle architecture basée sur les Autoencodeurs Variationnels
Conditionnels et le mécanisme d’Attention qui a permis la génération ciblée de nouvelles
molécules potentiellement actives contre une cible biologique.

Résumé en anglais

This thesis is dedicated to the exploration and understanding of neural network latent spaces, to allow
the creation of a link between the latter and classical structural descriptors to perform inverse QSAR.
The generative potential of seq2seq architectures often comes with a blurry understanding of the rules
governing its chemical spaces. A study of an Autoencoder’s chemical space construction showed its
ability to recreate existing property distributions and molecular structures with varying degrees of
success depending on complexity and density factors. The model was even successfully modified to
generate feasible and novel reactions.

However, the sequential interpretation of chemical structures through SMILES strings tend to create
weaknesses in the resulting chemical spaces. As such, structural descriptors like ISIDA, which are
more robust, are usually preferred to map and identify zones of interest when searching for active
compounds. Several methods to harness the efficiency of ISIDA descriptors and combine it with the
generative power of an Autoencoder latent space resulted in the development of a new architecture
based on Conditional Variational Autoencoders and the Attention Mechanism to generate potent
molecules against biological targets.

