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Abstract

English Strongly disordered materials present unique and puzzling features; while disorder
tends to localize electrons and hinder their transport properties, a superconducting state
characterized by long-range order and a dissipationless flow of current can still be observed. By
decreasing the disorder level one can induce a transition from an insulator to a superconductor,
as observed in a large body of experimental works. This Superconductor-Insulator Transition
(SIT) is a prototypical quantum phase transition between two very different states of matter.
Its hallmark is a second-order, continuous suppression of the order parameter at the quantum
critical point. Recent studies however blurred the line between insulating and superconducting
states: the observation of localized, preformed Cooper pairs uncorrelated with superconductivity
raised new questions about the nature of the SIT. By combining transport and microwave
resonator measurements we show in this thesis that amorphous indium oxide thin films exhibit
an unexpected first-order transition characterized by an abrupt drop of superfluid stiffness and
critical temperature at the critical disorder. We further find that, for high enough disorder,
the critical temperature of our films is no longer related to the pairing amplitude but is equal
to the superfluid stiffness, as expected for the pseudogap regime of preformed Cooper pairs.
Such a bosonic transition driven by phase fluctuations is accompanied with both large kinetic
inductance and anomalous intrinsic microwave dissipation. Our findings raise fundamental
new questions on the mechanism leading to the breakdown of superconductivity, and have
implications for the use of strongly disordered superconductors in microwave quantum circuits.

Français Les matériaux fortement désordonnés présentent des caractéristiques uniques et
déroutantes. Alors que le désordre tend à localiser les électrons et à entraver leur transport, un
état supraconducteur caractérisé par un ordre à longue distance et un courant sans dissipation
est parfois observé. En diminuant le niveau de désordre une transition d’un état isolant à
un état supraconducteur peut être induite comme le démontre un grand nombre de travaux
expérimentaux. Cette transition supraconducteur-isolant (SIT) est un exemple typique de transi-
tion de phase quantique du second ordre, caractérisée par une suppression continue du paramètre
d’ordre au point critique. Des études récentes ont toutefois brouillé la frontière entre isolant et
supraconducteur : l’observation de paires de Cooper localisées et préformées, non corrélées avec
la supraconductivité, a soulevé de nouvelles questions sur la nature de la SIT. En combinant des
mesures de transport et de résonateurs micro-ondes, nous montrons dans cette thèse que les
films minces d’oxyde d’indium amorphes présentent une transition du premier ordre caractérisée
par une chute abrupte de la rigidité superfluide et de la température critique au désordre
critique. Nous constatons en outre que, pour un désordre suffisamment élevé, la température
critique de nos films n’est plus liée à l’amplitude d’appariement des électrons mais est égale à la
rigidité superfluide, comme prévu pour le régime de pseudogap des paires de Cooper préformées.
Une telle transition bosonique entrâınée par les fluctuations de la phase supraconductrice
s’accompagne à la fois d’une grande inductance cinétique et d’une dissipation micro-onde
intrinsèque inhabituelle. Nos résultats soulèvent de nouvelles questions fondamentales à propos
du mécanisme conduisant à la destruction de l’état supraconducteur et ont des implications
concernant l’emploi de supraconducteurs fortement désordonnés dans les circuits quantiques.
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CHAPTER1
Introduction: Breakdown of Superconductivity

It is customary to assume that formation of Cooper pairs (bound states of two electrons of
opposite momenta and spins) in a normal metal precipitates the long-range order characterizing
superconductivity. This is indeed the case in the framework of the very successful BCS theory.
The superconducting transition is modelled within the Ginzburg-Landau theory by defining a
complex order parameter

Ψ = |Ψ|eiϕ(r)

that describes the superconducting ordered state, and vanishes at Tc to restore the ”disordered”,
normal state.

While the simultaneity of Cooper pairing and apparition of superconducting order is well estab-
lished in a broad range of metals, there exists materials which evade this classification. It is
possible for the two phenomena to occur separately: pairing can develop at higher temperature
than superconductivity. This implies the existence of an intermediate temperature range above
Tc where Cooper pairs are preformed but not condensed.
In other words, this corresponds to a state where the amplitude |Ψ| of the order parameter is
large, but the phase ϕ(r) varies strongly throughout the sample, preventing superconducting
order to set in. Superconductivity then happens at a lower temperature when phase coherence
is developped over the whole sample.
Such superconductors are anomalously sensitive to phase fluctuations compared to the usual
BCS superconductors, and we will show that they are characterized by a low superfluid density,
that is the number of condensed Cooper pairs is small.

1.1 | Breakdown of superconductivity

Two classes of fluctuations are responsible for altering the ground state of a superconductor:
amplitude fluctuations of the order parameter (related to pair breaking), or phase fluctuations
(related to current of Cooper pairs).1

The pairing strength, in BCS theory, is related to the superconducting gap ∆0 (via ∆0 ∝ e−1/λ

where λ describes the attraction between electrons generated by electron-phonon interactions).
The mean-field critical temperature Tc0 is related to ∆0 via ∆0 = 1.76 kBTc0. Above Tc0 the
pairs break and long-range order vanishes simultaneously.

We can construct another typical energy scale as follows: divide the sample into blocks of
linear size of the order of the coherence length ξ0 and ask how much energy it would cost to
change the value of the complex order parameter at the center of one block. As long as the

1This section is inspired from [Carlson et al., 2002].
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amplitude remains constant over this lengthscale, the cheapest way to do so is to twist the
phase of the order parameter.
Applying the same translation of the phase ϕ(r)→ ϕ(r) + 2θ uniformly to all blocks does not
change the free energy.2. This is similar to a solid whose constituting atoms are all translated
together in space: there is no deformation.
On the other hand changing the phase by a different amount from block to block i.e. inducing
a spatial variation of the phase, hence a gradient ∇ϕ requires energy. The simplest expression
that satisfies the required symmetries and describes the elastic energy cost to change the phase
of the whole sample is the phase only functional [M. E. Fisher et al., 1973]:

U(ϕ) =
1

2
Θ

∫
ddr |∇ϕ|2 (1.1)

in dimension d, where the proportionality constant Θ is called the superfluid stiffness and has
the dimension of energy in 2D.

The meaning of Θ is quite obvious: a non-zero Θ means that it costs energy to twist the
phase of the order parameter. This quantity describes the rigidity of a superconductor against
phase fluctuations, hence the name of stiffness.
Note that a formally equivalent energy scale describes the deformation of solids, the spin
stiffness of magnets... An expression equivalent to Eq. (1.1) can in fact be derived for any
type of symmetry breaking, where some elastic energy opposes to distortions. For instance in
crystals the broken translational order introduces a rigidity to shear deformations. In magnets
the broken rotational symmetry (all spins are aligned in the same direction) induces a stiffness
against single-spin rotations [Chaikin et al., 1995].

When the superfluid stiffness is low, phase fluctuations become energetically favorable. The
superconductor becomes increasingly sensitive to quantum and thermal fluctuations of the
phase. When the temperature is comparable to Θ, thermal agitation will produce
random phase changes from block to block, and hence destroy long-range order.

1.1.1 Relation with the superfluid density

The 2D superfluid stiffness can be related to the superfluid density i.e. the density of condensed
Cooper pairs ns as [M. E. Fisher et al., 1973]:

Θ =
~2ns
m∗

(1.2)

where ns is the density of Cooper pairs per unit area and m∗ = 2m is the effective mass of a
Cooper pair.
The 3D superfluid stiffness is then just Θ/a where a is some short lengthscale (usually the
thickness d of the film).
This equation can seem surprising at first glance: indeed it suggests that the superfluid density
ns is not just a property of the bulk that describes the number of superconducting charge
carriers. It is also intimely related to the response of a superconductor to external perturbations
(and even to topological defects as we shall see later in relation to the BKT transition).
Importantly this means that superconductors with low superfluid density are less

2It can be shown [Schrieffer, 1999] (page 225) that charge conservation implies gauge invariance. Choosing
a different gauge (and therefore inducing a rotation of the order parameter by the angle θ) is arbitrary and
corresponds to an equivalent description of the same physical state [Poniatowski, 2019]
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resilient to phase fluctuations.

Writing the velocity of the superflow3

vs =
~
m∗
〈∇ϕ〉 (1.3)

one sees that Eq. (1.1) can be rewritten

U =

∫
1

2
m∗v2

s ns dr (1.4)

which is nothing more than the kinetic energy of the superfluid. Therefore classical phase
fluctuations correspond to the thermally induced current of Cooper pairs.

1.1.2 What zero-T properties of a superconductor allow to predict
Tc ?

We have defined two energy scales leading to the thermal breakdown of superconductivity: the
pairing temperature Tc0, and the superfluid stiffness Θ. These two quantities are of course
upper bounds on the real, experimentally measurable critical temperature Tc.
As a result, the critical temperature of a superconductor must obey the following inequality:

Tc ≤ min (Tc0,Θ) (1.5)

where Tc0 = ∆0/1.76 is the mean-field critical temperature, governed by the BCS supercon-
ducting gap. When Tc0 � Θ, phase fluctuations can be safely neglected and Tc ≤ Tc0. This
is the case for BCS superconductors, where the upper bound is reached.

If Tc0 � Θ the superconducting state is suppressed by phase fluctuations: Tc ≤ Θ. As a result
the number of Cooper pairs remains non-zero above Tc: this opens many interesting questions
which will be treated later.
The case where none of the two mechanisms above can be neglected is also relevant in some
materials, and the suppression of order parameter occurs by suppressing both phase coherence
and pairing amplitude.

1.1.3 Quantum breakdown of superconductivity

In order to completely suppress superconductivity one then has two options: either reduce the
amplitude of the pairing energy (Tc0 → 0) or destroy the phase coherence by lowering the su-
perfluid stiffness (Θ→ 0). By the inequality Eq. (1.5) this means destroying superconductivity
by pushing down the critical temperature to zero.

One efficient way to reduce either Tc0 or Θ at, and hence Tc, is to increase the disorder of the
sample. Without giving a precise definition of disorder for the moment (this is the object of
the entire Appendix A), one can say on general grounds that a very disordered sample has a
strongly suppressed normal-state conductance compared to its clean counterpart.

3This relation comes from the properties of waves in quantum mechanics: considering a normalized
wavefunction ψ(r) = eik·rψ0, with a phase ϕ(r) = k · r = ∇ϕ · r defines the gradient ∇ϕ. From the
momentum p = ~k = −i~∇ = mv this describes a wavepacket moving with velocity v = 〈ψ|p/m |ψ〉 =
−i~/m

∫
ψ∗(r)∇ψ(r) dr = (~/m)〈∇ϕ〉.
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The effect of disorder is to localize charge carriers because of the presence of defects. This
has consequences on interactions between electrons, and notably is expected to reduce the
pairing strength.
Additionally the presence of impurities enhances the role of phase fluctuations. This important
fact has its roots in quantum mechanics: superconducting phase and number of Cooper pairs
are quantum canonically conjuguate (i.e. their operators do not commute) and must obey
Heisenberg uncertainty principle. Localization of electrons reduces the uncertainty of their
spatial position and consequently enhances the uncertainty in the superconducting phase,
leading to fluctuations.
With disorder, metals become dangerously close to an insulating state upon increase of impurity
level. The resulting insulating state (the Anderson insulator described in Appendix A) presents
a large variety of features, some of which compete with superconductivity and lead to its
destruction.

An important question that arises concerns the nature of the state terminating superconductiv-
ity. For instance, driving Tc0 to zero corresponds to breaking all available Cooper pairs, and the
resulting system is made out of free electrons: it resembles a metal. On the other hand setting
Θ to zero suppresses the phase coherence of Cooper pairs without altering the attractive
interaction responsible for pairing. The resulting state would then be made of incoherent pairs
of electrons.

Experimentally, a large body of works shows that, right after the suppression of the su-
perconducting state the system enters an insulating state with diverging resistance at low
temperatures. The nature of this Superconductor-Insulator Transition (SIT) has been the
subject of numerous theoretical and experimental studies, and has seen the emergence of several
different paradigms [Goldman and Marković, 1998; Benjamin Sacépé, Mikhail Feigel’man,
et al., 2020].

In the following sections we first describe how disorder can suppress Tc0, and therefore super-
conductivity through was is known as the fermionic mechanism. We then give an important
example of system in which superconductivity is suppressed by classical phase fluctuations
through the Berezinskii-Kosterlitz-Thouless Transition (BKT).
Finally we describe a similar situation in which the SIT is induced by quantum phase fluctuations
at T = 0 (known as the bosonic scenario).

These two pathways for the Quantum Breakdown of Superconductivity (QBS) will be the main
reference points for the experimental investigation of the SIT in disordered amorphous indium
oxide which is the subject of this thesis.

1.2 | Fermionic suppression of critical temperature with
disorder

In homogeneously disordered films with Θ� ∆0 Coulomb repulsion between electrons can
lead to the suppression of superconductivity, as we discuss now [Maekawa et al., 1982; P. W.
Anderson et al., 1983].
In disordered samples electronic diffusion is slowed by impurities, in turn reducing the effect of
screening of Coulomb interactions. When these repulsive interactions become of significant
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importance they compete with the attractive electron-electron interactions at the origin of
superconducting pairing, therefore reducing the Cooper attraction strength λ at energy ε as

λ(ε) = λ0 −
1

3πg
ln

1

τeε
(1.6)

where g = h/(e2R�) is the dimensionless conductance and λ0 is the bare Cooper attraction
constant. τe is the scattering time related to the mean free path le.
The dimensionless conductance g is of fundamental importance to describe the effects of
disorder on electronic transport, and will be discussed in details in chapter A. It is inversely
proportional to the sample resistance, and as such decreases upon increase of disorder.
Eq. (1.6) describes the reduction of pairing upon increase of disorder-enhanced Coulomb
repulsion, often called the fermionic mechanism.

Using the renormalization group Finkel’stein obtained an analytical formula describing the
complete evolution of critical temperature with disorder [Finkel’stein, 1986]:

Tc
Tc0

= e−1/γ

(1 +

√
t/2

γ − t/4

)
×

(
1−

√
t/2

γ − t/4

)−1
1/
√

2t

(1.7)

where γ = ln 1/ (Tc0τe) and t = e2/(2π2~)R� = 1/(πg). Here Tc0 is the bulk critical temper-
ature.

Fig. 1.1. Suppression of Tc via the fermionic mechanism. Squares are data on thin
amorphous MoGe from [Graybeal et al., 1984], and solid line is a fit using Eq. (1.7) with
parameter γ = −0.12. Reproduction from [Finkel’stein, 1986].

As shown in Fig. 1.1 the model of Eq. (1.7) is able to reproduce the reduction of Tc in
homogeneous, amorphous MoGe samples measured by [Graybeal et al., 1984]. Tc decreases
continuously down to zero at a critical conductance gc.
In this theory Cooper pairs are progressively broken by Coulomb repulsion between electrons,
leaving a state of unpaired quasiparticles.
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1.3 | An example of system ruled by phase fluctua-
tions: The Berezinskii-Kosterlitz-Thouless tran-
sition in 2D

Another characteristic energy scale of a superconductor is the phase stiffness Θ. If Θ� Tc0
then phase fluctuations can become strong enough to suppress the order parameter. In this
section we discuss briefly how thermal (classical) phase fluctuations can drive the supercon-
ductor into a disordered, non-superconducting state in two dimensions.4

It is well known that two-dimensional systems cannot have long-range order [Chaikin et al.,
1995]5. True 2D systems are then said to have quasi-long-range order.
[Berezinsky, 1971; Kosterlitz et al., 1973] demonstrated that at high enough temperature such
quasi-order could be broken by topological defects of the order parameter, the vortices.
The presence of a vortex deforms locally the phase field which winds around the defect. A
vortex core is a normal metal and can dissipate energy through its motion. In some specific
configurations the effect produced by a single vortex on the phase field can be compensated
by an anti-vortex of opposite topological charge. Thus a state with such a pair of vortices is
topologically equivalent to a uniform state.
Below a critical temperature TBKT

c quasi-long-range order is preserved by the formation of
such vortex-antivortex pairs (see Fig. 1.2 left panel).

Above TBKT
c pairs of vortices break apart and single vortices start to proliferate in the super-

conductor, suppressing abruptly the superconducting quasi-order (see Fig. 1.2 right panel). At
this temperature the correlation function decays exponentially.6

Discovered by [Berezinsky, 1971; Kosterlitz et al., 1973], this transition (later known as the
Berezinskii-Kosterlitz-Thouless (BKT) transition) is expected to occur in a wide range of
different 2D systems and is quite universal. [Beasley et al., 1979] showed that two-dimensional
superconductors present a BKT transition.

Thus the BKT transition is characterized by a change in the behavior of the correlation function
close to TBKT

c : at this temperature the superfluid stiffness drops to zero sharply, as illustrated
in Fig. 1.3. In all system in which a BKT transition exists, the superfluid density has a universal

4This section is inspired by the book [Chaikin et al., 1995] and the review [Goldman and Wolf, 1984]
(chapters by Mooij and Minnhagen).

5That is, if one defines the spatial correlation function as

G(r) = 〈Ψ∗(r)Ψ(0)〉 = |Ψ(r)|2〈e−iϕ(r)eiϕ(0)〉 (1.8)

then a true long-range order defined by the condition lim|r|→∞G(r) 6= 0 cannot exist for any finite temperature.
Instead the correlation function decays to zero algebraically at finite temperatures. This can be shown directly

using a gaussian model. Assuming a gaussian distribution one finds G(r) ∼
(
a

r

)η(T )

where a � r is a

microscopic cutoff length, of the order of the coherence length for instance, and the temperature-dependent
exponent is given by η(T ) = kBT

2πΘ . This important result demonstrates that, indeed, for a finite temperature
T > 0 true long-range order cannot develop, as G(r) decays to zero at infinity.

6Close to TBKT
c the correlation function becomes G(r) ∼ e−r/ξ(T ) where the correlation length ξ(T ) (the

typical distance above which the effective interaction between two vortices vanishes) is ξ(T ) ∼ e−b|T−T
BKT
c |−1/2

.
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Fig. 1.2. Berezinskii-Kosterlitz-Thouless transition. At low temperatures vortices are
scarce and can only appear in pairs (with opposite winding numbers), interacting logarithmically
over the distance separating them. At the critical temperature TBKT

c pairs of vortices unbind
abruptly, leaving single vortices that dissipate and drive the quasi-long-range order into a
disordered phase. The superfluid stiffness Θ drops sharply to zero. Adapted from [The Royal
Swedish Academy of Sciences, 2016].

jump of size [Nelson et al., 1977]

Θ(TBKT
c )

TBKT
c

=
2

π
(1.9)

in the limit of infinite sample size.

Fig. 1.3. Superfluid jump at the BKT transition temperature. Sketch of the abrupt
drop of superfluid stiffness Θ at TBKT

c for different values of zero temperature stiffness Θ(0).
Blue line represents the relation of Eq. (1.9). One sees that the critical temperature is ruled by
the value of superfluid stiffness at T = 0: TBKT

c ∼ Θ(0). Upon decrease of Θ(0) the critical
temperature decreases accordingly.
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Importantly, TBKT
c defines the real, experimentally measurable critical temperature Tc of the

system below which the material has non-zero superfluid density and supercurrent. It is
smaller than the mean-field prediction Tc0 for a clean bulk superconductor. To quantify the
difference between these two energy scales the Ginzburg-Levanyuk number Gi is often used as
a description of the temperature range where thermal fluctuations are strong. The relative
spacing between the BKT temperature Tc and the mean-field Tc0 is [Larkin, 1999]

Tc0 − Tc
Tc

= 4Gi (1.10)

where Gi ∝ 1/g. Here g = h/(e2R�) is the normal-state dimensionless conductance: a small
g signals a strongly disordered system.

Eq. (1.10) states that the shift of critical temperature with classical fluctuations increases with
increasing disorder: δTc/Tc ∝ 1/g (we recall that an enhancement of disorder strength reduces
the dimensionless conductance g). That is, in theory, by reaching a strong enough disorder
one should be able to see a clear reduction of Tc with disorder due to BKT mechanism, while
the pairing temperature Tc0 remains unaffected [Beasley et al., 1979]. We shall give a more
quantitative analysis of this fact later.

Preformation of Cooper pairs As seen from Eq. (1.10) two distinct energy scales increas-
ingly separate with disorder. First the mean-field critical temperature Tc0, below which Cooper
pairs form, and a critical temperature TBKT

c above which superconductivity breaks down.
This opens a temperature range TBKT

c < T < Tc0 in which Cooper pairs have formed (T < Tc0)
but the superconducting state is destroyed by the proliferation of vortices (T > TBKT

c ), as
illustrated in Fig. 1.4.
Thus the BKT transition in presence of disorder implies the preformation of inco-
herent electron pairs in the normal state.

Upon increase of disorder the enhancement of phase fluctuations results in a suppression of
the superfluid stiffness Θ. Because of the BKT relation TBKT

c ∼ Θ(0) this also leads to a
reduction of the BKT temperature TBKT

c . At very large disorders one can drive TBKT
c to zero,

breaking down superconductivity following the bosonic pathway.

1.4 | Bosonic pathway

For sufficiently strong disorder the picture above leads to a state where TBKT
c = 0 (phase

coherence is destroyed at T = 0) but Tc0 6= 0: Cooper pairs are preformed and remain bound.
This situation is represented in Fig. 1.4.
This leads to the important conclusion that, at the critical disorder 1/gc one has a
quantum phase transition (i.e. a phase transition at T = 0) above which supercon-
ductivity breaks down.

Therefore, in two dimensions a strong disorder induces the Quantum Breakdown of Supercon-
ductivity.
Starting from this simple observation M. Fisher developed a quantum critical theory of the
dirty boson model [M. P. A. Fisher, 1990]. It consists in modelling Cooper pairs by hard-core
charge-2e bosons interacting through Coulomb repulsion in presence of disorder and vortices.
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Fig. 1.4. Bosonic pathway of superconductivity. Upon increase of disorder 1/g the mean-
field critical temperature Tc0 (below which Cooper pairs form) is reduced by the fermionic
mechanism (disorder-enhanced repulsion of electrons). For a 2D superconductor the BKT
mechanism predicts the existence of another energy scale, the BKT critical temperature
TBKT
c above which quasi-long-range order breaks down by the proliferation of free vortices.
TBKT
c ∼ Θ(0) is suppressed by the increasingly strong phase fluctuations, down to the quantum

critical point (QCP) 1/gc where TBKT
c = 0 but Tc0 remains finite (i.e. Cooper pairs are not

destroyed). In the temperature range TBKT
c < T < Tc0 (orange area) Cooper pairs are

preformed but superconducting order does not set in because of the presence of free vortices.
At the QCP the 2D material is a combination of incoherent Cooper pairs and free vortices.

1.4.1 Charge-vortex duality

In a system of bosons at T = 0, phase fluctuations do not originate from thermal excitation.
Instead they are related to fundamental properties of quantum mechanics: the boson density
operator n̂ (related to the number of Cooper pairs) and the superconducting phase order
parameter ϕ̂ are conjuguate variables, and do not commute:

[ϕ̂, n̂] = i~ (1.11)

which results in the well known Heisenberg uncertainty relation

σϕσn ≥
~
2

(1.12)

where σO =

√
〈Ô2〉 − 〈Ô〉2 is the standard deviation of the Hermitian operator Ô.

Therefore fixing locally the number of charges n (i.e. setting σn → 0) enhances the local
fluctuations of the phase ϕ. This is (in a handwaving approach) what localization of bosons
does to the system.
Near the quantum critical point the system sees the competition of kinetic energy of Cooper
pairs (which tries to delocalize the particles and hence reduce phase fluctuations) and the
combination of interactions and disorder which try to localize the particles (and hence reduce
the number density fluctuations).

M. Fisher demonstrated that the 2D problem of interacting bosons in a random potential
could be represented either by involving the order parameter phase, or by an effective magnetic
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field B = ∇ × A (where A is a gauge field) which plays the role of the boson density n.
These two fundamentally different descriptions of the same Hamiltonian lead to the concept of
duality between bosons in 2D (and at T = 0) and a bulk superconductor in an applied random
magnetic field [M. P. A. Fisher and D. H. Lee, 1989].
This mapping has many important consequences, as it allows to relate the ground state (T = 0)
properties of bosons with the thermodynamic characteristics of a classical superconductor. In
particular vortices and bosons play a dual role (see Fig. 1.5).7

Fig. 1.5. Boson-vortex duality. The world line of a particle (here a boson) represents its
’history’ in a (d+ 1)-dimensional spacetime. M. Fisher states that it is equivalent (the models
are isomorphic) to the flux line piercing a superconductor under the influence of an effective
(ficticious) magnetic field. In this representation bosons (modelling Cooper pairs) at T = 0
and vortices in a superconductor under magnetic field (and T 6= 0) are dual quantities [M. P. A.
Fisher and D. H. Lee, 1989].

We have mentioned that the disordered state terminating the quasi-long-range order at the
BKT transition is made of unpaired, free vortices. They become mobile under the application
of a current and drift under the influence of a Magnus force. It can be shown that when
such a free vortex crosses a sample along its width it induces a change of the phase by 2π
between the two extremities (phase slip). By the Josephson relation ∆V = (~/2e)(∆ϕ̇) where
∆V is the voltage drop along the sample and ∆ϕ is the overall phase difference, one sees
that a phase slip generates a voltage drop, and therefore dissipation. Such resistivity can be
written [Halperin et al., 1979]:

ρ =

(
~
2e

)2

nvµ (1.13)

where nv is the density of free vortices and µ is the vortex mobility (related to the resistance
of the material and other microscopic parameters).
The resistivity ρ is the real dissipation by proliferation of vortices in a 2D system above
TBKT
c . Note that if one identifies the flux quantum ~/(2e) to a vortex charge and recalls the

Einstein relation for conductivity σv = q2nvµ for the charge q one can identify the resistivity

7Vortices were treated as bosons, which is a rather strong approximation.
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of Eq. (1.13) to a vortex conductivity σv as

ρ ∼ σv (1.14)

which is one consequence of vortex-boson duality.

1.4.2 Disordered and ordered phases

We now come back to the T = 0 quantum phase transition. First we describe a state below
the critical disorder 1/g < 1/gc.
The effect of disorder and repulsive interactions on a 2D system of condensed bosons is to
localize vortices. They are pinned at definite positions of the lattice and do not contribute
to the sample conductivity. By the relation Eq. (1.14) this implies no dissipation in the
boson system: ρ ∼ σv = 0. The superconducting state is therefore the combination of Bose
condensed charge-2e particles and localized vortices.

On the other side of the quantum phase transition (1/g > 1/gc) bosons tend to be localized
by the cumulated effects of repulsive interactions and disorder. Deep in the insulating state
they are localized over short distances and do not contribute to conduction: the dual version
of Eq. (1.14) imposes the vanishing resistivity of free vortices ρv, as ρv ∼ σ = 0 where σ is
the conductivity of bosonic particles. The zero-dissipation state of free (mobile) vortices is
assured by a Bose condensation of these vortices. The resulting system is an insulator made
of localized bosons, and delocalized, Bose condensed vortices, called a Bose glass. It can
be seen as an ordered, ’superconducting’ state with respect to the vortex condensate, and
simultaneously corresponds to the disordered, insulating state for bosons.

Interestingly, this picture implies that at the critical disorder 1/gc where the transition between
superconductor and Bose glass occurs both Cooper pairs and vortices should be mobile and
dissipate. This leads to the prediction of a universal sample resistance at the critical resistance
Rc [M. P. A. Fisher, Grinstein, et al., 1990; Cha et al., 1991]

Rc ∼
h

(2e)2
(1.15)

where the prefactor is unity in the case of exact self-duality (for each Cooper pair flowing in
the sample one vortex crosses and induces a 2π phase slip). The value of this prefactor has
been largely studied in various situations.
Another important consequence is the universal scaling of resistance with temperature and
distance to the critical point [M. P. A. Fisher, Weichman, et al., 1989; M. P. A. Fisher,
Grinstein, et al., 1990].
Unfortunately extensive experimental studies of various systems have shown quite different
value of critical resistance Rc and scaling exponents. Some theorists have concluded the
necessity to develop an ad hoc microscopic description for each system, allowing to study
short-wavelength phase fluctuations which were not taken into account in the model presented
above [Benjamin Sacépé, Mikhail Feigel’man, et al., 2020].
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Conclusion

A complex superconducting order parameter of the form Ψ = ∆eiϕ must vanish when super-
conductivity breaks down. Beyond the usual mechanism where Cooper pairs break and ∆→ 0,
the superconducting state can be destroyed by loss of phase coherence. This second scenario
becomes predominant in superconductors with low density of carriers (ns ∝ Θ� ∆). Classical
phase fluctuations rule the superconducting order and suppress the real critical temperature
Tc ∼ Θ through the BKT mechanism. The increase of microscopic disorder tends to localize
Cooper pairs, in turn enhancing phase fluctuations and suppressing further long-range order.

At a critical disorder level Cooper pairs become so localized, and phase fluctuations so strong,
that the superconducting state gets destroyed at T = 0. This is a quantum phase transition
to an insulator made of localized bosons. This pathway, related to the loss of phase coherence
is known as the bosonic scenario.
Another effect of disorder is to localize single electrons and affect their interactions: disorder
can enhance the Coulomb repulsion of electrons forming a Cooper pair, therefore driving the
pairing strength to zero, leaving a state composed of single electrons. This mechanism is
known as the fermionic scenario.

To describe theoretically the bosonic QBS M. Fisher and collaborators predicted universal
features of disordered superconductors, but this universality has been contested experimentally
by a large body of works.
More recent theories put forward the idea that microscopic (short scale) properties of a material
must be taken into account in the description of a SIT.
In this thesis we draw our attention to a particular amorphous material, indium oxide, which
can be tuned from a superconductor to an insulator at T = 0. Recent theories suggest that
superconductivity in this material originates from the microscopic properties of the underlying
insulator. To precise this point (and give some meaning to the notions of disorder and
dimensionless conductance g used in this chapter without explanation) the reader can find
some details in Appendix A where Anderson localization is introduced.
In chapter 2 we discuss how localization and superconductivity, two seemingly opposite con-
cepts, can coexist and intertwine. We will mention recent theoretical works that introduce the
idea that Cooper pairs naturally emerge from the Anderson insulator microscopic structure.

These exciting features motivated us to study the disorder-driven Superconductor-Insulator
Transition in amorphous indium oxide, the result of which are shown in this thesis.
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CHAPTER2
Disordered Superconductors: a state of the art

In this chapter we show, based on both theoretical and experimental arguments, how a
seemingly purely insulating material can host superconductivity. While most of the discussion
can be applied to a variety of disordered amorphous materials, we put a specific accent on
amorphous indium oxide which is the subject of this thesis.
The puzzling superconducting state emerging from an insulating background has some particu-
larities which we discuss in the light of recent theoretical advances.

2.1 | Indium oxide: Anderson insulator or supercon-
ductor ?

A popular semiconductor

The material investigated in this thesis is rather well known and popular for industrial applica-
tions: when mixed with tin, indium oxide becomes indium tin oxide (ITO), one of the most
widely used Transparent Conducting Oxide (TCO) materials.
Its high electrical conductivity and transparency make it a perfect coating for touch-screen
devices and various types of displays1.

Pure indium oxide comes in two main phases, crystalline or amorphous, depending mostly on
the deposition temperature: an amorphous to crystalline transition can be obtained by gradually
increasing the deposition temperature, as shown in [Buchholz et al., 2014]. A deposition below
0°C displays a vanishingly small crystalline fraction.
Post-deposition annealing of indium oxide samples also differs for amorphous and crystalline
phases: it is found that the room temperature resistance of the crystalline version increased
upon heating the samples (up to 400°C), but is a reversible process (repeating the annealing
and cooling it down slowly could recover the initial resistance).
On the other hand, the resistance of amorphous indium oxide samples only decreases upon
annealing (at temperatures below 60°C to prevent crystallization). Room temperature aging
also reduces the resistance of amorphous films [Ovadyahu, 1986; Zvi Ovadyahu, 2019].

On the nature of disorder in a:InO It is customary to relate a material’s disorder to
its resistance (measured at room temperature or at lower temperature depending on the
convention). An increasingly large resistance means an enhancement of the sample’s disorder
level. Microscopically this can be understood as a decrease of the carrier density.

1It is very likely that the reader’s smartphone is coated with ITO. The material is also used for solar cells
and numerous types of applications that require transparency and good electrical properties [Nagata, 2019]
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In the case of indium oxide it is believed that disorder is related to the local concentration of
oxygen vacancies [Z. Ovadyahu, 2022b; Z. Ovadyahu, Ovryn, et al., 1983]. Such vacancies
correspond to the ponctual removal of an oxygen atom from its matrix, leading to a local
redistribution of charge.
The existence of oxygen vacancies is favored by the deposition process: by evaporating indium
oxide and quench-condense its vapor phase onto a cold substrate results in a ’spongy’ structure
full of microvoids [Z. Ovadyahu, 2022b; Medvedeva et al., 2017]. Oxygen atoms liberated by
this process diffuse within the sample or in and out of the material, changing the stoechiometry.2

Therefore the carrier density (and consequently disorder) can be tuned by controlling the
oxygen to indium ratio during fabrication. This is done in practice by leaking a small volume
of pure oxygen in the evaporation chamber: the higher the oxygen partial pressure the higher
the disorder.

The indium oxide films studied in this thesis were deposited by electron-beam evaporation
(with 2 Å/s rate) of a high-purity 99.99% In2O3 pellet on a cold silicon substrate in a high
vacuum chamber3 with a controlled O2 partial pressure. The low temperature evaporation
allows to obtain fully amorphous samples, with an oxygen content tuned at will during the
process.4

2.1.1 Experimental evidence of Anderson localization

Anderson Metal-Insulator Transition Important features of the theory of localization are
reminded with more details in Appendix A.4. In this section we only define some key concepts
needed for the understanding of what follows.

In presence of disorder, quantum interference between electronic waves in a metal are strongly
enhanced. With a large disorder (strong density of impurities) these electronic waves can
interfere destructively. This translates into a decrease of the sample conductivity, of purely
quantum origin [B. Altshuler et al., 1985]. Importantly these electronic wavefunction, although
strongly altered by the presence of disorder, are still extended, that is they spread in the entire
available space.
Above a critical disorder strength Anderson showed that a drastic change occurs: the electron

occupies only an exponentially small volume of space |Ψ(r)|2 ∝ 1

ξdloc

e−r/ξloc where the local-

ization length ξloc is the typical size of an electron wavepacket [P. W. Anderson, 1958a].

The electron becomes localized, and the metal’s transport properties change completely: at
strictly T = 0 conduction along the sample is blocked and the metal becomes an insulator.
To describe this Metal-Insulator Transition (MIT) in three dimensional systems, Mott [S. N.
Mott, 1978; N. Mott, 1987] defined an energy scale called the mobility edge Ec marking

2When the [O]/[In] ratio is reduced compared to the perfectly stoechiometric case (= 1.5), some In atoms
have a smaller coordination with oxygen. As a result the polyhedra formed by an In atom surrounded by
oxygen atoms distort locally, leading to an under-sharing of these In/O structures. In such region where under-
coordinate In atoms concentrate, an oxygen-depleted area forms, acting like an oxygen vacancy. [Medvedeva
et al., 2017]

3In addition to turbo-pumping, the chamber pressure is further reduced by circulating cold water and a
nitrogen tank. This provides a pressure before deposition of about 6 10−7 mbar. The sample substrate also
benefits from the cooling, and probably has a temperature of a few degrees Celsius.

4Oxygen pressure is in the range 1− 8 10−5 mbar, from relatively clean to strongly disordered supercon-
ductors.
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the frontier between extended and localized states: when the Fermi energy EF exceeds the
mobility edge (EF > Ec) states are extended and the sample is metallic. On the other hand
when EF < Ec electrons are localized and the sample is an insulator.
Thermal activation allows hopping from one localized state to the other, providing a non-zero
conductivity which can be be measured as we will discuss below. The models for such activated
behavior can be found in Appendix A.4.

Fig. 2.1. Fractal wavefunctions across the Metal-Insulator Transition. The wavefunc-
tion intensity |Ψ(r)|2 is shown in 3D space (top) and along a horizontal cut (bottom). Darker
blue corresponds to larger intensity. Left: At low disorder wavefunctions are extended and their
intensity is uniform (they occupy all available space). Center: At critical disorder EF = Ec
wavefunctions present a multifractal structure. They occupy a smaller volume LD2 where
D2 < 3 is the fractal dimension. Right: For localized states (EF � Ec) wavefunctions are
exponentially suppressed and occupy the small volume ξdloc. Adapted from [Cuevas et al.,
2007].

One additional note regarding critically disordered metals at the MIT: electronic wavefunctions
present a unusual fractal distribution in space for EF ∼ Ec, as illustrated in Fig. 2.1 [Cohen
et al., 1983; Castellani et al., 1986; A. Mirlin, 2000]. At criticality electrons are neither
extended in the whole sample, nor fully localized, and the volume they occupy in a box of
lateral size L is not L3 but the smaller LD2 where D2 = 1.3 < 3 [A. Mirlin, 2000] is some
fractal dimension.
Further, [Cuevas et al., 2007] showed that electron fractality survives relatively far from the MIT
in both metallic and insulating states, with fractal features comprised in shells of decreasing
size ∼ ξloc.
Later on in this chapter fractality near the Anderson Metal-Insulator Transition will be used to
link insulators and disordered superconductors.

Experimental works on amorphous indium oxide Early experimental works have focused
on determining whether or not amorphous indium oxide displayed the expected signatures of
an Anderson insulator.
Measurements of the evolution of sample resistance with temperature (thermally activated
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transport in Anderson insulators is briefly reminded in Appendix A.4) have shown the usual
weak localization scalings at moderately low temperatures, and a Mott variable range hopping
at lowest temperatures [Zvi Ovadyahu and Imry, 1981; Ovadyahu, 1986]. This observation is
consistent with a picture of weakly interacting Anderson insulator. A crossover between Mott
and Efros-Shklovskii variable range hoppings was evidenced by [Rosenbaum, 1991], therefore
demonstrating the existence of a Coulomb gap and the role of Coulomb repulsion on the
insulating state.

Another property of strongly disordered Anderson insulators is non-ergodic transport: when
excited from equilibrium the sample conductance increases, and the excess conductance ∆G
relaxes back to normal extremely slowly ∆G(t) ∝ ln(t). Related memory effects were also
observed [Vaknin et al., 2002; Z. Ovadyahu and Pollak, 2003] and suggest that deeply insulating
indium oxide is an electron glass, i.e. a strongly interacting system dominated by Coulomb
repulsion [Z. Ovadyahu, 2022a].

Fig. 2.2. SIT in transport. Left: Evolution of resistance with temperature for insulating
(blue) and superconducting samples (red). Right: Activation energy T0 (insulating samples)
and critical temperature Tc (superconducting samples) across the SIT. Data adapted from
[Shahar et al., 1992].

Measurements for less disordered samples closer to the Metal-Insulator Transition showed
an unexpected feature however: the resistance followed the activated (or Arrhenius) law
R ∝ exp

(
T0/T

)
[Shahar et al., 1992; Shammass et al., 2012; Givan et al., 2012].

The temperature T0, determined from the slope of the ln(R) versus T−1 curves, decreases
upon approaching the MIT (see blue triangles on Fig. 2.2 Right panel).

Then [Shahar et al., 1992] observed a striking new feature: by lowering disorder further
the system changes drastically; it becomes a superconductor. In this new state the sample
resistance drops to zero below a critical temperature Tc and T0 cannot be defined.
This leads to the conclusion that amorphous indium oxide experiences a Superconductor-
Insulator Transition (SIT) driven by disorder.

Numerous works confirmed the SIT in this material [Shahar et al., 1992; Kowal et al., 2008;
Mitra et al., 2016], all displaying the transition between a thermally activated insulator and
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a superconductor. Fig. 2.2 displays the gradual suppression of T0 upon decrease of disorder
(blue curves), and the sudden apparition of superconductivity (red curves).

A surprising relation of superconductor and insulator In the thermally activated An-
derson insulator typical energy separation between two localized states in dimension d is

δloc ∼
[
νξdloc

]−15 Transport occurs by hopping to the nearest neighbour by thermal activation
above δloc, as σ(T ) ∝ exp

(
−δloc/kBT

)
.

The experimental work of [Shahar et al., 1992] suggests that the activation energy kBT0 ∼ δloc

becomes nearly equal to Tc at the SIT. This can be seen from Fig. 2.2, where Tc and T0 curves
meet at the transition.
Therefore one could argue that the activation energy, by essence related to electronic localiza-
tion, is also related to superconducting energy scales.
This observation triggered intense theoretical works trying to reconcile strongly localized
insulators and superconductors.

As we shall see now, other experimental works further blurred the line separating insulator and
superconductor in indium oxide.

2.1.2 Experimental demonstration of the interplay of insulator and
superconductor

A different and very instructive experimental approach consisted in probing the local properties
of superconducting disordered indium oxide films using a Scanning Tunneling Microscoscope
(STM) via the local measurement of the tunneling conductance G that can be directly related
to the density of states. This method therefore allows for the measurement of the local value
of the superconducting gap (noted Eg in the following, and not ∆ as will become clearer
soon).

Fig. 2.3 shows such tunneling spectroscopy for two disordered indium oxide samples performed
by [Benjamin Sacépé, Dubouchet, et al., 2011]. At lowest temperatures (blue curve on panel
a) the density of states (DoS) presents a typical result compatible with BCS theory: below
Eg the DoS is suppressed, while it increases sharply at the edges of the gap, forming what
are known as coherence peaks. These features are expected in BCS theory as they host the
missing spectral weight below the gap.

The surprising discovery of [Benjamin Sacépé, Dubouchet, et al., 2011] is made at higher
temperatures, above the critical temperature Tc for which superconductivity should break
down, and therefore the gap should close. What can be seen in Fig. 2.3 is strikingly different:
the tunneling gap remains large above Tc, while the coherence peaks smear out (see panel c).
Measurements on an even more strongly disordered sample (panels b-d) show that, for some
positions of the STM tip on the sample coherence peaks could vanish even at lowest tempera-
ture, evidencing strong spatial fluctuations of the tunneling gap.

Using this technique similar results we obtained on several disordered superconductors such as
TiN [B. Sacépé, C. Chapelier, et al., 2008; Benjamin Sacépé, Claude Chapelier, et al., 2010]
and NbN [Chand et al., 2012; Kamlapure, Das, et al., 2013; Noat et al., 2013; Lemarié et al.,

5For a density of states ν the number of states in a localization volume ξdloc on d dimensions is νξdloc.
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Fig. 2.3. Observation of the pseudogap in indium oxide by local tunneling spec-
troscopy. Local tunneling conductance G was measured as a function of bias voltage V and
temperature in two indium oxide samples of different disorder (a-c correspond to a low-disorder
sample while sample b-d was strongly disordered). The tunneling conductance is proportional
to the local density of states and provides a measure of the spectral gap, which survives at
temperatures above Tc (denoted by the black dashed line). The superconducting state is
destroyed at Tc, as evidenced by the vanishing coherence peaks. From [Benjamin Sacépé,
Dubouchet, et al., 2011]

2013; Carbillet et al., 2020], where a strong spatial inhomogeneity of the gap was found.
Fig. 2.4 shows such gap spatial inhomogeneities measured in disorded TiN by [B. Sacépé,
C. Chapelier, et al., 2008]. Similar results were found in indium oxide but not published [B.
Sacépé, Private communications]
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Fig. 2.4. Gap spatial inhomogeneities in TiN. The gap amplitude measured by STM
in disordered titanium nitride fluctuates strongly, forming regions where the tunneling gap
remains large, and regions where it is suppressed. From [B. Sacépé, C. Chapelier, et al., 2008]

These findings suggest an unusual mechanism for the formation of superconductivity: the
presence of a superconducting gap above Tc (but without coherence peaks) seems to indicate
that formation of Cooper pairs and long-range superconducting state do not occur simulta-
neously. One could say that pairs of electrons pre-form at temperatures well above Tc, and
finally condense at the critical temperature into the superconducting state.
This scenario is quite different from the standard BCS mechanism for which the opening of
a gap ∆ is concomittant with the superconducting state. The unexpected spectral gap that
survives above Tc is then often called a pseudogap.

Further, these observations can be made only for relatively disordered films. For clean samples
the local DoS behaves according to BCS theory, suggesting that the dissociation of pairing
and condensation energy scales is induced by disorder.

By controlling the point-contact conductance of a scanning tip microscope on a supercon-
ducting indium oxide sample, [Dubouchet et al., 2018] were able to probe not only single
electron tunneling, but also tunneling of Cooper pairs (charge 2e), allowing to clearly identify
a new energy scale, called the collective gap ∆coll (see right graph of Fig. 2.5). This energy
related to Cooper pairs is of the order ∼ Tc, further suggesting that ∆coll is related to the
superconducting state, while Eg is independent of it. This measurement clearly shows the
dissociation of pairing (energy ∼ Eg) and condensation (∼ ∆coll) energy scales in strongly
disordered films.

A final, clear-cut evidence is found in the work of [D. Sherman et al., 2012; Daniel Sherman,
Gorshunov, et al., 2014], who demonstrate that the pseudogap also survives in the insu-
lating state.
This time, a planar tunneling junction is used to probe the superconducting gap of two indium
oxide samples, one is superconducting (blue curve in Left graph of Fig. 2.5) and behaves
like a superconductor both from resistance measurements and tunneling spectroscopy (with
coherence peaks), and an insulating sample (diverging resistance at low temperature) that still
shows a large tunneling gap (orange curve).
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Fig. 2.5. Pseudogap in the insulator and collective gap. Left: Measurement of the
pseudogap in insulating (as checked in transport) and superconducting indium oxide at finite
temperature T = 1.85 K. Eg is comparable in both cases but coherence peaks vanish in the
insulator. From [Daniel Sherman, Gorshunov, et al., 2014]. Right: STM measurement of a
superconducting indium oxide sample. By varying the point-contact conductance between the
STM tip and the film [Dubouchet et al., 2018] were able to probe single electron tunneling
(measuring Eg, lowest curves) and Cooper pair tunneling by Andreev spectroscopy (upper
curves). In the Andreev regime a gap of size ∆coll appears within the single particle gap.

To conclude, it has been demonstrated experimentally that the insulating indium oxide (char-
acteristic energy scale T0) could turn into a superconductor by lowering disorder (with typical
energy ∼ Tc). Also, a gap in the single particle density of states, called the pseudogap, survives
across the superconducting transition (T > Tc) and the Superconductor-Insulator Transition
(above a critical disorder).
These intriguing facts could actually be related: is the activation energy T0 related to the
pseudogap ? How can we understand the preformation of Cooper pairs in the insulating state ?
To try to answer these questions we now briefly summarize recent theoretical models dealing
with the interplay of superconductivity and disorder.

2.2 | From Anderson insulator to fractal superconduc-
tor

The question of the fate of superconductivity in presence of strong disorder was raised by P.W.
Anderson shortly after the development of BCS theory. He demonstrated that conventional
superconductors are robust with respect to disorder, i.e the critical temperature Tc remains
unaffected by impurities [P. Anderson, 1959]. While this general statement holds for a large
variety of dirty superconductors it has become clear that this Anderson theorem does not apply
at stronger disorder levels, especially close to a SIT.
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The effect of Anderson localization on superconductivity and Tc has been studied extensively
on theoretical ground [Takagi et al., 1982; Ma et al., 1985] but remains a relevant subject for
theoretical and experimental developments.

2.2.1 Extension of Anderson theorem

The interplay of localization and superconductivity is a difficult and complex theoretical problem.
Adding to it interactions (attractive or repulsive) between electrons and between pairs of
electrons (such as Coulomb repulsion) makes the system even more difficult to solve. In the
literature many models have neglected interactions between electrons, in the line of Anderson’s
model.
In the first part of this section we use the same simplification and neglect interactions between
electrons. We consider only the combination of superconductivity (with the possibility for
electron pairs) and the localization of single electrons. We discuss the case of systems for
which the disorder can be assumed 3D (and therefore with the existence of a mobility edge).

[Ma et al., 1985] showed the important result that superconductivity could survive deeper in
the insulating regime than predicted by the Anderson theorem. Their new criterion introduces
an other energy scale, related to the confinement of electronic wavefunctions in a localization
volume:

δloc =
1

ν0ξ3
loc

(2.1)

where ν0 is the average density of states at the Fermi level, ξloc is the localization length and
therefore ξ3

loc is the typical volume occupied by a strongly localized wavefunction.
δloc has the meaning of the mean spacing between (discrete) energy levels in the volume
occupied by a localized wavefunction.
The criterion of [Ma et al., 1985] for the survival of superconductivity reads

∆� δloc (2.2)

where ∆ is the average superconducting gap.
Eq. (2.2) can be understood as the fact that superconductivity is favorable when more than
two energy levels of localized electrons are included in the energy interval of order ∼ ∆.
Equivalently this relation can be written as a condition on characteristic lengths:6 ξloc � ξ
where ξ is the superconducting coherence length (that is, the typical size of a Cooper pair
must be comprised in a localization volume). Both interpretations are pictured in Fig. 2.6.

2.2.2 Attractive Bose-Hubbard model

There is an obvious theoretical interest in allowing attractive electron-electron interactions
(which could be mediated by the coupling to phonons, or other processes). In this section we
describe the numerical works of [Ghosal et al., 2001; Bouadim et al., 2011] in which attraction
between single electrons is added to an Anderson insulator, and we show that this simple assump-
tion has very peculiar and important consequences on the emergence of a superconducting state.

The works of [Ghosal et al., 2001; Bouadim et al., 2011] consider the simplest Hamiltonian that
accounts for both Anderson localization and interactions between electrons in a two-dimensional
system. Attraction is described by the potential U entering the interaction Hamiltonian Hint.

6Close to the metal-insulator transition gc ∼ 1 and ξloc diverges which leads in 3D (see section A.3.2)
ν0ξloc ∼ (~D)−1. Using the dirty limit BCS relation for the coherence length ξ2 ∼ ~D/∆ Eq. (2.2) finally
reduces to ξloc � ξ.
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Fig. 2.6. Extension of Anderson’s theorem. [Ma et al., 1985] showed that superconduc-
tivity survives localization until ∆� δloc (right), or equivalently ξloc � ξ (left).

The resulting model is then the sum of two terms: H = H0 +Hint where

H0 = −t
∑
〈ij〉σ

(
c†iσcjσ + h.c

)
+
∑
iσ

(Vi − µ)niσ (2.3)

Hint = −|U |
∑
i

ni↑ni↓ (2.4)

where c†iσ (ciσ) is the fermionic creation (annihilation) operator with spin σ on site ri of
a square lattice. t is the nearest-neighbour hopping constant, i, j are nearest neighbour
sites and |U | is the pairing interaction. niσ = c†iσciσ and µ is the chemical potential. Dis-
order is represented by the random variable Vi uniformly distributed over [−V, V ] at each site ri.

In this model all interactions between electrons are neglected except for the attraction |U |.
In particular it does not consider Coulomb interactions, a contribution that should be added
later on to describe a real system. It is a minimal model containing both localization (setting
|U | = 0 one recovers the Anderson problem) and a BCS-like description of paired electrons on
the same site giving rise to superconductivity (for V = 0). This Hamiltonian is often refered
to as the negative-U (or attractive) Hubbard model.

By treating the problem using a mean-field Bogoliubov-de-Gennes method the authors demon-
strate the existence of a pairing order parameter ∆OP, similar to the usual BCS gap in a
conventional superconductor. When this quantity is non-zero pairs of electrons can be found in
the system. Below a critical temperature Tc ∝ ∆OP and for low disorders the system behaves
like a superconductor.

Inhomogeneous order parameter

The first important result of [Ghosal et al., 2001] is the demonstration of the strong spatial
variations of the local order parameter mean values ∆OP(ri), the result of which is shown in
Fig. 2.7.
Upon increase of disorder the order parameter amplitude vanishes locally, forming an electron-
ically granular structure of superconducting islands with large pairing amplitude embedded
in an insulating matrix with ∆OP(ri) ≈ 0. It is crucial to note here that the initial disorder
potential V (r) is randomly distributed, without intrinsic granularity.
Therefore the simulations show that order parameter granularity emerges naturally
from homogeneous disorder.
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Fig. 2.7. Inhomogeneous local order parameter for three disorder strengths V =
0.1, 1, 2. The BdG mean-field treatment of the attractive Bose-Hubbard model carried out
by [Ghosal et al., 2001; Bouadim et al., 2011] shows the strong inhomogeneity of the local
value of the order parameter ∆OP(r) as disorder is increased. The intensity of blue signals
the value of the order parameter, with a deep blue corresponding to larger values and white
signaling lowest values. As disorder is increased regions with vanishingly small amplitudes
appear, forming a granular structure of superconducting islands at the scale of the coherence
length ξ immersed in an insulating matrix. From [Bouadim et al., 2011].

A pseudogap predicted by numerical simulations

The authors then combine the BdG approach to Quantum Monte Carlo (QMC) simulations,
which have the advantage of considering thermal and quantum fluctuations of the supercon-
ducting phase as well as the spatial fluctuations of the order parameter amplitude. In particular
they were able to simulate the single-particle density of states N(ω) as displayed in Fig. 2.8
for different disorder realizations.

Their main findings are the following:

• A gap in the single-particle density of states is present below Tc, accompanied with
coherence peaks. However, in the non-superconducting state for temperatures above
Tc the DoS remains suppressed (forming a pseudogap) and the coherence peaks vanish
(see panels C-D of Fig. 2.8)

• At T = 0 the gap in the single-electron density of states Eg survives in the insulating state.
Its value remains finite in the insulator, and even increases with disorder (panels A-B of
Fig. 2.8). The pseudogap in the insulator even remains upon increase of temperature
(panels E-F of Fig. 2.8)

Therefore these simulations evidence the increasing deviation from standard BCS theory with
disorder. The existence of a gap Eg in the single-particle density of states becomes unrelated
with the long-range order characterizing superconductivity, the latter being related to the order
parameter ∆OP. As seen in Fig. 2.9 (Left) these two energy scales coincide at low disorder
V � 1 where BCS theory is expected to hold, but separate upon increase of disorder (green
shaded area). The missing energy ∆P = Eg −∆OP is called a pseudogap and persists in the
normal and insulating states.

An energy scale ωpair, defined as the energy cost to add a pair of electrons to the insulator,
increases with disorder (see Right panel of Fig. 2.9). This two-particle energy gap is nearly
zero close to the SIT (since there is no cost to add a pair to the superconducting condensate),
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Fig. 2.8. Single-particle density of states. Top graphs shows the density of states N(ω)
and bottom plots displays the corresponding spectra. Left (A,B): disorder dependence of
N(ω) for a fixed low temperature T = 0.1 (in dimensionless units). A hard gap (black region)
persists for all disorders V below and above the SIT (at disorder Vc = 1.6 shown by the
horizontal dashed line) but the coherence peaks (red regions) exist only in the SC state and
not in the insulator. Center (C,D): T -dependence of N(ω) for the superconductor (V < Vc).
The coherence peaks (red) visible in the SC state (for temperatures below Tc, shown by
the horizontal dashed line), vanish for T ≥ Tc. A disorder-induced pseudo-gap persists well
above Tc. Right (E,F): T -dependence of N(ω) for the insulator at strong disorder (V > Vc).
A pseudogap without coherence peaks is observed in a broad range of temperatures in the
insulating state. From [Bouadim et al., 2011].

but going deeper into the insulator this quantity increases. Note the intriguing similarity
between this theoretical phase diagram, where Tc decreases on the superconducting side and
ωpair increases on the insulating side, and the experimental phase diagram shown in Fig. 2.2 in
which the decrease of Tc on the SC side is mirrored by the increase of the activation energy T0

on the insulating side.
We shall discuss later the relation between T0 and the two-particle energy scale.

The apparent increase of Eg upon approaching the SIT is rather surprising. For a standard
superconductor one would expect all energy gaps to close, thence allowing all single electrons
near the Fermi level to contribute to conduction, in a metallic state. Here Eg not only remains
large but also increases when entering the insulating state. [Ghosal et al., 2001] showed that
this behavior comes from properties of Anderson insulators, as we briefly discuss now.

From a mean-field treatment of the attractive Bose-Hubbard Hamiltonian Eq. (2.4), it is
possible to show that at small disorders the gap is identical to the order parameter: Eg = ∆OP,
as expected from standard BCS theory in a clean system.
Looking now at the strong disorder limit, where eigenstates of the non-interacting system are
exponentially localized and weakly overlap in space, the single particle gap scales as

Eg ∼
|U |
2ξ2

loc

(2.5)
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Fig. 2.9. Energy scales predicted by simulation of the attractive Bose-Hubbard
model. Left: Numerical simulations of spectral (Eg) and superconducting (∆OP) gaps using
the Bogoliubov-de Gennes approach. The disorder strength is caracterized by the impurity
potential V . For V � 1 spectral gap Eg and order parameter ∆OP are the same, as expected
for a BCS s-wave superconductor. Upon increase of V towards the SIT the two energy scales
separate, with an enhancement of Eg and a suppression of ∆OP. The missing energy scale is
the pseudogap ∆P. Adapted from [Ghosal et al., 2001]. Right: Reproduction of the phase
diagram proposed in [Bouadim et al., 2011] using the QMC method. Critical temperature Tc,
spectral gap Eg and two-particle gap ωpair are shown on both sides of the SIT. The QMC
approach accounts for phase fluctuations in addition to spatial inhomogeneity.

where ξloc is the localization length of the Anderson problem and |U | is the attractive potential
responsible for pairing.
This calculation is approximate and expected to hold only for localized states with negligible
overlap (thus deep in the insulating regime). The authors have however checked numerically
that diagonal matrix elements are indeed the dominant contribution.

Therefore the survival and enhancement of the spectral gap Eg across the disorder-
driven SIT can be explained by Anderson localization effects. The decrease of
localization length ξloc when going deeper in the insulating regime and further from
the mobility edge7 leads to an increase of the spectral gap Eg with disorder.

The existence of the gap Eg in the single-particle density of states above Tc and in the
insulating state suggests the presence of paired electrons in these phases (with pairing energy
∼ Eg/2). [Bouadim et al., 2011] put forward the possibility that local attraction between
electrons is enhanced because of their confinement in the small localized volume ξdloc. In this
picture Cooper pairs are formed thanks to localization of electrons. However these electron
pairs do not necessarily provide a superconducting state.

One then has a system formed of non-interacting electron pairs (remember that the system
considered here neglects any other interaction than the potential for bound pairs |U |), which

7The localization length scales with the distance to the mobility edge as ξloc ∼ |E − Ec|−ν .
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can be either in a global superconducting state, or on the contrary in an insulating state. We
now discuss the mechanism that the authors propose for the suppression of the superconducting
state, using the criterion developped in [Scalapino et al., 1993].

Superconductivity is ruled by phase fluctuations

[Ghosal et al., 2001; Bouadim et al., 2011] estimate the zero-T superfluid stiffness Θ(0) of
the superconducting state via the current-current correlators [Scalapino et al., 1993]. They
observe a decrease of Θ with disorder, reaching zero at a critical disorder Vc marking the
transition between superconducting and insulating states.8

Since the system under study is two-dimensional, it should be in the BKT-class (see section
1.3) and therefore have a superconducting state ruled by classical phase fluctuations. This
allows to estimate the critical temperature from the superfluid stiffness as Tc ∼ Θ(0) [Emery
et al., 1995]. The resulting evolution of Tc ∼ Θ(0) estimated from these simulations is shown
in the phase diagram of Fig. 2.9.

The criterion that determines whether the system is in a superconducting or insulating state is
now the superfluid stiffness Θ (∼ Tc), irrespective of the value of single particle gap Eg: a
non-zero superfluid stiffness signals superconducting long-range order, and the critical disorder
at which Θ goes to zero determines the SIT. At low disorder the BCS relation Eg ∝ Tc ∝ ∆BCS

holds, signaling that the spectral gap is still related to the BCS gap. The latter simultaneously
quantifies local pairing attraction and long-range order. Upon increase of disorder Eg and Tc
become unrelated, and Θ governs the superconducting state.

In [Seibold et al., 2012] it was demonstrated (again using the BdG treatment of the attrac-
tive Bose-Hubbard model) that upon increase of disorder quantum phase fluctuations were
enhanced, as evidenced by a strong reduction of the superfluid stiffness, eventually leading to
destruction of superconductivity.
In this picture current follows a quasi one-dimensional percolative path along the ”good” super-
conducting regions with large local order parameter ∆(ri). Concurrently local superconducting
phase gradients ∇ϕ(ri) are larger in weakly superconducting regions, leading to smaller local
stiffnesses. The ’macroscopic’ phase stiffness Θ vanishes when no percolative path exists along
the sample.

2.3 | Theory of pseudogap

While the numerical works presented in section 2.2.2 give an important qualitative glimpse
at the properties of paired insulators, with the intriguing predictions of pseudogap, spatial
gap fluctuations and SIT, they do not provide a quantitative description of a real material
defined by intrinsic parameters such as Cooper pairing constant λ, distance to the mobility
edge |EF − Ec| or microscopic details of disorder. Importantly the simulations are performed
for a 2D system with strong coupling U while real experimental realizations involve most
frequently weak coupling. Also, these numerical simulations do not explain the origin of
pairing in an Anderson insulator. Finally a consistent theory of disordered superconductors
should be able to provide an interpretation of the experimentally measured activation energy T0.

8In [Ghosal et al., 2001] the BdG method was used and fluctuations could not be taken into account.
They found that the phase stiffness did not go to zero. When adding quantum and thermal fluctuations with
the QMC approach in [Bouadim et al., 2011] such issue was solved.
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We now present the theory of pseudogapped superconductors developped my Mikhail Feigel’man
and collaborators and published in an on-going series of paper [M. V. Feigel’man, Ioffe, Kravtsov,
et al., 2007; M.V. Feigel’man et al., 2010; M. V. Feigel’man, Ioffe, and Mézard, 2010].

The starting assumption of this theory is that local pairing of electrons originates from the
fractal nature of electronic wavefunctions close to criticality in Anderson insulators. A reminder
of the properties of fractals and their relation with electronic wavefunctions in the Anderson
problem can be found in Appendix A.3.5.
Due to their fractal spatial extension on short scales smaller than the localization length
r < ξloc, localized electron wavefunctions occupy a smaller volume in space which enhances the
phonon-mediated attraction leading to pairing. In this picture Cooper pairs naturally emerge
from the insulating or metallic state as pairs of incoherent spatially localized electrons.

2.3.1 On the origin of local pairing in the insulator

Following the calculations of M. Feigel’man we explain in this section why preformed pairs
of electrons should develop in the Anderson insulator, in some materials, and especially in
amorphous indium oxide. The two conditions for this are: low carrier density (n ∼ 1021 cm−3

for indium oxide) and high dielectric constant of the insulating matrix. Conduction electrons
interact via this insulating matrix, notably through repulsive Coulomb interactions and phonon-
mediated electron-electron attraction. We show that attractive interactions can overcome
Coulomb repulsion, leading to preformed pairs.

One must keep in mind at this point that the dielectric constant of Anderson insulators is
actually not a constant per se, but rather a function of the length-scale involved. Therefore
one has significantly different values of dielectric constant depending on the spatial range of
the interaction of interest.
For instance it was demonstrated in [M V Feigel’man et al., 2018] that the major contribution
to the macroscopic dielectric constant κ comes from large spatial scales ∼ (5− 10) ξloc. This
is the value of κ that enters the expression of long-range Coulomb interactions between
electrons (or between electron pairs).
The relevant dielectric constant for this discussion, however, concerns very short range in-
teractions: Coulomb repulsion between two electrons localized within the same localization
volume have a range r ≤ ξloc. Here the dielectric constant has a value of the order of κ1 ≈ 50.9

The key difference between the two types of interactions between electrons in the insulator
(phonon-induced attraction and Coulomb repulsion) is that the first one is local (with typical
length-scale of lattice constant), while the second one is long-range, VC(r) = e2/κ1r with
r ≤ ξloc. It can be shown that the fractal nature of electron wavefunctions enhances the former,
leading to an overall slightly larger local attraction between electrons than their repulsion.10

9The value κ1 = 30 is known for insulating crystalline indium oxide. [Ovadyahu, Private communications].
10The goal is to estimate the average matrix elements of the interaction V (r) for localized electron

wavefunctions Ψ:

U =

∫
dr dr′ V (r− r′)Ψ2(r)Ψ2(r′) (2.6)

for the two competing interactions.

The local phonon-mediated attraction is of the form Ve−ph(r− r′) = −ge−phδ(r− r′)l3 where ge−ph is a
coupling constant with dimension of energy and l is a short-scale cutoff of the order of the lattice constant.
The Coulomb potential is VC(r) = e2/κ1r with r ≤ ξloc.
Using the properties of multifractal wavefunctions [M. Feigel’man, Private communications] estimates the
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Therefore local Coulomb repulsion between electrons can be overcome by phonon-
induced local attraction, leading to preformed pairs.

2.3.2 Pseudo-gap in fractal insulators

We start by studying the effects of performed Cooper pairs in the insulating state predicted by
[M.V. Feigel’man et al., 2010].

Let us consider a BCS-like ground state in the basis of localized single-electrons {Ψi}.

H =
∑
jσ

εjc
†
jσcjσ −

λ

ν0

∑
jk

Mjkc
†
j↑c
†
j↓ck↓ck↑ (2.9)

Mjk =

∫
Ψ2
j(r)Ψ

2
k(r)dr (2.10)

where εj = Ej − EF is the single-particle energy of the eigenstate j counted from the Fermi

energy, c†jσ is the associated creation operator for spin σ and ν0 is the density of states. λ is
the dimensionless Cooper coupling constant, which is assumed small. This assumption is an
important difference from the numerical works above.
This Hamiltonian is the minimal model containing localization of electrons at sites j, k as well
as pairing between these localized electrons.

Looking at the diagonal matrix elements Mjj one recognizes the inverse participation ratio
(IPR) discussed in section A.3.5, with typical scaling with system size M̄ ∝ L−D2 , and fractal
dimension D2 ≈ 1.3. Using the short-scale cutoff for fractals structures L0 (energy E0) leads
to the typical value of matrix element near the mobility edge

M̄ ≈ L−3
0

(
ξloc

L0

)−D2

= ν0E0

(
L0

ξloc

)D2

(2.11)

In the insulating phase, the authors demonstrate that the energy cost to break a preformed
pair of localized electrons in the same orbital is 2∆P ≈ λ/ν0M̄ . The energy scale ∆P is the
parity gap first introduced by [Matveev et al., 1997] in ultra small superconducting grains.
The parity effect states that the energy of a system of preformed pairs is lower for an even
number of electrons than for the nearest odd number of electrons. These considerations lead
to an estimation of the parity gap ∆P as

ratio of attractive and repulsive interactions as

|Ue−ph|
UC

= ge−ph

(
l

ξloc

)D2 πκ1ξloc

e2Jc
(2.7)

where D2 = 1.3 is the fractal dimension at criticality and Jc ≈ 120 is related to the wavefunction overlap.
The consequence of the fractal nature of wavefunctions resides in the factor (l/ξloc)

D2 : this term is
significantly enhanced compared to the bare value obtained usually by taking d = 3.

Using physically relevant estimates for the constants entering Eq. (2.7) gives

|Ue−ph|
UC

≈ 8λ0 > 1 (2.8)

where λ0 = ge−phl
3ν0 is the dimensionless Cooper attraction constant. Using the approximate value λ0 ≈ 0.128

from [Benjamin Sacépé, Dubouchet, et al., 2011] gives 8λ0 = 1.024 > 1.
Despite the fact that λ0 < 1, Cooper instability occurs for arbitrary small attraction strength, provided it
overcomes Coulomb repulsion.
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∆P =
λ

2
E0

(
L0

ξloc

)D2

∝ (Ec − EF )νD2 (2.12)

where last equality originates from the scaling of the localization length as ξloc ≈ L0

[
E0/(Ec − EF )

]ν
with the scaling exponent ν ≈ 1.6.
The result ∆P ∝ λξ−D2

loc given by Eq. (2.12) is to be compared with the estimation Eg ∝ |U |ξ−dloc

obtained from numerical simulations in Eq. (2.5). The results are qualitatively the same,
with the major difference that the parity gap model accounts for the fractal structures of
electronic wavefunctions (with dimension D2 < d), which further enhances the spectral gap in
the insulator. Fig. 2.10 shows an illustration of the parity gap.

Fig. 2.10. Parity gap. In the insulator for ∆ < δloc switching on attractive interactions
between electrons within the same localized volume opens a parity gap ∆P in the single-electron
density of states. The latter is of intrinsically different origin from the usual BCS gap and is
not accompanied with coherence peaks.

Note that this gap induced by parity effects is intrinsically different from the usual BCS gap
that originates from many-body correlations of electrons with energy within ∼ ∆BCS from the
Fermi level. Here all states occupied by a bound pair of localized electrons are shifted down
in energy with respect to the Fermi level by the quantity ∆P , leading to a DoS of the form
ν(ε) = θ(ε−∆P ) where θ is a step function and ε = E − EF . Therefore the condition for
the conservation of the total number of states does not require the apparition of coherence
peaks at the border of the gap, unlike the usual BCS mechanism. The parity gap bears some
qualitative resemblance with the Coulomb gap discussed in section A.4.
Therefore one should note that this picture of locally preformed pairs is not equivalent to a
model of incoherent superconducting puddles embedded in an insulating matrix and connected
by Josephson coupling between islands. Indeed in this picture local spectroscopy of the DoS
should show coherence peaks in the good superconducting regions, which is not required here.

[M.V. Feigel’man et al., 2010] suggest that the parity gap can be identified with
the pseudogap experimentally observed in disordered superconductors.
This theory also gives an interpretation to the activation energy T0 observed in the temperature
evolution of resistance for insulating indium oxide samples. ∆P is the energy scale that enters
the thermally activated conductivity of strongly disordered insulators by hopping of single
localized electrons σ(T ) ∝ exp

[
−(T0/T )

]
close to the mobility edge, with the activation

energy:
T0 ∼ 0.25∆P ∝ |σ − σc|νD2 (2.13)
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where σ is the high temperature conductivity and σc is the critical conductivity at the Anderson
metal-insulator transition11.

2.4 | Fractal superconductivity

Decreasing the disorder eventually leads to ∆ > δloc for which superconducting correlations
develop between localized preformed pairs. Transport then happens by coherent hopping of
localized Cooper pairs from site to site.

Close to the SIT all the energy scales of the problem (notably Tc and ∆) are much smaller than
the pseudogap ∆P . Therefore the system can be understood by the Anderson pseudo-spin
model (first introduced in [P. W. Anderson, 1958b] as a reformulation of BCS theory) which
describes hopping of the preformed pairs between localized single particle states:

H = −
∑
i

2ξiS
z
i −

∑
〈ij〉

(
JijS

+
i S
−
j + h.c

)
(2.14)

where S+
i /S

−
i is the creation / annihilation operator for a pair at site i. They are derived from

fermionic operators as 2Szi = a†i↓ai↓ + a†i↑ai↑ − 1, S+
i = a†i↑a

†
i↓ and S−i = ai↓ai↑.

Szi = +
1

2
/− 1

2
corresponds to occupied (resp. unoccupied) Cooper pair at site i. The matrix

elements Jij for the hopping between single-electron wavefunctions localized at sites i and j is
given by

Jij = g

∫
Ψ2
i (r)Ψ

2
j(r) dr (2.15)

Fig. 2.11. Anderson pseudospins and Cooper pair hopping. Schematic representation of
the pair-hopping process between localized single electron states described by the Hamiltonian
(2.14).

Second term of Eq. (2.14) describes pair-hopping, and competes with the first term that
describes random on-site potential. The preformed pairs are hard-core bosons (they cannot
occupy the same quantum state) and therefore the pair operators are equivalent to spin-1

2

operators S. A schematic illustration is displayed in Fig. 2.11.

In the superconducting state pair-hopping occurs, i.e. the quantum-statistical average values
∆i =

∑
j Jij〈S

−
j 〉 are non-zero. In the opposite limit where ∆i = 0 Cooper pairs are localized.

11We used (Ec − EF ) ∝ (σc − σ)
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The quantity of interest is the effective coupling constant J ∼ JijZ where Z is the average
number of connections per pseudo-spin i.e the effective number of neighbours of a site i on an
interaction graph. Upon increase of disorder (thus reduction of electron density) the number
of neighbours Z decreases, leading to a weakening of the effective coupling strength J .
At a given critical coupling Jc the system undergoes a superconductor-insulator
transition at T = 0.

The model presented above was used by [M.V. Feigel’man et al., 2010] to demonstrate
analytically the qualitative observations made from numerical simulations of the attractive
Bose-Hubbard model, amongst which strong local inhomogeneity of the superconducting order
parameter and persistence of a pseudogap. Especially the distribution of the order parameter
amplitude is found to be extremely broad [A. V. Khvalyuk et al., 2021].

2.5 | Some properties of disordered superconductors

2.5.1 BKT transition in indium oxide

Experimental studies of the superfluid density suppression at finite temperatures in amorphous
indium oxide films were carried out in [Fiory et al., 1983; R. Crane et al., 2007; R. W. Crane
et al., 2007; Liu, Kim, et al., 2011; Liu, Pan, et al., 2013; Misra et al., 2013], observing a
deviation from BCS theory near Tc with a qualitative agreement to a BKT transition.

Both low-frequency measurements of [Fiory et al., 1983] (see Fig. 2.12 Left panel) and studies
in the gigahertz range (Fig. 2.12 Right panel) suggest a quantitative aggreement with the
universal BKT relation TBKT

c = (π/2)Θ(TBKT
c ) in amorphous indium oxide. With one subtlety

however: at large frequencies superconducting correlations survive above Tc, and the (non-zero)
superfluid stiffness becomes strongly frequency-dependent.

Fig. 2.12. BKT transition in amorphous indium oxide. Left: Drop of inverse kinetic
inductance L−1

K ∝ Θ near Tc at low frequency f ∼ 150 Hz. From [Fiory et al., 1983]. Right:
Suppression of Θ with temperature measured at frequencies f ∈ [0.2, 15] GHz from [Liu, Kim,
et al., 2011]. The universal relation TBKT

c = (π/2)Θ(TBKT
c ) is shown by the dashed pink line.

TBKT (corresponding to the vertical dashed line) is the temperature at which the superfluid
stiffness becomes frequency-dependent and the sample sheet resistance simultaneously drops
to zero.
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This is expected, as the sharp, universal BKT superfluid jump to zero actually occurs in the
zero-frequency limit only (corresponding to infinite length scale). Therefore a macroscopic
sample will have a vanishing resistance whenever the superconducting phase is ordered over its
entire length only.

Superconductivity on short scales is not necessarily destroyed still. This is what a high-frequency
measurement can demonstrate: Θ(ω) measures the superfluid stiffness on length scales set
by the probing frequency ω.12 Above Tc the size of phase-coherent regions decreases with
increasing frequency: a large measurement frequency will probe smaller regions in which
superconducting correlations remain, leading to an overall larger superfluid stiffness. Pushing
this argument further, this suggests that at lower frequencies one must inevitably average over
’bad’ superconducting regions, which reduces the superfluid stiffness.

Such frequency-dependent behavior can be seen from Fig. 2.12, where superfluid stiffness
curves separate upon increasing frequency above TBKT. It was further demonstrated in [R. W.
Crane et al., 2007] that at higher frequencies ∼ 100 GHz the superfluid stiffness’ dependence
with temperature approaches the usual BCS prediction. The temperature at which Θ becomes
frequency-dependent can be associated with TBKT, as is further confirmed by the vanishing of
DC resistance at this temperature.

2.5.2 Survival of superconducting correlations across the SIT at T =
0

Recent works have focused on the AC response of amorphous indium oxide in a perpendicular
magnetic field, driving the superconductor into an insulating state and probing the frequency-
dependent superfluid stiffness across the transition [R. Crane et al., 2007; Liu, Pan, et al.,
2013; Misra et al., 2013]. These works, which are the first finite frequency studies of the
(field-tuned) SIT in indium oxide, further confirm the existence of short-scale superconducting
correlations in the insulating state.

[Liu, Pan, et al., 2013] observe a strong frequency dependence of the zero-T Θ for high
magnetic fields, where the DC resistance signals an insulator, while low-B measurements
show a frequency independent superfluid stiffness. Similar measurements performed on a
more disordered indium oxide sample [R. Crane et al., 2007] show a persistence of short-scale
superconducting correlations at even larger fields.
These observations have been interpreted as an additional experimental demonstration of the
presence of localized preformed pairs in the insulating state of indium oxide near criticality: it
is insulating on long length scales but shows signatures of superconductivity on the local scale.

2.5.3 Electrodynamics of disordered superconductors

We have already mentioned the low-frequency experimental evidences for a pseudogap and order
parameter inhomogeneities in amorphous indium oxide, but also in TiN [B. Sacépé, C. Chapelier,
et al., 2008; Benjamin Sacépé, Claude Chapelier, et al., 2010] and in NbN [Chand et al., 2012;

12This length is proportional to the vortex diffusion length during one radiation cycle (which scales with
frequency f as ∝ (D/f)1/2) [Liu, Kim, et al., 2011], and is potentially shorter than the average inter-vortex
distance. In these regions the superconducting phase is virtually unaffected by the presence of free vortices,
leading to local ’good’ superconducting islands which preserve phase coherence. Then the superfluid stiffness
goes continuously to zero as the number of free vortices increases. This process varies with frequency, leading
to a clear separation of the Θ(T ) curves above Tc.
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Kamlapure, Das, et al., 2013; Noat et al., 2013; Lemarié et al., 2013]. Other amorphous
materials display similar physics, such as NbSi [Pourret et al., 2006] or MoGe [Mandal et al.,
2020]. We want to stress out that these materials show properties that could be compared to
some high-Tc superconductors (namely pseudogap, inhomogeneities and low superfluid density),
but that a further analogy is hard to establish. The s-wave superconductivity discussed here
might have a quite different origin from that of the cuprates, and this question remains of
great interest for future theoretical works.

We have shown previously that finite frequency measurements probe the phase coherence on
shorter lengthscale, providing new insight on the local preformation of Cooper pairs (above Tc
or in the insulating state). This technique can also be used at low temperatures (∼ 20 mK,
well below Tc) and in the superconducting state (where the phase is coherent over the whole
sample) to measure the superfluid stiffness and gain important knowledge about the role of
phase fluctuations in these systems.

To achieve this goal several experimental techniques have been developed, such as the two-coil
measurement13 [Kamlapure, Mondal, et al., 2010; Yong et al., 2013; Misra et al., 2013; Mandal
et al., 2020] allowing the measurement of the surface impedance at moderately low frequencies
(f ∼ 1 kHz− 100 MHz) and its evolution with temperature, or the THz spectroscopy that
enables a direct measurement of the superconducting gap [Pracht, Scheffler, et al., 2012;
Daniel Sherman, Pracht, et al., 2015; Levy-Bertrand et al., 2019].
Another powerful technique consists in probing the reflection coefficient of a supercon-
ducting sample terminating a coaxial transmission line: by sending a microwave signal
(f = 0.1 − 20 GHz) on the sample and measuring the reflected wave with a commer-
cial vector network analyzer (VNA), one is able to get the sample surface impedance and
consequently its complex conductivity σ(ω). This method is sometimes referred to as Corbino
microwave spectrometer [Liu, Kim, et al., 2011; Mondal, Kamlapure, et al., 2013; Liu, Pan,
et al., 2013].

An example using this method is shown in Fig. 2.13, where three distincts measurements
techniques (STM tunneling conductance, DC resistance and Corbino microwave spectroscopy)
are combined to obtain a phase diagram of NbN samples as a function of disorder. A pseudogap
(∆P = kBT

∗) opens with increasing disorder as evidenced by the STM data and separates
from the critical temperature Tc. Similar films were studied in transport (resistance versus
temperature curves on right panel), providing the critical temperature, and at microwave
frequencies giving the frequency-dependent conductivity σ(ω) = σ′(ω) + iσ′′(ω) and superfluid
stiffness Θ(ω) (see right panel where two samples are shown, one weakly disordered and
one strongly disordered). Θ(ω, T ) survives just above Tc and vanishes at a temperature T ∗m
comparable to the pseudogap T ∗. Plotting these data alltogether leads to a phase diagram,
clearly demonstrating the influence of the pseudogap on strongly disordered niobium nitride.

13This ingenious technique was introduced by [Hebard et al., 1980] to demonstrate the BKT transition
in thin aluminum films. The sample is placed in between two coaxial coils, the first of which is fed by a
low-frequency ac current (f ∼ 1 kHz− 100 MHz typically), and the second coil measures the induced pick
up voltage. The surface currents induced in the superconducting film perturb the mutual signal, and the
contribution of the film’s kinetic inductance can be extracted. This method is relative by essence (one must
remove the background generated by the electromagnetic environment) but later works demonstrated an
absolute determination of the London penetration length λ with very little uncertainty [Turneaure, Ulm, et al.,
1996; Turneaure, Pesetski, et al., 1998]
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Fig. 2.13. Phase diagram of disordered NbN and complex conductivity. The work of
[Mondal, Kamlapure, et al., 2013] combines STM measurements (providing the pseudogap
temperature T ∗ and the critical temperature Tc), resistivity versus temperature and microwave
spectroscopy. The latter allows the determination of the complex conductivity σ(ω) =
σ′(ω) + iσ′′(ω) and the superfluid stiffness Θ, noted J in this work (see right panel). T ∗m
is defined as the temperature above which the finite frequency superfluid stiffness Θ(f, T )
drops below the experimental resolution. The critical temperature Tc extracted from R(T )
data (dashed vertical line) is in very good agreement with the tunneling measurements, and
corresponds to T ∗m for low disorder only. Strongly disordered samples show a clear separation
of T ∗m, T

∗ and Tc in the pseudogap regime. With modifications from [Mondal, Kamlapure,
et al., 2013].

Still in the GHz range, [R. Crane et al., 2007; R. W. Crane et al., 2007] used resonant cavities
as a probe: by inserting a superconducting sample (amorphous indium oxide here) into a
microwave cavity perturbs the TE resonant modes, whose frequency and quality factor vary
with the sample’s complex impedance.
This approach is powerful and relatively non-intrusive: no direct contact with the sample is
needed, and the measurement is indirect (with the cavity mode as an intermediate) therefore
leaving the disordered superconductor virtually unaffected by the measurement probe. This
scheme is in fact at the basis of the non-demolition readout of superconducting qubits.
With the growing field of circuit quantum electrodynamics (cQED) another technique has
emerged. It consists in turning slabs of superconducting material into resonators operating at
microwave frequencies, the response of which can be measured using commercially available
standard microwave equipment [Camarota et al., 2001; Driessen et al., 2012; N. Maleeva et al.,
2018].
This is the method that we propose to exploit to gain new insight on the superfluid properties
of indium oxide, and will be detailed in next chapter.14

As a final note, microwave spectroscopy of a disordered superconductor should allow to have a
better understanding of the relation between collective excitations and dissipation.
It is known that the apparition of a superconducting long-range order is accompanied by the

14To our knowledge only two previous works measured microwave resonators fabricated with indium
oxide [Astafiev et al., 2012; Dupré et al., 2017].
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generation of collective excitations, among which the plasmons which are the subject of this
thesis.
In standard BCS superconductors most low energy (long-wavelength) modes do not couple to
light and cannot be excited below twice the gap 2∆, therefore reducing optical absorption and
preserving a dissipationless state at microwave frequencies.
In strongly disordered superconductors with locally varying order parameter however, such
modes acquire a dipole moment and couple to light. This leads to subgap optical absorption
and dissipation [Cea et al., 2014].
In pseudogapped superconductors further study of the Hamiltonian Eq. (2.14) [M. V. Feigel’man
and Ioffe, 2018] leads to the observation that above a moderately large disorder short-scale
bosonic collective modes should appear underneath the gap ∆.
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Conclusion

In this chapter we have summarized some of the main properties of strongly disordered
amorphous superconductors, and especially amorphous indium oxide. This material, which
is the focus of the present thesis, is a well-known semiconductor displaying signatures of
strong localization and an Anderson metal-insulator transition (MIT). Surprisingly enough this
material with a tendency towards insulation can turn into a superconductor at lower disorders.

Numerous experimental and theoretical works evidence the non-trivial interplay of localization
and superconductivity near criticality, putting forward the idea that electron pairs preform in
the non-superconducting state (with a related energy scale called the pseudogap), leading to a
two-step process for the onset of superconducting correlations: incoherent, localized Cooper
pairs form before the apparition of superconducting long-range order.
Recent theories suggest that the origin of this pair preformation could be found in the properties
of Anderson insulators near the Metal-Insulator Transition.

The strong spatial fluctuations of the order parameter with disorder are accompanied with an
increasingly important role of phase fluctuations, which become the driving mechanism for the
breakdown of superconductivity through the suppression of long-range phase coherence.
We have discussed how high-frequency experimental probes were adapted to determine the
superfluid response of superconductors, and quantify the role of phase fluctuations via the
superfluid stiffness Θ.
In next chapter we introduce a modern and powerful experimental probe operating at GHz
frequencies: superconducting microwave resonators. These tools can be used to measure
the superfluid response of disordered superconductors, as will be developed in this thesis,
and additionally provide a way to benefit from the unusual properties of pseudogapped
superconductors in future technological applications.
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CHAPTER3
Superconducting microwave resonators: a

superfluid density probe

The purpose of this chapter is to introduce the low-frequency collective excitations of su-
perconductors known as plasmons [Mooij and Schön, 1985]. We show an alternative and
practically useful description of these modes using standard microwave engineering techniques.
As a practical use we demonstrate how microwave resonators can be used to give access to
the superfluid properties of disordered superconductors, which will be studied in details in next
chapters.

3.1 | Finite-frequency response of a superconductor:
Plasma oscillations

We have discussed in section 1.1 the importance of phase fluctuations in thin superconducting
films. By relating the energy required to twist the phase of the order parameter to the kinetic
energy of the superconducting charge carriers (the Cooper pairs) we have shown that phase
fluctuations and motion of Cooper pairs are two faces of the same coin.
Phase gradients lead to non-zero velocity vs = ~/m∗∇ϕ of charge carriers. The latter have a
mass m∗ = 2m and therefore accumulate kinetic energy when put in motion. Such inertia of
Cooper pairs is well described by an equivalent inductive energy that represents the energy
stored in the superconducting condensate:

E =
1

2
LKI

2 (3.1)

where I ∝ ∇ϕ is the supercurrent, and LK is called the kinetic inductance.1

LK is inversely proportional to the wire cross-section S = wd and to the density of charge car-
riers ns, as LK = ml/(2nse

2S) for a wire of length l. For samples with a narrow cross-section
and low enough ns, the effects of kinetic inductance predominate over the usual geometric
inductance.

1We have shown in Eq. (1.4) that the energy cost for phase fluctuations was exactly the kinetic energy of
Cooper pairs. Writing this kinetic energy, say, for a sample of rectangular cross section S = wd (width w and

thickness d) and length l: E =
1

2
m∗v2

s(nsSl) where vs is the superflow velocity and ns is the 3D superfluid

density. The current of Cooper pairs in this sample is I = −e∗(nsS)vs, which allows to rewrite the kinetic

energy as an inductive energy E =
1

2
LKI

2 where the effective inductance is given by LK = m∗l/((e∗)2nsS),

where the mass and charge of a Cooper are related to that of single electrons by m∗ = 2m and e∗ = 2e.

Alternatively, one could introduce the kinetic inductance from the imaginary part of the complex Drude
conductivity as LK = (σ′′s (ω)ω)−1, see Appendix E.1.
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A straightforward comparison between the expressions for the 2D superfluid stiffness Θ
(Eq. 1.2) and the sheet kinetic inductance L�

K = m/(2nse
2d) shows that these two quantities

are proportional2:

Θ =

(
~
2e

)2
1

L�
K

(3.2)

Therefore the resilience of a superconductor against phase fluctuations (quantified by the
superfluid stiffness Θ) is suppressed for large kinetic inductances.

Consistently one can link inertia of the superfluid condensate (kinetic inductance LK) with
phase fluctuations of the order parameter (with energy ∼ Θ

∫
(∇ϕ)2 dr). A small density of

superconducting carriers ns (thus a large LK) implies strong fluctuations of the superconducting
phase (small Θ) that eventually break down the superconducting state (as discussed in section
1.3).
Since we are interested in the properties of superconductors, and more especially in the
mechanisms that can lead to its destruction, the experimentally measurable quantity of interest
here is the kinetic inductance. To measure it we drive the superconductor into a collective
motion and extract LK as we shall describe soon.

3.1.1 Plasmons

The motion of Cooper pairs is collective: the charge density varies along the wire, leaving
uncompensated charges behind. The latter interact at long range via Coulomb interactions
to restore a neutral charge distribution. This mechanism is at the origin of charge-density
oscillations of the superconductor, known as plasmons in analogy with the similar collective
excitations that occur at the surface of normal metals.
Plasma modes3 in superconductors were first discussed theoretically by [Kulik, 1973] and
[Mooij and Schön, 1985] and observed experimentally more recently (see for instance [Chin
et al., 1992; Camarota et al., 2001]).

In the following sections we detail an equivalent description of the plasmon modes, using
only classical electromagnetism provided by Maxwell’s equations. Following a commonly used
method in the field of superconducting quantum circuits we model the collective excitations
as propagating waves in a transmission line operating at microwave frequencies. This picture
allows for a simple integration of superconducting resonators into more complex schemes, such
as coupling to an external environment and measurement apparatus.

3.2 | The microstrip transmission line

First developped in the 1850s following the recent formulation of Maxwell’s equations, trans-
mission lines allowed for the controlled propagation of electromagnetic waves over arbitrarily
large distances. One famous and historically important use of such developments was the
conception of the telegraphic transatlantic line, connecting for the first time in history two
places separated by 2 500 nautical miles.
More recently the development of integrated electronics required the use of a different kind of
transmission line operating over much shorter lengths (a few millimeters) that would allow the
fabrication of complex printed electronic circuits. One of the most popular options for such

2Keeping in mind that 2D and 3D superfluid densities are related by ns,2D = dns,3D.
3The terms of plasmons, plasma modes and collective excitations will be used indifferently in this thesis.
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planar transmission lines is the microstrip, first described in [Grieg et al., 1952].

We give a brief description of a microstrip line and of the basic equations that describe it,
quoting abundantly the microwave engineering book by David Pozar [Pozar, 2011]. The effects
of dissipation and distortion are discussed, before demonstrating that an open-ended portion
of a microstrip line acts as a resonator in the microwave regime.

Fig. 3.1. Microstrip transmission line a) Schematic representation of a microstrip, con-
sisting of two conductors (yellow and orange layers) separated by a dielectric (permittivity εr).
The upper conductor is an infinitely long (l� w, d) and narrow (width w) strip surrounded by
air (ε = 1) and the dielectric substrate. The electric field lines represented by orange arrows
originate from the voltage drop introduced by the presence of the dielectric, giving rise to an
effective capacitance to ground Cg. b) Equivalent electric circuit corresponding to a cut of
the schematic in a) along its length, for a portion of infinitesimal length δz � l.

3.2.1 Telegrapher’s equations

Fig. 3.1 shows a scheme of a microstrip line, composed of two conductors (orange and yellow)
separated by a thick dielectric layer. The line is infinitely long (l � w, d) and narrow with
width w. Realistic microstrips have a finite thickness d which will be considered small compared
to the other lengths d� l, w.

Due to the presence of the dielectric layer charges accumulate in both conducting layers, giving
rise to an electric field ~E. The field is partly located in the dielectric substrate and partly in
the air above the device (see figure).

The equivalent circuit of Fig. 3.1b can be seen as a line cut along the length of the microstrip
of infinitesimal length δz but is actually very general and describes any transmission line. The
total transmission line is then the cascade of such quadripoles. Each circuit portion of size δz
is characterized by the dipoles:

• L = series inductance per unit length for both conductors
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• C = capacitance to ground per unit length between the conductors

• R = series resistance per unit length for both conductors of finite conductivity

• G = conductance per unit length in the dielectric

Since each portion of transmission line has small size δz � l one can safely consider that the
quantities R,L,C,G do not vary over it, allowing to model the continuous transmission line
by a series of lumped circuit elements.

Using Kirchoff’s laws and assuming a sinusoidal time dependence with angular frequency ω as
v(z, t) = V (z)ejωt one can write the telegrapher’s equations:

d2V (z)

d2z
− γ2V (z) = 0 (3.3)

d2I(z)

d2z
− γ2I(z) = 0 (3.4)

that model the evolution of voltage and current along the wire with z.
We have introduced the propagation constant γ:

γ = α + jβ =
√

(R + jωL) (G+ jωC) (3.5)

The solutions for voltage and current can be written

V (z) = V +
0 e
−γz + V −0 e

γz (3.6)

I(z) = I+
0 e
−γz + I−0 e

γz (3.7)

corresponding to superposition of waves traveling towards positive and negative z.
One can now define a characteristic impedance Z0 as

Z0 =
V +

0

I+
0

=

√
R + jωL

G+ jωC
(3.8)

The waves have velocity v and wavelength λ given by

λ =
2π

β
(3.9)

v =
ω

β
= λf (3.10)

Therefore the propagation of electromagnetic waves along a transmission line can be modelled
in a quite general and simple way, and only require knowledge of a few per-unit-length quantities
L, C, R, G. The difficulty resides in the precise determination of these quantities according
to the chosen transmission line geometry.

Next we discuss the models used to estimate these parameters in the microstrip geometry.

3.2.2 Capacitance to ground

The first problem one has to solve is the exact charge distribution along the wire in order to
obtain the capacitance to ground C of the microstrip. While the microstrip geometry is one of
the most used transmission lines for micro-electronics, an exact model for the capacitance in
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the slightly unusual case of a remote ground plane is still lacking. In the following we describe
a method to account for the distributed capacitance of a long and thin strip far from its ground
plane.

In the case of a thin dielectric layer (thickness h ≤ w, d) one can see the problem locally
as a parallel plates capacitance where charges accumulate in the top conductor and the
bottom ground, generating an electric field mostly perpendicular to the plates. The effective
capacitance to ground C ≈ εε0w/h is related locally to the charges and the electrostatic
potential by Q = CV , and is uniformly distributed along the wire. Therefore for a ground
plane in the close vicinity of the top conductor long-range interaction between charges can
be safely neglected. A consequence is that the resulting capacitance is independent of frequency.

For a thicker dielectric however, the long-range Coulomb interactions between distant charges
come into play, modifying the distribution of charges and the effective capacitance. Here
we follow the method described in [Krupko et al., 2018] and calculations for the microstrip
geometry [Denis Basko, Private communications].
We assume point-like charges Q(r) and consider the long-range interactions between them
using the method of image charges. The system possesses two boundary conditions for the
electric field, given by the ground plane with zero potential V = 0 and the interface between
top conductor and air (ε = 1). Therefore the potential must be defined in two regions,
first in the dielectric of dielectric constant ε (−h < z < 0) where h is the dielectric thick-
ness, and in the air above the substrate (z > 0). Fig. 3.2 shows a schematic view of the system.

Fig. 3.2. Screening of a point-like charge Qn by long-range Coulomb interactions.
The electrostatic potential V (r) produced by a point-like charge Qn on top of the substrate
can be calculated by introducing image charges, allowing to take into account long-range
Coulomb potentials between distant charges Qm distributed in the conductor. Image inspired
from [Krupko et al., 2018].
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The electrostatic potential V (r) produced by a point charge Qn located on top of the substrate
in (0, 0, 0) is

V (x, y, z > 0) =
∞∑
j=0

ζjQn

4πε0

√
x2 + y2 + (z + 2jh)2

(3.11)

V (x, y,−h < z < 0) =
∞∑

j=−∞

ζ
′
jQn

4πε0

√
x2 + y2 + (z + 2jh)2

(3.12)

where ζ
′
j and ζj are coefficients that can be determined by writing the boundary condition

equations for V at the system boundaries (V = 0 at the ground plane z = −h and electric
field continuity at z = 0). The infinite summation accounts for the contribution of all image
charges to the total potential.
Summing over all the point like charges and taking the Fourier transform (with wave vector k
along the x direction), the capacitance Ck can be obtained from

1

Ck
=

1

πε0(1 + ε)

K − ∞∑
j=1

ζjK0(2jhk)

 (3.13)

where K0(x) is the modified Bessel function of the second kind, ζj = 2ε (1− ε)j−1 / (1 + ε)j

and K accounts for charge distribution accross the strip width. The two terms under bracket
separate short-range and long-range contributions of the Coulomb potential.

K can be evaluated as K ≈ − ln (kw) + 1.5 + 0.1(kw)2 but can also be estimated numerically
with good precision using a Python code available in Appendix (see Fig. 3.3 for a numerical
result).

Eq. (3.13) provides the result that, when long-range Coulomb interactions are taken into
account the capacitance to ground acquires a frequency dependence. Here k = Im(γ) is the
imaginary part of the propagation constant in the transmission line and therefore is related to
frequency by ω = vk, as discussed in previous section.

Fig. 3.3 displays capacitances Ck obtained from Eq. (3.13) for three different microstrip widths
w on a 300 µm-thick dielectric of permittivity ε = 11.9. Clearly the dispersion is non-linear,
demonstrating the importance of long-range Coulomb interaction for an accurate evaluation of
the capacitance to ground.

The method developed by D. Basko can be seen as an amelioration of the results obtained
in [Mooij and Schön, 1985]. Indeed they derived an inverse capacitance per unit length
C−1
k = 2 ln

(
1/kr0

)
/(1 + ε)ε0, which is nothing more than the first term under bracket of

Eq. (3.13). The summation over image charges provides better accuracy on the evaluation of
Ck, especially at low k where the Bessel functions have their largest values.

This result is of great use for the accurate description of plasma waves described in next
sections.

3.2.3 Geometric and kinetic inductances

The wire inductance L has two main contributions: the geometric inductance Lg, fixed by the
strip geometry, and the kinetic inductance LK that quantifies the motion of charge carriers in

43



Fig. 3.3. Evolution of capacitance with frequency. Left: Capacitance to ground per
unit length of an infinite microstrip line of three different widths w using Eq. (3.13). The
logarithmic increase of Ck with frequency originates from the long-range Coulomb interactions
due to the large distance h = 300 µm to ground plane. As expected an increase of strip width
implies a slight enhancement of capacitance to ground. Right: Evaluation of the kernel K for
three strip widths. As can be seen K is mostly logarithmic with k.

the film.

Geometric inductance can be calculated from approximate formulae for the impedance Z0

(see for example [Wheeler, 1965]) and the capacitance of last section (since L ≈ CZ2
0 ).

For a 1 µm-wide wire on a 300 µm-thick dielectric of permittivity εr = 11.9 this leads
Lg = 0.0018 nH/�.
For the disordered superconductors considered in this thesis we show that kinetic inductance is
of the order of 1 nH/� or above, much larger than geometric inductance.
Thus

L = Lg + LK ≈ LK (3.14)

3.2.4 Low loss and distortionless lines

In the practical situation of low-loss and high frequencies which is the subject of this work 4,
one can safely simplify Eq. (3.5)-(3.8) by setting R� ωL, G� ωC and Taylor expanding to

4In the case of larger loss the phase velocity v acquires a frequency dependence (see Eq. 3.10 and Eq. 3.5)
which can induce signal distortion: different frequency components of the signal are transmitted with different
velocities, leading to mixing of the information over long wire lengths. This was the cause of the poor
performances of the first transatlantic telegraph line of 1858. The solution provided by Heaviside consists

in the right choice of parameters
G

C
=
R

L
which garantees a distortionless line. To match this condition the

transatlantic line was loaded by a high magnetic permeability metal used to increase L and fulfill the Heaviside
criterion.
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obtain the real and imaginary parts of the complex propagation constant γ = α + jβ:

α ≈ 1

2

(
R

Z0

+GZ0

)
(3.15)

β ≈ ω
√
LC (3.16)

where Z0 =
√
L/C is the characteristic impedance.

This leads to the result that the wave phase velocity v can be expressed simply by

v =
ω

β
=

1√
LC

(3.17)

Eq. (3.17) shows that the wave velocity can be pushed down to lower values by increasing the
inductance L ≈ LK . This observation is central in next sections as it links plasmon frequency
to kinetic inductance in a simple manner.

Concerning the losses in the line (expressed by e−α in Eq. (3.6)) it must be noted that most
of discussions to come concerns superconductors well below Tc, where the top conductor loss
is negligible. The bottom conducting ground plane however can be made of regular metals
(and indeed it will be the case in next chapter) therefore providing a (very low) but non-zero
resistance R.

In the same line of thought the dielectric substrate is chosen so that it becomes insulating at
milli-Kelvin temperatures, but is not per se a perfect insulator, and therefore still has a finite
G i.e a non-negligible loss tangent δ.

Analysis of Eq. (3.15) shows that for large wave impedances Z0 � R (i.e large L) the effect
of residual resistance from conduction in the real part α of the propagation constant cancels
out. On the contrary, large Z0 enhances the dielectric losses GZ0 through the substrate.

3.3 | Open-ended transmission line resonators

Let us now ”cut” our transmission line into a section of length l, with open ends at each
extremities as shown in Fig. 3.4. Doing so the current at each end of the wire vanishes by
construction, and I(−l) = I(0) = 0.

Using the general expression for the current in a transmission line with propagation constant
γ = α + jβ of Eq. (3.7) and assuming a lossless line (αl � 1) for simplicity one gets the
condition for the propagation constant and the wire length

sin (βl) = 0⇒ βl = nπ for n ∈ N (3.18)

Since the wavelength is given by λ = 2π/β this relation leads to

l = n
λ

2
(3.19)

Due to reflections on the open-ends of the truncated transmission line, a superposition of left
and right-moving propagating waves form standing waves with the wire length being exactly
an integer multiple of the half-wavelength. The open-ended transmission line becomes
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Fig. 3.4. Open-ended transmission line. By cutting a low-loss line with characteristic
quantities Z0, α, β to a finite length l, propagating waves are reflected on the boundaries
and are superposed, creating standing waves. The resulting current oscillations are 0 at the
extremities and are either 0 or reach their maximum value in the center of the line depending
on the mode number n parity.

a microwave resonator, called a half-wavelength line.

Eq. (3.18) also gives the result that angular frequency ω (or the frequency f) are related to
the wire length as

ω(β) = vβ =
nπ

l
v =

nπ

l
√
LC

(3.20)

Therefore the 1D collective excitation spectrum in the open-ended transmission line is quan-
tized, leading to a discrete dispersion relation ωn = βnv.

From Eq. (3.20) it follows that the frequency spacing between two consecutive modes n and
n+ 1 is given by

ωn+1 − ωn =
πv

l
= ω1 (3.21)

if one assumes a frequency independent phase velocity v. We have already seen that this is
not the case since the capacitance Cβ increases slightly with frequency, but this approximation
is useful for qualitative discussion.

It becomes clear that the spacing between modes is nearly constant, and is determined by the
wire length l: for instance a large l implies a small resonance frequency spacing, leading to
densely packed modes. This observation will be put to good use in the experimental realization
of such resonators.

Using the accurate model for the capacitance Ck given in section 3.2.2 and Eq. (3.20) one
can finally obtain a precise description of the plasmon mode dispersion as

ω(kn) =
kn√
LCk

(3.22)

where kn = nπ/l is the wavenumber, L is the inductance of the line per unit length and Ck is
the k-dependent capacitance per unit length given by Eq. (3.13).

Equivalent RLC circuit The open-ended transmission line with characteristic impedance
Z0 and propagation constant α+ jβ can be mapped to a resonant parallel RLC circuit for
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frequencies close to a resonance ω0 with equivalent parameters R̃, L̃, C̃ and quality factor Qi

given by [Pozar, 2011]:

R̃ =
Z0

αl
(3.23)

C̃ =
π

2ω0Z0

(3.24)

L̃ =
1

ω2
0C̃

(3.25)

Qi = ω0R̃C̃ =
β

2α
(3.26)

where the unloaded (or internal) quality factor Qi is defined as the ratio of energy stored by
power loss in the resonator:

Qi = ω × Energy stored

Power loss
(3.27)

The quality factor measures the energy loss experienced by electromagnetic standing waves
due to intrinsic dissipation in the wire, as represented by the equivalent resistance R̃. In the
ideal case of lossless transmission line (α = 0) one has R̃→∞, meaning that the equivalent
circuit becomes a parallel LC resonator which oscillations are not damped with time. The
quality factor diverges to infinity in an ideal scenario.

3.3.1 Coupling the resonator to the environment

In a realistic system however, internal losses in the resonator cannot be neglected (even though
they might be small) leading to a finite value of internal quality factor Qi. The numerous
origins of such dissipation are discussed in a later chapter of the thesis. We will now introduce
another contribution to the quality factor induced by the necessary coupling of the resonator
to the external environment.

Any experimentally measurable system requires some coupling to the measurement apparatus,
i.e. one must be able to excite the resonator at will and measure its response to the excitation.
One common option, which will be used in most of this work, is to couple the resonator to an
external feedline.

A scheme depicting the coupled system is displayed in Fig. 3.5. It consists in a long 50 Ω
transmission line (called a feedline) matched to the standard commercial microwave equipment
used for measurement, and a λ/2 transmission line resonator in its vicinity. The feedline is
connected on both ends to the measurement electronics, feeding an input voltage Vin at one
extremity and collecting the outcoming voltage Vout on the other end.

In this particular coupling geometry and out of resonance, most of the input signal is collected
at the output, leading to a transmission close to unity. To quantify the transmission we
introduce the scattering element S21, as is commonly done in microwave engineering:

S21 =
Vout

Vin

(3.28)

For a lossless feedline not coupled to an external lossy environment S21 is exactly 1 (= 0 dB)
since all the microwave power is transmitted.
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Fig. 3.5. Coupling of a resonator to the environment. A feedline made from a trans-
mission line with characteristic impedance 50 Ω is connected at both ends to the microwave
measurement setup and coupled to a resonator with coupling quality factor Qc. Left: schematic
representation of a λ/2 transmission line resonator. Right: Equivalent RLC circuit coupled to
feedline via the capacitance Cc. This equivalent circuit analogy is valid close to resonance, for
angular frequencies ω = ω0 + δω where ω0 is a resonant mode and δω � ω0. The internal
quality factor Qi describes the intrinsic loss of the resonator, while Qc is related to coupling
to the environment.

Coupling capacitance To estimate the equivalent coupling capacitance Cc between the
feedline and resonator one has to account for fringing fields in the air above the substrate, and
in the dielectric below with permittivity εr (see Fig. 3.6). Since the conductors are ultra thin
one neglects in first approximation the parallel plate capacitance formed by the lateral sides of
the microstrips. One also neglects the capacitance to ground and the long-range Coulomb
potential in this very crude estimate. Doing so the capacitance is approximately given by (see
e.g [Garg, 1979]) :

Cc ∼ lε0 (1 + εr)
K(a′)

K(a)
(3.29)

where a =
s

s+ 2w
, a′ =

√
1− a2 and K is a complete elliptic integral of the first kind.

Here w is the microstrip width, s is the spacing between the two lines and l is the coupling length.

Fig. 3.6 shows the evolution of Cc with spacing s for a realistic set of parameters. While this
model is very crude and quite inaccurate it provides an estimation of the geometry required
to achieve a given coupling capacitance: decreasing s and increasing l enhance the coupling,
as intuition suggests. In practice coupling is fine tuned using electromagnetic simulations for
accuracy.

Coupling quality factor The coupling quality factor Qc is defined as the ratio of energy
stored in the resonator to the power dissipated in the external environment. In a first approxi-
mation the largest dissipation comes from the 50 Ω transmission line, and therefore a strongly
coupled resonator should have a smaller Qc, since a larger amount of energy has been lost in
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Fig. 3.6. Coupling capacitance. Schematic of the coupling between two microstrips. The
fringing field is mainly situated in the air above the circuit and in the dielectric below it. The
strength of the coupling mainly depends on the distance s between the two conductors and on
the length l of the coupling part. Right: Calculated coupling per unit length versus spacing s
using Eq. (3.29) for a wire of width w = 5 µm on a 300 µm-thick substrate.

the feedline.

Following [Pozar, 2011] and [Etienne Dumur, 2015] one can derive a relation between coupling
capacitance and external quality factor Qc:

Qc ≈
π

2ω2
0C

2
cZrZ0

=
π

2

C

C2
cω0Z0

(3.30)

where Z0 = 50 Ω is the impedance of the feedline seen as a load and Zr =
√
L/C is the

resonator impedance. As expected, the higher the coupling capacitance Cc the lower the Qc.

For a typical experimental setting, ω0 ∼ 2π × 3 GHz, Cc ∼ 1 fF, Zr ∼ 1 kΩ and Z0 = 50 Ω,
leading to Qc ∼ 105.

In pratice, for design purposes one uses more generally electromagnetic simulation of a resonator
in a given geometry and extract directly Qc by fitting the transmission response, as will be
detailed in the next sections.

Loaded quality factor The quality factor of the total system, called loaded quality factor
Ql accounts for the sum of dissipation in the resonator and in the environment:

1

Ql

=
1

Qi

+ Re

(
1

Qc

)
(3.31)

where the real part of Qc is taken since this quantity can be complex, in the form Qc =
|Qc| exp(−jφ) where φ accounts for impedance mismatch along the line [S. Probst et al., 2015].

One sees that depending on the geometry (i.e the value of the coupling capacitance Cc),
external loss can either lower significantly the quality factor Ql, or not at all.

For large couplings and small internal loss for instance (C2
c � 1/

(
ω2

0Zr
)
), Ql ∼ Qc and the

system loss is dominated by the coupling to the environment (we say that the resonator is
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overcoupled).

In the other limit (C2
c � 1/

(
ω2

0Zr
)

), Ql ∼ Qi and the overall loss is dominated by the internal
losses in the resonator (the resonator is undercoupled).

The intermediate case for which Qi ∼ Qc describes a critically coupled resonator.

Transmission measurement in the hanging geometry In the system shown in Fig. 3.5
electromagnetic field in the feedline excites plasmons in the resonator that reflect on the open
ends, leading to standing waves. Interferences between waves entering the resonator and waves
leaving it after being reflected at the boundaries (while acquiring a π phase shift) are destructive
at resonance, resulting in an overall decrease of output microwave power for frequencies close
to fr. Therefore when monitoring the transmission S21 by sweeping frequencies one observes
a dip in transmission amplitude around fr (see Fig. 3.7).

Fig. 3.7. Transmission near a resonance. Amplitude (Left) and phase (Center) of
the complex transmission of Eq. (3.32) is shown for frequencies close to the resonance
fr = 3 GHz, with Qi = 104 and Qc = 105. The minimum of transmission amplitude is
≈ 1/

(
1 +Qi/Qc

)
≈ 0.9 and the amplitude bandwidth at−3 dB is ∆f3dB ≈ fr/Qi = 300 kHz.

A dephasing φ = 0.2 modifies slightly the amplitude shape. Right: Imaginary versus real part
of S21, showing a circle open for frequencies far from resonance (f = f∞) at the opposite side
of fr. The circle diameter is given by d = Ql/|Qc|, and is tilted by the angle φ.

A general formula for the scattering coefficient S21(f) at frequency f close to a resonance fr
can be found in [S. Probst et al., 2015]:

S21(f) = aejηe−2πjfτ︸ ︷︷ ︸
environment

[
1− (Ql/|Qc|)ejφ

1 + 2jQl(f/fr − 1)

]
︸ ︷︷ ︸

ideal resonator

(3.32)

where Ql is the loaded quality factor, |Qc| is the absolute value of the (complex) coupling
quality factor and φ quantifies the impedance mismatch. In addition to these parameters
describing the ideal coupled and lossy resonator, one accounts for other losses due to the
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environment by defining an amplitude a, phase shift η and electric delay τ that accounts for
the finite wave velocity in a cable of finite length.

Eq. (3.32) states that for frequencies far from the resonance fr the transmission spectrum
is flat: S21 = 1 = 0 dB. At resonance f ≈ fr however one has (for the ideal case with
φ = 0) |S21| ≈ 1 − Ql/Qc = 1/

(
1 +Qi/Qc

)
. Therefore the transmitted signal presents a

dip at fr whose shape qualitatively changes with the ratio of internal and external quality
factors. For instance, for low loss resonators Qi � Qc and the amplitude dip depth is
∼ Qc/Qi → 0 = −∞ dB. In addition the dip width at 3 dB can be estimated as

∆f3dB =
fr
Ql

(3.33)

Therefore depending on the respective values of Qi and Qc the resonance visibility will be mod-
ified, which suggests that some optimal parameters must be found for experimental realizations.

If one wants to accurately extract the internal quality factor Qi from experimental data, the
coupling scheme shown in Fig. 3.5 (sometimes called a hanging resonator) is particularly
adapted. Indeed the transmission baseline far from resonance (S21 = 0 dB) acts as a reference
for the amplitude dip at resonance. This geometry allows for a more accurate determination of
Qi than for other schemes for which the transmission baseline is unknown (e.g for a reflection
measurement).

Real experimental data often drift from the ideal case. The amplitude and phase of the
complex S21 can become asymmetric, resulting from impedance mismatch along the line, or
from unwanted reflections between input and output. Lossy coaxial lines in the measurement
setup induce some attenuation while the length of these cables introduces dephasing. As
a result the transmitted signal can be strongly modified and the fitting procedure is flawed.
A robust algorithmic method allowing to filter these various unwanted effects is described
in [S. Probst et al., 2015] and readily usable open-source Python codes can be found in
[Sebastian Probst, 2015]. Using this fitting procedure one can extract accurately Qi, Qc and
fr from noisy experimental data.

3.4 | Plasma modes as a pathway to superfluid density

Collective bosonic excitations of a superconductor can be used to obtain a crucial information
on the superconducting state, the superfluid stiffness Θ which has dimension of energy and
describes the resilence of the superfluid to phase fluctuations.

Using the microstrip open-ended transmission line geometry detailed previously we propose
to measure the superfluid stiffness of disordered indium oxide thin films through the study of
one-dimensional plasmons. We will show how Θ can be extracted from the dispersion relation
of these modes, and in due course how the introduction of an external parameter such as
temperature of magnetic field is expected to modify the superfluid response.

Simulations and sample designs of microstrip indium oxide resonators will be presented, in
order to prepare for the thorough experimental study which is the topic of next chapter.
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3.4.1 Determination of superfluid density via plasmon dispersion re-
lation

Our method for measuring accurately the superfluid stiffness of indium oxide films follows the
steps described below:

• Design of a long indium oxide wire withstanding many plasmon modes

• Measure the frequency of as many resonance modes as possible, in order to obtain the
dispersion relation ω(k)

• Fit the dispersion relation ω(k) with the dispersion model Eq. (3.22), by adjusting the
value of kinetic inductance LK only

• Compute the superfluid stiffness from LK following Θ =

(
~
2e

)2
1

LK

Electromagnetic simulation In order to assess the validity of the procedure described
above we first compare to commercial electromagnetic simulation softwares. A simple design
similar to Fig. 3.5 is implemented in Sonnet Software [Sonnet Software, Inc, n.d.], with a
lossless 50 Ω transmission line connected to ports of the EM solver. In close vicinity is placed
a long (l = 3505 µm) and narrow (w = 1 µm) wire with a kinetic inductance per square LK ,
deposited on a dielectric substrate (thickness h = 300 µm, ε = 11.9) the bottom side of which
is connected to ground. The situation is identical to the problem of capacitance to ground
discussed previously (see Fig. 3.2 and related comments).

It was already mentioned that, by choosing a large wire length l, the resonance spectrum
should be densely packed with a small frequency spacing. To further enhance this effect one
can set a large value of kinetic inductance, therefore pushing down the first resonant mode to
low frequency and reduce the spacing between modes ∆f ∝ 1/(l

√
LK).

We perform two simulation runs with the exact same geometry but two distinct kinetic in-
ductances, with LK,sim = 1.35 nH/� and LK,sim = 0.6 nH/�. These values are set into the
software, providing a surface impedance.

Fig. 3.8 displays the simulation results. On the left a typical transmission trace is shown for
frequencies ranging from 0 to 15 GHz. Each dip corresponds to a resonant mode fn. The
right plot shows the extracted evolution of resonance frequency with wavenumber kn = nπ/l.

It can be observed that this dispersion relation is nearly linear at high frequencies (ωn ≈ vkn)
but departs slightly from this linear behavior at lower kn. This effect originates from the
frequency dependence acquired by the capacitance to ground Ck due to long-range Coulomb
interaction, as discussed in Section 3.2.2.

We now use our model for the dispersion relation to fit the simulated data using Eq. (3.22).
The only fitting parameter is the kinetic inductance LK , since all other parameters are chosen
by design. The resulting inductances are very close the input ones: LK,fit = 1.37 nH/� and
LK,fit = 0.62 nH/�, suggesting a systematic error of ∆LK = 0.02 nH/� which might originate
from the coarse settings used to decrease the simulation time. Note that we have not sub-
stracted the contribution of geometric inductance here, leading to a slight overestimation of LK .
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Fig. 3.8. Electromagnetic simulations of plasmon resonances. Simulated transmission
using Sonnet electromagnetic solver for the geometry discussed in this section. The kinetic
inductance per square LK is fixed for two different simulations at two distinct values. The
obtained dispersion relations are fitted using Eq. (3.22). The fitting parameter LK,fit is close
to the value set in the simulation within 3 %.

The above simulation confirms the accuracy of our capacitance model to extract the kinetic
inductance LK , which will be used extensively throughout this thesis.

3.4.2 Two-tones measurements

We have seen how to accurately extract the kinetic inductance out of plasmon modes dispersion
relation. We have not explained so far, however, how ω(k) can be obtained experimentally in
a large frequency range5. In this section we present a technique called two-tones spectroscopy
providing the required result [Weißl et al., 2015]. It originates from the non-linearity of
plasmons that is detailed below.

Cross-Kerr non-linearity The hamiltonian for one-dimensional plasmons with weak non-
linearity treated as a perturbation can be written in second-quantized form [Weißl et al., 2015;
Krupko et al., 2018; A. Khvalyuk et al., 2023]

Ĥ =
∑
n

~ωnâ†nân − ~
∑
n,m

Knmâ
†
nânâ

†
mâm + (higher order terms) (3.34)

where
ωn = ω̃n −

∑
m

Knm (3.35)

â†n and ân are bosonic creation and annihilation operators respectively, describing collective
modes along the wire, and Knm is the cross-Kerr coefficient related to modes n and m. An
estimation of Knm for a disordered superconductor can be found in Appendix D.2 and in

5usual microwave setups have a narrow operating bandwidth due to limitations of microwave components
(amplifiers, circulators, filters...). Therefore in many cases direct measurement of microwave transmission is
limited to 4-12 or 4-8 GHz.
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[A. Khvalyuk et al., 2023].

Eq. (3.35) states that the frequency ω̃n of mode n is renormalized by cross-Kerr effect even
when modes m are not populated, a consequence of zero-point fluctuations.

When modes m are populated with 〈â†mâm〉 = Nm photons Eq. (3.34) implies that frequency
of mode n is lowered following

ω′n = ωn −
∑
m

KnmNm (3.36)

This frequency shift is at the root of the two-tones spectroscopy that will be detailed now.

Modus operandi A two-tones measurement goes as follows (see also the scheme in Fig. 3.9):

• A resonant mode n (frequency fn) is found in the measurement bandwith. A power
sweep is performed to determine the optimal operating power PVNA, large enough to
ensure a good signal-to-noise ratio but small enough to reach the low-power regime
(negligible frequency shift of the mode with power). The frequency fn is re-measured at
the power PVNA: fn = fn(PVNA).

• The Vector Network Analyzer (VNA) power is set to PVNA, and is configured to measure
at fixed frequency fn. In transmission this corresponds to measuring the minimum of
|S21| (at the lowest position of the dip amplitude). A second, external microwave tone is
connected to the setup, with a trigger linked to the VNA: for each signal sent at a given
frequency by the source, the measurement at frequency fn is triggered on the VNA.

• The source power PSource is set, and the second tone f is swept in a large range
(f ∈ {100 kHz, 30 GHz}). Due to cross-Kerr interactions of modes fm and fn the
VNA measurement result is influenced by the source frequency: when f matches the
frequency of mode m (fm ∼ mf1) the frequency fn is lowered by cross-Kerr effect: fn
becomes f ′n = fn −NmKnm/(2π) where Nm is the number of photons in mode m. For
sufficiently large non-linearity Knm the VNA measurement at fn does not probe the
minimum of |S21| anymore, resulting in a sharp increase of transmission. The shape
of the transmission peak is mainly dictated by the widths of mode n ∆f3dB = fn/Ql

and of mode m, as well as the Kerr coefficient Knm. If NmKnm/(2π) > ∆f the peak
amplitude reaches its maximum.

• With a further increase of source frequency f far from a resonant mode the system gets
back to normal, |S21| is back to its minimum value (f ′n = fn).

• Once the whole frequency range has been swept one obtains a series of peaks, each of
which corresponds to a resonance mode m, as shown in Fig. 3.9.

3.4.3 Frequency shift as a measurement of superfluid density sup-
pression

It has been argued that, for a given resonator geometry (capacitance to ground Cg, wire
dimensions and coupling to environment) the resonance frequencies are solely ruled by the
kinetic inductance LK , or equivalently by the superfluid density. If the resonator is made out of
a material which superfluid response is particularly sensitive to external perturbations such as
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Fig. 3.9. Two-tones measurement scheme. Illustration of the two-tones measurement
scheme described in the text. Details of the microwave setup are not shown and will be discussed
in Appendix. Top graph: Typical trace of two-tones spectroscopy probed in transmission.
Out of resonance the VNA transmission is minimal. Close to resonance (for any resonance
mode m) transmission increases and reaches its maximum at f = fm. By sweeping the probe
frequency in tens of GHz range one obtains the full dispersion relation of plasma modes.

temperature, magnetic field or driving power the microwave resonator turns into a superfluid
density probe. When varying an external parameter χ ∈ {T,B, P, ...} the frequency shifts by
the quantity

δf(χ)

f
≡ f(χ)− f(χ0)

f(χ0)
=

√
LK(χ0)

LK(χ)
− 1 =

√
Θ(χ)

Θ(χ0)
− 1 (3.37)

where χ0 is the initial value of the parameter χ, LK and Θ =
(
~/2e

)2
L−1
K are the kinetic

inductance and superfluid stiffness respectively.

For small variations of f Eq. (3.37) becomes

δf(χ)

f
≈ −1

2

δLK
LK
≈ 1

2

δΘ

Θ
(3.38)

In most cases the parameters mentioned above reduce the superfluid density, leading to a
decrease of frequency (with a negative frequency shift). The evolution of resonance frequency
with χ can easily be extracted from experiment, and, from Eq. (3.37) one obtains the relative
suppression of superfluid density with parameter χ

LK(χ0)

LK(χ)
=

Θ(χ)

Θ(χ0)
=

(
1 +

δf(χ)

f

)2

(3.39)

This method only allows for a relative measurement of superfluid suppression, thus the value
of Θ(χ0) must be extracted using another technique such as the fit of plasmon dispersion
relation described previously.

The advantage of this type of measurement is two-fold: first it is relatively easy to perform
experimentally, since it only requires to monitor the resonance frequency as a function of χ,
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without significant calibration needed. Secondly it allows for a continuous measurement of the
evolution of Θ(χ), therefore potentially revealing non-trivial dependence of superfluid density
on the external parameters (where the dispersion relation method for instance would require
sampling of the χ values). By making a complementary use of both techniques (dispersion
relation and frequency shift) one has a powerful tool to study the superfluid response of a
superconductor.

3.4.4 Suppression of superconductivity by thermal excitation of plas-
mons

Amongst the usual parameters leading to a suppression of superconductivity are the magnetic
field, which will be the topic of a chapter, and the temperature. We now discuss the effect of
temperature on the resonator operating frequency.

In the usual BCS treatment of superconductivity at finite temperature the main mechanism
opposing to superconductivity is the breaking of Cooper pairs by thermal excitation.
When the thermal energy is increased the number of quasiparticles is enhanced as [Tinkham,
1975]:

nQP = n

√
2π∆

kBT
exp

(
− ∆

kBT

)
(3.40)

This equation states that at low temperatures well below the gap the superfluid condensate
remains mostly unaffected by temperature, as the number of quasiparticles is exponentially
small. In this standard (BCS) situation the suppression of superconductivity is then governed
by the competition of gap ∆ and thermal energy kBT .
In systems where superfluidity is ruled by phase fluctuations however, superfluid density is
expected to be reduced at all temperatures below the gap.

This can be seen using a simple idea that we briefly summarize here and can be found in more
details in Appendix D.2.4 and in [A. Khvalyuk et al., 2023].
The application of an electromagnetic drive on a superconductor gives rise to non-linear terms
in the relation between current density and vector potential [Maki, 1964]. As a result bosonic
collective excitations occuring in superconducting films interact with each other, due to this
non-linearity. This is the Kerr effect mentioned earlier in relation to the plasmons.
These modes are bosonic and therefore are thermally populated following the Bose-Einstein
distribution. A summation over these interacting thermal plasmonic excitations leads to an
estimation of the superfluid density suppression by classical phase fluctuations:

δf(T )

f
≈ 〈(∇ϕ)2〉T =

ξ2

Θ

∫
d3q

~ωq
e

~ωq
T − 1

≈ −

(
T

Tϕ

)2

(3.41)

in which left hand side term is the relative shift of frequency with temperature defined as
δf(T )/f =

(
f(T )− f(Tmin)

)
/f(Tmin), where Tmin is the cryostat base temperature (usually

∼ 20 mK). ξ is the superconducting coherence length in the dirty limit.
Last equality is obtained after assuming a linear dispersion of one-dimensional modes ωq = vq.
In theory one could also consider 2D and 3D modes in the summation.

Since disorder enhances the role of phase fluctuations, one should expect a decrease of Tϕ
with disorder (i.e an increase of the frequency shift amplitude). Indeed the model predicts

Tϕ ∝ Θ3/4 (3.42)
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where the proportionality constant depends mostly on the sample geometry and on the way
the summation is carried out (see Appendix D.2.4).

Eq. (3.41) states the important fact that phase-induced suppression of superconductivity by
an increased temperature does not follow the BCS activated behavior of Eq. (3.40) which
predicts an exponentially suppressed frequency shift at low T , but rather a power law decay at
all temperatures.

3.4.5 Sample design

The sample geometry adopted for the experimental determination of the superfluid density
of indium oxide comprises two measurement devices: first a microwave resonator coupled to
a feedline as shown in Fig. 3.5, and secondly a four-probe resistance measurement device
allowing for the in-situ determination of DC properties in the superconductor under study.
Fig. 3.10 displays a typical chip used in this work. For this study we consider two distinct
geometries described below.

Fig. 3.10. Scheme of the chip. Left: A typical chip measured in this thesis has this
form, with a gold 50 Ω transmission line in the center to which the microwave resonator is
capacitively coupled. Further on the chip is designed a resistance measurement device. Light
blue color represents amorphous indium oxide on this picture. Right: SEM image of the four
contact resistance measurement device present on each sample in addition to the microwave
resonator. Here the dimensions of the Indium oxide wire (center) are 1 µm by 100 nm, for a
total of 10 squares (this corresponds to the second geometry described in the text).

First geometry The first set of samples consists in 1 µm-wide and thin (40 nm-thick)
disordered indium oxide resonators of long length l = 3505 µm capacitively coupled to a 50 Ω
feedline (w = 240 µm for Z0 = 50 Ω) in the hanging geometry. They are open at both
extremities such that the transmission line acts as a λ/2 resonator with densely packed mode
spectrum due to the long wire length.

The aimed-for kinetic inductance value is of the order of 1 to 10 nH/�, allowing to estimate
a first mode frequency in the sub-GHz range.

Indium oxide lines are deposited on a 300 µm-thick high-resistivity silicon substrate (permittiv-
ity εr = 11.9), therefore setting the system in the domain of applicability of the long-range
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Coulomb interaction model for the estimation of capacitance to ground described in section
3.2.2.

The device for the resistance measurement is a 1 µm-wide and 10 µm-long indium oxide wire
connected to four gold lines terminated by squares of large area used for wire bonding. The
resulting line is then 10 squares-long (see Fig. 3.10).

Second geometry For the second set of samples we chose identical parameters except for
two major differences: a reduced wire width and length.

The resonator length is l = 300 µm for a width w = 100 nm. Therefore dimensions have been
divided by 10 compared to the first set of samples.

Consistently, the resistance measurement device is a 1 µm-long, 100 nm-wide strip, resulting
in a 10 squares line.
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Conclusion

In this chapter we have provided an accurate and experimentally simple way to access important
properties of a superconductor such as the kinetic inductance LK and the related superfluid
stiffness Θ at low temperatures. The gist of the method resides in the quantitative description
of plasma modes dispersion relation which allows for the extraction of LK (being the only
fitting parameter in the model). This model has been successfully confirmed by electromagnetic
simulations.
We provide a measurement scheme operating at microwave frequencies based on the two-tones
measurement that provides an experimentally relevant determination of the dispersion relation
ω(k).
We present the typical sample geometries that will be studied in the coming chapters, and
allow for the experimental investigation of the disorder-induced SIT in amorphous indium
oxide.
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Part II

Quantum Breakdown of
Superconductivity across the

Disorder-driven
Superconductor-Insulator Transition
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Chapters I and 2 gave a general overview of the physics of strongly disordered superconduc-
tors, and tried to convey the incredible complexity of such materials in which phenomena as
important in physics history as Anderson localization and superconductivity are intertwined,
giving rise to extremely rich states of matter.
In chapter 3 we described the measurement technique based on the tools of cQED that we
propose to use to probe the superfluid response of superconducting indium oxide resonators.

In the following chapters we shall uncover some important features of strongly disordered
Indium oxide thin films of increased disorder, from the superconducting state to the insulator.
Each sample studied here allows for the measurement of superfluidity in amorphous indium
oxide both in transport and at microwave frequencies, on the same physical chip and during
the same cooldown. A chip is composed of a standard four contact device for resistance
measurement and a microwave microstrip resonator made out of indium oxide, as pictured in
Fig. 3.10.

We want to stress that transport and microwave measurements are performed on the same
indium oxide film (fabricated in the same evaporation process) and in similar conditions
(temperature, pressure, electromagnetic environment...) and therefore should describe the
same physical object but at different frequencies (and different sizes). While the description
of these measurements is separated in two distinct chapters (first transport properties and
then results in the microwave regime) the reader should bear in mind that these two sets of
measurements actually describe the same object. This is of great importance as we shall see
that transport properties and superfluid density are strongly related in a non-trivial way close
to the transition to insulation.
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CHAPTER4
Superconductor-Insulator Transition measured

in transport

Disordered metals at low temperature display easily recognizable signatures; quantum interfer-
ence between electronic trajectories lead to a number of features that can be identified via
transport measurements. Study of such systems lead to numerous theoretical and experimental
works on Anderson insulators and localization. A short introduction of this topic and its major
consequences can be found in Appendix A.

The subject becomes more intringuing when the metal is replaced by a superconductor: the
sample resistance may either vanish to zero or diverge to infinity as the temperature approaches
zero [Shahar et al., 1992; Graham et al., 1998].
This quantum phase transition between superconductor and insulator is sometimes accompanied
with the unusual preformation of Cooper pairs well above Tc and a pseudogap in the density
of states, as shown via tunneling spectroscopy [Benjamin Sacépé, Dubouchet, et al., 2011;
Daniel Sherman, Gorshunov, et al., 2014; Dubouchet et al., 2018].

Transport (low frequency) measurement techniques are well-suited to unveil unique properties
of disordered superconductors. In this chapter we report on the systematic measurement of
resistance in amorphous indium oxide sample of increasing disorder, driving the system from a
standard superconductor to a much less trivial pseudogaped insulator.1

4.1 | Increase of normal-state resistance with disorder

As can be seen in Fig 4.1 the normal-state resistance of increasingly disordered Indium oxide
samples (defined as the maximum of the R(T ) curve2) ranges from less than 1 to more than
16 kΩ/�, well above the superconducting resistance quantum h/(2e)2 ∼ 6.45 kΩ. This
huge increase of resistance when cooling down signals the proximity of the mobility edge for
localization. At T = 0 the sample would be an insulator if superconducting correlations did not
arise. In presence of superconductivity the resistance goes to zero below a critical temperature
Tc.

Upon further increase of disorder superconductivity eventually breaks down: the resistance
does not drop to zero. Instead the low-temperature resistivity increases by orders of magnitude,
evidencing the transition to an insulating state (see red curves in Fig 4.1). The SIT was already

1The experimental setup is described in Appendix C.
2Some authors consider the resistance at 4 K. This is convenient for experimentalists (since 4 K is the

liquid Helium temperature) but is a rather arbitrary definition, and becomes inaccurate for nearly-critical
disorder.
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Fig. 4.1. Resistance of Indium oxide striplines versus temperature. a) Supercon-
ducting transition curves for films of various disorders. Upon increase of disorder the
normal state resistance Rn increases. The normal state resistance is measured at the maximum
of resistance just above the transition temperature for superconductors (shown in blue), and
can become larger than the superconducting resistance quantum h/(2e)2 ∼ 6.45 kΩ. Upon
further disorder increase the resistance diverges at T → 0 and the film becomes an insulator
(red curves). Inset: Resistance measurements for nanowires with width w = 100 nm. b)
Re-entrant insulators and Tc measurement. Just above the SIT the resistance presents
a re-entrant behavior; upon cooling down the resistance first decreases similarly to a usual
superconducting transition, but increases sharply at lower temperature before finally diverging
at T → 0 (red curves). The resistance minimum can be as low as Rmin ∼ 1.7 kΩ/�, one
order of magnitude lower than the corresponding normal state resistance Rn ∼ 16 kΩ/�.
Dashed lines show how the critical temperature Tc is obtained from the R(T ) curves; Tc is
the temperature at which a linear interpolation of the resistance crosses the x-axis (black
dots). The same process can be applied to re-entrant curves, providing a would be critical
temperature ”Tc” for the insulating state (grey empty dots). As can be seen from both a)
and b) an increase of disorder not only enhances the normal state resistance but also strongly
reduces the critical temperature.

observed in amorphous indium oxide, as presented in section 2.1.2.

It is convenient for the discussion to introduce a dimensionless normal-state conductance,
defined as the ratio of the electronic resistance quantum RQ = h/e2 by the sheet normal state
resistance Rn:

g =
RQ

Rn

The reader would have recognized the dimensionless conductance g studied in relation to the
scaling theory of localization (see Appendix A.3.2).
One should however bear in mind that g is measured here at a finite temperature Tpeak above
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the transition, in contrast to the zero-T quantity considered in section A.3.2. If one could
derive the complete temperature evolution of conductance gtheory(T ), taking into account
simultaneously effects of localization, sample effective dimensionality and paraconductivity
above Tc, then the measured value would be simply g = gtheory(Tpeak). Such a function is
unfortunately out of reach for now.
We shall see below that this experimental g might actually be related to other properties of
the material.

A crude estimation of kF le ∝ g 3 from our measurements leads kF le < 1, as was previously
noted by [Shahar et al., 1992; Graham et al., 1998]. This has to be compared with the Ioffe-
Regel criterion stating that the condition kF le ∼ 1 corresponds to the Anderson metal-Insulator
transition for electrons (see Appendix A).
Therefore the indium oxide samples studied here are subject to strong localization effects
reminiscent of insulator physics. Amazingly superconductivity can still take place in such
systems where electrons are localized.

4.2 | Decrease of Tc with disorder

We have argued in section 1.1.2 that suppression of superconductivity could be due to fluctua-
tions of either the order parameter amplitude, or its phase. In both case an increase of sample
disorder, with a tendency to localize charge carriers, should result in a decrease of transition
temperature Tc. We now compare to experimental measurements, by extracting Tc from the
R(T ) curves.

Fig 4.2 shows the dramatic suppression of critical temperature with disorder observed in our
indium oxide films. Upon increase of disorder (i.e decrease of g) Tc decreases by one order of
magnitude, from Tc = 3.6 K down to Tc = 0.4 K close to the SIT. On this graph are also
shown the would be critical temperatures ”Tc” obtained by interpolation of the re-entrant
insulating curves (empty markers).

4.2.1 Unusual Tc suppression

The decrease of Tc with decreasing conductance g can be accurately fitted by a logarithmic
law:

Tc = Tc0 ln g (4.1)

where Tc0 = 1.09 is the only fitting parameter. By construction the critical conductance at
which Tc vanishes is then gc = 1. Strikingly, this critical point was never reached: at g ≤ 1.6
the resistance diverges at low temperatures, giving rise to a re-entrant insulator. The would be
critical temperatures ”Tc” however still fall on the line defined by Eq. (4.1), before vanishing
at g = 1.

This leads to an important observation: Close to the SIT the critical temperature reaches a
finite value Tc ∼ 0.4 K 6= 0. As a consequence Tc drops abruptly to zero at a critical
conductance gc = 1.6. This intriguing feature will be further investigated in the coming
sections of the thesis.

3kF le = g n1/3

d(3π2)2/3
where n is the carrier density and d is the film thickness.
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Fig. 4.2. Decrease of critical temperature with disorder. The critical temperatures of
wide (w = 1 µm, red dots) and narrow wires (w = 100 nm, blue dots) are shown versus the
normal state conductance calculated from g = RQ/Rn where RQ = h/e2 is the electronic
resistance quantum. Upon increase of disorder (i.e decrease of g) the critical temperature is
continuously reduced. The data is nicely fitted by a simple logarithmic formula Tc = Tc0 ln g
where Tc0 ∼ 1.09. At g ∼ 4 narrow wires become insulating (Insulator 1). Below gc = 1.6 larger
wires also turn into an insulator (Insulator 2). In both cases the critical temperature abruptly
drops to zero at gc. In the insulating state for g < 1.6 the would be critical temperature ”Tc”
denoted by empty markers also follows the logarithmic scaling, before vanishing at g = 1 (i.e
Rn = RQ = h/e2).

4.2.2 Comparison with amplitude-driven pathway

It was suggested in section 1.2 that superconductivity in homogenously disordered films could
be increasingly suppressed by disorder as Coulomb repulsion between electrons forming a
Cooper pair becomes more effective, leading to a gradual suppression of pairing [Finkel’stein,
1994] 4.

It is worth noting here that the formula given by Finkel’stein (Eq. (1.7)) does not accurately
describe the suppression of Tc in the films displayed in the present work. Figure 4.3 shows
the Finkel’stein prediction for various values of the parameter γ, only fitting parameter of the
theory. One cannot find a γ that fits reasonably well our indium oxide data.
This observation is actually not so surprising. Indeed this (mean-field) theory, valid up to some
moderate disorder only (g � 4 in our notations) neglects the effects of phase fluctuations
which are expected to become predominant at strong disorders [Larkin, 1999].

We now turn to comparison with the bosonic pathway for which phase fluctuations are the
relevant mechanism.

4This is the fermionic mechanism discussed in section 1.2
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Fig. 4.3. Attempted fit with Finkelstein’s formula. Predictions of fermionic mechanism
given by Eq. (1.7) are plotted for several values of the parameter γ (in blue) and compared to
the experimental critical temperature (in red). γ ranges from −0.38 to −0.12, and the bulk
critical temperature is assumed to be Tc,0 = 3.8 K.

4.2.3 Bosonic pathway

The bosonic mechanism predicts that the real (measurable) critical temperature is given by
the BKT theory, and can be much smaller than the BCS value. This quantity is proportional
to the superfluid stiffness Θ as TBKT

c ∝ Θ(TBKT
c ). Upon increase of disorder Θ is suppressed,

reducing in turn the real critical temperature while the mean-field Tc0 remains unaffected.
This mechanism is detailed in section 1.3.
We mentioned already that a large panel of experimental work on indium oxide demon-
strates the preformation of Cooper pairs above Tc. This strongly suggests the relevance of the
bosonic scenario for understanding the alteration of superconductivity in this particular material.

In next chapter (section 5.1.3) will be described how an increase of disorder 1/g translates
into the simultaneous decrease of superfluid stiffness Θ and BKT critical temperature Tc.
Using usual Mattis-Bardeen (BCS) expressions relating (measured) normal-state resistance
and zero-T superfluid stiffness Θ(T = 0) in addition to the BKT superfluid jump at Tc
given by Tc = βΘ(Tc) allowed us to estimate (grossly) the suppression of Tc with disor-
der. The result of this procedure is shown in Fig. 4.4 which compares our data to the
expected reduction of Tc generated by phase fluctuations via the BKT mechanism. Dashed
red line is the result of the numerical solving of Eq. (5.6) with β ∼ 0.45 and a bulk Tc0 = 3.9 K.

The chosen value of β is 2 to 3 times smaller than the expected BKT universal value β = π/2.
It is only at this cost that our simple model fits the experimental data. This is expected, as
we used only BCS expressions that might not be applicable close to the SIT, and neglected
fluctuations of the order parameter amplitude (which should lead to a non-negligible additional
suppression of Tc). The question of the meaning of g measured at finite temperature also
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Fig. 4.4. Suppression of critical temperature by the BKT mechanism. Blue and red
points are large and narrow wires, as previously. Yellow points are 60 nm-thick and tens of
microns- wide films from [B. Sacépé, Seidemann, et al., 2015]. Dashed line is the BKT model
described in section 5.1.3, with a bulk critical temperature Tc0 = 3.9 K and assuming that
the critical temperature is ruled by the BKT mechanism as Tc = βΘ(Tc) with β ∼ 0.45. Θ is
suppressed upon increase of disorder (such dependence is estimated using usual BCS formulae).

comes into play. In any case, a simplistic model such as this allows to reproduce qualitatively
the nearly-logarithmic reduction of Tc(g). We shall analyse this model further in next chapter.

Comparison with other superconductors with a pseudogap We now ask whether or
not other disordered superconductors present a similar suppression of superconductivity with
disorder.
To make sure that the comparison is fair we use the exact same procedure for the determination
of Tc and g for various data found in the literature. From a R(T ) curve we define the Tc as the
temperature at which a linear interpolation of the resistivity crosses the x-axis, as described
earlier. The dimensionless conductance is found from g = RQ/Rn where Rn is the maximum
of sheet resistance before the superconducting transition.5

Fig. 4.5 displays the suppression of critical temperature with disorder for several different
materials (indium oxide, titanium nitride, niobium nitride, bismuth, niobium titanium nitride).
The data is extracted from the available literature.
It is seen from Fig. 4.5 that these materials present a similar relation to the one discussed
above: Tc ∝ ln(g) (note the log scale on the x-axis). To my knowledge this feature was never
observed or commented before: this could be a property of strongly disordered amorphous
superconductors.

From the previous section it comes that this peculiar scaling of critical temperature could
originate from strong phase fluctuations. A proper account of quantum fluctuations on top of

5To apply this procedure one must have access to the R(T ) curves with temperatures down to 0. This
reduces the number of articles from which data could be extracted.
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Fig. 4.5. Logarithmic suppression of Tc in pseudogap superconductors. Tc(g) is shown
in semi-log scale for Indium oxide (with data from the present work and B. Sacépé, Seidemann,
et al., 2015), TiN (Baturina, Mironov, et al., 2007; B. Sacépé, C. Chapelier, et al., 2008;
Benjamin Sacépé, Claude Chapelier, et al., 2010; Baturina, Postolova, et al., 2012; Amin et al.,
2022), NbN (Chand et al., 2012; Chockalingam et al., 2008), Bismuth (Haviland et al., 1989)
and NbTiN (Burdastyh et al., 2020).

BKT theory must be made however to capture the whole physics at hand here [König et al.,
2015].
It is very interesting to note that these materials are known to possess a pseudogap. This is
probably not a coincidence: as discussed in chapter 2 a pseudogap is most likely accompanied
with strong spatial inhomogeneities of the order parameter, which in turn enhance phase
fluctuations.
One could wonder if a relation between normal-state conductance g and Tc could be found
theoretically for materials having a pseudogap ∆P .

4.2.4 Critical conductance at the transition gc

We have seen in section 1.4 that strong enough disorder could lead to a scenario where
quantum and thermal phase fluctuations break superconductivity at T = 0. At a critical
conductance gc the superconducting state turns into an insulator made of localized Cooper pairs.

In the framework of the dual theory of M. Fisher (see section 1.4) the critical conductance
at the transition is given by gc = 4 (which corresponds to Rn = h/(2e)2 ∼ 6.45 kΩ) if
one considers self-duality between Cooper pairs and vortices. Alternatively the conductance
can also be found as gc = constant where the constant is not universal in more realistic
settings [Larkin, 1999].

Effect of wire dimension We now discuss the values of critical conductance found for two
different sample geometries.
We studied two geometries of samples: some DC devices are 10 µm-long and 1 µm-wide, and
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a second set of wires is 1 µm-long and 0.1 µm-wide. The dimensions have been chosen to
keep the same aspect ratio in both configurations.
Measurement of the critical temperature for both sets of device gives the same quantitative
result: Tc for both geometries lie on the same curve (the graphs shown above contain both
large and narrow wires).
One observation however seems to show a qualitative difference between the two: larger (and
longer) wires seem to survive deeper in disorder than the narrowest ones.

• w = 1 µm: the critical conductance at which Tc vanishes is glarge
c = 1.6 ∼ π/2.

• w = 100 nm: Tc is suppressed at lower disorder, gsmall
c ∼ 4.

The first thing one should recall is the ill-defined character of the dimensionless conductance
g. It is indeed measured at finite temperature (and therefore corresponds in part to a failed
Anderson insulator suppressed by inelastic processes) and is of non-trivial nature, with preformed
localized Cooper pairs and a possible contribution by Aslamasov-Larkin paraconductivity above
Tc [Aslamasov et al., 1968]. Thus without proper theory to account for all these phenomena at
once one cannot discuss quantitatively the values of dimensionless conductances gc at criticality.

That being said, one must acknowledge the resemblance between the results for the nanowires
gsmall
c = 4.5 and the theoretical gc ≈ 4 of the bosonic scenario.

It can be noted that the longer wires (which are exactly 10 times longer and 10 times larger)
have a critical conductance glarge

c = 1.6, leading to a ratio gsmall
c /glarge

c =
√

10. This could be
purely coincidental.

The effects of dimensions on transport in indium oxide have been observed and displayed
a quite different trend [Kowal et al., 2008]: their longest wires were the most insulating,
while the shortest ones displayed a tendency to superconductivity. All samples were prepared
simultaneously, with the exact same disorder. In our case it seems that shorter (and narrower
wires) are less resilient to disorder than wide, long ones.

The question becomes whether it is the decrease of length or width that drives such phenomenon.
For instance it is known that ultra-narrow nanowires are more sensitive to phase-slips, leading
to a dissipative quantum phase transition with a critical resistance of the order of the
superconducting resistance quantum [Zaikin et al., 1997; Bezryadin et al., 2000]. The effect
of wire dimensions on phase-slips will be discussed in a coming chapter.

4.2.5 On the broadening of the superconducting transition

As can be seen in Fig 4.1 strongly disordered films display a large broadening of the supercon-
ducting transition curves, compared to standard clean superconductors. One might wonder if
this broadening influences our measurement of the critical temperature.

While many effects contribute to such broadening of the R(T ) curves near Tc (such as para-
conductivity for instance), these are rather small. On the other hand the BKT transition in
strongly disordered systems implies a large enhancement of the critical region: for temperatures
in the window Tc < T < Tc0 free vortices proliferate and dissipate, gradually increasing the
sample resistance. The size of this region increases with disorder as ∼ 4Gi ∝ 1/g (see section
1.3).

If one chose to obtain Tc by fitting the data to some available theory, one would need to take
into account the BKT broadening (like in Benfatto et al., 2009), but also the Aslamasov-Larkin
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paraconductivity (Aslamasov et al., 1968) and other contributions to the conductivity (Maki
and Thompson, 1989). Some of these contributions cancel each other (Stepanov et al., 2018)
and would involve many fitting parameters.

In our view, it is more relevant to define the critical temperature in a systematic way for every
sample, without relying on a theoretical model.
We then define the critical temperature as the temperature at which a linear interpolation of the
resistance curves crosse the x-axis (see dashed lines in Fig. 4.1b). Conveniently this definition
also allows the estimation of the would be critical temperature of re-entrant insulators.

4.3 | Competition of superconducting and insulating
energy scales at the transition

4.3.1 Comparison of activation energy and critical temperature

We have demonstrated above that an increase of structural disorder in amorphous indium
oxide films results in a significant suppression of the condensation energy Tc, down to the
transition to an insulating state (Tc = 0).
The increase of resistivity with lowering temperature in similar insulating films has been
thoroughly studied by [Shahar et al., 1992]. They observed that insulating samples close to
the transition are best fitted by the thermally activated law R ∝ exp

(
T0/T

)
where T0 is an

activation energy with a crossover to Mott’s law deeper in the insulating regime.

A reproduction of the original plot from [Shahar et al., 1992] is shown in Fig. 4.6c, in order to
allow comparison with our data. The activation energy T0 decreases upon approaching the
SIT from the insulating side, reaching a value T0 ∼ Tc ∼ 2 K at the SIT.
The same observation can be made for the samples presented here, by fitting the low-
temperature part of re-entrant insulating resistance curves (Fig. 4.6a) to the activation law
and extracting T0 (Fig. 4.6b).
At the SIT activation energy and critical temperature are identical T0 = Tc ∼ 0.4 K,
suggesting a puzzling relation between these two intrinsically different energy scales.

T0 is indeed a priori unrelated to superconductivity as it sets the thermal energy that the system
must be given in order to allow hopping between Anderson-localized electronic states, resulting
in finite conductivity at non-zero temperatures. Tc on the contrary describes long-range phase
ordering of electron pairs on a macroscopic scale.

The explanation for this observation comes from the theory of pseudogap in Anderson insulators
close to the mobility edge.
In section 2.3 it was argued that the energy scale T0 is related to the parity gap ∆P originating
from preformed Cooper pairs composed of localized electrons. Transport is thermally activated
with single electrons ”jumping” from one localized state to another. T0 decreases upon
approaching the transition as T0 ∼ ∆P ∝ |g − gc|νD2 where gc is the conductance at which
the pseudogap develops, which reproduces the experimental evolution of T0 with disorder seen
in Fig. 4.6c.

Experimentally it is observed that at the SIT the lowest achievable value of critical temperature
is not zero: below this critical value Tc does not exist and the T = 0 state is an insulator. See
Fig. 4.6b and c.
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Fig. 4.6. Closer look at the re-entrant insulators. a) Transition curves in log-log
scale. Close to the transition the low-resistance of superconducting samples is somewhat
higher than their low-disorder counterparts, with Rmin > 200 Ω. The low-temperature part
of re-entrant insulators can be fitted by an activation law R ∝ exp

(
T0/T

)
where T0 is an

activation energy. The fits are shown in dashed grey lines. b) Energy scales across the
SIT. The critical temperature Tc on the superconducting side of the transition and the would
be critical temperature ”Tc” on the insulating side are shown across the SIT alongside the
logarithmic formula Tc = Tc0 ln g (dashed line). The activation energy T0 is obtained by
fitting the re-entrant resistance, and the dimensionless conductance of the re-entrant insulators
is given by RQ/Rmin where Rmin is the minimum of resistance measured for near-critical
samples. When crossing the SIT (i.e g = 1.8 → 1) one first observes that the activation
energy T0 is of the order of the critical temperature : T0 ∼ Tc, then increasing to T0 ∼ 2 K
upon approaching g = 1. Secondly one notes the decrease of the minimum conductance
RQ/Rmin from 103 to RQ/Rmin ∼ T0. c) The dependence of the pertinent energies at the
transition T0 for insulating samples (red triangles) and Tc for superconducting samples (blue
squares) on disorder (kF l ∝ g) in amorphous indium oxide films. Blue dashed line follows
Tc = 3.3

(
1− (0.2/kF l)

2
)
, which is mostly a guide for the eye. Reproduction from [Shahar

et al., 1992].

Within the theory of pseudogap T0 should indeed be of the order of Tc at the transition: the
superconducting state develops when the criterion ∆ ∼ ∆P (discussed in section 2.2.1, where
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∆P now replaces δloc) is verified.

STM measurements of the spectral gap [Benjamin Sacépé, Dubouchet, et al., 2011] give the
estimation Eg ∼ 7 K close to the transition. Our estimations of ∆ ≈ 2Tc ∼ 1 − 2 K and
∆P ∼ T0 ∼ 2 K are in agreement with Eg = ∆ + ∆P in order of magnitude.

4.4 | Re-entrant R(T ) curves

Insulator and superconductor are intertwined close to the SIT: localization effects are present
on the superconducting side, while Cooper pairs are bound on the insulating side. The nature
of the re-entrant resistance curves upon cooling down remains to be adressed.

We will show that in the framework of the theory of pseudogap Coulomb interactions
between localized pairs must be taken into account in order to explain re-entrant
behavior of resistivity displayed in Figs. 4.1, 4.6 and 4.8.
Indeed in most of the theory described in chapter 2, interactions between electrons were
neglected for simplicity. In a real system interactions might become relevant, as we will show.

We have already discussed the effects of Coulomb interaction between single electrons within
a localization volume, and concluded that this repulsion could be overruled by phonon-induced
attraction.
There exists another Coulomb interaction occuring in a system with a pseudogap, namely the
repulsion between localized electron pairs.

The long-range interaction between pairs (of charge 2e) on site i and j is

Vij =
4e2

κrij
(4.2)

where κ is the dielectric constant.
The weakness of this interaction is due to the large dielectric constant. In an Anderson insulator
without superconducting pairing the dielectric constant κ (in units of 4πε0) can be estimated
by [M V Feigel’man et al., 2018]:

κ ≈ 40 e2 ν0 ξ
2
loc (4.3)

where ν0 is the density of states for electrons. For pairs the DoS is twice smaller.
This dielectric constant can be large e.g. κ ≈ 1000 in amorphous indium oxide.6

Comparable values have been obtained experimentally on the insulating side of the transition
by [Ebensperger, 2021].

4.4.1 Coulomb gap of preformed pairs

Similarly to the case of single electrons, the Coulomb repulsion between pairs opens a soft
Coulomb gap in the density of states.
This can be demonstrated by following the derivation of the Coulomb gap presented in Appendix
A.4, and replacing e→ 2e to account for the repulsion of pairs. One gets the Coulomb gap of
preformed pairs:

∆C = ν
1/2
0

(
4e2

κ

)3/2

≈ 0.04 δloc (4.4)

6We have used ν0 = 0.5 1046 J−1m−3 as measured from Hall effect [B. Sacepe et al] and a localization
length of the order of the coherence length ξloc = 5 nm.
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where last equality follows from Eq. (4.3).

Estimation of the Coulomb gap for indium oxide Using the estimates for the DoS of
pairs ν0 = 0.5 1046 J−1m−3 and the dielectric constant κ ≈ 1000 leads to the Coulomb gap
width:

∆C ≈ 4 K (4.5)

The estimate above demonstrates that the Coulomb gap of preformed pairs has a value
comparable to that of the superconducting energy scales ∆ ∼ 2Tc and T0.

Nature of the Cooper pair insulator It is suggested from experimental data that the
superconducting state in a pseudogapped superconductor is terminated by a state of incoherent
localized Cooper pairs. The absence of supercurrent originates from the loss of long-range
phase coherence between Cooper pairs over the sample length.
The electrons of a pair remain tightly bound (one needs to bring the energy 2∆P to break a
pair) and are distant from one another by a few localization lengths.

The pairs also weakly repel each other through Coulomb interactions, which remain long-range
because they are poorly screened. All Cooper pairs interact repulsively with each other forming
a complex many-body localized system called Coulomb glass [M. Müller and Ioffe, 2004].
It is plausible that Coulomb repulsion between electron pairs and condensation of these pairs
into a superconducting state are in competition. When disorder and the related phase fluctua-
tions become strong, Coulomb repulsion between pairs can overcome and induce an insulating
state. We will comment further on this mechanism later.

From a handwaving argument this interpretation gives a meaning to the would be critical
temperature extracted from re-entrant insulating samples: that quantity describes the critical
temperature that would be observed experimentally if Coulomb repulsion between localized
preformed pairs could be turned off.

4.4.2 Consequence on resistance at finite temperatures

At finite temperatures the number of quasiparticles is non-zero, and increases when warming
the sample up as nqp ∝ exp

(
−∆/kBT

)
. It follows that a current of unbound electrons

(charge e) flows in the device. It was demonstrated that these electrons could screen Coulomb
interactions [M. V. Feigel’man, Korshunov, et al., 1997], and therefore reduce the amplitude
of the Coulomb gap compared to its zero-T value. This mechanism could be at the origin of
the re-entrant resistance observed near the SIT, as described below.7

7In disordered granular superconductors and Josephson junction arrays a re-entrant resistance with
temperature is often observed, and interpreted as the competition between Coulomb repulsion (charging energy
Ec) and Josephson coupling (Josephson energy EJ) [van der Zant et al., 1996]. The mechanism described
in this paragraph is very similar to it, with the major difference of the microscopic properties of charges:
in a granular superconductor Cooper pairs are gathered in superconducting grains, and transport occurs by
coherence tunneling between grains. Therefore in a particular grain (with size typically of the order of ξ)
electronic wavefunctions are extended, and form a superconducting state which present all the characteristics
of a BCS superconductor (which should be seen by a local probe such as STM). For a homogeneous disordered
superconductor based on an insulator, electronic wavefunctions are localized, and electron pairs are formed
because of the pseudogap. These pairs are localized and transport occurs by hopping between localized states.
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Fig. 4.7. Re-entrant resistance in pseudogapped superconductors. Critically homoge-
neously disordered samples close to the SIT might present a re-entrant behavior. This is due to
the interplay between Coulomb repulsion of preformed pairs, condensation of these pairs, and
thermally excited quasiparticles. Anderson localization of single electrons is increasingly efficient
as temperature is decreased, enhancing the probability for quantum interferences. At lower
temperatures pairs of electrons start to form through the localization-induced phonon-mediated
attraction. At even lower temperature normal electrons (quasiparticles) screen the Coulomb
interactions, favoring the condensation of pairs upon cooling down: the resistance drops.
Concurrently quasiparticles get frozen out, reducing the effect of screening: Coulomb repulsion
takes over and drives the sample into an insulating state made of localized Cooper pairs that
repel each other at long range.

At finite temperatures T > 0 quasiparticles screen Coulomb interactions with increasing
efficiency, consequently reducing the Coulomb gap: ∆C(T ) < ∆C(0). Upon cooling down
the sample however, down to T = 0, quasiparticles are frozen, thus suppressing the screening
effect and restoring the Coulomb gap to its largest value.
Re-entrant behavior of critically insulating samples can then be interpreted as a competition
of the superconducting order parameter ∆ and the Coulomb gap ∆C :

η(T ) = γ
∆(T )

∆C(T )
(4.6)

where γ is an unknown constant that determines the quantum critical point at T = 0 between
the insulator dominated by repulsion of pairs and the superconductor characterized by conden-
sation of paired electrons.

When lowering the temperature starting from the normal state, the system experiences an
energy gain by condensation of Cooper pairs −Esc ∝ ν0∆2. Here the temperature remains high
enough to screen long-range Coulomb interactions, and η > 1, favorizing superconductivity
and reducing the sample resistance.
Upon further decrease of temperature quasiparticles get frozen out, leading to an increase of
∆C(T ). Eventually Coulomb interactions take over condensation energy (η < 1) and resistance
increases following an activated behavior with activation energy of the order of the parity gap
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∆P .8 This three-step mechanism is illustrated in Fig. 4.7.

4.5 | Heating effects in critically disordered samples

We add here that special precautions must be taken when interpreting data obtained by
transport measurements of disordered superconductors near the Superconductor-Insulator
transition. It was indeed predicted theoretically [B. L. Altshuler et al., 2009] and observed
experimentally in indium oxide films [M. Ovadia, B. Sacépé, et al., 2009; Doron et al., 2017]
that strong linearity and large discontinuities of the I − V characteristics could occur due to
electron-phonon decoupling.

Suppose that electrons have a temperature Tel distinct from the phonon bath temperature.
B. L. Altshuler et al., 2009 showed that Tel could be obtained by solving the equation

V 2

R(Tel)
= ΓΩ

(
T βel − T

β
ph

)
(4.7)

where Ω is the volume of the sample and Γ is the electron-phonon coupling strength. At
low enough temperatures this equation gives two solutions for Tel, inducing a bistability of
I − V curves, with a jump between a low-resistive and a highly-resistive regime. The critical
temperature at which such a bistability appears decreases upon approaching the transition.
The experimental consequence of electron overheating is that some systems might become
impossible to measure: voltages or currents used to probe the sample need to be extremely
small in order to remain in the high-resistance regime, but still above the inevitable noise
threshold implied by the measurement electronics.

Fig. 4.8 focuses on a re-entrant insulator measured in a narrow indium oxide wire. I−V curves
obtained with a current bias show that upon increase of current Idc the 4-probe resistance
decreases, following the same evolution as the temperature decrease of resistivity. Hence
currents as small as 1 nA are heating the sample. The question is then whether or not the
measured resistance is in the high or low resistance bistable regimes.

8The presence of a Coulomb gap for electron pairs suggests an additional channel for conduction based on
the Efros-Schlovskii variable range hopping of pairs. Very close to the SIT this conduction channel could act
in parallel to the thermal activation of electrons above the parity gap.
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Fig. 4.8. a) Re-entrant insulating curve for a critical 100 nm-wide stripline. b) I − V curves
obtained on the same sample for various cryostat temperatures. The AC bias used here is
Iac = 100 pA.

Conclusion

In this chapter we reported on the systematic transport measurements of a set of amorphous
indium oxide samples with increasing disorder. Tuning the disorder level enabled us to cross
the Superconductor-Insulator transition.
We demonstrate that the low-temperature superconducting state in this material is surprisingly
resilient to disorder, as shown by the very low critical temperature Tc ∼ 0.4 K and high
normal-state resistance R� ∼ 16 kΩ/� reached at the SIT. Superconducting state survives
deep in the Anderson insulator, and the interplay of the two leads to interesting features such
as re-entrant resistance curves with temperature.

Finally, and most importantly, we notice that the SIT is accompanied by an abrupt suppression
of Tc at a critical disorder gc: where usual second-order transitions would require the continuous
suppression of the transition temperature to zero, we observe a seemingly discontinuous jump
of Tc. The critical disorder gc also seems to be geometry-dependent.
We make the suggestion that the SIT in this system might be a first-order transition.
To strengthen this argument we now turn to the microwave spectroscopy of the exact same
samples as the ones described in this chapter.
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CHAPTER5
Microwave frequency study of the

Superconductor-Insulator Transition

Subsequently to the numerous studies of transport properties in disordered superconductors
near the SIT (see also previous chapter), recent works have been focusing on finite frequency
spectroscopy. Increasing the operating frequency allows for the measurement of the complex
conductivity σ(ω) = σ1 − jσ2, the real part of which describes dissipation and where the
imaginary part σ2 = 1/LKω is related to the kinetic energy of superfluid motion.

Along with the fastly growing field of circuit Quantum Electrodynamics (cQED), modern
methods involving standard commercial microwave equipment (such as VNA, microwave
amplifiers ...) were recently used to probe superconductivity via microwave resonators (in the
line of the ones described in chapter 3). Several materials have already been measured using
this technique, among which granular aluminum [N. Maleeva et al., 2018], heterostructures
such as LaO/STO [G. Singh et al., 2018] or Josephson junction arrays [Kuzmin et al., 2019].
Amorphous indium oxide was used only twice in the making of superconducting circuits [Astafiev
et al., 2012; Dupré et al., 2017], moderately far from the SIT.

In this chapter is presented the first study of the SIT in amorphous indium oxide
using microwave resonators.
The samples are long (l = a few mm) and narrow (w = 1 µm) thin indium oxide wires, as
pictured in Fig. 5.1. When excited by microwave radiations these wires withstand collective
excitations which can be probed using the techniques presented in chapter 3.

Fig. 5.1. Schematic view of a microstrip resonator used in this study. Details on the
geometry and wave propagation are given in chapter 3. Here orange material is disordered
amorphous indium oxide with kinetic inductance LK ∼ 1 nH/� or beyond.
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5.1 | Superconductivity at T = 0 is Bosonic: ruled and
suppressed by phase fluctuations

The reduction of superconducting pairing in amorphous indium oxide cannot be taken for the
only responsible of superconductivity suppression by impurities [Benjamin Sacépé, Mikhail
Feigel’man, et al., 2020]. We have mentioned an alternative scenario in which Cooper pairs
gradually loose their phase coherence and form an insulating state composed of electron pairs.
This idea is compatible with the experimental observations of a pseudo-gap, and is known as
the bosonic scenario of superconductivity (presented in chapter 1).

Using the novel tools of microwave superconducting circuits introduced in chapter 3, we will
demonstrate in this chapter that the suppression of superconductivity in amorphous
indium oxide follows the bosonic pathway.
Doing so, we will show that disordered a:InO has exceptionally low superfluid density, and
consequently large kinetic inductance [M. V. Feigel’man and Ioffe, 2018].

5.1.1 Microwave spectroscopy of disordered amorphous indium ox-
ide

Typical microwave measurements of superconducting amorphous indium striplines are shown
in Fig. 5.2. The adopted resonator geometry (e.g wire length ∼ few mm) allows for densely
packed resonances with a typical inter-mode spacing ∼ 0.4 GHz. a:InO resonators can either
be probed in single-tone measurement, resulting in a transmission drop at the resonance
frequency (Fig. 5.2a) or with two-tones spectroscopy displaying a series of transmission peaks
signaling resonant modes (Fig. 5.2b).
Details on these spectroscopy techniques can be found in chapter 3.

Fig. 5.2. a) Typical microwave transmission near a resonant mode of an indium oxide stripline,
caracterized by a drop in amplitude. b) Excerpt of a typical two-tones measurement displaying
a series of transmission peaks, each of which signals the existence of a resonant mode.

The kinetic inductance of indium oxide microwave resonators is accurately extracted from the
dispersion relation curves shown in Fig. 5.3 for various disorders using the plasmon dispersion
model given by Eq. (3.22) detailed in chapter 3.
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Fig. 5.3. Dispersion relations fn(kn) obtained through two-tone spectroscopy of amorphous
indium oxide resonators of increasing disorder. Black solid lines are fits following the plasmon
dispersion model of Eq. (3.22), the kinetic inductance LK being the only fitting parameter.
Upon increase of disorder LK increases, in turn decreasing the slope of the dispersion relation.

The resulting evolution of kinetic inductance with film disorder is shown in Fig. 5.4. Table 5.1
gathers both DC and microwave measurements carried out on the samples discussed in the
present chapter.

By increasing the normal state resistance by one order of magnitude the kinetic inductance is
enhanced by almost two orders of magnitude, reaching a maximum value of LK ∼ 17 nH/�
near the SIT, several times larger than the state of the art for disordered superconductors.
The increase of inductance with resistance for a dirty superconductor is given by the optical
weight conservation [Mattis et al., 1958] and can be written1

LK =
~Rn

π∆
(5.1)

where ∆ is the (collective) superconducting gap and Rn is the normal-state film resistance
measured above the transition temperature. Thus LK is expected to grow linearly with normal
state resistance.
Dashed line in Fig. 5.4 is the prediction of Eq. (5.1) in which the superconducting gap has
been estimated as ∆ = αS kBTc with αS = 2, corresponding to the BCS strong coupling limit.
The validity of this estimation can be assessed by reasoning backwards: the coupling constant
αS is calculated from the data, as shown in Fig. 5.4b, demonstrating that the value of the
coupling constant at low disorder is close to the BCS weak coupling αS ∼ 1.76, then grows
slowly up to αS ∼ 2.4 at g = 4. At higher disorders the coupling constant diverges, evidencing
the loss of validity of Eq. (5.1) close to the SIT.

Another coupling constant can be obtained from local measurement of the spectral gap via
STM imaging [Benjamin Sacépé, Dubouchet, et al., 2011], as being the ratio of spectral

1See also an alternative derivation of this formula in Appendix E.1.
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Fig. 5.4. Increase of kinetic inductance with disorder. a) Kinetic inductance versus
normal state resistance. By increasing the normal state resistance by one order of magnitude
the kinetic inductance is enhanced by almost two orders of magnitude, reaching a maximum
value of LK ∼ 17 nH/� near the SIT, several times larger than the state of the art for
disordered superconductors. Dashed line is the estimation given by the optical sum rule formula
LK = ~Rn/(π∆) where it is assumed that ∆ = α kBTc with α = 2. The fit fails very
close to the SIT. b) Coupling constants The coupling constant defined by the ratio of the
superconducting gap by the critical temperature has two distinct values in a pseudo-gapped
superconductor. The ratio Eg/Tc where Eg is the single particle gap measured in [Benjamin
Sacépé, Dubouchet, et al., 2011] is shown in green, while the coupling constant obtained from
BCS theory with ∆ = αSTc is αS = ~Rn/(πLKTc) shown in blue. Upon increase of disorder
(i.e g → 1) αS increases logarithmically but stays bounded : 1.76 ≤ αS < 2.4 before diverging
for g < 4. On the other hand the single particle coupling constant α grows continuously as
Eg/Tc ∝ − ln g.

gap Eg by the critical temperature Tc (shown in green). At low disorder α is close to the
BCS value, but increases strongly upon increase of disorder (following a logarithmic evolution 2).

The apparent divide between spectral and collective gap is an essential point of the theory of
bosonic suppression of superconductivity (see chapter 1). Numerical simulations in presence
of strong disorder predict a qualitatively similar result (see section 2.2.2): at low disorder
both energy scales (single particle gap Eg and order parameter ∆) coincide, as expected for a
BCS superconductor, whereas they separate increasingly with disorder, eventually reaching
the SIT at which the collective gap vanishes but the single particle gap remains large. The
same prediction was obtained analytically in the theory of fractal superconductors presented in
section 2.3.

As suggested by Fig. 5.4b the opening of a pseudogap in the single particle density of states is
related to a change in the coupling constant α. For Eq. (5.1) to hold, one must now put a
coupling constant of the order of 5, which is the order of magnitude of the α obtained from
tunneling data (green points). This observation, of course, it to be taken with a grain of salt.
One might conclude that the relation Eq. (5.1) is actually more general than BCS theory alone

2if one is brave enough to declare that a fit based on three points is reliable.
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(which can be demonstrated theoretically, see Appendix E.1), provided the superconducting
gap is known. The relation ∆ = αTc, however, comes from BCS theory and breaks down at
high disorders.

5.1.2 Phase fluctuations break down superconductivity

We have mentioned in section 2.2.2 that the order parameter inhomogeneneity induced by
disorder enhances the role of superconducting phase fluctuations.
Upon increase of disorder fluctuations of the phase (quantum or classical) destroy long-range
order and break down superconductivity. The relevant parameter to describe rigidity of the
superconducting phase against fluctuations is the superfluid stiffness Θ introduced in chapter
1.
We shall now describe how superfluid stiffness evolves with disorder, and compare with transport
measurements in a phase diagram near the SIT.

5.1.3 Phase diagram

Fig. 5.5. a) Experimental phase diagram near the SIT in strongly disordered amor-
phous indium oxide. Both DC (Tc, g, Eg) and microwave (Θ) quantities are compared
upon increase of disorder. Eg was measured by tunneling spectroscopy in [Benjamin Sacépé,
Dubouchet, et al., 2011; Daniel Sherman, Gorshunov, et al., 2014] (Eg and the corresponding
critical temperatures are represented by green and red pentagons respectively). When approach-
ing the transition Tc and Θ coincide Tc ∼ Θ, evidencing the underlying bosonic mechanism. b)
Simulations of the attractive Bose-Hubbard model using the Bogoliubov-de Gennes
approach. The evolutions of Eg, superfluid stiffness Θ = Ds/π and critical temperature
2Tc = ∆OP are strikingly similar to experimental observations. Inset shows spatial inhomo-
geneity of the order parameter ∆(r) for strong disorder V/t = 3, near the SIT. Adapted
from [Ghosal et al., 2001].

The superfluid stiffnesses obtained for indium oxide resonators are displayed in Fig. 5.5a (blue
triangles) along with the related critical temperatures Tc (red dots).
Spectral gaps previously measured in indium oxide in the superconducting state [Benjamin
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Sacépé, Dubouchet, et al., 2011] and in the insulating state [Daniel Sherman, Gorshunov,
et al., 2014] are also added (green pentagons). This graph shows a comparison of the relevant
energy scales for a disordered superconductor near the SIT, and as such we will refer to it as a
phase diagram.

On the low disorder part of the diagram (g � 1) one observes the large value of Θ compared
to the other energy scales. Indeed, for low disorder mean-field theories remain valid, and
the role of phase fluctuations on superconductivity can be neglected. In this region the BCS
proportionality between superconducting gap and Tc applies, as discussed in relation to Fig. 5.4.

Upon further increase of disorder the superfluid stiffness decreases below the gap: Θ <
Eg: the order parameter amplitude is increasingly inhomogeneous (as evidenced by STM
measurements [B. Sacépé, C. Chapelier, et al., 2008] and numerical simulations, see section
2.2.2) and phase fluctuations become strong. The single particle gap Eg is enhanced by
localization, while the critical temperature is suppressed. In this region the pseudo-gap (or
parity gap) develops, and superconductivity becomes intertwined with Anderson localization.
Around g = 4 (i.e. Rn = h/(2e)2) the superfluid stiffness becomes remarkably small (a few
K). Long-range order becomes controlled by the resilience of the superconducting condensate
against fluctuations, i.e. by phase coherence.3

Thermal phase fluctuations destroy long-range order and lead to the relation (Emery
et al., 1995):

Tc ∼ Θ(0) (5.2)

Remarkably, Fig. 5.5a displays relation (5.2) between critical temperature and superfluid
stiffness in a (relatively) large disorder range (Tc ∼ 2 K down to Tc = 0.4 K). Stronger
disorder drives the transition to the insulating state where both Tc and Θ are zero.

This relation is reminiscent of the Berezinskii-Kosterlitz-Thouless transition in the 2D XY
model (see section 1.3). In this picture the transition temperature is ruled by the critical
superfluid stiffness value at the BKT transition, while the phase stiffness itself is reduced upon
increase of disorder. This results in the concomitant decrease of Tc and Θ with disorder as
observed here.
The proportionality constant in Eq. (5.2) should be ≈ 0.89 for the 2D XY model, as demon-
strated numerically [Olsson et al., 1991; Adler et al., 1993; Hsieh et al., 2013]. The universal
BKT relation Tc = (π/2)Θ(Tc) is valid right at the critical temperature in the thermodynamic
limit (infinite sample size), but becomes non-universal (and model-dependent) at low tempera-
ture.

Importance of phase fluctuations in superconductors with low superfluid density
Our observation of the relation Tc ∼ Θ(0) for several samples of increasing disorder confirms
the intuition that phase fluctuations rule superconductivity in nearly critical samples. As
disorder increases the density of superconducting charge carriers ns is reduced and, by the
relation Θ ∝ ns presented in section 1.1, the resilience to phase fluctuations is suppressed.
Therefore low superfluid density superconductors are expected to present the relation Tc ∼ Θ(0)
characteristic of a system ruled by classical phase fluctuations. This important result was
discussed in [Emery et al., 1995] in relation to high-Tc superconductors.

3See the very thorough review article [Raychaudhuri et al., 2021] on phase fluctuations.
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We now present a very simple (and naive) model to describe the evolution of Tc and Θ(0)
with disorder g, incorporating both BCS theory (that should prevail at lowest disorder) and
the BKT transition which dominates at strong disorder.

Evolution of Tc and Θ(0) with disorder We start by describing the evolution of Θ with
disorder 1/g = Rn/RQ, using a simple BCS formalism (probably inaccurate for strongly
disordered samples). The main point is to relate the effect of disorder (described by a mea-
surable DC quantity such as the normal-state resistance) to the superfluid response of the
superconductor.

The Mattis-Bardeen theory gives the evolution of the complex conductivity with frequency
and temperature [Mattis et al., 1958]. In the limit of low frequency or high temperature
(~ω � kBT ) one finds the estimation

σ2

σn
=
π∆

~ω
tanh

(
∆

2kBT

)
(5.3)

where σn is the normal state conductivity given by Drude’s formula.

Using the definition of kinetic inductance LK = (σ2ω)−1 and writing the 2D superfluid stiffness
as Θ = (~/(2e))21/L�

K one rewrites last equation as

Θ(T ) =
1

8
∆g tanh

(
∆

2kBT

)
(5.4)

We estimate (roughly) the evolution of the superconducting gap ∆(T ) with temperature
using a well-known interpolation formula4 allowing us to model the suppression of Θ(T ) by
thermally-induced breaking of Cooper pairs. Neglecting in first approximation the dependence
of ∆ on disorder (we disregard the fermionic mechanism here) one sees that Θ(T ) ∝ g
decreases upon increase of disorder.

Next we assume that the system possesses a BKT transition i.e. the real, measurable critical
temperature Tc is given by the BKT relation Tc = βΘ(Tc), where β = π/2. Note that
recent experiment in thin disordered NbN films demonstrates that, unlike some previous past
observations of a broadened transition the BKT transition is in fact sharp and fits the usual
RG model [Weitzel et al., 2023].
Setting T = Tc in Eq. (5.4) and equating with the critical value of Θ(Tc) predicted by the BKT
mechanism, one gets an equation that can be solved analytically to find the ratio Tc0/T

BKT
c (g)

as a function of g5 as well as Θ(g) at zero temperature.
The result of this procedure is displayed in Fig. 5.6. Left plot illustrates the main features of
the calculation: upon increase of temperature Θ(T ) is suppressed by pair-breaking, and jumps

4The temperature evolution of ∆ can be interpolated in the whole temperature range as

∆(T ) ≈ ∆0 tanh

(
π

2

√
Tc0
T
− 1

)
(5.5)

with ∆0 = αkBTc0 where α = 1.76.
5

8

αβg
= X tanh

(
π

2

√
X − 1

)
tanh

[
α

2
X tanh

(
π

2

√
X − 1

)]
(5.6)

in which we have introduced the ratio of critical temperatures X = Tc0/Tc.
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Fig. 5.6. Suppression of critical temperature with normal-state conductance via the
BKT mechanism. Left: Result of the numerical solving of Eq. (5.6). Orange line is the
BKT relation Θ(Tc) = Tc/β. The superfluid stiffness decreases with temperature as the
number of quasiparticles increases following the Mattis-Bardeen formula (this is the main
difference with Fig. 1.2). At T = Tc where the BKT jump of Θ occurs, superconductivity is
suppressed abruptly. As disorder is increased (g decreased) the value of Θ(Tc) at the BKT
transition gets closer to the zero-T value Θ(0). Eventually, for sufficiently strong disorder
Tc ∼ βΘ(0). Right: Resulting Tc and Θ(0) (in units of the mean-field critical temperature
Tc0) versus normal-state conductance. Upon decrease of g both energy scales are reduced,
and below g = 4 the critical temperature is ruled by phase fluctuations as can be seen from
the proportionality Tc ∝ Θ(0).

to zero at Tc because of the sudden proliferation of vortices breaking the quasi-long-range
order. By increasing disorder, Θ(0) decreases and so does Θ(Tc) = (1/β)Tc. Notice that
low-T and high-T values of Θ can be significantly different for small disorders (g � 1). It is
only for strong disorders that Θ(0) ∼ Θ(Tc) ∼ Tc. The evolution of Θ and Tc with g is shown
on the right panel and confirms this qualitative argument.
Upon increase of normal-state resistance the superfluid stiffness is reduced, in turn
suppressing the critical temperature through the BKT mechanism.

It can be noted from Fig. 5.5a that the regime of phase-dominated superconducting transition
takes place for normal-state resistances above the resistance quantum for Cooper pairs h/(2e)2

(or g = 4).
Perhaps accidentally, this feature was already seen in the simple BKT model described above
(see Fig. 5.6) where the critical conductance value g = 4 can be associated to the region
where the spacing between mean-field and BKT transition temperatures becomes of the order
of Tc itself. In this region only the BKT temperature describes superconductivity, irrespective
of the pairing temperature (related to the gap).
One might also note that the resistance Rc = h/(2e)2 is expected to delimitate the transition
between superconducting and Bose glass insulator in the bosonic scenario of 2D superconduc-
tors discussed in section 1.4.
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This simple and inaccurate 6 estimation has the merit of showing the transition between the
mean-field, BCS region where phase fluctuations can be safely neglected (Tc ∼ Tc0 � Θ(0) for
g � 1) and the highly disordered state where superconductivity is ruled by phase fluctuations.

Numerical simulations of a pseudogaped superconductor Interestingly the same qual-
itative results can be found by numerical simulations of an Anderson insulator with added
attractive electron-electron interaction, as discussed in section 2.2.2. A compilation of the
results of [Ghosal et al., 2001] is shown in Fig. 5.5b, displaying the decrease of critical temper-
ature and superfluid stiffness and the uncorrelated increase of single particle gap. We have
here used the (unproven) relation ∆OP = 2Tc to estimate the critical temperaature from the
gap simulations of the author’s work. One finds a striking resemblance with our experimental
results.
Note that the work of [Ghosal et al., 2001] did not incorporate effects of quantum phase
fluctuations to the simulation, but merely the (important) effect of disorder-induced gap spatial
inhomogeneities. In this picture the microscopic origin of strong phase fluctuations seen by a
disordered sample is the broad dispersion of gap amplitudes over the sample size. The latter
effect is a direct consequence of Anderson localization of single electrons.

Universal bosonic scenario in low carrier density materials It was suggested that super-
conductors with low carrier density would be more likely to be ruled by phase fluctuations [Emery
et al., 1995]. Interestingly, this observation is independent on the microscopic composition of
such materials, and even on the very mechanism responsible for superconductivity. It follows
that superconductors as diverse in composition as homogeneous, granular, heterostructures,
layered cuprates or twisted bilayer graphene could behave similarly at low enough carrier density.

The phase-driven scenario has already been reported in a wide range of superconductors (see
for example [Chand et al., 2012; Pracht, Bachar, et al., 2016; G. Singh et al., 2018]) but a
careful look at the available data suggests that, in most cases, the onset of phase-dominated
superconductivity coincides with the critical regime leading to the transition to an insulating
(or metallic) state. By that is meant that, once Tc ∼ Θ is reached, the superconducting
state vanishes (see Fig. 5.7). In comparison our indium oxide data shows a (relatively) large
disorder range where phase fluctuations dominate the superconducting state, in contrast to
other experimental findings.

Fig. 5.7 shows a collection of superfluid stiffnesses and their related critical temperatures for
structurally different superconductors found in the literature, as well as the critical line Θ = Tc
(dashed black). a:InO samples (red markers) are the result of the present work.
It is found that these materials present a superconducting state governed by phase fluctuations
when close enough to criticality, as demonstrated by the proximity to the line Θ = Tc (dashed
black line of Fig. 5.7). This behavior holds for very diverse microscopic structures, ranging to
intrinsically granular to homogeneous disorders, as well as 2D heterostructures and high-Tc
superconductors. As the data reaches the Θ = Tc line the superconducting state breaks down.
Indium oxide on the other hand presents data points lying on this critical line.

6Most equations that were used here are derived from perturbation theory, and therefore are not expected to
be exact for strong fluctuations and nearly-critical disorder. We also abusively neglected amplitude fluctuations
of the order parameter and possible effects of localization. This estimate must therefore be understood as a
qualitative illustration of the physics at play.
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Fig. 5.7. Uemura plot Superfluid stiffness Θ versus critical temperature Tc for various
superconductors of different microscopic compositions (amorphous, granular, heterostructures,
high-Tc cuprates). Indium oxide samples studied in this work are represented by red circles.
Black dashed line shows the phase boundary Θ = Tc indicating bosonic behavior. Dashed grey
lines show the scaling Θ ∝ T 3

c .

The main point of this graph is the observation that in most cases, phase fluctuations are
responsible for the quantum breakdown of the superconducting state irrespective of the ma-
terial’s chemical composition. As long as superconducting charge carrier density is low one
should expect the suppression of long-range order to be the result of the jointed effects of
both pair-breaking (fermionic scenario, dominant far from SIT), phase fluctuations (most
effective near the SIT), and Coulomb repulsion, as suggested by the most recent theoretical
advances [Benjamin Sacépé, Mikhail Feigel’man, et al., 2020].

One can also observe that some of the data presented here has the approximate scaling Θ ∝ T 3
c

when approaching criticality, displayed by dashed grey lines.
A possible interpretation of this fact implies the fractal nature of electronic wavefunctions
in pseudo-gapped superconductors [M.V. Feigel’man et al., 2010]. In this framework it has
been shown [M. V. Feigel’man and Ioffe, 2015] that the superfluid stiffness could follow a
non-trivial dependence with the collective gap in the pseudo-gapped phase Θ ∝ ∆a.
Recent developments suggest that the exponent a could be of the order of 3 [M. Feigel’man,
private communications]. Making the assumption ∆ ∝ Tc, which is hard to justify close to the
transition but should be correct at low enough disorder leads Θ ∝ T 3

c .

5.2 | Suppression of superconductivity at finite tem-
perature driven by phase fluctuations

The measurements presented above concerned very low temperatures T ≈ 20 mK. For
standard superconductors an increase of temperature has the only effect of gradually closing
the superconducting gap ∆ above which single-particle excitations can exist and generate
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dissipation. Superconductivity is exponentially suppressed as δΘ ∝ exp
(
−∆/kBT

)
.

In a pseudogapped superconductor like indium oxide however things are less clear: the pseu-
dogap remains large even when leaving the superconducting state. Therefore single-particle
excitations (related to pair-breaking effects) are most likely not the dominant factor of sup-
pression in the superfluid.
We now discuss the unusual temperature dependence of superfluid density in indium
oxide films.

Fig. 5.8. Evolution of plasmon frequency with temperature. Single-tone spectroscopy of
a weakly disordered indium oxide wire at various temperatures. Increase of sample temperature
reduces the resonance frequency.

Fig. 5.8 displays the effect of an increase of temperature on a given resonator mode measured
in transmission. The frequency (measured at the transmission minimum) decreases with
temperature, evidencing the increase of kinetic inductance when heating the sample.

The superfluid density (or superfluid stiffness) at various temperatures can easily be accessed

via the measurement of a mode frequency since f(T ) ∝
√

Θ(T ).
We then define the relative frequency shift as δf(T )/f =

(
f(T )− f(Tmin)

)
/f(Tmin), where

Tmin is the cryostat base temperature (usually ∼ 20 mK).
By proceeding to temperature sweeps for samples of distinct disorders one is able to compare
the evolution of relative frequency shift with disorder, as displayed in Fig. 5.9a.

We show that the data can be fitted by the power-law formula

δf(T )

f
≈ −

(
T

T1

)α
(5.7)

where T1 and α are fitting parameters.

The power law exponent α is found to be comprised between 1.6 and 2.2 in this frequency
range. The power law fit is valid at lowest temperatures only, as the pair-breaking mechanism
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Fig. 5.9. Suppression of superfluid density with temperature a) Frequency shift versus
temperature for several samples. Instead of the BCS activated reduction of the gap with
thermal energy, one observes a power low at lowest temperatures. Black dashed line is a fit
following δf(T )/f = −(T/T1)α. a) Evolution of the fit parameter T1 with superfluid density
Θ. Inset shows the frequency shift in log-log scale, evidencing the power behavior at lowest
T . Black dashed line shows T1 ∼ 5.5 Θ, another demonstration of the influence of phase
fluctuations on superconductivity.

comes into play at higher temperatures, further reducing the mode frequency through the
standard Mattis-Bardeen theory.
It can be shown (see Appendix) that substracting the pair-breaking model (with the appropriate
superconducting gap ∆) to our data reveals a power law in the whole temperature range,
confirming that both mechanisms (pair-breaking and phase fluctuations) contribute in parallel
to the suppression of superfluidity.

The low-T power law displayed above cannot be explained by thermal breaking of Cooper
pairs: at these low temperatures thermal energy kBT is much smaller than the gap ∆ which
should result in a mostly constant frequency. Here suppression of superconductivity finds its
source in phase fluctuations.
This can be seen from Fig. 5.9b, where it is demonstrated that T1 ∝ Θ, that is the frequency
shift amplitude is related to the energy scale of phase fluctuations.
At finite temperatures phase fluctuations of the order parameter rule superfluidity.

5.2.1 Excitation of thermal plasmons

The mechanism leading to a phase-driven frequency shift taking the form of a power-law was
sketched in section 3.4.4, where we showed that T1 ∝ Θ3/4 and the exponent α = 2.
While this exponent is rather close to the one found experimentally (∼ 1.6) the prefactor is off
by orders of magnitude.
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Indeed this simple model predicts T1 of the form7

T1 ∼
1

ξ

√
~ω0Θ(0)Lw (5.8)

where ξ, L and w are the dirty limit coherence length, resonator length and width respectively,
and ω0, Θ(0) are the zero temperature frequency and superfluid stiffness.
Taking reasonable values corresponding to our samples gives an estimation of T1 ∼ 5000 K,
while experimentally T1 is closer to 1− 100 K.

From this we conclude that the anomalous suppression of superconductivity at low temperatures
is indeed related to classical phase fluctuations, in contrast to the usual BCS mechanism, but
that a simple model accounting for one-dimensional plasmon excitations alone is not sufficient
to reproduce the data.
It seems natural to consider other type of excitations below the gap, related to much shorter
lengthscales.

5.2.2 Suppression by low-lying modes in pseudogap superconductors

Further study of the Hamiltonian Eq. (2.14) for pseudogapped superconductors leads to the
observation that below a moderately large disorder short-scale bosonic collective modes appear
under the gap [M. V. Feigel’man and Ioffe, 2018]. These low-energy and short-scale modes
originate from the hopping of localized Cooper pairs.
New results from [A. Khvalyuk et al., 2023] suggest that these collective modes could also be
responsible for the anomalous decrease of superconductivity upon increase of temperature.

This work discusses the consequences of strong spatial gap fluctuations in strongly disordered
films on the superfluid density. When the superconducting gap distribution becomes broad,
with regions where local pairing vanishes, it is shown that thermal agitation excites low-energy,
short-scale modes, and produces a frequency shift resembling a power-law with exponent from
1.6 to 3 and T1 ∼ Tc, which matches our observations:

δΘ

Θ
(T ) ≈

(
T

T1

)b
(5.9)

The related value of T1 is estimated to be of the order of Tc, much closer to our data. Details
on the actual value of T1 remain to be clarified still.
In any case this work suggests that the frequency shift observed in the present thesis comes
from low-energy collective excitation of the superconductor, and it turn implies the presence of
a new channel of dissipation in inhomogeneous superconductors caused by sub-gap excitations
that are not quasiparticles.

5.2.3 Suppression of low-temperature quality factor with disorder

From the arguments above we expect an increase of dissipation at microwave frequency in the
pseudogap regime [M. V. Feigel’man and Ioffe, 2018], with a gradual suppression of internal
quality factor as disorder is increased.
Fig. 5.10 shows the evolution of quality factor measured in the 2 − 5 GHz range at low
temperature ∼ 20 mK for samples of varied disorder (the same samples from which we
measured Tc and Θ(0)). The input power is relatively low for each sample, but is definitely

7Note that by writing ω0 ∝
√

Θ(0) one retrieves T1 ∝ Θ(0)3/4 as stated above.
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above the few photons limit and varies from one sample to the other. Also, as Qi varies
strongly with temperature, power, frequency and aging (this will be discussed in a later chapter)
a strict comparison between the values shown in Fig. 5.10 must be made with caution.
Still, one can see a clear trend at large disorder (g ≤ 4) corresponding to the pseudogap phase:
Qi is strongly reduced and seemingly weakly disorder-dependent. It vanishes abruptly at the
transition with the insulator.

Fig. 5.10. Internal quality factor versus disorder. Quality factors are extracted from the
transmission measurements at low temperature (∼ 20 mK) and relatively low power. These
measurements are obtained at different frequencies and powers (for technical reasons) and
therefore only give a qualitative trend of the suppression of Qi with disorder. Dashed line is
only a guide for the eyes.
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Conclusion

In this chapter we have shown how the tools of cQED could be used to study the supercon-
ducting side of the SIT in amorphous indium oxide.
We demonstrated that disorder induces a superconducting state ruled by phase fluctuations of
the order parameter, consistent with the picture of a pseudogap of preformed Cooper pairs.

This important fact was strongly suggested by the numerous transport measurements available
in the literature, which concluded that a gap in the single particle density of states remained
in the non-superconducting phase. The resulting preformation of Cooper pairs was a clear
indication of the survival of local pairing, while superconductivity was destroyed. This lead to
believe that phase fluctuations were the main mechanism suppressing superconductivity, but
clear experimental evidence was still required to conclude on the matter.

Table 5.1
Results on amorphous indium oxide resonators of increased disorder for transport and microwave
measurements. (B) means measured in Bluefors at low frequency. (3D) corresponds to the a
resonator measured in a 3D waveguide, as discussed in chapter 7.

Sample w (µm) L (mm) Tc (K) Rn (kΩ/�) g LK (nH/�) Θ (K)

TC002 run 3 1 3.505 3.46 ? ? 0.450 17.43

TC002 run 2 1 3.505 3.4 1.04 24.82 0.452 17.35

TC002 run 1 1 3.505 3.2 1.456 17.72 0.59 13.29

TC014 1 2.5 3.16 1.683 15.3 0.70 11.2

TC022 0.1 0.3 2.93 1.66 15.54 0.96 8.17

TC003 1 3.5? 2.8 2.06 12.49 0.91 8.6

TC040 (3D) 1 2 2.74 2.84 9.0 1.32 5.94

TC018 0.1 0.3 2.3 2.9 8.9 1 7.8

TC007 run 3 (B) 1 3.505 2.5 3.22 8.01 1.51 5.2

TC001 1 3.505 2.24 3.36 7.68 1.79 4.38

TC024 run 3 0.1 0.3 1.83 5.17 4.98 ? ?

TC024 run 1 0.1 0.3 1.81 5.35 4.82 1.9 4.12

TC024 run 2 0.1 0.3 1.71 5.67 4.63 ? ?

TC007 run 2 1 3.505 1.6 5.95 4.33 4.06 1.93

TC015 1 ? 1.46 6.05 4.26 ? ?

TC007 run 1 1 3.505 1.4 7.47 3.45 5.68 1.38

TC017 (B) 1 3.505 0.9 12 2.34 6.0 1.3

TC016 run 8 1 1.718 0.67 12.1 2.13 11.64 0.67

TC017 1 3.505 0.49 14.25 1.81 10.65 0.73

TC016 run 6 1 1.718 0.47 15.95 1.61 16.68 0.47
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The experiment displayed in this chapter provides such a clear-cut conclusion, based on the com-
bination of DC and microwave data. Our measurements were carried out both at nearly zero and
at finite temperatures, using two different experimental techniques, and found consistent results.

On a more applicative side we demonstrated the large values of kinetic inductance achievable
in this material, opening interesting opportunities for integration to superconducting quantum
circuits, as will be discussed later.
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CHAPTER6
Nature of the QBS: First-order quantum

phase transition

We have shown in the last two chapters that superconductivity was ruled by phase fluctuations
of the order parameter in disordered indium oxide. This strongly suggests that, at zero tem-
perature, the quantum phase transition between superconductor and insulator is also related
to quantum phase fluctuations: boson-like electron pairs remain bound but loose their phase
coherence in the insulating state.

One question remains, still; what is the nature of the SIT in amorphous indium oxide ? Does
the order parameter go continuously to zero, as is commonly assumed ?

Based on the data presented in this thesis we argue that amorphous indium oxide
could undergo a first-order transition, as evidenced by an abrupt suppression of both
critical temperature and superfluid stiffness at a critical disorder.

6.1 | Abrupt suppression of superconductivity

6.1.1 Critical jump of transition temperature

Fig. 6.1 reminds the observation already discussed in chapter 4 regarding the SIT seen from
transport measurements.
It is found that the suppression of critical temperature Tc is not continuous: at a critical
conductance gc the transition temperature drops from a finite value down to zero abruptly. At
larger disorders the films become insulating (the resistance diverges at low temperature and Tc
cannot be defined), with a peculiar re-entrant resistivity (see chapter 4 for a discussion).
The value of critical disorder gc is seen to be size-dependent, as our two sample geometries
display quite different phase transitions. The larger wires show a complete suppression of Tc
at g ∼ 1.6, while the narrow wires display an earlier SIT at g ∼ 4.
In both case the suppression of Tc is sudden and seems discontinuous.

In addition, a previous experimental study of the SIT in a:InO [Shahar et al., 1992] seems to
display such a non-vanishing Tc at the transition, where it is clear that the insulating behavior
takes over at a finite value Tc ∼ 1.6 K (see Fig. 4.6c).
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Fig. 6.1. Discontinuous suppression of critical temperature. Left: DC measurements
on two indium oxide wire geometries demonstrate the abrupt change from a superconductor
(finite Tc) to a re-entrant insulator (zero Tc). The maximum normal-state resistance and
the minimum Tc achieved depend on system size. Right: Drop of critical temperature with
normal-state conductance. At a critical conductance value Tc switches from a finite value to
zero. This critical conductance is larger for the narrow wires.

6.1.2 Superfluid jump from the microwave measurements

Turning now to the SIT measured at microwave frequencies, we note that the superfluid
stiffness Θ extracted from the kinetic inductance measurements vanishes at the same critical
conductance gc than the one observed in transport.

Fig. 6.2 displays a zoom on the phase diagram presented in previous chapters close to the
SIT, where it is seen that the superfluid stiffness Θ and critical temperature Tc remain large
≈ 0.5 K at the transition.
At a critical conductance gc these quantities drop to 0 abruptly, marking the direct transition
to the insulating state where both critical temperature and superfluid stiffness are suppressed
concomitantly.
Once again the SIT is seen to depend on the wire width w. Note that DC measurements were
performed on wires 300 times shorter than the microwave resonator on the same chip, but the
SIT of resonators and transport measurements coincide. Samples of smaller width w however
display a different SIT.

Our indium oxide resonators and DC lines experience a sharp suppression of super-
conductivity at a given critical disorder strength.
We shall now examine this statement in light of available theoretical models.
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Fig. 6.2. Superfluid jump at the SIT a) Zoom of the phase diagram close to the SIT.
Both microwave (superfluid stiffness) and DC (critical temperature) quantities remain finite
and relatively large ≈ 0.5 K at the transition to insulation. Hollow grey circles in the insulator
are ghost Tc extracted from the re-entrant insulators. b) Wave impedance Z =

√
LK/(wC)

normalized by the superconducting resistance quantum RS
Q = h/(2e)2. 1 µm-wide resonators

are represented by full blue circles, 100 nm-wide strips are empty circles. Phase coherence in
narrow wires is suppressed at RS

Q = h/(2e)2. According to the (1+1)D BKT theory discussed
in text, the blue region for Z/RS

Q < 1/3 would be superconducting, while the region above
Z/RS

Q > 1/3 would be a Bose glass insulator. Resonators having a wave impedance larger
than the quantum of resistance (Z > RS

Q, shaded blue area on the graph) are referred to as
superinductors.

6.2 | On sample dimensionality

Before turning to a discussion on the nature of the SIT in our indium oxide films it is relevant
to remind the reader about the effective dimensionality of our samples. Indeed dimension
depends rather strongly in the considered physical mechanism, as we see now.

Localization First, it is useful to determine the sample dimension with respect to disorder
and localization. This is usually done by comparing the film thickness d to the coherence length
ξ: a thick sample with d > ξ is three-dimensional in that sense (superconducting correlations
can vary within the film thickness).
In most of our samples the coherence length ξ ∼ 5 nm < d for a thickness d = 40 nm, making
them 3D w.r.t disorder. 1

1One can also define an effective dimension with respect to inelastic processes: a film of thickness d is
three-dimensional if the phase-coherence length Lϕ = aT−p/2 < d, and two-dimensional otherwise. Therefore
upon cooling down this effective dimension might cross over from 3D to 2D as Lϕ diverges.
Additional factors such as interactions between electrons may have a different effective dimension: for instance
a sample is three-dimensional with respect to Coulomb interactions if the thermal length is smaller than the
film thickness: LT =

√
~D/kBT ≤ d [P. A. Lee et al., 1985].

95



Phase fluctuations Turning now to fluctuations of the superconducting phase, one must
distinguish between quantum fluctuations, which originate from charge localization at the
microscopic scale, and thermal ones.

Thermal phase fluctuations are related to vortices and the BKT transition in the 2D XY model.
The relevant energy scale in this case is the vortex core energy µ ∝ Θ(0). The latter can be
seen as the loss in condensation energy within a normal vortex core: for superconductors with
small superfluid density vortices require less energy [Mondal, Kumar, et al., 2011].
We have shown that in our films the 2D superfluid stiffness can attain values of the order of a
few Kelvin, comparable to Tc, making the BKT mechanism relevant for our films despite the
fact that the thickness exceeds the coherence length.

In addition, a typical lengthscale of a thin superconducting film is a two-dimensional penetration

depth, the Pearl length defined as Λ =
λ2

d
where λ is the London penetration depth and d

the film thickness [Pearl, 1964]. The interaction between vortices in a thin film involves stray
fields outside the superconductor, and are related to the lengthscale Λ.
If Λ exceeds the typical size of the sample L0 a standard BKT transition rules superconductivity
in the entire sample.

Now, the Pearl length can be related to the kinetic inductance as L�
K = µ0

λ2

d
= µ0Λ.

In terms of the superfluid stiffness one can write Λ =

(
~
2e

)2
1

µ0Θ
. For our samples of width

w = 1 µm and length L0 = 3505 µm, one sees that the condition Λ > L0 corresponds to
Θ < 1.78 K, or in terms of dimensionless conductance g ≤ 5.
From the experimental phase diagram of Fig. 5.5 one sees that these last two conditions are
met when Tc and Θ become equal.

Plasmons Plasmons are collective excitations of Cooper pairs mediated by Coulomb interac-
tions. In the geometry studied here (long and narrow superconducting wires) these excitations
are mostly one-dimensional.
This can be seen by comparing the Pearl length to the wire width: having Λ� w means that
current is uniform over the wire cross-section. It is easy to see that sufficiently disordered
films display Λ � w. In fact even low-disorder indium oxide films fulfill this condition: for
L�
K = 0.01 nH/� the penetration depth is Λ ≈ 8 µm > w.

In this regard long-wavelength plasmons studied in this thesis can be considered as one-
dimensional, putting our system into the range of validity of the 1D Luttinger liquid model.
We now discuss theoretically how such one-dimensional system can break down with disorder.

6.3 | Quantum phase transition by pinning of plasmons

There are not many available theories predicting a jump of superfluid density. One well known
mechanism however comes to mind; a BKT transition (as discussed previously at temperatures
close to Tc) could also apply at zero temperature and lead to a superfluid jump. This quantum
BKT transition will be discussed now.
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In section 3.1 we introduced plasmon excitations of a superconductor as the collective motion of
Cooper pairs interacting through Coulomb repulsion in a one-dimensional system.2 Low-energy
density fluctuations in a 1D boson gas with short-range interactions3 can be described by the
Luttinger model [Haldane, 1981]

H =

∫
dx

(
πvK

2~
Π2 +

~v
2πK

(∂xθ)
2

)
(6.1)

where v is the velocity of sound-like plasma modes with dispersion ω(k) ≈ v|k|, as detailed in
section 3.2.2 (neglecting long-range interactions here). From the superconducting phase ϕ one
can define the operator Π = −(~/π)∂xϕ and a canonically conjugate field θ with commutation
relation

[
θ(x),Π(x′)

]
= −i~δ (x− x′). The Cooper pair charge density is ρ(x) = −(1/π)∂xθ.

Hamiltonian Eq. (6.1) describes a harmonic string, where the first term stands for the conden-
sate kinetic energy (related to the superfluid stiffness Θ) and the second term the Coulomb
interaction between charges (given by the charging energy Ec = 4e2/(2Cg) where Cg is the
capacitance to ground).

The Luttinger parameter K is related to kinetic and charging energies as

K = π

√
Θ

2Ec
=
RS
Q

2Z
(6.2)

where last equality follows from the definition of the wave impedance Z =
√
LK/Cg where LK

and Cg are the inductance and capacitance per square respectively. The resistance quantum
for Cooper pairs is noted RS

Q = h/(2e)2.
K is linked to the zero-point fluctuations of the charge density, and describes a quantum
system of bosonic particles with Coulomb interactions i.e. the plasmons.
Note that Eq. (6.1) is quite general and the set (v,K) characterizes the low-energy properties
of any (massless) one-dimensional system.

6.3.1 Localized-delocalized phase transition in presence of disorder

Adding disorder to the above system breaks translational invariance: the localizing effects of
disorder perturb the charge distribution along the wire and one might expect some qualitative
change in the plasmon behavior.

Disorder is taken into account by adding a second term to the Hamiltonian of Eq. (6.1), with
a random potential V produced by impurities:

Hr =

∫
dx V (x)ρ(x) ∝

∫
dx cos

(
2θ(x)

)
(6.3)

Disorder acts on the interacting electron system by pinning the charge density ρ(x) on defects
i.e. localize charges (see Fig. 6.3). By Heisenberg uncertainty this implies large local fluctua-
tions of the phase that fight pinning and prevent phase and charge to have too well-defined
values near the defects. Quantum phase fluctuations (described by the Π2 term in Eq. (6.1))

2This chapter is partly inspired by the book on one-dimensional quantum systems [Thierry Giamarchi,
2003].

3By considering short-range interactions the velocity k remains frequency independent. Long-range
Coulomb interactions must sometimes be taken into account as was already discussed in section 3.2.2, and the
Luttinger liquid model is slightly modified (see [Thierry Giamarchi, 2003] page 100).
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are controlled by the value of the Luttinger parameter K: the magnitude of quantum phase
fluctuations increases with K.

Fig. 6.3. Pinning of Cooper pair charge density by disorder in 1D. The cosine charge
density is deformed by the presence of impurities that pin Cooper pairs at random sites.

The one-dimensional system of interacting bosons in a random potential described here is
therefore characterized by the competition of disorder-induced pinning of charges, and quantum
phase fluctuations that tend to oppose localization.
The superconducting phase along the wire must deform under the random potential induced
by disorder, which has an energy cost. The kinetic energy the system has to pay is an elastic
energy described by phase fluctuations (see section 1.1 where we discussed phase stiffness).

It is then natural to define the length scale below which such deformations of the phase
can be neglected: for systems of size L < ξloc the superconducting phase remains unaf-
fected by disorder.4 It can be shown that this length, that shares strong similarities with the
localization length in the Anderson problem, scales differently with disorder depending on
the value of the parameter K5: at a critical value Kc one observes a quantum phase transi-
tion from a localized, insulating phase (called Bose glass), to a delocalized, superfluid of bosons.

[T. Giamarchi et al., 1988] used the renormalization group approach to show that such a
transition occurs at the universal critical value Kc = 3/2. For K > 3/2 disorder does not
significantly affect the collective modes (phase fluctuations efficiently fight off localization and
ξloc remains large), while for K < 3/2 pinning takes over and leads to a localized, insulating
phase at zero frequency (the static phase varies strongly over the vanishingly small scale ξloc).

The existence of a characteristic lengthscale given by the Larkin length can be related to a
characteristic frequency ωloc = v/ξloc where v is the plasmon velocity [Houzet et al., 2019].
Modes with frequency ω exceeding this new characteristic frequency are delocalized (they
are related to lengthscales < ξloc), while low frequency modes with ω � ωloc are pinned by
disorder.

4ξloc is sometimes called the Larkin length, as first introduced as a quantity related to pinning of vortices
by Larkin.

5For K < 3/2 (the localized phase) one has ξloc ∝
(

1

D

) 1
3−2K

where D is the disorder strength. It

diverges as K → 3/2.
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6.3.2 (1 + 1)D Berezinskii-Kosterlitz-Thouless transition and quan-
tum phase slips

The pinning of a Luttinger liquid by disorder (discussed above) can be seen as the proliferation
of quantum phase slips, as we see now.

It is well known that the one-dimensional Luttinger liquid can be mapped to a classical system
of 1 + 1 dimension. To operate this mapping between a quantum system in dimension d to a
classical system in dimension d+ 1 one considers the extra dimension as an imaginary time
direction.6

Doing so allows to apply the results of 2D classical statistical physics to a 1D quantum system.
For instance topological defects of the classical 2D XY model are vortices (see section 1.3),
characterized by a winding of the phase field by 2π around their core in space. Vortices bind
in pairs with logarithmic in distance interactions, and unbind at the transition temperature Tc
where BKT transition occurs.

In a quantum 1D system the equivalent object is a Quantum Phase Slip, with simultaneous
suppression of the order parameter during a short time τ0 and winding of the phase ϕ→ ϕ+2π.
QPSs can then be seen as vortices in a (1 + 1)-dimensional space-time, bound in pairs in the
ordered (delocalized) phase with interaction ∝ ln d(x, τ) in space-time [Zaikin et al., 1997].
Pushing the analogy further, this system experiences a (1 + 1)D BKT transition when QPS
pairs unbind at the critical Kc. Just like the classical BKT mechanism the transition between
ordered and disordered phases is sharp at T = 0, albeit continuous.

Frequency dependence of the SIT Within this framework a 1D system can behave like
an insulator at zero frequency (ω � ωloc) but still present collective excitations characteristic
of superconductivity at larger frequencies.

The theoretical properties of this SIT have been further studied in the special case of a 1D
Josephson junction chain by [Bard, Protopopov, Gornyi, et al., 2017] for DC measurements
(ω = 0), and in [Bard, Protopopov, and A. D. Mirlin, 2018; Houzet et al., 2019] regarding the
microwave frequency response of a superinductor.
Notably the latter works predict a clear frequency dependence of the microwave properties for
nearly critical samples: the density of plasmon modes decreases at lower frequencies, eventually
vanishing as ω → 0. This translates into an increase of quality factor with frequency as
Qi ∝ ω2 near the SIT.

Effect and existence of quantum phase slips The concept of quantum phase transitions
induced by quantum phase slips is not new. In addition to the pinned Luttinger liquid approach
described above [T. Giamarchi et al., 1988] superconductivity in nanowires was thought to be
destroyed by the dissipative effects of quantum phase slips: the suppression of order parameter
during a short phase slip event induces significant dissipation when the phase-slip probability is
high [Zaikin et al., 1997; Bezryadin et al., 2000].
Recently the heat release induced by a phase slip event in a Josephson junction was evidenced
through time-resolved thermometry [Gümüş et al., 2023], further demonstrating the dissipative

6For instance, a two-dimensional classical system with space coordinates (x, z) can be mapped to a system
with x-coordinate in space and z = vτ time dimension (v is some velocity).

99



consequences of phase fluctuations on quantum circuits.

In some circumstances QPSs can be a coherent process, dual to Josephson tunneling [Mooij
and Nazarov, 2006]. Experimental demonstrations of such effect using nanowires [Astafiev
et al., 2012; Shaikhaidarov et al., 2022] or Josephson junctions [I. M. Pop et al., 2010; Crescini
et al., 2023] are major milestones in understanding phase-charge duality and provide new
methods in quantum metrology.

Experimental study of the phase-slip driven SIT in Josephson junction chains Re-
cent experimental works have been carried out in 1D Josephson junction chains in order to
investigate systems where the theory of pinned Luttinger liquids could apply.

Transport measurements in Josephson junction chains evidenced the scaling of critical voltage
Vc (obtained from I − V curves) with sample size (number of junctions N), consistently with
the proposed theoretical model [Cedergren et al., 2017]. The authors interpret these data as a
demonstration of the Bose glass insulator.

Shortly after a microwave frequency study of long JJ chains was presented in [Kuzmin et al.,
2019]. The chains were designed to withstand a high density of plasmons (with a small
frequency spacing) and were probed using standard cQED techniques allowing to extract the
modes’ dispersion relations and quality factors.
By varying the JJ size (therefore tuning the ratio EJ/Ec) the authors demonstrate an increase
in the wave impedance to resistance quantum ratio Z/RS

Q = 1/(2K) (K is the dimensionless
Luttinger parameter) up to values as high as ∼ 3 (with impedance Z ≈ 23 kΩ), an order of
magnitude larger than the theoretical prediction = 1/3 (see above).

Based on this observation the authors suggest that these samples are in the Bose glass regime,
that is they should be insulating at zero frequency. Unfortunately in-situ transport measurement
of these samples is not available, casting some doubt on the insulator hypothesis.
The authors however provide additional evidence by studying the frequency dependence of
quality factor Qi(ω). As discussed above the (1 + 1) BKT transition should be accompanied
by an increase of Qi with ω for critically insulating samples. While such an observation can
not be completely ruled out from the data displayed in [Kuzmin et al., 2019] one could argue
that a clear increase of Qi is not found.

We now compare our results on disordered indium oxide films to the phase-slip driven SIT.

6.3.3 Measurable quantities

The relevant quantity of interest is the wave impedance Z defined as

Z =

√
LK
wC

(6.4)

where w is the wire width, C is the capacitance to ground per unit length and LK is the
kinetic inductance per square.
Z is proportional to the inverse of the Luttinger liquid constant K = π

√
Θ/2Ec = RS

Q/(2Z).
The (1+1)D BKT transition in presence of disorder predicts a critical impedance value Zc at
which superconductivity breaks down given by Zc ∼ RS

Q/3 [T. Giamarchi et al., 1988] (i.e. a

100



Luttinger constant K = 3/2) as discussed in section 6.3.

We use the accurate determination of capacitance per unit length C in our geometry given by
the capacitance model of Eq. (3.13) in the limit k → 0 and w is controlled by design.
We shall see below that the (1+1)D BKT scenario of phase transition does not
hold in amorphous indium oxide data.

Fig. 6.2b shows how indium oxide resonators compare with the phase-slip theory. The wave
impedance Z normalized by the resistance quantum is represented versus disorder for two wire
geometries: the plain blue markers are 1 µm-wide wires, while empty markers correspond to
100 nm-wide filaments. The Bose glass insulating state predicted in the model above should
happen for normalized critical impedances larger than 1/3. For Z/RS

Q < 1/3 the system would
be superconducting.
The data shown in Fig. 6.2b displays a different result: our films are superconducting (with
plasma modes in microwave and zero resistance in DC) well above the Bose glass transition line.

Fig. 6.2b states that, according to this theory all the indium oxide samples would be
insulating, a statement clearly contradicted by DC and microwave measurements.

6.3.4 Effect of wire width: universality of the transition ?

It is clear from the considerations above that wire dimensions play an essential part in the
phase-slip driven transition. Indeed the wave impedance Z =

√
LK/wC should increase upon

lowering the wire width w.
However the quantum phase transition driven by quantum phase slips occurs for a universal
value of the wave impedance: if quantum phase slips were the only responsible for this phase
transition, Zc should not depend on the strip width.

In order to assess the universality of Zc two different sets of samples were prepared (with width
1 and 0.1 µm). It appears from Fig. 6.2b that narrow wires have overall larger impedance
than wider resonators, even at criticality.
This fact is once again in contradiction with the idea that the (1+1)D BKT transition is the
only mechanism at play.

Note also that both geometries differ in the value of the critical disorder. While large strips
remain superconducting down to g = 1.6, narrower films become insulating closer to g = 4
(i.e. Rn = h/(2e)2). This is consistent with the observation that the SIT in DC measurements
occured for a smaller critical resistance.

On phase-slip amplitude To further study the importance of phase slips in this transition
it is useful to estimate the amplitude (or rate) of phase slips in a given system, characterized
by its dimensions and disorder level.

Following BCS theory the phase-slip amplitude for moderately disordered films is (see Supp.
Mat. of Astafiev et al., 2012):

EPS,BCS ≈ ∆
RS
Q

Rξ

L

2πξ
exp

(
−A

RS
Q

Rξ

)
(6.5)
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where ∆ is the superconducting gap, RS
Q = h/4e2 is the resistance quantum for Cooper pairs,

L and ξ are the wire length and superconducting coherence length respectively, and Rξ = R�
ξ
w

is the resistance of a wire of length ξ. The coefficient A is of order one.
This formula is expected to hold for low to moderate disorders only.

For strongly disordered superconductors with preformed pairs the phase-slip amplitude can be
estimated as (see Supp. Mat. of Astafiev et al., 2012):

EPS,PG ≈ Θ

√
L

w
exp

(
−ηw

√
Θνd

)
(6.6)

where η ∼ 1, and L, w, d are the wire length, width and thickness respectively. Θ is the 2D
superfluid stiffness and ν the single particle density of states.
In both cases the phase-slip amplitude is exponentially suppressed with respect to the wire
width Es ∝ e−αw. The width is therefore the dominant geometric parameter driving phase-slip
processes.7

As an example let us cite the Coherent Quantum Phase Slip qubit demonstrated by [Astafiev et
al., 2012], where a loop formed by disordered indium oxide is closed by a nanowire constriction.
The small dimensions of this constriction (width w = 40 nm and length L = 400 nm) make it
favorable for phase slippage. With a kinetic inductance of LK = 2.2 nH/� the predictions for
BCS and strongly disordered superconductors both give an estimation of EPS ≈ 5 GHz = 0.2 K,
in agreement with the spectroscopy measurements of [Astafiev et al., 2012].

Table 6.1
Estimation of phase slip amplitude for two geometries of wires close to the SIT.

Sample w (µm) L (mm) Rn (kΩ/�) LK (nH/�) EPS,BCS (GHz) EPS,PG (GHz)

TC018 0.1 0.3 2.9 1 2× 10−12 4× 10−3

TC024 run 1 0.1 0.3 5.3 1.9 5× 10−4 0.10

TC017 1 3.505 14.2 10.6 0 2× 10−17

TC016 run 6 1 1.71 15.9 16.6 0 10−13

Table 6.1 shows the estimated amplitudes using the BCS and pseudoggaped formulae for
our samples closest to SIT . We took a density of states ν = 0.5× 1046 J−1m−3, thickness
d = 40 nm.
It can be seen that the wider strips (w = 1 µm) have a negligibly small phase-slip probability.
The narrower strips on the other hand display a finite phase-slip amplitude, which could be
underestimated by the crudeness of the model and the error bars on parameters.
Therefore based on this estimation one would expect a non-negligible (but still small) contri-
bution from QPS in our narrow wires, and no influence at all of QPS in wider wires.

6.3.5 Effect of wire length

The localized-delocalized transition discussed above involves another essential parameter: the
sample length. When the localization length ξloc is shorter than the sample length the latter

7The exponential dependence of phase slip amplitude with wire width was demonstrated in [Peltonen et al.,
2013] using ultrathin NbN nanowire constrictions, in a configuration similar to that of [Astafiev et al., 2012].
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behaves as a Cooper pair insulator (Bose glass). In the eventuality that the wire dimension is
smaller than the localization length however superconducting behavior is still possible.

The DC measurements in this work were performed on 10 square-long wires, while the res-
onators were much longer (thousands of squares). Therefore if ξloc lies between 10 and
3500 µm a scenario in which the DC measurement device is superconducting (length < ξloc)
but the resonator is insulating (length > ξloc) would be relevant.

To solve this issue we performed resistance measurements on a set of wires (width w = 1 µm)
of different lengths L, with L = 1 µm up to L = 3500 µm. The strips were prepared on the
same chip with the same a:InO evaporation, allowing to ensure that disorder of the wires is
uniform.

Fig. 6.4. Evaluation of the length-dependence of resistance at 4K. Left: A typical
sample used to probe the resistance of indium oxide wires of the same width w = 1 µm, same
disorder (all wires sit on the same chip over which the material was evaporated) but various
lengths, ranging from 1 µm to 3500 µm. We performed standard four-probe measurement
at the lockin frequency ∼ 10 Hz. Right: Resistance per square measured at 4 Kelvin versus
wire length for six disorder strengths (one color per sample). The dashed horizontal line
shows where the wires become insulating at low temperature (according to our resistance
measurements described previously).

It appears that for lengths between 10 and 3500 µm the resistance per square measured at 4 K
does not vary significantly, even for highly disordered samples which should become insulating
at low temperature according to Fig. 4.1 (red shaded region in Fig. 6.4).
For the 1 µm-long wires one observes some scattering, which could be understood as an
increased error in the determination of the dimensions, resulting in some error in the calculation
of the sheet resistance.

We find that the resistance is nearly constant when increasing the wire length by
three orders of magnitude.
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6.4 | Transition driven by long-range Coulomb interac-
tions between localized Cooper pairs

While our indium oxide resonators withstand 1D modes and therefore could behave as Luttinger
liquids, disorder is intrinsically three-dimensional in our films having thickness d = 40 nm sev-
eral times larger than the superconducting coherence length ξ ∼ 5 nm [B. Sacépé, Seidemann,
et al., 2015].
Therefore an alternative theoretical description of such system should focus on the microscopic
properties of fractal superconductors.

We have described the theory of fractal superconductivity in chapter 2: pairs of electrons are
created by phonon-induced electron-electron attraction enhanced by electronic wavefunction
fractality, the latter being a consequence of the proximity to the Anderson insulator-metal
transition.
These electron pairs remain Anderson localized, and superconducting correlations happen
by coherent tunneling between localized states. In this model superconductivity is strongly
inhomogenous spatially and is characterized by large phase fluctuations.
Short-scale, low frequency bosonic modes emerge at the vicinity of the transition to the
insulator and induce dissipation as should be seen in the quality factor Qi of microwave
resonators, as well as in the temperature dependence of the superfluid density (see section
5.2.2).

One more interaction must be taken into account in a fractal superconductor: localized Cooper
pairs interact at long-range via Coulomb repulsion. This process involves a Coulomb gap of
Cooper pairs ∆C of the order of a few Kelvin, as discussed in section 4.4.
The transition between insulating and superconducting states is then governed by the com-
petition between two energy scales: the condensation energy ∆ leading to long-range order
and the Coulomb repulsion ∆C enhanced by localization. The hopping probability between
localized states decreases with disorder strength, and eventually vanishes: the system enters an
insulating state made of localized Cooper pairs repulsing each other by Coulomb interaction,
forming a Coulomb glass of electron pairs [M. Müller and Ioffe, 2004; M. Müller and Pankov,
2007].

Nature of the transition Following an argument by [M. Feigel’man, Private communica-
tions] one can compare the ground-state energy density of an insulator with a Coulomb gap
∆C

Eins = −Ainsν0 ∆2
C (6.7)

with the energy gain due to superconducting pairing

Esc = −Ascν0 ∆2 (6.8)

where ∆ is the typical value of the superconducting order parameter.

It follows that the relevant quantity to determine the quantum critical point is the ratio
between these two energy densities

Esc

Eins

∝
(

∆

∆C

)2

(6.9)
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In the superconducting state long-range Coulomb interaction is screened and ∆C is much
smaller than pairing ∆C � ∆. It can be shown that when the superconducting gap is of the
order of the Coulomb gap ∆ ∼ ∆C the BCS collective gap ∆ ceases abruptly to exist.
The theoretical model of SIT induced by Coulomb repulsion of preformed pairs developed by M.
Feigel’man and coworkers [M. Feigel’man, I. Poboiko et al, In preparation] is built on the fact
that superconducting state and Coulomb glass are two stable phases, both described by an order
parameter. It follows that this transition must be of the first order: superconductivity
is destroyed at a critical disorder where superconducting energy scales drop abruptly to zero.

It is important to specify why such effect is absent in most theories and experiment.
In fact, most superconductors are based on a metallic normal-state; in this case screening
of Coulomb interactions is strongly efficient8 and repulsion between charges can be safely
neglected.
On the other hand, superconductivity in indium oxide films discussed in this thesis is built
upon an Anderson insulator: here Coulomb interactions are very weak but non-negligible9

(ε ∼ 1000), and therefore compete with superconductivity. One expects to see a first-order
transition of this kind for fractal superconductors only.

Estimation of the transition point We can now estimate the critical value of superfluid
stiffness at the quantum critical point: superfluid stiffness and superconducting gap are related

by Θ =
1

8
g∆ where g = h/(e2R�) is the dimensionless conductance.

The first-order transition occurs for ∆ ∼ ∆C , the latter quantity being expressed in Eq. (4.4).
This leads the minimum value of superfluid stiffness at the transition:

Θc =
1

8
gc
√
ν

(
4e2

κ

)3/2

(6.10)

where κ ≈ 1000 4πε0, as discussed in relation to Eq. (4.3), and gc is the critical value of dimen-
sionless conductance at the transition. The density of states for pairs ν is half the DoS for elec-
trons, which can be estimated for strongly disordered indium oxide as ν = ν0/2 ≈ 1.5 1045 [B.
Sacépé, J. Seidemann, Private communications].

We now recall that our larger films had a critical conductance gc = 1.6. From Eq. (6.10) this
leads a critical superfluid stiffness before the transition Θc = 0.49 K. This is surprisingly close
to the value measured experimentally Θc = 0.5 K, see Fig. 6.2 for instance.

For the narrower films, we found a critical conductance gc = 5. Eq. (6.10) gives Θc = 1.55 K,
very close to the critical values Tc ∼ 1.6 K.

8In a metal Debye screening length is of atomic scale, lD ∼ 0.3 nm or less, which is much smaller than
the coherence length ξ.

9In an Anderson insulator the screening length is ∼ ξloc ∼ ξ. Preformed Cooper pairs are localized, thus
reducing the effect of dynamical screening.
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Conclusion

In this chapter we have commented on the nature of the superconductor-insulator transition
in long amorphous indium oxide wires. It is found that the characteristic energy scales
of superconductivity, the superfluid stiffness and critical temperature, remain finite on the
superconducting side of the SIT, and drop to zero abruptly on the insulating side.
A first theoretical candidate for a discontinuous quantum phase transition is given by the
localization of plasmons into a Bose gass insulator. We rule out this scenario by comparison
with DC measurements performed alongside microwave spectroscopy.
Another possible theoretical mechanism involves long-range Coulomb repulsion of localized
Cooper pairs in a fractal superconductor. Recent works suggest that this transition is of
first-order, in agreement with our experimental data. Such observation is a major change of
paradigm in the understanding of quantum phase transitions in disordered superconductors.
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Part III

Properties of Strongly Disordered
Indium Oxide Resonators and

Applications
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CHAPTER7
Loss Mechanisms in a:InO Microwave

Resonators

Superconducting resonators and qubits present higher loss than expected from BCS theory, for
which all dissipative single-particle excitations should vanish at T = 0. Extensive works on
superconducting circuits have singled out several mechanisms leading to this dissipation excess,
among which dielectric loss and non-thermal quasiparticles (see McRae, H. Wang, et al., 2020
for a review).
Dielectric loss, often related to Two-Level Systems, is particularly detrimental to qubit coher-
ence and is currently seen as a the main limiting factor in most superconducting circuits [Müller
et al., 2019]. In addition to this, a large density of non-equilibrium quasiparticles is known to
survive in superconductors beyond the BCS model, leading to dissipation and noise [Catelani
and Pekola, 2022].

In this chapter we try to understand the loss mechanisms at play in strongly disordered indium
oxide resonators.

7.1 | Decrease of dissipation with power and tempera-
ture

The evolution of quality factor with cavity photon number1 and temperature is shown in
Fig. 7.1. One sees an initial increase of Qi at low photon number or low temperature. Such a
behavior is seen for all our samples (Fig. 7.1 shows only a very limited selection of samples).2

This effect is often attributed to Two-Level Systems (TLSs). While the latter are usually
considered in amorphous solids around the resonator (oxides, resist residues ...) we shall see
later that other mechanisms can lead to TLSs with the same experimental manifestations.

Two-Level Systems A thorough review on TLSs can be found in [Müller et al., 2019],
where both theoretical models and experimental observations of TLSs are detailed. In the
following paragraph we sketch crudely the main ideas of the Standard Tunneling Model.

1The average photon number circulating in the resonator at resonance (in our geometry) can be estimated
by n ≈ 4PinQ

2
tot/(~ω2

rQc) where Pin is the on-chip microwave power (counting attenuation along the line) and
ωr, Qc, Qtot are the fitted resonance frequency, coupling quality factor and total quality factor respectively.

2Regarding the values of internal quality factors extracted from transmission measurements, one should be
aware of potentially deceptive effects originating from the microwave line; as pointed out in [Rieger, Günzler,
M. Spiecker, Nambisan, et al., 2023] Fano interferences can induce significant uncertainties in the extraction
of Qi, especially in the overcoupled regime (Qi > Qc). We note however that most of the measurements
shown here are in the undercoupled regime where such uncertainties are minimized.
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Fig. 7.1. Power (a-c) and temperature (d-f) dependence of internal quality factors.
Upon increase of temperature or microwave power the plasmon frequencies decrease, as seen
from the transmission traces (a, d). Fitting these curves allows the determination of the
resonator internal quality factor. Power in panel a ranges from -20 dBm (blue) to 10 dBm
(red). Temperature in panel d ranges from 20 mK (blue) to 1 K (red). Fig. b, c, e, f
display the increase of Qi with photon number and temperature for several samples (moderate
disorder). Solid lines are fits following the TLS model Eq. (7.2). The measurements shown
in panel b are related to a resonance with f = 3.85 GHz and Qc ∼ 104, and the ones from
panel e have f = 4.7 GHz and Qc ∼ 6 103.

Fig. 7.2. Double-well potential modelling of a TLS. The energy difference E between
the two eigenstates |ψ−〉 and |ψ+〉 is determined by the asymmetry energy ε and inter-well
tunneling rate ∆0. Adapted from [Müller et al., 2019].

A Two-Level System is a quite general concept describing a system that can exist in two
energetic configurations. With some probability one of the two states will be occupied. A
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common representation of a TLS is shown in Fig. 7.2, where the two available states are
pictured as two potential wells separated by an energy barrier. At low temperatures and low
excitations the TLS tunnels from one state to the other.
If these two states are related to charge displacement, their tunneling creates an effective
electric dipole that can couple to its environment (for instance, our resonator, a superconduct-
ing qubit or a phonon bath), leading to dissipation and/or dephasing. The strength of such
coupling is g = p · E where p is the TLS dipole moment and E is the electric field.

Further, because of their random microscopic origin (detailed later) the TLSs present in an
amorphous material have a broad distribution of their characteristic energies (tunneling rate ∆0

or asymmetry energy for instance), ensuring the presence of TLS at virtually all experimental
measurement frequencies.
These TLSs also interact with each other, opening some interesting situations where a high-
energy TLS can be coupled to a second TLS of lower energy E < kBT . Thermal agitation
randomly changes the state of the second TLS, which in turn affects the first TLS’s frequency.
If a resonator or a qubit has a resonant frequency in close vicinity to the first TLS it will couple
to it, as evidenced by the increased environmental noise and degraded qubit coherence times
observed experimentally.

Saturation of TLSs When excited by a large electric field E (corresponding to a large
number of photons circulating in the resonator) the TLS switches between states faster than it
loses energy. The resulting state becomes almost stationary with excitation probability ∼ 1/2
and dissipation is reduced compared to the low power situation.
This saturation of two-level systems with power (or similarly with temperature) explains quali-
tatively the behavior of quality factor shown in Fig. 7.1: by increasing power or temperature
above a threshold value TLSs saturate and do not contribute to the overall resonator dissipation.

Within the Standard Tunneling Model (that is, neglecting for now the TLS-TLS interactions),
the saturation of TLS with photon number n is modelled by [Phillips, 1987; J. Gao, 2008]

1

Qi

=
∑
i

pi tan δi
tanh

(
~ω
kBT

)
√

1 +
(
n
nc

)β + tan δ0 (7.1)

= F
tanh

(
~ω
kBT

)
√

1 +
(
n
nc

)β +
1

QOther

(7.2)

where nc is the saturation photon number, β takes into account the non-uniform distribution
of electric field and the sum runs over all the volumes i that host TLS with dieletric loss
rate tan δi. The weight pi accounts for the participation in the different volumes and is
mostly dictated by geometry (see below). For simplicity one can define F =

∑
i pi tan δi the

prefactor accounting for TLS loss at lowest power. In the literature one might find the notation
F = 1/QTLS0 .

Using Eq. (7.2) allows to reproduce the evolution of Qi with photon number n, as seen in
Fig. 7.1.
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To describe the temperature dependence one must account for the breaking of Cooper pairs
when the temperature approaches Tc, as given by Mattis Bardeen formulae [Mattis et al.,
1958], which enter the new temperature-dependent term 1/QQP(T ) in the full expression

1

Qi(n, T )
=

1

QTLS(n, T )
+

1

QQP(T )
+

1

QOther

(7.3)

The additional term models the decrease of quality factor as the thermal quasiparticle number
increases, as can be seen clearly in Eq. (7.2) above 0.5 K. The sum of these two loss channels
(TLS at low T and quasiparticles at higher T) in parallel fits the experimental data.

7.2 | Resonators in 3D Waveguides: reducing the par-
ticipation of native oxides

So far we did not comment on the possible microscopic origins of TLSs: any system possessing
two energetically equivalent states could be seen as a TLS.
A large variety of microscopic mechanisms reponsible for the formation of TLS have been
suggested, amongst which the tunneling of an atom, group of atoms or dangling bond from
one preferential position in space to another, electron tunneling or magnetic impurities.

Regarding the location of these defects, one obvious candidate is the amorphous oxide lying
at the surfaces and interfaces of the circuit, potentially hosting a great deal of TLS. This is
precisely the effects of TLSs present at these interfaces that a large body of works tried to
mitigate in the last two decades in the hope for a significant enhancement of quality factors
and qubit lifetimes.
An illustration of the main interfaces of interest in a superconducting circuit are depicted in
Fig. 7.3. Oxide layers are usually a few nanometer thin, between the superconducting material
and the substrate, or exposed to the open environment (air or vacuum).
It becomes evident that the circuit geometry influences quite a lot the electric field strength at
a given interface i (volume Vi), which in turn dictates how strongly coupled to the circuit a
TLS can be (with coupling g = p · Ei).
To account for the electric field distribution in a given volume Vi one often defines a participation
ratio pi as

pi =

∫
Vi

εi
2
|Ei(r)|2/Etot dr (7.4)

where εi and Ei(r) are the dielectric constant and electric field in the lossy volume Vi respec-
tively, and Etot is the total electric field energy in the entire space.

The product of participation ratio pi and dielectric loss tangent tan δi describes to which
extent dielectric losses contribute to the overall dissipation in the volume Vi (see Eq. (7.2))
for a given geometry.
In typical coplanar waveguide geometries the Metal-Substrate participation ratio pMS is found
to be of the order ∼ 3 10−3 and be the dominant interface for dielectric loss. The Substrate-
Vacuum interface also participates strongly pSV ∼ 10−3, but can be reduced by diluting the
electric field in this region (by increasing the gap between conductors for instance).

A more drastic way to reduce the participation ratios consists in moving the resonator into a
3D waveguide (as shown in Fig. 7.4). That way the electric field is diluted in a large volume
and weakly couples to the resonator, reducing the dielectric loss. Using the electromagnetic
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Fig. 7.3. Illustration of the surfaces hosting TLSs in a typical superconducting
circuit. Thin layers of amorphous materials can be found between the superconductor and
substrate (Metal-Substrate, MS interface) or in direct contact to the external environment
(Metal-Vaccum, MV, or Substrate-Vaccum, SV). Each interface displays various kinds of glassy
materials that can host TLS. From [Müller et al., 2019].

simulation software HFSS we simulated a resonator (2 mm-long, 1 µm-wide for a kinetic
inductance of LK = 1.32 nH/� representing a typical sample studied in this thesis) embedded
in a 3D waveguide (perfect-E boundary conditions) and filled with air (ε = 1), as shown in
the drawing of Fig. 7.4. Underneath the resonator we added a 3 nm-thin dielectric layer with
dielectric constant εSiO2 = 10 modelling the amorphous silicon oxide growing a the surface of
the silicon substrate, as is usually done in the literature.

By simulating the electromagnetic response of the whole device one can extract the electric
field intensity in the Metal-Substrate region and compute the participation ratio, leading
pMS ∼ 3.17 10−4, an order of magnitude smaller than the typical planar geometry, as expected.

Therefore, one expects a significant enhancement of quality factor in this geometry, provided
dielectric losses are mainly located in MS and SV interfaces. To check this hypothesis we
fabricated indium oxide resonators with parameters identical to the simulated design. The
absence of metallic ground plane at the back of the sample should further reduce conduction
and dielectric loss, and the waveguide, made of bulk aluminum, should not induce large
dissipation.
Additional shielding of the sample holder and careful filtering on both inputs and outputs
ensures a low-loss environment3.

Fig. 7.5 (Right) shows the power evolution of quality factor for one of our resonators in 3D
waveguide. Strikingly, the quality factor at low photon number (n ∼ 1) is comparable to the
values obtained previously in the microstrip geometry (Qi ∼ 104).
The quality factor still increases with power, consistently with a TLS model (see solid lines).

Interacting TLSs The temperature evolution of quality factor remains consistent with our
previous observations, with an increase of Qi(T ) for temperatures up to 0.5 K (see Fig. 7.5).
Note one difference however: at the lowest temperatures T < 0.2 K the quality factor initially

3The waveguide is shielded inside a copper and a µ-metal shield at 20 mK, covered on the inside by
black-paint epoxy and granules in order to absorb radiations. A gold plated copper shield at 700 mK and
polished aluminum screens at 4 K, 20 K and 100 K further isolate the sample to radiations. Eccosorb and
K&L low-pass filters are added at the sample’s input and output. More details can be found in Appendix C
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Fig. 7.4. 3D waveguide and resonator. The sample (a 2 mm long a:InO line deposited on
silicon, outlined in white on the pictures) is embedded in a 3D aluminum waveguide. The lid is
sealed by an indium wire which also sticks to the sample and holds it in place. RF excitation
enters and exits the waveguide through a coaxial cable, and input and output (reflected)
signals are separated by a circulator allowing to measure the reflection via the S21 scattering
parameter of a VNA. Bottom drawing shows how the device can be simulated using HFSS
electromagnetic software.

Fig. 7.5. Temperature and power dependence of an a:InO resonator in 3D geometry.
Left: Evolution of quality factor with temperature for a 3D resonator (TC040). The quality
factor shows three temperature regimes: Qi first decreases, then increases and finally is reduced
again. Solid lines are a fit to the TLS model including TLS-TLS interactions. Right: Quality
factor versus photon number for the same resonator. Solid line is the prediction of the TLS
model using the same parameters as for the temperature dependence data.

decreases with T .
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This could be explained by the TLS-TLS interactions: as temperature increases thermally-
driven switching of a given TLS causes dephasing in the nearby coupled TLSs [J. Burnett
et al., 2014]. A modification of Eq. (7.2) taking into account the effect of interactions can
be found in [Crowley et al., 2023]. Unfortunately such phenomenological model involves 7
fitting parameters, rendering it somehow useless for the precise extraction of relaxation and
dephasing due to TLSs.
In an attempt to reduce the degrees of freedom of this fit we fitted together Qi(T ) curves
at different power, as shown in Fig. 7.5 Left, and plotted the resulting prediction for the
power dependence with the exact same parameters, showing a good agreement with the data
(Fig. 7.5 Right).

7.3 | Partial conclusion: InOx dissipation is not domi-
nated by surface dielectric loss

In order to get a more quantitative estimation of the role of TLSs in our films, let us show
some statistics. Fig. 7.6 shows a systematic fitting of a large variety of indium oxide resonators
(different disorders and resonance frequencies), both in 2D microstrip and 3D waveguide
geometries. The parameters extracted from a fit to the standard TLS model Eq. (7.2) are also
displayed, demonstrating a TLS loss factor remaining of the order F ∼ 10−4 and an exponent
β of order unity as expected from the theory.
The main difference between the microstrip and 3D waveguide samples seems to be the value
of saturation photon number nc: this critical power above which TLS start to saturate seems
to decrease by one to two orders of magnitude in the 3D geometry.

Fig. 7.6. Power dependence of quality factors for a large number of samples. Left:
Qi(n) for samples of different disorders, resonance frequencies and geometries (both 2D
microstrip and 3D waveguide) are shown and fitted by the TLS model of Eq. (7.2). Right:
Extracted parameters from the TLS fit. Results for the 2D samples are shown in blue while
3D waveguide resonators are represented in red.
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7.3.1 Metal-Substrate interface is not limiting the resonator quality
factors

It is clear that changing the MS participation ratio by an order of magnitude did not improve
the quality factor of our a:InO resonators. We want to stress that extra care was taken
for the reduction of external sources of loss, and that quality factors as high as one million
were measured in very similar conditions for pure aluminum resonators. Therefore the strong
dissipation observed in a:InO is most likely related to the material itself.

To demonstrate that our films are not limited by dielectric loss at the MS interface, we
display on Fig. 7.7 the quality factor as a function of the participation ratio for different
materials. First, Transmon qubits in planar geometry and some coplanar waveguide res-
onators (CPW) are added to this graph. They align nicely to the expected TLS-limited
quality factor Qi ∼ [pMS tan δ]−1 where the loss tangent tan δ is consistent with typical
values found in the literature for high-quality silicon or sapphire substrates, commonly used in
the cQED community. Dissipation in these materials seems to be limited by dielectric loss
at the Metal-Substrate interface (or Substrate-Vacuum which is often found to be comparable).

Fig. 7.7. Quality factor versus Metal-Substrate participation ratio for several ma-
terials and geometries. Light blue pentagons represent planar transmon qubits limited by
dielectric loss (from [C. Wang et al., 2015]), blue circles show low kinetic inductance aluminum
and granular aluminum CPW resonators (from [Grünhaupt, Nataliya Maleeva, et al., 2018]).
All of these materials display a scaling of quality factor with participation ratio following
Qi ∼ [pMS tan δ]−1 shown by the dashed lines (for three loss tangent values representative
of bulk silicon and sapphire). Several materials however do not obey the scaling limited
by dielectric loss: high-LK grAl in 3D waveguide, represented by purple dots [Grünhaupt,
Nataliya Maleeva, et al., 2018] or ultrathin TiN (orange dots) [Amin et al., 2022]. Finally our
indium oxide shown in red is the furthest from the TLS-limited regime, with a quality factor
independent on the MS interface participation.
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More surprisingly, Fig. 7.7 also displays data points that do not align to any plausible loss tan-
gent value, and have a quality factor significantly lower than the upper bound set by dielectric
loss at the interface (purple, orange and red dots). Such a feature was first demonstrated in
high-kinetic inductance granular aluminum [Grünhaupt, Nataliya Maleeva, et al., 2018] and
shortly after in ultrathin titanium nitride films [Amin et al., 2022]. In both case the deviation
from the TLS-dominated loss was interpreted as the signature of non-equilibrium quasiparticles,
the effects of which are increasingly perceptible as the film’s kinetic inductance increases.
Adding finally our indium oxide data demonstrates clearly that dissipation cannot be attributed
to dielectric loss at the circuit interfaces, as the quality factors are orders of magnitude below
their TLS-upper bound, and do not seem to vary with pMS.

7.4 | Coplanar Waveguide Hybrid Device: reducing the
Indium oxide volume

Naively one could think that, if dissipation mainly originates from the indium oxide film, then
reducing its footprint by drastically shrinking its dimensions and diluting the electric field
around it should enhance the quality factor. In order to test this hypothesis we designed a
hydrid resonator consisting almost entirely in a lower kinetic inductance superconductor with
good quality factors, and a small indium oxide wire at the center, as shown in Fig. 7.8.

Fig. 7.8. Presentation of the hybrid Superconductor-Indium oxide resonator. Left:
Dark field microscope image of the device, composed of a high quality superconductor (Titanium
nitride or Rhenium, image shows a Rhenium sample) in a coplanar waveguide geometry, with
two superconducting pads connected by a small indium oxide volume (see inset on the left).
Full dark area is the underlying substrate (intrinsic Silicon or Sapphire depending on the
sample). The device’s resonance frequency is set by the capacitances to ground Cg and
between the pads Cr, as well as the kinetic inductance of the a:InO wire. Right: For one
sample (AC-TiN-15), a reference resonator fully composed of TiN is coupled to the same
feedline. Its kinetic inductance is given by the longer high-disorder TiN wire wound in a
meander (see right inset). The reference resonator allows to disentangle losses coming from
the environment and indium oxide itself.

The geometry somehow resembles transmon qubit and resonator designs that showed long
coherence times recently [Shearrow et al., 2018; Place et al., 2021; Deng et al., 2023; Crowley
et al., 2023]: the coplanar ground plane is pushed far away from the resonator in order to
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decrease the electric field intensity in the gap region, therefore reducing the losses induced by
TLS at the substrate/vacuum interface.
The device capacitance comes mainly from the coupling between the two large pads and the
ground plane (capacitance Cg in Fig. 7.8) and from the coupling between the two pads (Cr).
The device inductance is mainly provided by a small volume of high kinetic inductance indium
oxide (LK ∼ 1− 2 nH/�) connecting the pads (dimensions 10 µm× 1 µm× 40 nm). As can
be seen the a:InO wire is hundreds of microns away from the ground plane, ensuring a minimal
contribution to the wire capacitance, hopefully reducing the excitation of TLS in the film.
In this geometry the resonance frequency is approximately given by fr ∼ 1/

√
(Cg/2 + Cr)LK ,

and can be controlled by varying the a:InO wire length in order to obtain three resonators per
chip, coupled to the same feedline.

For high quality superconductors we used 10 nm-thin titanium nitride films on high resistivity
silicon, and rhenium on sapphire. The TiN was given to us by Julien Renard (Néel institute)
and comes from the exact same film deposition as the works presented in [Amin et al., 2022].
The films have relatively large kinetic inductance LK ≈ 33 pH/� and high quality factor
Qi ∼ 105 at single photon power.
The rhenium films were grown at SIMaP Grenoble by Bruno Gilles.
We used TiN and Re instead of a more accessible superconductor such as aluminum for one
main reason: the contact between superconductor and indium oxide had to be of the best
quality possible. To minimize surface inhomogeneities and granularity that could lead to a bad
interface we used superconductors known for their smooth surface.

The fabrication work for this project was entirely done by Alexis Coissard4, while I provided the
electromagnetic simulations and designs, and measured the samples. We had the theoretical
support of Lev Ioffe (Google Quantum AI) throughout this study.

On one sample (AC-TiN-15) a resonator entirely made of TiN was patterned alongside two
hydrid a:InO/TiN resonators, in the idea of disentangling once and for all dissipation in indium
oxide and the influence of the environment, design and packaging. This reference TiN resonator
was designed by replacing the high-LK wire by a longer TiN wire with a meander shape, thus
providing the required inductance to obtain the wanted resonance frequency (see Fig. 7.8
Right).

Improved packaging In order to further reduce external sources of loss we designed a
sample holder, fabricated in pure aluminum. A 3 mm hole is dug below the sample to minimize
the fraction of electric field passing through the substrate, as shown in Fig. 7.9.
The sample holder is covered by an aluminum lid, sealed with an indium wire and pressed
against the box with screws.

Results In a nutshell, this new design did not improve the quality factor of a:InO-based
resonators. In most samples the low photon number Qi of hybrid devices was 104 at most,
sometimes even lower. Keeping in mind that the TiN and Re films used here have at least one

4The technical fabrication details are not the topic of this chapter, but to honor Alexis’ hard work here
are the main steps: the TiN film was etched by a SF6 plasma after e-beam patterning. The sample was
thoroughly cleaned in buffer HF acid to remove residual oxides at the exposed surfaces (notably between the
pads where a:InO will be deposited). After a second step of lithography the indium oxide wire is deposited
between the pads (at most 10 minutes were spent between the last chemical sample cleaning and its loading
into the evaporator where it was quickly put under vacuum).
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Fig. 7.9. Hybrid resonator packaging. Left: Side-view illustration of the sample envi-
ronment. The sample lies atop a 3 mm-deep hole dug in the aluminum sample holder, so
that the electric field (orange arrows) is mainly located in the sample plane. The ground
plane is superconducting (Rhenium or TiN), and the same material composes the resonator
pads, linked by a small volume of amorphous indium oxide (red). Center: Image of a sample
mounted in the sample holder. The CPW feedline is micro-bonded to the RF lines, and is
capacitively coupled to the three resonators (dark zones below the line). Right: Details of the
hole in the sample holder, and the lid allowing a air-tight sealing. Some indium wire is also
squeezed under the lid to act as a joint.

order of magnitude higher perfomances, this observation suggests that the limiting dissipation
indeed comes from indium oxide itself.
One could argue however that a lossy interface between a:InO and TiN or Re could strongly
reduce the resonator quality factor. This is true, but unfortunately quite difficult to prove.

We note that some hybrid devices display similar temperature dependence as the other indium
oxide resonators studied in this thesis, namely a power-law frequency shift δf(T ) and a
bell-shaped quality factor Qi(T ). This once again suggests that the properties of Indium oxide
are inherited by the hybrid device, along with their enhanced dissipation.

Finally, a most interesting result is the comparison to the reference TiN-only device. Fig. 7.10
shows a typical transmission trace for sample AC-TiN-15, where two of the resonators contain
indium oxide and the last one is made of TiN entirely. It appears that the TiN resonator’s
performance is comparable to the study of [Amin et al., 2022] on the same film, with Qi ∼ 105

(even attaining one million at high power), while the resonators containing indium oxide have
at least one order of magnitude lower quality factor.
With this last measurement we demonstrate without doubt that the environment, packaging
and design do not cap quality factors at 10 000. Both the TiN and a:InO based resonators
seemed to have a dissipation limited by their intrinsic properties.

Surprisingly enough, resonators made from pure indium have a quality factor of Qi ∼ 104, as
shown in [McRae, Béjanin, et al., 2018]. The authors interpret this observation by noting that
a thin layer of indium oxide could form atop their indium resonator.5

5This can be seen in two ways: either it confirms the dissipation measured in this thesis from bulk indium
oxide, or it suggests that dissipation originates from surface oxides, growing after water exposure for instance
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Fig. 7.10. Comparison of hybrid a:InO/TiN and all-TiN resonators. The first two
resonators are hybrid a:InO/TiN resonators in the geometry shown in Fig. 7.8 (Left). The
third resonator consists in TiN only, the inductive part of the device comes from the longer
central length in a meander shape as displayed in Fig. 7.8 (Right) and the relatively high
kinetic inductance LK ≈ 33 pH/� [Amin et al., 2022]. While the low power quality factor of
the third resonator remains close to the one measured in [Amin et al., 2022] (a few 105), the
two resonators incorporating a small volume of indium oxide have degraded quality factors
below 104.

7.5 | Non-equilibrium quasiparticles as a source of dis-
sipation

Another potential source of dissipation in superconductors is the presence of unbound electrons,
known as Bogoliubov quasiparticles. While within BCS theory the number of such quasiparticle
excitations should be exponentially small at low temperatures kBT � ∆, experimental works
show that a relatively large residual quasiparticle (QP) population remains at the lowest
temperatures (see Visser et al., 2011 for an example in aluminum).
The origins of such excess unpaired electrons are numerous and still not entirely understood. On
very general grounds one can assume that non-thermal processes (such as radioactivity, cosmic
rays ...) contribute to break Cooper pairs in the ground state, releasing quasiparticles [Cardani,
Colantoni, et al., 2023].

The detrimental effects of excess QPs on superconducting circuits and qubits was foreseen
not long after the birth of cQED [Martinis et al., 2009; Catelani, J. Koch, et al., 2011;
Catelani, Schoelkopf, et al., 2011; Ioan M. Pop et al., 2014] and later works performed on large
scale multiqubit processors demonstrated the existence of punctual release of quasiparticles
(quasiparticle bursts) leading to correlated noise largely detrimental to quantum error correction
schemes [McEwen et al., 2021; Wilen et al., 2021; Thorbeck et al., 2022].
These events were previously observed in the field of Kinetic Inductance Detectors (KIDs) as
well as in disordered superconductors. Notably high kinetic inductance granular aluminum res-

([Detweiler et al., 2016] show that −OH hydroxyl groups form in presence of water.) The last interpretation
could also apply to our resonators if the same oxide forms at the surface.
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onators experience sudden drops of their resonance frequency approximately every 20 seconds,
followed by a much slower relaxation back to their initial state [Grünhaupt, Nataliya Maleeva,
et al., 2018; Henriques et al., 2019; Cardani, F. Valenti, et al., 2021]. These perturbations
were interpreted as the signature of a punctual deposition of high energy particles on the circuit
and substrate, starting a cascade of quasiparticle generation and recombination, potentially
mediated by substrate phonons.
Further, anomalously low resonator quality factors measured in high-LK grAl and TiN (beyond
standard TLS limitations, see Fig. 7.7) were seen as the consequence of a larger-than-normal
quasiparticle density in disordered superconductors [Grünhaupt, Nataliya Maleeva, et al., 2018;
Amin et al., 2022].

On the origin of non-equilibrium quasiparticles A first source of quasiparticle generation
is through absorption of infrared light. This effect can be strongly reduced by properly shielding
the sample from external radiations, notably by using multiple light-tight shields at the different
cryostat temperature stages [Barends et al., 2011; Córcoles et al., 2011].
The pair-breaking effect of weak residual magnetic fields can also lead to QP creation, and is
routinely mitigated by the use of a µ-metal shield at base temperature (see [Gordon et al.,
2022] and references therein).

More recently the effects of ambiant radioactivity on quasiparticle generation was demonstrated
using qubits and resonators [Vepsäläinen et al., 2020; Cardani, F. Valenti, et al., 2021]. The
method used in these works consists in modifying the sample environment by either heavily
shielding it from radioactivity and cosmic rays (shielding the cryostat with lead bricks, or
several kilometers under a mountain for instance) or on the contrary introducing a radioactive
source in the cryostat’s vicinity.
In both studies the qubits/resonator performances degraded when put in presence of the
radioactive source, while they were enhanced under shielding. Also, QP burst rate observed in
granular aluminum films was reduced by a factor 30 in the deep-underground lead-shielded
environment, suggesting a correlation between these events and radioactivity.

By monitoring the quasiparticle population in real time in an aluminum island [Mannila et al.,
2021] claim that mesoscopicaly large superconducting grains can remain free of quasipar-
ticles for long times, up to seconds, between two QP burst events. Surprisingly, the QP
burst rate in their experiment decreased continuously with time at base temperature in the
cryostat (the decay rate was nearly inversely proportional to time after cool down). After
130 days in the cryostat the quasiparticle density had decreased by more than a factor ten.
This observation seems incompatible with QP generation induced by radioactivity or cosmic rays.

Mitigation of quasiparticle density by engineering Strategies used to reduce the number
of dissipative non-equilibrium quasiparticles are numerous, see [Catelani and Pekola, 2022] for
a review.

A first idea consists in trapping QPS away from the sensitive parts of the circuit, in a vortex
core, a normal metal electrode or a lower gap superconductor for instance.
A second approach aims at preventing pair breaking from happening in the first place: instead
of trapping quasiparticles, one tries to trap phonons with energy larger than the gap, a potential
pair-breaking agent. Phonons in the substrate are generated by the various sources discussed

120



above (such as ionizing radiations) and diffuse along the sample.6 Each pair-breaking event is
accompanied with the absorption of a phonon, and the recombination of two QPs re-emits a
phonon with energy ∼ 2∆.
A phonon trap is then simply a superconductor with lower gap than the main circuit, which
role is to down-convert high energy phonons into lower energy excitations unable to break
pairs in the circuit’s larger-gap superconductor.
This approach has been used with success in MKID detectors [Karatsu et al., 2019] and
resonators [Francesco Valenti et al., 2019; Henriques et al., 2019].
A similar scheme using a normal metal trap [Martinis, 2021] also turned out to be efficient [Pa-
tel et al., 2017; Iaia et al., 2022]. By turning the aluminum phonon-trapping ground plane
to a normal metal using a magnetic field, [Bargerbos et al., 2023] obtained comparable
quasiparticle density reduction, suggesting that phonon-traps made out of normal metals and
superconductors have similar performances.

Coming back to our indium oxide samples, it is interesting to note that most of the geometries
studied in this thesis include a combination of superconductors and normal metals which could
act as phonon traps.
In the microstrip geometry the sample backside is gold-plated to act as a ground plane. The
situation is similar to that of [Iaia et al., 2022], where a 10 µm-thick copper backside ground
plane provides a reduction in qubit errors by a factor 20, and [Bargerbos et al., 2023] where
the 200 nm-thick aluminum coplanar ground plane (turned into a metal in B field) allows a
factor 2-5 improvement in qubit lifetime.
One important difference in phonon-trapping efficiency is of course the metal thickness: our
gold ground plane is at most 200 nm-thick, leading to a significantly reduced trapping rate.
The presence of such an unintentional trap however must be kept in mind when discussing
dissipation in indium oxide resonators in the microstrip geometry. Further efforts in reducing
loss in our devices might involve a thicker metallic ground plane.
In the hybrid TiN/a:InO resonator discussed in last section, the TiN coplanar ground plane
(Tc = 3.9 K) covers almost the entire chip. Unfortunately the gap of TiN is not much smaller
than the one of indium oxide (Eg ∼ 450 µeV), potentially reducing the effect of phonon
trapping.
Finally, resonators in a 3D waveguide do not have metallization in contact with the substrate,
and some samples in this configuration present enchanced frequency jitter, consistently with a
larger density of non-equilibrium quasiparticles.

Influence of disorder on Two-Level Systems and quasiparticles We have seen so far
that quality factors in indium oxide resonators are not limited by the usual TLS at the interfaces,
but present features qualitatively consistent with TLS models. The other main loss mechanism,
excess quasiparticle, could play a major role in the poor resonator performances reported here.
We now discuss how disorder can influence the quasiparticle and TLS populations, and even
bridge these two concepts.

Disorder in superconducting films generates spatial fluctuations of the gap amplitude ∆(r) =
∆0 + δ∆(r) where ∆0 is the typical average gap value. Fluctuations δ∆(r) increase with
disorder, as demonstrated by tunneling experiments [B. Sacépé, C. Chapelier, et al., 2008;
Carbillet et al., 2020].

6According to [Martinis, 2021] more than 90% of the radiation energy on sample is converted into phonons,
and about 57% of this phonon energy contributes in Cooper pair breaking.
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Recent works put forward the idea that non-equilibrium quasiparticles could be trapped in
these regions of lower gap (illustrated in Fig. 7.11). Such localized quasiparticles have a lower
probability to recombine into a Cooper pair, resulting in an extra-long relaxation time [Bespalov
et al., 2016; de Graaf et al., 2020].
Upon increase of disorder the traps become deeper, and the typical distance over which
QPs can annihilate decreases: even a weak non-equilibrium agent can lead to a significant
non-equilibrium quasiparticle concentration at T = 0 [Bespalov et al., 2016].

Fig. 7.11. Illustration of quasiparticles trapped by gap fluctuations. A quasiparticle
(red dot) can localize in a superconducting region where local fluctuations of the gap δ∆ are
large. A well can contain multiple bound states, therefore forming an effective Two-Level
System noted qTLS. The depth of the trap determines the qTLS frequency and its escape
rate as illustrated in the insets. With modifications from [de Graaf et al., 2020].

Interestingly these traps can host multiple bound states. Keeping only the first two excited
states then allows to introduce an effective Two-Level System arising from trapped quasiparti-
cles, noted qTLS [de Graaf et al., 2020] (see Fig. 7.11).
The typical energy splitting of such a qTLS is proportional to the trap amplitude: as a conse-
quence the qTLS density of states is not constant and depends rather strongly on frequency.
QPs trapped in shallow wells recombine with higher probabilities than the ones localized in
deep traps (but the latter are also less probable).
These qTLS7, similarly to their glassy counterparts, should present the expected features
predicted by the Standard Tunneling model, among which the power and temperature increase
of quality factor observed in indium oxide.
The increase of Qi with power was also interpreted as an enhanced de-trapping mechanism
upon increase of circulating photon density, consistent with the experimental observation that
relaxation times were reduced at stronger powers in granular aluminum [Grünhaupt, Nataliya
Maleeva, et al., 2018].

More generally, the picture of trapped quasiparticles entails that even very rare non-equilibrium
events (high energy impacts or any other source) lead to a relatively large quasiparticle density

7Potentially, another mechanism could create TLSs out of disorder. The hopping of localized Cooper
pairs in a pseudogapped superconductor (see Chap. 2) could be seen as a local Two-Level System: the
coherent tunneling of charge-2e bosonic excitations generates a TLS-like electric dipole. [M. Feigel’man,
Private communications.]
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with exponentially slow relaxation time, detrimental to qubit coherence and resonator quality
factors. This analysis seems to be applicable even in clean superconductors such as aluminum,
where film thickness variations and Aronov-Altshuler effect can create shallow traps [de Graaf
et al., 2020].

Finally, a recent work [Thorbeck et al., 2022] on a large scale multiqubits processor considers
the interaction between ionizing radiations and TLS excitations: they observe that, while
quasiparticle bursts do not significantly alter the qubit lifetimes, some TLSs experienced a
long-lived frequency shift, suggesting a new interplay between radiations and defects.
The presence of strongly coupled TLSs of unknown origin was recently evidenced in granular
aluminum [Kristen et al., 2023; Martin Spiecker et al., 2023]. The ’giant’ TLSs found by
[Kristen et al., 2023] have a an anomalously large dipole moment, orders of magnitude larger
than the usual surface TLSs. Interestingly the number of such TLS increases with sample
resistance, showcasing the effect of disorder.

We conclude by saying that all loss mechanisms mentioned so far (TLSs in glassy surfaces and in
the bulk, non-thermal quasiparticles due to infrared radiations, cosmics rays and radioactivity...)
must be considered when analyzing dissipation and decoherence in quantum circuits. More
interestingly, these mechanisms are interdependent: high-energy radiations create quasiparticles
than can get trapped and produce qTLSs or directly interact with surface TLSs. Inevitable gap
fluctuations (even in clean superconductors) prevent excess quasiparticles from annihilating,
resulting in a persisting quasiparticle background at T = 0.

7.5.1 Towards a universal upper bound on quality factor in super-
conductors ?

From the considerations above one could wonder if the quality factor of a superconducting
resonator has an upper bound at a given disorder level.
To try to answer this important question we compile a set of data on superconducting resonators
and plot the relation between quality factor Qi and microwave response of the superconductor
(represented here by the imaginary part of conductivity σ2), as displayed in Fig. 7.12. All data
points are taken at low power, near the single photon regime and at lowest temperature (few
tens of mK).

In a two-fluid model of superconductivity one can write a complex, frequency-dependent
conductivity σ(ω) = σ1 + iσ2. The real part describes conduction via quasiparticles, and the
imaginary part conduction from Cooper pairs.

Following [Tinkham, 1975] we write (for ~ω � ∆)

σ1 =
nne

2τn
me

(7.5)

σ2 =
nse

2

meω
=

1

µ0 λ2ω
(7.6)

where nn and ns are the densities of quasiparticles (resp. paired electrons) and me is the
electron mass. We expect the conservation of electrons: n = ns + nn where n is the
electronic density in the normal state. τn is the relaxation time for quasiparticles. In the nor-

mal state the Drude conductivity reads σn =
ne2τe
me

where τe is the relaxation time for electrons.
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To obtain the plot shown in Fig. 7.12 one then only needs to know the London penetration depth
λ, or equivalently the sheet kinetic inductance (via L�

K = µ0λ
2/d for a thin film of thickness

d, or L�
K = µ0λ for the bulk), and the frequency at which the quality factor has been measured.

Fig. 7.12. Relation between internal quality factor and σ2 in various materials. The
quality factor is taken at low photon number n ∼ 1 and lowest temperatures. Represented
materials for planar resonators are: Ta [Lozano et al., 2022; Crowley et al., 2023; Jia et al.,
2023], TiN [Amin et al., 2022; Richardson et al., 2020; R. Gao, W. Yu, et al., 2022; Sandberg
et al., 2012; Shearrow et al., 2018], NbN [Niepce et al., 2019; Wei et al., 2020; C. X. Yu et al.,
2021; Xu, Han, et al., 2019; Mahashabde et al., 2020; Foshat et al., 2023; Frasca et al., 2023],
NbTiN [Müller et al., 2022; Bruno et al., 2015; Samkharadze et al., 2016], Nb [Verjauw et al.,
2021; Noguchi et al., 2019; Altoé et al., 2022; Zhu et al., 2022], Al [Megrant et al., 2012;
Jonathan Burnett et al., 2018; Earnest et al., 2018; Chien et al., 2023], NbSi [Le Sueur et al.,
2018], TiN/Al [R. Gao, Ku, et al., 2022], grAl [He et al., 2021; Zhang et al., 2019; Rotzinger
et al., 2016], Pb [Ebensperger et al., 2016], MoRe [V. Singh et al., 2014], Re [E. Dumur et al.,
2016], In [McRae, Béjanin, et al., 2018], Si:B [Bonnet et al., 2022]. 3D cavities are also shown,
in Nb [Romanenko et al., 2020], Al [Reagor et al., 2013; Kudra et al., 2020], TiAlV [Holland
et al., 2017]. Dashed line shows the relation σ2 = 100Qi.

The materials displayed on this graph are very different intrinsically. Some are relatively clean,
pure metals such as aluminum, niobium, lead, tantalum, rhenium or indium, some are strongly
disordered nitrides or oxides, such as NbN, TiN, NbTiN, grAl, InOx. Some materials are more
exotic alloys (boron-doped silicon Si:B, TiAlV, MoRe).
While most of these data concern planar superconducting resonators (mostly in CPW geome-
try), we also added 3D cavities that are known to provide high quality factors. The best Qi in
this study comes from SRF cavities used in accelerator physics by the Fermilab [Romanenko
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et al., 2020].

As noted by [Dutta et al., 2022] most thin film superconductors belong to the dirty limit,
that is their superfluid density is limited by electronic scattering. In our data survey only the
purest niobium samples can be considered as clean; to estimate the superfluid density in these
samples we use the method described in [Dutta et al., 2022], which give consistent results
with the known literature.

Regarding the extraction of quality factors, we chose to take values in the single-photon
regime, and at lowest temperature possible in order to get a fair comparison between these
data obtained in different materials and experimental conditions. One important thing must
be noted however: most of these quality factors are very likely to be limited by external loss
mechanisms such as TLSs. This can be seen by the increase of quality factor with power or
temperature in a large majority of these works.

It can be seen from Fig. 7.12 that quality factors generally increase with σ2. A linear relation
between these two quantities holds for seven orders of magnitude (σ2 ≈ 100Qi, as displayed
by the dashed line).
Note that we chose to use σ2 to describe the microwave response, in part because it allows
the normalization by the measurement frequency: it is well known that dissipation should be
frequency-dependent.
Since σ2 ∝ L−1

K ∝ ns the results of Fig. 7.12 indicate that the quality factor grows with the
density of Cooper pairs Qi ∝ ns.
This seems compatible with the idea developed in [Bespalov et al., 2016; de Graaf et al., 2020]:
quasiparticles trapped by gap fluctuations (which are enhanced by disorder) have a longer
recombination time and induce dissipation.

As of now a superconductor having both large kinetic inductance and large quality factor (that
would belong to the bottom right region of Fig. 7.12) has not been discovered. An important
question is whether or not such a superconductor should exist.

Estimation of quasiparticle relaxation time To analyze this observation further I now
try to relate quality factor and complex conductivity:8

Qi =
1

α

σ2

σ1

(7.7)

where the kinetic inductance fraction is α = LK/(LK + Lg). For strongly disordered super-
conductors one has α ∼ 1 while cleaner superconductors can have α ∼ LK/Lg � 1.
Equation Eq. (7.7) is used frequently to describe the effect of quasiparticles on dissipation (at
higher temperatures usually), see [Coumou et al., 2013] for instance.

8At microwave frequencies the surface resistance of a superconductor is the real part of the complex

resistivity: Rs = Re

[
1

λ(σ1 + iσ2)

]
=

1

λ

σ1

σ2
1 + σ2

2

. Since σ2
1 � σ2

2 one has Rs =
1

λ

σ1

σ2
2

.

From the usual mapping of a superconductor at RF frequencies to a microwave transmission line: Qi = ω
L

Rs
where L = LK + Lg is the total inductance [Pozar, 2011].
Injecting into the expression for Rs leads the result.
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Fig. 7.13. Universal relation of superconductivity and dissipation. The quality factor
is taken at low photon number n ∼ 1 and lowest temperatures. Represented materials for
planar resonators are: Ta [Lozano et al., 2022; Jia et al., 2023], TiN [Amin et al., 2022;
Richardson et al., 2020; R. Gao, W. Yu, et al., 2022; Sandberg et al., 2012], NbN [Niepce
et al., 2019; Wei et al., 2020; C. X. Yu et al., 2021; Xu, Han, et al., 2019; Foshat et al., 2023;
Frasca et al., 2023], NbTiN [Müller et al., 2022; Bruno et al., 2015], Nb [Noguchi et al., 2019;
Altoé et al., 2022; Zhu et al., 2022], Al [Megrant et al., 2012; Earnest et al., 2018; Chien
et al., 2023], NbSi [Le Sueur et al., 2018], TiN/Al [R. Gao, Ku, et al., 2022], grAl [He et al.,
2021; Zhang et al., 2019; Rotzinger et al., 2016], MoRe [V. Singh et al., 2014], Re [E. Dumur
et al., 2016], In [McRae, Béjanin, et al., 2018], Si:B [Bonnet et al., 2022]. 3D cavities are also
shown, in Nb [Romanenko et al., 2020], Al [Reagor et al., 2013; Kudra et al., 2020], TiAlV
[Holland et al., 2017]. Dashed lines correspond to three values of the constant C.

Rewriting Eq. (7.7) by noting that σ1 = σnnn(0)τn/(nτe) where nn(0) is the residual non-
equilibrium quasiparticle density at T = 0:

σ2

σn
= C αQi (7.8)

where the prefactor C is related to quasiparticle density as C =

(
nn(0)

n

)(
τn
τe

)
.

From this very simplistic two-fluid model one could potentially extract some relation between
characteristics of a superconductor. This is what we investigate in Fig. 7.13, where we observe
proportionality between σ2/σn and αQi.

The normal state conductivity at low temperature σn is obtained from the references when
available, and from [Hall, 1968] for pure metals when unspecified.
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The kinetic inductance fraction α can be estimated from the geometry. For CPW resonators
for instance, the geometric inductance Lg can be obtained by analytic formulas if the central
conductor width and spacing to the ground are known. For cavities one must use electromag-
netic simulations; for the aluminum cavities of [Reagor et al., 2013] for instance, the kinetic
inductance fraction can be as small as α = 6 10−6.

As can be seen on Fig. 7.13 the normalization by α and σn reduces considerably the scatter
present in last graph. We plotted σ2/σn = C αQi for three values of C = 5 10−2, 5 10−3 5 10−4.
All data points are contained within this interval, with a best fit for C ∼ 5 10−3.

Let us now try to analyze further this relation. What comes next is purely speculative and
should not be taken too seriously at the moment.

Because of electron number conservation we can write
nn
n

= 1− ns
n

, and in the dirty limit

ns
n
≈ π∆τe

~
≈
(
l

ξ

)2

[Dutta et al., 2022].

Since from Fig. 7.13 C is a constant, one gets

τn =
C τe

1− ns/n
=

C τe

1−
(
l/ξ
)2 (7.9)

Eq. (7.9) gives the relation between relaxation time for quasiparticles τn and the characteristics
of a superconductor in the dirty limit.
In the clean limit, for which all electrons are paired and ns ∼ n one sees that τn →∞, leading
to a dissipationless flow of supercurrent ρ1 = 1/σ1 → 0.
In practice however, the pure theoretical clean limit is rarely reached. One sees that τn = τe for
ns/n = 1− C ∼ 0.995, which corresponds to the ultra clean Nb SRF cavity of [Romanenko
et al., 2020], the purest material of this data set.

In the dirty limit the number of paired electrons decreases with disorder, and τn decreases. In
the extreme dirty limit l� ξ and Eq. (7.9) simplifies to τn ∼ Cτe ∼ 5 10−3 τe.

9

Finally since from Mattis-Bardeen theory
σ2

σn
≈ π∆

~ω
one can write the quality factor for any

superconductor

αQi ∼
1

C

π∆

~ω
(7.10)

Taking for instance a NbN sample with data tabulated in [Dutta et al., 2022]10, α ≈ 1 and
ω = 2π × 4 GHz one gets the estimate Qi ∼ 105, which is the order of magnitude measured
in NbN microwave resonators.
For an aluminum 3D cavity such as the one of [Reagor et al., 2013] with α = 6 10−6 and
Tc = 1.2 K the quality factor becomes Qi ∼ 109.

9Using the Drude formula for τe one also gets nnτn =
Cm

e2
σn, that is the relaxation rate scales with

normal-state resistivity as
1

τn
∼ 5 10−6nnρn. One would wonder if this decrease of quasiparticle relaxation

time with disorder is related to an enhanced recombination time due to trapping of quasiparticles, as discussed
in [Bespalov et al., 2016; de Graaf et al., 2020].

10∆ = 2.5 meV, n = 16.85 1028 m−3, ρn = 1.14 µΩm and τe = 855 10−17 s.
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Conclusion

This chapter aimed at investigating the main loss mechanisms in indium oxide resonators. It
is found that some features are compatible with the presence of two-level systems (notably
through the increase of quality factor with power and temperature), but these TLS are not
present at the circuit interfaces. There is growing evidence that dissipation in our a:InO films
is intrinsic, and related to the disorder strength.
Finally by compiling quality factors for superconductors in a broad range of disorders available
from the literature we find that dissipation at microwave frequencies and superfluid density
(seen as a measure of disorder) are simply related. This suggests a somewhat universal relation
between material disorder and dissipation, the understanding of which could be of great
importance for the fabrication of dissipationless superconducting circuits.
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CHAPTER8
a:InO in perpendicular magnetic field : an

interplay of disorder and vortices

Applying a magnetic field to amorphous indium oxide films has been very fruitful in the past
decades. Measurements of the sample resistance R(B) under large fields have evidenced
a Superconductor-Insulator Transition (this time driven by the magnetic field) and a giant
magnetoresistance peak [Paalanen et al., 1992; Gantmakher et al., 2000; Maoz Ovadia et al.,
2013]. It is believed that the B-driven insulating state is made of incoherent preformed Cooper
pairs, with a pseudogap [Sambandamurthy et al., 2004; R. Crane et al., 2007; Shammass
et al., 2012; Liu, Pan, et al., 2013; B. Sacépé, Seidemann, et al., 2015]1

Surely, a microwave study of a:InO in magnetic field would provide interesting results [R. Crane
et al., 2007]. More generally microwave resonators made of disordered superconductors have
significant interest, both fundamental and technological.
Unlike clean materials, wires fabricated from superconductors like NbN [C. X. Yu et al., 2021],
NbTiN [Xu, Han, et al., 2019; Samkharadze et al., 2016] or granular aluminum [Borisov et al.,
2020] survive relatively large applied magnetic fields without dissipation.

In this chapter we study for the first time a:InO microwave resonators under perpendicular
magnetic fields and obtain preliminary data.2 We show an unusual suppression of superfluid
density, and comment on the possible effects of vortex pinning.

8.1 | Suppression of superfluid density due to pair-breaking

For magnetic fields low enough so that no vortex has yet entered the superconducting strip, the
effect of applied field is only to break Cooper pairs, therefore reducing the superconducting gap
following δ∆/∆ = (π/4)Γ/(kBTc) with the pair-breaking energy Γ = D(ewB)2/(6~), where
D is the diffusion constant, w the width of the stripline and e the electron charge [Tinkham,
1975].
The suppression of superconductivity by pair-breaking translates into an increase of kinetic
inductance and therefore the reduction of resonator frequency as:

δf(B)

f
= −

(
B

B0

)2

(8.1)

1Further, [M. Ovadia, Kalok, et al., 2015] evidenced a SIT driven by magnetic field occuring at finite
(non-zero) temperature, suggesting by that occasion that indium oxide could be an interesting platform to
look for signatures of Many-Body Localization (MBL) introduced by [D. Basko et al., 2006; D. M. Basko
et al., 2007].

2A systematic study of a:InO resonators in B field is under way.
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with B0 = (1/we)
√

48~kBTc/(πD).

Using the BCS relation ∆ = 1.76 kBTc and the coherence length ξ0 =
√

~D/∆ one sees that
B0 scales as B0 ∝ ~/(ewξ0). Therefore the main influence on the frequency shift amplitude
at a fixed disorder is given by the strip width: the narrower the strip, the smaller the shift (and
the less the superconducting resonator is affected by magnetic field). To further enhance B0

the coherence length ξ0 must be minimized, and therefore the superconducting film needs to
be sufficiently disordered.

8.1.1 In the literature

Fig. 8.1. NbTiN and NbN CPW resonators in perpendicular magnetic field. Left:
Evolution of frequency shift and quality factors for NbTiN resonators of various central
conductor widths w in perpendicular field. The frequency shift is nicely fitted by Eq. (8.1),
with a prefactor k = B−2

0 scaling with strip width as ∝ w2, as expected from the pair-breaking
mechanism. From [Samkharadze et al., 2016]. Right: Same measurements for NbN resonators
of three different widths (dark green corresponds to w = 50 µm, light green w = 2 µm and
pink w = 0.2 µm). Once again the frequency shift follows Eq. (8.1). From [C. X. Yu et al.,
2021].

It turns out that Eq. (8.1) is fulfilled in a large variety of disordered superconducting wires, as
displayed in Fig. 8.1 where we show the evolution of frequency shift and quality factors with
applied perpendicular field in NbN and NbTiN films.
The results of [Samkharadze et al., 2016] in NbTiN films clearly demonstrate the scaling
B0 ∝ w−1 as expected from the pair-breaking scenario. Both [Samkharadze et al., 2016] and
[C. X. Yu et al., 2021] (see also [Kroll et al., 2019; Borisov et al., 2020]) observed a reduction
of quality factor with perpendicular field and, in the narrowest strips, a subsequent increase
of Qi(B). This apparent dip in quality factor at B ∼ 0.1− 0.2 T is observed to shift with
resonator frequency and was interpreted as the result of the coupling to a magnetic impurity.
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This process follows the resonance condition hfr = gµBB, with an extracted Landé factor of
the order of g ∼ 2.
We note that, probably for technical reasons, most studies of resonators in perpendicular field
do not show results for fields larger than ∼ 0.5 T.3

8.1.2 In indium oxide resonators

Fig. 8.2. Frequency and quality factor in perpendicular magnetic field for two
disordered a:InO samples. a-b Sample TC017 (width w = 1 µm) has LK = 6 nH/� and
Tc ∼ 1.1 K. Resistance measurements R(B) show a Bc2 ∼ 40 mT (see later). Black dashed
line shows a fit to Eq. (8.1) with a B0 = 24 mT, while the theoretical BCS prediction is
B0 ∼ 178 mT. Above 2.6 mT the quality factor drops abruptly and the mode vanishes. c-d
DC measurements on Sample TC047 (width w = 100 nm) could not be performed. Blue
dashed line is a fit to Eq. (8.1) with B0 = 1 T. Vertical dashed line shows the critical field
B1 = 0.21 T above which a first vortex enters the strip (Eq. (8.2)). Both mode frequency
and quality factor disappear above B1.

We now turn to disordered indium oxide resonators in perpendicular field only, allowing us to
reach fields as high as 13 T in the transverse plane. Microwave measuremements are performed

3Most works focus on the parallel field response, and it is often very costly and challenging to operate a
multi-axis coil able to reach large fields on all directions.
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at low frequencies (f ∼ 1 MHz up to ∼ 4 GHz), in the setup B presented in Appendix C.3.

Fig. 8.2 displays the decrease of frequency and quality factor for two indium oxide resonators
of different geometries and disorders. Both samples show a quadratic suppression of superfluid
density according to Eq. (8.1). As expected, the narrower strip (width 100 nm) withstands
magnetic field better than its wider counterpart (width w = 1 µm), as the former displays
measurable resonances up to B ∼ 0.2 T while the latter is suppressed at much lower fields
B ∼ 2.5 mT.

For strongly disordered indium oxide one should expect that the above model would fail to
describe quantitatively the data, as Ginzburg Landau and BCS formalisms are not supposed
to capture the physics of pseudogapped superconductors. At moderate disorders one should
however expect a qualitative agreement with the pair-breaking formula presented here.

8.2 | New observations in indium oxide

In this section we discuss new results which were not commented previously, and go beyond
the usual pair-breaking mechanism.

Fig. 8.3 displays the result of the application of a perpendicular magnetic field to the indium
oxide sample TC007 which was studied previously at zero-field. The wire is 1 µm-wide and
3.5 mm-long, with a measured critical temperature Tc = 2.5 K (normal state resistance
Rn = 3.2 kΩ/�), and the zero-B kinetic inductance measured via two-tones spectroscopy is
LK = 1.5 nH/�. From the measurement of the resistance upon increase of field R(B) we
extract a critical field Bc2 ∼ 11 T where resistance starts to increase.

First, the quality factor Qi(B) drops at low field (B ∼ a few mT) and saturates upon increase
of field at a value Qi ∼ 100.
Secondly, the frequency shift has a completely different behavior: instead of being curved
downwards (as expected for a quadratic suppression ∝ B2) we observe an upward curvature
(see Fig. 8.3 panels b-d). As B increases the frequency shift slows down, almost in a logarith-
mic fashion, up to the relatively large perpendicular field B = 1.8 T.
The frequency shift amplitude is also much larger: while the latter was smaller than a few tens
of MHz in previous data, here the frequency decreases by more than 200 MHz, about 50% of
the initial frequency.

To further confirm this unusual behavior, we performed two-tones spectroscopy at several
fields to extract the field-dependent kinetic inductance LK(B).4 The resulting evolution of
kinetic inductance is displayed in panel c.
Knowing the inductance at zero-field LK(0) one can finally convert this quantity into a
superfluid stiffness Θ(B), as shown in panel d (red triangles). The superfluid stiffness can also
be obtained from the frequency shift (and knowing LK(0)), leading to the blue data points on
panel d.
As can be seen both data sets coincide, demonstrating that the measurement of the frequency
shift is a robust (and much faster) measurement of the superfluid density suppression. This
demonstrates that it is acceptable to work with the more convenient f(B).

4As discussed in the rest of this thesis the kinetic inductance is extracted from the dispersion relation ω(k)
of plasmons.
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Fig. 8.3. Microwave response of a disordered indium oxide wire in perpendicular
magnetic field. Sample TC007 (width w = 1 µm) was previously measured in a cryostat
without field. In this new measurement run it displayed a normal state resistance Rn =
3.2 kΩ/� and critical temperature Tc = 2.5 K. From the R(B) measurement we extract a
critical field Bc2 ∼ 11 T. a-b At larger fields (up to 1.8 T) the quality factor initially drops
and seemingly saturates at Qi ∼ 100 while the frequency continuously decreases. c Using
two-tones spectroscopy at various fields we extract the B-dependent kinetic inductance LK(B).
d From the measurements of f(B) and LK(B) we obtain the evolution of superfluid stiffness
with B, Θ(B). Both curves obtained from very different methods coincide nicely.

One notes that the peculiar suppression of superfluid stiffness Θ(B) can be extrapolated to
higher fields. Doing so would result in a final suppression of Θ to zero for very high magnetic
fields of a few tens of Tesla, close to Bc2. On the contrary it is found that both Qi and f
disappear above 1.8 T.

Additionally, previous measurements of the superfluid stiffness in disordered indium oxide
present a similar trend versus perpendicular magnetic field: Fig. 8.4 shows Θ(B) for three
measurement frequencies, as measured in [R. Crane et al., 2007]. The strongly disordered
sample (see legend) is patterned into a disk and inserted in a resonant microwave cavity,
allowing the measurement of the complex conductivity σ(ω, T,B). From the imaginary part
σ(ω,B) the authors extract the superfluid stiffness versus B at a fixed temperature T = 0.5 K.
It is found that Θ(B) has an upward curvature, similarly to what was seen in Fig. 8.3 panels
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Fig. 8.4. AC measurement of superfluid stiffness versus perpendicular field in an
indium oxide film at T = 0.5 K. A 20 nm-thick disordered aInO sample shaped as a
3 mm-diameter disk is placed in a microwave resonant cavity, allowing the measurement of the
complex conductivity. Sample has Tc ≈ 2 K, Rn ≈ 7 kΩ/� and Bc2 ≈ 9.5 T, as measured in
DC on a companion co-evaporated sample. From [R. Crane et al., 2007]

b-d. This observation from a different group and in different experimental conditions confirms
the unusual behavior of superfluid density at higher field in disordered indium oxide.

8.2.1 Critical field for the penetration of vortices in a thin film

So far we considered theoretically the effects of a weak magnetic field, at which no vortex has
yet penetrated the strip. Obviously at larger fields the effect of vortices becomes important
and must be taken into account. This is what we expose in this section.

The expulsion of magnetic field from a narrow superconducting strip made of thin film of
type-II superconductor is quite different from the bulk case. For a thin film of thickness d and
bulk penetration depth λ one can define a 2D penetration length Λ (the Pearl length already
discussed in this thesis) as Λ = λ2/d = L�

K/µ0. For strongly disordered films the London
length is large, and for a narrow strip of width w one easily has Λ� w. Therefore screening
of magnetic field is very weak, and vortices interact via stray fields outside the film over the
long distance ∼ Λ.
For these reasons the critical field above which a first vortex can appear in the strip is not
related to the usual bulk Hc1.

Critical field B1 It can be shown that two competing forces act on a vortex in this geome-
try [Likharev, 1971; Stan et al., 2004]. A first force tries to expel the vortex by pushing it
towards the edges of the wire, because of image antivortices building up outside the strip. A
second force tends to attract the vortex towards the center of the strip, from interactions with
Meissner currents. This second force is proportional to B: at large enough fields the second
force overcomes the first one, and a vortex penetrates the strip.
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Fig. 8.5. Vortex free energy for different applied magnetic fields. Dependence of
Gibbs free energy for a single vortex on its position with respect to the center of the strip
x (width w) for several applied fields, and under condition ξ � w � Λ. At very low fields
the energy cost to enter the strip is large and the vortex is expelled (red curves). Above the
critical field B1 the free energy becomes negative and it is energetically favorable for a vortex
to penetrate the strip (black curve). At higher fields B1 < B < B2 the minimum of free
energy is absolutely stable and vortex configurations lower the system energy. However the
presence of a surface barrier at the edges prevents vortices from entering the film (first blue
curve). Finally at B > B2 the surface barrier vanishes and vortices freely enter the strip to
lower the total energy. From [Likharev, 1971; Stan et al., 2004].

This situation leads to a critical field B1 at which the free energy is minimum and has a stable
equilibrium: vortices can exist in the wire only above B1 defined as [Likharev, 1971; Stan et al.,
2004]

B1 =
2

π

Φ0

w2
ln
w

4ξ
(8.2)

where Φ0 = h/(2e) and ξ is the dirty limit coherence length.

Eq. (8.2) is quite remarkable, as it states that this critical field is independent of disorder and
superconducting characteristics of the material (apart from the weak dependence on ξ in the
logarithm).

An illustration of the behavior of free energy across the wire width is displayed in Fig. 8.5,
representing the different regimes of magnetic fields. At low magnetic fields the energy cost
for a vortex to enter the strip is large and the vortex is expelled out of the wire. At B > B1

vortex configurations tend to lower the system energy.

Critical field B2 Looking at the B > B1 region of Fig. 8.5 one sees that regions where
the free energy remains large exist close to the strip edges. The existence of such surface
barriers preventing a vortex from entering the strip was discussed by [Likharev, 1971] in the
case ξ � w � Λ.

The critical field above which surface barriers vanish, allowing a first vortex to penetrate
is [Likharev, 1971; Maksimova, 1998]
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B2 =
Φ0

2πξw
(8.3)

Fig. 8.5 illustrates the suppression of surface barriers above B2: vortices can enter the wire
freely to lower the total free energy.

Relation with indium oxide samples For sample TC017 (panels a-b of Fig. 8.2), this
critical field is B1 ∼ 5 mT, not far above the field at which the resonance is lost.
For sample TC047 (panels c-d of Fig. 8.2) the critical field B1 ∼ 0.21 T is represented by the
dashed vertical line. It turns out that both quality factor and resonance cease to exist close
to B1, as shown by the vertical black dashed line. At the second critical field B2 = 0.65 T
resonances have already disappeared.

Discussing now sample TC007 which presented an unsual suppression of superfluid density
(Fig. 8.3), we estimate B1 ∼ 5 mT and B2 ∼ 0.21 T. Therefore vortices clearly entered the
wire, potentially suppressing both frequency and quality factor.

8.2.2 Observing both pair-breaking and vortex-related effects

Can we observe the cross-over between pair-breaking and vortex related physics ?

By studying a narrower wire w = 300 nm (sample TC050) as displayed in Fig. 8.6 we answer
positively to this question. On all plots the black dashed vertical line represents the first critical
field B1, and the red vertical line the second critical field B2. Panel a clearly shows a change
in the frequency behavior exactly at B1: at lower fields the shift is small, and above B1 it
becomes much larger, with an upward curvature similarly to sample TC007 (note here the log
scale on x axis). Converting the frequency into superfluid stiffness Θ(B) leads to the data
presented in panel d.
We show in panel c that the low-B part of the frequency shift actually follows the quadratic
law ∝ B2 of Eq. (8.1), with parameter B0 = 0.25 T. Taking Tc = 2.5 K, w = 300 nm and
D = 0.3 cm2/s gives the theoretical value B0 = 0.89 T. Once again the estimation from BCS
theory predicts a weaker effect of pair breaking than what is found experimentally.
At lowest fields the resonator is indeed free of vortices, and the superfluid density suppression
is driven by pair-breaking.

Penetration of vortices induces dissipation. This can be seen from panel b, where it appears
that the resonator quality factor drops abruptly by more than an order of magnitude very
close to the first critical field B1 (vertical black line). The drop actually occurs at slightly
lower field (around 30 mT). By using Eq. (8.2) and setting w = 350 nm (to account for an
eventual broadening of the strip during the lithography process for instance) we get a new
estimation for B1 exactly at the jump, as displayed by the blue vertical line. Further comments
on dissipation will be done later.

How do vortices enter the strip below B2 ? As evidenced by Fig. 8.6 the two critical
fields for vortex entry B1 and B2 are not identical. Both quantities mostly depend on the strip
width, so the ratio B2/B1 is expected to decrease upon reduction of w.
This is indeed what is seen, with B2/B1 ∼ 42 for sample TC007, B2/B1 ∼ 13 for sample
TC017 and B2/B1 ∼ 5 for sample TC050.
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Fig. 8.6. Observing both pair-breaking and penetration of vortices. Sample TC050
has width w = 300 nm, and has a kinetic inductance at zero-B LK ∼ 1.4 nH/�. On all
panels the black vertical dashed line shows the first penetration field B1 ≈ 39.6 mT calculated
from Eq. (8.2) and ξ = 5 nm, as measured in indium oxide. Red dashed line shows the critical
field for the surface barrier B2 ∼ 0.22 T according to Eq. (8.3). a Frequency versus magnetic
field for the first modes of the resonator. At B = B1 the frequency behavior changes clearly,
with a much faster reduction of frequency. Above B2 one observes a slight change of slope.
b Quality factor versus field. At fields approaching B1, Qi drops abruptly, down to a few
hundreds. Dashed blue line shows an estimation of B1 by taking a larger width w = 350 nm.
c Normalized frequency shift −δf(B)/f in log-log scale. At low fields below B1 the frequency
shift is ∝ B2, as predicted from Eq. (8.1). Red line is the square law ∝ B2 with B0 = 0.25 T.
Above B1 the shift has much larger amplitude and is not a simple power law. d Extracted
evolution of superfluid stiffness Θ(B).

Looking carefully at panels of a-d of Fig. 8.6 one can notice a small ’break’ in the frequency
suppression happening at B2. Above B2 the superfluid stiffness suppression seems to slow
down slightly. This is quite unexpected as one would expect a larger number of vortices
penetrating in the strip in this range of magnetic fields.

This also raises the following question: since vortices start to enter the strip at B1 < B2 (as
evidenced by the plots above and previous studies [Stan et al., 2004]) then they must go
through the surface barrier, even at low temperatures where thermal energy is weak.
Then, how do they enter the film ? One possibility for this would be the quantum tunneling of
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vortices through this energy barrier. Although quite exotic, this mechanism could be in part
favored by the presence of a pseudogap that reduces single particle excitations. [M. Feigel’man,
Private communications]

To our knowledge this question was never raised before. In fact experimental works of [Stan
et al., 2004] focused on field-cooled resonators, hence avoiding the issue of edge barriers.

8.3 | Effect of weak pinning on superfluid density

We now need to account for the disordered nature of our indium oxide films. In this section we
follow some preliminary calculations made by Mikhail Feigel’man to describe the suppression
of superfluid density in disordered superconductors under applied magnetic field.

In absence of pinning the Lorentz force would tend to guide vortices towards the center of the
strip, consistently with Fig. 8.5. At moderate fields, the middle region of the wire only is filled
with vortices, while the outer regions are free of vortex.
The effect of disorder is to pin vortices before they reach the center, with an effect that
opposes the Lorentz force. As a result vortices occupy only two substripes of the wire: both
center region and outer parts of the wire contain no vortex.
In the region filled with vortices a constant current Jc flows: this quantity depends on the
pinning strength and therefore on sample disorder. It follows that penetration of vortices is
hindered by pinning.

This consideration modifies the equation for the first penetration field B1 as

B∗ = B1

(
1

2
+

√
1

4
+ j2

c

)
(8.4)

where the dimensionless parameter jc is defined as jc = (2LKJc)/(wB1) ∝ w.
For a narrow wire (or low disorder LK � 1) one has jc � 1 and the penetration field is given
by Eq. (8.2): B∗ ≈ B1. For larger films B∗ > B1.

One now has to take into account two contributions to the superfluid stiffness. First, the
center vortex-free region is almost unaffected by magnetic field (only the small pair-breaking
effect must be considered). Second, the rest of the wire has a much lower superfluid stiffness
due to the presence of pinned vortices, as can be seen by the increase of kinetic inductance

with B: LK(B) = LK(0)

[
1 +

B

B1

ξ

2wjc

]
.

Vortex-free and vortex-full contributions to the total superfluid stiffness act in parallel, allowing
to obtain the full expression for the supression of superfluid density valid above B∗:

f(B)

f(0)
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√(
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(8.5)

where the only unknown parameter is the dimensionless jc.

Fig. 8.7 shows the result of a fit for the frequency shift of samples TC007 and TC050 with the
vortex-pinning model Eq. (8.5), keeping jc as a free parameter.
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Fig. 8.7. Comparison of a:InO data and the vortex-pinning model for two samples.
For both samples black vertical line shows the critical field B1, the grey vertical line represents
B2, and red dashed line is a fit to Eq. (8.5), jc being the only fitting parameter. Left: Sample
TC050 (w = 300 nm). From the fit one finds jc = 0.013. Right: Sample TC007 (w = 1 µm).
One gets jc = 0.18. Note that for this sample (and from the available data) it is not easy to
say whether the effect of vortex pinning becomes visible at B1 or at B2.

By fitting the f(B) curves to the model one can extract the parameter jc, which is found to
be small, as expected. For the narrowest wire we obtain jc = 0.013, and for the larger strip
jc = 0.18. Recalling that one should have the scaling jc ∝ w, these observations are reasonable.

To further confirm this unsual suppression of superfluid stiffness with magnetic field and
its interpretation as the manifestation of pinned vortices, we need to perform a systematic
measurement of a:InO of various widths and disorders. Such study is currently work in progress.

8.3.1 Hysteretic behavior and vortex-induced dissipation

We now briefly comment on dissipation induced by magnetic field.

Most a:InO samples presented in this preliminary study display an abrupt drop of quality factor
at a perpendicular field close to the first penetration field B1. See for instance Fig. 8.2 panels
b-d, Fig. 8.3 panel a, or Fig. 8.6 panel b.

A similar observation was detailed in granular aluminum resonators [Borisov et al., 2020], and
was interpreted as the effect of fluxons (vortices) nucleating in the film.
The authors show that when applying a field up to 0.6 mT the frequency shift (following
the pair-breaking ∝ B2 model) is reversible: measurements made when ramping the field up
or down give the exact same result. When applying a field B > 0.6 mT for the first time
however, Qi drops sharply, and the frequency shift becomes non-reversible.
The authors define a critical field Bth below which the effect of B on superconductivity is
reversible (the system is in the so-called elastic regime), and above which up and down sweeps
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no longer coincide (defining the plastic regime).

I argue that Bth could in fact be related to the field for first vortex penetration in presence
of pinning B∗. The wires studied in [Borisov et al., 2020] have width w = 10 µm, and using
the estimation for grAl ξ ∼ 5 nm, leads B1 ∼ 0.08 mT while the second critical field is
B2 = 6.5 mT. This clearly shows that B1 < Bth < B2, which is inconsistent with the apparent
absence of vortices observed from the frequency shift and quality factors below Bth. From the
model of pinned vortices presented above one can get the correct order of magnitude for Bth.5

Vortices trapped in the wire could also be at the origin of the hysteretic behavior seen at low
fields in a:InO, displayed in Fig. 8.8. Ramping the field up or down does not result in the same
quality factor and frequency. This effect is usually understood as an effect of trapped vortices
on the RF response of a superconductor [Bothner et al., 2012].
Vortices in the superconducting coil providing the applied field are also likely trapped, leading
to a shift of the ’real’ zero-field by a few mT.

Fig. 8.8. Hysteretic behavior at low field. By ramping up (blue data) and down (orange)
a weak magnetic field on sample TC007 we observe a hysteresis. Before this measurement the
field had been ramped above B1 = 5 mT, therefore entering the plastic regime.

Also similar to our data is the behavior of quality factor just above the drop. It can be seen
from Fig. 8.6 b that Qi increases slightly before B1. A strikingly similar observation was made
in grAl below Bth (Fig. 3 of [Borisov et al., 2020]), where the quality factor increased by up
to 15% before dropping.
This effect was thought of as the result of quasiparticle trapping inside a vortex core located
at a current node of the resonator, as discussed in [Nsanzineza et al., 2014].

5The wires of [Borisov et al., 2020] have comparable inductance LK with our 1 µm-wide films, which
suggests that the disorder-dependent Jc is also of the same order of magnitude. Our 1 µm-wide InOx wire
had jc ∼ 0.18. To estimate this parameter for a ten times wider films of same disorder we multiply by 10
and obtain jc ∼ 1.8. Plugging this into Eq. (8.4) gives the estimation B∗ ≈ 0.2 mT, which is the order of
magnitude of Bth = 0.6 mT discussed in [Borisov et al., 2020].
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Conclusion

In this chapter we show some preliminary results on disordered indium oxide resonators in
perpendicular magnetic fields. It is found that microwave resonances can survive up to 3 Tesla,
but at the cost of a low quality factor.
Interestingly the suppression of superfluid density with B follows an unusual behavior, signaling
that a mechanism other than simple pair-breaking is at play. We find a relatively good
agreement with a simple model of weakly pinned vortices in a disordered superconductor. The
critical field for the penetration of vortices is strongly width-dependent, and a systematic study
of various resonator geometries would allow a better understanding of these unusual features
of indium oxide films.
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Conclusion and Perspectives
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8.4 | Conclusion

This thesis aimed at exploring experimentally the complex interplay of electronic disorder and
superconductivity. For this we used a prototypical disordered material, amorphous indium oxide,
which was studied in great lengths for the past three decades and has puzzled generations of
experimentalists and theoreticians alike. While an Anderson insulator at large disorders, this
material can turn superconducting by making it cleaner. A large body of works suggests, both
experimentally and theoretically, that this quantum phase transition between two seemingly
opposite states (an insulator characterized by the localization of charge carriers and a super-
conducting state with long-range order) is highly non-trivial: preformed electron pairs subsist
in the insulating state, leading to a gapped insulator. This questions both the meaning of an
insulator made of Cooper pairs, and of the very origin of superconductivity in materials with a
tendency towards insulation.

In this thesis we performed a systematic study of disordered indium oxide films across the
Superconductor-Insulator Transition tuned by disorder, combining for the first time transport
measurements and microwave measurements of the superfluid density using modern spec-
troscopy techniques. From the microwave response of indium oxide resonators we were able to
accurately extract the material’s kinetic inductance (and consequently the superfluid stiffness)
for various disorders, and relate it to important intrinsic transport properties such as the critical
temperature or the normal-state resistance.
These measurements demonstrate without ambiguity the role of superconducting phase fluctu-
ations on superconductivity in presence of strong disorder: the critical temperature becomes
equal to the superfluid stiffness, signaling that the superconductor is limited by its resilience
against phase fluctuations. By increasing disorder both Tc and superfluid density decrease
together, while the single particle gap for single electrons remains unaffected by disorder, as was
shown in previous work. These observations further confirm the picture of preformed Cooper
pairs: the mechanism leading to paired electrons becomes unrelated to superconductivity, the
latter being destroyed by phase fluctuations of the order parameter.

The second main finding of this thesis concerns the nature of the Superconductor-Insulator
Transition. While it was widely believed that this transition should be a continuous, second
order transition characterized by a smooth suppression of superconducting energy scales,
our measurements in strongly disordered indium oxide tell otherwise. We observed a sharp,
discontinuous jump of both critical temperature and superfluid stiffness to zero when entering
the insulator. These findings, which can not be explained by available theories, open important
questions about the nature of this phase transition which could be an unexpected first-order
transition. This paves the way for more complete theories that would incorporate more
’ingredients’, such as the effect of long-range Coulomb repulsion between electrons (or electron
pairs) for instance, which has been overlooked so far.
I hope that our measurements brought some new insight on this topic, which is rather old (its
study started more than 30 years ago) but never fails to bring new excitement and unexpected
discoveries.

The rest of the thesis contains additional studies of indium oxide microwave resonators, some
of which would need to be continued.
We studied the dissipation of indium oxide microwave resonators and found that losses where
significantly larger than the one routinely measured in cleaner materials. By engineering the
sample geometry and its environment, we concluded that the larger contribution to loss was
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not originating from the direct environment of the device (such as surface dielectric dissipation)
but was rather intrinsic: strongly disordered indium oxide itself limits the resonator quality
factors.
A similar claim was recently made in relation to granular aluminum and titanium nitride films,
suggesting that materials with the largest kinetic inductances also have poor performances.
This observation could be somewhat detrimental to the field of superconducting quantum
devices, as active efforts are currently made to find a material having both large kinetic
inductance and low loss.
To our view this problem might actually have larger consequences than expected: by compiling
data obtained from resonators made out of superconductors of very different disorder levels,
from really dirty material to state-of-the-art ultra-clean cavities used in accelerator physics, we
report a simple and somehow universal relation of dissipation and material cleanliness: the less
disordered the better.
Together with recent developments in the study of non-equilibrium quasiparticles evidenced
in resonators and qubits, our findings suggest the presence of an intrinsic loss mechanism
that concerns not only disordered materials, but any type of superconductors. A better
understanding of this limitation would become mandatory in the design of next-generation
superconducting quantum circuits.

8.5 | Perspectives

Making these indium oxide resonators opened more questions than we could answer: it triggered
some new ideas which I briefly summarize here.

Magnetic field and Superconductor-Insulator Transition For instance, we were curious
about the effect of a perpendicular magnetic field on narrow indium oxide wires. As discussed
in chapter 8 we found an interesting behavior of superfluid density with applied field, which
could be related to the pinning of vortices by disorder. According to a simple model and
our preliminary results, this feature depends rather strongly on the wire geometry, especially
its width. Ongoing works are carried out in order to study the effect of wire width on the
suppression of superconductivity, and on the quality factor reduction. We have demonstrated
that resonances could survive up to 3 Tesla (and maybe more) in perpendicular field, at
the cost of strong dissipation (low quality factor). Microwave resonators resilient to large
parallel magnetic fields were demonstrated in the literature (up to a few Tesla), but not in
perpendicular field.
Better understanding of the loss mechanisms in this configuration would be of great use in
hybrid devices operated in perpendicular fields. One exciting perspective would be to couple
superconducting resonators to the fractional quantum Hall effect for instance. Field resilient
resonators are long awaited in various situations, from spin qubits to parametric amplifiers.

Similarly to what was done in this thesis, one could study the nature of the Superconductor-
Insulator Transition driven by magnetic field. It is well established that, at a critical magnetic
field, phase coherence between localized electron pairs breaks down, leading to an insulating
state of incoherent localized Cooper pairs. A measurement of the superfluid density at large
fields would provide valuable information about the mechanisms leading to the B-driven SIT
(by looking for scaling laws or, on contrary, observe a superfluid jump). One fundamental
question is whether this transition driven by magnetic field is of first or second order.
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Measurement of insulating indium oxide dielectric constant We already started using
indium oxide resonators in hybrid devices, to probe... indium oxide !
During my PhD I worked on setting up an experiment that would allow the measurement of the
dielectric constant in insulating InOx. According to recent theories the dielectric constant in an
Anderson insulator could have a fundamental impact on pseudogapped superconductors, and
knowledge of this quantity is essential to estimate Coulomb interactions. Such measurement
was already done in a different setting, and in the disorder-tuned SIT [Ebensperger, 2021].
Additionaly some measurements suggest the divergence of sample resistance at finite tempera-
ture under magnetic field [M. Ovadia, Kalok, et al., 2015]. A finite-T insulator could be the
signature of Many-Body Localization in indium oxide [D. Basko et al., 2006; D. M. Basko
et al., 2007], and might be accompanied with a non-trivial behavior of dielectric constant.
That is why I designed a device composed of two superconducting indium oxide wires separated
by a small, strongly disordered indium oxide slab (with a DC four-probe measurement included),
as displayed on Fig. 8.9.

Fig. 8.9. Dielectric constant measurement scheme. Microscope images of a first test
device. Two long (L > 4 mm) and narrow (w = 300 nm) moderately disordered indium
oxide resonators (meanders) are separated by a small gap, allowing the coupling of the two
wires, and forming a capacitance (panels a-b). This geometry shifts slightly the dispersion
relation of the two resonators, leading to groups of even/odd modes (see panel e). In a second
fabrication step a strongly disordered indium oxide strip is deposited in the gap between the
two resonators, without contact with the wires. A four probe DC measurement setup allows
the measurement of resistance (see panels c-d). By applying a perpendicular magnetic field
the central indium oxide wire turns insulating, and its dielectric constant ε(B, T ) modifies the
capacitance, which translates into a change in the spacing between even and odd modes (see
panel e).

The idea would be to apply a perpendicular magnetic field that would turn the disordered
indium oxide into an insulator, while the resonators, resilient to field, allow to measure the
frequency shift due to the variation of ε(B, T ). This study was put on hold for some time but
should be continued soon.
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Non-linearities, losses and applications to cQED A second important direction for fu-
ture works concerns resonators made of indium oxide. As mentioned in chapter 7 the loss
mechanism responsible for low quality factors in our films remains unknown, although probably
intrinsically related to the material itself. While some features are consistent with a model
of Two-Level Systems, it appears that these TLS, if there are any, should be present in the
indium oxide bulk.
Several recent works put forward the idea that the presence of a coupled TLS bath could be
detected by applying a second, detuned microwave tone [Capelle et al., 2020; Kirsh et al., 2017;
Zhang et al., 2019]. By saturating TLSs asymmetrically around the resonance frequency with
the pump tone, the authors observe a frequency shift with microwave power and a significant
enhancement of quality factor. We started investigating the effect of this pump-probe technique
on aInO resonators, in the hope of extracting some valuable knowledge about these mysterious
TLSs.

Another point of interest is the magnitude of non-linearities in aInO resonators. By considering
the non-linearity of current-phase relations in a superconductor, one can estimate the Kerr
coefficient K that describes the frequency shift at low power induced by non-linear effects, as
ω(n) = ω(0)−Kn were n is the average photon number in the resonator. In Appendix D.2
we derived a simple expression for the Kerr coefficient based on mean-field theories (therefore
neglecting the pseudogap).
Fig. 8.10 shows the frequency shift at low photon number for sample TC007, which had
dimensions 3.5 mm by 1 µm. The result Eq. (D.24) is written in terms of the coherence length
(ξ ∼ 5 nm in indium oxide), the angular frequency ω and the superfluid stiffness Θ (= 1.93 K
for this sample), giving the estimation K/(2π) = 8 Hz/photon. We extracted K/(2π) = 100
Hz/photon from the linear fit of frequency, as shown in Fig. 8.10. The apparent discrepancy
between experimental data and the simple theory for a conventional superconductor in the
dirty limit is not so surprising: for these strongly disordered films one should turn instead
to a theory including the effect of strong disorder and pseudogap. This has not been done so far.

Fig. 8.10. Measurement of the self-Kerr coefficient from the frequency shift. Ex-
traction of the Kerr coefficient from the linear decrease of frequency with photon number for
sample TC007 run 2. The fit f(n) = f(0)−K/(2π)n gives the estimation K/(2π) = 100
Hz/photon.
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It turns out that most of our samples do not show a clear linear decrease of frequency with
photon number, even near n ∼ 1. In some samples the frequency even seems to increase
slightly with power, suggesting that non-linear processes other than Kerr effect are at play.
One candidate would be the previously mentioned TLSs in a:InO, the effect of which could be
detected by a pump-probe experiment, as we are currently investigating.

Understanding the non-linearities of a:InO resonators is a prerequisite towards the integration
of this material in cQED technological applications. One could for instance exploit such
non-linearities to provide the anharmonicity of a transmon qubit (as was done for instance
in [Winkel et al., 2020; Joshi et al., 2022]) or parametric amplifiers [M. R. Vissers et al.,
2016; Chaudhuri et al., 2017; Ranzani et al., 2018; Malnou, M. Vissers, et al., 2021; Malnou,
Aumentado, et al., 2022; Xu, Cheng, et al., 2023].

There are other applications for which strong anharmonicity is not wanted, but large impedance
(and strong zero-point fluctuations) are highly beneficial.
As we showed in this work indium oxide provides high kinetic inductances, which can be
used to generate compact and easy-to-fabricate large impedance environments. Making a
superinductance only requires to increase the oxygen content in the evaporation chamber.
Large inductances made from strongly disordered materials have already been used for the
fabrication of fluxonium qubits [Hazard et al., 2019; Grünhaupt, Martin Spiecker, et al., 2019;
Rieger, Günzler, M. Spiecker, Paluch, et al., 2022], metrology [Shaikhaidarov et al., 2022], and
more generally could be used in replacement for Josephson junctions and Josephson junction
arrays.
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APPENDIXA
Insulators and Localization

In this chapter we aim at giving a more precise description of the effects of disorder on a
metal. We first show that quantum corrections to the conductivity become necessary at low
temperatures. By increasing the disorder level we show that electrons become localized by
disorder, and discuss the important consequences on electronic transport. We finally argue
that strongly disordered systems can develop interesting short-scale features (namely electronic
wavefunction fractality).

A.1 | Disorder and Weak localization

Conduction electrons of a disordered metal suffer elastic scattering when encountering an
impurity or any other defect.1 Electron motion remains ballistic on distances below the elastic
mean free path le, and becomes diffusive at larger lengthscales. The value of le varies greatly
depending on the metal and its disorder level: it ranges from ∼ 100 nm for rather clean
samples, down to a few nanometers for strongly disordered metals. In most cases the Fermi
wavelength λF = 2π/kF remains shorter than the mean free path, leading to the condition

kF le � 1 (A.1)

When this condition is met, one can model the electron motion quasiclassically.
The conductivity in a disordered metal can be expressed by the Einstein relation σ = e2ν0D
where D = vF le/d is the diffusion constant in dimension d and ν0 is the electron density of
states at the Fermi level. Electrons can diffuse over the length le = vF τe within the time
interval τe. This allows to write the well known Drude conductivity as2

σD = e2ν0D =
ne2τe
m

(A.2)

where n is the electron density. Eq. (A.2) is the classical contribution to conductivity in a dirty
metal.

Still, at low enough temperature electrons must be seen as waves governed by quantum mechan-
ics. In absence of interactions between electrons in disordered low-dimensional conductors it is
known that quantum interferences of electronic wavefunctions lead to their localization over a
short lengthscale called the localization length ξloc. The resulting ground state is insulating
(transport at T = 0 is completely suppressed). This process is the Anderson localization which
will be introduced in section A.3.

1See [B. Altshuler et al., 1985] for a detailed review on disorder and weak localization.
2In three dimensions for a free-electron model one has ν0 = mkF /(π

2~2) and n = k3
F /(3π

2).
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In many practical situations however Anderson localization cannot fully develop, as it requires
complete phase coherence of the electron wave functions. While phase coherence is main-
tained during elastic collisions with impurities, inelastic processes (such as electron-electron
or electron-phonon scattering or other mechanisms) destroy phase coherence. Consequently
quantum coherence of electrons in such disordered metals can only survive during the finite
time τϕ, allowing the electrons to propagate coherently over distances of the order Lϕ =

√
Dτϕ

called the dephasing length.
When inelastic scattering (enhanced by a finite temperature for instance) becomes non-negligible
the dephasing length can be shorter than the localization length: Lϕ < ξloc. In this situation
an electron can propagate coherently within a localization volume: Anderson localization (also
called strong localization) cannot occur. This limiting case is called weak localization and can
be seen as a precursor of the strong, fully quantum coherent process.

Fig. A.1. Three different paths for an electron propagating from point A to B. While
most possible paths have different lengths and therefore generate different dephasings, some
form loops (here O is the intersection of such trajectory). Within this loop clockwise and
counter-clockwise moving waves interact coherently.

An electron propagating from point A to point B (see Fig. A.1) has infinitely many possible
paths. It performs a random walk by colliding defects elastically, following one of the available
paths with a given probability PAB which can be obtained by summing the probability intensities
of all possible trajectories:

PAB = |
∑
i

Ai|2 =
∑
i

|Ai|2 +
∑
i 6=j

AiA
∗
j (A.3)

The second term of Eq. (A.3) describes quantum interferences between distinct paths. Most
of them have quite different lengths (and therefore different dephasings from A to B3) and as
such these interference terms will vanish upon averaging.
One particular type of interfering paths contributes to the total probability: these are the
loops formed by self-intersecting paths (see point O of Fig. A.1). Such loop can be traveled in
both directions (clockwise and counter-clockwise) by the electron wave function, defining two
coherent amplitudes A1 and A2. These two waves interfere, which enhances the probability to
find the electron at point O:

PO = |A1 + A2|2 = |A1|2 + |A2|2 + 2 Re{A1A
∗
2} = 4|A1|2 (A.4)

3The phase difference can be written ∆ϕ =
1

~

∫ B

A

p · dl where p is the electron momentum.
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which is twice the value one would obtain by neglecting the interference terms.
Thus for every self-intersecting path followed by an electron the probability to find the latter in
B decreases because of quantum interferences. This translates into a reduction of the sample
conductivity.
One can now write the total conductivity as the sum of a classical term given by the Drude
formula (for which interferences are neglected) and a weak localization correction including
quantum interferences:

σ = σD + σWL (A.5)

The correction σWL < 0 can be calculated according to the sample dimensionality (see B.
Altshuler et al., 1985).

This effect is enhanced by disorder: by adding more impurities one increases the probability of
forming loops, further reducing the conductivity. By suppressing inelastic scattering processes
(e.g decrease the temperature) the dephasing length Lϕ is enhanced strongly, restoring phase
coherence over large lengthscales. Quantum interferences becomes increasingly important, up
to a point where all electrons are constrained to move within extremely short distances: they
become localized.

We now describe the process of strong localization, that is, we consider Lϕ > ξloc. We shall
see that many features of this Anderson localization can be studied by scaling arguments,
i.e. by considering the effects of scaling (increasing or decreasing the sample size) on certain
quantities such as the conductance. It turns out that the concept of scaling is indissociable
from the notion of fractals, which we briefly define now.

A.2 | Self-similarity and fractal dimension

Introduced by Benoit Mandelbrot the concept of fractal can be summarized as follows [Man-
delbrot, 1982]:

Definition A.2.1 (Fractal) A fractal is a rough or fragmented geometric shape that can be
split into parts, each of which is (at least approximately) a reduced-size copy of the whole.

Although this definition is not the only one adopted to describe fractals it conveys the general
concept and will be enough for the purpose of this discussion.

The Minkowski-Bouligand (or box-counting) dimension is one the many different (and not
necessarily equivalent) ways of defining the fractal dimension. It consists in approximating
a fractal set S by covering it with boxes of arbitrary size ε. For ε→ 0 the number of such
boxes needed to fully cover the set is related to the fractal dimension.

Definition A.2.2 (Box-counting dimension) Suppose that N(ε) is the number of boxes
of size ε required to cover the set. Then the box-counting dimension is defined as

D = lim
ε→0

logN(ε)

log
(
1/ε
) (A.6)

Therefore for a given ε
N(ε) ∝ ε−D (A.7)

which states the usual fact that the measure (area, volume ...) of an object in dimension D
is multiplied by nD when its size is multiplied by n. For instance when the lateral size l of a
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square is doubled, the resulting augmented square has an area 22 = 4 times larger. The same
treatment for a cube in 3D would result in a 23 = 8 times larger volume.

For usual (non-fractal) objects the fractal dimension D is equal to the euclidian dimension
d the object lives in. For fractal objects however the fractal dimension can be larger than
the object topological dimension and smaller than the dimension of the euclidian space that
contains it, as we shall see through a simple example.

Fig. A.2. An example of self-similar geometric shape. Six first iterations of the Sierpiński
triangle. To obtain iteration n + 1 we take three copies of iteration n and scale them by
ε = 1/2.

One example of fractal: the Sierpiński triangle By construction doubling the object
lateral size creates three copies of itself, therefore the Sierpiński triangle has a fractal dimension

D =
log(3)

log(2)
≈ 1.585 which is larger than its topological dimension (= 1 which can be

demonstrated) but still smaller than the dimension of a plane d = 2. The fractal is then
not a line and neither a surface, but rather somewhere in between with a non-integer fractal
dimension.4

The construction of an object by self-similarity is at the heart of the scaling theories often
used in physics. We will describe later how such a process allows to define the dimensionless
conductance of a disordered sample.

Multifractality In some complex systems different regions of an object have different fractal
properties. Therefore the system must be described by locally defined fractal dimensions.
These so-called multi-fractal phenomena are ubiquitous in physics and chemistry [Stanley et al.,
1988]. One well known example of this is the theory of percolation (at a critical concentration
pc a cluster with multifractal features forms over the whole sample).

Short scale fractals In many physical situations the system that we are willing to describe
is not fractal at all length scales, but rather up to some length ζ (called the correlation length).
It presents self-similarity only for lengths shorter than ζ:

• at scales L > ζ the system looks uniform

• at scales L < ζ the system looks fractal

4Fun note: the Sierpiński triangle has the property of having an infinite perimeter and a strictly zero area
for an infinite iteration order.
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A.3 | Anderson Localization

We have seen that quantum interferences of waves induced by disorder modify the transport
properties of a metal. While the phase coherence of wavepackets is altered by the presence of
impurities, it must be noted that wavefunctions are still extended in the whole sample.
Anderson [P. W. Anderson, 1958a] showed that this is not anymore true when disorder is strong.
In this limit the envelop of an electronic wave function centered in r0 decays exponentially as

|Ψ(r)|2 ∝ 1

ξdloc

exp
(
−|r− r0|/ξloc

)
(A.8)

where the localization length ξloc is the typical size of the wavepacket, as shown in Fig. A.3
and d is the dimension.

Electrons are localized in space, and the ground state of the system is a collection of such
localized states with exponentially small overlap. Coherent tunneling of electrons between two
localized sites must occur between levels of same energy, but the latter are far apart in space
and tunneling is ineffective: the system becomes an insulator.
The important consequences of strong localization on electronic transport will be discussed
now.

Fig. A.3. Typical wavefunction for a localized state with localization length ξloc. The envelop
follows Eq. (A.8).

It should be noted that, while we are here mostly interested in the Anderson localization
of electrons in metals, such localization effect is in fact a property of waves in a broader
sense, and therefore applies to different areas of physics. Indeed strong localization has been
experimentally demonstrated using classical waves (such as light or sound).5

A.3.1 Mobility edge

Mott argued that a critical energy scale Ec called the mobility edge separates in energy
extended and localized states [S. N. Mott, 1978; N. Mott, 1987].

Fig. A.4 shows the density of state as a function of energy. States with EF > Ec are extended
and conduction is metallic, while for E < Ec states are localized and conductivity tends to
zero with temperature.
The figure also shows a schematic representation of electronic wavefunctions just above and
below the mobility edge. For E > Ec electronic wavefunctions form a linear combination of
plane waves which spatial extent goes over the whole sample size, albeit strong fluctuations of

5See [Lagendijk et al., 2009] for a review.
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the wave envelop amplitude. Eigenstates just below Ec are separated spatially, each of which
has a typical size ξloc and vanishingly small overlap. The sample is then an insulator.

Fig. A.4. Mobility edge. Left: When Fermi energy EF lies above the mobility edge
Ec conduction is metallic. When E < Ec states become localized (shaded area). Right:
Suggested form of the wavefunction envelops just above (top) and below (bottom) the
mobility edge. In the metallic state wavefunctions are extended, while in the localized state
wavefunctions have negligible overlap in space.

A.3.2 Dimensionless conductance

One of the main consequences of the localization of waves is the prediction that intensive
quantities (such as the conductivity or the diffusion constant) might acquire a dependence
with system size L close to the mobility edge.

Edwards et al., 1972 demonstrated that the relevant quantity for this matter is a dimensionless
conductance defined as

g(L) =
~
e2
G(L) (A.9)

where g depends explicitely on L and G(L) is the sample conductance.

One can define the classical dimensionless conductance gD for an Ohmic conductor of linear
size L by writing Ohm’s law:

gD(L) =
~
e2
σDL

d−2 (A.10)

We will see that, when localization becomes relevant, the scaling of dimensionless conductance
g(L) with sample size L might strongly deviate from the Ohmic (classical) conductance gD

which scales linearly with L.

Interpretation of g(L) and Thouless criterion Starting from Ohm’s law mentioned above
and using Einstein’s relation σ = e2νD where ν is the density of states per unit volume one
can rewrite the dimensionless conductance as a ratio of energies

g(L) =
(
νLd

) ~D
L2

=
ET
δ

(A.11)
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where ET = ~D/L2 is the Thouless energy and δ = 1/νLd is the mean level spacing between
energy levels.

The Thouless energy is related to a time scale for diffusion (Thouless time) τL = L2/D. On
the other hand since δ is the smallest energy scale of the system it must be related to the
longest time scale, called the Heisenberg time τH = ~/δ. One can then see the dimensionless
conductance g(L) as the ratio of these two characteristic times:

g(L) =
τH
τL

(A.12)

The Thouless time is the time it takes for a conducting electron to travel across the entirety of
the sample (with a diffusive motion induced by disorder). The Heisenberg time is the longest
time that an electron wavepacket can propagate inside a sample of size L without visiting
the same region twice (i.e after the time τH the electron has explored the whole volume Ld).
Depending on the relative values of τH and τL conduction at the scale L might change.

When disorder is small the electron motion is only weakly impeded by scattering on impurities
and the Thouless time is rather short, at least much shorter than the time it takes to explore
the whole sample. Therefore one has g > 1 (and g � 1 in the case of almost clean conductor).
When the Thouless time exceeds the Heisenberg time however, a wavepacket is unable to
travel from one end of the sample to the other and is localized inside the sample. Therefore
g < 1 corresponds to the localized state.
This simple qualitative argument suggests that the transition between extended and localized
states occurs for [D. J. Thouless, 1977]

g ∼ 1 (A.13)

One can estimate the dimensionless conductance at the scale of the mean free path. Indeed at
L ∼ le we expect scattering (and therefore interference) effects to be unimportant, meaning
that classical models for transport should hold. Using the classical dimensionless conductance

of Eq. (A.10) in three dimension (d = 3) one gets g(le) ≈
2

3
(kF le)

2. The critical point is

such that gc ∼ 1 and therefore one obtains the Ioffe-Regel criterion for localization:

kF le ∼ 1 (A.14)

Another important interpretation of the meaning of the dimensionless conductance g(L) was
given by [D. Thouless, 1974], setting the foundations for the celebrated scaling theory of
localization which will be discussed further below. Thouless considered the changes experienced
by a sample when its size is increased, starting from a sample of size Ld in d dimension and
making a larger one of size (2L)d, as pictured in Fig. A.5.
The sample of size Ld has eigenstates with a typical spacing between energy levels δ ∼ (νLd)−1.

When increasing the sample size one must consider overlaps between the subsystems of size
Ld, overlaps which can be estimated by the variation of energy ∆E generated by a change in
the sample boundary conditions.6

Consider now a localized wavefunction in the sample of size Ld. Its spatial extent decays
exponentially, so that its mean value is negligibly small at the boundary. Therefore a change in
the boundary conditions will leave the eigenstate mostly unaffected, and ∆E/δ is exponentially
small. On the contrary an extended state will largely overlap over all the subsystems, up to

6As an example, one could consider the periodic conditions Ψ(x+ L, y, z) = eiηΨ(x, y, z).
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Fig. A.5. Constructing large systems by self-similarity. Red halo represents a state
localized in the volume Ld, while blue color stands for an extended state over the whole volume
(2L)d. The localized state remains unaffected by scaling up.

the boundaries of the largest sample, and is strongly affected by a change in the boundary
conditions: ∆E/δ is large. Thouless argued that the conductance is in fact related to this
ratio, as g(L) ∝ ∆E/δ [P. A. Lee et al., 1985].

From the previous argument it becomes clear that the system size plays a crucial role in the
transport properties, and must be compared to some characteristic length scales. Fig. A.6
displays three lengths relevant for quantum transport in disordered media.
By comparing these lengths to the system size L different regimes can be defined, such as
the ballistic transport for L < le, diffusive transport for le < L < ξloc (with weak-localization
corrections) and finally strong localization for samples with ξloc < L.

Fig. A.6. Characteristic lengths involved in electronic transport. Depending on the
system size L transport at T = 0 is either ballistic (L1), diffusive (L2) or absent due to
localization (L3).

A.3.3 Scaling theory

The scaling hypothesis is the assumption that the conductance g(2L) of the system of size 2L
can be computed using only the conductance of the system of size L > le, that is

g(2L) = f [g(L)] (A.15)

where f is some function.
This scaling process has a cutoff at short scales given by the mean free path. For instance
the dimensionless conductance g(le) defined at this length scale is a microscopic measure of
disorder: it is large for small disorders and small for large disorders.

If instead of doubling the system size one increases the length by the infinitesimal quantity dL,
one obtains
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β(g) =
L

g

dg

dL
=
d log(g)

d log(L)
(A.16)

where β is again an unknown function. Note the formal similarity with the definition of the
fractal dimension. We shall see later that this likeliness is not incidental and has important
consequences.

The β function (or scaling function) is a measure of the evolution of conductance with system
size. For instance, if β(g) = constant one has: g(L) ∝ Lβ(g). If β(g) varies with g, or changes
sign, then the dependence of conductivity with size might become non-trivial.

We can infer asymptotic expressions for the β function based on physical arguments:

• For large g � 1 the sample is a good conductor and therefore should obey Ohm’s
law G(L) = σDL

d−2 where σD is the Drude conductance. The electron wave function
is extended and is almost plane-wave like. This leads to the value of β for g → ∞:
β = d− 2. Note that in two dimensions (d = 2) β → 0 and therefore conductance does
not depend on the system size.

• When g is small, we have a poor conductor (a highly disordered sample). Therefore
the system is most likely in the localized regime described above in which all states
decay exponentially when the size is larger than the localization length (L > ξloc). Thus
g ∼ g0 exp

(
−L/ξloc

)
, leading to β(g) ∼ −L/ξloc = log

(
g/g0

)
as g → 0. Note that

β(g) is negative, meaning that the conductance g decreases when L increases.

Fig. A.7. Scaling theory of localization. Evolution of the scaling function β(g) with
conductance g for different dimensions. β(g) describes with what exponent the conductance
g(L) grows with the system size. For extended states, this scaling is linear with L: g(L) ∝
Lβ(g) = Ld−2 which is nothing but Ohm’s law. When localization kicks in the scaling function
becomes negative. As a result conductivity decreases with system size in the localized region.
In 3D a transition between extended and localized states occurs for a critical conductance gc.
Adapted from [Abrahams et al., 1979].

Starting from the limits detailed above and writing asymptotic expansions for large and small
g then interpolating, [Abrahams et al., 1979] obtained an estimation of the value of β(g) for
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any g in different dimensions as displayed in Fig. A.7. It appears that the results of this scal-
ing procedure are qualitatively different depending on the sample dimension, as we shall see now.

• d = 1. In one dimension β(g) is always negative. Therefore if we enlarge the system
the conductance will decrease, irrespective of the level of disorder. For sufficiently large
systems all states will be localized.

• d = 2. Abrahams et al., 1979 showed that β(g) is also always negative, even at its limit
g → ∞ for which β(g) = 0−. As a result states are localized for large L, and in the
limit of infinite length a true 2D conductor cannot exist.

• d = 3. The case of three dimensional systems is more complex. Indeed β(g) changes
sign at some conductance gc, for which β(gc) = 0. Therefore if g > gc conductivity
increases with L and converges to the value given by Ohm’s laws for sufficiently large g.
In contrast if g < gc conductivity decreases when L increases and eventually vanishes
when electronic states are exponentially localized and do not overlap.

As a result a transition from a metallic to an insulating phase should occur at the critical
conductance gc (which, as predicted by the Thouless criterion should be gc ∼ 1).

Consequences on the localization length In the case of electronic transport in 3D one
can use the scaling theory of localization described previously to study the scaling of the
localization length with disorder. Assuming that disorder can be described by a parameter W ,
Abrahams et al., 1979 used the properties of the β-function near the critical point to show
that the localization length diverges upon approching criticality for W > Wc as

ξloc ∼ |W −Wc|−ν (A.17)

where ν ≈ 1.6. Thus the localization length diverges at the mobility edge (from the insulating
side).

Consequences on the correlation length and diffusion constant On the metallic side
of the transition (i.e β > 0 and W < Wc) one has the scaling of the diffusion constant with
disorder as

D ∝ |Wc −W |ν (A.18)

Eq. (A.18) shows that within the scaling theory of localization, diffusion constant (and
conductivity σ ∝ D) decrease continuously to zero, vanishing at W = Wc similarly to a
second-order transition.
A length scale naturally emerges from the scaling theory, the correlation length ζ which diverges
at the mobility edge (from the metallic side):

ζ ∝ |Wc −W |−ν (A.19)

For lengths larger than ζ the system looks uniform and the conduction is Ohmic while for
L < ζ conduction is non-Ohmic.
Therefore correlation length (on the metallic side) and localization length (on the insulating
side) diverge at the transition with the same exponent ν as displayed in Fig. A.8.
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Fig. A.8. Divergence of the localization and correlation lengths as ξ (or ζ) ∼ |E − Ec|−ν
where Ec is the mobility edge.

A.3.4 Eigenfunction fractality: a hand-waving approach

While the scaling theory is extremely fruitful to describe localization, the existence of a short
scale cutoff (of the order of the mean free path) implies that scaling theory ignores the structure
of wavefunctions inside the localization volume. It turns out that wavefunctions have a very
interesting fractal structure near the mobility edge.

Let us first remark that, at L� ζ one expects electronic states to be uniform (insensitive to
disorder and thus extended). Hence the β-function should be close to unity in three dimensions
(this is again Ohm’s law). At L� ζ on the contrary all states are localized and the β-function
vanishes to 0.
One may note that the first case (β(g) = 1) corresponds to a uniform state in 3D, while in
the second case β(gc) = 0 is close to the expected value for a uniform state in 2D. Based on
this observation [Cohen et al., 1983] defined an effective dimension D as

D = β(g) + 2 (A.20)

Starting from a large length L > ζ and decreasing it, eventually passing below ζ then
corresponds to a continuous variation of the dimension D from 3 to 2. This is equivalent to
passing from extended to localized states.
Noting N(ε) the number of boxes of size ε needed to cover the space occupied by a wavefunction
within the system of size L, one sees that N(ε) scales as N(ε) ∝ εD, which is a definition of
the fractal dimension D.
In the extended case D = 3 and the wavefunction occupies all available space. Multiplying L
by two leads to 2D = 8 boxes of size L fully occupied by the wavefunction. In the strongly
localized case D = 2 and the wavefunctions occupy a much smaller volume, around their
localization centers. Increasing the system size does not significantly affect the space occupied
by a wavefunction. For any intermediate state 2 ≤ D ≤ 3 the wavefunctions are non-uniform
and have a strongly inhomogeneous spatial distribution. They occupy a small fraction ∼ LD

of the available volume L3

A.3.5 Multifractality and Anderson localization

Further study of the wavefunction distribution at the mobility edge revealed a multifractal
behavior [Castellani et al., 1986], defined by the existence of an infinite set of critical exponents
describing the scaling of the Inverse Participation Ratio (IPR) of the eigenfunctions intensities
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|Ψ2(r)|. The IPR is defined as 7

Pq =

∫
|Ψ2q(r)|ddr (A.21)

where q is the order of the moment considered. Multifractality is then evidenced by the scaling
of Pq with system size L:

Pq ∝ L−Dq(q−1) (A.22)

which states that, not only Pq has a fractal structure for a given q with fractal dimension
Dq < d, but also the critical exponent varies with q (and therefore is multifractal) [A. Mirlin,
2000].

Note that for an extended state the eigenfunction distribution is uniform |Ψ2(r)| = 1/Ld in
d dimension, which leads P2 = L−d. Therefore all available states participate equally, and
extended states provide the lowest value of the IPR. In the opposite limit of exponentially
localized states with negligible overlaps P2 ∼ ξ−dloc . This suggests an interpretation of the
participation ratio: P−1 is a measure of the volume in space occupied by a wavefunction Ψ.
An illustration of the wavefunction intensities in an Anderson insulator is shown in Fig. A.9.
For the Anderson problem in 3D the fractal dimension at criticality can be estimated by
D2 ≈ 1.3 [Mildenberger et al., 2002]. Therefore at the mobility edge localized states occupy a
volume LD2 much smaller than the available volume L3.

An important result of [Cuevas et al., 2007] is the fact that multifractality appears at some
distance from the mobility edge: setting L0 the microscopic short-scale cutoff for fractal behav-
iors (the size of smallest fractal structure) and the related upper energy scale E0 = (ν0L

3
0)−1,

it is observed that the localization length ξloc and correlation length ζ are much larger than L0.
As a result in the insulating state (and for EF − Ec ≤ 0 not too large) multifractal behav-
ior is still present, forming a multifractal insulator. This is also true in the metallic state
(EF − Ec ≥ 0 not too large) which is a multifractal metal in which extended states can be
seen as a collection of fractal structures within ”shells” of size ζ (the correlation length) paving
the available space. Upon approaching the mobility edge ζ diverges until covering the whole
space at Ec: critical wavefunctions become pure fractals. A schematic representation of this is
shown in Fig. A.10.
Then the multifractal metal survives upon decrease of disorder (with decreasing ζ) as long as
ζ > L0

8 .

The minimal disorder for which fractality is still present can be quite far from the mobility
edge, which will become essential for understanding the emergent superconductivity in strongly
disordered materials, the subject of next chapter.

A.4 | Thermally activated transport

So far localization was considered in a sample at T = 0 for which quantum interferences
were not smeared out by temperature. Obviously real experiments are carried out at finite

7We implicitely consider normalized eigenfunctions here. The IPR is in fact defined in the most
general case (for q = 2) as a ratio of moments of order 2 to the square of moments of order 1:

P =

∫
|Ψ(r)|4dr/

[∫
|Ψ(r)|2dr

]2

(see D. Thouless, 1974 page 118).

8The multifractal insulator survives symmetrically when going deeper in the insulator, with fractal shells of
decreasing size ξloc.
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Fig. A.9. Fractal wavefunctions across the metal-insulator transition. The wavefunc-
tion intensity |Ψ(r)|2 is shown in 3D space (top) and along a horizontal cut (bottom). Darker
blue corresponds to larger intensity. Left: At low disorder wavefunctions are extended and their
intensity is uniform (they occupy all available space). Center: At critical disorder EF = Ec
wavefunctions present a multifractal structure (one sees the self-similarity, with several distinct
self-similar structures signaling multifractality). They occupy a small volume LD2 . Right:
For localized states (EF � Ec) wavefunctions are exponentially suppressed far from the
localization center r0 and occupy the small volume ξdloc. Adapted from [Cuevas et al., 2007].

Fig. A.10. Multifractal insulator and metal close to the mobility edge. Not far from
the metal-insulator transition both extended and localized states present a local multifractal
behavior at the scale of the correlation (or localization) length. These fractal puddles merge
at the mobility edge. Adapted from [Cuevas et al., 2007].

temperatures (and finite sample lengths) and one should expect that these conditions modify
the results of the theory of localization.

Scaling at finite temperatures

Thouless [D. J. Thouless, 1977] suggested that inelastic scattering of electrons would destroy
phase coherence and therefore reduce the probablity of quantum interferences leading to
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Anderson localization. This argument sets a cutoff lengthscale for quantum interferences
defined as

Lϕ(T ) =
√
Dτϕ (A.23)

where D is the diffusion constant for elastic scattering and τϕ is the inelastic scattering time,
or dephasing time (the average time between two inelastic collisions). Quantum interferences
and the related localization effects are cut off for characteristic lengths larger than Lϕ.9 This
mechanism was already introduced in relation to weak-localization.

Lϕ(T ) explicitely depends on temperature since inelastic processes are temperature-dependent.
The estimation Lϕ = aT−p/2 (where p is an integer depending on the considered inelastic
process) is often used to describe the temperature dependence of this length scale [P. A. Lee
et al., 1985]. Lϕ(T ) diverges as T tends to zero, and one retrieves the usual model of strong
localization discussed above. For finite temperature however Lϕ(T ) defines the largest length
for which localization is effective.
A direct consequence is the fact that decreasing the sample temperature increases the length
scale Lϕ over which quantum interferences are effective, leading to an increasingly measurable
effect of localization. The increase of resistance upon decrease of temperature is a
demonstration of localization effects.10

Dimension crossover One finds that the temperature-dependence of conductivity varies
strongly with the sample dimension.
More precisely one must define the dimensions as effective dimensions with respect to inelastic
processes: a film of thickness d is three-dimensional if Lϕ < d, and two-dimensional otherwise.
Therefore upon cooling down this effective dimension might cross over from 3D to 2D as Lϕ
diverges.
Additional factors such as interactions between electrons may have a different effective dimen-
sion: for instance a sample is three-dimensional with respect to Coulomb interactions if the
thermal length is smaller than the film thickness: LT =

√
~D/kBT ≤ d [P. A. Lee et al., 1985].

Activated hopping between localized states We now turn to transport at small (but
finite) temperatures T > 0 in the localized phase (EF < Ec). There Lϕ is arbitrarily large
and strong localization effects are very much present.
[Miller et al., 1960] demonstrated that the probability for a localized electron to hop to a near
neighbour is non-zero for electrons with energy ∼ kBT below the Fermi level, which translates
into the formula

σ ∝ exp

(
−T0

T

)
(A.24)

9Thouless derived Eq. A.23 by considering the effects of a change in boundary conditions ∆E ∼ ETh

(as in section A.3.2) and comparing it to the uncertainty in the energy level spacing in a block of size Ld

induced by inelastic processes ∆Ein ∼ ~/τϕ. If the incertainty ∆Ein is larger than the change due to boundary
conditions ∆E a localized electronic wavefunction becomes sensitive to boundary condition changes, which
corresponds to an extended state. Using ETh ∼ ~D/L2 immediately leads that a sample of size L > Lϕ has
only extended states. The electron is then localized only if L < Lϕ (which usually corresponds to τϕ � 1,
that is inelastic scattering is weak).

10In the regime of weak-localization the size-dependence σ(L) of the conductivity is known. Since Lϕ
defines the upper cutoff for localization effects, the temperature-dependence of a disordered sample can be
obtained by σ(T ) = σ(Lϕ(T )).
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where T0 is an activation energy.
T0 can be be estimated as the average level spacing between localized states T0 ∼ δloc, i.e.
for conduction to occur thermal energy must overcome the typical energy separation between
localized electrons.

Mott variable range hopping Based on this model [N. F. Mott, 1969] made the observation
that the hopping probability should depend on the distance between localized sites, and on
their energy difference.11 The resulting conductance becomes:

σ ∝ exp

−(TMott

T

) 1
d+1

 (A.25)

this equation describes the Mott variable range hopping which is expected to be the dominant
mechanism for conduction in an Anderson insulator without interactions.

Coulomb gap and Efros-Shklovskii law The derivation of Mott’s law implicitely assumed
that the density of states ν0 is a constant close to EF , and neglected interactions between
localized electrons.
Shortly later [Pollak, 1970] and [Efros et al., 1975] demonstrated that the density of states
near the Fermi level was suppressed by long-range Coulomb interactions, forming a Coulomb
gap that shapes the DoS as ν(E) ∝ |E − EF |d−1 in d dimensions.

The argument for the existence of a gap is as follows: considering the hopping of a localized
electron from site i (with energy Ei < EF ) to an unoccupied site j (energy Ej > EF ) implies
the creation of an electron-hole pair, with (attractive) Coulomb interaction −e2/(κrij) where
κ is the dielectric constant (in units of 4πε0) and rij the distance in space between them.
Thus the hopping from i to j has the energy cost

∆E = Ei − Ej −
e2

κrij
> 0 (A.26)

This energy cost is always positive, since it corresponds to a perturbation of the ground state.
In order to prove that the density of states is suppressed near the Fermi level, we assume that

11For two localized electrons separated by the distance R the overlap of their wavefunctions is
∝ exp

(
−2R/ξloc

)
. The available states the electron can jump to in the energy range dE and at dis-

tance R is
4

3
πR3ν0dE = W−1dE in 3D. Therefore the typical energy spacing between these states is W : this

is the energy barrier that must be overcome by thermal excitations for conduction to happen.
Mott then used the previous activated hopping argument, but now taking into account the overlaps between
wavefunctions, leading to the probability for hopping of the form

P ∼ exp

[
−2

R

ξloc
− W

kBT

]
The important step of his reasoning is the observation that an optimal value of R describes the most

probable hopping. Indeed for a large distance R between sites the cost in energy ∝ R−3 is small, but the
overlap between these states is exponentially small and therefore hopping is less probable. On the contrary if
R is small the overlap will be large but the energy cost is also large. Therefore an optimal distance R0 gives
the largest hopping probability and can be obtained by looking for the minimum of the term in brackets in last
equation.

This leads to R0 =
(
C/T

)1/4
. Injecting into the activation formula (and generalizing the argument to

dimension d) leads to Eq. (A.25).
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it is not the case, with a constant DoS ν0 = ν(EF ) and look for a contradiction.

Let us consider an electron-hole pair close to the Fermi level with energy ∈ [EF − ε, EF + ε]

and satisfying the inequality ε < ∆C = e3ν
1/2
0 /κ3/2.

The typical distance R between two such states is given by (4/3)πR3ν0ε ≈ 1 that is R ∼
(ν0ε)

−1/3 (we drop here constants ∼ 1).
The Coulomb interaction between these states is obtained by replacing rij by R in Eq. (A.26),
which leads to the inequality

∆E = Ei − Ej −
e2

κ
(ν0ε)

1/3 > 0 (A.27)

Noting that both states are within a distance in energy ε from the Fermi level, |Ej −Ei| ≤ 2ε,
and inequality (A.27) is not fulfilled for ε < ∆C , which contradicts the hypothesis. Therefore
the DoS has a gap near EF induced by Coulomb interactions, with a typical size ∆C .

By taking into account this gap and using an analogy with Mott’s derivation [Efros et al.,
1975] were able to show that conductivity at low enough temperature should have the form:

σ ∝ exp

[
−
(
TES

T

)1/2
]

(A.28)

which is independent of the dimension d.
This mechanism leads to a much larger resistance than the one predicted by Mott.

Coulomb interactions are indeed of great importance in Anderson localized insulators, for which
interactions are very poorly screened by localized electrons. At low temperatures this leads to
an electron glass (or Coulomb glass), a highly correlated state of matter which presents glassy
features such as aging, ultra-slow relaxation and memory effects, as evidenced by a large body
of experimental works.

Note that the derivation of the Coulomb gap above can also be carried out for electron pairs,
in an exactly similar fashion (one simply has to make the substitution e→ 2e). This allows to
define a Coulomb gap for pairs of electrons.
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APPENDIXB
Fabrication

Fig. B.1. Illustration of a typical sample. Yellow metal is gold (with a thin Titanium
layer underneath for adherence). In most cases gold features are buried into the substrate and
filled to the same thickness to provide a perfectly flat device. Light blue represents amorphous
indium oxide deposited as a second step. Sample backside is also coated with a thicker gold
layer.

Preparation of the chips The sample preparation starts by patterning alignment marks, DC
pads and the center microwave feedline on a 2 inch silicon wafer (resistivity ρ > 10 kΩ · cm).
One wafer allows for the preparation of 16 8.1 mm by 8.1 mm chips.
After resist deposition (PMMA 3% for 30 seconds at rotation speed 4000 rpm) the lines are
patterned by e-beam lithography and the exposed part is cleaned of its resist by a standard
MIBK:IPA developer for 60s, then 30s in IPA.

To facilitate the DC contact between metallic pads and the deposited indium oxide (further
step) and not form a step we decided to bury the DC pads by etching the silicon substrate
through the PMMA mask. In order to reduce the fabrication steps all other gold features
(alignment marks and MW feedline) are processed in the same step and are therefore also
etched.
We used a SF6 plasma to dig a 100 nm-deep trench in the substrate at the position of the
ebeam-patterned lines.

The wafer is then loaded into a Plassys evaporator where 5 nm of Ti and 95 nm of gold
are deposited on the patterned side (forming the MW feedline, the DC pads and alignment
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marks at once). The etched trenched are completely filled with gold, allowing a perfectly flat
substrate surface, ready for next step. The wafer is then flipped upside down, and 10nm of Ti
+ 200 nm of gold is deposited on the whole wafer backside.
After lift off of gold and cleaning, the wafer is diced into 8.1 mm by 8.1 mm chips.

Making a resonator sample A properly cleaned sample is coated in resist (PMMA 3%
for 30 seconds at 4000 rpm) and the resonator line as well as the DC four-probe Hall bar is
patterned by ebeam lithography. Alignment is made by locating the previously deposited gold
markers at the four corners of the chip.
We then proceed to development of the resist: exposed regions are intended to be filled with
indium oxide in next step.
Here are a few comments on resist removal for sensitive and small structures.

Cold development technique During my PhD we developed a slight improvement to the
standard removal of resist in ebeam-exposed regions. While the latter is done in a mix of MIBK
solvant and IPA at room temperature after an exposure at relatively low electron density, it
was suggested in the literature that an alternative, called cold development, could improve
pattern quality, allow sub-10 nm resolution and remove efficiently PMMA residues [Hu et al.,
2004; Ocola et al., 2006; Cord et al., 2007].

By decreasing the temperature of the development bath, partially exposed polymer chains lying
at the edges of the pattern (that should not be removed in an ideal case) get ’frozen out’, and
become less sensitive to the developer. As a result structures processed at cold temperatures
are sharper than the ones obtained with the usual room-temperature method.
[Cord et al., 2007] studied the effect of development temperature and exposure dose on
lithographic resolution. They found that, by lowering the temperature, exposure doses had to
be increased as well to compensate the reduced PMMA sensitivity. They showed that there
exists a sweet spot at T=-15°C where exposure dose remains low enough to avoid cross-linking
and at which e-beam resolution is maximum, allowing the patterning of sub-10 nm structures.
In any case development in a bath kept at temperatures between -20°C and 5°C always show
better results than the standard recipe.

For the fabrication of sensitive structures (such as the 100 nm-wide resonators) we used higher
doses than usual (approximately twice the standard recipe) and a (3:1) IPA/DI water mix as
a developer kept cold at 3°C in a chiller bath for 90s. The chemical reaction is stopped by
immersion in a DI water beaker kept at the same cold temperature 3°C.
After working on this process I passed on the recipe to some of my collegues who now use it
routinely. Cold development already helped increasing the quality of small Josephson junctions
used in our group, see [Milchakov, 2022] for an example.

B.1 | Indium oxide deposition and characterization

After patterning, samples are cleaned by a O2 plasma for a few seconds to further remove re-
sist residues lying at the bottom of the trench. They are now ready for indium oxide evaporation.

Indium oxide deposition is made in a dedicated egun evaporator. The sample is fixed upside
down above an InOx target (a 99.999% purity In2O3 pellet from Neyco, shown in inset of
Fig. B.2), protected by a mobile screen. The evaporation chamber pressure is reduced by a
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turbo pump for an entire night. Then cold water circulation around the chamber is turned on
for about an hour. A tank placed alongside the chamber is filled with liquid nitrogen, further
reducing the pressure down to ∼ 6 10−7 mbar, and cooling down the sample substrate (sample
temperature cannot be measured however).

Once the pressure is low and stable, an oxygen bottle connected to the evaporator is open.
The oxygen partial pressure is controlled via a valve, leaking a low pressure of 1 − 6 10−5

mbar into the chamber. Fig. B.2 shows the effect of oxygen pressure on the measured InOx
resistance at 4K, and on the RRR, defined as the ratio between resistance at 300 K and at 4K.
Once the pressure stabilized egun power is turned on and an evaporation rate of 2 Angström
per second is reached. Note that the transition takes place between a solid InOx target and its
vapor phase, making it a sublimation rather than an evaporation.
We aim at a thickness of 47 nm to obtain a 40 nm-thick film, as measured by AFM (see
Fig. B.3).
Lift off is made in acetone. It is important to stress that indium oxide is very sensitive to
annealing: indium oxide deposition must always be the last fabrication step of our process.

From a disordered sample it is possible to decrease the resistance by annealing. We do it
in a lamp oven kept under vaccum to have a better control on the chemical composition.
Anneling temperature must always be lower than 60°C to avoid crystallization, and the higher
the temperature the higher the resistance reduction. After several annealing cycles resistance
is less and less affected by aging and temperature.

Fig. B.2. Indium oxide resistance at 4K and RRR versus partial oxygen pressure
during evaporation. Resistances are obtained by four-probe measurements in different
settings. Some of the samples were measured along with microwave resonators (pentagons),
the others are measured from a Hall bar in a helium dipstick on silicon substrates (circles) and
silicon with silicon oxide (triangles). The filled blue region shows where the samples measured
at lower temperatures become insulating (the horizontal line therefore shows the SIT). Inset
picture shows a typical amorphous indium oxide target used in this work.
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Fig. B.3. AFM image of an indium oxide resonator. The thickness obtained from AFM
spectroscopy is ∼ 40 nm.
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APPENDIXC
Experimental Setup

In this thesis we used mainly two cryostats (called A and B here), each in several different
configurations. Sample A allows for the microwave measurement in the usual frequency range
used in cQED (2-12 GHz) and was previously used for the measurement of qubits and quantum
limited parametric amplifiers and devices. Cryostat B on the contrary is brand new and we
performed the first measurements in this fridge that includes a powerful 13 Tesla magnet. In
cryostat B two different setups are installed: the first one operates in the usual 4-8 GHz range
and without applied field, while the second is low frequency (f < 4 GHz) and can be immersed
in perpendicular magnetic fields up to 13 T.

C.1 | A few general concepts

C.1.1 Thermalization of microwave radiation and noise mitigation

In most of this work we focused on properties of indium oxide resonators in their ground state.
To achieve such a demanding condition we need to combine very low sample temperatures,
small excitation signals, and proper isolation from envionmental noise.

To enter the quantum regime, where quantum fluctuations are predominent over thermal
(classical) fluctuations one must have ~ω � kBT , where ω/(2π) is the microwave excitation
frequency. In turns out that this condition is met when the average number of microwave
photons injected into the sample is close to unity.
Therefore a proper experimental setup must provide a strongly reduced input signal (number
of photons ∼ 1, achieved by strongly attenuating the signal) and extremely low temperatures
(provided by a dilution cryostat). For a measurement bandwidth in the range 0.5− 20 GHz
the condition ~ω > kBT is met for a maximum temperature of T = 20 mK, which is the
typical base temperature of a dilution fridge.
Additionaly the measurement apparatus, at room temperature, radiates Johnson-Nyquist noise
which must be filtered out. Finally environmental excitations such as ambient electromagnetic
fields, radioactivity and mechanical vibrations must be mitigated as they might perturb the
device from its ground state.

Attenuators

An attenuator is a dissipative, two-port component (usually matched to 50 Ω) that can be
used for attenuating an incoming signal, but also thermalize it.
Following [Planat, 2020; Leger, 2021] an attenuator can be modelled by a ’mirror’ with power
transparency |t| ≤ 1, coupled to a phonon bath thermalized at the temperature Tatt (which is
typically the temperature of the cryostat stage to which the attenuator is solidly attached).
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Now, an input signal Ain at temperature Tin entering the attenuator will be partly transmitted
and partly mixed with the noise generated by the attenuator Batt at temperature Tatt as [Leger,
2021]

Aout(ω, Tin, Tatt) = |t|2Ain(ω, Tin) +
(
1− |t|2

)
Batt(ω, Tatt) (C.1)

Eq. (C.1) not only states that the amplitude of the signal exiting the attenuator is reduced,
but also that its average temperature is a mix of the input temperature Tin and the phonon
bath temperature Tatt. Therefore to properly thermalize a microwave signal generated by
a source at room temperature, it is mandatory to attenuate it at different stages of the
cryostat, at increasingly low phonon temperatures, and with sufficiently low transparency (large
attenuation) to couple strongly to the cryogenic environment.

Attenuators can be discrete (based on lumped element resistors) or distributed, for which
the resistance of a coaxial cable provides the needed attenuation. We use both types of
attenuators.

C.1.2 Measuring resistances at very low bias

DC measurements are made at very low frequencies (f ∼ 13 Hz) using a standard lock-in
technique. A typical four-probe setup is shown in Fig. C.1.

Superconducting samples When measuring superconducting samples we use a current po-
larization, where the digital Lock-in amplifier (SR830 or SR810 by Stanford Research Systems)
generates a voltage (typically 0.1 V) through a polarization resistor, typically 100 MΩ for an
input current on sample I = 1 nA.

To check the reliability of measurements we collect the current exiting the sample, using a
homemade current/voltage converter (and amplifier with gain ∼ 108−109) to obtain a voltage
that can be measured by the lockin. We found that at room temperature only 80% or less
was going through the indium oxide wire. By cooling down the sample below 100 K 100% of
the input is retrieved at the output, allowing a reliable measurement of the wire resistance.
We suggest that this discrepancy could originate from leakage of the input current through
the substrate: for strongly disordered indium oxide the room temperature resistance is of the
order of 2− 3 kΩ/� which is comparable to the resistance to the substrate resistance (our
substrates do no have insulating oxide coating that would prevent this effect). At lower temper-
atures the high resistivity silicon substrate becomes more resititive that the indium oxide sample.

To measure the resistance a second lockin is used to collect the differential voltage from the
two voltage probes on sample. Before entering the lock-in the differential voltage is amplified
(gain 104 typically) using a Femto low-noise amplifier.

Measuring insulating samples Measuring samples with a tendency towards insulation can
be tricky. Upon divergence of the resistance happens a moment where the polarization resistor
becomes of the order of the sample’s resistance, causing the measured resistance to saturate.
To avoid this issue we voltage-polarize the sample by sending a small voltage excitation to
the sample (typically of the order of 100 µV) using a voltage divider and collect the output
current. The voltage bias can also be separately measured via a second lockin as a sanity
check.
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Such a method allows for the measurement of very large resistances, limited by the current-
voltage amplifier maximum gain (typically 1 GΩ).

C.2 | Cryostat A

Fig. C.1. Schematic of Setup A. SMB 100 A is a microwave source, and ZNB 20 is a
Vector Network Analyzer (VNA). LI stands for Lock-in amplifier. See main text for details of
the different microwave and DC components. Incoming microwave signal goes down the input
line where it is attenuated (blue), goes through the sample and goes back to the VNA after
proper amplification and filtering (red). Bottom picture shows the sample holder, composed of
a through MW transmission line on a PCB, and four DC pads connected to the four DC wires.

The first cryostat used in this thesis is a table-top, inverted dilution wet refrigerator called a
Sionludi. It is built at Néel institute by the cryogenics team (and initially designed by Eric
Eyraud and Wolfgang Wernsdorfer). A detailed presentation of this exact same cryostat can
be found in previous PhD thesis defended in the Quantum Coherence team [Puertas, 2018;
Planat, 2020; Leger, 2021].
The setup is almost identical to the one used in [Leger, 2021]. We added four DC lines from
room-temperature down to the sample holder at 20 mK, allowing DC measurements. We also
modified the typical microwave sample holder and added four connection pads to which the
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device’s DC structures could be bonded.

C.2.1 Input line

After being generated by the VNA, the incoming microwave signal is sent down the input line
(blue line on Fig. C.1), towards the device.
As mentioned previously the signal must be strongly attenuated to reach the low photon regime,
and thermalize properly the input signal. This is done by anchoring discrete attenuators to
several stages of the cryostat (at 4 K, 200 mK, 40 mK and 20 mK), with an additional
attenuation at room temperature X if necessary.

A home-made distributed attenuator is added at low temperature to act as a IR filter (see
Fig. C.1). Details on their fabrication and characteristics can be found in [Leger, 2021]. These
5 cm-long SC040/50-CN-CN coaxial cables from Coax Co. have a very soft attenuation of a
few dB at operating frequencies, but efficiently cut off infrared radiations.

For two-tones measurements an additional microwave source can be used at room temperature
to deliver a microwave tone that can be combined to the VNA signal, via a microwave combiner
(attenuation −6 dB).

C.2.2 Output line

The signal leaving the sample is very weak: it must be strongly amplified before reaching the
measurement apparatus. This is done by adding a cryogenic High Electron Mobility Transistor
(HEMT) amplifier (we use the LNF-LNC1-12A from Low Noise Factory, operating in the
2− 12-GHz range) at 4K, and a room-temperature amplifier.

To decouple the outgoing wave from the noise radiated by the components on the output line
(such as the HEMT, RT amplifier and VNA) we use non-reciprocal elements, called isolators,
which attenuate in the RT → sample direction only, and add IR filters.

C.2.3 Sample shielding

Necessary for the operation of the dilution fridge, polished aluminum shields are anchored at
each stage of the cryostat [Puertas, 2018]. This reduces strongly the infrared radiation coming
on the sample.

To further reduce the effect of external radiations potentially at the origin of the large non-
equilibrium quasiparticle distribution found experimentally, we shield the sample in a copper
cylinder surrounded by a high magnetic permeability metal (1.5 mm-thick CryoShield cylinder
from Magnetic Shield Ltd). The inside of the cylinder is coated with a mix of Stycast black
epoxy, silicon balls and carbon powder, aiming at absorbing IR radiations in the sample’s vicinity.

C.2.4 Cryogenic trick to measure resistances reliably up to 7 K

The R(T ) curves presented in this thesis are particularly smooth compared to what is usually
found by measuring the resistance when cooling down the cryostat from room temperature.
The reason is that we operated the cryostat in a special regime at which the temperature
could be controlled and stabilized above 1 Kelvin.
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In a typical dilution refrigerator the maximum temperature that can be achieved when the
helium mixture is condensed is of the order of 900 mK. Above this temperature pressures of
the circulating gas become too large and dilution fails to operate.
To be able to control the temperature above 1 K we collect a large part of the helium mixture in
the storage tank and induce the circulation of the remaining helium gas by turning on primary
pump and compressor. The helium gas forced through the loop experiences a Joule-Thomson
effect, which cools it down. By turning on a heater we can control the temperature and
make it stable. Gradually increasing the heater temperature allows for the slow and steady
measurement of R(T ) up to 7 K.

C.2.5 Setup for 3D waveguide measurements

For the measurements involving a 3D waveguide the sample holder is replaced by the 3D
aluminum cavity. The latter has only one port, used both for incoming and outgoing (reflected)
signals. To decouple these two excitations we use a circulator, a three-port component which
role is to allow the progagation of waves in a given order (say, clock-wise for instance) and
attenuate in the other directions. This allows to separate input and output signals and allow
the final measurement of the reflected signal as a transmission measurement.

Since the main goal of these waveguide measurements was to study dissipation, we also added
K&L low-pass filters before and after the sample.

C.3 | Cryostat B

Cryostat B is a brand new Bluefors dry dilution refrigerator equipped with a 13 Tesla magnet,
4 microwave lines and 24 heavily filtered DC lines. For the indium oxide measurements
discussed in this thesis we used two different setups in this cryostat. The first one is a standard
high-frequency setup without magnetic field, similar to usual cQED setups, and the second
one is a low frequency setup f < 4 GHz compatible with the application of a perpendicular
magnetic field up to 13 T.
Most of the operation, as well as wiring work and instrument maintenance was made by
Frédéric Gay and Florent Blondelle from the Automatisation et Caractérisation team at Néel
Institute.

C.3.1 High-frequency, no magnetic field

The first, high frequency setup in Cryostat B is very similar to Cryostat A. The sample holder
is solidly anchored to the coldest plate of the fridge, and the cryostat is closed and cooled
down without magnet.
The HEMT amplifier is a 4-8 GHz cryogenic amplifier from Low Noise Factory (LNF-LNC4 8C).
The sample is decoupled from the HEMT noise by a double 4-8 GHz isolator on the output
line (LNF-ISISC4 8A).
The sample holder, made of pure aluminum and light-tight, was designed to maximize quality
factor (see chapter 7) and therefore did not allow the integration of DC measurements.

C.3.2 Low-frequency, 13 Tesla magnet

The sample is mounted on a homemade bulk silver (and gold plated) cold finger inserted at
the center of a large magnet. Setup is illustrated in Fig. C.2.
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Fig. C.2. Schematic of Setup B for high magnetic fields. ZNB 8 is a Vector Network
Analyzer (VNA). LI stands for Lock-in amplifier. See main text for details of the different
microwave and DC components. Incoming microwave signal goes down the input line where
it is attenuated (blue), goes through the sample and goes back to the VNA after proper
amplification and filtering (red). The sample is stuck on a silver cold finger at the center of a
large magnetic coil. Bottom picture show a sample glued to the sample holder, with 24 DC
lines.

Because of the large magnetic fields one cannot use isolators to protect the output signal from
the 4K noise generated by the HEMT. In order to replace it we fabricated a long dissipative
coaxial cable that acts as a low-pass filter with relatively small attenuation at low frequencies
and large attenuation above 4 K. We used a 0.034 inch diameter cupro-nickel coaxial cable
(CN-CN034 from CryoCoax) with PTFE inner insulation. We chose a very long one meter
cable to increase the overall attenuation and wound it into a compact shape as shown in
Fig. C.3.
The cryogenic amplifier operates in the 10 MHz - 2 GHz range (from Arizona state university),
followed by a room temperature amplifier ZKL-2+ from Minicircuits. The sample is not
shielded by µ-metal, as it is designed to be immersed in a magnetic field.
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Fig. C.3. Dissipative coaxial cable as a low-pass filter. One meter of coaxial cable is
wound around a copper cylinder and glued into place with silver epoxy. Right: room-temperature
measurement of the coaxial cable attenuation versus frequency.
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APPENDIXD
Capacitance and Kerr non-linearity model

D.1 | Distributed Capacitance of an Infinite Thin Film
Superconducting Stripline

In this section we detail the analytical model derived by Denis Basko [Private communications]
to account for the long-range Coulomb interactions in the capacitance of a stripline, that we
used to provide a precise determination of the frequency of plasmon resonances.

Consider an infinitely long and infintely thin stripline of width w � h, where h is the distance
to the ground plane (in a microstrip geometry, i.e. h is the thickness of the substrate of
permittivity ε.)
By defining the inductance per unit length L′ and capacitance per unit length C ′ in units of
4πε0, one can express the plasmon frequency at wavevector |k| as

ωk =
|k|√

4πε0C ′kL
′

(D.1)

The inverse capacitance calculated by D. Basko reads

1

C ′k
=

4

1 + ε

min
ρ(y)

∫ w/2

−w/2
dydy′ρ(y)ρ(y′)K0

(
|y − y′||k|

)
−
∞∑
j=1

ζjK0

(
2jh|k|

) (D.2)

where the coefficients ζj are given in section 3.2.2, and the minimum is taken over all the

functions ρ(y) such that
∫ w/2
−w/2 ρ(y)dy = 1 and accounts for charge distribution across the

strip. Let us note K this minimum.

Then the capacitance becomes

1

C ′k
=

4

1 + ε

K − ∞∑
j=1

ζjK0

(
2jh|k|

) (D.3)

K can be estimated numerically as K = − ln |kw|+ 1.50 + 0.1|kw|2 + δ with |δ| < 0.01 for
|k|w < 1.
K can be evaluated by the Python code:

1 import numpy as np

2 from scipy.special import kn as BesselK

3 from scipy.linalg import solve

4

5 def coeffK(kw , npt =1000, tw= t * w):
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6 y = np.linspace (-0.5, 0.5, npt+1)

7 yy = y[:, np.newaxis] - y[np.newaxis , :]

8 yy = np.sqrt(yy**2 + max(tw , 1./ npt)**2)

9 mtx = besselK(0, yy * kw)

10 x = solve(mtx , np.ones(npt+1))

11 return 1/np.sum(x)

D.2 | Model for the Kerr Non-linearity and thermal
phase fluctuations

D.2.1 Non-linear Ohm’s law

K. Maki provides two equations that describe the effect of an applied electromagnetic field on
a dirty superconductor at T = 0 using Gor’kov equations [Maki, 1964]:

∆ = ∆0e
−πζ/4 for ζ ≤ 1 (D.4)

jq = −2e2N

~m
τ∆

(
π

2
− 2

3
ζ

)
Aq for ζ ≤ 1 (D.5)

ζ =
τ

3~∆
(pFvs)

2 (D.6)

where ∆0 is the gap at T = 0 and ζ = 0, i.e without electromagnetic drive.
Eq. (D.5) is a non-linear Ohm’s law.

D.2.2 Non-linear current-phase relation

Using vs = ~
m
∂xϕ where ϕ(x) is the superconducting phase, D = 1

3
τv2

F where D is a diffusion
constant and vF the Fermi velocity, one rewrites ζ as

ζ =
~D
2∆

(
∂ϕ

∂x

)2

≈ ξ2

(
∂ϕ

∂x

)2

(D.7)

in which we have used the dirty limit coherence length ξ =
√

~D/2∆0.

One can now reexpress the prefactor of Eq. (D.5) using the optical weight conservation
L�
K = ~R�

n/π∆0 and the Drude conductivity σ0 = e2Nτ/m, and using the kinetic inductance
per unit length l = L�

K/w where w is the wire width, t is the film thickness.
Expanding Eq. (D.4) to first order in ζ, Eq. (D.5) becomes:

jq = − 1

ltw

(
1− π

4
ζ +O(ζ)

)(
1− 3

4π
ζ

)
Aq (D.8)

= − 1

ltw

(
1− αζ +O(ζ)

)
Aq (D.9)

with α = π
4

+ 3
4π

.

Integrating the current density of Eq (D.9) gives the current flowing in the wire of section wt.
This leads the current-flux relation

I(Φ) = −1

l

∂Φ

∂x

(
1− αξ2

(
2e

~

)2(
∂Φ

∂x

)2
)

(D.10)
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in which we have introduced the flux Φ(x) =
(
~/2e

)
ϕ(x).

One retrieves the well known linear relation I(Φ) = −1
l
∂xΦ but with an additional higher

order term.

D.2.3 Hamiltonian

The hamiltonian of a transmission line resonator writes

Ĥ =

∫ L

0

(
q̂2

2c
+

1

2
lI(Φ)2

)
dx (D.11)

where l and c are the kinetic inductance and capacitance per unit length respectively.
Using Equ. D.10 the hamiltonian is rewritten

Ĥ =

∫ L

0

 q̂2

2c
+

1

2l

(
∂Φ

∂x

)2
(

1− αξ2

(
2e

~

)2(
∂Φ

∂x

)2
)2
 dx (D.12)

≈
∫ L

0

[
q̂2

2c
+

1

2l

(
∂Φ

∂x

)2
]
dx− 2

∫ L

0

[
1

2l
αξ2

(
2e

~

)2(
∂Φ

∂x

)4
]
dx (D.13)

= Ĥ0 + ĤNL (D.14)

Ĥ0 is the linear part of the hamiltonian while ĤNL is a non-linear perturbation.

Writing the observables using canonical quantization for the linear part of the hamiltonian :

Φ̂(x) =
∑
n

φn(x)χ̂n (D.15)

q̂(x) =
∑
n

1

L
φn(x)q̂n (D.16)

where

χ̂n =

√
~

2ωnLc

(
an + a†n

)
(D.17)

q̂n = −i
√

~ωnLc
2

(
an − a†n

)
(D.18)

in which L is the resonator length, and ωn = kn√
lc

is the resonance frequency of mode n.

From the boundary conditions, one writes the flux as φn(x) =
√

2 cos(knx) with kn = nπ
L

.
The normalization has been chosen so that∫ L

0

φn(x)φm(x) dx = Lδnm (D.19)∫ L

0

(∂xφn) (∂xφm) dx = Lk2
nδnm (D.20)

The linear part Ĥ0 can be written in the usual quantum harmonic oscillator form

Ĥ0 =
∑
n

~ωna†nan (D.21)
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where the constant term has been dropped.
The perturbation term is

ĤNL = − l

L2
αξ2

(
2e

~

)2 ∫ L

0

(∑
n

√
~ωn sin (knx)

(
an + a†n

))4

dx (D.22)

Following the method described in [Weißl et al., 2015] one can rewrite the Hamiltonian as

H = H0 +HNL =
∑
n

~ω′na†nan −
~
2

∑
n,m

Knma
†
nan a

†
mam (D.23)

with ω′n = ωn −
(
Knn +

∑
mKnm

)
/4 and where the Kerr coefficients are:

Knm = 3α

(
1− 1

4
δnm

)
ξ2

Lw

~ωnωm
Θ

(D.24)

where we have introduced the 2D superfluid stiffness Θ = (~/2e)2L−1
K .

This leads to a shift of the mode frequencies with applied microwave drive (Kerr effect) as

ωn → ω′n −
1

2

∑
m

KnmNm (D.25)

where Nm = 〈a†mam〉 is the bosonic occupation number of mode m.

Eq. (D.25) states that mode n is shifted to lower frequencies when another mode m is
populated. The amplitude of this effect is the Kerr coefficient Knm. Note that for n = m, the
mode n interacts with itself and its frequency is reduced as ωn → ωn

1
2
Knn. This last relation

should be observed experimentally as the slope of a linear decrease of frequency with photon
number Nn for Nn small enough.
The main parameters involved in this final result are ξ and Θ, related to disorder, and L and
w given by the sample geometry. The mode frequency ωn is actually related to both disorder
and geometry, and it is sometimes instructive to recast this result with some charging energy.

Relation with charging energy and Transmon anharmonicity Writing the frequency
ωn = nπw

L
1√
L�
KC

�
and using the definitions of superfluid stiffness and charging energy Θ =

(~/2e)21/L�
K and Ec = (2e)2/2C�, one can easily express the plasmon frequency of mode n

as
~ωn = nπ

w

L

√
2EcΘ (D.26)

Injecting into Eq. (D.24) gives

~Kn ∼ 6π2 (nξ)2w

L3
Ec (D.27)

as the superfluid stiffnesses cancel out. Therefore the Kerr coefficient is merely governed
by geometric parameters of the wire (dimensions L and w, coherence length ξ and charging
energy Ec given by the capacitance to ground).

While the apparent absence of kinetic inductance in this result seems surprising at first glance,
it is not inconsistent: to have a large non-linearity one can rely on geometry only, but for it
to operate at low-enough frequency suitable for standard microwave measurements one must
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provide a large LK . In that sense Kerr non-linearity and kinetic inductance are strongly related.

Such device therefore resembles a transmon qubit with anharmonicity ∼ Ec [Jens Koch et al.,
2007].
Experimental studies of linearities and realizations of transmons using the non-linearity of a
small volume of disordered superconductor confirm this model [N. Maleeva et al., 2018; Winkel
et al., 2020; Joshi et al., 2022].

D.2.4 Frequency shift induced by thermal excitation of 1D plasmons

We now show how the thermal population of one-dimensional plasmons induces a low-T
suppression of superfluid density (seen experimentally as a frequency shift) using Eq. (D.25)
to describe the interaction between plasmonic modes in the superconducting wire.
We now consider the thermal population of plasmons, which are bosonic collective excitations

and should therefore follow the Bose-Einstein statistics Nm = 〈a†mam〉 =
1

e~βωm − 1
where

β = 1/kBT .
Combining these last two equations allows to estimate the shift of resonance frequency of
mode n due to the thermal population of long-wavelength plasmons as

∆fn(T )

fn(0)
≈ −3

2

ξ2

LwΘ

∑
m

~ωm
e~βωm − 1

(D.28)

Assuming a linear dispersion relation (i.e. neglecting the weak effect of long-range Coulomb
interaction on ω(k)) we write ωm ≈ mω0, allowing to rewrite last equation in the simple form

∆fn(T )

fn(0)
= −γ

∑
m

m

emz − 1
(D.29)

where we have introduced the dimensionless parameters z = ~βω0 and γ = 3~ω0ξ
2/(2LwΘ).

The sum can be calculated, leading to the frequency shift in the form of a power law

∆fn(T )

fn(0)
= −

(
T

TK

)2

(D.30)

with

kBTK ≈
2

3
√
α

√
Lw

ξ

√
Θ~ω0 (D.31)
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APPENDIXE
Some calculations and models

E.1 | Optical sum rule and superfluid stiffness

We re-derive crudely the relation between the T = 0 superfluid stiffness and the supercon-
ducting gap Θ = g∆/8 for dirty superconductors (where g = h/(e2R�) and ∆ are the
dimensionless conductance and superconducting gap respectively) that is often referred to as
a prediction of BCS superconductors in the dirty limit [Mattis et al., 1958; Abrikosov et al.,
1968]. While the result is usually obtained within the framework of BCS theory it is in fact
more general and is related to the concept of spectral weight conservation.

In dirty superconductors (the inverse scattering time is larger than the gap τ−1 � ∆/~) the
density of superconducting carriers at T = 0 is much smaller than the total density of electrons:
ns(0)� n. This quantity decreases when τ is reduced by disorder.

Let us consider the Drude conductivity of a normal metal σ(ω) given by

σ(ω) = σ′(ω)− iσ′′(ω) (E.1)

σ′(ω) =
σ0

1 + (ωτ)2
(E.2)

σ′′(ω) =
σ0 ωτ

1 + (ωτ)2
(E.3)

where the DC Drude conductivity is σ0 = ne2τ/m (m is the electron mass).

The total spectral weight under σ′(ω) is∫ ∞
0

σ′(ω) dω =
π

2

ne2

m
(E.4)

The optical sum rule [Tinkham, 1975] states that the quantity in the LHS of Eq. (E.4) must
remain constant, even in the presence of a superconducting transition. The total spectral
weight cannot deviate from Eq. (E.4), but can vary in magnitude in some energy ranges as
long as spectral weight conservation is respected.
This is what happens when Cooper pairs condense into the superconducting state: at frequencies
below 2∆/~ dissipation vanishes and a whole part of the spectral weight comes missing (grey
region). To fulfill the conservation rule a Dirac peak at zero frequency grows, giving the
contribution of superconducting carriers to the real part of conductivity:

σ′s(ω) =
πnse

2

2m
δ(ω) (E.5)

This relation comes by taking the limit τ →∞ in Eq. (E.2) and fulfills Eq. (E.4).
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Fig. E.1. Complex conductivity in the normal and superconducting states. The real
part of conductivity (in red) must obey the sum rule, therefore the dissipationless state related
to superconductivity must involve a redistribution of the missing spectral weight (grey region)
through the ω = 0 Dirac peak.

Above 2∆/~ Cooper pairs break and conductivity gradually retrieves its normal-state value.
This boundary between these two regions is of course not abrupt, and a rigorous calculation
would provide a more precise estimation of the frequency cutoff. For the sake of simplicity we as-
sume here that the transition is sharp, so that the missing spectral weight ends at 2∆/~ exactly.

We now estimate the spectral weight below the cutoff in two ways. First a direct calculation
from Eq. (E.2) gives, in the dirty limit (τ−1 � ∆/~):∫ 2∆/~

0

σ′(ω) dω ≈ ne2τ

m

(
2∆

~

)
(E.6)

Second, using the superconducting state conductivity σ′s(ω):∫ 2∆/~

0

σ′s(ω) dω ≈ π

2

nse
2τ

m
(E.7)

These two integrals both describe the area of the missing region, and should be equal. This
leads to

ns
n

=
4∆τ

π~
(E.8)

As expected, the smaller τ , the smaller the superconducting carrier fraction ns/n. The density
of paired electrons ns(0) decreases with disorder.

Rewriting last equation in terms of the 2D superfluid stiffness Θ = ~2ns/(2m) and using the
definition of dimensionless conductance g = h/e2σ0 one easily gets

Θ =
1

π2
∆g (E.9)

which is almost identical to the BCS relation Θ = ∆g/8.

Looking now at the imaginary part of conductivity σ′′(ω) one has in the superconducting state
(taking τ →∞):

σ′′s (ω) =
nse

2

mω
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Unlike normal metals for which this quantity is negligible, σ′′(ω) dominates the conductivity of
a superconductor at frequencies well below the gap.
This relates to the kinetic inductance discussed in this thesis as L�

K = 1/(ωσ′′s (ω)).
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(Cited on pages 169–172).
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(Cited on page 166).

Mildenberger, A., F. Evers, and A. D. Mirlin (July 2002). “Dimensionality dependence of
the wave-function statistics at the Anderson transition”. In: Physical Review B 66.3. doi:
10.1103/physrevb.66.033109 (Cited on page 160).

Miller, Allen and Elihu Abrahams (Nov. 1960). “Impurity Conduction at Low Concentrations”.
In: Physical Review 120.3, pp. 745–755. doi: 10.1103/physrev.120.745 (Cited on
page 162).

Mirlin, A (Mar. 2000). “Statistics of energy levels and eigenfunctions in disordered systems”.
In: Physics Reports 326.5-6, pp. 259–382. doi: 10.1016/s0370-1573(99)00091-5 (Cited
on pages 16, 160).

Misra, S., L. Urban, M. Kim, G. Sambandamurthy, and A. Yazdani (Jan. 2013). “Measurements
of the Magnetic-Field-Tuned Conductivity of Disordered Two-Dimensional MoGe and InOx
Superconducting Films: Evidence for a Universal Minimum Superfluid Response”. In: Physical
Review Letters 110.3. doi: 10.1103/physrevlett.110.037002 (Cited on pages 32–34).

Mitra, Sreemanta, Girish C. Tewari, Diana Mahalu, and Dan Shahar (Apr. 2016). “Finite-size
effects in amorphous indium oxide”. In: Physical Review B 93.15. doi: 10.1103/physrevb.
93.155408 (Cited on page 17).

Mondal, Mintu, Anand Kamlapure, Somesh Chandra Ganguli, John Jesudasan, Vivas Bagwe,
Lara Benfatto, and Pratap Raychaudhuri (Feb. 2013). “Enhancement of the finite-frequency
superfluid response in the pseudogap regime of strongly disordered superconducting films”.
In: Scientific Reports 3.1. doi: 10.1038/srep01357 (Cited on pages 34, 35).

197

https://doi.org/10.1038/s41567-021-01432-8
https://doi.org/10.1063/1.5020514
https://doi.org/10.1063/5.0017378
https://doi.org/10.1002/aelm.201700082
https://doi.org/10.1063/1.3693409
https://doi.org/10.1103/physrevb.66.033109
https://doi.org/10.1103/physrev.120.745
https://doi.org/10.1016/s0370-1573(99)00091-5
https://doi.org/10.1103/physrevlett.110.037002
https://doi.org/10.1103/physrevb.93.155408
https://doi.org/10.1103/physrevb.93.155408
https://doi.org/10.1038/srep01357


Mondal, Mintu, Sanjeev Kumar, Madhavi Chand, Anand Kamlapure, Garima Saraswat, G.
Seibold, L. Benfatto, and Pratap Raychaudhuri (Nov. 2011). “Role of the Vortex-Core
Energy on the Berezinskii-Kosterlitz-Thouless Transition in Thin Films of NbN”. In: Physical
Review Letters 107.21. doi: 10.1103/physrevlett.107.217003 (Cited on page 96).

Mooij, J. E. and Yu. V. Nazarov (Feb. 2006). “Superconducting nanowires as quantum phase-
slip junctions”. In: Nature Physics 2.3, pp. 169–172. doi: 10.1038/nphys234 (Cited on
page 100).

Mooij, J. E. and Gerd Schön (July 1985). “Propagating plasma mode in thin superconducting
filaments”. In: Physical Review Letters 55.1, pp. 114–117. doi: 10.1103/physrevlett.
55.114 (Cited on pages 38, 39, 43).

Mott, N (July 1987). “The mobility edge since 1967”. In: Journal of Physics C: Solid State
Physics 20.21, pp. 3075–3102. doi: 10.1088/0022-3719/20/21/008 (Cited on pages 15,
153).

Mott, N. F. (Apr. 1969). “Conduction in non-crystalline materials”. In: Philosophical Magazine
19.160, pp. 835–852. doi: 10.1080/14786436908216338 (Cited on page 163).

Mott, Sir Nevill (Nov. 1978). “Metal–insulator transitions”. In: Physics Today 31.11, pp. 42–47.
doi: 10.1063/1.2994815 (Cited on pages 15, 153).

Müller, Clemens, Jared H Cole, and Jürgen Lisenfeld (Dec. 2019). “Towards understanding
two-level-systems in amorphous solids: insights from quantum circuits”. en. In: Rep. Prog.
Phys. 82.12, p. 124501 (Cited on pages 108, 109, 112).

Müller, M, T Luschmann, A Faltermeier, S Weichselbaumer, L Koch, G B P Huber, H
W Schumacher, N Ubbelohde, D Reifert, T Scheller, F Deppe, A Marx, S Filipp, M
Althammer, R Gross, and H Huebl (Feb. 2022). “Magnetic field robust high quality factor
NbTiN superconducting microwave resonators”. In: Materials for Quantum Technology 2.1,
p. 015002. doi: 10.1088/2633-4356/ac50f8 (Cited on pages 124, 126).

Müller, M. and L. B. Ioffe (Dec. 2004). “Glass Transition and the Coulomb Gap in Electron
Glasses”. In: Physical Review Letters 93.25. doi: 10.1103/physrevlett.93.256403
(Cited on pages 73, 104).

Müller, M. and S. Pankov (Apr. 2007). “Mean-field theory for the three-dimensional Coulomb
glass”. In: Physical Review B 75.14. doi: 10.1103/physrevb.75.144201 (Cited on
page 104).

Nagata, Takahiro (2019). “Indium oxide”. In: Single Crystals of Electronic Materials. Elsevier,
pp. 523–546. doi: 10.1016/b978-0-08-102096-8.00015-x (Cited on page 14).

Nelson, David R. and J. M. Kosterlitz (Nov. 1977). “Universal Jump in the Superfluid Density
of Two-Dimensional Superfluids”. In: Physical Review Letters 39.19, pp. 1201–1205. doi:
10.1103/physrevlett.39.1201 (Cited on page 8).

Niepce, David, Jonathan Burnett, and Jonas Bylander (Apr. 2019). “High Kinetic Induc-
tance NbN Nanowire Superinductors”. In: Physical Review Applied 11.4. doi: 10.1103/
physrevapplied.11.044014 (Cited on pages 124, 126).

Noat, Y., V. Cherkez, C. Brun, T. Cren, C. Carbillet, F. Debontridder, K. Ilin, M. Siegel, A.
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“Quantum Phase Slips and Transport in Ultrathin Superconducting Wires”. In: Physical
Review Letters 78.8, pp. 1552–1555. doi: 10.1103/physrevlett.78.1552 (Cited on
pages 69, 99).

Zhang, Wenyuan, K. Kalashnikov, Wen-Sen Lu, P. Kamenov, T. DiNapoli, and M.E. Gershenson
(Jan. 2019). “Microresonators Fabricated from High-Kinetic-Inductance Aluminum Films”.
In: Physical Review Applied 11.1. doi: 10.1103/physrevapplied.11.011003 (Cited on
pages 124, 126, 146).

Zhu, S., F. Crisa, M. Bal, A. A. Murthy, J. Lee, Z. Sung, A. Lunin, D. Frolov, R. Pilipenko,
D. Bafia, A. Mitra, A. Romanenko, and A. Grassellino (2022). High quality superconducting
Nb co-planar resonators on sapphire substrate. doi: 10.48550/ARXIV.2207.13024 (Cited
on pages 124, 126).

205

https://doi.org/10.1109/TMTT.1965.1125962
https://doi.org/10.1038/s41586-021-03557-5
https://doi.org/10.1103/physrevx.10.031032
https://doi.org/10.1103/prxquantum.4.010322
https://doi.org/10.1063/1.5098466
https://doi.org/10.1103/physrevb.87.184505
https://doi.org/10.1063/5.0039945
https://doi.org/10.1103/physrevlett.78.1552
https://doi.org/10.1103/physrevapplied.11.011003
https://doi.org/10.48550/ARXIV.2207.13024

	Abstract
	Acknowledgements
	I From Insulator to Superconductor : The emergence of Superconductivity in Disordered Materials
	Introduction: Breakdown of Superconductivity
	Breakdown of superconductivity
	Relation with the superfluid density
	What zero-T properties of a superconductor allow to predict Tc ?
	Quantum breakdown of superconductivity

	Fermionic suppression of critical temperature with disorder
	An example of system ruled by phase fluctuations: The Berezinskii-Kosterlitz-Thouless transition in 2D
	Bosonic pathway
	Charge-vortex duality
	Disordered and ordered phases


	Disordered Superconductors: a state of the art
	Indium oxide: Anderson insulator or superconductor ?
	Experimental evidence of Anderson localization
	Experimental demonstration of the interplay of insulator and superconductor

	From Anderson insulator to fractal superconductor
	Extension of Anderson theorem
	Attractive Bose-Hubbard model

	Theory of pseudogap
	On the origin of local pairing in the insulator
	Pseudo-gap in fractal insulators

	Fractal superconductivity
	Some properties of disordered superconductors
	BKT transition in indium oxide
	Survival of superconducting correlations across the SIT at T=0
	Electrodynamics of disordered superconductors


	Superconducting microwave resonators: a superfluid density probe
	Finite-frequency response of a superconductor: Plasma oscillations
	Plasmons

	The microstrip transmission line
	Telegrapher's equations
	Capacitance to ground
	Geometric and kinetic inductances
	Low loss and distortionless lines

	Open-ended transmission line resonators
	Coupling the resonator to the environment

	Plasma modes as a pathway to superfluid density
	Determination of superfluid density via plasmon dispersion relation
	Two-tones measurements
	Frequency shift as a measurement of superfluid density suppression
	Suppression of superconductivity by thermal excitation of plasmons
	Sample design



	II Quantum Breakdown of Superconductivity across the Disorder-driven Superconductor-Insulator Transition
	Superconductor-Insulator Transition measured in transport
	Increase of normal-state resistance with disorder
	Decrease of Tc with disorder
	Unusual Tc suppression
	Comparison with amplitude-driven pathway
	Bosonic pathway
	Critical conductance at the transition gc
	On the broadening of the superconducting transition

	Competition of superconducting and insulating energy scales at the transition
	Comparison of activation energy and critical temperature

	Re-entrant R(T) curves
	Coulomb gap of preformed pairs
	Consequence on resistance at finite temperatures

	Heating effects in critically disordered samples

	Microwave frequency study of the Superconductor-Insulator Transition
	Superconductivity at T=0 is Bosonic: ruled and suppressed by phase fluctuations
	Microwave spectroscopy of disordered amorphous indium oxide
	Phase fluctuations break down superconductivity
	Phase diagram

	Suppression of superconductivity at finite temperature driven by phase fluctuations
	Excitation of thermal plasmons
	Suppression by low-lying modes in pseudogap superconductors
	Suppression of low-temperature quality factor with disorder


	Nature of the QBS: First-order quantum phase transition
	Abrupt suppression of superconductivity
	Critical jump of transition temperature
	Superfluid jump from the microwave measurements

	On sample dimensionality
	Quantum phase transition by pinning of plasmons
	Localized-delocalized phase transition in presence of disorder
	(1 + 1)D Berezinskii-Kosterlitz-Thouless transition and quantum phase slips
	Measurable quantities
	Effect of wire width: universality of the transition ?
	Effect of wire length

	Transition driven by long-range Coulomb interactions between localized Cooper pairs


	III Properties of Strongly Disordered Indium Oxide Resonators and Applications
	Loss Mechanisms in a:InO Microwave Resonators
	Decrease of dissipation with power and temperature
	Resonators in 3D Waveguides: reducing the participation of native oxides
	Partial conclusion: InOx dissipation is not dominated by surface dielectric loss
	Metal-Substrate interface is not limiting the resonator quality factors

	Coplanar Waveguide Hybrid Device: reducing the Indium oxide volume
	Non-equilibrium quasiparticles as a source of dissipation
	Towards a universal upper bound on quality factor in superconductors ?


	a:InO in perpendicular magnetic field : an interplay of disorder and vortices
	Suppression of superfluid density due to pair-breaking
	In the literature
	In indium oxide resonators

	New observations in indium oxide
	Critical field for the penetration of vortices in a thin film
	Observing both pair-breaking and vortex-related effects

	Effect of weak pinning on superfluid density
	Hysteretic behavior and vortex-induced dissipation



	Conclusion and Perspectives
	Conclusion
	Perspectives


	Appendix
	Insulators and Localization
	Disorder and Weak localization
	Self-similarity and fractal dimension
	Anderson Localization
	Mobility edge
	Dimensionless conductance
	Scaling theory
	Eigenfunction fractality: a hand-waving approach
	Multifractality and Anderson localization

	Thermally activated transport

	Fabrication
	Indium oxide deposition and characterization

	Experimental Setup
	A few general concepts
	Thermalization of microwave radiation and noise mitigation
	Measuring resistances at very low bias

	Cryostat A
	Input line
	Output line
	Sample shielding
	Cryogenic trick to measure resistances reliably up to 7 K
	Setup for 3D waveguide measurements

	Cryostat B
	High-frequency, no magnetic field
	Low-frequency, 13 Tesla magnet


	Capacitance and Kerr non-linearity model
	Distributed Capacitance of an Infinite Thin Film Superconducting Stripline
	Model for the Kerr Non-linearity and thermal phase fluctuations
	Non-linear Ohm's law
	Non-linear current-phase relation
	Hamiltonian
	Frequency shift induced by thermal excitation of 1D plasmons


	Some calculations and models
	Optical sum rule and superfluid stiffness


	Bibliography

