
HAL Id: tel-04405955
https://theses.hal.science/tel-04405955

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verified programming and secure integration of
operating system libraries in Coq

Shenghao Yuan

To cite this version:
Shenghao Yuan. Verified programming and secure integration of operating system libraries in Coq.
Systems and Control [cs.SY]. Université de Rennes, 2023. English. �NNT : 2023URENS060�. �tel-
04405955�

https://theses.hal.science/tel-04405955
https://hal.archives-ouvertes.fr

·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

········

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Shenghao Yuan
Verified programming and secure integration
of operating system libraries in Coq

Thèse présentée et soutenue à Rennes en salle Métivier, INRIA, le 8 décembre 2023 à 14h30
Unité de recherche : INRIA, Rennes
Thèse No : « si pertinent »

Rapporteurs avant soutenance :

Yongwang ZHAO Professeur à l’Université de Zhejiang, Chine
Gilles GRIMAUD Professeur des Universités à l’Université de Lille

Composition du Jury :
Présidente : Sandrine Blazy Professeur à l’Université de Rennes
Rapporteurs : Yongwang ZHAO Professeur à l’Université de Zhejiang, Chine

Gilles GRIMAUD Professeur des Universités à l’Université de Lille
Examinateurs : Emmanuel Bachelli Chargé de Recherce, INRIA Rennes

Frédéric Besson Chargé de Recherche, INRIA Rennes
Dir. de thèse : Jean-Pierre TALPIN Directeur de Recherche, INRIA Rennes

Abstract

The C programming language presents a dual nature, offering low-level control over
memory and high efficiency, while also being prone to error, especially in terms of memory
management. Legacy C code remains in operation in critical fields such as finance, trans-
portation, digital networks, and the Internet of Things (IoT). Despite its advantages, the
potential for vulnerabilities, such as buffer overflows and use-after-free errors, presents
significant challenges.

Formal methods offer a rigorous approach by abstracting low-level code into high-
level models and mathematically verifying expected properties. This manuscript explores
the use of Interactive Theorem Proving (ITP) within the proof assistant Coq to ensure
program correctness.

The first part of this manuscript proposes an end-to-end verification approach that
minimizes the verification gap between Gallina implementation and extracted C code.
This approach starts with a proof model written in Gallina and certifies the expected
properties of the model in Coq. It then derives a verified executable C implementation
from this proof model.

The manuscript then applies this end-to-end approach to a subsystem of the IoT
operating system RIOT-OS: rBPF. rBPF is a virtual machine integrated into RIOT-OS
for sandboxing untrusted extensions. The current rBPF system, consisting of a verifier
and a defensive interpreter, faces challenges related to safety and performance.

The second part of the manuscript presents a fault-isolating virtual machine, CertrBPF.
CertrBPF is a formally verified model and implementation of rBPF in Coq. CertrBPF
formalizes the syntax and semantics of all rBPF instructions, implements a formal model
of the rBPF interpreter, completes the proof of fault isolation, and extracts C code from
this formalization.

The third part of the manuscript introduces a JIT compiler to dynamically generate
ARM binary code from rBPF bytecode. This JIT compiler is designed to speed up compu-
tation tasks in rBPF programs while reusing the existing rBPF interpreter CertrBPF to
execute security-sensitive branch and memory instructions, subject to complex run-time
checking.

Finally, we integrate CertrBPF and the JIT compiler into RIOT-OS and evaluate
their performance on a popular ARM microcontroller. The results show significant im-
provements in security, memory footprint, and execution time compared to the existing
rBPF interpreter.

2

RÉSUMÉ EN FRANÇAIS

Les fonctionnalités bas niveaux offertes par le langage de programmation C sont à
la fois un atout et une source d’erreurs. D’une part, il a été conçu [KR02] pour offrir
un contrôle très détaillé de la représentation des données au niveau octet en mémoire
informatique. Cette fonctionnalité de bas niveau permet aux programmeurs de développer
des artefacts hautement efficaces, économes en ressources, et faciles à lire par rapport au
code d’assemblage au niveau machine. Par conséquent, des milliards de lignes de code C
hérité sont toujours en service dans des domaines critiques (et non critiques), notamment
la finance, les transports, les réseaux numériques et en particulier l’Internet des objets
(IoT). D’autre part, le revers de la médaille est que l’utilisation du C facilite les erreurs de
gestion de la mémoire de bas niveau, telles que le débordement de flottant, le dépassement
de tableau, et l’utilisation après libération, etc. L’abstraction de bas niveau du code C
accroît également les vulnérabilités dans des systèmes distribués complexes et parfois
critiques, par exemple, en introduisant des erreurs logiques.

Il existe plusieurs façons de détecter les défauts logiciels. Une solution consiste à suivre
un processus de développement logiciel strict et qualifiable pour mettre en œuvre des
artefacts certifiés (e.g., SCADE KCG [Ber07]) qui satisfont aux exigences de certification
(e.g., DO-178C [Rie17]) pour des domaines critiques spécifiques. Une autre approche con-
siste à concevoir un nouveau langage doté de fonctionnalités de sécurité spécifiques (e.g.,
Rust [MK14] pour garantir la sécurité de la mémoire). Bien que ces mesures soient capables
de détecter certaines vulnérabilités, elles ne peuvent généralement pas garantir l’absence
de vulnérabilités, en particulier pas de manière rigoureuse sur le plan mathématique.

Techniques formelles. Les méthodes formelles offrent des garanties plus solides d’absence
de bogues en abstrayant les programmes de bas niveau en modèles de haut niveau, perme-
ttant ainsi de raisonner mathématiquement sur leurs propriétés attendues. Par exemple, la
ligne de production de code Airbus combine plusieurs méthodes formelles : i) L’analyseur
statique Astrée [Cou+05] prouve l’absence de certains types spécifiques de bogues dans
les programmes C, par exemple, les dépassements de tableau. ii) L’outil d’analyse formelle
Frama-C [Kir+15] garantit les propriétés fonctionnelles des programmes C. iii) Le com-

3

https://www.absint.com/astree/index.htm
https://frama-c.com/

pilateur vérifié CompCert [Ler09] traduit les programmes C en code binaire.
Les méthodes formelles englobent diverses techniques, notamment l’interprétation ab-

straite, la vérification de modèles, et la démonstration de théorèmes (automatique ou
interactive). Parmi toutes les méthodes de vérification formelle, la preuve interactive de
théorèmes (ITP) est probablement la technique la plus complète et rigoureuse pour garan-
tir de manière constructive la correction d’un programme par le raisonnement mathéma-
tique sur l’exécution du programme (sémantique du programme). En résumé, le proces-
sus ITP implique : i) Une description mathématique des comportements du programme
définie par l’humain, c’est-à-dire une sémantique formelle. ii) Des preuves mathématiques
fournies par l’humain (dans certains langages de tactiques) de propriétés cibles. iii) La
vérification de la correction des preuves par la machine. Toutes ces étapes sont réalisées
au sein d’un assistant de preuve. Les assistants de preuve courants incluent Coq [BC13],
Isabelle/HOL [NWP02], et Lean [Mou+15], etc. Par exemple, le compilateur CompCert
est formellement vérifié en utilisant l’assistant de preuve Coq : toutes les langues in-
termédiaires et transformations pertinentes sont spécifiées dans le langage fonctionnel
Gallina [Hue92], intégré dans Coq, et toutes les preuves vérifiées par machine concer-
nant le théorème de préservation du comportement sont exprimées à l’aide du langage de
tactiques Ltac [Del00] au sein de Coq.

Approches de vérification de bout en bout. Nous nous concentrons sur la spécifi-
cation et la vérification des logiciels IoT, qui sont généralement écrits en C. Il existe des
méthodes qui vérifient directement du code C de bas niveau écrit à la main, telles que
VCC [Coh+09], VeriFast [JP08], RefinedC [Sam+21], et VST [App+14]. En revanche,
cette thèse considère une approche de vérification de bout en bout différente qui modélise
abstraitement des spécifications de haut niveau dans le langage de programmation d’un
assistant de preuve. Ce modèle abstrait élimine les détails spécifiques du code de bas
niveau, permettant aux utilisateurs de tirer pleinement parti de la puissance de l’assistant
de preuve pour vérifier les programmes.

Les approches de vérification de bout en bout nécessitent également un compila-
teur vérifié ou de confiance pour relier les modèles abstraits aux implémentations de
bas niveau. Des compilateurs existants tels que CertiCoq (Coq) [Ana+17], Cogent (Is-
abelle/HOL) [Riz+16], KaRaMeL (F⋆/Low⋆) [Pro+17], et d’autres ont été développés,
mais aucun d’entre eux ne peut simultanément remplir les exigences suivantes :

— compilation vérifiée pour garantir que les propriétés attendues des spécifications de

4

https://compcert.org/
https://coq.inria.fr/
https://isabelle.in.tum.de/
https://leanprover.github.io/
https://coq.github.io/doc/v8.9/refman/language/gallina-specification-language.html
https://coq.inria.fr/refman/proof-engine/ltac.html

haut niveau sont préservées dans les programmes de bas niveau;
— hautes performances du code C généré, par exemple, exempt de gestion automatique

de la mémoire (collecte des déchets);
— une base de calcul de confiance minimale (Trusted Computing Base - TCB).

L’objectif principal de cette thèse est de proposer une approche de vérification de
bout en bout qui réponde à ces exigences. Nous appliquons cette approche pour vérifier
un sous-système d’un système d’exploitation IoT du monde réel, RIOT-OS [Bac+18] :
rBPF [ZB20].

rBPF. Dans de nombreux cas, les systèmes d’exploitation adoptent des techniques de
confinement pour isoler les extensions non fiables dans le noyau. Pour ce faire, la com-
munauté Linux a étendu les filtres Berkeley classiques [MJ93] (BPF) pour permettre
l’exécution de code de machine virtuelle (VM) personnalisé en mode noyau. Cette VM
est intégrée dans divers sous-systèmes, servant à des fins autres que le filtrage de pa-
quets [Fle17]. L’extension de l’eBPF aux microcontrôleurs a conduit à la spécification du
rBPF dans RIOT-OS.

Le rBPF actuel se compose d’un vérificateur compact et d’un interpréteur défensif
sophistiqué, mais il est confronté à deux principaux défis :

— Sécurité rBPF : Tout comme le rôle de l’eBPF dans Linux, le rBPF fonctionne
au sein du noyau sensible et critique de RIOT-OS. Étant donné qu’il fonctionne en
mode noyau, le rBPF pourrait compromettre la sécurité et l’intégrité du système
d’exploitation en exécutant du code non fiable de tiers. Le vérificateur rBPF pourrait
ne pas parvenir à identifier des scripts malveillants ou erronés, et l’interpréteur
pourrait ne pas être en mesure d’empêcher leur exécution. Cette menace est possible,
compte tenu de plusieurs vulnérabilités de l’eBPF signalées à la communauté Linux
à diverses occasions, telles que CVE-2023-0160 (défaut de blocage), CVE-2022-3646
(fuite de mémoire), CVE-2022-3623 (attaque par condition de concurrence), et plus
encore.

— Performances rBPF : Le rBPF sacrifie les performances en adoptant un interpré-
teur défensif comme moteur d’exécution. Bien que ce choix garantisse que du code
non fiable, erroné ou malveillant puisse s’exécuter dans un environnement ouvert ou
potentiellement hostile, tout en isolant les erreurs pour protéger l’intégrité de l’hôte,
il conduit naturellement à des performances plus faibles par rapport à une implé-
mentation Just-In-Time (JIT) qui optimise la vitesse d’exécution du programme

5

https://www.riot-os.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3646
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3623

en traduisant un bytecode générique à partir d’un script source en un ensemble
d’instructions spécifiques à la machine. Cependant, l’intégration d’un compilateur
JIT Linux traditionnel dans le rBPF est difficile en raison de la complexité des straté-
gies de défense du rBPF. L’incorporation d’un compilateur JIT pourrait également
introduire de nouvelles erreurs potentiellement plus insidieuses au niveau binaire,
rendant plus difficile la garantie de la propriété d’isolement.

Contenu de cette thèse. Développer une machine virtuelle isolante de pannes pour
les microcontrôleurs (MCU) pose deux défis majeurs. Le premier est d’intégrer la VM au
sein du micro-noyau du MCU et de réduire la taille de son code et de son environnement
d’exécution. L’autre est de réduire l’écart de vérification entre son modèle de preuve et le
code réel en cours d’exécution.

Dans cette thèse, nous relevons ces défis et présentons la première vérification de bout
en bout et la synthèse d’une machine virtuelle complète du monde réel pour la famille
d’ensembles d’instructions BPF : CertrBPF, un interprète adapté aux architectures de
MCU fonctionnant sous RIOT-OS, avec des ressources limitées.

Cette thèse expose nos solutions pour le développement et la preuve de la correction
de rBPF. Plus précisément, nous présentons les contributions suivantes :

Approche de Vérification de Bout en Bout : Nous introduisons une approche de
vérification de bout en bout pour réduire l’écart entre une implémentation Gal-
lina vérifiée et son code C extrait non-vérifié. Notre point de départ est un modèle
de preuve écrit en Gallina. Nous utilisons ce modèle de preuve pour certifier les
propriétés attendues. À partir de ce modèle de preuve, nous dérivons ensuite un
modèle de synthèse dont nous extrayons une version exécutable en Clight, que nous
prouvons finalement pour effectuer les mêmes transitions d’état.

Interprète rBPF Certifié : CertrBPF est un modèle vérifié et une implémentation de
rBPF en Coq. Nous formalisons la syntaxe et la sémantique de toutes les instructions
rBPF, nous mettons en place un modèle formel de son interprète (femto-conteneur),
nous achevons la preuve des propriétés critiques de notre modèle, et nous extrayons
et vérifions le code CompCert C de cette formalisation. Notre approche de bout en
bout obtient une machine virtuelle entièrement vérifiée. Non seulement la spécifica-
tion Gallina de la VM est prouvée comme étant isolée du noyau et de la mémoire
à l’aide de l’assistant de preuve Coq, mais l’interprétation directe de sa sémantique
attendue sous forme de code CompCert C est elle-même vérifiée comme étant cor-

6

recte. Cela permet d’obtenir un programme binaire entièrement vérifié offrant une
sécurité maximale et une empreinte mémoire minimale, et réduit la base de calcul
de confiance (TCB) : CertrBPF, une machine virtuelle de niveau noyau efficace en
mémoire qui isole les erreurs logicielles d’exécution à l’aide d’un code défensif et ne
nécessite pas de vérification hors ligne.

Compilateur JIT rBPF Certifié : Nous introduisons JITALU, une spécification basée
sur Gallina d’un compilateur JIT qui génère dynamiquement du code binaire ARM
à partir du bytecode rBPF. La compilation JIT accélère considérablement les tâches
de calcul dans les programmes rBPF tout en réutilisant l’interprète rBPF CertrBPF
existant pour exécuter les instructions de branches et de mémoire sensibles à la
sécurité, soumises à une vérification complexe à l’exécution. L’implémentation exé-
cutable en CompCert C de la spécification hybride VM+JIT, appelée HAVM, est
directement obtenue à partir de sa spécification monadique en Gallina dans Coq.
Nous fournissons également le code de liaison : une procédure jit_call, qui con-
struit un environnement ARM approprié à partir de la VM pour sauter directement
à l’adresse du code jited. Son implémentation se compose de 5 lignes de code en
langage d’assemblage écrites en C, et sa spécification est formellement définie dans
Coq. En combinant jit_call avec les implémentations C vérifiées de CertrBPF et
JITALU, nous obtenons une implémentation prête à l’emploi de HAVM.

Intégration Sécurisée et Évaluations : Nous intégrons CertrBPF et HAVM en tant
que remplacement direct de l’interprète rBPF non vérifié actuel dans RIOT-OS.
Nous évaluons ensuite de manière comparative les performances de CertrBPF in-
tégré dans RIOT-OS, fonctionnant sur diverses architectures de microcontrôleurs
32 bits. Nos évaluations montrent qu’en pratique, CertrBPF apporte non seule-
ment une sécurité, mais réduit également l’empreinte mémoire ainsi que le temps
d’exécution. Comme prévu, nous observons des accélérations significatives par rap-
port aux interprètes rBPF existants. Chapter 7 présente l’évaluation prometteuse
des performances de notre HAVM par rapport à RIOT-OS CertrBPF et aux anciens
micro-benchmarks Vanilla-VM sur une plateforme Cortex-M de développement.

7

ACKNOWLEDGEMENT

I would like to extend my heartfelt gratitude to my advisors, Jean-Pierre Talpin and
Frederic Besson, for affording me the remarkable opportunity to working on operating
systems-related and compilers-related formal verification using Coq. I have learned and
gained significant insights from our weekly meetings and occasional discussions.

I also wish to express my profound appreciation to my PhD jury. It is an honor to
share my research topic with such esteemed experts. I am deeply thankful to my reviewers,
Yongwang Zhao and Gilles Grimaud, for dedicating their valuable time to review this
document and offering invaluable comments.

My sincere thanks go out to my collaborators: Emmanuel Bachelli and his RIOT
operating system, Samuel Hym and his innovative dx tool, and Koen Zandberg for his
work on the rBPF virtual machine. I am also indebted to my colleagues: Benjamin Lion,
Lucas Franceschino, Jean-Joseph Marty, and Stéphane Kastenbaum, for their discussions
and many help.

My time in Rennes has been enriched by the daily activities and sports I enjoyed with
friends, including badminton, tennis, ping-pong, and running. Lastly, I offer profound
gratitude to my family for their unwavering support throughout my PhD journey.

9

TABLE OF CONTENTS

List of Figures 15

List of Tables 17

1 Introduction 19
1.1 Motivation . 19
1.2 Contributions . 22
1.3 Outline . 23

2 State of the Art on End-to-End Verification Approaches and BPF Ver-
ification 25
2.1 End-to-End Verification Approaches . 26
2.2 BPF verification . 30

2.2.1 Conclusion . 32

3 Background 33
3.1 Berkeley Packet Filters (BPFs) . 33

3.1.1 cBPF vs eBPF . 33
3.1.2 RIOT-OS rBPF . 36

3.2 CompCert . 37
3.2.1 CompCert Architecture . 37
3.2.2 CompCert Programs . 38
3.2.3 CompCert Memory Model . 40
3.2.4 CompCert Simulation Framework 41
3.2.5 CompCert Ecosystem . 45

3.3 ∂x Code Generator . 46
3.4 Conclusion . 51

4 An End-to-End Verification Approach in Coq 53
4.1 Discussion: Which Way Do We Select . 53

11

TABLE OF CONTENTS

4.2 A Workflow for End-to-End Verification in Coq 54
4.2.1 Proof-Oriented Specification . 55
4.2.2 C-ready implementation . 57
4.2.3 Translation Validation of C code 57
4.2.4 Summary . 58

4.3 Applications . 59

5 CertrBPF: A fully Verified rBPF Virtual Machine 61
5.1 A Proof-Oriented Virtual Machine Model 62

5.1.1 Syntax . 62
5.1.2 Machine State . 64
5.1.3 rBPF Interpreter . 65
5.1.4 Proof of Isolation . 69

5.2 A Synthesis-Oriented rBPF Interpreter . 71
5.2.1 Synthesis Model . 72
5.2.2 C-ready Model . 77

5.3 Simulation Proof of the C rBPF Virtual Machine 79
5.4 CertrBPF Verifier . 82
5.5 Optimization . 84

5.5.1 check_mem Optimization . 84
5.5.2 Equivalence Proof . 86

5.6 Conclusion . 95

6 CertrBPF-JIT 97
6.1 rBPF-32 . 98
6.2 Just-In-Time Compilation . 101

6.2.1 Structure . 102
6.2.2 Core Mapping . 104
6.2.3 Interaction . 106

6.3 Refinement of rBPF-32: rBPF-32-JIT . 108
6.3.1 Symbolic CompCert ARM . 108
6.3.2 Transition Semantics of rBPF-32-JIT 110

6.4 Hybrid JIT Interpreter . 113
6.4.1 Overview . 113
6.4.2 CompCert ARM Interpreter . 115

12

TABLE OF CONTENTS

6.4.3 Monadic JIT Compiler . 116
6.4.4 Hybrid rBPF-32 Interpreter . 117
6.4.5 rBPF-32 C Implementation . 118

6.5 Discussion . 120
6.5.1 Proof Overview . 120
6.5.2 Defensive JITALU . 122

7 Evaluation 127
7.1 Implementation . 127

7.1.1 Coq Implementation . 127
7.1.2 C Implementation . 128

7.2 Experiment . 129
7.2.1 Experimental Evaluation Setup . 129
7.2.2 Benchmarks . 130
7.2.3 Research Question: Memory Footprint 130
7.2.4 Research Question: CertrBPF Interpreter Performance 131
7.2.5 Research Question: CertrBPF Interpreter Optimization 134
7.2.6 Research Question: HAVM Optimization 134

8 Conclusion 137
8.1 Summary . 137
8.2 Perspectives . 138

8.2.1 Short-term Perspectives . 138
8.2.2 Long-term Perspectives . 139

Bibliography 141

13

LIST OF FIGURES

2.1 The F⋆/Low⋆ workflow . 26
2.2 The Cogent workflow . 27
2.3 The CertiCoq workflow (solid arrow: verified, dashed arrow: proof underway) 28
2.4 The Œuf workflow . 29
2.5 The Jitk compilation . 31
2.6 The Jitk compilation . 32

3.1 Linux eBPF instruction encodings . 34
3.2 Linux eBPF Workflow . 36
3.3 RIOT-OS rBPF Structure . 37
3.4 CompCert Architecture . 38
3.5 Syntax of CompCert Programs . 39
3.6 CompCert Backward Simulation . 43
3.7 CompCert Forward Simulation . 44
3.8 CompCert tools and related projects . 46
3.9 ∂x workflow . 47

4.1 End-to-end verification and synthesis workflow 54

5.1 Chapter Structure: CertrBPF . 61
5.2 Core syntax of rBPF instruction set . 63
5.3 Maps between (C) physical memory and (CompCert) memory model. . . . 65
5.4 Simulation relation R between strbpf , left, and rBPFClight, right. 80
5.5 Synthesis model: check_mem optimization 85
5.6 Function tree of the optimized interpreter 89
5.7 The simplification process. 90

6.1 Chapter Structure: CertrBPF-JIT . 97
6.2 Syntax of rBPF-32 instruction set . 99
6.3 JIT procedure: from rBPF-32 Alu32 binary to ARM binary 102

15

LIST OF FIGURES

6.4 state block layout (The first 52 byte) . 103
6.5 HAVM Overview . 113
6.6 Three cases of entry point . 114
6.7 JIT Proof Overview . 121
6.8 JIT Simulation Diagrams . 121
6.9 JIT defensive procedure . 123
6.10 JIT defensive procedure: shift instructions 124
6.11 JIT defensive procedure: DIV instruction 124

7.1 Time per instructions on the Cortex-M4 platform 132
7.2 Sliding window average on Cortex-M. 133
7.3 Execution time per instruction, on an Arm Cortex-M4 microcontroller . . . 135

16

LIST OF TABLES

3.1 eBPF instruction classes . 35
3.2 eBPF ALU64 instructions . 35

5.1 Mapping relation in the ∂x-CompCert library 77

6.1 Mapping relation from rBPF-32 Alu32 reg to ARM 104
6.2 Mapping relation from rBPF-32 Alu32 imm to ARM 105

7.1 Coq code statistics of CertrBPF . 127
7.2 C code statistics of CertrBPF . 128
7.3 Memory footprint of rBPF engines . 131
7.4 Execution time of real-world benchmarks (64-bit) 133
7.5 JIT compilation and execution time of alu32 instructions 136
7.6 Execution time of real-world benchmarks (32-bit) 136

17

Chapter 1

INTRODUCTION

1.1 Motivation

The C programming language both benefits from and is burdened by its low-level
idioms and features. On the one hand, it was designed [KR02] to provide fine-grained
control over byte-level data representation in computer memory. This low-level feature al-
lows programmers to develop highly efficient, resource-frugal, and easily readable artifacts
in comparison to machine-level assembly code. Consequently, there are billions of lines of
legacy C code 1 still in operation across critical (and non-critical) fields, including finance,
transportation, digital networks, and especially the Internet of Things (IoT). At the same
time, the flip side of the coin is that using C is error-prone because it makes low-level
memory management mistakes easy, for instance, float overflow, array out-of-bounds, and
use-after-free, etc. The low-level abstraction of C code also increases the vulnerabilities
in complex and sometimes critical distributed systems, e.g., logic errors.

There are several ways to detect defects in software. One solution is to follow a strict
and qualifiable software development process (including testing) to implement certified
artifacts (e.g., SCADE KCG 2 [Ber07]) that satisfy certification requirements (e.g., DO-
178C [Rie17]) for specific critical fields. Another approach involves designing a new lan-
guage with specific safety features (e.g., Rust [MK14] for ensuring memory safety). While
these measures are capable of detecting certain vulnerabilities, they usually cannot guar-
antee the absence of vulnerabilities, especially not in a mathematically rigorous manner.

Formal Techniques. Formal methods provide stronger guarantees for the absence of
bugs by abstracting low-level programs into high-level models, allowing their expected
properties to be mathematically reasoned about. For instance, the Airbus code production

1. Slogan: Code becomes legacy as soon as it’s written.
2. SCADE stands for Safety-Critical Development Environment, KCG stands for ‘qualified code gen-

erator’

19

Introduction

line combines several formal methods: i) The static analyzer Astrée [Cou+05] proves the
absence of some specific types of bugs in C programs, e.g., array-out-of-bound. ii) The
formal analysis tool Frama-C [Kir+15] guarantees the functional properties of C programs.
iii) The verified CompCert [Ler09] compiler translates C programs into binary code.

Formal methods encompass various techniques, including abstract interpretation, model
checking, and (automated or interactive) theorem proving. Among all formal verification
methods, Interactive Theorem Proving (ITP) is arguably the most comprehensive and rig-
orous technique to constructively guarantee the correctness of a program through math-
ematical reasoning about program execution (program semantics). In essence, the ITP
process involves: i) Human-defined mathematical description of program behaviors, i.e.,
formal semantics. ii) Human-provided mathematical proofs (in some tactic languages)
of target properties. iii) Machine-checked correctness of proofs. All of these steps are
performed within a proof assistant. Common proof assistants include Coq [BC13], Is-
abelle/HOL [NWP02], and Lean [Mou+15], etc. For instance, the CompCert compiler is
formally verified using the Coq proof assistant: all relevant languages and transforma-
tions are specified in the functional language Gallina [Hue92], embedded in Coq, and all
machine-checked proofs regarding the correctness theorem of behavior preservation are
expressed using the tactic language Ltac [Del00] within Coq.

End-to-end Verification Approaches. We focus on the specification and verification
of IoT software, which is typically written in C. There are methods that directly verify
hand-written low-level C code, such as VCC [Coh+09], VeriFast [JP08], RefinedC [Sam+21],
and VST [App+14]. In contrast, this thesis considers a different end-to-end verification
approach that abstractly models high-level specifications in the programming language
of a proof assistant. This abstract model eliminates specific details from low-level code,
allowing users to harness the full power of the proof assistant to verify programs.

End-to-end verification approaches also necessitate a verified or trusted compiler to
connect abstract models with low-level implementations. Existing compilers like CertiCoq
(Coq) [Ana+17], Cogent (Isabelle/HOL) [Riz+16], KaRaMeL (F⋆/Low⋆) [Pro+17], and
others have been developed, but none can simultaneously fulfill the following requirements:

— Verified compilation to ensure that the expected properties of high-level specifica-
tions are preserved in the low-level programs.

— High-performance generated C code, e.g., free of automatic memory management
(garbage collection).

20

https://www.absint.com/astree/index.htm
https://frama-c.com/
https://compcert.org/
https://coq.inria.fr/
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/
https://leanprover.github.io/
https://coq.github.io/doc/v8.9/refman/language/gallina-specification-language.html
https://coq.inria.fr/refman/proof-engine/ltac.html

Introduction

— A minimal trusted computing base (TCB).

The primary objective of this thesis is to propose an end-to-end verification approach
that meets these requirements. We apply this approach to verify a subsystem of a real-
world IoT operating system (OS), RIOT-OS [Bac+18]: rBPF [ZB20].

rBPF. In many cases, operating systems adopt sandboxing techniques to isolate un-
trusted extensions within the kernel. To achieve this, the Linux community extended the
classical Berkeley Packet Filters [MJ93] (BPF) to enable the execution of custom in-kernel
virtual machine (VM) code. This VM is integrated into various subsystems, serving pur-
poses beyond packet filtering [Fle17]. The extension of eBPF to micro-controllers led to
the specification of rBPF in RIOT-OS.

The current rBPF consists of a compact verifier and a sophisticated defensive inter-
preter, but it faces two main challenges:

— rBPF Security: Similar to eBPF’s role in Linux, rBPF operates within the sensi-
tive and critical RIOT-OS kernel. As it functions in-kernel, rBPF could potentially
compromise the operating system’s security by executing untrusted code from third
parties. The rBPF verifier might fail to identify malicious or erroneous scripts, and
the interpreter might be unable to prevent their execution. This threat is possible,
considering multiple eBPF vulnerabilities reported to the Linux community on var-
ious occasions, such as CVE-2023-0160 (deadlock flaw), CVE-2022-3646 (memory
leak), CVE-2022-3623 (race condition attack), and more.

— rBPF Performance: rBPF sacrifices performance by adopting a defensive inter-
preter as its execution engine. While this choice ensures that untrusted, erroneous, or
adversarial code can run in an open or possibly hostile environment, while isolating
faults to protect the host’s integrity, it naturally leads to lower performance com-
pared to a Just-In-Time (JIT) implementation that optimizes program execution
speed by translating generic bytecode from a source script into the machine-specific
instruction set. However, integrating a traditional Linux JIT compiler into rBPF is
challenging due to the complexity of rBPF’s defensive strategies. Incorporating a
JIT compiler could also introduce new and potentially more insidious errors at the
binary level, making it harder to ensure the isolation property.

21

https://www.riot-os.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3646
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3623

Introduction

1.2 Contributions

Developing a fault-isolating virtual machine for Microcontrollers (MCUs) poses two
major challenges. One is to embed the VM within the MCU’s micro-kernel and minimize
its code size and execution environment. Another is to reduce the verification gap between
its proof model and the actual running code.

In this thesis, we address these challenges by presenting the first end-to-end verification
workflow, synthesizing a comprehensive real-world virtual machine for the BPF instruction
set family: CertrBPF, and designing a JIT compiler to accelerate CertrBPF.

This thesis outlines our solutions for developing and proving the correctness of rBPF.
Specifically, we present the following contributions:

End-to-end Verification Approach: We introduce an end-to-end verification approach
to remove the gap between a verified Gallina implementation and its unverified ex-
tracted C code. Our starting point is a proof model written in Gallina. We use this
proof model to certify expected properties. From this proof model, we then derive a
synthesis model of which we extract an executable version in Clight, that we finally
prove to perform the same state transitions.

Certified rBPF Interpreter: CertrBPF is a verified model and implementation of rBPF
in Coq. We formalize the syntax and semantics of all rBPF instructions, implement
a formal model of its interpreter (femto-container), complete the proof of critical
properties of our model, and extract and verify CompCert C code from this formal-
ization. Our end-to-end approach obtains a fully verified virtual machine. Not only
is the Gallina specification of the VM proved kernel- and memory-isolated using the
Coq proof assistant, but the direct interpretation of its intended semantics as Com-
pCert C code is, itself, verified correct. This yields a fully verified binary program of
maximum security and minimal memory footprint and reduced the TCB: CertrBPF,
a memory-efficient kernel-level virtual machine that isolates runtime software faults
using defensive code and does not necessitate offline verification.

Certified rBPF JIT Compiler: We introduce JITALU, a Gallina-based specification of
a JIT compiler that dynamically generates ARM binary code from rBPF byte-
code. This numerical accelerator significantly speeds up computation tasks in rBPF
programs while reusing the existing rBPF interpreter CertrBPF to execute security-
sensitive branch and memory instructions, subject to complex run-time checking.
The executable CompCert C implementation of the hybrid VM+JIT specification,

22

Introduction

named hybridly accelerated virtual machine (HAVM for short), is directly obtained
from its monadic Gallina specification in Coq. We also provide the glue code: a
jit_call procedure, that builds a proper ARM environment from the VM to di-
rectly jump at the address of the jited code. Its implementation consists of 5
assembly code lines written in C and its specification is formally defined in Coq. By
combining jit_call with the verified C implementations of CertrBPF and JITALU,
we obtain a readily executable implementation of HAVM.

Secure Integration and Benchmarks: We integrate CertrBPF and HAVM as a drop-
in replacement of the current, non-verified rBPF interpreter in RIOT-OS. We then
comparatively evaluate the performance of CertrBPF integrated in RIOT-OS, run-
ning on various 32-bit micro-controller architectures. Our benchmarks demonstrate
that, in practice, CertrBPF not just gains security, but reduces memory footprint as
well as execution time. As expected, we observe significant speedups compared to ex-
isting rBPF interpreters. Chapter 7 reports the promising performance evaluation of
our HAVM against RIOT-OS CertrBPF and earlier Vanilla-VM micro-benchmarks
on a development Cortex-M platform.

1.3 Outline
The main body of this thesis is structured as follows: Chapter 2 introduces the state

of the art, including end-to-end verification and BPF verification. Chapter 3 presents the
BPF family, CompCert, and the ∂x code extraction tool. Chapter 4 presents our end-
to-end verification approach, which involves formally refining monadic Gallina programs
into C programs. This methodology consists of a proof model with certified properties,
a refined synthesis model with optimization, and a verified Clight model with behavior-
equivalent proof. Chapter 5 defines CertrBPF, a verified model and implementation of the
rBPF virtual machine in Coq. In particular, its proof model encompasses the semantics of
our VM and isolation theorems, and the synthesis and implementation models are proven
to satisfy the refinement relation, and a formally verified verifier establishes the invari-
ants needed by the VM. In Chapter 6, we present JITALU, a JIT compiler dynamically
translating rBPF ALU32 bytecode to ARM binary code. This numerical accelerator is
designed to speed up computation tasks. We then detail our solution to integrate JITALU

into CertrBPF to create a hybrid interpreter. In this design, ALU32 bytecode is com-
piled by JITALU and executed directly by the hardware, while the more complex bytecode

23

Introduction

(defensive memory operations) is still interpreted by CertrBPF. Chapter 7 conducts a
case study on the performance of our two generated VM implementations, CertrBPF
and HAVM, in relation to off-the-shelf RIOT femto-containers. Chapter 8 concludes and
presents avenues for future work.

The CertrBPF project is the main contribution of the work package 3 in the Inria
challenge project RIOT-fp, which aims to provide formal proofs on RIOT-OS components.
The source code associated with this thesis, and more broadly, with the entire CertrBPF
project, is publicly available online in the project’s GitLab repository [Cer23a; Cer23b].
We provide links to this online source code for several definitions and theorems in this
thesis in the form of Coq logos .

24

https://future-proof-iot.github.io/RIOT-fp/

Chapter 2

STATE OF THE ART ON END-TO-END

VERIFICATION APPROACHES AND BPF
VERIFICATION

Since Tony Hoare proposed the manifesto ‘The Verified Software Initiative’ that aims
to construct error-free software systems, the successful verification of realistic software
components has been established, especially for compilers and operating systems.

— In terms of compilers, the CompCert project [Ler09], led by Xavier Leroy, success-
fully verifies a C compiler that guarantees the compilation correctness from a large
C99 subset (CompCert Clight) to various target assembly languages. Further details
of CompCert are introduced in Section 3.2. Subsequently, many verified compilers
are proposed: CakeML [MO12] implements a verified compilation from a subset of
Standard ML to assembly, the Vellvm project [Zha+13] focuses on building a veri-
fied LLVM compiler, Vélus [Bou+17] is a verified compiler from the Lustre dataflow
synchronous language [Cas+87] to CompCert Clight, and so on.

— In terms of verified OS kernels, the seL4 project [Kle+09] is the first to build a
proof of functional correctness for a realistic microkernel, the proof is conducted
over a high-level specification and then propagated down to a concrete implemen-
tation. Ironclad [Haw+14] establishes end-to-end security properties from the ap-
plication layer down to kernel assembly. It uses the Dafny verifier [Lei10], built on
the Z3 SMT solver [DB08], to help automate proofs. Other verified OS kernels are
implemented for various purposes, e.g., CertiKOS with multicore support [Gu+16],
µC/OS-II [Xu+16] for interrupt reasoning, Hyperkernel [Nel+17] with a high degree
of proof automation, verified Zephyr RTOS [ZS19] with concurrent buddy memory
allocation, and the Pip proto-kernel [Jom+18a; Jom+18b] for memory isolation on
memory management unit (MMU).

25

State of the Art on End-to-End Verification Approaches and BPF Verification

In this chapter, we narrow our focus to two specific topics:

— End-to-end verification approach (X-to-C): This part belongs to the topic of com-
piler verification, it involves a proof-assistant-related language on one side and the
C programming language on the other.

— BPF-related verification: This topic involves the verified OS components, and it
covers the verification of the Linux eBPF verifier, interpreter, and JIT compiler.

2.1 End-to-End Verification Approaches

F⋆ [Swa+13] is a proof-oriented functional language with effects and has been used
to develop many high-assurance cryptographic algorithms, such as Chacha20, Poly1305,
and SHA-3. For low-level code verification, F⋆ embeds a domain-specific language (DSL)
called Low⋆ [Pro+17], which is a subset of F⋆. Low⋆ includes a lower-level C-like memory
model and libraries of C-style arrays and structs. As shown in Figure 2.1, F⋆ also offers a
compiler from Low⋆ to C named KaRaMeL. While KaRaMeL has an on-paper semantics-
preservation proof from the Low⋆ semantics model λow to CompCert Clight [BL09], its
current implementation, written in the functional language OCaml, remains unverified.

Figure 2.1 – The F⋆/Low⋆ workflow

Comparison.

— pros: The F⋆/Low⋆ approach offers a higher level of automation compared to our
methodology. KaRaMeL incorporates a built-in mapping relation from F⋆/Low⋆

types to C types whereas our methodology additionally requires users to manually
rename their synthesis model with ∂x type configurations.

26

https://ocaml.org/

State of the Art on End-to-End Verification Approaches and BPF Verification

— cons: The F⋆/Low⋆ approach involves a larger TCB which includes the F⋆ type-
checker, the Z3 SMT solver, and the KaRaMeL compiler. In contrast, our intended
TCB is only limited solely to the Coq type-checker.

Another approach is Cogent [Riz+16], which aims to develop verified applications on
top of the SeL4 [Kle+09] micro-kernel. Cogent, as depicted in Figure 2.2, consists of a
functional language with linear types for specifying source programs and generates C
code along with Isabelle/HOL proof information. Cogent lacks built-in recursion, and
its iteration is expressed through integrated foreign function interfaces (FFI) that are
verified by users. The Cogent compiler offers certifications to verify that the extracted C
code refines a high-level Isabelle/HOL functional specification within the Isabelle/HOL
proof assistant. Users can then prove that the Isabelle/HOL specification preserves the
expected correctness properties.

Figure 2.2 – The Cogent workflow

Comparison.

— pros: Cogent offers a higher degree of proof automation in contrast to our method-
ology. It provides a certifying compiler that ensures the simulation relation between
the generated Isabelle/HOL model and extracted C code, In our approach, we use
an unverified code generator, which needs an additional simulation proof from each
input Gallina model to the output C implementation.

— cons: Our method is more direct than the co-specification approach (Cogent +
Isabelle/HOL) in Cogent: We directly formalize specifications in Gallina that is
embedded in Coq, then translate Gallina specifications into C code and performs
the end-to-end verification in Coq.

When the scope is narrowed down to the topic of converting Gallina programs into
executables, there are various techniques.

27

State of the Art on End-to-End Verification Approaches and BPF Verification

To begin with, Coq comes with a built-in extraction mechanism [Let02] that gener-
ates OCaml, Haskell, or Scheme. This path has a rather large TCB (Coq extraction and
a compiler). CertiCoq [Ana+17] is an ongoing project aiming at generating CompCert C
code from Gallina. This is achieved through several specific Intermediate Representations
(IRs) and multiple transformation passes, as shown in Figure 2.3. The project’s initial two
passes, named reification, and erasure, are part of the MetaCoq project [Soz+20]. After
the eta expansion of constructors and patterns, as well as the let-binding of environ-
ment, CertiCoq introduces two alternative transformations: the Administrative Normal
Form (ANF) or the Continuation-Passing Style (CPS) to generate the λANF intermediate
representation. ANF and CPS are two common low-level functional intermediate repre-
sentations. Importantly, the λANF representation in CertiCoq is syntactically a superset
of CPS, and this allows users to obtain a λANF program by choosing either ANF or CPS
conversion to λANF . Then the λANF is compiled to λANF C that is a subset of the ANF
language without nested functions. The final step involves C code generation including
two procedures: one for handling CPS code and another for the full λANF C representation.

Figure 2.3 – The CertiCoq workflow (solid arrow: verified, dashed arrow: proof underway)

Comparison.

— pros: Similar to CakeML [MO12], CertiCoq performs a compilation from the full
functional language Gallina to CompCert C, while our approach is limited to a
subset of Gallina in monadic form. Once CertiCoq is completed, it will allow one to
rely on a small TCB, akin to ours.

— cons:

— Readability: CertiCoq often yields C code that is less readable compared to our
approach, which produces C programs much more conducive to manual review.

28

https://metacoq.github.io/

State of the Art on End-to-End Verification Approaches and BPF Verification

— Garbage Collection: As a generic functional language compiler, CertiCoq gen-
erates C code with an (verified) external garbage collector, which is usually
unsuitable for real-time IoT operating systems, e.g., RIOT-OS. In contrast,
our method is free of garbage collection.

Œuf [Mul+18] is another tool for compiling Gallina to C. The first compilation step,
as shown in Figure 2.4, involves reflecting Gallina terms into corresponding Abstract Syn-
tax Trees (ASTs) within the Œuf source language. This Œuf language is a lambda-lifted
simply typed lambda calculus over a particular set of base types. The reflection proce-
dure does not require to be trusted, as it is verified using translation validation [PSS98].
Subsequently, The process translates Œuf ASTs into the CompCert Cminor IR, followed
by the reuse the CompCert backend to obtain the target machine code.

Comparison.

— pros: Œuf enjoys a higher degree of proof automation compared to our methodology.

— cons: Similar to CertiCoq, the C code generated by Œuf also relies on an unverified
garbage collector. This can often result in increased overhead or memory footprint,
which are highly constrained resources in IoT devices.

Figure 2.4 – The Œuf workflow

Codegen [Tan21] converts Gallina to C with partial evaluation. It primarily focuses on
eliminating polymorphism and dependent types from Gallina, transforming Gallina func-
tions into a form that closely resembles C within the Gallina language, and subsequently
extracting C code from it.

Comparison.

— pros: Codegen offers the ability to configure the representation of values. For exam-
ple, it can safely replace natural numbers with finite-size integers.

— cons: The main limitation of Codegen is that its transformations are unverified.

Rupicola [Pit+22] presents an original and promising approach that regards a compiler
as a partial decision procedure. It comprises a proof search procedure, which may either

29

State of the Art on End-to-End Verification Approaches and BPF Verification

fail or produce a target program in bedrock2 [Erb+21] (a C-like low-level language AST
embedded in Coq) along with a proof of equivalence.

Comparison.

— pros: Rupicola offers a higher level of proof automation compared to our approach.

— cons: Currently, Rupicola has only been tested for small algorithms, while our
methodology aims for end-to-end verification of complex real-world applications.

2.2 BPF verification
Several existing formal approaches have addressed the Linux eBPF verifier, including

verification of the soundness of range analysis in the verifier [SH23; Vis+23], abstract
interpretation (PREVAIL [Ger+19]), and symbolic evaluation (Serval [Nel+19]).

Comparison.

— pros: All of the above approaches are designed for a sophisticated verifier, whereas
our target, RIOT-OS rBPF, employs a tiny verifier.

— cons: None of these approaches can guarantee the termination of eBPF programs.
In contrast, our scenario naturally guarantees termination, as rBPF introduces a
default fuel mechanism for termination.

The Jitk framework [Wan+14] uses Coq to implement and verify the correctness of
a JIT compiler for the classic Berkeley Packet Filter language (not eBPF) in the Linux
kernel. As depicted in Figure 2.5, Jitk first introduces a high-level specification language
called System Call Policy Language (SCPL) to specify the desired system call policies, It
then implements a verified compiler for translating SCPL rules to BPF bytecode. Sub-
sequently, Jitk translates the BPF bytecode into the CompCert Cminor intermediate
representation and leverages the CompCert backend to generate target code. The Jitk
compiler is extracted to OCaml implementation using the Coq extraction mechanism.

Comparison.

— pros: Jitk supports the specification of system call policies as BPF filters. In con-
trast, our CertrBPF only supports limited build-in RIOT-OS system calls as same
as the vanilla rBPF.

— cons: Jitk adopts the Coq extraction mechanism to translate their JIT into an
executable OCaml implementation, which runs in the Linux user space and requires
modifications to the kernel for upcalls. Additionally, the Coq extraction approach is

30

State of the Art on End-to-End Verification Approaches and BPF Verification

not suitable for RIOT-OS, a resource-limited IoT operating system, due to Jitk’s
dependency on the OCaml runtime, an assembler, and a linker. Conversely, our
method targets executable implementations written in CompCert C.

Figure 2.5 – The Jitk compilation

JitSynth [Gef+20] is a tool designed for synthesizing verified JITs for in-kernel DSLs.
As shown in Figure 2.6, it takes input information, including the syntax, semantics, and
abstract register machine state for both the source and target instruction set architec-
tures (ISA). The semantics are expressed in the form of an interpreter, and the machine
state contains a register map, a memory model, and a program counter. By establishing
mapping relations from the source state to the target state, JitSynth synthesizes a mini
compiler from every instruction in the source language to a sequence of instructions in
the target language. These per-instruction compilers are then composed into a full com-
piler using a trusted outer loop and a switch statement. JitSynth has been applied to
synthesize a JIT compiler from eBPF to RISC-V.

Comparison.

— pros: JitSynth offers a method for synthesizing verified JITs from interpreters,
while our case study implements a verified rBPF interpreter and an unverified JIT
compiler respectively.

— cons: JitSynth exhibits a verification gap between their formal models and the
low-level C implementation, as the final C artifact is manually written. We bridge
this verification gap by leveraging our end-to-end verification approach in Coq to
generate verified C implementations.

Jitterbug [Nel+20] is a framework to write in-kernel JITs and prove them correct.
This framework consists of three key components: i) formalizing the specification for JIT
correctness, i.e., the behavioral equivalence between the abstract machines of eBPF and
target architectures, ii) proposing an automated proof strategy using symbolic evaluation
to prove JIT correctness and iii) defining a C DSL for developing JITs, the DSL is a
shallow embedding of a structured subset of C in Rosette [TB14], a solver-aided host

31

State of the Art on End-to-End Verification Approaches and BPF Verification

Figure 2.6 – The Jitk compilation

language. Jitterbug has been used to implement and verify a new eBPF JIT for 32-bit
RISC-V architectures.

Comparison.

— pros: Jitterbug demonstrates a high degree of proof automation by using Rosette
to formalize JITs specifications. While our approach requires more manual proof
work.

— cons: Similar to JitSynth, Jitterbug faces a verification gap, wherein the low-
level C implementation is extracted through an unverified extraction mechanism. In
contract, Our intended goals are verified C programs.

2.2.1 Conclusion

The verification of realistic compilers and operating systems have been the subjects
of vast development and verification efforts due to the sheer code size of the artifacts
at stake. These full-scale case studies gave rise to new strategies and methodologies to
address the challenge of verifying large-scale software. This chapter introduces the related
work about the end-to-end verification approach and BPF verification, and shows the
comparison between each related research and our methodology.

32

Chapter 3

BACKGROUND

In this chapter, we introduce essential concepts necessary for our refinement method-
ology along with a verified rBPF implementation. We begin by focusing on BPF and its
variants, with particular attention to Linux eBPF and RIOT-OS rBPF. Following that,
we provide an overview of the formally verified CompCert C Compiler, including its in-
termediate languages, memory model, and the simulation framework. Finally, we discuss
the key features of the ∂x code generation tool, which offers automatic but unverified
extraction from monadic Gallina specifications to executable C code.

3.1 Berkeley Packet Filters (BPFs)

3.1.1 cBPF vs eBPF

Originally, Berkeley Packet Filters (BPF) [MJ93] was designed to provide Unix-BSD
systems with network packets filtering capabilities and tools such as tcpdump. This clas-
sical BPF, also known as cBPF, takes the form of an assembly language that defines a
virtual RISC-like ISA in which succinct and cautiously written scripts can be executed to
parameterize privileged, mission-critical, network stacks. cBPF is highly restrictive and
limited, featuring only two registers and bytecode interpretation. This restrictiveness be-
comes an obstacle for emerging scenarios that require rich functionality and low overhead.

For machines like PCs, servers, and routers, the Linux community extended the con-
cept of cBPF to provide ways to run custom in-kernel virtualized (VM) code, hooked as
"plugins" to various services and for varieties of purposes beyond packet filtering [Fle17].
This expanded version of BPF, known as eBPF or Linux eBPF, includes:

— ISA: Derived from the 64-bit RISC-V family, it offers 10 general-purpose registers
as well as a read-only frame pointer register.

— verifier : This component statically analyzes eBPF binary instructions, rejecting all
potentially unsafe programs. The C implementation spans over 10 thousands of lines

33

https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c

Background

of code (KLOC).

— interpreter : It executes eBPF binary instruction one by one.

— just-in-time (JIT) compiler : This module translates eBPF binary into various 64/32-
bit architectures, such as x86, ARM, and RISC-V.

eBPF ISA encoding. The eBPF ISA has two instruction encodings: little-endian en-
coding and big-endian encoding, as shown in Figure 3.1.

Figure 3.1 – Linux eBPF instruction encodings

A 64-bit eBPF instruction, from least significant bit (lsb) to most significant bit (msb),
consists of the following fields:

— 8-bit opcode

— 4-bit destination register and 4-bit source register (their locations are target-dependent)

— 16-bit signed integer offset

— 32-bit signed integer immediate value

Most instructions do not use all of these fields, so eBPF specifies that unused fields
should be all-zero. Details of eBPF instruction encodings can be found in the eBPF
Instruction Set Specification.

eBPF uses the three least significant bits of the opcode to define instruction classes
(‘cls’), as shown in Table 3.1. The instruction class includes memory load (‘0x00’ and
‘0x01’), memory store (‘0x02’ and ‘0x03’), 32-bit and 64-bit arithmetic instruction (‘0x04’
and ‘0x07’), and branch (‘0x05’ and ‘0x06’).

Consider the 64-bit arithmetic instruction class (ie ‘0x07’) shown in Table 3.2, both
opcodes ‘0xX7’ and ‘0xXf’ (X representing an arbitrary hexadecimal number) are in this
class. eBPF specifies such as ‘0x07’ representing the 64-bit addition with immediate value
instruction, ‘0x0f’ denoting the 64-bit addition with source register instruction, and ‘0x17’

34

https://docs.kernel.org/bpf/instruction-set.html
https://docs.kernel.org/bpf/instruction-set.html

Background

Table 3.1 – eBPF instruction classes

Class Value Description
BPF_LD 0x00 non-standard load operations
BPF_LDX 0x01 load into register operations
BPF_ST 0x02 store from immediate operations
BPF_STX 0x03 store from register operations
BPF_ALU32 0x04 32-bit arithmetic operations
BPF_JMP64 0x05 64-bit jump operations
BPF_JMP32 0x06 32-bit jump operations
BPF_ALU64 0x07 64-bit arithmetic operations

for the 64-bit subtract with immediate value instruction, etc. For example, assuming a
little-end target, the 64-bit binary ‘0x000000000000250f’ corresponds to ‘BPF_ADD64
R5 R2’ which means adding the value of destination register R5 to the value of source
register R2 and updating R5 with the result.

Table 3.2 – eBPF ALU64 instructions

Instructions Opcode Description
BPF_ADD64 dst imm 0x07 addition with immediate value
BPF_ADD64 dst src 0x0f addition with register
BPF_SUB64 dst imm 0x17 subtract with immediate value
.

eBPF verifier. The eBPF validation process involves static analysis of eBPF bytecode
before execution. It establishes two key properties for eBPF bytecode: memory safety and
termination. For memory safety, the eBPF verifier ensures that the program only accesses
memory locations within its allocated regions. To validate eBPF program termination,
the verifier explores all reachable execution paths to ensure they safely terminate without
errors. The eBPF verifier rejects programs beyond a finite complexity threshold of one
million instructions.

eBPF workflow. While the Linux kernel expects eBPF programs to be loaded in the
form of bytecode, application developers often prefer to write these programs in a high-
level abstraction, e.g., pseudo-C code. Then, these programs are translated into bytecode

35

https://elixir.bootlin.com/linux/v6.5/source/include/linux/bpf.h#L1662

Background

Figure 3.2 – Linux eBPF Workflow

using compiler suites like LLVM or GCC. As shown in Figure 3.2, if the eBPF verifier
validates the provided bytecode scripts, the selected eBPF execution engine runs them.

Linux eBPF has broad extensions for specific purposes, For instance, a userspace eBPF
(uBPF) enables the execution of eBPF programs on non-Linux systems, and Microsoft’s
ebpf-for-windows builds on uBPF and the PREVAIL formal verifier.

3.1.2 RIOT-OS rBPF

eBPF was then ported to micro-controllers, resulting in the RIOT-OS rBPF specifi-
cation. Just like eBPF, rBPF is designed as a 64-bit register-based VM, using fixed-size
64-bit instructions and a reduced instruction set architecture derived from eBPF. rBPF
also employs a fixed-size stack (512 bytes) and excludes any heap interaction, thereby
minimizing VM memory overhead in RAM.

rBPF comprises two key components: a compact verifier (less than 0.1 KLOC) for
basic validation, e.g., excluding illegal opcodes, and a defensive interpreter for execution.

The primary distinction between rBPF and eBPF is that rBPF adopts dynamic run-
time checking to implement its fault-isolated, defensive strategies, while eBPF employs
static analysis techniques via an offline, sophisticated verifier. Users of rBPF must declare
all memory regions accessed by their programs, specifying fine-grained permissions for
each region. The memory region declaration is defined as a C linear structure, encom-
passing details like start address pointer, size, and permission type.

struct mem_region {
mem_region *next; // pointing to next memory region

36

https://github.com/iovisor/ubpf
https://github.com/microsoft/ebpf-for-windows
https://github.com/future-proof-iot/Femto-Container/blob/main/src/verify.c

Background

const uint8_t *start; // starting address of current region
size_t len; // offset
uint8_t flag; // permission type

};

The workflow of rBPF mirrors that of eBPF, as shown in Figure 3.3. The main differ-
ence is that rBPF only leverages an interpreter to execute the bytecode script.

Figure 3.3 – RIOT-OS rBPF Structure

3.2 CompCert
CompCert [Ler09] is a C compiler that has been both programmed and proved correct

using the Coq proof assistant. It compiles C programs into assembly programs that sup-
port mainstream target architectures (32 or 64-bits), including x86, ARM, and RISC-V.
CompCert follows a software-proof codesign approach where development is carried out
directly in Coq alongside its proof. It uses Coq’s extraction facility to generate executable
OCaml code capable of compiling C programs.

This section mainly describes the architecture, programs, memory model, and simu-
lation theorem of the CompCert compiler, which are essential for our work.

3.2.1 CompCert Architecture

As depicted in Figure 3.4, the CompCert C compiler is structured as a pipeline of 20
compilation passes that bridge the gap between source C code and target object files. It
traverses 11 intermediate languages (IRs) in the process. The passes can be grouped into
three successive phases:

37

Background

Figure 3.4 – CompCert Architecture

First, CompCert converts a C program into a precise, unambiguous CompCert C AST.
The phase comprises preprocessing, lexing, parsing, type-checking, etc. Only the LR(1)
parser is formally verified [JPL12].

The second phase is the most significant part of CompCert: a fully verified compi-
lation process that transforms CompCert C AST into assembly ASTs. The front-end 1

translates a CompCert C AST into a Cminor AST, which is the lowest-level language
still processor independent in the CompCert compilation chain. The back-end performs
code transformation into a standard compiler IR, i.e., register transfer language (RTL),
performs optimizing passes, allocates registers by an external allocator written in OCaml,
and finally obtains assembly code with various target architectures.

The last part consists of assembling and linking, executed by an external assembler
and linker. While CompCert doesn’t provide formal guarantees for this phase, the Valex
tool from AbsInt uses translation validation to recheck the ELF executable files generated
by the linker against the CompCert back-end assembly ASTs.

3.2.2 CompCert Programs

The syntax of programs in the all CompCert languages shares a common structure,
shown in Figure 3.5.

1. The original paper of CompCert front-end[BDL06] starts from Clight, the version presented here
simplifies our presentation.

38

Background

Programs :
P ::= { global_defs = id0 = Gd0; . . . ; idn = Gdn; global definitions

pub_names = id0; id1; . . . ; idn; public names
main = id } entry point

Global definitions :
Gd ::= Gv | Fd
Definitions of global variables :
Gv ::= { global_info = v; (language-dependent)

global_init = data; . . .} initialization data, . . .
Function definitions :
Fd ::= internal(F) | external(Fe)
Definitions of internal functions :
F ::= { sig = sig; body = . . . ; . . .} (language-dependent)
Definitions of external functions :
Fe ::= { name = str; sig = sig}
Function signatures :
sig ::= { args = −→ty ; list of arguments type

res(ty | void); return type
cc } calling convention

Types :
ty ::= int integers and pointers

| float floating-point numbers

Figure 3.5 – Syntax of CompCert Programs

39

Background

A program consists of

— global_defs: a list of global definitions, either global variables Gv with their ini-
tialization data or functions Fd;

— pub_names: a collection of public names that are visible outside of the program;

— main: the name of the main function that constitutes the program entry point.

CompCert supports two kinds of function definitions. Internal functions F are defined
within the given language, and include at least i) a signature specifying the number and
types of arguments and results, along with the additional information on which calling
convention to use; ii) a body defining the computation task, e.g., statements in C and
instructions in assembly.

External functions Fe are defined outside the program, such as systems calls or com-
piler built-in functions, and are declared with an external name with string type (str)
and a signature. The observable behavior of the program is defined in terms of a trace of
invocations of external functions.

3.2.3 CompCert Memory Model

The memory model [LB08; Ler+12] and the representation of values are shared across
all intermediate languages in CompCert. The set of values val is defined as follows:

val ∋ v::=Vint(i) | Vlong(i) | Vptr(b, o) | Vundef | . . .

A value v ∈ val can be a 32-bit integer Vint(i); a 64-bit integer Vlong(i), a pointer
Vptr(b, o) composed of a block identifier b and an offset o, or the undefined value Vundef.
The undefined value Vundef represents an unspecified value and is not, strictly speaking,
an undefined behavior. Yet, as most of the C operators are strict in Vundef, and because
branching over Vundef or de-referencing Vundef are undefined behaviors. CompCert val-
ues also include floating-point numbers; they play no role in our development.

CompCert’s memory consists of a collection of separate arrays, each with a fixed size
determined at allocation time and identified by an uninterpreted block b ∈ block. The
memory provides an API for basic operations:

— alloc(M , lo, hi) = (b, M ′): Allocate a fresh block with bounds [lo, hi), initially
containing undefined cells. Return its identifies b and the updated memory M ′.

40

Background

— load(k, M , b, ofs) = ⌊v⌋: Read the value v of memory chunk k from memory M ,
at block b, starting at index ofs.

— store(k, M , b, ofs, v) = ⌊M ′⌋: Store value v in memory chunk k of block b at offset
ofs. Return the updated memory M ′.

— free(M , b, lo, hi) = ⌊M ′⌋: Free the block b within the given bounds. Returns the
updated memory M ′ where the interval [lo, hi) of block b has been invalidated: not
allowed to read or write anymore.

The memory chunk k involved in load and store specifies the number of bytes to
be written or read and how to interpret bytes as a value v ∈ val. For instance, Mint32
specifies a 32-bit value. The alloc operation never fails because CompCert assumes an
infinite memory. load and store may fail when given an invalid block b, an out-of-bounds
offset ofs, or invalid permissions, free may also fail because it requires freeable permission
on the given range. Therefore, those operations return option types, with ⌊v⌋ (i.e., Some
v), denoting success with result v, and ∅ (i.e., None) denoting failure.

3.2.4 CompCert Simulation Framework

CompCert is organized into passes that utilize several intermediate languages, as il-
lustrated in Figure 3.4. Each intermediate language is equipped with a formal semantics
and each pass is rigorously proved to preserve the observational behavior of programs.
For each pass, CompCert employs one of two verification approaches:

— Direct proof of correctness.

— Validation a posteriori (i.e., translation validation) with proof of the validator’s
correctness.

In this section, we primarily focus on the first approach, which is adopted by most
CompCert passes. The translation validation technique is specifically applied in the trans-
formation from RTL to LTL due to the ease of proving the validator’s correctness. For
detailed information on the proof, we refer the interested reader to [RL10].

Transition Semantics. The operational semantics for all CompCert languages are
defined as label transition systems. The transition relation, denoted as G ⊢ S

t−→ S ′,
represents a single execution step from state S to state S ′ within the global environment
G. Each step is associated with a trace t of observable external I/O events (e.g., a system

41

Background

call) or an internal event ϵ. CompCert also defines transitive closures star →∗ (zero, one
or many steps) and plus→+ (one or many steps) from the one step→. Additionally, each
CompCert language defines two special predicates initial_state and final_state to
represent when the execution of a program in the language starts and stops.

— initial_state(P, S): Signifies that state S is an initial state for program P ,
typically corresponding to the invocation of the main function of P .

— final_state(S, n): Indicates that S is a final state with an exit code n, imply-
ing that the program is returning from the initial invocation of its main function,
producing value Vint(n).

Generic Simulation Diagrams. CompCert uses a simulation approach to prove that
each pass preserves the semantics between source and target languages. Two types of sim-
ulations are used in CompCert: forward simulation and backward simulation. Intuitively,
a forward simulation asserts that every step in the source language corresponds to a set
of steps in the target language, while a backward simulation states that each step in the
target language corresponds to a set of steps in the source language.

Consider two languages, L1 and L2, defined by their transition semantics. Let P1 be
a source program in L1, and P2 be the translated target program in L2. We construct a
relation S ∼ T between states of L1 and states of L2 and demonstrate that it constitutes
either a forward or a backward simulation. To begin, we ensure that initial states and
final states are related by ∼ as follows:

— Initial states: if initial_state(P1, S) and initial_state(P2, T), then S ∼ T

— Final states:

— (forward): if S ∼ T and final_state(S, n) , then final_state(T, n)).

— (backward): if S ∼ T and final_state(T, n) , then final_state(S, n)).

Furthermore, assuming S ∼ T , we relate transitions starting from S in L1 with tran-
sitions starting from T in L2.

The standard technique is to prove that ∼ is a backward simulation, as shown in
Figure 3.6. A backward simulation assumes that S from the source program P1 and T from
the target program P2 preserve the simulation relation ∼, if the target P2 performs one
transition and results in the updated state T ′, then there exists a new state S ′ obtained by
corresponding many transitions (star or plus) of the source P1 such that either the updated
states S ′ and T ′ still preserve the same relation, or the measure |T ′| is less than the measure

42

Background

|T | in a well-founded ordering 2 and S ′ and T ′ preserve ∼. The backward simulation also
requires the observable events align between the source transition and the corresponding
target transitions. G1 and G2 represent the global environments corresponding to P1 and
P2, respectively. The measure strictly decreases to rule out the infinite stuttering case.

Theorem 1 (Backward Simulation).

∀ S T T ′, S ∼ T ∧ G2 ⊢ T
t−→ T ′ ⇒

∃ S ′, (G1 ⊢ S
t−→

+
S ′ ∧ S ′ ∼ T ′) ∨ (|T ′| < |T | ∧ G1 ⊢ S

t−→
∗

S ′ ∧ S ′ ∼ T ′)

Figure 3.6 – CompCert Backward Simulation

An alternative to backward simulation is forward simulation, where every step in the
source language is matched with a number of steps in the target language.

Theorem 2 (Forward Simulation).

∀ S T S ′, S ∼ T ∧ G1 ⊢ S
t−→ S ′ ⇒

∃ T ′, (G2 ⊢ T
t−→

+
T ′ ∧ S ′ ∼ T ′) ∨ (|S ′| < |S| ∧ G2 ⊢ T

t−→
∗

T ′ ∧ S ′ ∼ T ′)

CompCert also proves a crucial theorem that a forward simulation implies a back-
ward simulation when the source language L1 is receptive and the target language L2 is
determinate.

2. there are no infinite decreasing chains

43

Background

Figure 3.7 – CompCert Forward Simulation

Theorem 3 (Forward to Backward).

∀ L1 L2, forward_simulation L1 L2 → receptive L1 → determinate L2 →

backward_simulation L1 L2

In this theorem, a language is considered receptive when progress is independent of the
external environment, which holds for the languages of CompCert. A language is deemed
determinate if a transition starting from a state S achieves two states S1 and S2 with the
same trace t, then S1 and S2 are identical.

Program Behaviors. CompCert expresses the observable behaviors of programs in
terms of traces of input-output events, where t represents finite traces and τ signifies an
infinite trace:

bh ::= Terminates(t, n) | Diverges(t) | Reacts(τ) | GoesWrong(t)

The behaviour Terminates(t, n) corresponds to an execution that terminates nor-
mally, producing a return value n, after emitting a trace of events t. The behaviour
Diverges(t) represents an execution that emits a finite trace t but then runs forever
without any observable events. Reacts(τ) is the behaviour of an execution that emits an
infinite trace τ . The last behaviour GoesWrong corresponds to a program that becomes
stuck (undefined behaviours) after having emitted the finite trace t.

44

Background

The CompCert Theorem. CompCert starts with a backward simulation in the first
pass (between CompCert C and Clight 3) to deal with nondeterminism. Then, all subse-
quent passes from Clight to assembly are proved correct using forward simulations since
backward simulations are generally more challenging to establish. CompCert results in a
backward simulation lemma between Clight and assembly by following these steps: i) Com-
posing the aforementioned forward simulations to form a forward simulation; ii) Utilizing
Theorem 3 to translate the forward simulation into the result.

Finally, the composition of the simulation lemmas across all CompCert passes forms
the CompCert semantic preservation theorem.

Theorem 4 (CompCert’s Semantic Preservation). Suppose that tp is the result of the
successful compilation of the program p. If bh is a behaviour of tp then there exists a
behaviour bh′ such that bh′ is a behaviour of p and bh improves on the behaviour bh.

∀ p tp bh, compcert p = ⌊tp⌋ → bh ∈ Asm.semantics(tp)→
∃ bh′, bh′ ∈ Csem.semantics(p) ∧ bh′ ⊆ bh

Where bh′ ⊆ bh if either bh′ is equal to bh, or bh′ is a undefined behaviour that is
replaced by a defined behaviour in bh.

3.2.5 CompCert Ecosystem

As a cornerstone of formally verified compilers, CompCert inspires many formal ver-
ification projects, e.g., CertiCoq, the verified operating system CertikOS [Gu+16], and
C programming verification tool VST, etc. This section introduces some mature tools
and projects related to CompCert, which are used or related to our work, as depicted in
Figure 3.8.

CompCert Tools. CompCert provides a range of essential tools for tracing and captur-
ing immediate representation at various compilation passes. For instance, the CompCert
printCsyntax module is used as a Cpretty-printer for CompCert C AST. Additionally,
CompCert implements a mature tool clightgen to extract formal representations of
CompCert C or Clight syntax from informal C programs. Those unverified tools are writ-

3. In fact, CompCert introduces another IR named Cstrategy which is the same language with Com-
pCert C but selects an evaluation strategy for expressions to guarantee determinism

45

https://github.com/AbsInt/CompCert/blob/master/cfrontend/PrintCsyntax.ml
https://github.com/AbsInt/CompCert/tree/master/export

Background

Figure 3.8 – CompCert tools and related projects

ten in OCaml, and used in many projects as trusted components, e.g., the Verified Software
Toolchain (VST) uses clightgen to verify C programs at the Clight level.

CompCert Related Projects. As a verified C Compiler, CompCert serves as the
backend for numerous verified and unverified compilers. For example,

— KaRaMeL: compiling a low-level subset of F⋆ into the Clight language. The com-
pilation is implemented in OCaml, and only has a theoretical proof in the pa-
per[Pro+17].

— CertiCoq: translating Gallina, the function language of the Coq proof assistant,
into Clight. As of the time of writing (until 2023-07-20), the verification process is
ongoing.

— ∂x: deriving CompCert C code from monadic Gallina programs. In our work, we
use this unverified tool to obtain executable C code. We will provide further details
about dx in the next section.

3.3 ∂x Code Generator
The ∂x Tool. ∂x emerged from the toolchain used to design and verify the Pip proto-
kernel [Jom+18b]. Since Pip’s source code is written in Gallina in a syntax close to that
of C, ∂x naturally came as a need to translate Gallina code to C code. ∂x extracts C code
from a Gallina source program in the form of a CompCert C AST. The goal of ∂x is to

46

https://fstarlang.github.io/lowstar/html/
https://certicoq.org/
https://gitlab.univ-lille.fr/samuel.hym/dx

Background

provide C programmers with readily reviewable code and thus avoid misunderstanding
between those working on C/assembly modules (that access hardware) and those working
on Coq modules (the code and proofs). To achieve this, ∂x handles a C-like subset of
Gallina. The functions that are to be converted to C rely on a monad to represent the
side effects of the computation, such as modifications to the CPU state. Yet ∂x does not
mandate a particular monad for code extraction.

∂x’s Workflow. ∂x proceeds in three steps, as shown in Figure 3.9 (colored in pink).
The first step (Coq_to_IR) generates an IR for the subset of Gallina ∂x can handle,
given a list of Gallina functions, or whole modules. Since Coq has no built-in reflection
mechanism, this step is written in Elpi [Dun+15], using the Coq-Elpi plugin [Tas21]. The
second step (IR_to_C) is to translate this IR into a CompCert C AST. This step can
also process external functions (appearing as extern in the extracted C code) to support
separate compilation with CompCert. In order to obtain an actual C file, the last step of
∂x (DumpAsC .ml) provides a small OCaml function that binds the extracted C AST to
CompCert’s C pretty-printer.

Figure 3.9 – ∂x workflow

Even though the ∂x language is a small subset of Gallina, it inherits much expressivity
from the use of Coq types to manipulate values. For example, we can use bounded integers
(i.e., the dependent pair of an integer with the proof that it is within some given range),
for instance CompCert’s int, that can be faithfully and efficiently represented as a single
int in C. To this end, ∂x expects a configuration mapping Coq types to C.

∂x Memory Management. A major design choice in the C-like subset of Gallina used
by ∂x is memory management: its generated code executes without garbage collection.
This affects the Coq types that can actually be used in ∂x: recursive inductive types,
such as, lists cannot automatically be converted 4. However, this Gallina subset is partic-
ularly relevant to programs in which one wants to precisely control memory management

4. ∂x requires users to leverage lists in a constrained way: e.g., the lists are pre-allocated and their
sizes are fixed so that there is no allocation or de-allocation appearing in the program body.

47

https://gitlab.univ-lille.fr/samuel.hym/dx/-/blob/main/src/CoqIR.v
https://gitlab.univ-lille.fr/samuel.hym/dx/-/blob/main/src/IRtoC.v
https://gitlab.univ-lille.fr/samuel.hym/dx/-/blob/main/src/DumpAsC.ml

Background

and decide how to represent data structures in memory. This is typically the case of an
operating system or, in our case, the rBPF virtual machine.

∂x Example. We illustrate the ∂x workflow using the sumarray example. The speci-
fication of sumarray is as follows:

“calculating the sum of elements in an integer array”

Firstly, ∂x requires a monadic Gallina specification with arbitrary monads. In this case,
we utilize an option state monad M with two standard operators returnM and bindM.
The state is defined as a list of CompCert integers, represented as list int in Gallina. The
option type is used to capture any array out-of-bound errors. For improved readability,
we adopt the standard notation ‘do x← a ; b’ to represent ‘bindM a (fun x => b)’.

Definition state := list int.

Definition M (A: Type) := state -> option (A * state).
Definition returnM {A: Type} (a: A) : M A := fun s => Some (a, s).
Definition bindM {A B: Type} (x: M A) (f: A -> M B) : M B := fun s =>

match x s with
| None => None
| Some (x', s') => (f x') s'
end.

Declare Scope monad_scope.
Notation "'do' x <- a ; b" := (bindM a (fun x => b))

(at level 200, x name, a at level 100, b at level 200) : monad_scope.

Next, the memory management for sumarray in Gallina adopts an abstract method:
modelling arrays into Gallina Lists with a fixed size. Consequently, all memory opera-
tions extend standard Gallina list functions with a monadic effect, e.g., a C array-access
operation get is defined as the function ‘List.nth_error : ∀ A : Type, list A → nat →
option A’.

As a result, we define the monadic Gallina specification of sumarray as follows: it
takes the length of the array, i.e., len with the natural number type nat, and invokes a
tail-recursive sumarray_aux function to traverse the array, starting from the last element.
The sum argument initializes to 0. The sumarray_aux function performs a case analysis

48

Background

on the construction of the natural number index. If index reaches to Peano number zero
(denoted O or 0 in Coq), the function returns the result sum. Otherwise index has the
form of n with a successor operation (denoted S in Coq), sumarray_aux accesses the n-th
element of the list, counts its value v into the result sum, and does the next computation
with arguments n and the new result.

Open Scope monad_scope.
Definition get (index: nat): M int := fun st =>

match List.nth_error st index with
| Some v => Some (v, st)
| None => None
end.

Fixpoint sumarray_aux (index: nat) (sum: int): M int :=
match index with
| O => returnM sum
| S n => do v <- get n;

sumarray_aux n (Int.add sum v)
end.

Definition sumarray (len: nat): M int := sumarray_aux len 0%nat
Close Scope monad_scope.

Consequently, it’s necessary to configure ∂x for mapping Coq types into CompCert C
types and mapping Coq operators into CompCert C expressions. We designate C_U32 as
the 32-bit integer type in the CompCert C syntax which represents unsigned int of C. ∂x

maps Coq nat type to a C finite fix-sized type since the hardware cannot represent infinite
natural numbers. In this case, we select e.g., unsigned int (see natCompilableType) as
we carefully assume the size of our array is less than 232. We also declare the CompCert
integer int in Coq should be translated into C_U32 in the CompCert C syntax (see
intCompilableType). For the CompCert addition function Int.add, we define the config-
uration Const_Int_add to map it into the corresponding expression, denoted as C_add,
in the CompCert C syntax. For simplification, we omit its implementation details.

Definition natCompilableType := (* * r mapping `nat` to `unsigned int` *)
MkCompilableType nat C_U32.

Definition intCompilableType := (* * r mapping `CompCert int` to `unsigned int` *)
MkCompilableType int C_U32.

49

Background

Definition C_add (x y: Csyntax.expr): Csyntax.expr :=
Csyntax.Ebinop Cop.Oadd x y C_U32.

Definition Const_Int_add := ... (* * * r Int.add x y -> C_add c_x c_y *)

Finally, ∂x generates the corresponding C code from the monadic sumarray Gallina
function based on the monad and configuration. ∂x follows a syntax-directed code gen-
eration approach, translating the Gallina functions sumarray_aux and sumarray into
corresponding C code with the same function name, nearly identical argument names,
and a similar code structure. The generated C functions include an additional argument
called st, representing the global monadic state. Coq types nat and int are translated into
C’s unsigned int, and the Coq match-pattern on nat is transformed into an if structure
(line 6 - line 12). ∂x can only translate the two standard monad operators, where returnM
is converted into a return statement in C, and bindM is translated into a C assignment
statement.

1 //arraysum.c
2 unsigned int sumarray_aux(unsigned int* st, unsigned int index, unsigned int sum)
3 {
4 unsigned int n;
5 unsigned int v;
6 if (index == 0U) {
7 return sum;
8 } else {
9 n = index - 1U;

10 v = get(st, n);
11 return sumarray_aux(st, n, sum + v);
12 }
13 }
14

15 unsigned int sumarray(unsigned int* st, unsigned int len)
16 {
17 return sumarray_aux len 0U;
18 }

∂x translates all non-standard functions as C external functions, e.g., get. These ex-
ternal functions are replaced with manual C implementations declared in the header file.

50

Background

1 //arraysum.h
2 static inline unsigned int get(unsigned int* st, unsigned int index) {
3 return st[index];
4 }

3.4 Conclusion
In this chapter, Section 3.1 introduces the BPF family, including classical BPF, Linux

extended BPF, and our target RIOT-OS rBPF. Subsequently, Section 3.2 provides a brief
overview of the CompCert architecture, CompCert memory model, and the CompCert
simulation framework. We also introduce the CompCert tools used in this document and
projects related to our work in Section 3.2.5. Lastly, Section 3.3 briefly presents the ∂x

workflow and employs an example to illustrate how ∂x operates.

51

Chapter 4

AN END-TO-END VERIFICATION

APPROACH IN COQ

This chapter firstly discusses the path selection of formal techniques for verifying rBPF,
then presents an overview of our methodology for deriving a verified C implementation
from a Gallina specification, and finally links the proposed methodology to its applications.

4.1 Discussion: Which Way Do We Select
At the beginning, our verification object is an unverified RIOT-OS rBPF VM written

in C. Our task is to formally prove that it satisfies some critical properties.
As introduced in Section 1.1, one possible verification path adds annotations (e.g.,

pre/post conditions) to the original C code for describing program invariants and expected
properties, for instance, F⋆, Frama-C or RefinedC. Then, those formal annotations/asserts
can be automatically checked by some backend SMT solvers. Although this path benefits
from a high degree of proof automation, it has a large TCB of SMT solvers and also has less
expressiveness compared to proof assistants like Coq. We used F⋆ to verify another RIOT-
OS component bootloader (approx. 100 loc), named riotboot [YT21], and the expected
properties are functional correctness and memory safety. Our previous experiences show
this path requires more potential proof efforts when SMT solvers cannot solve the input
asserts; verification engineers need to spend much time figuring out the reason because
solvers works as black boxes.

Another possible option is to use proof assistants to verify the original C code, for
example the VST tool. VST uses CompCert clightgen tool to extract Clight AST;
then users declare the expected properties as pre/post conditions and prove the final
theorems with VST-specific tactics in Coq. The VST solution has a small TCB because
it is built on the Coq checker. The cost is that it requires more proof efforts as Coq has
less automation compared to SMT solvers, and low-level details (e.g., memory operations

53

Partie , Chapter 4 – An End-to-End Verification Approach in Coq

and optimizations) also increase the difficulty and complexity of proofs.
In this thesis, we adopt an end-to-end verification approach: we formalize a high-level

specification of the rBPF VM, making the proof of expected properties significantly easier
due to abstraction. Subsequently, We use the verified compilation to propagate these prop-
erties down to a low-level C implementation. To enhance efficiency, we introduce step-wise
refinements as intermediate models. As discussed in Chapter 2, existing end-to-end veri-
fication do not simultaneously meet our requirements, i.e., verified compilation, efficient
C code, and small TCB. Therefore, we propose an end-to-end verification workflow.

4.2 A Workflow for End-to-End Verification in Coq
Our approach provides an end-to-end correctness proof, within the Coq proof assistant,

that reduces the hurdle of reasoning directly over the C code. In the subsequent chapters,
the methodology will be instantiated to derive the C implementation of a fault-isolating
rBPF virtual machine and its verifier.

As shown in Figure 4.1, the original object implementation (rBPF C code) or specifica-
tion (JIT specification) is first formalized by a proof model in Gallina, and the verification
of expected properties (e.g., safety) is performed within the Coq proof assistant. This for-
mal specification is then refined into an optimized (and equivalent) synthesis model ready
for C-code extraction.

Figure 4.1 – End-to-end verification and synthesis workflow

Our refinement and optimization principle aims to derive a C-ready implementation

54

4.2. A Workflow for End-to-End Verification in Coq

in Gallina that is as close as possible to the expected target C code. This principle
serves several purposes:

1. It allows us to prove optimizations correct.

2. It improves the performance of the extracted code and.

3. It facilitates the review and validation of extracted code with the system designers.

From the C-ready Gallina implementation, we leverage ∂x to automatically generate
C code and verify it: i) The generated C code is first parsed as a CompCert Clight
model using the clightgen tool. ii) We then prove that the generated C code refines the
source Gallina model in Coq. Because ∂x generates C code in a syntax-directed manner, a
minimal Clightlogic is designed to facilitate the refinement proof. The rest of this section
explains these different steps in details.

4.2.1 Proof-Oriented Specification

Our approach starts with a proof-oriented specification in Gallina, which consists of
three important aspects:

— monad: The specification is structured as an executable abstract machine in monadic
form to capture side effects e.g., memory store operations.

— invariants: The machine preserves a collection of invariants, i.e., well-formedness
defined below, for the purpose of safety proof.

— safety: The safety property of the machine is defined, ensuring that a well-formed
machine never leads to any error.

Firstly, our specification uses the standard option-state monad M .

Option-state Monad. M takes an input state and may return a result of type a along
with a new state. The option type is used to capture undefined behaviors, represented as
None. M provides two primary operations: returnM for retrieving the state and bindM

55

Partie , Chapter 4 – An End-to-End Verification Approach in Coq

for modifying it with a new state.

M a state := state→ option(a× state)
returnM : a→M a state := λa. λst. ⌊(a, st)⌋
bindM : M a state→ (a→M b state)→M b state :=

λA. λf. λst.

match A st with
| ∅ ⇒ ∅
| ⌊(x, st′)⌋ ⇒ (f x) st′

As explained in Section 3.2.3, ⌊v⌋ (i.e., Some v) denotes success with result v, and ∅
(i.e., None) denotes failure. In the remainder, we write ‘M a’ for ‘M a state’ when we
know what the state represents.

The monad threads the state along computations to model in-place update. The safety
property of the machine is implemented as an inline monitor: any violation leads to an
unrecoverable error, i.e., the unique error represented by ∅. One step of the machine has
the following signature:

one_step : M unit state

where unit, a singleton datatype in Coq, denotes one_step returns an empty result and
a new state. The one_step function implements a defensive semantics, checking the ab-
sence of error, dynamically. For our rBPF interpreter (see Section 5.1), the absence of
error ensures that the rBPF code only performs valid instructions. In particular, all mem-
ory accesses are restricted to a sandbox specified as a list of memory regions. Function
one_step is part of the TCB and, therefore, a mis-specification could result, after re-
finement, in an invalid computation. The purpose of the error state is to specify state
transitions that would escape the scope of the safety property and, therefore, shall never
be reachable from a well-formed state st ∈ wf ⊆ P(state).

Well-formedness. We require well-formedness to be an inductive property of the one_step
function.

Theorem 5 (Well-formedness). The one_step function preserves well-formedness.

∀st, st′, r. st ∈ wf ∧ one_step st = ⌊(r, st′)⌋ ⇒ st′ ∈ wf

Intuitively, well-formedness represents a collection of assumptions about the internal

56

4.2. A Workflow for End-to-End Verification in Coq

invariants and external environments of the machine, for example, the invariants of loop
statements, and the hardware information (endianness, 32- or 64-bit architecture, etc).

Safety. We also require that well-formedness is a sufficient condition to prevent the
absence of error, ensuring the safety of computations.

Theorem 6 (Safety). The one_step function is safe, i.e., a well-formed state never leads
to an error.

∀st. st ∈ wf ⇒ one_step st ̸= ∅

4.2.2 C-ready implementation

Our methodology involves refining the one_step function into an optimized one_step∂x

that complies with the requirements of ∂x. The refinement consists of two steps:

1. The first step of refinement involves implementing optimization strategies derived
from the original implementation or related specifications. As ∂x performs syntax-
directed code generation, the efficiency of the extracted code crucially depends on
one_step∂x.

2. The second step is to incorporate ∂x configurations into the optimized Gallina
model. This allows ∂x to identify input Gallina functions and extract them into
the corresponding C functions with expected type signatures and code structure.

To ensure the absence of errors, we establish a simulation relation between the one_step

and one_step∂x functions. A direct consequence of the simulation theorem is that one_step∂x

never raises an error.

Theorem 7 (Simulation). Given simulation relations Rs ⊆ state×state′ and Rr ⊆ r×r′,
the function one_step∂x simulates the function one_step.

∀s1, s′
1, s2, r.(s1, s2) ∈ Rs∧one_step s1 = ⌊(r, s′

1)⌋ ⇒ ∃s′
2, r′.

∧


one_step∂x s2 = ⌊(r′, s′
2)⌋

(s′
1, s′

2) ∈ Rs

(r, r′) ∈ Rr

4.2.3 Translation Validation of C code

The next stage consists in refining the one_step∂x function into a Clight program
using ∂x to get a C program, and the clightgen tool to obtain a Clight one_stepC

57

Partie , Chapter 4 – An End-to-End Verification Approach in Coq

program (see Section 5.2). As this pass is not trusted, we require the following translation
validation theorem.

Theorem 8 (Translation Validation). Given a simulation relation Rs ⊆ state′ × val ×
mem and a relation Rr ⊆ res × val, the Clight code one_stepC refines the function
one_step∂x:

∀r, s, s′, v, k, m.(s, v, m) ∈ Rs⇒ one_step∂x s = ⌊(r, s′)⌋ ⇒
∃m′, r′.Callstate(one_stepC , [v], k, m)→∗tReturnState(r′, call_cont(k), m′)∧

(s′, v, m′) ∈ Rs ∧ (r, r′) ∈ Rr

Theorem 8 states that, if one_step∂x s runs without error and returns a result (r, s′),
then, the Clight function one_stepC successfully runs with argument v and, after a fi-
nite number of execution steps, returns a result r′ and a memory m′ that preserve the
refinement relations. In our encoding, the unique argument v is a pointer to the memory
allocated region refining the interpreter state and k represents the continuation of the
computation. A corollary of Theorem 8 is that the Clight code one_stepC is free of unde-
fined behaviors. In particular, all memory accesses are valid. As the memory model does
not allow to forge pointers, this yields a strong isolation property.

4.2.4 Summary

In summary, this section presents our methodology, which is an end-to-end verifi-
cation approach from monadic Gallina functions to executable C implementations. The
verification effort has several levels:

— The abstract Gallina model is proven to preserve well-formedness and safety prop-
erties.

— The optimized Gallina implementation is proven that it has the same program
behaviors as the abstract one, which implies that it also preserves the absence of
errors.

— The final extracted C code is also behavior-equivalent with the original Gallina
model. This is achieved by proving a translation validation theorem between its
Clight model and the input model of ∂x.

In the remainder of this document, for our rBPF virtual machine, we prove all the
aforementioned properties within the Coq proof assistant.

58

4.3. Applications

4.3 Applications
This section gives a technical overview of CertrBPF and CertrBPF-JIT to establish a

connection between our end-to-end verification methodology to its practical applications.

CertrBPF interpreter. Firstly, we apply our end-to-end verification approach to the
interpreter of the rBPF VM.

— In Section 5.1, we formalize the rBPF interpreter in monadic form and prove (cor-
responding to Theorem 6) that this monadic model never crashes with respect to
invariants (corresponding to Theorem 5) about rBPF register, memory, verifier, etc.

— Section 5.2 explains how to refine the proof model into an optimized one with
additional ∂x configuration. The refined model is proven to be equivalent to the
proof model (related to Theorem 7).

— In Section 5.3, we introduce the Clightlogic and prove Theorem 8.

CertrBPF verifier. Secondly, we apply the methodology to the verifier of rBPF VM.
We implement a proof model for the verifier and prove its success with a boolean result
(corresponding to Theorem 6). As the rBPF verifier only checks some basic rules, the
verifier synthesis model is refined only with ∂x configuration. The related proofs and
C code extraction are omitted for simplification, their Coq code can be found in the
repository.

CertrBPF JIT. Lastly, we apply the end-to-end verification approach to the JIT com-
piler of rBPF VM. The current development status includes a proof model, a synthesis
model, and the extracted C implementation, the complete proof will be completed in a
timely manner.

59

Chapter 5

CERTRBPF: A FULLY VERIFIED RBPF
VIRTUAL MACHINE

Implementing a fault-isolating virtual machine for MCUs faces two significant chal-
lenges. The first is to embed the VM within the MCU’s micro-kernel while minimizing
its code size and execution environment. The second is to minimize the verification gap
between its proof model and the running code.

In this chapter, we address these challenges and present the first end-to-end verifi-
cation and synthesis of a full-scale, real-world virtual machine for the BPF instruction
set family: CertrBPF, an interpreter tailored to the hardware and resource constraints of
MCU architectures running the IoT operating system RIOT-OS.

Figure 5.1 – Chapter Structure: CertrBPF

CertrBPF adopts the end-to-end verification workflow introduced in Chapter 4. Our
starting point is a model of the rBPF semantics written in Gallina (Section 5.1), as shown
in Figure 5.1. Using this proof model, we certify that all the memory accesses are valid
and isolated to dedicated memory areas, thus ensuring isolation (Section 5.1.4). From

61

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

this proof model, we then derive a synthesis C-ready model that is optimized, safe, and
behaviorally equivalent (Section 5.2). Additionally, we define a reusable ∂x library for
mapping CompCert types and operations into some standard C types and operators.
Finally, we extract an executable Clight implementation from the C-ready model and
prove to perform the same state transitions (Section 5.3).

BPF families, e.g., Linux eBPF and RIOT-OS rBPF, always require a static analyzer
to guarantee that BPF binary programs satisfy critical properties e.g., all jump instruc-
tions never cause out-of-bound branches. Following the same verification workflow, we
formalize a CertrBPF verifier in Gallina, prove its correctness, and extract to an exe-
cutable C implementation by reusing the ∂x- CompCert configuration (Section 5.4).

Last, we discuss a CertrBPF optimization (Section 5.5) and conclude (Section 5.6).

5.1 A Proof-Oriented Virtual Machine Model
Our proof model of rBPF includes explicit syntax, interpreter state, and monadic

semantics functions, particularly those implementing dynamic security checks.

5.1.1 Syntax

The formal syntax of rBPF is given in Figure 5.2, The rBPF instruction set features
unary (i.e., negation) and binary arithmetic operations, conditional or unconditonal (i.e.,
always jump ja) relative to an offset, operations to load values from memory to registers,
operations to store values from registers to memory, function calls, and termination.

There are four kinds of operands available for the rBPF ISA:
1. A signed immediate number with a 32-bit width to represent a source value.
2. A signed 16-bit value to specify the jump offset, used only by branch instructions.
3. A 64-bit register operand (∈ {R0, . . . , R9}) 1, usually for a destination operand.
4. A 64-bit register (∈ {R0, . . . , R10}) or an immediate operand for a source operand.
rBPF also specifies arithmetic, logic, shift operators for binary arithmetic instruc-

tions, unsigned and signed conditional operators for branch instructions, and four mem-
ory chunks for memory instructions. For instance, eq, in symbol ’=’, represents jump if
(unsigned) equal, set, in symbol ’&’, represents jump if signed equal, and word indicating
4 bytes operated by memory instructions.

1. R10 is a read-only pointer to the bottom of a 512B stack.

62

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/model/Syntax.v#L168

5.1. A Proof-Oriented Virtual Machine Model

Registers :
Regs ::= R0 | R1 | R2 | R3 | R4 General-purpose

| R5 | R6 | R7 | R8 | R9 General-purpose
| R10 Stack Frame Pointer

Operands :
imm ∈ Immediate Signed 32-bits immediate
ofs ∈ Offset Signed 16-bits offset
dst, reg ∈ Regs Register operand
src ∈ Regs ∪ Immediate Register or Immediate

Operators :
op ::= add | sub | mul | div | mod | mov Arithmetic operators

| and | or | xor Logic operators
| lsh | rsh | arsh Shift operators

cmp ::= eq | neq | lt | gt | le | ge Unsigned conditional operators
| set | slt | sgt | sle | sge Signed conditional operators

Memory Chunk :
chk ::= byte | halfword | word | doublewords 1/2/4/8 Bytes

Instruction :
ins ::= Neg dst Unary arithmetic

| Alu32 op dst src 32-bit Binary arithmetic
| Alu64 op dst src 64-bit Binary arithmetic
| Ja ofs Unconditional branch
| Jump cmp dst src ofs Conditional branch
| Load chk dst reg ofs Memory load
| Store chk dst src ofs Memory store
| Call imm Call
| Exit Return

Figure 5.2 – Core syntax of rBPF instruction set

63

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

5.1.2 Machine State

We define an rBPF semantic state as an 8-tuple rbpf_state ::= (C, C_len, PC,

R, f, M, MRs, mrs_num) :

— C: A sequence of rBPF instructions in the form of 64-bit binaries.

— C_len: The fixed length of the input rBPF instructions.

— PC: The location of the currently executing instruction, i.e., the Program Counter
(PC) of rBPF.

— R: rBPF register map with 11 registers.

— f : An interpreter flag indicating the status of the rBPF VM.

— M : The CompCert memory.

— MRs: A specification of user memory regions declared by the input rBPF programs.

— mrs_num: The fixed number of available memory regions.

The specification of rBPF derives from Linux eBPF, whose ISA only declares 10 general
purpose registers ({R0, . . . , R9}) and a read-only frame pointer register R10. The original
C implementation of the rBPF interpreter uses a pointer to the current instruction located
in the input BPF binary list. Here we declare PC as a field of the machine state to record
the index of the current instruction in the binary list.

The flag f characterizes the state of the rBPF interpreter, which can be: i) A normal
state, written fn. ii) A final state, written ft. iii) Or an error state, written fe. The error
state fe indicates that the defensive checks of the interpreter have detected an impending
invalid behavior. For example, each 64-bit binary instruction leaves 4-bit for representing a
destination register with the range [0, 15], and a valid register must be in [0, 10]. Therefore
a register-out-of-range error may occur if the destination field is ’1110’ which represents
an illegal register R14.

In contrast to Linux eBPF, rBPF requires users to explicitly declare all used mem-
ory regions by their BPF programs. Formally, a memory region mr = ⟨start, size, p,

ptr⟩ ∈ MRs associates a permission p ∈ {Readable, Writable} with the address range
[start, start + size). As shown in Figure 5.3, we establish the link between concrete phys-
ical addresses and the CompCert memory model using the pointer ptr (= Vptr(b, 0))
where the block b is the abstract representation of the address start.

64

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/comm/State.v#L29
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/comm/MemRegion.v#L27

5.1. A Proof-Oriented Virtual Machine Model

Figure 5.3 – Maps between (C) physical memory and (CompCert) memory model.

5.1.3 rBPF Interpreter

To formalize the behaviors of the rBPF interpreter, we first introduce some notations
and function signatures, then describe the specifications of dynamic checks for the defen-
sive purposes of our interpreter, and finally define the semantics of the interpreter using
monadic functions.

We write C[PC] for the instruction located at the program counter PC and R[r] : int64
to retrieve the 64-bit value of register r in the register map R. The function alu32 : op→
val→ val→ option val formalizes the formal semantics of rBPF 32-bit binary arithmetic
operators. It takes an rBPF binary operator and two CompCert Values as input and
returns an option CompCert value. The formal behaviours involves casting values from
64-bit to 32-bit, performing computation using CompCert’s operators on val types, and
casting the result back from 32-bit to 64-bit. The alu32 function involves the following
sub-functions:

— Val.longofintu: Type casting from 32-bit unsigned integer to 64-bit.

— val_intuoflongu: Type casting from 64-bit unsigned integer to 32-bit.

— Val.add/Val.divu: Standard CompCert Value operations on 32-bit integers. Val.divu
returns ∅ in case of division-by-zero.

— option_map : (f : A → B) → (option A) → (option B): Applies a function f to
the Some case of the initial option type and return a new option type.

65

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

The function alu64 has the same type signature as alu32, but its semantics are much
simpler, involving straightforward use of CompCert’s 64-bit value operations.

Similarly, the function cmp : cmp→ val → val → bool is a simplified version of Com-
pCert’s Val.cmplu_bool, as rBPF only compares two 64-bit integers. For simplification,
we omit the details of cmp.

alu32(bop, v1, v2) =
⌊Val.longofintu (Val.add (val_intuoflongu v1) (val_intuoflongu v2))⌋ if bop = add

option_map (fun x => V al.longofintu x)
(fVal.divu (val_intuoflongu v1) (val_intuoflongu v2)) if bop = div

.

alu64(bop, v1, v2) =


⌊V al.addl v1 v2⌋ if bop = add

V al.divlu v1 v2 if bop = div

.

Dynamic Checks. The function check_alu dynamically checks the validity of an
arithmetic instruction to avoid div-by-zero and undefined-shift errors. For division in-
structions, check_alu mandates the second argument to be non-zero. For arithmetic and
logical shift instructions, the second argument must be below n ∈ {32, 64}, depending on
whether the ALU instruction operates on 32 or 64-bit operands. This section discusses
64-bit ALU instructions but CertrBPF also includes the 32-bit ALU instructions.

check_alu(op, v) =


v ̸= 0 if op ∈ {div, mod}
0 ≤ v < n if op ∈ {lsh, rsh, arsh}
true otherwise

The function check_mem returns a valid pointer (Vptr(b, ofs)) if there exists a
unique memory region mr ∈ MRs such that

1. The permission mr.perm is at least Readable for Load and Writable for Store, i.e.,
mr.perm ≥ p.

2. The offset ofs is aligned, i.e., ofs%Z(chk) = 0 2.

3. ofs is within bounds, i.e., ofs ≤ max_unsigned− Z(chk).

2. The function Z(chk) maps memory chunks byte, halfword, word and doublewords to 1, 2, 4, and 8,
respectively.

66

https://compcert.org/doc/html/compcert.common.Values.html#Val.cmplu_bool
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/model/Semantics.v#L97
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/model/Semantics.v#L263

5.1. A Proof-Oriented Virtual Machine Model

4. The interval [ofs, hi_ofs) is within the range of mr.

Otherwise, check_mem returns the null pointer Vnullptr.

check_mem(perm, chk, addr, MRs) = if ∃! mr ∈ MRs, b.

let ofs = addr −mr.start and hi_ofs = ofs + Z(chk) in
(mr.perm ≥ p) ∧ (ofs%Z(chk) == 0) ∧
(ofs ≤ max_signed− Z(chk)) ∧ (0 ≤ ofs ∧ hi_ofs ≤ mr.size)

then Vptr(b, ofs)
else Vnullptr

Semantics. The functions interp and step formalize the implementation of our
proof model Mp in the Coq proof assistant by defining a monadic interpreter for rBPF.
The top-level recursion interp processes a (monotonically decreasing) fuel argument and
a state rbpf_st, where fuel represents the number of instructions that the interpreter is
allowed to execute. The function step processes individual instructions C[PC]. MRs and
C are read-only. During normal execution, the flag remains fn and interp branches to the
next instruction. If the flag turns to ft or fe while processing an instruction, execution
stops. For instance, if fuel reaches zero, the flag turns to fe. We write rbpf_st.X to
denote the value of field X in record rbpf_st, and rbpf_st{X ← v} for updating it to v.

interp = λ fuel rbpf_st.
if fuel == 0 then ⌊((), rbpf_st{f ← fe})⌋
else

match step rbpf_st with
| ⌊((), rbpf_st')⌋ =>

if rbpf_st'.f ̸= fn then ⌊((), rbpf_st')⌋
else

interp (fuel-1) rbpf_st'{PC ← PC+1}
| ∅ => ∅

step = λ rbpf_st.
match rbpf_st.C[rbpf_st.PC] with
| Neg dst => ⌊((), rbpf_st{R[dst]← ¬ rbpf_st.R[dst]})⌋
| Alu32 op dst src =>

if check_alu(op, rbpf_st.BR[src]) then
match alu32(op, rbpf_st.R[dst], rbpf_st.R[src]) with
| ⌊v⌋ => ⌊((), rbpf_st{R[dst] ← v})⌋

67

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/model/Semantics.v#L395
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/model/Semantics.v#L324

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

| ∅ => ∅
else
⌊((), rbpf_st{f ← fe})⌋

| Alu64 op dst src =>
if check_alu(op, rbpf_st.BR[src]) then

match alu64(op, rbpf_st.R[dst], rbpf_st.R[src]) with
| ⌊v⌋ => ⌊((), rbpf_st{R[dst] ← v})⌋
| ∅ => ∅

else
⌊((), rbpf_st{f ← fe})⌋

| Ja ofs => ⌊((), rbpf_st{PC ← PC+ofs})⌋
| Jump c dst src ofs =>

if cmp(c, rbpf_st.R[dst], rbpf_st.R[src]) then
⌊((), rbpf_st{PC ← PC+ofs})⌋

else
⌊((), rbpf_st)⌋

| Load chk dst reg ofs =>
match check_mem(Readable, chk, rbpf_st.R[reg]+ofs, rbpf_st.MRs) with
| Vptr(b, ofs) =>

match load(chk, rbpf_st.M, b, ofs) with
| ⌊v⌋ => ⌊((), rbpf_st{BR[dst] ← v})⌋
| ∅ => ∅

| _ => ⌊((), rbpf_st{f ← fe})⌋
| Store chk dst src ofs =>

match check_mem(Writable, chk, rbpf_st.R[dst]+ofs, rbpf_st.MRs) with
| Vptr(b, ofs) =>

match store(chk, rbpf_st.M, b, ofs, rbpf_st.R[src]) with
| ⌊N⌋ => ⌊((), rbpf_st{M ← N})⌋
| ∅ => ∅

| _ => ⌊((), rbpf_st{f ← fe})⌋
| Call imm =>

let f_ptr = bpf_get_call imm in
if f_ptr == Vnullptr then ⌊((), rbpf_st{f ← fe})⌋
else
⌊((), rbpf_st{R0 ← exec_function f_ptr})⌋

| Exit => ⌊((), rbpf_st{f ← ft})⌋
| _ => ⌊((), rbpf_st{f ← fe})⌋

Result ∅ marks transitions to crash states, which are proved unreachable based on the
definitions of the check_alu and check_mem functions.

68

5.1. A Proof-Oriented Virtual Machine Model

The formal semantics of each rBPF instruction is explained as follows:

— Neg updates register dst with the the negation of its original value.

— For an arithmetic operation Alu64 op dst src (or Alu32 op dst src), check_alu first
checks the validity of op with source src, then evaluates op against destination dst

using alu64 (or alu32), and stores the result v in register dst.

— Unconditional jump Ja always increments the pc by ofs, and a conditional Jump

does so when cmp(c, src, dst) holds. If the condition is false, the Jump instruction
has no effect.

— Similarly, the semantics of memory instructions (Load-Store) validates memory ac-
cesses using the check_mem function, ensuring the absence of undefined behaviors.
The functions load and store are CompCert memory operations mentioned in Sec-
tion 3.2.3.

— The Call instruction selects (using bpf _get_call) the trusted system API service
designated by an immediate number imm. It then calls the chosen service if available
(i.e., not a null pointer).

— Exit finally terminates the program with the flag ft.

For simplicity, we omit the case of immediate srcs for Alu64, Alu32, and Store. If the
result is ∅, so becomes the monadic state (undefined behavior). Our definition of dynamic
checking functions, along with well-formedness conditions (see Section 5.1.4), ensures that
this situation never occurs. In case of error, execution terminates with the flag fe.

5.1.4 Proof of Isolation

Our proof model Mp formalizes the semantics of rBPF and is implemented in Gallina.
The assessment of its correctness consists of proving two essential properties:

— The well-formedness of the virtual machine’s state, that is, its registers, memory,
verifier and state invariants.

— The achievement of isolation, that is, the isolation of all transitions to a crash state ∅
using runtime safety checks (e.g., check_mem), ergo the impossibility of a transition
to an undefined behavior.

The register invariant states that all rBPF registers contain 64-bit integer values.
This rules out 32-bit integers, Vundef but also pointers and floating-point numbers, for
which the alu function may be undefined.

69

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/isolation/RegsInv.v#L28

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

Definition 1 (register_inv). ∀ rbpf_st, r. ∃ lv. rbpf_st.R[r] = Vlong(lv)

As expected, the memory consistency invariant is a bit more elaborate. It states that
each rBPF memory region mr, in the CompCert memory model, registers 8-bit integer
blocks b of memory M , designated by a pointer mr.ptr to the 32-bit physical mr.start

address of b, the 32-bit mr.size of b and at least Readable permissions mr.perm across
[0, size). Finally, every two regions point to disjoint physical address spaces in M (as per
CompCert’s memory regions for mr′.ptr ̸= mr.ptr).

Definition 2 (memory_inv). ∀ rbpf_st, mr ∈ rbpf_st.MRs. ∃b, start, size. s.t.
mr .ptr = Vptr(b, 0) ∧ Mem.valid_block rbpf _st.M b ∧
is_byte_block b rbpf _st.M ∧ mr .start = Vint(start) ∧ mr .size = Vint(size) ∧
Mem.range_perm rbpf _st.M b 0 (Int.unsigned size) Cur mr .perm ∧
mr .perm ≥ Readable ∧ (∀mr ′ ∈ rbpf _st.MRs, mr ′ ̸= mr → mr ′.ptr ̸= mr .ptr)

Linux eBPF has a verifier to statically analyze eBPF programs and only accept those
which are free of undefined behaviors. Our CertrBPF’s verifier, introduced in Section 5.4,
ensures the weaker invariant given by Definition 3. The invariant stipulates the minimal
pre-condition so that the interpreter can safely run a sequence of instructions C with
the fixed length C_len. More precisely, the invariant states that each instruction C[i]
references source registers within the range [0, 10] and destination registers with the range
[0, 9], and that the target of every jump instruction is within the program range i.e.,
0 ≤ i + ofs + 1 ≤ C_len− 1.

Definition 3 (verifier_inv). ∀ rbpf_st, i, ofs. 0 ≤ i ≤ rbpf_st.C_len− 1→
0 ≤ get_dst(rbpf _st.C [i]) ≤ 9 ∧ 0 ≤ get_src(rbpf _st.C [i]) ≤ 10 ∧
((rbpf _st.C [i] = Ja ofs ∨ rbpf _st.C [i] = Jump _ _ _ ofs)→

0 ≤ i + ofs + 1 ≤ rbpf _st.C_len − 1)

The last invariant connects two pairs declared in the monadic state: the input BPF
binary sequence C with the fixed length C_len, and the memory region list MRs with
the fixed size mrs_num. It also specifies the range of C_len and mrs_num with the
maximum 32-bit unsigned integer value 0xffffffff .

Definition 4 (state_inv). ∀ rbpf_st.

length(rbpf _st.C) = rbpf _st.C_len ∧ length(rbpf _st.MRs) = rbpf _st.mrs_num ∧
rbpf _st.C_len ≤ unsigned_int32_max ∧ rbpf _st.mrs_num ≤ unsigned_int32_max

70

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/isolation/MemInv.v#L88
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/isolation/VerifierInv.v#L150
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/isolation/StateInv.v#L30

5.2. A Synthesis-Oriented rBPF Interpreter

These four invariants collectively represent well-formedness as proposed in Chapter 4.
Therefore, the following Coq Theorem sem_preserve_inv proves Theorem 5 and states
that well-formedness is preserved by the interp function.

Theorem sem_preserve_inv: ∀ (st st': rbpf_state) (fuel: nat)
(Hinv: register_inv st ∧ memory_inv st ∧ verifier_inv st ∧ state_inv st)
(Hsem: interp fuel st = ⌊(tt, st')⌋),

register_inv st' ∧ memory_inv st' ∧ verifier_inv st' ∧ state_inv st'.

Proof. We first do proof by induction on fuel, then prove a collection of lemmas to show
each sub-function of interp preserves the invariants. The core function step performs
case analysis on rBPF instructions. In terms of rBPF memory instructions, we prove
that check_mem doesn’t change the global state, implying the preservation lemma of
check_mem.

Similarly, Theorem interp_no_undef proves Theorem 6 and indicates that the
dynamic checks of the model Mp are sufficient to ensure the absence of error. In particular,
all memory accesses are valid and performed within the dedicated memory regions.

Theorem interp_no_undef: ∀ (st: rbpf_state) (fuel: nat)
(Hinv: register_inv st ∧ memory_inv st ∧ verifier_inv st ∧ state_inv st),

interp fuel st ̸= ∅.

Proof. We used the same proof techniques used in sem_preserve_inv: induction on
fuel, followed by case analysis on each instruction.

As a result, our model ensures memory isolation, that is, our virtual machine provides
a formal guarantee to prevent faults of itself from affecting other components of the hosted
OS. The corollary of sem_preserve_inv and interp_no_undef is that our virtual machine,
obtained by refinement of the proof model, will always use the defensive memory checking
semantics (i.e., check_mem) to successfully isolate code from other memory regions of
the operating system and never crash it.

5.2 A Synthesis-Oriented rBPF Interpreter
The aforementioned model is used to formally describe the abstract behaviours of

rBPF and prove its isolation property. However, this proof model is not fit to extract an

71

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/isolation/Isolation1.v#L211
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/isolation/Isolation2.v#L1982

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

executable C implementation: it lacks necessary optimizations and also has a different
coding style compared to the original RIOT rBPF implementation in C. Consequently,
the resulting code is of low performance and hard to manually validate that the extracted
version matches the original one.

This section addresses these issues by introducing a synthesis model. First, it refines
Mp into an optimized, safe, and behaviorally equivalent monadic model Ms (Section 5.2.1).
Then, it transforms Ms into an effectful C implementation using ∂x (Section 5.2.2).

5.2.1 Synthesis Model

Ms is a refinement of our proof model Mp, following the principle “make Ms as
close as possible to the expected target C code”.

Function-level. For each function present in the original C rBPF implementation, there
exists a corresponding Gallina function in Ms. These functions have similar arguments,
with most of them having the same name and type.

For instance, the C function _alu64 in the original rBPF implementation, which
interprets all rBPF alu64 instructions, takes an rBPF opcode and two pointers to source
(src) and destination (dst) registers. It returns an rBPF flag with type int.

static int _alu64(uint8_t opcode, uint64_t *src, uint64_t *dst)

In the corresponding monadic Gallina specification in Ms, named step_opcode_alu64,
the arguments include op representing the 8-bit rBPF opcode (represented as nat for the
purpose of proof simplification), src64 and dst64 denoting the values of the source and
destination registers, an explicit parameter dst for updating the destination register, and
an implicit parameter state for the global monadic state. The function returns the Coq
unit type since the rBPF flag is a field of the monadic state.

Definition step_opcode_alu64 (op: nat) (src64: val) (dst64: val) (dst: reg): M state
unit :=↪→

Expression-level. Most C expressions intuitively correspond to Gallina structures, for
instance, both have the same if expression. We highlight two special cases:

— recursion: Ms adopts (tail)-recursive Gallina functions to express loops in C.

72

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/monadicmodel/rBPFInterpreter.v#L542

5.2. A Synthesis-Oriented rBPF Interpreter

For instance, the C function _check_mem of the original rBPF interpreter, correspond-
ing to check_mem in Gallina, implements memory checking defined in item 5.1.3. It takes
an rBPF state bpf (its type bpf_t related to state in Gallina), the size of memory chunk
(corresponding to chunk), the memory address addr, and the permission type (perm in
Gallina). _check_mem uses a for loop to traverse user-declared memory regions with type
of linked list.

static int _check_mem(const bpf_t *bpf, uint8_t size, const intptr_t addr, uint8_t
type) {↪→

for (const bpf_mem_region_t *region = &bpf->stack_region; region; region =
region->next) {↪→

...
}

}

The corresponding Gallina specification check_mem first reads the size of memory
regions num and the memory region list mrs 3 from the global monadic state, then calls
an auxiliary function check_mem_aux to recursively access each memory region in the
list, where the notation struct num is to tell Coq which argument decreases along the
recursive calls.

Fixpoint check_mem_aux (num: nat) (perm: permission) (chunk: memory_chunk) (addr:
val) (mrs: MyMemRegionsType) {struct num}: M state val :=↪→

match num with
| O => returnM Vnullptr
| S n =>

...
check_mem_aux n perm chunk addr mrs

end.

Definition check_mem (perm: permission) (chunk: memory_chunk) (addr: val): M state
val :=↪→

do mem_reg_num <- eval_mrs_num;
do mrs <- eval_mrs_regions;
do check_ptr <- check_mem_aux mem_reg_num perm chunk addr mrs;

...

3. MyMemRegionsType is declared as a Coq list with type of memory_region

73

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

— pattern-matching: Ms defines a C enumerated type as a basic inductive type where
the constructors have no arguments, and the match-with based on this kind inductive
type corresponds to a C switch-case structure.

For example, after an opcode masking operation, _alu64 cases analysis and interprets
each rBPF alu64 instruction by a C switch-case statement.

define BPF_INSTRUCTION_ALU_OP_MASK 0xf0
define BPF_INSTRUCTION_ALU_ADD 0x00
define BPF_INSTRUCTION_ALU_SUB 0x10
static int _alu64(uint8_t opcode, uint64_t *src, uint64_t *dst) {

uint8_t instruction = opcode & BPF_INSTRUCTION_ALU_OP_MASK;
switch (instruction) {

case BPF_INSTRUCTION_ALU_ADD:
*dst += *src;
break;

case BPF_INSTRUCTION_ALU_SUB:
*dst -= *src;
break;

...
}

}

The related Gallina specification first defines a basic inductive type opcode_alu64
to describe all cases of rBPF alu64 instructions, e.g., op_BPF_ADD64 in Gallina for rep-
resenting BPF_INSTRUCTION_ALU_ADD in C. The Gallina model also defines
a masking function byte_to_opcode_alu64 and its monadic version get_opcode_alu64
to mapping 8-bit opcode, represented by op with type nat, into opcode_alu64. Then
the corresponding function step_opcode_alu64 performs the same (monadic) opcode
masking behavior and completes case analysis by a match-with statement in Gallina.

Inductive opcode_alu64: Type :=
| op_BPF_ADD64
| op_BPF_SUB64
| op_BPF_MUL64
...

Definition byte_to_opcode_alu64 (op: nat): opcode_alu64 :=
match Nat.land op 0xf0 with (* * r masking operation *)
| 0x00 => op_BPF_ADD64

74

5.2. A Synthesis-Oriented rBPF Interpreter

| 0x10 => op_BPF_SUB64
| 0x20 => op_BPF_MUL64
...

Definition get_opcode_alu64 (op: nat): M state opcode_alu64 :=
returnM (byte_to_opcode_alu64 op).

Definition step_opcode_alu64 (op: nat) (src64: val) (dst64: val) (dst: reg): M state
unit :=↪→

do opcode_alu64 <- get_opcode_alu64 op;
match opcode_alu64 with
| op_BPF_ADD64 =>

upd_reg dst (Val.addl dst64 src64)
| op_BPF_SUB64 =>

upd_reg dst (Val.subl dst64 src64)
| op_BPF_MUL64 =>

upd_reg dst (Val.mull dst64 src64)
...

As a consequence, this principle aims to capture all possible optimization strategies of
the original design and enhance readability.

One of the optimizations is opcode masking, which utilizes the instruction classes of
the rBPF encoding mentioned in Table 3.1, to quickly decode rBPF instructions.The op-
code masking optimization consists of two-level masking operations: it firstly classifies the
class of the given instruction using the first-level masking operation and then identifies
the specific instruction using the second-level masking. The C function _instruction
interprets single rBPF instruction, it firstly applies a mask (line 8) to the opcode with
BPF_INSTRUCTION_CLS_MASK, i.e., 0x07 (line 1). For example, the masked opcode of
rBPF alu64 is BPF_INSTRUCTION_CLS_ALU64 (line 9) with a value of 0x07 (line 4). The
second-level masking operation of rBPF alu64 is defined in _alu64, which masks the op-
code with BPF_INSTRUCTION_ALU_OP_MASK to map rBPF ADD64 to BPF_INSTRUCTION_
ALU_ADD, rBPF SUB64 to BPF_INSTRUCTION_ALU_SUB, and so on.

1 # define BPF_INSTRUCTION_CLS_MASK 0x07
2 # define BPF_INSTRUCTION_CLS_LD 0x00
3 ...
4 # define BPF_INSTRUCTION_CLS_ALU64 0x07
5 static int _instruction(bpf_t *bpf, uint64_t *regmap, const bpf_instruction_t **pc){
6 ...

75

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

7 switch (instruction->opcode & BPF_INSTRUCTION_CLS_MASK) {
8 case BPF_INSTRUCTION_CLS_ALU64:
9 return _alu64(instruction->opcode, src, dst);

10 ...

The Gallina function related to _instruction is step. It calls a monadic function
get_opcode to implement the first-level opcode masking and then step_opcode_alu64
performs the second-level masking operation by invoking get_opcode_alu64, a monadic
function implemented using the returnM operator and the byte_to_opcode_alu64 pure
Gallina function that completes the opcode masking and maps masked opcodes to the
inductive type opcode_alu64.

Definition step: M state unit := ...
do opc <- get_opcode op;

match opc with
| op_BPF_ALU64 => ...

step_opcode_alu64 ...

Mp = Ms. Both Mp and Ms use the same monadic state st : rbpf_state as in Section 5.1.
Hence, the simulation relation R ⊆ rbpf_state× rbpf_state, required by Theorem 7, is
equality. As a result, we prove the stronger result that both interp : nat → M unit,
the Mp interpreter, and interp_dx : nat→M unit, the Ms interpreter, denote the exact
same function.

Theorem equivalence_between_proof_model_and_synthesis_model:
∀ (st: rbpf_state) (fuel: nat),

interp fuel st = interp_synthesis fuel st.

Proof. The key proof is to show the the synthesis model with the opcode masking is
identical to the proof model. Since rBPF opcodes are 8-bit, i.e., within the range [0, 255],
a straightforward proof approach is to perform a case analysis on all possible opcodes
and establish that two models are behaviourally equivalent. To simplify the proof, we
represent rBPF opcodes as natural numbers in Coq. We define a collection of special
rBPF instructions in Coq to represent undefined opcodes, such as those greater than
255 or those lacking a corresponding rBPF meaning, e.g., 0xd4 represents a byteswap
instruction in Linux eBPF but is not supported by rBPF.

76

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/equivalence/equivalence1.v#L573

5.2. A Synthesis-Oriented rBPF Interpreter

5.2.2 C-ready Model

This section elaborates on the process of extracting a C implementation from the syn-
thesis model Ms using ∂x. ∂x accepts monadic Gallina programs that utilize ‘identifiable’
inductive types, and Ms meets this monadic requirement as it includes the option state
monad M along with two standard monad operators (bindM and returnM). Ms involves
not only the default ∂x ‘identifiable’ inductive types nat and bool that are respectively
translated into unsigned int and _Bool in C, but also rBPF-specific types e.g., the
register type and CompCert value types. To enable ∂x to identify these types, we first
provide a reusable ∂x-CompCert library that defines a mapping relation from CompCert
Value types and functions to C types and operators. We then declare the remaining
rBPF-related types, e.g., reg, as corresponding to unsigned int.

∂x-CompCert Library . The mapping from CompCert value to C types is not
bijective, as a CompCert value is either a 32-bit machine integer Vint, a 64-bit machine
integer Vlong, or a pointer Vptr, etc.The case of Vptr is particularly delicate, as the
target type contextually relies on bit-size and signedness. To sort this out, we define
a ∂x-CompCert library: It firstly renames the val type and the int type to match the
correct C types, as shown in Table 5.1. For example, val64_t, valu32_t, vals32_t are
V al types mapped to unsigned long long, unsigned int and int, respectively. Then
it maps CompCert constructs and constant functions to C operators and constants, e.g.,
‘Val.addl’ to ‘+’, and ‘true’ to ‘1’, etc. The library also specifies mappings for other
CompCert types, for instance, mapping the CompCert memory chunk memory_chunk
into unsigned int in C, where the constructor Mint32 corresponds to 4U.

Table 5.1 – Mapping relation in the ∂x-CompCert library

CompCert C
Types valu32_t/vals32_t/valptr8_t ... unsigned int/int/unsigned char* ...

sint32_t/uint32_t ... int/unsigned int ...
Constructions Int.repr(-2)/Vzero ... 1/-2/0 ...
Constants Val.addl/subl/mull ... +/-/* ...

Ms = Mdx. The refinement from Ms into a C-ready model Mdx is a renaming process,
where all CompCert types are renamed into ∂x identifiable types according to the

∂x-CompCert library.

77

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/dxcomm/DxValues.v
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/dxmodel/DxInstructions.v#L553

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

The equivalence proof between the synthesis model Ms and the C-ready model Mdx

is trivial as the additional ∂x configuration of Mdx has no effect on the semantics.

Theorem equivalence_between_synthesis_model_and_dx_model:
∀ (st: rbpf_state) (fuel: nat),

interp_synthesis fuel st = interp_dx fuel st.

Proof. This proof is straightforward because Mdx is simply Ms with renamed types. The
only operation is to unfold each renamed type into its original form using the Coq unfold
tactic.

Code Extraction with ∂x. We use ∂x to generate the final C implementation from
Mdx. The extracted C implementation preserves the structure of the original Gallina code,
and the extracted C functions directly operate on actual memory locations as CompCert
memory operations map to C expressions with a dereference.

For instance, consider the step_mem_st_reg function that interprets rBPF store
with register instructions. Its arguments include the value of the source register src (i.e.,
a 64-bit CompCert value, val64_t), the memory address addr (i.e., a 32-bit address,
valu32_t), and the opcode op (i.e., an 8-bit opcode, nat8). step_mem_st_reg performs
the second-level opcode masking 4 using get_opcode_mem_st_reg, one of the masked
opcodes being op_BPF_STXW. This opcode only stores the low 32 bits of src into the
address addr_ptr if memory checking is validated, i.e., the return value of check_mem

is not null pointer. When check_mem returns null, as checked by eq_ptr_null, the
function step_mem_st_reg reports a memory error message using upd_flag.

Definition step_mem_st_reg (src: val64_t) (addr: valu32_t) (op: nat8): M unit :=
do opcode_st <- get_opcode_mem_st_reg op;
match opcode_st with
| op_BPF_STXW =>

do addr_ptr <- check_mem Writable Mint32 addr;
if eq_ptr_null addr_ptr then

upd_flag BPF_ILLEGAL_MEM
else (* * i.e. Mem.storev Mint32 addr_ptr src *)

store_mem_reg Mint32 addr_ptr src
...

4. step completes the first-level masking

78

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/equivalence/equivalence2.v#L143
https://coq.inria.fr/refman/proofs/writing-proofs/equality.html#coq:tacn.unfold

5.3. Simulation Proof of the C rBPF Virtual Machine

Coq’s nat8, a renaming of nat, is mapped to unsigned char. The opcode op_BPF_STXW
is translated to the decimal representation ‘99’, and its hexadecimal format 0x63 rep-
resents the masked opcode for the rBPF store 4 bytes with register instruction. The
error message ILLEGAL_MEM is mapped into ‘-2’, following the original rBPF C imple-
mentation, and the permission Writable is converted into ‘2U’. The constant function
eq_ptr_null is translated into an operation to check whether a pointer is null. The
‘match opcode_st with’ construct is extracted to ‘switch (opcode_st) case’. The C
functions step_mem_st_reg, check_mem and store_mem_reg all include an additional
monadic argument st.

void step_mem_st_reg(struct rbpf_state* st, unsigned long long src, unsigned int
addr, unsigned char op){↪→

unsigned char opcode_st;
unsigned char *addr_ptr;
opcode_st = get_opcode_mem_st_reg(op);
switch (opcode_st) {

case 99:
addr_ptr = check_mem(st, 2U, 4U, addr);
if (addr_ptr == 0) {

upd_flag(st, -2);
} else { // i.e. *(unsigned int *) addr_ptr = src

store_mem_reg(st, 4U, addr_ptr, src);
}

...

5.3 Simulation Proof of the C rBPF Virtual Machine
In this section, we explain how to establish Theorem 8 for the Clight code of our

virtual machine, which is derived from ∂x, and compiled into a Clight AST in Coq using
clightgen.

Clight State. The rBPF state of the monadic model Mdx, as defined in Section 5.1.2,
is implemented as a record type in Gallina (see Figure 5.4 left). ∂x translates this global
state into a global variable named bpf_state in C.

struct bpf_state {
int pc_loc;

79

https://github.com/AbsInt/CompCert/blob/master/export/README.md

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

int bpf_flag;
unsigned long long regs_st[11];
unsigned int mrs_num;
struct memory_region *bpf_mrs;
unsigned int ins_len;
const unsigned long long * ins;

};

Therefore, the corresponding Clight memory, translated by clightgen, contains three
additional blocks to represent the other fields of the Gallina state. state_block denotes
the global state (struct bpf_state ∗ st), mrs_block represents the memory regions
(struct memory_region ∗ bpf_mrs), and ins_block stands for the input rBPF binary
(const unsigned long long ∗ ins). The layout and content of those blocks are depicted
in Figure 5.4.

Figure 5.4 – Simulation relation R between strbpf , left, and rBPFClight, right.

Simulation Relation . A crucial ingredient of Theorem 8 is the simulation relation
between the Gallina state monad and the Clight state which is essentially made of a
CompCert memory. The Gallina state comprises a CompCert memory that models the

80

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/simulation/MatchState.v#L145

5.3. Simulation Proof of the C rBPF Virtual Machine

various memory regions available to the rBPF program. This memory may also contain
other blocks that are not modified by the virtual machine but represent other kernel data-
structures. The simulation relation stipulates that such blocks also exist in the Clight
memory and have the same content, as shown in Figure 5.4.

Solid arrows in Figure 5.4 are simulation relations between state_block and rbpf_st.
Solid lines are the equalities between the rBPF memory m and blocks in rBPFClight
memory. Dashed lines indicate relations of pointers to blocks in CompCert memory. The
encoding exploits the fact that each field of the Gallina state has a known length. Thus,
every field can be encoded as a continuous sub-block. As a result, the program counter
is obtained from the first 4 bytes: loading a memory chunk of type Mint32 at offset 0
retrieves the pc field of the Gallina state. The next 4 bytes encode the enumerated type
flag. Here, each constructor of type flag is assigned an integer. The next 11× 64 bits are
used to encode the register bank of the Gallina state.

Rs(rbpf_st, m, state_block, ins_block, mrs_block) =

∧


rbpf_st.pc = load Mint32 mclight state_block 0

rbpf_st.f lag = load Mint32 mclight state_block 4

rbpf_st.R[R0] = load Mint64 mclight state_block 8

. . .

The next elements of the Clight block represent the lists of instructions and of memory
regions. In a functional language, lists are potentially of unbounded length and have a
polymorphic type. Here, our lists always have fixed lengths and elements of fixed size. As
a result, a list is directly encoded by a field specifying its length followed by a pointer to
its memory block. The elements of the list are stored continuously in the pointed block.

Systematic Proof of Simulation. Since the ∂x tool is syntax-directed, there is a sys-
tematic correspondence between the source Gallina and the target C code. We exploit
this property to design a minimal Clight logic geared toward our simulation proof. Our
Clightlogic generalizes the translation validation theorem (Theorem 8) to accommo-
date Gallina functions and C functions with multiple arguments. In that case, we have
a precondition that states that the Gallina and C arguments are linked pairwise by a
refinement relation. Most of the arguments are numeric values and, in this case, the re-
finement relation states that the Gallina and C values are the same. The Clightlogic also
provides a syntax-directed proof principle for each pair of Gallina/C syntactic construct.

81

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/clightlogic/Clightlogic.v

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

For instance, the bindM operator translates to a sequence in the C code. Also, the result
of a Gallina function call is bound to a local variable in C. Moreover, the local variable v

below stands for the monadic state in C and points to the state memory block.

∂x(bindM f (λx.g)) = (vx = fC(v); gC(v, vx))

To exploit this pattern, our invariants take the form of an association list mapping each
local variable to a set of C values that is obtained by partially evaluating a refinement
relation with the Gallina value computed by the function (Figure 5.4). To evaluate f , one
needs to have a refinement relation Rs between the Gallina state st and the C value of
v in memory m. Now, suppose that fst = ⌊r, st′⌋. Since fC is a correct refinement of f ,
relations Rs(st′, v, m′) and Rr(r, x) hold for the value x of the local variable vx in the
current environment. We conclude by mapping vx 7→ Rr r and use this invariant to refine
g by gC .

The translation validation theorem proves a forward simulation relation from Coq
to Clight. A backward simulation relation can be constructed as Gallina programs are
functions and Clight is determinate.

5.4 CertrBPF Verifier
Linux eBPF’s compiler and runtime system do not enforce type or memory safety.

Instead, safety is verified prior to execution using a static analyzer that checks programs
validity. As both the size and complexity cannot fit the requirements of an MCU archi-
tecture, CertrBPF instead provides a simple (linear time) but formally verified verifier,
CertrBPF-verifier , which ensures the invariant verifier_inv (Definition 3). Accord-
ingly, it scans an input rBPF program (i.e., a list of 64-bit bytecode instructions) and
rejects it when:

1. a source destination register is greater than 10, and a target destination register is
greater than 9,

2. the offset of a jump instruction is out of the instruction sequence bounds,

3. or the last instruction is not the Exit instruction (opcode 0x95).

Static verification of these properties allows the interpreter to skip unnecessary dy-
namic checks. Our verifier adopts the same end-to-end verification method as the inter-
preter, Chapter 4.

82

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/simulation/correct_bpf_interpreter.v#L68
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/verifier/synthesismodel/verifier_synthesis.v#L267

5.4. CertrBPF Verifier

The virtual machine state in CertrBPF-verifier is a strict subset of the interpreter’s
state : verifier_state ::= (C, M) consists of a sequence of instructions C and a
memory M .

The proof model of CertrBPF-verifier is implemented a monadic function verifier :
M bool. When verifier returns true, it establishes a priori the harmlessness of the BPF
program. Otherwise, it represents verifier detects some violations of the aforementioned
three rules and in this case, the CertrBPF interpreter cannot be enabled.

Theorem verifier_well_formedness_and_safety :
∀ (st: verifier_state) (b: bool),

verifier st = ⌊(b , st)⌋.

Theorem verifier_imply_inv :
∀ (st: verifier_state) (st': rbpf_state) (Hinclude: st ⊂ st')
(Hpre : verifier st = ⌊(true, st)⌋),

verifier_inv st'.

Theorem verifier_well_formedness_and_safety intuitively denotes that the
verifier state st is always unchanged whatever the result returns. It proves both Theorem 5
and Theorem 6: the former holds due to the unchanged state and the latter holds because
verifier always returns a result (no crash occurs). In summary, the verifier has the
following properties:

— no assumption (every state is well-formed);

— never crashes (safety);

— never modifies the VM state.

In addition, the Coq theorem verifier_imply_inv states that if the verifier re-
turns true, verifier_inv holds.

Considering that the verifier’s proof and synthesis models are exactly the same, the
simulation relation Rv ⊆ verifier_state × verifier_state required by Theorem 7 is
equality . The C-ready model of CertrBPF-verifier is refined by reusing the ∂x- Com-
pCert library and then it is translated into a C version by ∂x. Last, CertrBPF-verifier
reuses the Clightlogic to prove the simulation proof between its proof model and the C
implementation .

83

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/verifier/comm/state.v#L28
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/verifier/property/invariant.v#L172
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/verifier/property/invariant.v#L576
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/verifier/property/equivalence.v#L31
https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/verifier/simulation/correct_bpf_verifier.v#L67

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

5.5 Optimization
The previous section introduced all existing optimizations of the original rBPF, which

are also implemented in the synthesis model Ms. In this section, we discuss a novel opti-
mization to accelerate the memory-checking process.

5.5.1 check_mem Optimization

The formalization of the rBPF interpreter uses the native check_mem function, which
is not optimized. For a given rBPF memory instruction, the check_mem function iterates
over all memory regions, in sequence, to find if the instruction points to a valid memory
region. While such implementation is correct, performance can be increased by changing
the order in which check_mem iterates over the memory regions.

In this section, we explore an alternative implementation of the check_mem function
as a candidate for runtime optimization. When an rBPF memory instruction is executed
for the first time, check_mem loops in sequence over the memory regions until the accessed
memory is reached, as the non-optimized check_mem does. The accessed memory region
is stored in a cache, so that when the same instruction is called for a second time, the
check_mem first looks at the cache before iterating over all the other memory regions.

High Level Intuition. Two scenarios for the optimized check_mem function are graph-
ically depicted in Figure 5.5. We provide a detailed explanation for each scenario.

The input binary, on the left of Figure 5.5, contains two memory instructions, at
locations i and j. The list of memory regions is displayed next to the input binary array,
and duplicated for readability (although, in practice, only one array of memory regions
exists). The cache, in doted line, is initialized with null 0 elements.

When a memory instruction of the input binary is interpreted, the check_mem func-
tion is called. Since the cache is initially empty, the optimized check_mem behaves, on
the first call, as the non-optimized check_mem function, iterating in sequence over the
memory regions to find if the memory instruction is valid. When the function identifies
the valid memory region (e.g., mr_a for the i-th instruction and mr_b for the j-th in-
struction), the cache is updated with the index of that memory region (e.g., a for the i-th
instruction and b for the j-th instruction).

The second time that an instruction is interpreted, the optimized check_mem function
behaves differently from the non-optimized check_mem version. It first checks the memory

84

5.5. Optimization

Figure 5.5 – Synthesis model: check_mem optimization

region pointed to by the cache. If that memory region is valid for the instruction, the cache
keeps the reference, resulting in a cache hit. If not, it sequentially checks all other memory
regions until a valid one is found. The cache is then updated with the new valid memory
region (e.g., the j-th memory instruction, on the second time, belongs to the memory
region mr_c).

Optimized check_mem Function. We fix perm, chk, mrs, cache, addr , and pc, to
respectively denote a CompCert permission, a CompCert memory chunk (size of memory
block to access), a list of memory regions, a cache where elements of the list are indexes
in the list of memory regions, a memory address, and a program counter. We also write
l[n 7→ v] for updating the n-th element of list l with value v.

The new optimized check_mem (Algorithm 1) operates as follows: It first checks if
the cache is empty (line 2), if the cache is not empty, the algorithm translates the memory
address addr to a pointer based on the history memory region indexed by cache[pc] (line 3).
If the result is valid which represents cache hitting, then the algorithm directly returns
true along with the unchanged cache. The other two cases, when the cache is empty
(line 10) and when the cache is missing (line 5), follow a similar pattern. They calculate
the number of memory regions and iterate over all memory regions using the recursive
function check_all_mrs (line 12).

The iteration proceeds from right to left, and check_all_mrs skips the region cache_id

85

https://compcert.org/doc/html/compcert.common.Memtype.html#permission
https://compcert.org/doc/html/compcert.common.AST.html#memory_chunk

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

during the iteration (line 16). If no valid pointers are found for all memory regions, the
function check_all_mrs returns false along with the old cache (line 14). Otherwise it
returns true along with the updated cache containing the new memory region (line 22).
The function check_one_mem_region is used to verify whether the input address addr

satisfies the condition that the memory interval [addr, addr+chk) falls within the range of
the id-th memory region. It also checks the alignment and permission of the interval. It’s
important to note that in this simplified algorithm, we treat check_one_mem_region

as a boolean function, In the full specification (see item 5.1.3), check_one_mem_region

should return a valid pointer.

Implementation. The Coq development reuses the CertrBPF Gallina specification.
The optimized rBPF interpreter takes a new state, lifting the existing CertrBPF state
with an additional field named cache. We stipulate:

— cache represents a list of caches, with the same length as the input rBPF binary
list, i.e., each memory instruction in the binary list corresponds to a cache in the
cache list.

— The value of each cell of cache should be within the range [0, mrs_num] where
mrs_num is the number of memory regions. Initially, each cache cell is empty (0 by
default). When it is updated with a cache_id, this cache points to the corresponding
memory region with index cache_id− 1.

Our new interpreter implementation introduces a flag ‘opt_flag : bool’: when users
set the flag to true, the optimization is enabled. If opt_flag = false, our specification is
equivalent to the formally verified CertrBPF interpreter.

bpf_interp (opt_flag : bool) (fuel : nat) (ctx_ptr : val) : M val.

Benefiting from the workflow described earlier, we can automatically extract an exe-
cutable C program from our Gallina model.

5.5.2 Equivalence Proof

The monadic definition of the rBPF interpreter is designed such that every sub-
function of the interpreter operates as a monadic function defined over the same state. The
benefit of having a monadic model is that the binding operator of the monad composes
the value and threads the state over each function. For instance, given f1 : A→ M B

86

https://gitlab.inria.fr/syuan/certrbpfopt/-/blob/main/model/Semantics.v#L369

5.5. Optimization

Algorithm 1: The check_mem optimization algorithm
Data: (perm : permission), (chk : memory_chunk), (mrs :

list memory_region), (cache : list nat), (addr : val), (pc : int)
Result: (is_valid : bool), (new_cache : list nat)

1 check_mem :
2 if cache[pc] ! = null then
3 is_valid← check_one_mem_region(mrs[cache[pc]], perm, chk, addr) ;
4 if ! is_valid then
5 return check_all_mrs(size(mrs), id, perm, chk, mrs, cache, addr, pc);

/* cache missing */
6 else
7 return (true, cache) ; /* cache hitting */
8 end
9 else

10 return check_all_mrs(size(mrs), 0, perm, chk, mrs, cache, addr, pc) ;
/* cache empty */

11 end
Data: (n : nat), (cache_id : nat), (perm : permission), (chk :

memory_chunk), (mrs : list memory_region), (cache : list nat), (addr :
val), (pc : int)

Result: (is_valid : bool), (new_cache : list nat)
12 check_all_mrs :
13 if n = 0 then
14 return (false, cache);
15 else if num = cache_id then
16 return check_all_mrs(n− 1, cache_id, perm, chk, mrs, cache, addr, pc);
17 else
18 is_valid← check_one_mem_region(mrs[n], perm, chk, addr) ;
19 if ! is_valid then
20 return check_all_mrs(n− 1, cache_id, perm, chk, mrs, cache, addr, pc);
21 else
22 return (true, cache[pc 7→ n]); /* cache updating */
23 end
24 end

87

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

and f2 : B → M C , then the composition is simply the binding of f1 and f2, written as
do x ← f1 ; f2 . The drawback, however, is that every function is defined over the same
option-state monad with a global state. As a consequence, if the global state changes
(e.g., due to an optimization), all invariants have to be re-verified.

Alternatively, each function of the model can be defined over the subset of the state
that it modifies. For instance, if a function f1 only modifies the sub-state s of the state
state, the modified version f ′

1 has the new signature f ′
1 : A× s→ (B × s). The benefit of

such approach is that if the global state state is modified (e.g., due to an optimization), but
the modification does not affect s, then the invariants of f ′

1 still hold without requiring
additional proof. The drawback, however, is that composition of f ′

1 and f ′
2 (for some

projection of f2) is no longer as straightforward as the monadic binding, as the signatures
may not coincide. We refer to this transformation as simplification.

Our strategy is then the following. We retain the monadic model for design purposes,
as monadic composition simplifies specification. We apply the simplification transforma-
tion to the rBPF interpreter with optimization. We then prove the correctness of the
check_mem optimization. Finally, we demonstrate the correctness of the simplification
through an equivalence proof.

Challenge

Following the workflow of CertrBPF, our new proof model adopts the monadic form
with an option state monad M . The standard refinement proof adopted by CompCert
and CertrBPF is to prove the theorem optimization_correctness that the two models
(non-optimized and optimized) preserve a proper forward simulation relation.

The simulation relation match_states ⊆ state× state is straightforward: the equality
between all other fields in two states, except for the cache.

match_states(st1, st2) def=
∧


st1.pc = st2.pc

st1.f lag = st2.f lag

. . .

Theorem optimization_correctness: ...
(Hsim: match_states st1 st2)
(Hinterp: interp false fuel st1 = ⌊(res, st1')⌋),
∃ st2',

88

5.5. Optimization

interp true fuel st2 = ⌊(res, st2')⌋ /\
match_states st1' st2'.

Theorem optimization_correctness only considers the case when the monadic inter-
preter returns successfully because the existing isolation proof [Yua+22] guarantees the
monadic CertrBPF interpreter (i.e., opt_flag = false) never crashes.

We show the challenge that it is quite difficult to directly prove the optimization is
correct based on our monadic model. We explain our solution in the next section.

We first introduce the function tree of our Gallina model, as the proof process of the
theorem follows this tree structure. As depicted in Figure 5.6, left is the monadic model
with the global state, right is our simplified model, and the grey region includes the shared
functions whose simulation proofs can be eliminated on the right side. We highlight four
nodes of the function tree:

— bpf_interp: The top function of our new CertrBPF model.

— step: It interprets a single rBPF instruction with an initial state, resulting in a new
state.

— upd_reg: The leaf node updating the register map field of the global monad state.

— check_mem: The key function, enabling the check_mem optimization when opt_flag

is true. We underline that the optimized case and the non-optimized one return dif-
ferent states, as the former can modify the cache field of the global state.

Figure 5.6 – Function tree of the optimized interpreter

To complete this standard state-based refinement proof, it requires a forward simu-
lation proof of each node in Figure 5.6. The main challenge arises because all monadic
functions in the tree share the same global state, and check_mem has different effects on

89

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

Figure 5.7 – The simplification process.

this state, depending on the optimization flag opt_flag. The existing experience from
CertrBPF has shown evidence that this approach is quite complex and requires extensive
effort to prove numerous, albeit trivial, detailed lemmas.

Our solution is direct: we forget the monadic structure and replace the global state
with proper inline arguments using a so-called simplification process. This results in a
significant simplification of the final theorem’s proof, allowing us to omit the simulation
proof of most shared functions, as they have exactly the same behavior in both the
optimized and non-optimized models.

Simplification

As depicted in Figure 5.7, the simplification process consists of four steps:

f (_ : a) : M b

(step1) ⇒ f1 (_ : a) (_ : state) : option (b× state)

(step2) ⇒ f2 (_ : a) (_ : t1) (_ : t2) . . . (_ : tn) : option (b× t1 × t2 × . . .× tn)

(step3) ⇒ f3 (_ : a) (_ : tj) (_ : tj) . . . : option (b× ti × tj × . . .)

(step4) (f, fopt) ∈ R⇒ (f3, fopt
3) ∈ Rsimpl

Step 1: Removing the Monad and Monad Operations. We begin by unfolding our
option state monad M along with its operations. Subsequently, we move the initial state
to an argument for enhanced readability: This syntactic transformation doesn’t modify
the semantics of Gallina programs.

Step 2: Replacing the Global State with Inline Arguments. In this step, we
assume that the global state contains several fields with the signature t1 × t2 × . . . × tn,
we construct a new function by:

1. Unfolding the initial state as a list of arguments with types t1, t2, . . . , tn, and

90

https://gitlab.inria.fr/syuan/rbpf-dx/-/blob/CAV22-AE/isolation/RegsInv.v#L126

5.5. Optimization

2. Replacing the final state with the projection of all its components.

Step 3: Bottom-Up Deletion of Unused Arguments and Outputs. According to
the function tree of our monadic model, we systematically remove all unused arguments
and reduce fields of outputs starting from leaf nodes. Only modified components allow to
be output and their types are reserved in the type signature.

For instance, the initial monadic functions (see comments below) and the final simpli-
fied versions of upd_reg, step, and bpf_interpreter are shown as follows:

— upd_reg only modifies the register map regmap field in the global state, therefore
we only reserve this type in the input and output.

— step requires most fields of the monadic state, except for the bpf flag, as step is only
executed when the interpreter status is normal. The step function returns a new
program counter (affected by Branch instructions), a new register map (modified
by most instructions, e.g., ALU), a new CompCert memory (due to Store instruc-
tions), a bpf flag (resulting from operations like division by zero, etc.), and a new
cache (updated by the check_mem optimization). Some fields, such as the binary
instruction list l, the input binary size len, and the memory region list mrs, are not
returned, indicating they remain unchanged by step.

— bpf_interpreter takes all components of the global state as parameters and
returns the final result if successful.

(* * r Definition upd_reg (r: reg) (v: val) : M state unit := ... *)
Definition upd_reg (r: reg) (v: val) (rs: regmap): regmap := ...

(* * r Definition step (opt_flag: bool) : M state unit := ... *)
Definition step (opt_flag: bool) (pc: int) (cache: list nat) (l: list int64)

(len: nat) (rs: regmap) (mrs_num: nat) (mrs: MyMemRegionsType) (m: mem):
option (int * regmap * mem * bpf_flag * list nat) := ...

match ins with
| Alu ... => match step_alu ... with

| ∅ => ∅
| ⌊(rs', f)⌋ => ⌊(pc, rs', m, f, cache)⌋
end

...
(* * r Definition bpf_interpreter (fuel: nat) (opt_flag: bool) : M state val :=

... *)↪→

Definition bpf_interpreter (opt_flag: bool) (fuel: nat) (pc: int) (cache: list nat)

91

https://gitlab.inria.fr/syuan/certrbpfopt/-/blob/main/model/SemanticsSimpl.v#L435

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

(l: list int64) (len: nat) (rs: regmap) (mrs_num: nat) (mrs: MyMemRegionsType)
(m: mem): option (val * int * regmap * mem * bpf_flag * list nat) := ...

Step 4: Simplify the Simulation Relation. In the simplified model, since there
are no states, the simulation relation R can be equivalently replaced by a much simpler
and more intuitive input-output relation Rsimpl: the simulation relation between a pair
of initial states of functions f and f opt is transformed into an input relation. This input
relation specifies that the simplified functions f3 and f opt

3 must have the same input values
for simplified arguments. The simulation of the finial state is expressed as the relation
that f3 and f opt

3 yield the same value for simplified output fields.
For example, the lemma step_preserves_simulation_relation declares an input-

output relation derived from match_states.

— Input: The initial simulation relation is replaced by the constraint that all inline in-
put arguments (pc, register map, CompCert memory, and bpf flag) must be identical
for the optimized function (opt_flag = true) and the non-optimized one.

— Output: The final simulation relation is expressed as two parts:

— Explication: All fields that are used in match_states and also exist in the
output should be identical, e.g., the new pc value pc′.

— Implication: All fields that do not appear in the output are unmodified, e.g.,
the read-only memory region list mrs.

Lemma step_preserves_simulation_relation: ...
(Hstep: step false pc cache l len rs mrs_num mrs m = ⌊(pc', rs', m', f', cache'⌋),
∃ cache1,

step true pc cache l len rs mrs_num mrs m = ⌊(pc', rs', m', f', cache1)⌋.

Last, the construction of the final state is replaced by finding a new cache.

Proof

This section mainly discusses two essential theorems:

— The correctness of simplification (Theorem 9): It aims to prove the equivalence
between the initial monadic model and the simplified model.

92

https://gitlab.inria.fr/syuan/certrbpfopt/-/blob/main/equivalence/equivalence_opt.v#L214

5.5. Optimization

— The correctness of the check_mem optimization (Theorem 10): This theorem is
dedicated to demonstrating the equivalence between the non-optimized model and
the optimized model.

Theorem 9 (Simplification Correctness). Assume that the monadic interpreter interp
takes the initial state st1 and successfully produces the result res and the final state st2,
the simplified version bpf_interpreter, which accepts all fields of st1 as arguments,
returns the same result.

Theorem simplification_correctness: ...
(Hinterp: interp opt_flag fuel st1 = ⌊(res, st2)⌋),

bpf_interpreter opt_flag fuel (pc_loc st1) (cache st1) (ins st1) (ins_len st1)
(regs_st st1) (mrs_num st1) (bpf_mrs st1) (bpf_m st1) =
⌊(res, pc_loc st2, regs_st st2, bpf_m st2, flag st2, cache st2)⌋.

Proof. The key aspect to note is that the monadic check_mem function may potentially
modify the global state. Therefore an associated lemma is proved to illustrate that this
function has no impact on all other fields utilized by all subsequent monadic functions.

Theorem 10 (Optimization Correctness). Assuming that the simplified rBPF inter-
preter accepts the same arguments, the non-optimized model and the optimized model
produce identical results when the check_mem optimization is disabled or enabled.

Theorem optimization_correctness_simpl: ...
(Hmem_disjoint: memory_regions_disjoint mrs_num mrs m0)
(Hcache_inv: cache_inv cache l mrs_num)
(Hinterp: bpf_interpreter false ... = ⌊(res, pc, rs, m, f, cache)⌋),
∃ cache1,

bpf_interpreter true ... = ⌊(res, pc, rs, m, f, cache1)⌋.

This theorem requires two assumptions:

— The user-declared memory regions mrs are disjoint, signifying that there is no over-
lap between any two memory regions. This assumption is directly derived from the
memory invariant of the original isolation proof.

— Due to the introduction of the new field cache, an additional invariant is used to
formalize the stipulation discussed in Section 5.5.1 (see the implementation part)
for proving Theorem 10: cache_inv specifies both the length of the cache list and
the valid range of each element within the list.

93

https://gitlab.inria.fr/syuan/certrbpfopt/-/blob/main/equivalence/equivalence_simpl.v#L1313
https://gitlab.inria.fr/syuan/certrbpfopt/-/blob/main/equivalence/equivalence_opt.v#L579

Partie , Chapter 5 – CertrBPF: A fully Verified rBPF Virtual Machine

Proof. We first case analysis on rBPF instructions, the proof of the non-memory in-
structions is trivial because both non-optimized and optimized models execute identical
behaviors. The memory instruction cases are non-trivial because the check_mem function
of two models has different behaviors: the optimized model may update cache. Therefore
we prove an important lemma check_mem_preserves_simulation_relation that indicates
two models return the same result pointer ptr but different caches.

Lemma check_mem_preserves_simulation_relation: ...
(Hcheck: check_mem false mrs_num ... = Some (ptr, cache')),
∃ cache1,

check_mem true mrs_num ... = Some (ptr, cache1).

Next, the check_mem lemma proof consists of three cases of the cache in the optimized
model:

— cache not exists (cache_id = 0): This is the most simplest case which represents the
cache is empty and the optimized model performs the normal memory checking as
same as the non-optimized version, the only difference is that once it finds a valid
pointer, it updates the cache with the corresponding memory region index before
output. In this case, the proof is trivial.

— cache exists (cache_id ̸= 0): The optimized model observes the cache is not empty,
there are two cases,

— cache missing: The input address is not valid in the corresponding memory re-
gion of cache_id, therefore the optimized model performs the normal memory
checking as same as the non-optimized version but skips the memory region
cache_id (Algorithm 1: line 16-17). This case proves by induction on the num-
ber of memory regions mrs_num and returns a new cache.

— cache hitting: The proof is also by induction on mrs_num, and this case doesn’t
modify the cache because the input address is valid in the corresponding mem-
ory region of cache_id. The proof requires that the non-optimized version is
also (and only) valid in this memory region where we use the assumption that
memory regions are disjoint.

94

5.6. Conclusion

5.6 Conclusion
In this chapter, we have applied the refinement methodology proposed in Chapter 4

to generate a verified C implementation of rBPF, the implementation of BPF hosted by
the RIOT operating system, from a Gallina specification in Coq. All the refinement steps
have been mechanically verified using the Coq proof assistant to minimize the TCB. We
prove that our virtual machine never crashes and it doesn’t produce any runtime errors.

95

Chapter 6

CERTRBPF-JIT

Linux eBPF by default is a 64-bit machine architecture because it is derived from
the 64-bit RISC-V family and all eBPF registers are 64-bits. Its variant, rBPF, follows
the same design. As rBPF is typically deployed in 32-bit IoT devices, the 64-bit design
naturally leads to inefficiency. There are additional expenses to simulate 64-bit rBPF
registers and operators on low-power 32-bit microcontrollers.

Furthermore, rBPF employs an interpreter as its execution engine, which tends to
be slow. Linux eBPF reduces this issue by introducing a runtime component named JIT
(Just-In-Time) compiler to optimize the execution speed of eBPF programs. The JIT
compiler performs a binary translation by compiling source bytecodes to native target
machine code. When considering the incorporation of JIT compilation into rBPF, a sig-
nificant challenge arises. rBPF includes runtime defensive checks for its instructions, such
as check_mem, which are designed to capture all memory undefined behaviors. Conse-
quently, implementing JIT compilation in rBPF becomes more complex and error-prone.

Figure 6.1 – Chapter Structure: CertrBPF-JIT

To address these issues, we first propose rBPF-32: a 32-bit version of rBPF specifi-
cally designed for IoT applications, and formalize its inductive semantics in Gallina (Sec-
tion 6.1). We then introduce a JIT design for rBPF-32 that translates rBPF-32 Alu32
instructions into target machine code (Section 6.2). Consequently, we refine rBPF-32
into a new version, called rBPF-32-JIT whose semantics executes both rBPF bytecode
and jited machine code (Section 6.3). We present HAVM (hybridly accelerated virtual

97

Partie , Chapter 6 – CertrBPF-JIT

machine): a hybrid design that combines our JIT compiler with a 32-bit CertrBPF inter-
preter. We demonstrate how to reuse our verification workflow to extract an executed JIT
compiler in C and compose a completed HAVM (hybridly accelerated virtual machine) C
implementation (Section 6.4). Last, we discuss the proof details of HAVM, outlining the
next steps in our journey (Section 6.5).

6.1 rBPF-32

To bridge the gap between the 64-bit rBPF VM and 32-bit target platforms, we intro-
duce a 32-bit version of rBPF, named rBPF-32. In rBPF-32, registers are 32-bits in size,
and all 64-bit operators e.g., alu64 have been removed.

In contrast to the monadic semantics mentioned in Section 5.1, rBPF-32 adopts the
standard CompCert transition systems to describe the rBPF program behaviours. This
choice allows us to reuse the CompCert backend semantics to express the behaviours of
jited code generated by our JIT compiler.

Following the CompCert definition style, the state of rBPF-32 is represented as a
pair rbpf32_state ::= (R, M), consisting of a CompCert memory model M and the
register state R, which associates (32-bit) values with the rBPF-32 registers. In particular,
R includes an additional program counter register PC, in comparison to the original
CertrBPF (Figure 5.2).

The syntax of rBPF-32, as shown in Figure 6.2, closely resembles that of CertrBPF.
It differs in two key aspects: i) None of the operators are 64-bit, and ii) The doublewords
memory chunk (i.e., 8 bytes) is deprecated.

Transition Semantics of rBPF-32 . The operational semantics for rBPF-32 is de-
fined as a label transition system. The transition relation, denoted as G, C , MR ⊢ st

t−→
st′, represents one execution step from state st to state st′ in the global CompCert en-
vironment G, rBPF binary code C, and memory region mapping relation MR between
ptr(b, 0) and a 32-bit integer value addr. The trace t denotes the observable events gener-
ated by this execution step. In our case, only Call instructions can generate an associated
event in t, others always result in t = ϵ.

The core of rBPF-32’s semantics is a transition function T (ins, st) = ⌊st′⌋ that deter-
mines the new state st′ after executing instruction ins in the intial state st. In particu-
lar, the program counter PC is either incremented for arithmetic, branching instructions

98

https://gitlab.inria.fr/syuan/certrbpf-jit/-/tree/thesis/rbpf32/TSSemantics.v

6.1. rBPF-32

Registers :
R ::= R0 | R1 | . . . | R9 General-purpose

| R10 Stack Frame Pointer
| PC Program Counter

Memory Chunk :
chk ::= byte | halfword | word 1/2/4 Bytes

Instruction :
ins ::= Neg32 dst Unary arithmetic

| Alu32 op dst src Binary arithmetic
| Ja32 ofs Unconditional branch
| Jump32 cmp dst src ofs Conditional branch
| Load32 chk dst reg ofs Memory load
| Store32 chk dst src ofs Memory store
| Call32 imm Call
| Exit Return

Figure 6.2 – Syntax of rBPF-32 instruction set

(when the condition is false), call, and memory instructions, or set to the branch target
for branching instructions (when the condition is true).

For the transition rules of arithmetic (Neg32 dst and Alu32 op dst src) and branch-
ing instructions (Ja32 ofs and Jump32 cmp dst src ofs), the first two premises model
abstractly the act of reading and decoding the n-th instruction ins, which is pointed to
by the program counter PC, from the list C. Then, the rule executes ins and returns a
new state. The detailed definition of T is omitted here as it closely resembles the monadic
functions mentioned in Section 5.1.3.

(ALU + Jump)

R[PC] = Vint(n) C[n] = ⌊ins⌋ T (ins, (R, M)) = ⌊(R′, M ′)⌋
ins ∈ {Neg32 dst, Alu32 op dst src, Ja32 ofs, Jump32 cmp dst src ofs}

G, C, MR ⊢ (R, M) ϵ−→ (R′, M ′)

The transition rule of memory instructions are somewhat complicated. This complex-
ity arises from the fact that the original memory address is a 32-bit integer (i.e., R[reg]+
ofs = int(v)) while the CompCert Memory M requires a pointer (i.e., ptr(b, ofs′)),
To bridge this gap, the rule leverages the global rBPF memory region mapping relation

99

Partie , Chapter 6 – CertrBPF-JIT

MR to translate the expected block b into the corresponding 32-bit integer start address
start_addr where v can be represented as int(v) = start_addr + ofs′ for a new off-
set ofs′. Intuitively, MR serves as an implementation of the transformation function of
check_mem (item 5.1.3), and the CompCert memory load/store mechanism performs
most types of constraint checks of check_mem.

— Permission: CompCert memory operators verify the permission order using the
function Mem.perm before accessing any memory content.

— Alignment: CompCert invokes the function align_chunk to check if the offset is
aligned.

— No Overflow: CompCert models an infinite memory so itself doesn’t explicitly check
for memory address overflow. An additional MAX(ofs) = ofs ≤ max_unsigned−
Z(chk) function is used to perform this check.

— Bounded Checks: Typically, when the transition functions exec_load and exec_store

return successfully, it implies that CompCert has performed the bounded check of
the given rBPF-32 memory instruction. If a CompCert memory operation accesses
out-of-bound regions, the decode and encode functions of CompCert memory return
an undefined value V undef , which leads to the failure of the transition functions.

(Load)

R[PC] = Vint(n) C[n] = ⌊Load32 ck dst reg ofs⌋ R[reg] + ofs = start_addr + ofs′

MR(b) = start_addr MAX(ofs′) exec_load(ck, dst, Vptr(b, ofs′), (R, M)) = ⌊(R′, M ′)⌋
G, C, MR ⊢ (R, M) ϵ−→ (R′, M ′)

(Store)

R[PC] = Vint(n) C[n] = ⌊Store32 ck dst src ofs⌋ R[reg] + ofs = start_addr + ofs′

MR(b) = start_addr MAX(ofs′) exec_store(ck, src, Vptr(b, ofs′), (R, M)) = ⌊(R′, M ′)⌋
G, C, MR ⊢ (R, M) ϵ−→ (R′, M ′)

(Call)

R[PC] = Vint(n) C[n] = ⌊Call32 imm⌋ G(imm) = ⌊External(ef)⌋

external_call(ef, −−→args, M) t=⇒ (v, M ′) R′ = R{PC ← R[PC] + 1, R0 ← v}

G, C, MR ⊢ (R, M) t−→ (R′, M ′)

100

https://compcert.org/doc/html/compcert.common.Memory.html#Mem.perm
https://compcert.org/doc/html/compcert.common.Memdata.html#align_chunk

6.2. Just-In-Time Compilation

The last rule describes the big-step execution of an rBPF-32 call instruction, which
invokes an external function (i.e., RIOT-OS system calls). Following the standard BPF
calling-convention, the predicate external_call models the BPF call behaviours us-
ing the semantics of CompCert external functions, introduced in Section 3.2.2: it passes
the first five arguments (−−→args = [R[R1]; R[R2]; R[R3]; R[R4]; R[R5]]) from the registers
R1, . . . , R5 along with the external function pointer declared in the global environment.
The returned result is then stored in register R0, and PC moves to the next instruction.

rBPF-32 also defines two predicates:

— initial(M, Ptr, st): The state st is an initial state where the CompCert memory
is specified by M , and the register state consists of: R10 points to the tail of rBPF
stack Ptr, and all other registers have default values of 0.

initial(M, Ptr, st) = st = (R, M) ∧
R = {R0 ← Vint(0), R1 ← Vint(0), . . . , R10 ← Ptr, PC ← Vint(0)}

— final(C, Ptr, st, res): The state st is a final state for the rBPF program C where
the register satisfies that R0 has the returned value res, R10 stores the static address
of the tail of rBPF stack Ptr, and PC points to the Exit instruction in the list C.

final(C, Ptr, st, res) = st = (R, M) ∧
R = {R0 ← Vint(res), . . . , R10 ← Ptr, PC ← Vint(n)} ∧
C[n] = ⌊Exit⌋

6.2 Just-In-Time Compilation
Our JIT compiler, named JITALU , is designed to only translate rBPF-32 Alu32 in-

structions into target binary code. Non-Alu32 instructions are still interpreted by the host
rBPF-32 virtual machine (introduced in Section 6.4). This choice is made because the se-
mantics of rBPF-32 memory instructions involves several dynamic memory-safety checks,
which are naturally easier to implement through an interpreter rather than in a hypo-
thetically faster list of non-trivial jited ARM instructions. In addition, this document
only selects ARM as our target architecture, particularly ARM 32-bit, which currently
dominates the semiconductor architecture industry. For instance, ARMv7-M with micro-
controller profile is a popular 32-bit processor which is usually deployed on IoT devices.

101

https://gitlab.inria.fr/syuan/certrbpf-jit/-/tree/thesis/jit/ThumbJIT.v

Partie , Chapter 6 – CertrBPF-JIT

Section 6.2.1 first presents the structure of our JIT compiler, followed by Section 6.2.2,
which introduces the core mapping from rBPF-32 Alu32 to ARM binary, and Section 6.2.3,
which discusses the interaction between rBPF-32 binary and ARM binary.

6.2.1 Structure

Figure 6.3 illustrates the JIT translation process from a list of rBPF-32 Alu32 binary
instructions to ARM binary. The former uses the the little-endian encoding shown in
Figure 3.1 while the latter adopts the THUMB encoding. The procedure consists of seven
stages (second line from the top):

Figure 6.3 – JIT procedure: from rBPF-32 Alu32 binary to ARM binary

— The Pre stage saves the start address of a special CompCert block st_blk.
— Spilling copies ARM registers into the stack (arrow right).
— Load transfers rBPF-32 registers’ value into ARM registers (bend arrow: left).
— Core executes the jited binary code on ARM registers.
— Store updates rBPF-32 registers with the values from ARM registers (bend arrow:

right).
— Reloading moves stack slots into ARM registers (arrow left).
— Post modifies the stack pointer sp and the program counter pc.

As shown in Figure 6.3, JITALU assumes there is an allocated stack frame with a fixed
size of 48 bytes. The old sp is stored at the beginning of the new stack frame.

Additional CompCert Blocks. From the perspective of the ARM binary level, the
jited binary code and the rBPF-32 register map should be stored in some memory blocks.
Therefore, our JIT compiler involves two specific CompCert blocks:

102

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/Thumb-instruction-set-encoding?lang=en

6.2. Just-In-Time Compilation

— jit_blk: stores all jited binary code. Its memory layout is a list of ARM binary
with a pre-allocated size.

— st_blk: records an rBPF-32 register map at a specific position within this block. Its
memory layout is somewhat complicated: similar to Figure 5.4, we stipulate that
the (part) layout of st_blk corresponds to Figure 6.4 1.

Figure 6.4 – state block layout (The first 52 byte)

ARM Register Usage. Each ARM register plays a specific role in JITALU:

— r0 − r10 are associated with the rBPF-32 register map R0 −R10.

— r11 serves as a temporary register because it is an ARM callee-save register.

— r12 records the start address of st_blk.

— r13(sp) always points to the beginning of the currently allocated stack frame.

— r14(ra) stores the return address for branching to the correct location after executing
jited code.

— r15(pc) is the ARM program counter.

JIT Calling-Convention. JITALU assumes that before calling the jited code, the ini-
tial state of the ARM register map is as follows:

— r1 contains the start address of the global state.

— sp points to the bottom of the allocated stack frame.

— the link register i.e., r14 holds the return address.

— pc points to the first jited instruction of the given rBPF-32 Alu32 binary.

— all other registers retain their previous value.

We start by introducing the kernel mapping rules of the Core stage, then explain the
roles of other stages step by step.

1. the first four bytes will be used later, see Section 6.5.2.

103

Partie , Chapter 6 – CertrBPF-JIT

6.2.2 Core Mapping

JITALU directly translates rBPF-32 bytecode into ARM binary. For simplicity, all map-
ping rules are described using pseudo-code with formal semantics. e.g., ‘ ADD Rd Rs‘
(i.e., Alu32 add Rd Rs) represents an rBPF-32 register-related addition instruction, with
its formal semantics derived from Section 6.1. It intuitively denotes the addition of the
values in rBPF-32 registers Rd and Rs, and the result is written to Rd. The ARM seman-
tics is borrowed from the verified CompCert ARM backend, e.g., ‘add rd rd rn‘ represents
the same behaviour based on the ARM registers.

Core Stage. The rBPF-32 Alu32 instructions can be categorized into those with the
last argument as a register or an immediate number. We first discuss the mapping rules
from the former case to the CompCert ARM binary.

As shown in Table 6.1, the mapping rules are straightforward: from an rBPF-32 bi-
nary operation (e.g., add) to its corresponding ARM instruction (e.g., ADD), the only
distinction concerns target patterns. The first five instructions share the same pattern: the
second operand is a register.The MOV and MUL instructions follow a similar pattern to
the first five instructions.

Table 6.1 does not translate rBPF-32 shift and division instructions into ARM in-
structions because those rBPF-32 instructions require additional dynamic checks to avoid
shift-out-of-range and div-by-zero issues. These translations can be performed using spe-
cial techniques, which we will discuss in Section 6.5.2. The mapping rules also exclude
the rBPF-32 MOD instruction because CompCert lacks explicit syntax and semantics for
mod (see here).

Table 6.1 – Mapping relation from rBPF-32 Alu32 reg to ARM

rBPF-32 Alu32 instruction ARM instructions
ADD/SUB/OR/AND/XOR Rd Rs add/sub/orr/and/eor rd, rd, rs

MOV Rd Rs mov rd, rs

MUL Rd Rs mul rd, rd, rs

LSH/RSH/ARSH/DIV/MOD Rd Rs error

For the rBPF-32 immediate instructions, the mapping rules are more complex because
ARM instructions can accept immediate numbers in different ranges.

For the first five instructions in Table 6.2, if the immediate constant is in the range
[0, 255], each instruction is directly mapped to an 8-bit-immediate ARM instruction. If

104

https://github.com/AbsInt/CompCert/blob/master/arm/SelectOp.vp#L277

6.2. Just-In-Time Compilation

Table 6.2 – Mapping relation from rBPF-32 Alu32 imm to ARM

rBPF-32 Alu32 instruction ARM instructions
ADD/SUB/OR/AND/XOR Rd i
(0 ≤ i ≤ 255) add/sub/orr/and/eor rd, rd, i
(256 ≤ i ≤ 65535) movw r11, i;

add/sub/orr/and/eor rd, rd, r11
(65536 ≤ i) movw r11, lo_16(i); movt r11, hi_16(i);

add/sub/orr/and/eor rd, rd, r11
MOV Rd i (0 ≤ i ≤ 65535) movw rd, i
(65536 ≤ i) movw rd, lo_16(i); movt rd, hi_16(i)
MUL Rd i (0 ≤ i ≤ 65535) movw r11, i; mul rd, rd, r11
(65536 ≤ i) movw r11, lo_16(i); movt r11, hi_16(i);

mul rd, rd, r11
LSH/RSH/ARSH Rd i (0 ≤ i ≤ 31) movw r11, i; lsl/lsr/asr rd, rd, r11
DIV Rd i (i ̸= 0) movw r11, i; udiv rd, rd, r11
MOD Rd i error

the constant falls within the range [256, 65535], the constant is first copied into ARM
register r11 using a movw instruction, and then mapped to an ARM instruction with r11

as the second operand. For constants greater than or equal to 65536, the high 16 bits are
loaded into r11, followed by the low 16 bits, before performing the operation. For instance,
‘ADD R0 0xff ’ is translated into ‘add r0 r0 #0xff ’ while ‘ADD R0 0xfffff ’ is mapped
into three ARM instructions ‘movw r11 #0xffff ; movt r11 #0xf ; add r0 r0 r11’.

For the rBPF-32 MOV instruction, the mapping rules generate a movw instruction if
the immediate constant is less than 16 bits, or similarly generate an extra movt instruction
to move the high 16 bits of the supplied constant. For the other instructions, we have two
options: either moving the constant into r11 and generating a related (register) instruction,
as is the case for MUL and DIV , or ensuring that the input rBPF-32 binary list never
includes such instructions, as is the case for MOD.

Finally, given a list of rBPF-32 Alu32 binary L, we construct a list of ARM binary
L′

core using the mapping rules of Table 6.1 and Table 6.2. The tail of L′
core also includes

two ARM binary instructions to update the rBPF-32 PC using the length of L. This
ensures that during the jited execution, our rBPF-32 interpreter can skip all subsequent
alu instructions and locate the correct instruction for the next execution.

L′
core = [. . . ; movw r11, length(L); str r11, [r12, #0]]

105

Partie , Chapter 6 – CertrBPF-JIT

6.2.3 Interaction

In the Core stage, source instructions operate over rBPF-32 registers, while the jited
ARM code operates on ARM registers. Hence, a consistent interaction of register-level
transfers is mandatory: copying rBPF-32 registers into ARM before the Core stage, and
updating the rBPF-32 registers after the Core stage. It is additionally essential to preserve
the ARM calling convention as the rBPF-32 interpreter ‘calls’ the jited code. This issue
is dealt with during the Spilling and Reloading stages.

Load and Store Stages. We perform a dataflow analysis to compute i) the minimum
set LD of rBPF-32 registers that need to be loaded into ARM registers before L′

core;
ii) and the minimum set ST of ARM registers loaded into rBPF-32 registers after L′

core.
The simplified version of our dataflow analysis is as follows: It takes two initial sets, LD

and ST , and updates them with registers according to the input rBPF-32 instruction.

dataflow_analysis(ins, LD, ST) =
(LD, ST ∪ {Rd}) if ins = MOV Rd i

(LD ∪ {Rs}, ST ∪ {Rd}) if ins = MOV Rd Rs

(LD ∪ {Rd}, ST ∪ {Rd}) if ins = ADD Rd i | SUB Rd i | . . .

(LD ∪ {Rd; Rs}, ST ∪ {Rd}) if ins = ADD Rd Rs | SUB Rd Rs | . . .

The Load stage includes a list of ARM load instructions L′
load = [ldr ri, r12, #(i∗4+4)]

for all ri ∈ LD. The offset is i∗4 because each rBPF-32 register is 32 bits, and an additional
4 bits are necessary due to the memory layout described in Figure 6.4. Similarly, the Store
stage generates L′

store = [str ri, r12, #(i ∗ 4 + 4)] for all ri ∈ ST .

Spilling and Reloading Stages. The jited code should preserve all callee-saved reg-
isters (CSR = {ri | 4 ≤ i ≤ 11}) to their initial values. This is the responsibility of the
Spilling stage, which copies all used callee-saved ARM registers into the ARM stack be-
fore the Load stage, and the Reloading stage, which resets all used callee-saved registers
into the initial values after the Store stage. The key is to compute all used callee-saved
registers, where r11 is always included because L′

core uses it to update rBPF-32’s PC value.

CSRused = (CSR ∩ (LD ∪ ST)) ∪ {r11}

The Spilling stage consists of a sequence of instructions L′
spilling = [str ri, sp, #(i∗4)]

for all ri ∈ CSRused. The offset is i ∗ 4 because each ARM register is 32 bits. Conversely,

106

6.2. Just-In-Time Compilation

the Reloading stage is a sequence of the form L′
reloading = [ldr ri, sp, #(i ∗ 4)] for all

ri ∈ CSRused.

Pre and Post Stages. Considering the Load and Core stages may override r1, the Pre
stage moves r1’s information to r12 that is not used by any rBPF-32 instructions and is
not a callee-save register. L′

pre = [mov r12, r1].
The Post stage frees current stack frame and branches to the return address.
L′

post = [ldr sp, sp, #0; b r14].
The entire JITALU process generates a list of ARM binary L′ by using Coq List’s

concatenation operator ‘++’ to combine the aforementioned lists in a specific sequence:
L′ = L′

pre + +L′
spilling + +L′

load + +L′
core + +L′

store + +L′
reloading + +L′

post.

Example. To illustrate the entire JITALU process, let’s consider a source rBPF-32 Alu32
snippet composed of three instructions: ‘[ADD R0 R1; MOV R5 R0; MUL R6 0xf]’.

Initially, both LD and ST are ∅, We sequentially apply each input instruction for
the dataflow analysis, resulting in the final state where LD = {R0; R1; R6} and ST =
{R0 R5 R6}. Then the used callee-saved registers CSRused are R5, R6, and R11.

We can now introduce each stage of the jited ARM code generated from the input
three instructions. The first stage Pre is always mov r12, r1. The Spilling stage saves
all registers of CSRused in the stack frame, and the Load stage copies three rBPF-32
registers of LD into ARM r0, r1, and r6, respectively. The Core stage includes the corre-
sponding ARM instructions defined in Table 6.1 and Table 6.2, along with two instructions
‘movw r11, #3; str r11, r12, #48’ to update the rBPF-32’s PC with the length of the
input list, i.e., 3. JITALU stipulates that rBPF-32’s PC register is stored at offset 48, as
shown in Figure 6.4. The Store stage updates all modified rBPF-32 registers, i.e., ST ,
and the Reloading stage resets all used call-save registers to their previous values stored
in the stack frame during the Spilling stage. The last stage is Post.

mov r12, r1 ;. Pre Stage
str r5, [sp, #20] ;. Spilling Stage
str r6, [sp, #24]

str r11, [sp, #44]

ldr r0, [r12, #4] ;. Load Stage
ldr r1, [r12, #8]

ldr r6, [r12, #28]

add r0, r0, r1 ;. Core Stage

107

Partie , Chapter 6 – CertrBPF-JIT

mov r5, r0

movw r11, #0xf

mul r6, r6, r11

movw r11, #3 ;. update rBPF-32's PC
str r11, [r12, #48]

str r0, [r12, #4] ;. Store Stage
str r5, [r12, #24]

str r6, [r12, #28]

ldr r5, [sp, #20] ;. Reloading Stage
ldr r6, [sp, #24]

ldr r11, [sp, #44]

ldr sp, [sp, #0] ;. Post Stage
b r14

6.3 Refinement of rBPF-32: rBPF-32-JIT

We introduce a refined rBPF-32 model to formalize the behaviours of executing both
the original rBPF binary script and the new jited binary code generated from each Alu32
segment of the input script by JITALU. Intuitively, this refined model behaves:

— At the rBPF-32 level: when it finds rBPF-32 non-Alu32 instructions from the input
rBPF script, it applies the existing rBPF-32 transition rules.

— At the ARM level: when it finds rBPF-32 Alu32 instructions, it calls the CompCert
ARM transition functions to interpret the corresponding jited binary.

To perform the switch between the rBPF-32 level and the ARM level, the refined model
also provides a formal Gallina specification to connect the rBPF-32 transition system to
the CompCert ARM semantics.

6.3.1 Symbolic CompCert ARM

Unfortunately, the ARM binary generated by JITALU cannot be directly interpreted by
the existing CompCert ARM backend, as the latter defines ARM semantics at the assem-
bly level rather than the binary level. To address this issue, we define an ARM decoding
function and a symbolic CompCert ARM semantics that employs symbolic execution to
preserve the ARM calling convention.

108

6.3. Refinement of rBPF-32: rBPF-32-JIT

ARM Decode. We implement a decode function in Gallina that translates binary ARM
instructions to standard CompCert ARM instructions with assembly syntax. Each input
binary instruction is either 16 or 32 bits and adopts different THUMB encoding forms.
The details of the THUM encoding can be found in ARMv7-M Reference Manual.

Symbolic Execution. To ensure that the jited code doesn’t break the ARM calling
convention mechanism, i.e., after completing the execution of the last jited code, the
final register state should ensure that all ARM callee-save registers are reset to their initial
values, i.e., the ARM register values before calling the jited code. We adopt a symbolic
execution technique to address this concern. In our CompCert variant, the ARM register
map SReg is symbolic: each register sr is either an abstract value or a concrete value
binding to an actual ARM register r.

SReg ∋ sr::=abstract(r) | concrete(r)

Initially, all ARM registers have their abstract values, e.g., SReg[r0] = abstract(r0).
The concrete values of registers are inserted by jited code during the execution.

We define a function init_state to create a new ARM environment for interpreting
binary code. It first copies values from the arguments list args to ARM argument regis-
ters (r0 − r3) of the initial symbolic register map init_rs, according to a given function
signature sig. Then, init_state allocates a new memory block stk with a fixed stack
size sz in the CompCert memory. It stores the previous stack pointer sp at position pos

in this allocated block stk and updates the stack pointer with the start address of this
block (i.e., the bottom). Finally, it stores the return address, i.e., the next address of the
old pc, to r14. Since we promise the first argument always points to the start address of
the jited binary code to be executed, init_state also assigns the program counter pc

with the first argument value r0.

init_state(sig, args, sz, pos, m) =
match alloc_arguments(sig, args, init_rs) with
| ∅ ⇒ ∅

| ⌊rs⌋ ⇒match alloc_frame(sz, pos, rs, m) with
| ∅ ⇒ ∅

| ⌊(rs′, m′)⌋ ⇒ ⌊(rs′{r14 ← abstract(pc) + 1, pc← rs′[r0]}, m′)⌋

109

https://developer.arm.com/documentation/ddi0403/latest/

Partie , Chapter 6 – CertrBPF-JIT

We then define a boolean predicate is_final_state to describe a well-formed final state
of the jited code.

is_final_state(rs : SReg) : bool = rs[pc] == abstract(r14) &&
rs[sp] == abstract(sp) &&
(∀i.4 ≤ i ≤ 11→ rs[ri] == abstract(ri))

The predicate is_final_state stipulates that, before switching to the rBPF-32 level for
interpreting other non-alu rBPF-32 instruction, the final state should satisfy:

— pc: The program counter should hold the return address stored in r14.

— sp: The newly allocated stack frame should be free.

— calling convention: All callee-save registers should have their initial values.

6.3.2 Transition Semantics of rBPF-32-JIT

rBPF-32-JIT refines the aforementioned transition system by the following aspects:

— State: The program state is represented as a quadruple rbpf32_arm_state ::=
(b, SR, R, M) where the boolean flag b indicates the transition system is at the
rBPF-32 level (b = false) or at the ARM level (b = true), SR is a symbolic ARM
register map, R is a rBPF-32 register map, and M denotes the CompCert memory.

— Additional CompCert Blocks: As mentioned in Section 6.2.1, there are two special
blocks in the CompCert memory M : jit_blk used for storing the jited code and
st_blk for representing a global state, including the rBPF-32 register map R. In
particular, st_blk provides a low-level abstraction of the rBPF-32 register map:
The rBPF-32 interpreter operates on the rBPF-32 register map separately from the
CompCert memory, making rBPF-32 register operations more abstract and corre-
sponding proofs easier. While the ARM interpreter requires the rBPF-32 register
map to be stored in a CompCert memory block.
To synchronize st_blk and the rBPF-32 register map, the Gallina function copy_to
copies all rBPF-32 registers’ values into st_blk before the switch from the rBPF-32
interpreter to the ARM interpreter, and copy_from performs the opposite opera-
tion, updating rBPF-32 registers according to the new content in st_blk after the
switch from the ARM interpreter to the rBPF-32 interpreter.

110

https://gitlab.inria.fr/syuan/certrbpf-jit/-/tree/thesis/rbpf32/TSSemanticsJIT.v

6.3. Refinement of rBPF-32: rBPF-32-JIT

copy_to(R, st_blk, m) =
match store(Mint32, m, st_blk, 4, R[R0]) with
| ∅ ⇒ ∅

| ⌊m1⌋ ⇒match store(Mint32, m1, st_blk, 8, R[R1]) with
. . .

| ⌊m10⌋ ⇒ store(Mint32, m10, st_blk, 48, R[PC])

copy_from(R, st_blk, m) =
match load(Mint32, m, st_blk, 4) with
| ∅ ⇒ ∅

| ⌊v0⌋ ⇒match load(Mint32, m, st_blk, 8) with
. . .

| ⌊v10⌋ ⇒match load(Mint32, m10, st_blk, 48) with
| ∅ ⇒ ∅

| ⌊vpc⌋ ⇒ ⌊R{R0 ← v0, . . . , R10 ← v10, PC ← vpc}⌋

— Transition Relation: The new transition relation, denoted as G, C, MR, KV, st_blk,

jit_blk ⊢ st
t−→ st′, introduces additional global information KV , which is a

key_value list used to link a sequence of Alu32 binary and its generated jited
binary stored in jit_blk, as explained in Section 6.4.1.

— Transition Rules: The transition rules for non-Alu cases are directly inherited from
the original rBPF-32 transition system where the flags in both states are set to
false, and the symbolic ARM register map is unchanged.

(Non_alu)

R[PC] = Vint(n) C[n] = ⌊ins⌋ ins ∈ {Ja32 ofs, Jump32 cmp dst src ofs,

Neg32 dst, Load32 ck dst reg ofs, Store32 ck dst src ofs, Call32 imm}
. . .

G, C, MR, KV, st_blk, jit_blk ⊢ (false, SR, R, M) t−→ (false, SR, R′, M ′)

111

Partie , Chapter 6 – CertrBPF-JIT

Three rules related to our JIT compiler are introduced to replace the old alu rule.
The first rule JIT_init finds an alu instruction that the corresponding element in KV

records an offset. It updates the rBPF-32 register map to the block st_blk (copy_to),
switches the transition from rBPF-32 level to ARM level, and initializes an ARM state
using the init_state function. The signature consists of argument types, a return type,
and the default calling convention. The arguments list −−→args(ofs) = [Vptr(jit_blk, ofs),
Vptr(st_blk, 0)] records the values of the corresponding arguments where the first argu-
ment, relying on the offset ofs, is the start address of jited code, and the second one
points to the start address of a global state.

(JIT_init)

R[PC] = Vint(n) C[n] = ⌊alu op dst src⌋ KV [n] = ⌊ofs⌋
copy_to(R, st_blk, M) = ⌊M ′⌋

init_state(sig,−−→args(ofs), sz, pos, M ′) = ⌊(SR′, M ′′)⌋
G, C, MR, KV, st_blk, jit_blk ⊢ (false, SR, R, M) ϵ−→ (true, SR′, R′, M ′′)

The second transition rule JIT_final performs the opposite switch: from ARM level to
rBPF-32 level, when the symbolic register map SR represents the final state. It updates
the rBPF-32 register map with the new content of the block st_blk in memory M . The last

(JIT_final)

R[PC] = Vint(n) C[n] = ⌊alu op dst src⌋ is_final_state(SR) = true

copy_from(R, st_blk, M) = ⌊R′⌋
G, C, MR, KV, st_blk, jit_blk ⊢ (true, SR, R, M) ϵ−→ (false, SR, R′, M)

rule JIT handles the normal transition of one CompCert ARM instruction in a symbolic
way, i.e., calling symbolic_transf.

(JIT)

R[PC] = Vint(n) C[n] = ⌊alu op dst src⌋ find_instr(SR[pc], M) = ⌊ins⌋
symbolic_transf(ins, SR, M) = ⌊(SR′, M ′)⌋

G, C, MR, KV, st_blk, jit_blk ⊢ (true, SR, R, M) ϵ−→ (true, SR′, R′, M ′)

112

6.4. Hybrid JIT Interpreter

6.4 Hybrid JIT Interpreter

This section introduces a hybridly accelerated virtual machine HAVM , i.e., an inter-
preter of refined rBPF-32, and demonstrates how to extract executable C implementation
of the JITALU compiler and the hybrid interpreter. Section 6.4.1 provides a global view of
the entire hybird JIT interpreter. Section 6.4.2 presents our CompCert ARM interpreter
variant. Section 6.4.3 defines a refined JITALU compiler with a monadic state. Section 6.4.4
implements a hybird rBPF-32 interpreter in monadic form, capable of interpreting the
refined rBPF-32 (including jited code). Finally, Section 6.4.5 leverages the workflow dis-
cussed in Chapter 4 to generate C code for both the JITALU compiler and the corresponding
interpreter.

6.4.1 Overview

HAVM follows a hybrid design where:

— Arithmetic instructions (rBPF-32 Alu32) are directly translated into the target
ARM binary and executed natively for achieving better performance.

— Non-Arithmetic instructions (e.g., branch, memory, etc) are simply executed by the
host rBPF-32 virtual machine to balance hypothetical performance gains with the
cost of necessary defensive code.

Figure 6.5 – HAVM Overview

Figure 6.5 depicts the program transformation performed by HAVM, starting from
a given rBPF script (top). The JITALU compiler scans linearly the rBPF input script
to find sequences of arithmetic alu operations. For each such sequence, it generates an

113

https://gitlab.inria.fr/syuan/certrbpf-jit/-/tree/thesis/jit/iBPF/ISemantics.v

Partie , Chapter 6 – CertrBPF-JIT

equivalent sequence of ARM_alu operations, whose formal semantics is adapted from the
existing CompCert ARM backend.

The last step (bottom) consists of interleaving the interpretation of non-alu oper-
ations, in the VM, with the execution of the jited ARM_alu binary sequences. This
interleaving is performed in two steps by a glue function named "jit_call". The first
step consists of jumping from state jit_st2 in the rBPF_interpreter to the translated state
arm_st0 in the jited binary. The second step is to callback the interpreter in state
jit_st3 from the ARM state arm_stb0.

The complete JITALU compiler for HAVM, as depicted in Figure 6.5, operates in two
steps: 1) Selecting a sequence of consecutive Alu32 instructions. 2) Translating the rBPF-
32 Alu32 instructions into ARM binary code.

The selection in the first step follows the principles:

— entry point: the first Alu32 instruction is special, and as shown in Figure 6.6, it is
one of the three cases: 1) its index is 0, 2) its previous instruction is non-Alu32,
or 3) there exists a jump instruction branching to this Alu32 that its previous
instruction can be Alu32 or non-Alu32. The index of such a Alu32 instruction is
named entry point.

— tail: the next instruction of the tail of the selected sequence is non-Alu32.

Figure 6.6 – Three cases of entry point

The first step provides a global mapping relation from each sequence of Alu32 instruc-
tions to the corresponding jited binary code. This mapping is stored in a key-value list
denoted as KV . Given a sequence of Alu32 instructions l with an entry point n in the
input rBPF script, the key in the list KV is n, and the corresponding value records the
start address of the jited code generated from l. The second step has been introduced
in Section 6.2.

114

6.4. Hybrid JIT Interpreter

6.4.2 CompCert ARM Interpreter

To ensure correct interpretation of the jited code, we have designed a symbolic variant
of the CompCert ARM interpreter. This variant leverages the existing CompCert ARM
transition functions to execute user-specific ARM binary code.

The function bin_exec is used to implement this symbolic CompCert ARM module.
It operates as follows:

bin_exec(fuel, sig, args, sz, pos, m) =
match init_state(sig, args, sz, pos, m) with
| ∅ ⇒ ∅

| ⌊(rs′, m′)⌋ ⇒ bin_interp(fuel, rs′, m′)

Its parameters include:

— fuel, which ensures the termination of its recursive sub-function bin_interp.

— sig, representing the signature of the arguments used by the input ARM binary
code.

— args, the corresponding argument list. We stipulate that the maximum number
of arguments is 5, where init_state responds to copy those values into r0 − r4,
respectively.

— sz, indicating the size of the allocated stack frame.

— pos, specifying where the old stack pointer should be stored in the new stack frame.

— m, the CompCert memory.

First, bin_exec uses init_state, as described in Section 6.3.1, to create a proper
ARM environment that includes a fixed-size stack frame and a new state for the ARM
register map. It then calls bin_interp recursively to interpret ARM binary code until it
achieves a final state (i.e., is_final_state(rs) = true) and returns r0’s value, or until the
fuel is exhausted. In each iteration, find_instr locates the instruction pointed to by the
program counter pc and decodes it using the decode function discussed in Section 6.3.1.
If the binary instruction decodes successfully, bin_interp then calls a symbolic ARM
transition function symbolic_transf to execute the instruction and proceeds to the next

115

Partie , Chapter 6 – CertrBPF-JIT

instruction if no errors occur.

bin_interp(fuel, rs, m) =
if is_final_state(rs) then ⌊(rs[r0], m)⌋
else if fuel == 0 then ∅
else match find_instr(rs[pc], m) with
| ∅ ⇒ ∅

| ⌊ins⌋ ⇒match symbolic_transf(ins, rs, m) with
| ∅ ⇒ ∅

| ⌊(rs′, m′)⌋ ⇒ bin_interp(fuel − 1, rs′, m′)

6.4.3 Monadic JIT Compiler

Firstly, a JIT state is a 9-tuple jit_state ::= (C, C_len, M, Ld_list, St_list,

jit_list, jit_ofs, jit_len, KV) where:

— C: a list of rBPF binary code.

— C_len: the fixed length of C.

— M : CompCert memory model.

— Ld_list: a list of of load register with size 11.

— St_list: a list of of store register with size 11.

— jit_list: a list used to store the jited code.

— jit_ofs: an offset pointing to the next unused space in the list jit_list.

— jit_len: the pre-allocated size of jit_list.

— KV : a key_value list with size C_len, where its index is a key representing an
entry point (see Figure 6.6) and the corresponding value KV [index] points an offset
in jit_list.

Ld_list and St_list are used to store some registers (index) at the Load and Store
Stages of JITALU. All jited binary instructions are stored in the list jit_list with a fixed
size of jit_len (corresponding to a C array), and jit_ofs counts the number of binary
instructions generated by JITALU.

The monadic JIT compiler jit_alu : M bool , based on the design in Section 6.2,
accepts an initial state, it either crashes or returns a new state and a boolean result. A

116

https://gitlab.inria.fr/syuan/certrbpf-jit/-/tree/thesis/jit/monadicJIT/DxThumbJIT.v#L733

6.4. Hybrid JIT Interpreter

result of false indicates that the compiler failed to complete the JIT process for some
reason, e.g., jit_list being full (jit_ofs ≥ jit_len).

6.4.4 Hybrid rBPF-32 Interpreter

This section introduces how to interpret the composition of an rBPF binary script and
the generated jited ARM binary code in a monadic way.

First, the monadic state, a 12-tuple hybrid_state ::= (C, C_len, PC, BR, f, M,

MRs, mrs_num, KV, jit_ptr, jit_len, st_ptr), refines CertrBPF’s state rbpf_state

(see Section 5.1.2) in the following aspects:

— Considering that our CompCert ARM interpreter uses CompCert memory functions
to read or write jited code and the rBPF-32 register map, this new CompCert
Memory M introduces two special blocks: jit_blk and st_blk where jit_ptr =
Vptr(jit_blk, 0) and st_ptr = Vptr(st_blk, 0).

— the new state also adds three JIT related fields derived from the JIT state. They
are the key_value list KV , the pointer jit_ptr pointing to the beginning of jited
binary code, and the fixed size jit_len.

Our hybrid rBPF-32 interpreter hybrid_interp , based on the new monadic state,
inherits most of its structure, e.g., the interp function and the Jump-related implemen-
tation in the step function, directly from Section 5.1.3. The only difference is the call to
a glue function jit_call to interpret jited code when hybrid_step finds an rBPF alu
instruction.

hybrid_step(hst) =
match hst.C[st.PC] with
| Alu op dst src⇒ jit_call(hst.KV [hst.PC], hst)
| Jump cmp dst src ofs⇒ ../..

| ../..

jit_call is formally defined as an instantiate of our symbolic CompCert ARM mod-
ule bin_exec, where:

— fuel is set to the size of jit_blk.

117

https://gitlab.inria.fr/syuan/certrbpf-jit/-/tree/thesis/jit/monadicJIT/DxiBPFInterpreter.v

Partie , Chapter 6 – CertrBPF-JIT

— signature and the argument list −−→args(ofs) are the same as the ones used in the JIT

transition rule (Section 6.3.2).

— The newly allocated stack frame has a fixed size of 48, where the old sp is stored at
position 0, as shown in Figure 6.3.

— The final state updates the CompCert memory with the returned value of bin_exec.

jit_call(ofs, hst) =
match bin_exec(hst.jit_len, sig, −−→args(ofs), 48, 0, hst.M) with
| ∅ ⇒ ∅

| ⌊(_, N)⌋ ⇒ hst{M ← N}

6.4.5 rBPF-32 C Implementation

Following the aforementioned workflow Chapter 4, we construct synthesis models of
our JITALU Compiler and the hybrid rBPF-32 interpreter. We use ∂x to extract C imple-
mentation. There are two ways to implement the jit_call function: either by adding a
CompCert build-in function, or considering jit_call as an external C function. Here we
mainly discuss the second approach.

jit_call Implementation. The external C function jit_call sets up a properly ini-
tialized ARM calling environment, where:

— r0: Points to the correct location of the jited ARM binary.

— r1: Contains the start address of the JIT state.

— sp: Indicates the start address of the newly allocated stack frame.

— r14: Holds the return address from jit_call.

— pc: Equals r0 for executing the first given jited ARM binary.

jit_call accepts two arguments: ofs for the offset of the corresponding jited code
in a pre-allocated array jit_ptr, and st for the global state of the hybrid interpreter.
jit_call first switches the processor mode into THUMB mode, i.e., (line 4)‘orr rd #0x1’
where the register rd points to the given address of the jited code. Then it allocates a
new stack frame (line 5- line 7) where location [sp, # 0] is used to store the old stack
pointer. Consequently, jit_call uses a move instruction (line 8) to branch execution to

118

6.4. Hybrid JIT Interpreter

the offset of the jited block because mov doesn’t modify the value of the linking register,
allowing it to correctly jump to the return address.

Finally, line 9 declares that return value is stored into a temporary variable res. The
ARM register r1 points to a pointer to the global state, and line 10 indicates r0 has the
address pointing to the jited code. jit_call doesn’t return anything because the jited
code has updated the global state.

1 void jit_call(unsigned int ofs, struct hybrid_state* st){
2 int res;
3 asm volatile (
4 "orr %[input_0], #0x1\n\t"// set THUMB mode
5 "mov r12, sp\n\t" // save old sp
6 "sub sp, sp, #48\n\t" //allocate a new frame
7 "str r12, [sp, #0]\n\t" // save old sp
8 "mov pc, %[input_0]\n\t" // mov: change pc and preserve lr
9 : [result] "=r" (res) : [input_1] "r" (st),

10 [input_0] "r" (jit_ptr + ofs) : "cc");
11 return ;
12 }

HAVM: a Hybrid Interpreter. HAVM includes the JITALU compiler and a hybrid
interpreter.For the alu case, it contains two functions: the first one calculates an offset
(ofs) of the jited ARM block according to the rBPF PC, and jit_call. In practice, the
jit_blk is defined by a C array and is hence declared in the JIT state because it is an
effectful data structure.

void step(struct hybrid_state* st){ /* ... */
switch (opcode) {

case ALU32:
/*compute ofs */
jit_call(ofs, st);

case Jump32: ...
...:

}
void hybrid_interpreter(struct hybrid_state* st, unsigned int fuel){

/* ... if (fuel == 0) { ... } */
step(st);
/* ... hybrid_interpreter(st, fuel -1); */

}

119

Partie , Chapter 6 – CertrBPF-JIT

6.5 Discussion
The previous sections introduce the design of our JITALU compiler and the hybrid

rBPF-32 interpreter, the remained proof details are discussed in this section and the Coq
mechanized validation is a work-in-process.

6.5.1 Proof Overview

As shown in Figure 6.7, the proofs, represented by ∼ for simulation relations and |=
for critical properties, include a collection of proofs for JIT-related models and a set of
proofs for rBPF-32-related models.

For the JIT compiler, the proofs consist of:

— Establishing equivalence between the JITALU compiler (introduced in Section 6.2)
and its monadic model (mentioned in Section 6.4.3),

— Ensuring that the monadic JITALU (proof model) is fault-isolated, i.e., no undefined
behaviours.

— Proving the simulation relation among its proof, synthesis, and clight models.

For the rBPF-32 interpreter, the proofs involve:

— Proving the simulation relation between two transition systems: the original rBPF-
32 semantics (defined in Section 6.1) and that of the refined rBPF-32-JIT (defined
in Section 6.3). This simulation proof is exactly the JITALU correctness.

— Establishing the equivalence between the refined semantics and the corresponding
interpreter (proof model).

— Following the verification workflow to guarantee that the rBPF-32-JIT proof model
is isolated, and all related models are proven equivalent.

Our discussion primarily centers on the JIT correctness theorem since the rest can
be easily mechanized checked by reusing the previously mentioned proof strategies (see
Chapter 5).

We first define the simulation relation ∼⊆ rbpf32_state × rbpf32_arm_state. For
simplification, we mainly discuss the relation between register maps, where the source
state has only one rBPF-32-JIT register map and the target state includes a pair of
register maps: rBPF-32-JIT and ARM. As depicted in Figure 6.8, ∼ contains two cases
that depend on the current rBPF-32-JIT instruction (i.e., ⌊st.C[st.R[PC]]⌋).

120

6.5. Discussion

Figure 6.7 – JIT Proof Overview

— non-Alu32 : If the current instruction is an rBPF-32-JIT non-Alu32 instruction, the
forward simulation produces identical transition behaviours in source and target
systems. In this case, two rBPF-32-JIT register maps are updated consistently, and
the ARM register map in the target state is omitted, i.e., ∼rbpf .

∼rbpf (st0, st1) def= ∀ r.st0.R[r] = st1.R[r]

Figure 6.8 – JIT Simulation Diagrams

— Alu32 : For each rBPF Alu32 instruction, the forward simulation follows a stan-
dard CompCert forward approach, where the source undergoes one transition of

121

Partie , Chapter 6 – CertrBPF-JIT

rBPF-32-JIT semantics, and the target undergoes multiple transition steps using
the symbolic CompCert ARM transition functions. The simulation relation ∼arm is
defined as follows: For a list of synchronized rBPF-32-JIT registers L with no dupli-
cated elements, each register in L always has the same value as the corresponding
ARM register. For registers not in L, they are identical between source and target
register maps R. We rewrite ireg_of_reg for computing the corresponding ARM
registers, e.g., ‘ireg_of_reg(R0) = r0’.

∼arm(st0, st1, LR) def= ∀ r.

(List.In r LR→ st0.R[r] = st1.SR[ireg_of_reg(r)]) ∧
(¬List.In r LR→ st0.R[r] = st1.R[r])

— First Alu: If the current instruction is the first Alu instruction of a sequence of
Alu instructions, i.e., entry point, the forward simulation introduces an additional
triangular form to switch from the rBPF level to the ARM level. The process, corre-
sponding to the Pre, Spilling, and Load Stages of JITALU, constructs the synchronous
registers LR from an empty set according to the Load Stage.

— Last Alu: If the current instruction is the last Alu instruction of a sequence of
Alu instructions, the forward simulation employs another triangular form to switch
from the ARM level to the rBPF level. The process, corresponding to the Store,
Reloading, and Post Stages of JITALU, frees the synchronous registers LR according
to the Store Stage.

6.5.2 Defensive JITALU

In the previous section, our JITALU compiler skips four special rBPF instructions, as
seen in Table 6.1, because they require runtime checks, e.g., division-by-zero of the source
register in an rBPF DIV register-related instruction. In this section, we discuss how to
extend JITALU to generate defensive jited code.

The main challenge of this defensive JITALU is to interrupt the ARM interpreter cor-
rectly and return a proper rBPF flag when jited code captures runtime errors.

Firstly, we re-organize the structure of the JITALU procedure. Reset and Post Stages
are moved to the beginning. The change provides a fixed address for exception cases.
When jited code finds an exception, the corresponding rBPF error flag is updated to

122

6.5. Discussion

the flag field of a global state (e.g., the first four bytes in Figure 6.4). Subsequently, the
ARM interpreter jumps to the start address of the Reset Stage to ensure ARM calling
convention. An additional Jump Stage is introduced to ensure jited code also branches
to the Reset Stage in normal cases.

Figure 6.9 – JIT defensive procedure

Then, we extend the core mapping rules to handle three shift instructions and the
rBPF DIV register-related instruction.

As demonstrated in Figure 6.10, the three rBPF-32 shift instructions follow the same
pattern to generate additional defensive ARM code for runtime checks. In the figure,
various colors distinguish instructions with distinct purposes: rBPF-32 instructions are
highlighted in orange, ARM comparison instructions in grey, ARM branch instructions in
violet, while instructions marked in red are employed to interrupt the execution of JITALU.
The green instructions represent ARM instructions translated from rBPF-32 instructions.
Each solid arrow represents a transition from an ARM branch instruction to another ARM
instruction. These arrows, along with labels denoting boolean conditions, signify that the
destination instruction may be executed after the source branch instruction, depending
on the outcome of the preceding comparison instruction. In addition, the box sizes in
Figure 6.10 represent the different instruction widths in the target machine, such as rBPF-
32 instructions are 64-bit, ARM comparison instructions are 16-bit, and the remaining
ARM instructions are 32-bit.

Our shift mapping rule initially compares the source register rs with the constant 32.
If the value of rs is (signed) less than 32, i.e., ‘rs < 32’, pc is set to the subsequent ARM
comparison instruction ‘cmp rs #0’, else (‘rs ≥ 32’), pc goes to the next instruction to
interrupt the execution of JITALU, i.e., the red color instructions in Figure 6.10. The follow-
ing comparison instruction cmp rs #0 and the branch instruction b.lt #(−9) also adjust
pc to the instructions colored in red when ‘rs < 0’. Conversely, (‘0 ≤ rs < 32’) pc branches
to the corresponding ARM shift instructions responsible for normal shift operations. The
instruction ‘movw r11, #11’ copies the encoding value of BPF_ILLEGAL_SHIFT

into r11, and ‘str r11, [r12, #0]’ updates the BPF flag (located at the start address of the

123

Partie , Chapter 6 – CertrBPF-JIT

Figure 6.10 – JIT defensive procedure: shift instructions

global state, i.e., offset 0) with the value of r11.
Similar to the rBPF-32-JIT shift instructions, the ‘DIV ’ instruction is also translated

to a sequence of defensive ARM code, as shown in Figure 6.11.

Figure 6.11 – JIT defensive procedure: DIV instruction

To calculate the branch offset, consider the example ‘b.lt 6,’ which executes a branch
based on the condition lt. The offset is computed using the following formula 2:

offset = (X − 4)/2

Where X represents the number of bytes to jump. e.g., if the cmp instruction is
encoded in 16 bits, while b, movw, and str instructions are encoded in 32 bits, then

2. The real-world THUMB interpreter adopts PC ← PC + (offset * 2) + 4 for b.c offset

124

6.5. Discussion

X = b.lt (4) + movw (4) + str (4) + b.lt (4), resulting in a total of 16. Consequently,
offset = (16− 4)/2, which equals 6. Thus, We get ‘b.lt 6’ in Figure 6.10.

125

Chapter 7

EVALUATION

In this chapter, we integrate CertrBPF as a drop-in replacement for the existing non-
verified module optimized for size (vanilla-rBPF) in the IoT operating system RIOT to
provide the expected femto-container functionalities [ZB20]. We then evaluate CertrBPF
performance compared to vanilla-rBPF, compiled and running on real IoT hardware.

7.1 Implementation

7.1.1 Coq Implementation

We use the tool cloc (full name, Count Lines of Code) developed by Al Danial to count
our code size, and the results are presented in Table 7.1:

Table 7.1 – Coq code statistics of CertrBPF

Module Interpreter (loc) Verifier (loc) JIT (loc)
Proof Model 2445 1459 2074
Properties 4885 547 9617*

Synthesis Model 3285
Equivalence 635
Simulation 10820 8331
(Total) 22070 10337

* proof underway.

— CertrBPF Interpreter : The proof model of the interpreter (Section 5.1) consists of
2.4k lines of Coq code and the corresponding isolation proof (Section 5.1.4) is more
than 4.8k lines long. The synthesis model, Section 5.2, is approx. 3.2k lines long and
the equivalence theorem is completed by 0.6k proof code. The final step (Section 5.3)
includes 10.8k translation validation proofs between the Gallina specification and
the extracted Clight model.

127

https://github.com/AlDanial/cloc

Partie , Chapter 7 – Evaluation

— CertrBPF Verifier : As for the CertrBPF verifier (Section 5.4), the proof and syn-
thesis models sport 1.4k lines of Coq code. The corresponding proofs are more than
0.5k long and the last simulation proof is about 8.3k long.

— CertrBPF JIT : The JIT compiler implementation consists of around 2k lines, and
the corresponding proof (currently underway) is about 9k lines.

In addition, the Clightlogic implementation has 4.4k lines of Coq code.

7.1.2 C Implementation

The final C implementation is automatically extracted from our Gallina specification
using ∂x. Table 7.2 provides a static comparison between the CertrBPF C implementation
and vanilla rBPF.

Table 7.2 – C code statistics of CertrBPF

Vanilla-rBPF CertrBPF
Interpreter 730 854
Verifier 68 548
JIT Compiler 1336

We first notice that the extracted model consistently results in more lines of C code.
The main reason is that CertrBPF adopts a monadic-style code design, while vanilla rBPF
employs a common programming style. For each atomic state-related operation, such as
register updates, CertrBPF models it as a monadic function in Gallina and extracts a
monadic C function, whereas vanilla rBPF uses equivalent C operators.

/**r BPF_ADD_REG example: */
/* vanilla rBPF: uint64_t *src, uint64_t *dst */

*dst += *src;
...

/* CertrBPF: unsigned long long dst64, unsigned long long src64, unsigned int dst */
upd_reg(st, dst, dst64 + src64);
return ;
...

Next, we observe that the generated C code of CertrBPF includes many small functions
that only perform very simple tasks, e.g., eval_reg (reading a register value from register

128

7.2. Experiment

map) and upd_pc (writing a new value to rBPF program counter). Calls to those func-
tions can produce extra overhead. To address this, we have declared the always_inline
attribute for these simple functions to improve performance.

static __attribute__((always_inline)) inline void upd_pc(struct bpf_state* st,
unsigned int pc) {↪→

...
}

7.2 Experiment
Our experiments involve the original non-verified rBPF interpreter (i.e., vanilla-rBPF)

and the automatically extracted CertrBPF interpreter (without RIOT’s API) as well
as the HAVM implementation (JIT compiler + hybrid interpreter). Our measurements
focus on the memory requirements (RQ1) of these virtual machines and the instruction
execution throughput (RQ2-RQ4).

7.2.1 Experimental Evaluation Setup

Our experimentsare conducted using the nrf52840dk support board, which uses an
Arm Cortex-M4 microcontroller, a popular 32-bit architecture (arm-v7m). The code is
compiled using the Arm GNU toolchain version 12.2 with level 2 optimization enabled.
We utilize the following GCC compiler options:

— -foptimize-sibling-calls: Optimizes all tail-recursive calls to bound the stack
usage.

— -falign-functions=16: Reduces performance variation caused by the instruction
cache on the device.

— -fwrapv, -fwrapv-pointer: Enables both signed and pointer arithmetic wraps ac-
cording to the two’s-complement encoding.

— -fno-strict-aliasing: Disables aliasing assumption.

The -foptimize-sibling-calls option is particularly critical for our isolation the-
orem, as it relies on the implicit CompCert assumption that the stack cannot overflow.
The last three options are passed for the purpose of avoiding a possible mismatch between
the CompCert semantics and the GCC semantics.

129

Partie , Chapter 7 – Evaluation

7.2.2 Benchmarks

Our evaluation includes two types of benchmarks:

— Micro-benchmarks: single instructions from the arithmetic logic unit (ALU), for
memory access (MEM) and branch instructions, with a mix of register and imme-
diate value for the operands. The micro-benchmarks are used to measure the per-
formance of core instructions. For the precise measurement, each micro-benchmark
consists of 1000 single identical instruction calls with a single return statement to
make the application exit.

— Macro-benchmarks: actual benchmarks for different purposes: i) pure computation
tasks, such as incr, square and fib; ii) memory read/write tasks, for instance sock_buf
and memcpy(n); iii) actual benchmarks from rBPF: fletcher32 alrogithm, etc. The
source code for macro-benchmarks is written in C and compiled to BPF binary
with proper compiler options, e.g., LLVM-eBPF’s ‘-mattr=+alu32’ for generating
instructions that operate on 32-bit subregisters.

7.2.3 Research Question: Memory Footprint

RQ1: Do CertrBPF and HAVM meet the memory requirements of IoT hardware com-
pared to vanilla-rBPF?

We first evaluate the memory footprint of the CertrBPF interpreter and the HAVM
implementation in comparison to vanilla-rBPF. We measure i) Flash size, which includes
all read-only data, including the actual code; ii) Stack, representing the approximate ram
used for stack space.

To directly measure the memory footprint, we examine the executable binary file .elf

generated from a RIOT-OS application that includes the rBPF virtual machine module
written in C. ELF files are selected because they are clean: the GCC compiler performs
optimization, and the linker ld removes all dead functions.

We use the tool arm-none-eabi-nm to measure flash size with the options ‘-S’ for print-
ing size, ‘–line-numbers’ for printing location in the binary, and ‘–radix=d’ for values in
decimal format. The grep command collects all compiled functions of the virtual machine
Y module of the RIOT-OS application X, and awk sums the sizes.

$ arm-none-eabi-nm X.elf -S --line-numbers --radix=d |grep \/Y\/ | awk '{ SUM += $2}
END{ print SUM}'↪→

130

7.2. Experiment

We use the GCC option -fstack-usage to calculate worst-case stack usage of individual
functions, and the results are recorded in the generated .su files.

Size Vanilla-rBPF CertrBPF CertrBPF (opt) HAVM
Interpreter JIT

Flash 2018 B 1502 B 2114 B 702 B 8756 B
Stack 356 B 68 B 96 B 68 B 164 B

Table 7.3 – Memory footprint of rBPF engines

We present a comparison of memory requirements for different implementations in
Table 7.3.

Key take-away. In terms of Flash,

— CertrBPF actually reduces the footprint by a 25% decrease on Cortex-M, compared
to Vanilla-rBPF. One reason is that calls to the RIOT API are currently not sup-
ported by CertrBPF;

— The check_mem optimized CertrBPF increases the footprint due to the additional
cache field;

— HAVM requires significantly more Flash compared to other interpreters. This is pri-
marily because that both a regular eBPF interpreter and additional JIT compilation
code are included. The HAVM interpreter has the smallest Flash because some of its
sub-functions are shared with the JIT compiler and they are counted in the latter.

In terms of Stack, CertrBPF has the lowest stack usage. Vanilla-rBPF has an extra
call module that occupies approximately 108 B. The optimized CertrBPF increases stack
usage due to the cache field. Last, HAVM consists of an interpreter and a JIT compiler,
which imposes additional stack requirements on top of what is shown in Table 7.3.

In conclusion, all implementations require a comparable amount of Flash and Stack
for the rBPF virtual machine.

7.2.4 Research Question: CertrBPF Interpreter Performance

RQ2: Can the verified CertrBPF C implementation outperform vanilla-rBPF?
First, we evaluate the performance of micro-benchmarks for core operations, as shown

in Figure 7.1, which includes five ALU64 instructions, three memory instructions, and

131

Partie , Chapter 7 – Evaluation

ALU64
neg

ate

ALU64
Add

reg

ALU64
Add

im
m

ALU64
mult

ipl
y im

m

ALU64
rig

ht
shi

ft
im

m

ALU64
div

ide
im

m

MEM
loa

d do
ub

le

MEM
sto

re
do

ub
le

im
m

MEM
sto

re
do

ub
le

Bran
ch

alw
ays

Bran
ch

equ
al

(ju
mp)

Bran
ch

equ
al

(co
nti

nu
e)

1
1.5

2
2.5

3

µs
pe

r
in

st
ru

ct
io

n

Vanilla-rBPF
CertrBPF

Figure 7.1 – Time per instructions on the Cortex-M4 platform

three branch instructions. These results represent the performance of single instructions
averaged over 1000 runs.

Key take-away. In the micro-benchmarks, as depicted in Figure 7.1, most instructions
show improved performance with CertrBPF compared to vanilla-rBPF. However, branch
instructions exhibit a noticeable slowdown. Possible reasons for this include:

— Arguments: When interpreting branch instructions, vanilla-rBPF passes only one ar-
gument—a pointer to the current instruction—before computing the opcode, offset,
etc., resulting in less execution time. In contrast, CertrBPF first calculates the offset
and opcode, which are shared by other instructions, leading to a smaller memory
footprint. Then, it copies these values (global monadic state, offset, and opcode) to
the branch module.

— Function calls: Vanilla-rBPF directly modifies the pointer to a new location, while
CertrBPF uses an indirect approach: it accesses the state and modifies the pc field
via function calls.

Next, we measure the performance of macro-benchmarks, Table 7.4. The binary pro-
grams are compiled using the LLVM-BPF backend (v10.0.0) with default options, i.e.,
disable ‘-mattr=+alu32’, because both Vanilla-rBPF and CertrBPF support rBPF ALU64
instructions.

The first four benchmarks test pure computation tasks mainly consisting of rBPF
Alu64 operations and one extra exit instruction (for the purpose of validating the rBPF
verifier). These results are averaged over 1000 runs to guarantee accuracy. Then, we select

132

7.2. Experiment

Interpreter vanilla-rBPF CertrBPF CertrBPF (opt)
incr 8.251 µs 5.750 µs 5.376 µs
square 8.251 µs 5.751 µs 5.376 µs
bitswap 41.503 µs 38.628 µs 38.377 µs
fib 142.001 µs 151.126 µs 140.627 µs
sock_buf 195.000 µs 188.000 µs 173.000 µs
memcpy_1 25.252 µs 21.440 µs 23.378 µs
memcpy_n 683.519 µs 680.130 µs 576.749 µs
fletcher32 2959 µs 2915 µs 2680 µs
bsort 10 290 µs 10 253 µs 9303 µs

Table 7.4 – Execution time of real-world benchmarks (64-bit)

three special cases with more memory operations but fewer Alu64 operations: the classical
BPF socket buffer read/write, memory copies only one element (average over 1000 times),
and memory copies many elements. Finally, we benchmark the performance of actual rBPF
applications using the Fletcher32 algorithm or the bubble sort algorithm.

Key take-away. In most macro-benchmarks, CertrBPF reduces execution time com-
pared to vanilla-rBPF, as observed in Table 7.4. The exception is the fib benchmark,
which includes more branch instructions compared to other benchmarks.

Finally, we benchmark the performance of actual IoT data processing, hosted in a
femto-container with RIOT-OS running on our selected hardware. In this use case, a
sliding window average is performed within the femto-container, on available sensor data
points. Figure 7.2 shows the performance measured depending on the size of the window.
We use this as blueprint for computation load scaling.

20 30 40 50 60 70 80 90 100
200

400

600

800

Number of samples to average

µs
pe

r
ex

ec
ut

io
n Vanilla-rBPF

CertrBPF

Figure 7.2 – Sliding window average on Cortex-M.

133

Partie , Chapter 7 – Evaluation

Key take-away. In terms of the sensor data processing benchmark, CertrBPF also
decreases the execution time, comparing to vanilla-rBPF, Figure 7.2.

All in all, CertrBPF gains both security and reduces execution time.

7.2.5 Research Question: CertrBPF Interpreter Optimization

RQ3: Does check_mem optimization improve the execution of rBPF programs com-
pared to CertrBPF?

We evaluate the performance of macro-benchmarks using CertrBPF, with the check_
mem optimization both enabled and disabled. As depicted in Table 7.4, the optimized
CertrBPF demonstrates improved performance in most macro-benchmarks compared to
the original CertrBPF. However, in the case of memcpy_1, we observe a slight slowdown in
the optimized CertrBPF, although it still outperforms Vanilla-rBPF. This slowdown can
be attributed to copying only one element, incurring additional overhead to update the
cache but not benefiting from any cache acceleration. On the other hand, the benchmark
memcpy_n illustrates that the optimized version enjoys a significant speedup thanks to
the additional cache.

Discussion. In cases where the optimized CertrBPF exhibits a slowdown, users have
the option to disable the check_mem optimization. Alternatively, an advanced rBPF
verifier could be designed, incorporating static analysis techniques to determine whether
the optimization should be enabled or disabled.

7.2.6 Research Question: HAVM Optimization

Our last research question, RQ4: Does HAVM achieve improved performance compared
to CertrBPF and vanilla-rBPF?

We compare the HAVM implementation against both CertrBPF and Vanilla-rBPF.

Instruction Performance. The raw instruction throughput of the different implemen-
tations is measured for a set of different instructions and shown in Figure 7.3. As is visible,
in the general case the three implementations have a comparable instruction throughput
with some minor differences in performance. Especially perfomance between HAVM and
CertrBPF should be identical for non-JIT instructions. Further investigation showed that
the minor differences in performance are caused by non-uniform access to the ROM of the

134

7.2. Experiment

ALU32
ad

d reg

ALU32
ad

d im
m

ALU32
mul

reg

ALU32
mov

reg

ALU32
mov

im
m

MEM
loa

d word

MEM
sto

re
word

im
m

MEM
sto

re
word

Bran
ch

alw
ays

Bran
ch

eq
(ju

mp)

Bran
ch

eq
(co

nt)
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

µs
pe

r
in

st
ru

ct
io

n

HAVM
CertrBPF

Vanilla-rBPF

Figure 7.3 – Execution time per instruction, on an Arm Cortex-M4 microcontroller

microcontroller. Depending on the flash layout of the binary by GCC, the performance of
the implementations varied slightly.

In the alu32 case, HAVM is significantly faster than CertrBPF as HAVM uses JITALU

to accelerate computations. Here, we enable ‘-mattr=+alu32’ so that the LLVM-BPF
backend generates only Alu32 instructions.

When considering the overhead of the JIT compilation process, we measure that the
compilation of the instructions incurs a considerable overhead. In Table 7.5 the compila-
tion times and execution times for a number of instructions are shown. As is visible the
overhead per compiled instruction varies between 0.7 µs (when no compilation is possible)
and 5.1 µs. Comparing this to the execution time of the CertrBPF instructions as shown
in Figure 7.3, HAVM is always slower when considering the JIT compilation time together
with the execution time. However this changes when a script is executed multiple times
as the JIT compilation time is an install-time overhead. As soon as a script is executed at
least twice, the total install and execution time with HAVM is less than with CertrBPF.
We show that this is the case for an rBPF task periodically extracting fine-grained secu-
rity information/data from the OS kernel or another tracing performance troubleshooting
information from a critical application.

135

Partie , Chapter 7 – Evaluation

Instruction JIT compilation time Execution time Total time
ALU add32 reg 2.69 µs 0.02 µs 2.71 µs
ALU add32 imm 2.08 µs 0.03 µs 2.11 µs
ALU mul32 reg 4.91 µs 0.06 µs 4.97 µs
Non-JIT instructions 0.7 µs

Table 7.5 – JIT compilation and execution time of alu32 instructions

Real World Examples. To show the impact of the JIT compilation with HAVM, we
compare the performance between HAVM and CertrBPF using real-world benchmarks, as
shown in Table 7.6. These benchmarks use the same source C code as those in Table 7.4,
but the corresponding rBPF binary code differs. All ALU instructions are rBPF Alu32
due to the LLVM BPF backend enabling ‘-mattr=+alu32’. We highlight that three worst
cases for HAVM: sock_buf , memcpy_1, and memcpy_n. Because they have more mem-
ory operations but fewer Alu32 operations. We observed that, for real-world benchmarks,
HAVM improves performance because of JITALU: the numerical acceleration feature, com-
pared with CertrBPF.

Interpreter vanilla-rBPF CertrBPF HAVM
incr 8.251 µs 5.252 µs 5.000 µs
square 8.251 µs 5.377 µs 4.875 µs
bitswap 43.438 µs 35.128 µs 18.750 µs
fib 91.503 µs 89.002 µs 56.125 µs
sock_buf 330.000 µs 297.000 µs 220.000 µs
memcpy_1 43.001 µs 41.815 µs 44.125 µs
memcpy_n 864.943 µs 798.252 µs 690.000 µs
fletcher32 2214 µs 1951 µs 1377 µs
bsort 11 885 µs 10 696 µs 8683 µs

Table 7.6 – Execution time of real-world benchmarks (32-bit)

Summary. Our experiments demonstrate that HAVM delivers significantly improved
execution times for certain instructions and comparable execution times for others. No-
tably, JITALU in HAVM introduces considerable performance gains. These findings indicate
that HAVM offers both speed and versatility.

136

Chapter 8

CONCLUSION

8.1 Summary
Developing real-world operating system libraries in C is a non-trivial task, and verify-

ing the correctness of those implementations is even more complex. When narrowing the
context to low-level IoT domains, additional constraints come into play, such as limited
memory footprints and higher performance requirements. To address these challenges, this
thesis proposes an end-to-end verification workflow and applies it to verify a real-world
IoT operating system library, RIOT-OS’ rBPF.

Chapter 4 introduces our end-to-end verification workflow that directly derives a veri-
fied C implementation from a Gallina specification within the Coq proof assistant. Lever-
aging the formal semantics of the CompCert C compiler, we establish an end-to-end
theorem stating that the final C code inherits the safety and security properties of the
Gallina specification. Our approach begins with a monadic proof model in Gallina, which
we prove its critical properties in Coq. We then refine this proof model into a synthesis-
oriented Gallina model with optimizations. We use an unverified code generator ∂x to
extract executable C from the refined model. Importantly, this extraction procedure need
not be trusted: it is directly verified using our translation validation theorem.

In Chapter 5, we apply this workflow to generate a verified rBPF virtual machine, the
implementation of BPF hosted by the RIOT operating system, from a Gallina specifica-
tion in Coq. To the best of our knowledge, this is the first verified rBPF virtual machine
in the RIOT-OS community. We prove that the rBPF Gallina model satisfies the isolation
property, i.e., there are no undefined behaviours in the virtual machine. This isolation
property also holds in the verified C implementation due to our end-to-end verification
approach. We also introduce the verified check_mem optimization to enhance the per-
formance of our verified implementation by using caching to reduce memory accesses.

Chapter 6 discusses the performance aspects of rBPF. We propose a 32-bit variant of
rBPF virtual machine whose 32-bit registers and 32-bit instruction operators are naturally

137

more suitable to be deployed at popular low-power microcontroller architectures. We
then develop the first BPF Just-in-Time compiler (JITALU) tailored to the hardware and
resources constraints of IoT devices, resulting in a refined 32-bit rBPF virtual machine.
We integrate JITALU with the CertrBPF interpreter to create a hybrid virtual machine:
HAVM, a defensive, kernel-privileged service capable of accelerating numerical tasks at
runtime using partial JIT compilation. The executable C implementation of HAVM is
produced by reusing the end-to-end workflow.

In Chapter 7, we demonstrate that all C produces obtained in the aforementioned
chapters can be securely integrated into the IoT operating system RIOT-OS to provide the
expected functionalities. Preliminary experiments, including benchmarks and an actual
IoT data processing, show satisfying memory footprints and performance.

8.2 Perspectives

While we have proposed an end-to-end verification approach and developed a verified
RIOT-OS’ rBPF virtual machine along with a JIT compiler, we could improve our work
in many aspects. In the short term, our goal is to complete a fully verified hybrid virtual
machine, HAVM. Additionally, we plan to create a verified ∂x compiler that translates
Gallina to CompCert C, which is a long-term goal. We discuss these perspectives in the
following two subsections.

8.2.1 Short-term Perspectives

In Chapter 6, we designed and implemented a JIT compiler for rBPF in Coq, marking
the first step in our overarching plan. The next step is to fully verify HAVM, including
verifying the correctness of our JITALU compiler.

— Backward Design: We are exploring another JIT design, which we believe may sim-
plify the JIT correctness proof. The current JIT design adopts a ‘forward’ way which
is more straightforward to design but harder to prove correct. In this approach, the
JIT compiler determines a list of rBPF-32 Alu32 instructions (for Spilling and Save
stages) before translating the first element in the rBPF-32 Alu32 list. The new solu-
tion employs a ‘backward’ design: the JIT compiler uses information about previous
instructions to decide if a particular instruction requires Spilling and Save stages.

138

— JIT All: We are also considering a JIT-all compiler that translates all rBPF instruc-
tions into ARM binary. The new JIT compiler will adopt the structure introduced
in Section 6.5.2 to embed the defensive behaviours into jited code. One of the most
challenge parts is to embed an optimized check_mem algorithm into jited code.

8.2.2 Long-term Perspectives

Our end-to-end verification workflow, as discussed in Chapter 4, currently relies on
an unverified Gallina code generator, ∂x. We must undertake an additional verification
step to ensure the equivalence between the input Gallina model and the extracted C
implementation by ∂x. This represents the main limitation of our approach compared to
other end-to-end approaches outlined in Section 2.1. To address this limitation, we aim
to provide a formally verified Gallina-to-C compiler, akin to CompCert, to thoroughly
mitigate this issue. Two potential options are:

— Translation Validation. The workflow of ∂x shown in Figure 3.9 relies on an external
Coq plugin named Coq-Elpi, and this makes it harder to directly verify the correct-
ness of the ∂x workflow. The translation validation approach doesn’t need ∂x to be
verified, instead, it requires a verified validator to check the equivalence property
between each input Gallina code and the corresponding extracted C program.

— Forward Simulation Framework (CompCert). Another choice is to follow the stan-
dard CompCert simulation techniques to create a verified compiler. The strongest
competitor running in this track is CertiCoq, a fully verified Compiler (proof un-
derway) that translates arbitrary Gallina programs into executable C code with a
verified garbage collector. The main difference between CertiCoq and our expected
goal is that we accept a selected Gallina subset as input and generate C code without
any garbage collectors.

In contrast to RIOT-OS’s rBPF, Linux eBPF boasts a more extensive ecosystem and
offers a wider range of application scenarios. We also have plans to extend our verification
workflow to ensure the correctness of eBPF’s verifier, interpreter, and the various JIT
compilers associated with different targets.

139

BIBLIOGRAPHY

[Ana+17] Abhishek Anand et al., « CertiCoq : A verified compiler for Coq », in: CoqPL,
2017.

[App+14] Andrew W. Appel et al., Program logics for certified compilers, CUP, 2014.

[Bac+18] Emmanuel Baccelli et al., « RIOT: An open source operating system for
low-end embedded devices in the IoT », in: IoT-J 5.6 (2018), pp. 4428–
4440.

[BC13] Yves Bertot and Pierre Castéran, Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions, Springer, 2013.

[BDL06] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy, « Formal Verification
of a C Compiler Front-End », in: FM 2006: Formal Methods, ed. by Jayadev
Misra, Tobias Nipkow, and Emil Sekerinski, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 460–475, isbn: 978-3-540-37216-5.

[Ber07] Gérard Berry, « SCADE: Synchronous design and validation of embedded
control software », in: Next Generation Design and Verification Methodolo-
gies for Distributed Embedded Control Systems: Proceedings of the GM R&D
Workshop, Bangalore, India, January 2007, Springer, 2007, pp. 19–33.

[BL09] Sandrine Blazy and Xavier Leroy, « Mechanized Semantics for the Clight
Subset of the C Language », in: Journal of Automated Reasoning 43 (2009),
pp. 263–288, url: https://api.semanticscholar.org/CorpusID:896527.

[Bou+17] Timothy Bourke et al., « A Formally Verified Compiler for Lustre », in:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, Barcelona, Spain: Associa-
tion for Computing Machinery, 2017, pp. 586–601, isbn: 9781450349888, doi:
10.1145/3062341.3062358, url: https://doi.org/10.1145/3062341.
3062358.

141

https://api.semanticscholar.org/CorpusID:896527
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1145/3062341.3062358

[Cas+87] P. Caspi et al., « LUSTRE: A Declarative Language for Real-Time Program-
ming », in: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’87, Munich, West Germany:
Association for Computing Machinery, 1987, pp. 178–188, isbn: 0897912152,
doi: 10.1145/41625.41641, url: https://doi.org/10.1145/41625.
41641.

[Cer23a] the CertrBPF team, the CertrBPF repo, 2023, url: https : / / gitlab .
inria.fr/syuan/rbpf-dx/-/tree/CAV22-AE/.

[Cer23b] the CertrBPF team, the CertrBPFOpt repo, 2023, url: https://gitlab.
inria.fr/syuan/certrbpfopt/-/tree/main.

[Coh+09] Ernie Cohen et al., « VCC: A practical system for verifying concurrent C »,
in: International Conference on Theorem Proving in Higher Order Logics,
Springer, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 23–42.

[Cou+05] Patrick Cousot et al., « The ASTREÉ Analyzer », in: Programming Lan-
guages and Systems, ed. by Mooly Sagiv, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 21–30, isbn: 978-3-540-31987-0.

[DB08] Leonardo De Moura and Nikolaj Bjørner, « Z3: An Efficient SMT Solver »,
in: Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, Budapest, Hungary: Springer-Verlag, 2008,
pp. 337–340, isbn: 3540787992.

[Del00] David Delahaye, « A Tactic Language for the System Coq », in: Logic for
Programming and Automated Reasoning, ed. by Michel Parigot and Andrei
Voronkov, Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 85–95,
isbn: 978-3-540-44404-6.

[Dun+15] Cvetan Dunchev et al., « ELPI: Fast, Embeddable, λProlog Interpreter »,
in: LPAR, vol. 9450, LNCS, Springer, 2015, pp. 460–468.

[Erb+21] Andres Erbsen et al., « Integration Verification across Software and Hard-
ware for a Simple Embedded System », in: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2021, Virtual, Canada: Association for Computing

142

https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://gitlab.inria.fr/syuan/rbpf-dx/-/tree/CAV22-AE/
https://gitlab.inria.fr/syuan/rbpf-dx/-/tree/CAV22-AE/
https://gitlab.inria.fr/syuan/certrbpfopt/-/tree/main
https://gitlab.inria.fr/syuan/certrbpfopt/-/tree/main

Machinery, 2021, pp. 604–619, isbn: 9781450383912, doi: 10.1145/3453483.
3454065, url: https://doi.org/10.1145/3453483.3454065.

[Fle17] Matt Fleming, « A Thorough Introduction to eBPF », in: Linux Weekly
News (2017).

[Gef+20] Jacob Van Geffen et al., « Synthesizing jit compilers for in-kernel dsls », in:
International Conference on Computer Aided Verification, Springer, 2020,
pp. 564–586.

[Ger+19] Elazar Gershuni et al., « Simple and Precise Static Analysis of Untrusted
Linux Kernel Extensions », in: Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA: Association for Computing Machinery, 2019, pp. 1069–
1084, isbn: 9781450367127, doi: 10.1145/3314221.3314590, url: https:
//doi.org/10.1145/3314221.3314590.

[Gu+16] Ronghui Gu et al., « CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. », in: OSDI, USENIX, 2016, pp. 653–669.

[Haw+14] Chris Hawblitzel et al., « Ironclad Apps: End-to-End Security via Automated
Full-System Verification », in: Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, Broomfield,
CO: USENIX Association, 2014, pp. 165–181, isbn: 9781931971164.

[Hue92] Gérard Huet, « The Gallina specification language: A case study », in: Foun-
dations of Software Technology and Theoretical Computer Science, ed. by
Rudrapatna Shyamasundar, Berlin, Heidelberg: Springer Berlin Heidelberg,
1992, pp. 229–240, isbn: 978-3-540-47507-1.

[Jom+18a] Narjes Jomaa et al., « Formal proof of dynamic memory isolation based on
MMU », in: Science of Computer Programming 162 (2018), Special Issue on
TASE 2016, pp. 76–92, issn: 0167-6423, doi: https://doi.org/10.1016/
j.scico.2017.06.012, url: https://www.sciencedirect.com/science/
article/pii/S0167642317301338.

[Jom+18b] Narjes Jomaa et al., « Proof-Oriented Design of a Separation Kernel with
Minimal Trusted Computing Base », in: AVOCS, vol. 76, Electronic Com-
munications of the EASST, 2018.

143

https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/https://doi.org/10.1016/j.scico.2017.06.012
https://doi.org/https://doi.org/10.1016/j.scico.2017.06.012
https://www.sciencedirect.com/science/article/pii/S0167642317301338
https://www.sciencedirect.com/science/article/pii/S0167642317301338

[JP08] Bart Jacobs and Frank Piessens, The VeriFast program verifier, tech. rep.,
Citeseer, 2008.

[JPL12] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy, « Validating
LR(1) Parsers », in: Programming Languages and Systems, ed. by Helmut
Seidl, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 397–416,
isbn: 978-3-642-28869-2.

[Kir+15] Florent Kirchner et al., « Frama-C: A software analysis perspective », in:
Formal Aspects of Computing 27.3 (May 2015), pp. 573–609, doi: 10.1007/
s00165-014-0326-7, url: https://cea.hal.science/cea-01808981.

[Kle+09] Gerwin Klein et al., « seL4: formal verification of an OS kernel », en, in:
SOSP, ACM Press, 2009, p. 207, isbn: 978-1-60558-752-3, (visited on 12/16/2021).

[KR02] Brian W Kernighan and Dennis M Ritchie, « The C programming lan-
guage », in: (2002).

[LB08] Xavier Leroy and Sandrine Blazy, « Formal verification of a C-like memory
model and its uses for verifying program transformations », in: JAR 41.1
(2008), pp. 1–31.

[Lei10] K. Rustan M. Leino, « Dafny: An Automatic Program Verifier for Functional
Correctness », in: Logic for Programming, Artificial Intelligence, and Rea-
soning, ed. by Edmund M. Clarke and Andrei Voronkov, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 348–370, isbn: 978-3-642-17511-4.

[Ler+12] Xavier Leroy et al., The CompCert Memory Model, Version 2, Research
Report RR-7987, INRIA, 2012, p. 26.

[Ler09] Xavier Leroy, « Formal verification of a realistic compiler », en, in: Commu-
nications of the ACM 52.7 (2009), pp. 107–115, issn: 0001-0782, 1557-7317,
(visited on 12/16/2021).

[Let02] Pierre Letouzey, « A new extraction for Coq », in: TYPES, Springer, 2002,
pp. 200–219.

[MJ93] Steven McCanne and Van Jacobson, « The BSD Packet Filter: A New Ar-
chitecture for User-level Packet Capture », in: Usenix Winter Conference,
vol. 46, USENIX, 1993, pp. 259–270.

[MK14] Nicholas D Matsakis and Felix S Klock, « The rust language », in: ACM
SIGAda Ada Letters 34.3 (2014), pp. 103–104.

144

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://cea.hal.science/cea-01808981

[MO12] Magnus O. Myreen and Scott Owens, « Proof-Producing Synthesis of ML
from Higher-Order Logic », in: Proceedings of the 17th ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’12, Copenhagen,
Denmark: Association for Computing Machinery, 2012, pp. 115–126, isbn:
9781450310543, doi: 10.1145/2364527.2364545, url: https://doi.org/
10.1145/2364527.2364545.

[Mou+15] Leonardo de Moura et al., « The Lean Theorem Prover (System Descrip-
tion) », in: Automated Deduction - CADE-25, ed. by Amy P. Felty and Aart
Middeldorp, Cham: Springer International Publishing, 2015, pp. 378–388,
isbn: 978-3-319-21401-6.

[Mul+18] Eric Mullen et al., « Œuf: minimizing the Coq extraction TCB », in: CPP,
ACM, 2018, pp. 172–185.

[Nel+17] Luke Nelson et al., « Hyperkernel: Push-Button Verification of an OS Ker-
nel », in: Proceedings of the 26th Symposium on Operating Systems Prin-
ciples, SOSP ’17, Shanghai, China: Association for Computing Machinery,
2017, pp. 252–269, isbn: 9781450350853, doi: 10.1145/3132747.3132748,
url: https://doi.org/10.1145/3132747.3132748.

[Nel+19] Luke Nelson et al., « Scaling Symbolic Evaluation for Automated Verifica-
tion of Systems Code with Serval », in: Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP ’19, Huntsville, Ontario,
Canada: Association for Computing Machinery, 2019, pp. 225–242, isbn:
9781450368735, doi: 10.1145/3341301.3359641, url: https://doi.org/
10.1145/3341301.3359641.

[Nel+20] Luke Nelson et al., « Specification and verification in the field: Applying
formal methods to {BPF} just-in-time compilers in the Linux kernel », in:
14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 2020, pp. 41–61.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson, Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, Berlin, Heidelberg: Springer-Verlag,
2002, isbn: 3540433767.

[Pit+22] Clément Pit-Claudel et al., « Relational Compilation for Performance-Critical
Applications », in: PLDI, ACM, 2022.

145

https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641

[Pro+17] Jonathan Protzenko et al., « Verified Low-Level Programming Embedded in
F* », in: PACMPL 1.ICFP (Sept. 2017), 17:1–17:29, doi: 10.1145/3110261.

[PSS98] Amir Pnueli, Michael Siegel, and Eli Singerman, « Translation Validation »,
in: TACAS, ed. by Bernhard Steffen, vol. 1384, LNCS, Springer, 1998, pp. 151–
166.

[Rie17] Leanna Rierson, Developing safety-critical software: a practical guide for avi-
ation software and DO-178C compliance, CRC Press, 2017.

[Riz+16] Christine Rizkallah et al., « A Framework for the Automatic Formal Verifica-
tion of Refinement from Cogent to C », in: ITP, vol. 9807, LNCS, Springer,
2016, pp. 323–340.

[RL10] Silvain Rideau and Xavier Leroy, « Validating Register Allocation and Spilling »,
in: Compiler Construction, ed. by Rajiv Gupta, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 224–243, isbn: 978-3-642-11970-5.

[Sam+21] Michael Sammler et al., « RefinedC: Automating the Foundational Verifi-
cation of C Code with Refined Ownership Types », in: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, New York, NY, USA: Association for Com-
puting Machinery, 2021, pp. 158–174, isbn: 9781450383912, url: https:
//doi.org/10.1145/3453483.3454036.

[SH23] Bhat Sanjit and Shacham Hovav, Formal Verification of the Linux Kernel
eBPF Verifier Range Analysis, 2023, url: https://sanjit-bhat.github.
io/assets/pdf/ebpf-verifier-range-analysis22.pdf.

[Soz+20] Matthieu Sozeau et al., « The MetaCoq Project », in: Journal of Automated
Reasoning (Feb. 2020), doi: 10.1007/s10817-019-09540-0, url: https:
//inria.hal.science/hal-02167423.

[Swa+13] Nikhil Swamy et al., « Verifying Higher-order Programs with the Dijkstra
Monad », in: Proceedings of the 34th annual ACM SIGPLAN conference
on Programming Language Design and Implementation, PLDI ’13, 2013,
pp. 387–398.

[Tan21] Akira Tanaka, « Coq to C translation with partial evaluation », in: PEPM@POPL,
ACM, 2021, pp. 14–31.

146

https://doi.org/10.1145/3110261
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://doi.org/10.1007/s10817-019-09540-0
https://inria.hal.science/hal-02167423
https://inria.hal.science/hal-02167423

[Tas21] Enrico Tassi, Coq-Elpi, Coq plugin embedding Elpi, 2021, url: https://
github.com/LPCIC/coq-elpi.

[TB14] Emina Torlak and Rastislav Bodik, « A Lightweight Symbolic Virtual Ma-
chine for Solver-Aided Host Languages », in: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’14, Edinburgh, United Kingdom: Association for Computing Ma-
chinery, 2014, pp. 530–541, isbn: 9781450327848, doi: 10.1145/2594291.
2594340, url: https://doi.org/10.1145/2594291.2594340.

[Vis+23] Harishankar Vishwanathan et al., « Verifying the Verifier: eBPF Range Anal-
ysis Verification », in: Computer Aided Verification, ed. by Constantin Enea
and Akash Lal, Cham: Springer Nature Switzerland, 2023, pp. 226–251, isbn:
978-3-031-37709-9.

[Wan+14] Xi Wang et al., « Jitk: A Trustworthy In-Kernel Interpreter Infrastructure »,
in: 11th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 14), 2014, pp. 33–47.

[Xu+16] Fengwei Xu et al., « A Practical Verification Framework for Preemptive OS
Kernels », in: Computer Aided Verification, ed. by Swarat Chaudhuri and
Azadeh Farzan, Cham: Springer International Publishing, 2016, pp. 59–79,
isbn: 978-3-319-41540-6.

[YT21] Shenghao Yuan and Jean-Pierre Talpin, « Verified Functional Programming
of an IoT Operating System’s Bootloader », in: Proceedings of the 19th ACM-
IEEE International Conference on Formal Methods and Models for System
Design, MEMOCODE ’21, Virtual Event, China: Association for Computing
Machinery, 2021, pp. 89–97, isbn: 9781450391276, doi: 10.1145/3487212.
3487347, url: https://doi.org/10.1145/3487212.3487347.

[Yua+22] Shenghao Yuan et al., « End-to-End Mechanized Proof of an eBPF Virtual
Machine for Micro-controllers », in: Computer Aided Verification, ed. by
Sharon Shoham and Yakir Vizel, Cham: Springer International Publishing,
2022, pp. 293–316.

[ZB20] Koen Zandberg and Emmanuel Baccelli, « Minimal Virtual Machines on
IoT Microcontrollers: The Case of Berkeley Packet Filters with rBPF », in:
PEMWN, IEEE, 2020, pp. 1–6.

147

https://github.com/LPCIC/coq-elpi
https://github.com/LPCIC/coq-elpi
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3487212.3487347
https://doi.org/10.1145/3487212.3487347
https://doi.org/10.1145/3487212.3487347

[Zha+13] Jianzhou Zhao et al., « Formal Verification of SSA-Based Optimizations for
LLVM », in: Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, Wash-
ington, USA: Association for Computing Machinery, 2013, pp. 175–186, isbn:
9781450320146, doi: 10.1145/2491956.2462164, url: https://doi.org/
10.1145/2491956.2462164.

[ZS19] Yongwang Zhao and David Sanán, « Rely-Guarantee Reasoning About Con-
current Memory Management in Zephyr RTOS », in: Computer Aided Veri-
fication, ed. by Isil Dillig and Serdar Tasiran, Cham: Springer International
Publishing, 2019, pp. 515–533, isbn: 978-3-030-25543-5.

148

https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164

Titre : Programmation vérifiée et intégration sécurisée de bibliothèques de systèmes d’exploi-
tation dans Coq

Mot clés : BPF, Coq, Vérification formelle, Génération de code

Résumé : En tant que technologie révolution-
naire d’extension du noyau, Berkeley Packet
Filters (BPF) a été appliqué à divers systèmes
d’exploitation dans différents domaines, des
serveurs (BPF étendu de Linux) aux micro-
contrôleurs (rBPF de RIOT-OS). L’isolation des
machines virtuelles BPF est essentielle pour
garantir l’intégrité du système contre les pro-
grammes potentiellement malveillants, en par-
ticulier pour les microcontrôleurs qui disposent
rarement d’une protection matérielle de la mé-

moire. Cette thèse présente une machine vir-
tuelle rBPF de confiance dont l’isolation des
fautes est formellement prouvée dans l’assis-
tant de preuve Coq. Nous présentons un pro-
cessus de vérification de bout en bout pour
extraire une implémentation C exécutable vé-
rifiée à partir de modèles rBPF abstraits écrits
en Coq. Nous introduisons également des
techniques Just-in-Time dans rBPF pour l’opti-
misation des performances. Nos preuves sont
toutes vérifiées mécaniquement dans Coq.

Title: Verified programming and secure integration of operating system libraries in Coq

Keywords: BPF, Coq, Formal Verification, Code Generation

Abstract: As a revolutionary kernel exten-
sion technology, Berkeley Packet Filters (BPF)
has been applied for various operating sys-
tems from different domains, from servers
(Linux’s extended BPF) to micro-controllers
(RIOT-OS rBPF). The isolation of BPF virtual
machines (VM) is critical to ensure system in-
tegrity against potentially malicious programs,
especially for micro-controllers that rarely fea-
ture hardware memory protection. This the-

sis presents a trusted rBPF virtual machine
that is formally proven fault-isolate in the Coq
proof assistant. We present an end-to-end ver-
ification workflow for extracting verified exe-
cutable C implementation from abstract rBPF
models written in Coq. We also introduce Just-
in-Time techniques into rBPF for performance
optimization. All our proofs have been mecha-
nized in Coq.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Outline

	State of the Art on End-to-End Verification Approaches and BPF Verification
	End-to-End Verification Approaches
	BPF verification
	Conclusion

	Background
	Berkeley Packet Filters (BPFs)
	cBPF vs eBPF
	RIOT-OS rBPF

	CompCert
	CompCert Architecture
	CompCert Programs
	CompCert Memory Model
	CompCert Simulation Framework
	CompCert Ecosystem

	dx Code Generator
	Conclusion

	An End-to-End Verification Approach in Coq
	Discussion: Which Way Do We Select
	A Workflow for End-to-End Verification in Coq
	Proof-Oriented Specification
	C-ready implementation
	Translation Validation of C code
	Summary

	Applications

	CertrBPF: A fully Verified rBPF Virtual Machine
	A Proof-Oriented Virtual Machine Model
	Syntax
	Machine State
	rBPF Interpreter
	Proof of Isolation

	A Synthesis-Oriented rBPF Interpreter
	Synthesis Model
	C-ready Model

	Simulation Proof of the C rBPF Virtual Machine
	CertrBPF Verifier
	Optimization
	check_mem Optimization
	Equivalence Proof

	Conclusion

	CertrBPF-JIT
	rBPF-32
	Just-In-Time Compilation
	Structure
	Core Mapping
	Interaction

	Refinement of rBPF-32: rBPF-32-JIT
	Symbolic CompCert ARM
	Transition Semantics of rBPF-32-JIT

	Hybrid JIT Interpreter
	Overview
	CompCert ARM Interpreter
	Monadic JIT Compiler
	Hybrid rBPF-32 Interpreter
	rBPF-32 C Implementation

	Discussion
	Proof Overview
	Defensive JIT_ALU

	Evaluation
	Implementation
	Coq Implementation
	C Implementation

	Experiment
	Experimental Evaluation Setup
	Benchmarks
	Research Question: Memory Footprint
	Research Question: CertrBPF Interpreter Performance
	Research Question: CertrBPF Interpreter Optimization
	Research Question: HAVM Optimization

	Conclusion
	Summary
	Perspectives
	Short-term Perspectives
	Long-term Perspectives

	Bibliography

