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Among Chuang-tzu’s many skills, he was an expert draftsman. The king asked him to draw a crab.
Chuang-tzu replied that he needed five years, a country house, and twelve servants. Five years later the

drawing was still not begun. "I need another five years," said Chuang-tzu. The king granted them. At the end
of these ten years, Chuang-tzu took up his brush and, in an instant, with a single stroke, he drew a crab, the

most perfect crab ever seen.

ś Italo Calvino, Six memos for the next millennium

富士山に一度も登らぬバカ、二度登るバカ

(Fools those who never climb the Mount Fuji, fools those who do it twice)

ś Japanese proverb



Peak of the Mount Fuji (Japan), 3376m, 4.40 am (sunrise), 8 August 2023.
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Abstract

The study of living systems is notoriously challenging. The often-quoted daunting complexity of biological
systems is primarily due to the intricacies of their interactions, their multiple organisation levels and their
dynamic nature. In the quest to understand this complexity, parallels drawn with standard physics ś in
particular, statistical physics ś are both useful and of limited use. On the one hand, they provide a rich set of
theoretical and methodological building blocks for constructing theories and designing experiments. On
the other hand, life also unfolds according to principles that are unparalleled in the physics of conventional
matter.

A crucial difference lies in the notion of function: biological systems are shaped by the need to perform
specific tasks. A general problem for living systems is to find and promote those configurations that yield
improved or optimal functions, we call this the exploration-exploitation (EE) problem. One specific instance
of the above is found in evolutionary biology. There, random genetic mutations sustain the exploration of the
configuration space, with those leading to higher reproductive success being favoured by natural selection.

Inspired by the latter, we develop a novel formalism that encodes a general exploration-exploitation dynamics
for biological networks. In particular, our EE dynamics is represented as an exploration of a functional
landscape and consists of stochastic configuration changes combined with the state-dependent optimisation
of an objective function (𝐹 metric). We begin by investigating its main features through the study of
simple, analytically tractable functional landscapes. We deploy simulations for more general and complex
applications.

We then turn to the brain wiring problem, i.e., the development of an individual’s nervous system during its
early life. We argue that this is another specific instance of the EE problem and therefore can be addressed by
using our theoretical framework. In particular, we focus on brain maturation in the nematode C. elegans, the
only organism for which a complete network of neurons and neuronal connections has been reconstructed, at
multiple developmental time points (seven). We fix the network at birth and use the adult stage to infer (i) a
parsimonious maxent (ERG) description of the 𝐹 metric for the worm brain and (ii) the two parameters of
our EE dynamics. According to the topography of its functional landscape, the adult brain is characterised
by a tendency to form both triads and high degree nodes. We demonstrate that our EE dynamics in such
landscape is capable of tracking down the entire developmental history. In particular, we show that the
trajectory we obtain closely reproduces the other experimental time points that we did not use for inference.
This is true both in the space of model statistics and for a number of other network properties. Additionally,
we discuss a micro-level interpretation of the EE dynamics in terms of the underlying synapse formation
process.

Our study is a first step towards the system-level understanding of the development of a natural brain
and can be extended (i) to encompass more complex functional landscapes, (ii) to different organisms
than the C. elegans and (iii) to several different problems than the brain wiring. Indeed, we posit that the
exploration-exploitation paradigm is among those life-specific principles that we are just beginning to
uncover.





Résumé en français

L’étude des systèmes vivants est notoirement difficile. La complexité déconcertante des systèmes biologiques,
souvent citée, est principalement due à la complexité de leurs interactions, à leurs multiples niveaux
d’organisation et à leur nature dynamique. Dans la quête de compréhension de cette complexité, les parallèles
établis avec la physique standard - en particulier la physique statistique - sont à la fois utiles et d’une
utilité limitée. D’une part, ils fournissent un riche ensemble d’éléments théoriques et méthodologiques pour
construire des théories et concevoir des expériences. D’autre part, la vie biologique se déroule aussi selon des
principes qui sont sans équivalent dans la physique de la matière conventionnelle.

Une différence cruciale réside dans la notion de fonction : les systèmes biologiques sont façonnés par la
nécessité d’accomplir des tâches spécifiques. Un problème général pour les systèmes vivants est de trouver
et de promouvoir les configurations qui produisent des fonctions améliorées ou optimales, ce que nous
appelons le problème de l’exploration-exploitation (EE). Un exemple spécifique de ce problème se trouve
dans la biologie évolutive. Dans ce cas, des mutations génétiques aléatoires soutiennent l’exploration de
l’espace de configuration, celles qui correspondent à un succès reproductif plus élevé étant favorisées par la
sélection naturelle.

Inspirés par ce dernier cas, nous développons un nouveau formalisme qui encode une dynamique générale
d’exploration-exploitation pour les réseaux biologiques, représentée comme une exploration d’un paysage
fonctionnel. En particulier, notre dynamique d’EE consiste en des changements de configuration stochastiques
combinés à l’optimisation dépendante de l’état d’une fonction objective (métrique 𝐹). Nous commençons par
étudier ses principales caractéristiques à travers l’étude de paysages fonctionnels simples et analytiquement
traitables. Nous déployons des simulations pour des applications plus générales et plus complexes.

Nous nous penchons ensuite sur le problème du câblage du cerveau, c’est-à-dire le développement du
système nerveux d’un individu tout au long de sa vie. Nous soutenons que ce dernier est un autre exemple
spécifique du problème de l’EE et qu’il peut donc être traité à l’aide de notre cadre théorique. En particulier,
nous nous concentrons sur la maturation du cerveau chez le nématode C. elegans, le seul organisme pour
lequel un réseau complet de neurones et de connexions neuronales a été reconstruit, à plusieurs moments
du développement. Nous fixons le réseau à la naissance et utilisons le stade adulte pour déduire (i) une
description max.ent. parcimonieuse (ERG) de la métrique 𝐹 pour le cerveau du ver et (ii) les deux paramètres
de notre dynamique EE.

Selon la topographie de son paysage fonctionnel, le cerveau adulte est caractérisé par une tendance à former
des triades et des nœuds de degré supérieur. Nous montrons que notre dynamique d’EE dans un tel paysage
est capable de retracer toute l’histoire du développement. En particulier, nous montrons que la trajectoire
que nous obtenons reproduit étroitement les autres points temporels expérimentaux que nous n’avons pas
utilisés pour l’inférence. Ceci est vrai à la fois dans l’espace des statistiques du modèle et pour un certain
nombre d’autres propriétés du réseau. En outre, nous discutons d’une interprétation micro-niveau de la
dynamique de l’EE en termes de processus sous-jacent de formation des synapses.

Notre étude est un premier pas vers la compréhension au niveau du système du développement d’un cerveau
naturel et peut être étendue (i) à des paysages fonctionnels plus complexes, (ii) à d’autres organismes que le
C. elegans et (iii) à d’autres problèmes que le câblage du cerveau. En effet, nous pensons que le paradigme de
l’exploration-exploitation fait partie de ces principes spécifiques à la vie que nous commençons à peine à
découvrir.





A foreword

I have to say, I was somewhat reminded of Middle Age theological debates about how many angels can dance on the

head of a needle ś wrote an anonymous reviewer. He/she was reporting on the manuscript of a review I had
submitted some time ago with my collaborators. A delightfully unfavourable assessment and, frankly, the
reviewer was right. That first draft of our manuscript was indeed far too long, too mathsy and, ultimately, too
obscure ś a reader unfamiliar with those matters would never have made it to the end. The editor did not
reject our paper, the report said ’major revision’, it felt like a last chance. A famous quote from Blaise Pascal
goes: I have made this letter longer because I have not had time to make it shorter. In the weeks that followed, I came
to understand its meaning first hand. Months later, the review was accepted for publication.

There is a truth that everyone in academia knows, the students know it, the seniors know it, the blackboards
know it, the orchids in the office know it and everyone repeats the same curse in chorus: no one will ever read

your thesis. After all, why should anyone? Everything publishable has already been published or is at most
under revision. With a few rare exceptions, PhD reports end up being more of a souvenir of your roaring 20s
than a real scientific contribution. Your parents will keep a copy in plain sight on the brightest bookshelf,
and you will pick it up from time to time, to read the acknowledgements page again and remember with
nostalgia who was there, who not anymore, who not yet.

Done this way, I believe, it is a missed opportunity, besides a waste of time. As students, we spend a
considerable amount of our PhD time crafting such a document, in the midst of (probably) the peak of
our scientific creativity. How to rescue these pages from their doomed fate? This question has haunted
me throughout the writing. I obviously have no illusions of success but I still believe it was worth trying.
Concretely, this meant making some stylistic and editorial choices that, in my subjective and absolutely
questionable judgement, resulted in a clearer and more useful manuscript.

First and foremost, the content had to be original. By this I do not mean the inclusion of new topics or results
ś all of those discussed here have already been made available to the scientific community by standard
means. Rather, it meant minimising the overlap with the content of the papers: often adding to, sometimes
subtracting from, in any case striving to offer a broader or complementary discussion.

Second, the content had to be coherent. This starkly contrasts with the typical developmental trajectory of
a PhD project, which is often winding, riddled with branching points, wrong ideas, dead ends. Therefore,
I deliberately omitted from this manuscript a minor but non trivial fraction of the work from these years.
Instead, I preferred to direct the reader’s attention on a streamlined narrative of the core scientific idea of this
project, in its formal, press release version.

Finally, the content had to be compact. Less is more, they say, and I tend to agree. To paraphrase a famous
quote, everything should be as short as possible, but no shorter. My ambition was to write a self-contained
document in which every single discussion had a purpose later on in the text. At the same time, I insisted
in keeping the discussion focused on the essentials, avoiding long and tedious expositions of well-known
subjects. Indeed, I suspect that the scientific community is not dying to learn about my view on the Markov
processes, or my hot takes on the Bayes theorem.

An original, coherent and compact narrative: this was my North Star. Since much of the concrete meaning of
these adjectives depends of their endpoint consumer, an essential question was: who am I talking to? The
reader I had in mind was primarily a physicist, not necessarily conversant with the wonders of biology but
with a basic knowledge of the fundamentals of statistical mechanics. However, I hope that a biologist who
happens upon this work will find it digestible. As a physicist myself, I cannot be overly confident. Still, I think
it is a reasonable hope.

A great deal of help in the writing came from the LATEX class kaobook v 0.9.8 by Federico Marotta ś which I
have come to love and recommend urbi et orbi. Thanks to its wide margins, I was able to establish a hierarchy
of the information to be conveyed, and to separate the essentials from the frills. Indeed, I have employed



sidenotes for various purposes: to offer historical context, to expand on discussions, and to share more
personal views. All of them can be ignored, and the narrative in the main body of the text should stand.

A final note, which I would like to label as the AI statement for this manuscript. There is not a single sentence
on these pages whose content has been written alone by AI tools such as Chat GPT. I am far too jealous of my
thoughts to blindly entrust them to algorithms that I neither understand (at present, nobody does) nor trust.
I firmly claim the full intellectual authorship of these pages. On the other hand, there is not a single sentence
on these pages that has not been grammatically reviewed and often improved by using both Chat GPT and
DeepL. Ignoring the existence and usefulness of these tools or, worse, opposing them, would be irrational,
useless and detrimental.

Tokyo, Japan
August 2023

Vito Dichio





In addition to the principal subject of this thesis, I have been involved in the following two projects during
my PhD. As they are outside the interest and scope of this manuscript, they will not be discussed further.

[4] Hong-Li Zeng, Yue Liu, Vito Dichio, and Erik Aurell Temporal epistasis inference from more than 3 500 000

SARS-CoV-2 genomic sequences. In: Physical Review E 106.4 (2022), p. 044409

Pocket abstract: Building on our previous work, we use direct coupling analysis (DCA) to determine
epistatic interactions between loci of the SARS-CoV-2 virus. Genomes are grouped by month of
sampling (up to October 2021). We find that DCA terms are more stable over time than correlations,
but still change over time as mutations disappear from the global population or reach fixation. We
identify putative epistatic interaction mutations involving loci in the genomic region encoding the
spike protein.

[5] Hong-Li Zeng, Eugenio Mauri, Vito Dichio, Rémi Monasson, Simona Cocco and Erik Aurell Inferring

epistasis from genomic data with comparable mutation and outcrossing rate. In: Journal of Statistical Mechanics:
Theory and Experiment 2021.8 (2021), p. 08350

Pocket abstract: We address the problem of inferring the epistatic fitness from the evolutionary
dynamics of a population, under quasi-linkage equilibrium conditions. We extend current state-of-
the-art methods and build on a recently proposed technique that uses a Gaussian approximation
for the genome probability distribution. We validate the results with in silico experiments.



Introduction 1
Homo liber nulla de re minus quam de morte cogitat, et eius

sapientia non mortis sed vitae meditatio est1. 1: Tr.: There is nothing over which a free
man ponders less than death; his wisdom
is to meditate not on death but on life.Ð Baruch Spinoza

At a typical physics conference, the parallel sessions dedicated to biologi-
cal physics are often a sight to behold, as the most spectacular phenomena
appear on the blackboard, pardon, on the screen. On one side of the room,
the presenter discusses the collective behaviour of insect swarms, or
the evolutionary dynamics in experimental populations of E. coli, or the
electrical activity of individual neurons in the mouse hippocampus, or
the layer formation in bacterial colonies [6ś9] (...)

If we now turn our gaze to the other side of the room, we observe a diverse
crowd of scientists. Some just passing by, perhaps taking a classical break
from their quantum session, or taking a breath from a deadly series of
talks on the latest theory of the universe in a few dozens of dimensions.
However, most of the people in the room would probably describe their
research field as biophysics, or physics of life, or biological physics2. 2: Identikit: their interest in biological

problems arose very late in their uni-
versity education, or even later. Their
natural home is a physics department,
but they are often found elsewhere. They
cannot resist throwing in a reference to
E. Schrodinger’s What is life? whenever
it is remotely possible, as I will do at the
end of this chapter.

The questions are: what exactly is biological physics? What are these
physicists looking for in biology?

Despite the long history of the subject [10ś12], it is only recently that the
community has organised itself, and only recently that biological physics
has been recognised as a genuine, distinct sub-discipline of physics3 [13].

3: In 2022, the first decadal survey of bio-
logical physics ś Physics of Life [13] ś was
published by the National Academies
of the United States, a kind of historic
moment. The survey is an extraordinar-
ily rich and vivid portrait of the state
of the art, including the (many) open
challenges for the near future. If I may
suggest: highly recommended.

Perhaps because of this, it remains a somewhat nebulous or quirky field
for many, and there are some misconceptions and misunderstandings
about the subject that I will try to clear up brieŕy before delving into the
contents of this manuscript4.

4: What follows is a personal but of
course not entirely original perspective
on the subject. Therefore ś full disclosure
ś let me acknowledge my main intellec-
tual debts, the works that have molded
the most my own views, as found in these
first pages: [12ś17].The responsibility for
any possible inaccuracy or fallacy is, of
course, mine alone.

Physics, biology, biological physics

There exist two broad ways in which academic disciplines define them-
selves: either by the object or by the style of their investigation.

As physicists, we undoubtedly belong to the second class. Physics spans
the entire range of natural scales, from quarks to clusters of galaxies, and
the frontiers of its exploration have been and are ever broadening. The
leitmotif of our inquiry is the nature of the questions being formulated,
and the nature of answers being pursued. In particular, we seek a
parsimonious mathematical understanding of the phenomena, distilled
into few general principles5. 5: This very statement, as I understand

it, is at the heart of what thinking like a

physicist is supposed to mean.(...) the physics community clings to the romantic notion that
Physics is one subject. Not only is the book of Nature written
in the language of mathematics, but also there is only one
book, and we expect that if we really grasped its content, it
could be summarized in very few pages.

W. Bialek, Biophysics, 2012
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This, we strive to achieve by a tight dialogue between experiment and
theory. Through the former, we question Nature, yearning for clues or
for verdicts. Through the latter, we draw an understanding from what
has been seen, and prescribe what ought to be seen6. If the approximate6: See footnote 4, chapter 1 in [14].

reasoning is granted ś and often deemed necessary ś, we still insist on
the quantitative agreement between theory and experiment, between
predictions and numerical facts about the world.

The character of the scientific enterprise is quite different in biology,
which definitely belongs to the first class. In fact, biology is defined ś
Greek vocabulary in hands ś as the study of living systems. Not only
biology, but the also its many branches are strongly tied to the specific
piece of the natural (biological) world they study. So that an ecologist, a
geneticist and a cognitive neuroscientist may have very little in common,
not only in terms of the system of interest, but also in terms of the nature
of the questions that are formulated and the answers that are reasonably
within reach7. Moreover, the vast majority of questions in biology are7: I am aware of the dangers of such

a vague statement, as here I may have
awakened the Cerberus of biology. Con-
sider, for example, the level of exper-
imental precision that geneticists can
achieve with CRISPR gene editing versus
the noisy and aggregated measurements
of large-scale brain activity (e.g. fMRI),
common in cognitive neuroscience [18,
19]. These techniques allow for equally
interesting but fundamentally different
questions. Indeed, the kind of theoretical
questions one can meaningfully ask is
constrained by the kind of experimental
answers one can get.

still investigated almost exclusively experimentally, so that theory is a
much more unequal partner to experiment than in physics.

Where does biological physics fits within this picture? By now, the answer
should be evident. Biological physics is the investigation à la physicist of
the biological phenomena. The agenda is (i) identify the general principles
that govern the phenomena of life, (ii) articulate them in a mathematical
language and (iii) make quantitatively accurate predictions in agreement
with experimental data.

By their very nature, the principles we seek should transcend the details
of this or that particular system. Even more, they are expected to intersect
with and manifest in several of the standard sub-disciplines of biology,
and to cast a variety of seemingly disparate biological problems into a
single, more fundamental physics problem8. In articulating principles,8: There are many possible starting

points. For example, staying alive in-
volves solving a number of highly non-
trivial physics problems (sensing the en-
vironment, navigating in physical space,
converting energy...). Therefore, one pos-
sible line of investigation is to ask what
are the physical problems that living sys-
tems have to solve. Others: how do liv-
ing systems represent information? how
do functions emerge from microscopic
components? how do systems navigate
parameter space? what are the physical
limits of biological processes? how did
life begin from a soup of molecules? [13]

we borrow the formal and conceptual tools of statistical physics and
information theory, but also mechanics and thermodynamics. Finally, for
a genuine biological physics to deliver on its promises, we shall pursue
in biology the same level of quantitative agreement with data that is
standard in other physics domains.

It is important to emphasise that in biological physics, the symbiosis
between physics and biology leads to an enrichment in both directions.
However, one of them has only recently been fully appreciated9. As Stan

9: An early view of biological physics
regarded it as an application of the tools
of physics to the problems of biology
[10]. Today we find this view limiting,
as it overlooks what is perhaps the most
intellectually stimulating direction.

Ulam said once, ask not what physics can do for biology ś ask what biology

can do for physics [20].

There is clearly something unique about the state of matter we call
life, that has no equivalent in the physics of conventional matter. It is
not a new force of nature that we are missing, the very carbon atoms
and interactions that constitute the pencil I write with also form the
neurons that guide my hand. What we are instead missing is a precise
understanding of how evolution, adaptation and learning have shaped
my own brain over very different time scales, so that I can now write about
them. The enterprise of explaining these three processes exclusively in
terms of standard condensed matter physics is doomed to failure. This
because they are all related to the notion of biological function, which is
essential for life but foreign to standard physics. Its centrality in biology
cannot be overstated.
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This to say, biology is not merely a playground for our physics tools.
There is a new physics to be learnt from living systems, and this is the
enterprise that we, as theorists, as biological physicists, are committed
to.

From the principles to models

To carry out the programme of biological physics, we need to project
general and abstract statements about the physics of life (principles) into
models of real biological systems. In other words, we need to make them

work. The path is anything but straightforward.

While a principle manifests across diverse problems, it is essential to
tackle each of them individually, zeroing in on a specific problem, or
context10. When we do so, the semantics of our statements translate into 10: For instance, think about homeosta-

sis, i.e., any self-regulating process by
which a biological system maintains sta-
ble properties despite perturbations. In
animal physiology, it may refer to the
ability of maintaining a stable internal
temperature (thermal homeostasis). In
ecology, it may refer to the need of keep-
ing a stable quantity of essential nutrients
for the existing species ś i.e., conserving
the ecological stoichiometry. These are
two different contexts for the same gen-
eral principle [21ś23].

the language of mathematics and are rendered as a set of equations. This
requires us to specify a formal representation for the biological systems
under study11 ś which is in general context dependent. The equations

11: As an example, throughout this
manuscript we will represent systems
as strings of zeros and ones, a binary,
discrete representation. See below.

have a number of parameters, whose biological interpretation is again
context-bound. At this juncture, the details of the equations ś including
the values of the parameters ś are unspecified12.

12: Here is where we can tread the well-
trodden path of analysis of a typical prob-
lem in theoretical physics. This involves
fixing the details in a convenient way ś so
to make calculations simpler, or at least
possible ś and starting to understand
the resulting toy models (exact solutions,
approximate solutions, asymptotic be-
haviours...). The hope is that we can learn
from them about more complex cases. I
am tempted to call this stage of analysis
’preliminary’, but there are cases where
people have been stuck in it for decades
(and still are). Naturally, one can always
resort to simulations. This is what we do
after all in theoretical physics, we solve
what we can, as much as we can, and we
simulate the rest.

To set them, the analysis must be further narrowed down to a particular
system13. Only at this granular level is a model defined. Each and every

13: Consider again the environmental
homeostasis in s.n. 10. A particular sys-
tem could be a freshwater pond. A nu-
trient runoff from adjacent land causes
an algae bloom in a pond. In turn, this
causes a decrease of oxygen levels, affect-
ing aquatic life. Yet, certain bacteria and
plants can absorb these excess nutrients,
curbing algae growth and restoring the
pond’s balance [24].

(biological) physicist repeats the same mantra over and over again14

14: Beware of the opposites: particular
principles, general models.

General principles, particular models. General principles, particular

models. General principles, particular models (...)

Modelling may involve the formulation of additional theoretical assump-
tions or the setting of parameter values. Both of these endeavours benefit
directly from the data we have on hand. They help us not only to trim
our theoretical picture of the system, but also to fix (infer) the values of
the parameters of the theory.

The task of modelling is full of nuances, especially when it comes to
biological systems. Therefore, let me comment brieŕy on a few aspects.

Simple systems

The exploration of a physical principle usually begins from its simplest
instances. For example, quite understandably the vast majority of physics
students first encounter the principle of least action in classical ś rather
than quantum ś mechanics. The first Lagrangian written on the black-
board is likely that of the simple ś rather than Kapitza ś pendulum.

Starting with simple systems is not just a pragmatic approach, it is a
philosophical stance on the nature of understanding. By peeling back
the layers of complexity, we do find an easier access to the underlying
principles, that may remain otherwise obscured. The situation is no
different when it comes to the biological matter, except that the simplest

biological systems already are of jaw-dropping complexity.

This is true no matter where we look in biology. For instance, consider
cyanobacteria: among the earliest life forms, they perform oxygenic
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photosynthesis via an intricate molecular apparatus15. The roundworm15: Which we are very much grateful
for, given that it is thought to have been
responsible for the rise of atmospheric
oxygen 𝑂2 some 2.5 billion years ago.

C. elegans, despite the misfortune of having one of the smallest ner-
vous systems known (302 neurons), is capable of locomotion, mating,
chemosensation and more. Archaea, single-celled microorganisms, pos-
sess specialized membranes, enabling them to ŕourish in the most hostile
environments [25ś27]. My census of "simple" biological systems could
continue: complexity is a ubiquitous and perhaps necessary feature of
living systems.

This indubitably makes our job as physicists more challenging, and
we should be more vigilant than ever before about the pitfalls that lie
in wait. Yet, I do not intend to dishearten the reader, on the contrary.
It is precisely the intrinsic complexity16 of living systems that makes16: A matter of semantics. I am aware of

my loose use of the terms of simplicity Ð
and complexity in this section. Indeed, it
is tricky to define them formally and a
significant debate exists around them ś
which I honestly find somewhat futile.
My point here is to highlight that while it
is fairly easy to tell what is the simplest or
the most complex, it is much harder to say
what is simple or complex. For instance,
everyone agrees that the C. elegans has
one of the simplest nervous systems, yet
it is much more problematic (and prob-
ably pointless) to declare the C. elegans

brain to be simple.

the whole enterprise of biological physics so magnetic and, ultimately,
rewarding.

Parameters

Our models have parameters. It is common sense that the more realistic
we want our model to be, the more effects, therefore parameters, we
shall include. Pushed to its limit, this reasoning would suggest that a
biological truth is attainable only in the limit of infinite parameters. So
says a inŕuential book on the topic [17]:

We believe that łtruthž (full reality) in the biological sciences
has essentially infinite dimension (...) It is generally a mistake
to believe that there is a simple łtrue modelž in the biological
sciences and that during data analysis this model can be
uncovered and its parameters estimated.

K. P. Burnham and D. R. Anderson,

Model selection and inference, 1998

I do think that this point of view misses the focus of what we are trying
to do. If by truth is meant the account of every possible fine-scale detail
of a biological system then truth is unattainable, therefore uninteresting.
On the contrary, it is very much interesting to ask: are all details really

necessary?

Two contrasting pictures are the following17. One possibility is that17: The landscape of possible answers is
actually more multifaceted, for a more
in-depth discussion of this topic, see [12].

(almost) all details are indeed necessary, and the multiplicity, or irre-
ducibility, of parameters is hence an intrinsic characteristic of biological
systems. This would spell doom for the physicists’ dream of an under-
standing of the life phenomena in terms of a handful of principles (and
parameters). An opposing view goes something like this. The vast major-
ity of the microscopic details of a biological system are irrelevant, since
the system functions are "robust" properties of the model, independent
of the configuration of those details18

18: This independence of large-scale
properties from microscopic details
should not sound new to those familiar
with the theoretical apparatus of statisti-
cal mechanics.

. Instead, the relevant features of
the system are controlled by (a few) parameters, that are fine-tuned on
evolutionary scales by natural selection. It is from this tension between
robustness of the functional outcomes and optimal tuning, that life
unfolds.

There is no need for me to say where I stand between the two, the reader
has already guessed19

19: Does this matter? After all, a model is
what it is, regardless of my philosophical
stance of the underlying biology. Well, in
my opinion, it does matter, as it is tough
to navigate the ocean without a star to
steer by.

.
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Data

In recent decades, most scientific fields have experienced an exponen-
tial surge in data volume20, and particularly so in biology. Genomic 20: The sense of Wordsworthian sub-

lime and dread at the same time of many
scholars is conveyed by the apocalyp-
tic vocabulary often employed: the data
deluge, or ŕood, or avalanche, or explosion

(...)

sequencing now enables researchers to determine millions of DNA se-
quence reads in a single run, spanning from viruses to the entirety of
the human genome. High-throughput mass-spectrometry churns out
extensive datasets about protein composition and structure. Serial-section
electron microscopy offers detailed three-dimensional reconstructions of
an ever-growing number of natural brains [28ś31] (...)

This has sparked a widespread data-centric enthusiasm. Some went so
far as to say that data are all you need, the end of theory has come [32]21. 21: This is wrong in so many ways that

it would be difficult to account for them
all here. See [33ś35].

Then, there is machine-learning. By summer 2023, there is no need to
extol the impressive effectiveness of black-box artificial neural networks
[36, 37], we are all astonished, all amazed. The paradigm seems to be: take
the largest amount of data out there, feed them to your machine-learning
architecture, et voilà, get the most accurate predictions. There seems to be
no theory here, do we really need a theory?

I think so. Making predictions about the facts of nature is an essential part
of what we do as (biological) physicists. However, this is the means by
which we achieve the goal of our scientific enterprise, not the goal itself.
What we do is formulate hypotheses (theories) using transparent and
interpretable mathematical models, based on empirical observations. Our
theories make quantitative predictions, and if they accurately describe
the data, then we claim to have achieved some form of understanding
of the natural phenomenon. Understanding is the goal, prediction the
means. Any finite amount of data will not suffice alone in this, in order
for data to speak meaningfully, it must be meaningfully questioned22. A 22: Let me go further. There is a feeling

that by piling on layers of artificial neu-
rons we are not getting an inch closer to
understanding what is going on. That
is not necessarily good or bad, it de-
pends on the question. I think that ma-
chine learning has finally freed theoreti-
cal physics from the anxiety of providing
fast answers to (very hard) quantitative
questions about biological systems. The
process of our science may be slow, it
may take time to disprove our wrong as-
sumptions and identify the right ones. If
you want a prompt prediction, machine-
learn it. If you want to understand what
is going on, ask the theorist ś and be
patient!

fundamental part of our job is and will remain to take a piece of paper, a
pencil, sit down under a tree and wait for an apple to fall on our head.

This said, as theorists, we do share the data-enthusiasm. Even if data are
not enough, data are definitely good. Data and theory should coexist and
enrich each other: data informing theory building23 and theory guiding

23: There is room here for all sorts of
inference methods, white or at least grey
boxes.

data mining. It is a safe bet to predict that such a symbiotic relationship
will become increasingly essential in the future of biological physics.

On the representation

There is one final point of importance that deserves further attention,
the representation [38]. As the subject is vast and to make the discussion
concrete, let me start by defining the mathematical representation of
interest for most part of this manuscript.

A graph, or network24, in its simplest form, is a collection of points 24: Here and everywhere in this text, I
will use these two terms interchangeably.(nodes) connected by lines (edges), fig. 1.1 [39]. A simple25 graph 𝐺 can
25: A graph is said to be simple if its
edges are undirected, unweighted (bi-
nary) and has no self-loops ś the number
of nodes is finite.

be identified with a symmetric, binary matrix, with zero diagonal, i.e.,

𝐺 =



0

𝑎21 0
...

...
. . .

𝑎𝑁1 𝑎𝑁2 . . . 0



= 𝐺𝑇 , (1.1)
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where 𝑎𝑖 𝑗 ∈ {0, 1} indicates the absence or presence of an edge26 within26: If 𝑁 is the number of nodes, there are
𝐿 = 𝑁(𝑁−1)/2 possible edges, therefore
an equivalent representation is that of a
string of 𝐿 binary values 00110 . . . . There
are 2𝐿 possible graphs.

the dyad (𝑖 𝑗) ś i.e., between the nodes 𝑖 , 𝑗.

Figure 1.1: A simple graph is a collection
of points (nodes) and lines (edges).

Representing a system as a graph has proved to be a valuable theoretical
tool for the analysis of complex systems ś including biological systems
[39, 40]. Despite (and perhaps because of) its widespread adoption, there
are periodic cries of alarm from the community warning of its potential
misuse [41, 42].

The first (maybe trivial) point is to fully acknowledge the fundamental
difference between the system, the data and their representation. The
data are what we measure or observe about a system, an empirical fact.
The representation is the way in which we represent the system, an
abstraction. The construction or choice of a representation is therefore
a genuinely theoretical act, involving assumptions about the class of
systems that we are studying and the data we have on hand. A crucial
one regards the choice of relevant variables, which is a foundational issue
of any scientific approach27. It is also important to say that there exist no

27: Why should (ir)relevant variables
even exist? It is very fundamental ques-
tion, not exclusive of the studies of com-
plex/biological systems. A classic and
superb piece of literature on the topic
is The unreasonable effectiveness of math-

ematics in natural sciences by E. Wigner
[43].

intrinsically correct representation for any data or systems, as it depends
on the answers being sought.

When it comes to networks, this translates to two fundamental questions:
what are the nodes? what are the edges? Consider the human brain [44].
Down to the cellular scale, ∼ 1011 individual neurons (nodes) and their
synapses (edges) form a intricate web of connections, which naturally
lend themselves to a network representation28. At a much larger scale, one28: A similar system of neurons and

synapses ś though not in the case of
the human brain ś will be a main focus
of this manuscript. For this, a graph rep-
resentation is certainly the simplest and
most natural.

of the most common experimental techniques, an electroencephalogram
(EEG) allows to measure electrical activity in the brain using around
a hundred of sensors (nodes) attached to the scalp. These signals can
be then correlated, yielding a measure of functional relatedness (edges)
between different brain regions. These two networks describe the same
biological systems, but they differ substantially in terms of what they
represent ś neuron vs brain regions, direct and physical vs indirect and
functional interactions29.29: There is a number of unimportant

details I am overlooking here. Of course,
since the more fundamental represen-
tation of a brain is in terms of neurons
and synapses, there should be a way
of deducing the large-scale behaviours
from the the firing patterns of individual
neurons. To my knowledge, however, we
have no clue of how this could be done.
Worse, a graph of the physical neural
connections (which support the transfer
of information) has never been drawn
and is currently experimentally out of
reach. For the human brain, the road is
long.

The more artificial our definitions of nodes and edges, the greater the
chance of introducing spurious effects over which we have no control.
The approach we have taken in this work has been to focus on systems
for which the path from the system to data and their representation
is as short as possible and under theoretical control. For a genuinely
theoretical approach, the latter is a conditio sine qua non30. It is a practical

30: Let me emphasise this point. In
choosing a representation, we may of
course make approximations that take us
away from the "true" system. But when
we do, we (hopefully) know what we are
leaving out, what we are including, and
we have strong theoretical control over
what is going on in our model.

matter, too. If the model works, we declare victory and rejoice of it. If it
does not, whose fault is it? Is it a fallacy of the model? Or of the data we
are using? Or of uncontrolled spurious biases in the representation?

As for me, if I fail, whenever I fail, every time I fail, I would like to take
full responsibility for my own failure.

Overview of the manuscript

The body of this manuscript is structured into four chapters. My aim
has been to prioritise a coherent and continuous ŕow of ideas from
one to another and to reŕect the historical development of the project.
At the heart of this manuscript, the principle formulated in ch. 4 and
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implemented in ch. 5. Yet, scientific ideas seldom emerge from nowhere,
the one at the heart of this thesis was definitely not an Eureka! moment,
but rather a gradual sedimentation of intuitions31. In ch. 2 and ch. 3 I 31: Many incorrect (not shown), but

some, or at least one, worth pursuing.therefore brieŕy lay out the methodological and theoretical ground from
which later chapters have sprung. More specifically:

◦ Chapter 2 introduces the task of inference from network data
in the context of exponential random graph (ERG) models. The
discussion is organised in two parts. The first deals with general
theoretical aspects by placing the ERG approach in the larger
context of maximum entropy inference. The second covers a range
of methodological issues that arise in practical applications. The
inference method introduced here find application in ch. 5.
◦ Chapter 3 delves into evolutionary dynamics, starting with a

concise overview of key concepts in evolutionary biology. Later, a
recently proposed model of multilocus evolution is presented and
its salient features discussed. The chapter concludes by examining
extensions to genetic algorithms. The concepts introduced here
constitute a theoretical background for ch. 4.
◦ Chapter 4 introduces the exploration-exploitation (EE) paradigm.

First, the rationale is thoroughly discussed and the basic formalism
is established. As a first step, the theory is solved for a set of toy
models, from which general conclusions can be drawn. Finally, a
simulation framework for the theory is discussed and tested against
the analytical solutions.
◦ Chapter 5 deals with modelling the growth of the C. elegans brain

using the EE framework. This system is naturally represented as a
graph. The chapter begins with an illustration of the brain wiring
problem and an overview of the C. elegans nervous system. A
model of its development (from birth to adulthood) is formulated
and made to work. The chapter concludes with a discussion of a
biological mechanistic interpretation of the model, and an detailed
outline of potential extensions.
◦ Chapter 6 concludes this manuscript by summarising the lines of

investigation followed in this project and and the main findings32. 32: An appendix is attached at the end
of the manuscript. Appendix A presents
mathematical details of the toy models
in ch. 4. Appendix B discusses the set of
network measures used in ch. 5. Finally,
a Glossary provides brief definitions of
key biological concepts discussed in the
manuscript.

This manuscript is essentially the story of a scientific idea, from what it has
blossomed, how it has grown, what it might become. As E. Schrodinger
wrote once, I do not know whether my way of approach is really the best and

simplest. But, in short, it was mine (...) And I could not find any better or clearer

way towards the goal than my own crooked one [45].
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Those who ignore statistics are condemned to reinvent it.

ÐBradley Efron

The core problem in statistical inference is to recover the parameters
𝝌 ∈ ℝ𝑟 of a statistical model

𝑃(𝐷; 𝝌) : D×ℝ𝑟 ↦→ [0, 1] (2.1)

from the data 𝐷∗ ∈ D, assuming that 𝐷∗ ∼ 𝑃(𝐷; 𝝌). A perfect reconstruc-
tion of 𝝌 from finite data is neither possible in theory nor in practice.
Therefore, we rather seek a good approximation 𝝌∗, close to the true

values. The two fundamental tasks of statistical modelling thus consist in
specifying (i) the model 𝑃(𝐷; 𝝌) and (ii) how to infer 𝝌∗ from 𝐷∗ [46].

There is more than one interpretation for the notion of probability in
(2.1) and, by consequence, for the statistical uncertainty that follows from
it. One, phenomenological, interprets the uncertainty as the empirical
variation in the data-generating process. Another, epistemological, inter-
prets it as our uncertainty about the outcome, arising from the limited
information at our disposal. In some fortunate cases, as for statistical
mechanics, the two overlap. Regardless of the interpretation, however, we
distinguish the notion of statistical uncertainty from that of measurement
error: here, the data are assumed to be noiseless representations of the
underlying system.

The present chapter focuses on the statistical inference based on ex-

ponential random graph (ERG) models. The data consist of unweighted,
undirected graphs 𝐺 (1.1). The starting point is an exponential, maxent
distribution (sec. 2.1) [47ś49]. The role of the modeller is to specify a
model within the ERG framework and draw conclusions about the data
from the inferred parameters (sec. 2.2).

A minimal version of the ERG modelling is considered here, for the sake
of clarity. A number of generalisations of the present framework have
been proposed, a survey of which is beyond scope of this manuscript,
we refer to [50] for an entry point.

Main reference

A Vito Dichio, Fabrizio De Vico Fallani (2022). Statistical models of

complex brain networks: a maximum entropy approach. In: Reports on
Progress in Physics 86.10 (2023), p. 102601 [2].

2.1 Exponential random graph models

Where a streamlined theoretical and methodological minimum of ERG models

is provided. Some emphasis is placed on the philosophy of the approach ś often

overlooked in the literature and the source of a number of misconceptions.
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The interest in statistical exponential families dates back to the dawn
of modern statistics1

1: A very large family, indeed. The
Bernoulli, Poisson, Gaussian, binomial,
multinomial, Boltzmann, Rayleigh (...)
distributions all belong to it. See [51, 52]
for a taxonomy.

[53ś55]. A number of mathematical properties
makes them particularly apt for purposes of statistical inference [56, 57].
In the context of graph they burst onto the scene in the 1980s, mainly
motivated by the study of social network interactions [58ś60]. Later on,
they attracted the attention of the physics community, encouraged by
their formal similarity to the well-developed theory of classical statistical
mechanics [47, 48].

When tailored to graphs, exponential distributions are referred to as
exponential random graph (ERG) models and in this section we provide a
minimalist theoretical introduction to them2.2: The discussion here will be general,

focusing on methodological aspects. We
refer to [2, 61, 62] for recent reviews of
the applications of ERG models, includ-
ing those to social sciences, economics,
neuroscience (...)

2.1.1 A maximum entropy approach

Let 𝐺∗ ∈ Gbe an observed graph (data). Let us assume that all relevant
information about the data can be reduced to a vector of statistics 𝒙(𝐺∗) ∈
ℝ

𝑟 . We postpone the discussion on the choice of the 𝒙 : G ↦→ ℝ
𝑟 (model

selection problem) to sec. 2.2.2 and, until then, we consider it as given.

According to the maximum entropy (maxent) principle3 [63, 64, 66] the3: It was formulated for the first time
in the 1957 by Edwin Thompson Jaynes
(1922-1998) [63, 64]. Jaynes dedicated
much of his career to advocating for the
principle of maximum entropy as a fun-
damental tool for statistical inference. He
held a strong belief in Bayesian probabil-
ity and often defended its interpretation
as an extension of logic [65].

most unbiased model of the data, consistent with the current state of
knowledge, is found by maximising the Shannon entropy

𝐻(𝑃) = −
∑

𝐺∈G
𝑃(𝐺) log𝑃(𝐺) (2.2)

subject to the normalization
∑

𝐺∈G 𝑃(𝐺) = 1 and to the (soft) con-
straints: ∑

𝐺∈G

𝒙(𝐺)𝑃(𝐺) = 𝒙(𝐺∗) . (2.3)

This constrained maximization problem is easily solved with the method
of Lagrange multipliers [2, 48] and yields:

𝑃(𝐺 |𝜽∗) = 𝑒𝜽
∗ ·𝒙(𝐺)

∑
�̃�∈G

𝑒𝜽∗ ·𝒙(�̃�)
, (2.4)

where the parameters 𝜽∗ ∈ ℝ𝑟 are set so to satisfy (2.3). We refer to (2.4)
as the ERG model of the data4. Before proceeding further, let us elucidate4: The maxent derivation here illustrated

is nowadays standard. However, it is not
the way the ERG models were originally
introduced. Instead, the original formu-
lation was based on the Hammersley-
Clifford theorem for Markov graphs [59],
and built on a previous work of J. Besag
in the context of spatial models of lattice
systems [67].

some fundamental underpinnings of the maxent approach.

On the rationale

Intuitively, the Shannon entropy is associated to the uncertainty of a
random variable [68, 69].

An unconstrained maximisation of (2.2), subject only to the normalisation,
would yield a ŕat distribution where each possible graph has probability
2−𝐿. This corresponds to the case where no information is encoded in
the probability distribution. On the contrary, maximising (2.2) subject to
the constraints (2.3) yields the distribution in which no information other

then that contained in the constrains is taken into account. In this sense,
the maxent distribution (2.4) is the most unbiased.5

5: The argument here is deliberately
qualitative, to avoid slowing down the
discussion. It can be made more quanti-
tative, though. See for instance [65, 66].
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The maxent simply prescribes the optimal approach to integrate any
prior knowledge about the system ś here, observed statistics ś into the
probability distribution. In the words of E. T. Jaynes [65]:

The information available defines constraints fixing some
properties of the initial probability distribution, but not all
of them. The ambiguity remaining is to be resolved by the
policy of honesty; frankly acknowledging the full extent of
its ignorance by taking into account all possibilities allowed
by its knowledge.

E.T. Jaynes, Probability Theory - The Logic of Science, 2003

An important point is the following. In presenting the maxent method
we have carefully avoided referring to 𝒙(𝐺∗) as sufficient statistics. They
are, but the matter is more subtle.

By definition, a statistic 𝒙(𝐺) is said to be sufficient for the model 𝑃(𝐺 |𝜽)
with parameters 𝜽, if and only if the data reduction 𝑥 : G ↦→ ℝ

𝑟 implies
no information loss6. This is true in the case of the statistics 𝒙(𝐺) and 6: More precisely, let 𝑃(𝐷 |𝜒) be a para-

metric distribution for the data 𝐷, with
parameters 𝜒. Let 𝑡(𝐷) be any statistic of
the data. According to the data process-
ing inequality,

𝐼(𝜒; 𝑡(𝐷)) ≤ 𝐼(𝜒;𝐷) ,

where 𝐼 is the mutual information [69].
In words, any manipulation of the data
𝐷 can either reduce or preserve the in-
formation about the parameters 𝜒. In
this latter case, we call 𝑡(𝐷) sufficient
statistics.

the ERG model (2.4), since the data 𝐺 appear in the distribution only
through the statistics 𝒙(𝐺). But this is so by design, as a result the maxent
construction: any choice of 𝒙(𝐺)would be sufficient for the resulting ERG
model. In other words, the notion of sufficient statistics is determined a
priori, as an hypothesis, rather assessed a posteriori, as a property of the
distribution. We are therefore led to concede that different modellers with
different amounts of information about the physical system will come
up with different ERG distributions, leading to different predictions. The
vast majority of these models, presumably, will be wrong.

The above is somehow bewildering if we embrace an orthodox school of
thought, for which probabilities are long run frequencies of repeated
experiments [70]. In this latter case in fact, we clearly would not want
probabilities to depend on the state of knowledge of the modeller. This is
indeed the major source of criticism to the maxent modelling approach
[71, 72]: the nature out there remains indifferent to our knowledge or lack
thereof. The argument is evidently true, but it misses the point. Again in
the words of E.T. Jaynes [65]:

The principle of maximum entropy is not an oracle telling
which predictions must be right; it is a rule for inductive
reasoning that tells us which predictions are most strongly

indicated by our present information.

E.T. Jaynes, Probability Theory - The Logic of Science, 2003

Here, differently from the orthodox view, probabilities are considered
as epistemic statements, informed guesses on a phenomenon. It can
be proved that if the information included in the maxent formulation
encompasses all relevant constraints operating in a system, then the
maxent distribution is the overwhelmingly most likely to be observed
experimentally. What if, instead, the observations disagree with the
predictions of the maxent model? For the maxent modeller, this is not a
cause for embarrassment. It simply hints at the presence of additional
or different constraints in the systems that have not yet been accounted
for.
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On the similarity with statistical mechanics

The reader conversant with statistical mechanics (SM) will readily recog-
nise (2.4) as analogous to a Gibbs-Boltzmann distribution, i.e.,

𝑃(𝐺 |𝜽) = 𝑒−H(𝐺,𝜽)

Z(𝜽) , (2.5)

where H(𝐺, 𝜽) = −𝜽 · 𝒙(𝐺) is the (graph) Hamiltonian and

Z(𝜽) =
∑

�̃�∈G
𝑒−H(�̃�,𝜽) (2.6)

is the partition function [47, 48]. A Gibbs-Boltzmann distribution (canon-
ical ensamble distribution) describes the statistical behavior of particles
in a thermodynamic system at equilibrium. It is known from SM that all
sorts of observables can be computed by differentiation from the free
energy [73, 74]

F(𝜽) = − logZ(𝜽) . (2.7)

For instance, the expected value of the 𝛼-th statistic7:7: By construction, the ensamble aver-
ages of the statistics match the experi-
mental values ⟨𝑥𝛼⟩ = 𝑥∗𝛼 , cf. (2.3).

−𝜕F(𝜽)
𝜕𝜃𝛼

=
1

Z(𝜽)
∑

�̃�

𝑥𝛼(�̃�) 𝑒−H(�̃�,𝜽)
= ⟨𝑥𝛼⟩ , (2.8)

where we have used (2.4) and introduced the shorthand

⟨𝑂⟩ =
∑

�̃�∈G
𝑂(�̃�)𝑃(�̃�) (2.9)

for a graph observable 𝑂 : G ↦→ ℝ. The formal analogy with (2.5) is
powerful because it allows a number of results and methods from over a
hundred years of SM to be translated directly into the ERG context [48,
75].

It is certainly not a stroke of luck. In two groundbreaking papers published
in 1957, E. T. Jaynes demonstrated that, considering SM as a form of
statistical inference, the Gibbs-Boltzmann distribution can be derived
directly from the maxent principle [63, 64]. Indeed, when spoiled from its
physical interpretation, the mathematical structure of the computations
of SM turns out to be a general property the maxent formalism [65].88: This is the ultimate reason for the ex-

istence of so many journal articles in the
literature with titles of the form "Statisti-

cal mechanics of (something else)."

There is, however, a crucial caveat.

SM is more than a statistical theory, it is a physical theory, it agrees
with experiments, it works. As discussed in the previous section, the
maxent argument is independent of any experimental verification. The
very reason for the experimental success of SM, viewed as a maxent
model, is that its choice of sufficient statistics ś notably, the energy of a
microstate ś is correct for a thermodynamic system at equilibrium. The
latter result is peculiar to the case of SM and does not generalise. In
summary, when formulating a maxent model, we are allowed to borrow
the formal structure of SM, but not (in general) its interpretation as a
physical process.
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On the purposes

We have recently argued that ERG models are certainly descriptive, might
be predictive and they are not explicative [2].

The latter is a straightforward consequence of the discussion above.
ERG models are agnostic about the data-generating process therefore, in
general, they cannot answer to the question why does a phenomenon
happen9 [76]. 9: Here we adopt a classical (strict) def-

inition of scientific explanation, articu-
lated in a highly inŕuential paper (1948)
by Carl Hempel, and particularly close
to the spirit of physics ś (...) the question

"Why does the phenomenon happen?" is con-

strued as meaning "according to what general

laws, and by virtue of what antecedent con-

ditions does the phenomenon occur?" [76].
Nevertheless, this is not at all the only
conceivable definition, as the subject has
been extensively debated in the philoso-
phy of science, see [77].

Prediction is here intended as feature generalisation, i.e., as the ability
of a ERG model to predict the values of different statistics of the data
𝑦𝛼(𝐺), 𝛼 = 1, . . . , 𝑠 than those used in the specification of the model.
This is in line with similar maxent approaches ś e.g., [78, 79]. Clearly, the
potential predictive power of the ERG model is inherently linked to the
selection of statistics, as they are the only means by which an ERG model
is informed about the system. In the case where our hypothesis 𝒙 was
accurate, the resulting model would be capable of predicting any other

test statistics 𝒚. In practice, this is very seldom the case. Nonetheless, ERG
models constructed with incomplete information can still demonstrate
strong predictive performance on specific subsets of test statistics.

Regardless of their predictive power, ERG models remain inherently
descriptive. They provide a framework to characterise a system (read,
compute observables), based on any hypothesis about the sufficient
statistics. This makes them ideal for constructing null models [47]. In line
with the view of the maxent principle as a rule for inductive reasoning (see
above), ERG-based null models can always be used to lower bound the
complexity of the true model. Furthermore, experimental deviations from
the null predictions may contain useful information about the system,
and suggest possible theoretical refinements.

2.1.2 Model inference

In deriving the ERG distribution (2.4) we have implicitly stated an
inference (or inverse10) problem [81]. Let us highlight it. 10: Given a model with known param-

eters, the forward or direct problem is to
compute the values of the observables
(data). This is the case, e.g., in statistical
mechanics [74]. Conversely, given a set of
observables (data), the inverse problem is
to infer the unknown values of the model
parameters. This is the case, e.g., for the
inverse Ising problem [80].

Definition 2.1 (ERG inference) Given a set of observations 𝒙(𝐺∗) ∈ ℝ𝑟 ,

the ERG inference consists in finding the parameters 𝜽∗ ∈ ℝ𝑟 such that the

constraints (2.3) are met.

It is instructive to start by considering a simple solvable case.

Bernoulli random graphs

Let us consider an ERG model whose only statistic is the number of edges
in the graph, i.e., 𝑥(𝐺) = ∑

𝑖< 𝑗 𝑎𝑖 𝑗 [48]. Given a graph 𝐺∗, with 𝑥(𝐺∗)
edges, the goal of the ERG inference is to find the parameter 𝜃∗ such that
⟨𝑥⟩ = 𝑥(𝐺∗). The inference problem can be solved in two steps.
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First, we solve the forward problem, i.e., we express ⟨𝑥⟩ as a function of
𝜃. We start by evaluating (2.6):

Z(𝜃) =
∑

𝐺∈G
𝑒𝜃

∑
𝑖< 𝑗 𝑎𝑖 𝑗 =

∏

𝑖< 𝑗

∑

𝑎𝑖 𝑗=0,1

𝑒𝜃𝑎𝑖 𝑗 = (1 + 𝑒𝜃)𝐿 , (2.10)

where 𝐿 = 𝑁(𝑁 − 1)/2 is the number of possible edges. We can obtain a
simple analytical expression for (2.7) as well, which reads

F(𝜃) = −𝐿 log(1 + 𝑒𝜃), (2.11)

therefore, using (2.8):

⟨𝑥⟩ = −𝜕F(𝜃)
𝜕𝜃

=
𝐿

1 + 𝑒−𝜃
, (2.12)

which solves the forward problem.1111: By defining 𝑝 = 1/(1 + 𝑒−𝜃), we can
rewrite the ERG probability distribution
(2.4) as

𝑃(𝐺 |𝜃) = 𝑒𝜃𝑥(𝐺)

(1 + 𝑒𝜃)𝐿

= 𝑝𝑥(𝐺)(1 − 𝑝)𝐿−𝑥(𝐺) ,
(2.13)

which is the probability of a Bernoulli
graph where each of the 𝐿 possible edges
appears independently with probability
𝑝, hence the name. Note also from (2.12)
that ⟨𝑥⟩ = 𝐿𝑝, as it should be [82, 83].

By a simple inversion of the latter formula, we can find the value 𝜃∗ for
which the constraint (2.3) is met. Imposing 𝑥(𝐺∗) = ⟨𝑥⟩, we get

𝜃∗ = log

[
𝑑(𝐺∗)

1 − 𝑑(𝐺∗)

]

, (2.14)

where 𝑑(𝐺) = 𝑥(𝐺)/𝐿 is the density of a graph. The latter expression
solves the inverse problem. The ERG probability distribution can be
finally written as

𝑃(𝐺 |𝜃∗) = 𝑒𝜃
∗𝑥(𝐺)

(1 + 𝑒𝜃∗)𝐿 =
∏

𝑖< 𝑗

𝑒𝜃
∗𝑎𝑖 𝑗

(1 + 𝑒𝜃∗) . (2.15)

A general framework: MLE

The ERG inference defined above can be placed in the broader context
of the maximum likelihood estimation (MLE). Given an observed graph
𝐺∗ and a model 𝑃(𝐺 |𝜽), according to the maximum likelihood principle,
the best choice of the unknown parameters is given by

𝜽∗ = arg max
𝜽

log𝑃(𝐺∗ |𝜽), (2.16)

where 𝑃(𝐺∗ |𝜽) is the likelihood of the data, given the parameters 𝜽12

12: The MLE estimator (2.16) can be
derived from the Bayes theorem [81].
Accordingly, the posterior distribution
𝑃(𝜽 |𝐺∗) ś which represents our knowl-
edge after taking into account the infor-
mation in the data ś can be expressed
as

𝑃(𝜽 |𝐺∗) = 𝑃(𝐺∗ |𝜽)𝑃(𝜽)
𝑃(𝐺∗) , (2.17)

where 𝑃(𝜽) is our prior information on
the parameters. Our best choice for the
parameters is the one that maximises the
posterior distribution above. If 𝑃(𝜽) is a
uniform distribution in the parameters
space (no prior information available)
this is the same as maximising the likeli-
hood 𝑃(𝐺∗ |𝜽). The estimator (2.16) has a
number of appealing properties, in par-
ticular it converges in probability to the
true values (consistency) and reaches
the Cramér-Rao lower bound (efficiency)
[84].

.

It is easy to show that the ERG inference problem can be derived from
the maximum likelihood principle. Introducing the notation L(𝜽) =
log𝑃(𝐺∗ |𝜽), the 𝑟 equations (2.3) are found by setting to zero the deriva-
tives with respect to the parameters:

0 =
𝜕L(𝜽)
𝜕𝜃𝛼

=
𝜕

𝜕𝜃𝛼

[
𝜽 · 𝒙(𝐺∗) − logZ(𝜽)

]
(2.8)
= 𝑥𝛼(𝐺∗) − ⟨𝑥𝛼⟩ . (2.18)

There is of course an elephant in the room of this discussion, hidden in
(2.16). In order to evaluate 𝑃(𝐺∗ |𝜽∗), we need to compute logZ(𝜽), or
F(𝜽). In the case of the Bernoulli graphs, this could be done analytically
(2.11), by virtue of the utmost simplicity of the model. In general, the
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computation of F(𝜽) is an extremely difficult problem, well-known in
statistical mechanics13. 13: One might say ś without fear of con-

tradiction ś that this is the problem of
statistical mechanics. Just to give a ŕavor,
a Nobel Prize for Physics has recently
been assigned (G. Parisi, 2021) for the sci-
ence that has blossomed from a trick in
evaluating logZ, under particular con-
ditions [85, 86].

In the vast majority of the cases, there is little choice but to resort to numer-
ical approximations for (2.16), which we will now brieŕy describe.14

14: In some simple cases [87, 88], it is
possible to work out the mean field the-
ory of the model (exact in the limit of
large network sizes) and possibly per-
form a diagrammatic expansion around
the mean-field solution. However, the
calculations, close to those of statistical
field theory [89], soon become cumber-
some and for all practical purposes, they
are unworkable.

MCMC-MLE

The fundamental idea to circumvent the explicit evaluation of logZ(𝜽)
was introduced in the early 1990s [90]. Let us consider an arbitrary vector
of parameters 𝜽0 ∈ ℝ𝑟 , we can formally rewrite Z(𝜽) as

Z(𝜽) = Z(𝜽0)
∑

�̃�∈G

𝑒(𝜽−𝜽0)·𝒙(�̃�) 1

Z(𝜽0)
𝑒𝜽0 ·𝒙(�̃�)

= Z(𝜽0)⟨𝑒(𝜽−𝜽0)·𝒙⟩𝜽0

(2.19)

where the subscript ⟨·⟩𝜽0 indicates the expectation value over the distri-
bution 𝑃(𝐺 |𝜽0). The trick is now is to use the a Markov Chain Monte
Carlo sampling15 to evaluate approximately the right hand side of (2.19). 15: See also s.n. 22.

In particular, given a sample of 𝑚 graphs 𝐺1 , . . . , 𝐺𝑚 whose stationary
distribution is 𝑃(𝐺 |𝜽0), we can approximate

Z(𝜽)
Z(𝜽0)

= ⟨𝑒(𝜽−𝜽0)·𝒙⟩𝜽0 ≃
1

𝑚

𝑚∑

𝑖=1

𝑒(𝜽−𝜽0)·𝒙(𝐺𝑖 ) . (2.20)

We know consider the log-likelihood and note that the argument that
maximises L(𝜽), maximises the shifted log-likelihood L̄(𝜽) = L(𝜽) −
L(𝜽0), too. The latter, however, can be numerically approximated:

L̄(𝜽) = (𝜽 − 𝜽0) · 𝒙(𝐺∗) − log

{
Z(𝜽)
Z(𝜽0)

}

(2.20)≃ (𝜽 − 𝜽0) · 𝒙(𝐺∗) − log

{
1

𝑚

𝑚∑

𝑖=1

𝑒(𝜽−𝜽0)·𝒙(𝐺𝑖 )
}

.

(2.21)

A parameter estimation based on the maximisation of (2.21) converges to
the same result as (2.16), in the limit 𝑚 →∞ and it is used in practice as
an approximation of the MLE.

Algorithm: MCMC-MLE (pseudocode)16
16: The algorithm starts from an ini-
tial guess of the parameters. Albeit ar-
bitrary, an appropriate choice can aid
in achieving rapid convergence. A com-
monly adopted approach is to use the
parameters obtained through pseudo-
likelihood (pl) maximization [49, 67]. The
parameter space is explored iteratively
by solving at each step a maximisation
problem based on (2.21). The previous
set of parameters serves each time as
the starting point for the optimization
process. Iterations continue until conver-
gence is reached.

.

𝜏← 0

𝜽𝜏 ← 𝜽pl

while conv = F do

𝜏 += 1

generate 𝑚 graphs 𝐺𝑘 ∼ 𝑃(𝐺 |𝜽𝜏−1) by MCMC

𝜽𝜏 = arg max𝜽

[
(𝜽 − 𝜽𝜏−1) · 𝒙(𝐺∗) − log

[
1
𝑚

∑𝑚
𝑖=1

𝑒(𝜽−𝜽𝜏−1)·𝒙(𝐺𝑖 )
] ]

if (convergence criterion) then

conv← T
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Software tools

In the last two decades, a number of open-source libraries have been
developed that can be used to perform a ERG inference, as illustrated
above. By far, the most popular implementation is the R-based ergm

package, published in the 2008 by Hunter et al. [49] and recently updated
[91]. It stands as a comprehensive tool, providing extensive function-
ality for fitting ERG models, including model specification, inference
and diagnostics. It has served as a foundational library for numerous
generalisations, an overview can be found in [50]. Unfortunately, no ERG
implementation has attained an equivalent level of maturity outside the
R programming language17.17: There are historical reasons for this.

In fact, since the beginning [58], ERG
models have been particularly popular
within the domain of social sciences
which, in turn, are particularly fond of R.
The level of technical detail that packages
such as ergm have reached is such that,
over a typical 3-years PhD project, one
would rather learn a new programming
language than re-write everything from
scratch. As the adage goes: good program-

mers write good code; great programmers

steal great code.

The ergm library is the reference implementation of the ERG inference
in this manuscript. In the GitHub folder ergm_minimal ś originally pre-
sented in [2] ś we have published the scripts for a minimal implementation
of an ERG inference workŕow18.

18: Additional resources and examples
can be found on the statnet website [50].

2.2 User handbook

Where two important and subtle aspects of the ERG method (at the beginning,

at the end) are discussed in detail. The limitations of the ERG inference are

highlighted, what they can(not) say, where they can(not) work.

Stripped down to the essentials, an ERG inference is a computational
device that takes as input a real vector (graph statistics) and returns as
output a real vector (estimated parameters), fig. 2.1.

Two key matters for practitioners are therefore (i) how to select the
model statistics and (ii) how to interpret the estimated parameters. In
this section, we tackle these two questions. For reasons that will be clear
later, we do it in reverse order.

2.2.1 Interpretation of parameters

In sec. 2.1.1 we have argued that the ERG inference can be used for
the purpose to characterise a system. Here, we quantify this qualitative
statement.

Bernoulli strikes back

Let us start again by considering the ERG inference for the Bernoulli
graphs (2.15), sec. 2.1.2.

As discussed above, we do have a mathematical understanding of how
the data, through the ERG machinery, determine the inferred parameter,
namely (2.14). In particular, if the original graph is maximally random ś
i.e., 𝑑(𝐺∗) = 1/2 19

19: This is intuitive, and it is also ele-
mentary to show. First, since all dyads
are independent, in the large graph limit
𝑑(𝐺) ∼ 𝑝, where 𝑝 is the probability
of having an edge between each possi-
ble dyads (connection probability). Let
us focus on a single dyad. The random-

ness of the connection can be quantified
by computing the Shannon entropy of
the Bernoulli trial: 𝑃𝐵(𝑎𝑖 𝑗 = 1) = 1 and
𝑃𝐵(𝑎𝑖 𝑗 = 0) = 1 − 𝑝, i.e.,

𝐻(𝑃𝐵) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝),

which is maximum when 𝑝 = 1/2 [69].
By consequence, we conclude that a
Bernoulli graph with 𝑑(𝐺) = 1/2 corre-
sponds is the maximally random graph -
or, simply, random graph.

ś we obtain 𝜃∗ = 0. If instead we start from a denser
graph 𝑑(𝐺∗) > 1/2, we get 𝜃∗ > 0. Finally, 𝑑∗ < 1/2 implies 𝜃∗ < 0. There
are two general lessons to be learnt from this: (i) the ERG model (2.15)
automatically rules out model effects for which there is no evidence in the
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The one and only general interpretation

In applications of ERG models of any interest, the vector of statistics
includes several effects, that are in general mutually dependent. In such
cases, as discussed in sec. 2.1.2, the inference problem cannot be solved
analytically, no such equations as (2.14), (2.22) are available and no direct
interpretation is possible.

The parameters𝜽∗ are obtained by numerical approximation, are however
still amenable to a dyadic interpretation. Let 𝑃(𝑎𝑖 𝑗 = 1|𝐺\𝑖 𝑗 , 𝜽∗) be the
probability of an edge within the dyad (𝑖 , 𝑗)21. Using (2.15) we have21: Note that dyads are in general depen-

dent, by consequence the probabilities
are to be conditioned on the rest of the
graph 𝐺\𝑖 𝑗 . log

𝑃(𝑎𝑖 𝑗 = 1|𝐺\𝑖 𝑗 , 𝜽∗)
𝑃(𝑎𝑖 𝑗 = 0|𝐺\𝑖 𝑗 , 𝜽∗)

= 𝜽∗ · 𝚫𝒙(𝐺𝑖 𝑗) , (2.24)

where 𝚫𝒙(𝐺𝑖 𝑗) is the vector of change statistics. Introducing the shorthand
𝐺+𝑖 𝑗 = {𝑎𝑖 𝑗 = 1, 𝐺\𝑖 𝑗} and 𝐺−𝑖 𝑗 = {𝑎𝑖 𝑗 = 0, 𝐺\𝑖 𝑗}, the 𝛼-th element of the
change statistics is defined as:

Δ𝑥𝛼(𝐺𝑖 𝑗) = 𝑥𝛼(𝐺+𝑖 𝑗) − 𝑥𝛼(𝐺−𝑖 𝑗) . (2.25)

Whether or not the presence of an edge between the nodes 𝑖 𝑗 is favoured
is depends on the overall sign of the the right hand side of (2.24)
and, therefore, on the combination of change statistics, weighted by
the corresponding parameters22. We are in the position to state the22: The scenario here considered is also

at the hearth of Markov chain Monte
Carlo (MCMC) methods for ERG models.
The goal is to construct a Markov chain
that has (2.4) as its equilibrium (station-
ary) distribution. To this end, at each step
of the Markov chain a random change to
the current graph is proposed, its effect
on the (log) probability of the graph is
evaluated by (2.24), and accepted or re-
jected based on the Metropolis-Hastings
rule [49].

following:

Definition 2.2 (ERG interpretation) Given an ERG model (2.4), the

dyadic interpretation (2.24) of the parameter 𝜃𝛼 is the change in the log

probability of a graph, resulting from switching from 𝐺−𝑖 𝑗 to 𝐺+𝑖 𝑗 (i) per unit

increase of the corresponding statistic Δ𝑥𝛼(𝐺𝑖 𝑗) = 1, and (ii) holding fixed

the cumulative effect of the other statistics
∑

𝛽≠𝛼 𝜃𝛽Δ𝑥𝛽(𝐺𝑖 𝑗).

Once again, the ERG interpretation is based on a characterisation of the
ensamble distribution 𝑃(𝐺 |𝜽∗), (2.4). This because, by construction (2.3),
the average properties of the latter reŕect those of the original graph.

Large positive (negative) values of the parameter 𝜃𝛼 indicate an over-
(under-) representation in the original graph of the corresponding 𝑥𝛼,
with respect to the null expectation ś i.e., ⟨𝑥𝛼⟩ of an ERG model with 𝜃𝛼 =

0 and unaltered 𝜽\𝛼23. This has an important consequence: parameters23: Against sloppiness. A nasty habit in
the ERG literature is to interpret the pa-
rameters exclusively in qualitative terms.
When it comes to something as subtle
as the interpretation of ERG parameters,
def. 2.24, qualitative statements alone
run the risk of being too vague, or even
misleading, if not false.
For instance, let us consider the following
common statement: "𝜃 > 0 implies that the

corresponding metric is higher than expected

by chance". For ERG models with multiple
statistics, this is only true in precise sense
of def. 2.2. Chance here is the rest of the

ERG model and not a maximally random
graph. A common misinterpretation of
the ERG parameters indeed arises from
forgetting (ii) in def. 2.2.

associated with the same statistic within different ERG models cannot be
directly compared. A comparison is possible only if the cumulative effect
of the rest of the statistics of the models are held fixed.

2.2.2 The model specification problem

The core question of the model specification problem (or, feature selection

problem) [92ś94] in the context of ERG models is fairly simple to state: for

a given networked system, what is the best choice of the statistics 𝒙(𝐺)?

Generally speaking, the optimal choice of statistics is one that most
accurately embodies our hypotheses regarding the relevant characteristics
of the system. When using an ERG as a null model, this choice represents
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the null hypothesis. When using an ERG as a model of the data, this
choice represents (at least) our best theoretical approximation to the true

state space of the system [17].

All sort of graph statistics 𝑥 : G→ ℝ can be designed. The first and
simplest class of ERG statistics is the one of edge covariates, i.e.,

𝑥𝑒𝑐(𝐺) =
∑

𝑖< 𝑗

𝑎𝑖 𝑗𝛾𝑖 𝑗 (2.26)

where 𝛾 ∈ ℝ𝑁×𝑁 is a real matrix, with the same algebraic properties as
𝐺. The latter assigns an attribute to all dyads in a graph, by performing
the sum of the values 𝛾𝑖 𝑗 over all existing edges. A simple subcase of edge
covariate is obviously the number of edges in a graph ś i.e., (2.26) for
𝛾𝑖 𝑗 = 1 ∀𝑖 , 𝑗 ś, which we have encountered when defining the Bernoulli
random graphs, sec. 2.1.2. In the case of spatially embedded graphs, the
matrix 𝛾 can be used to encode the physical distance between each any
nodes. Alternatively, it can be used to quantify homophily or heterophily
effects24 on the edge formation based on a nodal (categorical) attribute 24: Homophily (heterophily) refers to the

tendency of nodes to form connections
with others that have similar (different)
attributes or characteristics.

𝜂, i.e., 𝛾𝑖 𝑗 = 𝛿𝜂𝑖 ,𝜂𝑗 , where 𝜂𝑖 , 𝜂 𝑗 are the nodal attributes of 𝑖 , 𝑗 and 𝛿 is
the Kroenecker delta. ERG models based on statistics of the form (2.26)
are still amenable to analytical treatment25. However, they are of limited 25: It is a straightforward generalisation

of the discussion in sec. 2.1.2 for Bernoulli
random graphs. See the section III.B, Gen-

eralised random graphs, in [87]

interest, since the interest is often in modelling the complex interactions
between dyads.

Thus, we shall turn to consider graph statistics that encode dyadic
dependencies. More specifically, we restrict our attention to Markov graphs

[60, 67], i.e., we assume that any two dyads that do not share an endpoint
are independent, conditional on the rest of the graph26. A large family 26: In other words, only when they share

a node can any two dyads be statistically
dependent, when fixing the rest of the
graph. Note that the Markov dependence
is a property of the graph probability
distribution, and not of the individual
graph.

of graph statistics for modelling dyadic dependencies falls under the
umbrella of motifs counts, i.e., the number of times a particular connection
pattern occurs in the graph. However, early numerical investigations
brought to light a significant hurdle to ERG inference based on simple
motif counts: degeneracy.

Degeneracy, the trap of simplicity

Let us consider the simplest ERG model of dyadic dependence, which is
based on the graph Hamiltonian:

−H2★(𝐺, 𝜽) = 𝜃−
∑

𝑖< 𝑗

𝑎𝑖 𝑗 + 𝜃∧
∑

𝑖< 𝑗 ,𝑘

𝑎𝑖𝑘𝑎𝑘 𝑗 . (2.27)

This is referred to as the two star model, and includes two terms. The first,
of the kind (2.26), counts the number of edges (−). The second counts
the number of two stars, i.e., a pair of edges that share a common node
(∧)27. In practice, it has soon be realised that ERG estimations based on 27: For instance, a two star model could

be used to characterise a sparse graph
(𝜃− < 0) with many high degree nodes
(𝜃∧ > 0).

(2.27) are not possible [60].

The point at which the approximate estimation described in sec. 2.1.2
fails is the MCMC sampling of (2.4). Almost everywhere in the ERG pa-
rameter space, graph Markov chains based on (2.24) get trapped in graph
configurations that are either almost empty, or almost fully connected.
This means that for the vast majority of the parameter combinations,
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(2.24) assigns a negligible probability to all but the two extreme, unreal-
istic graph configurations (degeneracy) [60]. The subset of the parameter
space that yields non-degenerate probability distribution turns out to be
negligible and in practice unattainable [95, 96]. The estimation task is
therefore impracticable28.28: The phenomenology of the two star

model has been analytically understood
by Park & Newman [48, 87]. The degen-
erate behaviour is nothing but a sym-
metry breaking between high- and low-
density phases. A continuous (second-
order) phase transition exists is found for
this system. An analogous degeneracy
problem affects other simple ERG mod-
els, e.g., the Strauss clustering model [60,
88].

The root of the the degeneracy issue is therefore the geometry of the
ERG distribution. Unstable graph statistics lead to degenerate model
behaviours, this is the case for the two star model29. In such cases, the

29: According to [97], 𝑥(𝐺) is stable if
there exist 𝐶 > 0 and 𝐿𝑐 > 0 such
that 𝑈𝑥 ≡ max𝐺∈G𝑥(𝐺) ≤ 𝐶𝐿 ∀𝐿 > 𝐿𝑐 ,
where 𝐿 is the number of dyads in the
network. For instance, since 𝑈− = 𝐿, the
edges term is stable while 𝑈∧ ∼ 𝑁𝐿 im-
plies that the two star term is unstable.

nearest-neighbor log probabilities (2.24) are unbounded, and MCMC
simulations are a waste of time and resources ś see [97] for a detailed,
general discussion. These theoretical investigation had a fairly simple
conclusion: inference for ill-posed ERG models is not possible.

Therefore, let us state the following:

Definition 2.3 (ERG model specification) The task of selecting a set of

graph statistics that (i) optimally represents a given hypothesis about the

relevant features of data and (ii) yields a non-degenerate ERG model.

A general strategy to cure the degeneracy issue is to "add structure" to
the ERG specification. For instance, this includes adding constraints on
the block, multilayer, spatial structure of the input graph [98]. Another
solution is to stabilise the ERG model by using more sophisticated and
more realistic graph statistics, as opposed to simple motifs counts as
the two stars in (2.27). As this is the case of interest for this report, we
describe it in some detail.

Curving ERG models

𝑥 𝐺 =

∈

1

2
3

k

A widely adopted choice to design non degenerate ERG models consists
in using the so-called curved statistics [99, 100]. Let us start by considering
the following geometrically weighted degree (𝑔𝑤𝑑):

𝑥𝑔𝑤𝑑(𝐺 |𝜆) =
∑

𝑘

𝑤
(𝑘)
𝜆 𝑥
(𝑘)
𝑑
(𝐺) , (2.28)

where 𝑥(𝑘)
𝑑
(𝐺) is the number of nodes in the graph 𝐺 with degree 𝑘 and

𝑤
(𝑘)
𝜆 = 𝑒𝜆

{
1 −

(
1 − 𝑒−𝜆

) 𝑘}
, (2.29)

𝜆 > 0. The 𝑔𝑤𝑑 statistic is a linear combination of the graph degree
distribution. An ERG model containing (2.28) is curved30

30: An exponential distribution is curved

ś in the sense of Efron [101, 102] ś when
its natural parameters satisfy constraints.
Here, for instance, in order to model the
information of the graph probability dis-
tribution, one should generally include
in the graph Hamiltonian one statistic
for each of the 𝑁 − 1 possible degrees,
each associated to an independent pa-
rameter 𝜃(𝑘). In (2.28), we are imposing
the following non-linear constraint on
the parameter space:

𝜃(𝑘) = 𝜃𝑤
(𝑘)
𝜆

,

where 𝑤(𝑘)
𝜆

are defined in (2.29). Thus, in
this view, we are constraining a 𝑁 − 1 di-
mensional parameter space associated
to the degree distribution to a two-
dimensional subspace, hence the name
of "curved" model. However, we take a
slightly different view on the roles of 𝜃

and 𝑤
(𝑘)
𝜆

, see later in the text.

and stable31

31: More specifically, an ERG model with
a curved statistic such as (2.28), (2.29) is
stable as long as 𝜆 > − log 2 [97]. Here
this is always the case, since 𝜆 > 0.

[97, 98]. To interpret the role of (2.28), we can reason in an analogous
way to sec. 2.2.1 [2, 103].

As a result of adding an edge to the dyad (𝑖 𝑗), the degrees of both the
extremal nodes increase by one unit. Let us call 𝐺−𝑖 𝑗 , 𝐺+𝑖 𝑗 the graphs
before and after the edge addition. If 𝑘𝑖 is the original degree of the node
𝑖, then

𝑥
(𝑘𝑖 )
𝑑
(𝐺+𝑖 𝑗) = 𝑥

(𝑘𝑖 )
𝑑
(𝐺−𝑖 𝑗) − 1 , 𝑥

(𝑘𝑖+1)
𝑑
(𝐺+𝑖 𝑗) = 𝑥

(𝑘𝑖+1)
𝑑
(𝐺−𝑖 𝑗) + 1 , (2.30)

and analogously for the node 𝑗. For simplicity, let us assume that the
edge addition does not produce any other change in the graph statistics
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closure [104], rather than a simple (and unstable) count of triangles.
Similarly as above, a single edge addition to the dyad (𝑖𝑙) that increases
the number of common neighbors between the connected nodes 𝑖 , 𝑗 by
one unit results in

log
𝑃(𝑎𝑖𝑙 = 1|𝐺\𝑖𝑙 , 𝜽∗)
𝑃(𝑎𝑖𝑙 = 0|𝐺\𝑖𝑙 , 𝜽∗)

= 𝜃𝑔𝑤𝑒𝑠𝑝(1 − 𝑒−𝜆)𝑘𝑖 𝑗 , (2.33)

where 𝑘𝑖 𝑗 is the initial number of common partners of the nodes 𝑖 , 𝑗. Once
again, in the case 𝜃𝑔𝑤𝑒𝑠𝑝 > 0, the tendency to add shared partners is
damped for increasing 𝑘𝑖 𝑗 , thus sidestepping the pitfall of degeneracy.

ERG inference for curved models builds upon and extends the general
framework discussed in sec. 2.1.233. In practice, the parameters 𝜽 ∈33: Parameters estimation of curved

ERG models was first discussed in [100]
and implemented in the first release of
the ergm package [49]. See [91] for an
overview of the recent developments.

ℝ
𝑟 which weight the terms in the graph Hamiltonian and those 𝝀 ∈

ℝ
𝑞
+ which govern the geometry of the curved statistics (𝑞 ≤ 𝑟) are

estimated simultaneously [100]. Nevertheless, we regard them as logically
distinct. The former are the Lagrange multipliers derived from the maxent
principle, sec. 2.1.1. The latter, pertain to the issue of model specification,
in the sense of def. 2.3.

We set aside both graphs and inference methods for the moment. The
former will resurface in chapter 4, the latter one chapter later. Instead,
over the next few pages, our discussion will take a sharp turn in both
style and subject.
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The alternative to thinking in evolutionary terms
is not to think at all.

ÐPeter Medawar

24 November 1859. The publication of On the Origin of Species [105] by
the English naturalist Charles R. Darwin (1809-1882) constitutes a pivotal
juncture in the annals of the history of science. The core set of concepts
and principles there articulated have survived almost unaltered to the
present day, eliciting deep philosophical ramifications1 [107]. The theory 1: A spectre is haunting the modern world,

Darwin’s spectre, Darwinism. ś begins a
recent book by Michael R. Rose [106],
paraphrasing the opening line of a well-
known revolutionary book, a Manifesto.
Too much emphasis? Apparently, not.
Ernst W. Mayr (1904-2005), leading evolu-
tionary biologist, mentions On the Origin

of Species by Charles Darwin among the
three most inŕuential books ever written
[107], together with Das Kapital, by Karl
Marx, and the Bible, by many authors (or
just one).

there presented ś combined with Medel’s genetics [108] ś represents our
current conceptual understanding of the emergence of life’s complexity
[109, 110].

According to Darwin’s theory it is the natural selection, or the survival of

the fittest, that drives the emergence of the biological complexity, which
has no equivalent in the inanimate world [111]. It is arguably a remarkable
achievement, for a single theory, to put forth a unifying explanation for
the process that leads to intricately structured organisms, starting from a
primordial soup of molecules. This process, which is the subject of the
present chapter, is referred to as evolution.

In the eyes of a physicist, evolution is puzzling. If the general picture of
Darwin’s evolution is accepted, the details are poorly understood. The
evolutionary problem is a formidable testing ground for our style of
scientific enquiry, trained on spin lattices and pairwise interactions, now
facing genetic codes and mostly unknown interactions [15].

First, the quest for a theoretical understanding of the evolutionary
process entails learning from the fellow biologists what happens and
how it happens, i.e., the subject matter (sec. 3.1). A theoretical framework
can be then be established, which in turn allows for hypotheses to be
formulated and models to be mathematically stated (sec. 3.2). In so doing,
connections with related problems ś by analogy and/or by generalization
ś are sometimes unveiled, and fruitfully exploited (sec. 3.3).

Main reference

A Vito Dichio, Hong-Li Zeng, and Erik Aurell. Statistical genetics in

and out of quasi-linkage equilibrium. In: Reports on Progress in Physics
86.5 (2023), p. 052601 [3].

3.1 Subject matter

Where an attempt is made to summarise in a few pages the salient features of

evolution, in the narrative initiated by Darwin and perpetuated by modern

evolutionary biology.
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The Darwinian theory, or Darwinism, is the foundational theory upon
which the entire field of evolutionary biology is built2. The subject matter2: Two classical, comprehensive refer-

ences that extensively cover the biology
outlined in this section are [112, 113].

of Darwinism is the evolutionary dynamics of a population - the latter
defined as a group of individuals (organisms) of the same species that
live in a specific geographical area and reproduce across successive
generations.

With respect to an individual, a distinction is made between the genotype
and phenotype. The genotype refers to the specific set of genes that
an organism carries, which encode the instructions for building and
operating an organism. These genes can exist in different versions,
called alleles. The phenotype, on the other hand, represents the actual
observable traits or characteristics of the organism. Phenotypes result
from the expression of an organism’s genes as well as the inŕuence
of environmental factors and the interactions between the two. The
genotype-phenotype map (or GP map) is the term used to describe
the relationship between an organism’s genetic makeup (its genotype)
and its observable traits (its phenotype). It translates the information
stored in the genes into the physical, macroscopic traits. This translation
process is complex and not fully understood, as it involves multiple steps
of gene expression, regulation, and interaction, and it is inŕuenced by
environmental factors as well [114].

The key ingredient of evolution is inheritance: offspring inherit traits from
their parents through genetic information passed down from generation
to generation. At the population level, two opposing drivers define the
evolutionary dynamics:

(a) Genetic variation. It broadly refers to the increase of genetic hetero-
geneity within a population. It primarily stems from by stochastic
events that introduce variability in the genetic makeup of individ-
uals. The two most common sources of variability are:

i. Mutations, which involve random alterations of an individ-
ual’s genotype. Beneficial, deleterious, and neutral mutations
respectively enhance, impair, or do not noticeably affect an or-
ganism’s ability to survive and reproduce in its environment.

ii. Recombinations, which involve the exchange and rearrange-
ment of genetic material between genotypes. Importantly, they
require a physical transfer of genetic material between two
individuals during reproduction in sexual populations.

(b) Natural selection. It acts upon the genetic heterogeneity within a
population, by favoring individuals with traits that enhance their
survival and reproductive success, while disadvantaging those with
less favorable traits. It is ultimately due to the selective pressure
exerted by the environment, which include a variety of factors
such as resource availability, predation, and competition. Through
natural selection, advantageous traits become more common in a
population over time, leading to the adaptation of species to their
ecological niches.

Inheritance, variation, and selection form the conceptual core of Darwin-
ism, constituting the fundamental principles that underpin the theory.
It is worth emphasizing that while variation happens at the level of
the genotypes, selection operates on observable traits, hence on pheno-
types.
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As stated in the beginning, the subject of the evolutionary process is
not the genotype nor the phenotype of isolated individuals, but rather
the population as a whole. Evolution unfolds over multiple generations,
by gradually changing the genetic composition of populations or, more
precisely, the statistical properties of the genotype distribution. One can
then take a step forward and frame the problem in terms of the dynamics
of the distribution of allele frequencies. This latter change of perspective
resonates with classical statistical mechanics, as asserted already in the
early 1950s by the R. A. Fisher [115]3: 3: Ronald Aylmer Fisher (1890-1962) was

a renowned British statistician and biolo-
gists. He is regarded as the founder of mod-

ern statistics [116]. He was also among the
founders, together with J. B. S. Haldane
(1892-1964) and S Wright (1889-1988), of
population genetics ś the subfield of bi-
ology that studies the distributions and
changes of allele frequencies in a popu-
lation (bottom-up approach) [117].

Now, the frequencies with which the different genotypes
occur define the gene ratios characteristic of the population,
so that it is often convenient to consider natural population
not so much as an aggregate of living individuals as an
aggregate of gene ratios. Such a change of viewpoint is
similar to that familiar in the theory of gases, where the
specification of the population of velocities is often more
useful than that of a population of particles.

R. A. Fisher, Croonian Lecture, 1953

3.2 Modelling evolution

Where one theoretical approach to evolutionary dynamics is presented and

stated in the mathematical language. Where the discussion also hinges on the

contemplation of a popular metaphor.

The diversity observed in natural outcomes of the evolution implies the
need for a probabilistic description of the evolutionary dynamics. Indeed,
the notion of probability pops up everywhere in formulating the building
blocks of Darwinism: genetic mutations happen by chance, recombination
events randomly reshuffle the parental genetic material, natural selection
enhances - but does not guarantee - the reproductive success of apt
individuals (...) The Darwin’s theory is inherently a statistical theory. A
model of Darwin’s evolution is not expected to predict what must happen,
but to inform about what could happen 4

4: The prominent role of chance in the
Darwin’s theory caused a sensation in
the scientific community at the time, in-
cluding some scorn reactions. One of his
scientific mentors, John Herschel (1792-
1871), privately dubbed his theory as the

Law of higgledy-piggledy [118].

.

A wide array of theoretical models have been proposed, encompassing
various aspects of genetic variation and evolutionary processes. A review
of these approaches is far beyond the scope of this section, the interested
reader is referred to [113, 119, 120]. Here, our attention is rather directed
towards a particular such approach, which is instructive, as it comprises
the subject matter discussed earlier and formulates the essential theo-
retical tools employed in this work. It has been originally formulated by
Neher and Shraiman [121], and recently reviewed in [3].

3.2.1 Statistical genetics

The interest of physicists to the problem of the evolutionary dynamics
stems primarily from a conceptual similarity between thermodynamics
and quantitative genetics5

5: The study of continuous-varying phe-
notypic traits (height, weight...), and
specifically on population-wide averages
over several genetically diverse individ-
uals (top-down approach)., as first noted by R. A. Fisher in the 1930

[122]. The lack of an energy-like conserved quantity for the evolutionary
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dynamics hampers a straightforward translation of the equilibrium
thermodynamics laws, while a non-equilibrium picture appear more
appropriate [123, 124]. The comparison can still be pursued, by seeking
a theory for quantitative genetics that parallels the role of statistical
mechanics for thermodynamics. Specifically, a phenomenological theory
that provides a link between the population-averaged phenotypic traits
and the underlying genotype dynamics. Such a theory is referred to as
statistical genetics.

In the framework proposed by Neher and Shraiman [3, 121], a genotype
is represented as a string of 𝐿 binary variables 𝑔 = {𝜎1 , . . . , 𝜎𝐿}, where
𝜎𝑖 = ±1. Each locus 𝜎𝑖 represents a spin-like biallelic gene6, the number6: Here, for simplicity, one gene = one

locus (spin variable). of genes 𝐿 in each genotype is fixed. Consequently, the genotype space
G is an 𝐿-dimensional hypercube. Each possible genotype is found in a
population with probability 𝑃(𝑔, 𝑡), which depends on time. In particular,
it changes under the effect of mutations, recombinations and selection.

(a) Mutations. In a time interval Δ𝑡, mutations change the genotype
distribution as follows:

𝑃(𝑔, 𝑡 + Δ𝑡) = 𝑃(𝑔, 𝑡) + Δ𝑡𝜇
𝐿∑

𝑖=1

[𝑃(𝑀𝑖 𝑔, 𝑡) − 𝑃(𝑔, 𝑡)] , (3.1)

where 𝜇 > 0 is the constant mutation rate, uniform across the
genotype, and the operator 𝑀𝑖 swaps the 𝑖-th locus i.e., it replaces
𝜎𝑖 → −𝜎𝑖 .

(b) Recombinations. One such event consists in the exchange of genetic
material between two individuals 𝑔∗ , 𝑔∗∗, to form an offspring. The
result is a novel genotype 𝑔, which randomly inherits parts of the
parental genotypes (crossover). Formally, this can be described by a
set of Boolean variables 𝜉𝑖 = {0, 1}, defining 𝜎𝑖 = 𝜉𝑖𝜎

∗
𝑖
+ (1− 𝜉𝑖)𝜎∗∗𝑖 .

In words, the locus 𝜎𝑖 of the offspring 𝑔 is inherited from 𝑔∗ if
𝜉𝑖 = 1, from 𝑔∗∗ if 𝜉𝑖 = 0. Each crossover pattern 𝝃 = {𝜉𝑖} comes
with probability 𝐶(𝝃). The change of the genotype distribution
induced by recombinations is:

𝑃(𝑔, 𝑡 + Δ𝑡) = (1 − Δ𝑡𝑟)𝑃(𝑔, 𝑡)+
+ Δ𝑡𝑟

∑

𝝃, �̄�

𝐶(𝝃)𝑃(𝑔∗ , 𝑡)𝑃(𝑔∗∗ , 𝑡) , (3.2)

where 𝑟 is the recombination rate and the sum in the second
terms runs over all possible crossover patters 𝝃 and the genetic
material �̄� that is discarded during the recombination event, i.e.,
�̄�𝑖 = (1 − 𝜉𝑖)𝜎∗𝑖 + 𝜉𝑖𝜎

∗∗
𝑖

7.7: Recombination acts as collision pro-
cess in the theory of gases. An un-
spoken assumption in (3.2) is that all
the two-genome distributions factorize
𝑃2(𝑔𝛼 , 𝑔𝛽 , 𝑡) ∼ 𝑃(𝑔𝛼 , 𝑡)𝑃(𝑔𝛽 , 𝑡), which
is equivalent to the assumption of molec-
ular chaos (Stosszahlansatz). A critical dis-
cussion of this hypothesis can be found
in [3].

(c) Natural selection. A fitness-based scheme is formulated. The fitness
of a genotype is proportional to the average number of offspring
of an individual with genotype 𝑔 [74]. Since it is a non-negative
function, we choose an exponential representation fitness(𝑔) ∼
exp [Δ𝑡𝜑𝐹(𝑔)] where Δ𝑡 is a time interval, 𝜑 > 0 is the selection
rate and 𝐹(𝑔) ∈ ℝ is the fitness function. We postpone to sec.
3.2.2 a thorough discussion of the latter. Natural selection favors
individuals with higher-than-the-average reproductive success as
follows:

𝑃(𝑔, 𝑡 + Δ𝑡) = 𝑒Δ𝑡𝜑𝐹(𝑔)

⟨𝑒Δ𝑡𝜑𝐹(𝑔)⟩𝑡
𝑃(𝑔, 𝑡) , (3.3)
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where we have used the notation ⟨𝑒Δ𝑡𝜑𝐹(𝑔)⟩𝑡 =
∑

𝑔 𝑒
Δ𝑡𝜑𝐹(𝑔)𝑃(𝑔, 𝑡)

for the population-average. It is important to stress that, according
to (3.3), the notion of fitness is inherently comparative. It is not the
intrinsic value of fitness that is important, but rather its value in
comparison to average in the population, at a given time.

In the limit Δ𝑡 → 0, the combined action of mutations, recombinations
and selection can be expressed in a unified phenomenological master
equation [125]:

𝑑

𝑑𝑡
𝑃(𝑔, 𝑡) =

[
𝐹(𝑔) − ⟨𝐹⟩𝑡

]
𝑃(𝑔, 𝑡) + 𝜇

𝐿∑

𝑖=1

[𝑃(𝑀𝑖 𝑔, 𝑡) − 𝑃(𝑔, 𝑡)] +

+ 𝑟
∑

𝝃, �̄�

𝐶(𝝃)
[
𝑃(𝑔∗ , 𝑡)𝑃(𝑔∗∗ , 𝑡) − 𝑃(𝑔, 𝑡)𝑃(�̄� , 𝑡)

]
.

(3.4)

The master equation (3.4) describes the genotype dynamics in the limit of
an infinite population i.e. 𝑀 →∞, where 𝑀 is the number of individuals
in a population. This corresponds to the limit of a perfect sampling of
the genotype distribution, which allows to neglect the sampling noise ś
referred to as genetic drift.

The dynamics of an asexual population can be studied by setting 𝑟 = 0

in (3.4). In sexually reproducing populations, it is frequently observed
that recombinations happen at much faster rate than mutations. In this
case, the dynamics on the time scale 𝑟−1 is investigated by using (3.4)
with 𝜇 ∼ 0 [121]. Note however that recombinations do not create nor
eliminate alleles in the population. Therefore, for the long-term dynamics
of the allele frequencies in a population must be governed by the inŕux
of new mutations. Indeed, mutations play a more fundamental role
in the evolutionary process compared to recombinations. Unlike the
latter, which act on pre-existing variability, mutations actively spawn
new variations8. 8: A simple example is that of a popula-

tion of 𝑀 identical individuals. Recombi-
nations have no effect whatsoever in the
genetic composition of the populations.
For an evolutionary process to begin, the
inŕux of new alleles (read, mutations) is
needed.

With (3.4) one can in principle to compute the dynamics of the average
of any quantitative trait 𝑂(𝑔), i.e., of any function in the genotype space.
In fact,

𝑑

𝑑𝑡
⟨𝑂⟩𝑡 =

𝑑

𝑑𝑡

∑

𝑔

𝑂(𝑔)𝑃(𝑔, 𝑡) =
∑

𝑔

𝑂(𝑔) 𝑑

𝑑𝑡
𝑃(𝑔, 𝑡) , (3.5)

using (3.4) to evaluate the boxed quantity. Moreover, it can be used to
evaluate the dynamics of the distribution of any trait, which can be
obtained from (3.4) by projection:

𝑃(𝑂, 𝑡) =
∑

𝑔

𝛿[𝑂 − 𝑂(𝑔)]𝑃(𝑔, 𝑡) , (3.6)

where 𝛿(𝑂) is the Dirac delta function. The equations (3.5), (3.6) fulfill
the purpose of the theoretical framework, that is, to furnish a formal
scaffolding that enables (i) hypotheses on the parameter space to be
formulated and (ii) computations to be carried out. The results of such
computations, in turn, are to be tested against experimental data9

9: A review of the results recently ob-
tained starting from (3.5) falls outside the
scope of this manuscript. A considerable
interest has been devoted to the region
of the parameter space corresponding
to the quasi-linkage equilibrium phase, in-
vestigated both in theory [121, 126, 127]
and numerically [3, 5, 128] using effi-
cient simulation tools [129]. Notably, the
framework outlined here has enabled
compelling connections with experimen-
tal data, as explored and exploited in the
case of the SARS-CoV-2 viral genomes
[4, 130]..
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i. Landscapes of the form (3.7) have been thoroughly investigated
within the framework of spin glass theory [85]. Notably, it is
understood from these studies that the essential consequences of
the complexity of such a landscape are already manifest in a model
with only pairwise interactions [135]. Therefore, for the sake of
simplicity, one starts exploring a simplified fitness function:

𝐹(𝑔) = �̄� +
∑

𝑖

𝐹𝑖𝜎𝑖 +
∑

𝑖< 𝑗

𝐹𝑖 𝑗𝜎𝑖𝜎𝑗 , (3.8)

which has∼ 𝐿2 parameters. As a matter of fact, this is the only (non-
trivial) choice that has allowed to solve the evolutionary dynamics
in a closed form [3, 127].

ii. In order to mimic more closely the mechanism of natural selection,
it is possible to define a set of phenotypic variables 𝑓𝐺𝑃(𝑔) ∈
ℝ

𝑟 , where 𝑓𝐺𝑃 : G ↦→ ℝ
𝑟 is the genotype-phenotype map. The

cardinality of the phenotype space is necessarily lower than or
equal to that of the genotype space, i.e., 𝑟 ≤ 2𝐿. A phenotype-fitness
map 𝐹 : ℝ𝑟 ↦→ ℝ can be defined on the phenotype space. The
fitness function is then written as 𝐹(𝑔) = 𝐹( 𝑓𝐺𝑃(𝑔)),

G
𝑓𝐺𝑃−−→ ℝ

𝑟 𝐹−→ ℝ . (3.9)

For instance, if 𝐹 is a simple linear combination of phenotypic traits,
the resulting fitness function has a number 𝑟 of parameters.

Historically, skepticism about the concept of a fitness landscape has
largely stemmed from the lack of empirical data to outline its actual
topography. In recent years, this critique has been somewhat offset with
the advent of methods that allow the construction of empirical fitness

landscapes12 [114, 136]. Though still in their early stages, these experiments 12: These approaches consist in creating
artificial mutants, each carrying one or
more mutations with respect to the wild-
type genotype, then measuring their fit-
ness using a fitness proxy (e.g., antibiotic
resistance) [136]. For instance, deep mu-
tational scans [137] are able to test and as-
sess the phenotypes of all single mutants,
and several double- and triple-mutants
of a wild-type genotype.

carry potential to drive a more comprehensive understanding of the
shape and significance of the fitness function.

A different source of criticism has emerged in recent years, against the
assumption of a constant environment, implicit in (3.7) [138, 139]. A
time-dependent selection would rather be mediated by a fitness seascape

𝐹(𝑔, 𝑡). In fact, the hypothesis of a fixed environment is never exactly
true, as even in the simplest lab environments a number of factors induce
a temporal dynamic of the selective pressure, including modifications of
the physical environment, frequency-dependent selection, co-evolution
effects, interaction between species (ecology) [140]. The assumption of
a fixed landscape holds approximately true when the timescale of the
environmental changes, broadly speaking, is sufficiently long compared
to that of the process under investigation. Unquestionably, it results in a
remarkable simplification of the complexity of the phenomenon.

The picture of a fitness landscape, therefore, should be regarded as
approximate in several senses. Yet, with the caveat above, it offers an
instructive way of thinking about evolution.
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3.3 Genetic algorithms

Where evolution is recognised as solving a more abstract optimisation problem,

the evolutionary algorithm is therefore isolated and used elsewhere.

Devoid of all details, the evolutionary problem described in sec. 3.2 is eas-
ily recognized as a particular instance of a general discrete optimization
problem. The latter is defined as:

max
𝑦

𝑓 (𝑦) subject to 𝑦 ∈ Y, (3.10)

where 𝑓 : Y ↦→ ℝ is the objective function, Y is the feasible set and the
𝑦𝑖 , 𝑖 = 1, . . . , 𝑙 are binary decision variables [141]. In sub-case of evolution,
the binary decision variables are the biallelic genes 𝜎𝑖 , the feasible set
is the genotype space G, the objective function is the biological fitness
𝐹. In this (simplified) view, natural selection acts as an optimization
process. Over time, evolution leads to the "optimization" of a population
for survival and reproduction in their specific environment.

For all problems of the form (3.10), a straightforward algorithm exists.
It involves generating a complete list of all possible 𝑦 ∈ Y, evaluating
the objective function value for each solution, and identifying those 𝑦

that yield the maximum value of 𝑓 . Practically however, this becomes
soon unfeasible, since it involves computing ∼ 2𝑙 computations of 𝑓 . The
exponential explosion of the running time as a function of the dimension
of the problem is often referred to ś with a hint of desperation ś as the
curse of dimensionality [142]. In computer science, several approximate
yet efficient methods have been devised to explore the feasible solution
space of an optimization problem and discover the optimal solutions.
These approaches, commonly known as metaheuristics13

13: Metaheuristics are problem-solving
strategies that provide a general frame-
work for solving optimization problems.
They are not tailored to a specific prob-
lem (as it is the case of heuristics) but offer
a set of guiding principles and strategies
that can be applied to a wide range of
problem domains. An overview of the
existing approaches can be found in [143].
A substantial subset of such techniques
is inspired by biological systems, as it is
the case for the particle swarm optimiza-
tion [144], ant colony optimization [145],
and genetic algorithms (see below).

, encompass a
range of techniques [143], often inspired by natural processes ś simulated
annealing being a celebrated example [146].

Genetic algorithms (GAs), in particular, leverage the parallelism demon-
strated above with the evolutionary problem, to construct a metaheuristic
for (3.10)14

14: John H. Holland (1929-2015), father
of GAs, opens an inŕuential article in Sci-

entific American by proclaiming: Living

organisms are consummate problem solvers.

(...) Pragmatic researchers see evolution’s re-

markable power as something to be emulated

rather than envied. [147]. However, GAs
were introduced by Holland and his stu-
dents in the 1970s not with a specific
application as (3.10) in mind, but with
the general purpose of simulating and
studying artificial adaptive systems in a
computational environment [148, 149].

[150]. In GAs, candidate solutions to a problem undergo suc-
cessive generations of selection, recombination, and mutation to converge
towards optimal or near-optimal solutions. GAs are population-based,
i.e., they operate on a population of potential solutions, each represented
as a binary strings. The following example presents a minimal version of
the algorithm.

An illustrative case

Suppose an optimization problem

max
𝑦

𝑦[10] | sin 𝑦[10] | subject to 𝑦 ∈ ℤ5
2 , (3.11)

where the feasible set Y= ℤ
5
2 is the space of all possible binary bit-like

strings15

15: In the previous section, we used spin-
like binary variables 𝜎𝑖 ∈ {−1, 1}, as it
is common in statistical physics. Here,
we rather use bit-like binary variables
𝑦𝑖 ∈ {0, 1}, as it is common in computer
science. The two sets are obviously equiv-
alent.

of length 5, 𝑓 (𝑦) = 𝑦[10] | sin 𝑦[10] | ∈ ℝ+ is the objective function
and 𝑦[10] is the decimal representation of the binary string 𝑦16. Clearly,16: In the language of sec. 3.2, we would

say that 𝑦 is a genotype, 𝑦[10] its pheno-
type and 𝑓 (𝑦) its fitness.

for (3.11) an exhaustive list of all possible 25 = 32 strings in Y could
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be written, their 𝑓 evaluated and the maximum determined. Here, for
illustrative purposes, we ask (3.11) to be solved using a GA.

The algorithm starts by randomly instantiating an initial population of
𝑀 strings, say 𝑀 = 4. Three evolutionary operators are then iteratively
applied at each generation:

1. Selection. The objective function 𝑓 is evaluated for all 𝑦(𝑖) , 𝑖 =

1, . . . , 𝑀 in the last generation. Each string 𝑦(𝑖) has a probability
to reproduce proportional to its value of the objective function.
In the simplest scheme (biased roulette wheel), the probability
corresponds to

𝑓 (𝑦(𝑖))/
∑

𝑗

𝑓 (𝑦(𝑗)) . (3.12)

See tab. 3.1 for an example. As a result of selection, the population
average of the objective function ⟨ 𝑓 ⟩ = ∑𝑀

𝑗=1
𝑓 (𝑦(𝑗)) increases.

𝑖 𝑦(𝑖) 𝑦
(𝑖)
[10] 𝑓 (𝑦(𝑖)) (3.12) new count

1 01101 13 5.46 0.10 0
2 10101 21 17.57 0.33 1
3 01111 15 5.44 0.19 1
4 11010 26 3.30 0.38 2

Table 3.1: Example of selection. Each
existing string 𝑦(𝑖) as a probability (3.12)
to be selected proportional to its value
of the objective function 𝑓 . In the last
column, the result of a sampling of𝑀 = 4
individuals. The population average ⟨ 𝑓 ⟩
increases from 13.15 to 16.74.

2. Recombinations. Pairs of strings undergo recombination with rate 𝑟.
A popular such scheme (single-point crossover) entails swapping a
portion of the parental strings, e.g.

01111

11010
→ 01 | 111

11 | 010
→ 01010

11111
, (3.13)

where the position of the cut | is randomly chosen.
3. Mutations. Each existing bit in the population is ŕipped with

uniform rate 𝜇, e.g.
01010→ 01111 . (3.14)

By repeatedly applying the three aforementioned steps, the population
gradually converges towards the optimal solution (3.11). However, the
parameters governing the strength of evolutionary operators must be
tuned to achieve a balance between the exploitation of those strings that
better approximate the optimal solution (selection) and the exploration
of the solution set (recombinations, mutations)17. 17: In the GAs literature, however, mu-

tations have a secondary role with re-
spect to recombinations. They are mostly
regarded as a mere insurance policy
against the loss of diversity (s.n. 8) and a
premature convergence of the search al-
gorithm [147, 150]. By consequence, mu-
tation rates are typically set to low values.

Remarks

A number of successful applications of GAs to real-world optimization
problems demonstrate the interest of the scientific community in the
approach ś see [151] and references therein.18 Indeed, genetic algorithms 18: Curiously, there is no consensus on

the exact reasons why GAs work. An
overview of the debate can be found in
[151, 152].

exhibit two compelling features that make them highly attractive.

i. GAs are population-based. Realistic objective function are largely
multimodal, meaning that they exhibit multiple peaks and local
optima. Any search algorithm in such a landscape should avoid
getting ensnared within a local optima and rather pursuit the
global optimum. GAs rise to the occasion by unleashing multiple
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walkers that venture through the solution space simultaneously. In
the case where a walker became trapped, the others would aid in
circumventing the trap in the subsequent generation. This mitigates
ś even though, does not eliminate ś the peril of stagnation around
sub-optimal solutions.

ii. GAs have minimal assumptions about 𝑓 . As it should be clear from the
example above, GAs solely rely on the payoff (objective function)
values assigned to individual strings. For instance, they do not
require the computation of derivatives, as gradient-based methods
do. Even more, GAs do not even necessitate a mathematical expres-
sion for 𝑓 . Consistently with the logic of GAs, an objective function
can be considered a black box that takes an input (string) and
produces a real number as output. This implies the formulation of
GAs is problem independent, since it does not rely of problem-specific
information about the topography of the search landscape.

Clearly, enhancing robustness and generality does not come without
drawbacks, and GAs are not an exception, notably:

iii. GAs are computationally demanding. The major computational bottle-
neck of GAs is the large number of objective function evaluations,
which scales linearly with the population size. Therefore, GAs
simulations are highly sensitive to the complexity of the search
landscape. The latter, in turn, depends on the problem at hand,
therefore there is no universal approach to guarantee timely con-
vergence. Approximate methods and/or additional assumptions
should be tailored to the specific phenomenon under investigation.
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to be a ubiquitous requirement of life, from the simplest organisms to
complex human social behaviours [166, 167]. There are two possible
reasons for a concept to be ubiquitous in a scientific domain: either it is
trivial, or it is fundamental. Here, we will argue for the latter.

We start by formalising what we call the exploration-exploitation dynamics
and providing a mathematical formulation for the case where a biological
system can be represented as a graph (sec. 4.1). We start by studying
simple, solvable models, which are instructive to showcase the essential
features of the EE dynamics (sec. 4.2). Finally, we brieŕy describe and
test the simulations we have designed to cope with complex scenarios
(sec. 4.3).

Main reference

A Vito Dichio & Fabrizio De Vico Fallani. The exploration-exploitation

paradigm for networked biological systems. In: arXiv e-prints 2306.17300
(2023) [1].

4.1 Fundamentals

Where the core idea of this dissertation is presented in its final, press-ready

version. In particular, where the exploration-exploitation problem for (networked)

biological systems is defined and formalised.

The line of thought is fairly straightforward. Biological systems inherently
and universally exhibit randomness. Nonetheless, their dynamics are
shaped by functional constraints, therefore randomness and function
must coexist. Even more, biological systems achieve high-level functions
not only in spite of randomness but also through randomness2 [173, 174].2: In the last two decades, with the ad-

vent of quantitative biology, there has
been a paradigm shift in how we look at
the role of chance in living systems. There
is growing evidence that randomness is
not always a hindrance to biological func-
tion, and it can be more than just noise, it
can be a potential asset in the workings
of life. Long established in the context
of evolution, it is now recognised, e.g.,
within the domains of molecular biology
[168, 169], cell biology [170], neuroscience
[171, 172], to name a few.

The space in which the randomness unfolds ś typically, the systems’
configuration space ś is heavily constrained. In fact, in biology, systems
have functions and we can reasonably expect the overwhelming majority
of possible configurations to be non functional or poorly functional [14,
175]. Broadly speaking, therefore, the relation between randomness and
biological function has a dual nature. On one side, randomness frequently
triggers changes that are detrimental. On the other hand, it serves as an
essential mechanism for exploring the range of possible configurations,
and identifying those that enhance the system function3. If the details of

3: In this paragraph, we have used the
words randomness and biological function

rather loosely. On the one hand, it was
necessary to keep the discussion general.
On the other hand, the exact definition of
these two concepts is more problematic
than it may seem at first sight. The seman-
tic discussion about the meaning of both
is instructive, since goes deep into the
foundations of biology. Excellent starting
points are, e.g, [175, 176].

this interplay are context-dependent, it is meaningful to look for general
principles.

In the following, we develop a formalism that embeds the discussion
above into two fundamental concepts: exploration, exploitation. Exploration
indicates the stochastic search of the configuration space. Exploitation
refers to the use of the configurations that have been found to optimise the
system function. The optimisation problem implicit in these definitions,
in turn, is formalised by stating (i) how the optimal states are encoded
and (ii) how the system approaches them.

To proceed further, we need to define the characteristics of the system
configuration space, i.e., we need to select a representation. Henceforth,
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In the following, we further assume the existence of a lower dimensional
sufficient representation of a graph 𝐺, in terms of 𝑟 < 2𝐿 statistics
𝒙(𝐺) ∈ ℝ𝑟 . Therefore, in this latter space the 𝐹 metric is mathematically
defined 𝐹(𝐺) = 𝐹(𝒙(𝐺)),

G
𝒙−→ ℝ

𝑟 𝐹−→ ℝ . (4.3)

We can collect (4.1) and (4.2) in a single expression, which defines our EE
graph dynamics6:6: This dynamics is correctly normalised

over the graph ensamble ⟨·⟩𝑡 at each time
𝑡. Note that the two terms in Δ𝑃Δ𝑡 (𝐺, 𝑡)
are normalised independently, as it
should be. 𝑃(𝐺,𝑡 + Δ𝑡) = 𝑃(𝐺, 𝑡) +

+ Δ𝑡𝜇
∑

𝑖< 𝑗

[𝑃(𝑀𝑖 𝑗𝐺, 𝑡) − 𝑃(𝐺, 𝑡)] +
[
𝑒Δ𝑡𝜑𝐹(𝐺)

⟨𝑒Δ𝑡𝜑𝐹⟩𝑡
− 1

]

𝑃(𝐺, 𝑡)

︸                                                                  ︷︷                                                                  ︸
Δ𝑃Δ𝑡 (𝐺,𝑡)

. (4.4)

It is convenient to define an adimensional parameter to weight the relative
strengths of exploration and exploitation. We call it functional pressure,

𝜌 = 𝜑/𝜇 . (4.5)

For mild functional pressures, 𝜌 ∼ 0 the dynamic is dominated by
random dyadic mutations, and it is similar to a random walk in the
graph space G. On the contrary, 𝜌 → ∞ corresponds to the limit of a
perfectly exploitative dynamics, where only the most functional graph
configurations carry significant probability.

4.1.2 Beyond Darwin, an interpretable GA

It will not have escaped the attention of the reader that the theoretical
structure assembled in the previous section bears resemblance to the
evolutionary dynamics we formulated in ch. 3. Of course, this is no mere
coincidence.

The EE graph dynamics is an evolutionary dynamics ś in the sense of
sec. 3.2.1 ś for genotypes of length 𝐿, based on mutations and natural
selection. It is worth stressing the semantic: the EE dynamics defined
in (4.1) - (4.2) is not analogous to the mutation-selection dynamics (3.1) -
(3.3): mathematically speaking, they are the identical7. Naturally, what7: This is possible in the first place be-

cause we have used the same represen-
tation for genotypes and graphs, both of
which live in the space of 𝐿-dimensional
binary strings ś though, technically, the
first 𝑔 is a vector of length 𝐿, the second
𝐺 is a matrix with 𝐿 degrees of free-
dom. This is also the reason why we
have used the same notation G for the
space of genotypes and graphs, the same
𝐹 for the fitness function and biological
function and so on.

changes from one case to the other is the interpretation we give to the
same mathematical objects.

In the previous section, we have formulated the EE dynamics on a very
general basis. The key logical step is to recognise that the evolutionary
dynamics (without recombinations) is a particular instance of the more
general EE dynamics where (i) exploration is interpreted as genetic
mutations and (ii) exploitation is interpreted as natural selection ś the
"biological function" to be maximised is the fitness, or reproductive
success. See tab. 4.1 for a complete list of correspondences. In this sense,
the EE dynamics is a generalisation of an evolutionary process without
recombinations.
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evolution with caution, keeping what is essential and leaving back the
rest, fig. 4.2.

4.2 The math of simple scenarios

Where from the investigation of simple case studies, general characteristics of the

EE dynamics are unveiled. Pen and paper, let the theorist theorying.

The graph dynamic (4.4) is not a model for anything in particular, it is a
framework, or a theory for a class of phenomena [12]. In order to specify
a model we must specify the context-specific representation of the notion
of biological function. Having set the theoretical stage, much of our role
as modellers boils down to one simple, crucial question: what is 𝐹?

As a first step, it is important to disentangle the intrinsic characteristics of
the EE dynamic from those originating from the complexity of 𝐹. To do
this, we start by studying (4.4) with models of 𝐹 of minimal complexity,
amenable to analytical investigation10.10: The reader who is not interested in

the more mathematical aspects can skip
to the end of this section, read the remark
4.2.1 and go on. You are welcome! Preliminaries

The following calculations simplify if, instead of the dyadic bit-like
variables 𝑎𝑖 𝑗 = {0, 1} we use the equivalent representation with spin-like
variables 𝜎𝑖 𝑗 = {−1, 1}. The two are related by the following11:11: Note that the analogy between

graphs and spin systems is such that the
dyads and not the nodes are equivalent
to spins in classical statistical mechanics. 𝜎𝑖 𝑗 = 2𝑎𝑖 𝑗 − 1 , 𝑎𝑖 𝑗 =

1 + 𝜎𝑖 𝑗

2
. (4.6)

Analogous relations hold between the average graph density 𝑑 ∈ [0, 1] and
the average magnetisation 𝑚 ∈ [−1, 1]:

𝑚 =
1

𝐿

∑

𝑖< 𝑗

⟨𝜎𝑖 𝑗⟩ = 2𝑑 − 1 , 𝑑 =
1

𝐿

∑

𝑖< 𝑗

⟨𝑎𝑖 𝑗⟩ =
1 + 𝑚

2
. (4.7)

In this section, we will consider (4.4) in the continuous time limit Δ𝑡 → 0,
implying that Δ𝑡𝜑𝐹 ≪ 1. The graph dynamics can be then described by
the following master equation:

𝑑

𝑑𝑡
𝑃(𝐺, 𝑡) (𝑎)= 𝜇

∑

𝑖< 𝑗

[𝑃(𝑀𝑖 𝑗𝐺, 𝑡)−𝑃(𝐺, 𝑡)]+𝜑[𝐹(𝐺)− ⟨𝐹⟩𝑡]𝑃(𝐺, 𝑡) . (4.8)

In (𝑎)we have used 𝑒±𝑥 ∼ 1± 𝑥 for 𝑥 ∼ 0.

The dynamic of the expected value (ensamble average) of any graph
observable 𝑂 : G ↦→ ℝ and its time-dependent probability distribution
can be calculated by (3.5) and (3.6), respectively.

4.2.1 No exploitation

A trivial scenario is the one in which exploitation is turned off, 𝐹 = 𝑐𝑜𝑛𝑠𝑡,
let us discuss it brieŕy. Due to the inŕux of random dyadic inversions
𝑀𝑖 𝑗𝜎𝑖 𝑗 → −𝜎𝑖 𝑗 , any initial graph structure is eventually corrupted and
the system slides towards randomness12. The rapidity of this process is12: On the meaning of randomness for

graphs, see also s.n. 19
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tuned by 𝜇. Formally,

In (𝑎)we have used (4.8). In (𝑏)we took
advantage of the symmetry of the spin-
like representation:

∑
𝐺 𝜎𝑖 𝑗𝑃(𝑀𝑖 𝑗𝐺, 𝑡) =∑

𝐺 −𝜎𝑖 𝑗𝑃(𝐺, 𝑡).

𝑑

𝑑𝑡
⟨𝜎𝑖 𝑗⟩𝑡

(𝑎)
=

∑

𝐺

𝜎𝑖 𝑗 𝜇
∑

𝑘<𝑙

[𝑃(𝑀𝑘𝑙𝐺, 𝑡) − 𝑃(𝐺, 𝑡)]

= 𝜇
[∑

𝐺

𝜎𝑖 𝑗𝑃(𝑀𝑖 𝑗𝐺, 𝑡) −
∑

𝐺

𝜎𝑖 𝑗𝑃(𝐺, 𝑡)
]

(𝑏)
= −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 .

(4.9)

The latter is the differential equation of an exponential decay with charac-
teristic time (2𝜇)−1. The solution is straightforward, ⟨𝜎𝑖 𝑗⟩𝑡 = 𝑒−2𝜇𝑡 ⟨𝜎𝑖 𝑗⟩𝑡0 .
Since the dynamics of each 𝜎𝑖 𝑗 are independent, the magnetization also
exhibits the same exponential decay behavior,

𝑚𝑡 = 𝑒−2𝜇𝑡𝑚𝑡0 . (4.10)

In terms of graph density, this implies that under the action of exploration
alone, the average state of the system melts down in an Erdős-Rényi
random graph with connection probability 𝑝 = 1/2.

4.2.2 Energy-like biological function

By (4.3), much of the complexity of the 𝐹 metric arises from that of the
graph state space ℝ

𝑟 . A simple, non-trivial state space is the one that
represents each graph by its number of edges, i.e., 𝑥(𝐺) = ∑

𝑖< 𝑗 𝑎𝑖 𝑗 ∈ ℕ.
Therefore, let us consider the following

𝐹(𝐺) = − 1

𝐿

∑

𝑖< 𝑗

𝑎𝑖 𝑗 , (4.11)

where each existing edge implies a fixed penalty13. The scenario con- 13: The case of a fixed benefit is equiva-
lent, modulo a minus sign in (4.11) and
those that follow from it.

sidered is one in which the existence of any possible edge in the graph
representation of the system is detrimental. In app. A, we plug (4.11) in
(4.8) to derive the following dynamic for the ensamble average of the 𝑖 𝑗

spin variable:

𝑑

𝑑𝑡
⟨𝜎𝑖 𝑗⟩𝑡 = −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 −

𝜑

2𝐿

∑

𝑘<𝑙

[
⟨𝜎𝑖 𝑗𝜎𝑘𝑙⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙⟩𝑡

]
. (4.12)

The dynamics of the average spin variables are now coupled14. The 14: This may seem odd at first, since 𝐹

contains only single dyadic variables.
For instance, a Gibbs-Boltzmann distri-
bution with an Hamiltonian of the form
(4.11), factorises in the spin variables and
gives decoupled expected values. Ac-
cordingly, an MCMC dynamic based on
such probability distribution does not
introduce correlations between the spin
variables. Where do the coupling come
from? While the 𝐹 metric (4.11) is "energy-
like", the dynamic (4.8) is radically dif-
ferent from an MCMC dynamic in an
energy landscape. It is the term ⟨𝐹⟩ in
(4.8) that is responsible for the coupling,
since it contains an information about all
dyadic variables, cf. (4.11), app. A.

coupling term is the sum of a row of the spin covariance matrix 𝐶𝑡 where
(𝐶𝑡)𝜎𝑖 𝑗 ,𝜎𝑘𝑙 = 𝐶𝑜𝑣𝑡(𝜎𝑖 𝑗 , 𝜎𝑘𝑙) = ⟨𝜎𝑖 𝑗𝜎𝑘𝑙⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙⟩𝑡 .

To proceed, we restrict ourselves to the case where the covariance matrix
has an approximately diagonal form, i.e.,

(𝐶𝑡)𝜎𝑖 𝑗 ,𝜎𝑘𝑙 ∼ O(𝜖) for 𝜎𝑖 𝑗 ≠ 𝜎𝑘𝑙 . (4.13)

Discarding all terms O(𝜖) in (4.12), we get:

𝑑

𝑑𝑡
⟨𝜎𝑖 𝑗⟩𝑡 ∼ −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 −

𝜑

2𝐿

[
1 − ⟨𝜎𝑖 𝑗⟩2𝑡

]
. (4.14)

The latter is valid for 𝐿𝜖 ≪ 1, which means either small graph sizes
(small 𝐿) or mild functional pressures 𝜌, for which the dynamics are close
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were obtained under the rather limiting assumption of the decoupling ap-
proximation. Therefore, our conclusions need to be assessed numerically,
which will be done in sec. 4.3.1.

4.3 Population-based simulations

Where a simulation scheme for the EE dynamics ś inspired, once again, by

evolution ś is deployed and its main features presented. It is to be used there

where the pen cannot get.

The computational problem of setting up simulations for equations of
the form (4.4) has recently been addressed, e.g., by [127, 129], in the
context of evolutionary models. We develop a similar computational
framework, coded in Python 3.9.7 and freely available on the GitHub
folder EE-graph-dyn22.22: Here, we discuss the general features

of the simulations. A detailed description
of the design of the code can be found as
documentation in the GitHub folder.

Once again, the core idea of the simulations is to mimic the evolutionary
process by simultaneously tracking the dynamics of an entire population
of individuals. Each individual is associated to a graph, i.e., to a binary
strings with 𝐿 bit-like entries 𝑎𝑖 𝑗 = 0/1 (dyads). Our population-based
simulations keep track of all the individuals existing within the population,
at each time 𝑡23

23: In general, one has two possible
strategies for simulating forward popu-
lation dynamics: (i) tracking the number
of individuals (or frequency) associated
with each possible graph, or (ii) tracking
the graphs associated with the individ-
uals present in the population. We opt
for the latter, since the former requires
listing and tracking all 2𝐿 possible graph
configurations, which quickly becomes
infeasible as 𝐿 increases.

. To speed up the simulations, we group similar individuals
into a clone, that is a pair (𝐺, 𝑛), where 𝑛 is the number of individuals
associated with the same graph 𝐺. At time 𝑡, the population is thus
defined as the set of existing clones P(𝑡) = (𝑮(𝑡), 𝒏(𝑡)). The population
size (total number of individuals)

∑
𝛼 𝑛𝛼(𝑡) = 𝑀 is held fixed while the

total number of clones 𝑀𝑐(𝑡) ≤ 𝑀 ŕuctuates.

At each simulation step, the population is updated, new clones are created
by dyadic mutations (exploration), their size updated by functional
selection (exploitation), fig. 4.5. In particular:

▶ Exploration. Each dyad of each individual in the population mu-
tates24 with probability 1 − 𝑒−Δ𝑡𝜇 ∼ Δ𝑡𝜇. The exploration rate 𝜇 is24: In the case of an edge toggle, one

has 𝜎𝑖 𝑗 → −𝜎𝑖 𝑗 . Later in ch. 5, we will
use growth-only dyadic mutations, i.e.,
𝜎𝑖 𝑗 → |𝜎𝑖 𝑗 |.

uniform across dyads.
▶ Exploitation. The 𝐹 values of the graphs associated to each clone

are computed. The clone sizes are then updated by extracting 𝑀

independent samples from a multinomial distribution where each
graph 𝐺𝛼 is selected with probability

𝑝𝛼 = 𝑛𝛼𝑒
Δ𝑡𝜑𝐹(𝐺𝛼)/

∑

𝛽

𝑛𝛽𝑒
Δ𝑡𝜑𝐹(𝐺𝛽) , 𝛼 ∈ 1, . . . , 𝑀𝑐(𝑡) . (4.22)

Our simulations have six parameters, summarised in tab. 4.2. The struc-
tural parameters 𝑁,𝑇 set the geometry of the simulations. The former
is the (fixed) number of nodes of each graph; the latter is the size of the
time window to be simulated. There are two internal degrees of freedom:
the population size 𝑀 and the time step Δ𝑡 ś for technical convenience,
it is often preferable to set the inverse time step 𝜈 = Δ𝑡−1. Finally, two
parameters control the dynamics of the system, the exploration rate 𝜇
and the relative strength of exploitation 𝜌25

25: In practice, the simulation step can
always be defined as Δ𝑡 = 1 by rescaling
accordingly:

𝑇 → 𝜈𝑇 𝜇→ 𝜇/𝜈 .
.
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Algorithm: EE graph dynamics, forward simulations (pseudocode).

P(0) = (𝑮0 , 𝒏0)
𝑡 = 0

while t<T do

Exploration: 𝜎𝑖 𝑗 → −𝜎𝑖 𝑗 with probability Δ𝑡𝜇 ∀(𝑖 , 𝑗), ∀𝐺𝛼

update P∗ = (𝑮∗ , 𝒏∗)
compute 𝐹(𝐺∗𝛼) ∀ 𝐺∗𝛼
Exploitation: 𝑀 draws from a multinomial distribution with

𝑝𝛼 = 𝑛∗𝛼𝑒
Δ𝑡𝜑𝐹(𝐺∗𝛼)/∑𝛽 𝑛

∗
𝛽𝑒

Δ𝑡𝜑𝐹(𝐺∗𝛽)⇒ compute new counts 𝒏∗∗

set P(𝑡) = (𝑮∗ , 𝒏∗∗)
𝑡 += Δ𝑡

Parameter Description

𝑁 number of nodes
𝑇 time window span

𝑀 population size
𝜈 inverse time step Δ𝑡−1

𝜇 exploration rate
𝜌 functional pressure 𝜑/𝜇

Table 4.2: Parameters of simulations for
EE graph dynamics. Our computational
framework has six degrees of freedom,
which we group by color: structural pa-
rameters (top), internal degrees of free-
dom (middle) and parameters of the dy-
namics (bottom).

The running time of a single simulation has an obvious linear scaling with
the inverse time step 𝜈, since the same operations described above are
repeated a number 𝜈𝑇 of times. A linear scaling is also observed with the
population size 𝑀, which is reasonable since both the evaluation of dyadic
mutations and of the 𝐹 metric have to be performed independently for
each clone ś in the worst case, 𝑀𝑐(𝑡) ∼ 𝑀, fig. 4.6 (left). The dependence
on the number of nodes 𝑁 (or equivalently, on 𝐿) is trickier, since it
depends strongly on the complexity of the graph operations involved in
the evaluation of 𝐹. For a 𝐹 metric as simple as (4.11), and for large 𝑀,
we observe an approximately linear scaling in 𝐿, fig. 4.6 (right).

4.3.1 Gleaning dynamics from simulations

At each time 𝑡, the raw information provided by the simulations comes in
the form of a snapshot of the population P(𝑡) = (𝑮(𝑡), 𝒏(𝑡)). Assuming
that it is a representative sample of the entire probability distribution, we
can compute from it the distribution of any graph observable 𝑂 : G ↦→ ℝ

by adapting (3.6) to

𝑃(𝑂, 𝑡) = 1

𝑀

𝑀𝑐 (𝑡)∑

𝛼=1

𝑛𝛼(𝑡) 𝛿[𝑂 − 𝑂(𝐺𝛼(𝑡)] , (4.23)

where 𝛿 is the Dirac-delta (
∫
𝑑𝑂 𝛿(𝑂) = 1). By consequence, the expected

value of 𝑂 at time 𝑡 is

⟨𝑂⟩𝑡 ∼
1

𝑀

𝑀𝑐 (𝑡)∑

𝛼=1

𝑛𝛼(𝑡) 𝑂(𝐺𝛼(𝑡)) . (4.24)

To conclude, let us showcase an example of EE graph dynamics sim-
ulations. Let us reconsider the case discussed in sec. 4.2.3, i.e., an EE
dynamics with distance-like 𝐹 metric (4.19), fig. 4.7.
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ical solution we obtained from (4.21), under decoupling approximation.
We present evidence that the asymptotic state of the latter consistently
lies intermediate to the target density and the simulated dynamics, the
difference between the three vanishing for increasing functional pressure,
fig. 4.7(e). We conclude that the decoupling approximation universally
exhibits qualitative agreement with simulations across the parameter
space and quantitative agreement for large values of 𝜌.

This result, in turn, allows us to regard at the characteristics of the
EE dynamics derived under rather specific conditions (Remark 4.2.1)
as universal attributes of the EE dynamics. The next natural step is to
direct our attention towards more realistic systems with more complex
functional landscapes.
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With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

Ð John von Neumann (attributed)

The exploration-exploitation paradigm is general and theoretically sound
for biological dynamics. Therefore it should apply elsewhere than in
the evolutionary context. The aim of this chapter is to show that it does
apply elsewhere. Between the should and the does there are a number of
theoretical and methodological details to be worked out, approximations
to be made along the way and, most importantly, plenty of biology to be
learned.

The beginning of wisdom ś as they say ś is the definition of terms1. 1: This is often attributed to Socrates,
but ś if I understand correctly ś there
is no such quotation in the writings of
Plato, Socrates’ press office. To err on the
side of caution, and to avoid offending
any Greek philosophers who might pass
through here, we refer to a generic "they".

The process we analyse in this chapter is the development of a natural
nervous system, from birth to adulthood ś or, as it has been called, the
brain wiring dynamics. To do so, we shall focus on a specific organism, for
which a natural (and almost obliged) choice is a tiny, transparent worm,
the nematode Caenorhabditis elegans, or simply C. elegans.

We found it convenient to organise this chapter as a long-form scientific
paper2. We begin with a general discussion of the problem (sec. 5.1) 2: In Physical Review Letters ś a ŕagship

publication for physicists ś typical ar-
ticles span just four or five pages. This
concise format assumes that readers have
a considerable amount of knowledge,
as details are often distilled for brevity.
Here, I do not. Our journey to the results
might be a longer read, but it is supposed
to be pedagogical. The main reference
of this chapter [1], on the other hand, is
written in a short format, for the already
expert, for the impatient, or simply for
the lazy.

and a description of the essential features of the organisation of the
worm nervous system, including the data we use (sec. 5.2). We then turn
to describe in detail our EE model of the C. elegans brain maturation,
including our main results (sec. 5.3). We provide a plausible interpretation
of how the exploration-exploitation dynamics could be implemented at a
fine-scale (sec. 5.4) and conclude with an overview of the many possible
generalisations of the model presented (sec. 5.5).

Main reference

A Vito Dichio & Fabrizio De Vico Fallani. The exploration-exploitation

paradigm for networked biological systems. In: arXiv e-prints 2306.17300
(2023) [1].

5.1 The brain wiring problem

Where the (genetically encoded) growth of a brain ś furiously debated among

neuroscientist ś is recognised as a specific instance of the EE dynamics. Where also

the fundamental facts about the brain are: developmental variability, functional

robustness.

The first occurrence of the wording appears in a recent perspective article
by Hassan and Hiensinger [177]. The first lines read:
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The brain, as we neuroscientists like to say, is really complex.
A good deal of our efforts are therefore dedicated to figuring
out just how this apparent complexity is generated: where
does the information to build a brain come from, and how is
such information turned into synapse-specific wiring? We
call this the žbrain wiring problemž.

In the rest of this manuscript, we will work alongside our fellow neuro-
scientists and confront the same compelling challenge. The brain wiring33: Wires, circuits, junctions (...) The lan-

guage of neuroscience is steeped in the
vocabulary of telecommunications. This
is a long-standing metaphor that goes
back to the days of the telegraph [178].
As early as 1875, the German physicist
Hermann von Helmoltz wrote: "Nerves

have often and not unsuitably been compared

to telegraph wires. Such a wire conducts one

kind of electric current and no other; it may

be stronger, it may be weaker, it may move

in either direction; it has no other qualitative

differences. Nevertheless (...) we can send tele-

graphic dispatches, ring bells, explode mines,

decompose water, move magnets, magnetise

iron, develop light, and so on. So with the

nerves." [179]

dynamic is a developmental dynamic that unfolds during a lifespan
and involves the formation, growth and establishment of an individual’s
nervous system ś primarily, neurons and synapses, fig. 5.1.

The crucial empirical observation is that, although the functional out-
comes are highly reproducible and almost invariable, the nervous system
is not hardwired. From worms to humans, neuroanatomical differences
are observed between the nervous systems of any two individuals, even
when they are genetically identical and even when environmental factors
are controlled [180]. For instance, the branching patterns of neuronal
connections vary in lower isogenic animals such as worms, grasshop-
pers and locusts [181ś183] but also in mammals, including monozygotic
human twins [184]. This form of stochasticity, which (i) is not due to
genetic differences, (ii) is not induced by the environment, and (iii) nev-
ertheless leads to equally functional outcomes, has been referred to as
genetically encoded [177] or intrinsic chance [185]. Much of the solution to
the brain wiring puzzle lies in answering the question: what is the origin
of genetically encoded stochasticity?

Dendrites

Axon

Axon
terminals

Cell body

Dendrites

Cell body

Axon

Dendrites

Cell body

Axon

Dendrites Cell body

Axon

(a) unipolar neuron (b) bipolar neuron (c) motor neuron (d) Purkinje cell

Figure 5.1: Four common type of neuron: (a) unipolar, (b) bipolar, (c-d) multipolar, in particular: motor neuron (c) and Purkinje cell (d).
The cell body (soma) is the neuron’s core and houses the nucleus. This is where the neuron’s fundamental metabolic activities occur.
Extending from the cell body are dendrites, which are tree-like projections that receive signals from other neurons and transmit them to
the cell body. The axon, on the contrary, is a long slender projection, that serves to transmit electrical impulses away from the cell body.
This allows the neuron to communicate with other neurons, muscles or glands. The contact zone between dendrites and axons where
two cells exchange chemical and electrical signals are called synapses. Together, these components form the communication network
within the nervous system. The examples here proposed showcase the great variety of neuronal geometries found in Nature. Adapted
from Kandel et al., Principles of neural science [186].

One possibility is that the observed variability is noise of a molecular
code. In a nutshell, genes encode molecules, molecular mechanisms
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drive the growth of the nervous system4, neuron by neuron, synapse 4: The main way this happens is through
so-called guidance cues, biochemical sig-
nals (molecules) that guide the growing
axons of neurons.

by synapse. An appropriate spatiotemporal regulation of the latter, in
turn, results in the synapse-specific wiring of the brain [187ś189]. This
specification process is noisy and occasionally results in inaccurate
outcomes. Whenever such misspecifications do not impair the system’s
functionality, they reveal themselves as variability in the observed systems.
A computer scientist faced with such a brain wiring algorithm would
probably be appalled. Indeed, programming for each input/output is
a highly inefficient coding strategy. Moreover, it seems implausible, at
the very least, that a system as complex as the human brain (∼ 1015

synapses) can be exhaustively specified by a single genome down to the
finest spatiotemporal scale5. 5: This has been called the blueprint

problem: a deterministic molecular code,
accurate at every spatiotemporal scale,
would be at least as complicated as the
resulting wiring diagram [177].

A contrasting view has recently emerged: it is not the precise result,
but the wiring algorithm that is genetically encoded [177, 190, 191].
Accordingly, neural circuits grow based on simple, genetically encoded,
pattern formation rules6. The variability of the outcomes is not due 6: These include, among others, spacing

between axons, self-avoidance, lateral in-
hibition. For two recent examples in the
Drosophila brain, see [192, 193].

to misspecified molecular instructions, but rather is an intrinsic and
essential feature of the dynamics. This because the brain wiring is a
stochastic process that generates patterns, and patterns can be realised
in a variety of different ways. Our computer scientist would be relieved:
encoding a finite set of (possibly simple) rules is certainly a less daunting
programming task than fine-coding a nervous system. Indeed, from an
algorithmic point of view, a stochastic process based on a few algorithmic
constraints and otherwise random appears to be an efficient, ŕexible ś
and maybe ideal ś way to explore an unknown environment.

It further follows from this view that the functionality is an attribute of the
algorithm, rather than of the outcome: a functional rule-set is the one that
leads to functional configurations of the nervous system. If the set of such
configurations is large enough, the whole brain wiring process turns out
to be robust, since small configuration changes do not affect the system’s
functionality [190]. In this sense, allowing for variability of the outcomes
is an insurance policy against failure in the case of perturbations7. 7: The amount of variability is regulated

by the algorithm itself: strict and/or com-
plex functional requirements will yield a
narrow distribution of outcomes, while
simple wiring rules will allow for a broad
outcome variability. This degree of variabil-

ity is likely to be subject to evolutionary
pressure and optimised by natural selec-
tion [190].

Down to the neuronal scale, an experimental evidence consistent with this
view is the fact that the synapse formation process is largely non-specific.
The growth of each branch of a dendritic tree happens thorugh a series of
stochastic local decisions in an unknown molecular environment8. This

8: One might think at a branch of a den-
dritic tree as a navigator in a maze, who
ignores both the maze map and the posi-
tion of the other navigators. It only has
algorithmic information of the sort: "at

each crossroad, choose the wider path" or "if
you see a lemon tree, turn around" or "if pos-

sible, avoid passing by the owl’s nest" and
so on. At each new point in the maze,
the navigator makes decisions based on
its rules and trying to accommodate con-
straints in the best possible way.

allows the process to cope with unforeseen environmental conditions.
For example, neurons that innervate incorrect target regions will form
synapses wherever they land, regardless of how inappropriate the targets
may be [186]. In the absence of other potential partners, they can even
form perfectly functional synapses with themselves, known as autapses
[194].

At this point, we cannot resist the temptation to draw a parallel with our
exploration-exploitation framework. It is straightforward to rewrite the
above paragraphs in the language of sec. 4.1: the brain wiring process is
a self-referential (state-dependent) biological process, that unfolds as a
random exploration of the configuration space under the action of a set
of functional drivers and constraints. The dynamics (4.4) endowed with
a choice for the 𝐹 metric is precisely the way in which we specify a brain
wiring algorithm, genetically encoded by assumption. The observed
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Figure 5.2: The majority of neuron cell bodies are found in clusters, named ganglia, located in the head ś VG, ventral ganglion; RVG,
retrovesicular ganglion ś and in the tail ś PAG, pre-anal ganglion; DRG, dorsorectal ganglion; LG, umbar ganglion. Neuronal processes
run in nerve bundles, the major is the nerve ring (head), the ventral and dorsal cord rung, that along the whole worm body. Adapted
from Cook et al., Whole-animal connectomes of both Caenorhabditis elegans sexes [213].

The neurons in the C. elegans nervous system are classified into different
categories based on their morphology, function, and connectivity.

▶ Sensory neurons are the primary receptors of environmental stimuli,
ranging from temperature changes to chemical signals.

▶ Interneurons are information processors, responsible for transmit-
ting signals between other classes of neurons.

▶ Motor neurons control the contraction and relaxation of muscles,
on which they primarily form synapses.

▶ Modulatory neurons release neuromodulators, molecules that alter
the activity of other neurons or inŕuence the strength of the signals
they send.

Neurons exchange information mainly through ∼ 1500 electrical and
∼ 5000 chemical synapses. The former, also called gap junctions, are
specialized channels that directly connect the cytoplasm of adjacent cells,
allowing various molecules, ions, and electrical impulses to pass between
the cells. The latter, chemical synapses, function as specialised junctions
that facilitate the one-way relay of chemical signals, or neurotransmit-
ters, from a presynaptic to one or more postsynaptic cells. Chemical
synapses are found between neighbouring processes. Therefore, it is
the neighbourhood of the processes that predominantly determines the
connectivity between neurons. The nerve ring hosts the highest density
of these synapses, followed by the ventral and dorsal cord.

Recently, a number of studies have revised the original annotations of the
hermaphrodite, adult C. elegans nervous system, updated its connectome,
and measured it in with the tools of network science [213ś216]. However, it
is important to understand that, strictly speaking, the C.elegans connectome

does not exist. This because (i) due to technical limitations, the whole
animal connectome is constructed by patching together regions of the
nervous system obtained from different animals. Some connections are
not even observed, but inferred from the similarity patterns of certain
regions [213]. Furthermore, (ii) although the overall structure is highly
stereotyped, individual connectomes differ in detail due to natural
developmental variability, sec. 5.1.

Given these limitations, and the availability of the adult connectome only,
it is unsurprising that fewer studies have examined the growth of the C.
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Table 5.1: List of the 180 neurons of the adult C.elegans brain (hermaphrodite, N2), as reported in [223]. Interneurons in red, modulatory
in yellow, motor in blue, sensory in pink. We have marked with an asterisk∗ those neurons that were not present at birth. Each neuron in
the worm nervous system is uniquely identified by a code, which consists in two or three letters (or, occasionally, numbers), followed by
the position in worm’s body D/V (dorsal/ventral), R/L (right/left) [195]. The left-right symmetry increases over time and reaches the
∼ 90% in the adult brain.

ADAL ADAR AIAL AIAR AIBL AIBR AINL AINR AIYL AIYR AIZL AIZR AVAL AVAR

AVBL AVBR AVDL AVDR AVEL AVER AVJL AVJR BDUL BDUR PVCL PVCR PVPL PVPR

PVR PVT RIAL RIAR RIBL RIBR RIFL RIFR RIGL RIGR RIH RIML RIMR RIPL

RIPR RIR ADEL ADER AIML AIMR ALA AVFL∗ AVFR∗ AVHL AVHR AVKL AVKR AVL∗

CEPDL CEPDR CEPVL CEPVR DVC HSNL∗ HSNR∗ PVNL∗ PVNR∗ PVQL PVQR RICL RICR RID

RIS RMGL RMGR IL1DL IL1DR IL1L IL1R IL1VL IL1VR RIVL RIVR RMDDL RMDDR RMDL

RMDR RMDVL RMDVR RMED RMEL RMER RMEV RMFL∗ RMFR∗ RMHL∗ RMHR∗ SIADL SIADR SIAVL

SIAVR SIBDL SIBDR SIBVL SIBVR SMBDL SMBDR SMBVL SMBVR SMDDL SMDDR SMDVL SMDVR URADL

URADR URAVL URAVR ADFL ADFR ADLL ADLR AFDL AFDR ALML ALMR ALNL∗ ALNR∗ AQR∗

ASEL ASER ASGL ASGR ASHL ASHR ASIL ASIR ASJL ASJR ASKL ASKR AUAL AUAR

AVM∗ AWAL AWAR AWBL AWBR AWCL AWCR BAGL BAGR DVA FLPL FLPR IL2DL IL2DR

IL2L IL2R IL2VL IL2VR OLLL OLLR OLQDL OLQDR OLQVL OLQVR PLNL∗ PLNR∗ SAADL SAADR

SAAVL SAAVR SDQL∗ SDQR∗ URBL URBR URXL URXR URYDL URYDR URYVL URYVR

In 2021, the research into neural development has been boosted by the
release of an unprecedented dataset. Witvliet et al. have published the
electron microscopy reconstruction of the C. elegans brain across different
stages of the worm development [223].

More specifically, eight C. elegans ś wild-type N2, hermaphrodite, isogenic,
reared in the same environment ś were selected for imaging at different
post-embryonic stages14

14: The developmental age of each spec-
imen is estimated using the known and
stereotypical cell division pattern [221].
Thus, precise temporal annotation is not
available.

. These comprise one at birth 0 h, three 𝐿1 ∼
5 h, 8 h and 16 h, one 𝐿2 ∼ 23 h, one 𝐿3 ∼ 27 h and two adults, both
∼ 45 h, fig. 5.3. The brain ś i.e., nerve ring and ventral ganglion15 ś of 15: As mentioned above, a large propor-

tion of C. elegans neurons are located
close to the brain or extend their pro-
cesses and form synapses within it. How-
ever, it is worth stressing that, as in hu-
mans, the brain not the entire nervous
system, fig. 5.2.

each specimen was entirely imaged by serial section electron microscopy.
Each cell was identified based on its unique morphology and position,
tab. 5.1. The totality of its chemical synapses and a subset of its gap
junctions were manually annotated16. From birth to adult, the number of

16: By focusing solely on the brain, one
gains the ability to reconstruct it com-
pletely for an individual, without the
need to stitch together segments from
different specimens. This is important
for the purposes of our investigation, be-
cause to capture individual variability,
we prefer individual reconstructions to
collages.

nodes increased from 161 to 180, that of chemical synapses from ∼ 1300

to ∼ 8000. In contrast to mammals [224], synaptic pruning does not occur,
and the removal of synaptic connections is rarely observed.

5.3 The EE development of a worm brain

Where the core results of this PhD are illustrated, a parsimonious white-box

model of a worm brain development is formulated. Where some understanding

is reached of a (seemingly complex, certainly fascinating) biological process.

Here, we will detail our exploration-exploitation model for the maturation
of the C. elegans brain. Along the way, we mark any hypothesis and/or
assumption with the icon (֠)𝑖 17, and discuss them in sec. 5.5. 17: The ambition of this chapter is to

speak out clearly every single assump-
tion. This is why, every time we make
one, we ring a bell (֠)𝑖 (𝑖 counts the
assumptions). We also try to resist the
temptation to summon common practices

or established methods to justify their use
or, worse, to conceal them.

5.3.1 A minimal worm brain

Methods

To start with, we exclude gap junctions from our analysis (֠)1 because
they were only partially annotated in [223]. As for the chemical synapses,
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a number of them can be found between each pair of neurons. The
networks of chemical synapses are therefore weighted and directed.
In this work, we transform them however into the form (1.1), i.e., we
consider the unweighted (֠)2 and undirected (֠)3 networks of chemical
synapses.

Casting weighted to unweighted networks entails casting the number
of synapses between a pair of neurons in a binary state, which we call
connection/non-connection. In particular, a (directed) connection exists
from a presynaptic to a postsynaptic neuron if at least one synapse exist
between the two, fig. 5.4. The dynamics of synaptic connections is a
low-dimensional projection of the dynamics of synapses. Importantly
however, the formation of a new connection implies (by definition) that of
a new synapse. Therefore, the biology of the connection formation process
is, loosely speaking, the same as that of the synaptogenesis process18

18: The contrary, however, is not true: a
new synapse does not necessarily mean
a new synaptic connection, in the case
where it is added to and strengthens an
existing one. This further implies that
the biology of the connection removal
process is not the same of that of the
synapse elimination process. In our case,
as we will see in sec. 5.3.3, this is no cause
for concern.

. It
has also been shown that both synapses and synaptic connections exhibit
a qualitatively similar developmental dynamic, namely a near-linear rate
of addition [223].

Figure 5.4: Multiple synapses in both di-
rection can exist between two neurons.
The network of chemical synapses is
therefore weighted (W) (by the synapse
number) and directed (D). A directed
synaptic connection (UW,D) exists if at
least one synapse is observed in the
same direction. An undirected connec-
tion (UW, UD) exists if at least one di-
rected connection is observed.

W, D

UW, D

UW, UD

Figure 5.5: Triad census. Left: There exist
sixteen directed graph patterns between
three nodes. Each is denoted by a three-
digit code, representing (i) the count of
mutual links, (ii) of single links, (iii) and
non-existent links, respectively. Addi-
tionally, (iv) a letter can be appended
to indicate if the pattern has a cycle
(C), a transitive (T), an upward (U), or
a downward (D) connection structure.
In bold red, the codes of those motifs
that are over-represented in the adult
C. elegans network of (directed) synap-
tic connections. With the exception of
030C, all motifs involving connections
between each pair of nodes (green) are
over-represented. Those involving one
empty dyad (violet) tend to be under-
represented [213, 214]. Right: There exist
four unique connectivity patterns are
possible among three nodes in an undi-
rected graph. Color code highlights cor-
responding patterns.

003 012 102 021D

021U 012C 111D 111U

201 030T 030C 120D

120U 120C 210 300

The further reduction to an undirected network means that an undirected
connection is placed between two neurons if there is at least one directed
connection (thus, a synapse) between them, regardless of its direction.
This is a more delicate assumption19

19: In general, it can introduce spuri-
ous connection reciprocities and distort
the network information ŕow ś e.g., by
obscuring causal relationships between
different connections.

, which we can motivate as follows.
Previous analyses [213, 214] of the (adult) C. elegans network of chemical
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synapses have examined its triad census, i.e., the counts of all possible
directed connection patterns between triples of nodes ś there exist sixteen
patterns. These studies have demonstrated that those connection patterns
involving the same number of empty dyads exhibit consistent statistical
characteristics, in the sense that they are all (with few exceptions) over-
or under-represented relative to a randomised null model20

20: The randomisation procedure used
in both [213, 214] preserves in-degree and
out-degree and the numbers of bidirec-
tional and unidirectional connections for
each neuron. See Figure 7 in [214] and an
updated version of the same exact plot,
Extended Data Figure 7 in [213]., fig. 5.5. The

simple patterns listed in the triad census are the building blocks of more
intricate network motifs. In turn, this means that, when it comes to the
analysis of graph patterns, the use of undirected connections results in a
minor distortion of the original directed network.

As a coarse-graining procedure, the projection to an unweighted, undi-
rected graph implies a loss of information21. This sacrifice, however, is 21: In fact, we can derive the edge dy-

namics of the unweighted undirected
graph from that of the original weighted
directed graph, but not vice versa. The
arguments we have presented above are
not intended to prove that our coarse
graining is a mere rephrasing of the net-
work’s original information. Rather, they
are intended to convince the reader that
it is not meaningless, in the sense that it
does not change the nature of the prob-
lem.

not worthless. What we gain is the noteworthy possibility of writing a
simple model for the C. elegans brain maturation in terms of a handful of
graph motifs22, as we will explain in more detail in the following.

22: This is typically the point of a
manuscript at which one summons the
spirit of the 14th-century Franciscan
friar, named William of Ockham, and
its renowned razor. The relationship be-
tween the the Ockham’s razor ś also, the
principle of parsimony ś and the scientific
truth is riddled with nuances. A discus-
sion of the use of the Ockham’s razor as
an abductive heuristic can be found in
[225, 226].

Results

We obtain eight unweighted, undirected graphs23. Unless otherwise

23: The scripts for both the preprocess-
ing step and preliminary data analyses
have been written using RStudio with R

v4.0.4. They can be found in the Github
folder: EE-graph-dyn.

specified, we will refer to the undirected synaptic connections simply as
edges. A preliminary step in our modelling approach is to measure the
network properties of interest and how they change during development.
In tab. 5.2, we report the computation of a representative subset of
standard graph metrics, app. B.

The number of neurons (nodes) increases from 161 at birth to 180 in
the adult stage, with a burst of neuronal births at the turn of the larval
stages 𝐿1 and 𝐿2, consistent with what was previously reported24 [217,

24: The C. elegans neurons are born in
two separate bursts of cell differentia-
tion. The first, major one happens during
the embryonic stage (before hatching)
and lasts approximately four hours. The
second, minor, happens over seventeen
hours during the post-embryonic stage,
as here observed [217].

218]. In parallel, we observe a 2.7-fold increase in neuronal connectivity,
from 617 edges at birth to ∼ 1650 for the adult. This further results in
an increase of both the number of two-stars (or, connected triples) and
triangles. Also, the average geodesic distance between any two nodes
decreases from ∼ 3 to ∼ 2.2. In summary, the adult C. elegans network
develops to become more closely interconnected.

Arguably, this leads to enhanced functionality of the C. elegans brain
network. We can gain insights into this by computing the average local
efficiency and clustering coefficient, which both increase during de-
velopment. The first suggests an deployment of a biological strategy
for increasing the system’s redundancy and robustness. The second is
compatible with an increasingly modular organisation throughout devel-
opment, and suggests an improvement in local information processing.

Crucially, all the network metrics here considered indicate a consistent
and monotonous trend throughout the worm’s brain maturation.

5.3.2 Topography of the functional landscape

The crucial methodological step in EE modelling is the specification
of an 𝐹 metric and the inference of the topography of the resulting
functional landscape. In this work, we do so by ERG inference, ch. 2.
In particular, without loss of generality, we can express the 𝐹 metric as
a linear combination 𝐹(𝐺) = 𝜽 · 𝒙(𝐺) of graph statistics 𝒙 ∈ ℝ

𝑟 with
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Table 5.2: Properties of the C. elegans networks of undirected synaptic connections. Each row corresponds to a graph, the first (birth) and
the last two (adulthood) are highlighted. We compute the number of nodes, edges, two-stars ś or connected triples ś, triangles, the
average shortest path (av.sh.path) ś or average geodesic distance ś , the average local efficiency (loc.eff.) and the average clustering
coefficient (clust.coeff.). See app. B for the definitions.

t[h] nodes edges two-star triangles av.sh.path glob.eff. clust.coeff.

0 161 617 5976 346 2.993 0.380 0.208
5 162 782 9273 601 2.712 0.416 0.232
8 162 788 9299 614 2.712 0.416 0.245
16 168 907 11838 830 2.617 0.428 0.246
23 173 1166 18449 1406 2.430 0.459 0.262
27 174 1175 18866 1433 2.429 0.458 0.274
45 180 1633 34124 2889 2.217 0.498 0.286
45 180 1669 35677 3003 2.206 0.501 0.292

linear coefficients 𝜽 ∈ ℝ𝑟 . With loss of generality instead, we propose the
following parsimonious, coarse-grained model for the C. elegans brain
maturation (֠)4:

𝐹(𝐺) = 𝜃𝑔𝑤𝑑 𝑥𝑔𝑤𝑑(𝐺 |𝜆𝑔𝑤𝑑) + 𝜃𝑔𝑤𝑒𝑠𝑝 𝑥𝑔𝑤𝑒𝑠𝑝(𝐺 |𝜆𝑔𝑤𝑒𝑠𝑝) , (5.1)

where the model statistics

𝒙(𝐺) =
[

𝑥𝑔𝑤𝑑(𝐺 |𝜆𝑔𝑤𝑑)
𝑥𝑔𝑤𝑒𝑠𝑝(𝐺 |𝜆𝑔𝑤𝑒𝑠𝑝)

]
∈ ℝ2 (5.2)

have been defined in (2.28) and (2.32), respectively25.25: Note that the two graph statistics
used here are defined in the case of
undirected, unweighted graphs. Simple
representations allow for simple models.
Furthermore, in defining this model, we
have not included a term to represent the
graph’s edge count (or density). In fact,
the latter is a degree of freedom which
is controlled by the exploration rate in
an EE dynamics, therefore it is not at the
disposal of the 𝐹 metric specification. See
later in sec. 5.3.3.

According to (5.1), the biological function of a worm brain network can
be characterised in terms of two complementary graph statistics 𝒙 ∈ ℝ2.
The first one, 𝑥𝑔𝑤𝑑, based on the graph degree distribution, highlights
node connectivity. The second one, 𝑥𝑔𝑤𝑒𝑠𝑝 , based on the distribution of
edgewise shared partners, captures relational patterns. Together, they
provide a comprehensive view of both node attributes and network
configurations.

Methods

Modulo a minus sign, the 𝐹 metric (5.1) corresponds to the graph
Hamiltonian H obtained when constructing an ERG model with graph
statistics 𝑥𝑔𝑤𝑑 , 𝑥𝑔𝑤𝑒𝑠𝑝 . Therefore, we can use the ERG inference to estimate
the four parameters - two linear coefficients 𝜽 and two decay parameters
𝝀 - of (5.1). In other words, we employ the ERG methods to infer the
topography of the functional landscape. To ensure that the correct
(functional) balance of model statistics can be achieved at the end of
the developmental process (֠)5, we use the two adult C. elegans brain
snapshots 𝑮∗

𝑇
as input for the inference, 𝑇 = 45 h.

Listing 5.1: ERG inference based on (5.1),
library ergm v4.3.2 for R v4.0.4, code
available in the Github folder EE-graph-
dyn. G represents the input graph for the
inference, either 𝐺∗

𝑇,1
or 𝐺∗

𝑇,2
. The decay

parameters of the curved statistics are
estimated as well (fixed=F). The model
is constrained to those graphs that have
the same number of edges as the G. As
initial guess of the four parameters, we
use (1,1,1,1).

# ERGM formula

ergm(formula = G ~

gwdegree(fixed=F)+gwesp(fixed=F),

constraints = ~ edges,

control=snctrl(init = c(1,1,1,1))

)
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As the ERG inference is defined for one single graph, an output proce-
dure is therefore required. A simple choice is that to use the so-called
mean-ERG (֠)6, originally proposed in [227]. Accordingly, the inference
is performed independently for each network, resulting in multiple
estimates of each parameter. The final estimate is determined by aver-
aging the corresponding values across all networks26. In doing so, we 26: This is an instance of the more gen-

eral problem of constructing a group repre-

sentative network (GRN). There are several
other methods, ranging from the cruder
to the more sophisticated alternatives
[1]. We consider the mean-ERG to be a
lower limit of methodological complex-
ity. We are essentially limited here by the
availability of only two adult networks.

implicitly assume that each network is a different realisation of the same
(bio)physical system.

Results

The ERG inference based on (5.1) for the two C. elegans brain networks is
performed as discussed in ch. 2 and yields the estimates summarised in
tab. 5.3.

𝜃∗
𝑔𝑤𝑑

𝜆∗
𝑔𝑤𝑑

𝜃∗𝑔𝑤𝑒𝑠𝑝 𝜆∗𝑔𝑤𝑒𝑠𝑝

𝐺∗
𝑇,1

0.45 ± 0.20 1.91 ± 0.46 0.626 ± 0.056 1.432 ± 0.067

𝐺∗
𝑇,2

0.43 ± 0.20 1.97 ± 0.48 0.529 ± 0.048 1.542 ± 0.075

Table 5.3: ERG estimation based on (5.1)
for the two adult worms 𝑮∗

𝑇
. The maxent

parameters 𝜽∗ are both significant and
positive for all networks. The parameters
𝝀∗ controlling for the geometric decays
of the model statistics are significant ś
and positive by construction.

The emerging picture is of an adult C. elegans brain network characterised
by a propensity for (i) the presence of highly connected nodes (𝜃𝑔𝑤𝑑 > 0)
and (ii) triadic closure (𝜃𝑔𝑤𝑒𝑠𝑝 > 0). The former is consistent with the
presence of medium and large hub nodes. The latter can reŕect an
underlying graph modular structure and is compatible with a common
neighbor rule ś i.e., neuron pairs with more shared neighbors have a
higher likelihood of connection ś for the worm’s neuronal wiring. These
characteristics of the worm’s adult brain network have been extensively
documented in recent years [215, 220, 228ś230].

The results of the mean-ERG construction for the parameters of the C.

elegans functional landscape are shown in tab. 5.4.

𝜃∗
𝑔𝑤𝑑

𝜆∗
𝑔𝑤𝑑

𝜃∗𝑔𝑤𝑒𝑠𝑝 𝜆∗𝑔𝑤𝑒𝑠𝑝

0.44 1.94 0.578 1.487

Table 5.4: Parameters of the C. elegans
functional landscape, as defined by the 𝐹
metric (5.1). Mean-ERG based on the esti-
mation obtained from two adult worm’s
brain, tab. 5.3.

We observe that an EE dynamics based on the 𝐹 metric (5.1) with the
above parameters would favour the emergence of hub-like structures
and the strengthening of triadic closure throughout development. This
is consistent with two of the developmental principles highlighted in
[223], namely (i) that well-connected neurons receive more inputs and
(ii) that network modularity increases with time. The latter, in turn, align
with the trends described in tab. 5.2, i.e., with a developmental process
that progressively weaves a more tightly connected, robust and efficient
network topology.

Our minimal model of the C. elegans neurofunctional landscape is based
on two graph statistics and has only four parameters that are amenable to
biological interpretation and are inferred from the data. All that remains
for us is to unleash an EE dynamic on it.
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5.3.3 Worm brain maturation tracked down

Using an EE dynamics to model the C. elegans brain network development
means representing it as a stochastic dynamics of a probability distribu-
tion on a functional landscape. The rationale for this has been discussed
in sec. 5.1 in the more general context of the brain wiring problem and
originates from the need to accommodate two fundamental observations:
the existence of developmental variability27 and the robustness of the27: In [223], the 43% of the (directed)

synaptic connections were found not to
be conserved between isogenic individu-
als, contrary to the common assumption
that the C. elegans brain is hardwired. In-
terestingly, not all of these connections
consist of only a few synapses.

functional outcome.

In using this picture, we implicitly make an important assumption, which
we might call the hypothesis of functional homogeneity (֠)7. This means that
the same definition of biological function holds true throughout the whole
developmental process28. We will treat this hypothesis self-consistently28: Cf. with the discussion on the fitness

landscape/seascape, sec. 3.2.2. and verify it a posteriori.

To our best effort, no analytical treatment is possible for an EE dynamic
(4.4) with the 𝐹 score in (5.1), therefore, we resort to simulations, described
in sec. 4.3. In the context of the EE dynamic, three elements need to
be set: the boundary conditions and the two EE parameters, i.e., the
exploration rate 𝜇 and the exploitation rate 𝜑 ś or, equivalently, the
functional pressure 𝜌. The collections of the methods we employ is
summarised in fig. 5.6.

Methods

The boundary conditions are fixed by setting the birth connectome as
the starting point for the EE dynamic (֠)8, i.e.,

𝑃(𝐺 = 𝐺∗0 , 𝑡 = 0) = 1 . (5.3)

In fact, as reported by Nicosia et al. [218] the embryonic and post-embryonic
stages represent two distinct phases in the maturation of the C. elegans

brain, with the hatching (birth) serving as a watershed. Qualitatively,
these two phases are likely driven by the same developmental principles.
Yet, in quantitative terms, they differ fundamentally 29. All of the data we29: For instance, there is a prominent dif-

ference is in the rate at which the connec-
tions appear during development, which
is accelerated in the pre-embryonic phase
(∼ 𝑁2, where 𝑁 is the number of neu-
rons) and linear after birth (∼ 𝑁).

use were collected at different post-embryonic stages. Therefore, in line
with the hypothesis of functional homogeneity, we restrict our modeling
to the post-embryonic developmental phase, setting the birth connectome
as the starting point.

The removal of existing synaptic connection is rarely observed during
the worm’s brain maturation. Therefore, we adopt an exploration scheme
where only the formation of new connections is permitted30 (֠)9. As30: Luckily! As discussed in s.n. 18, the

biology of the process of synapse forma-
tion coincides with that of the process
of connection formation, but the same is
not true of synapse elimination. In prac-
tice, for the C. elegans the latter does not
occur. Using the unweighted representa-
tion of synaptic connections is therefore
less harmful in this case.

previously reported, the number of synapses increases approximately
linearly with time [223]. For simplicity, we further assume that the
formation of new connections occurs uniformly across all neuron pairs
(֠)10. The exploration rate 𝜇 ś i.e., the number of edges added to the
graph per dyad and per unit time ś is then computed as

𝜇∗ =
1

𝑇𝐿

∑

𝑖< 𝑗

[
�̄�𝑖 𝑗(𝑮∗𝑇) − 𝑎𝑖 𝑗(𝐺∗0)

]
, (5.4)
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dynamics, at the local scale, consistent with our current understanding
of the synapse formation process.

5.4 Interpretation down to the synapse scale

Where a biological interpretation of EE dynamics is speculated. Where in

particular individual neurons in a single developing system make local decisions

based only on their limited knowledge.

An interpretation of our model requires the specification of how the EE
dynamics is implemented by the biological process of synapse formation,
which happens at the scale of the single neuron. Here, we speculate on a
plausible biological interpretation of the EE dynamics, within a graph
representation of the system.

Most C. elegans neurons have only one or two processes that extend in
parallel bundles along the worm’s body41. These processes grow during 41: See sec. 5.2 for an introduction to the

C. elegans neurobiology.development, guided by molecular cues. Presynaptic sites appear as en

passant swellings on the shaft of the axon. The postsynaptic processes are
dendrites or as spine-like protrusions [223]. Occasionally, these dendrites
or protrusions form new synaptic connections, fig. 5.13(a).

To illustrate the essential idea, let us consider for simplicity the scenario
illustrated in fig. 5.13(b). At time 𝑡, there exist synaptic connections
between neurons 𝐴𝐵, 𝐷𝐸, and 𝐵𝐶. In the time interval Δ𝑡, postsynaptic
processes from both neurons 𝐶 and 𝐷 grow sufficiently close to the axon
shaft of𝐴, and hold the potential to develop into new synaptic connections.
Conversely, neuron 𝐸 has no such process, so it cannot form a connection
with 𝐴. If Δ𝑡 is sufficiently small, only one of the two possible synaptic
connections 𝐴𝐶 or 𝐴𝐷 is likely to be formed. Which of the potential
connections materialises first is determined stochastically. However, the
connection with a greater functional advantage will plausibly have a
higher probability of forming. Let us suppose ś again, for simplicity ś
that the notion of biological function for this system is simply represented
by the number of triangles in the undirected graph representation of the
system, fig. 5.13(c). Consequently, we expect the 𝐴𝐶 connection to form
preferentially, given it leads to the formation of the 𝐴𝐵𝐶 triangle.

The example above illustrates how the EE dynamics could be imple-
mented for a single developing system42

42: The argument straightforwardly gen-
eralises to more complex notions of bio-
logical functions.

. From the standpoint of the
individual neuron, the process of synaptogenesis consists of a series
of stochastic decisions about which other neuron to connect with43

43: It is worth stressing that this is a pic-
torial way of understanding the process
and, clearly, only an effective descrip-
tion, which is based on (and assumes) a
graph representation of the system. At
the molecular level, the synaptogenesis is
regulated by a complex forest of biochem-
ical mechanisms. Strictly speaking, there-
fore, it is not necessary for neurons to
"compute" any notion of biological func-
tion and "make decisions". Once again,
the developmental rules are ultimately
genetically encoded and biochemically
implemented.

.
These decisions are biased towards those connections that lead to higher
functional gains, which in turn are evaluated based on the information
available to the neuron at any given time.

According to this interpretation, the exploration consists in the formation
(or extension) of neuronal processes that could lead to a new synaptic
connection and thus do not themselves correspond to the formation of
physical connections44

44: Note that this marks a sharp differ-
ence with the context of the evolutionary
dynamics, where different exploration
events are interpreted as a set of differ-
ent genetic mutations, each associated
with a distinct individual in a population.
Here there is one and only one copy of
the system, and the exploration events
correspond to the formation of potential,
not physical, connections.

.

On the other hand, the exploitation consists in assigning higher probabil-
ities of formation to those potential connections that would lead to higher
functional gains. In particular, suppose that 𝐺 is the graph configuration
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Figure 5.13: Interpretation of the EE dynamics. (a) Synapse formation, schematics. Presynaptic sites, appear as swellings (black circles)
on the axon shaft (thick black line) of a presynaptic neuron (gray circle). Postsynaptic neuronal processes - dendrites (black lines) and
spine-like protrusions (thin black lines) - sprout from a postsynaptic neuron (white circle). Occasionally, they form synaptic connections
with physically proximal presynaptic sites (red dashed lines). The presynaptic processes of the postsynaptic neuron and the postsynaptic
processes of the presynaptic neuron are not shown here. (b) A simple scenario. We represent in a cartoonish physical space one
presynaptic neuron 𝐴 and four postsynaptic neurons 𝐵, 𝐶, 𝐷, 𝐸. The axon shaft extending from 𝐴 is represented by the thick black
line. At time 𝑡 there is a synaptic connection between the nodes 𝐴𝐵 (black line connecting 𝐵 to the axon shaft). Additional connections
exist between the neurons 𝐵𝐶 and 𝐷𝐸 (not shown in the physical space, indicated by the gray dashed line). After a time interval Δ𝑡,
postsynaptic neuronal processes extend from the neurons 𝐶, 𝐷 towards the axon, potentially leading to new connections (red dotted
lines). On the contrary, no such postsynaptic process exists for the neuron 𝐸. (c) Representation of the scenario in (b) in the corresponding
graph space (undirected connections). We assume that the biological function (𝐹 metric) simply consists in the count of triangles. The two
potential connections between 𝐴𝐷 and 𝐴𝐶 at time 𝑡 + Δ𝑡 can be represented as two different graph configurations, 𝐺1 , 𝐺2, associated
to different 𝐹 values. 𝐺2, by virtue of its higher 𝐹, will be realised with higher probability. (d) Decision tree for two time steps of the
EE dynamic (example). Here, Δ𝑡 = 1. Each square represents a graph. In blue, we indicate the 𝐹 values. In black, the unconditioned
probabilities computed at each time as exp[𝐹(𝐺𝑖)]/

∑
𝑗 exp[𝐹(𝐺 𝑗)]where the sum runs over all graphs at that time (column). In brown,

the probabilities conditioned on the previous time-point. They can be computed either as above, restraining the sum to those graphs
that come from the same parent graph at the previous time, as in eq.(5.11). Alternatively, they can be evaluated starting from the
unconditioned EE probabilities and using 𝑃(𝐺𝑖 , 𝑡 + 1|𝐺 𝑗 , 𝑡) = 𝑃(𝐺𝑖 , 𝑡 + 1 ∩ 𝐺 𝑗 , 𝑡)/𝑃(𝐺 𝑗 , 𝑡), where 𝑃(𝐺 𝑗 , 𝑡) =

∑
𝑘 𝑃(𝐺𝑘 , 𝑡 + 1 ∩ 𝐺 𝑗 , 𝑡). In

bold-red we highlight the most likely developmental trajectory.

at time 𝑡 and �̃� are the potential graph configurations at time 𝑡 + Δ𝑡,
then

𝑃(𝐺𝑖 , 𝑡 + Δ𝑡 |𝐺, 𝑡) = 𝑒Δ𝑡𝐹(𝐺𝑖 )/
∑

𝐺 𝑗∈�̃�
𝑒Δ𝑡𝐹(𝐺 𝑗 ) , (5.11)

where we have taken 𝜑 = 1 for simplicity. By definition, only one of
them is eventually realised in Δ𝑡. The exploration-exploitation cycle is
iterated throughout the process and defines the EE stochastic trajectory
of a single, developing system in the configuration space.

We stress, however, that the information contained in (4.4) is much more
general, as it allows to compute the (unconditioned) probability of all
possible configurations that could have appeared by the time 𝑡, including
those that result from very unlikely developmental paths, fig. 5.13(d).
This provides the justification for using the EE dynamics to capture the
intersubject variability of the brain wiring, that results from slightly
different developmental trajectories.
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5.5 Paving ways

Where an agenda of the next steps can be found. Some easy to take, some more

ambitious, some optimistic, none unfeasible. Enough for another PhD project,

a bold postdoc or ś question by question, answer by answer ś an entire early

career.

The model presented in this chapter for the brain wiring problem, like any
other model, is shaped by the assumptions made during its formulation.
Some relate to the choice of the representation, some to the model, some
to the theory and some others to the biological system itself ś we list
them all in tab. 5.5. So far in this chapter, we have moved from broad
themes to granular insights. In this final section, we do the opposite,
rewinding the tape of our discussion from the specific to the general
and pointing out a (small) subset of the (many) possible extensions and
generalisations of the concepts and methods exposed above45

45: Of all the sections typically found
in a scientific paper, the Discussion is
surely the most literary, the most replete
with metaphors. Some papers claim to
shed light or open doors. Others boldly
navigate uncharted waters, open horizons,
or break new ground. Yet, some prefer the
humility of merely scratching the surface,
being the tip of an iceberg, or a drop in

the ocean. In our case, we do choose to
pave ways, a challenging task ś as most of
the carpentry work ś, but enduring and
steadfast.

.

(֠) Description Step beyond

1 connections are synapses • • •
2 graphs are unweighted ••
3 graphs are undirected •
4 𝐹 metric is ERG-like ••
5 inference from the adult stage ••
6 mean ERG (𝐹 landscape) • • •
7 functional homogeneity ••
8 start from brain at birth ••
9 connections are only formed •
10 uniform exploration rate •
11 min. Mahalanobis distance ••
12 no node dynamics •

Table 5.5: A complete list of assumptions
enforced in our C. elegans brain matura-
tion model. They are listed in order of
appearance in the text (first column). In
the second column, we give a synthetic
description. In the third column, we qual-
itatively indicate ś according to our how
difficult is the task of removing and/or
generalising the assumptions: if easy (•),
challenging (••) or arduous (•••). Those
related to a lack of data are marked with
three bullets, as there is not much we can
do, as humble theoretical physicists.

The model

First and foremost, our model of biological function (5.1) for the C. elegans

brain. A number of factors (drivers and constraints) have the potential
to play a role in molding the fine-scale details of an adult worm wiring,
which have not been included in our coarse-grained model [220, 223,
234, 235].

For instance, the graphs considered in this research are embedded in
the physical space. One possible way of taking this into account would
be to calculate the total cost of the C. elegans brain, i.e. the sum of the
physical soma-soma distances between connected neurons. The latter is
not strictly minimised [236, 237], yet is likely to play a role in shaping
the adult connectome46 [218, 220, 238]. 46: However, this is a simplistic way of

thinking at role of distance in the worm
nervous system. As discussed, neuronal
process mostly run in parallel bundles
along the worm body. Therefore it is
more the physical neighborhood of the
neurons’ processes that matters and in
particular the contact area between adja-
cent processes. Such data is increasingly
available [234]. For instance, the contact
area at birth between pairs of neurons
correlates with the probability of a form-
ing a new connections [223].

Homophily effects based on various cellular attributes inŕuence the
neuronal (synaptic) connectivity. Neurons in the adult worm brain are
more likely to be connected if they differentiate close together in time
[217] and if they belong to a bilaterally symmetric pair [239], tab. 5.1. In
fact, homophily effects in the adult brain based on birth cohort (pre- or
after-hatching) and symmetric pairing have been demonstrated [220].
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The system

Time to get ambitious. If we insist on a model for the brain wiring problem
grounded on the experimental evidence, data are vital. The kind of data
relevant to the research question under consideration here - in particular,
electron microscopic reconstructions of nervous systems - is becoming
increasingly available for ever larger systems. Let us therefore imagine
for a paragraph (hopefully near) future in which we have the data we are
looking for.

There is no fundamental reason to restrict our analysis to the connection
defined as chemical synapses. A complete map of gap junctions (undi-
rected connections) for the C. elegans across development would be easily
incorporated into our analysis.

There is also no fundamental reason to restrict to the nematode C. elegans

as the general principles that drive the wiring development do not depend
on the specific system by which they are implemented. An EE model of
the brain wiring dynamics for the fruit ŕy, mouse, zebrafish, tadpole and
more50

50: We will resist the temptation to in-
clude the human brain in this list, since,
to the present day, it would be ludicrous
to even think of having such data. We
leave here this side-note, in the hope of
returning to it one day and being amazed
at how quickly it has been disproved.

[203ś208] might be within reach. It would be then interesting then
to use the EE framework as a common ground to compare equivalent
models across different natural nervous systems51

51: For example, the dream plot we have
in mind is a scatterplot, where on the
two axes we have 𝜇, 𝜌 and each point
represents an EE model of a different
brain system.

.

Finally, it would be interesting to go beyond connectomics and look at
functional connectivity52 through the same lens [245]. In fact, a more 52: Connectomics assumes that the

anatomical map of connections, like
synapses and gap junctions, is key to un-
derstanding neural functions. While es-
sential, this overlooks aspects such as in-
hibitory or excitatory nature of synapses,
extrasynaptic communication via signal-
ing molecules [216], and the timescales
of signals propagation.

direct relation with the notion of biological function exists for the signal
propagation atlas, as the one very recently reconstructed for the C. elegans

by Randi et al. [246]. Here, individual neurons are excited by optogenetic
stimulation and the activity induced in other neurons is recorded, thus
defining a graph of directed, weighted functional connections.
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Addo’ arriv’ chiant’ u zipp’ 1. 1: Tr.: Wherever you get, plant a stick.

ś Popular Lucanian wisdom

The discussion presented up to this point has chronicled the birth,
development and implementation of what Schrodinger would have called
a naive physicist’s idea about organisms [45]. As we stand at the threshold
of the conclusion of both this manuscript and this academic project, it is
an opportune moment to step back, reŕect upon the journey undertaken,
and discern the patterns that have emerged from the collective body of
work presented, fig. 6.1.

At the heart of our scientific discourse was the exploration-exploitation
(EE) paradigm, which was posited as a general dynamic principle for
biological systems. It applies whenever the dynamics of a system arise
from the interplay of (i) the variability introduced by stochastic state
changes and (ii) a state-dependent optimisation of a biological function.

One obvious context in which the EE paradigm manifests itself is the
evolutionary dynamics. In the simplest scenario, the latter results from
the combined effect of random genetic mutations (exploration) and
natural selection (exploitation). Crucially, this example showcases the
self-referential nature of biological dynamics. For these reasons, we have
devoted (ch. 3) to discussing the core concepts of evolution, ranging from
biological foundations to modelling efforts, to algorithms inspired by the
evolutionary processes.

Our foray into the realm of evolutionary biology had an underlying
purpose, which was made explicit in (ch. 4). From the specific case
of evolution, we learned the formal structure of a general exploration-
exploitation dynamics (4.4)2. We chiseled away the context-dependent 2: This, holding fixed the mathematical

representation of the system ś essentially
a string of zeros and ones.

details of the evolutionary dynamics to unveil and discuss the underlying
context-free EE algorithm. The resulting theoretical picture is that of a
stochastic evolution of a probability distribution on a functional landscape.
The study of analytically tractable toy models allowed us to elucidate the
main characteristics of the EE dynamics.

Then, we took the leap. We started (ch. 5) by arguing that the brain wiring
dynamics ś i.e., the development from birth to adulthood of a nervous
system, here the graph of neurons and connections between them ś is
another manifestation of the EE paradigm. To work out the details, it is
necessary to focus on a particular system, in our case it was the brain
of the nematode C. elegans. Within the EE framework, we were able to
specify a model of worm brain maturation with only six parameters,
all inferred from data and all amenable to biological interpretation. We
offered a putative, biologically realistic interpretation of the EE dynamics
in terms of the synapse formation process.

Our main result is that a parsimonious characterisation of the adult
C. elegans brain combined with our EE dynamics is able to quantita-
tively reproduce the entire developmental trajectory, as reconstructed
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Figure 6.1: Visual summary of a PhD project. We started from the context of evolutionary dynamics to formulate a context-free
exploration-exploitation (EE) problem, which is claimed to be general for a class of biological dynamics. We developed a theoretical
framework, studied it analytically and developed simulations. We have then used it to tackle another type of biological dynamics, namely
the developmental dynamics of a nervous system. In this context, we studied a specific system, the C. elegans brain. We have developed
an EE white-box model of brain growth that has been validated throughout development.

experimentally by serial section electron microscopy. To the best of our
knowledge, this stands as the first theoretical model of system-wide neu-
rodevelopmental dynamics for a living system, that is (i) firmly anchored
in experimental data across development and (ii) wholly interpretable.
More generally, our results support the recently proposed view of brain
wiring dynamics as driven by a set of simple and genetically encoded
wiring rules.

There is one thorny issue that is the main theoretical bottleneck of the EE
approach. What is the biological function? More specifically, what is the
mathematical expression of the 𝐹 metric? How to identify the relevant
features? How to learn the topography of an 𝐹 landscape from the data?
These problems, of course, are much more general. These questions
echo a foundational inquiry in physics: what is the energy function of a
physical system? When it comes to complex systems ś which includes,
but is not limited to biological systems ś, there is no Delphi’s oracle, the
answer is nuanced, intricate3.3: The lexicon varies as a function of the

context, so that energy f., cost f., utility
f., fitness f., our biological f. (...) all es-
sentially refer to the same mathematical
entity.

To build a functional landscape, we have proposed here the use of an
inferential approach that is both principled and data-driven. In particular,
we used the maxent inference scheme associated with the exponential
random graph (ERG) models. This approach was apt for studying the
brain wiring dynamics because (i) the data were naturally represented as
a graph, and (ii) inference needed to be drawn from a singular realisation
of the system. In (ch. 2), we dwelt on the theoretical underpinnings of
the ERG models and offered a pedagogical guide to assist the interested
users in their application.

A fruitful theory is a theory that leaves the theorist with more and more
precise questions about the subject matter than at the beginning. Several
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have been sketched in sec. 5.5 for the brain wiring problem, and represent
the agenda for the upcoming developments. Yet, I claimed generality4 4: Naturally, generality does not equate

to explaining everything. There are nu-
merous dynamical processes in biology
that cannot be adequately described
or explained within the exploration-
exploitation framework. Just as gravity
offers little insight into the bizarre nature
of strong nuclear interactions. It is trivial
to say, but better to say it.

for the EE paradigm and for such a claim demonstrating its applicability
in at least two distinct contexts ś evolution, brain wiring ś was only the
bare minimum. This manuscript should therefore serve as a guide to
unifying and approaching new problems in biology along the same lines
ś some mentioned in the text, many more probably unforeseen by the
writer himself. As is often the case at the beginnings, our progress is but
a grain in the granary of what remains.

It is no job for the hasty, though. One profound lesson from physics
resonates especially when it comes to the study of living systems. That
is, general principles do not emerge unless we look for them. This is the
central message that we hope will be a legacy of this work.

Here we stand. We shall resist the temptation to dismiss the phenomena
of life as too messy for the physics-style of scientific inquiry. If we do
so, then a theoretical physics of biological systems ś built on solid,
compelling principles and grounded in experimental data ś becomes not
only possible but also one of the most fascinating frontiers5 of modern 5: I may not be completely impartial.

physics.
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Pen and paper EE dynamics A
We here provide a step-by-step derivation of the results discussed in sec. 4.2.2, 4.2.3, for EE dynamics under
simple scenarios. The three fundamental ingredients are (i) the EE dynamics in the continuous time limit
(4.8) (ii) a formal specification of the 𝐹 metric as in (4.11), (4.19) and (iii) the dynamic of any graph observable
𝑂 : G ↦→ ℝ, i.e.,

𝑑

𝑑𝑡
⟨𝑂⟩𝑡 =

𝑑

𝑑𝑡

∑

𝐺

𝑂(𝐺)𝑃(𝑔, 𝑡) =
∑

𝐺

𝑂(𝐺) 𝑑

𝑑𝑡
𝑃(𝐺, 𝑡) . (A.1)

Energy-like biological function

Consider the 𝐹 metric (4.11). The exploitation term in the EE dynamics (4.8) can be written as

[𝐹(𝐺) − ⟨𝐹⟩𝑡]𝑃(𝐺, 𝑡) = − 1

𝐿

∑

𝑖< 𝑗

[
𝑎𝑖 𝑗 − ⟨𝑎𝑖 𝑗⟩𝑡

]
𝑃(𝐺, 𝑡) , (A.2)

(𝑎)
= − 1

𝐿

∑

𝑖< 𝑗

[
1 + 𝜎𝑖 𝑗

2
−
〈1 + 𝜎𝑖 𝑗

2

〉

𝑡

]

𝑃(𝐺, 𝑡) , (A.3)

= − 1

2𝐿

∑

𝑖< 𝑗

[
𝜎𝑖 𝑗 − ⟨𝜎𝑖 𝑗⟩𝑡

]
𝑃(𝐺, 𝑡) , (A.4)

where in (𝑎) we have used (4.6). Note that, when switching from the bit-wise to the spin-wise representation
of the dyadic variables, it is also implied that:

∑

𝐺

=
∑

𝑎11=0,1

· · ·
∑

𝑎𝐿𝐿=0,1

=
∑

𝜎11=±1

· · ·
∑

𝜎𝐿𝐿=±1

. (A.5)

The dynamics of the expected value ⟨𝜎𝑖 𝑗⟩ can be evaluated using (A.1).

𝑑

𝑑𝑡
⟨𝜎𝑖 𝑗⟩𝑡 =

∑

𝐺

𝜎𝑖 𝑗

{

𝜇
∑

𝑘<𝑙

[𝑃(𝑀𝑘𝑙𝐺, 𝑡) − 𝑃(𝐺, 𝑡)] − 𝜑

2𝐿

∑

𝑘<𝑙

[
𝜎𝑘𝑙 − ⟨𝜎𝑘𝑙⟩𝑡

]
𝑃(𝐺, 𝑡)

}

(𝑎)
= −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 −

𝜑

2𝐿

∑

𝑘<𝑙

∑

𝐺

[
𝜎𝑖 𝑗𝜎𝑘𝑙 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙⟩𝑡

]
𝑃(𝐺, 𝑡)

= −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 −
𝜑

2𝐿

∑

𝑘<𝑙

[
⟨𝜎𝑖 𝑗𝜎𝑘𝑙⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙⟩𝑡

]
, (A.6)

where in (𝑎) we have used (4.9). The latter corresponds to (4.12). Under the hypothesis of decoupling
approximation (4.13), we discard all terms in the last sum except ⟨𝜎𝑖 𝑗𝜎𝑖 𝑗⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑖 𝑗⟩𝑡 = 1 − ⟨𝜎𝑖 𝑗⟩2𝑡 and
obtain (4.14). The same differential equation holds for the magnetisation,

¤𝑚𝑡 = −2𝜇𝑚𝑡 −
𝜑

2𝐿

[
1 − 𝑚2

𝑡

]
. (A.7)

Solving (A.7) is a simple calculus exercise ś separable variables, partial fraction decomposition. The general
solution is

𝑚𝑡 = 𝑚2

[

1 + 𝑚1/𝑚2 − 1

1 + 𝑐𝑒2𝜇𝑡
√

1+(𝜌/2𝐿)2

]

. (A.8)

Fixing the constant 𝑐 by requiring 𝑚𝑡0 = 𝑚0 results in (4.15).
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Distance-like biological function

We follow the exact same steps as in the previous section. Consider the 𝐹 metric (4.19), we can rewrite it as

𝐹(𝐺) (𝑎)= − 1

𝐿2

[∑

𝑖< 𝑗

1 + 𝜎𝑖 𝑗

2
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]2

= − 1

𝐿2

[(𝐿
2
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)2

+
(𝐿

2
− 𝐸∗

)∑

𝑖< 𝑗

𝜎𝑖 𝑗 +
1

4

∑

𝑖< 𝑗 ,𝑘<𝑙

𝜎𝑖 𝑗𝜎𝑘𝑙

]

= − 1

𝐿2

[(𝐿
2
− 𝐸∗

)2

+
(𝐿

2
− 𝐸∗

)∑

𝑖< 𝑗

𝜎𝑖 𝑗 +
𝐿

4
+ 1

4

∑

𝑖< 𝑗 ,𝑘<𝑙
(𝑖 , 𝑗)≠(𝑘,𝑙)

𝜎𝑖 𝑗𝜎𝑘𝑙

]
(A.9)

where in (𝑎)we used (4.6). The exploitation term in the EE dynamics (4.8) can be written as

[𝐹(𝐺) − ⟨𝐹⟩𝑡]𝑃(𝐺, 𝑡) = − 1

𝐿2

[(𝐿
2
− 𝐸∗

)∑

𝑖< 𝑗

[
𝜎𝑖 𝑗 − ⟨𝜎𝑖 𝑗⟩𝑡

]
+ 1

4

∑

𝑖< 𝑗 ,𝑘<𝑙
(𝑖 , 𝑗)≠(𝑘,𝑙)

[
𝜎𝑖 𝑗𝜎𝑘𝑙 − ⟨𝜎𝑖 𝑗𝜎𝑘𝑙⟩𝑡

]
]

𝑃(𝐺, 𝑡) , (A.10)

where all the terms that are constant in (A.9) cancel out. The dynamics of the expected value ⟨𝜎𝑖 𝑗⟩ can be
evaluated using (A.1).

𝑑

𝑑𝑡
⟨𝜎𝑖 𝑗⟩𝑡 = −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 −

𝜑

𝐿2

[(𝐿
2
− 𝐸∗

)∑

𝑘<𝑙

[
⟨𝜎𝑖 𝑗𝜎𝑘𝑙⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙⟩𝑡

]
+

+ 1

4

∑

𝑘<𝑙 ,𝑚<𝑛
(𝑘,𝑙)≠(𝑚,𝑛)

[
⟨𝜎𝑖 𝑗𝜎𝑘𝑙𝜎𝑚𝑛⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙𝜎𝑚𝑛⟩𝑡

]
]

𝑃(𝐺, 𝑡) ,

= −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 −
𝜑

𝐿2

[(𝐿
2
− 𝐸∗

) [
1 − ⟨𝜎𝑖 𝑗⟩2𝑡 +

∑

𝑖< 𝑗 ,𝑘<𝑙
(𝑖 , 𝑗)≠(𝑘,𝑙)

[
⟨𝜎𝑖 𝑗𝜎𝑘𝑙⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙⟩𝑡

] ]
+

+ 1

2

∑

𝑘<𝑙
(𝑖 , 𝑗)≠(𝑘,𝑙)

[
⟨𝜎𝑘𝑙⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑖 𝑗𝜎𝑘𝑙⟩𝑡

]
+

+ 1

4

∑

𝑘<𝑙 ,𝑚<𝑛
(𝑖 , 𝑗)≠(𝑘,𝑙)≠(𝑚,𝑛)

[
⟨𝜎𝑖 𝑗𝜎𝑘𝑙𝜎𝑚𝑛⟩𝑡 − ⟨𝜎𝑖 𝑗⟩𝑡 ⟨𝜎𝑘𝑙𝜎𝑚𝑛⟩𝑡

]
]

𝑃(𝐺, 𝑡) . (A.11)

Enforcing now the decoupling approximation (4.20) we get:

𝑑

𝑑𝑡
⟨𝜎𝑖 𝑗⟩𝑡 = −2𝜇⟨𝜎𝑖 𝑗⟩𝑡 −

𝜑

𝐿2

[(𝐿
2
− 𝐸∗

) [
1 − ⟨𝜎𝑖 𝑗⟩2𝑡

]
+ 1

2

[
1 − ⟨𝜎𝑖 𝑗⟩2𝑡

] ∑

𝑘<𝑙
(𝑖 , 𝑗)≠(𝑘,𝑙)

⟨𝜎𝑘𝑙⟩𝑡

]

(A.12)

Using the same initial conditions for all dyads, the last sum can be approximated as ∼ (𝐿 − 1)⟨𝜎𝑖 𝑗⟩. The same
differential equation can then be written for the magnetisation 𝑚𝑡 , the result is precisely (4.21).



Network measures B
The general purpose of network measures is descriptive. They do not
add information, quite the opposite. Computing measures on a network
entails excluding all information except that which relates to the specific
attribute of the network we seek to illuminate. We here provide a synthetic
summary1 of the network measures used in sec. 5.3.3. Popular libraries 1: Detailed discussions and long cata-

logues of other measures can be found
in any monograph on network science,
our main references are [39, 40]. We will
not here enter into competition with the
thousands of items in the academic liter-
ature that have covered these topics.

such as NetworkX for Python or igraph for R/Python can be used for
computation.

Let us consider, as usual, an undirected, unweighted graph (or network)
𝐺 (1.1). The degree of the node 𝑖, we recall, is defined as:

𝑘𝑖 =
∑

𝑗

𝑎𝑖 𝑗 . (B.1)

We can categorise our measures into three groups, based on the specific
network feature they examine: clustering, efficiency and degrees.

Network motifs

Much of the content of this manuscript is based on the enumeration of
network motifs. Essentially, these are identifiable patterns or subgraphs
within a network that occur more frequently than would be statistically
expected in a random network [247]. Identifying a motif count entails
(i) counting the occurrences of a given subgraph and (ii) evaluating its
statistical significance.

In a few fortunate cases2, the count of network motifs can be expressed 2: These happen to span the totality of
the cases discussed in ch. 5. Our EE sim-
ulations gain considerable advantage ś
in terms of computation time ś from ex-
plicit formulae for the computation of an
𝐹 metric building blocks.

in terms of powers of the adjacency matrix. The simplest motif count is
the number of edges, trivially. The number of connected triples #∧ and
that of triangles #△ can be expressed as:

Figure B.1: A triangle (top) is a a triple of
nodes 𝑖 , 𝑗 , 𝑞 with 𝑎𝑖 𝑗 = 𝑎𝑖𝑞 = 𝑎 𝑗𝑎 = 1. A
connected triple (below) is a pair of edges
𝑎𝑖 𝑗 = 𝑎𝑖𝑞 = 1. Each triangle contains
three connected triples.

#∧(𝐺) =
∑

𝑖< 𝑗 ,𝑞

𝑎𝑖𝑞𝑎 𝑗𝑞 =
1

2

∑

𝑖 , 𝑗

(𝐺2)𝑖 𝑗 − 𝑇𝑟(𝐺2) . (B.2)

#△(𝐺) =
∑

𝑖< 𝑗<𝑞

𝑎𝑖 𝑗𝑎 𝑗𝑞𝑎𝑖𝑞 =
1

6
𝑇𝑟(𝐺3) , (B.3)

where 𝑇𝑟 is the trace operator, fig. B.1. The number 𝑥(𝑘)
𝑑

of nodes with
degree 𝑘 is simply

𝑥
(𝑘)
𝑑
(𝐺) =

∑

𝑖

𝛿𝑘,𝑘𝑖 , (B.4)

where 𝛿 is the Kronecker delta, a 𝑘𝑖 as in (B.1). Finally, the number 𝑥(𝑘)𝑒𝑠𝑝
of connected dyads whose extremal nodes share exactly 𝑘 partners is
found as:

𝑥
(𝑘)
𝑒𝑠𝑝(𝐺) =

∑

𝑖< 𝑗

𝛿𝑘,𝐵𝑖 𝑗 with 𝐵 = 𝐺2 ⊙ 𝐺 (B.5)

where ⊙ is the Hadamard (element-wise) product, 𝐵𝑖 𝑗 =
∑

𝑞 𝑎𝑖𝑞𝑎𝑞 𝑗𝑎𝑖 𝑗 . In
ch. 5, the statistical significance of the motif counts was assessed either
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within the ERG framework (non-zero inferred parameter) or by direct
comparison with a null model.

Clustering

A common property of a number of real-world networks ś in particular,
social networks ś is the presence of tightly knit communities or groups
[248, 249]. A straightforward manifestation of such a clustering behaviour

is a higher-than-random connection probability for two nodes that share
a common partner. In other words, if nodes 𝑖 and 𝑗 are both connected
to node 𝑞, they are more likely to be directly connected to each other as
well. Such a behaviour can be quantified by the following two metrics:

◦ Transitivity,𝑇. It is the ratio between the number of existing triangles
#△ (B.3) and the number of connected triples #∧ (B.2). Formally,

𝑇 = 3
#△(𝐺)
#∧(𝐺)

, 𝑇 ∈ [0, 1] . (B.6)

◦ Average clustering coefficient, 𝐶. The local clustering coefficient for a
node 𝑖 is defined as

i

Figure B.2: Subnetwork induced by the
node 𝑖 and its neighbors (orange). Here,
𝑖 has four neighbors. There exist six pos-
sible pairs of neighbors, two of which are
connected, therefore 𝐶𝑖 = 1/3.

𝐶𝑖 =
# connected pairs of neighbors of 𝑖

# pairs of neighbors of 𝑖
=

∑
𝑗<𝑙 𝑎𝑖 𝑗𝑎 𝑗𝑙𝑎𝑖𝑙

1
2 𝑘𝑖(𝑘𝑖 − 1)

. (B.7)

It is computed by considering the subnetwork induced by the
node 𝑖 and its first neighbors and quantifies the relative number
of neighbors of 𝑖 that are also themselves neighbors, fig. B.2. The
average clustering coefficient then simply takes the average value
over the node set:

𝐶 =
1

𝑁

𝑁∑

𝑖=1

𝐶𝑖 , 𝐶 ∈ [0, 1] . (B.8)

Although both 𝑇 and 𝐶 approach a value of 1 in the limit of perfect
transitivity, they do not convey identical information. The clustering
coefficient is relatively more sensitive to nodes with low degrees because
it averages across all nodes. On the contrary, transitivity is more affected
by nodes with high degrees, as they are the ones that inŕuence the
number of triangles more. As a result, while transitivity provides a
more comprehensive picture of the overall structure of the network, the
clustering coefficient sheds more light on local structures or subnetworks
embedded in the larger network.

Efficiency

Another class of metrics in network science is designed to quantify the
efficiency of information or resource transmission within the network
[250]. This notion is based on the fundamental premise that the proximity
of two nodes in a network graph strongly correlates with the efficiency
of their information exchange. The distance 𝑑𝑖 𝑗 between two given nodes
𝑖 , 𝑗 is defined as the length of the geodesic between them, i.e., the number
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of edges that form the shortest path from one to the other, fig. B.3. By
definition, if 𝑖 , 𝑗 are disconnected, 𝑑𝑖 𝑗 = ∞.

i

j

Figure B.3: The geodesic between the
nodes 𝑖 , 𝑗 (orange) has length 𝑑𝑖 𝑗 = 2.
For comparison, another, longer path
connecting the same two nodes is high-
lighted (cyan).

◦ Global efficiency. It is defined as the harmonic mean of geodesic
lengths. The global efficiency 𝐸𝑔 is defined as

𝐸𝑔 =
1

𝐿

∑

𝑖< 𝑗

1

𝑑𝑖 𝑗
. (B.9)

A network exhibiting high global efficiency typically features brief
paths connecting any two nodes, implying swift information distri-
bution throughout the network. This is observed in random and
’small-world’ networks.
◦ Local efficiency. Once again, it is possible to measure the efficiency

at a local level and then average this across all nodes. This metric,
known as the local efficiency or 𝐸𝑙 , is defined as:

𝐸𝑙 =
1

𝑁

∑

𝑖

𝐸
(𝑖)
𝑔 , (B.10)

where 𝐸
(𝑖)
𝑔 is the global efficiency of the subgraph induced by the

node 𝑖 and its neighbors. High local efficiency in a network means
that removing a node would not significantly disrupt communica-
tion between its neighbours. For this reason, it is often considered
a proxy for the robustness or resilience of the network to attacks.
Much like global efficiency, local efficiency is a characteristic trait
of small-world networks. However, unlike global efficiency, high
local efficiency is not typically found in random networks.

Degrees

The degree distribution encapsulates fundamental information about the
network’s structure, robustness to failures, and information spreading
dynamics [83]. The degree distribution of a given network is simply given
by

𝑃𝑑𝑒𝑔(𝑘) = 𝑥
(𝑘)
𝑑
/𝑁 , (B.11)

where 𝑥
(𝑘)
𝑑

is as in (B.4). Alternatively, one can look at the cumulative

degree distribution

𝑃
(𝑐)
𝑑𝑒𝑔
(𝑘) = 𝑃𝑑𝑒𝑔(𝑗 ≥ 𝑘) = 1

𝑁

∑

𝑗≥𝑘
𝑥
(𝑗)
𝑑

(B.12)

Cumulative distributions provide a more effective visualization of the
degree structure, smoothing out ŕuctuations and making it easier to
identify long-tail behaviors indicative of scale-free networks3. 3: In particular, if the underlying distri-

bution has a power-law behaviour∼ 𝑘−𝛾 ,
then the cumulative distribution goes as
∼ 𝑘−𝛾+1 [251]





Glossary: biology for physicists

caenorhabditis elegans Abbreviated as C. elegans. A free-living transparent nematode (roundworm) about
1 mm in length. It is often used as a model organism in biological research, due to its simplicity,
well-defined anatomy, and short life cycle. Despite this, it possesses a wide behavioral array. Beyond
the basics of locomotion, foraging, and feeding, the worm can discern and navigate towards or away
from various chemicals, odors, temperature gradients, and food sources. Furthermore, it demonstrates
social awareness, detecting the presence, density, and even sex of neighboring nematodes. 47

Darwinism Charles Darwin’s theory explaining the mechanism of evolution by natural selection. According
to this theory, evolution results from the interaction of three principles: heredity, variation and survival
(natural selection). It describes how species adapt to their environment over time. 24

evolution The gradual change in inherited characteristics of biological populations over successive gener-
ations. It results from several different processes: (i) mutations, changes in the genetic sequence (ii)
recombinations, exchanges of genetic material between individuals (iii) genetic drift, random changes
in gene frequency and (iv) natural selection (see entry: selection). 23

fitness Organism’s ability to survive and reproduce in a given environment. It is a measure of the relative
reproductive success of individuals with specific traits. Often defined as proportional to the average
number of offspring of an individual. 26

fitness landscape A metaphorical representation used in evolutionary biology to illustrate the relationship
between genotypes and their associated fitness in a given environment. In this landscape, each point
represents a unique genotype, and the elevation at that point represents the corresponding fitness.
Peaks on the landscape represent optimal genotypes with high fitness. The structure of the fitness
landscape inŕuences the paths evolution may take. 28

function The specific role or task performed by a component (e.g., molecule, cell, organ) within a living
organism. They are essential for the organism’s survival, growth, and reproduction, therefore subject
to evolutionary pressure. 34

genotype The genetic makeup of an organism, representing the specific combination of genes present in its
DNA. It serves as the blueprint for the organism’s traits and characteristics. 24

inheritance The process by which genetic information is passed from one generation to the next. This
transfer of genetic material occurs during reproduction, ensuring the continuity and maintenance of
traits within a species. 24

nervous system A network of specialized cells (neurons) that coordinate and regulate the activities of an
organism. In C. elegans, the nervous system of an adult hermaphrodite consists of 302 neurons, uniquely
identifiable. Most of them are found in clusters, called ganglia. Neuronal processes extend from the
ganglia and travel in longitudinal nerve bundles to different regions of the nervous system. The most
prominent are the nerve ring, ventral nerve cord and dorsal nerve cord. 48

neuron Also, or nerve cell. It is the basic structural and functional unit of the nervous system. Neurons
transmit information using electrical and chemical signals. They consist of a cell body, dendrites
(receiving inputs), and an axon (transmitting outputs). Neurons play a crucial role in processing and
transmitting information in the nervous system. The morphology of a neuron can vary substantially. In
C. elegans, they are mostly unipolar or bipolar.. 48

phenotype The observable characteristics and traits of an organism. In general, the phenotype is determined
by both the genomic makeup (genotype) and environmental factors. It includes features like appearance,
behavior, and physiological functions. 24



selection The mechanism through which certain heritable traits confer advantages to individuals, increasing
their likelihood of survival and reproduction. It is driven by the interplay between organisms and their
environment, favoring traits that enhance an organism’s fitness for its ecological niche. 24

self-referential Said of biological dynamics, where the update rules change during the time evolution of the
system, in a manner that depends on the state and thus on the history of the system.. 37

statistical genetics In the sense of Neher-Shraiman, a statistical multilocus theory that explains how the
laws of quantitative genetics ś i.e., the study of phenotypic variation among individuals ś emerge from
the stochastic evolutionary dynamics in the space of genotypes. 26

synapse A specialized junction between two neurons, where information is transferred from one cell to
another. There can be electrical or chemical. The former, also called gap junctions, are specialized
channels that directly connect the cytoplasm of adjacent cells, allowing various molecules, ions, and
electrical impulses to pass between the cells. The latter, chemical synapses, function as specialised
junctions that facilitate the one-way relay of chemical signals, or neurotransmitters, from a presynaptic
to one or more postsynaptic cells. 48

trait A specific characteristic or feature of an organism that can be inherited or inŕuenced by environmental
factors. Traits contribute to the overall phenotype and are subject to evolutionary pressure. 24

variation Diversity observed in the traits and characteristics among individuals within a population, arising
from genetic mutations, recombination, and other sources. It introduces differences in physical and
behavioral attributes, providing the raw material upon which natural selection acts. It is crucial for a
population’s adaptability to changing environments. 24
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