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Abstract

Keywords: Suspensions, capillarity, interfaces, confinement

This work focuses on the capillary flow of granular suspensions. Suspensions, heterogeneous mix-
tures of particles in a fluid, are ubiquitous in our environment and in the industry (blood, avalanches,
cosmetics, cement). Granular suspensions are used when particle agitation is negligible.

Unlike most studies dealing with large volumes of surface-air suspensions, my research focuses on
millimeter flows of suspensions coupled to a dynamic interface. These flows are then called capil-
lary flows because they are dominated by capillary forces at the interface. The suspended particles
then interact with an interface that confines themmore or less according to their size. My approach,
based on experience, is deepened by theoretical reflections on the key ingredients of modeling these
systems.

First, I studied how these suspensions spread over a surface and showed that particles can be used as
probes to understand how energy dissipation occurs in the liquid by cleverly playing with their size.
Thus, my work enriches our knowledge of granular suspensions, but also of dynamic anchoring in
general. In particular, I have shown experimentally that the classical laws of Tanner and Cox-Voinov
still hold provided one uses effective viscosities that can depend on different parameters.

My second project investigates the effect of particles in gravitationally unstable thin films. This
Rayleigh-Taylor instability selects a more unstable hexagonal pattern for a continuous fluid char-
acterized by wavelength and growth time. With the addition of particles, the instability is found to
exhibit two regimes: for small particles, the instability differs from the simple fluid only in its growth
rate. For larger particles, the instability is inhibited. In addition to deepening our understanding of
these phenomena, these results pave the way for stabilizing thin films by adding particles.
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Résumé

Mot-clés: Suspensions, interfaces, capillarité, confinement

Cette thèse porte sur les écoulements capillaires de suspensions granulaires. Les suspensions, mélanges
hétérogènes de particules dans un fluide, sont omniprésentes dans notre environnement et dans
l’industrie (sang, avalanches, cosmétiques, ciment). On parle de suspensions granulaires lorsque
l’agitation des particules est négligeable.

Contrairement à la plupart des études qui traitent des cas de grands volumes de suspensions sans
surface avec l’air, mes travaux de recherche portent sur les écoulements millimétriques de suspen-
sions couplés avec une interface dynamique. Ces écoulements sont alors qualifiés de capillaires
puisque dominés par les forces de capillarité au niveau de l’interface. Les particules en suspensions
interagissent alors avec une interface qui les confine plus ou moins selon leur taille. Mon approche,
basée sur les expériences, est approfondie par des réflexions théoriques sur les ingrédients-clé de la
modélisation de ces systèmes.

J’ai d’abord étudié la façon dont ces suspensions s’étalent sur une surface etmontré que les particules
peuvent être utilisées comme sondes pour comprendre comment la dissipation d’énergie se produit
dans le liquide en jouant astucieusement sur leur taille. Ainsi, mon travail enrichit nos connaissances
sur les suspensions granulaires, mais aussi celles sur le mouillage dynamique en général. En parti-
culier, j’ai montré expérimentalement que les lois classiques de Tanner et Cox-Voinov s’appliquent
toujours avec des viscosités effectives qui peuvent dépendre de différents paramètres.

Mon deuxième projet explore l’effet des particules dans des films minces instables sous l’effet de la
gravité. Cette instabilité de Rayleigh-Taylor sélectionne un motif hexagonal plus instable pour un
fluide continu, caractérisé par une longueur d’onde et un temps de croissance. Lors de l’ajout de
particules, l’instabilité semble présenter deux régimes : pour des petites particules, l’instabilité ne
diffère du fluide simple que par sa vitesse de croissance. Pour les plus grosses particules, l’instabilité
est inhibée. En plus d’étoffer notre compréhension de ces phénomènes, ces résultats ouvrent la voie
à la stabilisation de films minces par ajout de particules.
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Résumé long

Introduction - Chapitre 1

Les contextes industriels (cosmétiques, peinture, ciment) comme naturels (sang, avalanches, coulées
de boue) regorgent de dispersions de particules dans un liquide, appelées suspensions. Plus spéci-
fiquement, pour des particules de plus d’un micron avec une agitation thermique imperceptible,
on parle de suspensions granulaires. Ces fluides font partie de la famille des fluides complexes
et ils peuvent être décrits à grande échelle grâce à l’utilisation de propriétés macroscopiques ef-
fectives, comme par exemple une viscosité dite de volume, qui quantifie la dissipation générée par
l’écoulement. Ces propriétés aux grandes échelles sont établies pour des systèmes supposés infinis et
sans interface avec l’air. Cependant, de nombreux écoulements, industriels ou encore biologiques,
présentent des surfaces libres au niveau desquelles s’exercent des contraintes de tension de sur-
face, dont l’importance est d’autant plus grande que la taille caractéristique de l’écoulement est
petite. L’étude de ces systèmes pour des suspensions manque, théoriquement, numériquement et
expérimentalement. Ma thèse est précisément consacrée à l’exploration expérimentale et théorique
d’écoulements de suspensions granulaires concentrées avec interfaces libres. En particulier, j’étudie
les cas canoniques de l’avancée d’une ligne de contact lors de l’étalement d’une goutte et la désta-
bilisation de l’interface d’un film mince sous l’effet de la gravité pour des suspensions granulaires
concentrées. Mon travail, qui s’adresse de prime abord à la communauté des suspensions, offre
également des réponses aux communautés du mouillage ou des interfaces et peut aussi trouver ré-
sonnance chez d’autres types écoulements multiphasiques avec interface libre.

Caractérisation des suspensions - Chapitre 2

Les particules utilisées, de 10 à 500 microns de diamètre, sont en polystyrène ou en poly méthacry-
late, ces dernières pouvant avoir le même indice optique que le fluide suspendant afin d’obtenir un
mélange transparent, même à haute concentration. Des images en microscopie électronique et op-
tique ont permis de caractériser la forme et la surface des particules ainsi que leur distribution en
taille. Dans le fluide suspendant choisi, les particules représentent 30 à 40% du volume total, on parle
alors de régime de suspensions concentrées ou denses. Elles ont de plus la même densité que le fluide
suspendant, de manière à ne pas avoir de sédimentation. Les suspensions sont dites iso-denses. Une
caractérisation rhéologique minutieuse et systématique des suspensions a été menée pour mesurer
la viscosité du mélange en particulier. Pour des suspensions monodisperses, c’est-à-dire avec une
seule taille de particules, il est important de savoir que leur viscosité est multiple de celle du liquide
suspendant, avec un facteur indépendant du diamètre des particules. Pour des suspensions polydis-
perses, la viscosité est plus complexe et dépend également des proportions relatives des différentes
tailles.
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Etalement de gouttes de suspensions granulaires - Chapitres 3, 4 et 5

Deux points de vue peuvent être adoptés pour étudier l’étalement de gouttes de suspensions granu-
laires. Une approche locale, qui se concentre sur le bord de la goutte, repose sur la compétition entre
les forces visqueuses et capillaires et mène à la loi de Cox-Voinov. Á l’échelle globale de la goutte,
la compétition entre la gravité et les forces visqueuses mène à la loi de Tanner.

Théorie - Chapitres 3

La dérivation de ces lois et des discussions sur leur domaine de validité sont présentés dans le
chapitre 3. Une échelle caractéristique de cut-off visqueux est également dérivée dans ce chapitre à
partir de l’équation de l’interface et en utilisant des arguments d’autosimilarité.
Dans les chapitres 4 et 5, l’étalement de goutte est étudié expérimentalement selon les deux ap-
proches évoquées précédemment. Les gouttes sont formées en déposant un volume de suspen-
sion sur une surface très régulière, appelée wafer, nettoyée avec précaution afin de ne pas gêner
l’étalement du fluide au niveau de la ligne de contact. Les visualisations de dessus et de côté perme-
ttent d’extraire, avec des programmes d’analyse numérique que j’ai développés, profil de la goutte,
angle de contact, rayon, distance des particules à la ligne de contact . . .

Approche locale - Chapitre 4

Les vues du dessus révèlent une région de liquide pur près de la ligne de contact, d’autant plus
large que les particules sont grandes. Les particules ne peuvent ainsi pas introduire de dissipation
quand l’épaisseur du liquide est inférieure à leur taille. Quand l’épaisseur de la goutte devient de
l’ordre d’un diamètre, une monocouche cristallisée de particules est observée, conséquence connue
du confinement par l’interface. Suit une région désordonnée, lorsque le confinement par l’interface
devient moins important.
Malgré cette structure complexe et hétérogène, j’ai montré expérimentalement que la relation clas-
sique entre angle de contact et vitesse d’étalement (loi de Cox-Voinov) reste valable à condition de
remplacer la viscosité de volume par une viscosité de mouillage moindre. La viscosité effective est
d’autant plus faible que le diamètre des particules est grand, elle dépend donc de la taille des partic-
ules, contrairement à la viscosité de volume. Pour des diamètres de plus de 100 microns, la viscosité
de mouillage se réduit à celle du fluide pur, ce qui correspond à un dixième de la viscosité de volume.

Approche globale - Chapitre 5

De façon similaire, la loi de Tanner reste valable avec des suspensions granulaires en utilisant une
viscosité effective. Etonnement, cette nouvelle viscosité effective ne dépend pas de la taille des
particules pour des suspensions denses avec 40% de solide contrairement à la viscosité effective
utilisée avec la loi de Cox-Voinov. La viscosité effective est bien moindre que la viscosité de bulk
dans les deux cas, sans doute à cause d’important glissement près de la surface solide et de possibles
autres phénomènes tels que de la migration de particules, des effets non-newtoniens ou encore de
la cristallisation sous confinement. Des visualisations de tranches de suspensions avec une nappe
laser sont à l’étude pour quantifier ces différents effets.
Cependant, la loi de Tanner marche jusqu’à une taille critique de goutte qui dépend de la taille des
particules. Au-delà, l’étalement ralentit, d’autant plus tôt que les particules sont grosses. Ce ralen-
tissement est expliqué par un confinement critique des particules qui ne peuvent plus se réorganiser
lorsque la hauteur de l’interface atteint typiquement un diamètre de particule. Par la suite, un nou-
veau régime d’étalement est observé, lors duquel le fluide draine hors d’une matrice de particules
confinées et immobilisées par l’interface libre. Un modèle théorique permet de prévoir la transition
entre le régime de Tanner et le régime de drainage hors du poreux granulaire.



Instabilité de Rayleigh-Taylor - Chapitre 6

Le troisième projet de cette thèse porte sur l’instabilité de Rayleigh-Taylor de films minces de sus-
pensions granulaires. Cette instabilité est rencontrée à l’interface entre deux fluides si le fluide du
dessus est plus dense par exemple. Expérimentalement, un volume connu d’une suspension iso-
indice est versé dans un cadre d’épaisseur connue, fixé à une plaque en verre afin de le remplir à
ras. Après plusieurs heures, la plaque est retournée et le film dans le cadre se déstabilise sous l’effet
de la gravité, comme sa densité est supérieure à celle de l’air, c’est l’instabilité de Rayleigh-Taylor.
Les variations d’épaisseur de fluide sont mesurées grâce à une technique optique qui repose sur la
relation entre la déformation d’un motif à l’arrière de la plaque et le profil d’épaisseur de fluide. Je
peux ainsi reconstruire la surface et suivre la croissance de l’instabilité de façon non intrusive.
Sous l’effet de la gravité, un film mince de liquide au-dessus de l’air se déstabilise. Des dômes se
développent, arrangés en réseau hexagonal et lorsque l’un d’eux atteint une épaisseur suffisante,
une goutte se détache. Dans mon projet, le fluide est une suspension concentrée de particules de
10 à 300 microns formant un film de 750 microns d’épaisseur. Dans les cas du liquide pur ou pour
des suspensions de particules de moins de 100 microns, j’ai montré que les motifs hexagonaux se
développent de façon identiquemais que la dissipation ajoutée par les particules ralentit la croissance
de l’instabilité. La viscosité effective à utiliser pour prédire la croissance des dômes est la viscosité de
volume mesuré avec un rhéomètre. En revanche, un régime différent apparait pour des particules de
plus de 200 microns, où des dômes apparaissent sans qu’aucune goutte ne tombe. Ils se déplacent sur
le film, parfois fusionnent mais l’instabilité est bloquée du fait de la présence des grosses particules.
La longueur d’onde sélectionnée par l’instabilité, c’est-à-dire la distance entre deux dômes à un
facteur près, n’est pas sensiblement affectée par l’ajout de particules. Ce résultat peut être attendu
puisque l’ajout de particules ne modifie que la viscosité du mélange qui n’est pas censé affecter la
sélection du mode le plus instable.

Discussions & conclusion - Chapitre 7

L’ajout de particules dans les deux systèmes étudiés questionne quant à l’évolution d’une interface
devant composer avec un écoulement biphasique. Mon travail montre que pour de petites partic-
ules, les modèles classiques peuvent être étendus en utilisant des viscosités effectives qui diffèrent
de celles de volume, mesurées au rhéomètre. En revanche, les situations sont plus complexes avec
des particules de grande taille. La dissipation supplémentaire introduite par des particules de plus de
100 microns n’affecte pas l’interface, qui n’est sensible à la dissipation visqueuse qu’à petite échelle.
Par des raisonnements sur les équations d’étalement, j’ai abouti à une loi d’échelle pour prédire la
taille caractéristique au-delà de laquelle les effets dissipatifs deviennent négligeables. Ce diamètre
correspond au seuil critique de 100 microns obtenu expérimentalement. Il est intéressant de com-
prendre qu’ici, les particules permettent de sonder les zones de dissipation de façon astucieuse en
contrôlant sa localisation au travers de la taille des objets à l’origine de la dissipation additionnelle.
Ce travail répond donc à des questions relatives au mouillage en général, pour des fluides simples
ou complexes. L’étude de systèmes bidisperses permet de confirmer les effets de taille et d’ordre des
particules à proximité d’une ligne de contact en avancée. Mon travail dévoile deux régimes dont la
transition est contrôlée par la taille des particules. Les forces de tension de surface empêchent sans
doute des réarrangements et la croissance de l’instabilité. J’ai entamé une collaboration avec des
numériciens afin d’accéder à la structure du film mince lors de sa déstabilisation. La fin de ma thèse
sera consacrée à ce projet avec un travail approfondi sur la théorie et des expériences supplémen-
taires qui viseront à étudier l’effet de l’épaisseur du film pour quantifier l’effet du confinement sur
le ralentissement de l’instabilité et sur le diamètre de transition entre les deux régimes.



En conclusion, les écoulements avec surface libre de suspensions granulaires n’ont été quemarginale-
ment explorés en dépit de leur importance. Les approches utilisant les modèles classiques avec la
viscosité de volume ne peuvent pas être appliquées, ou du moins nécessitent une correction par une
viscosité effective pour de petites particules. Mon projet révèle des comportements radicalement
différents quand les particules deviennent trop grandes en comparaison de la longueur pertinente
du système. Pour le mouillage dynamique, j’ai proposé une loi d’échelle relative à la taille de la
zone dissipative. Avec des particules de taille supérieure, il devient possible d’avoir un fluide très
visqueux en volume et peu visqueux du point de vue du mouillage. Pour les films minces, le blocage
de l’instabilité pour les grandes tailles de particules pourrait avoir des applications pour la pose
de revêtements par exemple. Ce travail offre encore de nombreuses perspectives d’avancées pour
la compréhension et la simulation de suspensions denses avec interface libre mais aussi celles des
interfaces en général et des écoulements multiphasiques dans leur ensemble (émulsions, mousses,
. . . ).



List of symbols

If not specified otherwise, the following symbols correspond to

𝐴 Factor in front of time in Tanner’s law (Chapters 3, 5) Surface area𝐵𝑜 Bond number Surface curvature𝐶𝑎 Capillary number𝑐 Wavelength of the checkerboard pattern (Chapter 6)𝑑 Particle diameter𝑑1 Small particle diameter in bimodal suspensions𝑑2 Large particle diameter in bimodal suspensions𝑔 Acceleration of gravity𝑔𝑟 Radial distribution function𝐻 Distance between the camera and the thin film (Chapter 6)ℎ Drop heightℎ0 Drop height at the center (Chapters 3, 4, 5)ℎ0 Film thickness undergoing the Rayleigh-Taylor instability (Chapter 6)ℎ𝑔 Glass plate thickness (Chapter 6)𝑘 Volume and viscosity independent constant in Tanner’s law (Chapters 3, 5)𝑘 Instability wave number (Chapter 6)𝑘∗ Most unstable wave number (Chapter 6)𝓁𝑐 Capillary length𝐼𝜈 Modified Bessel function of 𝜈-th order and first kind𝐿 Typical system size𝑛𝑎 Air optical index𝑛𝑔 Glass optical index𝑛𝑓 Fluid optical index𝑃 Pressure𝑄 Flow rate𝑅 Drop radius𝑅𝑒 Reynolds number𝑆 Spreading coefficient𝑆𝑡 Stokes number𝑇 Temperature𝑈 Velocity𝑉0 Drop volume𝑉𝑝 Particle volume𝑉𝑓 Fluid volume
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𝛾 Surface tension (between liquid and gas in most cases)𝛾𝐿𝐺 Surface tension between liquid and gas𝛾𝐿𝑆 Surface tension between liquid and solid𝛾𝑆𝐺 Surface tension between solid and gas𝛿 Size ratio in bimodal suspensions𝜖 Shear strain�̇� Shear rate𝜁𝑠𝑚𝑎𝑙𝑙 Small particle proportion in bimodal suspensions𝜂 Viscosity[𝜂] Intrinsic viscosity𝜂𝑓 Fluid viscosity𝜂𝑎 Suspension absolute viscosity𝜂𝑠 Suspension relative viscosity𝜂𝑇 Suspension effective relative viscosity in Tanner’s law𝜂𝑤 Suspension effective relative viscosity in Cox-Voinov’s law𝜃 Contact angle𝜃𝑎𝑝𝑝 Apparent contact angle (at a given height)𝜃𝑒 Equilibrium contact angle𝜃𝑚 Microscopic contact angle𝜆 Microscopic slip length (Chapters 3, 4, 5)𝜆 Instability wavelength (Chapter 6)𝜆∗ Selected wavelength from linear analysis (Chapter 6)𝜇𝑝 Microscopic friction coefficient𝜌 Density𝜌𝑓 Fluid density𝜌𝑝 Particle density𝜎 Shear stress𝜏 Instability growth time (Chapter 6)𝜏 ∗ Selected growth time from linear analysis (Chapter 6)𝜙 Particle volume fraction𝜙𝑐 Jamming volume fraction𝜑6 Local bond orientation parameter
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Chapter 1 : Introduction
1.1 General introduction

1.1 General introduction

This thesis lies at the intersection of fluid mechanics, soft matter, and physics of interfaces. The
interplay between effects coming from each of these fields naturally raises a number of questions and
requires careful and thorough studies to understand the underlying rulingmechanisms. Fortunately,
simple and predictable behavior can emerge even out of complex systems. In the present case,
granular suspensions have been chosen among the broad class of complex fluids to unveil new
aspects of capillary flows.

Figure 1.1: Examples of suspensions (from left to right): fresh concrete poured to make a slab
(https://www.concreteconstruction.net/), snow avalanche at Roux-d’Abriès, France, in 2004 (Ancey 2001) and
moulding of melted chocolate (https://www.passionpatisserie.fr/).

A suspension is a mixture of particles with a fluid. As illustrated in figure 1.1, human activities
extensively use this category of complex fluids for various applications, including cosmetics, paint,
food . . . For instance, the concrete industry inserts gravel in cement. The physical properties of con-
crete can be tailored with grain sizes and many other features of the solid and liquid phases. In
nature, the physics of suspensions addresses questions related to sediment transports in rivers for
instance (Ouriemi et al. 2009). At these large geophysical scales, snow avalanches, landslides and
lava flows can be considered as flowing suspensions (Coussot 2005). Finally, objects suspended in
a liquid are widely encountered in biological systems such as blood. Understanding the effects of
shape and stiffness of the blood cells would lead to major medical improvements in the prevention
and treatment of blood diseases (Briole et al. 2021).
In blood capillaries, in pipes, or in any narrow system, confinement of suspensions highlights the
limits of the continuous description of these fluids. In particular, the effective viscosity, which quan-
tifies energy dissipation in the flow, displays signs of confinement for system sizes smaller than 20
particle diameters (Peyla and Verdier 2011; Ramaswamy et al. 2017).
Addition of a single object in the flow must increase dissipation, simply because of its
non-deformability as explained in the review of Guazzelli and Pouliquen (2018). Several objects
accentuate this dissipation through hydrodynamic interactions or contacts, especially in crowded
systems. For the latter, microstructure is a key factor to understand the overall dissipation and the
resulting effective viscosity. Modification of the particle microstructure is thereby expected to be
brought into light by confined flows of dense suspensions, as wall effects and steric constraints be-
come more and more significant.

The wall confining the suspension can be of different types, be it a rigid or deformable solid
or the surface of a liquid. So far, most of the work on confined suspensions has remained in the
framework of rigid walls. The established conclusions might be highly affected by another type of
confinement, e.g. confinement by an elastic wall or by a completely deformable boundary such
as an interface with another fluid. In the latter case, the flow of the suspension is then cou-
pled to the dynamics of its boundaries and raises question on how this multiphase flow behaves.
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These are precisely the situations I address in this manuscript with different systems. I initiated
this work on capillary flows of dense suspensions during one of my internships, dedicated to the
study of drop spreading - where particles undergo a strong confinement near the edge of the drop
and interplay with the advancing contact line to unveil interesting behavior. This work led to a
first publication with many pending questions (Zhao et al. 2020). A deeper investigation of the key
elements regarding dissipation in this complex system has been the initial line inquiry of this Ph.D.
and led to a second publication (Pelosse et al. 2023). In particular, it explains how drop spreading of
granular suspensions offers an interesting point of view on dynamic wettingmechanisms in general.

This manuscript begins with a brief overview and definitions of the main concepts required to
study capillary flows of granular suspensions. It sets the framework of this study, namely Stokes
and capillary flows of dense granular suspensions made of spherical particles in a Newtonian fluid.

1.2 Granular suspensions

Describing suspensions in the plethora of the cases aforementioned or illustrated in figure 1.1 is way
too ambitious. Their physics depends on numerous parameters related to the particle (size, shape,
roughness, elasticity . . . ) or to the fluid phase (rheology, density, . . . ).

1.2.1 Granular, viscous, non-buoyant suspensions

We focus our attention on suspensions made of hard spheres and immersed in aNewtonian viscous
liquid. The notion of Newtonian fluid is detailed in Chapter 2. In a few words, such fluids have a
well-defined, constant viscosity, i.e. a linear correlation between the viscous stress and the shear rate
under flow. Specifically, their viscosity neither increases (shear-thickening) nor decreases (shear-
thinning) under shear. In addition, we only consider suspensions made of large particles, qualified
as granular or non-Brownian. In a granular suspension, Brownian motion, i.e. thermal agitation
of the particles, can be neglected. The typical cut-off size is usually 𝑑 ≳ 1 µm, with 𝑑 the particle
diameter. By default, we consider non-buoyant or density-matched suspensions, i.e. 𝜌𝑝 = 𝜌𝑓
with 𝜌𝑓 , 𝜌𝑝 the fluid and particle density, respectively. Otherwise, a density difference Δ𝜌 = 𝜌𝑝 − 𝜌𝑓
between the fluid and the particles would lead to sedimentation (𝜌𝑓 < 𝜌𝑝) or creaming of the particles
(𝜌𝑓 > 𝜌𝑑 ). For a single particle, the drift speed associated with the density mismatch, also called the
Stokes settling velocity, reads (Guazzelli and Morris 2011)

𝑈Stokes = 𝑑2𝑔Δ𝜌18𝜂 , (1.1)

with 𝑔 the acceleration of gravity and 𝜂 the dynamic viscosity of the surrounding fluid.
High fluid viscosity enables us to both study Stokes flows and overlook particle inertia. The latter
can be assessed with the particulate Reynolds number,

𝑅𝑒𝑝 = 𝜌𝑝𝑑𝑈𝜂 ≪ 1, (1.2)

with 𝑈 the typical particle velocity. Particle inertia can also be evaluated with the Stokes number,
defined as 𝑆𝑡 = 𝜏𝜂𝑇 = 𝜌𝑝𝑑2𝜂𝑇 , (1.3)

with 𝜏𝜂 = 𝜌𝑝𝑑2/𝜂 the characteristic viscous relaxation time scale of the particle (grain, drop, bubble,
...) and 𝑇 the typical flow timescale (Guazzelli and Morris 2011). For large Stokes numbers, 𝑆𝑡 ≥ 1,
inertia of the particles is large enough so that their trajectories differ from the fluid streamlines.
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1.2 Granular suspensions

On the contrary, particles follow the flow streamlines similarly to a fluid element if 𝑆𝑡 ≪ 1. It is a
necessary condition for a particle to be a good flow tracer for instance.
To quantify the amount of solid immersed in the suspension, we define the particle volume frac-
tion, 𝜙 = 𝑉𝑝𝑉𝑝 + 𝑉𝑓 , (1.4)

with 𝑉𝑝 the total solid volume of the particles and 𝑉𝑓 that of the suspending fluid. This quantity
is by definition smaller than one. Actually, its upper bound is smaller than one and corresponds to
the situation of a dense particle packing with liquid-filled interstices. This upper bound or critical
packing fraction 𝜙𝑐 , usually lies around 60% for spheres of equal size. This parameter, also named
the jamming volume fraction, is closely related to the maximum compacity of the solid phase (ran-
dom close packing). At this volume fraction, the system becomes fully jammed and stops flowing as
the particles cannot make space to reorganize. Either 𝜙 and 𝜙𝑐 play major roles in the understanding
of the effective viscosity of suspensions, which quantifies the overall dissipation of the mixture.

1.2.2 Dissipation in granular suspensions: apparent viscosity

Figure 1.2: Relative viscosity of granular suspensions as a function of (a) the solid volume fraction 𝜙, and (b)
the normalized solid volume fraction 𝜙/𝜙𝑐 . Graphs from the review on dense suspension rheology byGuazzelli
and Pouliquen 2018, with experimental (Boyer et al. 2011; Bonnoit, Darnige, et al. 2010; Dagois-Bohy et al.
2015; Dbouk et al. 2013; Ovarlez et al. 2006; Zarraga et al. 2000) and numerical (Gallier, Lemaire, Peters, et al.
2014; Mari et al. 2014; Sierou and Brady 2002) data for various systems, and viscosity laws of Einstein (1905),
Batchelor and Green (1972), Krieger and Dougherty (1959), Maron and Pierce (1956), and Eilers (1941).

At the macroscopic scale, i.e. sizes much larger than a particle diameter, 𝑑 , the mixture behaves
as a continuous fluid, thus justifying the use of an effective viscosity to quantify the additional
dissipation. This increase has several origins: the non-deformability of a particle, hydrodynamic
interactions of the particles with the liquid or with the other particles and direct contacts between
the particles. Depending on the solid volume fraction, some contributions will take over the others.
While contacts are insignificant in the dilute limit (𝜙 ≲ 20 %), they progressively prevail over hy-
drodynamic interactions in the dense regime (𝜙 ≳ 40 %) (Gallier, Lemaire, Peters, et al. 2014). The
study of suspensions thus belongs mostly to hydrodynamics in dilute cases, while solid mechanics
is more relevant to dense systems. Specifically, in the dense case, the suspension rheology can be
tackled with the tools of dry granular media governed by particle contacts (Boyer et al. 2011). This
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dense regime displays the major effects of the particle microstructure on the macroscopic bulk
flow (Jeffrey Morris 2009). In figure 1.2, the relative viscosity, 𝜂𝑠 i.e. the viscosity of the suspen-
sion normalized by the viscosity of the suspending fluid, is plotted as a function of particle volume
fraction. Various monomodal suspensions are gathered in these graphs, i.e. each one composed
of one particle size only. As predicted by theory and confirmed by experiment and numerical sim-
ulation, the viscosity of monomodal granular suspensions does not depend on the particle
size (Guazzelli and Pouliquen 2018). Granular suspensions are simple in that way. In addition, the
relative viscosity, 𝜂𝑠 increases with 𝜙 and divergence occurs at 𝜙 → 𝜙𝑐 , as shown by the tight col-
lapse of the points in figure 1.2(b) when 𝜙 is normalized by the jamming volume fraction, 𝜙𝑐 . The
value of 𝜙𝑐 depends on the system, notably on the particle size distribution, see § 1.2.3. The offsets
of divergence in figure 1.2(a) also suggest that 𝜙𝑐 depends on the microscopic friction coefficient 𝜇𝑝
(Mari et al. 2014; Tapia et al. 2019).
To avoid extreme jamming behavior while keeping a strong effect of the presence of the particles,
this work deals with relatively dense granular suspension (𝜙 ≃ 40% in most cases). In that case,
a rough estimation of 𝜙𝑐 is sufficient.

1.2.3 Polydisperse granular suspensions

To address the case of suspensions encountered in nature, one must go beyond the situation of
monomodal suspensions and consider these made of particles with multiple sizes. In the laboratory,
experiments also benefit from a slight amount of polydispersity to avoid crystallization of the
particulate phase (Pusey 1987). When dealing with polydisperse suspensions, the main challenge
lies in the prediction of theirmaximum compacitywhich increases with the spread of the size
distribution (Farr and Groot 2009). Then, using the relevant maximum packing fraction in
common viscosity laws provides a decent estimate for the viscosity of polydisperse suspensions
(Chong et al. 1971; Pednekar et al. 2018).

A first step toward this additional degree of complexity is the bimodal solid phase, i.e. a suspen-
sionmade of a liquid, small particles (diameter 𝑑1) and large particles (diameter 𝑑2). The composition
of such mixtures is described by 4 parameters (𝜙, 𝑑1, 𝑑2, 𝜁small) or alternatively (𝜙, 𝑑1, 𝛿 , 𝜁small) with𝛿 the diameter ratio, 𝜁small the small particle proportion in the solid blend, and 𝜙 the total solid
volume fraction,

𝜙 = 𝑉𝑝𝑉𝑝 + 𝑉𝑓 = 𝑉1 + 𝑉2𝑉1 + 𝑉2 + 𝑉𝑓 , 𝛿 = 𝑑2𝑑1 ≥ 1, 𝜁small = 𝑉1𝑉2 + 𝑉1 = 𝑉1𝑉𝑝 . (1.5)

In comparison with monomodal systems, the maximum compacity of bimodal blends is larger due to
the asymmetric steric interactions between the two populations of particles. In particular, the small
particles can fill the holes between the large particles. For large size ratio, 𝑑1 ≪ 𝑑2, the maximum
packing fraction is reached in the situation of fully-packed large particles, with fully-packed small
particles in the holes (Farris 1968; Sengun and Probstein 1989; Probstein et al. 1994). However, for a
finite size ratio, the bimodal maximum packing fraction is not obvious. For the small particles, large
particles are like walls, thus decreasing locally their concentration (Aim and Le Goff 1968). More-
over, the network of large particles has to expand if the small particles are too large or too numerous
in the interstices (Stovall et al. 1986). Experimentally, the viscosity of bimodal suspensions ex-
hibits a minimum for 𝜁𝑠𝑚𝑎𝑙𝑙 ≃ 25 − 35% (Chang and Powell 1994). In addition, the difference
between the bimodal minimum viscosity and the monomodal viscosity increases with the size ra-
tio (Chong et al. 1971). A careful characterization of bimodal suspensions is therefore required to
fully control their properties and draw meaningful conclusions from these complex systems.
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1.2.4 Confined suspensions

All the systems mentioned above were considered infinite, behaving as a continuous fluid with a
bulk viscosity. This condition is met experimentally if the smallest characteristic size of the system,𝐿, is much larger than the particle diameter 𝑑 . Then, particle concentration is almost homogeneous
and wall effects are negligible.
However, these results no longer hold when the finite size of particles has to be accounted for. Such
situations are encountered in our body, as suspensions of red blood cells flow in thin capillaries.
Interestingly, a significant decrease in viscosity can be measured. This phenomenon is called the
Fahraeus-Lindqvist effect (Fahraeus and Lindqvist 1931). This decrease is also observed with sus-
pensions of regular hard spheres flowing in a rigid tube. Experiments show non-trivial behavior
of the effective viscosity depending on the particle-tube size ratio and on the solid volume fraction
(Seshadri and Sutera 1970).
These observations can be rationalized by several factors inducing modifications of the particle
spatial distribution under confinement. First, dense and confined suspensions will develop an irre-
versible inhomogeneity in concentration under shear (Gadala-Maria and Acrivos 1980; Abbott et al.
1991; Han et al. 1999; Snook et al. 2016). This effect is referred to as shear-induced particlemigra-
tion and is understood as a particle flux toward regions of low shear (Leighton and Acrivos 1987).
This flux is proportional to the square of the particle diameter and to the shear gradient across the
direction of confinement.
Also, steric effects near the walls create a region depleted in particles at short distances, i.e. below a
particle radius, and induce a local layering at greater distances. Numerical simulation predicts that
this layering can span over the whole system in confined situations especially as 𝜙 increases (Gallier,
Lemaire, Lobry, et al. 2016). The stability of the layers would be particularly strong when the gap
size is a small integer multiple of the particle diameter (Fornari et al. 2016). The consequences on
the effective viscosity are not clear at moderate confinement. Under strong confinement, substantial
oscillations of the effective viscosity appear: minima are reached when the gap width is commensu-
rate to the particle diameters, as the system has structured into layers (Gallier, Lemaire, Lobry, et al.
2016; Fornari et al. 2016).

Figure 1.3: Layering and apparent viscosity under confinement in a shear cell. (a) Viscosity normalized by
the value of the bulk as a function of the normalized gap 𝐿/𝑑 for two solid volume fractions (see legend).
(b) Enlargement of (a) in the region 2 ≤ 𝐿/𝑑 ≤ 5. Yellow dots correspond to the values of 𝐿/𝑑 sketched in
subplots (c,d). (c,d) Schematic of the suspension microstructure under extreme confinement, (c) 𝐿 = 2.5𝑑 and
(d) 𝐿 = 3𝑑 .

In a shear cell, such layering in dense (38 < 𝜙 < 52%) suspensions of 2-µm particles has been
observed experimentally for channel width 𝐿 below 15 particle diameters (Ramaswamy et al. 2017).
Concentration peaks, spaced by one particle diameter, appear across the gap and confirm the devel-
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opment of layering. At a given particle volume fraction, this ordering induces a decrease in appar-
ent viscosity compared to the bulk suspension, see figure 1.3(a). The decrease is more spectacular
at a large particle volume fraction. Under very strong confinement (less than 6 particle diameter),
layering spans the whole system and hence corroborates numerical simulation. Also in line with
numerical simulation, the apparent viscosity oscillates with gap size and shows local minima when
it is a multiple integer of particle diameter, see figure 1.3(b,c,d).
Polydispersity is reported to strongly disrupt the ordering and therefore hinder the decrease
in viscosity at small gaps. It is an efficient and effective way to test the influence of ordering on the
overall dissipation in confined environments. We remind the reader that polymodal bulk viscosity
is smaller than that of monomodal systems which might conceal the effects of confinement, thus
justifying the need to characterize the bulk rheology of these materials in the best way possible.
Similar experiments using a regular rheometer with dilute granular suspensions (𝜙 ≤ 0.2), seem to
contradict the previous results (Peyla and Verdier 2011). A monotonic increase of the viscosity with
confinement has been reported without any decrease at moderate confinement. The discrepancy
may stem from the difficulty of these experiments but also from the very different particle sizes
and solid volume fractions. Indeed, the effects of layering at moderate confinement seem to fade
strongly with decreasing volume fraction, see figure 1.3(a). Also, regular rheometers are not meant
to work at small gaps (typically below 500 µm) due to issues of tool alignment and gap uncertainty.
In addition, confined flow could affect differently the hydrodynamic interactions and the contact
network. The consequences of confinement on the bulk viscosity could therefore differ in the dilute
and in the dense regime. In particular, it can be expected that layering does not develop even under
high confinement in dilute suspensions.
Numerical investigation can overcome experimental limitations and discriminate between themech-
anisms leading to viscosity variations. In 2D simulation, dilute and semi-dilute suspensions often
exhibit an increase of the hydrodynamic interactions under confinement (and thus of the apparent
viscosity), due to the enhanced dissipation of fluid squeezed near the wall (Doyeux et al. 2016). How-
ever, when two particles align along the shear direction, a dip in the dissipation of energy would
appear in-between, explained by the screening of the imposed shear by the particles. Such dissipa-
tion anomaly can lead to a strong decrease in the overall dissipation, but depends on the proportion
of aligned disks in the confined shear flow.

In conclusion, confinement unambiguously alters the suspension microstructure and af-
fects macroscopic dissipation. Experiments and numerical investigations indicate that its effects
appear below 20 particle sizes. However, its global effect on suspension rheology is not clear and
highly depends on the particle volume fraction. Confinement can locally decrease particle concen-
tration through shear-induced particle migration and trigger particle layering near the wall. Under
extreme confinement, commensurability of the system size with a particle diameter seems critical
in the overall dissipation and can be rationalized by the stability of the layers of particles. Polydis-
persity can be used to intefere with large size microstructure and the resulting decreases in effective
viscosity compared to the value of the bulk. Also, while the hydrodynamics contribution to dissipa-
tion would increase with confinement, dense systems could be less dissipative because of the shear
screening by the particles. Again addressing these questions is a real challenge experimentally and
numerically and all the above conclusions must be taken carefully.
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1.3 Capillary effects

The present thesis questions the effect of confinement induced by at least one free surface. In
contrast, for all the results previously presented, confinement is imposed by two rigid walls. From
another perspective, this work also addresses the effects of particles on the deformable interface. A
quick reminder of useful concepts relative to free surfaces is presented in this section, to prepare
the discussions regarding this soft confinement developed in § 1.4.

1.3.1 Free surface energy and surface tension

Let us consider a system made of two immiscible fluids, for instance a liquid and a gas, separated by
a free surface. A deformation of the interface is associated with a cost or a gain in energy, d𝐸surface,
that can be expressed as,

d𝐸surface = 𝛾d (1.6)

with d the variation of the surface area and 𝛾 the surface tension between the two fluids. At
a microscopic scale, surface tension is related to the cohesion between the molecules in the liquid
(De Gennes et al. 2004). To create a new free surface d, the energy d𝐸𝑠𝑢𝑟𝑓 𝑎𝑐𝑒 must be provided
to the molecules that must go from a liquid-bulk environment to an air/liquid interface. Actually,
surface tension is defined for any kind of interface, involving solid, liquid, or gas, with the same
definition (1.6).

1.3.2 Capillary force and Laplace pressure

Along a deformable interface, the minimization of surface energy yields a capillary force. The work
of this force is directly related to the variations of surface energy upon surface variation. Therefore,
surface tension can be seen either as an energy per unit area or as a force per unit length arising
from liquid cohesion (De Gennes et al. 2004).
For instance, in the 2D problem sketched in figure 1.4, the projection 𝐹𝑥 of the sum of the capillary
forces of the three interfaces along the 𝑥-direction reads𝐹𝑥 = 𝛾𝑆𝐺 − 𝛾𝐿𝑆 − 𝛾𝐿𝐺 cos(𝜃). (1.7)

Equilibrium of the contact line gives in turn,

𝐹𝑥 = 0 ⇔ cos (𝜃𝑒) = 𝛾𝑆𝐺 − 𝛾𝐿𝑆𝛾𝐿𝐺 . (1.8)

Figure 1.4: Schematic of a 2D problem of a moving contact line on a solid substrate.
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Figure 1.5: Spreading of a droplet on a solid substrate, (a) in partial wetting and (b) in complete wetting.

This relation, known as Young-Dupré law, predicts the equilibrium contact angle of a liquid on
a solid, 𝜃𝑒 (Young 1805; Dupré 1869). The wettability of the substrate by the liquid depends on the
spreading coefficient 𝑆 = 𝛾𝑆𝐺 − 𝛾𝐿𝑆 − 𝛾𝐿𝐺 = 𝛾𝐿𝐺 (cos (𝜃𝑒) − 1). As illustrated in figure 1.5(a), for 𝑆 < 0,
the liquid partially wets the substrate with a finite equilibrium contact angle. On the contrary, it
completely wets the substrate if 𝑆 > 0, i.e. 𝜃𝑒 = 0, see figure 1.5(b).

While the final equilibrium state in drop spreading is quite simple, the dynamical regime is more
puzzling. In particular, the contact line motion is not compatible with the usual no-slip condition
along the solid wall. This paradox, first raised by Huh and Scriven (1971), notably leads to unphys-
ical diverging dissipation. All these issues are circumvented with more complex models involving
different physical ingredients at nano, micro and macro scale (Bonn et al. 2009).

In addition, capillary forces do not only act on contact lines but also on any free surface. They
result in a pressure difference across the interface between the liquid and the air. The pressure
drop, named Laplace pressure, can be derived from Young-Laplace equation (Young 1805; Laplace
1805), Δ𝑃 = 𝑃𝑙𝑖𝑞𝑢𝑖𝑑 − 𝑃𝑎𝑖𝑟 = 𝛾 (1.9)

with  the curvature of the interface. Curvature can be computed from the curvature radii 𝑅1 and𝑅2 according to,
 = 1𝑅1 + 1𝑅2 (1.10)

A small radius of curvature corresponds to a strong bending of the surface and a strong Laplace
pressure. For instance, in a droplet of radius 𝑟 = 𝑅1 = 𝑅2, the pressure drop is Δ𝑃 = 2𝛾 /𝑟 which
diverges as droplet radius diminishes.

In conclusion, a system with a free interface is subject to capillary phenomena inducing a force
along its contact lines and pressure over its surface. When the system size decreases, the Laplace
pressure becomes stronger as the radius of curvature diminishes. In particular, when a particle is
trapped in a liquid film, curvature radii can become very small and induce strong capillary effects.
Systems harnessing this interesting configuration are presented in the next section.

29



1

Chapter 1 : Introduction
1.4 Ordering, binding and sieving of objects by a free surface

1.4 Ordering, binding and sieving of objects by a free surface

Microscopic objects near a free surface are ubiquitous in nature and in industrial processes to take
advantage of capillary forces at small scales.

In natural systems, for instance, emulsions of crude oils in sea water can become highly stable
as fine clay particles are trapped irreversibly by capillary forces at the droplet interfaces (Ramsden
1904; Binks and Horozov 2006). Whether wanted or not, this kind of solid shell around fluid
droplets greatly stabilizes emulsions and foams as illustrated in figure 1.6. Today, many industrial
processes (food, cosmetics, . . . ) add particles in biphasic products to enhance their stability.

Figure 1.6: Stabilization of foam and emulsion by Pickering effect (Pickering 1907). (a) A regular oil/water
emulsion is not stable and a phase separation is observed. (b) Addition of colloidal particles to the initial
emulsion stabilizes oil droplets by means of a solid shell of particles trapped at the oil/water interfaces by the
capillary forces.

When small particles are not trapped at the interface but below, capillary pressure can lead to
spectacular effects if liquid evaporates or withdraws. For instance, in capillary-driven collective
assembly, capillary pressure moves the particles, gathers them, and confines them, see the scheme
in figure 1.7(a). Under strong confinement, particles tend to self-organize in high density crys-
talline packing (Denkov et al. 1992). Such capillary-driven collective assembly is a fast process to
realize crystal coating deposition by dragging a volume of dense suspension along a solid substrate,
as sketched in figure 1.7(b) (Prevo and Velev 2004). The ordering level, number of layers and packing
mode (hexagonal/square) can easily be tuned by varying the speed deposition, particle concentra-
tion, or solvent evaporative flux. Such methods can create a 1D, 2D and 3D crystalline matrix, used
as macroporous materials for photonics, biomedical and optical applications (Cong et al. 2013). In
addition, as liquid disappears, the pressure exerted on sufficiently small particles can become large
enough to bind particles irreversibly. Indeed, with particles of 5 µm diameter and less, the cap-
illary pressure pushes together the particles and leads to a permanent cohesion of the glass beads
(Seiphoori et al. 2020). A bridge of micron-sized glass particles is then sealed with water. In the poly-
disperse case, particles will hierarchically bind according to their size: this solid bridging by smaller
particles leads to a cohesion force up to 20 times greater than the monodisperse phenomenon. This
simple system illustrates the incredible strength of capillary forces acting on small objects.

The interplay of larger granular particles with a free interface can also exhibit different kinds
of interesting behavior for instance during pinch-off or dip-coating experiments with a granular
suspension. In dip-coating, an object is immersed in and withdrawn from a bath to coat its surface.
When the bath is made of a regular liquid, the thickness of the entrained liquid film varies with fluid
properties and withdrawal speed (Landau and Levich 1988). Using a granular suspension instead
of a continuous fluid, dip-coating now exhibits several entrainment behaviors, from a pure fluid
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film to a heterogeneous monolayer of particles and eventually to multiple layers of particles at
large speed (Gans et al. 2019; Palma and Henri Lhuissier 2019). The transition between the regimes
is set by the size ratio between the particle diameter and the film thickness. This system is then
able to sieve and sort particles with a withdrawal speed adapted to entrain only small particles
(Sauret et al. 2019; Jeong et al. 2022). Despite the high degree of confinement of the particles and
the spatial inhomogeneity in concentration, the continuous model of Landau and Levich (1988) for
regular fluid still holds, provided one uses an effective wetting viscosity (Gans et al. 2019; Jeong et al.
2022). During the pinch-off of granular suspensions, a similar transition from a Newtonian-like to
a discontinuous regime is reported when the filament neck thins down and confines the particles
(Bertrand et al. 2012; Bonnoit, Bertrand, et al. 2012; Château et al. 2018).

Figure 1.7: Capillary-induced self-assembly. (a) Under confinement, particles are gathered by capillary pres-
sure of the free surface. (b) This effect can create highly regular structures behind a receeding contact line.
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1.5 Manuscript outline

The present experimental and theoretical work offers a reflection on questions related to the poorly
addressed issues of capillary flows of granular suspensions. In particular, we investigate the break-
down of the continuous approach of granular suspensions presented in § 1.2.1 when the particles
are confined below a free surface by the capillary forces introduced in § 1.3.2. These systems may
exhibit new behavior arising from complex dissipation mechanisms compared to the bulk situation
described in § 1.2.2. In light of the literature results presented in § 1.2.4, a different microstructure
is expected to develop with increasing effect as the confinement tightens. Polymodal suspensions
are studied to extend and confirm the conclusions drawn in the monomodal case, but also to hinder
ordering and to study the effects of microstructure in capillary flows of granular suspensions. In
addition, these fluids can be used to gain a better understanding of the high complexity of these
flows, involving decades of length scales, even in the continuous case.
The next chapter introduces the suspensions used in the experiments.

The first two projects are related to the spreading of droplets of granular suspensions. The-
ory and literature review about this phenomenon for continuous fluids are presented in Chapter 3.
Several theoretical approaches are compared to understand key elements in the conceptualization
of drop spreading. In Chapter 4, one of these approaches is used to study the spreading of granular
droplets. It focuses on the region near the moving contact line, referred to as a local approach. In
contrast, in Chapter 5, drop spreading of granular suspensions is tackled a with a global approach.
These three chapters and the comparison of theory with experiments according to the local or the
global approaches, raise numerous questions related to the wetting of granular suspensions but also
related to dynamics of wetting itself.

In Chapter 6, a new configuration is examined. Contrary to the situation of drop spreading
with capillary forces promoting the flow, we investigate a thin film of fluid above air. The free
interface is destabilized by gravity and stabilized by surface tension, leading to characteristic
patterns. This instability, historically named after Lord Rayleigh and Sir Taylor, is investigated
for a thin film of granular suspension. Again, a comparison between theory, experiments with a
continuous fluid and experiments with granular suspensions unveils interesting effects.
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2.1 Particle characterization

Depending on the project, different particles were used. Particles are made of plastic and are spheri-
cal. The first type, mostly used in the projects presented in Chapter 4 and Chapter 5, are polystyrene
(PS) particles of various sizes, produced by the Norwegian brand Microbeads. The other type,
poly(methyl methacrylate) (PMMA) particles, were used in Chapter 5 and Chapter 6. They come
from either Microbeads or the French brand Arkema, depending on the desired size. Details and
specifications of these different particles are given in this section.

2.1.1 Dynoseeds® TS particles (Microbeads)

2.1.1.1 Properties and production

The Dynoseeds® particles from Microbeads are highly monodisperse spherical particles made of -
polystyrene by a patented process. The available diameters (10 µm, 20 µm, 40 µm, 80 µm, 140 µm,
250 µm and 550 µm), are called TS10, TS20,. . . in their catalog. A stabilizer is added during produc-
tion so that these particles can be dispersed in water without flocculation, despite the hydrophobic
behavior of polystyrene alone. The production process depends on the size of the particles, accord-
ing to different patents registered by Microbeads (Nyhus et al. 2005; Jorgedal 2010). The smallest
particles are produced according to a first process with a high level of monodispersity. The larger
particles are produced by polymeric expansion (expandable polystyrene (EPS) beads): the process
starts with small particles onto which monomers are grafted. The latter method produces particles
up to millimeter size (Jorgedal 2010). It seems that polyvinylpyrrolidone (PVP) is efficient to stabilize
the sub-25-µm particles, while cellulose works best to stabilize diameters larger than 15 µm. (Nyhus
et al. 2005). Although we can guess the stabilizier choice for most particles, we don’t know how the
20-µm particles are stabilized in water.

2.1.1.2 Surface imaging

Imaging with a scanning electron microscope (SEM) was done at the Institut Pierre-Gilles de Gennes
with the help of Lily Blaiset. Before imaging, particles are fixed on a piece of copper tape and metal-
lized with a 20-nm gold layer using a vapor deposition chamber. This preliminary step is necessary
for non-conductive samples (such as plastic beads) to avoid charge accumulation on their surface,
which interferes with good imaging. The metallic layer also protects the sample from the powerful
electron beam and prevents thermal damage. Figure 2.1 shows typical SEM images. They show
that polydispersity, shape, and surface texture depend on particle size. In particular, large particles
(TS140, TS250) appear less regular, rougher, and more polydisperse. Smaller particles (TS10, TS20,
TS40, TS80) appear to be more monodisperse with a smooth surface, except for the TS20 which show
a heterogeneous coating. Size distributions are presented in § 2.1.1.3.

Cleaning the particles with water and/or ethanol does not change anything on the rehology of the
suspensions made with TS80 particles. With ethanol, the TS10 particles release a substance that
forms a beige fibrous crust after drying. Dispersion of the particles in water after this cleaning step
is no longer possible. Cleaning the TS20 particles with water and ethanol has also been tried in
vain. However, their strange surface does not affect the properties of the suspension. For all these
reasons, the particles are used without any cleaning step.
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Figure 2.1: SEM images of polystyrene Dynoseeds® particles. Scale bars in the lower right corner for each
image. An enlargement of the particle surface is shown for each size. Bottom images: batches of TS40 and
TS250 particles.

35



2

Chapter 2 : Suspensions: methods & characterization
2.1 Particle characterization

2.1.1.3 Size distribution

Based on the large size polydispersity of the TS250 particles observed in the lower right image in
figure 2.1, large particles are sieved to remove small particles, dust and broken particle fragments.
TS140 particles are sieved on a 50-µmmesh. TS250 particles are sieved through a 280-µmmesh and
fragments are removed with a 224-µmmesh. TS550 particles are sieved through a 500-µmmesh. On
the contrary, SEM images of the sub-80-µm particles indicate that sieving the small particle sizes is
an unnecessary precaution due to their high monodispersity.

A series of snapshots taken with an optical microscope (Hamamatsu Photonics) and a camera (sC-
MOS orca-Flash 4.0 V2, 2048×2048 pixel) are used to characterize the size distributions of small
particles and sieved large particles. The lens used depends on the particle size, a ×20 magnification
for the largest particles (1.5 pixel.µm−1) or a ×63 for the smallest (10 pixel.µm−1).

Automatic size analysis has been implemented in Python using the skimage package. The main
steps are shown in the figure 2.2. The raw image (a) undergoes Scharr filtering shown in the subplot
(c) to obtain the intensity gradient. It is thresholded to determine particle edges shown in subplot
(d). Hough analysis can then be performed on the contours. A sufficiently large radius range must
be specified to perform the circular Hough analysis, see the vertical dashed line in the subplot (f).
The subplot (e) shows the Hough dual space of a given radius 𝑟 . It locates the most probable posi-
tions of circles with radius 𝑟 . Peak coordinates in the dual space are extracted by thresholding. It
can happen that a circle is detected several times, i.e. in dual spaces corresponding to different radii.
To avoid redundant circles, circles with close coordinates are grouped and the associated radius is
determined by averaging their radii. After this grouping step, the program returns the positions
and radii of the detected circles, dispalyed in subplot (b), and their radius distribution is presented
in subplot (f). The results have been checked against manual measurements.

Histograms of size distributions are presented in figure 2.3 and statistics are collected in table 2.1.
To obtain meaningful results, I try to image with as many particles as possible, usually 𝑁 > 1000.
It turns out to be difficult to achieve these large numbers for the largest particles (250 and 550 µm).
For these particles, the magnification is too large to reach this number. As expected from the SEM
images, a high monodispersity is observed for the smallest diameters (TS10, TS20, TS40, and TS80)
corresponding to the subplots from (a) to (d). In contrast, TS140, TS250, and TS550 particles are less
regular.

The aspect ratio of the particles was also measured using ImageJ’s particle detection macro with
ellipse fitting. The analyzed samples contain fewer particles due to a less efficient particle detection
method than the one implemented in Python. A major weakness of the ImageJ particle detection
method is the difficulty in detecting a particle when it touches another particle. The aspect ratio
reported in the last line of the table 2.1 is the ratio of the major axis of the ellipse divided by the
minor axis. In line with SEM images, the small particles are more spherical than the TS250.

Particles TS10 TS20 TS40 TS80 TS140 TS250 TS550
Sample size 𝑁 1980 1383 1289 1734 1297 156 582

Mean diameter (µm) 11.11 21.90 41.4 78.38 144.14 250.36 587.4
Standard deviation (µm) 0.5 3.3 2.6 12.6 14.7 6.4 16.4

Aspect ratio 1.04 1.03 1.03 1.05 1.15

Table 2.1: Size distribution and aspect ratio of the polystyrene Dynoseeds® particles.
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Figure 2.2: (a) Raw image and (b) circles detected by Hough analysis. The intensity gradient given by the
Scharr filter (c) is thresholded to detect particle edges (d). It then undergoes a Hough transform for different
radii, from 36 pixel to 60 pixel, blue dashed lines in (f). Subplot (e) shows the dual space for a radius of𝑟 = 46 pixel. Peak positions correspond to the positions of the circles of radius 46 pixel detected in subplot
(d). Circle detection is achieved by thresholding in dual space. Particles detected in multiple dual spaces, i.e.
for multiple radii, are grouped together. Size distribution of the 66 particles detected in subplot (b) is shown
in subplot (f).
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Figure 2.3: Size distribution of polystyrene Dynoseeds® particles given by the Hough analysis. (a) TS10, (b)
TS20, (c) TS40, (d) TS80, (e) TS140, (f) TS250, and (g) TS550. Balck dashed lines: mean diameters, and black
dotted lines: standard deviations of the size distributions. (h) Particle distributions, where bandwidths are
twice the distribution standard deviations.

2.1.2 Spheromers® CA particles (Microbeads)

2.1.2.1 Properties and production

The Spheromers® particles by Microbeads are highly monodisperse spherical particles made of
acrylic crosslinked polymers (PMMA). They can be used in cosmetics or in paint to obtain a soft
touch feel or a smooth surface with nice optical effects. Again, the patented process enables dis-
persing the particles in water. The available diameters (10 µm, 20 µm and 60 µm), are named CA10,
CA20, and CA60 in their catalog. The patents registered by Microbeads concern both Dynoseeds®
and Spheromers® particles, see § 2.1.1.1.

2.1.2.2 Surface imaging

Two sizes, the 10-µm and 60-µm particles, have been imaged using SEM with the same procedure
as the one described in § 2.1.1.2. High monodispersity and sphericity are observed as shown in
figure 2.4. The last picture of each line is an enlargement of particle surfaces that look very similar
to the TS20 coating in figure 2.1.

2.1.2.3 Size distribution

Owing to their highmonodispersity, no sieving was performed on the Spheromers®. Similarly to the
polystyrene Dynoseeds® particles, snapshots of PMMA particles were taken with the microscope at
a ×63 magnification (10 pixel.µm−1).
The same automatic size analysis implemented on Python has been used. Histograms for the 3
particle sizes are presented in figure 2.5. As expected from the SEM imaging, a high monodispersity
is observed for any size. Aswell, aspect ratio analysis also shows high sphericity of the Spheromers®,
see table 2.2.
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Figure 2.4: SEM imaging of the Spheromers®. CA10 (first column) and CA60 (second column) particles are
shown with different magnifications. Scale bars in the bottom right corner for each picture.
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Figure 2.5: Size distribution of Spheromers® particles (a) CA10, (b) CA20, and (c) CA60. Dashed solid lines
show the average diameters and the dotted lines the distribution widths (standard deviations).

Particles CA10 CA20 CA60
Sample size 𝑁 2843 3257 413

Mean diameter (µm) 10.12 19.89 59.48
Standard deviation (µm) 0.41 1.08 1.43

Aspect ratio 1.03 1.05 1.03

Table 2.2: Size and aspect ratio of the PMMA Spheromers® particles from Microbeads.

2.1.3 Altuglas® BS beads (Arkema)

2.1.3.1 Properties and production

The acrylic polymer Altuglas® is a transparent and rigid thermoplastic registered by the French
group Arkema. It can be bought as spherical beads (BS series) with broad size distributions centered
around 270 µm (BS572) and 170 µm (BS440). Specifications from Arkema concerning the different
references are gathered in table 2.3. Unlike Microbeads particles, the Altuglas® beads are not (or
poorly) crosslinked. They dissolve in acetone to make a paste-like material once the solvent is
removed.

Particles BS574 BS440
Composition PMMA Copolymer MMA
Size (µm) 300 150-200

Molecular weight High Medium

Table 2.3: Specifications of the Altuglas® BS-series beads provided by Arkema.

2.1.3.2 Particle imaging

SEM pictures of the BS572 particles provided by Lily Blaiset are shown in figure 2.6. Particles look
rather spherical and smooth but highly polydisperse.
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Figure 2.6: SEM imaging of the Altuglas® BS572 particles. Scale bars are in the bottom right corner for each
picture.

2.1.3.3 Size distribution

Size distributions of the BS574 and BS440 has been realized by Lily Blaiset. The results are gathered
in figure 2.7. In agreement with the size ranges provided by Arkema in table 2.4, the average diame-
ters of the BS572 and BS440 particles are 270 µm and 170 µm, respectively. Though, as one can guess
from the SEM imaging figure 2.6, the two series show high polydispersity with respective standard
deviations of 69 µm and 45 µm. While this polydispersity could be a pitfall in some situations, we
turned it into an asset by sieving to make our own size distributions with particles from the same
batch in Chapter 6.

Figure 2.7: Size distribution of the Altuglas® particles (a) BS572 and (b) BS440. Dashed solid lines show the
average diameters and the dotted lines the distribution widths (standard deviations).

Particles BS572 BS440
Sample size 𝑁 159 133

Mean diameter (µm) 270.28 169.74
Standard deviation (µm) 69.09 47.60

Table 2.4: Results of the size distribution analysis of the Altuglas® BS572 and BS440 beads.
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2.2 Suspension preparation and characterization

This section describes the different mixtures, their preparation and their physical properties, sum-
marized in table 2.5. The fluid used as the suspending phase depends on the particles. To prevent
sedimentation/creaming of the solid phase, good density matching is required. In the following, all
the suspensions are density-matched (𝜌 = 𝜌𝑝 = 𝜌𝑓 ). The high viscosity of the fluid prevents inertial
effects (𝑅𝑒 = 𝑈𝜌𝑑/𝜂𝑓 ≪ 1). In some experiments, index matching between the fluid and the particles
can also be required. In that case, the suspension is transparent.

Particles Polystyrene PMMA
Fluid PEG Triton X-100, ZnCl2, Water
Density 𝜌 (kg/m3) 1056 1190
Fluid viscosity 𝜂𝑓 (Pa.s) 2.3±0.2 3.3±0.1
Fluid surface tension 𝛾 (mN/m) 35 32±2
Optical index 1.46 (tabulated at 20 °C) 1.45

Table 2.5: Summary of the different suspension properties.

2.2.1 Preparation of suspensions

Suspensions are prepared one or two days before the day of the experiment. A mass 𝑚𝑓 = 𝜌𝑉𝑓 of
fluid is first poured into a tube and weighed. The desired mass of particles 𝑚𝑝 = 𝜌𝑉𝑝 = 𝑚𝑓 𝜙/(1 − 𝜙)
necessary to reach the target volume fraction, 𝜙, is collected in a small dish and poured into the tube
with the fluid. Mixing is first hand-made using a spatula and followed by slow mixing, achieved
using a rolling device overnight. This method removes air bubbles entrapped during the mixing
while keeping a homogeneous suspension.

2.2.2 Surface tension of granular suspensions

The surface tension, 𝛾 , of the suspensions is expected to be the one of the pure fluid if the parti-
cle surface is well wetted. Prior publications agree on this fact for these suspensions made of the
same polystyrene particles dispersed in PEG (Couturier et al. 2011). The good wettability of these
particles has been thoroughly checked over several days and pendant-drop experiments have also
been done to measure the surface tension of the suspensions. We find that the surface tension of
the polystyrene-PEG suspensions is the same as the PEG alone, 𝛾 ≃ 35 mN.m−1.

2.2.3 Suspensions with polystyrene particles

2.2.3.1 Suspending fluid: PEG copolymer

Figure 2.8: Poly(ethylene glycol-ran-propylee glyol) monobutul ether used to have density-matched suspen-
sions with polystyrene particles.
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The fluid used to obtain decent density matching with polystyrene particles is a PEG copolymer
bought from Sigma-Aldrich (reference 438 189, CAS: 9038-95-3). To be more specific, we are using
a Poly(ethylene glycol-r-an-propylee glyol) monobutyl ether with an average molecular weight of
3900 g.mol−1 but we will name it PEG in this manuscript for the sake of readability. Its topological
formula is given in figure 2.8.
This fluid is transparent, viscous, and hygroscopic in a moderate way. Its density at 25 °C is tabulated
at 1056 kg.m−3 and its kinematic viscosity at 20 °C is declared to be 3600 m2.s−1. However, the precise
knowledge of which is crucial for the discussion of the experiments, and is thoroughly checked
over time to account for any temperature effects or water sucking by the fluid. The PEG copolymer
is expected to be Newtonian, meaning that its shear viscosity, 𝜂𝑓 , does not depend on shear rate�̇�. These two elements (Newtonian behavior and temperature dependency) are investigated in the
following paragraphs.

2.2.3.2 PEG viscosity

Dynamic viscosity

The dynamic viscosity of a fluid, 𝜂, is defined as,𝜂 = �̇�𝜖 , (2.1)

where 𝜎 is the viscous stress and �̇� the shear rate of the flow, i.e. the time derivative of the
local strain 𝜖. Its unit is the Pa.s (or kg.m−1.s−1).

For a Newtonian fluid, this quantity does not depend on the shear rate as aforementioned. To
provide some orders of magnitude, the dynamic viscosity of water at ambiant temperature is roughly
1 mPa.s, and the fluids we use are 1000 times more viscous.
In practice, viscosity can be measured with a rotational rheometer, see § 2.3.2. A small quantity of
fluid is inserted between a static and a rotating tool with several possible geometries: plate-plate
(PP), cone-plate (CP), Couette . . .Depending on the type of rheometer, a given shear rate �̇�, or shear
stress 𝜎 , imposes the flow with the rotationnal tool. The torque or the stress applied on the static
tool is measured by a transducer to compute the shear viscosity of the medium using (2.1). More
details regarding rheometry can be provided by Macosko (1994).

Figure 2.9 presents stress and viscositymeasurements in cone-plate (♦) and plate-plate geometry
(■) for different shear rates. Figure 2.9(a) displays the stress, 𝜎 , as a function of the shear rate, �̇� and
figure 2.9(b), the viscosity, 𝜂, as a function of the shear rate. Each point comes from a time averaging
of the stress over 60 s for a given shear rate. The small disagreement between the two tools may
come from calibration errors. In figure 2.9(a), one observes that the stress, 𝜎 , increases linearly with
the shear rate, �̇�. The coefficient, namely the viscosity according to (2.1), is plotted in figure 2.9(b).
For any value of �̇� and for any tool, its value lies around 2.35±0.10 Pa.s. The PEG is thus a New-
tonian fluid over this range of shear rates. Small deviations at low and high shear rates may
come from insufficient time averaging and inertia effects, respectively. A back-and-forth sweep has
been used to obtain the two curves of the cone-plate geometry. The upper one corresponds to the�̇�-decreasing procedure. The "high" viscosity measured at a shear rate 10 s−1 in figure 2.9(b) is thus
likely explained by residual flow from the previous high-shear stages. When studying complex flu-
ids, this back-and-forth procedure can reveal hysteresis. On the contrary, for regular fluids like the
PEG, such precaution is usually considered unnecessary.
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Figure 2.9: PEG rheology using (♦) a 25-mm cone-plate geometry (cone angle 0.1° rad), and (■) a 25-mm
plate-plate geometry at 25 °C. (a) Stress, 𝜎 , and (b) shear viscosity, 𝜂, as a function of shear rate, �̇�. Dashed
line: viscosity average over the shear rates.

Temperature variations lead to major viscosity variations of PEG. As shown in figure 2.10, the
viscosity increases two folds when temperature decreases from 30 °C to 16 °C. This temperature
dependency of the PEG viscosity therefore requires to be accounted for any experiment. Yet, per-
forming a measurement with a rheometer for each and every experimental condition that we probe
in this manuscript is a tedious task. Instead, a quick, local and reliable method, relying on a capillary
viscometer is used simultaneously to all experiments. A sketch of such glassware is presented in fig-
ure 2.11. It is made of a fluid reservoir (roughly 1 cm3) above a capillary tube (approximate diameter
1 mm). The liquid is aspirated by means of a bulb pipette up to the top of the reservoir. Once the
upper mark (in red) is reached, the bulb is removed and the fluid is left to flow under the influence
of gravity. The time delay between the two red marks, Δ𝑡 , can be converted into a viscosity using
the equation of the stationnary volume flow rate, 𝑄, through a thin tube (Poiseuille flow):

𝑄 = 𝑉0Δ𝑡 = 𝜋𝑅48𝜂 Δ𝑃𝐿 , (2.2)

whith 𝑅 the inner radius of the lower capillary, Δ𝑃 the pressure drop in the capillary and 𝐿 its length.
Again, the time delay is the one necessary to empty the resevoir mounting the capillary tube. If its
volume, 𝑉0 is such that 𝑉 1/30 ≪ 𝐿, the pressure drop between the capillary ends reads Δ𝑃 ≃ 𝜌𝑔𝐿,
leading to 𝜂 = 𝜋𝑅4𝑔8𝑉0 𝜌Δ𝑡 = 𝐾𝜌Δ𝑡. (2.3)

The constant 𝐾 = 0.003 75 m2.s−2 of the capillary viscometer has been calibrated for different fluids
with a rheometer. For the PEG viscosity, one measurement takes roughly 10 min. Shortly after, or
during an experiment, one or two viscosity measurements are done with the capillary viscometer
to track any viscosity variation due to temperature or water sucking by the PEG over time.
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Figure 2.10: PEG viscosity a function of temperature using a 25-mm plate-plate geometry between 16 °C and
30 °C. Each point come from the averaging over 200 s at the end of temperaure steps of 420 s of increasing
and decreasing sweeps.

Figure 2.11: Sketch of the capillary viscometer used to monitor viscosity variations of the PEG. Capillary tube
diameter is about 1 mm, reservoir volume 1 cm3 and capillary length 15 cm.
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2.2.4 Suspensions with PMMA particles

With PMMA particles, density and optical index can be matched with a mixture made of liquid
Triton X-100 (t-Octylphenoxypolyethoxyethanol, Polyethylene glycol tert-octylphenyl ether, Sigma
Aldrich, see figure 2.12), solid zinc chloride (ZnCl2, Sigma-Aldrich) and water.

Figure 2.12: Triton X-100molecule used in the mixture matching optical index and density of PMMA particles.

2.2.4.1 Preparation of the Triton mixture

Triton X-100, zinc chloride, and water must constitute 73%, 16%, and 11% of the mass, respectively.
Triton X-100 is first poured and weighed in a bottle. The corresponding mass of zinc chloride is
collected in a beaker and the tare of the scale is set to zero. The required mass of water is then
added in the beaker and stirring is performed until complete dissociation of the salt. Rhodamine
6G can be dispersed in water before salt dissociation, see § 2.2.4.2. Salt dissociation being highly
exothermic, it requires precautions and evaporated water compensation after solution cooling. Once
the water mass is adjusted, two or three drops of hydrochloric acid HCl are added to increase the pH
and prevent salt precipitation. The acid-aqueous zinc-chloride solution can then be poured into the
Triton X-100 bottle. Hand mixing is followed by a slower roller-device mixing at least one or two
days until getting a clear solution. In the beginning, lumps and strings of gel form and the mixture
looks cloudy. The aspect of the solution after one or two days of mixing must however be perfectly
homogeneous and clear.

2.2.4.2 Index matching and fluorescing fluid

Figure 2.13: Pictures of two suspensions with
30 % of 60-µm PMMA particles. Whithout
index matching on the left and with index
matching on the right.

By matching the fluid refractive index with the one of
the particles, light is not deviated at a fluid-particle in-
terface, which results in negligible light diffusion or in-
tensity lessening in the sample. Therefore, the suspen-
sion remains transparentwhatever the solid volume frac-
tion. Mixture index has been measured with an optical
refractometer. The experimental value, 𝑛𝑓 = 1.47±0.01,
matches well with the index range of PMMA found on
the internet 1.49±0.10. While polystyrene suspensions
are completely opaque, dense PMMA suspensions can
then be transparent and particles become invisible once
immersed in the Triton mixture as shown for the right
sample in figure 2.13.
This matching can be used to visualize bulk flow in sus-
pensions by the means of a fluorescent agent, a laser
sheet and a light filter. For instance, it becomes possible for us to see the fluid and the particles
in a horizontal slice of a spreading drop of suspension with the apparatus sketched in figure 2.14(a).
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To that end, a small quantity of rhodamine 6G, displayed in figure 2.15(a) is dispersed in water before
salt dissociation. A green laser sheet (𝜆 = 532 nm, 50 mW) is used to illuminate a section of fluid and
triggers rhodamine fluorescence, see absorption spectrum in figure 2.15(b). The fluorescence emis-
sion of rhodamine 6G can be easily extracted by a camera behind a high-pass filter, see the emission
spectrum in figure 2.15(b) and apparatus sketched in figure 2.14(a). While the green laser light goes
through without deviation, the rhodamine in the fluid fluoresces in all directions, see figure 2.14(b).
The camera behind the filter receives only the red rhodamine light and no green laser light. The
particles then appear dark, while the fluid is bright as shown in figure 2.14(c).

Figure 2.14: (a) Apparatus used to visualize an horizontal slice of a spreading drop. A green laser sheet
illuminates the drop and a camera is located above a red filter. (b) Green light is not deviated in the index-
matched suspension. Rhodamine in the fluid though fluoresces in all directions and the emitted red light can
be collected by the camera located above. (c) Picture of an horizontal slice of suspension made of 300-µm
PMMA particles. The fluid appears bright with rhodamine fluorescence while particles are dark.

Figure 2.15: Rhodamine 6G used as a fluorescent agent (a) molecule and (b) absorption (green cruve) and
emission (red curve) spectra. The excitation laser wavelength, 𝜆 = 532 nm, is indicated by the green dashed
line and the high-pass filter, 𝜆 ≥ 550 nm used to extract the emission signal, is shown by the red rectangle.
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2.2.4.3 Viscosity of the Triton-mixture

Figure 2.16: Viscosity of (■) pure Triton, and of (♦) the mixture matching the density and the optical index
of PMMA using a 25-mm parallel-plate geometry at 25 °C. (a) Shear viscosity, as a function of shear rate, �̇�.
Dashed line: viscosity average for 1 ≤ �̇� ≤ 10 s−1. (b) Shear viscosity, as a function of temperature.

Figure 2.16(a) presents the viscosity of pure Triton X-100 and of the mixture as a function of
the shear rate �̇�. Pure Triton (■) viscosity departs from a plateau of 0.25 Pa.s for a shear rate below
1 s−1. Conversely, the mixture viscosity (♦) is constant over a large range of shear rates. It is thus
Newtonian with a viscosity lying around 3.3 Pa.s. This increase in viscosity compared to that of
pure Triton X-100 can be explained by a gelation-like process. This phenomenon can raise issues at
low temperatures with a significant increase in viscosity as shown in figure 2.16(b). Water evapo-
ration and aging are other issues with this mixture leading to viscosity variations. For instance, in
figures 2.16(a) and (b) the viscosity at 25 °C of the two different samples are 3.3 Pa.s and 4.0 Pa.s,
respectively. Again, the viscosity of the fluid must be carefully monitored to account at best for this
variability.

2.3 Rheology of granular suspensions

Rheology is the study of the mechanical properties of materials, solid or liquid, when they are sub-
jected to strains or stresses. In the case of suspensions, it can be for instance measuring the viscosity
of the mixture but other quantities can be of interest (e.g. the normal force, the elastic modulus . . . ).

2.3.1 Relative viscosity of granular suspensions and jamming volume fraction

Relative viscosity of suspensions

When dealing with suspensions, we usually report the relative viscosity, 𝜂𝑠 defined as:𝜂𝑠 = 𝜂𝑎𝜂𝑓 , (2.4)

with 𝜂𝑎 the absolute dynamic viscosity of the suspension, and 𝜂𝑓 the dynamic viscosity of the
suspending fluid.
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The relative viscosity, 𝜂𝑠 has no unit. This normalized quantity displays the effects of the particles
only? and removes environmental variations (temperature, humidity, . . . ). Indeed, these variations
affect mostly the solvent viscosity 𝜂𝑓 .

Relative viscosity of granular suspensions

A granular suspension made with a Newtonian solvent and flowing at low Reynolds number,𝑅𝑒 ≪ 1, exhibits a relative viscosity that only depends on the particle volume fraction 𝜙,𝜂𝑠 = 𝜂𝑠(𝜙). (2.5)

In particular, particle size, 𝑑 , and flow shear rate, �̇�, do not affect 𝜂𝑠 . Granular suspensions can
hence be considered pseudo-Newtonian.

Since particles increase dissipation in the mixture, the suspension viscosity increases with 𝜙.
The 𝜙-dependence of the relative viscosity depends on the particle volume fraction range, commonly
split into 3 groups: dilute, semi-dilute and dense suspensions. A non-exhaustive list of empirical and
analytical expressions of the relative viscosity in these different regimes are gathered in table 2.6.

Regime Dilute Semi-dilute Dense𝜙 range 0 - 10% 10% - 20% 20% - 𝜙𝑐
Krieger and Dougherty (1959)𝜂𝑠 = (1 − 𝜙/𝜙𝑐)−[𝜂]𝜙𝑐

Interpolation Einstein (1905) Batchelor and Green (1972) Eilers (1941)𝜂𝑠 = 1 + 52𝜙 and (Batchelor 1977) 𝜂𝑠 = (1 + [𝜂]2 𝜙1−𝜙/𝜙𝑐 )2𝜂𝑠 = 1 + 52𝜙 + 6.2𝜙2 Mooney (1951)𝜂𝑠 = exp( [𝜂]𝜙1−𝜙/𝜙𝑐 )
Table 2.6: Relative viscosity of granular suspensions in different 𝜙-regimes. We define [𝜂] = lim𝜙→0 𝜂𝑠−1𝜙 = 2.5
the intrinsic viscosity of the suspension.

For the semi-dilute regime, the quadratic term in Batchelor’s formula comes from particle-
particle interactions while only fluid-particle interactions are used to derive the Einstein formula
in the dilute regime. In the dense regime, an additional parameter, the jamming volume fraction,𝜙𝑐 , is involved in all correlations. It corresponds to the maximum solid volume fraction one can
immerse in the liquid. Depending on the shear stress, particle size distribution, friction, or flow his-
tory, one must use the random loose packing, 𝜙𝑐 ≃ 0.6 (Scott 1960) or smaller values of 𝜙𝑐 (Krieger
and Dougherty 1959; Guazzelli and Pouliquen 2018; Tapia et al. 2019). Higher packing fractions
can be reached with particle crystallization. For instance, for 3D-hexagonal close packing and face-
centered cubic packing, 𝜙𝑐 ≃ 0.74 (Scott 1960). In the following, attention will be put on dense
granular suspensions far from jamming, typically 𝜙 = 30 − 40%.
2.3.2 Methods for viscosity measurement

2.3.2.1 Rheometer

Most of the measurements presented in this part have been realized with an ARES-G2 rotationnal
rheometer from TA Instruments. The lower tool sets the strain 𝜖 and the shear rate �̇� while the upper
tool is connected to a transducer that measures the torque Γ and the normal force 𝐹𝑁 transmitted
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by the sheared sample. For this model of rheometer, the motor and the transducer are separated,
leading to better rheological measurements. The viscosity is computed according to the relation (2.1)
and measurements are performed in the steady regime. The specifications of the operating ranges of
the ARES-G2 rheometer are gathered in table 2.7. Beneath the lower tool, a Peltier device regulates
the sample temperature.

Minimum Maximum Resolution
Torque Γ 0.05 µN.m (oscillations) 200 mN.m 1 nN.m

0.1 µN.m (steady)
Normal force 𝐹𝑁 1 mN 200 N -
Strain 𝜖 1 µrad Unlimited 0.04 µrad
Angular velocity Ω 1 µrad.s−1 300 rad.s−1 -
Angular frequency 0.1 µrad.s−1 628 rad.s−1 -

Table 2.7: Specifications of the ARES-G2 rheometer provided by TA.

2.3.2.2 Parallel plates (PP) geometry

Figure 2.17: Sketch of proper filling and parameters in parallel-plate geometry.

Bulk viscosity of granular suspensions is measured using a parallel-plate geometry, see fig-
ure 2.17. The upper tool has a radius 𝑅 = 12.5 mm. The lower tool is a stainless steel plate. Rough
surfaces must be used if one suspects particle slip, see § 2.3.2.4. Parallel plate geometry is prefered
to cone-plate geometry when studying granular suspensions to avoid the confinement of the parti-
cles near the cone tip. In this section, only bulk suspension viscosity is discussed, which is the
suspension effective viscosity when the mixture can be approximated by a continuous medium.
In that case, typical geometry sizes (𝑅, ℎ) are much greater than the particles and wall effects be-
come negligible. The minimum gap depends on particle size but also on the solid volume fraction𝜙 (Barnes 2000). In practice, 𝑅 ≫ 𝑑 and one must check that ℎ ≥ 20𝑑 to remove gap effects (Peyla
and Verdier 2011; Ramaswamy et al. 2017). Once the gap is properly adjusted, it is also necessary
to verify that the loaded volume of fluid correctly fills the gap (see figure 2.17) as significant errors
arise from gap overfilling (Cardinaels et al. 2019) or underfilling (Hellström et al. 2014).
In PP geometry, the relation between the shear rate and the shear stress leading to the viscosity
reads: 𝜂 = �̇�𝜖 = 2Γℎ𝜋𝑅4Ω . (2.6)
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To derive relation (2.6), one must establish the expression of the shear rate and shear stress in PP
geometry. The flow is along the azimuthal e𝜃 direction due to the rotation of the lower tool, see
figure 2.17. Since the upper tool is kept fixed, the shear is along the vertical direction, e𝑧 . The az-
imuthal velocity obeys 𝑣𝜃 = 𝑟Ω(𝑧 − ℎ)/ℎ where ℎ is the gap size and Ω the rotational speed of the
lower tool. The strain and the shear rate exerted over a volume of fluid depend on its radial position0 ≤ 𝑟 ≤ 𝑅 and read 𝜖 = 𝑟Δ𝜃/ℎ and �̇� = 𝑟Ω/ℎ ⇒ �̇�(𝑟 = 𝑅) = 𝑅Ω/ℎ, respectively. Again, the shear
rate is not homogeneous along the radial coordinate contrary to the cone-plate geometry. For a
Newtonian fluid, the integration over the surface of the upper tool shows that the shear stress at𝑟 = 𝑅 and the global torque are related according to 𝜎𝜃𝑧(𝑟 = 𝑅) = 2Γ/(𝜋𝑅3) (Macosko 1994). The
stress and shear rate expressions lead to relation (2.6). In our case, 𝑅 is specified by the user and the
rotational velocity, Ω, is imposed by the motor. The gap size, ℎ and the torque Γ are measured by
the rheometer.
One can easily understand from (2.6) that gap errors are significantly larger for small gaps. In ad-
dition, large gaps prevent parallelism errors and secondary flow effects (Macosko 1994) and im-
portantly, avoid particle confinement. The gap size is then set around 1.5 mm for the particles of
diameter from 10 µm to 80 µm. However, for the 140-µm and larger particles, the non-confinement
condition, ℎ ≥ 20𝑑 ≥ 3 mm is challenging. Indeed, while increasing the gap size, fluid loading
becomes an issue if a meniscus appears (Cardinaels et al. 2019). This phenomenon can cause an ap-
parent viscosity increase of 30% and must be avoided. The next section explains how to circumvent
this problem with an adapted geometry.

2.3.2.3 Parallel plates with a reservoir

Reaching large gaps (ℎ ≳ 2 mm) while limiting the formation of a meniscus is not feasible in practice
in regular PP geometry. For this reason, a custom reservoir geometry, i.e a 2𝛽𝑅-wide reservoir made
of transparent plastic is mounted on the rheometer lower tool and filled with a layer of suspension of
thickness ℎ = 𝛼𝑅, see figure 2.18. This modified PP geometry has been previously used by Chateau
and Lhuissier (2019) and Palma and Henri Lhuissier (2019) for instance. The upper tool is lowered
until it touches the surface of the liquid.

Figure 2.18: Plate-plate geometry with a reservoir.

The analytical solution of such flow is given by Vrentas et al. (1991) and returns the additional
torque exerted by the liquid ring at 𝑅 < 𝑟 ≤ 𝛽𝑅. The total apparent torquemeasured by the rheometer
then reads as: Γreservoir = Γ0(𝑓 + 1), (2.7)

with Γ0 the torque in regular PP geometry without the reservoir.
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The relative additional contribution depends on the geometry parameter, namely the liquid thick-
ness 𝛼𝑅 and the reservoir radius 𝛽𝑅. The value returned by the rheometer, 𝜂reservoir, must then be
corrected to remove the additional contribution of the outer liquid ring.

Reservoir for the viscosity of large-particle suspensions

It follows from (2.6) that the viscosity 𝜂reservoir returned by the rheometer in a reservoir geom-
etry (sketched in figure 2.18) is

𝜂reservoir = Γreservoir 2ℎΩ𝜋𝑅4 = Γreservoir 𝜂0Γ0 = 𝜂0 (𝑓 (𝛼, 𝛽) + 1) , (2.8)

where 𝛼𝑅 is the fluid depth, 𝛽𝑅 the reservoir radius, and 𝜂0 the true viscosity of the fluid in
the reservoir. Working at larger gaps than the regular plate-plate geometry becomes possible
with such a geometry.

The correction 𝑓 can thus be either computed with the analytical expression from Vrentas et al.
(1991), see figure 2.19(a), or derived experimentally from the ratio 𝜂reservoir/𝜂0 = 𝑓 + 1 (see table 2.8)
for a given set of parameters (𝛼, 𝛽). Computation of 𝑓 (𝛼, 𝛽) according to Vrentas et al. (1991) has been
implemented and the results presented in figure 2.19(b) reproduce the published ones, enabling us
to extrapolate to our reservoir parameters. Eexperimental calibration of the reservoir with (𝛼, 𝛽) =(0.4, 2) has been done with regular viscous fluids and a granular suspension of 80-µm particles,
see table 2.8. The experimental value, 𝑓exp = 1.05 ± 0.15, is in relatively good agreement with the
prediction 𝑓th = 0.88. In the following, we take 𝑓 = 0.9 to correct the value of viscosity when the
reservoir is used.

Figure 2.19: Realtive correction to apply on values returned by the rheometer according to (2.8). (a) Values
from literature (Vrentas et al. 1991), (b) validation of the implementation prior to extrapolation with our
reservoir parameters.

2.3.2.4 Rough surfaces

Near moving walls, particles can slip due to a lubricating film of liquid, see figure 2.20(a). Such a
phenomenon can lead to major errors in viscosity measurements, especially for dense suspensions
of large particles (Medhi et al. 2011). As slip depends on gap size, its presence and the resulting
underestimation of the viscosity can be detected by comparing the viscosity measurements at two
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Fluide Viscosity in regular Apparent viscosity Ratio
PP geometry with the reservoir 𝑓 + 1

Glycerol 0.9 1.8 2.0
PEG 2.1 4.9 2.3
Pure Ucon 46.2 86.4 1.9
Ucon 90 wt% = water 25.4 49.5 2.0
Ucon 80 wt% + water 13.5 25.6 1.9
80 µm, 𝜙 = 0.2 4.7 10.3 2.2
Theory - - 1.88

Table 2.8: Experimental calibration of the PP geometry with a reservoir, 𝛽 = 2 and 𝛼 = 0.4 and analytical
prediction according to Vrentas et al. (1991).

gap sizes in PP geometry (Yoshimura and Prud’homme 1988). This method has been used to ensure
that slip is negligible for the smallest particles, 𝑑 ≤ 80 µm. On the contrary, rough walls have
to be used for the largest particles of diameter larger than of 140 µm. In that case, we use rough
crosshatched tools bought at TA Instruments whose surfaces are square-based pyramids of height
1 mm. As sketched in figure 2.20(b), the effective wall roughness is the particle diameter 𝑑 since the
holes are filled with particles that create roughness to entrain the above grains (Coussot 2005).

Figure 2.20: (a) Particle slippage due to a liquid lubrication film near a moving wall. The strain of the particu-
late phase (orange), is smaller than that of the moving wall (dark blue), and that of the liquid in the lubrication
film (turquoise). (b) Effect of wall roughness of a moving wall. A small number of particles gets caught in the
wall bumps and creates a rough pattern with typical size 𝑑 . The upper particulate phase is then dragged by
this rough surface at the same velocity that the one imposed by the moving wall.

2.3.3 Experimental viscosity of dense granular suspensions

2.3.3.1 Viscosity of monomodal suspensions

Accordingly to the procedures described in previous paragraphs, the bulk viscosity of monomodal
granular suspensions has been investigated. Particle volume fraction ranges from 20% to 40% and
particle diameters from 10 µm to 250 µm. The suspending fluid viscosity, 𝜂𝑓 , used to compute the
relative viscosity, 𝜂𝑠 = 𝜂𝑎/𝜂𝑓 , comes from viscosity measurements of pure fluid collected on the
day of preparation of the suspensions. As shown in figure 2.21(a), the bulk viscosity of granular
suspensions is almost constant for shear rates �̇� from 0.1 s−1 to 10 s−1. In drop spreading experiments,
the maximum speed of moving contact lines for viscous fluids is typically 𝑈 = 0.1 mm.s−1. For a
typical confinement length ℎ ∼ 𝑈 /�̇�, the Newtonian behavior should be holding for 10 µm ≤ ℎ ≤
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Figure 2.21: Experimental viscosity of monomodal granular suspensions made with TS particles and PEG.
(a) Absolute viscosity of pure fluid (⋆ symbols) and monomodal granular suspensions as a function of the
shear rate. (b) Relative viscosity of monomodal granular suspensions as a function of particle volume fraction.
Dotted and plain lines are plots of Krieger’s and Eiler’s interpolations, respectively (see table 2.6). Comparison
with measurements found in literature (♦ symbols) of 10-µm and 140-µm particles reported by Chateau and
Lhuissier (2019) and Palma and Henri Lhuissier (2019).

1 mm. Since drop thickness falls in this range, we expect the suspensions to behave like a
Newtonian fluid despite the presence of the particle solid phase. Moreover, one can see in
figure 2.21(b) that for a given particle volume fraction, 𝜙, the bulk viscosity does not depend
on the particle size. In the end, as aforementioned, the relative viscosity of monomodal granular
suspensions is solely a function of the particle volume fraction,

𝜂𝑠(𝜙, �̇�, 𝑑) = 𝜂𝑠(𝜙). (2.9)

This result can be found theoretically by dimensional analysis in the inertialess regime (𝑅𝑒 ≪1) starting from the flow equations around spherical, monosized, and non-interacting particles
(Guazzelli and Pouliquen 2018). This prediction holds experimentally over a large size range (5 ≤𝑑 ≤ 105 µm) and for solid volume fractions up to 50% (T. Lewis and Nielsen 1968). At higher volume
fractions and higher shear rates, non-Brownian suspensions exhibit complex shear-thinning behav-
ior (Ferrini et al. 1979; Chatté et al. 2018). As shown in figure 2.21(b) and widely reported in the
literature, the suspension viscosity is an increasing function of 𝜙 and diverges at a maximum value,𝜙𝑐 , the jamming volume fraction. The increase with 𝜙 comes from several effects. First, the addition
of a single particle creates dissipation because of its non-deformability (Guazzelli and Pouliquen
2018). Then, interactions between several particles enhance dissipation due to particle hydrody-
namic interactions or solid contacts at high concentration. Jamming divergence happens when the
solid phase can not distort while remaining immersed in the available liquid. Our data agree with
the Kriegger and the Eilers interpolations using 𝜙𝑐 ≃ 0.53. However, this value is just an estima-
tion and not a real measurement of the jamming volume fraction. Measuring 𝜙𝑐 would require a
more detailed investigation at higher volume fractions (𝜙 → 𝜙𝑐) or a more adapted method, such
as pressure-imposed rheometry (Boyer et al. 2011; Guazzelli and Pouliquen 2018). By means of this
device, a continuous increase in solid volume fraction is made possible by removing fluid through
permeable walls. Jamming transition can then be approached very closely unlike volume-imposed
rheology that fails at such concentrations.
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2.3.3.2 Viscosity of bimodal suspensions

In the monomodal case, the maximum packing fraction 𝜙𝑐 does not depend on the particle size.
Conversely, 𝜙𝑐 increases with polydispersity (Macosko 1994). When two sizes of particles are in-
volved, one can figure out that a smart choice of proportion can optimize solid loading by filling
large particle holes with small ones. The jamming volume fraction thus depends on two additional
parameters in the bimodal case. The first one is the particle sizes or more precisely the diameter
ratio with 𝑑1 < 𝑑2. The second parameter is 𝜁𝑠𝑚𝑎𝑙𝑙 , the volume fraction of small particles in the solid
phase:

𝜁𝑠𝑚𝑎𝑙𝑙 = 𝑉𝑠𝑚𝑎𝑙𝑙𝑉𝑠𝑚𝑎𝑙𝑙 + 𝑉𝑙𝑎𝑟𝑔𝑒 (2.10)

Experimental studies of bimodal systems found in the literature indicate that the viscosity of
dense granular bimodal suspensions is similar to that of monomodal suspensions using the bimodal
maximum packing fraction, 𝜙𝑐(𝑑1, 𝑑2, 𝜁𝑠𝑚𝑎𝑙𝑙 ) (Chong et al. 1971; Chang and Powell 1994; Dörr et al.
2013; Spangenberg et al. 2014). For a given volume fraction 𝜙, the viscosity exhibits a minimum
at 𝜁𝑠𝑚𝑎𝑙𝑙 ∼ 1/3, i.e. for a third of small particles. This observation can be rationalized by the fact
that whatever the size ratio, the largest 𝜙𝑐 is reached for 𝜁𝑠𝑚𝑎𝑙𝑙 ranging between 25 % and 50%. The
experimental viscositymeasurements madewith a PP geometry at constant 𝜙 confirm this minimum
of the viscosity when varying 𝜁𝑠𝑚𝑎𝑙𝑙 , see figure 2.22. For a given size ratio 𝑑2/𝑑1, the relative bulk
viscosity, 𝜂𝑠 , decreases with increasing 𝜁𝑠𝑚𝑎𝑙𝑙 from its monomodal value at 𝜁𝑠𝑚𝑎𝑙𝑙 = 0%, reaches this
minimum, and then increases back to the monomodal value at 𝜁𝑠𝑚𝑎𝑙𝑙 = 100 %. This lessening effect
is enhanced with increasing 𝑑2/𝑑1.

Figure 2.22: Experimental realtive viscosity of bimodal granular suspensions made with polystyrene particles
and PEG at a total solid volume fraction of 40%. For a given size duet, the proportion of small particles in the
solid blend 𝜁𝑠𝑚𝑎𝑙𝑙 varies from 0% (large particles only) to 100% (small particles only).
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This chapter presents the theory of drop spreading. In the first section, the drop profile equations
are derived for regular (continuous) fluids. The different regions of the dropwill be treated separately
to obtain local equations. Theoretical developments regarding a dissipation length scale near a
moving contact line are presented in this section. The second section presents spreading dynamics at
a global scale. Specifically, it returns the radius dynamics that is not provided directly by the previous
local approach. Connections and comparisons between the two points of view are discussed at the
end of this section.
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3.1 Spreading of regular liquids: local profile equations

We study a droplet of a simple Newtonian fluid, of radius 𝑅(𝑡) and central height ℎ0(𝑡) on the surface
of a rigid substrate, as illustrated in figure 3.1. In the following, cylindrical coordinates (𝑟 , 𝑧) will be
used under the assumption of axisymmetry of the problem. The 𝑧-axis is thus the axis of symmetry
and the radial coordinate is 𝑟 .

Figure 3.1: Sketch of a fluid droplet spreading on a rigid substrate.

Wedefine 𝛾 , 𝜌, 𝜂, the fluid surface tension, density, dynamic viscosity, respectively, and 𝑔 = 9.81m.s−2
the acceleration of gravity. The expression of the equivalent spherical radius of the drop is

𝑅0 = ( 𝑉043𝜋)1/3 , (3.1)

with 𝑉0 the constant drop volume (evaporation is overlooked). It provides the macroscopic length
scale of the system. Unless otherwise specified, the drop volume is held constant, 𝑉0 = 300 µL leading
to 𝑅0 = 4.2 mm. Physical properties of fluids of interest are gathered in table 3.1. They are all highly
viscous, leading to significant simplifications in the flow equations to be introduced.

Fluid PEG Glycerol Silicone oil V1000
Surface tension 𝛾 (N.m−1) 0.035 0.063 0.021
Density 𝜌 (kg.m−3) 1050 1260 997
Dynamical viscosity 𝜂 (Pa.s) 2.3 1.2 1.0
Capillary length 𝓁𝑐 (mm) 1.8 2.3 1.5

Table 3.1: Physical properties of the fluids used in this chapter.

3.1.1 Equation of the drop profile

3.1.1.1 General equation

The drop profile ℎ(𝑟 , 𝑡) is governed by the dynamic spreading flow at any time. The velocity field
v = (𝑣𝑟 (𝑡), 𝑣𝜃 (𝑡), 𝑣𝑧(𝑡)) follows the Navier-Stokes equations (Foias et al. 2001),𝜌 [𝜕𝑡v + (v ⋅ ∇) v] = −∇𝑃 + 𝜂Δv + Σf, (3.2)

with ∇ the gradient operator, Δ = ∇2 the Laplacian operator, 𝑃 the fluid pressure and Σf the ex-
ternal volume forces. The left-hand side in (3.2) accounts for the flow inertia, while the right-hand
side gathers flow pressure, viscous dissipation, and external forces. Inertia-related terms become
negligible in the Stokes regime.
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Stokes flow and Reynolds number

The flow in the experiments is considered to be in the Stokes regime. It is evidenced by the
Reynolds number, computed across drop thickness,

𝑅𝑒 = 𝑈𝜌ℎ0𝜂 ≪ 1, (3.3)

with 𝑈 a typical velocity of the flow and ℎ0 the typical drop thickness. This dimensionless
number compares inertia with viscous dissipation in the flow.

For instance, in drop spreading experiments of 300-µL viscous drops, the maximum speed is of𝑈 ≃ 1mm.s−1 and the typical thickness, ℎ0, is of a fewmillimeters. In that case, 𝑅𝑒 ∼ 10−3 corresponds
to a Stokes flow regime using the values of 𝜌 and 𝜂 in table 3.1. Under this assumption, the Navier-
Stokes equations along each coordinate now read,

0 = −𝜕𝑃𝜕𝑟 + 𝜂( 𝜕𝜕𝑟 1𝑟 𝜕𝑟𝑣𝑟𝜕𝑟 + 1𝑟2 𝜕2𝑣𝑟𝜕𝜃2 + 𝜕2𝑣𝑟𝜕𝑧2 − 2𝑟2 𝜕𝑣𝜃𝜕𝜃 ) + Σ𝑓𝑟 ,
0 = −1𝑟 𝜕𝑃𝜕𝜃 + 𝜂( 𝜕𝜕𝑟 1𝑟 𝜕𝑟𝑣𝜃𝜕𝑟 + 1𝑟2 𝜕2𝑣𝜃𝜕𝜃2 + 𝜕2𝑣𝜃𝜕𝑧2 + 2𝑟2 𝜕𝑣𝑟𝜕𝜃 ) + Σ𝑓𝜃 ,
0 = −𝜕𝑃𝜕𝑧 + 𝜂(1𝑟 𝜕𝜕𝑟 (𝑟 𝜕𝑣𝑧𝜕𝑟 ) + 1𝑟2 𝜕2𝑣𝑧𝜕𝜃2 + 𝜕2𝑣𝑧𝜕𝑧2 ) + Σ𝑓𝑧 .

(3.4)

Also, the velocity field must obey the continuity equation of an incompressible flow,∇ ⋅ v = 1𝑟 𝜕𝑟𝑣𝑟𝜕𝑟 + 1𝑟 𝜕𝑣𝜃𝜕𝜃 + 𝜕𝑣𝑧𝜕𝑧 = 0. (3.5)

Rotational symmetry of the flow ensures 𝜕𝜃𝑄 = 0 for any physical quantity 𝑄. Besides, as the
drop spreads, we also rapidly meet a thin-film situation, i.e. ℎ0 ≪ 𝑅. In that case, equations must
obey the lubrication approximation, i.e. 𝜕𝑧𝑄 ≫ 𝜕𝑟𝑄. Since 𝑟 ≫ 𝑧, the continuity equation (3.5)
yields 𝑣𝑧 ≪ 𝑣𝑟 meaning that the flow is mainly radial. Also, its variations in the 𝑟-direction can be
neglected compared to the vertical ones.
Owing to the previous simplifications and assuming that gravity is the only external force, f = −𝜌𝑔e𝑧 ,
the set of equations required to describe the flow becomes (Hocking 1983):𝜕𝑃𝜕𝑟 = 𝜂𝜕2𝑣𝑟𝜕𝑧2 ,𝜕𝑃𝜕𝑧 = −𝜌𝑔,1𝑟 𝜕𝑟𝑣𝑟𝜕𝑟 + 𝜕𝑣𝑧𝜕𝑧 = 0. (3.6)

3.1.1.2 Boundary conditions

At the free interface i.e. for 𝑧 = ℎ(𝑟 , 𝑡), the stress balance in the normal and tangential directions are
respectively given by,

𝑃 (𝑟 , 𝑧 = ℎ, 𝑡) = 𝑃ext − 𝛾 (𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 )|||||𝑧=ℎ and 𝜕𝑣𝑟𝜕𝑧 ||||𝑧=ℎ = 0. (3.7)

The first equality comes from the Laplace pressure drop, due to the liquid surface tension with 𝑃ext

the constant ambient pressure. The second condition comes from the very small air viscosity in
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comparison with that of the liquid, leading to a vanishing tangential stress over the free surface. In
addition, the kinematic condition relating the change of height with the flow field reads:𝜕ℎ𝜕𝑡 + 𝑣𝑟 |𝑧=ℎ 𝜕ℎ𝜕𝑟 = 𝑣𝑧 |𝑧=ℎ . (3.8)

Eventually, the bottom solid surface imposes purely radial flow, and a tangential Navier slip (Navier
1823; Huh and Scriven 1971) is imposed at 𝑧 = 0. These boundary conditions read respectively𝑣𝑧 |𝑧=0 = 0 and 𝑣𝑟 |𝑧=0 = 𝜆𝜕𝑣𝑟𝜕𝑧 ||||𝑧=0 , (3.9)

where 𝜆 is the slip length. Slip is further discussed in the following paragraphs.

3.1.1.3 Drop profile equation

The first two equations of (3.6) lead to𝑃 (𝑟 , 𝑧, 𝑡) = −𝜌𝑔𝑧 + 𝜂𝑞(𝑟 , 𝑡) and 𝜕𝑞𝜕𝑟 = 𝜕2𝑣𝑟𝜕𝑧2 , (3.10)

with 𝑞 a strain rate independent of the 𝑧-coordinate, which accounts for the effects of drop shape in
the pressure field. The second equation can be integrated twice relatively to 𝑧 using the vanishing
tangential stress (3.7) and the slip condition (3.9) such that,𝑣𝑟 (𝑟 , 𝑧, 𝑡) = (𝑧22 − ℎ𝑧 − ℎ𝜆) 𝜕𝑞𝜕𝑟 . (3.11)

The third equation in (3.6) and the bottom boundary condition (3.9) lead to:𝑣𝑧(𝑟 , 𝑧, 𝑡) = ∫ 𝑧
0 −1𝑟 𝜕𝜕𝑟 [𝑟 (𝑧22 − ℎ𝑧 − ℎ𝜆) 𝜕𝑞𝜕𝑟 ] 𝑑𝑧= (−𝑧36 + ℎ𝑧22 + 𝜆ℎ𝑧)(𝜕2𝑞𝜕𝑟2 + 1𝑟 𝜕𝑞𝜕𝑟 ) +(𝑧22 + 𝜆𝑧) 𝜕ℎ𝜕𝑟 𝜕𝑞𝜕𝑟 . (3.12)

If one evaluates (3.11) at 𝑧 = ℎ, 𝑣𝑟 |𝑧=ℎ = (−ℎ22 − ℎ𝜆) 𝜕𝑞𝜕𝑟 , (3.13)

and doing the same with (3.12),𝑣𝑧 |𝑧=ℎ = (ℎ33 + 𝜆ℎ2)(𝜕2𝑞𝜕𝑟2 + 1𝑟 𝜕𝑞𝜕𝑟 ) +(ℎ22 + 𝜆ℎ) 𝜕ℎ𝜕𝑟 𝜕𝑞𝜕𝑟 , (3.14)

these two relations can be injected in the free surface kinematic condition (3.8),𝜕ℎ𝜕𝑡 = (ℎ33 + 𝜆ℎ2)(𝜕2𝑞𝜕𝑟2 + 1𝑟 𝜕𝑞𝜕𝑟 ) = 13𝑟 𝜕𝜕𝑟 (𝑟 (ℎ3 + 3𝜆ℎ2) 𝜕𝑞𝜕𝑟 ) , (3.15)

and the missing function 𝑞(𝑟 , 𝑡) can be determined using𝑃 (𝑟 , ℎ(𝑟), 𝑡) = −𝜌𝑔ℎ(𝑟) + 𝜂𝑞(𝑟 , 𝑡) = 𝑃 𝑒𝑥𝑡 − 𝛾 (𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 )|||||𝑧=ℎ . (3.16)

Spreading is also assumed to be quasistatic, meaning that the temporal variations of the flow are
much smaller than the diffusion time of momentum. In other words, whenever a parameter is
changed, the system immediately adjusts to the equilibrium state defined by the boundary con-
ditions at that moment. In that case, the temporal derivative can be written 𝜕𝑡𝑄 = 𝑈𝜕𝑟𝑄, meaning
that the variations of 𝑄 come purely from advection with fluid motion. As a result, when spreading
a viscous liquid, the drop profile immediately adjusts to any change in velocity with no transient.
The combination of (3.15), the differentiation of (3.16) with respect to 𝑟 , and the quasistatic approx-
imation lead to the differential equation for the drop profile (Hocking 1981; Hocking 1983).
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Drop profile: general equations

3𝜂𝑈 𝜕ℎ𝜕𝑟 + 1𝑟 𝜕𝜕𝑟 [ℎ2 (ℎ + 3𝜆) 𝑟 𝜕𝜕𝑟 (𝛾 (𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 ) − 𝜌𝑔ℎ)] = 0. (3.17)

This differential equation is solved using volume conservation, vanishing height and micro-
scopic contact angle, 𝜃𝑚, at the contact line, reading respectively

∫ 𝑅
𝑟=0 2𝜋𝑟ℎ(𝑟 , 𝑡)d𝑟 = 𝑉0 , ℎ|𝑟→𝑅 = 0 and 𝜕ℎ𝜕𝑟 ||||𝑟→𝑅 = 𝜃𝑚. (3.18)

In 2D, the spreading in the 𝑥-direction obeys (Savva and Kalliadasis 2009; Savva and Kalliadasis
2012).

3𝜂𝑈 𝜕ℎ𝜕𝑥 + 𝜕𝜕𝑥 [ℎ2 (ℎ + 3𝜆)(𝛾 𝜕3ℎ𝜕𝑥3 − 𝜌𝑔 𝜕ℎ𝜕𝑥)] = 0 (3.19)

3.1.2 Analysis of the equation

3.1.2.1 Regions & length scales

Figure 3.2: Sketch of the regions near the moving contact line.

The equation (3.17) has three intrinsic length scales, which are displayed in figure 3.2. The
smallest length scale, 𝜆, is the microscopic slip length in (3.9) which circumvents viscous divergence
at vanishing heights (Navier 1823). Note that for complex fluids (suspensions, emulsions, polymer
melts,. . . ) an additional particle slip coming from themicrostructure can exist (Malkin and Patlazhan
2018). In the following, 𝜆 will only refer to the slip length of the pure fluid without the particles.
The second typical length is the capillary length 𝓁𝑐 ≫ 𝜆, which compares the effects of capillarity
and gravity, 𝓁𝑐 = ( 𝛾𝜌𝑔)1/2 . (3.20)

This quantity appears in the last term of the equation when dividing (3.17) by 𝛾 . Above this length
scale, gravity can not be overlooked in the shape of the interface. Finally, the third length scale 𝑅0
is the typical macroscopic size of the drop.
As aforementioned, only large drops are considered in this work. This criterion is relative to the
capillary length 𝓁𝑐 and can be expressed with the Bond number of the problem.
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Large drops: Bond number

The condition 𝑅0 > 𝓁𝑐 can be written using the drop Bond number,

𝐵𝑜 = 𝑅20𝓁 2𝑐 = 𝑅20𝛾𝜌𝑔 > 1. (3.21)

This dimensionless number compares the effects of capillarity and gravity.

Gravity does not play any role in a system of typical size 𝑅0 < 𝓁𝑐 . Such small drops have the shape
of a spherical cap as sketched in figure 3.3(a). In the opposite case, when 𝑅0 > 𝓁𝑐 , drop forms a
puddle with a wide flat region in the center due to gravity as shown in figure 3.3(b). For each of the
fluids presented in the table 3.1, 𝐵𝑜 ≃ 5 and the condition (3.21) is thus satisfied so that the effects
of gravity are not negligible.

Figure 3.3: Sketch of (a) a spherical cap (small drops, 𝐵𝑜 ≪ 1) and of (b) a puddle (large drops, 𝐵𝑜 ≫ 1).
While the capillary length is inherent to the fluid, the microscopic and the macroscopic size de-

pends on the problem studied. Interestingly, these three lengths are here very distinct 𝑅0 ≫ 𝓁𝑐 ≫ 𝜆
and characterize different regions of the drop. With this separation of scales sketched in figure 3.2,
these regions governed by different contributions can be treated separately as explained in the fol-
lowing paragraphs. While capillarity and viscosity dominate near the contact line, at very small drop
thickness (see § 3.1.2.2), viscous effects become negligible at larger drop heights and is replaced by
gravity (see § 3.1.2.3). In between, the three contributions, namely viscous, capillary, and gravity
forces must be accounted for, as explained in § 3.1.2.4.
Such scale separation justifies the strategies commonly used to tackle the resolution of the drop
profile. Analytical solution of the dynamical profile (3.17) then often treat separately the vicinity
of the contact line, referred to as the inner region in literature, and the rest of the drop. This re-
gion is asymptotically matched to the outer solution via an intermediate matching region (Trevino
et al. 1998; Bonn et al. 2009; Savva and Kalliadasis 2009; Savva and Kalliadasis 2012). The drop
profile in the inner region can be solved with first or second-order expansions in the capillary num-
ber 𝐶𝑎 = 𝑈𝜂/𝛾 (Hocking 1983; Cox 1986). With this method, the dynamical behavior is treated
as a perturbation of the static shape of the drop and mainly modifies the inner and the intermedi-
ate matching region. These analytical solutions can be compared with the full numerical solution
and show high robustness at any scale (Savva and Kalliadasis 2009; Savva and Kalliadasis 2012). In
addition, the comparison of the different Ca-expansions with the full numerical solution suggests
that the need for an intermediate matching region disappears when increasing the expansion order
(Sibley et al. 2015). Another method uses quasi-self-similar solutions i.e. ensembles of self-similar
solutions parametrized by time-dependent quantities (Gratton et al. 1996).

In the following, we analyze the drop profile equation (3.17) in the three regions defined in
figure 3.2. Here, our goal is not to redo the full resolution of the profile but rather to gain a better
understanding of the underlying physics.
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3.1.2.2 Viscous-capillary region, 𝑥 ≳ 𝜆

Figure 3.4: Sketch of the profile shape in the viscous-
capillary region near the contact line, 𝑥 ∼ 𝜆.

In the viscous-capillary region, gravity can
be neglected. This microscopic region cor-
responds to the neighborhood of the con-
tact line, at a typical distance of 𝜆 ≪ 𝓁𝑐 ,
see figure 3.4. Near the contact line, the
fluid undergoes significant shear due to the
small drop thickness. The viscous dissipa-
tion does not diverge because of a microscopic
cutoff, 𝜆 which encompasses all the phenom-
ena at smaller lengths. It is sometimes in-
terpreted as an effective slip length (Navier
1823) and is crucial to recover realistic flows
(Huh and Scriven 1971; Dussan and Davis
1974).

Other models describe the contact line dynamics, for instance with a precursor film (De Gennes
1985), that have been observed experimentally (Ausserré et al. 1986; Kavehpour et al. 2003). Also
the Molecular Kinetic Theory based on hopping diffusion of the molecules near the edge (Blake
and Haynes 1969; Blake and De Coninck 2002; Blake 2006) or height-dependent interfacial tension
(Pahlavan et al. 2015) help circumventing the viscous stress divergence at the contact line. The
reality of liquid slip near a solid wall is beyond the scope of this work but it is worth mentioning
that liquid slip lengths have been measured experimentally and range from 1 to a few hundred
nanometers for continuous fluids (Neto et al. 2005; Lauga et al. 2007). In this work, the Navier
liquid-slip model is conveniently used to encompass all the microscopic details in the very close
vicinity of the contact line. With suspensions, one can reasonably assume that the contact-line slip
length 𝜆 remains constant. Adding micron-sized particles indeed unlikely affects 𝜆 considering the
very different length scales, 𝜆 ≪ 𝑑 .

Viscous-capillary region: Governing equations

Near the contact line, capillary and viscous forces rule the quasistatic drop profile according
to 3𝐶𝑎𝜕ℎ𝜕𝑟 + 1𝑟 𝜕𝜕𝑟 [ℎ2 (ℎ + 3𝜆) 𝑟 𝜕𝜕𝑟 (𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 )] = 0. (3.22)

In the previous equation, 𝐶𝑎 = 𝜂𝑈𝛾 ≪ 1, (3.23)

is the capillary number associated with the contact-line motion. This dimensionless number
can be interpreted as a normalized velocity, with 𝛾 /𝜂 a viscous-capillary speed characteristic
of the interface. In this region, the solution of (3.22) must satisfy the boundary conditions,𝜃(𝑥 = 𝜆) = 𝜃𝑚 and ℎ(𝑥 = 𝜆) = ℎ𝑚, (3.24)

with 𝜃𝑚 the microscopic contact angle near the contact line and ℎ𝑚 a microscopic cutoff length
scale of similar magnitude than 𝜆.

The microscopic contact angle 𝜃𝑚 is set by forces acting at molecular scales. It should be the same
for an advancing or a receding contact line and it is often assumed to lie near the static contact angle
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value, 𝜃𝑒 (Cox 1986). Some models predict a spreading-velocity correction for 𝜃𝑚 (Voinov 1976; Cox
1986; Bonn et al. 2009). In the following, 𝜃𝑚 is assumed to be constant or at least small enough such
that |𝜃3𝑚 | ≪ |𝐶𝑎|. This assumption is valid for (nearly) perfectly wetting liquids with small static
contact angles.

For a drop of viscous liquid spreading in the air, a good approximation of the solution of (3.22)
is given by the Cox-Voinov law for small capillary numbers.

Cox-Voinov law

In the viscous-capillary region, near the moving contact line, the shape of the interface obeys
the Cox-Voinov relation (Voinov 1976; Cox 1986),𝜃3𝑎𝑝𝑝(𝑥) = 𝜃3𝑚 + 9𝐶𝑎 log(𝑥𝜆), (3.25)

This relation gives the local slope at a distance 𝑥 = 𝑅 − 𝑟 from the moving rim of the droplet.
This law results from the balance of capillary and viscous forces, and thus involves the capil-
lary number 𝐶𝑎. The relation holds for both advancing (𝐶𝑎 > 0) and receding (𝐶𝑎 < 0) contact
lines and is valid for large slopes 𝜃 ≲ 3𝜋/4 (Voinov 1976; Snoeijer 2006).

One can immediately check the microscopic matching condition 𝜃(𝑥 = 𝜆) = 𝜃𝑚. Also, the logarithm
factor weakly depends on 𝑥 for 𝑥 ≫ 𝜆. The typical values reported in the literature lie around 10
and 15. Again, for (nearly) perfectly wetting liquids, |𝜃𝑚 |3 ∼ |𝜃𝑒 |3 ≪ |𝐶𝑎 ln(𝑥/𝜆)| and the apparent
contact angle thus evolves as 𝜃𝑎𝑝𝑝(𝑥) ≃ [9𝐶𝑎 ln (𝑥/𝜆)]1/3.

The derivation of (3.25) in the general case of two viscous fluids is given by Cox (1986) . When
the surrounding fluid has a negligible viscosity (air for instance), the apparent contact angle near
the contact line obeys

𝑔 (𝜃𝑎𝑝𝑝) = 𝑔 (𝜃𝑚) + 𝐶𝑎 ln(𝑥𝜆) with 𝑔(𝜃) = ∫ 𝜃
0 𝛼 − sin 𝛼 cos 𝛼2 sin 𝛼 d𝛼. (3.26)

The approximation 𝑔(𝜃) ≃ 𝜃3/9 works well for 𝜃 ≤ 3𝜋/4 and establishes the Cox-Voinov law as
written in (3.25). Using ℎ as a variable instead of 𝑥 leads to a similar relation, which is precisely the
derivation made by Voinov (1976),

𝜃3𝑎𝑝𝑝(ℎ) = 𝜃3𝑚 + 9𝐶𝑎 log( ℎℎ𝑚). (3.27)

The logarithm factor is roughly the same in (3.25) or (3.27) for any point of the interface with coor-
dinates (𝑥, ℎ(𝑥)) since 𝜆 ∼ ℎ𝑚 ≪ 𝑥 ∼ ℎ(𝑥). One can also check that at the microscopic cutoff length,𝜃𝑎𝑝𝑝(ℎ = ℎ𝑚) = 𝜃𝑚.
Note at this point that the profile near an advancing contact line (𝐶𝑎 > 0) is convex. According
to the equations (3.25) or (3.27), the slope increases with 𝑥 (or ℎ), as sketched in figure 3.4.
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3.1.2.3 Capillary-gravity region 𝑥 ∼ 𝑅0

Figure 3.5: Sketch of the drop profile in the gravity-capillary
region far from the contact line, 𝑥 ≫ 𝓁𝑐 .

This region corresponds to the oppo-
site limit, as 𝑟 → 0, or equiva-
lently as 𝑥 → 𝑅(𝑡) ≳ 𝑅0. In
this region, the drop height, ℎ(𝑟 , 𝑡) ∼ℎ0 ∼ 1 mm is greater by orders of mag-
nitude than the slip length 𝜆 ∼ 1 nm,
which is thus neglected in (3.17). In
addition, viscous forces become negli-
gible as fluid thickness increases, and
the time-derivative term in (3.17) can
be dropped. In the end, the macro-
scopic shape of a spreading drop is
similar to the static shape of a drop
of equal volume 𝑉0 and contact radius𝑅(𝑡).

Capillary-gravity region: Governing equations

At themacroscopic scale, the shape of the drop is thus governed by a capillary-gravity balance,𝜕𝜕𝑟 [ℎ3𝑟 𝜕𝜕𝑟 (𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 − 𝜌𝑔𝛾 ℎ)] = 0, (3.28)

with vanishing height at the contact line and volume conservation, reading respectively,

ℎ(𝑟 = 𝑅(𝑡)) = 0 and 𝑉0 = ∫ d𝑉 = ∫ 𝑅(𝑡)
𝑟=0 2𝜋𝑟ℎ(𝑟 , 𝑡)d𝑟 . (3.29)

The constant coming from a first integration of (3.28) is found to be zero using ℎ(𝑟 = 𝑅) = 0.
Therefore, after a second integration with respect to 𝑟 ,

∀𝑟 , ℎ3𝑟 𝜕𝜕𝑟 (𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 − 𝜌𝑔𝛾 ℎ) = 0 ⇒ 𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 − ℎ𝓁 2𝑐 = 𝐶, (3.30)

where𝐶 is a constant left to determined and 𝓁𝑐 is the capillary length introduced in (3.20). To obtain a
non-dimensional form of this equation, we use 𝑅0 as the typical length, i.e. 𝑟 ∶= 𝑟/𝑅0 and ℎ̃ ∶= ℎ/𝑅0,
with the tilde used for dimensionless variables. The Bond number appears upon normalization, so
that 𝜕2ℎ̃𝜕𝑟2 + 1̃𝑟 𝜕ℎ̃𝜕𝑟 − ℎ̃𝐵𝑜 = 𝐶𝑅0. (3.31)

With 𝑋 ∶= 𝑟𝐵𝑜1/2, equation (3.31) gives in turn,𝜕2ℎ̃𝜕𝑋 2 + 1𝑋 𝜕ℎ̃𝜕𝑋 − ℎ̃ = 𝐶 𝑅0𝐵𝑜 . (3.32)

A solution of the homogeneous equation is the modified Bessel function of the first kind and 0 order
with 𝐼𝜈 the modified Bessel function of the first kind and 𝜈-th order (𝜈 ∈ ℝ) defined as (Bowman
2012), 𝐼𝜈 (𝑋 ) = (𝑋 22 )𝜈 ∞∑𝑘=0 𝑋 2𝑘4𝑘 (𝑘!)2 Γ(𝜈 + 𝑘 + 1) , (3.33)
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where Γ(𝑧) = ∫ ∞0 𝑡𝑧−1e−𝑡d𝑡 is the gamma function. With respect to the boundary conditions (3.29),
the solution is then ℎ(𝑟) = 𝐾 [𝐼0(𝑅/𝓁𝑐) − 𝐼0(𝑟/𝓁𝑐)]. The factor 𝐾 and consequently the constant 𝐶 =−𝐾𝐼0(𝑅/𝓁𝑐)𝐵𝑜/𝑅0 are set according to volume conservation,

𝑉0 = ∫ 𝑅(𝑡)
𝑟=0 2𝜋𝑟ℎ(𝑟)d𝑟

= ∫ 𝑅(𝑡)
𝑟=0 2𝜋𝑟𝐾 [𝐼0(𝑅(𝑡)𝓁𝑐 ) − 𝐼0( 𝑟𝓁𝑐)] d𝑟= 2𝜋𝐾 [𝐼0(𝑅(𝑡)𝓁𝑐 ) 𝑅(𝑡)22 − ∫ 𝑅(𝑡)

𝑟=0 𝑟𝐼0( 𝑟𝓁𝑐) d𝑟] .
(3.34)

The modified Bessel functions obey the recurrence relations,2𝜈𝑥 𝐼𝜈 (𝑥) = 𝐼𝜈−1(𝑥) − 𝐼𝜈+1(𝑥), (3.35)2𝐼𝜈 (𝑥)′ = 𝐼𝜈−1(𝑥) + 𝐼𝜈+1(𝑥), (3.36)

so that (𝑥𝐼1(𝑥))′ = 𝑥𝐼0(𝑥). If we define 𝑥 ∶= 𝑟/𝓁𝑐 , then
∫ 𝑅(𝑡)
𝑟=0 𝑟𝐼0( 𝑟𝓁𝑐) 𝑑𝑟 = 𝓁 2𝑐 ∫ 𝑅(𝑡)/𝓁𝑐0 𝑥𝐼0 (𝑥) 𝑑𝑥= 𝓁 2𝑐 [𝑥𝐼1(𝑥)]𝑅(𝑡)/𝓁𝑐0= 𝑅(𝑡)𝓁𝑐 𝐼1(𝑅(𝑡)𝓁𝑐 ) . (3.37)

With the previous result and the recurrence relation (3.35) for 𝜈 = 1, we can simplify the equation
(3.34) and use the result to compute the value of 𝐾 (or 𝐶).

𝑉0 = 2𝜋𝐾 [𝐼0(𝑅(𝑡)𝓁𝑐 ) 𝑅(𝑡)22 − 𝑅(𝑡)𝓁𝑐 𝐼1(𝑅(𝑡)𝓁𝑐 )]= 𝜋𝑅(𝑡)2𝐾 [𝐼0(𝑅(𝑡)𝓁𝑐 ) − 2 𝓁𝑐𝑅(𝑡) 𝐼1(𝑅(𝑡)𝓁𝑐 )]= 𝜋𝑅(𝑡)2𝐾𝐼2(𝑅(𝑡)𝓁𝑐 ) .
(3.38)

Capillary-gravity region: Shape of the drop

For a moderate to large Bond numbers, 𝐵𝑜 ≳ 1, the macroscopic shape of a drop of volume𝑉0 = 4𝜋𝑅30/3 and of contact radius 𝑅(𝑡) is given by

ℎ(𝑟) = 𝑉0𝜋𝑅(𝑡)2𝐼2 (𝑅(𝑡)𝓁𝑐 ) [𝐼0(𝑅(𝑡)𝓁𝑐 ) − 𝐼0( 𝑟𝓁𝑐)] . (3.39)

The thickness at the center, ℎ0, is thus related to the contact radius, 𝑅(𝑡), according to
ℎ0 = 𝑉0𝜋𝑅(𝑡)2𝐼2 (𝑅(𝑡)𝓁𝑐 ) [𝐼0(𝑅(𝑡)𝓁𝑐 ) − 1] (3.40)
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Note that in this macroscopic region, the profile is concave, i.e. has a negative curvature (see
figure 3.6). Also shown in figure 3.6, the solution (3.39) is very similar to that derived by Tanner
(1979),

ℎ(𝑟 , 𝑡) = ℎ0(𝑡)cosh(𝑅(𝑡)𝑟1 ) − cosh( 𝑟𝑟1)cosh(𝑅(𝑡)𝑟1 ) − 1 , with 𝑟1 = √43𝓁𝑐 , (3.41)

with ℎ0 such that 𝑉0 = ∫ 𝑅0 2𝜋𝑟ℎ(𝑟)d𝑟 .

Figure 3.6: Solid lines: drop height in the capillary-gravity region according to (3.39) for different contact
radius 𝑅(𝑡). Drop volume 𝑉0 = 300 µL, capillary length 𝓁𝑐 = 1.8 mm. Dash-dotted lines: solution (3.41) coming
from Tanner (1979). Dashed lines: exponential approximation coming from the 2D model (see below). Inset:
local curvature along the profile.

In the 2D situation, i.e. during the spreading of a rivulet in the ±𝑥-direction, the differential
equation ruling the large-scale drop profile simplifies in

dℎ
d𝑥 = −(ℎ − ℎ0)𝓁𝑐 . (3.42)

This differential equation can be derived from the balance of the hydrostatic and capillary pressures,

∫ ℎ
0 𝜌𝑔(ℎ0 − 𝑧)d𝑧 = 𝛾𝑆𝐿 + 𝛾 cos(𝜃) − 𝛾𝑆𝐺 ⇔ 𝜌𝑔 [ℎ0ℎ(𝑥) − ℎ(𝑥)22 ] = 𝛾 [cos (𝜃) − cos (𝜃𝑒)] (3.43)

where 𝜃𝑒 is the equilibrium contact angle in the Young-Dupré law (Young 1805; Dupré 1869), 𝛾𝑆𝐺 −𝛾𝑆𝐿 = 𝛾 cos (𝜃𝑒). At the center of the drop, 𝜃(𝑥 = 0) = 0 and ℎ(𝑥 = 0) = ℎ0 leading to
cos (𝜃𝑒) = 1 − 1𝓁 2𝑐 ℎ202 . (3.44)

Using the cosinus linearization,

cos(𝜃) ≃ d𝑥√
d𝑥2 + dℎ2 ≃ 1√1 + ( dℎ

d𝑥 )2 , (3.45)

with the expression of cos (𝜃𝑒), the pressure balance now reads1√1 + ( dℎ
d𝑥 )2 = (1 − ℎ202𝓁 2𝑐 ) + 1𝓁 2𝑐 (ℎ0ℎ − ℎ22 ) = 1 − (ℎ − ℎ0)22𝓁 2𝑐 , (3.46)
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leading to the differential equation

dℎ
d𝑥 = √(1 − [ℎ(𝑥) − ℎ0]22𝓁 2𝑐 )−2 − 1. (3.47)

For |ℎ−ℎ0| ≪ 𝓁𝑐 , we recover the equation (3.42). The solution of this first order differential equation
is an exponential function with a decreasing rate 𝓁−1𝑐 : ℎ2𝐷(𝑟) = 𝐾 (1 − exp( 𝑟−𝑅𝓁𝑐 )). Again, the factor𝐾 can be computed with the volume conservation,

𝑉0 = ∫ 𝑅
𝑟=0 2𝜋𝐾𝑟 (1 − exp( 𝑟 − 𝑅𝓁𝑐 )) d𝑟 ⇒ 𝐾 = 𝑉02𝜋 [𝑅22 − 𝑅𝓁𝑐 + 𝓁 2𝑐 − 𝓁 2𝑐 exp(−𝑅𝓁𝑐 )] , (3.48)

leading to the profile equation,

ℎ(𝑟) = 𝑉02𝜋 [𝑅22 − 𝑅𝓁𝑐 + 𝓁 2𝑐 − 𝓁 2𝑐 exp(−𝑅𝓁𝑐 )] [1 − exp( 𝑟 − 𝑅𝓁𝑐 )] . (3.49)

As shown in figure 3.6, the exponential solution coming from the 2D model is very similar to the
3D solution, especially when 𝑅 ≫ 𝓁𝑐 .
3.1.2.4 Viscous-capillary-gravity region

Figure 3.7: Sketch of the profile shape in the
intermediate region.

To obtain the shape of the interface in between the two
previous regions, all the contributions must remain in
(3.17). This intermediate region, sketched in figure 3.7,
corresponds to the mesoscopic vicinity of the contact line
where the static shape is affected by the flow. The typical
horizontal length scale is much larger than 𝜆 but much
smaller than 𝑅0. The sole remaining length scale is thus
the capillary length defined in (3.20). Using again the qua-
sistatic approximation such that 𝜕𝑡ℎ = 𝑈𝜕𝑟ℎ and the fact
that 𝑟 , ℎ ≫ 𝜆, equation (3.17) becomes

3𝐶𝑎 𝜕ℎ𝜕𝑟 +1𝑟 𝜕2𝜕𝑟2 [ℎ3𝑟 𝜕ℎ𝜕𝑟 (𝜕2ℎ𝜕𝑟2 + 1𝑟 𝜕ℎ𝜕𝑟 − ℎ𝓁 2𝑐 )] = 0. (3.50)
We define the dimensionless variables as𝑟 ∶= 𝑟𝓁𝑐 , and ℎ̂ ∶= ℎℎ⋆ , (3.51)

where ℎ⋆ is the (still unknown) relevant scale for the drop height in the vertical direction. The
renormalizations in (3.50) finally yields

3𝐶𝑎𝜕ℎ̂𝜕𝑟 +(ℎ⋆𝓁𝑐 )3 1̂𝑟 𝜕𝜕𝑟 [ℎ̂3𝑟 𝜕𝜕𝑟 (𝜕2ℎ̂𝜕𝑟2 + 1̂𝑟 𝜕ℎ̂𝜕𝑟 − ℎ̂)] = 0. (3.52)

To obtain a self-similar solution, the two terms in (3.52) need to be of the same order of magnitude,
leading to a scaling law for ℎ⋆.
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Scaling law for ℎ⋆
The characteristic vertical length scale in the viscous-capillary-gravity region is given by self-
similar arguments and reads ℎ⋆ ≡ 𝓁𝑐𝐶𝑎1/3. (3.53)

This length scale displays the contributions of the three competing forces through 𝓁𝑐 and 𝐶𝑎.
It sets the transition height from the region where the drop shape is governed by the Cox-
Voinov law to the region where gravity comes into play in the force balance. Equivalently, ℎ⋆
is the typical range of viscous effects, the latter becoming negligible above. It can thus be seen
as a viscous cutoff length. Interestingly, ℎ⋆ also delineates the change in surface curvature
from convex (viscous-capillary region) to concave (capillary-gravity region). It should then lie
near the inflection point of the drop interface.

This idea of cross-over between different regions has been investigated experimentally for sliding
drops by balancing viscosity and gravity contributions with PIVmeasurements (Snoeijer et al. 2005).
The equation of the frontier, corresponding to ℎ = ℎ⋆ in our experiments, is not derived. In previ-
ous publications on spreading drops, e.g. (Redon et al. 1992), this length scale ℎ⋆ appears but the
interpretation in terms of viscous cutoff has never been mentioned nor investigated before the work
presented in the Chapter 4. At best, it is introduced as the typical height of the quasistatic region
(Brochard-Wyart et al. 1991).

3.1.3 Motivations

The scaling (3.53) predicts a value of a few hundred microns with capillary numbers typically rang-
ing from 10−3 to 3.10−2 during drop spreading and 𝓁𝑐 ≃ 2 mm for any of the fluids in table 3.1. It
thus seems to be a measurable quantity with an appropriate experiment. However, as mentionned
earlier, the value and the prediction of the viscous cutoff near an advancing contact line has not
been reported elsewhere and barely studied. It is yet an interesting quantity to gain a better under-
standing of dynamical wetting.

Measuring ℎ⋆ or equivalently probing dissipation is not trivial but it could be made possible
with a tunable viscosity. For instance, some fluids have an intrinsic length scale where dissipation
mechanisms change abruptly. In the next chapter, we argue that granular suspensions can be used
to that end. Interestingly, adding density-matched particles should not modify the drop behavior
in the gravity driven-region but it definitively enhances dissipation in the regions the particle can
reach. The interplay of ℎ⋆ with this intrinsic particle length scale may result in non-trivial behaviors
during the spreading of drops made of granular suspensions.
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3.2 Global approach: Tanner’s law

Equation 3.17 in the previous section rules the shape of the interface of a spreading drop. Focusing
separately on different regions, we obtain local information regarding the shape of the drop but
not really about the spreading itself, e.g. the outer radius as a function of time. Yet, this dynamic
has to be hidden in this equation to access what we will refer to as the "macroscopic" or "global"
spreading behavior. A simple analysis, based on volume conservation and scaling arguments is
first presented. This result, referred to as Tanner’s law in the literature, has been adapted to different
situations and predicts how the drop radius depends on time. In particular, as explained in § 3.2.1,
the dynamical behavior depends on the drop volume. Section § 3.2.2 presents experimental works
found in the literature and compares their results with the theory. The connection between Tanner’s
law and previously established equations is addressed in § 3.2.3, § 3.2.4 and § 3.2.5.

3.2.1 Tanner’s law: Capillary & gravity driven spreading of drops

In his paper, Tanner (1979) derives the behavior of the apparent contact angle as a function of radius
growth, and ends with a Cox-Voinov like relation, i.e. 𝜃3𝑎𝑝𝑝 ∝ 𝜂𝛾 d𝑅

d𝑡 = 𝐶𝑎. In the present case,
the measurement was specifically done at the interface inflection point. The experiments strongly
suggest a power-law behavior of the apparent contact angle with a power 𝛼 . Based on self-similarity
and volume conservation arguments, this behavior can be extended to other drop features presented
in table 3.2. For instance, such considerations suggest a radius growth according to𝑅(𝑡) ∝ 𝑡𝑛, (3.54)

with 𝑛 = 𝛼/3. These results are established assuming that the apparent contact angle and the drop
volume can bewritten as 𝜃𝑎𝑝𝑝 ∝ ℎ0/𝑅 and 𝑉0 ∝ ℎ0𝑅2 ∝ 𝜃𝑎𝑝𝑝𝑅3, respectively. In the latter expressions,ℎ0 is the drop thickness at its center. The values of 𝛼 (or 𝑛) in table 3.2 are explained in the following
paragraph.

Temporal evolution 𝛼 = 3/10 𝛼 = 3/8(𝑛 = 1/10) (𝑛 = 1/8)
Drop volume 𝑉0 Constant Constant Constant
Apparent contact angle 𝜃𝑎𝑝𝑝 𝑡−𝛼 = 𝑡−3𝑛 𝑡−3/10 𝑡−3/8
Drop radius 𝑅 𝑡𝛼/3 = 𝑡𝑛 𝑡1/10 𝑡1/8
Drop height ℎ0 𝑡−2𝛼/3 = 𝑡−2𝑛 𝑡−1/5 𝑡−1/4
Radius growth rate 𝑈 = d𝑅/d𝑡 𝑡𝛼/3−1 = 𝑡𝑛−1 𝑡−9/10 𝑡−7/8

Table 3.2: Temporal variations of the apparent contact angle and other variables inferred from volume con-
servation (Tanner 1979).

Dimensional analysis can predict the value of 𝛼 by balancing viscous dissipation with the force
driving the spreading (Cazabat and Stuart 1986). In a spreading drop, vertical velocity gradients
generate a tangential viscous stress 𝜂𝜕𝑧𝑣𝑥 ∼ 𝜂𝑈 /ℎ0 in the 𝑥𝑦 plane, 𝑥 being the spreading direction
and 𝑧 the vertical direction. By integrating over the 𝑥-direction, the viscous force per unit length in
the 𝑦-direction scales as 𝐹𝜂 ∼ 𝑅(𝜂 𝑈ℎ0) , (3.55)

since the typical length in the 𝑥-direction is 𝑅 (Cazabat and Stuart 1986; Levinson et al. 1988). In the
case of small drops (i.e. 𝑅 < 𝓁𝑐 or 𝐵𝑜 < 1), gravity is negligible and the motion of the contact line is
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driven by capillary forces. At small contact angles (𝜃𝑎𝑝𝑝 ≪ 1) and for a perfectly wetting liquid, the
capillary force per unit length in the 𝑦-direction can be written as (De Gennes et al. 2004),𝐹𝑐 = 𝛾𝑆𝐺 − 𝛾𝑆𝐿 − 𝛾 cos 𝜃𝑎𝑝𝑝 ≃ 12𝛾𝜃2𝑎𝑝𝑝 . (3.56)

The balance of these two terms with the approximation 𝜃𝑎𝑝𝑝 ≃ ℎ0/𝑅, and 𝑈 = d𝑅
d𝑡 leads to𝜂 𝑅ℎ0 d𝑅d𝑡⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Viscous stress

∼ 𝛾 (ℎ0𝑅 )2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Capillary pressure

. (3.57)

Using again the volume conservation ℎ0 ∼ 𝑉0/𝑅2, we end up with𝑅9 d𝑅
d𝑡 ∼ 𝛾𝜂𝑉 30 or 𝜂𝛾 d𝑅

d𝑡 ∼ 𝜃3𝑎𝑝𝑝 , (3.58)

which are two equivalent forms of Tanner’s law. This relation can be supplemented with a missing
factor in the Cox-Voinov law (3.25).

Similar reasoning can be carried out with large drops, i.e. when the drop radius is greater than
the capillary length 𝓁𝑐 . In this case, the interface is mostly flat and the driving force is gravity. The
pressure on a vertical column, per unit length in the 𝑦-direction, yields

𝐹𝑔 = ∫ ℎ00 𝜌𝑔(ℎ0 − 𝑧)d𝑧 = 12𝜌𝑔ℎ20, (3.59)

that once balanced with viscous force (3.55) simplifies to𝜂 𝑅ℎ0 d𝑅d𝑡⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Viscous stress

≃ 𝜌𝑔ℎ20⏟⏞⏞⏞⏟⏞⏞⏞⏟
Gravity

⇒ 𝑅7 d𝑅
d𝑡 ∼ 𝜌𝑔𝜂 𝑉 30 . (3.60)

Scaling-laws of drop spreading: Tanner’s laws

For small droplets (𝐵𝑜 ≪ 1), dimensional analysis (3.58) of the force balance predicts a radius
growth according to 𝑅(𝑡) = 𝑘𝑐 (𝛾𝑉 30𝜂 𝑡)1/10 . (3.61)

In the other limit (𝐵𝑜 ≫ 1), (3.60) suggests
𝑅(𝑡) = 𝑘𝑔 (𝜌𝑔𝑉 30𝜂 𝑡)1/8 . (3.62)

Capillary effects still exist for large drops, especially at the beginning when the drop interface
is curved. Laplace pressure gradients may then transiently prevail over gravity. In this case, radius
growth can exhibit two stages, with a gravity regime following a capillary one (Cazabat and Stuart
1986). However, once the interface has flattened, gravity becomes the driving force of the drop
spreading. The factors 𝑘𝑐/𝑔 in (3.61) and (3.62), respectively, are a priori different. In the literature,
only a very few authors comment on these quantities. Also, for large drops, a final stage driven by
intermolecular forces would exhibit a radius growth 𝑅 ∝ 𝑡1/7 (Lopez et al. 1976; Ehrhard and Davis
1991).
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Article Fluid Viscosity Volume Bond number
Tanner (1979) Silicone oil 1.08-13 Pa.s 0.8-3.5 µL 0.2-0.4
Cazabat and Stuart (1986) Silicone oil 0.2-1 Pa.s 0.35-37.9 µL 0.1-2.0
Levinson et al. (1988) Silicone oil 0.2-100 Pa.s 0.4-40 µL 0.1-2.1
Redon et al. (1992) Silicone oil 11.78 Pa.s 58-276.4 µL 2.6-7.4

Table 3.3: Summary of experimental works on drop spreading.

3.2.2 Experimental validations

Some experimental works dealing with drop spreading on smooth substrates are gathered in ta-
ble 3.3. Silicone oils are used extensively to avoid evaporation and hygroscopic effects but also to
vary the fluid viscosity at relatively constant density and surface tension. Experimental work in the
capillary regime is much more abundant than in the gravity regime. Data from these publications
have been extracted and gathered in a log-log plot in figure 3.8(a). From this graph, it appears that
radius growth follows a power law. Fitting the various data sets with the equation 𝑅(𝑡) = 𝐴(𝑡 − 𝑡0)𝑛
determines the parameters 𝑡0, 𝐴, and 𝑛. The parameter 𝑡0 is not of much interest, unlike the factor 𝐴,
which will be discussed in the next section. As for the exponent 𝑛, two groups emerge, divided into
two subplots in figure 3.8(b,c) and shown in the inset in figure 3.9(a). Additional results from exper-
iments with PEG and glycerol are used in figure 3.9. In figure 3.8(b) and in the inset in figure 3.9(a),
for large Bond numbers, the best fit of 𝑛 lies around 1/8. On the contrary, for the smallest Bond
numbers, the fit yields a smallest exponent, 𝑛 ≃ 1/10, see figure 3.8(c) and the inset in figure 3.9(a).
For increasing drop volume (from 1 µL to 40 µL) and with a highly viscous oil (𝜂 = 100 Pa.s), the
slope of the log-log plot changes continuously from 𝑛 = 1/10 to 𝑛 = 1/8 (Levinson et al. 1988). Ex-
periments with silicone oils thus confirm the theoretical predictions regarding drop spreading, and
more specifically the transition from a capillary to a gravity-driven dynamics around 𝐵𝑜 = 1.

The factor 𝐴 also agrees well with the predictions of (3.61) and (3.62). In the main plot in fig-
ure 3.9(a), its value obtained by the same fitting process, is plotted as a function of the drop volume.
For a given fluid, 𝐴 increases with the drop volume and follows either a 𝑉 3/100 or a 𝑉 3/80 power law for
small and large Bond numbers, respectively. In figure 3.9(b), volume, density, surface tension and
viscosity effects are removed according to the spreading regime. Such normalization leads to the
determination of 𝑘𝑐 = 𝐴 (𝜂/(𝛾𝑉 30 ))1/10 for 𝐵𝑜 < 1 and 𝑘𝑔 = 𝐴 (𝜂/(𝜌𝑔𝑉 30 ))1/8 for 𝐵𝑜 > 1. The inferred
values collapse properly for the two regimes at 𝑘𝑐 ≃ 0.90 and 𝑘𝑔 ≃ 0.62 as shown in figure 3.9(b). In
particular, the value of 𝑘𝑔 obtained with different silicone oil agrees with that of the PEG measured
experimentally, 𝑘𝑔 = 0.61 ± 0.02 and that of glycerol 𝑘𝑔 = 0.62 ± 0.03 for 100 µL ≤ 𝑉0 ≤ 3000 µL.

3.2.3 From profile equations to Tanner’s law

Tanner’s law can be derived from the general equations of a spreading drop presented at the begin-
ning of this chapter. In the following, we derive analytical expressions for ℎ(𝑟 , 𝑡) and 𝑅(𝑡) from these
equations in the limit 𝐵𝑜 ≫ 1 (Lopez et al. 1976).
3.2.3.1 Flow fields

In § 3.1.1.1, flow equations for 𝑣𝑟 and 𝑣𝑧 were introduced to derive the drop profile ℎ(𝑟 , 𝑡). The
intermediate forms of 𝑣𝑟 and 𝑣𝑧 , (3.11) and (3.12), respectively, both depend on 𝑞(𝑟 , 𝑡), a function to
be determined such that 𝑃 (𝑟 , 𝑧, 𝑡) = −𝜌𝑔𝑧 + 𝜂𝑞(𝑟 , 𝑡). Using the conservation of the volume flux 𝑄 in
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Figure 3.8: (a) Experimental radius growth for silicone oil drops of different volumes extracted from the
publications gathered in table 3.3. (b) Normalized radius 𝑅/(𝜌𝑔𝑉 30 /𝜂)1/8 of drops with large Bond numbers
according to (3.62). (c) Normalized radius 𝑅/(𝛾𝑉 30 /𝜂)1/8 of drops with small Bond numbers according to (3.61).
For the publication of Tanner (1979), the volume is computed from the drop radius and contact angle of a
spherical cap: 𝑉0 = 𝜋2 𝑅2ℎ0 (1 + 3ℎ202𝑅2) = 𝜋𝑅32 1−cos(𝜃)sin(𝜃) (1 + 3(1−cos(𝜃))22 sin(𝜃)2 ) with tan(𝜃) = 2ℎ0𝑅/(𝑅2 − ℎ20). The constants𝑘𝑐/𝑔 gathered in the legend are computed using (3.61)/(3.62) from the value of 𝐴 returned by the fitting 𝑅(𝑡) =𝐴(𝑡 − 𝑡0)𝑛.
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Figure 3.9: (a) Parameters returned by the fit of experimental results, 𝑅(𝑡) = 𝐴(𝑡−𝑡0)𝑛 for drops of viscous fluids
and different volumes. Main graph: factor 𝐴, inset: exponent 𝑛. Silicone oil: see legend in figure 3.8(a), PEG
(○) and glycerol (♢). (b) Factor 𝑘𝑐/𝑔 of Tanner’s law as a function of the drop Bond number, 𝐵𝑜 = (3𝑉0/4𝜋 )2/3/𝓁 2𝑐 ,
computed according to the spreading regime, i.e. 𝑘𝑐 = 𝐴 (𝜂/(𝛾𝑉 30 ))1/10 for 𝐵𝑜 < 1 and 𝑘𝑔 = 𝐴 (𝜂/(𝜌𝑔𝑉 30 ))1/8 for𝐵𝑜 > 1. Capillary regime: 𝑘𝑐 ≃ 0.90 (pink dashed line), gravity regime: 𝑘𝑔 ≃ 0.62 (turquoise dashed line).

the radial direction, for any 𝑟 , we can determine the radial derivative of 𝑞,
𝑄 = [𝑈 𝑟𝑅 ] ℎ(𝑟 , 𝑡) = ∫ ℎ

0 𝑣𝑟 (𝑟 , 𝑧, 𝑡)d𝑧 = ∫ ℎ
0 (𝑧22 − ℎ(𝑟)𝑧 − ℎ(𝑟)𝜆) 𝜕𝑞𝜕𝑟 d𝑧,⇒ 𝜕𝑞𝜕𝑟 = −𝑈 𝑟𝑅ℎ23 − 𝜆ℎ ≃ −3𝑈𝑟𝑅ℎ2 . (3.63)

This expression of 𝜕𝑟𝑞 leads to the flow field equations in the spreading drop,

𝑣𝑟 (𝑟 , 𝑧, 𝑡) ≃ 3𝑈𝑟2𝑅ℎ2 [−𝑧2 + 2𝑧ℎ(𝑟 , 𝑡)]𝑣𝑧(𝑟 , 𝑧, 𝑡) ≃ 𝑈𝑧2𝑅ℎ3 [𝑧(ℎ − 𝑟 𝜕ℎ𝜕𝑟 ) + 32 (−2ℎ2 + 𝑟ℎ𝜕ℎ𝜕𝑟 )] (3.64)

Spreading of a rivulet (2D problem) - For a rivulet spreading in the 𝑥-direction,
𝑄 = 𝑈ℎ(𝑥, 𝑡) = ∫ ℎ

0 𝑣𝑥 (𝑥, 𝑧, 𝑡)d𝑧 ⇒ 𝜕𝑞𝜕𝑥 ≃ −3𝑈ℎ2 , (3.65)

and 𝑣𝑥 (𝑥, 𝑧, 𝑡) ≃ 3𝑈2ℎ2 [2𝑧ℎ(𝑥, 𝑡) − 𝑧2]𝑣𝑧(𝑥, 𝑧, 𝑡) ≃ 𝑧2𝑈ℎ3 𝜕ℎ𝜕𝑥 [32ℎ(𝑥, 𝑡) − 𝑧] . (3.66)

The 3D flow fields are plotted in figure 3.10(a, b) at two different times. In the subplots (c,d) and (e,f),
themapping of the radial and vertical velocity fields, respectively, show that 𝑣𝑟 > 0 and 𝑣𝑧 < 0. These
mappings also confirm the apparent vanishing velocity along the solid substrate due to the negligible
slip at the macroscopic scale (𝜆 ≪ 𝑅, ℎ0). Figure 3.10 also illustrates the lubrication approximation,
i.e. |𝑣𝑟 | ≫ |𝑣𝑧 |.
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Figure 3.10: Flow fields at two different times for a drop such that 𝑉0 = 300 µL, 𝜂 = 2.3 Pa.s, 𝜆 = 1 nm,𝓁𝑐 = 1.8 mm. The relation between the radius 𝑅 and the contact line speed 𝑈 comes from Tanner’s law. (a,b)
Flow fields, arrow color corresponds to the norm of the velocity. (c,d) Mapping of the radial velocity 𝑣𝑟 . (e,f)
Mapping of the vertical velocity 𝑣𝑧 .
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3.2.3.2 Derivation of Tanner’s law

The momentum balance in the 𝑟-direction using the expression of 𝑣𝑟 in (3.64) leads to,𝜕𝑃𝜕𝑟 = 𝜂𝜕2𝑣𝑟𝜕2𝑧 = −𝜂3𝑈𝑟𝑅ℎ2 . (3.67)

For very large drops, 𝐵𝑜 ≫ 1, capillary forces are neglected and fluid pressure is set by hydrostatics
such that 𝑃 (𝑟 , 𝑧, 𝑡) = 𝑃 𝑒𝑥𝑡 + 𝜌𝑔(ℎ − 𝑧). The momentum balance becomes (Brochard-Wyart et al. 1991)

−3𝜂 𝑈 𝑟𝑅ℎ2 = 𝜌𝑔 𝜕ℎ𝜕𝑟 . (3.68)

To go further and obtain a relation between 𝑈 (𝑡), 𝑅(𝑡) and ℎ(𝑟 , 𝑡), Lopez et al. (1976) have sought a
self-similar solution of the form,ℎ(𝑟 , 𝑡) = ℎ0(𝑡)𝑓 (𝑟) with 𝑟 = 𝑟𝑅 . (3.69)

From variable separation in the momentum balance equation, we find that

−3𝜂 𝑈 (𝑡)𝑟(ℎ0(𝑡)𝑓 (𝑟))2 = 𝜌𝑔𝑅 𝜕ℎ0(𝑡)𝑓 (𝑟)𝜕𝑟 ⇔ −𝐶 = 𝑓 2̃𝑟 𝜕𝑓𝜕𝑟 = −3𝜂 𝑈 (𝑡)𝑅𝜌𝑔ℎ0(𝑡)3 , (3.70)

with 𝐶 a positive constant (since 𝜕𝑟 𝑓 < 0). Using 𝑓 (1) = 0 for 𝑟 = 𝑅, the function 𝑓 can therefore be
written 𝑓 (𝑟) = 𝑓 ( 𝑟𝑅) = �̃� (1 − ( 𝑟𝑅)2)1/3 , (3.71)

with �̃� = ( 3𝐶2 )1/3. If we take 𝑓 such that ℎ(𝑟 = 0, 𝑡) = ℎ0(𝑡) ⇔ 𝑓 (0) = 1, then 𝐶 = 23 and 𝑓 (𝑢) =(1 − 𝑢2)1/3. The volume conservation imposes

𝑉0 = ∫ 𝑅
𝑟=0 2𝜋ℎ𝑟d𝑟 = 𝜋ℎ0(𝑡)𝑅2(𝑡) ∫ 1

𝑢=0 2𝑢𝑓 (𝑢)d𝑢 = 𝜋ℎ0(𝑡)𝑅2(𝑡) [−34 (1 − 𝑢2)4/3]10 = 34𝜋ℎ0(𝑡)𝑅2(𝑡).
(3.72)

Finally, using 𝐶 = 23 and the previous result in (3.70),

−23 = −3𝜂 𝑈 (𝑡)𝑅𝜌𝑔 ( 43 𝑉0𝜋𝑅2 )3 ⇔ 8𝑅7 d𝑅
d𝑡 = 82 ⋅ 43𝜌𝑔𝑉 309 ⋅ 33𝜋3𝜂 . (3.73)

Self-similar solution of spreading in the gravity regime

With the initial condition 𝑅(𝑡 = 0) = 0, we recover Tanner’s law, first derived thanks to a
power balance (3.60). The full derivation gives a prediction of the value of the factor 𝑘𝑔 ,

𝑅(𝑡) = 𝑘theo𝑔 (𝜌𝑔𝑉 30 𝑡𝜂 )1/8
with 𝑘theo𝑔 = ( 21035𝜋3)1/8 ≃ 0.77, (3.74)

and the corresponding height profile,

ℎ(𝑟 , 𝑡) = 4𝑉03𝜋𝑅2 (1 − ( 𝑟𝑅)2)1/3 . (3.75)
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Figure 3.11: Experiments with the PEG copolymer, 𝑉0= 300 µL. (a) Thickness at the center of the drop ℎ0
(from side-view movies), as a function of the drop radius 𝑅 (from top-view movies). (b) Normalized volume𝑉0/ (𝜋𝑅2ℎ0) as a function of normalized radius 𝑅/𝓁𝑐 . Theoretical predictions from Lopez et al. (1976) (grey
dashed line), Hocking (1983) (grey dash-dotted line) and spherical cap (pink solid line).

The solution for a 2D situation, i.e. a rivulet spreading in the 𝑥-direction, is given in the publication
of Lopez et al. (1976). The prediction for the value of the factor 𝑘𝑔 is close to the experimental mea-
surements displayed in figure 3.9(b). Also, the normalized volume 𝑉0/𝜋𝑅2ℎ0 plotted in figure 3.11(b),
is much closer to the prediction of (3.75), 𝑉0/𝜋𝑅2ℎ0 = 3/4, than to the spherical cap assumption,𝑉0/𝜋𝑅2ℎ0 = 1/2 (Redon et al. 1992). However, the variations of the normalized volume as a function
of 𝑅 would indicate that the viscosity-gravity regime is not yet reached, as emphasized by Redon
et al. (1992). Indeed, capillary forces would become negligible in comparison with viscosity and
gravity for 𝑅 ≳ 7 cm (Brochard-Wyart et al. 1991). Such a radius is not reached in the present ex-
periments, see figure 3.11(a). The quasistatic gravity-capillary model of (Hocking 1983) best fits the
experimental data, see figure 3.11.

3.2.4 Drop profile: Hocking, Tanner, and Lopez

In § 3.1.2.3, we have derived a quasistatic drop profile, far from the meniscus where the viscosity
can be neglected for moderate Bond numbers, i.e. 𝐵𝑜 = (1) (Hocking 1983). In this region, the
differential equation of drop height (3.17) simplifies into (3.28) to give the solution ℎ(0)(𝑅, 𝑉0) (3.39).
The profile ℎ(0) can be interpreted as a static solution, since it results purely from the balance of
gravity and capillary forces for a given radius and a given volume. It provides the drop profile for a
vanishing contact line velocity and implicitly depends on time through 𝑅(𝑡). Tanner (1979) found a
similar solution (3.41) based on the same arguments.

In spreading, to account for the viscous term in (3.17), perturbations can be added to these static
solutions via a𝐶𝑎 expansion ℎ = ℎ(0)+𝐶𝑎ℎ(1)+… with𝐶𝑎 ≪ 1 (Bonn et al. 2009). These perturbations
are concentrated near the contact line (Hocking 1983) and obey the Cox-Voinov law (3.25). Slip is
also added by these additional terms. By pushing the 𝐶𝑎 expansion to further orders, one recovers
the solution of (3.17) obtained by numerical integration (Sibley et al. 2015).

On the other hand, in § 3.2.3.2, the solution presented by Lopez et al. (1976) is built by seeking
a self-similar solution from the gravity and viscosity balance and returns Tanner’s law. The drop
profile is a priori only valid for large Bond numbers (Lopez et al. 1976; Hocking 1983) but the pre-
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Figure 3.12: Experiments with the PEG copolymer, 𝑉0= 300 µL. (a) Thickness at the center of the drop, ℎ0, from
side-view movies, as a function of time (main) and drop radius, 𝑅, from top-view movies, as a function of time
(inset). The red dashed line in the inset is the result of the fit by Tanner’s law (3.62) and the blue dashed line
in the main graph is the thickness predicted by (3.40). The large dots correspond to the experimental profiles
plotted in the subplots (b, c) with solid lines. (b) Comparison with the drop shape established by Lopez et al.
(1976) (dashed lines). (c) Comparison with the drop shape established by Hocking (1983) (dotted lines) and
Tanner (1979) (dash-dotted lines).

diction of the radius growth interestingly works down to 𝐵𝑜 = (1), see figure 3.8. In the present
experiments, for a drop volume 𝑉0 = 300 µL, the best agreement regarding the drop shape is met
with the solution (3.39) from Hocking (1983), see figure 3.12. The profile of Lopez et al. (1976) is
particularly poor at predicting the shape near the edge.

3.2.5 Connection with Cox-Voinov

In each of the aforementioned macroscopic profiles, either the viscosity or the capillary contribu-
tions have been neglected. However, these two ingredients are crucial near the edge, where the
drop thickness vanishes and where the interface bends. Therefore, the macroscopic profile must be
connected to a local solution that takes into account the relevant force balance, and consequently
obeys the Cox-Voinov law (3.25) or (3.27). More specifically, for a given fluid at a given measurement
height, the equation (3.27) imposes 𝑈 ∝ 𝜃3𝑎𝑝𝑝 .

Such a prediction is obtained by Tanner (1979) for small drops from dimensional analysis (see
table 3.2 for 𝛼 = 3/10). The agreement is expected since both Cox-Voinov’s and Tanner’s laws come
from a viscous-capillary balance, at the local and macroscopic level, respectively, when 𝐵𝑜 ≪ 1.

Conversely, for large drops, 𝐵𝑜 ≳ 1, gravity must be considered to establish the macroscopic
profile. One can therefore question to what extent the drop shape does not conform to the Cox-
Voinov law. The first obvious case is the self-similar shape derived from a pure viscosity-gravity
balance (Lopez et al. 1976) and shown in figure 3.12(b). The slope of the profile (3.75) near the edge
diverges for 𝑟 → 𝑅, and the contact angle is thus always 𝜃𝑎𝑝𝑝 = 𝜋/2,||||dℎd𝑟 |||| = 4𝑉03𝜋𝑅2 2𝑟3𝑅2 1(1 − ( 𝑟𝑅)2)2/3 −−−−→𝑟→𝑅 +∞. (3.76)

It is therefore incompatible with the Cox-Voinov law. For the moderate Bond number solution (3.39)
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Figure 3.13: Contact angle according to the different models. Drop volume 𝑉0 = 300 µL, radii 𝑅 = 8.8 mm,
11.7 mm, 15.6 mm, 20.8 mm and 27.7 mm (from navy blue to tangerine). (a,b) Local profile angle as a function
of the normalized radial coordinate 𝑟/𝑅 for different drop radii according to the profile of (a) Lopez in (3.75)
and (b) Hocking in (3.39). (c) Contact angle as a function of drop radius according to the profile of Hocking
(dash-dotted line) and prediction of Cox-Voinov (3.78) (solid line). The large dots correspond to the profiles
plotted in (b).

plotted in figure 3.12(c), the macroscopic contact angle behaves according to

tan (𝜃𝑎𝑝𝑝) = ||||dℎd𝑟 ||||𝑟=𝑅 = 𝑉0𝓁𝑐𝜋𝑅2𝐼2 ( 𝑅𝓁𝑐 ) 𝐼1( 𝑅𝓁𝑐) . (3.77)

with 𝐼 ′0 = 𝐼1 from the relations (3.35) and (3.36) for 𝜈 = 0. The local angle for a series of drop radii is
plotted in figure 3.13(b). It confirms that the slope is finite near the edge of the drop and varies as it
spreads. To compare the local prediction of Cox-Voinov 𝜃𝑎𝑝𝑝(𝑈 ) with the prediction from the global
shape 𝜃𝑎𝑝𝑝(𝑅), one needs a relation between 𝑈 = d𝑅

d𝑡 and 𝑅. Using Tanner’s law (3.62) for large Bond
numbers, i.e. 𝑅(𝑡) = 𝐴𝑡1/8, we obtain

𝑈 (𝑡) = 𝐴8 𝑡−7/8 = 𝐴88 𝑅−7 ⇒ 𝜃𝑎𝑝𝑝 = [9𝜂𝐴88𝛾 𝑅−7 ln(𝐿𝑚𝑎𝑐𝑟𝑜𝐿𝑚𝑖𝑐𝑟𝑜 )]1/3 . (3.78)

Experimentally, ln(𝐿𝑚𝑎𝑐𝑟𝑜𝐿𝑚𝑖𝑐𝑟𝑜 ) ≃ 12. The comparison of the contact angle predicted by the quasistatic
profile and Cox-Voinov law is displayed in figure 3.13(c). While not perfect, the agreement is sat-
isfactory, considering the numerous hypotheses drawn to obtain this result. In any case, bulk flow
is expected to alter the profile near the meniscus, which is governed by the Cox-Voinov law. This
effect is seen for 𝐵𝑜 ≥ 1 and increases with the capillary number (Reznik and Yarin 2002).
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3.3 Summary and concluding remarks

In summary, for large drops, 𝐵𝑜 ≫ 1, drop spreading is driven by a competition between gravity
and viscosity and radius growth should follow a power-law growth with an exponent 𝑛 = 1/8. This
exponent can be predicted by a force balance presented in § 3.2.1 or derived from the equations of
hydrodynamics. By omitting the capillary contribution in the equations, this derivation presented
in § 3.2.3, yields the exponent and a theoretical drop profile.

This exponent is very robust experimentally, down to relatively small drops, i.e. 𝐵𝑜 ≃ 1, as
shown in § 3.2.2. However, the associated profile fails to capture the shape of the drop for these
moderate values of Bond number, as demonstrated in § 3.2.4. Other profile solutions in this range of
Bond numbers yield good results but do not predict the radius dynamics. These analytical profiles,
together with the radius dynamics from Tanner’s law, recover experimental measurements of the
radius dynamics and the dynamic drop profile.

In particular, there is a qualitatively good agreement between the dynamic contact angle at the
macroscopic scale and the Cox-Voinov law introduced in § 3.1.2.2. This law is not specific to drop
spreading and describes the contact angle dynamics of any dynamic contact line (Marsh, Garoff,
et al. 1993). The study of contact angle dynamics is therefore a more universal problem and will be
the subject of Chapter 4. In this chapter, we will examine the effect of the addition of solid particles
on dynamic wetting at a local scale, near the contact line. Then, in Chapter 5, we will zoom out to
see if the conclusions drawn on the local scale extend to the overall dynamics of drop spreading.
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In this chapter, we investigate the results presented in the previous chapter at amesoscopic scale,
in the vicinity of the contact line. The first section describes in detail the experimental methods
and the numerical image analysis developed to extract the drop profile. The second section presents
experimental results with regular fluids to investigate the dissipation length ℎ⋆ predicted in § 3.1.2.4.
These reflections are further enriched in the third section with the addition of particles in the fluid.
The text in this chapter is an adaptation of a paper in the Journal of Fluid Mechanics (Pelosse et al.
2023), with additional results and analysis.
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4.1 Methods: tracking the drop profile

The spreading of granular suspensions is studied following a simple reproducible protocol with the
suspensions prepared according to the methods presented in § 2.2.3. The experimental apparatus
and the automatic picture analysis are detailed in this section.

4.1.1 Experimental apparatus

Figure 4.1: Sketch of the experimental apparatus.

In this chapter, we keep the drop volume constant, 𝑉0 = 300 µL (spherical radius 𝑅0 = 4.15mm).
As sketched in figure 4.1, a syringe pump pushes the fluid at a flow rate of 10 mL.min−1. The drops
are made out of a steel needle with an inner diameter of 4 mm. The lower end of the needle is
5 mm above the solid substrate, which is a silicon wafer (Si-Mat, total thickness variation < 1 µm).
The drops then gently touch the solid substrate, detach from the needle and spread over the wafer.
Prior to an experiment, the wafer surface is cleaned with ethanol and ultrapure water and dried
with clean-room wipes. Plasma cleaning does not alter the results or the quality of the data and was
therefore considered an unnecessary precaution.
Side and top view series of pictures are captured with two synchronized monochrome cameras
(Basler acA2440-35um, 2000×2448 pixels) on which 1:1 macro lenses are mounted (I2S visions, MC
series). These optics have no distortion and a high spatial resolution (3.45 µm/pixel). The
camera frame rates are either 5 or 10 fps for the side view. Such time resolution is necessary at the
beginning when the drop spreads quickly. Frame rates of 0.5 fps are enough for top views. Indeed,
very little information can be extracted at the beginning of the spreading due to the steepness of the
interface. On the contrary, interesting phenomena are observed with these top views at long times
when the spreading slows down.
For a given suspension composition, the corresponding set of experiments is usually made of 10
runs, corresponding to 10 different spreading drops. To avoid any concentration gradient out of
the tube/needle, the first 10 drops are released before the first acquisition (i.e. a total amount of∼ 3 ml). After performing these blank runs, the experiments are reproducible, indicating that the
outgoing fluid is a homogeneous suspension at the desired volume fraction 𝜙. Temperature and
humidity variations are monitored thanks to systematic viscosity measurements performed during
the experiments using a capillary viscometer, see § 2.2.3.2.
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4.1.2 Side view analysis

With appropriate lighting and with a background covered with black papers, the drops captured
by the side camera appear bright on a dark background, as seen in figure 4.2(a). The drop outlines
shown in figure 4.2(b) are obtained with the sobel function of the skimage.filters package in Python.
It is further thresholded to extract the contact line coordinates and the drop profile, ℎ(𝑥) (𝑥 = 0
being the position of the contact line). As seen in figure 4.2(c), the drop profile is smoothed with a
spline of degree 3, i. e. a piece-wise polynomial function. With these functions regular at zero, first,
and second order of derivation, the profile slope and its curvature are continuous. The distance be-
tween knots (points where the spline is tied) is initially small for large slopes to ensure good spline
adjustment. It is then increased to prevent meaningless oscillations at small slopes, when the drop
flattens. The smoothed drop profile in plotted in figure 4.2(d). The dynamic contact angle, 𝜃𝑎𝑝𝑝 ,
plotted in figure 4.2(d), is inferred from the derivative of the spline. The contact line velocity, 𝑈 , is
obtained by locating the triple contact line. Improper fits are discarded if necessary. The results are
found to be similar to those obtained by adjusting manually a straight line to the air/liquid interface
near the contact line in the range of 30◦ ≲ 𝜃𝑎𝑝𝑝 ≲ 85◦. Once performed, the fitted profile can be
differentiated once or twice at any point of the interface.
With this automatic surface detection and fitting process, only the position of the contact line and
the spline coefficients have to be stored. Contrary to our first paper with hand-made measurements
of contact angles (Zhao et al. 2020), it is easier to choose and set the measurement height, ℎ, with
this algorithm. This precaution regarding the measurement height of the contact angle is often over-
looked in the literature. However, the contact angle depends on the measurement height/distance
to the contact line, see figure 4.2(d).
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Figure 4.2: Data extraction from a picture of a spreading drop. Reflection on the wafer helps to detect the
advancing contact line. (a) Raw picture, the red rectangle corresponds to the region enlarged in panel (c). (b)
Sobel filtering of the raw picture. (c) Enlargement of the vicinity of the contact line showing the fitted spline
of the drop profile (orange curve) and the contact line (orange dot). (d) Results extracted from the spline
fitting. Right axis: drop height, ℎ(𝑥) (orange line), as a function of the distance to the contact line, 𝑥 . Left axis:
contact angle (gray line) computed from the spline derivation according to 𝜃𝑎𝑝𝑝(𝑥) = tan−1 ( dℎd𝑥 ).
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4.2 Dynamical wetting of continuous, Newtonian fluids

4.2.1 Cox-Voinov law for regular fluids

Drop-spreading experiments with 3 regular viscous liquids (PEG, glycerol and silicone oil) have
been performed. Thier properties are gathered in table 3.1. For a given fluid, the experiment is
reproducible. Again, please note that viscosity variations are accounted for in the capillary number,𝐶𝑎 = 𝜂𝑈 /𝛾 . The apparent contact angle 𝜃𝑎𝑝𝑝 is measured at a drop height, ℎ = 50 µm, and plotted
as a function of the contact line speed 𝑈 in figure 4.3(a). The choice of the measurement height is
justified in the following.
In figure 4.3(b), 𝜃3𝑎𝑝𝑝 is plotted in log-log representation, as a function of the capillary number for
the three fluids. They all obey the Cox-Voinov law (3.27) since 𝜃3𝑎𝑝𝑝 ∝ 𝐶𝑎. Yet, the collapse is not
perfect and the relative offset of the 3 curves in the log-log plot may come from a variation of the
factor ln(ℎ/ℎ𝑚). This factor depends on ℎ𝑚, the vertical microscopic cut-off length that is related to
the slip length 𝜆 which varies with the fluid (Neto et al. 2005; Lauga et al. 2007). In particular, for
polar liquids, a higher dipole moment seems to be related to a lower slip length and therefore leads
to a larger factor (Cho et al. 2004).

4.2.2 Inflection point

In § 3.1.2.4, we have identified the length scale, ℎ⋆, that characterizes the height of the interface at
the transition between the viscous-capillary regime governed by the Cox-Voinov relation (3.27) and
the viscous-capillary-gravity regime where gravity starts to prevail and where an inflection point
should exist. We start our experimental characterization of ℎ⋆ by investigating the shape of the
interface in the case of simple fluids. Inspired by the form of the Cox-Voinov law (3.27), we measure,
for capillary numbers in the range 0.0025 ≤ 𝐶𝑎 ≤ 0.0125, how the cube of the angle between the
interface and the horizontal, 𝜃3𝑎𝑝𝑝 , depends on the interface height, ℎ, see figure 4.4(a).
The data come from the average over 7 experimental runs. We identify two regions. Starting from
the contact line, for any capillary number, 𝜃3𝑎𝑝𝑝 is first independent of the height at which it is
measured, see figure 4.4(a). A plateau can thus be defined for ℎ ranging from 10 to almost 100 µm.
Discussion of these results in the light of the Cox-Voinov law would lead us to expect that 𝜃3𝑎𝑝𝑝 is an
increasing function of ℎ. However, two experimental facts may prevent us from seeing this increase.
First, an inflection point can be seen in some experiments, see for instance figure 4.2(d), but the
process of averaging over several runs likely smears out the change of curvature. Second, the length
scales that we can probe are at least three orders of magnitude larger than the nanometric cut-off
scale, 𝜆. We thus expect the logarithmic term to increase slowly with distance, leading to difficulties
in distinguishing the shape of the interface from a straight line. Similar conclusions regarding the
local slope near the contact line have been reached by (Rio 2005). It is worth mentioning that the
plateau value increases with the capillary number as expected from the Cox-Voinov law (3.27). Away
from the contact line, the angle decreases, suggesting a growing contribution of gravity to the force
balance.
Comparison of the datasets is made easier if we normalize 𝜃3𝑎𝑝𝑝(ℎ) by its asymptotic value 𝜃3𝑎𝑝𝑝(ℎ →0) and ℎ by the capillary length 𝓁𝑐 , see figure 4.4(b). From these plots, we define the experimental
transition height ℎ⋆ as the height at which 𝜃3𝑎𝑝𝑝(ℎ) departs from 𝜃3𝑎𝑝𝑝(ℎ → 0) by 10 %. Figure 4.4(c)
shows the inferred ℎ⋆ as a function of 𝐶𝑎 for different simple fluids. Normalized transition heights,ℎ⋆/𝓁𝑐 plotted in figure 4.4(d), collapse for the different fluids and increase as 𝐶𝑎1/3, in agreement
with the prediction (3.53) of dimensional analysis in § 3.1.2.4. We also report in this graph the
measurements of the inflection point of the interface obtained by Tanner (1986), although the present
interpretation as an upper limit of dissipation was not mentioned in this work. These data agree well
with the present estimates of ℎ⋆ as well as with the 𝐶𝑎1/3 scaling in (3.53). Note that this scaling still
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Figure 4.3: Spreading of 300-µL drops made of regular Newtonian fluids: PEG (♦ 7 runs), silicone oil V1000 (■
7 runs), and glycerol (▲ 6 runs). (a) Contact angle, 𝜃𝑎𝑝𝑝 , as a function of the contact line speed, measurement
height: 50 µm. (b) 𝜃3𝑎𝑝𝑝/9 as a function of the capillary number, 𝐶𝑎. The value of the factor ln(ℎ/ℎ𝑚) is inferred
from the equations of the straight lines.

holds when varying the threshold between 5 % and 15 % as shown in figure 4.5. The threshold of 10 %
provides the best match with the measurements of Tanner (1986). If we grant ℎ⋆ the interpretation
of a viscous-capillary cut-off length and refer to figure 4.4(d), we can thus conclude that measuring
contact angles at heights well below 100 µm warrants probing the region of the droplet where the
apparent dynamic contact angle is not set by a balance between viscous dissipation and capillarity.

In the following, we define the apparent contact angle 𝜃𝑎𝑝𝑝 as theunequivocal inflection angle
that we measure at ℎ = 50 µm. Most of the time, little care is given to the definition of where the
contact angle is measured. The few cautious publications also measure it at the inflection point i.e.
on the plateaus observed in figure 4.4(a,b) (Tanner 1986; Pahlavan et al. 2015).
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Figure 4.4: (a) Cube of the contact angle, 𝜃3𝑎𝑝𝑝 , versus themeasurement height, ℎ, averaged over 7 experimental
runs for 5 capillary numbers, 𝐶𝑎 = 0.0025 (♢), 0.005 (○), 0.0075 (△), 0.01 (□ ), 0.0125 (▽), using a Newtonian
fluid (PEG copolymer). (b) Normalized cube of the contact angle, 𝜃3𝑎𝑝𝑝/𝜃3𝑎𝑝𝑝(ℎ → 0), versus normalized height,ℎ/𝓁𝑐 , with 𝓁𝑐 = 1.82 mm. Black dotted line: threshold for the plateau length at 𝜃3(ℎ⋆) = 0.9𝜃3(ℎ → 0).
(c,d) Transition height, ℎ⋆, and normalized transition height, ℎ⋆/𝓁𝑐 , versus the capillary number, 𝐶𝑎, for 3
Newtonian fluids: PEG (♦), silicone oil V1000 (■, 𝜌 = 970 kg/m3, 𝛾 = 21 mN/m, 𝜂 = 1.0 Pa.s, 𝓁𝑐 = 1.46 mm),
and glycerol (▲, 𝜌 = 1260 kg/m3, 𝛾 = 63 mN/m, 𝜂 = 1.3 Pa.s, 𝓁𝑐 = 2.23 mm). Inflection-point measurements
(⋆) of Tanner (1986) with highly viscous silicone oil. Black solid line: ℎ⋆/𝓁𝑐 = 0.3𝐶𝑎1/3.
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Figure 4.5: Effect of the threshold (from 5 % to 15 %) to measure ℎ⋆ as shown in figure 4.4(b) for PEG exper-
iments. A value of 10 % appears to be the best match to recover the inflection heights reported by Tanner
(1986) with silicone oil.

4.3 Granular suspensions: probing dissipation with particles

4.3.1 Cox-Voinov law

We now test the relevance of ℎ⋆ to the spreading of drops of granular suspensions. Because they
are density-matched to the suspending fluid and do not modify surface tension, the particles are ex-
pected to modify only viscous dissipation and to leave gravitational and capillary effects unchanged.
Figure 4.6(a) presents the variation of 𝜃3𝑎𝑝𝑝 with the measurement height, ℎ, for monomodal granular
suspensions of 10-µm particles and bimodal suspensions of 10-80 µm particles with 𝜁10 = 50%, at
a constant capillary number 𝐶𝑎0 = 𝜂𝑓𝑈 /𝛾𝑓 , where subscript 0 in the capillary number emphasizes
that it is computed using properties of the suspending fluid. The inset presents the corresponding
normalized quantities, 𝜃3𝑎𝑝𝑝/𝜃3𝑎𝑝𝑝(ℎ → 0) and ℎ/𝓁𝑐 , respectively. Reference data for the pure suspend-
ing fluid at 𝐶𝑎0 are also provided for comparison in figure 4.6(a). The behavior of 𝜃3𝑎𝑝𝑝(ℎ) for the
suspensions is similar to that seen for the reference fluid, see also figure 4.4(a,b). A plateau region
is again observed close to the contact line, for 10 ≲ ℎ ≲ 100 µm, while there is a decay at larger
distances. Addition of particles leads to an increase in the plateau value of 𝜃3𝑎𝑝𝑝 , which depends on
the particle mixture components. Provided measurements are undertaken within the plateau region
at constant height across all experiments, we can obtain an unequivocal apparent contact angle, at a
given capillary number. The dependence between these two quantities is then a priori interpretable
in terms of the Cox-Voinov relation. Again, the measurement height is set at ℎ = 50 µm. This cho-
sen height seems a good compromise between smaller heights having large measurement noise and
larger heights that might fall outside of the region where viscosity matters. Note that taking ℎ in
the range of 20 µm to 100 µm yields similar results for the apparent wetting viscosity that will be
introduced below.
Figure 4.6(b) displays typical variations of 𝜃3𝑎𝑝𝑝/9 as a function of the capillary number of the sus-
pending fluid, 𝐶𝑎0. Data from different experimental runs are plotted for the same fluids (suspen-
sions or reference fluid) as those used in figure 4.6(a). For a given fluid, the tight collapse of the
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Figure 4.6: (a) Cube of the contact angle, 𝜃3𝑎𝑝𝑝 , versus the measurement height, ℎ, for different fluids: pure
suspending fluid (▲), 10-µm monomodal suspension (■), and 10-80 µm bimodal suspension at 𝜁10 = 50% (♦),
resulting from the analysis of 7, 8, and 10 drop-spreading runs, respectively, and at the same fluid capillary
number 𝐶𝑎0 = 𝜂𝑓𝑈 /𝛾𝑓 = 0.0025. Inset: normalized cube of the contact angle, 𝜃3𝑎𝑝𝑝/𝜃3𝑎𝑝𝑝(ℎ → 0), versus
normalized height, ℎ/𝓁𝑐 . Blue dashed-dotted line: selected measurement height ℎ = 50 µm. (b) Variation of𝜃3𝑎𝑝𝑝/9 as a function of 𝐶𝑎0 performed at a height ℎ = 50 µm for the different runs for spreading drops made of
pure suspending fluid (▲), 10-µmmonomodal suspension (■), and 10-80 µmbimodal suspensions at 𝜁10 = 50%
(♦). The different color shades represent different experiments. The dashed lines correspond to the average
of the linear fits of data coming from each run and are used to infer the relative apparent viscosity, 𝜂𝑤 .
different 𝜃3𝑎𝑝𝑝(𝐶𝑎0) curves coming from the different runs bears witness to the good reproducibility
of the experiments. All the datasets collapse on straight lines with unity slopes in log-log represen-
tation, i.e. 𝜃3𝑎𝑝𝑝/9 ∝ 𝐶𝑎0. For each run, a linear fit is performed and the average (dashed) line for
a given fluid is the average of the corresponding linear fits. Angles typically lie between 30° and
90°, the upper limit being set by the algorithm. Tracking is interrupted below 30° due to the failure
of the Cox-Voinov law. Protrusions of the particles are observed at small contact angles and might
be responsible for this discrepancy. At contact angles larger than 30°, the drop profile remains very
smooth and does not exhibit any protrusion as shown for 80-µm particles in figure 4.7.
Data from the suspending fluid are in excellent agreement with the Cox-Voinov law (3.27) as men-
tioned in § 4.2.1. The logarithm factor for the PEG is found to be 11.9, in good agreement with
values in the literature (Voinov 1976). It is important to note that measurements are undertaken
at a constant height, ℎ, within the plateau region and not at a constant 𝑥 . However, since 𝑥 and ℎ
are of the same order of magnitude and sufficiently large compared to 𝜆, the logarithm factor is not
varying significantly and can be considered constant.
For suspensions, data for 𝜃3𝑎𝑝𝑝(𝐶𝑎0) in figure 4.6(b) equally collapse on a straight line with a slope of
unity in the log-log representation (orange and blue dashed lines): the spreading of these materials
still seemingly follows a Cox-Voinov relation (3.27). However, since the values of 𝜃3𝑎𝑝𝑝 in the
plateau are changed by the addition of particles as shown in figure 4.6(a), the different 𝜃3𝑎𝑝𝑝(𝐶𝑎0)
lines are shifted with respect to each other in figure 4.6(b), in agreement with previous experiments
(Zhao et al. 2020). Assuming that the logarithmic factor has the same order of magnitude for the pure
suspending fluid and for suspensions (as we do not expect the particles to modify the mechanics at
the nanometric scale), we can superimpose all curves and recover the Cox-Voinov law (3.27) for all
liquids if we adjust the viscosity used in the capillary number, 𝐶𝑎 = 𝜂𝑈 /𝛾 , such that 𝜂 = 𝜂𝑓 𝜂𝑤 and
where 𝜂𝑤 is the relative apparent wetting viscosity of the suspensions. Again, the shift and
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Figure 4.7: Enlargement of the contact line region for a dense-suspension dropmade of 80-µmparticles (drawn
in white). The apparent contact angle indicated by the thin white lines is 𝜃𝑎𝑝𝑝 = 30°.

consequently the apparent wetting viscosity strongly depends on the particle mixture components.
Here, we see that a suspension of 10-µm particles has a larger apparent wetting viscosity than a
10-80-µm bimodal suspension.
The behavior of the apparent viscosity, 𝜂𝑤 , is examined in detail in the following, for suspensions
consisting of different particle combinations.

4.3.2 Monomodal suspensions

4.3.2.1 Wetting viscosity of monomodal suspensions

The apparent wetting viscosity of monomodal suspensions, 𝜂𝑤 is documented in our first publica-
tion (Zhao et al. 2020) for particle sizes ranging from 10 µm to 250 µm and particle volume fractions
of 20 %, 30 %, and 40 %. I have performed again the experiments and the analysis for most of the sizes
at 𝜙 = 40 % and additional data at 𝜙 = 30 % have been realized by Siham Alaoui during her 2-month
internship. The value may differ slightly when comparing manual and automatic measurements but
the conclusions are unchanged. Wetting viscosity for different measurement heights and particle
sizes are plotted in figure 4.8. As mentioned in the previous paragraph, the choice of the measure-
ment height does not affect too much the apparent contact angle 𝜃𝑎𝑝𝑝 , provided it remains in the
plateau region, for instance between 20 µm and 100 µm. The apparent wetting viscosity extracted
from the 𝜃𝑎𝑝𝑝(𝐶𝑎)-curves is therefore weakly affected by the choice of ℎ, regardless of the particle
size, as shown in figure 4.8.
For a given particle size 𝑑 , the apparent wetting viscosity, 𝜂𝑤 , increases with the solid loading of
the suspension, 𝜙, as would the bulk viscosity. However, unlike the bulk viscosity, figure 4.8
highlights a strong particle size effect on this apparent wetting viscosity. As the particle size
increases, the apparent wetting viscosity decreases sharply. For the largest particles, the apparent
viscosity derived for the apparent contact angle is close to that of the pure fluid while the bulk one is
ten time larger. Interestingly, the effect of particles appears for sizes smaller than 100 µm. It is inter-
esting to notice that even with the smallest particles, 𝜂𝑤 is smaller (by a factor of order 2) than the
corresponding value of its bulk viscosity. Indeed, at 𝜙 = 40%, the suspension relative bulk viscosity
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Figure 4.8: Effective relative wetting viscosity,𝜂𝑤 , inferred from the Cox-Voinov law for monomodal suspen-
sions at two solid volume factions 𝜙 = 30% (open symbols) and 𝜙 = 40% (solid symbols) for three measure-
ments heights of the contact angle, (a) ℎ = 50 µm, (b) ℎ = 20 µm, and (c) ℎ = 100 µm.

lies around 𝜂𝑠 ≃ 10. This significant decrease is correlated with a region devoid of particles near the
contact line, where particles are excluded due to their size as explained in the next paragraphs.

4.3.2.2 Distance to the contact line

In figure 4.9(a,b,d,e), top-view pictures of the edge of monomodal drops are displayed. They reveal a
region devoid of any particles in the immediate vicinity of the contact line, between the wafer (black
region) and a particulate phase. All these pictures are taken for the same contact angle, 𝜃𝑎𝑝𝑝 = 35°,
with suspensions made of different particle sizes from 10 µm to 80 µm at a constant solid volume
fraction, 𝜙 = 40%. The extent of the pure-fluid region increases with the particle size and decreases
with the contact angle according to the graph in subplot (c). Basic geometric considerations sketched
in figure 4.10, predict a minimum approach distance of a particle in a wedge,𝐿𝑑 = 12 ( 1tan (𝜃) + 1sin (𝜃) − 1) , (4.1)

where 𝐿 is defined as the size of the pure fluid region, see figure 4.10. This prediction is plotted as a
function of the apparent contact angle in the black solid line in figure 4.9(f). It sets the lower bound
of the distance of approach for any particle size and appears to predict the distance of approach of
the largest particles. Measurements at smaller 𝜃𝑎𝑝𝑝 are available in Zhao et al. (2020) (dotted lines).
In the following, every consideration is made for 𝜃𝑎𝑝𝑝 ≥ 35° (gray dashed line). Top views reveal that
a particle approaches the contact line the closer it can. The inability of the particles to approach the
contact line implies that no additional dissipation takes place when the surface height is less than
a particle diameter and that the extent of this region is roughly proportional to a particle diameter
according to (4.1).
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Figure 4.9: Distance of approach of particles for monomodal suspensions at 𝜙 = 40%. Top view pictures for𝜃𝑎𝑝𝑝 = 35°, for (a) 10-µm, (b) 20-µm, (d) 40-µm and (e) 80-µm particles. Picture widths: 250 µm. (c) Size of the
pure fluid region 𝐿, for different particle sizes as a function of the apparent contact angle 𝜃𝑎𝑝𝑝 . (f) Normalized
size of the pure fluid region, 𝐿/𝑑 , for different particle sizes as a function of the apparent contact angle 𝜃𝑎𝑝𝑝
Black solid line: geometrical prediction (4.1), gray dashed line: 𝜃𝑎𝑝𝑝 = 35°. Dotted lines: data extracted from
(Zhao et al. 2020).

Figure 4.10: Schematic of a particle with diameter 𝑑 in a wedge. The minimum distance of approach, 𝐿, of the
particle depends on the particle size and on the contact angle. The angle between the horizontal and the free
surface is assumed to be the apparent contact angle 𝜃𝑎𝑝𝑝 .
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4.3.3 Bimodal suspensions

In nature and in industry, monodisperse suspensions only represent a few exceptions. Bimodal sus-
pensions can be seen as a first step towards polydisperse solid blends. Interestingly, a smart choice
of particle sizes and relative fractions in a bidisperse system can partially mimic an equivalent poly-
disperse suspension (Pednekar et al. 2018).

Using the same method and analysis, the effective wetting viscosity of bimodal suspensions is
measured. It is worth emphasizing again that the number of parameters goes from two parameters
in the monomodal case (𝜙 and 𝑑), to four in the bimodal suspensions (𝜙, 𝜁𝑠𝑚𝑎𝑙𝑙 , 𝑑1 and 𝑑2). To limit
the number of experiments, we fix the total solid volume fraction to 𝜙 = 40%, leaving nonetheless
three parameters to explore. The different size blends used are 10-20 µm, 10-40 µm, 10-80 µm, 20-
80 µm, 40-80 µm, 80-140 µm and 80-250 µm with different proportions of small particles, namely
different 𝜁𝑠𝑚𝑎𝑙𝑙 . Therefore, 𝜁 = 0% and 𝜁 = 100% represent monomodal suspensions made of large
and small particles, respectively.
In figure 4.11, top views of the vicinity of the contact line for the different bimodal suspensions are
displayed when 𝜃𝑎𝑝𝑝 = 35°. We observe strong size segregation, especially at large size ratios,
e.g. 𝑑1= 10 µm and 𝑑2= 80 µm. For a given set (𝑑1, 𝑑2), the distance to the contact line of a given
particle size seems to depend poorly on 𝜁𝑠𝑚𝑎𝑙𝑙 contrary to its linear density. See for instance the 40-
µm particles with the 10-µm particles at 𝜁10 = 25, 75 %. While the large particles look tightly packed
at 𝜁10 = 25%, the packing looks very loose at 𝜁10 = 75%. However, this statement does not seem to
hold for small size ratios when the large particles makes up most of the solid phase. In this case,
both the large and the small particle packings look quite loose and disordered, e.g. 40-80 µm
particles at 𝜁𝑠𝑚𝑎𝑙𝑙 = 25%. The solid phase organization for bimodal suspension is therefore complex
and raises questions regarding dissipation in the vicinity of the contact line.
To this end, the effective wetting viscosity of bimodal suspensions has been been measured and is
plotted in figure 4.12. The symbol colors are related to the particle size(s) and the 𝑥-axis corresponds
to the small particle proportion in the bimodal suspension. Special cases are more thoroughly ex-
amined in the next paragraphs to gain a better understanding of this complex graph.

4.3.4 Suspensions with particles having a large difference in size

We focus first on suspensions consisting of particles having a large difference in diameter, 𝑑1 = 10 µm
and 𝑑2 = 80 µm (𝑑2/𝑑1 = 8). Figure 4.13(a) shows that the relative wetting viscosity of these suspen-
sions, 𝜂𝑤 , increases with increasing fraction of the small particles, 𝜁10, with a steeper growth beyond𝜁10 ≈ 50%. This behavior is in stark contrast with the 𝜁10-dependence of the relative bulk viscosity of
the same mixtures shown in figure 2.22 and plotted again in the inset in figure 4.13(a). The relative
bulk viscosity of the blends presents a minimum at 𝜁10 = 35%, i.e. a mixture containing roughly
a third of small particles. This minimum viscosity is 40 % smaller than the values obtained in the
monomodal cases at 𝜁10 = 0% and 100 % (consisting of monomodal suspensions of 80 and 10 µm,
respectively) but still larger than the wetting effective viscosity, 𝜂𝑤 .
In figure 4.13(b), top-view pictures of the 10-80 µm bimodal suspensions near the moving contact
line support the previous explanation about the origin of the discrepancy between the apparent
viscosity from bulk rheology, and its counterpart extracted from the dynamics of spreading. The
images are obtained for the same dynamic contact angle, 𝜃𝑎𝑝𝑝 = 35 °. As shown previously in the
monomodal case in figure 4.9, the particles segregate according to their size and the distance to the
contact line depends on their diameter. Again, this distance appears to be larger in the case of the
80-µm particles, 𝜁10 = 0% (leftmost picture), than in the 10-µm case, 𝜁10 = 100% (rightmost picture).
For intermediate values of 𝜁10, the 10-µm particles are able to move in between the 80-µm particles.
The particles closest to the contact line arrange in an orderly, crystalline structure. This ordering
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Figure 4.11: Top-view pictures of the vicinity of the contact line for different bimodal suspensions, 𝜃𝑎𝑝𝑝 = 35°.
A line corresponds to a given set of (𝑑1, 𝑑2) and a column to a given proportion of small particles 𝜁𝑠𝑚𝑎𝑙𝑙 .
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Figure 4.12: Effective wetting viscosity of bimodal suspensions at 𝜙 = 40% as a function of 𝜁𝑠𝑚𝑎𝑙𝑙 . One-color
symbols correspond to the wetting viscosity of monomodal suspensions, plotted in figure 4.8 for ℎ = 50 µm.
Two-color symbols correspond to the wetting viscosity of bimodal suspensions, with corresponding colors
compared to the monomodal case (see legend). Gray dashed line: pure-fluid case, 𝜂𝑤 = 1.
is particularly marked for the 80-µm particles, seen on the left pictures of figure 4.13(b). The large
80-µm particles seem to be maintained at the same distance from the contact line as small 10-µm
particles are added, i.e. as 𝜁10 is increased, but their linear density decreases.
The real capillary number of all these experiments (using the effective viscosity of the suspension,𝐶𝑎 = 𝜂𝑤𝐶𝑎0) lies around 2 ⋅ 10−3, leading to ℎ⋆ ∼ 100 µm according to (3.53) and using the pref-
actor inferred from the figure 4.4(d), i.e. ℎ⋆ ≈ 0.3 𝓁𝑐 𝐶𝑎1/3. The discrepancy between the viscos-
ity measured in the bulk and that estimated from spreading experiments recovers the results with
monomodal suspensions. The 80-µm particles experience strong confinement in the viscous-
capillary region since ℎ⋆ ∼ 𝑑2, and only a few of them can penetrate this region and poorly con-
tribute to dissipation. In contrast, ℎ⋆ is 10 times larger than the diameter of the 10-µm particles.
Even if these small particles experience confinement close to the contact line, a significant part of
the viscous-capillary region is filled with a dense phase of small particles akin to a suspen-
sion bulk. Thus, the contribution of the 10-µm particles to dissipation in the Cox-Voinov region is
expected to be larger than that of the 80-µm particles, as reported in experiments with monomodal
suspensions. In the case of the bimodal suspensions studied in this section, increasing the small
particle fraction, 𝜁10, is expected to lead to a continuous increase in 𝜂𝑤 , as observed in figure 4.13(a).

4.3.5 Varying the size of the large particles

Wenow turn to bimodal suspensions consisting of 10-µmparticles but with large particles of variable
diameter (i.e. 𝑑2 = 20, 40, 80 µm). Bimodal suspensions formulated this way should have a minimum
bulk viscosity at 𝜁𝑠𝑚𝑎𝑙𝑙 = 25% according to figure 2.22. Figure 4.14(a) shows that the apparent
wetting viscosity of these suspensions ismaximum in themonomodal case and decreases for bimodal
suspensions as the large particle size increases, i.e. with increasing 𝑑2/𝑑1. This result confirms
that particles with a diameter much smaller than ℎ⋆ increase the dissipation in the Cox-
Voinov region. This trend is similar to that of the bulk viscosity, 𝜂𝑠 , with increasing 𝑑2/𝑑1 for
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Figure 4.13: Experimental results for suspension blends with fixed 𝑑1 = 10 µm and 𝑑2 = 80 µm and varying𝜁10 at 𝜙 = 0.4. (a) Relative wetting viscosity, 𝜂𝑤 , as a function of the fraction of the small particles in the solid
phase, 𝜁10. Inset: bulk viscosity, 𝜂𝑠 , of the corresponding suspensions versus 𝜁10. The dotted lines are guides
for the eyes. (b) Top-view pictures taken when 𝜃𝑎𝑝𝑝 = 35◦ at ℎ = 50 µm for 𝜁10 = 0, 25, 50, 75, and 100 % from
left to right, respectively. Scale bar: 200 µm.

𝜁𝑠𝑚𝑎𝑙𝑙 = 25%, see the inset figure 4.14(a). However, the magnitude of the size-ratio effect comes
from two distinct physical origins. For example, the value of the apparent wetting viscosity, 𝜂𝑤 , for𝑑2/𝑑1 = 8 is close to that of the suspending fluid at small values of 𝜁𝑠𝑚𝑎𝑙𝑙 whereas the value of the bulk
viscosity, 𝜂𝑠 , is much larger. The decrease in the bulk viscosity comes from the size ratio affecting the
maximum packing fraction 𝜙𝑐 (larger for large 𝑑2/𝑑1), while the wetting viscosity reduction comes
from confinement effects near the contact line as the dissipation is greater for particles that can
efficiently reach the dissipation region near the contact line (𝑑 ≪ ℎ⋆). In the case of figure 4.14, the
small particles are participating less in the dissipation as 𝜁10 is small and the overall dissipation is
mostly set by the large particles.
Figure 4.14(b) shows that the distance to the contact line of the large particles, 𝐿, increases with their
diameter 𝑑2 for bimodal suspensions at 𝜁𝑠𝑚𝑎𝑙𝑙 = 25% (two-color symbols) as skected in figure 4.14(d).
In addition, the distance to the contact line is not sensibly affected by the small particles and is
therefore very close to the one of the large particles alone in monomodal suspensions at 𝜙 = 40%
(one-color symbols). Again, this length follows the prediction of a geometrical model describing the
minimal distance of approach of a particle in a wedge (4.1) (black dashed line). The relation (4.1)
thus holds both in monomodal and bimodal using the diameter of the corresponding particles. In
the monomodal case, it determines the size of the depleted region (Zhao et al. 2020).
Top-view pictures in figure 4.14(c) confirm the existence of size segregation at the contact line
as already mentioned in § 4.3.4 and sketched in figure 4.14(d). The large particles form ordered
rows behind the small particle region as already noted in § 4.3.4. However, it seems that the 10-µm
particles do not go through the network formed by the 20-µm particles, see the second image in
figure 4.14(c). We move to this aspect of suspension spreading in the following section with clearer
visualizations with larger particles.
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Figure 4.14: Experimental results for 10-µmmonomodal suspension and bimodal blends with 𝑑1 = 10 µm and
varying 𝑑2 (= 20, 40, 80 µm) and 𝜁10 at fixed 𝜙 = 0.4 (a) Relative wetting viscosity, 𝜂𝑤 , as a function of 𝜁10.
Inset: bulk viscosity, 𝜂𝑠 , of the corresponding suspensions versus 𝜁10. The dashed lines are guides for the eyes.
(b) Distance to the contact line of the large particles as a function of 𝑑2 in monomodal (one-color symbols)
and bimodal (two-color symbols) suspensions with 𝑑1 = 10 µm and 𝜁10 = 25% at 𝜃𝑎𝑝𝑝 = 35°. The dashed line
corresponds to the geometrical prediction (4.1). (c) Top-view pictures taken when 𝜃𝑎𝑝𝑝 = 35° at ℎ = 50 µm for
monomodal suspension of size 10 µm and bimodal suspensions with (𝑑1, 𝜁10) = (10 µm, 25 %) and 𝑑2 = 20, 40,
80 µm (from top to bottom, respectively). Scale bar: 200 µm. (d) Sketch of a horizontal slice near the contact
line, increasing 𝑑2 from top to bottom.
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4.3.6 Varying the size of the small particles

Figure 4.15(a,b) gathers the wetting viscosity, 𝜂𝑤 , of the monomodal 80 µm suspension and bimodal
blends having a fixed 𝑑2 = 80 µm and varying 𝑑1 and 𝜁𝑠𝑚𝑎𝑙𝑙 . When the solid phase mainly consists of
small particles, i.e. 𝜁𝑠𝑚𝑎𝑙𝑙 = 75%, corresponding to subplot (a), 𝜂𝑤 decreases with increasing 𝑑1. This
observation confirms again that the wetting viscosity is set by the possibility for particles having
a diameter much smaller than ℎ⋆ to approach close to the contact line. However, a continuous de-
crease of 𝜂𝑤 with 𝑑1 is absent when 𝜁𝑠𝑚𝑎𝑙𝑙 = 25%, see subplot (b), i.e. when large particles constitute
a significant portion of the solid blend. The same trend is observed for 𝜁𝑠𝑚𝑎𝑙𝑙 = 50%. The relative
wetting viscosity, 𝜂𝑤 , reaches a maximum around 𝑑1/𝑑2 = 0.25 but it otherwise shows low values,
even lower than those obtained for the monomodal suspensions of 80-µm particles for 𝑑1/𝑑2 = 0.5 or𝑑1/𝑑2 = 0.125. In other words, for 𝜁𝑠𝑚𝑎𝑙𝑙 = 25 − 50%, the apparent wetting viscosity of the 10-80 µm
and 40-80 µm blends are particularly low compared to that of the 20-80 µm and even to that of the
monomodal 80-µm suspension.
Top views shown in figure 4.15(c,d) provide some clues about the behavior of the apparent wet-
ting viscosity. At 𝜁𝑠𝑚𝑎𝑙𝑙 = 25%, see subplot (d), for small values of 𝑑1/𝑑2 (two topmost pictures),
small particles flow through the large particle network and get close to the contact line. In contrast,
for 𝑑1/𝑑2 = 0.5 (pictures on the third row from the top), the presence of 40-µm particles disrupts
the ordering of the 80-µm particles, compared to the other cases. A similar trend is observed for𝜁𝑠𝑚𝑎𝑙𝑙 = 50%. In contrast, for 𝜁𝑠𝑚𝑎𝑙𝑙 = 75% and for any value of 𝑑1, there is a large amount of ordered
small particles, whatever their size, near the contact line in front of the large spheres, see subplot (c).
Geometrical considerations can explain the effect observed for 𝑑1/𝑑2 = 0.5. Two large particles with
a radius 𝑅2 = 𝑑2/2 sitting on the surface of a solid come to contact if the distance, 𝑙, between them
goes to zero, see figure 4.16. A small particle of radius 𝑅1 can pass through the hole between the
two particles and the solid surface if its radius is at most 𝑅1 = 𝑅2/4. Consequently, while the 10-µm
and 20-µm particles can flow through the interstices created by the large 80 µm particles, the 40-
µm particles cannot. Instead, these particles induce defects in the 80-µm particle network, leading
to the distortion of the large-particle matrix when the portion of small particles is not too large
(𝜁𝑠𝑚𝑎𝑙𝑙 ≲ 50 %). This loss of organization seems detrimental to the local dissipation according to the
effective viscosity drop in figure 4.15(b). These geometrical considerations coupled with the wetting
viscosity measurements suggest that the structure and therefore the local solid volume fraction
near the contact line is a key element to explain the value of the wetting viscosity of gran-
ular suspensions.
However, the above geometrical arguments cannot explain the lower values of 𝜂𝑤 for the 10-80 µm
blends compared to those of the 20-80 µm blends for 𝜁𝑠𝑚𝑎𝑙𝑙 = 25% in figure 4.15(b). Instead, this
lessening effect may be attributed to bulk effects affecting the wetting viscosity. The inset of fig-
ure 4.15(b) indicates that the bulk viscosity is significantly smaller for the 10-80 µm blends than for
the 20-80 µm blends for a given value of 𝜁𝑠𝑚𝑎𝑙𝑙 . Moreover, the bulk viscosity for 𝜁𝑠𝑚𝑎𝑙𝑙 = 25% is lower
than for 𝜁𝑠𝑚𝑎𝑙𝑙 = 75% as it corresponds to the minimum bulk viscosity for bimodal blends, as seen
in figure 2.22. Bulk effects are therefore evidenced in this specific example to affect the value of 𝜂𝑤
and they actually happen to overcome size effects. It is worth noting that, in the monomodal case,
the variation in wetting viscosity can only come from confinement, i.e. size effect near the contact
line, since the bulk viscosity does not vary with particle size, as shown in figure 2.21. The case of
fixed 𝑑2 and increasing 𝑑1 evidences two competing effects: confinement effect governing the
particle ability to approach the contact line and the variation of the bulk viscosity with 𝜁𝑠𝑚𝑎𝑙𝑙
and 𝑑1/𝑑2. In conclusion, for bimodal suspensions, a high wetting viscosity results from a complex
compromise between a high fraction of small particles, 𝜁𝑠𝑚𝑎𝑙𝑙 , a large size ratio, 𝑑2/𝑑1, and a high
bulk viscosity, 𝜂𝑠 , in addition to size effects already demonstrated.
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Figure 4.15: Experimental results for suspension blends with 𝑑2 = 80 µm and varying 𝑑1 (= 10, 20, 40 µm) (a,b)
Relative wetting viscosity, 𝜂𝑤 , as a function of 𝑑1 for 𝜁𝑠𝑚𝑎𝑙𝑙 = 75% (a) and 𝜁𝑠𝑚𝑎𝑙𝑙 = 25% (b). The blue dashed
lines indicate the viscosity value for the monomodal suspension consisting of the sole large particles of size
80 µm. Inset: bulk viscosity of the corresponding suspensions. (c,d) Top-view pictures taken when 𝜃𝑎𝑝𝑝 = 35◦
at ℎ = 50 µm for bimodal suspensions with 𝑑2 = 80 µm, 𝜁𝑠𝑚𝑎𝑙𝑙 = 75% (c) and 𝜁𝑠𝑚𝑎𝑙𝑙 = 25% (d). Small particle
size is increasing from top to bottom (𝑑1 =10, 20, 40 µm and monomodal suspension of size 80 µm). Scale bars:
200 µm.
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4.3 Granular suspensions: probing dissipation with particles

Figure 4.16: Sketch of two large particles separated by a small one on a solid plane.
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4.4 Summary & discussion

The spreading of large drops onto a solid substrate is a rich and complex phenomenon by itself
that has been mostly studied for regular Newtonian fluids, theoretically, experimentally or numer-
ically. A limited number of works have focused on non-Newtonian fluids (shear-thinning, shear-
thickening or viscoelastic fluids) and exhibit non-trivial spreading dynamics that require further
attention (Liang et al. 2009). To the best of our knowledge, the spreading of granular suspensions
has received little to no attention. Yet, adding particles affects the spreading dynamics in a non-
trivial way as there exists a high degree of inhomogeneity in the particulate drop going from a
random solid bulk phase far from the contact line (ℎ ≫ 𝑑), to ordered dense monolayers when parti-
cles undergo confinement (ℎ ≳ 𝑑), and finally to a particle-depleted region in the very close vicinity
of the contact line (ℎ < 𝑑). Using granular suspensions nonetheless offers an interesting way to
investigate dynamical wetting as one can take advantage of this complex particulate organization
to modify locally the dissipation near the contact line.
Dimensional analysis of the equation governing the spreading of large drops (𝐵𝑜 ≳ 1) shows that
the profile of the liquid/gas interface between the droplet and the atmosphere is set by a viscous-
capillary balance as long as its height is smaller than a length scale ℎ⋆ ∼ 𝓁𝑐𝐶𝑎1/3 beyond which
the drop profile becomes also sensitive to gravity. This scaling has been validated for both sim-
ple fluids and suspensions and care was taken to perform measurements below this length scale
(typically 50 µm) to ensure that gravity is negligible across the range of capillary numbers that we
can probe. Drops of granular suspensions were then seen to follow the Cox-Voinov law relating the
contact angle to the capillary number, in a similar way as that found for regular Newtonian fluids.
However, the relative apparent viscosity, 𝜂𝑤 , involved in the capillary number, differs from that of
the bulk suspension, 𝜂𝑠 .
In the present experiments, the typical magnitude of ℎ⋆ ∼ 100 µm lies in the size range of the non-
Brownian particles used. Therefore, dissipation is affected by particles during the spreading when𝑑 ≲ ℎ⋆, while the spreading dynamics is close to that of the pure fluid when 𝑑 ≳ ℎ⋆, i.e. when par-
ticles cannot reach the viscous-capillary region as sketched in figure 4.17(a,b), respectively. These
geometrical considerations help rationalize that the relative wetting viscosity, 𝜂𝑤 , depends on
the particle size, 𝑑 , unlike the relative bulk viscosity, 𝜂𝑠 , which only depends on particle volume
fraction, 𝜙. The relative wetting viscosity, 𝜂𝑤 , is found to be maximum for the smallest parti-
cles and decreases to values close to the suspending fluid viscosity for 𝑑 ≳ 100 µm even though𝜂𝑠 is much larger than 𝜂𝑤 ≃ 𝜂𝑓 for these dense suspensions (𝜙 = 0.4), see figure 4 of Zhao et al.
(2020). This size cut-off of the wetting viscosity is thus roughly of the order of ℎ⋆. This confirms
that particles affect the wetting dynamics only if their size is small enough for them to reach the
region dominated by viscosity.
It may seem surprising that the Cox-Voinov law applies to such a complex system. Indeed, the

possibility for the particles to occupy the viscous-capillary region in the case of a spreading droplet
evolves with time as ℎ⋆ ∝ 𝐶𝑎1/3 ∝ 𝑈 1/3 decreases with increasing time. However, in the present
experiments, the variation of 𝐶𝑎 over only one decade prevents a strong change in ℎ⋆. Performing
measurements in a much lower 𝐶𝑎-range, while rather challenging, may reveal intriguing effects.
Predicting the value of the apparent wetting viscosity when 𝑑 ≲ ℎ⋆ remains a difficult task. The
value of the bulk viscosity, 𝜂𝑠 , certainly affects the wetting viscosity, 𝜂𝑤 . However, knowing whether
this observation comes from long-range effects of the bulk phase far from the contact line is not easy.
One must also keep in mind that 𝜂𝑠 varies with 𝜙𝑐 −𝜙 and strongly diverges as 𝜙 → 𝜙𝑐 . For bimodal
suspensions, a lower 𝜂𝑠 is the signature of a higher 𝜙𝑐 for the corresponding solid phase and there-
fore produces a lower 𝜂𝑤 , as seen in the present experiments.
Another fundamental ingredient to consider in predicting 𝜂𝑤 is the possibility for the particles to
crystallize in the viscous region. For monomodal suspensions, a monolayer of several rows of or-
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Figure 4.17: Sketch of two situations during the spreading of a granular suspension. (a) Small particles, 𝑑 < ℎ⋆,
(b) large particles 𝑑 ≳ ℎ⋆.
dered particles is always observed in the vicinity of the contact line. In the bimodal case, crystalliza-
tion of the two population sizes can be hindered when the small particles cannot flow through large-
particle holes, leading to a significant diminution of the apparent wetting viscosity. The structure
of the particulate network near the contact line therefore directly affects the drop spreading
dynamics captured in 𝜂𝑤 . It also explains that even for the smallest particles for which 𝑑 < ℎ⋆, the
wetting viscosity, 𝜂𝑤 , cannot reach the bulk value, 𝜂𝑠 , because of this ordered region which pos-
sesses a lower viscosity.
This ordering very likely comes from the confinement of the particles near the contact line
combined with the pressure of the dense particulate phase farther out. Rheological measurements
combined with direct visualization of dense colloidal suspensions (𝜙 = 0.52) have clearly established
the relation between a significant viscosity drop and moderate confinement, owing to the ordering
of the particulate phase in sliding layers (Ramaswamy et al. 2017). Conversely, for much dilute
granular suspensions (𝜙 ≤ 0.2), rheological measurements have exhibited a monotonous increase
in dissipation for gap sizes of ten diameters and less (Peyla and Verdier 2011). This apparent dis-
agreement could be explained by the nature of the solid phase (colloidal/granular) or the dissipation
mechanisms (friction/hydrodynamics) which depend on the solid volume fraction (Gallier, Lemaire,
Peters, et al. 2014). Indeed, at low volume fraction, dissipation is mainly due to hydrodynamic inter-
actions while frictional contacts dominate for dense suspensions and may crucially depend on the
local solid structure (Guazzelli and Pouliquen 2018).
With confinement strengthening, complex behavior becomes even more apparent, e.g. viscosity
minima when the gap thickness is commensurate with the particle diameters (Ramaswamy et al.
2017). Such oscillatory values of the viscosity as a function of the gap have been reported under
high confinement and high shear in numerical simulation of dense granular suspensions (Fornari
et al. 2016). In the present experiments, confinement effects may however be less easy to quantify
for the following reasons. Confinement is changing over time as the drop spreads and the local fluid
thickness varies with the radial position. Moreover, confinement is set by a solid surface and a free
interface that can deform to relax high stress, contrary to solid boundaries in a rheometer and most
of the simulations.
Finally, the present work may help to understand the spreading of suspensions that are closer to
those used in industrial processes and have a wide range of particle sizes (e.g. from sub-micron to
hundreds of microns in cement paste, see Bentz et al. 1999; Celik 2009).
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In the previous chapter, we examined the drop shape in the region of the contact line at typical
measurement heights of less than a hundredmicrons. The timescales considered were rather "short",
typically 300 s.
As discussed in Chapter 3, spreading can also be studied on a global scale by tracking the radius
growth over time , see § 3.2. I showed in § 3.2.5 that local and global approaches are connected for a
simple continuous fluid. However, extending this property to granular suspensions is not straight-
forward. In this chapter, global dynamics i.e. the dynamics of the droplet radius, is investigated on
much larger timescales, up to 100 000 s, to test the validity of theoretical predictions established for
continuous fluids. In particular, we will study how radius evolution is affected by the addition of
particles and compare the macroscopic dynamics with that of a regular fluid. We remind the reader
that for Bond numbers greater than unity, drop spreading obeys Tanner’s gravity-driven law,

𝑅(𝑡) = 𝑘𝑔 (𝜌𝑔𝑉 30𝜂 ) 𝑡1/8 for 𝐵𝑜 > 1. (5.1)
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5.1 Apparatus and methods

Preliminary experiments and testing of the apparatus were carried out with Maël Lebon, a 2-month
trainee during the summer of 2022. Drop spreading on a smooth solid substrate is investigated
with the apparatus sketched in figure 5.1. Radius growth is recorded with an Imaging Source
monochrome camera DMK33UX174 (captor size 2.3 MP) mounted with a distortionless macro lens
(reference VS-LLD30). The camera is typically 50 cm above the solid substrate. The spatial res-
olution is 45 µm/pixel. A framerate of 1 s−1 appears as a good compromise to capture the early
dynamics of high-viscosity fluids and their long-time spreading dynamics. For some experiments, a
synchronized side-view acquisition has been added to capture the drop profile, for instance in § 5.5.
Drops are made either using a syringe pump connected to a large needle (inner diameter 3 mm)
or manually with a spatula. The latter ensures better control of the solid concentration, 𝜙, of the
drops of suspensions with the largest particles of 550 µm. Drop volume variability is larger with this
method. To tackle this issue, every droplet is carefully weighted at the end of the experiment
with a scale readability of 10 mg i.e. a volume uncertainty smaller than 10 µL.
Two kinds of solid substrate have been used: rectangular Microscope slides (Scientific Glass Labo-
ratories Ltd) and circular fused silica substrates made by the French company neyco. In any case,
the spreading liquid is in (quasi) total/complete wetting with an equilibrium contact angle close
to zero. Anyway, the substrate wettability should not affect the spreading dynamics (Cazabat and
Stuart 1986). On the contrary, its roughness is more critical and can lead to a significant slowing of
the radius growth (Cazabat and Stuart 1986). Before an experiment, the substrate is cleaned thor-
oughly with deionized water and ethanol. It is additionally treated with a plasma cleaner (HARRICK
PLASMA, PDC-002-CE) during at least 1 min. This last step does not change the early time dynam-
ics studied in the previous chapter, but appears to be an efficient way to avoid pinning the contact
line dynamics during longer experiments.

Figure 5.1: Sketch of the experimental apparatus to study radius evolution of a spreading drop.
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5.2 Data analysis

5.2.1 Drop radius detection

The droplet contact radius, i.e. the distance of the contact line to the center of the droplet, is mea-
sured with an automatic routine using the hough_circle function from the transform module of the
skimage python package. The raw picture shown in figure 5.2(a) is first blurred over 3-5 pixels using
a gaussian kernel (function gaussian from the filtersmodule of skimage), see figure 5.2(b). This pre-
liminary operation leads to better results. The canny function of the featuremodule then detects the
edges, see figure 5.2(c). A circular Hough transform applied to the previous picture detects circles
with a specified radius range. In figure 5.2(d), the best circle is plotted.

5.2.2 Time offset, volume and viscosity variations

Tanner’s law does not account for the radius evolution through the whole process of spreading, and
up to two regimes may precede this Tanner’s regime. Before Tanner’s regime, drop radius grows
as 𝑅 ∼ 𝑡1/2 whatever the wetting power of the liquid during an inertial stage (Winkels et al. 2012).
Experiments indicate that the duration of this regime increases with the drop size and shortens with
the drop viscosity (Biance et al. 2004). This inertial regime is anyhow extremely short, from 10 to
100 ms for millimetric glycerol or water drops, respectively. This regime would be preceded by a
primary viscous stage with 𝑅 ∼ 𝑡 , of increasing duration with the ambient fluid viscosity (Mitra and
Mitra 2016). In any case, the final viscous Tanner’s regime (5.1) is reached within a second.

However, the beginning of an experiment is ill-defined with the methods described in § 5.1.
Indeed, when the fluid touches the substrate and starts spreading, it is still attached to the needle.
Tanner’s law is only expected once the drop has detached from the needle. The radius is thus not
equal to zero at the beginning of free spreading. Depending on the fluid properties and on the
volume, the drop is attached to the needle for a few seconds to one minute. For this reason, radius
data are fitted with a parameterized function including a time offset 𝑡0 (Redon et al. 1992),𝑅(𝑡, 𝑡0, 𝐴) = 𝐴(𝑡 + 𝑡0)1/8 (5.2)

where 𝑡 is the real experimental time and the factor should obey 𝐴 = 𝑘𝑔 (𝜌𝑔𝑉 30 /𝜂)1/8 according to
(5.1), with 𝑘𝑔 a constant independent of drop volume, density and viscosity. The fitted parameters 𝑡0
and 𝐴 are estimated by the function curvefit of the scipy.optimize python module. This correction
is necessary and efficient to remove the initial bending on raw data curves, see figure 5.3(a, b).
Other publications have circumvented this ill-defined initial timewith an initial radius, i.e. 𝑅(𝑡, 𝑅0, 𝐴) =𝑅0 + 𝐴𝑡1/8 (Saiseau et al. 2022). This method is not satisfying with our data, see figure 5.3(c).
In addition to the bending coming from the initial spreading stage, one needs to account for volume
and viscosity variations. To remove volume and viscosity effects, a normalized radius,𝑅∗ = 𝑅 (𝜂𝑓 /𝑉 30 )1/8 , (5.3)

returns very good results and collapses all the experimental curves, see figure 5.3(d). The true drop
volume, 𝑉0, is computed from themass of the drop and PEG viscosity, 𝜂𝑓 , is measured by themeans of
a capillary viscometer during an experiment, see § 2.2.3.2. Thisnormalization nicely collapses all
the drop volumes along a straight line with slope 1/8 in log-log representation as evidenced
in figure 5.3(d). Experiments with pure, continuous fluid thus confirm the validity of Tanner’s law
(5.1), regarding the time exponent and the expression of the factor 𝐴 = 𝑘𝑔 ( 𝜌𝑔𝑉 30𝜂 )1/8

.

NB:With small drops (𝐵𝑜 < 1), a transition from a viscous-capillary to a viscous-gravity regime
is reported in the literature (Cazabat and Stuart 1986; Levinson et al. 1988). Such a change in power
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Figure 5.2: Automatic drop detection of the position of the contact line. The raw picture (a) is blurred locally
over 5 pxl (b). Edges (c) are detected using a Canny edge detector with a Gaussian width of 1 pxl. The Hough
transform (d) then returns the best circle fitting the outer radius.
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Figure 5.3: Experimental measurements of drop radii as a function of time with pure PEG. Target drop vol-
umes: 100 µL (○), 300 µL (□), 1000 µL (♢). (a) Raw data, solid and dashed lines show the slopes expected by
Tanner’s law in the gravity and capillary regime, respectively. Data corrected with (b) a time offset, 𝑡0, or (c)
a radius offset, 𝑅0. (d) Data with the time offset correction and radius normalization to remove volume and
viscosity variability, 𝑅∗ = 𝑅(𝜂𝑓 /𝑉 30 𝑡)1/8.
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law is not seen in experiments with large drops (Levinson et al. 1988). In any case, this time offset
only affects short time behavior and does not modify the long time dynamics which is undoubtly
the result of a balance between gravity and viscosity with a power-law exponent of 1/8, as seen with
raw data in figure 5.3(a).

5.3 Spreading of pure fluid

We investigate radius dynamics for droplet volumes 𝑉0, ranging from 100 µL to 3000 µL (correspond-
ing to 2.6 ≤ 𝐵𝑜 ≤ 24.8) with the pure PEG copolymer. Raw measurements of 𝑅(𝑡) are displayed in
figure 5.4(a). We observe a gravity-driven spreading, with a final slope 1/8 for all volumes, in agree-
ment with the condition 𝑅0 ≫ 𝓁𝑐 , i.e. 𝐵𝑜 >> 1. As explained in § 5.2.2, data scattering for a given
target volume can come from volume and viscosity variations. To correct these effects, normalized
radius curves are plotted in figure 5.4(b). Also, the initial bending is removed with a time offset (∼
10 s), see § 5.2.2. The prefactor 𝐴 in (5.2) is determined from a fit of this law to the data. The result-
ing values are plotted in the inset of subplot (b) as a function of drop volume. Data collapse on a
straight line with slope 3/8, in agreement with the expected volume dependency in (5.1). In the main
graph, the collapse of 30 experiments is excellent and leads to a good precision of the experimental
determination of the constant 𝑘𝑔 = 0.61 ± 0.02.
The correct exponent and the factor behavior of the experiments in comparison with (5.1), confirm
the robustness of Tanner’s law in the gravity-driven regime with our suspending fluid. We now
present the results of the same experiments, carried out with drops of granular suspensions. Adding
particles to the fluid raises numerous questions. In particular, does Tanner’s law still hold for these
highly discontinuous fluids? If so, looking back at the results obtained when studying the shape of
the interface in the vicinity of the contact line, what is the effective viscosity at the global scale? As
shown in the previous chapter, this quantity is nontrivial in a wedge. It depends on particle size and
is much smaller than the bulk viscosity measured in a regular rheometer. In the next section, we
examine at a global scale the drop spreading of granular suspensions.

Figure 5.4: Radius evolution of 30 drops made of pure fluid for volumes ranging from 100 µL to 3000 µL (see
legend). (a) Raw measurements of radius over time. Black solid line has a slope 1/8. (b) Normalized radius,𝑅⋆, with a time offset 𝑡0. Solid line: best fit of the whole data set, 𝑅∗ = 1.94 (𝑡 + 𝑡0)1/8. Inset: factor 𝐴 in (5.2)
computed from curve fitting.
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5.4 Tanner’s law & granular suspensions

In all this section, we remain in the dense regime, i.e. bulk volume fraction 𝜙 = 40%, and restrict
the study to three drop volumes, 𝑉0 = 100 µL, 300 µL and 1000 µL corresponding to Bond numbers𝐵𝑜 = 2.6, 5.3 and 11.9, respectively.

5.4.1 Radius evolution

Figure 5.5 shows normalized radii for suspensions made of PEG copolymer and polystyrene particles
of diameters 20 µm, 40 µm, 80 µm, 140 µm, 250 µmand 550 µm in subplots (a, b, c, d, e, f), respectively.
Experiments carried out with 10-µm particles exhibit odd behavior discussed in § 5.4.5.1. The three
volumes correspond to different symbols, 100 µL (○), 300 µL (□) and 1000 µL (♢). Viscosity used in
the normalization of 𝑅 is that of the pure fluid, 𝜂𝑓 . Indeed, at this point, we do not know what is the
most relevant viscosity but this one has the advantage of removing temperature effects.
For a given particle size (i.e. in a given subplot), different volumes collapse well under normalization
and behave as a power law of time with an exponent 1/8 at early times, in a similar manner than
pure fluid in figure 5.4(b). Therefore, granular suspensions obey Tanner’s law at early times with a
radius growth 𝑅 ∼ 𝑡1/8. This first Tanner-like regime is discussed in § 5.4.2. However, drops made of
the largest particles exhibit a change of behavior with a significant slowdown of spreading
in figure 5.5(e, f). This breakdown of Tanner’s law is investigated in § 5.5.

5.4.2 Effective viscosity of granular suspensions in the Tanner regime

At first, we focus on the beginning of spreading. In the main graphs in figure 5.5, normalized radii
are plotted for granular drops as a function of time. Raw data are displayed in the insets. Black
solid lines on each of these graphs indicate where pure fluid experiments lie according to the results
presented in figure 5.4(b). Tanner’s law thus looks compatible with granular suspensions as the
curves are parallel with these lines with a slope 1/8 in log-log representation. However, it appears
that the results for the drops made of suspension do not collapse with that of the pure fluid and are
shifted below. We define the normalized factor,𝐴∗ = 𝐴(𝑉 30𝜂𝑓 )1/8 , (5.4)

related to the curve offset of 𝑅∗ in log-log representation with 𝐴 determined by fitting (5.2) to the
data between 0 s and 200 s. The pure-fluid viscosity, 𝜂𝑓 , and true drop volume, 𝑉0, are used for this
normalization, similarly to that of radius. This parameter 𝐴∗ is plotted in the inset of figure 5.6 for
drops of pure fluid (white symbols) and suspensions (colored symbols). For any particle size or drop
volume, the value of this parameter in the presence of particles lies below that of the pure fluid,𝐴∗0 ≃ 1.94 (black solid line).
According to Tanner’s law (5.1), the normalized factor 𝐴∗ only depends on 𝑘𝑔 , 𝑔 and 𝜌. Considering
that we are using density-matched suspensions, 𝜌 is the same as that of the pure fluid. Also, the
first two parameters are not affected by the addition of particles. To collapse all the data points, the
only possibility is to replace the viscosity used for normalization, 𝜂𝑓 , with an effective viscosity. To
compare this effective viscosity with that of the bulk, we write the suspension viscosity in Tanner’s
law, 𝜂𝑓 × 𝜂𝑇 (𝑑, 𝑉0), where 𝜂𝑇 depends a priori on drop volume and particle diameter. Smaller values
of 𝐴∗ in the inset in figure 5.6 indicate that the pure fluid viscosity is underestimating viscous dis-
sipation in granular suspension, we should thus have 𝜂𝑇 > 1. The effective relative viscosity of the
suspension 𝜂𝑇 is computed according to𝐴 = 𝑘𝑔 (𝜌𝑔𝑉 30𝜂𝑓 𝜂𝑇 )1/8 ⇔ 𝜂𝑇 = (𝑘𝑔𝐴 )8(𝜌𝑔𝑉 30𝜂𝑓 ) = (𝐴∗0𝐴 )8(𝑉 30𝜂𝑓 ) = (𝐴∗0𝐴∗)8 . (5.5)
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Figure 5.5: Radius evolution for drops made of suspensions with different volumes, 100 µL, 300 µL and 1000 µL
(○, □, ♢ symbols, respectively) and different particle sizes, 20 µm, 40 µm, 80 µm, 140 µm, 250 µm and 550 µm
(subplots (a, b, c, d, e, f), respectively). Particles are made of polystyrene and are suspended in density-
matched PEG copolymer. Main graphs: normalized radius 𝑅∗ versus 𝑡 + 𝑡0, see § 5.2.2. Black solid lines: best
fit of the data obtained with pure fluid drops, 𝑅∗ = 1.94 (𝑡 + 𝑡0)1/8. Pink solid lines: prediction of Tanner’s law
with suspension bulk viscosity, 𝜂𝑠 . Insets: raw measurements of radius versus time.
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Figure 5.6: Main graph: relative effective viscosity, 𝜂𝑇 in Tanner’s law versus particle diameter, 𝑑 , from (5.5)
for drops of granular suspensions with different volumes (100 µL, 300 µL and 1000 µL), and particle sizes
(from 20 µm to 550 µm). Red dashed line and pink rectangle: average and standard deviation of 𝜂𝑇 over all the
experiments. Grey solid line: corresponding bulk viscosity, 𝜂𝑠 of the suspensions. Inset: Normalized factor𝐴∗ = 𝐴 (𝜂𝑓 /𝑉 30 )1/8 versus particle diameter 𝑑 . Clear symbols correspond to experiments with pure PEG and
the black solid line to the average value 𝐴∗0 ≃ 1.94

.

In figure 5.6, this effective viscosity of Tanner’s law, 𝜂𝑇 , is plotted for drops of different volumes
and suspensions made with different particle sizes. It is always larger than one (black solid line),
meaning that the presence of the particles increases dissipation in the flow. Yet, it is much smaller
than the relative viscosity of the bulk 𝜂𝑠 ≃ 10 for these dense monomodal suspensions (grey solid
line). In figure 5.5, the prediction of Tanner’s law using suspension bulk viscosity is plotted in pink
solid lines. Experimental results irrefutably confirm that the effective viscosity is not that of the
bulk. Interestingly, we find that 𝜂𝑇 ≃ 2.3±0.4 (red solid line in the pink rectangle) regardless of drop
volume and particle size in figure 5.5.

5.4.3 Polydisperse suspensions

Two series of experiments with polydisperse suspensions have been carried out for drop volumes
100 µL, 300 µL and 1000 µL. Particles are in polystyrene and are suspended in density-matched PEG
copolymer. Four diameters are mixed to obtain a total solid volume fraction 𝜙 = 40%, with each
diameter accounting for 10% of the total volume in each case. The first suspension is made of 10 µm,
20 µm, 40 µm and 80 µm particles and the corresponding results are plotted in figure 5.7(a). The
second suspension is made of 20 µm, 40 µm, 80 µm and 140 µm particles and the corresponding
results are plotted in figure 5.7(b).
In the first case, spreading stops above a critical radius for any drop volume, see figure 5.7(a). Such
behavior is reminiscent of pure monomodal suspensions of 10-µm particles, presented in figure 5.10
in § 5.4.5.1. In contrast, the spreading of the second polydisperse suspension is very similar to
previous monomodal cases displayed in figure 5.5(a,b,c,d). The radius growth of this polydisperse
suspension seemingly follows Tanner’s law, and exhibits a 1/8 slope in figure 5.7(b).
Top views of the late stage of spreading for these polydisperse suspensions are provided in figure 5.8.
In addition to the different drop radii, particle organization displays completely different structures.
In subplot (a), the suspension made of 10 µm, 20 µm, 40 µm and 80 µm particles is split into two
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Figure 5.7: Drop spreading of polystyrene polydisperse suspensions made of (a) 10 µm, 20 µm, 40 µm and
80 µm particles and (b) 20 µm, 40 µm, 80 µm and 140 µm particles. Main graphs: normalized radius 𝑅∗ versus𝑡 + 𝑡0, see § 5.2.2. Black solid lines: best fit of the data obtained with pure fluid drops, 𝑅∗ = 1.94 (𝑡 + 𝑡0)1/8.
Insets: raw measurements of radius versus time.

regions, a pure fluid ring near the contact line and a relatively homogeneous suspension in the
center of the drop. In subplot (b), a nice size segregation has developped behind the pure fluid
region. An enlargement of the different rings is provided in subplot (c). The region identified by
”40” should also contain 20-µm particles and so on. At the moment, we don’t really understand how
the small 10-µm particle can stop so abruptly the spreading, see § 5.4.5.1. Size segregation likely
develops under confinement and is thus prevented in the first situation with a rather thick drop.
This effect of the small particles only reveals at long times, typically after 1000 s and hopefully does
not affect the previous results obtained with these particles.

Figure 5.8: Late stage of spreading of polymodal suspensions. Top views of a drops made of (a) 10 µm, 20 µm,
40 µm and 80 µm particles (b) 20 µm, 40 µm, 80 µm and 140 µm particles. Scale bar: 2 mm, total picture widths:
16.7 mm (c) Enlargement of the pink rectangle in subplot (b). Regions identified according to: wafer (W), pure
fluid (F) and particle sizes in micrometers. Total picture width: 4.4 mm.

In the following, we exclude the polydisperse suspension with 10-µm particles and focus on
the second polydisperse suspension. Despite the highly heterogeneous structure observed in fig-
ures 5.8(b,c), this suspensionmade of 20 µm, 40 µm, 80 µm and 140 µmparticles spreads like a regular
fluid and obeys Tanner’s law, see figure 5.7(b). Analysis of spreading returns an effective viscosity𝜂𝑝𝑜𝑙𝑦𝑇 = 1.8 ± 0.3, i.e. a slightly smaller value than that of monomodal suspensions, 𝜂𝑚𝑜𝑛𝑜𝑇 = 2.3 ± 0.4,
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see § 5.4.2. A first and hasty conclusion would therefore state that the decrease in wetting viscosity
is larger by 20 % with a polydisperse suspension. However, before jumping to this conclusion, we
remind the reader that for a given value of 𝜙, the bulk viscosity of a polymodal suspension is smaller
than that of the monomodal system with the same fraction of solid. In table 5.1, bulk and effective
wetting viscosity of monomodal and polymodal suspensions are gathered. On the last line, the ratio
of the bulk and effective wetting viscosity is computed for the two systems and falls very close. The
decrease in viscosity during spreading of monomodal and polymodal suspensions is very similar.
It would be slightly larger for a monomodal suspension but further experiments are required to
consolidate this result.

Suspension Monomodal Polymodal
Bulk viscosity 𝜂𝑠 10 6.7
Effective spreading viscosity 𝜂𝑇 2.3 1.8
Ratio 𝜂𝑠/𝜂𝑇 4.3 3.7

Table 5.1: Bulk and effective wetting viscosity of monomodal and polymodal suspensions for 𝜙 = 40%.
5.4.4 Discussion on the drop in viscosity

This effective Tanner viscosity 𝜂𝑇 is thus relevant to describe the global dynamics of the drop. It
differs from the effective wetting viscosity 𝜂𝑤 extracted from the Cox-Voinov law in Chapter 4. In-
deed, 𝜂𝑤 decreases with increasing particle size, 𝑑 , and reaches a value of one corresponding to the
pure fluid for a particle cutoff size ≈ 100 µm. Again, this cutoff is explained by the fact that the shape
of the interface is not affected by dissipation above this typical height. The difference between 𝜂𝑤
and 𝜂𝑇 is not surprising as they account for two different energy balances at the local or global
scale, i.e. from a balance of capillary and viscous forces or a balance between gravity and viscous
forces, respectively.

Tanner’s viscosity also happens to bemuch smaller than the bulk viscosity of the suspen-
sion. Indeed, for such monomodal granular suspensions, the relative bulk viscosity is 𝜂𝑠 ≃ 10 for𝜙 = 40%, irrespectively of particle size. Several mechanisms could account for this decrease in dis-
sipation in comparison to the bulk case.

A first possibility is that a significant slip occurs next to the surface of the substrate, see fig-
ure 5.9(a). The creation of a pure-fluid lubrication film near the wall leads to smaller shear stress on
the particulate phase. This effect yields an apparent smaller viscosity (Jana et al. 1995). In a rheome-
ter, rough walls circumvent this issue by trapping the first layer of particles in the asperities of the
surface. Of course, present experiments with an advancing contact line would be difficult to discuss
on such a surface. Unavoidable wall slip could therefore account for a lesser dissipation compared
to a bulk suspension.

Another difference may come from the suspensionmicrostructure under confinement. In par-
ticular, layering under confinement, sketched in figure 5.9(b), can result in a significant decrease
in the effective viscosity (Ramaswamy et al. 2017; Fornari et al. 2016). In dense suspensions, layering
easily spans over 10 particle radii from a wall (Gallier, Lemaire, Lobry, et al. 2016). The size of the
ordered region, i.e. the number of layers, increases sharply with solid volume fraction above 𝜙 = 40%
and with increasing confinement. The high monodispersity of the particles we use is particularly
prone to create such regular structures. To test the contribution of microstructure to this decrease
in viscosity, experiments with polydisperse suspensions have been carried out. Polydispersity is an

113



5

Chapter 5 : Tanner’s law
5.4 Tanner’s law & granular suspensions

efficient manner to prevent layering and its consequence on suspension rheology as evidenced by
the experiments of Ramaswamy et al. (2017). Yet, our experiments show that polydispersity hardly
affects the dynamics of the radius, see § 5.4.3. This hypothesis is thus not relevant to fully account
for the present observations.

Figure 5.9: Possible mechanisms accounting for the
decrease in viscosity during the spreading of a granu-
lar drop. (a) Wall slip, (b) layering and microstrucure,
(c) non-Newtonian effects, or (d) concentration gradi-
ent due to shear-induced particle migration.

Of course, the flow in a spreading drop is
very different from a viscometric, pure-shear
flow such as that in a rheometer. The shear com-
ponent across drop thickness is supplemented
with an extensional flow, in both the radial
and the orthoradial directions, see figure 5.9(c).
In a regular Newtonian fluid, the extensional
viscosity in these flows is simply three times
that of the shear viscosity measured in rota-
tional rheometers for instance (Trouton 1906).
The ratio of the extensional and shear viscos-
ity, named after Trouton, can be different in non-
Newtonian, complex fluids. For instance, the ex-
tensional viscosity, and consequently Trouton’s
ratio, of polymers increases drastically as poly-
mer chains are stretched (Bach et al. 2003). Nu-
merical simulation suggests that Trouton’s ratio
in granular suspensions would also increase for
frictional particles near jamming, for 𝜙 ≳ 54%
(Cheal and Ness 2018). However, granular sus-
pensions should exhibit the same Trouton ra-
tio, as that of aNewtonianfluid at lower vol-
ume fraction. This result is corroborated exper-
imentally by the Newtonian behavior at the be-
ginning of pinch-off with granular suspensions
for instance (Bonnoit, Bertrand, et al. 2012) Inter-
estingly, numerical simulation in an extensional
flow suggests that the Newtonian behavior would be preserved with granular suspensions made of
frictionless particles (Cheal and Ness 2018). For this reason, frictionless particles could be used to
test the effect of the extensional component of the flow during drop spreading of granular suspen-
sions. Again, without additional pieces of evidence, the hypothesis of non-Newtonian behavior is
not really satisfactory, and the suspensions presently used should behave like a regular Newtonian
fluids at 𝜙 = 40%.

Concentration gradients in the flow could also explain the apparent decrease in viscosity. In
addition to the variations induced by confinement, granular suspensions can also become heteroge-
neous under heterogeneous shear flow. Mappings of the work rate of viscous forces in the drop (not
included in the manuscript) reveal that most of the dissipation and therefore strong shear gradi-
ents are encountered near the contact line in the bent region of drop profile. Shear-induced
particlemigration could then develop and reduce locally solid concentration in this region. For
instance, in a Couette rheometer, the viscosity of a suspension made of 40-50 µm particles sheared at
24 s−1 in a 2.5-mm gap, is divided by two (Gadala-Maria and Acrivos 1980). A lower concentration
near the contact line compared to that initially prescribed could therefore account for the strong
decrease in apparent viscosity. This hypothesis can not be dismissed nor confirmed for the moment
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with top or side views only. To test this explanation, measurements of local concentration in the
flow are required and could be obtained by X-ray tomography. Visualization of particle structure
has been attempted and quickly resumed in the last section of this chapter. Unfortunately these
observations are not good enough to provide definitive answers to our questions.

In conclusion, several mechanisms probably contribute to this drastic decrease in the spreading
viscosity of granular drops, without any clear evidence of the dominant effect at this time. However,
for any of the aforementioned mechanisms, particle size plays a role (in velocity slip, layering range,
shear-induced flux . . . ). The selection of this viscosity, irrespectively of particle size is puzzling but
robust and could have interesting applications to control the spreading process of viscous fluids.

5.4.5 Additional data

5.4.5.1 10-micron particles

Figure 5.10: Radius evolution of drops made of monomodal 10-µm suspensions with different volumes, 100 µL,
300 µL and 1000 µL (○, □, ♢ symbols, respectively). Particles are made of polystyrene and are suspended in
density-matched PEG copolymer. Main graph: normalized radius 𝑅∗ versus 𝑡 + 𝑡0, see § 5.2.2. Black solid lines:
best fit of the data obtained with pure fluid drops, 𝑅∗ = 1.94 (𝑡 + 𝑡0)1/8. Inset: raw measurements of radius
versus time.

Experiments have also been carried out with 10-µm polystyrene particles. The results plotted in
figure 5.10 unveil surprising behavior in comparison with other sizes gathered in figure 5.5. First,
above a critical radius, spreading stops for any drop volume. It is more abrupt than the slowdown ob-
served with large particles in figure 5.5(e,f). Then, the slope in the log-log representation is smaller
than 1/8, as shown by the comparison with the solid black line corresponding to pure fluid experi-
ments.
The discrepancy with Tanner’s law and with the other particle sizes can have several origins. The
polyvinylpyrolidone (PVP), probably used as a stabilizier with these particles could be responsible
for cohesive interactions between the particles, in particular through an aromatic 𝜋-system bind-
ing (Keiluweit and Kleber 2009). The response of these suspensions could also be a consequence
of the small particle size. To this end, experiments with other 10-µm particles in PMMA have been
performed to test this hypothesis.
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5.4.5.2 PMMA particles

Figure 5.11: (a) Radius evolution of drops made of 10-µm and 20-µm monomodal suspensions, 𝑉0 = 100 µL.
Particles are made of PMMA and are suspended in PEG copolymer. Main graph: normalized radius 𝑅∗ versus𝑡 + 𝑡0, see § 5.2.2. Black solid lines: best fit of the data obtained with pure fluid drops, 𝑅∗ = 1.94 (𝑡 + 𝑡0)1/8.
Inset: raw measurements of radius versus time. (b) Effective viscosity in Tanner’s law as a function of particle
diameter. Inset: normalized factor 𝐴∗.

Experiments with 10-µm and 20-µm PMMA particles are presented in figure 5.11. In contrast
with the surprising results obtained with the 10-µm polystyrene particles, the two sizes of PMMA
particles do not exhibit any slowdown. In addition, data align on straight lines with slopes 1/8 in
log-log representation. They thus follow Tanner’s law and suggest that the odd results obtained
with the small 10-µm polystyrene particles is not stemming from a size effect.

Before any further analysis, we remind the reader that PMMAparticles in PEGmust sink as these
suspensions are buoyant with a density difference Δ𝜌 = 140 kg.m−3 between the solid and the liquid
phase. However, sedimentation effects should be presently negligible as the typical drift covered
by a single 10-µm or 20-µm particle is 40 µm and 160 µm, respectively. This distance is computed
from the Stokes velocity (1.1) for a typical time of 104 s. In addition, for dense suspensions, this
sedimentation speed must be corrected by a factor (1 − 𝜙)5 ≃ 0.08 at 40 % (Richardson and Zaki
1954), so that a 10-µm and a 20-µm particle would drift of 3 µm and 13 µm, respectively. Therefore,
the present density difference is not responsible for strong sedimentation in the droplet.

To compare this results with that obtained with polystyrene particles, we compute once again
an effective viscosity of Tanner’s law. It is plotted in figure 5.11(b) for PMMA-PEG suspensions. The
density used in (5.5) is 𝜌 = (1−𝜙)𝜌𝑃𝐸𝐺 +𝜙𝜌𝑃𝑀𝑀𝐴 = 1106 kg.m−3. With PMMA particles, the effective
viscosity is again much smaller than that of the bulk and slightly higher than the viscosity obtained
with polystyrene particles, see the pink rectangle and the red solid line which correspond to the
results with the polystyrene particles in figure 5.6. More importantly, the effective viscosity poorly
depends on particle size. These experiments evidence that granular suspensions of 10-µm particles
obey Tanner’s law similarly to larger sizes and confirm that the effective viscosity is independent of
particle size.
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5.5 Breakdown of Tanner’s law

5.5.1 Observations

The surprinsingly robust Tanner-like behavior of granular suspensions is however failing at some
point, more specifically with the largest particle sizes. In this section, we turn to the slowdown of
the spreading dynamics, see for instance the 550-µm particles above 200 s in figure 5.5(f).

The deviation from Tanner’s law for large particles is easily understood with the top view series
of monomodal granular drops displayed in figure 5.12 and 5.13. In particular, top views of spreading
droplets containing 250-µm and 550-µm particles associate the departure from Tanner’s law
with the immobilization of the particle-matrix while the fluid continues to drain outward,
see figure 5.13 for 𝑡 ≥ 200 s. This freezing is obvious for the 550-µm particles, and is also observed
with the 250-µm particles.

Side-view recording of the droplet provides additional elements to predict and rationalize this
transition. In figure 5.14(a), profile features of a pure-fluid drop of 300 µL are presented. Time
evolution of the radius, 𝑅(𝑡), and of the thickness at the drop center, ℎ0, are extracted from the
synchronized top and side views, respectively. Side-view profiles ℎ(𝑟 , 𝑡) are plotted with solid lines
in figure 5.14 (b), with 𝑟 the radial distance from the drop center, at the times indicated by the large
dots in subplot (a).
In figure 5.14(a), radius data, 𝑅(𝑡), are fitted with Tanner’s law (red dashed line) and used to compute
the central height, ℎ0(𝑡) predicted by Hocking (1983) for moderate Bond numbers, 𝐵𝑜 = (1), taking𝑟 = 0 in the expression, ℎ(𝑟 , 𝑡) = 𝑉0𝜋𝑅2𝐼2 ( 𝑅𝓁𝑐 ) [𝐼0( 𝑅𝓁𝑐) − 𝐼0( 𝑟𝓁𝑐)] . (5.6)

This profile and its derivation have been presented in Chapter 3. In subplot (a), the prediction forℎ0 (blue dashed line) is superimposed with the experimental data. Agreement between experiments
and the model is excellent. Also, experimental profiles (solid lines) are well captured by (5.6) (dashed
lines) in subplot (b). In conclusion, side-views are not necessary since radius data from top views
can be used to compute the central thickness, ℎ0, with (5.6).

In figure 5.15(a) the radius of a drop of a suspension consisting of 550 µm particles is plotted as
a function of time. Side-view snapshots numbered from (i) to (iv) illustrate two different regimes in
figure 5.15(b). At first, for pictures (i) and (ii), the drop profile is concave and particles move with
the fluid. In that regime, the radius growth obeys Tanner’s law and the suspension behaves like a
continuous fluid with an effective viscosity, see § 5.4.2. Then, while the contact line still progresses
from (ii) to (iv), the particles do not move and remain at the center of the drop, the continuous
approach no longer holds. Spreading thus enters a new regime with a significant slowdown and
departure from Tanner’s law, see bending of the curve in subplot (a). In this new regime, fluid
drains out of the porous matrix consisting of the large particles. On side views in subplot (b), drop
profile takes a convex shape near the edge to connect the contact line with the center of the drop
where the particles remain. In these pictures, particle protrusions become more significant and one
can clearly identify a monolayer of particles in the picture (iv).
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Figure 5.12: Series of top view snapshots for drops made with different particle sizes. From left to right:𝑑=20 µm and 𝑉0=114 µL, 𝑑=40 µm and 𝑉0=115 µL, 𝑑=80 µm and 𝑉0=105 µL.
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Figure 5.13: Series of top view snapshots for drops of 100 µL made with different particle sizes. From left to
right: 𝑑=140 µm and 𝑉0=114 µL, 𝑑=250 µm and 𝑉0=124 µL, 𝑑=550 µm and 𝑉0=114 µL.
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Figure 5.14: Experimental spreading of a drop of pure fluid, 𝑉0 = 295 µL. (a) Left axis: experimental radius,𝑅, as a function of time and Tanner’s law (red dashed line) with the fitted parameters 𝐴 = 0.0059, 𝑡0 = 10.4 s.
Right axis: central thickness, ℎ0, as a function of time with the prediction of Hocking (1983) in (5.6) (blue
dashed line). (b) Experimental profiles from side views (solid lines) and predicted shapes (dashed lines). The
large dots in (a) correspond to the moments in (b). The color gradation indicates time progression.

Figure 5.15: Spreading of a drop of suspension made of 550-µm particles, 𝑉0 = 133 µL. (a) Radius as a function
of time. (b) Thumbnails (i) to (iv): side-view pictures corresponding to the large dots in (a).
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Figure 5.16: Breakdown of Tanner’s law for monomodal drops of suspensions. (a) Central drop height com-
puted from radius measurements according to (5.6). Horizontal lines indicate the height 𝑑 for the different
particle diameters. (b) Drop radius as a function of time, normalized by 𝑅𝑐 and 𝑡𝑐 , respectively, with 𝑅𝑐 = 𝐴𝑡1/8𝑐
and ℎ0(𝑅𝑐) = 𝑑 . Black solid line: 𝑦 = 𝑥1/8.
5.5.2 Critical confinement

To predict Tanner’s law breakdown, we can estimate the time 𝑡𝑐 at which a particle undergoes
strong confinement, ℎ0(𝑡𝑐) ≃ 𝑑 .The latter means that drop thickness at 𝑡 = 𝑡𝑐 has reached
the typical size of the domain available to the particle.With 𝑅𝑐 = 𝐴𝑡1/8𝑐 injected in (5.6), this
condition can be written 𝑑 = 𝑉0𝜋 (𝐴𝑡1/8𝑐 )2 𝐼2 (𝐴𝑡1/8𝑐𝓁𝑐 ) [𝐼0(𝐴𝑡1/8𝑐𝓁𝑐 ) − 1] . (5.7)

This equation can be solved numerically to obtain the critical time, 𝑡𝑐 , for each drop. Then, the crit-
ical radius 𝑅𝑐 , at time 𝑡 = 𝑡𝑐 can be compared with experiments to test the validity of the model.

The thickness at the center of the drop, ℎ0(𝑡) is plotted as a function of time in figure 5.16(a) for
drops made of monomodal suspensions. Again, this quantity is inferred from radius measurement
and (5.6). The horizontal lines indicate the heights ℎ0 = 𝑑 , with the colors corresponding to that
of the particle diameters. It appears clearly that within a day (i.e. 105 s), the only drops reaching
the height ℎ0 = 𝑑 (horizontal lines) are made of 250 µm or 550 µm particles. In figure 5.16(b), radii
are normalized by the critical radius 𝑅𝑐 and plotted as a function of time, normalized by the critical
time, 𝑡𝑐 . Spreading behavior deviates from Tanner’s law for 𝑅 ≃ 𝑅𝑐 when 𝑡 ≃ 𝑡𝑐 i.e. when ℎ0 = 𝑑 for
drops made of 250 and 550 µm particles. With smaller particle diameters, the experiments are too
short to observe the deviation, i.e. ℎ0 ≫ 𝑑 .
Prediction of the deviation from Tanner’s law can thus be rationalized with arguments based on the
confinement of particles and how it affects their ability to move with the contact line. Note that con-
finement criterion depends on particle size, 𝑑 , but it should also depend on particle volume fraction𝜙. Indeed, the volume of fluid available per particle decreases with increasing volume fraction. At
higher concentration, confinement by the free interface is thus expected to be seen earlier. This last
point has not been studied in detail. Yet, preliminary results, observations and reflections regarding
the effect of particle concentration are presented in the next paragraph.
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Figure 5.17: Effects of particle volume fraction, 𝜙 = 40%, 45% and 50% (from left to right) for drops of 100 µL
spreading on a glass slide. (a) top view pictures and (b) side-view pictures after 6 hours of spreading.

5.5.3 Higher particle volume fractions

Experiments with 550-µm particles at 𝜙 = 40%, 45% and 50% have been carried out to investigate
the consequences of a high volume fraction. According to our reasoning, higher particle volume
fractions should lead to earlier freezing as the critical thickness of Tanner’s regime is expected to
increase with 𝜙.

In figure 5.17(a), top view pictures confirm this hypothesis. Three drops with increasing volume
fractions have been left to spread for several hours on a glass slide. While the suspending fluid still
drains out, the particle matrix does not further evolve for any of these drops. As 𝜙 increases, the
width of the region covered by the particles decreases despite the greater number of particles in
concentrated drops. Particle freezing thus takes place earlier with increasing 𝜙 and the particles do
not form a monolayer anymore. Side view pictures are also diplayed in figure 5.17(b). At 40%, the
initial stage of spreading creates a rather flat and homogeneous mono/bi-layer of particles which
ultimately protrudes when the drop is too thin. However, at higher volume fractions, the greater
number of particles and the smaller amount of fluid freeze the particle matrix in a pile. To account
for the increase in particle number, the heap height increases with concentration 𝜙.
This system can thus be considered partially jammed: particles do not flow for 𝑡 > 𝑡𝑐 . In addition,
as fluid drains out of the particle matrix, capillary pressure might build up and strenghten the pile.
Such a system can interestingly display jamming features even at volume fractions way too small
for the jamming transition in terms of bulk flow.

5.6 Visualization of particle flow

As previously mentioned, unveiling the structure of the particulate phase may help to answer ques-
tions related to the surprising results found in spreading experiments with granular suspensions.
Indeed, a complex and heterogeneous structure might develop due to layering generated near the
wall, confinement, and high shear gradients near the contact line. Direct numerical simulation
would be a valuable ally to investigate this system but, the implementation of a free-surface flow
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Figure 5.18: Experimental apparatus for particle-network imaging in the 2D (rivulet) configuration.

simulation with particles seems to be challenging. Experimentally, X-ray tomography should be
able to image the 3D structure but requires a lot of resources. Instead, attempts at imaging particles
during spreading with a custom laser-based fluorescence set-up have been carried out. We describe
them in this section.

5.6.1 Apparatus and methods

Visualization of the flow in a 3D spreading drop is tricky. Shining a laser sheet through a curved
interface would lead to refraction and inhomogeneous lighting in the drop. In the same way, the
camera would see a distorted image of the drop inner flow through a curved interface. This dis-
tortion is exhibited in figure 5.19(a) for a drop of 60-µm particles at 𝜙 = 40%. Therefore, spreading
along one direction, i.e. a fluid rivulet, has been examined. Hopefully, this configuration does not
alter the conclusions in comparison to the full 3D problem.

The apparatus is presented in figure 5.18 for a rivulet. The rivulet spreads on a transparent glass
slide along the 𝑥-direction. A laser sheet illuminates the drop/rivulet from beneath and shines a
vertical slice in a 𝑥𝑧-plane. Imaging of this fluid slice is done by a monochrome camera (Imaging
Source, DMK33UX174, captor size 2.3 MP), mounted with a zero distortion lens (Opto Engineering,
reference MC100X) and aligned in the 𝑦-direction. The typical resolution is 3 µm/pixel. Another
glass slide, perpendicular to the bottom one and parallel to the laser sheet creates a flat window for
the camera to see through the rivulet, see figure 5.18. The illuminated fluid slice can be observed
without distortion through this transparent wall. An example with a rivulet of 300-µm particles at𝜙 = 40% is displayed in figure 5.19(b). The distance between the wall and the laser sheet is typically
5 mm. Also, a red filter is inserted between the camera and the wall to only see the red light emitted
by rhodamine fluorescence, see § 2.2.4.2.
The capture of sharp images requires that a few requirements be met. Gentle deposition of a fluid
rivulet is done with a spatula starting from the wall, as regularly as possible in the 𝑦-direction.
It is crucial to avoid air bubble entrapment when collecting and releasing the fluid. Indeed, light
scattering at bubble interfaces strongly interferes with good imaging. Also, the laser sheet must be
as thin as possible and a fine tuning of the camera position must bring the illuminated fluid sheet
perfectly into focus. Eventually, a good compromise on light intensity must be found. It must be
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Figure 5.19: Visualization the particles in (a) a drop made of 60-µm particles at 𝜙 = 40% and (c) in a rivulet
made of 250-µm particles at 𝜙 = 40%. In subplot (c), blue and red circles exhibit the size difference between a
particle mostly in the light sheet and partially out of the light sheet, respectively. (b,d) Enlargements of the
pink rectangles in (a,c), respectively.

high enough to illuminate the flow homogeneously but not too strong to limit the noise coming
from out-of-plane scattering and reflections.

5.6.2 Results: particulate structure in the rivulet configuration

As explained in § 2.2.4.2, the rhodamine mixed with the suspending fluid emits red light in all di-
rections when excited with a green laser, while the green laser sheet should not be refracted at the
optical interfaces. The camera, orthogonal to the laser sheet and behind a red filter, thus only sees
the fluid and the particles appear as black spots.
In a pure-2D flow, a particle would remain forever in its initial 𝑥𝑧-plane. However, in the drop and in
the rivulet configurations, particles eventually disappear because of numerous 3D rearrangements,
thus preventing long particle tracking. The observation time of a particle depends on its size. For
instance, the 250 −µm and 300 −µm particles are much larger than the laser sheet thickness and can
be followed for a longer time. When they enter or leave the illuminated slice, their apparent radius
varies as shown by the red circle in figure 5.19(c). Observations and preliminary results from these
visualizations are discussed in the following.

5.6.2.1 Observations and descriptions of the particle flow

At the center of the rivulet, imaging reveals that the particulate structure is almost static. As the
thickness decreases, particles close to the free interface flow outward and downward. When these
particles get closer to the bottom, confinement is getting stronger and the previous description no
longer holds. In this region with typically ℎ ≲ 5𝑑 , the first particle layer near the wall seemingly
undergoes stretching by the advancing contact line and pressure from the incoming flux of particles.
This layer dilates radially and empty spaces are filled with particles coming from the center of the

124



5

5.6

drop. The particles near the free surface seem to get stuck in the wedge and follow the contact line
motion without significant reorganization.

5.6.2.2 Wall-slip

Quantitative measurement of the particle speed is still difficult at the moment. An obvious particle
slip is observed near the contact line to stretch the first layer of particles. In particular, highly
confined particles (ℎ ≲ 3𝑑) have roughly the speed of the contact line and follow it en bloc.

5.6.2.3 Layering and microstrucutre

No clear evidence of microstructure nor major layering is observed in the experiments. In practise,
layering near the solid wall is more difficult to observe while layering near the free surface is more
easily captured, as shown by the enlargements in figure 5.19(b,d). It is however clear that layering
does not span across the whole drop thickness.

5.6.2.4 Concentration gradient

Again, no clear concentration gradient emerges. With large particles, the vicinity of the contact line
would even look more packed. Again further analysis would be required.

125



5

Chapter 5 : Tanner’s law
5.7 Conclusions and perpectives

5.7 Conclusions and perpectives

In this chapter, investigation of drop spreading with density-matched dense granular suspensions
is reported at a global drop scale. The common description with a regular Newtonian fluid, namely
Tanner’s law predicts a power-law growth of radius as a function of time with an exponent 1/8.
Granular suspensions unambiguously behave similarly, at least when the confinement on the parti-
cles is not too strong. However, to obey fully Tanner’s law, an effective viscosity must be used. It
happens to be roughly twice that of the pure fluid but five times smaller than that of the bulk
of the suspension. Akin to bulk viscosity, this effective spreading viscosity does not depend
on the particle size. In conclusion, the spreading of a dense granular suspension is very similar to
that of a pure continuous fluid but faster than expected compared to the expectation from the bulk
properties.
However, a continuous-medium approach fails under confinement as the height of the drop
becomes comparable to the size of the particles. In this situation, the strong capillary pressure from
the interface freezes the particle matrix and the fluid slowly drains out of this porous matrix formed
under its own flow. A simple confinement criterion captures well the breakdown of the Tanner-
like behavior with granular suspensions. This transition from a Newtonian-like to a discontinuous
regime is similar to that reported in other capillary flows of granular suspensions such as pinch-off
(Bonnoit, Bertrand, et al. 2012; Château et al. 2018) or dip-coating (Gans et al. 2019; Palma and Henri
Lhuissier 2019; Sauret et al. 2019; Jeong et al. 2022) experiments.
The drastic decrease in dissipation compared to that of the bulk is however not fully understood at
the moment and offers interesting applications to enhance the spreading rate of viscous fluids.
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In drop spreading of granular suspensions, confinement by the free interface and its coupling
with particle dynamics have revealed interesting effects. Another simple configuration of particle
confinement by a free surface is investigated in this chapter to enrich our understanding of capillary
flows of granular suspensions. The dynamics of an unstable thin film of granular suspension is
studied instead of a drop. The development of the Rayleigh-Taylor instability is here triggered by
buoyancy. First, we introduce this instability in the case of a continuous fluid. In the second section,
we present the experimental methods and in the third section, the data-analysis process. In the
fourth section, we present preliminary results on the instability of thin films of granular suspensions.
These results will be further investigated in the near future.
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6.1 Unstable thin film of continuous liquid: theory & literature

In this chapter we consider interfaces between two regular continuous fluids with an adverse density
stratifications, i.e. with the largest density above. This situation is encountered when a liquid layer
is above the air for instance. Given that the upper fluid is denser than the lower, the interface is
unstable to perturbations by the Rayleigh-Taylor mechanism (Rayleigh 1882; Taylor 1950). This
instability is observed in many natural and industrial systems with density gradients, e.g. during
the core collapse of massive stars or during the implosion of the targets used in inertial confinement
fusion (Sharp 1984). Coating processes can also face homogeneity issues if the surface becomes
unstable.
At a fluid-fluid interface, the least surface energy situation is satisfied when the interface is flat, as
observed, for example, when a heavy fluid sits beneath a lighter one. In the opposite configuration,
and assuming that both fluids extend to infinity, the interface is unstable to perturbations, with
gravity promoting the instability and capillarity inhibiting it. In this chapter, we focus on a special
case of the Rayleigh-Taylor instability, namely the thin film situation.

6.1.1 Semi-infinite case

The situation of an interface between two semi-infinite layers of inviscid fluids (sketched in fig-
ure 6.1) can be treated by linear analysis. In that case, the solution is rather straightforward and
a normal-mode perturbation of the surface height, 𝛿ℎ = exp [𝑖 (k ⋅ r + 𝜔𝑡)], obeys the dispersion
relation, 𝜔2 = (𝜌1 − 𝜌2) 𝑔𝑘 + 𝛾𝑘3𝜌1 + 𝜌2 , (6.1)

with k = 𝑘𝑥x + 𝑘𝑦y the wavenumber such that 𝑘 = ||k||, 𝛾 the surface tension, 𝑔 the acceleration of
gravity, and 𝜌1/2 the lower/upper fluid density, respectively (Chandrasekhar 2013). The perturbation
is unstable if 𝜔2 < 0 i.e. when 𝜌1 < 𝜌2 and 𝑘2 ≤ (𝜌2 − 𝜌1) 𝑔/𝛾 = 𝑘2𝑐 . Therefore, the Rayleigh-Taylor
instability amplifies large wavelengths, 𝜆 ≥ 𝜆𝑐 = 2𝜋/𝑘𝑐 . In the case of a air/liquid system,𝜌1 + 𝜌2 ≃ 𝜌2 − 𝜌1 ≃ 𝜌2, and any perturbation such that 0 < 𝑘 ≤ 𝑘𝑐 = (𝜌2𝑔/𝛾 )1/2 is amplified. The
growth rate of an amplified wave number then reads, 𝜏−1 = (𝑔𝑘 − 𝛾𝑘3/𝜌2)1/2. It exhibits a maximum
which selects a fastest-growing mode, 𝑘∗ = [𝜌2𝑔/(3𝛾 )]1/2.

Figure 6.1: Rayleigh Taylor instability of a fluid-fluid interface in an infinite system with 𝜌1 < 𝜌2.
6.1.2 Thin films

6.1.2.1 Governing equations

The latter relations hold with semi-infinite layers of inviscid fluids and can be generalized to viscous
fluids (Harrison 1908; Chandrasekhar 2013). Viscosity will be particularly significant if we now
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Figure 6.2: Rayleigh-Taylor instability of a thin liquid film above the air.

consider a thin upper layer of liquid of thickness ℎ0. This situation with strong effects of the
viscosity is further detailed in the following, where 𝜌 and 𝜂 are the density and the viscosity of the
upper liquid, respectively, and 𝛾 is the surface tension of the air/liquid interface. The situation is
sketched in figure ??. The initial flat film of thickness ℎ0, is assumed to be small compared to the
viscous diffusion length scale, 𝓁𝜂 = (𝜂𝜏 /𝜌)1/2 , (6.2)
with 𝜏 a characteristic time scale, e.g. the perturbation growth.
Wewrite 𝛿ℎ(𝑥, 𝑦, 𝑡) the surface displacement compared to the flat situation so that the film thickness
is ℎ = ℎ0 + 𝛿ℎ. The vertical direction is directed downwards with the solid surface located at 𝑧 = 0.
In the Stokes regime, Navier-Stokes and continuity equations can be written, respectively,𝜕𝑃𝜕𝑥 = 𝜂( 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 + 𝜕2𝜕𝑧2) 𝑣𝑥 ,𝜕𝑃𝜕𝑦 = 𝜂( 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 + 𝜕2𝜕𝑧2) 𝑣𝑦 ,𝜕𝑃𝜕𝑧 − 𝜌𝑔 = 𝜂( 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 + 𝜕2𝜕𝑧2) 𝑣𝑧 ,

(6.3)

and 0 =𝜕𝑣𝑥𝜕𝑥 + 𝜕𝑣𝑦𝜕𝑦 + 𝜕𝑣𝑧𝜕𝑧 . (6.4)

In the following, we use the gradient and Laplacian operators, ∇ = 𝜕𝑥x + 𝜕𝑦y, and Δ = 𝜕2𝑥 + 𝜕2𝑦 ,
respectively, along the 𝑥 and 𝑦 coordinates. The boundary conditions over the upper solid wall at𝑧 = 0 and over the free surface at 𝑧 = ℎ(𝑥, 𝑦, 𝑡) read,𝑣𝑥,𝑦 (𝑥, 𝑦, 0, 𝑡) = 0 , 𝜂 𝜕𝑣𝑥,𝑦𝜕𝑧 ||||𝑧=ℎ = 0 , 𝑃 (𝑥, 𝑦, ℎ, 𝑡) = 𝑃 𝑒𝑥𝑡 − 𝛾Δ𝛿ℎ, (6.5)

the latter coming from the linearization of the interface curvature with the assumption of small
slopes, i.e. 𝜕𝑥ℎ ≃ 𝜕𝑦ℎ ≪ 1. For any quantity 𝑄, the lubrication approximation in the thin film
yields 𝜕𝑥𝑄 ∼ 𝜕𝑦𝑄 ≪ 𝜕𝑧𝑄. From the continuity equation, (6.4) and 𝐿 ≫ ℎ0, we obtain 𝑣𝑧 ∼ 𝑣𝑥,𝑦ℎ0/𝐿 ≪𝑣𝑥,𝑦 with 𝐿 the characteristic length scale in the 𝑥/𝑦-directions. Under this approximation and the
boundary contitions (6.5), integration of the vertical component of the momentum equation (6.3)
between 𝑧 and ℎ(𝑥, 𝑦, 𝑡) leads to𝑃 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑃 𝑒𝑥𝑡 − 𝛾Δ𝛿ℎ − 𝜌𝑔 (ℎ − 𝑧) , (6.6)

and the relation (6.6) used in the momentum equation of the 𝛼-component (𝛼 = 𝑥, 𝑦) in (6.3) with
the boundary condtions (6.5) gives in turn,𝑣𝛼 = −2ℎ𝑧 − 𝑧22𝜂 𝜕𝑃𝜕𝛼 = 2ℎ𝑧 + 𝑧22𝜂 𝜕𝜕𝛼 (𝜌𝑔ℎ + 𝛾Δ𝛿ℎ) . (6.7)
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Figure 6.3: Dispersion relation (6.12) from the linear analysis of the Rayleigh-Taylor instability of a thin
viscous layer of fluid. Perturbation growth rate as a function of (a) wave vector, 𝑘, and (b) wavelength, 𝜆.
Results for different film thicknesses, ℎ0 (see legend) and 𝜂 = 3 Pa.s, 𝜌 = 1190 kg.m−3 and 𝛾 = 0.032 N.m−1.
Red lines: fastest-growing perturbation. Grey domains: stable, non-amplified perturbations.

The kinematic condition of the free surface also requires,𝜕ℎ𝜕𝑡 +(𝑣𝑥 |𝑧=ℎ 𝜕ℎ𝜕𝑥 + 𝑣𝑦 ||𝑧=ℎ 𝜕ℎ𝜕𝑦) = 𝑣𝑧 |𝑧=ℎ = − ∫ ℎ
0 (𝜕𝑣𝑥𝜕𝑥 + 𝜕𝑣𝑦𝜕𝑦 ) d𝑧, (6.8)

which simplifies with Leibniz’s rule into,𝜕ℎ𝜕𝑡 + 𝜕𝜕𝑥 (∫ ℎ
0 𝑣𝑥d𝑧) + 𝜕𝜕𝑦 (∫ ℎ

0 𝑣𝑦d𝑧) = 0. (6.9)

Since ℎ = ℎ0 + 𝛿ℎ(𝑥, 𝑦, 𝑡), and with the expression of the velocity fields in (6.7), we obtain from the
above relation,𝜕𝛿ℎ𝜕𝑡 + 𝜕𝜕𝑥 [ (ℎ0 + 𝛿ℎ)33𝜂 𝜕𝜕𝑥 (𝜌𝑔𝛿ℎ + 𝛾Δ𝛿ℎ)] + 𝜕𝜕𝑦 [ (ℎ0 + 𝛿ℎ)33𝜂 𝜕𝜕𝑦 (𝜌𝑔𝛿ℎ + 𝛾Δ𝛿ℎ)] = 0. (6.10)

6.1.2.2 Thin films: linear analysis

Dispersion relation: general and linear

Equation (6.10) can be written in terms of a linear and a nonlinear part,

[ 𝜕𝜕𝑡 + ℎ303𝜂Δ (𝜌𝑔 + 𝛾Δ)] 𝛿ℎ + ∇ ⋅ [(3ℎ20𝛿ℎ + 3ℎ0𝛿ℎ2 + 𝛿ℎ3)3𝜂 ∇ (𝜌𝑔𝛿ℎ + 𝛾Δ𝛿ℎ)] = 0. (6.11)

The first term in (6.11) leads to the linear dispersion relation for of a perturbuation 𝛿ℎ ∝exp(𝑖k ⋅ r) exp(𝑡/𝜏 ) and to its growth rate, (Babchin et al. 1983),

𝜏−1 = ℎ303𝜂 (𝜌𝑔𝑘2 − 𝛾𝑘4) . (6.12)

The perturbation will be amplified provided 𝜏 > 0 i.e. 𝑘 ≤ 𝑘𝑐 = (𝜌𝑔/𝛾 )1/2.
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The linear-regime growth rate (6.12), 𝜏−1 is plotted in figure 6.3 as a function of (a) the perturbation
wave number, 𝑘, and (b) the perturbation wavelength, 𝜆, for different film thicknesses. Since, 𝜏−1 ∝ℎ30, film thickness sets the magnitude of the growth rate. In contrast, film thickness does not affect
the range of unstable perturbations, i.e. 𝑘 ≤ 𝑘𝑐 = 𝓁−1𝑐 or 𝜆 ≥ 𝜆𝑐 = 2𝜋𝓁𝑐 , see subplots (a) and (b),
respectively.

Dominant mode in the linear regime

The dispersion equation (6.12) has a maximum growth rate, corresponding to the maxima of𝜏−1 in figure 6.3. Therefore, the instability selects a fastest-growing mode,

𝑘∗ = √𝜌𝑔2𝛾 , (6.13)

i.e. amost unstable wavelength, 𝜆∗ = 2𝜋√2𝓁𝑐 , (6.14)

with 𝓁𝑐 = (𝛾 /𝜌𝑔)1/2 the fluid capillary length. The characteristic growth time of the dominant
mode is 𝜏 ∗ = 12𝜂𝛾ℎ30𝜌2𝑔2 . (6.15)

In finite thickness systems, the fastest-growing mode is not the same than in a semi-infinite layer.
The corresponding wavelength is shorter but does not depend on the fluid thickness, ℎ0. This domi-
nant wavelength provides the length scale in the 𝑥 and 𝑦-directions and therefore clarifies the "small
slope approximation", 𝛿ℎ ≪ 𝜆∗ and the viscous regime criterion, ℎ0 ≪ 𝓁𝜂 ⇔ ℎ0 ≪ ( 12𝜂2𝛾𝜌3𝑔2 )1/5 = 7 mm
presently. Of course, the linear analysis describes only the onset of the instability and is limited to𝛿ℎ < ℎ0 ≪ 𝜆⋆ and small slopes. Numerical investigation of the evolution of the interface beyond
this limit is presented by Yiantsios and Higgins (1989).

6.1.2.3 Lattice geometry

Linear analysis predicts the selection of a fastest-growing wavelength but does not promote any
direction due to the symmetry of the system. A superposition of fastest-growing modes is then a
solution of the linear problem. The shape of the unstable surface is obtained from the addition of 𝑁
pairs of modes, each pair composed of 2 normal modes with a wave vector ±k such that ||k|| = 𝑘∗.
Some examples of surface patterns for 𝑁 = 1, 2, 3, are displayed in figure 6.4. They will be named
(a) roll , (b) square and (c) hexagonal modes in the following. Note that in figure 6.4(c), i.e. in the
hexagonal pattern, the distance between two peaks is not 𝜆∗ but 2𝜆∗/√3. The growth rate of any of
these modes should be 1/𝜏 ∗ since ||k|| = 𝑘∗, according to the linear theory. Yet, experiments indi-
cate a pattern selection which promotes the hexagonal mode (Fermigier, Limat, Wesfreid, Boudinet,
Ghidaglia, et al. 1991).

6.1.2.4 Nonlinear regime

This selection in favor of the hexagonal pattern comes from the nonlinear term in (6.11), and
the full nonlinear equation can be understood as interactions between wave vectors (Fermigier, Li-
mat, Wesfreid, Boudinet, Ghidaglia, et al. 1991; Fermigier, Limat, Wesfreid, Boudinet, and Quilliet
1992). Depending on the configuration, these interactions can amplify or damp the initial pattern
and lead to the generation of new harmonics. This correction from the nonlinearities particularly
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Figure 6.4: Possible patterns from the linear analysis of the Rayleigh-Taylor instability of a thin
layer of fluid. (a,c,e) 3D representations and (b,d,f) top views. Each pattern comes from the su-
perposition of 𝑁 pairs of modes with the same wavelength 𝜆∗. (a,b) 𝑁 = 1, ℎ = ℎ0 +𝐴 cos ( 2𝜋𝜆∗ 𝑥) exp ( 𝑡𝜏 ∗ ), (c,d) 𝑁 = 2, ℎ = ℎ0 + 𝐴2 [cos ( 2𝜋𝜆∗ 𝑥) + cos ( 2𝜋𝜆∗ 𝑦)] exp ( 𝑡𝜏 ∗ ), (e,f) 𝑁 = 3, ℎ =ℎ0 + 𝐴3 [cos ( 2𝜋𝜆∗ 𝑥) + cos( 2𝜋𝜆∗ ( 𝑥2 + √3𝑦2 )) + cos( 2𝜋𝜆∗ ( 𝑥2 − √3𝑦2 ))] exp ( 𝑡𝜏 ∗ ). In all graphs, 𝐴 exp(𝑡/𝜏 ∗) = ℎ0/10,
where 𝐴 is the initial perturbation amplitude.
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Figure 6.5: Evolution of the perturbation amplitude 𝐴(𝑡)/𝐴(0) for the different patterns in figure 6.4. Deviation
from a straight line comes from the nonlinearities. Data extracted from (Fermigier, Limat, Wesfreid, Boudinet,
and Quilliet 1992).

benefits the hexagonal mode which is amplified. In figure 6.5, the amplitude of the different con-
figurations are plotted as a function of time. The hexagonal pattern is amplified in comparison with
the two others. The square mode is poorly affected by nonlinearities and its amplitude grows ex-
ponentially, in the same way than in the linear regime. On the contrary, the roll mode is highly
damped. These results on wavelength and pattern selection are established in the situation of an
infinite fluid layer along the 𝑥, 𝑦-directions. Also in finite systems in the 𝑥, 𝑦-directions, for exam-
ple periodic domains, simulation in the nonlinear regime indicates that if the system size is larger
than the wavelength of the fastest-growing mode, the interface accommodates in bumps of unequal
heights and unequal spacings between the peaks (Yiantsios and Higgins 1989). The wavelength of
the instability can thus be modified.

6.1.2.5 Late stage and dripping

As the instability develops, peaks become higher and may eventually release a drop above a critical
size.

We consider first the case of extremely thin and/or extremely viscous liquid layers so that it
would take forever for a bump to become large enough to generate a drop which detaches from the
unstable interface. The stability beyond the linear regime of such an interface configuration is in-
vestigated numerically by Yiantsios and Higgins (1989). The authors conclude that the steady-state
shape depends on the initial perturbation. The least energy configuration, reached by coalescence
of neighboring drops, is prohibited in symmetric cases. On the contrary, two asymmetric drops will
approach each other and eventually coalesce.

With a thick layer of fluid, the film will eventually drip when the peak size exceeds a threshold.
The stability of isolated pendent drops on a substrate has been investigated theoretically and numer-
ically by disturbing a prescribed drop shape with different volumes. The maximum volume, 𝑉max0
depends on the capillary length of the fluid and on the equilibrium contact angle 𝜃𝑒 with the sub-
strate. The analytical predictions, 𝑉max0 ∼ 3𝜋𝓁 3𝑐 , 5𝜋𝓁 3𝑐 and 6𝜋𝓁 3𝑐 for 𝜃𝑒 = 50°, 20° and 5°, respectively
(Pitts 1974) or 𝑉max0 ∼ 6𝜋𝓁 3𝑐 for 𝜃𝑒 = 0° (Myshkis et al. 1987), are confirmed by numerical solutions
(Sumesh and Govindarajan 2010).
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Figure 6.6: (a) Unit cell (green) in a hexagonal array of peaks (blue dots). (b) The distance bewteen the centers
of two unit cells is 𝑎 = 2𝜆∗√3 , see figure 6.4(f) since the area of the green hexagon is 2√3𝑏2 with 𝑏 = 𝑎2 = 𝜆∗√3 .
From (6.14), the volume of the unit cell in subplot (a) is ℎ0 [√3 (2𝜋√2𝓁𝑐/√3)2] = 16𝜋2𝓁 2𝑐 ℎ0/√3.

All these studies treat the case of isolated pendent drops while our system is a lattice of drops,
growing on a thin film of thickness ℎ0. The situation is sketched in figure 6.6(a). The available fluid
volume per unit cell is 𝑉0 = 16𝜋2ℎ0𝓁 2𝑐 /√3 ≃ 91.2ℎ0𝓁 2𝑐 . Assuming that only this volume of liquid can
be used in a single bump, the dripping criterion 𝑉max0 ∼ 6𝜋𝓁 3𝑐 inferred from the case 𝜃𝑒 = 0° yields

ℎ0 ≥ 0.21𝓁𝑐 ⇔ 𝐵𝑜 = ℎ20𝓁 2𝑐 ≥ 0.04, (6.16)

with 𝐵𝑜 the Bond number of the problem. In a 2D periodic domain simulation, the growth of a peak
on an unstable thin film saturates at 𝐵𝑜 ≃ 0.4 (Yiantsios and Higgins 1989). However, comparison of
experiments with (6.16) from the results of Pitts (1974) or with those of Yiantsios and Higgins (1989)
is delicate. In particular, simulation in periodic domains by Yiantsios and Higgins (1989) does not
set the size of the base of the drop, unlike the work of Pitts (1974). Their numerical work also does
not start from a prescribed shape but instead follows the dynamics of the instability. The growth of
the instability slows down tremendously as the liquid layer around the drop becomes thinner, but
the drop may not be stable at the (very far) end. The variational methods used by Pitts (1974) to
derive the critical volume of a pendant drop examine only the last stage. An asymptotically unstable
drop can be considered to be stable if it takes an eternity to detach from the ceiling. Dripping in
real systems is therefore likely to occur at larger volumes than these predictions especially as fluid
could be drained from neighbors in a lattice of peaks.

6.1.3 Experiments: literature

6.1.3.1 Semi-infinite case

Although pleasant to study theoretically and numerically, the experimental investigation of the
Rayleigh-Taylor instability can be challenging. The main difficulty, namely the preparation of a
clean adverse density stratification (i.e. heavy fluid on the top), can be bypassed with several tricks.
For instance, reversing the direction of gravity with a vertical acceleration larger than 𝑔 leads to the
destabilization of the upper surface of a liquid poured into a vessel (D. Lewis 1950). System size is
naturally a big restriction in such devices.

6.1.3.2 Thin layer

The thin film configuration is much easier to realize, by just pouring liquid on a plate and turning
over the system. Viscous liquids are more suitable with this method to avoid undesired flow during
the plate inversion. The results presented in § 6.1.2.2 and § 6.1.2.4 regarding the dominant wave-
length and the hexagonal pattern selection are confirmed by experiments with large thin films of
viscous silicone oil (Fermigier, Limat, Wesfreid, Boudinet, Ghidaglia, et al. 1991; Fermigier, Limat,
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Wesfreid, Boudinet, and Quilliet 1992; Limat et al. 1992). The instability always nucleates near an
edge or a defect (dust, bubble) and then propagates as a front. This observation can be used to force
the other patterns introduced in § 6.1.2.3. For instance, a wire across the thin film triggers a roll
perturbation, and two perpendicular wires generate locally a square lattice of bumps (Fermigier,
Limat, Wesfreid, Boudinet, Ghidaglia, et al. 1991). However, the system eventually relaxes toward
the hexagonal pattern.
The regular domes generated by the Rayleigh-Taylor instability can be harnessed to create struc-
tured surfaces. For instance, with a thin fluid film covering the inner surface of a rotating cylinder,
a polymeric liquid upon curing can freeze the instability, leading to a regular lattice of bumps once
unpeeled from the cylinder (Marthelot et al. 2018). By varying the rotation speed and thus the ef-
fective gravity, the wavelength of the instability can be tuned to go from 50 µm to 1 cm. Pattern
periodicity can be greatly enhanced by drawing grooves on the surface and square lattices can be
forced with this trick.

6.1.3.3 Dripping and inhibition of the instability

The dripping criterion (6.16) inferred from the critical volume of isolated hanging drops does not
work for the lattice of hanging drops formed upon the surface instability (Fermigier, Limat, Wesfreid,
Boudinet, and Quilliet 1992). This fact can be explained by the possibility for the drops to merge
or by mass transfer from neighboring drops through the film to feed the growing instability. For
these reasons, prevention of dripping is complicated. As shown in figure 6.3, any large-wavelength
perturbation will grow. The time required to collect enough fluid can just become very large with
extremely thin films. Therefore, the Rayleigh-Taylor instability will develop unless the system some-
how kills these long-wavelength perturbations or displays additional constraints.

For example, horizontal oscillations of the system (Wolf 1969; Talib and Juel 2007) can be used to
stabilize adversed density stratification to study floating under a levitating liquid for instance (Apffel
et al. 2020). Alternatively, tangential flow in the liquid film can compete with the growth of the
instability. Indeed, shear flow can saturate the instability growth on the underside of a horizontal
plane (Babchin et al. 1983) or flow down an inclined plane can hinder instability growth above a
critical inclination (Indeikina et al. 1997; Brun et al. 2015). In the latter configuration, the liquid film
develops travelling-wave structures that compete with the growth of the instability. This behavior
is related to the transition from an absolute instability to a convective instability with growing
perturbations swept away by the flow (Scheid et al. 2016). A situation related to this flow-induced
stabilization is that of curved surfaces. Indeed, substrate curvature stabilizes the thin film by means
of the flow steming from gravity drainage (Trinh et al. 2014; Balestra et al. 2018).

AMarangoni flow can also stabilize or destabilize the interface (Deissler and Oron 1992; Alexeev
and Oron 2007; Sterman-Cohen and Oron 2020). Experimentally, in thermocapillary stabilization,
the temperature dependency of surface tension can generate a restoring flow when a liquid film
destabilizes above a warm gas layer (Burgess et al. 2001). Due to the Marangoni effect, as the liquid
sinks in the warm gas layer, it warms up, decreases its surface tension, and flows toward cold thinner
regions - with a high surface tension. This flow counteracts the instability growth and stabilization
is achieved above a critical temperature difference. Below this threshold, linear analysis predicts
well the dominant wavelength, which increases with temperature difference and becomes infinite
at the critical temperature difference.

Prevention of the instability has also been reported for a liquid/liquid interface in a vertically
confined system (Alqatari et al. 2020). The stabilization is explained by the domination of mass dif-
fusion over buoyancy in highly confined geometries.
In the following, we will investigate the possibility for the particles to stabilize this persistent insta-
bility.
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Figure 6.7: Rayleigh-Taylor instability of a thin liquid film (a) in a square 20×20 cm plastic petri dish and (b)
in the configuration used in the following i.e. a hexagonal frame of thickness ℎ0 (bottom view).

6.2 Unstable thin film: methods

6.2.1 Apparatus & methods

6.2.1.1 Film of fluid

Several methods were tested to obtain flat films of controlled thickness. Drawing inspiration from
the literature (Fermigier, Limat, Wesfreid, Boudinet, and Quilliet 1992), a first attempt simply con-
sisted in pouring fluid on a glass plate and waiting for a long time for the liquid to spread. The main
drawbacks of this method are related to the film thickness, both regarding the measurement of its
value and the control of its homogeneity. Indeed, the growth rate of the instability highly depends
on the film thickness. In a second attempt, the desired mass of fluid was poured into a vessel (a
square 20×20 cm plastic petri dish or a 20 cm wide glass circular petri dish). This method also suf-
fers from major issues: the bottom of the vessel is not perfectly flat and some fluid climbs up the
walls of the vessel once turned over, draining liquid out of the film, see figure 6.7(a).

The system used in the end, shown in figure 6.7(b), is made of a glass plate on which a hexagonal
frame with side length ∼9 cm and thickness ℎ0 is glued. This frame is cut in a plastic sheet - intended
for architectural maquettes - made of extruded copolyester which can come in thicknesses from
500 µm to 2 mm. At the time of writing, the only thickness investigated is ℎ0 = 750 µm. Other
thicknesses will be investigated in the near future. To prepare the liquid film, the plate is placed on
a scale, and the desired mass of fluid, 𝑚𝑓 = 𝜌𝑓 ℎ0, is spread in the frame and left to rest for several
hours before an experiment. The area of the hexagon,  ≃ 220 cm2 is measured with ImageJ. Once
turned over, the fluid does not wet the plastic sufficiently to spread on it. As mentioned in § 6.1.3.2,
the instability always starts from the edges and propagates to the center. For this reason, a hexagonal
frame is preferred to generate directly the most unstable lattice of peaks. This methods has several
advantages in comparison with previous attempts among which minimum liquid leakage on the
walls and improved surface flatness.
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6.2.1.2 Experimental apparatus

The apparatus sketched in figure 6.8, is a 1-meter high structure holding a mirror, the plate, and a
LED panel. The acquisition is made with a monochrome Basler camera (reference acA12440 - 35
um, 5 MP) mounted with a distortionless macro lens (reference VS-LLD30). The typical resolution is
130 µm/pixel. With a mirror inclined at 45° below the glass plate, the camera can record pictures of
the distorted checkerboard from the side. Using a mirror prevents dripping on the optics, but means
that the field of view shrinks during an experiment as drops fall on its surface. The distance between
the camera and the liquid film is 𝐻 = 1.1 m. The plate covered by the fluid film is placed above the
mirror. A checkerboard, used for Synthetic Schlieren Imaging, see § 6.2.2, is printed on a paper sheet
and taped on the top of the glass plate. Each square has a side length 1 mm, i.e. 𝑐 = 2 mm, where 𝑐
is the wavelength of the pattern used for Synthetic Schlieren Imaging. A LED panel is placed above
the glass plate with lighting strong enough to see through the paper and observe the pattern from
below. Louis Grospiron, a graduate student from the École Normale Supérieure de Lyon, has greatly
helped to test and design this apparatus.

Figure 6.8: Sketch of the experimental apparatus used to study the Rayleigh-Taylor instability of thin liqiuid
films.

6.2.2 Surface reconstruction

To track the growth of the instability, a range of methods can be used, such as probes, e.g. capaci-
tive wire gauge (Ricard and Falcon 2021), or light absorption by a dye (Fermigier, Limat, Wesfreid,
Boudinet, and Quilliet 1992). However, none of these solutions returns a non-local and quantitative
mapping of the surface profile. Instead, Synthetic Schlieren Imaging is a non-invasive technique
enabling the measurement of surface profile at relatively low costs. This technique is used pri-
marily in two contexts. First, it is used to reveal patterns in otherwise transparent media by showing
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Figure 6.9: Refraction of a light ray going through glass and fluid. The surface displacement of the air/fluid
interface, 𝛿ℎ, can be computed with Synthetic Schlieren Imaging with the displacement 𝛿𝑟 .
the variations of the optical index in the flow, for example to reveal internal gravity waves in a strat-
ified fluid (Sutherland et al. 1999) or temperature gradients in convective air flow (Alvarez-Herrera
et al. 2009). Second, it can probe the deformation of the interface between twomedia, since the latter
is optically a diopter. Synthetic schlieren imaging has then been used for decades in quantitative
studies of interface deformation to investigate surface flows (Le Doudic 2022) or wave interactions
(Polly et al. 2021). Note that here the fluid is transparent, so the pattern can be seen through the de-
formed interface. Profilometry with opaque fluids is feasible with a pattern projected and reflected
on the free surface (Tsubaki and Fujita 2005; Cobelli et al. 2009). Again, distortion by a non-flat
interface can be used for surface reconstruction.

6.2.2.1 Synthetic Schlieren Imaging for surface topography: elements of theory

We consider the situation sketched in figure 6.9 with a pattern located behind (i.e. above) a glass
plate which is covered on its underside by a liquid film. When the air/fluid interface is flat, we defineℎ0 and ℎ𝑔 , the thicknesses of the fluid and glass, respectively, and 𝑛𝑓 , 𝑛𝑔 , their optical indices, respec-
tively. We also define 𝑛𝑎, the optical index of the air. The typical size of the film on the glass plate
is 𝐿. Here, the camera is located below the pattern/glass/fluid surface. If the camera is assumed far
below the pattern, i.e. 𝐻 ≫ ℎ0, ℎ𝑔 , 𝐿, a light ray in the air can be considered almost vertical (paraxial
approximation). In the non-deformed scenario (flat interface), any light ray hits orthogonally the
air/fluid and fluid/glass optical interfaces and is not refracted (green line in figure 6.9). On the con-
trary, when the air/fluid interface is bent, i.e. 𝛿ℎ ≠ 0, a light ray is refracted twice, in I𝑎/𝑓 and in
I𝑓 /𝑔 . Instead of the reference point 𝑀 observed in the flat situation, the point 𝑀 ′ is now seen (blue
line in figure 6.9). The expression of the displacement, 𝛿r = −−−−→𝑀𝑀 ′, for arbitrary incidence angles
(within the paraxial approximation) is derived by Moisy et al. (2009) in the case of small slopes of
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the air/fluid interface, i.e. ∇ℎ ≪ 1, and small interface deformations, 𝛿ℎ ≪ ℎ0. In figure 6.9, the
approximation of a 2D situation is sketched in vertical incidence.

Pattern distortion in vertical incidence

The displacement 𝛿r resulting from the air/fluid interface deformation in figure 6.9, is related
to the slope ∇ℎ at point I𝑎/𝑓 according to,

∇ℎ = −𝛿r( 1𝛼ℎ𝑝 − 1𝐻 ) , (6.17)

with 𝛼 = 1 − 𝑛𝑎𝑛𝑓 and ℎ𝑝 = ℎ0 + 𝑛𝑓𝑛𝑔 ℎ𝑔 . (6.18)

Integration of the slope field in (6.17) provides surface reconstruction. Random dot patterns are
often used (Moisy et al. 2009). However, 1D periodic patterns (Akatsuka and Nagai 2011; Hatanaka
and Saito 2015) and 2D periodic patterns (Wildeman 2018) have proven to return reliable and fast
results with optimized Fourier transform algorithms (Vinnichenko et al. 2023). In particular, these
algorithms are more robust to large displacement gradients compared to common analysis. In the
next paragraph, we describe the case of a checkerboard, the method used in the following.

6.2.2.2 Fast Checkerboard Demodulation

The deformation of a checkerboard pattern can be quickly inverted by the means of Fourier de-
modulation (Wildeman 2018). The checkerboard is then analogous to a carrier signal with a wave
number 𝑘0 = 2𝜋/𝑐, whose phase is modulated because of surface deformation. Demodulation tech-
niques can efficiently extract this phase related to the displacement 𝛿r. A version of the MATLAB
script provided with the publication of Wildeman (2018) edited and adapted to our configuration, is
used for the analysis.

The signal must obey several criteria to return meaningful results. First, the Nyquist-Shannon
rule for a checkerboard pattern indicates that proper sampling of the background pattern requires at
least 3.4 pixels per wavelength 𝑐 (9 pixels in our experiments). Then, the inversion of the phase field
raises phase-wrapping issues. More specifically, displacements 𝛿𝑟0 and 𝛿𝑟0 + 2𝜋𝑛/𝑘0, with 𝑛 ∈ ℕ
lead to the same phase change of the carrier. Phase wrapping thus imposes an upper limit of the
displacement field, |𝑘0𝛿𝑟 | ≤ 𝜋 ⇔ 𝛿𝑟 ≤ 𝑐2 , (6.19)

which corresponds to the displacement in figure 6.9. In the scripts provided by Wildeman (2018),
unwrapping is implemented.
Spacing between carrier peaks in Fourier space also sets an upper limit for the extraction of a phys-
ical wave number 𝑘𝑠 . In a square lattice, the distance between peaks in the x and y-directions for
the carrier is

√2𝑘0, leading to 𝑘𝑠 ≤ √2𝑘02 . (6.20)

In addition, the main harmonics of the signal must equally satisfy this condition which can be writ-
ten as 𝑘𝑠𝑘0𝛿𝑟 ≤ √2𝑘02 , (6.21)

accounting for space variations of the carrier (Wildeman 2018).
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Figure 6.10: Criteria for Fast Checkerboard Demodulation on (a) the displacement, 𝛿𝑟 of the pattern, and on
(b) the slope of the liquid surface, ∇ℎ, as a function of the signal wavelength, 𝜆𝑠 . Checkerboard wavelength,𝑐 = 2 mm. Without phase unwrapping, correct demodulation is possible in the white area only. With phase
unwrapping, demodulation also works above the green dashed line.

Limitations of Fourier demodulation of a checkerboard pattern

Speaking in terms of signal wavelength, 𝜆𝑠 = 2𝜋/𝑘𝑠 , the conditions (6.20) and (6.21) yield,

𝜆𝑠 ≥ √2𝑐 and 𝛿𝑟 ≤ 𝜆𝑠2𝜋√2 . (6.22)

Therefore, grid size, 𝑐, sets the value of the smallest wavelength accesiblewith themethod. The
maximum displacement, and consequently the maximum slope, is proportional to 𝜆𝑠 . The last
two criteria and the one coming from phase wrapping (6.19), are illustrated in figure 6.10(a).

The different parameters used in the following are gathered in table 6.1. With these values, one can
compute the maximum slope related to the displacement field by (6.17). Without the unwrapping
algorithm, the maximum slope is thus,

∇ℎmax = 𝑐2 ( 1𝛼ℎ𝑝 − 1𝐻 ) , (6.23)

and lies around 0.9 according to figure 6.10(b). With unwrapping (green region),

∇ℎmax = 𝜆𝑠2𝜋√2 ( 1𝛼ℎ𝑝 − 1𝐻 ) . (6.24)

In our experiments, 𝜆𝑠 ≃ 1.6 cm. As shown in figure 6.10(b), the maximum slope for this wavelength
is ∇ℎmax ≃ 1.59 and the theoretical maximum surface elevation 𝛿ℎ ∼ 𝜆𝑠∇ℎ ≃ 𝜆𝑠 . In practise surface
reconstruction fails around 2 mm, see § 6.3.4.
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Parameter 𝑛𝑎 𝑛𝑓 𝑛𝑔 𝛼 ℎ0 ℎ𝑔 ℎ𝑝 𝐻 𝑐
Value 1.0 1.45 1.5 0.31 750 µm 3 mm 3.65mm 1.1 m 2.0mm

Table 6.1: Parameters for Fast Checkerboard Demodulation in the experiments.

6.2.3 Issues during surface reconstruction

For each frame, surface height is computed with the MATLAB code of Wildeman (2018). Post pro-
cessing and analyze are done with Python. An example of this first step is provided in figure 6.11.
The parameters required to run this algorithm are,

• 𝛼 and ℎ𝑝 or the parameters necessary to compute them,

• 𝐻 , the distance between the interface and the camera,

• and the resolution of the checkerboard picture.

Figure 6.11: Surface reconstruction by the MATLAB code of Wildeman (2018). (a) Raw picture i.e. distorted
checkerboard. (b) Surface elevation 𝛿ℎ. Scale bars: 1 cm.

Several issues can appear at this stage of the analysis. On the top of the raw picture in fig-
ure 6.11(a), four drops have dripped on the mirror and locally obstruct the imaging. This dripping
is eventually an issue when the mirror is fully covered with fluid but not at the beginning. More
annoying phenomena are shown in figure 6.11(b). First, the resolution of the method creates arti-
facts, see for instance an enlargement in figure 6.12. These structures appear when a peak height
reaches typically 2 mm and displays several inner peaks that will appear as different single peaks
during automated peak detection. Second, some peaks are detected out of the frame, especially near
the edges of the picture. A mask of zeros is thereby applied to remove these peaks, see for instance
figure 6.13(a). The mask is simply generated with the vertex coordinates of the hexagonal frame
with the draw.polygon function from the skimage Python package. Also, a smooth height gradi-
ent may develop across the picture, perhaps because of a small displacement of the plate during the
experiment. For instance, in figure 6.11(b), a general vertical gradient is observed. Despite great pre-
cautions to avoid vibrations, this gradient can appear and bias the measurement of surface height.
However, it can be easily corrected and does not prevent peak detections.
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Figure 6.12: Artifacts coming from high peaks. Left: example of 3D reconstruction of the peak. Right: example
of peak elevation maps with issues.

6.3 Data analysis: peak lattice

6.3.1 Detection

Peaks are detected with the peak_local_max function from the skimage.feature Python package.
A minimal distance between neighboring peaks can be specified and prevents a peak from being
detected more than once because of the artifacts displayed in figure 6.12. However, the position of
the center of a peak may be a bit off, especially for the bottom-left peak whose center appears dark.
To smooth out these effects and blur the inner peaks of the artifacts, a stack of elevation maps can
be summed into a single one as the one presented in figure 6.13(a). Peak detection applied to this
smoothed map is displayed in figure 6.13(b).

6.3.2 Distance between peaks

Mean distance between peaks, can be computed with several methods from the list of peak coordi-
nates. For instance, triangulation with theDelaunay function from the scipy.spatial Python package
is displayed in figure 6.13(c). Length distribution of the edges is displayed in the histogram in fig-
ure 6.13(d). Amore straightforwardmethod, using the radial distribution function rdf from the rdfpy
Python package, is compared with triangulation in figure 6.13(d). The radial distribution function𝑔𝑟 (𝑟) returns the number density of neighbors around a peak, in a circular shell of radius 𝑟 and
width 𝛿𝑟 (radial increment). The two methods agree on an average distance between neighboring
peaks, 𝜆 = (116 ± 7) pixel, i.e. 𝜆 = (15.2 ± 1.0) mm. In figure 6.13(c), edge lengths are shown with
colors to highlight the spatial distribution in the lattice. Peak distances seem rather homogeneously
distributed.

6.3.3 Hexagonal pattern

Alternatively to the triangulation displayed in figure 6.13(c), the Voronoi diagram of this lattice
provides some information about its structure. This kind of diagram is divided into cells, each cor-
responding to one peak, so that a point in the cell is closer to the peak than to any other. The number
of neighbors of a peak is thus given by the number of edges of its cell. This diagram provides several
criteria to remove the peaks on the edges of the frame, either from their smaller number of neighbors

142



6

6.3

Figure 6.13: Lattice of peaks developed in the hexagonal frame with pure fluid. (a) Sum of 80 elevation maps
from 10 s to 810 s. (b) Positions of the peaks detected in subplot (a). (c) Triangulation of peak coordinates.
An edge color corresponds to its length, increasing from dark to light colors. (d) Left axis: edge length in the
triangulation in subplot (c). Right axis: radial distribution function 𝑔𝑟 for different radial increments 𝛿𝑟 (see
legend). Red vertical line: average of the position of the maxima of 𝑔𝑟 for the 6 radial increments.
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Figure 6.14: (a) Voronoi diagram. Cell color relates to the number of edges (see legend). (b) Local bond-
orientational parameter of a hexagonal lattice, 𝜑6, according to (6.25), indicated by the color of the dots. Red
solid lines: edges of the frame.

(typically 4) or from the cell size. In figure 6.14(a), most of the peaks unambiguously have 6 neigh-
bors, in agreement with the expected hexagonal lattice. The local bond-orientational parameter of
the 𝑚-th point of the lattice can also be computed according to,

𝜑6(𝑚) = 1𝑁 (𝑚) 𝑁∑𝑘=1(𝑚)e𝑖𝜃𝑚,𝑘 , (6.25)

with 𝑁 (𝑚) the number of nearest neighbors of𝑚 and 𝜃𝑚,𝑘 the oriented angle with its 𝑘-th neighbor
(Qi et al. 2006). If 𝑚 is in a perfectly hexagonal environment, i.e. 6 neighbors such that 𝜃𝑚,𝑘 = 𝜋3 𝑘,
then 𝜑6(𝑚) = 1. Mapping of this order parameter is displayed in figure 6.14(b). It is lower at the
center of the frame where the instability has not developed fully and may be frustrated by the
different growing fronts coming from the edges. Near the edges of the frame, 𝜙6 is closer to 1 and
the peak lattice is then more hexagonal.

6.3.4 Peak growth

To track the height ℎ𝑚(𝑡) of the peak labeled𝑚, one can extract the value of the instantaneous height
on the height map at the coordinates (𝑥𝑚, �̄�𝑚) coming from the averaged peak grid in figure 6.13.
However, the peaks move around their mean position, and this method gives poor results. Instead,
the coordinates (𝑥𝑚(𝑡), 𝑦𝑚(𝑡)) of the maximum height around (𝑥𝑚, �̄�𝑚) within a radius of 30 pixels
are computed and define the instantaneous position of the peak 𝑚 and lead to instantaneous peak
height ℎ𝑚(𝑡) = ℎ(𝑥𝑚(𝑡), 𝑦𝑚(𝑡)). Elevation heights are plotted in figure 6.15(a). No height is measured
above 2 mm, which is the upper limit of the technique. These raw data are analyzed in order to keep
only the first growth for each of the peaks. Figure 6.15(b) shows the corresponding curves. Also, in
figure 6.15(b) only the 78 peaks reaching 0.7 mm are plotted (out of 94 peaks).

Two characteristic time scales defined in figure 6.16 can be extracted from these measurements.
The first one, 𝜏1, corresponds to the time necessary for the peak to reach its maximum height after
the plate is turned over. As we have already noticed, peaks at the edge of the image tend to grow
earlier and to have smaller values of 𝜏1 in comparison to the peaks in the center of the image. The
distribution of 𝜏1 is plotted in figure 6.15(c). The minimum value of 𝜏1 is 100 s, which provides
qualitatively the first dripping event. Small values of 𝜏1 correspond to the darker curves in the
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Figure 6.15: Growth of the peaks with pure fluid, ℎ0 = 750 µm. (a) Raw elevation height of the 94 peaks. (b)
Peak elevation height during the first growth of the 78 peaks reaching at least 0.7 mm. (c) Distribution of 𝜏1,
the time required for a peak to grow after plate flipping, see schematic in figure 6.16. (d) Distribution of 𝜏2,
the growth time for a peak between 0.1 mm and final heiht.

Figure 6.16: Definiton of 𝜏1 and 𝜏2.
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subplot (a,b). Apart from the fact that the smallest values of 𝜏1 are systematically located near the
edges of the image, no clear conclusion can be drawn about the distribution of 𝜏1.
The second characteristic time 𝜏2 is related to the final growth dynamic of the peak. It is calculated
by fitting the height of the peak with an exponential function: 𝛿ℎ = 𝐴 exp (𝑡/𝜏2). The growth rate
of the peak is therefore the inverse of this timescale. In the figure 6.15(a,b), peak height is noisy at
the beginning. Therefore, only points such that 𝛿ℎ𝑚(𝑡) ≥ 0.1 mm are used, and the growth rate is
calculated between heights 0.1 mm and 2 mm.
Distribution of the growth time 𝜏2 is plotted in figure 6.15(d). Results are centered around 70 s with
a standard deviation of 34 s. The growth time expected from the linear analysis, 𝜏 ∗ ≃ 25 s, is of
the same order of magnitude but slightly smaller. The small discrepancy with the theory and the
scattering of 𝜏2 may be due to its strong dependence on the local film thickness, which decreases
with time and is influenced by neighboring peaks. Also, the growth of the instabilitymight no longer
be in the linear regime with such surface distortions. Still, in addition to wavelength and pattern
selection, the linear analysis seems to adequately describe the growth of individual peaks with pure
fluid.

6.4 Instability of thin films

6.4.1 Pure fluid

All of the previous results come from pure liquid experiments and happen to agree reasonably well
with the theory. The mean distance between peaks, 𝜆 = 15.2 ± 1.0 mm, is slightly smaller than the
prediction from linear analysis, 𝜆 = 16.8 mm, see table 6.2. Also, the growth of a peak is slightly
slower than expected with an average growth time 𝜏2 ∼ 70 s instead of 25 s, see figure 6.15. The
decrease in the thickness of the fluid with time may contribute to an increase in the growth time of
the instability. In line with nonlinear analysis, the hexagonal pattern develops over the surface, see
figure 6.13. We now turn our attention to the same experiments with the density-matched granular
suspensions.

6.4.2 Suspensions

Experiments with PMMA particles of 60 µm, 210 µm, 265 µm and 335 µm have been carried out
in the density-matched and index-matched mixture of Triton described in § 2.2.4. To obtain such
batches of large particles, BS440 PMMA particles have been sieved between mesh sizes 200-228 µm,
250-280 µm, and 315-350 µm, respectively. The smallest 60-µm particles are already highly monodis-
perse. As explained in § 2.2.4, suspensions are index-matched, i.e. transparent, so that distortion
of the checkerboard can be captured through the liquid film as shown in figure 6.11. They are also
density-matched (𝜌 = 1190 kg.m−3) and surface tension measurements with pending drop experi-
ments yield 𝛾 ≃ 32 ± 2 mN.m−1 with this mixture.

In the following, solid volume fraction is always 𝜙 = 30% and film thickness is always ℎ0 = 750 µm.
With the smallest particles, the confinement is thereby mild, with ℎ0 = 12.5𝑑 . In contrast, the largest
particles undergo a strong confinement with ℎ0 ≃ 2.3𝑑 .
6.4.3 Peak lattice: experiments

In figure 6.17, peak lattices are displayed for different fluids. Lines (a), (b), (c), (d), and (e) correspond
to pure fluid, 60-µm suspension, 210-µm suspension, 265-µm suspension, and 330-µm suspension,
respectively. In the first column, peak lattice maps are displayed. The experiment is shorter with
the pure fluid and lasts only 440 s before the field of vision becomes obstructed. With suspensions,
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Figure 6.17: Peak lattices developed by the Rayleigh-Taylor instability of thin films, ℎ0 = 750 µm. First col-
umn: sum of elevation maps until the end of the experiments and detected peaks (red dots). Second column:
triangulation of the peak coordinates. Edge colors are related to their length. Third column: distance between
peaks (see figure 6.13). (a) Pure fluid, experiment stopped after 440 s. Suspensions made of (b) 60-µm particles,
(c) 210-µm particles, (d) 265-µm particles, and (e) 330-µm particles, experiments stopped after 1800 s.
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Fluid 𝜆
Triton mixture 15.2 ± 1.0 mm𝑑 = 60 µm 16.1 ± 0.5 mm𝑑 = 210 µm 15.1 ± 1.8 mm𝑑 = 265 µm 15.8 ± 1.5 mm𝑑 = 330 µm 15.9 ± 0.3 mm

Theory from linear analysis 16.8 ± 0.5 mm

Table 6.2: Mean distance between neighboring peaks from the first maxima of the radial distribution function𝑔𝑟 .
the instability grows more slowly and imaging can last longer (presently 1800 s). In the first column
in figure 6.17, stacks of elevation maps are summed to generate a smoothed map as explained in
§ 6.3. Average positions of the peaks are then detected and shown with red dots. Triangulation of
the peak coordinates are dispayed in the second column with edge colors related to their length. In
the third column, edge length distributions are computed by the means of the triangulation or of
the radial distribution function 𝑔𝑟 , see § 6.4.3.

In figure 6.17, the patterns developed by the pure fluid in (a) or by the 60-µm suspension in (b)
look very similar. At the end of the experiment, the surface of the frame is almost fully covered
with peaks in the two cases. The first maxima of the radial distribution functions also coincide. The
other local maxima are less pronounced with the suspension but still undoubtedly exist. The mean
distance 𝜆 bewteen two peaks are gathered in table 6.2. Suspensions of small particle thus destabi-
lize into a pattern similar to that of a continuous fluid and the distance between peaks is in good
agreement with the theoretical predictions from linear analysis presented in § 6.1.2.2 or with pure
fluid results.

However, these conclusions do not hold with large particles. In figure 6.17(c,d,e), several ele-
ments should be noticed. First, a significantly smaller number of peaks are detected, see (a,b). The
peak network is less developed and does not span the whole surface of the frame. It may localy
develop a hexagonal pattern but to a much lesser degree than those presented in (a,b). The average
distance between neighboring peaks is larger and the first peak of the radial distribution function in
less pronounced. Its maximum value is nonetheless in good agreement with that of the pure fluid,
with that of the suspension made of small particles, and with the prediction from the linear analysis,
see table 6.2.

In conclusion, the instability seemingly always selects the same wavelength, 𝜆 ≃ 15.6 ± 0.4 mm
with pure fluid and with granular suspensions made of any particle size. This result could be ex-
pected since we do not have any difference in density nor in surface tension between these different
fluids. All the systems have thereby the same capillary length and consequently the same linearly
most unstable mode according to (6.14).
However, the hexagonal pattern predicted by the nonlinear analysis of the instability hardly devel-
ops in confined films of granular suspensions. With continuous fluid and small-particle suspension,
the pattern appears over the whole film surface. The propagation of the instability is hindered by
large particles. In particular, a new behavior is observed and described in § 6.4.5. In the following,
we focus on the dynamics of the instability.
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6.4.4 Growth of the instability

6.4.4.1 General observations

Dynamics of the instability is interesting for several reasons. Firstly, it has been barely addressed in
literature even with regular liquids, contrary to wavelength and pattern selection. Secondly, in com-
parison with pure fluid, the addition of particles should enhance energy dissipation or, equivalently,
its effective viscosity. While the perturbation wavelength does not depend on the fluid viscosity,
its growth rate does. Signature of the particles should therefore appear in the dynamic of the phe-
nomenon.

In figure 6.18, time series of snapshots for different fluids are displayed. A line corresponds to a
fluid, and a column corresponds to the elapsed time since the glass plate is turned over. The selected
times are 200 s, 400 s, 600 s and 800 s and particle sizes increase from (b) to (e), with (a) being pure
suspending fluid.
Accordingly to previous observations, a perturbation starts from the edge and expands toward the
center of the frame. As expected from previous results on peak lattice, the instability grows faster
and more regularly on the two top lines in figure 6.18, corresponding to pure fluid and to a sus-
pension made of small particles. With the 210 and 265-µm particles, the instability expands more
erraticaly and does not generate a nice hexagonal lattice of peaks. In addition, with the 330-µm
particles, the propagation of the front is much slower. To quantify the growth rate of the instability,
distribution of the growth-time for the peaks have been extracted from the elevation maps.

6.4.4.2 Growth rate

As previously seen with pure fluid in figure 6.15(c,d), 𝜏2 seems more relevant than 𝜏1 to investigate
the growth of the instability. The defintions of 𝜏1 and 𝜏2 are illustrated in the schematic in figure 6.16.
The same analysis was carried out with different suspensions, by varying the particle diameters from
60 to 330 µm. The results are summarized in histograms gathered in figure 6.19. For any particle
size, the growth time of the instability, 𝜏2, extends over a much larger range for suspensions than
for pure liquid. The small 60-µm particles show a fairly symmetrical distribution similar to the pure
fluid. Larger particles tend to have asymmetric distributions of the instability growth time.

For the smallest particles, the average growth time, 𝜏2 ≃ 346 s, is 5 times larger than the average
value for the pure fluid, 𝜏2 ≃ 70 s. At this volume fraction, the ratio of the bulk viscosity of the
suspension to that of the pure fluid, i.e. the relative viscosity of the suspension, is also 5. These
observations work well with the perturbation growth time expected from the linear analysis, 𝜏 ∝ 𝜂.
In other words, the effective viscosity of the suspension is the bulk viscosity for small non-confined
particles. This result could be expected since the 60-µm particles are not strongly confined in the
750-µm film.

On the contrary, with larger confined particles, a significant number of peaks growmore rapidly,
i.e. exhibit a relatively small value of 𝜏2. This result is suprising considering the preliminary obser-
vations regarding the smaller number of peaks. The instability is not just slower, it fails to develop
locally but the few emerging peaks grow rapidly. The effective vicosity of the growth time is then
smaller that the suspension bulk viscosity. Once again, we are facing finite size effects when con-
finement of the particles is too strong to consider the suspension as a continuous fluid. In fact,
looking at the movies, a thin film a large particles displays very different instability mechanisms, as
explained in the following section.
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Figure 6.18: Series of elevation maps for different fluids at the same times after flipping of the plate (from left
to right, 200 s, 400 s, 600 s and 800 s). From top to bottom: Pure suspending fluid, 60-µm suspension, 210-µm
suspension, 265-µm suspension and 330-µm suspension.
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Figure 6.19: Distributions of growth time, 𝜏2, for different fluids between 0.1 mm and 2 mm.

6.4.5 Confinement-induced peak mobility

In suspension films made of large particles, the instability first grows near the edges of the frame
in a manner similar to films made of pure fluid or suspensions of small particles. A peak grows and
eventually releases a drop of suspension. Then, instead of collecting fluid at the same spot, it moves
to a region where no peak has grown before. There, it grows again, releases a drop, and moves on.
The trajectory of some mobile peaks are shown in figure 6.20. For example, the lowest peak releases
5 drops within 1500 s. This behavior is very different from the observation with pure liquid and
suspensions of small particles, where peak positions are stable and where the instability propagates
with the generation of new peaks. In the case of large particles, distinct peaks in figure 6.13c can be
generated by the same traveling peaks.

Previous numerical works have reported the possibility for a pendent drop to move over a flat
horizontal liquid film. In periodic numerical simulation, if the width of the system is larger than𝜆⋆, two drops can appear with asymmetric sizes (Yiantsios and Higgins 1989). At some point, they
interact, move closer and eventually coalesce to minimize the total surface energy. In this work,
the mobility of the drops appears to increase with their size. Coalescence events have also been
observed experimentally with any kind of fluid when two drops are too close (Fermigier, Limat,
Wesfreid, Boudinet, and Quilliet 1992).
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Figure 6.20: Temporal tracking of 4 bumps on the surface of a film of suspension made of 330-µm particles.

In the present experiments with films of large particles, the number of coalescence events seems
to be larger and isolated moving drops also appear. More recent numerical work on pendent drops
on a thin film investigates the possibility of a single bump to move over a uniform surface (Lister et
al. 2010). Under a small disturbance, the drop translates and grows, as it leaves a wake as it travels.
In addition, if the surface is not flat, the drop will be attracted to thicker areas. In this way, it is
a self-propelled system, since the bump is repelled by its own wake. No mention is made of the
relationship between the velocity and the volume of the drop.

6.4.6 Particle-induced stabilization

6.4.6.1 Pendent drops

Figure 6.21

6.4.6.2 Thin film

Let’s consider just one unit cell, like the one sketched in figure 6.6 and let’s assume than the fluid
does not feed neighboring peaks. In the hexagonal pattern, the volume of fluid available for one
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peak writes, 𝑉peak = ℎ0 = (16𝜋2√3 𝓁 2𝑐) ℎ0. (6.26)

In the pure fluid situation, such a volume would drip from the plate if it exceeds the critical dripping
volume, see § 6.1.3.3, 𝑉dripping ≃ 6𝜋𝓁 3𝑐 , (6.27)

i.e. if the liquid thickness is larger than ℎ⋆0 = 3√38𝜋 𝓁𝑐 . In practise, in the situation of a pure liquid film,
if the volume a unit cell is too small, drainage of the liquid would be possible. With the additional
fluid from neighboring cells, dripping could still be observed, provided that the the total fluid vol-
ume is larger than 𝑉dripping.

In the presence of particles, we now assume that the surface is such that local thickness can not
gets thinner than a particle diameter. In this situation, a volume𝑑 of the fluid in a unit cell is vitu-
ally unavailable for dripping and the reasonning aformentioned with pure fluid must be corrected
with the substraction of this constrained volume. The dripping criterion now becomes,𝑉peak −𝑑 =  (ℎ0 − 𝑑) ≥ 𝑉dripping ⇔ 𝑑 ≤ ℎ0 − ℎ⋆0 (6.28)

Figure 6.22: Stabilization of a thin liquid layer by particles. (a) in normalized units, 𝑑/ℎ⋆0 and ℎ0/ℎ⋆0 withℎ⋆0 = 3√3𝓁𝑐/8𝜋 and (b) in dimensional units 𝑑 and ℎ0 with 𝓁𝑐 = 1.8 mm.

This condition is illustrated in the diagrams in figure 6.22. In particular, with 𝓁𝑐 ≃ 1.8 mm, 500 µm
and 750 µm-thick layers of suspensions are stabilized by particles larger than 120 µm and 320 µm,
respectively.
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6.5 Concluding remarks

In this chapter, the instability of a thin layer of granular suspension above the air has been inves-
tigated experimentally. For a continuous fluid, a hexagonal lattice of peaks develops with a wave-
length predicted by linear analysis. Fluid viscosity does not affect the pattern but its growth rate
instead. This continuous-fluid description successfully predicts the emerging pattern and the dy-
namics of its growth for a thin film of small particles, ℎ0 ≳ 10𝑑 . The relevant viscosity is that of the
bulk and the instability develops more slowly due to the suspension larger viscosity.

However, the continuous description does not work with larger diameters, when particle un-
dergo a strong confinement, ℎ0 ≲ 3𝑑 . The breakdown of the continuous model probably comes
from the difficulty for the fluid film to thin around a peak. If the local thickness reaches a particle
diameter, fluid must either drain through a porous matrix and overcome capillary pressure acting
on the particles to move them elsewhere. With these suspensions, the hexagonal pattern disappears
and the instability is more localized. A smaller number of peaks develops but, interestingly, the
growth rate for an individual peak is larger in comparison with suspensions made of smaller par-
ticles. This accelerated growth is reminiscent of the accelerated pinch-off in granular suspensions
(Bonnoit, Bertrand, et al. 2012). It could also be explained by a smaller particle concentration in the
drop. Also, the propagation mechanism of the instability is very different. Some peaks tend to move,
which results in several dripping at different spots. This mechanism probably allows the peaks to
gather fluid in order to drip, in a smilar manner that pendent drops on a very thin liquid film in the
numerical simulation by Lister et al. (2010).

In conclusion, breakdown of the continuous model and new behavior under confinement are
once again unveiled in this system confined by a free surface. The local inhibition of the instability
with large particles needs further investigation. It paves the way for particle-stabilization of an
ustable interface, a real challenge with the Rayleigh-Taylor instability.
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Within the framework of complex flows of complex fluids, the capillary flows of dense granular
suspensions have been studied in this manuscript. In the dense case, granular suspensions can
be tuned to behave like a Newtonian fluid despite the presence of a particle-induced length scale.
When designed in this way, their bulk flow is rather predictable using classical hydrodynamic laws.
I have shown in this manuscript that this predictability vanishes in the case of free-surface flows
with typical sizes on the order of the particle diameter, 𝑑 . This work enriches our knowledge of
the confined flow of granular suspensions, which has so far been limited to confinement imposed
by a rigid wall. Presently, the confinement is imposed by the free surface, whose dynamics must
cope with this highly heterogeneous flow. During the last three years of my Ph.D. studies, I have
been investigating these capillary flows of dense granular suspensions, an area that has been little
investigated theoretically, numerically, and experimentally. Specifically, I studied drop spreading
(in Chapters 3, 4 and 5) and thin film instability (Chapter 6) of dense granular suspensions.

Capillary flows of suspensions: validity and limits of the continuous description
In the literature, effective-mediummechanicalmodels are expected to hold for granular suspen-
sions when the size of the system is more than 10 to 20 particle diameters. For example, I showed
that in a manner similar to a continuous fluid, a hexagonal lattice of peaks develops over the surface
of a film of suspension above air under the Rayleigh-Taylor instability when ℎ0 > 10𝑑 , where ℎ0
is the thickness of the fluid. The continuous model accurately predicts the wavelength and growth
rate of the instability using the bulk properties of the suspension. Although the continuous
hydrodynamic model seems to work well in some cases, increasing the suspension inherent size,
i.e. the particle diameter, breaks the continuous description at some point. A transition is observed
under strong confinement, typically when ℎ0 ≃ 3𝑑 , probably because of the difficulty for the liquid
to become thinner around a peak. In contrast to suspensions of smaller particles, the hexagonal
pattern does not develop and the instability is more localized with a smaller number of peaks using
suspensions made of large confined particles.
Similar conclusions can be drawnwhen a drop of suspension spreads and thins over a solid substrate.
This capillary flow exhibits a further level of complexity with a moving contact line, which is not
easy to handle even for continuous liquids. Nevertheless, granular suspensions exhibit qualitatively
Newtonian behavior either at the global macroscopic scale or at local microscopic distances from the
advancing contact line. In particular, the drop radius obeys Tanner’s law and the dynamic contact
angle follows the Cox-Voinov relation. However, unlike the Rayleigh-Taylor instability, the classical
wetting laws do not perfectly capture the phenomena. Detailed analysis reveals a discrepancy be-
tween the value of the bulk viscosity and the effective viscosity obtained from experiments.
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Tanner’s primary idea of using drop spreading experiments to measure fluid viscosity is compro-
mised by our results! In addition, Tanner’s law fails at some point when the drop interface confines
the suspension to only a few particle diameters. In such cases, the dynamics of the two phases of
the suspensions become completely different. A solid particulate matrix then freezes in the center
of the drop, and the liquid drains out of this porous medium formed during spreading.
Therefore, the classical continuous description of capillary flows of dense suspensions should work
for small confinement, i.e. when the system size is much larger than a particle diameter. How-
ever, the effective suspension properties may be different from those of the bulk and need to be
carefully measured.

Dense granular suspensions confined by a free surface
In this capillary-confined regime, the system can exhibit very different behavior and requires a
two-phase description. This transition to a two-phase problem when the size of the system reaches
a few diameters has also been reported for other capillary flows. The addition of particles in
the confined regime can result in very different consequences depending on the system of in-
terest. For instance, it slows down the spreading at long time and inhibits the growth of the
Raleigh-Taylor instability. In dip coating, when the liquid film is thick enough to entrap the parti-
cles, an effective viscosity in the continuous Landau-Levich-Derjaguin relation must be used (Jeong
et al. 2022). The effective viscosity in some confined flows (dip-coating, Tanner’s law, or the
Cox-Voinov relation) lies somewhere between the viscosity of the pure fluid and the bulk of the sus-
pension. The effective behavior in these capillary flows is thus midway between pure fluid and
bulk suspension. In pinch-off, the confinement of the particles in the neck of the drop leads to ac-
celerated drop detachment compared to pure fluid alone (Bonnoit, Bertrand, et al. 2012; Château
et al. 2018). The study of other capillary flows in this extreme confinement regime would help to
rationalize and model the underlying mechanics, with the aim of predicting the effect of particles
on the flow and the transition from continuous to confined systems. The numerical simulation of
confined flows with a free interface would also be valuable to study the coupling of a free surface
with the multiphase flow and to reveal the key elements of the dynamics.

Microstrucure induced by capillary confinement
In this work, several of these elements have been clearly identified. In particular, the strong confine-
ment of the suspensions leads to an ordering of the particles. This phenomenon has implications
on the macroscopic scale as it strongly affects the energy dissipation. For example, it may be
partially responsible for the decrease in viscosity in the Tanner and Cox-Voinov relations during
drop spreading. This ordering is observed in experiments when the interface height is typically one
or two diameters. Top views of the vicinity of an advancing contact line show layering and crys-
tallization of the first particle rows. However, the microstructure in the rest of the drop is difficult
to obtain. Playing withmultiple particle sizes disrupts ordering and improves our understand-
ing of the complex coupling between microstructure, confinement, and dissipation. For example,
in the vicinity of a moving contact line, confinement-induced crystallization may be hindered in
bimodal suspensions, resulting in low particle concentration and ultimately low wetting viscosity.
A decrease in viscosity could also be explained by concentration gradients developed by the flow.
For example, shear-induced particle migration could decrease particle concentration in the regions
of high shear rate, which are precisely the regions of greatest dissipation in a spreading drop. To-
mography could map the 3D microstructure of the particles to measure local concentration or the
extent and evolution of layering with increasing confinement.
In summary, order and heterogeneity in particle concentration should arise spontaneously and af-
fect the dynamics of the system under free surface confinement. This particular microstructure has
been difficult to study quantitatively.
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Dissipation in capillary flow of dense granular suspensions
The question of dissipation is crucial near an advancing contact line, where the shape of the inter-
face is governed by the balance between capillary and viscous effects. However, in this region,
the fluid thickness vanishes and the confined particles are at a finite distance from the contact line,
which increases with particle size. This heterogeneity in the particle concentration near the contact
line with a region devoid of particles must result in strong heterogeneity of local dissipation.
The system then questions how the free surface profile is affected by spatially varying dissipation.
Indeed, with non-buoyant dense suspensions, the addition of particles only increases the local dis-
sipation, while capillary and gravitational effects are not affected compared to the pure fluid alone.
From the analysis of the equation ruling the drop shape, a scaling law confirmed by experiments
has been established for the height ℎ⋆ where viscous effects fade out. It can also be interpreted
as the height at which the shape of the interface depends only on a gravitational-capillary balance.
For drop spreading, this height is approximately 100 µm. To check this prediction, particles can be
used as local dissipation probes, exploring only the regions accessible by their size. Additional
dissipation is revealed by the effective wetting viscosity in the Cox-Voinov relation, 𝜂𝑤 , whose
value is smaller than that of the bulk and, unlike the latter, depends on the particle size. More specif-
ically, the wetting viscosity decreases with increasing particle diameter and reaches the pure fluid
viscosity when the particles are larger than 100 µm. In other words, the free surface does not feel
the additional dissipation from particles larger than ℎ⋆, which supports the interpretation of this
quantity as a viscous cutoff. At smaller diameters, more particles fill the region ℎ < ℎ⋆, and gradu-
ally increase the dissipation reflected in the effective wetting viscosity.
In summary, capillary confinement by a free surface reveals and highlights the coupling between
microstructure and dissipation, and provides a new and interesting perspective on these issues.
Granular suspensions of frictionless particles would be an exciting extension of this work to study
the dissipative contribution of hydrodynamic interactions in these multiphase confined flows. They
could also be used to investigate the prediction from numerical simulations of an enhanced ordering
(Gallier, Lemaire, Lobry, et al. 2016). In this frictionless limit, possible non-Newtonian behavior in
complex flows would also be damped compared to frictional particles (Cheal and Ness 2018). The
frictionless PMAA particles recently obtained by Lily Blaiset offer perspectives for this new exciting
study (Blaiset et al. 2022).

In summary, my various projects question and answer the validity of regular continuous fluid
dynamics models with heterogeneous free surface flow governed by capillary effects. They reveal a
high level of complexity where fluid hydrodynamics interacts with confinement, self-assembly and
microstructure issues. In pinch-off, dip coating, drop spreading, and thin film instability, a tran-
sition from a continuous to a discrete regime is always observed as the particle size increases and
undergoes confinement. However, the system behavior in the capillary-confined regime can be very
different. Dissipation is also a key issue in my work, especially in a system like a suspension whose
viscosity depends on the particle volume fraction.
Many questions remain unanswered and pave the way for future work. Among them, elucidating
the origin of the drastic dissipation decrease in Tanner’s law would enrich our understanding of
granular suspensions in complex geometries. Sliding drops of suspensions on a titled plane could
be another interesting system with a strong internal flow, an advancing and a receding contact line,
which can be affected very differently by the addition of finite size objects in the flow.
The stabilization of liquid films by particles should also be further investigated in the light of prelim-
inary results on the Rayleigh-Taylor instability with granular suspensions. Particle volume fraction
and film thickness are certainly important parameters and more work is needed to determine their
contribution to this phenomenon. This thin film stabilization may be related to the observation of
the jamming behavior of granular drops at volume fractions far from the jamming transition.
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