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Introduction

Despite the tremendous success of neural networks in many applications, progress in understanding their performance and limits is slow. While universal approximation theorems bring the promise of machines capable of approximating any complex mapping, these results are generic asymptotic statements that provide little insight into practical applications.

Indeed, the complexity of any inquiry arises from the fact that three elements are necessary to train a neural network: a dataset, a neural architecture, and an optimizer. Most available theory focuses on only one of these elements at a time, and little is known about their interactions. This thesis develops an analysis of each of these elements and their interactions, theoretically and practically, through the lens of a particularly puzzling application, monocular depth estimation.

We start by analyzing the datasets, which play the role of the shadows projected onto the wall of Plato's cave, whose inhabitants are neural networks. We study how their deőnition impacts neural networks and how the design of synthetic datasets can be leveraged to better understand the performance and limits of each neural architecture.

Further analysis of the properties of neural architectures leads us to discuss means to adapt them to a new task or dataset, using two fundamental applications as testbeds: monocular depth estimation and video denoising methods. By giving counterexamples, we also point out how the universal approximation theorems do not apply to the practical setting.

Finally, we dive into the theory of optimizers and describe how they deőne the structure of learning machines. We focus on the concept of stability of the optimization process and propose the use of explicit bounds on a network's parameters and updates, ensuring that its output will be bounded regardless of its width and depth. We őnally derive a new form for classical neural optimizers that favor their stability. This thesis is split into three parts, with one section dedicated to each element of the deep learning pipeline: datasets, neural architectures, and optimizers. The őrst part is about the datasets, their caveats, and how they can be leveraged to better understand neural architectures. The second part is about the networks' architectures, their properties, and how to efficiently exploit them in a practical setting. The third and last part is about optimization, where we study the properties of neural networks learned by gradient descent. We discuss the instabilities that may arise when training deep neural networks and propose a solution as a novel optimizer focused on stability. Concluding the thesis, a őnal chapter synthesizes the presented research and considers potential avenues for future explorations. The following sections provide a brief overview of each chapter in this thesis.

Chapter 3: The notion of ground truth

The term łartiőcial intelligencež, which in the past received very different interpretations, is nowadays being identiőed with deep learning. Deep neural networks bring the promise that, instead of hand-crafting data processing algorithms by mathematical reasoning based on formalized principles, we can simply feed enough data to a neural network, which will learn the right operator from it. In supervised learning, the data are either annotated by humans or obtained from a large set of observed pairs (x n , f (x n )). It is this association of an output f (x n ) to an input x n in a learning dataset which is called a łground truthž. The use of a łground truthž annotated by humans raises a serious methodological problem, as humans are fallible. Worse even, the performance of these methods is evaluated and compared on subsets of the same annotations, as shown in Figure 1.1. Objective natural ground truths raise similar issues: raw data can be ambiguous or contradictory. In this chapter, we shall examine two examples where machine learning methods were used to replicate aspects of human perception and logic: depth perception and the detection of straight lines or segments. We show that a strict control of the geometry in the learning data set, or a rigorous mathematical deőnition of the geometric task, lead to results widely different from those learned blindly from annotated datasets or from ground truths acquired in the wild. See Figure 1.2 for an example on line detection. We conclude that a mathematical and principled analysis of learning datasets should precede their use.

Chapter 4: Evaluating networks' properties using synthetic datasets

The previous chapter highlights the caveat of łreal-worldž datasets and the need for a more controlled environment in which to assess neural networks' capabilities. There is so far no systematic study of the real capacities of neural structures. The question of what each structure can and cannot achieve is only partially answered by its performance on common benchmarks. Indeed, natural data contain complex unknown statistical cues. It is therefore impossible to know what cues a given neural structure is taking advantage of in such data. In Chapter 4, we sketch a methodology to measure the effect of a structure on a network's ability, by designing ad hoc synthetic datasets. Each dataset is tailored to assess a given ability and is reduced to its simplest form: each input contains exactly the amount of information needed to solve the task.

We illustrate our methodology by building three datasets to evaluate each of the three following network properties: a) the ability to link local cues to distant inferences, b) the translation covariance and c) the ability to group pixels with the same characteristics and share information among them. Using a őrst simpliőed depth estimation dataset, we pinpoint a serious nonlocal deőcit of the U-Net, as reported in Table 1.1. We then evaluate how to resolve this limitation by embedding its structure with nonlocal layers. These layers compute complex features with long-range dependencies. Using a second dataset, we compare different positional encoding methods and use the results to further improve the U-Net on the depth estimation task. The third introduced dataset serves to demonstrate the need for self-attention-like mechanisms for resolving more realistic depth estimation tasks.

Chapter 5: Designing a U-Net for denoising

The previous chapter highlights a caveat in the nonlocal capabilities of the U-Net. The U-Net was originally introduced for a task of segmentation in medical imaging where the need for nonlocality was limited. Indeed, network architectures are typically designed to solve one speciőc task, and they might fail when applied to others. Adapting an architecture to a new task can be challenging. In Chapter 5, we develop a methodology enabling one to table shows the evolution of the U-Net at four stages of the methodology presented in Chapter 5. The őnal version obtains a signiőcant gain of 0.32 dB and a reduction of four TFLOPS compared to the initial architecture. Ver. stands for version, and Cha. for the number of channels. Dou. stands for doubling: if it is checked, it means that the number of channels is doubled at each scale, otherwise it is kept constant at all scales. The value of τ we chose to determine if a modiőcation was relevant is 0.05.

properly adapt a network to a new task. We then illustrate this methodology by adapting the U-Net to a denoising task as part of a contract with Huawei. Table 1.2 contains a summary of our őndings. Lastly, we introduce U-Next, a new U-Net inspired by the recent őndings in architecture design [LMW + 22], and demonstrate competitive performance on image denoising.

Chapter 6: Desirable properties of neural networks: theory and practice

The competitive performance of our hand-made ConvNeXt-based structure described in Chapter 5 raises the question of the advantages and properties of recent structures. This chapter presents a general overview of neural networks' architectures and their properties. Notably, we pinpoint how the universal approximations theorems bias our practical understanding, and explain how they cannot be applied to the practical setting. In particular, we exhibit a case where they simply do not hold as described in Theorem 1.1.

In the following, we introduce Theorem 1.1. We start with two deőnitions that we will use in the theorem. In Deőnition 1.1, we deőne the block-circulant matrix C which content is characterized by a vector x ∈ R K . In our counter-example, the functions that cannot be approximated by a neural network with max-pool are the ones that differ when evaluated on different block-circulant matrices. In Deőnition 1.2, we describe the structure of the networks affected by the counter-examples. Namely, it is a regular two-dimensional convolutional neural network where the convolutions have no padding.

Definition 1.1. Let K ∈ N * and x = (x k ) k∈[[0,K-1]] ∈ R K . For (H, W ) ∈ (N * ) 2 , we define C such that

C(x) = x i+j[K] (i,j)∈[[0,H-1]]×[[0,W -1]] .
(1.1)

We also define its translated counterpart such that

∀k ∈ [[1, K]], C k (x) = x i+j+k[K] (i,j)∈[[0,H-1]]×[[0,W -1]] .
(1.2) Definition 1.2. Let M be the set of convolutional neural networks f such that there exists two functions ϕ and ψ such that

f = ψ • maxpool2d • ϕ, (1.3)
and such that ϕ is only composed of 2d convolutions with no padding and non-linearities, and ψ is arbitrary.

Theorem 1.1. Any convolutional neural network of M containing at least one 2d maxpooling of spatial extent k × k cannot approximate any function f such that there exists

k 0 ∈ [[2, 2k -1]], x ∈ R k 0 and (i, j) ∈ [[0, k 0 -1]] 2 such that f (C i (x)) ̸ = f (C j (x)).
Chapter 7: Properties of networks trained using gradient descent

Chapter 6 demonstrates that the capabilities of neural networks are constrained and deőned by the optimization process. In this chapter, we wonder about the interpolation capabilities of trained neural networks. We discuss a theorem of Domingos stating that łevery machine learned by continuous gradient descent is approximately a kernel machinež. According to Domingos, this fact leads to the conclusion that all machines trained on data simply perform kernel-based interpolation between the training data points. We őrst extend Domingo's result in the discrete case and to networks with vector-valued output, as presented in Theorem 1.2. We then study its relevance and signiőcance on simple examples. We őnd that in simple cases, the łneural tangent kernelž arising in Domingos' theorem does provide an understanding of the networks' predictions. Furthermore, when the task given to the network grows in complexity, the interpolation capability of the network can be effectively explained by Domingos' theorem and therefore is limited. We illustrate this fact on a classic perception theory problem: recovering a shape from its boundary.

Definition 1.3. The discrete neural tangent kernel of a C 2 learning function N is defined for each given iteration number k ∈ [[0, K]], by ∀(x, x) ∈ (R p ) 2 , K NTK (x, x; k) = ⟨∇ w N (x; w(k)), ∇ w N (x; w(k))⟩ R d .

Theorem 1.2 below informs us about the behavior of a trained neural network (or of any learning machine using gradient descent). This formula indicates that once trained, a neural network will be łcomparingž a given new sample x to all samples x n in the training set.

Theorem 1.2. Consider a C 2 learning machine model N and w the discrete path of parameters learned from a training set D by discrete gradient descent with steps (η k ) k∈[[0,K-1]] of a loss function L. Assume that the gradient of the loss L Lipschitz-continuous. Then N can be expressed as ∀x ∈ R p , N (x; w(K)) = N (x; w(0))

- 1 N N n=1 K-1 k=0 η k ∂L ∂ ŷ (ŷ n (w(k)), y n )K NTK (x, x n ; k) + O K-1 k=0 η 2 k , (1.4)
where ŷ(k) n = N (x n ; w(k)).

Chapter 8: Overview of typical training instabilities

In the previous chapter, we study the properties of neural networks when trained in a particular setting, and derive properties on the structure of the resulting learning machine.

In the more general setting, we cannot derive such rules and it can even happen that the training is unstable, making it nearly impossible to reach convergence. This problem is often characterized by spikes in the training loss resulting in disrupted training that either diverges or converges to a sub-optimal solution. In this chapter, we őrst introduce a mathematical theory to characterize instabilities, which is summarized in Equation (1.6). Then, we present and discuss a list of typical sources of instabilities, and explain them through the lens of the theory. Lastly, we gather and explain a set of different solutions one can rely on when training in an unstable setting.

For a linear layer deőned as f (x; A, b) = Ax + b, with x ∈ R N ×C in , A ∈ R Cout×C in and b ∈ R Cout , we want to ensure the variance of the output does not diverge when we increase the number of channels. The initialization scheme ensures this property, as presented in [START_REF] He | Delving deep into rectiőers: Surpassing human-level performance on imagenet classiőcation[END_REF]. In this chapter, we study what happens after an update. After an update, the linear layer can be deőned as f (x; A + δA, b + δb), with

E[x] = µ, Var [x] = σ 2 I, (1.5a 
)

E[A k,n ] = 0, Var [A k,n ] = O 1 max(C in , C out ) , (1.5b) E[b k ] = 0, Var [b k ] = O(1), (1.5c) 
for every

(k, n) ∈ [[1, C in ]] × [[1, C out ]],
and we assume the δA k,n and δb k to be independent from one another.

To ensure the variance of the output after the update does not diverge when the number of channels grows, we need we propose SING (StabIlized and Normalized Gradient), a plug-and-play technique that improves the stability of the optimization process. SING is straightforward to implement and has minimal computational overhead, requiring only a layer-wise standardization of the gradients fed to Adam(W) without introducing additional hyper-parameters. We support the effectiveness and practicality of the proposed approach by showing improved results on a wide range of architectures, problems (such as image classiőcation, depth estimation, and natural language processing), and in combination with other optimizers. We provide a theoretical analysis of the convergence of the method, and we show that by virtue of the standardization, SING can escape local minima narrower than a threshold that does not depend on the network's architecture.

In this chapter, we seek to approximate the solution to the following optimization problem,

min x∈R p F (x).
(1.7)

We assume there exists a random function f : R p → R such that E[∇f (x)] = ∇F (x) for all x ∈ R p , and that we have access to an oracle providing i.i.d. samples (f n ) n∈N [START_REF] Défossez | A simple convergence proof of adam and adagrad[END_REF].

In the case of neural networks, the optimization variable x represents the parameters of the network, F is the oracle loss and f is the empirical loss evaluated on a random minibatch. The parameters of a neural network have a speciőc structure. They are made of the concatenation of the parameter tensors from each layer of the network. We use D ∈ N to denote the number of these parameter tensors and deőne (I k ) k∈ [[1,D]] such that x I k = {x i : i ∈ I k } represents the k-th parameter tensor. As an example, let's consider the neural network N (•; A, b) = A • +b. In this case, the network has two parameter tensors, hence D = 2. The őrst parameter tensor is x I 1 = A and the second is

x I 2 = b.
The steps taken by our optimizer are deőned by

x t+1 = x t -η ϕ(∇f (x t )) Γ(ϕ(∇f (x t )) , (1.8)
where ϕ is the gradient centralization operation [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF] and the division is applied element-wise. The operator Γ corresponds to the parameter-wise normalization i.e.

Γ(x)

i = √ D∥x I k ∥ 2 ,
where k ∈ [[1, D]] and i ∈ I k .

(1.9) Definition 1.4. Let x * be a critical point of F . The basin of attraction of x * is defined to be the set W (x * ) such that

W (x * ) def = {x ∈ R p : ⟨∇F (x), x -x * ⟩ ≥ 0}.
Moreover, we write B(x * ) to be the largest ball centered around x * contained within W (x * ), and r its radius.

In the previous deőnition, if x * is a saddle point, B(x * ) = {x * } and r = 0. One of the key properties of our algorithm is its ability to escape from narrow local minima. This is crucial because the stochasticity of the optimization landscape often leads to the creation of artiőcial local minima, generally associated with poor generalization performance [Coo18, GVS14, HHY19, KMN + 16, PB17].

Theorem 1.3 (Escaping from narrow local minima). Let x t be the sequence of iterates defined by (1.8) and y t the sequence of iterates of gradient descent, y t+1 = y tη GD ∇F (y t ).

(1.10)

Assume that x t ∈ B(x * ) (resp. y t ∈ B(x * )) i.e. the ball contained in the basin of attraction of x * , defined in Definition 1.4. Also, assume that x t (resp. y t ) is not a critical point i.e. ∇F (x t ) ̸ = 0 (resp. ∇F (y t ) ̸ = 0). If the stepsize is sufficiently large,

η SING ≥ 2r, η GD ≥ 2r ∥∇F (y t )∥ 2 , (1.11)
then the iterate x t+1 (resp. y t+1 ) is outside the set B(x * ).

In the chapter, we also present a convergence theorem. Under mild assumptions, we show the ϕ-norm of the gradient can be reduced to any desired precision. We assume that the stochastic gradient has a σ-bounded variance (σ > 0) i.e.

∀x ∈ R p , E ∥∇F (x) -∇f (x)∥ 2 2 ≤ σ 2 , (1.12) and the objective function F is positive and L-smooth, ∀x, y ∈ R d , ∥∇F (x) -∇F (y)∥ 2 ≤ L∥x -y∥ 2 .

(1.13) Theorem 1.4 (Convergence with gradient centralization). Let assumptions (1.12) and (1.13) hold. Assume the gradient is computed across a mini-batch of size B = σ 2 ϵ 2 . Let x t be the sequence of iterates (1.8). Then we have

1 T T -1 t=0 E[∥∇F (x t )∥ ϕ ] ≤ √ D ηT F (x 0 ) + (1 + √ D)ϵ + ηL √ D 2 , (1.14) 
where ∥ • ∥ 2 ϕ = ⟨•, ϕ(•)⟩ 2 is a pseudo-norm. If we set τ ∼ U ([[0, T -1]]), η = 2ϵ L and T = LF (x 0 ) 2ϵ 2 , we obtain E[∥∇F (x τ )∥ ϕ ] ≤ (1 + 2 √ D)ϵ. Therefore, the iteration complexity and computation complexity to achieve an ϵ-stationary point for ∥ • ∥ ϕ are O(1/ϵ 2 ) and O(1/ϵ 4 ), respectively.
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Introduction (en français)

Malgré l'immense succès des réseaux de neurones dans de nombreuses applications, la compréhension de leurs performances et de leurs limites progresse lentement. Bien que les théorèmes d'approximation universelle apportent la promesse de machines capables d'approximer n'importe quelle application complexe, ces résultats sont des énoncés asymptotiques et génériques qui ne donnent que peu d'informations sur les cas pratiques.

En effet, la complexité de l'analyse théorique vient du fait que trois éléments sont nécessaires pour entraîner un réseau de neurones : un jeu de données, une architecture neuronale et un optimiseur. La plupart des théories disponibles se concentrent sur un seul de ces éléments à la fois, et l'on sait peu de choses sur leurs interactions. Cette thèse développe une analyse de chacun de ces éléments et de leurs interactions, en théorie et en pratique, à travers une application particulièrement déroutante : l'estimation de profondeur monoimage.

Nous commençons par analyser les jeux de données, qui jouent le rôle des ombres projetées sur le mur de la caverne de Platon, dont les habitants sont les réseaux neuronaux. Nous étudions l'impact de leur déőnition sur les réseaux neuronaux et la manière dont la conception d'ensembles de données synthétiques peut être exploitée pour mieux comprendre les performances et les limites de chaque architecture neuronale.

Une analyse plus poussée des propriétés des architectures neuronales nous amène à discuter des moyens de les adapter à une nouvelle tâche ou à un nouveau jeu de données, en utilisant deux applications fondamentales comme bancs d'essai : l'estimation de profondeur mono-image et les méthodes de débruitage vidéo. En donnant des contre-exemples, nous montrons également comment les théorèmes d'approximation universels ne s'appliquent pas au cas pratique.

Enőn, nous nous plongeons dans la théorie des optimiseurs et décrivons comment ils déőnissent la structure des machines d'apprentissage. Nous nous concentrons sur le concept de stabilité du processus d'optimisation et proposons l'utilisation de limites explicites sur les paramètres d'un réseau de neurones et leurs mises à jour, garantissant que sa sortie sera bornée quelles que soient sa largeur et sa profondeur. Enőn, nous déduisons une nouvelle forme pour les optimiseurs neuronaux classiques qui favorise leur stabilité.

Cette thèse est divisée en trois parties, une section étant consacrée à chaque élément de l'apprentissage profond : jeux de données, architectures neuronales et optimiseurs. La première partie est consacrée aux jeux de données, à leurs défauts et à la manière dont ils peuvent être utilisés pour mieux comprendre les architectures neuronales. La deuxième partie est consacrée aux architectures neuronales, à leurs propriétés et à la manière de les exploiter efficacement dans un cadre pratique. La troisième et dernière partie porte sur l'optimisation, où nous étudions les propriétés des réseaux neuronaux appris par descente de gradient. Nous discutons des instabilités qui peuvent survenir lors de leur apprentissage et proposons une solution sous la forme d'un nouvel optimiseur axé sur la stabilité. En conclusion de la thèse, un dernier chapitre synthétise les recherches présentées et envisage des pistes potentielles pour des travaux futurs.

Les sections suivantes donnent un bref aperçu de chaque chapitre de cette thèse.

Chapitre 3: La notion de vérité terrain

Le terme łintelligence artiőciellež, qui a reçu par le passé des interprétations très différentes, est aujourd'hui identiőé à l'apprentissage profond. Les réseaux neuronaux profonds promettent qu'au lieu d'élaborer à la main des algorithmes de traitement des données par un raisonnement mathématique basé sur des principes formalisés, nous pouvons simplement fournir suffisamment de données à un réseau neuronal, qui en tirera l'opérateur adéquat. Dans l'apprentissage supervisé, les données sont soit annotées par des humains, soit obtenues à partir d'un vaste ensemble de paires observées (x n , f (x n )). C'est cette association d'une sortie f (x n ) à une entrée x n dans un ensemble de données d'apprentissage qui est appelée łvérité terrainž. L'utilisation d'une łvérité terrainž annotée par des humains soulève un sérieux problème méthodologique, car les humains sont faillibles. Pire encore, les performances de ces méthodes sont évaluées et comparées sur des sous-ensembles des mêmes annotations, comme le montre la őgure 2.1. Les vérités terrains naturelles et objectives soulèvent des problèmes similaires : les données brutes peuvent être ambiguës ou contradictoires. Dans ce chapitre, nous examinerons deux exemples dans lesquels des méthodes d'apprentissage ont été utilisées pour reproduire des aspects de la perception et de la logique humaines : la perception de la profondeur et la détection de lignes droites ou de segments. Nous montrons qu'un contrôle strict de la géométrie dans l'ensemble de données d'apprentissage, ou une déőnition mathématique rigoureuse de la tâche géométrique, conduisent à des résultats très différents de ceux appris à l'aveugle à partir de jeux de données annotés ou de vérités de terrain acquises dans la nature. Voir la őgure 2.2 pour un exemple de détection de lignes. Nous concluons qu'une analyse mathématique et fondée sur des principes des jeux de données d'apprentissage devrait précéder leur utilisation. Chapitre 4: Évaluation des propriétés des réseaux de neurones à l'aide de jeux de données synthétiques Definition 2.1.

Soit K ∈ N * et x = (x k ) k∈[[0,K-1]] ∈ R K . Pour (H, W ) ∈ (N * ) 2 , on définit C tel que C(x) = x i+j[K] (i,j)∈[[0,H-1]]×[[0,W -1]] . (2.1)
On définit également sa version translatée comme

∀k ∈ [[1, K]], C k (x) = x i+j+k[K] (i,j)∈[[0,H-1]]×[[0,W -1]] .
(2.2) Definition 2.2. Soit M l'ensemble des réseaux de neurones convolutifs f tels qu'il existe deux fonctions ϕ et ψ telles que 

f = ψ • maxpool2d • ϕ, (2.3 
k 0 ∈ [[2, 2k -1]], x ∈ R k 0 et (i, j) ∈ [[0, k 0 -1]] 2 tels que f (C i (x)) ̸ = f (C j (x)).
Chapitre 7: Propriétés des réseaux de neurones entraînés avec une descente de gradient 

k ∈ [[0, K]] par ∀(x, x) ∈ (R p ) 2 , K NTK (x, x; k) = ⟨∇ w N (x; w(k)), ∇ w N (x; w(k))⟩ R d .
Le théorème 2.2 ci-dessous nous renseigne sur le comportement d'un réseau neuronal entraîné (ou de toute machine d'apprentissage entraînée avec une descente de gradient).

Cette formule indique qu'une fois entraîné, un réseau neuronal łcomparež un nouvel échantillon x à tous les échantillons x n de l'ensemble de formation.

Theorem 2.2. Considérons un machine d'apprentissage N ∈ C 2 et w le chemin discret des paramètres appris à partir d'un jeu de donnée d'apprentissage D par descente de gradient discrète avec des pas (η k ) k∈[[0,K-1]] d'une fonction de coût L. Supposons que le gradient de la fonction de coût L soit Lipschitz-continu. Alors N peut être exprimé comme

∀x ∈ R p , N (x; w(K)) = N (x; w(0)) - 1 N N n=1 K-1 k=0 η k ∂L ∂ ŷ (ŷ n (w(k)), y n )K NTK (x, x n ; k) + O K-1 k=0 η 2 k , (2.4) où ŷ(k) n = N (x n ; w(k)).
Chapitre 8: Panorama des instabilités usuelles de l'entraînement

Pour une couche linéaire déőnie par f ( 

x; A, b) = Ax + b, avec x ∈ R N ×C in , A ∈ R Cout×C in et b ∈ R Cout ,
E[x] = µ, Var [x] = σ 2 I, (2.5a) E[A k,n ] = 0, Var [A k,n ] = O 1 max(C in , C out ) , (2.5b) E[b k ] = 0, Var [b k ] = O(1), (2.5c) pour tout (k, n) ∈ [[1, C in ]] × [[1, C out ]],
et nous supposons que les δA k,n et les δb k sont tous indépendants les uns des autres.

Pour s'assurer que la variance de la sortie après la mise à jour ne diverge pas lorsque le nombre de canaux augmente, nous avons besoin de

E[δA k,n ] = O 1 max(C in , C out ) , Var[δA k,n ] = O 1 max(C in , C out ) . (2.6)
Chapitre 9: Un optimiseur axé sur la stabilité 

= A et le second x I 2 = b.
Les étapes suivies par notre optimiseur sont déőnies par

x t+1 = x t -η ϕ(∇f (x t )) Γ(ϕ(∇f (x t )) , (2.8) 
où ϕ est l'opération de centralisation de gradient [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF] et la division est appliquée élément par élément. L'opérateur Γ correspond à la normalisation par tenseur i.e.

Γ(x) i = √ D∥x I k ∥ 2 , où k ∈ [[1, D]] et i ∈ I k .
(2.9) Definition 2.4. Soit x * un point critique de F . On définit le bassin d'attraction de x * comme étant l'ensemble W (x * ) tel que 

W (x * ) def = {x ∈ R p : ⟨∇F (x), x -x * ⟩ ≥ 0}.
η SING ≥ 2r, η GD ≥ 2r ∥∇F (y t )∥ 2 , (2.11)
alors l'itéré x t+1 (resp. y t+1 ) est en dehors de l'ensemble B(x * ).

Dans ce chapitre, nous présentons également un théorème de convergence. Sous de légères hypothèses, nous montrons que la ϕ-norme du gradient peut être réduite à toute précision souhaitée. Nous supposons que le gradient stochastique a une variance limitée par σ

(σ > 0) i.e. ∀x ∈ R p , E ∥∇F (x) -∇f (x)∥ 2 2 ≤ σ 2 , (2.12) et que la fonction de coût F est positive et L-Lipschitz, ∀x, y ∈ R d , ∥∇F (x) -∇F (y)∥ 2 ≤ L∥x -y∥ 2 .
(2.13) Theorem 2.4 (Convergence avec centralisation de gradients). Supposons que les hypothèses (2.12) et (2.13) soient valables et que le gradient soit calculé sur un mini-batch de taille B = σ 2 ϵ 2 . Soit x t la séquence d'itérés (2.8). Nous avons alors

1 T T -1 t=0 E[∥∇F (x t )∥ ϕ ] ≤ √ D ηT F (x 0 ) + (1 + √ D)ϵ + ηL √ D 2 , (2.14) où ∥ • ∥ 2 ϕ = ⟨•, ϕ(•)⟩ 2 est une pseudo-norme. Si nous définissons τ ∼ U ([[0, T -1]]), η = 2ϵ L et T = LF (x 0 ) 2ϵ 2 , on obtient E[∥∇F (x τ )∥ ϕ ] ≤ (1 + 2 √ D)ϵ. Par conséquent, la complexité d'itération et la complexité de calcul permettant d'atteindre un point ϵ-stationnaire pour ∥ • ∥ ϕ sont respectivement de O(1/ϵ 2 ) et de O(1/ϵ 4 ).
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Part I

Datasets 29

The term "artificial intelligence", which in the past received very different interpretations, is nowadays being identified with deep learning. Deep neural networks bring the promise that, instead of hand-crafting data processing algorithms by mathematical reasoning based on formalized principles, we can simply feed enough data to a neural network, which will learn the right operator from it. In supervised learning, the data are either annotated by humans or obtained from a large set of observed pairs (x n , f (x n )). It is this association of an output f (x n ) to an input x n in a learning dataset which is called a "ground truth". The use of a "ground truth" annotated by humans raises a serious methodological problem, as humans are fallible. Worse even, the performance of these methods is evaluated and compared on subsets of the same annotations. Objective natural ground truths raise similar issues: raw data can be ambiguous or contradictory. In this chapter, we shall examine two examples where machine learning methods were used to replicate aspects of human perception and logic: depth perception and the detection of straight lines or segments. We show that a strict control of the geometry in the learning data set, or a rigorous mathematical definition of the geometric task, lead to results widely different from those learned blindly from annotated datasets or from ground truths acquired in the wild. We conclude that a mathematical and principled analysis of learning datasets should precede their use.

Introduction

Artiőcial neural networks (NNs) are complex non-linear functions y = N (w; x) obtained by combining multiple simple units, in a structure that is reminiscent of how neurons are organized in the brain. NNs are parameterized by a vector w of millions, billions, or sometimes even trillions of parameters.

A neural network N can be described as a family of functions (f i ) i∈ 1,D and a vector of weights w ∈ R d such that the network is deőned as

N (x; w) = f D (f D-1 (. . . (f 2 (f 1 (x; w); w) . . . ; w); w).
Notably, each function f i is differentiable almost everywhere and is parameterized by weights stored in w ∈ R d . During a supervised training, neural networks are trained using a large number of example pairs (x, y) of inputs and the desired outputs (e.g. noisy and noiseless image pairs) stored in a dataset

D := (x n , y n ) n∈ 1,N ∈ (R p × R q ) N .
Supervised training is to be distinguished from self-supervised and unsupervised training which do not involve ground truth. The objective of training is to minimize the risk, which is the expected value of the loss

L(w) = L (N (x; w), y) dP(x, y), (3.1)
where P is the probability distribution of the data, and w denotes the vector of all parameters of the network. The distribution P is usually unknown and the empirical distribution of a collection of training samples P = 1 N N n=1 δ (xn,yn) is used instead, so that

L(w) = 1 N N n=1 L (N (x n ; w), y n ) . (3.2)
As explained in further detail in Part III, to minimize this risk ś or this loss ś a gradient descent algorithm is used, which therefore reaches a local minimum, as the functional is generally not convex. The gradient ∇ w L of the loss over the training data is computed with respect to the set of parameters w. In practice, due to computational limitations, stochastic gradient descent is used and more sophisticated optimization methods are becoming common [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF], [START_REF] Yurii | A method for solving the convex programming problem with convergence rate o (1/kˆ2)[END_REF]. The dominant learning structure is called deep learning and refers to łdeepž multi-layer neural networks that are being trained on massive data to learn the łrightž answer to a request. In supervised learning, the training is sometimes led by human łground truthž, who manually annotate images. In other examples, the training is obtained from a large set of observed data.

Most tasks proposed to deep learning are highly complex and hardly deőnable in mathematical terms. The hope is that by accumulating enough ground truth data and feeding it to a neural network, the right operator will be obtained. This has two implications: the operator being learned is often not mathematically or formally deőned; it is deőned łin extensož by its application to many examples.

The goal of data-driven techniques is that the network trained on a dataset will łlearnž to solve the task and generalize to new unseen data. To test this generalization ability, the dataset is split into training and test datasets. Then, the network is trained using data sampled from the training set, but the goal is to optimize the performance on the test set. However, while networks for a given task generalize well between splits of the same dataset, they often fail when applied on a different dataset [START_REF] Torralba | Unbiased look at dataset bias[END_REF]. This leads to a well-known failing of deep learning algorithms, called łstatistical overőttingž or łdataset bias" [TPCT17] e.g. the learning task is not necessarily extensible outside of the dataset it has learned from. The fact that neural networks struggle to generalize outside of the training domain is actually well-known [START_REF] Tommasi | A deeper look at dataset bias[END_REF][START_REF] Torralba | Unbiased look at dataset bias[END_REF]. As pointed out in this last paper, Some datasets, that started out as data capture efforts aimed at representing the visual world, have become closed worlds unto themselves.

The testing set has, legitimately enough, exactly the same origin as the learning set, being generally extracted for the same original larger set by uniform random sampling. See Lastly, some approaches propose to leverage the network's features to generate pseudo-labels which will be used to train a new network [KK21, FCH + 21]. This can be useful when the new dataset is not fully labeled. Data augmentation can be seen as a domain transfer technique. It consists in applying random transformations to the training samples to artiőcially increase the diversity and size of the dataset.

Self-supervised learning has received a lot of attention in the past few years as it allows to train a network without any label. This partially cures the problem of wrong labels and alleviates the cost of labeling an entire dataset. In some of those approaches, the distance between the representation of similar data samples is reduced while it is increased for dissimilar samples [GSA + 20]. For some others, no dissimilarity is used [KTW + 20]. When used, the notion of similarity is to be redeőned for each task [ZTRR21, XLZ + 21]. While it has its own caveats, this technique is considered to be very promising. However, neural networks trained in a self-supervised fashion are still trained on a dataset and can still be subject to dataset biases, contradictions, and ambiguities.

Unsupervised learning, on the other hand, aims at exhibiting the structure underlying a dataset. For instance, it can őnd clusters of data samples sharing the same properties [CBJD18, CMM + 20]. However, this domain is not receiving as much attention as selfsupervision.

An approach that has not been pursued extensively, however, is changing the properties of the training dataset itself to limit contradictions or generate a fully artiőcial dataset in In Section 3.2, we contrast a natural monocular depth estimation dataset with a synthetic Rectangle Depth Estimation (RDE) dataset. While synthetic, the RDE dataset retains the main difficulties of the depth estimation problem but has an unambiguous ground truth where reaching 100% accuracy is theoretically possible.

In Section 3.3 we address the very basic line segment detection in images and oppose two groups of methods that we describe brieŕy: the őrst approach is a geometric statistical deőnition of line segments. It is represented by two methods. The other approach is represented by not less than őve deep neural networks that were taught to recognize segments on a human-annotated dataset. We make a simple experimental comparison of these methods, as their results are easily interpreted and linked to their methodology. Section 3.4 is a őnal discussion.

Depth estimation and its impossible ground truth

A classical example of recent success in machine learning has been to train a network to łsee in depthž by giving it a large number of images coupled with their depth map. The network is then asked to deduce from a single image its depth map, an operation called monocular depth perception. Depth estimation datasets [CQF + 20,LS18,XSC + 18,YXH + 21] consist in the association between many images and their associated depth map measured by range laser. In other terms, each image pixel has two attributes, color and range (or depth). No faulty human intervention can be found in such real ground truth. Yet, the problem of deducing depth from color is obviously ambiguous: if a ŕat green image is shown, what is the distance of green? Thus, networks are at őrst sight requested to perform an impossible task. Yet, the hope is that the very large size of the dataset ensures that the network's Does it mean that these networks resolve perspective vision? Note that they are often trained to őnd a normalized depth (between 0 and 1), not the actual depth measured in, say, meters. But monocular perspective perception is not to be identiőed with őnding real distances, even if normalized.

The human monocular perception theory of perspective [START_REF] Metzger | Gesetze des sehens[END_REF], [Spi] tries to explain how our perception orders objects in space. There are two classes of cues that help decide if an object is farther away than another. The őrst ones are of optical-geometric nature, like atmospheric perspective, organization of straight lines toward vanishing points, shape from shading, shape from texture, and occlusion, which is signaled by T-junctions. The other ones are empirical and rely on our experience of the spatial organization of recognizable objects in natural scenes, where in addition we know in advance the size of these objects, humans, animals, trees, vehicles, buildings, etc. One can deduce their approximate distance from their apparent size in an image.

The artiőcial monocular depth estimators that we shall consider [RLH + 20], [MDM + 21] are not being trained with a loss that is invariant to any affine function applied to the measured depth. They are not requested to provide an order in space, but directly a real depth.

More disturbing still, traditional depth estimation datasets are made of highly correlated images. They are acquired using a RGBD camera held by one person moving in a narrow room, or from numerous random walks through a 3D scene. As a result, the images look similar. Some examples are displayed in Figures 3.3 and 3.4. Networks trained on such datasets typically memorize all the objects of each room (maximum 300) and fail to generalize on the validation set, which is built the same way but with different rooms. In practice, we observe that networks trained on such datasets have a decreasing training loss but the testing loss remains constant throughout the training. Higher quality datasets [RLH + 20] exist but they have not been publicly released.

To get a clearer view of at least one element of depth perception, we shall rely on Kanizsa's perception of depth. Kanisza [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF] discovered that a particular organization of visible boundaries in images in T-junctions was the predominant cue to organize objects in space from the farthest to the closest ones. See Figure 3.5 for an illustration of the role of T-junctions: they signal which rectangle is in front of another. We deőned in Chapter 4 The brighter the color, the higher the number of rectangles that are beneath it. The unambiguous images of the dataset are made of up to ten superposed rectangles with őxed colors. The ground truth is the ordering from 0 to 10 and it can be deduced visually and by a simple algorithm. Each color on the right is associated with a class from 0 to 10. T-junctions, namely points where a region border stops on another border, are the key shape ordering indicators.

a fully unambiguous depth dataset to evaluate if and how the relative position of objects could be evaluated from Kanizsa's theory alone. The synthetic dataset was made of images like the one in Figure 3.5.

Other synthetic datasets [TDA + 21, PBE + 21] have been proposed to analyze and quantify the effect of certain layers or training methods, allowing one to discover effects that would otherwise be impossible to unveil [PBE + 21]. Notably, synthetic datasets are commonly used for image quality evaluation [START_REF] Kundu | Perceptual quality evaluation of synthetic pictures distorted by compression and transmission[END_REF]. The vast majority of the literature on depth estimation uses datasets of real images labeled using lidar lasers. Part of these works aim at improving already-existing networks used for depth estimation. For instance, some focus on designing better losses [LHKS19,LK20,LS18,RLH + 20,WZW + 20,XZW + 20] while others [MDM + 21,RDL20] devise post-processing strategies based on already-trained networks to make them work on new cases.

Our dataset is inspired by the dead leaves model [GR03] and poses a very simple depth estimation task where objects are replaced by simple rectangles. The rectangles can over-lap one another, creating a spatial organization that naturally puts objects on top of others. The ground truth is the ordering of rectangles in increasing integer order from the black (0) background to the closest rectangle (up to 10). Each order is represented by a color. In other terms, the goal of the algorithm is, given the input image, to output a similar image where colors have been replaced by the new őxed colors in correspondence to the depth order from 0 to 10. The task given to a neural network is closely related to real-world depth estimation as it accurately reŕects one of its main difficulties. When an object is partially occluded by others that divide it into several components, the network must regroup the parts that have been separated, which can only be done by recognizing the same color and/or detecting edge alignment. The ground truth is unambiguous. Indeed, there exists a deterministic reconstruction algorithm based on three nonlocal cues: a) color similarity (all rectangles are monochromatic, thus can be recovered nonlocally); b) T-junctions, a local cue that propagates nonlocally, c) convexity that leads to decide about the overlap of a convex region on the one surrounding it. A full description of the algorithm recovering depth (identiőed with the overlap order) is described in Chapter 4, Section 4.3.2. An example can be found in Figure 3.5.

We can now evaluate if, indeed, a neural network trained on a set deprived of any ambiguity surpasses in performance the same network trained on the very same dataset but where the carefully removed ambiguous cases have been added back to the dataset. The result of this experiment is given in Table 3.2, where different variants of the RDE dataset were investigated. We used the exact same architecture for every training: a U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] described in more detail in Chapter 4; only the training and test set were modiőed. The speciőcity of each variant is described in Table 3.1. Various measurements of the performance of the networks are shown. In particular, when training on a dataset where all the ambiguities were retained (second line), we notice that the last three measurements are multiplied by a factor of 3 to 4. When changing the blur kernel, the results are catastrophic. This shows a strong dataset bias even in this oversimpliőed modeling of depth estimation.

In Table 3.2, the test loss refers to an average error (as measured by the loss) on the test set.

The root mean square error passes from 5 to 2 roughly. The three metrics we report in this table are three of the most commonly employed metrics for Monocular Depth Estimation tasks [AW18, CFYD16, MDM + 21, RLH + 20]: the Root Mean Square Error (RMSE), the δ 1.25 and the Ord metric. The RMSE is deőned as

RMSE(ŷ, y) := 1 HW i,j (ŷ i,j -y i,j ) 2 ,
where ŷ is the prediction and y the ground-truth. This measures the error between the network's prediction and the prediction it was supposed to make. The δ 1.25 metric is the percentage of pixels such that δ 1.25 := 1 HW i,j 1 {max ŷi,j y i,j , y i,j ŷi,j

>1.25}

.

In other terms, it corresponds to the portion of pixel where the network's prediction erred by more than 25%. The ordinal loss consists in sampling 50,000 pairs of pixels ((i 1 , j 1 ), (i 2 , j 2 )) and for each of those pairs, compute

l i =      +1, if y i 1 ,j 1 /y i 2 ,j 2 ≥ 1 + τ -1, if y i 1 ,j 1 /y i 2 ,j 2 ≤ 1 1+τ 0, otherwise.
Using the same pairs, the equivalent quantity l is computed for the prediction. The ordinal loss is given by

Ord := 1 |P| i∈P 1 {l i ̸ = li } .
In practice, we used τ = 0.03, and all the networks were evaluated using the same set of pairs of pixels when computing the ordinal loss. Said differently, this metric measures if the network predicted the correct ordering of the scene i.e. if the value of one pixel is above another one in the ground truth, this ordering must prevail in the network's prediction regardless of the exact value.

The reader should be curious at this point to see what a big and successful neural network trained on millions of natural images gives on our synthetic images. All in all, we should have expected that such a network gives a constant depth on each rectangle with constant color and that it orders correctly each pair of rectangles that overlap. The result is shown in Figure 3.6. In the second column, we see the depth estimated by very powerful neural networks trained on millions of image-depth pairs. They react to this abstract scene as if it were a natural perspective scene, where generally the more distant objects are situated at the top and the closest ones at the bottom. In other terms, the networks have learned łaveragež perspective laws and apply them everywhere. There is no surprise in this result, 

Some partial conclusions

The proposed image dataset and its ground truth were designed to follow a series of requirements:

Unambiguous ground-truth, Well-posedness: The input contains enough information to solve the task;

Focus on a specific required network property: The network must be able to deduce the exact ground truth from the input image only if it has the assessed property. In our case, this property was the nonlocal propagation of the depth property to all pixels having the same color and of the order indicated by each T-junction to the two concerned rectangles.

Perceptual and physical validity: Although the images are not natural, a correct interpretation of the image must be realizable by a quick visual inspection. In our case, it could be realized with rectangular colored paper sheets disposed on a table.

These properties are not attainable with natural datasets, as they contain many statistical cues that help compensate for a structural deőciency of the network. We conjecture that using such fully controlled datasets, but very similar to a classic artiőcial intelligence task, might be used for neural network design (see Part II), and for explaining the observed properties and ŕaws of neural networks trained on łnaturalž datasets. We have just veriőed in the above example that eliminating ambiguities boosts the overall network performance.

Human ground truth and line segment detection

Line segment detection in images has innumerable applications, as most human-made objects contain straight edges that case straight image edges, namely straight segments across which the image intensity changes drastically, due to different plane orientations toward the light [START_REF] Kou | Airport detection based on line segment detector[END_REF], [START_REF] Lu | Cannylines: A parameter-free line segment detector[END_REF]. In this section, we shall contrast two methodologies for the detection in images of an object that might have claims to be deőned in purely mathematical terms: line segments. The őrst methodology (two algorithms will be presented) is purely geometric and statistical, and it does not require a single learning example. The second methodology builds sophisticated neural networks that learn from a human-annotated dataset associating images with their line segments.

Line segments detected by statistical testing

LSD [START_REF] Grompone | Lsd: A fast line segment detector with a false detection control[END_REF], [START_REF] Grompone Von Gioi | On straight line segment detection[END_REF] and EDlines [AT11b] [START_REF] Akinlar | Edlines: A real-time line segment detector with a false detection control[END_REF] are based on the nonaccidentalness statistical principle, which we shall brieŕy illustrate in the case of alignment detection. Its simple guiding idea is to count the number of aligned pixels on any possible segment and accept the set of pixels as a line segment if the observed alignment is perceptually meaningful, namely could not occur in a fully disordered (white noise) image. This principle originates in Gestalt theory [START_REF] Desolneux | From gestalt theory to image analysis: a probabilistic approach[END_REF]. The difference between LSD and EDlines resides in the way candidate segments are extracted from the image. (It would be inconvenient to test all possible segments). LSD őnds connected components of pixels sharing the same gradient orientation up to some precision. If the shape of the component is approximately a rectangle, then the medial axis of the rectangle is the detected segment, provided it satisőes the non-accidentalness principle. EDlines proceeds differently and generates candidates by joining seed candidates for the tips of the segments. Then these candidates are selected by the non-accidentalness principle. More quantitatively, a line segment detection is validated if its expectation in white noise is low [START_REF] Desolneux | From gestalt theory to image analysis: a probabilistic approach[END_REF].

In a white noise image, all pixels (and their gradient orientations) are independent and uniformly distributed. Let A be a discretized segment comprised of n pixels on the image domain. A valid line segment of the image should have łmanyž pixel gradient directions aligned to the direction normal to the segment A. Suppose A has at least k points with their directions aligned (up to an error ±p/2) with the normal direction to A in an image of size N × N . Deőne the łNumber of False Alarms (NFA)ž of A as

N F A(n, k) = N 4 n i=k n i p i (1 -p) n-i , (3.3) 
where N 4 is the number of potential line segments in an N × N image. The probability p used in the computation of the binomial tail is the accuracy of the line direction. The line segment A is called ε-meaningful if its N F A(n, k) ≤ ε. The authors advise setting ε to 1, which corresponds to allowing on average one false detection per white noise image. Given these deőnitions, a line segment of length n, with k aligned pixels k is considered valid if N F A(n, k) ≤ 1. Otherwise, the line is rejected.

Learning by examples what a line segment is

We shall compare the above geometric-statistical methods LSD and EDlines with not less than őve methods created by machine learning, SOLD2 [PLL + 21], M-LSD [GKG + 22], TP-LSD [HQX + 20], ULSD [LYW + 21], and LETR [START_REF] Xu | Line segment detection using transformers without edges[END_REF]. These őve deep neural networks are almost contemporary and very recent. They can be compared because they have been trained (and tested) on the same dataset, Wireframes. In architecture design, a wireframe is often referred to a line drawing of a building or a scene on paper. The authors of [HWZ + 18] have built this dataset of over 5,000 images with wireframes thoroughly labeled by humans. Note that a wireframe is not just a set of line segments; it is a set of line segments aimed at describing an architecture. Hence, its line segments mostly correspond to edges and corners of structures (walls, buildings, furniture, etc.), and they mostly end on T-junctions or corners. This led annotators to neglect many segments that can be conspicuous but have a minor explanatory role in understanding the architecture, for example, the dark rays separating planks. For all őve neural networks we shall consider, training was made on this dataset and validated on its testing part and on another wireframe test dataset, the YorkUrban dataset [START_REF] Denis | Efficient edge-based methods for estimating manhattan frames in urban imagery[END_REF]. All of these methods focus on predicting different parts of the lines annotated in the dataset. In particular, they try to predict the junctions (i.e. the endpoints of the lines), the line itself as a heatmap, or a root point deőned as the central point of the line as well as the displacements from this root point to other deőning points of the line. Additionally, the methods also include a classiőcation module that learns whether a predicted line corresponds to an actual line in the dataset.

It is to be noted that some of the methods we describe have been trained following an unsupervised or self-supervised scheme. This further points out that the downfalls of łstatistical overőtting" and łground truths" are not exclusive to supervised learning.

Comparison of all methods

In Figure 3.9 we compare the results of the seven above-presented line segment detectors on an architectural photograph. The experiment displays the original image łLe Piréež, followed by results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021), SOLD2 (2021). As we commented, the őrst two detectors are handcrafted and based on edge growing followed by an a contrario detection threshold. A detailed comparison of both images shows that most segments present in one image are present in a similar position in the other. Sometimes a segment detected by EDlines is actually split into two smaller segments with a gap in the LSD result. This corresponds to a slightly different heuristic exploration of the image gradient őeld by both methods: LSD requires connectedness for a segment to be detected, while EDlines allows for some gap in a segment and therefore sometimes presents a single segment where LSD őnds two. All in all, the detection maps are very similar because they obey the same statistical deőnition of a meaningful segment. No machine learning is involved in this deőnition and therefore no dataset dependence: these detectors are agnostic.

Something radically different is at stake with the last őve detectors obtained by sophisticated deep learning methods learning primarily from the Wireframe dataset. Unsurprisingly, the line segment interpretations given by machine learning taught on wireframes are widely different from those proposed by the agnostic statistical deőnition. This is conőrmed by taking a look at images from the wireframe dataset [HWZ + 18], see Figure 3.7. The middle row shows two images from the wireframe dataset and their łground truthž (őrst row) which is a human annotation. This annotation is actually a mental reconstruction of the architectural sketch of the scene. It presents hardly visible segments, and neglects many that are conspicuous, and even partially occluded ones. This is in strong contrast with the result of the agnostic LSD detection in the bottom row showing hundreds of line segments bordering the ground planks on the left image. On the right-hand image, the ground truth interprets the muntins of the windows as single line segments while these are thick and bounded by two straight sides. This experiment illustrates perhaps the bias of human annotation: many obvious line segments are missing because they were not considered meaningful for interpreting the scene. The őve neural networks were also evaluated (and compared to LSD and EDlines) on the YorkUrban dataset [START_REF] Denis | Efficient edge-based methods for estimating manhattan frames in urban imagery[END_REF]. In Figure 3.8 we display results in the same format as for the Wireframe images. On the middle row are two images from this dataset. On top of them their łwireframež interpretation. On the bottom row, the line segments found by LSD.

Returning to Figure 3.9, one can notice some agreement between the results of the four őrst mentioned networks trained on wireframe, TP-LSD, ULSD, LETR, and MLSD, while the result of SOLD2 is puzzling. The four őrst results give a sketchy but coherent view of the building visible in the foreground. The input image belongs to the łdomainž on which the neural network is competent.

Yet, on a slightly łout of domainž image, the results obtained by neural networks trained on wireframe diverge considerably more, as evident in the results compared in Figure 3.10. The scene is actually an indoor scene, but containing just and only aligned chairs in perspective. The networks perform a łwireframež analysis. Hence, the rounded angles of the chairs are replaced by corners; more strikingly, most chair borders are visually ridges, not edges, thus delimited by two parallel straight lines. These pairs are found by LSD and EDlines but systematically replaced by a single line in the wire frame interpretation.

In the experiments of Figures 3.9 and 3.10 the algorithms depend on parameters. For LSD and EDlines, by a classic principle of a contrario detection methods, one false alarm (in expectation) is allowed per image. This principle makes sense in detection tasks where multiple detections are expected. Unfortunately for neural networks, no such principle is available or accessible to learning.

The considered machine learning methods depend on one or two parameters. One is common to all: the score or detection threshold ranging from 0 to 1. But an additional threshold may be used to enforce accuracy like in ML-LSD endowed with a distance threshold, and SOLD2, which has an inlier threshold ranging in [0, 1]. LSD and EDlines have both a single threshold, the NFA, which is őxed to 1, thus actually not an active user parameter.

In Figure 3.11 we display the results obtained when varying the parameters of each method, particularly the score threshold. Although the median score of 0.5 would be expected to give the best result on the learning dataset, this threshold is clearly no longer valid on an łout of domainž image.

Conclusion

Neural networks are generally given ambiguous or contradictory training examples and given a proposed task that is not even deőnable. In the two use cases we examined, the problem that neural networks are asked to solve is not deőned by anything but by the dataset. We picked these two examples for several reasons. First of all, the question to be resolved by these neural networks has a clear physical meaning (for the depth problem) and in the second example an intuitive geometric meaning. Indeed, line segments correspond mostly to the physical edges of buildings and other man-made objects.

We tried to argue that deőning a problem by a łnaturalž dataset may become a dead end. First, because no external veriőcation is possible. Or, rather, in the cases we examined, an external veriőcation using sound but slightly łout of domainž data yields questionable or unstable results, which is alarming. The AI movement is carried by the hope that neural networks have or will have a łgeneralization powerž. The two examples we examined rather suggest that we should őnd workarounds to force neural networks to generalize by fully controlling the structure of well-deőned synthetic datasets, rather than relying on uncontrolled łground truthž. Avoiding ambiguities and contradictions in what we teach neural networks seems to be a sound pedagogic recommendation. The notions of wellposedness, and geometric invariance, for example, have been powerful requirements in physics and applied mathematics. Such axiomatic requirements should be applied to the training datasets and the loss. For example, we saw that the loss typically used in monocular depth perception tasks does not model the required invariances. We should perhaps explore the limits of ad hoc synthetic datasets, with mathematically deőnable ground truth, before we start even using łground truth in the wildž. Last but not least, our examination of line segment detection suggests that the variability of networks trained on the very same dataset should be a major concern and actually perhaps an a posteriori criterion to evaluate each proposed dataset. Similarly, measuring the variance of the result for different training sessions of the same neural network trained on the same dataset should also be an obvious reliability criterion.

Neural networks are like Plato's prisoners, shackled in a cave and shown shadows of objects on a wall. Because they know of nothing else, they accept anything shown as the whole reality and cannot imagine anything beyond it. Contrary to what a mathematically naive approach would suggest, training an artiőcial intelligence requires a teaching strategy that avoids contradictions and ambiguities, and the task should be feasible in the end, much like when teaching humans.

This chapter highlights the need for a more controlled environment in which to assess neural network's capabilities. In Chapter 4, we will detail one such environment based on synthetic datasets. In particular, we will describe a methodology to design a synthetic dataset tailored to assess one property of a given network and illustrate it on three examples.

Evaluating networks' properties using synthetic datasets

Chapter 3 highlights the caveat of "real-world" datasets and the need for a more controlled environment in which to assess neural network's capabilities. There is so far no systematic study of the real capacities of the proposed neural structures. The question of what each structure can and cannot achieve is only partially answered by its performance on common benchmarks. Indeed, natural data contain complex unknown statistical cues. It is therefore impossible to know what cues a given neural structure is taking advantage of in such data. In this chapter, we sketch a methodology to measure the effect of each structure on a network's ability, by designing ad hoc synthetic datasets. Each dataset is tailored to assess a given ability and is reduced to its simplest form: each input contains exactly the amount of information needed to solve the task. We illustrate our methodology by building three datasets to evaluate each of the three following network properties: a) the ability to link local cues to distant inferences, b) the translation covariance, and c) the ability to group pixels with the same characteristics and share information among them. Using a first simplified depth estimation dataset, we pinpoint a serious nonlocal deficit of the U-Net. We then evaluate how to resolve this limitation by embedding its structure with nonlocal layers, which allow computing complex features with long-range dependencies. Using a second dataset, we compare different positional encoding methods and use the results to further improve the U-Net on the depth estimation task. The third introduced dataset serves to demonstrate the need for self-attention-like mechanisms for resolving more realistic depth estimation tasks.

Introduction

Deep learning has been characterized by signiőcant advances in őelds ranging from computer vision [PS + 15] to protein structure prediction [JEP + 21]. However, neural networks lack interpretability, and it is nearly impossible to predict the performance of a given structure on a task. While most of the effort is directed toward the explainability of the models themselves, the possibility that a better understanding of deep learning methods could come from better-designed datasets has received little attention. In this work, we investigate this hypothesis by introducing a methodology to enhance the impact of architectural choices and to identify their ŕaws.

Datasets of natural images need to be huge in order to capture the semantic complexity of the real world. While such datasets are necessary to ensure generalization to realworld applications, their structure and information content are fully out of control. The information given to the network can be ambiguous, and sometimes contradictory, and the spatial interaction of features can be guided by hidden statistical dependencies. See Chapter 3 for more details. It is therefore hard or impossible to anticipate or explain the success or failure of a given network structure. A second ambiguity resides in the fact that each datum might not contain enough information to solve the prescribed task. A third ambiguity resides in the input itself: a plethora of semantic local and nonlocal cues coexist within the same image, which makes it difficult for an external observer to pinpoint the cause of the success or failure of a given network structure.

A better understanding of neural networks requires characterizing their capabilities and linking them to their structure. To this end, we propose to train neural networks on datasets where those ambiguities have been lifted. That way, the success of a structure on a given task can only be attributed to the structure having a certain property, and not to some other uncontrolled statistics. Alleviating the three sorts of ambiguities requires resorting to synthetic datasets. In this work, we introduce a methodology to design such unambiguous synthetic datasets to explore the properties of neural networks.

We illustrate this methodology on three datasets. First, we design a depth estimation task -the Rectangle Depth Estimation (RDE) dataset -to assess the non-local properties of the U-Net which, according to several authors [QZH + 20, ZLH + 20], seems to be unable to exploit its large receptive őeld. In particular, we őnd that endowing the U-Net with nonlocal layers helps improve its nonlocal capability, especially when a variant of the Lambda layer [Bel21] is used. Then, observations of the failure cases of the resulting structure raise the question of the positional encoding used within the Lambda layer. This leads us to design a second dataset, which aims at assessing the properties of the positional encoding. This second task allows us to design a better positional encoding method, which we successfully transfer to the őrst task. Finally, we design a dataset to evaluate the ability to group pixels with the same characteristics and share information among them. In particular, we őnd that self-attention [VSP + 17] excels at this task.

The contributions of this chapter are as follows:

1) We introduce a methodology to design synthetic datasets to be used to evaluate networks' properties. This allows one to investigate neural architectures to better understand their capabilities. This methodology can be applied to any structure and for any data modality.

2) We apply this methodology to evaluate three different network properties, namely: the ability to link local cues to distant inferences, the translation covariance, and the ability to group pixels with the same characteristics and share information among them. For each property, a dataset is designed. These datasets can be used to evaluate any structure.

3) The datasets are used to compare and discuss multiple structures. The őrst dataset allows us to őnd a nonlocal deőcit in the U-Net and to partially őx it by adding nonlocal layers in its structure. Then, the second dataset helps us őnd a way to incorporate positional encoding in the Lambda layer while ensuring translation equivariance. Finally, experiments on the third dataset point out that self-attention and variants excel at grouping pixels with the same characteristics and sharing information among them. The conclusions we draw on structures might lead to some improvement when handling real datasets, but this is not the goal of this chapter. Rather, the proposed methodology may be used to verify unambiguously the effect of each proposed neural structure on ad hoc synthetic data. 

Related work

Multiple depth estimation datasets [CQF + 20, LS18, XSC + 18, YXH + 21] aim at training networks for real applications. The RDE dataset we introduce is a depth estimation task reduced to its simplest form, where only the strictly necessary cues are left for the network to understand the depth ordering of the scene. Other synthetic datasets [PBE + 21, TDA + 21] have been proposed to analyze and quantify the effect of certain layers or training methods, allowing one to discover effects that would otherwise be impossible to unveil. Notably, synthetic datasets are commonly used for image quality evaluation [START_REF] Kundu | Perceptual quality evaluation of synthetic pictures distorted by compression and transmission[END_REF]. The Long-Range Arena [TDA + 21] was introduced to evaluate the long-range capabilities of Transformers [VSP + 17]. While we share a similar objective, failure on such complex classiőcation tasks cannot be easily linked to structural deőciencies. We aim to design synthetic datasets for better understanding structures and not only assessing them. The Color Code dataset is used to assess variants of Transformers, but both the RDE and the Centered Square dataset consist of images of small size but too large for the quadratic cost of Transformers. In [START_REF] Achddou | Synthetic images as a regularity prior for image restoration neural networks[END_REF], a synthetic dataset is used to train a denoising network. The trained network is then found to perform well on natural images without őne-tuning. This work suggests synthetic data can indeed model the challenges of a task. While we share a similar methodology, the synthetic images they leverage feature complex structures which makes it difficult to pin-point failure cases to speciőc structural components. The RDE dataset shares similarities with the dead leaves model [GR03] and builds images composed of rectangles to create occlusion.

In particular, the approach described in [LLM + 18] is close to ours. The authors exhibit a property they want their network to have and design simple synthetic datasets to evaluate it. They őnd that their network does not have the property and propose a change in structure to solve the issue. In this work, we propose a generalization of this approach by providing a methodology to reproduce those steps for other properties. In [KMM + 19], the authors also introduce a dataset to exhibit a property their layer has, but competing approaches do not. It can be argued however that the usage of noise introduces unneeded information and does not follow the Occam razor criterion.

Different ways to improve the U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] have been proposed in the literature. For instance, U 2 -Net [QZH + 20] provides a global receptive at each scale by including a U-Net at each scale of the U-Net. This method is state-of-the-art for őgure-background segmentation. In [AYH + 19] the receptive őeld and the amount of processing are increased by a recurrent network used at each scale of the encoder. We shall actually propose here a faster and lighter-weight approach by leveraging non-local layers to attain a global receptive őeld at each scale. In [ZLH + 20] the authors identify a receptive őeld issue with the U-Net. They propose to solve it by a novel structure processing all scales in parallel. The LambdaUNet [OYH + 21] uses the Lambda layer [Bel21] in conjunction with the U-Net. It keeps the Lambda layer in its local formulation, while we shall change its receptive őeld to cover the entire image at once. Notably, the authors of [WZSJ20] introduced a network called łNon-Local U-Net". They use a so-called łnon-local layer" [START_REF] Wang | Non-local neural networks[END_REF] similar to self-attention [VSP + 17] to increase the receptive őeld of the U-Net. The resulting network is slow, as it is based on an operation with quadratic time and space complexity. In comparison, we shall explore a U-Net architecture that can be combined with a variety of non-local layers. The layers we choose to assess have a linear time and space complexity and can be trained and evaluated on a single GPU.

A wide variety of non-local layers have been proposed in the literature. Many of them are based on self-attention or łnon-local networks" [START_REF] Wang | Non-local neural networks[END_REF]. Some layers aim at mimicking self-attention with a linear complexity [WLK + 20, SZZ + 21, CLD + 20, XZC + 21b, KA20, JBA + 21, HWH + 19, ZPX + 21, XZC + 21a]. We evaluated some of those layers but were not able to make them converge on our task, or they were exceedingly long to train. This suggests that they require heavy hyper-parameter tuning or the usage of multiple convergence tricks. In this work, we explicitly chose to assess easy-to-use and easy-to-train layers. Other non-local layers [Bel21,CXL + 20,CRY + 19,DQX + 17,HSA + 18,HSS18,TKL20, ZHLD19] do not try to mimic self-attention. Any of them could be incorporated into our architecture. We shall evaluate several of them.

Since its őrst introduction in [VSP + 17], different approaches have proposed different positional encoding methods. In [CTB + 21], it is pointed out that the positional encoding in its original formulation is not translation covariant. The authors propose to decorrelate the encoding of the absolute position with the encoding of the relative position. Their őndings suggest that relative position alone is enough for some tasks in NLP. The original position encoding is a predeőned sinusoidal function, and some works have focused on improving these functions [LYDH20, DGV + 18, LCG + 19]. Other approaches have been developed, see [START_REF] Dufter | Position information in transformers: An overview[END_REF] for an overview. In this work, we use the Centered Square dataset to evaluate different positional encoding methods to be used inside the Lambda layer to ensure translation covariance.

The methodology

In this section, we describe the design requirements an unambiguous dataset must fulőll to assess whether or not a structure has a given property such as nonlocality, translation covariance, etc. Such requirements can only be fully enforced in a synthetic dataset, namely:

Unambiguous ground-truth: There must be no contradictory labels, no annotation problems nor cases where multiple labels are valid for the same input.

Well-posedness: The input contains enough information to solve the task. There must exist a reconstruction algorithm able to deduce the exact ground truth from the input image. In other terms, reaching 100% accuracy is theoretically possible. Note that, because of the inherent ambiguity of natural scenes, this property is not attainable with natural datasets.

Focus on a specific network's property: The network must be able to deduce the exact ground truth from the input image only if it has the assessed property (such as nonlocality, permutation invariance, etc.). So the cues given to the network must be under full control so that we know exactly which cues the network can use. Note again that this property is not attainable with natural datasets, as they contain many statistical cues that help compensate for a structural deőciency of the network.

In particular, we would like to stress out that an important requirement is simplicity. The third property can only be enforced if the dataset is as simple as possible.

In the following, we describe the three datasets we used as an illustration of our methodology for, respectively, nonlocality, translation covariance, and the ability to pass on information to every pixel of the same color. More examples can be found in Chapter 7.

The Rectangle Depth Estimation dataset

The dataset consists of a depth estimation task where objects are replaced by simple rectangles. The rectangles can overlap and occlude one another, creating a spatial organization that naturally puts objects of top of others. To compute an unambiguous ground truth, our reconstruction algorithm is based on three nonlocal cues: a) color similarity (all rectangles are monochromatic, thus can be recovered nonlocally); b) T-junctions, a local cue that propagates nonlocally; c) convexity, that leads to decide that a region occluded by another shape is to be inpainted as a convex shape and is therefore underneath the occluding shape. A full description of the algorithm is available in Section 4.3.2. An example can be found in Figure 4.2.

The task that needs to be solved is closely related to real-world depth estimation as it accurately reŕects its main difficulties. When for example an object is partially occluded by others, it is divided into several components and the network must regroup the separated parts. This can only be done by recognizing the same color and/or detecting edge alignment.

To decide on the depth order, the network can only rely on T-junctions and convexity. These local cues need to be successfully detected and propagated at an arbitrary distance to understand the geometrical organization of the scene. Indeed, the distance can be arbitrarily large as there is no upper limit on the size of the rectangles. Therefore, the network cannot overőt on local information, whereas in natural scenes it is easy for a network to differentiate, say, a tree from the background sky. Whilst these could be interesting priors, there is no guarantee that the network will not associate a depth value to each position or texture. Our dataset is designed so that it is not possible to associate a local patch to an absolute depth. All cues provide information about the relative ordering between objects. The global depth can only emerge via a coherent global integration of these relative cues. In Figure 4.1 we show an example where state-of-the-art networks trained on natural images seem to heavily rely on local cues and natural statistics. We can for instance see that the bottom of the picture always seems to be brighter than the top, even though it makes no sense in this case. Of course, these networks being trained on natural data, it was to be expected that they would perform poorly on work on our out-of-domain dataset. Nevertheless, this experiment is interesting because it shows statistical priors on the depth learned. In our dataset, a failure cannot be attributed to a misunderstanding of the objects caused for instance by poor lightning conditions or noise. The dataset being fully unambiguous and its ground truth recoverable from geometric features in sight, failure can only be attributed to a poor geometrical understanding. This allows one to assess the ability of a network to compute non-local features (or, in the case of the U-Net, to efficiently use the multi-scale structure). This also suggests that any improvement on this dataset should be reŕected in other depth estimation datasets.

Algorithm for generating the RDE dataset

The RDEsynthesis algorithm is split into three steps. First, the rectangles are generated by a set of rules that carefully eliminate ambiguous cases. Then, all pairs of potentially intersecting rectangles are compared to each other to infer if one of them overlaps the other. Finally, a depth-first search algorithm derives the global scene organization and őxes the unambiguous ground truth, each rectangle receiving its lowest possible integer rank compatible with all pairwise overlap observations. The őrst algorithm consists of a while loop, randomly generating coordinates for a candidate rectangle and checking for the following constraints:

-The candidate should not be too small i.e.have at least a width and height of W/10 and H/10 respectively, where (H, W ) is the dimension of the image to be generated.

-The candidate should not occlude another previously generated rectangle too much. This translates to constraining the maximum number of pixels belonging to a given rectangle in each row and column of the image to be larger than n vis . We also check for the minimum number of visible pixels in each row and column and impose it to be larger than n gap .

-To avoid the near-ambiguous case where translating a rectangle by one pixel would change the ground truth, we check that the candidate does not share a side with another already-generated rectangle. We also prevent the case where translating the candidate by one pixel would result in a side being shared.

-We constrain two parallel sides belonging to two different rectangles to be separated by at least n par pixels.

-Finally, a T-junction between two rectangles must be separated by at least n vis pixels from the closest edge.

All of these constraints ensure the genericity of the scene, namely that a small perturbation of rectangles' positions would not alter scene interpretation. If all the conditions are met, the candidate is added to the list of rectangles. The loop stops when n rectangles (usually 10) have been generated or after 1000 unsuccessful trials (which happens about once every 500 runs).

Once the n rectangles are generated, we perform a pairwise comparison of the rectangles. Consider a pair of rectangles (A, B) where B has been generated before A. If an edge of A forms the leg of a T-junction with an edge of B and if this T-junction is not occluded by another successive rectangle, then B is set to be above A. Then, for each rectangle of the pair, we compute the smallest rectangle that contains all the visible pixels belonging to it. Let's call these two rectangles C and D. If C and D overlap and if there is a pixel belonging to A in the intersection i.e.if the intersection is not occluded, A is deduced to be above B.

Then, we consider the one-to-one comparisons as a graph and do a depth-first search to determine the global ordering of the square.

Finally, we randomly attribute to each rectangle a color from a őxed list of n rectangles distinct colors generated once and for all by uniformly sampling the hue space. The generated image is blurred by an antialiasing Gaussian őlter with a standard deviation of 0.7. The ground truth is normalized to have values in [0, 1], as per common practice.

Despite the different optimizations, the resulting algorithm is quite slow: approximately eight CPU hours are required to generate 62,500 image-ground-truth pairs. We further parallelize this generation using multi-threading on sixteen CPU cores. The őnal algorithm takes mere minutes to generate the entire dataset.

We set H = W = 128, n vis = n gap = n par = 5. Decreasing any of the aforementioned parameters amounts to making the task harder. We could also have chosen to sample a different set of colors for each sample. This way the network would have the additional difficulty to learn the colors from each sample.

The Centered Square dataset

This dataset is designed to assess the translation covariance of a given positional encoding method. We use it to őnd the best method to use inside our Lambda layer. The input consists of an all-black H × W image where a single pixel is white. The associated ground truth is an all-black image with a white square of width w centered around the white pixel.

The training set consists of all the positions for the white pixel contained in the square of dimension H 2 × W 2 located in the center of the image. The test set is composed of all the other positions, except for the ones where the image's boundaries crop the ground truth square. This way, the network only learns the reconstruction property in the middle of the image and is evaluated on its ability to apply this property everywhere in the image. A network can only do it perfectly if it is translation equivariant. An example of input and label is shown in Figure 4.2.

The Color Code dataset

One of the limitations of the RDE dataset is that it uses 10 őxed colors for the entire dataset i.e. for every image, the 10 same colors are used to color the rectangles. We made this choice so the network could focus on the nonlocal reasoning, even if it implies overőtting on the őxed colors to overcome occlusion. In particular, we found that the baseline U-Net is not able to overcome occlusion even in this simplistic scenario. In our attempt to progressively bridge the gap between synthetic and real depth estimation, the next natural step is to change the colors for each image. In this scenario, a network must solve two tasks: őrst, it must use local and nonlocal cues to őnd a mapping between color and depth and second, it must pass on this depth to every pixel of this color.

As the second task is difficult in itself, we decided to study the performance of different layers on this task alone. This leads us to the introduction of the Color Code dataset. This third dataset aims to study the performance of a network which, given a mapping between colors and codes, must pass to every pixel the code corresponding to its color. More formally, for each input k colors c 1 , . . . , c k are randomly sampled. For each color c i , a code z i is randomly picked. Then, a mapping σ :

[[1, k]] → [[1, N ]
] is sampled as well as a mask m ∈ {0, 1} N such that the input is given by

x = c σ(1) . . . c σ(N ) m 1 • z σ(1) . . . m N • z σ(N ) ,
and the associated ground truth is

y = z σ(1) . . . z σ(N ) .
In other terms, for some positions, the code is given and for others, it is not. The goal of the network is to őnd where the code associated with a color has been given, retrieve it, and propagate it to the right positions.

Non-Local U-Net

Our baseline for the depth estimation problem is a traditional U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] with concatenated skip connections. To limit the number of parameters, we kept the width at each scale constant and equal to 48 instead of doubling it after each down-sampling. In accordance with [START_REF] Tan | Efficientnetv2: Smaller models and faster training[END_REF], we observed that this alleviated overőtting in multiple scenarios. The resulting network had 871 729 parameters. We modiőed this U-Net following the recipe of [LMW + 22]. In particular, we used the structure described in Chapter 6, Section 6.3.2. This includes using GELU [HG16], LayerNorm [START_REF] Lei Ba | Layer normalization[END_REF] instead of BatchNorm [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], 7 × 7 grouped convolutions, the inverted bottleneck structure after each block [SHZ + 18] and LayerScale [TCS + 21].

To host nonlocal layers, we passed the input feature map at each scale into a local module and a nonlocal module. The two outputs were then concatenated, upsampled/downsampled, and passed on to the next scale. The local module corresponds to the module of the original U-Net and the nonlocal module is the nonlocal layer. We refer the reader to Figure 4.3 for further details.

All the networks we considered have őve down-sampling operations. The smallest feature map has a 4 × 4 spatial extent. Therefore, the receptive őeld of the baseline U-Net and all of its considered variants covers the entire image.

We tried four different non-local layers: the Lambda Layer [Bel21] (which is itself a variant of [CKL + 18]), the Global Context Layer [CXL + 20], Global Average Pooling, Deformable Convolutions [START_REF] Zhu | Deformable convnets v2: More deformable, better results[END_REF]. We chose these over others because they could be applied at each scale and őt on a single GPU. When it was not already the case, we embedded the nonlocal layer within the design pattern of Chapter 6, Section 6.3.2 following the PreNorm [NS19] convention (see Chapter 8, Section 8.3.6 for more details). We also őxed instabilities issues when discovered, notably for the Lambda layer (see Chapter 8, Section 8.3.4). We also modiőed the original Lambda layer to avoid using its positional encoding, which has a quadratic time/space complexity. More details can be found in Section 4.5.2.

Experiments

Experiments on the RDEdataset

Metrics

We used three of the most commonly employed metrics for Monocular Depth Estimation tasks [AW18, CFYD16, MDM + 21, RLH + 19]: the Root Mean Square Error (RMSE), the δ 1.25 and the Ord metric. We also used the generalization gap as an indicator of how well the assessed networks generalize [START_REF] Dai | Coatnet: Marrying convolution and attention for all data sizes[END_REF]. The RMSE was deőned by

RMSE(ŷ, y) := 1 HW i,j (ŷ i,j -y i,j ) 2 ,
where ŷ is the prediction and y the ground-truth. The percentage of pixels with δ 1.25 is given by

δ 1.25 := 1 HW i,j 1 {max ŷi,j y i,j , y i,j ŷi,j >1.25}
.

The ordinal loss consists in sampling 50,000 pairs of pixels ((i 1 , j 1 ), (i 2 , j 2 )) and for each of those pairs, compute:

l i =      +1, if y i 1 ,j 1 /y i 2 ,j 2 ≥ 1 + τ -1, if y i 1 ,j 1 /y i 2 ,j 2 ≤ 1 1+τ 0, otherwise.
Using the same pairs, the equivalent quantity l is computed for the prediction. The ordinal loss is given by:

Ord := 1 |P| i∈P 1 {l i ̸ = li } .
Finally, we deőne the generalization gap as the difference between the value of the loss on the test set and the train set at the end of the training.

In practice, we used τ = 0.03, and all the networks were evaluated using the same set of pairs of pixels when computing the ordinal loss.

Results

Effect of ambiguity removal We trained the Non-Local U-Net with different nonlocal layers on the RDE dataset. This dataset was comprised of images of dimension 128 × 128.

Most images featured ten rectangles. The dataset was őltered to remove most ambiguous cases e.g. when T-junctions are hidden by another square or when rectangle sides are aligned. As an illustration of the need for an unambiguous dataset, we compare in Table 4.1 the performance of the baseline network when trained on the unambiguous dataset and when trained on the same dataset but where we did not remove the ambiguous cases. The network trained on the unambiguous dataset is four times better than its counterpart.

Comparison We report in the upper part of The deformable convolutions yielded the lowest performance. This is most likely because it has the smallest width. Since this layer introduced a large number of parameters, we had to reduce the width so it had the same number of parameters as the baseline. Its width was 21 when most layers had around 40 channels per feature map.

Overall, even the simplest non-local layer yielded a noticeable improvement over the baseline U-Net. This supports the claim of [QZH + 20] and [ZLH + 20] that the U-Net might be more local than expected. It seems that the more sophisticated the non-local layer, the better the results, which suggests that further improvement could come from still better nonlocal layers.

Although the U-Net has a global receptive őeld, the way the information propagates inside it might be to blame. This information is fused locally, step by step, in the way of a diffusion process. This might explain why occlusions stop the propagation of information from one occluded object to another, as can be observed in Figure 4.4. See Section 4.6 for more details along with an illustration.

When observing the cases where our best network failed, we observed that the network struggled in the case the T-junctions between two rectangles are occluded. In this case, the network needs to compute the spatial extent of each rectangle from the visible parts and understand that the extensions overlap. See Figure 4.5 for an illustration. Failure to handle such a case suggests a problem with the positional encoding used within the Lambda layer, which leads us to the Centered Square dataset. The best reported results are in bold and the second best is underlined. Note that the more sophisticated the non-local layer, the better the results. The model marked with an asterisk (*) was trained on the ambiguous version of the training dataset and evaluated on the unambiguous one. In particular, the reported test loss is the one computed on the unambiguous dataset. 

Results on the Centered Square dataset

For this set of experiments, we used the Centered Square dataset presented in Section 4.3.3 with H = W = 64 and a square width of w = 21. The dataset was composed of 484 training images and 1,452 test images. We evaluated our network by computing the IOU over the test set. Further training details are given in the supplementary.

As the goal of this dataset was to evaluate the positional encoding method, the network to be trained was reduced to its simplest form. Indeed, using a multiscale structure could bias the interpretation of the results. On this task, we trained a network made of one 1 × 1 convolution, followed by the Lambda layer using the positional encoding method being investigated and by another 1 × 1 convolution.

In NLP, the Transformer-based architecture almost exclusively relies on positional encoding strategies to encode the relative and absolute positions of words in a sentence. The original Lambda layer is inspired by the Transformer architecture but the original positional encoding of the lambda layer can be very costly in terms of both parameters and computations. Therefore, we decided to replace it with the cosine positional embedding presented in [VSP + 17]. Our őrst approach was to simply add the positional encoding to the input feature map and pass the result through the Lambda layer. As pointed out in [CTB + 21], this leaks the absolute position of the pixel, which could be detrimental in our case. We, therefore, decided to decorrelate the positional encoding from the rest of the layer by adapting the method of [CTB + 21] to the lambda layer. Formally, given a predeőned positional encoding

P ∈ R C×N , an input feature map x ∈ R C in ×N and learnable matrices K ∈ R M ×C in , V ∈ R Cout×C in , Q ∈ R M ×C in , A ∈ R Cout×M we compute K = softmax N (Kx) ∈ R M ×N , λ content = K(V x) T ∈ R M ×Cout , λ pos = A KP T ∈ R Cout×C , y pos = λ pos P ∈ R Cout×N , y content = λ T content Qx ∈ R Cout×N
, and the output of the Lambda layer is given by y = y content +y pos . We refer to this method as łDecor.". Finally, we noted that the cosine positional encoding of [VSP + 17] is of the form

P c,n = cos(w k n) if c = 2k sin(w k n) if c = 2k + 1 ,
and we investigated if another choice of the sequence (w c ) c∈[[1,C/2]] could yield better results. This led us to introduce Fourier coefficients w c = 2πc/(2C), c = 1, . . . , C/2. We refer to this method as łFourier".

In Table 4.2, we compare these methods with the use of CoordConv [LLM + 18] instead of regular convolutions within the Lambda layer, and with the translation covariant version of the positional encoding proposed in the original Lambda layer with different widths R. Notably, we found that the only truly translation covariant approaches were the ones that used the łDecor." mechanism. In particular, using the Fourier positional encoding alongside the łDecor." mechanism yields a perfect score on the dataset. We tested our variant of the Lambda layer with this new positional encoding method (Lambda + PE) on the RDE dataset. This modiőcation moderately improved on the őnal performance as reported in The spatial dimension of the input being low, we chose to evaluate the smallest versions of the linear-cost approximation of the self-attention. As we only needed to investigate layer capabilities, we reduced the trained networks to their simplest form: a 1 × 1 convolution, followed by three instances of the assessed layer, followed by another 1 × 1 convolution. See the supplementary for more details.

The used metric was the mean accuracy of the masked codes across the training dataset i.e.

N i=1 (1 -m i ) • 1 {z σ(i) =ẑ i } N i=1 (1 -m i )
, where ẑ is the network's prediction.

Notably, all self-attention variants perform on par. The overall performance of the Transformer suggests that some ambiguity was left in the dataset. This ambiguity was probably due to some colors not being easily distinguishable. Humans would also fail in some cases as it is hard to tell apart the 256 3 different colors. The failure of the MLP-Mixer on this task seems to indicate that multilayer perceptrons are not always a good replacement for self-attention, even if they are on image classiőcation.

The only attention map computed in the Lambda layer depends on the comparison between the input feature map and a learned matrix. Inspired by the mechanism of self-attention, we improved this attention map by switching the learned matrix for a matrix computed based on the input feature map. This amounts to iterating the Lambda layer twice, yielding our variant named Lambda + TT. We refer the reader to the supplementary for further details. On the Color Code dataset, this slight modiőcation of the Lambda layer yields the second-best performance. We tested this layer onto the RDE dataset and surprisingly, we found a decrease in performance as reported in 4.6 Limitations, conclusion, and future works

Limitations

This work is about better understanding the properties of neural structures. The goal of the methodology is to pinpoint the properties of each given structure. To this end, we remove all the complex unknown statistical cues inherent to natural images. The őnal goal is that, given a task to solve, a practitioner will őrst identify the properties needed to solve the task and will choose the components of the network accordingly. This nonetheless raises several issues. First, there is no guarantee that simple properties are easily identiőable for every task. Secondly, there is no guarantee that if we mix multiple structures with different properties, the resulting structure will have the properties of its components. Thirdly, even if we had managed to őnd a structure with all of the desired properties, it might be that it doesn't transfer to natural images.

Furthermore, all of this work is constrained by the optimization process: it might be that a structure that does not work on a given dataset would yield a very good result if trained using a different training technique.

Conclusion and future work

We attempted to design synthetic datasets as tools to compare and improve neural networks. Very controlled datasets like RDE might play the role that was formerly given in signal processing to the impulses that were fed to a black box to obtain an impulse response. Here, the goal is to keep interpretable results that link network structure changes to performance gains. We claim that such interpretations can hardly be obtained with natural datasets.

We plan to expand RDE to more general scenes while keeping its statistical neutrality. The current dataset does not address the non-local problem of detecting the main colors (the ten colors were őxed once and for all in the dataset). We plan to vary the number of rectangles, then authorize more varied shapes, and őnally endow them with textures, to keep the synthetic dataset visually interpretable, statistically neutral, but ever closer in

Part II

Network's architecture 5 Designing a U-Net for denoising

Chapter 4 highlights a caveat in the nonlocal capabilities of the U-Net. The U-Net was originally introduced for a task of segmentation where the need for nonlocality was limited. Indeed, network architectures are typically designed to solve one specific task, and they might fail when applied to others. Adapting an architecture to a new task can be challenging. In this chapter, we introduce a methodology enabling one to properly adapt a network to a new task. Then, we illustrate this methodology by adapting the U-Net to a denoising task as part of a contract with Huawei. Lastly, we introduce a new U-Net, inspired by the recent findings in architecture design, and demonstrate competitive performance on image denoising.

Introduction

Network architectures are usually designed to solve a certain task, and often for only one dataset. The architecture likely needs to be modiőed to perform well on another task. For instance, some networks used for video denoising do not perform any motion compensation because the datasets they are trained and evaluated on have small motion between consecutive frames. As a result, they do not perform well on other datasets with larger motion [DCR + 23]. See Chapter 3 for a discussion about the central importance of datasets. Similarly, training LeNet [START_REF] Lecun | Gradientbased learning applied to document recognition[END_REF] on MNIST [START_REF] Lecun | Gradientbased learning applied to document recognition[END_REF] will reach better results on digit classiőcation than when training a ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] on the task.

Architecture design is an ever-changing őeld, and improvements can be obtained from simple modiőcations of a network. Therefore, when choosing a structure for a certain task, it is necessary to modify and tweak it to adapt it to the new task. It is also preferable to incorporate within its structure the latest őndings in architecture design so its performance can be compared fairly against other, more recent, structures.

The U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] was initially designed for semantic segmentation, and has been used for numerous different tasks [WHC22, ZLW18, JHM + 17, QZH + 20]. Its multi-scale convolutional structure makes it a good candidate for image restoration tasks. Indeed, the most efficient restoration algorithms of the pre-deep-learning era employ this structure [FPM17, PE15, AFCS11, WSI07, NAF + 14]. Many variants of the U-Net have been proposed [RFB15, OSF + 18, QZH + 20, ZSTL], and we compare them in this work in a common setting to identify the most impactful options for the dataset we are working on. In this work, we tweak the structure of the U-Net to create a structure that is both efficient for denoising and uses as few FLOPs as possible. We describe the methodology we employed, and the results we obtained when applying small modiőcations to the architecture.

In the second part, we apply the latest őndings in architecture design [LMW + 22] to create a ConvNeXt-based U-Net and őnd it to reach impressive results on a denoising task.

Unless stated otherwise, all the experiments described in this chapter were made on the RAW REDS dataset [NBH + 19a]. The optimizer we used was Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]. The training was performed for 70 epochs with a őxed learning rate, followed by 30 epochs where the learning rate was linearly decayed down to zero. The learning rate we used was 1.6 × 10 -4 , and no weight decay was used.

Methodology

In this section, we describe the methodology we followed to adapt the U-Net to a denoising task.

Method We start with the őrst version (v1) of the architecture to update. Given a list of small modiőcations that could be applied to the architecture, we start by applying, one by one, the modiőcations that are most likely to improve the performance. The list of modiőcations should be carefully chosen to compare models that have a similar amount of FLOPs. The trained models are then evaluated using the same metric. This gives a set of results, marked as v1 + modif_1, . . . , v1 + modif_n.

In the case of denoising, the chosen metric is the PSNR. After that step, we select the group of modiőcations that yielded the best results. In this group, we select the bestperforming modiőcation and all the other modiőcations that are uncorrelated with it. Two modiőcations are said to be correlated if there is an overlap in the set of layers they affect. Some examples include:

-Modifying the number of channels and the activation functions throughout the entire network are two correlated modiőcations.

-Modifying the downsampling operation in the encoder, and the upsampling operation in the decoder are two uncorrelated operations.

Indeed, applying uncorrelated modiőcations are likely to yield incremental improvements i.e.

v1 + modif_i + modif_j ≈ v1 + ([v1 + modif_i] -v1) + ([v1 + modif_j] -v1).
For correlated modiőcations, we can't predict the outcome and we need to evaluate v1 + modif_i + modif_j to ensure there is still a gain over v1, v1 + modif_i and v1 + modif_j.

Furthermore, all the modiőcations that worsened the performance of the network are discarded. Note that due to the variance when training neural networks, it might be difficult to determine if certain operations are to be discarded. It is better to deőne a threshold τ that determines if an improvement or a degradation is signiőcant. We can summarize the process as follows

-If (v1 + modif_i) -v1 ∈ [-τ, τ ],
we don't know if the modiőcation is relevant, and we keep it to evaluate it at a further step.

-If (v1 + modif_i) -v1 > τ , we put the operation in the list of best-performing modiőcations.

-If (v1 + modif_i) -v1 < -τ , we discard the modiőcation.

Ideally, the threshold τ is to be determined by training the network several times and determining the variance of the results. Furthermore, the threshold depends on the architecture, and τ should be re-evaluated whenever a modiőcation might affect the training variance.

Applying the selected uncorrelated modiőcations to v1 results in a new architecture, that we call v2. Then, we iterate the process on v2 with the updated set of modiőcations.

When the set of modiőcations is empty, the task is over.

Note that for operations whose relevance was undetermined, it is better not to re-evaluate them at the next version but to wait for the network's structure to have been signiőcantly revised to ensure their relevance will be more visible.

Hyper-parameter tuning Changing the architecture or the loss usually requires tuning again the hyper-parameters (learning rate, weight decay). In our experience, we found the following recipe to be sufficient1 :

1. Tune the original structure and let (η * , γ * ) be the best learning rate and weight decay found. In practice and for the Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimizer, one can start by searching for the optimal learning rate in Λ = {10 -4 , 5 × 10 -4 , 10 -3 , 5 × 10 -3 , 10 -2 , 5 × 10 -2 }, with γ = 5 × 10 -5 , and note η * the best learning rate found. Then, one can search for the optimal weight decay in Γ = {5 × 10 -4 , 5 × 10 -3 , 5 × 10 -2 , 5 × 10 Note that for tuning, it is usually enough to train the network for one-tenth of the epochs as long as the scheduler is applied in full i.e. the learning rate at the beginning and the end of the training is the same as for the long training.

Adapting the U-Net for denoising

In this section, we apply the methodology of Section 5.2 to adapt the architecture of the U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] to denoising. For readability, we directly aggregate the conclusions of the different modiőcations into paragraphs.

The U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] was initially designed for semantic segmentation in medical imaging. For this task, the U-Net must output a piece-wise constant image or a set of binary images.

In particular, the semantic and textural information of the input is much more important than for the output. As a result, the output image can be much smaller than the input. Indeed, the high frequencies are so sparse in the output that a simple interpolation is enough to upscale the prediction.

The task of denoising differs from semantic segmentation. It amounts to train a network to output the noise within an image. If x ∈ R C×H×W is an image with C channels and a spatial extent of dimension H × W , the noisy version of x is given by

x = x + n, (5.1) 
where

n ∈ R C×H×W such that n c,h,w ∼ N (0, σ 2 ), (5.2) 
for every

(c, h, w) ∈ [[1, C]] × [[1, H]] × [[1, W ]]. Given a dataset D = {(x n , x n )} n∈[[1,N ]] ,
training a network f for denoising amounts to őnding the optimal set of weights w * such that

w * = arg min w 1 N N n=1 ∥f (x n ; w) -(x n -x n )∥ p p .
(5.3)

As a result, the output contains all the frequencies, and outputting a small image to be upsampled using a simple interpolation would create blurry results. The network must őnd the value of the noise at each pixel of the output. Therefore, the information coming from the input should not be compressed too much, and the upsampling used within the network must be handled with care.

The U-Net is an hourglass structure composed of an encoder, a bottleneck, and a decoder. A diagram of the architecture is available in Figure 5.1. Each stage of the encoder consists in passing the input of the previous stage through a few convolutions and downsampling the output. The output of each stage is saved to be reused by the decoder. The bottleneck processes the output of the last stage of the encoder using some operations. These operations can be of different natures, and they usually consist of a stack of dilated convolutions. Each stage of the decoder takes as input the output of the previous stage, adds it to the output of the encoder that has the same spatial dimension, processes the result using a few convolutions, and upsamples the result. It is usually a good choice for any practical image-to-image task as it is easy to use and train.

In this section, we describe how we updated the U-Net's architecture element by element. Throughout our experiences, we deőned four versions of the U-Net that are described throughout this section, and a summary is available in 

Number of channels

In the original U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], the number of channels is doubled each time the feature map is downsampled. However, recent structures prefer to keep the number of channels constant (see e.g. [LMW + 22]). Furthermore, doubling the number of channels increases the amount of FLOPs of the structure. In Table 5.2, we compare the results when doubling the number of channels at each scale and starting with 32 channels against a őxed number of channels. We notice that keeping the number of channels constant improves the performance while reducing the amount of FLOPs. This experiment leads to the deőnition of the second version of the U-Net described in Table 5.1.

Downsampling operation

The downsampling operation used can inŕuence the properties of the network (see Theorem 6.4, or [START_REF] Zhang | Making convolutional networks shift-invariant again[END_REF]). In the original U-Net, max pooling is used. We tried two variants: strided convolutions and average pooling. Other approaches have been proposed in the literature [SCH + 16, MSB18], but we focused on the simplest approaches to ensure the number of FLOPs is minimal. To ensure a fair comparison between strided convolution (which contains learnable parameters) and the max/average pooling, we also considered the option to replace the downsampling operator with a convolution followed by a max/average pooling. The results are displayed in Table 5.3. For the őrst version of the U-Net, the impact of the downsampling operation was not noticeable. Therefore, the second and third versions of the U-Net kept the original module, and we made the experiment again for the fourth version. Overall, the choice of the downsampling operation does not seem to have an important impact on the őnal performance, and the observed improvements can be attributed to the addition of new parameters. 

Upsampling operation

As for the downsampling operation, we evaluated different options for the upsampling: bilinear upsampling followed by a convolution (bilinear+conv), bicubic upsampling followed by a convolution (bicubic+conv), and transposed convolutions with different kernel sizes (tconv). The original U-Net employs a simple nearest-neighbor upsampling. The results are displayed in Table 5.4. Here again, we notice that the chosen operation has no impact on the őnal performance. We ended up choosing the bilinear upsampling followed by a convolution to avoid checkerboard artifacts [START_REF] Odena | Deconvolution and checkerboard artifacts[END_REF].

Activation function

The ReLU, deőned as ∀x ∈ R, ReLU(x) = max(x, 0), (5.4) is an activation function that is not differentiable everywhere. Other approaches, with a better gradient proőle (see Chapter 6, Section 6.2.4), have been introduced in the literature. For instance, Swish [RZL17] is deőned as

∀x ∈ R, Swish(x) = x • sigmoid(x) = x 1 + exp(-x) , (5.5) 
or GELU [HG16] deőned as where Φ is the cumulative function of the Gaussian distribution. The GELU is expensive to compute (although O(1)), hence we only compared ReLU against Swish. The results are available in Table 5.5. In all the assessed scenarios, replacing the ReLU with Swish improved the performance. Therefore, we adopted the new activation function for all the following versions of the U-Net (see Table 5.1).

∀x ∈ R, GELU(x) = x • Φ(x), (5.6) 

Merging of the skip connections

In the original U-Net, at each scale of the decoder, the features from the encoder are simply concatenated with the features coming from the previous scale. The attention U-Net [OSF + 18] is a popular variant where the features are multiplied with a learnable mask before concatenation. We compared these two options against their alternative where the concatenation is replaced by a simple sum. Furthermore, we compared against Selective Kernel Feature Fusion (SKFF) [ZAK + 20], a merging operation deőned and used for a denoising task. The results are available in Table 5.6. We notice that the attention is indeed beneőcial for the regular U-Net, but not for a U-Net with a őxed amount of channels at each scale. Furthermore, the concatenation improvements over the summation are limited, and the sum should be considered when working in a limited FLOP setting. Table 5.8: Comparison of the performance of a U-Net for various number of scales. The number of scales does not seem to have any impact on the őnal performance. Some explanations for this phenomenon are available in Section 5.3.7.

Refinement layers

In this section, we investigate the impact of adding additional layers after the output of the network. As the network must output the noise at the őnest scale, adding more processing at the őnest scale is an intuitive choice. However, the amount of FLOPs is directly proportional to the size of the image, and adding more processing at the őnest scale largely increases the computational cost. The results are available in Table 5.7. We notice that increasing the number of post-processing layers improves the performance, but these gains decrease with the number of layers.

Number of scales

The U-Net processes the image at multiple scales. Traditional denoising algorithms [BCM05] process the image at multiple scales. We investigated the inŕuence of the number of scales within the U-Net on the performance. The results are reported in Table 5.8. Interestingly, we notice that the performance does not seem to be affected by the number of scales. After investigations, we found that the U-Net does not seem to use the coarsest scales at all. Indeed, multiplying the output coming from the coarsest scales by zero does not affect the output. We hypothesize that this could be due to either an unfavorable gradient proőle in the coarsest scales (see Chapter 6, Section 6.2.4), or simply that since the network must output the noise map at the őnest scale, it does not need to process the input at multiple scales. Table 5.10: Comparison of the performance of a U-Net for different numbers of layers in the encoder and the decoder. We notice that it is important that the number of layers in the encoder is approximately the same as in the decoder.

Processing in the bottleneck

In the U-Net, the output of the last encoder layer is processed by the set of layers deőning the bottleneck. We investigated the impact of the operations of the bottleneck on the performance. The results are available in Table 5.9. However, as explained in Section 5.3.7, the U-Net is not affected by the coarsest scales. Therefore, we do not notice any improvement when tweaking the size and operations of the bottleneck.

Number of convolutions at each scale

Each scale of the original U-Net comprises two convolutions. We tried changing this number in both the encoder and decoder. The results are displayed in Table 5.10. We notice that the U-Net performs better when the number of convolutions in the encoder and decoder are balanced. In this setting, increasing the total number of layers improves the performance.

Conclusion

In this section, we have applied the methodology of Section 5.2 to adapt the U-Net to the task of denoising for a speciőc dataset. Notably, we have found that the main sources for improvement came from 1) simply changing the activation function; and 2) keeping the number of channels constant throughout the scales. The rest of the modiőcations we evaluated resulted in little improvement and the main difference in performance between the v3 and v4 of our model can be explained by the increased amount of FLOPs.

We evaluated a range of small modiőcations that did not strongly impact the structure of the U-Net. In the following section, we study another possibility that involves changing the operation block o at each scale of the U-Net.

A ConvNeXt-inspired U-Net

In this section, we evaluate a modiőed U-Net taking into account the latest improvements in convolutional architecture design. It has the same structure as the original U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] with őve main differences:

-The 3 × 3 convolutions followed by ReLUs are replaced by ConvNeXt [LMW + 22] blocks (see Figure 5.2).

-A ConvNeXt block is inserted right after every downsampling and upsampling operation.

-Three downsampling/upsampling operations are used instead of four.

-At the end of the network, two additional ConvNeXt blocks are added at the őnest scale.

-The number of channels is kept unchanged throughout the network and is set to be 48.

This new architecture does not increase the number of FLOPS and has been proven to be very expressive for classiőcation [LMW + 22]. The structure of the ConvNeXt block is shown in Figure 5.2. In addition, LayerScale [TCS + 21] is used with a starting value of 0.1. Surprisingly, while we found that Batch Normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] harmed the performance of the U-Net on our task, we found that LayerNorm [START_REF] Lei Ba | Layer normalization[END_REF] did have a positive impact.

Regarding LayerScale, we noticed that a too-small initial value resulted in a longer convergence time. The intuition to explain the good performance of the new structure is available in [LMW + 22].

In [DCR + 23], we compare both U-Nets on the task of joint denoising and demosaicking in the context of video denoising. The networks are used in a recurrent fashion and receive four inputs: the previous denoised frame, the current and next raw noisy frames, and the feature map from the last hidden layer of the previous frame. The raw inputs are demosaicked with the Hamilton-Adams method [START_REF] Adams | Adaptive color plane interpolation in single sensor color electronic camera[END_REF]. The adjacent frames and feature maps are aligned to the current frame using warping operators to compensate for motion.

The resulting networks are denoted as JVDD which stands for Joint Video Denoising and Demosaicing. As a baseline, we compare this approach against taking as input the previous denoised frame and the current noisy frame. We call this approach JVDD-basic. We train the networks on the REDS-120 dataset [NBH + 19b].

The results are available in Table 5.11. In the case of RVDD-basic, both architectures reach the same performance. However, the training converged much faster with the ConvNeXt U-Net (about 30 epochs versus 100 epochs for the őrst architecture). A plot comparing the PSNR per epoch in our validation dataset for both architectures is available in Figure 5.3. For RVDD, the ConvNeXt U-Net yields a gain of 0.2dB for the ISO 3200 and 0.36dB for the ISO 12800.

Conclusion

In this chapter, we presented a methodology to efficiently adapt an architecture for a given task. It consists in a sequence of small modiőcations, followed by the validation of some, resulting in a new version of the architecture. This process is iterated multiple times, up to the point where there is no modiőcation left to assess. We then illustrated this methodology on the U-Net, adapting it to the task of denoising. Finally, we presented a ConvNeXt-inspired U-Net that reached competitive results for image denoising.

The competitive performance of our hand-made ConvNeXt-based structure raises the question of the advantages and properties of new structures. In Chapter 6, we detail such properties and discuss the typical issues that arise when designing hand-made architectures.

Desirable properties of neural networks: theory and practice

The competitive performance of our hand-made ConvNeXt-based structure described in Chapter 5 raises the question of the advantages and properties of recent structures. This chapter presents a general overview of neural networks' architectures and their properties. Notably, we pinpoint how the universal approximations theorems distort our practical understanding, and explain why they are not necessarily applicable to practical settings.

Introduction

The universal approximation theorems are often used to explain the practical success of neural networks. However, they were proven in very particular settings and it is not clear to what extent they hold in practice.

Neural networks are trained using an optimization algorithm; their gradient matters more than the function modeled during the forward pass. There is no guarantee that an optimal set of weights will be reached by the optimization process.

In Section 6.2, we dive into the universal approximation theorems and elucidate their limited practical implications. In Section 6.3, we leverage the insights this analysis provided to derive a set of properties neural networks should have to ensure good performance. They should have a good theoretical expressivity, which means the function modeled during the forward pass should be able to approximate a large class of functions. They should also be trainable, in the sense their gradient must be deőnable, non-sparse, and have sufficient amplitude. Finally, the overall architecture should be able to scale. Thankfully, the latest generation of neural networks all follow the same design pattern which allows for scalability and trainability.

Expressivity: theory and counter-examples

A common misconception about network architectures is that łif it needs to, the network will learn the functionž. In practice, if the architecture is not designed to model a certain operator, it most likely won't approximate it (see Chapter 4 for an example). Indeed, universal approximation theorems are asymptotic and only hold when there is an unspeciőed "large enough" amount of neurons. Furthermore, as depicted in Chapter 7, explicitly modeling the operator is not sufficient. The functions an architecture can learn are constrained by the optimization process, and there is no guarantee that an optimal set of weights can be reached. In this section, we start by recalling the universal approximation theorems (following the work of [START_REF] Foutot | What mathematics tell us about the success of neural networks[END_REF]), and further point out their limits.

The universal approximation theorems

In the following, Theorem 6.1 states that neural networks are universal approximators in the case where networks have an arbitrary width. Theorem 6.2 reaches the same conclusion in the case of an arbitrary depth and a őxed width.

Definition 6.1. For a compact set K ⊂ R n , we note C(K, R m ) the set of continuous functions defined on K with values in R m . Definition 6.2. Let ρ : R → R be any function. Let N ρ n represent the class of feedforward neural networks f with activation function ρ, with n neurons in the input layer, one neuron in the output layer and one hidden layer with an arbitrary number of neurons i.e. functions such that there exists d ∈ N * such that

f : x ∈ R n → d i=1 c i ρ (⟨a i , x⟩ + b i ) ∈ R, (6.1)
where ρ is applied entry-wise and 

a i ∈ R n , b i ∈ R, c i ∈ R for i ∈ [[1, d]]
f = f L • ρ • f L-1 • . . . • ρ • f 1 , (6.2a) ∀l ∈ [[1, L]], f l : x ∈ R d l-1 → A l x + b l ∈ R d l , (6.2b) 
where ρ is applied entry-wise, and

A l ∈ R d l ×d l-1 , b l ∈ R d l for l ∈ [[1, L]
] are the parameters of the networks. Furthermore, we note N ρ n,m,q the class of feed-forward neural networks where all the hidden layers have exactly q neurons i.e. d l = q for all l ∈ [[1, L -1]]. Theorem 6.2. (Kidger [START_REF] Kidger | Universal approximation with deep narrow networks[END_REF]) Let ρ : R → R be any non-affine continuous function that is continuously differentiable at at least one point, with a nonzero derivative at that point. Let K ⊂ R n be compact. Then, N ρ n,m,n+m+2 is dense in C(K, R m ) with respect to the uniform norm.

Universal approximation theorems are asymptotic

The universal approximation theorems state that for a continuous function of C(K, R), and ϵ ∈ R * + , there exists a neural network f such that

∥f -f ∥ ∞ ≤ ϵ. (6.3)
However, these theorems do not specify anything about the width or depth of f . If the number of parameters of f moderately grew with 1/ϵ, then these theorems might apply in the practical setting. In the following, Theorem 6.3 shows that there is a minimum required depth to approximate a function using a network with an arbitrary depth. It indicates that to properly approximate a function, the depth must indeed go to inőnity. This theorem suggests that the universal approximation theorems do not have practical implications as we are far from an inőnite depth (200 layers for some networks [HZZ + 19]). We are also far from an inőnite width (GPT-3 [BMR + 20] has a width of 12, 288). Furthermore, some works point out that in practice deeper networks do not mean better performance [START_REF] Nichani | Increasing depth leads to u-shaped test risk in over-parameterized convolutional networks[END_REF].

Theorem 6.3. (Yarotsky [START_REF] Yarotsky | Optimal approximation of continuous functions by very deep relu networks[END_REF]) Let W be the total number of weights in the network, and w f the modulus of continuity of f . Then, constant-width fully connected networks of depth L ∈ [[1, W ]] provide the fastest possible approximation rate of ∥f -f ∥ ∞ = O(w f (O(W -2/n ))) that cannot be achieved with less deep networks, where n is the number of dimensions of the input.

Universal approximation theorems only hold for a specific architecture

The universal approximation theorems have been proved for speciőc architectures that do not include common operations such as max pooling. In Theorem 6.4, we show that it is actually possible to disprove these theorems when we constrain the network to contain at least one max pooling layer. This further disproves the practical usefulness of the universal approximation theorems as most architectures contain max pooling layers.

Definition 6.4. Let K ∈ N * and x = (x k ) k∈[[0,K-1]] ∈ R K . For (H, W ) ∈ (N * ) 2 , we define C such that C(x) = x i+j[K] (i,j)∈[[0,H-1]]×[[0,W -1]] . (6.4)
We also define its translated counterpart such that

∀k ∈ [[0, K -1]], C k (x) = x i+j+k[K] (i,j)∈[[0,H-1]]×[[0,W -1]] . (6.5)
An illustration is available in Figure 6.1. Definition 6.5. Let M be the set of convolutional neural networks f such that there exists two functions ϕ and ψ such that

f = ψ • maxpool2d • ϕ, (6.6)
and such that ϕ is only composed of 2d convolutions with no padding and non-linearities, and ψ is arbitrary.

Theorem 6.4. Any convolutional neural network of M containing at least one 2d maxpooling of spatial extent k × k cannot approximate any function f such that there exists

k 0 ∈ [[2, 2k -1]], x ∈ R k 0 and (i, j) ∈ [[0, k 0 -1]] 2 such that f (C i (x)) ̸ = f (C j (x)).
Proof. Let f by any such function and

k 0 ∈ [[2, 2k -1]], x ∈ R k 0 , (i 0 , j 0 ) ∈ [[0, k 0 -1]] 2 such that f (C i 0 (x)) ̸ = f (C j 0 (x)). Let u ∈ [[0, k 0 -1]
] be an arbitrary value. Let ϕ be an arbitrary sequence of convolutions and non-linearities applied entry-wise of spatial extent p × q with C output channels. Then, let us note

I v (x) the matrix C v (x) of size p × q, for v ∈ [[0, k 0 -1]]. Applying ϕ to C u (x) amounts to computing ∀(c, i, j) ∈ [[0, C -1]] × [[0, H -p]] × [[0, W -q]], y c,i,j = [ϕ(I i+j+u[k 0 ] )] c , (6.7) 
where [ϕ(•)] c is the c-th channel of ϕ(•). If we now apply a max-pooling of spatial extent k × k on this image, it amounts to computing

∀(i, j) ∈ [[0, h -1]] × [[0, w -1]], z c,i,j = max (α,β)∈[[0,k-1]] 2 y c,α+ki,β+kj (6.8a) 
= max

(α,β)∈[[0,k-1]] 2 [ϕ(I α+β+u+k(i+j)[k 0 ] )] c , (6.8b) 
for every c ∈ [[0, C -1]], with h = H-p+1 k , w = W -q+1 k .
Regardless of the value of

u + k(i + j), we have {α + β : (α, β) ∈ [[0, k -1]] 2 } = [[0, 2k -2]],
and there is a maximum of k 0 ≤ 2k -1 different values of y. Hence, the maximum is taken over all the different values of y i.e

∀(i, j) ∈ [[0, h -1]] × [[0, w -1]], z c,i,j = max l∈[[0,k 0 -1]] [ϕ(I l[k 0 ] )] c , (6.9) 
for every c ∈ [[0, C -1]]. Therefore, since this equality holds for all u ∈ [[0, k 0 -1]], we have that the network evaluated on C i 0 (x) is exactly equal to the value of the network evaluated on C j 0 (x). Hence, the network cannot coincide with the function f at those points.

The practical importance of the gradient

Universal approximations theorems provide ś in a very speciőc setting ś the existence of a set of weights allowing an approximation of a function up to ϵ. Even if such a set of weights existed, it is unlikely that these weights can be found by the optimization process.

An example of such a case is described in Chapter 7, Section 7.6.1.

The expressivity of a network is constrained by the optimization process. As a result, the gradient and its propagation through the network are of central importance. In this section, we exhibit examples of layers with good theoretical expressivity but with pathological gradients, that reduce their practical expressivity.

Example 1: Feature extraction A natural idea in the context of machine learning is feature extraction. For instance, selecting the K regions most likely corresponding to an object within an image. The intuitive way to implement this is to consider, given a feature map x ∈ R C×N , the response of this feature map to a learned őlter w ∈ R C such that y = w T x ∈ R N , (6.10) and then extract the indices of the K spatial locations that react the strongest to this őlter. It amounts to adding a custom layer that computes the indices

(i n ) n∈[[1,N ]] such that y i 1 ≤ . . . ≤ y i N .
Then, the feature map z ∈ R K×C containing the features of the regions is deőned as

∀k ∈ [[1, K]], z k = x i k . (6.11)
The forward pass of this operation is perfectly őne and it is likely there exists a őlter w able to extract the relevant information provided the rest of the network is expressive enough. However, for the network to őnd such a őlter w, it needs to be able to back-propagate it. However, we have

∀(k, c) ∈ [[1, K]] × [[1, C]],
∂z k ∂w c = 0, (6.12) almost everywhere since ∂i k ∂wc = 0 almost everywhere. Therefore, the learning process cannot őnd w. To overcome this issue, [JSH + 22] applies a softmax locally around the selected points such that

∀k ∈ [[1, K]], z k = s i=-s exp(y i k +i ) s j=-s exp(y i k +j ) x i k +i , (6.13) 
where s ∈ N * corresponds to the radius of the neighborhood where the softmax is applied. We found in practice that it was not sufficient. Although this trick reinstates a gradient, the computed gradient does not coincide with the function computed during the forward pass. Indeed, the function depends heavily on the choice of (i k ) k∈[[1,K]] and the dependency of the indices on x and w is not represented in the gradient since the function (x, w) → i k is not differentiable. Therefore, the function that is optimized during the backward pass is not exactly the one that is used during the forward pass. This causes instabilities and almost always results in a sub-optimal result.

Example 2: Drawing a rectangle Let us now consider the case where one wants a layer to draw a rectangle (or in one dimension, a segment) based on its coordinates. An intuitive way to design such an operation would be to leverage bilinear interpolation. Given coordinates (a, b) ∈ [0, 1] 2 with a ≤ b, we want to draw the segment [a, b] i.e. if the output has N elements, it amounts to having

                     y ⌊(N -1)a⌋ = (N -1)a -⌊(N -1)a⌋ , y ⌈(N -1)a⌉ = ⌈(N -1)a⌉ -(N -1)a , y ⌊(N -1)b⌋ = (N -1)b -⌊(N -1)b⌋ , y ⌈(N -1)b⌉ = ⌈(N -1)b⌉ -(N -1)b , y k = 1 for ⌈(N -1)a⌉ < k < ⌊(N -1)b⌋, y k = 0 otherwise. (6.14)
Here again, the forward pass will exactly provide the asked result. The gradient is deőned but is sparse:

∂y n ∂u =      N -1 if n = ⌊(N -1)u⌋, -(N -1) if n = ⌈(N -1)u⌉, 0 otherwise, (6.15) 
for u = a and u = b.

If we have a ground-truth segment z ∈ {0, 1} N and we train our network to minimize the objective

L(y, z) = 1 2N ∥y -z∥ 2 2 , (6.16) 
the gradient with respect to the parameters a and b will be In this last case, the gradient is non-zero and the signs of its components indicate that a should be bigger and b lower, which is coherent.

∂L ∂u = N -1 N [((N -1)u -⌊(N -1)u⌋ -z ⌊(N -1)u⌋ ) -(⌈(N -1)u⌉ -(N -1)u -z ⌈(N -1)u⌉ )], (6.17 
All in all, we have introduced in this paragraph an example of a sparse gradient. The gradients do not propagate at all, except in the rare cases where the output is already very close to the ground truth. This is problematic and can be extended to situations such as image vectorization [RGLM21, CDAT20, LLGRK20].

The case of the attention In this paragraph, we illustrate the claim of the authors of [CSK21,CMS + 22,SCYK21] that the Transformer-Decoder for vision is notably difficult to train because of the low gradient amplitude.

Let Q = W Q x, K = W K z, V = W V z where (W Q , W K , W V ) ∈ R C×C 3
are learnable parameters, and where x ∈ R C×N , z ∈ R C×M are two input tensors. The formula of cross-attention between (Q, K, V ) is given by

∀(c, n) ∈ [[0, C -1]] × [[0, N -1]], S[Q, K, V ] c,n = N -1 k=0 softmax k (αK T [Q] n )V c,k , (6.22) 
where

∀z ∈ R N , ∀k ∈ [[0, N -1]], softmax k (z) = exp(z k ) N -1 n=0 exp(z n ) , (6.23 
)

α = C -1/2
, and where we deőne

[z] n = z 0,n . . . z C-1,n for all n ∈ [[0, N -1]
] and all z ∈ R C×N . In the case of self-attention, N = M and x = z. The chain rule gives us

∂S[Q, K, V ] c,n ∂x d,m = 1 {m=n} [α N -1 k=0 softmax k (αK T [Q] n )(Ax) d,k V c,k -αS[Q, K, V ] c,n S[Q, K, Ax] d,n ], (6.24)
and

∂S[Q, K, V ] c,n ∂z d,m = softmax m (αK T [Q] n )[α(A T x) d,n V c,m -αS[Q, K, V ] c,n (A T x) d,n + (W V ) c,d ], (6.25) 
where A = W T Q W K . Following the notations of Chapter 8, and assuming we are at initialization and that everything is independent, we have

Var α(A T x) d,n V c,m = O 1 C , (6.26a) Var αS[Q, K, V ] c,n (A T x) d,n = O 1 C , (6.26b 
)

Var [(W V ) c,d ] = O 1 C , (6.26c) hence Var ∂S[Q,K,V ]c,n ∂z d,m
= O 1 M 2 C , as we can reasonably expect the softmax to scale as 1 M at initialization. Regarding the derivative w.r.t x, we have

Var α N -1 k=0 softmax k (αK T [Q] n )(Ax) d,k V c,k = O 1 C , (6.27a 
)

Var [αS[Q, K, V ] c,n S[Q, K, Ax] d,n ] = O 1 C , (6.27b) hence Var ∂S[Q,K,V ]c,n ∂x d,m
= O 1 C . We note that the scaling of the derivative w.r.t the tokens z is abnormally low and does not follow the rule derived in Equation 8.12, Chapter 8. Therefore, a number of steps proportional to the number of tokens M is required to properly learn the attention maps. This analysis explains the empirical observations of [CSK21, CMS + 22, SCYK21] stating that cross-attention suffers slow convergence when M is large.

Conclusion

In the general case, the proőle of the gradient is at least as important as the function computed during the forward pass. Non-differentiable functions are to be avoided as well as functions with a sparse gradient. However, having a well-deőned nonsparse gradient is not always sufficient. It is also necessary to ensure the amplitude of the gradient is sufficiently large, but not too large. As an example, [HZZ + 19] improved the top-1 accuracy on ImageNet [DDS + 09] of a ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] by simply improving the gradient proőle. The context in which the functions are used is also important. For instance, ReLU can be problematic when the input is mostly made of negative values. If only a few entries are non-negative, the gradient will become sparse.

The practical desirable properties of neural networks

Section 6.2 highlights the difference between theoretical and practical expressivity. On one hand, a network must have a good theoretical expressivity: there should exist a set of weights that approximates well the type of functions we wish to model. On the other hand, the optimization process should be able to őnd such an optimal set of weights. This means that the gradient proőle of the architecture must allow for the optimal set of weights to be found.

Furthermore, the datasets used to train and evaluate networks (see Part I) keep on getting larger, and we need to ensure that the architectures can grow accordingly to reach good performance on the new benchmarks. This leads us to the concept of scalability: őrst introduced within the EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], if a network scales, it means that it remains trainable when enlarging its structure i.e. increasing the number of channels and/or the depth. This property is not guaranteed in any of the łtraditional" architectures such as the ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] or the U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. Instead, when scaling up these structures, they usually become unstable (see Chapter 8), and their training becomes nearly impossible.

All in all, we can derive the desirable properties of neural networks as 1) Theoretical expressivity: the network should be able to correctly approximate a wide range of functions.

2) Trainability: the proőle of the gradient of the network should allow for a good set of weights to be found by the optimization algorithm.

3) Scalability: the network should increase its theoretical expressivity when increasing the number of channels and/or the depth. It must also remain trainable.

In this section, we analyze some layers and architectures from the point of view of these properties.

Convolution and attention: the bread and butter of modern architectures

When choosing an architecture for a problem, one may wonder which to choose between convolution-based and self-attention-based structures. In this section, we study the difference between convolutional neural networks and self-attention-based networks in the context of image processing. These two structures are very different in nature, yet they are both successfully applied on images.

Description of the operations For simplicity, let us consider the one-dimensional setting. The convolution is performed on a sliding window of size k ∈ N * . For images, k = 3 is generally used. The weights and biases of the operation are stored in a tensor of R Cout×C in ×k and R Cout , respectively. Then, for an input x ∈ R C in ×N one computes

∀(c, n) ∈ [[0, C out -1]] × [[0, N -1]], y c,n = C in -1 i=0 k-1 l=0 w c,i,l x i,n+l , (6.28) 
where y ∈ R Cout×N is the output of the operation. The operation can be rewritten as

∀(c, n) ∈ [[0, C out -1]] × [[0, N -k]], y c,n = C in -1 i=0 ⟨w c,i , x i,n:n+k ⟩, (6.29) 
where

x i,n:n+k = x i,n x i,n+1 . . . x i,n+k-1 for all (i, n) ∈ [[0, C in -1]] × [[0, N -k]].
Hence, the operation amounts to computing similarities between a patch and a set of learned vectors.

Self-attention is deőned in Section 6.2.4. It can be summarized as

∀n ∈ [[0, N -1]], [y] n = N -1 m=0 softmax m αx T W T K W Q [x] n W V [x] m , (6.30) 
where α = (C in ) -1/2 , and where

(W Q , W K , W V ) ∈ R Cout×C in 3 are learnable matrices.
The operation amounts to computing the similarity between a certain location [x] n and all the other spatial locations of x after some linear transformations. Then, a weighted average is computed based on the similarity: the closer

W T Q W K [x] m is to [x]
n , the higher the weight associated with this spatial location will be. The same process is repeated for every

n ∈ [[0, N -1]].
All in all, the convolution is a local operation comparing the input with some learned local őlters. In contrast, self-attention is a global operation comparing the input with itself.

Why self-attention draws so much attention Self-attention has been a hot topic since its introduction in 2017. However, when properly compared against convolutional neural networks (i.e. when trained using the same recipe), their performance is not that impressive [LZW + 23]. The main reason for their popularity is their scaling capabilities, their generalization power, and generality.

Scaling When trained on very large datasets, ViT [DBK + 20] continues to learn and improve [START_REF] Zhai | Scaling vision transformers[END_REF]. This is not necessarily the case for convolutional neural networks, although the latest generation of convolutional neural networks seems to be very competitive [LMW + 22]. According to the authors, their scaling capabilities would allegedly allow them to learn the inductive biases needed for the task. Oppositely, they claim the hard inductive biases of convolutional neural networks (translation equivariance) are detrimental in practice. However, such a lack of inductive bias hardens the training. As a result, ViT needs to be trained on very large image datasets (larger than ImageNet) and to leverage multiple tricks [TCD + 21] to reach good performance.

Regardless of the veracity of the conjectures on inductive biases, it is understandable that translation equivariance is not exactly needed for classiőcation as the decision that needs to be taken is purely global and the objects to classify are generally centered.

Generalization When taking a closer look at the formula of convolution and selfattention, we notice that the self-attention is likely to overőt less. Indeed, convolutions compare the input patches against learned őlters. It is therefore easy for them to learn to recognize certain critical regions such as T-junctions and edges and leverage them to memorize all the images of the dataset. Self-attention, on the other hand, compares the input against itself. It is therefore much harder for it to memorize patterns in the input image. Instead, it must learn internal similarities which are likely to generalize better than a set of critical regions. Furthermore, data augmentations that involve a translation of the image will cause a total change in the set of patches given as input to the network. Therefore, memorizing certain patches of each image does not ensure a perfect generalization on the training set. Conversely, since convolutions are translations equivariant, translating the input won't prevent memorization.

Generality As the Transformer was successfully applied to a wide range of modalities [DCLT18,HR18,NJL21,LC19], it is quite general. This property makes it a very good candidate for so-called łFoundation models" that mix different data modalities to tackle a whole new range of problems. For instance, simply mixing a Transformer for NLP and a Transformer for vision can be used to create a powerful generative model [RPG + 21] conditioned on text prompts.

Conclusion

All in all, self-attention and convolution are two very different operations. Both were successfully applied to image processing tasks [LMW + 22, DBK + 20, TDC + 23]. This does not necessarily mean that one must be preferred over the other. Convolutions are very good at local feature extraction but struggle to reach global reasoning. On the other hand, Transformers are very good with global reasoning. Recent works suggest that both should be applied together to reach the best performance [CMS + 22, CSK21, XSM + 21]. Another interesting line of research is Swin [LLC + 21], which replaces the convolution by local attention performed on square windows of size 7 × 7. It reaches impressive results on Super Resolution [LCS + 21]. On the other hand, one could argue it lacks the global reasoning to perform efficient feature extraction. [HHY + 23] is a mix of Swin, convolutions, and the ViT with good performance.

Note that while self-attention suffers from a quadratic complexity, cross-attention does not. While slightly worse than Transformers that use both self and cross-attention, Transformers that only leverage cross-attention can still reach good performance [TDT + 22]. As an example, GPT models [BMR + 20] only use cross-attention.

The design pattern of recent architectures

In this section, we describe a design pattern commonly used for building neural networks, and its properties. Most architectures developed since the Transformer [VSP + 17] can be described using a very simple formulation. It consists in a stack of L layers

(f l ) l∈[[1,L]] such that ∀l ∈ [[1, L]],      g l (x) = x + MLP(x; W l ), h l (x) = x + F (x; W l ), f l (x) = g l • h l (x; W l ), (6.31)
where W l is the set of weights associated with the l-th layer, and h l , g l are intermediate operations within the layer.

Operation

Time complexity Space complexity self-attention it is the local self-attention; for ConvNeXT [LMW + 22] it is a separable convolution; for InternImage [WDC + 23] it is a deformable convolution.

O(3C 2 N + 2CN 2 ) O(3C 2 + N 2 + CN ) Local attention of size k O(3C 2 N + 2CN k) O(3C 2 + N k + CN ) Separable convolution of size k O(CN k) O(Ck + CN ) MLP O(8C 2 N ) O(8C 2 + 5CN ) Table 6
An illustration is available in Figure 6.2. The MLP stands for a multi-layer perceptron, usually comprised of a sequence of a linear layer multiplying by four the number of channels, a GELU [HG16] (or any non-linearity), and a linear reducing the number of channels to the original number. The function F can be any function and deőnes the entire architecture. For instance, for the Transformer [VSP + 17] it is the self-attention mechanism.

For Swin [LLC + 21], it is a 7 × 7 local self-attention. For ConvNeXt [LMW + 22], it is a 7 × 7 separable convolution. For InternImage [WDC + 23], it is a deformable convolution.

In Chapter 5, we applied this formalism to bring the U-Net's architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] up to date and improved its performance on a denoising task while keeping the same amount of FLOPs.

MLP In practice, this layer is very important: we noticed during our experiments that without it a Transformer has a limited expressivity. It is only when both self-attention and the MLP are applied together that this architecture thrives. In other terms, the MLP ensures the features computed by F are correctly exploited. Note that the MLP is often the costliest component of the structure (see Table 6.1).

Skip connections Note that two skip connections are used within each layer. They ensure the gradient propagates correctly through the entire network. In some cases, Lay-erScale [TCS + 21] is used to ensure the earliest layers get the most gradient at the beginning of the training. Indeed, the deeper the layer, the easier it is for it to learn features prone to overőtting. The intuition is that ensuring the earliest layers are well-trained should reduce overőtting.

Normalization Layer normalization [START_REF] Lei Ba | Layer normalization[END_REF] layers are used within each layer and the different options are described in Chapter 8, Section 8.3.6. For regular-sized networks, the normalization is applied at the input level (PreNorm [XYH + 20]) to ensure the features passed through F and MLP are standardized. For very large networks, Swap-PreNorm [LHL + 22, MDL + 23] is to be used to ensure the variable added to the identity is standardized. Furthermore, in [LMW + 22] the authors show that fewer normalizations and activations are favorable and actually improve the training speed and performance.

Scaling Recent architectures following this design pattern are all built to scale. They are typically introduced in multiple versions with different sizes. The larger the model, the better the performance.

Conclusion

The universal approximation theorems suggest that neural networks can approximate any function. However, they do not apply to the practical setting. The reasons are three-fold: 1) they only hold in the asymptotic scenario where there is no limit on the width or depth, 2) they only hold for a speciőc architecture and do not hold when operations such as maxpooling are used, 3) there is no guarantee that the optimization will reach an optimal set of weights.

As a result, a given architecture is not a universal approximator, and the set of functions it can approximate is constrained and deőned by the optimization process. Therefore, the proőle of the gradient of an architecture/layer is at least as important as the function it models during the forward pass.

This allows one to deőne a set of properties a network or layer should have: 1) a good theoretical expressivity, 2) a good gradient proőle, 3) scalability. Most of the recent architectures were designed following the same pattern that ensures gradient propagation and allows for scalability.

In this chapter, we saw that the capabilities of neural networks are constrained and deőned by the optimization process. Part III is dedicated to the analysis of the optimization process. In Chapter 7 we describe the properties of neural networks trained using fullbatch gradient descent and show that they behave like kernel machines.

Part III

Optimization 93 7 Properties of networks trained using gradient descent

In Chapter 6, we saw that the capabilities of neural networks are constrained and defined by the optimization process. In this chapter, we wonder about the interpolation capabilities of trained neural networks. We discuss a theorem of Domingos stating that "every machine learned by continuous gradient descent is approximately a kernel machine". According to Domingos, this fact leads to the conclusion that all machines trained on data are mere kernel machines. We first extend Domingo's result in the discrete case and to networks with vector-valued output. We then study its relevance and significance on simple examples. We find that in simple cases, the "neural tangent kernel" arising in Domingos' theorem does provide an understanding of the networks' predictions. Furthermore, when the task given to the network grows in complexity, the interpolation capability of the network can be effectively explained by Domingos' theorem and therefore is limited. We illustrate this fact on a classic perception theory problem: recovering a shape from its boundary.

Introduction

Artiőcial neural networks (NNs) are complex non-linear functions N (w, x) obtained by combining multiple simple units, in a structure that is reminiscent of how neurons are organized in the brain. NNs are parameterized by a vector w of millions or billions of parameters. These parameters are optimized on very large datasets of input-output pairs (x n , y n ) to realize a single complex task, ranging from image classiőcation to natural language processing. Training amounts to setting the parameters of the neural network N (w; x) via the minimization of the performance of an average objective function n L(N (x n ; w), y n ) of the network for a given task over a large dataset.

In spite of striking practical successes, very little is understood about NNs. Modern NNs stack many layers of computations making it very hard to interpret the operations łlearnedž by the network during training.

Our purpose here is to discuss a theorem of Pedro Domingos stating that łevery machine learned by gradient descent is approximately a kernel machinež [START_REF] Domingos | Every model learned by gradient descent is approximately a kernel machine[END_REF], thus allowing the interpretation of NNs within the framework of kernel methods, which have a welldeveloped theory [START_REF] Hofmann | Kernel methods in machine learning[END_REF][START_REF] Smola | Learning with kernels[END_REF]. Kernel machines x → N n=1 α k K(x, x n ) + α 0 work by comparing a new sample x with the ones x n belonging to the training set through a kernel function K(x, x n ). This simple one-to-one comparison structure brings insight into the interpolation capabilities of such methods and a direct interpretation of each prediction.

Using the kernel that naturally arises in Domingos' theorem brings the hope of better understanding the predictions of a neural network.

In a way, all neural networks trained under supervision can be seen as mere interpolators. Domingo's theorem provides a structure for this interpolator. In this work, we question its capabilities. In particular, in the case where there exists an oracle f such that y n = f (x n ) for every pair (x n , y n ), we ask ourselves if a network can converge to this oracle when the network's structure allows it. Such cases have been partially observed in the literature [START_REF] Newson | Processing simple geometric attributes with autoencoders[END_REF]. This question can be perceived as a question of both łinterpolation" and łextrapolation", but is not to be confused with the notion of łgeneralization" which has statistical connotations [START_REF] Peter | Rademacher and gaussian complexities: Risk bounds and structural results[END_REF][START_REF] Peter L Bartlett | Spectrallynormalized margin bounds for neural networks[END_REF].

Although trained neural networks are often considered as black boxes due to their lack of interpretability, Domingos' theorem suggests a way of interpreting their predictions. Indeed, kernel machines provide us with two tools for interpretation: the kernel function and the feature vector. The feature vector is deőned by Mercer's theorem, which indicates that a comparison of two samples x, x ′ using a nonnegative kernel K(x, x ′ ) amounts to computing a scalar product K(x, x ′ ) = ⟨ϕ(x), ϕ(x ′ )⟩ in a certain feature vector ϕ(x). We shall use these two tools to derive an understanding of how a network makes its predictions in simple, low-dimensional learning examples. We discover that in these simple cases, the associated kernel function and feature vector shed light on the inner workings of the neural network.

It is well known that for complex problems, neural networks fail to extrapolate to data that are too different from the ones seen during training (see Chapter 3 for a discussion). This is precisely the point made by Domingos in his theorem, which suggests that neural networks behave as kernel machines and will therefore interpolate correctly near their training domain, but have no reason to extrapolate well on samples that stand farther away from this domain. We shall analyze this fact on datasets of gradually increasing complexity. We'll őnd that in the simplest cases, neural networks interpolate perfectly, but for more complex tasks, this stops and the network is unable to extrapolate to samples that are too different from the ones in the training set.

The kernel highlighted by Domingos in his theorem is similar to the Neural Tangent Kernel (NTK) [START_REF] Jacot | Neural tangent kernel: Convergence and generalization in neural networks[END_REF], a kernel that is used for interpreting neural networks in the asymptotic case where the considered networks have an inőnite width. Domingos' kernel is more general than the NTK, as it can be computed on any neural network. Nonetheless, due to their formal similarity, we will refer to Domingos' kernel as a neural tangent kernel (NTK).

Our plan follows.

• In Section 7.2 we recall the basics of neural networks, kernel machines, and of their training.

• In Section 7.3, we give the necessary notation and an analysis of Domingo's proof. Notably, we propose an alternative formulation of Domingos' result that is perhaps more self-explanatory;

• we extend Domingos' proof to the discrete setting (Section 7.3.1) and the multidimensional case (Section 7.3.2);

• we mathematically study the implication of these theorems in the case of linear regression (Section 7.4.1). We also notice the linear separability of the feature space induced by the NTK (Section 7.4.2);

• we numerically study the theorems and their limitations in simple cases where the network solves the task perfectly following the methodology derived in Chapter 4, and use the feature space and the NTK to gain an understanding of the network's predictions (Section 7.5);

• we further study this theorem with an application where we teach a network to learn connectivity of planar shapes (Section 7.6) and őnd limitations in interpolation capabilities and interpretability.

Neural networks and kernel machines

Neural Networks

A neural network N can be described as a family of functions

(f i ) i∈[[1,D]
] and a vector of weights w ∈ R d such that the network is deőned as

N (x; w) = f D (f D-1 (. . . (f 2 (f 1 (x; w); w) . . . ; w); w).
Notably, each function f i is differentiable almost everywhere and is parameterized by weights stored in w ∈ R d . Most often, these functions are of the following form:

-Fully-connected affine: The function operates a linear transformation of the input:

f i (x) = W x + b
where W is a matrix and b in a vector.

-Convolutional: Instead of a matrix multiplication, a convolution can be applied instead.

-Activation function: To mimic the behavior of the brain where a neuron can only transmit if a certain voltage is reached, non-linear functions are used and applied element-wise. For instance the ReLU [Aga18] f i (x) = max(0, x).

-Down-sampling: The spatial resolution of the input is reduced by a factor of at least two.

-Up-sampling: The spatial resolution of the input is increased by a factor of at least two using an interpolation algorithm.

-Normalization: The input to the function is normalized according to some prerecorded statistics to avoid large changes in statistics from one training iteration to the next.

The choice of a network architecture i.e. which function to use and where, does not have a clear answer as of yet. Most research revolves around the usage of heuristics or drawing inspiration from existing algorithms that have been shown to work well.

Training a neural network

Neural networks are trained using large number of examples pairs (x, y) of inputs and the desired outputs (i.e. noisy and noiseless image pairs) stored in a dataset

D := (x n , y n ) n∈[[1,N ]] ∈ (R p × R q ) N .
The desired output y is often called the label, a term inherited from the application of machine learning to classiőcation. See Chapter 3 for a discussion on the notion of ground-truth. where P is the probability distribution of the data, and w denotes the vector of all parameters of the network. The distribution P is usually unknown and the empirical distribution

P = 1 N N n=1 δ (xn,yn) is used instead, so that L(w) = 1 N N n=1 L(N (x n ; w), y n ). (7.2)
To minimize this risk -or this loss -a gradient descent algorithm is used, which therefore reaches a local minimum, as the functional is generally not convex.

The gradient ∇ w L of the loss over the training data is computed with respect to the set of parameters w. In practice, due to computational limitations, the stochastic gradient descent is used instead. The stochastic component consists of randomly sampling a batch of samples at each iteration and computing the gradient with respect to those samples. This random subset of samples is called a mini-batch.

The length of the gradient step is controlled by η ∈ R + * , the learning rate, which can be variable. More sophisticated methods that allow for faster convergence, such as Adam, RMS prop, or SGD with Nesterov momentum are usually applied [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF][START_REF] Yurii | A method for solving the convex programming problem with convergence rate o (1/kˆ2)[END_REF].

Kernel Machines

Kernel machines are simple and effective mathematical models used for machine learning. They proceed by comparing a given input sample x to each training sample x n using a kernel function x ∈ R p → K(x, x n ) ∈ R, and obtaining a value for x with weights depending on the kernel. The simplest example of kernel is the so-called linear kernel

K(x, x ′ ) = ⟨x, x ′ ⟩ R p [MV17]. Given a dataset D := (x n , y n ) n∈[[1,N ]] ⊂ (R p × R) N , a kernel machine is deőned by a kernel K : R p × R p → R and a set of coefficients (α n ) n∈[[0,N ]] , leading to deőne a decision function f by f : R p → R x → N n=1 α k K(x, x n ) + α 0 . (7.3) By Mercer's theorem [Mer09], if (K(x i , x j )) (i,j)∈[[1,N ]
] 2 is positive semi-deőnite, there is a function ϕ : R p → R s such that K(x, x) = ⟨ϕ(x), ϕ(x)⟩ for all x, x ∈ R p , where s can be arbitrarily large. Therefore, the kernel trick amounts to projecting the data into an arbitrary high-dimensional space (referred to as feature space) where the comparison between samples is more meaningful.

In most kernel machine applications, the function K is manually chosen beforehand based on the properties of the manifold containing the dataset. The parameter α is set afterward using an optimization algorithm.

A classic example of kernel K is the RBF kernel

[BL88] K(x, x) = G(d(x, x))
, where G is a Gaussian and d an arbitrary distance. In that case, the kernel directly deőnes a similarity measure i.e. the function reaches its maximal value when x = x. This makes for the interpretability of this method: the closest samples are those responsible for the response of the model to a given input.

Domingos' theorem, proof and variants, interpretation

Notation

We consider a learning data set The learning process minimizes a loss L deőned by

D := (x n , y n ) n∈[[1,N ]] ∈ (R p × R) N
L : R d → R w → L(w) = L(w 1 , . . . , w j , . . . , w d ) := 1 N N n=1 L(ŷ n (w), y n ),
where L : R 2 → R is a given loss function such as L(ŷ, y) = (ŷy) 2 . This criterion is minimized by standard gradient descent

dw(t) dt = -∇ w L(w(t)). (7.4)
This requires some regularity for N (x; w) with respect to w. For neural networks, this regularity is ensured if the activation function is smooth. With exception of the frequently used ReLU activation [START_REF] Fred | Deep learning using rectiőed linear units (relu)[END_REF] f (x) = max(0, x), all current activation functions are C ∞ , including several smooth versions of the ReLU called respectively GELU [HG16], ELU [START_REF] Clevert | Fast and accurate deep network learning by exponential linear units (elus)[END_REF], SELU [START_REF] Klambauer | Self-normalizing neural networks[END_REF] and Swish [START_REF] Ramachandran | Searching for activation functions[END_REF] (see [START_REF] Shiv | A comprehensive survey and performance analysis of activation functions in deep learning[END_REF] for a comparison). We shall limit our analysis to such activation functions, which guarantee that the learning machine is at least C 2 , and generally C ∞ . We shall denote by w : t ∈ R + → w(t) = (w 1 (t), . . . , w j (t), . . . , w d (t)) ∈ R d the solution of the above equation for a given initial set of parameters w(0) = w 0 ∈ R d . We call w a learning path.

Definition 7.1. The tangent kernel of a C 2 learning function N at parameter w is defined as

∀(x, x) ∈ (R p ) 2 , K N ,w (x, x) = ⟨∇ w N (x; w), ∇ w N (x; w)⟩ R d .
Definition 7.2. We call feature vector ϕ(x) of an input x ∈ R p induced by the tangent kernel of a C 2 learning function N at parameter w, the vector

ϕ(x) := ∇ w N (x; w) ∈ R d .
Definition 7.3. The path kernel associated with a C 2 learning function N and a learning path w up to time t is 

∀t ∈ R + , ∀(x, x) ∈ (R p ) 2 , K N ,w (x, x; t) = t 0 ⟨∇ w N (x; w(s)), ∇ w N (x; w(s))⟩ R d ds.
∀t ∈ R + , ∀x ∈ R p , N (x; w(t)) = N n=1 a n (x)K N ,w (x, x n ; t) + b(x),
where K f,w is the path kernel associated with N and the learning path w taken during gradient descent, a n is the average value of ∂L ∂ ŷn along the path weighted by the tangent kernel, and b = N ( • ; w(0)) is the initial model. 

But L(w) = 1 N N i=1 L(ŷ n (w), y n ) = 1 N N n=1 L(N (
x n ; w), y n ), and using again the chain rule,

∂N (x; w(t)) ∂t = d j=1 ∂N ∂w j (x; w(t)) - 1 N N n=1 ∂L ∂ ŷ (ŷ n (w(t)), y n ) ∂N ∂w j (x n ; w(t)) .
Rearranging terms:

∂N (x; w(t)) ∂t = - 1 N N n=1 ∂L ∂ ŷ (ŷ n (w(t)), y n ) d j=1 ∂N ∂w j (x; w(t)) ∂N ∂w j (x n ; w(t)). Let L ′ (ŷ(w(t)) n , y n ) = ∂L ∂ ŷ (ŷ n (w(t)), y n ).
Then using the deőnition of the tangent kernel

∀(x, x) ∈ (R p ) 2 , K N ,w (x, x) = ⟨∇ w N (x; w), ∇ w N (x; w)⟩ = d j=1 ∂N ∂w j (x; w) ∂N ∂w j (x; w), ∂N (x; w(t)) ∂t = - 1 N N n=1 L ′ (ŷ n (w(t)), y n )K N ,w(t) (x, x n ). (7.5)
Integrating between 0 and t yields

N (x; w(t)) = N (x; w(0)) - 1 N t 0 N n=1 L ′ (ŷ n (w(s)), y n )K N ,w(s) (x, x n )ds. (7.6)
Multiplying and dividing each term in the sum by

t 0 K N ,w(s) (x, x n )ds, we get N (x; w(t)) = N (x; w(0)) - 1 N N n=1 t 0 L ′ (ŷ n (w(s)), y n )K N ,w(s) (x, x n )ds t 0 K N ,w(s) (x, x n )ds t 0 K N ,w(s) (x, x n )ds, (7.7)
which yields by deőnition the path tangent kernel

N (x; w(t)) = N (x; w(0)) - 1 N N n=1 L′ (x, x n , ŷn , y n ; t)K f,w (x, x n ; t),
where

L′ (x, x n , ŷn , y n ; t) = t 0 L ′ (ŷ n (w(s)), y n )K N ,w(s) (x, x n )ds t 0 K N ,w(s) (x, x n )ds , hence N (x; w(t)) = N n=1 a n (x; t)K N ,w (x, x n ; t) + b(x),
where K N ,w (x, x n ; t) is the path kernel associated with the learning process up to time t, b is the initial learning function, a n = -1 N L′ (x, x n , ŷn , y n ; t) is the loss derivative weighted by the tangent kernel (note that these weights are not necessarily positive). This concludes the proof of Theorem 1.

Discussion

Even if, formally, the result of Theorem 7.1 has the aspect of a kernel machine, the dependence of a n (x; t) on x is difficult to interpret. We can reach a more accessible interpretation in the line of Domingos by stopping the reasoning at Equation (7.6). We get, for the standard choice for the loss L(ŷ, y) = 1 2 (ŷy) 2 :

N (x; w(t)) = N (x; w(0)) - 1 N N n=1 t 0 (N (x n ; w(s)) -y n ) • ⟨∇ w N (x; w(s)), ∇ w N (x n ; w(s))⟩ds. (7.8)
Theorem 1 and Equation (7.8) inform us about the behavior of a trained neural network (or of any learning machine using gradient descent). This formula indicates that once trained, a neural network will be łcomparingž a given new sample x to all samples x n in the training set. Indeed, we can rewrite Equation (7.8) as

N (x; w(t)) = b(x) - 1 N N n=1 t 0 a n (s) • K N ,w(s) (x, x n )ds,
which yields a simple formulation that is almost identical to a standard kernel machine (Equation (7.3)). The exception lies in the bias term b(x) depending on the input sample x and in the kernel being integrated over time.

What we actually get from Equation (7.5) is that the time derivative of the network is exactly a kernel machine. More generally, this conclusion applies to any learning machine trained by gradient descent.

Extension of Domingo's theorem to the discrete setting

In practice, neural networks are not learned using the dynamic described in Equation 7.4 which implies using an inőnite number of training steps with an inőnitesimal step size. Instead, neural networks are trained for a őnite number of steps and using a relatively high step; typically in the range [10 -5 , 10 -1 ]. In this situation, the dynamic of gradient descent for K steps is given by

∀k ∈ [[0, K -1]], w(k + 1) = w(k) -η k ∇ w L(w(k)), (7.9)
where

(η k ) k∈[[0,K-1]]
is the sequence of steps considered. Then the learning path w associated with an initial condition w(0

) = w 0 ∈ R d is deőned as a discrete path w : k ∈ [[0, K]] → w(k) = (w 1 (k), . . . , w j (k), . . . , w d (k)) ∈ R d .
These considerations lead us to consider a discrete formulation of Theorem 1. of a loss function L. Assume that the gradient of the loss L Lipschitz-continuous. Then N can be expressed as

∀x ∈ R p , N (x; w(K)) = N (x; w(0)) - 1 N N n=1 K-1 k=0 η k ∂L ∂ ŷ (ŷ n (w(k)), y n )K NTK (x, x n ; k) + O K-1 k=0 η 2 k , (7.10) where ŷ(k) n = N (x n ; w(k)).

Proof

The Taylor approximation of

w ∈ R d → N (x; w) ∈ R for a őxed x ∈ R p gives N (x; w(k + 1)) = N (x; w(k)) + ⟨∇ w N (x; w(k)), w(k + 1) -w(k)⟩ R p + O(∥w(k + 1) -w(k)∥ 2 2 ).
Combining this equation with Equation (7.9) yields

N (x; w(k + 1)) = N (x; w(k)) -η k 1 N N n=1 ⟨∇ w N (x; w(k)), ∇ w L(w(k))⟩ R p + O(η 2 k ).
By the same chain rule trick as for the continuous case, we rewrite one of the above gradients as

∂L ∂w j (w(k)) = 1 N N n=1 ∂N ∂w j (x n ; w(k)) ∂L ∂ ŷ (ŷ n (w(k)), y n ).
Injecting this equation into the previous one yields

N (x; w(k + 1)) = N (x; w(k)) -η k 1 N N n=1 ∂L ∂ ŷ (ŷ n (w(k)), y n ) ⟨∇ w N (x; w(k)), ∇ w N (x n ; w(k))⟩ R p + O(η 2 k ) = N (x; w(k)) -η k 1 N N n=1 ∂L ∂ ŷ (ŷ n (w(k)), y n )K NTK (x, x n ; k) + O(η 2 k ).
As for the continuous case, a telescopic summation results in

N (x; w(K)) = N (x; w(0))- 1 N N n=1 K-1 k=0 η k ∂L ∂ ŷ (ŷ n (w(k)), y n )K NTK (x, x n ; k)+O K-1 k=0 η 2 k .

Extension of Domingo's theorem to the multi-dimensional output case

Most of the time, neural networks feature multidimensional outputs. In this section, we extend the theorem to cope with this more general setup. Consider a training data set

D = (x n , y n ) n∈[[1,N ]] ∈ (R p × R q ) N
with a learning function

N : R p × R d → R q
(x, w) → N (x; w) = N (x; w 1 , . . . , w j , . . . , w d ) := (N 1 (x; w), . . . , N q (x; w)).

Like in the one-dimensional case, we denote the prediction at a data point x n of the network with parameter w by

∀m ∈ [[1, q]], ∀n ∈ [[1, N ]], ŷ(m) n : R d → R w → ŷ(m) n (w) = ŷ(m) n (w 1 , . . . , w j , . . . , w d ) = N m (x n ; w).
Like in the one-dimensional case we assume the gradient descent (7.9) and adopt any loss 1) , . . . , ŷ(j) , . . . , ŷ(q) , y (1) , . . . , y (j) , . . . , y (q) ).

L : R q × R q → R (ŷ, y) → L(ŷ, y) := L(ŷ ( 
For instance, one could consider L(ŷ, y) = L(ŷ (1) , . . . , ŷ(j) , . . . , ŷ(q) , y) = ∥ŷ -y∥ 2 2 . Definition 7.5. We define the neural tangent kernel of a C 2 learning function N with q outputs by

∀(x, x) ∈ (R p ) 2 , K NTK (x, x) = J N (x; w)J N (x; w) T ∈ R q×q , where J N (x; w) = ∂N i ∂w j (x; w) (i,j)∈[[1,q]]×[[1,d]]
∈ R q×d is the Jacobian of w → N (x; w) at (x, w) for any x ∈ R p .

Given the learning path w and the iteration numbers k ∈ [[0, K]], the discrete tangent kernel path is defined by

∀(x, x) ∈ (R p ) 2 , K NTK (x, x; k) = J N (x; w(k))J N (x; w(k)) T .
Theorem 7.3. Consider a C 2 learning machine model N with q outputs and the path of parameters w learned from a training set D by discrete gradient descent with steps

(η k ) k∈[[0,K-1]] for a loss function L. Then N satisfies ∀x ∈ R p , N (x; w(K)) = N (x; w(0)) - 1 N N n=1 K-1 k=0 η k K NTK (x, x n ; k)L(k, n) + O K-1 k=0 η 2 k ,
where

L(k, n) := ∂L ∂ ŷ(1) (ŷ (1) n (w(k)), y n ) . . . ∂L ∂ ŷ(q) (ŷ (q) n (w(k)), y n ) T ∈ R M .

Proof

Like for the one-dimensional case, we can write the Taylor approximation of

w ∈ R d → N (x; w) ∈ R q for any x ∈ R p , N (x; w(k + 1)) = N (x; w(k)) + J N (x; w(k))(w(k + 1) -w(k)) + O(∥w(k + 1) -w(k)∥ 2 2 ).
Using the formula of the gradient descent of Equation (7.9) we obtain

N (x; w(k + 1)) = N (x; w(k)) + J N (x; w(k)) (-η k ∇ w L(w(k))) + O(η 2 k ).
The chain rule applied on the gradient of L is also similar to the one-dimensional case but has to take into account the q outputs. To do so, we introduce ŷ(m)

n : w ∈ R d → N m (x n ; w(k)) ∈ R for all n ∈ [[1, N ]] and m ∈ [[1, q]], and get ∂L ∂w j (w(k)) = 1 N N n=1 q m=1 ∂N m ∂w j (x n ; w(k)) ∂L ∂ ŷ(m) (ŷ (m) n (w(k)), y n ).
This equation combined with the Taylor expansion yields

N (x; w(k + 1)) = N (x; w(k)) -η k 1 N N n=1 M m=1 ∂L ∂ ŷ(m) (ŷ (m) n (k), y n )J N (x; w(k))∇ w N m (x n ; w(k)) + O(η 2 k ), (7.11) 
which can be rewritten as

N (x; w(k + 1)) = N (x; w(k)) -η k 1 N N n=1 J N (x; w(k))J N (x n ; w(k)) T L(k, n) + O(η 2 k ),
where

L(k, n) := ∂L ∂ ŷ(1) (ŷ (1) 
n (w(k)), y n ) . . . ∂L ∂ ŷ(q) (ŷ (q) n (w(k)), y n ) T ∈ R q .
Finally, a telescopic summation gives 

N (x; w(K)) = N (x; w(0)) - 1 N N n=1 K-1 k=0 η k K NTK (x, x n ; k)L(k, n) + O K-1 k=0 η 2 k .
N : R p × R p : → R (x, a) → ⟨a, x⟩ R p .
We are here in the special case where d = p. The goal of this function is to learn

a ∈ R p minimizing L(a) = 1 N N n=1 (⟨a, x n ⟩ -y n ) 2 .
The NTK of this learning machine simply is

K NTK (x, x) = ⟨x, x⟩ R p ,
which is independent of the parameters w := a. Expanding the RHS of Equation (7.10) using Equation (7.9) gives

∀x ∈ R n , N (x; w(K)) = N (x; w(0)) - 1 N N n=1 K-1 k=0 η k ∂L ∂ ŷ (ŷ n (k), y n )K NTK (x, x n ; k).
Hence, the O(•) term disappears and the formula becomes exact. The neural tangent kernel is a polynomial kernel of degree one. One can note that in this case the normalized version of the NTK deőned by sim(x, x) := K NTK (x, x)

K NTK (x, x) • K NTK (x, x) , (7.12) 
is the cosine similarity.

Neural networks with a linear last layer

Given a network N : R p × R d → R and a set of weights w ∈ R d , we consider the classic case where the last layer is linear. So we assume that there exists (W, b) ∈ R r × R and a network P :

R p × R d-r-1 → R r such that ∀x ∈ R p , N (x; w) = W • P(x; w) + b, where w ∈ R d-r-1 is the set of weights w ∈ R d deprived of W and b. It follows that, for x ∈ R p , ∇ W N (x; w) = P(x; w), ∇ b N (x; w) = 1.
Now, since the feature vector induced by the NTK of N is given by ϕ = ∇ w N (Deőnition 7.2), we can rewrite it as ϕ = ∇ W N , ∇ b N , ∇ w P . Then, if we let a = W, b, 0, . . . , 0 ∈ R d , we obtain ⟨ϕ(x), a⟩ = N (x; w).

This means that the set of all the linear regressions that can be computed on the feature space contains the network itself. As an example, consider the case where a network is trained on a classiőcation task where the goal is to predict a positive value for positive samples and a negative value for negative samples. If the network has a 100% accuracy, then the feature space will be perfectly linearly separable.

Numerical verification of Domingos' formula on two more examples

In this section, we consider a simple and controlled setting where the RHS of Equation (7.10) can be effectively computed. First, we use this setting to measure how well the RHS approximates the LHS when varying different hyper-parameters.

In Domingos' proof (Section 7.3) and in its discrete formulation (Section 7.3.1), a few details differ from usage in network training. The main difference lies in the optimization being done using a full-batch gradient descent algorithm. In practice, each iteration optimizes the loss on a randomized mini-batch, and the optimization algorithms are more complex than simple gradient descent (for example by including łmomentumž terms, or using a different step for each coordinate, see Chapter 9 for an example). For simplicity, we nevertheless consider a full-batch gradient descent in this section, like in Domingos' setting.

First experiment: a ball vs sphere classification problem

For this experiment, we considered a dataset composed of two classes. The őrst class consists of points randomly sampled on the unit sphere. The second class consists of points randomly sampled within the sphere of radius 0.5. The dataset D is deőned as:

D ⊂ {(x, 1) : x ∈ R 2 , ∥x∥ = 1} ∪ {(x, -1) : x ∈ R 2 , ∥x∥ ≤ 0.5} ⊂ R 2 × {-1, 1}.
We consider here the case p = 2 and q = 1. The set we considered had N = 2 10 different samples. See Figure 7.2 for an illustration. We used the 3-layers neural network

∀x ∈ R p , N (x; w) := W 1 • GELU(W 2 • GELU(W 3 • x + b 3 ) + b 2 ) + b 1 ,
where

W 1 ∈ R 1×r , W 2 ∈ R r×r , W 3 ∈ R r×p , b 1 ∈ R 1 , b 2 ∈ R r , b 3 ∈ R r and w = (W 1 , W 2 , W 3 , b 1 , b 2 , b 3 ). The C ∞ GELU function is deőned by ∀s ∈ R, GELU(s) = s • P(X ≤ s),
where X ∼ N (0, 1). It is applied component-wise on a vector. The network has a total of d = r 2 + (p + 3)r + 1 parameters. To efficiently compute the NTK in the RHS of Equation 7.5. Numerical verification of Domingos' formula on two more examples (7.10), we derived manually the gradients of the network w.r.t the input and computed the scalar product. Here p = 2, and the network was trained for K = 10 4 iterations using a constant learning rate η = 10 -2 with N = 2 10 training samples. The loss was the mean squared error (MSE) and the network's width, namely the size of each layer, was r = 10.

Results

The network quickly reached an accuracy of 100%, meaning that each point of D was classiőed correctly. See Figure 7.2 for an illustration of the result. One can see in this őgure that the boundary of decision seems to be the ball of radius 0.75, which is a fair trade-off between őtting the training data and overőtting. It is worth noting that in this particular case, the network seems to have converged to an optimal algorithm.

Visualization of the NTK

To determine which points were considered as similar from the NTK's perspective, we computed the 100 points with the largest similarity according to the normalized NTK. Namely, we considered the following algorithm:

-Draw a random direction of the space u ∈ R 2 such that ∥u∥ = 1; -Compute the similarity vector S(λ) = (sim(λu, x 1 ), . . . , sim(λu, x N )) where sim is deőned in Equation (7.12) and the NTK is taken at k = K -1;

-Compute the sequence i 1 (λ), . . . i N (λ) such that S(λ) i 1 (λ) ≥ . . . ≥ S(λ) i N (λ) ;
-For different values of λ, display in a őgure the points S(λ) i 1 (λ) , . . . , S(λ) i 100 (λ) .

The result is available in Figure 7.3, along with the result of the same experiment but conducted using the Euclidean distance. We can see that both sets of neighbors are not identical, but similar. Therefore, the normalized NTK seems to be compatible with an Euclidean distance. Figure 7.6: Results of the algorithm described in Section 7.5.1, but for the second experiment. First row: 100 closest neighbors from the NTK's perspective (for k = K -1).

Second row: 100 closest neighbors according to the Euclidean distance.

Can a network learn planar topology?

Returning to a fruitful example in the discussion of the performance of neural networks, we reconsider the problem of learning connectivity of planar shapes, a problem that was already at the core of the debate on the perceptron's performance in the seventies of the past century [START_REF] Minsky | Perceptrons[END_REF]. The generic question behind this is whether a network can learn from examples the optimal algorithm relative to a given task, provided this optimal algorithm is actually compatible with the architecture of the network. In other terms, if its internal right parameters w were correctly chosen, this network would perform exactly what is being asked. But this does not imply that training it by gradient descent will reach this perfect conőguration. This is all the point of Domingo's theorem.

We have seen in the simple examples presented in Section 7.5 that the network can sometimes converge to the perfect conőguration. But does this property remain when the considered data is high-dimensional? Domingos' theorem, as we saw, argues to the contrary, namely a network optimized by gradient descent is inherently unable to perform but an interpolation of its learning data. There is no argument showing that it could be able of another more efficient form of interpolation. To verify this, our learning dataset was made of connected shapes that do not meet the image boundary. The input to the network was the border of this shape, and we trained the network to output the őlled-in shape. See Figure 7.7 for an illustration.

An elementary low-complexity algorithm solves this task. It is enough to browse the pixels of the image from left to right and to attribute to the corresponding pixel of the output image the congruence modulo 2 of the sum of the previously seen pixels. In other words, for an image of {0, 1} H×W with height H and width W , the algorithm can be written as:

∀(i, j) ∈ [[1, H]] × [[1, W ]], y i,j = j k=1 x i,k mod 2. (7.13)
It is an easy exercise to check that this algorithm is implementable in any deep neural network with a sufficient number of layers and we shall present and study one of such architecture in Section 7.6.1.

Then, we trained a U-Net on a large database of connected shapes and we found that it reached almost 100% accuracy. But, when presented with samples differing too much from the ones seen during training, the network failed (Figure 7.8).

Figure 7.9: Example of samples from X 6 on the left and from X 12 on the right. The ground truth is generated from the input using Equation 7.13.

Figure 7.8: Example of a more complex case where the network fails. If the network had learned an optimal algorithm, it would have managed to deal with this case. For this example, the IOU is 51%.

Study of a structure which can learn 1D planar topology

As mentioned in the previous section, there is an elementary 1D algorithm solving the 2D shape-őlling problem. To understand better the failure to extrapolate to new data pointed out in the previous section, we explored the 1D shape completion problem.

Presentation of the dataset

The problem of learning planar topology in one dimension consists, given a sample of {0, 1} p , in applying the algorithm of Equation (7.13) to this sample. It is possible to learn independently the task of Figure 7.7 for each line of the image. To better control the difficulty of the task, we can constrain the number of nonzero coordinates. To this end, we introduce

∀k ∈ 1, p 2 , X 2k = x ∈ {0, 1} p : p i=1 x i = 2k
and for each sample of X 2k , we deőne its output (or label) as the result of Equation (7.13) applied on the sample. It follows that the number of outputs is q = p. We can deőne the training dataset as

D 2k ⊂ X 2k × {0, 1} p
Examples of samples from D 2k are available in Figure 7.9. In particular, one can note that |X 2k | = p 2k and that the number of possibilities for p = 128 and 2k = 10 is of order 10 14 . For the experiments in this section, we considered N = 10 4 training samples and p = 128. 

∀(u, v) ∈ {0, 1} 2 , u + v mod 2 = max(0, u -v) + max(0, v -u).
In particular, s ∈ R, → max(0, s) = ReLU(s), an activation function commonly used in neural networks. The operation described above is hence implementable using two linear operations and a non-linearity, i.e.

∀(u, v) ∈ {0, 1} 2 , u + v mod 2 = 1 1 • ReLU 1 -1 -1 1 • u v .
Furthermore, the above operation can be implemented as a convolution if we want to compute the sum modulo two of all the pairs of consecutive samples in a point x ∈ {0, 1} p . We shall denote Λ : {0, 1} p → {0, 1} p-1 this operation.

Implementing Equation (7.13) also requires computing the cumulative sum. To this end, we shall restrict the analysis to the case where p is a power of 2, and we consider Γ : x ∈ {0, 1} p → Λ(x) ↓ ∈ {0, 1} p/2 where ↓ corresponds to the downsampling operation, which consists in taking one sample out of two, starting with the őrst one. Then, we call Γ k the k times composition of the Γ function and remark that

Γ k (x) 0 = 2 k i=1 x i mod 2.
Finally, we note ∆(x; k) = (0, . . . , 0, x 1 , . . . , x k ) ∈ {0, 1} p the function that takes the őrst k coordinates of a sample x ∈ {0, 1} p and zero-pads it on the left to obtain a vector of the same dimension. Then

Γ log 2 (p) (∆(x; 1)) 0 . . . Γ log 2 (p) (∆(x; p)) 0 ∈ {0, 1} p
is precisely the result of the application of Equation (7.13) to a sample x ∈ {0, 1} p . To conclude, we remark that every operation we described above is compatible with a convolutional structure: the above formula describes a neural network with 2 • log 2 (p) convolutions, log 2 (p) non-linearities and log 2 (p) downsamplings. The resulting structure can be seen in Figure 7.10.

Training the structure

When training the structure described in Figure 7.10 with r < 8 and for any number of nonzero coordinates l and despite heavy hyper-parameter tuning, the network never converged to the optimal solution. An exception to this observation was obtained when the initialization of the network was w * + σN (0, 1) where σ < 0.1 and where w * was the manually-computed optimal solution.

For any r ≥ 8, the network converged without any further help to an optimal solution for any number of nonzero coordinates l. For instance, when training for l = 10 and evaluating on 10 5 samples of D 20 , we reached an error of 10 -7 . Thus in that very particular case, the network learned the correct algorithm and proved able of łgeneralizationž.

When changing slightly the architecture though, for instance by increasing the kernel size of one of the convolutions, the network stopped converging for any r and any l.

When signiőcantly increasing the number of parameters by the introduction of other convolutions in-between the two presented in Figure 7.10, the network converged to a solution that is not the optimal one, but which error was low. As an example, when training for l = 10, we obtained an error of order 10 -4 when evaluated on D 4 , 10 -3 for D 10 and 10 -2 for D 20 .

All in all, this indicates that even when provided with an optimal structure, the network does not generally converge to the optimal solution, unless heavily guided. Any change in the structure puts at risk this convergence. This example brings one more evidence in favor of this interpretation of Domingos's theorem: a network only learns based on similarity and there will never be a guarantee of perfect interpolation or extrapolation. This őnding is discussed in further detail in Chapter 6, Section 6.2.

Extension to the 2D planar topology with an usual structure

Presentation of the dataset

The shapes were generated using the code associated with an online demo [sha] which creates SVG őles with one connected shape. The SVG őles were converted to JPEG images of dimension 512 × 512. At this point, the images had binary values. Then, we computed the label associated with each image by computing the boundary of the shape as the set of pixels in the shape that have at least one of its eight neighbors outside of the shape. Finally, these images and their associated labels were őltered using Lanczos őltering, downsampled by a factor of two, and saved. This őltering created a small smoothing effect around the boundaries of the object. See Figure 7.7 for an example. Overall, 10,000 training images and 1,000 test images were generated this way.

Experimental setup

We considered a U-Net architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] (see Figure 7.11) which allows for the processing of the entire image due to its multiple down-sampling operations. Its hourglass structure and its multiple skip connections allow for a powerful yet easy-to-train model. To speed up the training, the images were down-sampled by a factor of two before being passed through the network. Therefore, the images seen by the network were of dimension 128 × 128. The dataset was augmented by random horizontal and vertical ŕips.

The network was trained with the Ranger optimizer (a mix of [LJH + 19] and [START_REF] Zhang | Lookahead optimizer: k steps forward, 1 step back[END_REF]) for 150 epochs using the mean square error loss and a batch size of 32. The learning rate was constant and equal to 10 -2 and was divided by 10 whenever a plateau was reached i.e. when the loss stopped decreasing for a few iterations.

Results

The network reached a őnal IOU (Intersection Over Union) of 99.80%. When presented with complex examples that were not in the training set, the network still managed to perfectly fulőll its task. See Figure 7.12 for a visual illustration.

Figure 7.12: Examples of tricky cases that had not been seen during training and where the network manages to make a perfect prediction. Notably, the őrst example could confuse a human observer. On the left, is the input to the network. On the right, is the prediction produced by the network.

This does not mean that the network learned the perfect algorithm. Indeed, further increasing the complexity of the presented shape causes the network to fail! See for instance Figure 7.8. If the network had learned an optimal algorithm, it would have managed to deal with such more complex cases. If, instead, as argued by Domingos, the network is guided by a comparison with known examples, there was no point in hoping for success with an łout-of-domainž example.

Using the NTK to better understand one-dimensional planar topology

As the formula of the NTK involves heavy computations and high-dimensional vectors, we were not able to compute it for the 2D problem described above. Instead, we considered a one-dimensional version of the problem that we describe in this section. This dataset consisted of sequences with only two non-zero values. This dimension reduction allowed us to work with smaller networks and thus make the computation of the NTK tractable. The dataset can be described by

D ⊂ X × {0, 1}, (7.14a) 
X := x ∈ {0, 1} p : p k=1 x k = 2 , (7.14b) 
where p = 64 in all our experiments. One may note that the input space X corresponds to the set X 2 introduced in Section 7.6.1. What differs from Section 7.6.1 however is the way the label is computed.

The deőnition of X implies that exactly two components of x are nonzero. We call

ψ 1 : X → [[1, p]], ψ 2 : X → [[1, p]
] the indices such that for each sample x ∈ X , we have

x ψ 1 (x) = x ψ 2 (x) = 1 and ψ 1 (x) < ψ 2 (x).
The learning task was to őnd the value of the central pixel after shape completion. In other terms for an input sample (x i , y i ) ∈ D,

y i = 1 if p 2 ∈ [[ψ 1 (x i ), ψ 2 (x i )]], 0 else.
Examples of inputs with different labels are shown in Figure 7.13. Note that, although simple, this task cannot be resolved by looking at the closest neighbor algorithm in the input space: two points with the same Euclidean distance to a given point can have different labels. This is in opposition to the previous experiments where the NTK was shown to be closely related to the Euclidean distance.

In this experiment, we also considered N = 2 10 training data points. The trained network was the one of Section 7.5.1 with p = 64. We used a constant learning rate η = 10 -1 and K = 10 4 training iterations. The network reached 100% accuracy on both seen and unseen samples. Figure 7.13: Examples of data used in the experiment of Section 7.6.3. On the left, the label is 0 because the point of index 32 does not lie between the two peaks. On the right, the label is 1.

The data being high-dimensional could not be displayed in a normal plot. Instead, we computed a t-SNE [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF] representation of the feature space (ϕ(x i )) i∈[[1,N ]] (Def. 7.2), see Figure 7.14. The t-SNE algorithm is class-agnostic, therefore the class of each data point is not given to the algorithm. In this őgure, one can observe how the data are split into three distinct locations of the 2D plane. The left-most location corresponds to data points x i where both ψ 1 (x i ) < ψ 2 (x i ) ≤ p 2 . Points of class one that are located on the left correspond to cases with ψ 1 (x i ) = p 2 . A similar property holds for data points x i on the right-most part of the plane: p 2 ≤ ψ 1 (x i ) < ψ 2 (x i ). The points of class 1 located on the right are also points with ψ 1 (x i ) = p 2 . Finally, all the points lying in the middle of the plane correspond to points of class 1, i.e. points x i where ψ 1 (x i ) ≤ p 2 and ψ 2 (x i ) ≥ p 2 . Lastly, we investigated the closest points with respect to the normalized NTK:

K NTK (x, x) K NTK (x, x)K NTK (x, x) , is the highest for data points (x, x) ∈ X 2 such that |{ψ 1 (x), ψ 2 (x)} ∩ {ψ 1 (x), ψ 2 (x)}| = 1,
i.e. data points that share exactly one peak. Apart from this observation, it is very hard to determine what the network does to separate classes based on the normalized NTK only. This is where the curse of dimensionality comes into play: the higher-dimensional the data, the more difficult it is to extract meaningful information from the NTK.

All in all, our observations on the t-SNE and the normalized NTK seemed to indicate that the network had found an optimal algorithm. This was easy to check in our case, as |X | = p 2 = 2, 016. Computing the accuracy across all X conőrmed that the network had converged to an optimal algorithm. While we would have liked to extend this result to data with more than two peaks, it was practically impossible for this simple massive optimization (full batch SGD without momentum). All experiments featuring more than two peaks failed to maintain their level of precision outside the training set. Changing the optimizer for Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] őxed this issue, but the algorithm being more complex, we could not derive an analog of Theorem 7.1 for this optimizer.

Conclusion and limitations

In this chapter, we studied Domingos' proof stating that neural networks are approximately kernel methods. This study led us to examine the kernel that naturally arises when proving the statement, namely the Neural Tangent Kernel. We found that in a low-dimensional setting (small neural network, input of small dimension, one-dimensional output) this kernel provides a powerful insight as to how the network makes its predictions. In these settings, we noticed that the network converged to an optimal algorithm that interpolated and extrapolated perfectly.

However, when the dimension of the input grows, the interpretation grows more complex and it is unclear how the interpretability of the NTK would apply to high-dimensional settings such as images, where even the nearest neighbors can look very different (see Figure 5 of [START_REF] Charpiat | Input similarity from the neural network perspective[END_REF] for an example).

These concerns are all the more justiőed since the gradient descent algorithm used throughout this chapter is no longer usable to train neural networks in high dimensions. When changing the optimizer for a more complex one (such as in Section 7.6), the networks seem to converge to an intermediate solution that interpolates well in the training domain. However, when presented with signiőcantly different samples, the predictions deteriorate. This seems to conőrm Domingos' interpretation of his theorem, which states neural networks are little more than a sophisticated kernel machine, that simply interpolates between known data.

In this chapter, we study the properties of neural networks when trained in a particular setting, and derive properties on the structure of the learning machine. In the more general setting, the optimization process is much more complex and is sometimes even impossible. In Chapter 8, we describe the more general case in further detail and derive the properties needed to ensure training can occur.

Overview of typical training instabilities

In Chapter 7, we studied the properties of neural networks when trained in a particular setting and derived properties on the structure of the resulting learning machine. In the more general setting, we cannot derive such rules and it can even happen that the training is unstable, making it nearly impossible to reach convergence. This problem is often characterized by spikes in the training loss resulting in disrupted training that either diverges or converges to a sub-optimal solution. In this chapter, we first introduce a mathematical theory to characterize instabilities. Then, we present and discuss a list of typical sources of instabilities, and explain them through the lens of the theory. Lastly, we gather and explain a set of different solutions one can rely on when training in an unstable setting.

Introduction

Instabilities sometimes arise when training neural networks, especially when training nonstandard architectures, or when trying to scale up a structure beyond the rate for which it was designed. They are characterized by the random appearance of spikes in the train loss, resulting in divergence or a sub-optimal convergence.

In this chapter, we describe the mechanisms underlying instabilities, their source, and how to solve them. We begin with an explanation of the dynamics of learning in Section 8.2, where we explain how the weights and the updates should behave to ensure stable training. Most of the time, instability can be pinpointed to one speciőc operation performed during the forward pass. In Section 8.3, we describe examples of such operations, explain why they are unstable, and propose solutions. However, it is sometimes not possible to precisely determine what component is causing the instability. In Section 8.4, we discuss ways to train a network in this scenario.

Dynamics of learning

In this section, we study the dynamics of the training of neural networks and derive properties that tend to make the training stable. We start by recalling the properties of a good initialization as described in [START_REF] He | Delving deep into rectiőers: Surpassing human-level performance on imagenet classiőcation[END_REF]. Then, we describe the regularity that has been observed to stabilize the training. Finally, we derive a rule of thumb that the updates of the weights should follow to ensure stability throughout the training.

Initialization The idea of traditional initialization techniques [START_REF] He | Delving deep into rectiőers: Surpassing human-level performance on imagenet classiőcation[END_REF] is to ensure that if the input to the layer

x ∈ R C in is such that E[x] = µ1 C in , Var [x] = σ 2 I, then the output f (x) ∈ R Cout has E[f (x)] = 0, Var [f (x)] = I,
where f is a linear layer. Although normalization layers are used to ensure this property holds in certain parts of the network, carefully initializing the network is still important. As the non-linearities shift the mean and variance of the feature maps, the variables µ and σ are determined by the activation function.

We deőne f :

x ∈ R C in → Ax + b ∈ R Cout with A ∈ R Cout×C in and b ∈ R Cout . Additionally, we make the assumption that A i,j ∼ A 1,1 for all (i, j) ∈ [[1, C out ]] × [[1, C in ]], b i ∼ b 1 for all i ∈ [[1, C in ]],
and that all the variables are independent. We have

∀k ∈ [[1, C out ]], E[f k (x)] = C in E[A 1,1 ]µ + E[b 1 ], (8.1)
where

f k is the k-th component of f . To ensure E[f k (x)] = 0, it is sufficient to have E[A 1,1 ] = E[b 1 ] = 0.
Regarding the variance we have

∀k ∈ [[1, C out ]], Var [f k (x)] = C in Var [A 1,1 ] (µ 2 + σ 2 ) + Var [b 1 ] . (8.2)
It is sufficient to ensure that

Var [A 1,1 ] = 1 2C in (µ 2 + σ 2 ) , Var [b 1 ] = 1 2 , (8.3)
to reach the desired property.

The need for unit Gaussians Theoretically, the property Note that the amplitude of the gradient, features maps, and weights are linked. Since the gradient is computed using the values of the feature maps, high values in the feature maps will result in a gradient with a high amplitude. Furthermore, a high-amplitude gradient will result in large updates and hence large weights. Finally, large weights will, in most cases, imply large values in the feature map.

E[x] = µ1 C in , Var [x] = σ 2 I, =⇒ E[f (x)] = 0, Var [x] = I, ( 8 
In practice, normalization layers such as Batch Normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] or Layer Normalization [START_REF] Lei Ba | Layer normalization[END_REF] are used to ensure the mean and the variance remain constrained. This alleviates most of the constraints on the variance, but we must still ensure that it remains constrained i.e.

Var [f (x) k ] = O C in ,Cout→+∞ (1) 
. Note that normalization layers ensure the stability of the forward pass but do not normalize the gradient the same way. Hence, the forward pass could be normalized but the gradient could still take large values, causing the training to diverge. Furthermore, normalization layers are to be used sparsely (see Chapter 6, Section 6.3.2) and are not applied at every step of one's network. Therefore, it is still necessary to ensure that the mean and variance of the feature maps do not vary too much during training. In practice, we observed that a shift in mean is not dramatic whereas a shift in variance can cause a divergence.

Back-propagation

As in [START_REF] He | Delving deep into rectiőers: Surpassing human-level performance on imagenet classiőcation[END_REF], we can derive a bound similar to (8.3) for the back-propagation. If we note y = f (x) ∈ R Cout , and L a loss function, we get that

∂L ∂x = A T ∂L ∂y . (8.5)
Hence, we have the exact same dynamics as for the forward pass, but where C in and C out are reversed. In this case, we would need Var [A 1,1 ] = 1 2Cout(µ 2 +σ 2 ) to ensure the gradients do not explode or vanish at the beginning of the network. To conclude, a good initialization can be characterized by

Var [A 1,1 ] = O 1 max(C in , C out ) . (8.6)
This property is even more important in the scaling context, i.e. when designing a structure where we can easily increase the number of channels. Note that some initialization schemes propose a variance in

2 C in +Cout [GB10].
Weight update When the weights are updated, the mean and the variance of the feature map mustn't shift too far from (0, I). In this paragraph, we will study the amplitude of the update needed to ensure such a property. Let us consider a linear layer f following the property of Equation (8.4). After an update, the function is of the form f

+ (x) = (A + δA)x + (b + δb). The expectation of f + (x) for x ∈ R C in such that E[x] = µ1 C in and Var [x] = σ 2 I is given by ∀k ∈ [[1, C out ]], E[f + k (x)] = µ C in n=1 E[δA k,n ] + E[δb k ], (8.7) 
and the variance is given by

∀k ∈ [[1, C out ]], Var[f + k (x)] =1 + (µ 2 + σ 2 ) C in n=1 Var [δA k,n ] + C in n=1 E[δA k,n ] 2 + Var [δb k ] . (8.8)
Therefore, it is sufficient to have

E[δA k,n ] = O 1 √ C in , Var[δA k,n ] = O 1 C in , (8.9) 
and

E[δb k ] = O(1), Var[δb k ] = O(1)
to ensure a limited shift in mean and variance during the forward pass. Ideally, we would want

E[δA k,n ] = 0, E[δb k ] = 0, (8.10) so that E[f + k (x)] = 0 and Var f + k (x) = 1 + (µ 2 + σ 2 ) C in n=1 Var [δA k,n ] + Var [δb k ] . (8.11)
Similarly, to ensure the stability of both the forward and backward pass it is sufficient to have

E[δA k,n ] = O 1 max(C in , C out ) , Var[δA k,n ] = O 1 max(C in , C out )
. (8.12) Practical viewpoint When designing a layer or an architecture, the distribution of the output should be as close as possible to a unit distribution. We can deőne the empirical mean of a feature map as

mean[F ] := 1 C N C c=1 (n 1 ,...,n K )∈I F c,n 1 ,...,n K , (8.13) 
where N = K k=1 N k , and

I = [[1, N 1 ]]×. . .×[[1, N K ]].
Similarly, we can deőne the empirical standard deviation of a feature map as

std[F )] = mean[F 2 ] -mean[F ] 2 .
(8.14)

Definition 8.1. A layer (or a network) f is said to be well-behaved when its output f (x) for an input x is such that

mean[f (x)] ≈ 0, std[f (x)] std[x] ∈ [0.1, 2]. (8.15)
To ensure that a network is well-behaved at initialization, it is usually sufficient to correctly initialize the weights of the network as őrst described in [START_REF] He | Delving deep into rectiőers: Surpassing human-level performance on imagenet classiőcation[END_REF]. However, ensuring this property at initialization is not enough to guarantee the stability of the training. In practice, one must ensure that this property is still veriőed during training.

In most cases, the instability will start from large values in the feature map which will propagate to the gradients, and then to the weights. Once a neural network architecture is initialized, one should verify that it is well-behaved at initialization. If that is not the case, it can mean that the initialization is faulty and must be revised.

If it is well-behaved at initialization, but the training blows up at the very őrst iteration, it usually means that the loss is not scaled (see Section 8.3.1) or that the learning rate is too large.

In the other cases, it is advised to monitor the amplitude of the output of each layer of the network. In Algorithm 8.1, we provide a PyTorch implementation to easily spot amplitude increases within layers.

Usual architectural flaws

In the following, we introduce and discuss a non-exhaustive list of typical unstable operations.

No scaling of the loss

Although this is not strictly an architectural problem, this issue is quite frequent. When deőning a loss function, one must keep in mind that the amplitude of the gradient of the loss must be controlled. As an example, let us start by studying the gradient of the mean-squared error. Let ŷ ∈ R Cout be the output of a network, and y ∈ R Cout be the associated ground truth. We assume that the network is well-behaved, hence we roughly have ŷk ∼ N (0, 1) for all k ∈ [[1, C out ]] and the y k are independent. Since we are at initialization, we also consider that ŷk and y k are independent. Then, we have

L(ŷ, y) := 1 2C out K k=1 (ŷ k -y k ) 2 , (8.16)
and the gradient of the function is given by

∀l ∈ [[1, C out ]], ∂L ∂ ŷl (ŷ, y) = 1 C out (ŷ l -y l ).
(8.17)

Then, if we have for instance ŷ = Ax + b with A ∈ R Cout×C in and b ∈ R Cout , we would have

∀(i, j) ∈ [[1, C out ]] × [[1, C in ]], ∂L ∂A i,j = Cout k=1 ∂L ∂ ŷk ∂ ŷk ∂A i,j = 1 C out x j (ŷ i -y i ). (8.18) 
Provided C in and C out are of the same order, this update follows the rule of Equation (8.12). Now, if the loss hadn't been scaled, we would lose the dependency on 1/C out , and the feature maps of the network after an update will contain abnormally high values.

Regardless of the loss, one could solve this issue by multiplying the learning rate by 1 Cout . Depending on the value of C out , it can reduce the learning rate by a large factor which would fall outside of the typical range assessed when looking for a good learning rate.

Note that the Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimizer has been introduced to őx this kind of scaling issue. However, in our experience, we found it is not always sufficient and it is better to always scale the loss before training.

Non-Lipschitz function

Using any non-Lipschitz function with respect to the weights, especially as an activation function, can be unstable. For instance, the function exp is to be avoided.

When the weights w of the networks are updated, the update is typically of the form w + = w + ∆w. The Lipschitz property ensures

∥f (w + ) -f (w)∥ ≤ L∥∆w∥. (8.19)
Hence, the output of the layer will be updated at roughly the same speed as the weights of the networks. This is a desirable property as it ensures that the output of the layer will be controlled provided the steps taken by the optimization algorithm are also controlled.

Singular point

Some operations and functions introduce singular points. For instance, if we consider in the network an operation such as

f (x) = ax + b ∥x∥ 2 . (8.20)
At initialization, ∥x∥ 2 can be large and the network might seem well-behaved. However, using such a function introduces a singular point at x = 0 which can attract the optimization process, and result in an irrecoverable explosion.

This problem can be easily őxed as it is sufficient to add a non-learnable ϵ term to the denominator, such as

f (x) = ax + b ∥x∥ 2 + ϵ . (8.21)
Note however that such a function is generally not advised to be used, as it is usually not very expressive. Instead, one could normalize using a softmax as its gradient proőle is less pathological (see Chapter 6, Section 6.2.4).

Unbounded variance

The problem of unbounded variance is more insidious as it is usually hidden at the initialization stage, and can be tricky to pinpoint. It happens when a matrix multiplication is performed between two tensors that are a function of the input.

It can be encountered for instance when working with Lambda layers [Bel21], and we will use this example to better illustrate the issue. We start this section with a quick reminder of the operation performed within a Lambda Layer. Then, we describe the context in which the instability happens. Finally, we explain mathematically why the operation is unstable and how to őx it.

Reminder of the Lambda layer Let us consider the one-dimensional case. We have an input feature map x ∈ R C×N , and some weight matrices

W K ∈ R D×C , W Q ∈ R C Q ×C , W V ∈ R D×C . We compute K = softmax(W K x), Q = W Q x and V = W V x. The softmax is taken across the spatial dimension such that N n=1 K d,n = 1 for all d ∈ [[1, D]]. Then, λ is computed as ∀(c, d) ∈ [[1, C Q ]] × [[1, D]], λ c,d = N n=1 K d,n Q c,n . (8.22)
The output of the Lambda layer is computed as

∀(c, n) ∈ [[1, C Q ]] × [[1, N ]], y c,n = D d=1 λ c,d V d,n . (8.23)
Context of the explosion The original paper [Bel21] describes the explosion as happening when the layers are stacked. It prohibits using more than a few of these layers within the same network. We encountered the same problem when training the Lambda U-Net (Chapter 4, Section 4.4), which incorporates a Lambda layer at each of the U-Net stages. In more detail, the explosion can be characterized by an abnormally high standard deviation of the output of the layer. Let us note std in the standard deviation of the input feature map and std out the standard deviation of the output of the Lambda layer, we empirically noticed std out std in ≈ √ D.

(8.24)

Hence, the standard deviation of a stack of k such layers will be of order √ D k , which causes the feature maps to contain large values, and hence make the trio gradient, weights, feature maps diverge.

Mathematical explanation

The phenomenon described in this section can be modeled and the culprit can be exhibited as being Equation (8.23). Let us note X i ∼ N (0, 1) and

Y i ∼ N (0, 1) such that X = X 1 . . . X D , Y = Y 1 . . . Y D . If we set C Q = 1, the operation of Equation (8.23) is equivalent to computing Z = ⟨X, Y ⟩ R D . Now, if
we consider that X i and Y i are all independent, we get the following

E[Z] = 0, Var[Z] = D.
Hence, the Lambda layer is not well-behaved.

Proof. The variables all being independent, we immediately get

E[Z] = D i=1 E[X i Y i ] = D d=1 E[X i ]E[Y i ] = 0. (8.25)
For the variance, we recall that

Var[X i Y i ] = E[X 2 i Y 2 i ] -E[X i Y i ] 2 = E[X 2 i ]E[Y 2 i ] -E[X i ] 2 E[Y i ] 2 = Var[X i ]Var[Y i ] = 1.
Therefore,

Var[Z] = D i=1 Var[X i Y i ] = D.
(8.26) Furthermore, even letting aside the above independence assumption, our observation of Equation (8.24) holds. A natural őx is to replace Equation (8.23) by

∀(c, n) ∈ [[1, C Q ]] × [[1, N ]], y c,n = 1 √ D D d=1 λ c,d V d,n , (8.27) 
to ensure the layer is well-behaved. We implemented this őx within the Lambda U-Net (Chapter 4, Section 4.4) and successfully managed to stabilize the training. One can remark that such normalization is applied within the Transformer [VSP + 17].

Note, however, that Equation (8.22) is not problematic since under the assumption Q c,n ∼ N (0, 1) and the Q c,n are independent from each other and from the K d,n , we have

∀(c, d) ∈ [[1, C Q ]] × [[1, D]], Var(λ c,d ) ≤ 1. (8.28)
This is reassuring because in the Transformer [VSP + 17] there is no normalization when the attention map is multiplied by the values.

Proof. Let aside the indices

c ∈ [[1, C Q ]] and d ∈ [[1, D]],
using the assumption that the Q n are independent from each other and from the K n , we have almost surely

Var [λ | K] = N n=1 K 2 n Var [Q n | K] = N n=1 K 2 n Var [Q n ] = N n=1 K 2 n ≤ N n=1 K n = 1, (8.29)
because K n ∈ [0, 1] and N n=1 K n = 1 almost surely. We also have

E [λ | K] = N n=1 K n E [Q n | K] = N n=1 K n E[Q n ] = 0. (8.30)
Then, the law of total variance gives us

Var [λ] = E [Var [λ | K]] + Var [E [λ | K]] ≤ 1. (8.31)
Conclusion All in all, the observation made on the Lambda layer is quite general: when computing scalar products between two feature maps (each feature map must be a function of the input), one must normalize the output by the square root of the number of elements in the sum. However, if one of the two elements has been passed through a softmax, this is not necessary.

Batch normalization [IS15b]

When a layer behaves pathologically i.e. when the standard deviation of its output shrinks or grows, an easy őx could be to add a normalization layer. This might cause two problems. First, batch normalization does not always succeed in stabilizing the training, and we describe one such case in this section. Secondly, the speciőc location of each normalization layer is very important and might be the cause for instabilities, as we describe in Section 8.3.6.

Sparse data Let x be a sparse input. After the őrst layer, a bias is applied to all the entries of x and the zero elements become a constant. Batch Normalization approximates the expected value and the variance of its input. As an illustration, let us consider the toy example where each value of the input follows X, deőned as

X = Y with probability K N , α with probability 1 -K N (8.32)
where α ∈ R, Y ∼ N (µ, σ 2 ). Then, the expected value of X is biased towards α:

E [X] = K N µ + 1 - K N α. (8.33)
The moment of order two is given by

E X 2 = K N (σ 2 + µ 2 ) + 1 - K N α 2 , (8.34)
and the variance is given by

Var [X] = K N σ 2 + K N 1 - K N (µ -α) 2 . (8.35)
If K N is small enough, the variance is biased towards zero. As an illustration, if we consider the case of a small image that has K non-zero values: N = 128 × 128, K = 100, and for instance α = 1, µ = 0, σ = 1. We get

E X -E[X] Var [X] X = α = K N α -µ K N σ 2 + K N 1 -K N (µ -α) 2 ≈ 0.05, (8.36a) E X -E[X] Var [X] X = Y = 1 - K N µ -α K N σ 2 + K N 1 -K N (µ -α) 2 ≈ -9.01, (8.36b)
Therefore, the non-zero values of the images have a large amplitude, when the zero values of the images are close to zero. This is an uncontrolled increase in the amplitude of the feature maps. This can be enough to create a gradient with a large amplitude even though the layer is well-behaved. An intuitive explanation can be that in the sparse case, all the information is located in the non-zero areas and the gradients will be more inŕuenced by the standard deviation in these areas, which is controlled by the ratio

σ √ Var[X]
.

To conclude this case, when working in the sparse setting, it is advised to rely on other normalization strategies such as the Layer norm [START_REF] Lei Ba | Layer normalization[END_REF], which does not compute the same mean and variance.

General case In the more general case, Batch Normalization can be the cause for instabilities. These cases are often difficult to spot, and simply removing of the layer őxes the issue. Due to its issues and its incompatibility with multi-GPU training, Batch Normalization is slowly being replaced by Layer Normalization, even in convolutional structures [LMW + 22].

PreNorm vs PostNorm conventions

The precise location of the normalization layer within a network's architecture can be very important. In this section, we deőne the PreNorm, PostNorm, and Swap-PreNorm conventions and explain their pros and cons.

Let aside the normalization layer, most of the recent architectures follow the same pattern [LLC + 21, LMW + 22, VSP + 17], as their layers

(f l ) l∈[[1,L]] are of the form      g l (x) = x + F (x; W l ); h l (x) = x + MLP(x; Wl ); f l (x) = h l • g l (x), (8.37) 
where F is a function that is shared across the different layers, parameterized by a set of weights W . MLP is a multi-layer perceptron comprised of two layers with a non-linearity in between. See Chapter 6, Section 6.3.2 for more details.

PostNorm The PostNorm convention is widely used within Transformers [VSP + 17] and consists in the following modiőcation:

     g l (x) = LN(x + F (x; W l )); h l (x) = LN(x + MLP(x; Wl )); f l (x) = h l • g l (x), (8.38) 
where LN is the Layer Normalization [START_REF] Lei Ba | Layer normalization[END_REF] layer, but could be any normalization layer.

Even today, the PostNorm convention is usually associated with the best performance [MDL + 23], but is known to be unstable. Indeed, training randomly blows up when using it and multiple trials are necessary to reach convergence.

PreNorm The PreNorm convention was őrst introduced in [XYH + 20] and aims at solving the stability problem of the PostNorm convention. It amounts to switching the localization of the normalization layer i.e.

     g l (x) = x + F (LN(x); W l ); h l (x) = x + MLP(LN(x); Wl ); f l (x) = h l • g l (x).
(8.39) This is widely used in vision architectures [LLC + 21, DBK + 20, LMW + 22], and was found to greatly stabilize training. However, its performance often lags behind the PostNorm but is a good trade-off between performance and stability.

Swap-PreNorm

The Swap-PreNorm convention, őrstly introduced in [LHL + 22] and then applied to NLP in [MDL + 23], consists in applying the normalization layer right before the skip connection:

     g l (x) = x + LN(F (x; W l )); h l (x) = x + LN(MLP(x; Wl )); f l (x) = h l • g l (x), (8.40) 
In vision, it is not associated with better performance but with higher stability of the training in the case of very large networks. In NLP, it seems to improve the performance over PreNorm without fully recovering the performance of PostNorm.

Explanation The precise explanation for the instability is unknown, and [XYH + 20] hypothesizes it comes from the amplitude of the gradient. Using PreNorm, the gradient at the layer l ∈ [[1, L]] scales as 1 √ l whereas there is no such scaling for PostNorm. Note that here l is the layer index, which is different from the channels, and therefore Equation (8.12) is not applicable.

All in all, the location of the normalization layer can be of importance and be the source of instabilities. There is a trade-off between stability and performance. For very large networks, stability is key and the Swap-PreNorm convention should be preferred. For small networks, the PostNorm should be a viable approach. For intermediate networks, PreNorm is to be preferred.

Unattributed instabilities

In the previous section, we have studied some cases of instabilities that can be pinpointed to a precise component of the network. It can also happen that the precise source of the instability cannot be identiőed. In such cases, the network is well-behaved, the trio gradient, feature map, and weights behave smoothly throughout most of the training, but the training loss still diverges at some point during the training. In this section, we present a non-exhaustive list of possible solutions to overcome the problem, although a more efficient solution is presented in Chapter 9. 

Local instabilities

First off, we would like to make the distinction between local loss explosion and global loss explosion. The local one corresponds to local spikes appearing when monitoring the loss computed after each iteration, as shown in Figure 8.2. These local spikes are perfectly normal and can correspond to an outlier, a badly classiőed sample, or simply that the previous step taken was imprecise. It also frequently occurs when the batch size is small. A global loss explosion, however, can be observed when monitoring the loss computed across an entire training epoch. An example can be seen in Figure 8.3. In the case of a global loss explosion, the performance is altered by the spike, and never truly recovers.

Warmup [MY21]

A common explanation (although never thoroughly proved) for such an explosion consists in saying that the issue comes from the Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimizer and is linked to the estimates of the different moments it computes. Indeed, the steps taken at the beginning of the optimization process are usually very different from the others [START_REF] Ma | On the adequacy of untuned warmup for adaptive optimization[END_REF]. It could be explained by the fact that at the beginning, the weights of the network are random and most likely very far from the region where the optimum lies. Hence, the goal of the őrst steps is to get close to the region of interest but once that region is reached, the steps change drastically in direction.

This can be the source of instabilities because once the region of interest is reached, the momentum will ensure that steps are still being taken in the same direction as before and will lead the weights to a sub-optimal conőguration. Therefore, the idea of warmup is to reduce the length of the steps at the beginning of the training to ensure the momentum has had enough time to adapt to the geometry of the region before taking larger steps. This has been proved efficient in the training of Transformers [VSP + 17] and was one of the solutions used by the authors of this paper to train these networks even though they were using the post-norm convention (see Section 8.3.6).

Optimizer

In all of the cases we have encountered in the course of this work, such unexplained global explosions involved the Adam [KB14] optimizer. A simple solution consists of switching the optimizer and tuning its hyper-parameters correctly. We present an example of such an optimizer to be used in this scenario in Chapter 9. In practice, we have noticed that if unexplained explosions occur with Adam, optimizers using two moments like Adam, such as AdaBelief [ZTD + 20], tend to fail too.

Warm restart

The simplest solution, although quite costly in terms of time and computing, is to save the state of a network in training quite often, and to restart training from the state reached right before the network crashed. With enough luck and determination, this method proves efficient.

Local normalization of the operations

After identifying the part of a network causing normalization and the other above-described solutions to fail, one can also normalize all of the operations performed in the identiőed part. This method was őrst described in [START_REF] Karras | Progressive growing of gans for improved quality, stability, and variation[END_REF] and amounts to applying the idea developed in Section 8.3.4 to every operation.

Linear layer For linear layers, the operation becomes

f (x; W, b) = 1 √ C W x + b, (8.41) 
where x ∈ R C×N is the input feature map, W ∈ R D×C is the matrix and b ∈ R D is a bias. One must change the initialization of the weights adequately i.e. W ∼ N (0, 1) instead of W ∼ N 0, 1 C [HZRS15] for instance.

Convolutional layer For convolutions, the operation becomes

f (x; W, b) = 1 √ kC W * x + b, (8.42) 
where k is the spatial extent of the convolution, x ∈ R C×N is the input feature map, W ∈ R D×C×k is the convolution kernel and b ∈ R D is a bias. Here again, the initialization of W must be changed to N (0, 1).

One must bear in mind that although it stabilizes greatly the training, it also largely reduces the expressivity of the network and is likely to reduce the őnal performance.

Conclusion

In this chapter, we introduced a mathematical theory to explain instabilities. We established that the weights should have a bounded variance and that the updates should have a bounded mean and variance. Then, we leveraged this theory to explain why certain operations cause instabilities. Lastly, we presented a list of solutions that practitioners can rely on when the source of the instability cannot be identiőed.

Note however that it is always preferable to őnd the exact source of the instability, rather than relying on the solutions mentioned in the last part. Another possibility is to use SING, an optimizer presented in Chapter 9 designed for stability, and built so the updates have a bounded mean and variance.

SING: An optimizer focused on stability

In Chapter 8, we saw that training neural networks in the general setting can sometimes be challenging as the training loss might diverge during the optimization step.

In this chapter, we propose SING (StabIlized and Normalized Gradient), a plugand-play technique that improves the stability of the optimization process. SING is straightforward to implement and has minimal computational overhead, requiring only a layer-wise standardization of the gradients fed to Adam(W) without introducing additional hyper-parameters. We support the effectiveness and practicality of the proposed approach by showing improved results on a wide range of architectures, problems (such as image classification, depth estimation, and natural language processing), and in combination with other optimizers. We provide a theoretical analysis of the convergence of the method, and we show that by virtue of standardization, SING can escape local minima narrower than a threshold that does not depend on the network's architecture.1 and-play: by simply changing the gradient fed to AdamW (or any other łhostž optimizer) it integrates seamlessly without introducing any additional hyperparameters. As such, it does not require any additional őne-tuning apart from that of the host optimization framework. In this way, SING preserves the desirable properties of the host optimizer but with increased stability.

Introduction

We notably theoretically show that the optimizer is capable of escaping narrow local minima within a single step, given a sufficiently high learning rate (see Theorem 9.1). Moreover, the magnitude of this learning rate is independent of the network's architecture. Since narrow local minima are often associated with poor generalization in non-convex optimization landscapes [Coo18, GVS14, HHY19, KMN + 16, PB17], it is crucial for an optimizer to avoid such pitfalls. We capitalize on this theoretical result and stabilize the gradient using several techniques [HLL + 17, TLB22, ZTD + 20] to reach a step size as large as possible, and thus escape from as many local minima as possible.

Although our initial focus was to address Adam's limitations, our technique demonstrates robust generalization even in tasks where Adam performs well. Notably, we show improvements over AdamW on several tasks such as image classiőcation, depth estimation, and natural language processing. The chapter is organized as follows. Section 9.2 describes the proposed method, followed by its theoretical analysis in Section 9.3 where the properties of SING are presented. We discuss related work in Section 9.4. In Section 9.5 we provide extensive numerical experiments that demonstrate the effectiveness of the proposed method on a variety of tasks in natural language processing and computer vision.

Algorithm

We seek to approximate the solution to the following optimization problem, min x∈R p F (x).

(9.1)

We assume there exists a random function f : R p → R such that E[∇f (x)] = ∇F (x) for all x ∈ R p , and that we have access to an oracle providing i.i.d. samples (f n ) n∈N [START_REF] Défossez | A simple convergence proof of adam and adagrad[END_REF].

In the case of neural networks, the optimization variable x represents the parameters of the network, F is the oracle loss and f is the empirical loss evaluated on a random minibatch. The parameters of a neural network have a speciőc structure. They are made of the concatenation of the parameter tensors from each layer of the network. We use D ∈ N to denote the number of these parameter tensors and deőne Our objective is to endow an optimizer with several key properties: 1) stability 2) capacity to escape narrow local minima 3) adaptability to the geometry of the energy landscape, and 4) convergence. Importantly, we want to achieve all of these properties without adding any additional hyper-parameters and with minimal computational overhead. We achieve the őrst property ś stability ś by dividing the gradient by its norm. This prevents vanishing and exploding gradients, which can lead to unstable training. This also allows to use of őxed gradient steps, which enables the algorithm to move past narrow local minima, as we show in the next section.

(I k ) k∈[[1,D]] such that x I k = {x i : i ∈ I k }
We deőne the steps taken by our optimizer by

x t+1 = x t -η ϕ(∇f (x t )) Γ(ϕ(∇f (x t ))) , (9.2) 
where ϕ is the gradient centralization operation [YHHZ20] and the division is applied element-wise. The operator Γ corresponds to the parameter-wise normalization i.e.

Γ(x)

i = √ D∥x I k ∥ 2 , where k ∈ [[1, D]] and i ∈ I k . (9.
3)

The gradient centralization operation differs for each parameter tensor. It amounts to subtracting the mean computed across the dimension that is multiplied with the input to the layer. We describe the most common use cases below:

-For a matrix A ∈ R Cout×C in , the gradient is ∇ A L ∈ R Cout×C in and we have

[ϕ(∇ A L)] i,j = [∇ A L] i,j - 1 C in C in k=1 [∇ A L] i,k , for (i, j) ∈ [[1, C out ]] × [[1, C in ]].
-For a 2d convolution kernel A of size

C out × C in × k 1 × k 2 , the gradient ∇ A L is of the same size and we have [ϕ(∇ A L)] i,j,a,b = [∇ A L] i,j,a,b - 1 C in C in k=1 [∇ A L] i,k,a,b , for (i, j, a, b) ∈ [[1, C out ]] × [[1, C in ]] × [[1, k 1 ]] × [[1, k 2 ]].
-For a bias term b ∈ R Cout , there is not enough dimensions and we have In theory, there could be a division by zero in (9.2). To avoid this we can add ϵ = 10 -8 to the denominator although it is not strictly necessary because the gradient norm is large in practice. This parameterization naturally arises in usual Deep Learning frameworks, see Algorithm 9.3 for the PyTorch implementation.

[ϕ(b)] i = [b] i , for i ∈ [[1, C out ]].
Our setting differs from regular normalized gradient descent in two ways: we center the gradients before normalizing and we perform the normalization on a parameter-wise basis. This is particularly important for large networks where the norm of the full gradient can be very large, making it nearly impossible to train the network effectively.

Theoretical Analysis

This section analyzes the key properties of our technique. Theorem 9.1 demonstrates how normalization techniques aid in escaping local minima. Theorem 9.2 establishes stability results, including several invariance properties of the algorithm. Moreover, Theorems 9.3 and 9.4 provide insights into the rate of convergence of our algorithm in a stochastic setting, under mild assumptions. For complete proofs and technical details, please refer to Section 9.7.

Escaping from narrow local minima

One of the key properties of our algorithm is its ability to escape from narrow local minima. This is crucial because the stochasticity of the optimization landscape often leads to the creation of artiőcial local minima, generally associated with poor generalization performance [Coo18, GVS14, HHY19, KMN + 16, PB17]. To achieve this we normalize the gradient to take őxed-size steps during training, where the learning rate controls the step size. Doing so allows the escape from narrow local minima provided the steps are large enough. This property is central to our algorithm and leads to better generalization performance.

For simplicity, we assume a deterministic setting in this section. We show that the normalization procedure helps the optimizer to escape narrow local minima. To formalize this observation, we őrst deőne the basin of attraction of a critical point of F .

Definition 9.1. Let x * be a critical point of F . The basin of attraction of x * is defined to be the set W (x * ) such that

W (x * ) def = {x ∈ R p : ⟨∇F (x), x -x * ⟩ ≥ 0}.
Moreover, we write B(x * ) to be the largest ball centered around x * contained within W (x * ), and r its radius.

In the previous deőnition, if x * is a saddle point, B(x * ) = {x * } and r = 0.

Theorem 9.1 (Escaping from narrow local minima). Let (x t ) t∈N be the sequence of iterates defined by (9.2) and (y t ) t∈N the sequence of iterates of gradient descent, We see that GD struggles to escape local minima: under mild assumptions on ∇F , the closer y t is to x * the higher the learning rate must be to escape from B(x * ). Indeed, for GD there is no őnite step-size η GD that guarantees escaping B(x * ). In contrast, Theorem 9.1 tells us that our algorithm escapes B(x * ) in a single step, provided the learning rate is sufficiently large.

y t+1 = y t -η GD ∇F (y t ). ( 9 
When the Hessian at x * is well conditioned, escaping from B(x * ) is roughly equivalent to escaping from the local minimum. Therefore, it is crucial to use the highest possible learning rate. However, using a high learning rate can be problematic as the gradients are unstable and tend to oscillate leading to suboptimal convergence. To address this issue, several methods have been proposed to stabilize the gradients and allow for larger learning rates. Such methods include gradient centralization, LookAhead [START_REF] Zhang | Lookahead optimizer: k steps forward, 1 step back[END_REF], different momentum strategies such as Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF], AdaBelief [ZTD + 20] or even AdaFactor [START_REF] Shazeer | Adafactor: Adaptive learning rates with sublinear memory cost[END_REF] and larger batch sizes, among others. For this reason, the őnal implementation of our algorithm is incorporated within AdamW features LookAhead and softplus calibration [START_REF] Tong | Calibrating the adaptive learning rate to improve convergence of adam[END_REF]. Note however that it does not introduce any additional hyper-parameters as the parameters of these stabilization methods are őxed once and for all.

Invariance properties

In this section, the setting is considered deterministic for simplicity. This section examines the invariance properties of the technique.

Firstly, we show that a rescaling of the objective function,

min x∈R p F (x) def = αF (x) , α > 0. (9.6)
does not affect the updates. This property is desirable as the network's performance is unaffected by a scaling of the loss. A similar invariance property applies to changes during training that cause a rescaling of the gradients of a layer. If during training, the output of one layer of the network is rescaled, it won't affect the update of the previous layers, thus alleviating part of the problem of internal covariate shift [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF].

Second, the algorithm presented in this chapter preserves the mean i.e.

p i=1 [x t+1 ] i = p i=1 [x t ] i , (9.7) 
where [x] i corresponds to the i-th component of the vector x.

Theorem 9.2. The iterates defined by (9.2) are invariant w.r.t. transformation (9.6), and preserve the mean (9.7).

The property of preserving the mean has been demonstrated to improve the stability of the optimization process in deep neural networks [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF]. Moreover, it is motivated by the observation that many non-linear layers demonstrate a mean-shift behavior [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], which alters their behavior based on the sign of input values. This mean-shift behavior is mitigated by the presence of normalization layers, that re-scale and shift the weights. Preserving the mean enhances the stability of the optimization dynamics when normalization layers are present.

Furthermore, normalizing the centered gradients mitigates a potential pathological scenario where the gradient signal is diminished. Indeed, the mean of the gradient can hinder the important signal when the mean is too large compared to the centered gradient [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF]. However, in such cases the amplitude of the centered gradient can be relatively small, preventing efficient updates. Normalizing the gradient solves this issue by preserving its amplitude.

Convergence

In this section, two theorems of convergence are provided. In the őrst one, the normalization is studied without the centralization. Under mild assumptions, we show the ℓ 2 -norm of the gradient can be reduced to any desired precision. In the second one, we consider the full setting and show the same result for the ϕ-norm (which is a pseudo-norm). We assume that the stochastic gradient has a σ-bounded variance (σ > 0) i.e.

∀x ∈ R p , E ∥∇F (x) -∇f (x)∥ 2 2 ≤ σ 2 , (9.8) 
and the objective function F is positive and L-smooth,

∀x, y ∈ R d , ∥∇F (x) -∇F (y)∥ 2 ≤ L∥x -y∥ 2 .
(9.9) Theorem 9.3 (Convergence without gradient centralization). Let assumptions (9.8) and (9.9) hold. Assume the gradient is computed across a mini-batch of size B = σ 2 ϵ 2 . Let x t be the sequence of iterates (9.2) with ϕ = I. Then, we have

1 T T -1 t=0 E[∥∇F (x t )∥ 2 ] ≤ √ D ηT F (x 0 ) + (1 + √ D)ϵ + ηL √ D 2 . (9.10) If we set τ ∼ U([[0, T -1]]), η = 2ϵ L and T = LF (x 0 ) 2ϵ 2 , we obtain E[∥∇F (x τ )∥ 2 ] ≤ (1+2 √ D)ϵ.
Therefore, the iteration complexity and computation complexity to achieve an ϵ-stationary point are O(1/ϵ 2 ) and O(1/ϵ 4 ), respectively. Theorem 9.4 (Convergence with gradient centralization). Let assumptions (9.8) and (9.9) hold. Assume the gradient is computed across a mini-batch of size B = σ 2 ϵ 2 . Let x t be the sequence of iterates (9.2). Then we have

1 T T -1 t=0 E[∥∇F (x t )∥ ϕ ] ≤ √ D ηT F (x 0 ) + (1 + √ D)ϵ + ηL √ D 2 , (9.11) where ∥ • ∥ 2 ϕ = ⟨•, ϕ(•)⟩ 2 is a pseudo-norm. If we set τ ∼ U ([[0, T -1]]), η = 2ϵ L and T = LF (x 0 ) 2ϵ 2 , we obtain E[∥∇F (x τ )∥ ϕ ] ≤ (1 + 2 √ D)ϵ.
Therefore, the iteration complexity and computation complexity to achieve an ϵ-stationary point for ∥ • ∥ ϕ are O(1/ϵ 2 ) and O(1/ϵ 4 ), respectively.

Note that Theorem 9.4 only gives us an (ϵ, ϕ)-stationary point i.e. in the limit ϵ → 0, ∇F (x τ ) converges to a point in Ker(ϕ) = Span((1, . . . , 1) T ). Indeed, applying ϕ to the gradients amounts to a projected gradient descent onto the set of weights with the same mean as the initial weights.

We argue that this łweakerž convergence result is not problematic. Reaching a point in Ker(ϕ) means that the optimization process cannot go any further without violating the constraint. However, since neural networks have lots of parameters, adding one constraint to the solution is not likely to lead to worse performance [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF].

Invariance to gradient clipping

The update given by (9.2) cancels most clipping strategies. Indeed, most clipping strategies amount to multiplying the gradient by a certain factor (for instance α/∥∇f (x)∥ 2 or α∥x∥ 2 /∥∇f (x)∥ 2 ). Since ϕ and Γ are both homogeneous operators, the normalization cancels any layer-wise multiplication of the gradient by a scalar.

The case of a linear layer

Following the theory developed in Chapter 8, for a linear layer, the update deőned by Equation (9.2) are stable updates in the sense of Equation (8.12) i.e. they follow 

E[δA i,j ] = O 1 max(C in , C out ) , Var[δA i,j ] = O 1 max(C in , C out ) . ( 9 
E[δA 2 1,1 ] = D C out C in , (9.14) 
or in other terms and ImageNet [DDS + 09] when trained from scratch. W+GC stands for the combination of AdamW [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] and Gradient Centralization [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF] and W+SING stands for AdamW and SING. For CIFAR100, the results are averaged across őve runs.

Var [δA 1,1 ] = O 1 max(C in , C out ) . (9.15) Furthermore, let us note y = Ax + b, A ∈ R Cout×C in , x ∈ R C in , b ∈ R Cout the
where x = 1 m m i=1 x i . For simpliőcation, we omit the D term. This means the update of SING amounts to normalizing the output of the previous layer z before computing the gradient and normalizing the gradient coming from the following layer in the backpropagation chain. This normalization is similar to the implicit normalization of the gradient operated by Layer Normalization described in [XSZ + 19].

Related Work

The most-used optimizer nowadays is Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF], which computes the entrywise őrst and second-order moments of the gradient and uses them to adaptively normalize the gradient. In contrast, SING őrst removes to the gradient its mean and divides it by its norm (standardization) before any further computations at the layer level. Furthermore, in Adam, the őrst and second orders are averaged temporally while ours are not. Numerous variants of Adam have been proposed, mainly focusing on stabilizing the iterations of Adam. Notably, the popular AdamW [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] optimizer corrects how weight decay is applied in Adam, yielding a more robust method training larger models, for instance for training (visual) Transformers in practice [TCS + 21]. Also in the panel of corrections to Adam, RAdam [LJH + 19] proposes to őx the variance of adaptive learning rate by rewriting the update term, AdaBound [START_REF] Luo | Adaptive gradient methods with dynamic bound of learning rate[END_REF] and AdaMod [START_REF] Ding | An adaptive and momental bound method for stochastic learning[END_REF] clip the update, and AdaNorm [START_REF] Shiv | Adanorm: Adaptive gradient norm correction based optimizer for cnns[END_REF] directly clips the gradient instead. Conversely, EAdam [START_REF] Yuan | Eadam optimizer: How ϵ impact adam[END_REF] and SAdam [START_REF] Tong | Calibrating the adaptive learning rate to improve convergence of adam[END_REF] target improving the ϵ term in the denominator. AdaBelief [ZTD + 20] is another variant of Adam. It computes an estimate of the standard deviation instead of the second-order moment. AdaFactor [START_REF] Shazeer | Adafactor: Adaptive learning rates with sublinear memory cost[END_REF] factorizes the elements of the gradient to reduce the memory consumption of the optimizer. The authors propose an analysis of the instabilities of Adam as well and propose a solution. In this work, we also target reducing Adam's instabilities via gradient standardization.

The works most closely related to ours are LARS [START_REF] You | Large batch training of convolutional networks[END_REF] and LAMB [YLR + 19]. Indeed, both optimizers normalize the gradient in a layer-wise fashion like us. However, both methods multiply the normalized gradient by the weight norm. This multiplication is undesired in our case as it would tame down our main theoretical result in Section 9.3 (Theorem 9.1) which is central to our work. Indeed, this theorem is the keystone to building a stable optimizer able to escape from narrow local minima using larger learning rates, whereas these methods leverage very large batch sizes to improve performance. Additionally, our method is hyperparameter-free in contrast to those of [YGG17,YLR + 19]. Furthermore, these methods are new optimizers to be used as a replacement for Adam(W) whereas SING is a technique that can be used within any optimizer. Other approaches leverage standardization to better train neural networks: Weight Standardization [QWL + 19] and Weight Normalization [HLL + 17,SK16] parameterize the weights of the network to allow for smoother training. While this affects the gradients, this approach is orthogonal to ours and could be used with our technique.

Another part of the literature focuses on improving the stability of training processes to ensure smoother convergence. Notably, techniques such as LookAhead [START_REF] Zhang | Lookahead optimizer: k steps forward, 1 step back[END_REF] adopt an approach where weights computed over the previous k iterations are averaged. Similarly, Gradient Centralization [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF] involves subtracting the mean of the gradient, effectively reducing its ℓ 2 norm. In our work, we draw upon these techniques, but it is important to highlight that our approach is distinct and independent from this line of research.

Lastly, it is common in non-convex optimization to normalize the gradient descent algorithm [CM20, [START_REF] Murray | Revisiting normalized gradient descent: Fast evasion of saddle points[END_REF][START_REF] Zhao | On the convergence and improvement of stochastic normalized gradient descent[END_REF]. This line of work supports that the standardization strategies is a simple way to őnd a better minimizer. In this work, we translate this strategy to deep learning.

Experiments

In this section, we evaluate SING on classiőcation, depth estimation, and natural language processing. We run all the experiments on a single Tesla V100 GPU with 32GB of VRAM. The code to reproduce the results will be made available upon publication.

Image classification

We evaluate our technique on the large-scale ImageNet-1K dataset [DDS + 09] which consists of 1.28 million images for training and 50K images for validation from 1000 categories. We use the FFCV library [LIE + 22] and its recipe: the data augmentation consists in random horizontal ŕips and random resized crops. Notably, the downsampling layers are replaced by BlurPool [START_REF] Zhang | Making convolutional networks shift-invariant again[END_REF]. The size of the images is 192 × 192 during training and 224 × 224 at evaluation [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF]. Our networks are trained for 88 epochs with a batch size of 1024. The loss to be minimized is the cross-entropy with a label smoothing [SVI + + 20] and AdaFactor [START_REF] Shazeer | Adafactor: Adaptive learning rates with sublinear memory cost[END_REF] for training a ViT-S [DBK + 20] model on RDE. Note that SGD barely works on this task and model despite the hyper-parameter tuning. We argue that its performance could be further improved by tuning the momentum hyper-parameter. We notice that for three out of four optimizers, incorporating SING helps improve the performance. interesting because although there exists a simple algorithm that computes the desired depth with 100% accuracy, neural networks struggle to get good performance. Notably, we found training a ViT-small [DBK + 20] on this task in an image-to-image fashion to be particularly challenging using AdamW. For usual learning rates, the loss spikes randomly during training, largely lowering the őnal performance. See Figure 9.1 for more details. For very small learning rates, the training loss doesn't decrease fast enough to get results in a reasonable amount of time. In this case, we found using SING with AdamW to be a good choice as the normalization prevents the gradient from exploding during training. As a result, the combination of AdamW and SING outperformed AdamW by a large margin. The larger the assessed model, the worse the instabilities. ViT-big [DBK + 20] does not converge when using AdamW. We tried several sets of hyper-parameters to draw this conclusion.

We used the same hyper-parameter tuning strategy and learning rate scheduler as for ImageNet-1K. The network was trained for 100 epochs using a batch size of 512. The loss we minimized was the MSE. See Table 9.2 for the results and an ablation study. The ablation study shows that each component of SING helps to achieve a higher learning rate and therefore higher performance. Notably, softplus [START_REF] Tong | Calibrating the adaptive learning rate to improve convergence of adam[END_REF] seems to largely help SING while it is detrimental for AdamW. The normalization seems to be a determining factor for reaching convergence although it does not fully explain the success of SING. We also studied the impact of SING when combined with other optimizers. The results are visible in Table 9.3. We used all methods with their default hyper-parameters except for SGD where we tried different values for the momentum. We see that for three out of the four assessed optimizers, the variant with SING signiőcantly outperforms its counterpart. For AdaFactor [START_REF] Shazeer | Adafactor: Adaptive learning rates with sublinear memory cost[END_REF] there is barely any performance gain. We claim this is due to the numerous tweaks within the optimizer that have been tailored for a gradient descent without SING.

Natural language processing

In this section, we evaluate the performance of our optimizer on natural language processing tasks. First, we trained a Transformer with pre-norm convention [XYH + 20] on the IWSLT14 German-to-English (De-En) dataset [CNS + 14] using the fairseq [OEB + 19] library. We used the code of AdaHessian [YGS + 21] as is but surprisingly we were not able to reproduce the results reported for AdamW. Instead, we used the hyper-parameters reported in [START_REF] Xu | mbert, or bibert? a study on contextualized embeddings for neural machine translation[END_REF] and found them to be better, but still below the announced results. Then, we used Hugging Face transformers library [WDS + 20] to őne-tune Bert [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] on the SQuAD dataset [START_REF] Rajpurkar | Squad: 100,000+ questions for machine comprehension of text[END_REF] and RoBERTa on SWAG [START_REF] Zellers | Swag: A large-scale adversarial dataset for grounded commonsense inference[END_REF]. The results are reported in We noticed that the gradient norm was increasing throughout training. After investigation, it turned out the culprits were the weights and biases of the Layer Normalization [START_REF] Lei Ba | Layer normalization[END_REF] layers. We decided to disable the learning of these weights and found the performance of both optimizers to be improved. We claim doing so is not problematic in practice as disabling the learning of these parameters has been pointed out as beneőcial in the literature [XSZ + 19].

Comparison against other optimizers

We compared other optimizers on the RDE dataset for depth estimation (Section 5.2). We chose this dataset to make the comparison because training a ViT-S on this task using Adam is unstable, and most competing methods try to őx Adam's instabilities. For all the optimizers, we carefully tuned the learning rate and weight decay using the same methodology as for the classiőcation task in ImageNet (see Section 5.1). We set other hyper-parameters to their default value. The results are available in Table 9.5. Notably, we found that most optimizers simply do not converge: the combination of AdamW and SING sometimes outperforms competitors by a factor of 100 in terms of test loss. Notably, most of the competitors do not use decoupled weight decay [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF]. We claim this is part of the reason why AdamW, AdaBelief, and AdaFactor (which include it by default) outperform their counterparts by a factor of ten.

Gradient clipping

To overcome gradient explosion, practitioners can rely on gradient clipping strategies. Notably, we show in Section 9.3.4 that SING is invariant to gradient clipping. The issue with gradient clipping is two-fold. First, it introduces another hyper-parameter which can be tricky to tune. Secondly, systematically preventing the gradient from being large could be suboptimal. In this section, we trained a ViT-S [DBK + 20] on the RDE dataset to check how SING compares against a tuned clipping strategy. The results are available in Table 9.6. We notice that it seems that clipping indeed helps stabilize the training but at the cost of lower performance. Conversely, SING ensures the stability of the training at the cost of no additional hyper-parameter.

Learning rate Weight decay Test loss (×10 -3 ) Accuracy AdamW + SING 5 × 10 -2 5 × 10 -2 0.34 96.56% Lamb [YLR + 19] 1 × 10 -2 5 × 10 -4 0.50 93.50% NAdam [START_REF] Dozat | Incorporating nesterov momentum into adam[END_REF] 1 × 10 -3 5 × 10 -5 28.3 0.02% Yogi [ZRS + 18] 1 × 10 -2 5 × 10 -5 24.3 0.24% AdamW [ [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF][START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] 1 × 10 -3 5 × 10 -2 1.70 78.13% AdaBelief [ZTD + 20] 1 × 10 -3 5 × 10 -4 3.73 60.26% AdaFactor [START_REF] Shazeer | Adafactor: Adaptive learning rates with sublinear memory cost[END_REF] 1 × 10 -2 5 × 10 -4 1.87 74.98% RAdam [LJH + 19] 1 × 10 -3 5 × 10 -5 20.1 0.75% AdaBound [START_REF] Luo | Adaptive gradient methods with dynamic bound of learning rate[END_REF] 1 × 10 -3 5 × 10 -5 38.2 0.03% AdaShift [ZZL + 18] 1 × 10 -3 5 × 10 -3 12.5 8.30% AvaGrad [START_REF] Savarese | Domain-independent dominance of adaptive methods[END_REF] 1 × 10 +1 5 × 10 -5 22.5 0.45% AvaGradW [START_REF] Savarese | Domain-independent dominance of adaptive methods[END_REF] 5 × 10 +0 5 × 10 -5 24.1 0.37% .5: Evolution of the loss when using gradient clipping (in red) for a clipping value of 1 × 10 -3 as opposed to when using AdamW + SING (in blue). We can see that to prevent explosions, the best clipping threshold is a very low value, preventing the loss from evolving at all for most of the training.

Limitations

We tried SING on other tasks such as image denoising, where the models trained with SING attained the same performance of AdamW but did not result in improved results. This suggests SING's effectiveness can vary depending on the task and architecture. Additionally, we found our optimizer to not work well when used in conjunction with Lay-erNorm [START_REF] Lei Ba | Layer normalization[END_REF] or LayerScale [TCS + 21]. While a simple őx is to disable the learning of these weights, it raises the question of why and calls for a better solution. Finally, we propose a convergence proof of the iterates deőned in 9.2, which does not incorporate AdamW even though we mainly used their combination in the chapter.

Conclusion

We introduced SING, a plug-and-play technique that improves the stability and generalization of the Adam(W) optimizer in deep learning and can be used with any optimizer. By leveraging layer-wise gradient standardization, SING enhances the performance of the optimizer without introducing additional hyperparameters. Extensive experimentation across various tasks demonstrates its effectiveness compared to the original AdamW optimizer. Theoretical analysis reveals that SING enables the optimizer to escape narrow local minima within a single step, with the required learning rate inversely proportional to the network's depth. This compatibility with deep neural networks highlights its practicality. The analysis also provides valuable insights into the behavior of SING, such as its convergence rate or stability, and its advantages over traditional optimization techniques.

In conclusion, our proposed SING technique offers a practical and effective upgrade to the Adam(W) optimizer in deep learning. By enhancing stability and generalization, it contributes to the improvement of optimization algorithms in neural network training. The results of our research, combined with the theoretical analysis, open avenues for further exploration, including investigating the compatibility of SING with other optimization frameworks and addressing the challenges associated with speciőc normalization techniques.

Lemma 9.1. For every x ∈ R p , the following equality holds Lemma 9.2. For every x ∈ R p , the following equality holds

x, x Γ(x) = 1 √ D D k=1 ∥x I k ∥ 2 def = 1 √ D N (x).
In particular, we have ∥x∥ 2 ≤ N (x).

Proof. The őrst part of the lemma can be derived directly using the same notation as for Lemma 9.1:

x, x Γ(x) = p j=1 [x] 2 j [Γ(x)] j = 1 √ D D k=1 i∈I k [x] 2 j ∥x I k ∥ 2 = 1 √ D D k=1 ∥x I k ∥ 2 2 ∥x I k ∥ 2 = 1 √ D D k=1 ∥x I k ∥ 2 .
The second part can be shown using the fact that ∥z∥ 2 ≤ ∥z∥ 1 for every z ∈ R D . We

deőne z ∈ R D such that ∀k ∈ [[1, D]], z k = ∥x I k ∥ 2 ,
then ∥z∥ 1 = N (x) and

∥z∥ 2 2 = D k=1 ∥x I k ∥ 2 2 = D k=1 i∈I k [x] 2 i = p j=1 [x] 2 j = ∥x∥ 2 2 .
Now, onto the proof of Theorem 9.3.

Proof. We note ∇f the stochastic approximation of the real gradient ∇F and we assume that the stochastic gradient has a σ-bounded variance (σ > 0) i.e.

∀x ∈ R p , E ∥∇F (x) -∇f (x)∥ 2 2 ≤ σ 2 , (9.16)

and that the gradient of F is L-Lipschitz such that

F (x + ) ≤ F (x) + ⟨∇F (x), x + -x⟩ + L 2 ∥x + -x∥ 2 2 .
(9.17)

When ϕ = I, the gradient updates are given by

x + = x -η ∇f (x) Γ(∇f (x)) , (9.18) 
where the division is element-wise. Then, using (9.17) with the updates deőned in (9.18): Taking the expectation in (9.21) for x + = x t+1 and x = x t for a given t ∈ N and (x t ) t∈N being the updates deőned by (9.18), we get

F (x + ) ≤ F (x) -η ∇F (x), ∇f ( 
1 T T -1 t=0 ∥∇F (x t )∥ 2 ≤ √ D F (x 0 ) -F (x T ) ηT + 1 + √ D T T -1 t=0 E[∥∇F (x t ) -∇f (x t )∥ 2 ] + ηL √ D 2 ≤ √ D F (x 0 ) ηT + (1 + √ D)ϵ + ηL √ D 2 .
The last inequality comes from (9.22) and the assumption that F ≥ 0. This shows the őrst part of the theorem. Now, if we let η = 2ϵ L and T = LF (x 0 ) As for the proof of Theorem 9.3, we start by introducing and proving two technical lemmas.

Lemma 9.3. For every x ∈ R p , the following equality holds ϕ(x) Γ(ϕ(x)) 2 = 1.

Proof. The proof is direct using Lemma 9.1 with x = ϕ(z).

Lemma 9.4. For every x ∈ R p , the following inequality holds Proof. As for the other lemmas, the őrst part is direct

x, ϕ(x) Γ(ϕ(x)) = d j=1 [x] j [ϕ(x)] j [Γ(ϕ(x))] j = D k=1 i∈I k [x] i [ϕ(x)] i [Γ(ϕ(x))] i = D k=1 1 √ D∥ϕ(x I k )∥ 2 i∈I k [x] j [ϕ(x)] j = D k=1 ⟨x I k , ϕ(x I k )⟩ √ D∥ϕ(x I k )∥ 2 = 1 √ D D k=1 ⟨x I k , ϕ(x I k )⟩ = 1 √ D D k=1 ∥x I k ∥ ϕ .
The penultimate inequality comes from the fact that ϕ is self-adjoint and such that ϕ•ϕ = ϕ: ∥ϕ(x)∥ 2 2 = ⟨ϕ(x), ϕ(x)⟩ = ⟨x, ϕ(ϕ(x))⟩ = ⟨x, ϕ(x)⟩. The Cauchy-Schwartz inequality applied on the above equality gives us the second part of the lemma: ∥ϕ(x)∥ 2 2 ≤ ∥x∥ 2 ∥ϕ(x)∥ 2 , hence ∥ϕ(x)∥ 2 = ∥x∥ ϕ ≤ ∥x∥ 2 . Finally, we use the fact that ∥z∥ 2 ≤ ∥z∥ 1 for every z ∈ R D to show the last inequality. We deőne z ∈ R D such that Proof. Under the same assumptions as for Theorem 9.3, and with the gradient updates deőned in (9.2), we have

x + = x -η ϕ(∇f (x)) Γ(ϕ(∇f (x)))
.

The gradient centralization operator is linear, self-adjoint, and such that ϕ 2 = ϕ. We note ∥ • ∥ 2 ϕ = ⟨•, ϕ(•)⟩ 2 the pseudo-norm induced by ϕ. Using (9.17) with the iterates of (9.2) gives us We can conclude the proof using the same argument as for Theorem 9.3.

F (x + ) ≤ F (x) -η ∇F (x), (ϕ • ∇f )(x)) (Γ • ϕ • ∇f )(x) + η 2 L 2 (ϕ • ∇f )(x) (Γ • ϕ • ∇f )(x) 2 2 ≤ F (x) -η ∇F (x) -∇f (x), (ϕ • ∇f )(x) (Γ • ϕ • ∇f )(x) -η ∇f (x), (ϕ • ∇f )(x) (Γ • ϕ • ∇f )(x) + η 2 L 2 ≤ F ( 
Theorem 9.1 (Escaping from narrow local minima). Let (x t ) t∈N be the sequence of iterates defined by (9.2) and (y t ) t∈N the sequence of iterates of gradient descent, y t+1 = y tη GD ∇F (y t ). (9.4)

Assume that x t ∈ B(x * ) (resp. y t ∈ B(x * )) i.e. the ball contained in the basin of attraction of x * , defined in Definition 9.1. Also, assume that x t (resp. y t ) is not a critical point i.e. ∇F (x t ) ̸ = 0 (resp. ∇F (y t ) ̸ = 0). If the stepsize is sufficiently large, 

η

Conclusion

This thesis focused on the synergy between the datasets, the architecture of neural networks, and the optimizers, which, together, form the deep learning pipeline. It proposed a joint analysis of its components in light of the lack of applicability of the universal approximation theorem in a practical setting.

In Chapter 3, we argued by analyzing examples that deep learning tasks often sorely lack a mathematical deőnition. The learning dataset is used to deőne the task instead. As a result, neural networks may produce results with varying quality that we have no tool to explain or interpret. This chapter advocates for a more principled exploration of the true capabilities of neural networks before using them on łreal worldž data. We also show that ambiguities within a training set lead to sub-optimal results. Therefore, future works could include the quantiőcation of ambiguities within a dataset and ways to spot and reduce them.

In Chapter 4, we introduced a methodology to design a fully controlled test-bed to evaluate the capabilities of neural networks. It revolves around synthetic datasets with speciőc properties that ensure that we control the cues the network can leverage to solve the task.

Based on the observation that neural networks do not extrapolate outside the dataset they were trained on, Chapter 5 presents a methodology to adapt a given architecture to a new task. We concluded by showing that the novelty in architectural design yields general improvements that exceed the application to classiőcation tasks.

The universal approximation theorems were studied in Chapter 6. Building formal counterexamples, we show that they do not hold in the practical setting. Instead, we derive a set of desirable properties that a network should have to ensure its practical success. In practice, most of the recent architectures have these properties. This chapter, Chapter 4 and Chapter 5 call for a more systematic evaluation of the properties of neural networks. This could be achieved using synthetic datasets, but more research is required to see if the capabilities veriőed on the synthetic datasets transfer to more challenging environments. A őrst step towards evaluating transferability could be to verify that two different synthetic tasks designed to check the same property yield the same conclusion.

In Chapter 7, we build on a theorem by Pedro Domingos showing that neural networks trained using a gradient descent have a structure reminiscent of kernel machines. This structure fully deőnes their behavior. In particular, it gives a formula characterizing the fact that neural networks cannot extrapolate outside the training domain. In future works, one could modify the structure of neural networks to embed the neural tangent kernel with the ability to determine if a given sample is out of domain. This way, the neural tangent kernel could become an explainability tool.

While Chapter 7 studied the properties of neural networks under the assumption of perfect gradient descent, Chapter 8 investigated the synergy between the training process and neural networks in a more realistic case. Indeed, in some instances, the training of neural networks can be unstable, leading to sub-optimal convergence or divergence. Inspired by the different initialization strategies, we derived practical rules ensuring that a network remains stable after a gradient update. In particular, we showed that the standard deviation of its output must not grow as a function of the number of channels or the network depth. This chapter calls for a more principled analysis of the inner workings of neural networks. In future works, one could investigate the optimal size of the update for each parameter tensor within a network.

Based on the study on the instabilities of neural networks, we introduced in Chapter 9 a novel optimizer focused on stability. It is inspired by normalized gradient descent that we adapt to better őt the structure of neural networks. We show on a variety of settings that it indeed improves stability and even performance in different scenarios. While intuition suggests that different layers should have a gradient of different amplitude, SING showed otherwise. This őnding calls for an investigation of the dynamic of the gradient during training.

All in all, neural networks have been applied to a wide variety of tasks with notable success. They keep on improving and bring the promise of an interesting future. Our work was motivated by a longing for a better understanding of neural networks in general, of the datasets they learn from, of the compatibility between the underlying problem and their neural structure, and őnally of ensuring their optimality.
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 11 Figure 1.1: Example of images coming from the ImageNet [DDS + 09] dataset. On the left, we show an image coming from the training set, and on the right from the validation set. Apart from the luminosity, these two images are very similar.

Figure 1

 1 Figure 1.2: Comparison of seven line segment detectors on a photograph of Le Pirée: original image łLe Piréež, results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021), SOLD2 (2021). The őrst two detectors are handcrafted and based on edge growing followed by an a contrario detection threshold. The last őve are obtained by sophisticated mainly unsupervised deep learning methods. We see that the results are very different. If we refer to the mathematical deőnition of an edge, the learning-based methods are missing many detections.
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 21 Figure 2.1: Exemple d'images provenant du jeu de données ImageNet [DDS + 09]. À gauche, nous montrons une image provenant de l'ensemble d'entraînement, et à droite de l'ensemble de validation.
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 22 Figure 2.2: Comparaison de sept détecteurs de segments de ligne sur une photographie de Le Pirée : image originale łLe Piréež, résultats de LSD (2008), EDlines (2011), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021), SOLD2 (2021). Les deux premiers détecteurs sont fabriqués à la main et basés sur la croissance des contours suivie d'un seuil de détection a contrario. Les cinq derniers sont obtenus par des méthodes sophistiquées d'apprentissage profond, principalement non supervisées. Nous constatons que les résultats sont très différents. Si l'on se réfère à la déőnition mathématique d'un bord, les méthodes basées sur l'apprentissage manquent de nombreuses détections.
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 3 Figure 3.1: Example of images coming from the ImageNet [DDS + 09] dataset. On the left, we show an image coming from the training set, and on the right from the validation set.
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 32 Figure 3.2: Depth estimation (right) of a neural network [RLH + 20] trained on natural images for the Library image (left).
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 33 Figure 3.3: Four different images coming from the training set of the NYUv2 dataset [SHKF12]. Such images are acquired by an RGBD camera held by one person moving in a narrow room. These images are all highly correlated. As a result, networks trained on NYUv2 overőt a lot on the training dataset and fail to generalize even on the validation dataset.
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 34 Figure 3.4: Four different images coming from the training set of the Replica dataset [SWM+ 19]. Such images are acquired by numerous random walks through a 3D scene of an apartment. These walks are so numerous that the images end up being highly correlated. As a result, networks trained on the dataset fail to learn the concept of depth, and memorize the objects instead.
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 35 Figure 3.5: An example of an image of the RDE dataset and the associated ground truth.The brighter the color, the higher the number of rectangles that are beneath it. The unambiguous images of the dataset are made of up to ten superposed rectangles with őxed colors. The ground truth is the ordering from 0 to 10 and it can be deduced visually and by a simple algorithm. Each color on the right is associated with a class from 0 to 10. T-junctions, namely points where a region border stops on another border, are the key shape ordering indicators.
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 36 Figure 3.6: Results of state-of-the-art networks when evaluated on our task without retraining. First column: input and ground truth. Second column: the result of Mi-DaS [RLH + 20], the result of MergeNet [MDM + 21]. Third column: the result of the baseline U-Net, the result of our best network, both being trained on our synthetic dataset. The disappointing results of SOTA networks on a visually interpretable image show that these networks are guided by hidden natural statistics, much more than by nonlocal geometric reasoning. By a nonlocal association failure, the baseline U-Net also errs on the large disconnected brown rectangle.

Figure 3

 3 Figure 3.7: Middle: two images from the wireframe dataset. Top: their line segment ground truth in the wireframe dataset. Bottom: their interpretation by LSD. This experiment illustrates the frailty of human annotation: many obvious line segments are missing in the ground truth; some are partially occluded.
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 38 Figure 3.8: Middle: two images from the YorkUrban dataset. Top: their line segment ground truth in the YorkUrban dataset. Bottom: their interpretation by LSD. This experiment illustrates the bias of human annotation in Wireframe dataset: an architect is only interested in architecturally meaningful separations. There are also lines drawn that do not correspond to an actual line on the image. Finally, many obvious line segments are missing and some are partially occluded.
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 39 Figure 3.9: Comparison of seven line segment detectors on a photograph of Le Pirée: original image łLe Piréež, results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021), SOLD2 (2021). The őrst two detectors are handcrafted and based on edge growing followed by an a contrario detection threshold. The last őve are obtained by sophisticated mainly unsupervised deep learning methods.

Figure 3 .

 3 Figure 3.10: Comparison of seven line segment detectors on an łout of domainž image, a photograph of chairs: original image łchairsž results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD (2021), LETR (2021), M-LSD (2021), SOLD2 (2021). The őrst two detectors are handcrafted and based on edge growing followed by an a contrario detection threshold. The last őve are obtained by sophisticated mainly unsupervised deep learning methods.

Figure 3 .

 3 Figure 3.11: Parameter dependence of őve line segment detectors obtained by deep learning on an łout of domainž image, a photograph of chairs. First row: results of LETR with score thresholds of 0.7, 0.3, and 0.0 respectively. Second row: results of TP-LSD with score thresholds of 0.25, 0.1, and an alternative version (TP-LSD-320) with a score threshold of 0.1. Third row: ULSD with score thresholds of 0, 0.1, and 0.2 respectively. Fourth row:M-LSD with parameter pairs (0.2, 1), (0,20), and (0.5, 10) respectively. Fifth row: SOLD2 with parameter pairs (0.1, 0.5), (0.1, 0.99), (0.5, 0.99) respectively. The parameters are chosen so the number of segments decreases from over-detection to under-detection; the parameters in the middle column are the more plausible ones.
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 41 Figure 4.1: Results of state-of-the-art networks on our depth estimation problem, without retraining. First line: input and ground truth. Second line: the result of MiDaS [RLH + 19], the result of MergeNet [MDM + 21]. The disappointing results of SOTA networks on a visually unambiguous image show that these networks are guided by hidden natural statistics, much more than by nonlocal geometric reasoning.

Figure 4

 4 Figure 4.2: Top row: An example of an image of the RDE dataset and the associated ground truth. The brighter the color, the higher the number of rectangles that are beneath it. Bottom row: An example of an image of the Centered Square dataset and the associated ground truth with H = W = 64 and w = 21.
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 43 Figure 4.3: Structure of the layer used at each scale of the Non-Local U-Net, replacing the double convolution of the original U-Net. This enables the incorporation at each scale of the U-Net of any non-local layer. The local and non-local feature computations are done in parallel.
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 44 Figure 4.4: An example of a case where the U-Net without nonlocal layers is not able to overcome occlusion. First line: input, ground truth; second line: output of the baseline U-Net, output of the Non-Local U-Net + Lambda + PE. To solve this case, the network must propagate the depth information it found on the left of the shape to the rest of the shape, with the help of the information of color.

Figure 4

 4 Figure 4.5: An example of a case where the T-junctions between two rectangles are occluded. First line: input, ground truth; second line: output of the Non-Local U-Net + Lambda, output of the Non-Local U-Net + Lambda + PE. To solve this case, the network must compute the spatial extent of the occluded rectangles and determine which is on top. Incorporating a translation covariant positional encoding in the Lambda layer partially solved these problems.

  Figure 5.1: Network diagram of the U-Net.
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 52 Figure 5.2: Structure of the ConvNeXt block [LMW + 22]. The depth-wise convolution treats all the channels independently and has fewer parameters than the regular convolution.

Figure 5 . 3 :

 53 Figure 5.3: Evolution of validation PSNR during training of our RVDD and RVDD-basic models with the standard U-Net and the ConvNeXt U-Net. On the left, ISO 3200, and right ISO 12800. RVDD stands for Recurrent Video joint Denoising and Demosaicing.

  are the parameters of the network. Theorem 6.1. (Pinkus [Pin99]) Let ρ : R → R be any continuous function. Let K ⊂ R n be compact. Then N ρ n is dense in C(K, R) for the uniform norm if and only if ρ is nonpolynomial. Definition 6.3. Let ρ be any function. Let N ρ n,m represent the class of feed-forward neural networks with activation function ρ, with n neurons in the input layer, m neurons in the output layer with an arbitrary depth i.e. functions such that there exists L ∈ N * , (d 0 , . . . , d L ) ∈ (N * ) L+1 with d 0 = n, d L = m and such that

Figure 6 . 1 :

 61 Figure 6.1: On the left, an illustration of the circulant tensor C(x) with K = 3, x = (red, white, blue) and H = W = 8. On the right, we have C 2 (x) which is the translation of the circulant tensor C(x) with an offset of two.

  ) for u = a and u = b. Let us now consider the case where N = 6 and z = 0 0 1 1 0 0 . Then, if (N -1)a = 2 and (N -1)b = 3 then y = z and we would have (N -1)a = 0, (N -1)b = 5 then y = 1 6 , z ̸ = y and -1)a = 0.5, (N -1)b = 4.5 then y = 0.5 (N -1)a = 1 + α and (N -1)b = 3 + β, (α, β) ∈ [0, 1[ 2 , we would get y = 0 α 1α β 1β 0 and

  .1: Comparison of the different time and space complexities of the operation of the Transformer [VSP + 17], Swin [LLC + 21] and ConvNeXt [LMW + 22] against the MLP in the one-dimensional case. N is the spatial extent of the input and C stands for the number of channels. For the small version of the ViT [DBK + 20] N = 196 and C = 768, and the time complexity of MLP is roughly twice larger than the time complexity of self-attention.
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 62 Figure 6.2: An illustration of the design pattern of most recent architectures. The function can be any function: for Transformer [VSP+ 17] it is the self-attention; for Swin [LLC+ 21] it is the local self-attention; for ConvNeXT [LMW+ 22] it is a separable convolution; for InternImage [WDC+ 23] it is a deformable convolution.

  while stopping criterion not met { Sample mini-batch of m samples x 1 , x 2 , ..., xm and corresponding targets y 1 , y 2 , ..., ym Compute gradient estimates: ∆w ←-1 m ∇w m n=1 L(N (xn; w), yn) Update the parameters: w ←wη • ∆w } Algorithm 7.1: Stochastic gradient descent. The objective of the training is to minimize the risk, which is the expected value of the loss L(w) = L(N (x; w), y)dP(x, y), (7.1)

  and a parametric machine learning device deőned byN : R p × R d → R (x, w) → N (x; w 1 , . . . , w j , . . . , w d ) = N (x; w)where x ∈ R p corresponds to an input and w ∈ R d is the vector of all parameters of the learning device. For n ∈ [[1, N ]], we deőne the prediction ŷn (w) of the model for a learning data point x n by w → ŷn = N (x n ; w 1 , . . . , w j , . . . , w d ) = N (x n ; w).

  Theorem 7.1. (Domingos [Dom20]) Consider a twice continuously differentiable learning machine model N and w the path of parameters learned from a training set D by gradient descent of a loss function L. Then N satisfies

Definition 7. 4 .

 4 The discrete neural tangent kernel of a C 2 learning function N is defined for each given iteration numberk ∈ [[0, K]], by ∀(x, x) ∈ (R p ) 2 , K NTK (x, x; k) = ⟨∇ w N (x; w(k)), ∇ w N (x; w(k))⟩ R d .Theorem 7.2. Consider a C 2 learning machine model N and w the discrete path of parameters learned from a training set D by discrete gradient descent with steps (η k ) k∈[[0,K-1]]

7. 4 .

 4 Two elementary examples with explicit neural tangent kernel 7.4 Two elementary examples with explicit neural tangent kernel 7.4.1 Linear regression Linear regression is one of the simplest possible learning problems. Consider a training data set D = (x n , y n ) n∈[[1,N ]] ∈ (R p × R) N and the linear learning function

Figure 7 . 2 :

 72 Figure 7.2: On the left, the points of the training dataset D for the őrst experiment. On the right, the prediction of the network after K = 10 4 training iterations.
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 73 Figure 7.3: Results of the algorithm described in Section 7.5.1. First row: 100 closest neighbors from the NTK's perspective (for k = K -1). Second row: 100 closest neighbors according to the Euclidean distance.
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 75 Figure 7.5: On the left are displayed the points of the training dataset D for the second experiment. On the right are the prediction of the network after K = 10 4 training iterations.

Figure 7 . 7 :

 77 Figure 7.7: Examples of data samples (left column) and their associated label (right column) for the shape completion dataset. The shapes are not convex making it impossible for a network to solve the task based only on local cues.

Figure 7 .

 7 Figure 7.10: Description of the structure of a neural network that can perfectly solve the one-dimensional planar topology problem. The smallest r for which it is still possible to solve the task with this structure is r = 2.

Figure 7 .

 7 Figure 7.11: Description of the U-Net used for the experiments on the shape completion dataset. The U-Net processes the input at six different scales.

Figure 7 . 14 :

 714 Figure 7.14: The t-SNE [VdMH08] representation of the feature space learned by the network for one-dimensional shape completion problem. The algorithm is class-agnostic. The points shown are the aggregation of both the training and the test set.

  .4) is crucial, because if we had Var [f (x)] = σ 2 I the output of a sequence of L such layers would scale as σ 2L . This would either make the values of the feature maps explode or vanish, negatively affecting the training. During training, the variances change but should remain as close as possible to 1 to avoid such a problem.

Figure 8 . 2 :

 82 Figure 8.2: Example of a local explosion i.e.an explosion that is visible when monitoring the loss computed at every iteration. It is generally not problematic as the process recovers at the next iteration.

Figure 8

 8 Figure 8.3: Example of a global explosion i.e. an explosion that is visible when monitoring the loss computed across an entire training epoch.
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 9192 Figure 9.1: An illustration of a failure case of Adam [KB15] when trained on ViTsmall [DBK + 20] The training loss suddenly spikes during training, reducing the őnal performance.

  represents the k-th parameter tensor. As an example, let's consider the neural network N (•; A, b) = A • +b. In this case, the network has two parameter tensors, hence D = 2. The őrst parameter tensor is x I 1 = A and the second is x I 2 = b.
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 94 Figure 9.4: Evolution of the accuracy throughout training on ImageNet-1K with a ResNet18. The almost-periodic oscillation of the metric is typical of SING and could be explained by the large steps taken by the optimizer.

  Figure9.5: Evolution of the loss when using gradient clipping (in red) for a clipping value of 1 × 10 -3 as opposed to when using AdamW + SING (in blue). We can see that to prevent explosions, the best clipping threshold is a very low value, preventing the loss from evolving at all for most of the training.

  The function Γ is block-wise constant such that∀k ∈ [[1, D]], ∀i ∈ I k , [Γ(x)] i = √ D∥x I k ∥ 2 = √ D

  x) Γ(∇f (x)) + η 2 L 2 ∇f (x) Γ(∇f (x)) 2 2 ≤ F (x)η ∇F (x) -∇f (x), ∇f (x) Γ(∇f (x)) η ∇f (x), ∇f (x) Γ(∇f (x)) + η 2 L 2 ≤ F (x) + η∥∇F (x) -∇f (x)∥ 2 -η √ D N (∇f (x)) + η 2 L 2 ,(9.19)where the last inequality comes from the Cauchy-Schwartz inequality used with Lemma 9.1 and the őrst part of Lemma 9.2. Using the second part of Lemma 9.2, we get∥∇F (x)∥ 2 ≤ ∥∇F (x) -∇f (x)∥ 2 + ∥∇f (x)∥ 2 ≤ ∥∇F (x) -∇f (x)∥ 2 + N (∇f (x)). (9.20)Upper-bounding N (∇f (x)) using (9.19) gives us∥∇F (x)∥ 2 ≤ √ D F (x) -F (x + ) η + (1 + √ D) ∥∇F (x) -∇f (x)∥ 2 + ηL ∇f (x)is the average of B = σ 2 ϵ 2 gradient approximations over a mini-batch, we getE[∥∇F (x) -∇f (x)∥ 2 ] ≤ E[∥∇F (x) -∇f (x)∥ 2 ] ≤ σ √ B = ϵ. (9.22)

∥∇F

  (x t )∥ 2 ≤ (1 + 2 √ D)ϵ. (9.23)Theorem 9.4 (Convergence with gradient centralization). Let assumptions (9.8) and (9.9) hold. Assume the gradient is computed across a mini-batch of size B = σ 2 ϵ 2 . Let x t be the sequence of iterates (9.2). Then we have where∥ • ∥ 2 ϕ = ⟨•, ϕ(•)⟩ 2 is a pseudo-norm. If we set τ ∼ U ([[0, T -1]]), η = 2ϵ L and T = LF (x 0 ) 2ϵ 2 , we obtain E[∥∇F (x τ )∥ ϕ ] ≤ (1 + 2 √ D)ϵ.Therefore, the iteration complexity and computation complexity to achieve an ϵ-stationary point for ∥ • ∥ ϕ are O(1/ϵ 2 ) and O(1/ϵ 4 ), respectively.

=

  ⟨•, ϕ(•)⟩ is pseudo-norm.In particular, we have ∥x∥ ϕ ≤ ∥x∥ 2 , and ∥x∥ ϕ ≤ N ϕ (x).

  ∀k ∈ [[1, D]], z k = ∥x I k ∥ ϕ ,and we have ∥z∥1 = D k=1 ∥x I k ∥ ϕ = N ϕ (x). Furthermore, i [ϕ(x)] i = d j=1 [x] j [ϕ(x)] j = ⟨x, ϕ(x)⟩ = ∥x∥ 2 ϕ .Now, we can prove Theorem 9.4.

  x)η ∥∇F (x) -∇f (x)∥ 2inequality comes from Lemma 9.3 and the őrst part of Lemma 9.4. We can derive the following upper-bound using the second and third parts of Lemma 9.4:∥∇F (x)∥ ϕ ≤ ∥∇F (x) -∇f (x)∥ ϕ + ∥∇f (x)∥ ϕ ≤ ∥∇F (x) -∇f (x)∥ 2 + N ϕ (∇f (x)).(9.25)Finally, we use (9.24) to upper-bound N ϕ (∇f (x)) and inject it in (9.25) to get∥∇F (x)∥ ϕ ≤ √ D F (x) -F (x + ) η + (1 + √ D) ∥∇F (x) -∇f (x)∥ 2 + ηL √
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 96 Figure9.6: Optimization of a function with three local minima. A gradient descent (noted SGD) with the proposed gradient standardization SING can escape narrow local minima (Theorem 9.1). SING steps jump over narrow local minima in one step. Conversely, SGD without SING steps jumps over the őrst local minimum but stays blocked in the second one because the gradient amplitude is too small. The learning rate is reduced using a cosine decay.

  

Table 1 .

 1 Network# parameters Test loss ↓ Ord ↓ δ 1.25 ↓ RMSE ↓ 1: Evaluation of the U-Net[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] on the RDE dataset. All metrics are multiplied by 100 for readability. The non-local layer we reported corresponds to the Lambda layer [Bel21]. The model marked with an asterisk (*) was trained on the ambiguous version of the training dataset and evaluated on the unambiguous one. The reported test loss is computed on the unambiguous dataset. We see that training with an ambiguous ground truth largely deteriorates the results and that the performance of the U-Net on a non-local task can be improved when incorporating a non-local layer in its structure.

	U-Net*			871 729	1.78	6.03	7.36	4.91
	U-Net			871 729	0.72	1.79	1.98	1.95
	U-Net + nonlocal layer	871 945	0.28	0.47	0.64	0.82
	Ver. Cha. Dou. Downsampling	Upsampling	Activation PSNR TFLOPS
	v1	32	✓	maxpool	nearest	ReLU	41.48	40.58
	v2	48	✗	maxpool	nearest	ReLU	41.60	31.30
	v3	48	✗	maxpool	nearest	Swish	41.72	31.33
	v4	48	✗	conv+maxpool bilinear+conv	Swish	41.80	36.30
	Table 1.2: This						

Table 2 .

 2 1: Évaluation du U-Net [RFB15] sur le jeu de données RDE. Toutes les mesures sont multipliées par 100 pour des raisons de lisibilité. La couche non locale indiquée correspond à la couche Lambda [Bel21]. Le modèle marqué d'un astérisque (*) a été entraîné sur la version ambiguë du jeu de données d'entraînement et évalué sur la version non ambiguë. Le critère indiqué est calculé sur le jeu de données non ambigu. Nous constatons que l'entraînement avec une vérité terrain ambiguë détériore largement les résultats et que la performance du U-Net sur une tâche non locale peut être améliorée en incorporant une couche non locale dans sa structure. La performance compétitive de notre structure basée sur ConvNeXt décrite au chapitre 5 soulève la question des avantages et des propriétés des structures récentes. Ce chapitre présente une vue d'ensemble des architectures de réseaux neuronaux et de leurs propriétés.

	U-Net*	871 729	1.78	6.03	7.36	4.91
	U-Net	871 729	0.72	1.79	1.98	1.95
	U-Net + couche non-locale	871 945	0.28	0.47	0.64	0.82

Le chapitre précédent met en évidence les réserves concernant les ensembles de données du łmonde réelž et la nécessité d'un environnement plus contrôlé pour évaluer les capacités des réseaux de neurones. Il n'existe à ce jour aucune étude systématique des capacités réelles des architectures neuronales. La question de savoir ce que chaque structure peut ou ne peut pas réaliser ne trouve qu'une réponse partielle dans ses performances sur les critères de référence usuels comme ImageNet [DDS

+ 09]

. En effet, les données naturelles contiennent des indices statistiques complexes et non identiőés. Il est donc impossible de savoir de quels indices une structure neuronale donnée tire parti dans ces données. Au chapitre 4, nous déőnissons une méthodologie pour mesurer l'effet de chaque structure sur la capacité d'un réseau, en concevant des ensembles de données synthétiques ad hoc. Chaque ensemble de données est conçu pour évaluer une capacité donnée et est réduit à sa forme la plus simple : chaque donnée contient exactement la quantité d'informations nécessaire pour résoudre la tâche.

Nous illustrons notre méthodologie en construisant trois ensembles de données pour évaluer chacune des trois propriétés suivantes du réseau : a) la capacité à relier des indices locaux à des inférences distantes, b) l'invariance par translation et c) la capacité à regrouper des pixels ayant les mêmes caractéristiques et à partager des informations entre eux. En utilisant un premier ensemble de données simpliőé d'estimation de la profondeur mono-image, nous mettons en évidence un sérieux déőcit

de 

des capacités non locales Réseau # paramètres Critère ↓ Ord ↓ δ 1.25 ↓ RMSE ↓ du U-Net, comme indiqué dans le tableau 2.1. Nous évaluons ensuite comment résoudre cette limitation en intégrant à sa structure des couches non locales, qui permettent de calculer des caractéristiques complexes avec des dépendances à longue distance. À l'aide d'un deuxième jeu de données, nous comparons différentes méthodes d'encodage de la position et utilisons les résultats pour améliorer le U-Net dans la tâche d'estimation de la profondeur. Le troisième jeu de données introduit sert à démontrer la nécessité de mécanismes de type self-attention pour résoudre des tâches d'estimation de profondeur plus réalistes. Chapitre 5: Adaptation d'un U-Net à une tâche de débruitage vidéo Le chapitre précédent met en garde concernant les capacités non locales du U-Net. Le U-Net a été introduit à l'origine pour une tâche de segmentation en imagerie médicale où le besoin de non-localité était limité. En effet, les architectures neuronales sont généralement conçues pour résoudre une tâche spéciőque et peuvent échouer lorsqu'elles sont appliquées à de nouvelles tâches. L'adaptation d'une architecture à une nouvelle tâche peut s'avérer difficile. Dans le chapitre 5, nous développons une méthodologie permettant d'adapter un réseau à une nouvelle tâche. Nous illustrons ensuite cette méthodologie en adaptant le U-Net à une tâche de débruitage dans le cadre d'un contrat avec Huawei. Le tableau 2.2 contient un résumé de nos résultats. Enőn, nous présentons un nouveau U-Net, inspiré des récentes découvertes en matière de conception d'architecture [LMW + 22], et nous démontrons ses performances compétitives en matière de débruitage d'images. En particulier, nous montrons comment les théorèmes d'approximations universelles biaisent notre compréhension pratique et expliquons comment ils ne sont pas applicables dans la pratique. En particulier, nous présentons un cas où ils ne sont tout simplement Ver. Can. Dou.

Table 2 .

 2 2: Ce tableau montre l'évolution du U-Net à quatre étapes de la méthodologie présentée au chapitre 5. La version őnale obtient un gain signiőcatif de 0.32 dB et une réduction de quatre TFLOPS par rapport à l'architecture initiale. Ver. signiőe version, et Can. signiőe nombre de canaux. Dou. signiőe doublement : une coche signiőe que le nombre de canaux est doublé à chaque échelle, sinon il est maintenu constant à toutes les échelles. L'acronyme łéchan.ž signiőe échantillonnage. La valeur de τ que nous avons choisie pour déterminer si une modiőcation était pertinente est de 0.05.

pas valables, comme le décrit le théorème 2.1.

Dans ce qui suit, nous introduisons le théorème 2.1. Nous commençons par deux déőnitions qui seront utilisées dans le théorème. Dans la déőnition 2.1, nous déőnissons la matrice circulante par blocs C dont le contenu est caractérisé par un vecteur x ∈ R K . Dans notre contre-exemple, les fonctions qui ne peuvent pas être approximées par un réseau avec max-pooling sont celles qui diffèrent lorsqu'elles sont évaluées sur différentes matrices circulantes par blocs. Dans la déőnition 2.2, nous décrivons la structure des réseaux concernés par le contre-exemple. Il s'agit des réseaux convolutionnels bidimensionnels classiques où les convolutions n'ont pas de zero padding.

  Domingos affirmant que łtoute machine apprise par descente continue du gradient est approximativement une machine à noyauž. Selon Domingos, ce fait permet de conclure que toutes les machines entraînées sur des données effectuent simplement une interpolation à base de noyau entre les points de données d'entraînement. Nous étendons d'abord le résultat de Domingo au cas discret et aux réseaux à sortie vectorielle, comme présenté dans le théorème 2.2. Nous étudions ensuite sa pertinence et sa signiőcation sur des exemples simples. Nous constatons que dans des cas simples, le łnoyau tangent neuronal" découlant du théorème de Domingos permet de comprendre les prédictions des réseaux. En outre, lorsque la tâche conőée au réseau devient plus complexe, la capacité d'interpolation du réseau peut être expliquée par le théorème de Domingos, et est donc limitée. Nous illustrons ce fait sur un problème classique de la théorie de la perception : la récupération d'une forme à partir de son contour.Definition 2.3. Le noyau tangent neuronal discret d'une machine d'apprentissage N ∈ C 2 est définie pour chaque itération

Le chapitre 6 montre que les capacités des réseaux de neurones sont limitées et déőnies par le processus d'optimisation. Dans ce chapitre, nous nous interrogeons sur les capacités d'interpolation des réseaux neuronaux entraînés. Nous discutons d'un théorème de

  nous voulons nous assurer que la variance de la sortie ne diverge pas lorsque nous augmentons le nombre de canaux. La stratégie d'initialisation assure cette propriété, comme présenté dans[START_REF] He | Delving deep into rectiőers: Surpassing human-level performance on imagenet classiőcation[END_REF]. Dans ce chapitre, nous étudions ce qui se passe après une mise à jour des poids. Après une mise à jour, la couche linéaire peut être déőnie comme

f (x; A + δA, b + δb), avec

  Dans ce cas, le réseau a deux tenseurs de paramètres, donc D = 2. Le premier tenseur de paramètres est x I 1

Au chapitre 8, nous avons vu que l'apprentissage des réseaux de neurones dans le cadre général peut parfois être difficile car la fonction de coût calculée sur l'ensemble d'apprentissage peut diverger au cours du processus d'optimisation. Dans le chapitre 9, nous proposons SING (StabIlized and Normalized Gradient), une technique prête à l'emploi qui améliore la stabilité du processus d'optimisation. SING est simple à mettre en oeuvre et a un surcoût de calcul minimal, ne nécessitant qu'une normalisation par couches des gradients transmis à Adam(W) sans introduire d'hyperparamètres supplémentaires. Nous démontrons l'efficacité et la praticité de l'approche proposée en montrant des résultats améliorés sur une large gamme d'architectures, de problèmes (tels que la classiőcation d'images, l'estimation de la profondeur, et le traitement du langage naturel), et en combinaison avec d'autres optimiseurs. Nous fournissons une analyse théorique de la convergence de la méthode, et nous montrons qu'en vertu de la normalisation, SING peut échapper à des minima locaux plus étroits qu'un seuil qui ne dépend pas de l'architecture du réseau.

Dans ce chapitre, nous cherchons à obtenir une solution approximative au problème d'optimisation suivant

min x∈R p F (x). (2.7) Nous supposons qu'il existe une fonction aléatoire f : R p → R telle que E[∇f (x)] = ∇F (x) pour tout x ∈ R p , et que avons accès à un oracle fournissant des échantillons i.i.d. (f n ) n∈N [DBBU20]. Dans le cas des réseaux de neurones, la variable d'optimisation x représente les paramètres du réseau, F est la fonction de coût idéale et f est la fonction de coût empirique évaluée sur un mini-batch aléatoire. Les paramètres d'un réseau de neurones ont une structure spéciőque. Ils sont constitués de la concaténation des tenseurs de paramètres de chacunes des couches du réseau. Nous utilisons D ∈ N pour désigner le nombre de ces tenseurs de paramètres et déőnissons (I k ) k∈[[1,D]] de sorte que x I k = {x i : i ∈ I k } représente le k-ème tenseur de paramètres. À titre d'exemple, considérons le réseau neuronal N (•; A, b) = A • +b.

Table 4
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.1 the results of the different assessed nonlocal layers on the RDE dataset. They show the Lambda layer yielding the best performance for most metrics. The Lambda layer is explained in more detail in Chapter 8, Section 8.3.4.

Table 4

 4 Results on the Centered Square dataset with input dimension H = W = 64 and square width w = 21. The best reported results are in bold and the second best are underlined. The łDecor." method is the most consistent as it performs almost identically on the train and test sets.

	.1.

4.5.3 Results on the ColorCode dataset

For this set of experiments, we used the Color Code dataset presented in Section 4.3.4. The input dimension was N = 128, the number of different colors per input k = 10, and the proportion of masked inputs 50%. We trained our networks with 20,000 training images and evaluated them on a separate test set comprised of 10,000 testing images. The results are presented in Table

4

.3.

Table 4

 4 Results on the Color Code dataset with N = 128 positions and k = 10 different colors for each input. In particular, the Transformer seems to have reached the maximum possible metric on this dataset. only 10 colors in the entire dataset. It could also be due to the fact it was trained for 50 epochs while it could have beneőted from a longer training.

	Network	# parameters Test metric
	Transformer	2 373 379	99.87%
	MLP-Mixer	1 979 011	69.77%
	Nyströmformer-32	2 176 003	99.66%
	Linformer-32	2 208 771	99.15%
	Reformer-32	2 176 003	77.59%
	Lambda	2 175 235	99.52%
	Lambda + TT	2 569 987	99.85%
	Table 4.3:		

.1. The lack of improvement could be due to this additional mechanism being not needed since there are
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 5 

	.1.

Table 5 .

 5 1: Description of the different versions of the U-Net we deőned during our experiments. Ver. stands for version, and Cha. for the number of channels. Dou. stands for doubling: if it is checked, it means that the number of channels is doubled at each scale, else it is kept constant at all scales. The value of τ we chose to determine if a modiőcation was relevant is 0.05.

	U-Net version Channels Doubling PSNR (dB) TFLOPs
	v1	32	✓	41.48	40.58
	v1	32	✗	41.32 (-0.16) 14.06 (-26.52)
	v1	48	✗	41.60 (+0.12) 31.30 (-9.28)

Table 5 .

 5 2: Comparison of the performance of the U-Net on a denoising task when doubling the number of channels at each scale vs keeping the number of channels constant. The number of channels reported corresponds to the number of channels at initialization.

Table 5 .

 5 3: Comparison of different downsampling operations. The chosen operation does not seem to have a noticeable impact on the őnal performance.

	U-Net version	Upsampling	Kernel size PSNR (dB) TFLOPs
	v1	nearest	-	41.48	40.58
	v1	bilinear+conv	-	41.45 (-0.03) 40.58 (+0.00)
	v1	bicubic+conv	-	41.41 (-0.07) 40.58 (+0.00)
	v3	nearest	-	41.72	31.33
	v3	tconv	2	41.72 (+0.00) 31.33 (+0.00)
	v3	tconv	3	41.75 (+0.03) 31.33 (+0.00)
	v3	tconv	4	41.74 (+0.02) 31.33 (+0.00)
	v3	bilinear+conv	-	41.73 (+0.01) 31.33 (+0.00)

Table 5

 5 

.4: Comparison of different upsampling operations. The chosen operation does not seem to have a noticeable impact on the őnal performance. For the fourth and őnal version of the U-Net, we considered bilinear+conv to avoid checkerboard artifacts

[START_REF] Odena | Deconvolution and checkerboard artifacts[END_REF]

.

Table 5 .

 5 5: Comparison of the ReLU vs Swish as activation functions. Switching the ReLU for a fully differentiable alternative is beneőcial in all the assessed scenarios, and the following versions of the U-Net all adopt Swish.

	U-Net version	Merging	PSNR (dB) TFLOPs
	v1	cat+attention	41.48	40.58
	v1	cat	41.44 (-0.04) 40.00 (-0.58)
	v1	SKFF [ZAK + 20] 41.40 (-0.08) 35.55 (-5.03)
	v1	sum+attention 41.41 (-0.07) 35.53 (-5.05)
	v1	sum	41.35 (-0.15) 34.95 (-5.63)
	v2	cat+attention	41.60	31.30
	v2	cat	41.61 (+0.01) 30.73 (-0.57)
	v2	sum+attention 41.54 (-0.06) 26.34 (-4.96)
	v2	sum	41.58 (-0.02) 25.77 (-5.53)

Table 5

 5 

.6: Comparison of different merging functions for the skip connections. We see that the merging function does not matter much and switching a concatenation for a sum reduces largely the number of FLOPs for a limited effect on the performance.

Table 5 .

 5 7: Comparison of the performance of a U-Net for various number of post-processing layers. The post-processing layers improve the őnal performance at the cost of a large number of FLOPs, as these additional convolutions are performed at the őnest scale. The gains decrease with the number of layers.

	U-Net version # scales PSNR (dB) TFLOPs
	v1	4	41.48	40.58
	v1	3	41.44 (-0.04) 29.45 (-11.13)
	v1	5	41.44 (-0.04) 51.70 (+11.12)
	v3	4	41.72	31.33
	v3	3	41.71 (-0.01) 30.58 (-0.75)
	v3	5	41.71 (-0.01) 31.51 (-0.18)

Table 5 .

 5 9: Comparison of the performance of a U-Net for different choices of operation in the bottleneck. We notice that the őnal performance does not seem affected by the bottleneck.

	U-Net version # in encoder # in decoder PSNR (dB) TFLOPs
	v4	2	2	41.80	36.30
	v4	1	3	41.79 (-0.01) 35.67 (-0.63)
	v4	3	1	41.77 (-0.03) 35.79 (-0.51)
	v4	3	3	41.88 (+0.08) 45.74 (+9.44)
	v4	2	4	41.87 (+0.07) 45.68 (+9.38)
	v4	4	2	41.86 (+0.06) 45.80 (+9.50)
	v4	1	5	41.84 (+0.04) 45.62 (+9.32)
	v4	5	1	41.82 (+0.02) 45.86 (+9.56)

Table 5
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	Architecture	sRGB PSNR 3.2k 12.8k	sRGB SSIM 3.2k 12.8k
	RVDD-basic U-Net	37.90 35.64 0.961 0.938
	RVDD-basic ConvNeXt U-Net 37.93 35.70 0.960 0.941
	RVDD U-Net	38.37 36.26 0.964 0.946
	RVDD ConvNeXt U-Net	38.56 36.62 0.964 0.948

.11: PSNR and SSIM after the pipeline (sRGB) for the standard U-Net and the ConvNeXt U-Net computed on the validation set for different settings, and two ISO levels (3200 and 12800). The best results are in bold. The task we considered is joint video denoising on the REDS-120 dataset [NBH

+ 19b]

. RVDD stands for Recurrent Video joint Denoising and Demosaicing. See [DCR

+ 23] 

for more details on the experiments.

  LH17] is widely adopted for neural network training due to its ability to combine őrst and second-order moments of the gradient, mitigating the sensitivity to the learning rate, and providing adaptability to gradient updates of different magnitude or sparsity. It applies to widely different architectures, from convolutional to transformers, and application domains. Nonetheless, it has shown instabilities in speciőc scenarios, such as large-scale problems [CND + 22, MAC+ 23] or, as we demonstrate in this work, some image-to-image tasks. These instabilities manifest as spikes in the training loss which might involve prolonged recovery periods -if it recovers (see Chapter 8). These spikes are due to a sudden increase in the gradient amplitude that the update of Adam fails to őlter out, as depicted in Figure9.2.

	Neural network training is a highly non-convex and stochastic optimization problem, com-
	plicated by hidden dynamics between the optimization algorithm and the network archi-
	tecture. Several common pitfalls have been identiőed, such as bad initialization, vanishing
	and exploding gradients [BJZP20, PMB13], abrupt shifts in the distribution of layer in-
	puts (the so-called internal covariate shift [IS15b]). Signiőcant progress has been made by
	tackling these issues either by architectural improvements [Aga18,HZRS16] or with better
	optimizers [KB15, LF19, TH12].
	The Adam(W) optimizer [KB15,

Contributions.

In this work we propose a simple layer-wise gradient standardization as a technique to improve the stability of existing optimizers. Our technique, SING, is plug-

  PyTorch implementation of our algorithm. The Γ operator is implemented by normalize and ϕ by centralize. Our technique can be used within any existing őrst-order method i.e. the optimizer function can be any optimizer (see Table9.3 for a comparison).

	def optim_step(model, lr, beta, weight_decay, ϵ):	def centralize(grad):
	for p in model.parameters():	if grad.dim() > 1:
	# Standardization	dims = tuple(range(1, grad.dim()))
	p.grad = centralize(p.grad)	mean = grad.mean(dims, keepdim=True)
	p.grad = normalize(p.grad, ϵ)	grad = grad -mean
	# Weight decay	return grad
	p = p * (1 -lr * weight_decay)	
	# Optimizer	def normalize(grad, ϵ):
	update = optimizer(p.grad, beta)	grad = grad / (grad.norm() + ϵ)
	# Parameter update	return grad
	p = p -lr * update	
	Algorithm 9.3:	

  .4) Assume that x t ∈ B(x * ) (resp. y t ∈ B(x * )) i.e. the ball contained in the basin of attraction of x * , defined in Definition 9.1. Also, assume that x t (resp. y t ) is not a critical point i.e. ∇F (x t ) ̸ = 0 (resp. ∇F (y t ) ̸ = 0). If the stepsize is sufficiently large,

	η SING ≥ 2r,	η GD ≥	2r ∥∇F (y t )∥ 2	,	(9.5)
	then the iterate x				

t+1 (resp. y t+1 ) is outside the set B(x * ).

  SING 94.25% (+94.23%) 96.56% (+18.43%) 96.70% (+36.44%) 76.26% (+1.28%)

	SGD	AdamW	AdaBelief	AdaFactor
	w/o SING 0.25%	78.13%	60.26%	74.98%
	w/			
				16]

Table 9 .

 9 3: Combination of SING with SGD, AdamW, AdaBelief [ZTD

  Table 9.4. In all cases, the combination of AdamW and SINGTable 9.4: First line: BLUE score on the IWSL14 task, when training a small Transformer [OEB + 19,VSP+ 17] from scratch. Second line: Fine-tuning of Bert[START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] on the SQuAD dataset[START_REF] Rajpurkar | Squad: 100,000+ questions for machine comprehension of text[END_REF]; the reported values are the proportion of exact matches and the F1 score. Third line: Fine-tuning of RoBERTa [LOG+ 19] on the SWAG dataset[START_REF] Zellers | Swag: A large-scale adversarial dataset for grounded commonsense inference[END_REF]; the reported value is the accuracy. outperforms a well-tuned AdamW.

				AdamW [LH17]	AdamW + SING
	IWSLT14 From scratch Transformer	34.76	35.41
	SQuAD 1	Fine-tuning	Bert	80.53% / 88.39% 81.00% / 88.34%
	SWAG 1	Fine-tuning	RoBERTa	80.45%	83.33%

Table 9

 9 .5: List of the performance and best-performing hyper-parameters for the training of a ViT-S on RDE using different optimizers. As suggested by the ablation study, normalization is the main reason why SING works but doesn't fully explain its success.

	Clipping value	Accuracy
	1 × 10 -1 1 × 10 -2 1 × 10 -3 1 × 10 -4 SING	20.27% (-73.98%) 88.26% (-5.99%) 89.97% (-4.28%) NC 94.25%

Table 9 .

 9 6: Effects of the gradient clipping value on the SGD optimizer. NC stands for no convergence, which means the loss didn't evolve during training.

=

  Proof. Let us consider the more general settingx t+1 = x tηg t .(9.27) Provided g t ̸ = 0, we can note ∥x t+1x * ∥ 2 2 is a degree two polynomial in η: Schwartz inequality ensures the term outside the square is always positive. Hence∥x t+1x * ∥ 2 ≥ ∥g t ∥ 2 η -, x tx * + r ∥gt∥ 2 we have that if x t ∈ B(x * )\{x * }, x t+1 / ∈ B(x *). In the worst case, the RHS is equal to 2r/∥g t ∥ 2 . We can further simplify this bound by considering the expression of g t : ∇F (x t ), ∥g GD t ∥ 2 = ∥∇F (x t )∥ 2 , (9.30a)

	∥x t+1 -x * ∥ 2 2 = ∥g t ∥ 2 2 η -	g t ∥g t ∥ 2 2	, x t -x *	2	+ ∥x t -x * ∥ 2 2 -	g t ∥g t ∥ 2	, x t -x *	2	. (9.28)
	Cauchy-g t ∥g t ∥ 2 2	, x t -x * .	(9.29)
	Therefore, for η ≥	gt ∥gt∥ 2 2							
		g GD t							
		g NGD t g SING t = = Γ(ϕ(∇F (x t ))) ∇F (x t ) , ∥g NGD t ∥∇F (x t )∥ 2 ϕ(∇F (x t )) , ∥g SING ∥ 2 = 1, t ∥ 2 = 1,	(9.30b) (9.30c)
	where NGD stands for normalized gradient descent. Therefore, to ensure x t+1 / ∈ B(x * ) it is sufficient to have
				η GD ≥ η NGD ≥ 2r, 2r ∥∇F (x t )∥ 2 η SING ≥ 2r.	,			(9.31a) (9.31b) (9.31c)
	An illustration of this property is available in Figure 9.6.	

SING ≥ 2r, η GD ≥ 2r ∥∇F (y t )∥ 2 , (9.5)

then the iterate x t+1 (resp. y t+1 ) is outside the set B(x * ).

Dans le chapitre précédent, nous étudions les propriétés des réseaux de neurones lorsqu'ils sont entraînés dans un cadre particulier, et nous en déduisons des propriétés sur la structure de la machine d'apprentissage résultante. Dans un cadre plus général, nous ne pouvons pas dériver de telles règles et il peut même arriver que l'apprentissage soit instable, ce qui rend la convergence presque impossible. Ce problème est souvent caractérisé par des pics dans la fonction de coût calculée sur l'ensemble d'apprentissage, ce qui entraîne une divergence ou convergence vers une solution sous-optimale. Dans ce chapitre, nous commençons par présenter une théorie mathématique permettant de caractériser les instabilités, qui est résumée dans l'équation (2.6). Ensuite, nous présentons et discutons une liste de sources d'instabilités typiques, et nous les expliquons à travers le prisme de la théorie. Enőn, nous rassemblons et expliquons un ensemble de solutions différentes que l'on peut utiliser lorsqu'on s'entraîne dans un contexte instable.

The procedure for hyper-parameter tuning might differ when changing the task, the network's architecture, or the optimizer.

The code is available at https://github.com/AdrienCourtois/SING.

We took the code of Hugging Face (https://huggingface.co/transformers/v2.3.0/examples.html) as is and launched it, and found the performance to be lower than announced.

Remerciements

complexity to a natural scene. This chapter highlights a caveat in the nonlocal capabilities of the U-Net. The U-Net was originally introduced for a task of segmentation where the need for nonlocality was limited. In Chapter 5 we present a methodology to adapt an architecture to a new task and illustrate it by adapting the U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] to denoising.

Linear separability of the feature space defined by the NTK

The previous experiments suggest that the normalized NTK reŕects the trained network's decisions. In this section, we empirically verify the claim of Section 7.4.2 stating that, since the network reaches a perfect score, the feature space induced by the version of the NTK without normalization is linearly separable. As stated in Deőnition 7.2, the feature vector induced by the NTK is deőned by the transformation:

We trained an SVM [START_REF] Cortes | Support-vector networks[END_REF] algorithm to output the label y i when given ϕ(x i ), for each input pair (x i , y i ) ∈ D. The results are available in Figure 7.4. We see in this őgure that the decision boundary obtained by the SVM closely matches the one obtained by the network and that it reaches 100% accuracy. This indicates that the feature space induced by the NTK is linearly separable. Figure 7.4: Results of the experiments on the linear separability of the feature space deőned by the NTK. On the left is displayed the prediction of the SVM when trained on the input space. On the right, the perfect prediction of the SVM when trained on the NTK feature space.

Second experiment: the linearly separable case

For the next toy experiment, we considered the same network and training settings as for Section 7.5.1. The dataset, on the other hand, was different. We sample a random 2d vector a once and randomly sample N 2d points. The class of each point is deőned by the sign of the scalar product between the point and a. In other terms, the dataset D is deőned by

As for the őrst experiment, we considered N = 2 10 training data points. The accuracy obtained by the network after training was 99.80%. The dataset and the prediction of the trained network are illustrated in Figure 7.5. We display in Figure 7.6 the results of the algorithm described in Section 7.5.1 where we considered u = a. We see that here again the network learns a deformation of the input space such that most of the closest neighbors share the same label. Furthermore, one can note that the learned deformation follows the direction orthogonal to a and is localized around the center of the space.

Maximum LR AdamW [LH17] AdamW + SING

ViT-S [DBK + The reported metric is the accuracy. Each component allows for a higher learning rate.

For AdamW, we added the component and studied the convergence. For AdamW + SING, we removed it. As the theory suggests, the higher the learning rate, the higher the őnal performance. NC stands for no convergence i.e. the loss could not be stabilized throughout the iterations. The maximum LR reported corresponds to the one for AdamW + SING. As displayed in Figure 9.1, the training of ViT-B spiked resulting in irrelevant performance.

For AdamW, unstable nature of the training largely widens the performance gaps when adding a component. In all cases, the best LR using AdamW alone was 10 -3 . of 0.1. For all networks, there is a 5-epoch linear warmup and a cosine decaying schedule afterward.

We carefully design our hyper-parameter tuning strategy to ensure a fair comparison. First, we tune the learning rate among limited values: {5 × 10 -4 , 10 -3 , 5 × 10 -3 , 10 -2 } for AdamW and {5 × 10 -3 , 10 -2 , 5 × 10 -2 , 10 -1 } for SING used within AdamW. In the rare cases where the best learning rate found is one of the extreme values of the set, additional learning rates were tested. For all networks and optimizers, the best learning rate found is the last one before the training explodes. Then, we tune the weight decay using the best learning rate found. The values assessed for the weight decay are {5 × 10 -4 , 5 × 10 -3 , 5 × 10 -2 , 5 × 10 -1 }. Finally, the results are reported in Table 9.1. We notice that SING combined with AdamW systematically outperforms AdamW. The evolution of the accuracy throughout training can be seen in Figure 9.4. SING seems to outperform AdamW during the entire training, but seems to lose its edge at the end of the training.

We leave the study of this phenomenon for future works.

Additionally, we trained a ResNet18 on CIFAR100 [KH + 09], which consists of 50K training images and 10K testing images from 100 classes. The images are of size 32 × 32. The network was trained for 300 epochs using a batch size of 128. The learning rate scheduler and the tuning strategy are the same as for ImageNet. The results are visible in Table 9.1. We see that even in this challenging setting, the combination of AdamW and SING outperforms AdamW and SGD.

Depth Estimation

In this section, we investigate the performance of our optimizer on a depth estimation task using a synthetic dataset. The RDE dataset, introduced in Chapter 4, consists of 50K 128 × 128 images of rectangles randomly placed within an image. Depth naturally arises as rectangles are placed on top of each other. The goal is to predict the depth for each pixel in the image, depending on which rectangle it belongs to. This task is

Theorems & Proofs

Theorem 9.2. The iterates defined by (9.2) are invariant w.r.t. transformation (9.6), and preserve the mean (9.7).

Proof. The őrst property is satisőed thanks to the normalization. Indeed, consider the iterates

,

where F is deőned in (9.6). Hence,

,

Since ϕ and Γ are both homogeneous operators,

.

Therefore, we have the property y t = x t (9.2). Moreover, deőne the mean operator m

where the last equality comes from the deőnition of the gradient centralization operation ϕ. Hence, since m(•) is a linear function,

Theorem 9.3 (Convergence without gradient centralization). Let assumptions (9.8) and (9.9) hold. Assume the gradient is computed across a mini-batch of size B = σ 2 ϵ 2 . Let x t be the sequence of iterates (9.2) with ϕ = I. Then, we have Before proving this theorem, we will introduce and prove two technical lemmas.