
HAL Id: tel-04406597
https://theses.hal.science/tel-04406597

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Semantics of Hardware Compilation Framework
Samira Ait Bensaid

To cite this version:
Samira Ait Bensaid. Formal Semantics of Hardware Compilation Framework. Hardware Architecture
[cs.AR]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG085�. �tel-04406597�

https://theses.hal.science/tel-04406597
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

023
UPA

SG0
85

Formal Semantics of HardwareCompilation FrameworkSémantique Formelle d’une Infrastructure deCompilation Matériel

Thèse de doctorat de l’université Paris-Saclay

École doctorale n° 580 : Sciences et technologies de l’information et de la
communication (STIC)Spécialité de doctorat : InformatiqueGraduate School : Informatique et sciences du numériqueRéférent : Faculté des sciences d’Orsay

Thèse préparée à l’Institut LIST (Université Paris-Saclay, CEA), sous la direction de
Mathieu JAN, Directeur de recherche, et le co-encadrement deMihail ASAVOAE,Ingénieur-chercheur.

Thèse soutenue à Paris-Saclay, le 28 novembre 2023, par

Samira AIT BENSAID

Composition du jury
Membres du jury avec voix délibérative
Laurent PAUTET PrésidentProfesseur des universités, Télécom Paris
Stephan MERZ Rapporteur & ExaminateurDirecteur de recherche, INRIA & LORIA, Université de Lorraine
Steven DERRIEN Rapporteur & ExaminateurProfesseur des universités, Université de Rennes 1
Jean-Luc BECHENNEC ExaminateurChargé de recherche, CNRS, Université de Nantes
Isabelle PUAUT ExaminatriceProfesseure des universités, Université de Rennes 1

Titre : Sémantique Formelle d’une Infrastructure de Compilation Matériel
Mots clés :Modélisation des processeurs, Langages de Construction de Matériel (HCLs), Cheminde données du pipeline, Anomalies temporelles, Vérification de modèle
Résumé : Les analyses statiques de piretemps d’exécution sont utilisées pour garantirles délais requis pour les systèmes critiques.Afin d’estimer des bornes précises sur cestemps d’exécution, ces analyses temporellesnécessitent des considérations sur la (micro)-architecture. Habituellement, ces modèles demicro-architecture sont construits à la main àpartir des manuels des processeurs. Cepen-dant, les initiatives du matériel libre et les lan-gages de description de matériel de haut ni-veau (HCLs), permettent de réaborder la pro-blématique de la génération automatique deces modèles demicro-architecture, et plus spé-cifiquement des modèles de pipeline. Nousproposons un workflow qui vise à construireautomatiquement des modèles de chemin dedonnées de pipeline à partir de conceptionsde processeurs décrites dans des langages de

contruction dematériel (HCLs). Notre workflowest basé sur la chaine de compilation maté-riel Chisel/FIRRTL. Nous construisons au niveaude la représentation intermédiaire les modèlesde pipeline du chemin de données. Notre tra-vail vise à appliquer ces modèles pour prou-ver des propriétés liées à la prédictibilité tem-porelle. Notre méthode repose sur la vérifica-tion formelle. Les modèles générés sont en-suite traduits en modèles formels et intégrésdans une procédure existante basée sur la vé-rification de modèles pour détecter les ano-malies de temps. Nous utilisons le langage demodélisation et de vérification TLA+ et expéri-mentons notre analyse avec plusieurs proces-seurs RISC-V open-source. Enfin, nous faisonsprogresser les études en évaluant l’impact dela génération automatique à l’aide d’une sériede critères synthétiques.

Title : Formal Semantics of Hardware Compilation Framework
Keywords : Modeling of processor design, Hardware Construction Languages (HCLs), Pipelinedatapath, Timing anomalies, Model checking
Abstract : Static worst-case timing analysesare used to ensure the timing deadlines re-quired for safety-critical systems. In order toderive accurate bounds, these timing analysesrequire precise (micro-)architecture considera-tions. Usually, such micro-architecture modelsare constructed by hand from processor ma-nuals. However, with the open-source hard-ware initiatives and high-level Hardware Des-cription Languages (HCLs), the automatic gene-ration of these micro-architecture models and,more specifically, the pipeline models are pro-moted. We propose a workflow that aims toautomatically construct pipeline datapath mo-dels from processor designs described in HCLs.Our workflow is based on the Chisel/FIRRTL

Hardware Compiler Framework. We build atthe intermediate representation level the da-tapath pipeline models. Our work intends toprove the timing properties, such as the timingpredictability-related properties.We rely on theformal verification as our method. The gene-rated models are then translated into formalmodels and integrated into an existing modelchecking-based procedure for detecting timinganomalies. We use TLA+ modeling and verifica-tion language and experiment with our analysiswith several open-source RISC-V processors. Fi-nally, we advance the studies by evaluating theimpact of automatic generation through a se-ries of synthetic benchmarks.

Contents

1 Introduction 13
1.1 Scientific Contributions . 15
1.2 Outline . 16

2 Background 17
2.1 Hardware Construction Languages and their Compilation 17
2.2 Pipelined Processors . 22

2.2.1 Pipelining Concepts . 23
2.2.2 HDL Designs: RISC-V Processors Overview . 25

2.3 Formal Methods Overview . 29
2.3.1 Formal Notions . 30
2.3.2 Model Checking Formal Verification Method . 32
2.3.3 TLA+ Language . 32

2.4 Conclusion . 34
3 State of the Art 37

3.1 Building Pipeline Models from Hardware Designs . 37
3.2 Semantics of High/Low-Level Hardware Languages . 43
3.3 Code Analysis Approaches . 48
3.4 Model Checking for Timing Properties . 51
3.5 Synthesis & Conclusion . 55
3.6 Problem Statements . 57

4 Workflow of Timing Models Derivation 59
4.1 Proposed Workflow . 59
4.2 Chisel/FIRRTL High-Level HDL Designs . 61

4.2.1 Chisel Hardware Description Language . 61
4.2.2 FIRRTL - The Intermediate Representation . 64

4.3 Pipeline Construction in the Chisel/FIRRTL Framework 65
4.3.1 Choice of FIRRTL Forms . 65
4.3.2 Chisel to FIRRTL Compilation Issues . 67
4.3.3 Description of Chisel-Based Processor Pipelines 69

4.4 Conclusion . 77
5 Register Analysis of Pipeline Designs 79

5.1 Register Analysis Formalization . 79
5.1.1 Register Analysis Algorithm . 81

5.2 Application to RISC-V Processors . 85
5.2.1 Mono-module Datapath Pipeline Design . 85

3

5.2.2 Multi-module Datapath Pipeline Design . 88
5.3 Experimental Results . 92
5.4 Conclusion . 94

6 Automatic Generation of Abstract Datapath Pipeline Models 95
6.1 Construction of Abstract Datapath Pipeline Models . 95
6.2 Application to RISC-V Processor Designs . 100
6.3 Experimental Results and Synopsis . 106
6.4 Conclusion . 111

7 Automatic Construction of Formal Models From Abstract Models 113
7.1 Formal Modeling of Processor Pipeline Designs . 113

7.1.1 TLA+ Specification from Datapath Pipeline Designs 114
7.1.2 Control and ISA Modeling TLA+ Specification . 119

7.2 Application to RISC-V Processors Case Studies . 121
7.3 Integration of Formal Pipeline Models in a Timing Anomaly Detection Procedure 125

7.3.1 Model Checking for Timing Anomalies . 125
7.3.2 Experimental Results . 129

7.4 Conclusion . 134
8 Conclusion and Perspectives 137

9 Annexe: Résumé Substanciel 141

4

List of Figures

2.1 Chisel/FIRRTL hardware compilation framework. 21
2.2 Transformations and passes in Chisel/FIRRTL framework. 21
2.3 Classical 5-stage pipeline with forwarding. 23
2.4 Pipeline diagram of Sodor 5-stage, from [1]. 27
2.5 Rocket Core pipeline, from [2]. 27
2.6 Fetch, Pcgen stages of Rocket core pipeline, from [2] . 28
2.7 Four stages of Rocket core pipeline, from [2]. 28
3.1 Structure of a VHDL-based static analysis framework, from [3]. 39
3.2 VHDL timing model abstractions, from [4]. 40
3.3 Chronos pipeline modeling overview. 42
3.4 A control flow graph and its control dependence subgraph, from [5]. 49
4.1 Formal verification of timing properties from hardware designs workflow. 59
4.2 FIRRTL Abstract Syntax Tree (AST). 65
4.3 Datapath pipeline module of Kyogen processor. 71
4.4 Datapath pipeline modules of Rocket core. 71
4.5 Datapath pipeline modules of Fuxi. 74
5.1 Register analysis for mono-module datapath pipeline design. 85
5.2 Datapath pipeline registers in RISC-V Mini. 86
5.3 RISC-V Mini contexts. 87
5.4 RISC-V Mini registers context. 88
5.5 Process Module Function for RISC-V Mini processor. 88
5.6 Register analysis for multi-module datapath pipeline design 89
5.7 Outputs context in RISC-V Sodor-3stages. 91
5.8 IO interface for register precedence relation . 92
5.9 Intermediate representation graph for RISC-V Sodor 3-stage 93
6.1 Simple application of min case 1 (C1_min). 97
6.2 Simple application of max case 1 (C1_max). 98
6.3 Inaccurate application of min/max_case 1. 99
6.4 Simple application of case 2. 100
6.5 Intermediate representation graph for RISC-V Sodor 5-stage 101
6.6 RISC-V Sodor 5-stage pipeline datapath model. 102
6.7 Partial representation of the abstract pipeline model of the KyogenRV processor. . . . 105
6.8 Partial representation of the abstract pipeline model of the Rocket processor. 106
6.9 Execution of the register assignment algorithm, i.e., Algorithm 4. 108
7.1 Example of counter-intuitive timing anomalies . 126

5

7.2 Timing anomalies intuition, from [6] . 127

6

List of Tables

2.1 Syntax and semantic of Chisel constructs. 19
5.1 Register analysis experimental results on RISC-V processor designs. 93
6.1 Experimental results on KyogenRV processor. 104
6.2 Experimental results on Rocket chip processor. 107
6.3 Experimental results on RISC-V processor designs. 108
7.1 Statistics on TLA+ specification of RISC-V processor designs 124
7.2 Impact of stalling checks on TLA+ pipeline models. 125
7.3 Experimental results for the absence of timing anomalies for RISC-V Sodor processor. . 130
7.4 Experimental results for the absence of timing anomalies for Rocket processor. 130
7.5 Experimental results for timing anomalies detection with multiple program depth for

Sodor 5-stage processor. 132
7.6 Experimental results for timing anomalies detection with multiple program depth for

Rocket processor. 132
7.7 Experimental results for timing anomalies detection with multiples latencies for Sodor

5-stage processor. 133
7.8 Experimental results for timing anomalies detection with multiples latencies for Rocket

processor. 133
7.9 Experimental results for timing anomalies detection with various processor designs. . 134

7

8

Dedications

I dedicate this humble work with great love and pride
To my dearest mother Khadija EL GAREH

To my dearest mother, may you find here the homage of my gratitude, which
will be equal to your sacrifices and prayers for me, however great it may be. You
represent the source of tenderness and the example of devotion that never ceased
to encourage and pray for me. No dedication is eloquent enough to express what
you deserve for all the sacrifices you have constantly made during my childhood
and even adulthood. I dedicate this work to you as a token of my deep love. May
God, the Almighty, preserve you and grant you health, long life, and happiness.

To my dear father Mohammad AIT BENSAID
To the good Lord and you, the man in my life, for being able to live this day.

The world could compensate for all the sacrifices you made for my education and
well-being so that I could devote myself to my studies. A thousand thanks for all
your sacrifices, your Alas, no dedication can express my love for you. May Almighty
God preserve you and grant you health, long life, and happiness.

To my brothers Noureddine, Youssef, and Zakaria
For their love and undeniable support. Words cannot express my attachment,

love, and affection for you. I wish you a future full of joy, happiness, and success.
To my friends, for the moments we’ve shared and for your support.
To my supervisors and everyone who has helped me, I dedicate this work to

them in recognition of their invaluable support.

9

10

Acknowledgment

This experience spentwithin CEA List and the Paris-SaclayUniversitywould
never have been so fruitful without the contribution of some people I would
like to thank.

I am particularly grateful to my three supervisors, Mathieu Jan,
Mihail Asavoae, and Farhat Thabet, for their continuous support of my re-
search. They ensured this project’s progress and provided rigorous and pro-
fessional seriousness in a friendly, relaxed climate with disconcerting virtuos-
ity. I am very grateful for their wise advice, immense knowledge, and guid-
ance.

I would like to thank my jury members, Dr. Stephan Merz, Prof. Steven
Derrien, Prof. Jean-Luc Bechennec, Prof. Isabelle Puaut, and Prof. Laurent
Pautet, for having accepted to evaluatemywork and for their perceptive com-
ments.

I also thank all my labmates; it has been great sharing the laboratory with
you during these past three years.

Finally, I thank my family and friends who supported me with moral and
emotional support during my thesis years.

11

12

1 - Introduction

Embedded systems are designed with specific functionalities in mind and
integrated into more complex systems. Embedded systems have a hardware
infrastructure (e.g., processor-based) and are capable of executing applica-
tions that address those specific functionalities. These systems are used in
various application contexts, ranging fromportable devices such as phones to
safety-critical medical, aerospace, and transport systems. Safety-critical sys-
tems induce computing constraints, which depend on several factors. More
specifically, we consider safety-critical systems as real-time embedded sys-
tems whose correctness depends not only upon their functional correctness
but also upon the time in which they are performed.

The design and implementation of safety-critical systems rely on regula-
tions and standards that state functional and non-functional constraints to be
satisfied. Functional requirements are essential so that the system can oper-
ate correctly. However, these systems are also subjected to non-functional
aspects such as hard real-time requirements, and their design is standard-
ized to help identify and address potential hazardous events [7]. For example,
events likemissing timing deadlines would be deemed unacceptable since re-
specting these deadlines is mandatory for safety-critical systems.

Specialized timing analyses (i.e., worst-case) are required to derive ade-
quate timing bounds and to characterize, in this way, the timing behavior of a
system under consideration. The timing propertiesmust be handled at differ-
ent steps of the design process. Thus, the hardware designers have started
to integrate these properties in the early design stages, from modeling to
execution. The failure to meet deadlines and the timing vulnerabilities may
be as harmful as producing inaccurate outputs or causing system damage.
We characterize the timing behavior of these systems with adequate timing
bounds (worst-case execution time considerations) [6] [8].

Static worst-case timing analysis [9–11] is one of the approaches used to
estimate these deadlines and can compute safe and precise bounds on the
timing behavior of the system. Such analyses consider the executions of an
input program on an underlying architecture in order to account for accu-
rate results. In this setting, both aspects of the program and the architecture
considerations become equally important. Whereas the program-level infras-
tructure required by the WCET analysis relies on the control-flow graph (i.e.,
the input program is the binary), at the architecture level, the WCET analysis
infrastructure is more diverse. For example, the same control-flow graph is
used for cache analyses [12] whereasmore specialized, cycle-accuratemodels
are necessary for pipeline analyses [13].

Thus, the need to model the design architecture is paramount to verify
13

the required timing constraints. Several static timing analyzers exist, for ex-
ample, the industrial-strength tool aiT [14] and the academic WCET analyzers
Otawa [9], Heptane [10] and Chronos [11]. All these propose handcraftedmod-
els of (micro)-architecture (i.e., caches and pipelines), relying on static analysis
to characterize their timing behaviors, and validated against hardware simula-
tors for conformance (e.g., for aiT [15] or Chronos [16]). A closer code inspec-
tion of their pipeline models exposes their common attributes. First, these
pipelines present a "flat" structure. More precisely, the pipeline stages are
represented with simple state configurations (i.e., a single variable), reducing
a pipeline stage to an identification attribute. The pipeline components are
separated into smaller units with inner states. This separation reduced the
complexity andmade the implementation easier. Second, thesemodels focus
on how an instruction progresses through the pipeline, not the actual instruc-
tion semantics. Indeed, the correctness of program execution is assumed in
the context of static WCET analysis, and the worst-case upper bounds are de-
fined through the execution of the input program on the pipeline model. Fur-
thermore, various models are built from low-level hardware designs such as
VHDL and Verilog [3].

However, themanufacture and production of these hardware designs are
evaluated according to several criteria, and the design time is one of the pri-
mary criteria. Furthermore, the low-level hardware description languages
describe in more detail the designs and reduce the production speed in ex-
change. Since their micro-architecture models are usually huge, generating
pipeline analysis that covers the timing behavior of the design would increase
the state space, making the WCET determination a challenging task. Thus, we
need to opt for high-level abstraction languages and generate these timing
models automatically. With an automatic procedure, we speed up the process
and reduce the model’s size by pruning out all parts that do not contribute to
the timing behavior. Moreover, we avoid losing information, and we guaran-
tee that the timing analysis of the design is feasiblewith a precise computation
of upper bounds. So, developing such models at a proper abstraction level is
essential to obtain correct and precise WCET bounds.

Automatically deriving architecture models [3,4] directly from the code of
hardware designs can also be possible. Unsurprisingly, the accuracy of the
resulting architecture models depends on how the hardware design is coded.
For example, in the case of a pipeline design, a modular code with a clear
separation between datapath and control facilitates the construction of the
architecture model. Recent trends in hardware design led to more processor
code being made available, i.e., open-source. Thus, it can be used to gen-
erate models, replacing the standard manual reference, where only specific
design details are provided. This progress is facilitated by the emergence of
open hardware initiatives [17]. Such initiatives propose software-like develop-
ment workflows, from complex high-level Hardware Description Languages

14

(HDLs) [18] down to circuits while using sophisticated compilation chains.
High-level hardware description languages (e.g., Chisel [19] or SpinalHDL

[20]) provide new features to hardware designers while, at the same time,
speeding up development by being able to generate fast simulations of the
design. While low-level, mainstream languages like VHDL and Verilog are
still almost ubiquitous in the industry, their age and original intention put
them behind current high-level languages regarding productivity and flexi-
bility. High-level design languages come with their associated compilation
framework, enabling theuse of highly parameterized generators and advanced
module systems to facilitate the hardware design [18] [21] [20]. These compi-
lation chains come with configurable optimizations and a pass infrastructure,
which facilitate the analysis of hardware designs. For instance, when targeting
timing predictability, a transformation would mainly focus on the sequential
logic to generate pipeline-level models. The main goal of our thesis work is to
automatically generate pipeline models from high-level hardware processor
designs so as to prove timing properties.

To prove these requirements of safety-critical systems, various methods
can be used, from testing to formal verification, offering different degrees of
confidence. Testing is a standard method used for validation, but it is not ex-
haustive. Formal verification is another method used for validation; it could
be exhaustive but requires building formal models. We adopt formal verifica-
tion as our approach, with the goal of generating formal micro-architecture
models as pipeline models from open-source processor designs. Then, we
can formally verify the properties related to timing predictability, such as the
detection of timing anomalies [6,22].

1.1 . Scientific Contributions

Considering the context and the main motivations presented in the pre-
vious section, our proposed work leads us to define two main goals to get
around the above-mentioned motivations. The first goal is the automatic
generation of pipeline models. The second goal is to integrate these pipeline
models into a formal framework for the verification of timing properties, for
example, the detection of timing anomalies. As a result, we summarize these
goals in four main contributions.

As a first contribution, we propose a general workflow to achieve our
goals. The workflow targets the automatic generation of pipeline models for
the formal verification of timing properties. We specify each component with
a highlight of the hardware compilation framework as the first brick of the
workflow.

The second contribution concerns the register analysis and the construc-
tion of data structure representation of the abstract datapath pipeline mod-
els. In this context, we rely on the high-level hardware processor designs de-

15

veloped with Chisel language [19] and its associated compilation framework
Chisel/FIRRTL [23] that provides the possibility to integrate passes. Thus, the
problem of deriving convenient datapath pipelinemodels is backed by a com-
prehensive hardware compilation infrastructure. The approach proposed to
derive register analysis is applied to various processor designs.

The third contribution concerns thepipelinedatapath constructionbased
on the results of the register analysis. In this phase, the registers are assigned
to pipeline stages through several algorithms. The aim is to build the abstract
datapath models as a succession of pipeline registers assigned in their iden-
tified pipeline stages. We report our proposed approach and evaluate its ef-
fectiveness in several case studies as Chisel-based RISC-V processors.

Finally, the last contribution intends to generate automatically the required
formal models to prove formally the timing predictability properties and then
to integrate them into a procedure for the detection of timing anomalies.
We automatically generate the formal datapath pipeline models. Then we
manually specify the control signals to guide the pipeline execution. In this
direction, we combine both the software (ISA representation) with the hard-
ware (pipeline models) aspects. Therefore, we formally verify the absence/p-
resence of timing anomalies on the resulting models with the procedure pre-
sented in [6,22]. The objective is to evaluate the impact of semi-automatically
generated models through a series of synthetic benchmarks.

1.2 . Outline

The remainder of this manuscript is organized as follows:
• Chapter 2: We present the background of our work, including the hard-
ware construction languages, the RISC-V processor designs used to eval-
uate our work and the formal verification framework. We also highlight
our chosen hardware language and its compilation framework.

• Chapter 3: We review state of the art works that build the micro-
architecture models from hardware designs. We detail each axis of our
contributions. We introduce then the problem statement of our work.

• Chapter 4:We introduce our general workflow that aims to verify timing
properties on hardware designs, formally.

• Chapter 5: We describe in this chapter the register analysis as well as
its evaluation.

• Chapter 6: We describe the pipeline construction algorithm through an
assignment of registers to pipeline stages. We report the application
and the experimental results of several processor designs.

• Chapter 7:Wepresent the generation of formalmodels followed by the
integration of these formal models into the procedure to detect timing
anomalies. We rely on several benchmarks to evaluate our results.

• Chapter 8:Wedescribe conclusions and someperspectives of ourwork.
16

2 - Background

In this chapter, we introduce the background concepts onwhich this thesis
work is based. In Section 2.1, we present a general background on hardware
construction languages (HCLs) and their compiler frameworks, then elabo-
rate on our chosen hardware language Chisel, and its compilation framework
Chisel/FIRRTL. In Section 2.2, we continue with an overview of the processor
designs considered as case studies in this work. Then, Section 2.3 introduces
notions related to formal verification methods and tools.

All these elements introduced in this chapter allow us to emphasize the
problems addressed in the next chapters precisely.

2.1 . Hardware Construction Languages and their Compilation

Overview of HCLs. When we discuss about hardware designs, there is
a need to find a method to ease communication and understand the func-
tionality of each design component. As such, the hardware designs are de-
veloped with hardware description languages (HDLs) to present the structure
and functionality at different abstraction levels. When hardware designers
intended to increase design productivity and efficiency with shorter design
cycles, they relied on hardware generators and design reuse in particular li-
braries reuse, as in software programming. Thus, hardware designers use
high-level languages called hardware construction languages (HCLs), which
embed HDL-like hardware primitives in existing programming languages.

These languages enable the use of software programming features such
as object orientation, polymorphism, and higher-order functions, which en-
courage and enable code reuse. Furthermore, these expressive language fea-
tures make designs more parameterizable and modular and enable the use
of domain-specific language constructs, and advanced module systems to fa-
cilitate the hardware design [18, 20, 21]. These languages are supported by
hardware compiler frameworks (HCFs) which can put hardware development
on an important evolution by enabling new hardware libraries. Furthermore,
HCFs transformahigh-level purpose code into anRTL level by formalizing vari-
ous transformations. These transformation passes enable the reuse and opti-
mization of theHDL (Verilog or VHDL) code they generate for later use as input
in classical commercial (FPGA or ASIC) hardware design flows. As in software
compilers, hardware designers can also insert specific transformation passes
in those compilation chains tomanipulate the designs. This feature enables to
deploy, within these chains, analyses to construct abstract processor models
automatically. For instance, when targeting timing predictability, a transfor-
mation would mainly focus on the sequential logic to generate pipeline-level

17

models.
Several hardware construction languages are introduced and developed

for hardware designs. Usually, they are based on software programming lan-
guages such as C++, Python, and Scala. Chisel [19], BlueSpec [24], Spinal-
HDL [20], and DFiant [25] are the most modern hardware construction lan-
guages that can be seen as domain-specific languages, where they leverage
host language ideas and software engineering techniques. We focus in our
work on an HCL called Chisel, supported by the compilation framework Chis-
el/FIRRTL.

Chisel/FIRRTL Hardware Compiler Framework. Chisel [19] is a hard-
ware construction language (HCL) developed at UCBerkeley, embedded in the
Scala language and thus, implemented as a package of Scala class libraries.
Chisel provides powerful constructs forwriting hardware generators. We take,
as examples, parameterization and higher-order functions.

Table 2.1 summarizes the primary Chisel constructs, specifying their syn-
tax and semantics. We distinguish between basic elements such as types,
operators, etc. state elements corresponding to registers and memory com-
ponents, and finally high-level constructs such as interfaces. Chisel provides
three data types: Bits, UInt, and SInt. All three types represent vectors
of bits. Here is the definition of different such types: a plain 6-bit, an 6-
bit unsigned integer, and a 10-bit signed integer, with W specifying the width:
Bits(6.W), UInt(6.W), SInt(10.W).

Interfaces are presented in Chisel by DecoupledIO and ValidIO language
constructs. Chisel defines the DecoupledIO bundle in the following way: bits
is used for the data and is parameterizedwith the data type. ValidIO is similar
to DecoupledIO except that it only has valid and bits fields.

Listing 2.1 – Parameterization in Chisel.
class DecoupledIO [T <: Data](gen: T) extends Bundle {

val ready = Input(Bool())
val valid = Output(Bool())
val bits = Output(gen)

}
class ValidIO [T <: Data](gen: T) extends Bundle {

val valid = Output(Bool())
val bits = Output(gen)

}

Wedetail other constructswith particular processor designs in Section 4.2.
The Listing 2.2 illustrates the parameterization features of the Chisel lan-

guage. Chisel uses parameterized types to specify generic functions and classes.
The function Mux, line 11 in Listing 2.2 describes the parameterized function
and semantically it defines a genericmultiplexer function. Wedefine this func-
tion as taking a boolean condition, con, and alt arguments (corresponding to

18

Table 2.1 – Syntax and semantic of Chisel constructs.
Chisel_Constructs Syntax Semantics

Types Bool(), UInt(), SInt() Boolean, Unsigned/Signedintegers
Aggregate

types

class MyBundle extendsBundle { val a = Bool ()val b = UInt ()}
Define Data typesindexed by name

Vec(elts:Iterable[Data]) An indexable vectorof Data types
Operators !x, x̃, x + y Logical NOT, Bitwise NOT,Addition
Memory Mem(n:Int, out:Data) Addressable memory withn as a depth

Registers
Reg(type) Create type register
RegInit() Register with initializationvalue
RegNext() Register updated everyclock cycle

Wires
val x = UInt() Allocate wire oftype UInt

x := y Assign wire y to x
x <> y Bulk connect x and y

Interfaces
DecoupledIO(gen: Data)

gen: Chisel Data to wrapwith a ready valid interface.
Interface:(in) .ready: ready Bool(out) .valid: valid Bool(out) .bits: data

ValidIO(gen: Data)
Wrap gen with a validinterface.

Interface:(out) .valid: valid Bool(out) .bits: data
then and else expressions) of type Twhich is required to be a subclass of Bits.
The assignment to mux1, in line 15, specifies the parameter values.

Like parameterized functions, we can also parameterize classes to make
them more reusable. For instance, we can generalize the Adder class, lines
3-12 in Listing 2.2 to add any type T which is a generic type defined in the pack-
age chisel3.Data. We define two instances of this class add1 and add2, lines
13-14, to take two arguments genIn and, genOut of type T.

19

Listing 2.2 – Parameterization in Chisel, inspired from [26].
1 import chisel3.Data2 ...3 class Adder[T <: Data](genIn: T, genOut: T) extends Module {4 val io = IO(new Bundle {5 val a = Input(genIn)6 val b = Input(genIn)7 val out = Output(genOut)8 ...9 })10 io.out := io.a + io.b11 def Mux[T <: Bits](c: Bool, con: T, alt: T): T = { ... }12 }13 val add1 = new Adder(UInt(4.W), UInt(6.W))14 val add2 = new Adder(SInt(4.W), SInt(6.W))15 val mux1 = add1.Mux(true.B, UInt(10), UInt(11))16 ...

Listing 2.3 describes high-order functions in Chisel that take functions as
arguments. These are powerful constructs that encapsulate a general calcula-
tionmodel, allowing one to concentrate on the application logic instead of the
control flow. These functions include the map and reduce functions. Function
map, line 2 in Listing 2.3, invokes a function (successor) on each element of the
list and returns a list of the function’s return value. Function reduce, line 3 in
Listing 2.3, takes two arguments: the first is the current accumulation and the
second represents the list element. These are given by the two underscores
in the parentheses. It returns a value with a type of the list elements, unlike
map, which returns a list.

Listing 2.3 – Higher-order functions in Chisel.
1 ...2 List(1, 2, 3, 4).map(_ + 1) /* return List(2,3,4,5) */3 List(1, 2, 3, 4).reduce(_ + _) /* return 10 */4 ...

Figure 2.1 illustrates theChisel/FIRRTL hardware compiler framework. Once
a Chisel design is compiled, a Verilog file is generated via an intermediate rep-
resentation FIRRTL [23], which can then be processed with any standard RTL
design flow.

An important part of any compiler is its intermediate representation (IR),
upon which all transformations operate. FIRRTL transformations always take
as input and produce a well-defined AST circuit and are easily connected one
after the other. These transformation passes provide simplification, optimiza-
tion, analysis, specialization, and instrumentation and the resulting represen-
tation can either be simulated directly or passed to one of many Verilog back-

20

Figure 2.1 – Chisel/FIRRTL hardware compilation framework.
ends tailored for simulators, FPGAs, or ASIC technology processes.

Figure 2.2 describes theChisel/FIRRTL compiler framework, where theChisel
design is compiled into FIRRTL representations through simplification trans-
formations. Simplification transformations take a FIRRTL circuit and simplify
it to a lower form. First, Chisel is compiled into FIRRTL high form through var-
ious passes, which generally check and resolve the high form constructions,
for instance, the CheckTypes and CheckWidths passes, where the types and
components widths must be checked to verify the coherence between Chisel
constructs. The InferBinaryPoints pass verifies the type match in the as-
signment constructs. Furthermore, for all circuit components declared with
unspecifiedwidth or precision, the FIRRTL compiler, through the InferWidths
pass, will attempt to infer the strictest possible width value out of all possible
values of its incoming connections.

Figure 2.2 – Transformations and passes in Chisel/FIRRTL framework.

Afterward, transformations go through two simplifications, fromhigh form
to mid-form and from mid-form to low form. In the mid-form, the condi-
tional statements (when) are not used; thus, the pass ExpandWhensAndCheck
addresses this point. Also, all widths must be explicitly defined, and fields in

21

connections must be detailed using the ExpandConnects pass. The low form
gives a direct correspondence to a circuit netlist. For instance, the partial con-
nect statements are not used in this form, thus the pass LegalizeConnects
is used. Moreover, the synchronous Reset is removed with the RemoveReset
pass. Finally, the low form is directly compiled into Verilog. Therefore, var-
ious passes are implemented to make changes to the FIRRTL AST to make
Verilog emission easier. We mention the FlattenRegUpdate pass, which flat-
tens register updates into a single expression, and VerilogPrep pass, which
adds wires to connect port interfaces between instances.

Furthermore, writing a transformation saves effort for all future uses, re-
ducing the cost of the development over time. By making transformations
easy to write and integrate into a compiler framework, the upfront develop-
ment cost of a transformation is reduced, and the number of interesting au-
tomatable tasks increases. Writing a FIRRTL pass usually requireswriting func-
tions that walk the FIRRTL data structure. The intermediate representation
(IR) of FIRRTL is a tree, where each IR node can have the children nodes. The
recursive walk collects information or replaces IR nodes with new IR nodes.

Next, in Listing 2.4, we present an example of the transformation that ex-
presses a recursive walk to collect the names of every register declared in the
design. We apply a custom map function for each node and then to the sub-
set of childrenwhose node typematches the function’s input and return node
type, line 7 in Listing 2.4. When the node is a register, we collect its name into
a list structure.

Listing 2.4 – Simple pass in Chisel/FIRRTL compiler framework.
1 ...2 def walkMod(m: DefModule): DefModule = { m.map(walkStmt) }3 def walkStmt(s: Statement): Statement = {4 def fct(regNames: mutable[String])(s: Statement): Statement=5 s match {6 case r: DefRegister => regNames += r.name; r7 case _ => s map fct(regNames)8 }9 }10 ...

2.2 . Pipelined Processors

We present next the various pipelined hardware designs evaluated and
used as case studies in this work. We start with an overview of the pipeline
features that are considered in the hardware designs and which impact our
analysis, in Section 2.2.1. Then, we present the primary use case studies of
hardware designs, in Section 2.2.2.

22

2.2.1 . Pipelining Concepts
Pipelining is a process of arrangement of hardware elements of the pro-

cessor such that its overall performance is increased. The process of exe-
cuting one instruction can be divided into several sequential sub-operations,
with each sub-operation corresponding to a pipeline stage. The processor can
execute instructions in the order that they appear in the program, as is the
case of in-order pipelines. The pipeline stages for the classic in-order pipeline,
shown in Figure 2.3, are:

• Instruction Fetch (IF): In this stage, an instruction is read from the in-
struction memory. The address of memory is contained in the program
counter. The fetch stage is the first stage to initiate the instructions
traversal of the pipeline. We can notice that the instruction may be re-
trieved from the memory or directly from the instruction cache.

• Instruction Decode (ID): In this stage, an instruction is decoded, and
control signals and combinatorial logic are used for the opcode and
operands according to each instruction type.

• Execute (EX): The ALU (arithmetic logic unit) operations are performed
at this stage. It takes the two operands to perform the ALU operation.
In this stage, the branch target can also be computed.

• MemoryAccess (MEM): In this stage, thememory accesses are performed
with read and write to/from memory instructions. The stage is also re-
sponsible for stalls due to cache misses.

• Write-Back (WB): In this stage, the computed value is written back to the
register file. It writes the results of the arithmetic operations or the data
read from memory.

Figure 2.3 – Classical 5-stage pipeline with forwarding.
A pipeline consists of the datapath and control path. The datapath can

be defined as the path that the instructions must fulfill within the processor
to finish their execution. Different instructions may need different datapaths
and an instruction generally requires more execution time to fulfill a longer

23

path within the datapath. The control path ensures the correct transmission
of data and controls the execution status of the instructions at each pipeline
stage. The control path defines the pipeline status by identifying stalling and
forwarding mechanisms and establishes signals for instructions decoding.

Figure 2.3 shows the stages of a standard in-order 5-stage pipeline, i.e.,
from the Instruction Fetch (IF) stage to the register Write-Back (WB) stage. The
pipeline control, represented with dotted lines, captures how instructions ad-
vance (i.e., the next PC value) through the pipeline. The stalling logic is, how-
ever, not explicitly represented, but it can be inserted in any pipeline stage.
The datapath, presented with solid lines, considers the usual left-to-right ad-
vancement through the pipeline stages, with optimization in the form of reg-
ister forwarding, represented with blue lines. The forwarding mechanism
depends on the architecture and in which stage an instruction requires/pro-
duces the dependencies. The processors employed in our work and whose
pipelines strictly adhere to this representation are shown in Fig. 2.3.

The pipeline execution of the processors divides the execution of instruc-
tions into several steps without affecting the performance. In contrast, the
step duration can be reduced by increasing the number of steps and there-
fore, reducing the processor’s cycle time. However, there are various cases
where pipeline performance is degraded, called pipeline hazards. Hazards
are pipelined execution problems caused when an instruction is unable to
be executed in its designated cycles. There are three types of hazards: data,
control, and structural hazards.

Structural hazards result from sharing resources between instructions.
They occur when more than one instruction needs to use the same datapath
resource simultaneously. There are two main causes of structural hazards:

• Register File: The simultaneous access to the register file leads to struc-
tural hazards. The register file is accessed both during ID when it is read
and during WB when it is written. We can solve this by having separate
read and write ports. To account for reads and writes to the same reg-
ister, processors usually write to the register during the first half of the
clock cycle and read from it during the second half. This is also known
as double pumping.

• Memory: Memory is accessed for both instructions and data. The IF and
MEM stages both transfer data over thememory bus. Having a separate
instruction memory and data memory solves this hazard.

Structural hazards can always be resolved by adding more hardware.
Control hazards could occur when instructions of type jump and branch

are in execution. If a dynamic branch instruction occurs, either as a condi-
tional branch or an indirect jump, the fetch stage (PC) cannot continue to fetch
the next instruction (next sequential PC) after the branch, but the computa-
tion result of the argument to the branch completed in the EX stage. Thus, we
should stall the pipeline for control hazards, but this decreases performance.

24

Branch prediction attempts to resolve a branch hazard by predicting which
path to take.

Data hazards are due to data dependencies between instructions: an in-
struction requires an unavailable result of the previous instruction. Existing
solutions to handle data hazards include forwarding mechanisms [27], code
reordering and pipeline stalling. There are three situations in which a data
hazard can occur:

• Write After Read (WAR): An anti-dependency hazards occur if an instruc-
tion writes a register that is read by a previous instruction. Here it must
be guaranteed that the write occurs only after the first instruction has
read the register. This type of hazard cannot occur in in-order proces-
sors since instructions are always executed in the primary fixed order.

• Write After Write (WAW): an output dependency, hazards occur if a sub-
sequent instruction writes the same register as a previous one. It must
be guaranteed that only the last write is performed to the register file.
Again, for in-order pipelines with only a single write-back stage, this haz-
ard cannot occur.

• Read After Write (RAW): A true dependency hazards occur if a subse-
quent instruction reads a register that is written by a previous instruc-
tion. This dependency is resolvedby the forwardingmechanism to avoid
additional delays.

Forwarding is an efficient method in solving the data dependencies be-
tween instructions, more precisely when a destination operand of an instruc-
tion is the source operand(s) of a subsequent instruction(s). Forwarding is
implemented using combinational logic units (i.e., multiplexers and compara-
tors) to test these dependencies. For instance, it uses multiplexers and struc-
tural conditions in order to test if there is a data dependence between the in-
struction’s operands. Furthermore, the forwarding mechanism presents sev-
eral possible paths. It depends on various criteria; the data dependence be-
tween instructions is the first. However, the addition of wires also depends
on the architecture of the processors, in particular, the stage in which the
instruction should be executed in order to produce/require the data.

A complete forwarding consists of several paths. The main possible cases
include three paths. There are thus 3 forwarding paths illustrated in Figure 2.3
1 - 3 , from the pipeline stages Execute (EX), Memory (MEM) and Write-Back
(WB) to EX respectively.

2.2.2 . HDL Designs: RISC-V Processors Overview
RISC-V is amodern, open-source Instruction Set Architecture (ISA) that has

gained significant momentum in recent years. Moreover, RISC-V is designed
from the ground up to enable the integration of custom instruction set exten-
sions in order to build highly application-specific solutions. Most Chisel-based
processor designs are built to support RISC-V ISA. We present next several

25

hardware processor designs used to evaluate our work. They are developed
in the Chisel language and compiled with the Chisel/FIRRTL hardware com-
pilation framework. These processors’ pipeline structure ranges from 3 to 6
pipeline stages. We present RISC-V Sodor [1], RISC-V Mini [28], KyogenRV [29],
Rocket [2] and Fuxi [30] processors.

RISC-V Mini. RISC-V Mini [28] proposes a simple three-stage pipeline de-
signed to serve as an initial test case when designing the last versions of
Chisel. RISC-V-mini is implemented using Chisel, hardware design language,
version ‘3.5‘. It has been a crucial example in various project developments,
including the languages Chisel3 and FIRRTL as well as their respective simula-
tion and verification methodologies. It implements RV32I of the Base Integer
User-level ISA Version 2.0. It also consists of an instruction cache and a data
cache.

RISC-V Sodor. Sodor [1] is a family of processors coming with different
pipeline depths. We consider its 3 and 5 stages versions in our work. It is an
open-source RISC-V project for educational purposes as well as to enable a
broad range of developers to learn and utilize RISC-V ISA quickly. It contains
five 32-bit RISC-V CPUs to demonstrate simple RISC-V ISA written in Chisel.
These CPUs are named fromRV32-1-stage to RV32-5-stage. Furthermore, each
core has its features. For example, the RV32-1-stage is used essentially as
an ISA simulator, and the RV32-2-stage is mainly employed to demonstrate
pipelining in Chisel. RV32-3-stage uses sequentialmemory, while RV32-5-stage
can toggle between fully bypassed or fully interlocked. Figure 2.4 illustrates
the RV32-5-stage of Sodor processor design. Its pipeline is a classic 5-stage
pipeline where instructions pass through the following stages: IF (Instruction
Fetch), ID (Instruction Decode), EX (Execute), MM (Memory), and WB (Write-
Back).

KyogenRV. KyogenRV [29] is also an open-source five-stage pipeline pro-
cessor targeting Intel FPGAs and developed for academic purposes. It is writ-
ten in Chisel version ‘3.5‘. It implements RV32I of the User-level ISA Version 2.2.

Rocket. Rocket is an in-order scalar processor originally developed at UC
Berkeley, initially designed for ASICs but can be built for an FPGA and fea-
tures OS support. The Rocket core is used as a component within the Rocket
Chip SoC generator which is a Scala program that invokes the Chisel com-
piler in order to emit RTL describing a complete SoC. Rocket core is based
on the RV64GC RISC-V Instruction Set Architecture (ISA) [31], and is written
in Chisel language, version ‘3.5‘. The Rocket core is a 5-stage pipeline, how-
ever, it is sometimes presented as a 6-stage pipeline with a separate stage
pcgen, implementing the branch prediction. Figure 2.5 describes the Rocket

26

Figure 2.4 – Pipeline diagram of Sodor 5-stage, from [1].
core pipeline.

Figure 2.5 – Rocket Core pipeline, from [2].
Rocket core contains L1 data and instruction caches, integer ALU and an

optional floating-point unit (FPU). The Rocket core is written in Chisel language
and arranged into modules (Core, Frontend, BTB, etc.). The first two stages,
Pcgen, and Fetch, are implemented in the Frontendmodule, while the remain-
ing four pipeline stages are contained within the core module.

Figure 2.6 describes the Fetch and Pcgen stages in detail. It includes a
MMU that supports page-based virtual memory with a translation lookaside
buffer (TLB), a non-blocking data cache, and a front-end with branch predic-
tion which is provided by a branch target buffer (BTB), branch history table
(BHT), and a return address stack (RAS). While Figure 2.7 presents the Decode,
Execute, Memory, and Write-Back stages. The core includes the optional FPU,
the configurable functional unit pipelines, and the privileged architecture im-
plementation (i.e., the control and status register file). The connection be-
tween these two parts is described in more detail in Section 4.3.3.

27

Figure 2.6 – Fetch, Pcgen stages of Rocket core pipeline, from [2]

Figure 2.7 – Four stages of Rocket core pipeline, from [2].

28

Fuxi. Fuxi is a 32-bit pipelined RISC-V processor designed for running sim-
ple operating systems or bare-metal software. Fuxi implements RV32I ISA and
is implemented in Chisel language, version ‘3.2‘.

2.3 . Formal Methods Overview

The process of modeling and verification of properties of hardware de-
signs considers two main phases. The first phase focuses on creating an ab-
stract model and validating the abstraction. The second concerns verifying
the properties of the abstract model. System modeling is carried out taking
into account the level of abstraction required for properties to verify. Vari-
ous abstract models can exist depending on the type of targeted properties
and the level of granularity. Therefore, the abstract model must be detailed
enough to capture the relevant behavior of the system and should be done
with a high level of confidence.

Formal methods are used to ensure a high level of confidence in a system
behavior. More precisely, formal methods are used to specify the systems by
building an abstract representation of the real system, which focuses on the
requirements that the system should satisfy. The formal modeling describes
the system using mathematical and logical theories. Then, we deploy formal
verification on the formal model to prove the target properties.

Several techniques are employed to verify properties, starting from test-
ing to simulations before achieving now the formal proving. Both testing and
simulation are widely used in practice, more precisely in industrial applica-
tions, and their use has proven to be very useful. However, it is usually not
possible to simulate or test all behaviors of a given system. Thus, we can rely
on formal verification to address this behavioral coverage issue and prove the
absence/presence of errors.

Two types of proof techniques exist: deductive, e.g., theorem proving [32]
and algorithmic, e.g., model checking [33] [34]. Theorem proving permits
to establish the system’s properties through mathematical reasoning. The
theorem-proving techniques, while expressive, have limitations as they re-
quire extensive manual efforts in order to build proofs. Model checking per-
mits to verify a system’s properties by exploring all possible behaviors of a
specification of this system with a limitation to face state explosion. We intro-
duce next general formal notions before focusing on model checking, which
we use to prove timing predictability-related properties over the hardware
designs.

29

2.3.1 . Formal Notions
We present next some notions regarding formal modeling and verifica-

tion.
Definition 1 (values, variables). We denote by V al a set of values, where a
value is a data item and by V ar a set of variables.
A logic consists of a set of rules for manipulating formulas. We need to define
the semantics to understandwhat the formulas and theirmanipulationmean.
The semantics of our mathematical logic is defined in terms of state using the
notation from [35].
Definition 2 (state). We define a state s as a mapping from state variables
V ar to values V al, and we denote this by s(x) = v where x ∈ V ar and V ∈ V al.
The set of all states named the state space is denoted as St.
Definition 3 (transition system (TS)). A transition system is a tuple (Stt, I,→
), where:

• Stt is the set of states,• I ⊆ Stt is the set of initial states,• →⊆ Stt × Stt is the transition relation, also called the next-state relation.
The choice of states of a transition system, which describes how to pass from
a state to another, depends on how much of that behavior needs to be ob-
served in order to analyze a particular property of interest. The initial states
correspond to the starting point on which we observe the system, and the
next-relation includes all other possible transitions.
Definition 4 (execution in a TS). Wedefine the execution (also called behavior)
of a transition system as a sequence of states (s1, s2, s3, ...) ∈ Stt×Stt×Stt . . .such that two successive states are in the transition relation: ∀i ∈ N∗, (si, si+1) ∈→
. It is an initial execution if s1 ∈ I .
The diameter of a TS is the least number of steps to reach all reachable states
(i.e., the states that belong to at least one initial execution).
Definition 5 (labelled transition system (LTS)). We define a labelled transi-
tion system, the tuple (Stt, I,Λ,→Λ), where:• Stt is the set of states,• I ⊆ Stt is the set of initial states,• Λ is a set of labels,

• →Λ is the transition relation that includes the set of labelled transitions.
Executions of an LTS are of the form (s1, a1, s2, a2, s3, . . .), where the succes-sive labelled transitions are in the transition relation: ∀i ∈ N∗, (si, ai, si+1) ∈→Λ.

30

Definition 6 (state function, predicate). We define state function as a non-
boolean expression which maps states to constants.
We define a state predicate as a boolean expression which includes variables and
constant symbols.
States and new states are linked with a relation called action.
Definition 7 (action). We define an action as a boolean-valued expression
between unprimed variables and primed variables. We say that action A is true
on step s⇒ t, or that s⇒ t is an A step, if A assigns the value true to s⇒ t

As an example, y = x′ + 1 asserts that the value of y in a state is one greater
than the value of x in the new state.
Definition 8 (validity). A validity of an action A, written as |= A is that every
step is an A step. Formally: |= A ≜ ∀s, t ∈ St : s[[A]]t.
It is common to think of a system’s execution as a series of actions. Thus
reasoning about systemsmeans reasoning about state sequences. Temporal
logic is responsible for this type of reasoning.
Definition 9 (temporal formulas). A temporal formula is made from elemen-
tary formulas (predicates and transitions) using boolean operators and the unary
operator□ (read always). For example, if E1 and E2 are elementary formulas, then
¬E1∧□(¬E2) and□(E1⇒ □(E1∨E2)) are temporal formulas. Moreover, for
any temporal formula F , let ♢F (read eventually) be defined by ♢F ≜ ¬□¬F

A linear-time property is a requirement imposed on the traces (observable
behaviors occurring during system runs) of a transition system, denoted by
example with the set Traces(TS). In order to express linear-time properties,
we can adopt specialized temporal logic, for instance, Linear Temporal Logic
(LTL) or one of its variants. LTL formulas are expressed on infinite sequences
of states where each point in time (state) has a unique successor based on a
linear-time perspective. We are interested in a class of LTL properties, which
are called invariants.
Definition 10 (linear-time property (LT)). We define a linear-time property
over the set of atomic predicates denoted by AP , as a subset of (P(AP))ω , i.e., of
the set of sequences whose elements are in P(AP).

Let P = {(A1, A2, A3,) ∈ (P(AP))ω} is a linear-time property over AP .
Definition 11 (invariant). A (linear-time) property is an invariant if there exists
a state predicate φ such that P = {(A1, A2, A3, ...) ∈ (P(AP))ω|∀i ∈ N∗, Ai |=
φ}. Such a state predicate φ is called an invariant (condition).

31

2.3.2 . Model Checking Formal Verification Method
Model checking [33] is an automated approach used to verify that amodel

of the system satisfies a specification expressed as a property. The property
defines the requirements requested for the expected behavior of the system.
Model checking verifies by exploring the model’s states allowed by the spec-
ification. Achieving the system abstraction and specification is a crucial step
that may require system mastery and expertise in the methods used.

Once the system ismodeled and the property is also defined, an investiga-
tion of whether the model satisfies the specification is performed, by explor-
ing all possible executions of the system from its initial states. Then, themodel
checking automatically generates a counter-examplewhen the property is not
satisfied as an execution trace starting from the initial state to the state vio-
lating the invariants. Thus, the model-checking approach is performed on
two main phases (modeling and specification verification). Two categories of
model checking exist, explicit model checking [36, 37] and symbolic model
checking [38, 39]. [36] contains a description on explicit model checking as
TLC.

Explicit Model Checking. Explicit model checking is often based on a
state space exploration, where progress is made one state at a time, and each
processed reachable state of the system is represented in memory explicitly.
Explicit state model checking performs a depth-first or breadth-first search
through the system’s states, from a state to its successors. Therefore, all the
states participating in the search are reachable from the initial state, which fa-
cilitates to evaluate the number of states encountered during the verification.
The main drawback of explicit model checking is state space explosion: time
and memory required to verify the system grows linearly with the number of
its possible states. However, it scales better to harder verification problems
than symbolic model checking [40], since its configuration is explicit.

SymbolicModel Checking. To avoid the state-explosion issue in themodel
checking method, the symbolic category mitigates this problem through rep-
resenting the system state space symbolically instead of explicitly. Symbolic
model checking considers a state space encoding which is implicit, based on
Boolean formulas, and examines sets of states in each step. The compressed
representation of the state space is done using the binary decision diagrams
(BDD) [41] as one approach to symbolicmodel checking. BDDs are representa-
tions of Boolean functions that are compact. The reason why the state space
explosion problem is mitigated is that space requirements for Boolean func-
tions are exponentially smaller than for explicit representation.

2.3.3 . TLA+ Language
The abstract models that we aim to generate would be integrated into

a procedure of the detection of timing anomalies. Thus, the need to model
the cycle-accurate behavior of the generatedmicro-architecture models. Sev-

32

eral tools exist for modeling the hardware architectures and verifying timing
properties. We generate the formal models of the pipeline modeled as TLA+
specifications, and we use TLC, the explicit model checking tool, to explore
the models and prove properties about timing anomalies.

TLA+ is a modeling language that offers amodule system, the untyped set
theory and predicate logic, making it appropriate for the specification of com-
plex computational systems like computer architectures. The choice for TLA+
language is not coincidental but because of several semantic factors. Untyped
set theory (and predicate logic) are aspects of the modeling language that al-
low for the specification of extensive state data. A further advantage of TLA+
is its advanced module system, which is based on interfaces, parameters, lo-
cal declarations, etc. This system enables the precise development of abstract
architecture models from smaller components.

Abstraction in TLA+ is ensuredby temporal existential quantification, which
hides unnecessary state elements. However, this is not supported by the TLC
model checker. Moreover, refinement is natural in TLA+ and supported by
ensuring stuttering invariance (i.e., execution steps that do not change the
values of state variables of interest), which allows reasoning about the speci-
fication paths on different levels of granularity and temporal existential quan-
tification to slice away the unnecessary state elements.

All the aforementioned concepts establish TLA+ as a unified logical lan-
guage designed to specify both systems and their properties and verify, using
the same specification, both a system and its possible refinements. Abstrac-
tion and refinement characteristics of TLA+ are more important in our timing
properties verification purpose when we specify the system as a single formal
specification which is then systematically refined. TLA+ is supported by an ex-
plicit model checker called TLC, which forms a powerful formal specification
and verification framework.

A TLA+ model is organized in specifications built on two levels. The first
level contains state and state transition formulas (i.e., system specification)
and the second level constitutes the property evaluated on a sequences of
states (i.e., system properties) to be verified. At the core of a TLA+ specifica-
tion is the transition predicate, called action, which captures, using the primed
notation, the state change, say for a variable x as x’ = x + 1. If x is a record
variable, its field f is accessed as x.f, and a partial record update is as [x
EXCEPT!.f = v] (changing f to v and leaving the other fields of x unchanged).
When the same field f keeps a value v, it is noted by f |-> v. Also, if a state
variable x is not modified by an action, it is written in TLA+ as UNCHANGED «x».
To define an instance of module M inside another module, we use the con-
struct INSTANCE M WITH, with the constants and the state variables of M being
replaced by expressions of the instantiating module after the keyword WITH.
Then, we can access operators op and transitions Act of the module M, with
the operator "!". This operator gives access to these elements with M.op and

33

M.Act.
The Listing 2.5 illustrates an example of a simplified TLA+ specification to

model an in-order processor design. We define the state variables represent-
ing the current cycle, the program, and the fetch pipeline stage. The speci-
fication Spec is defined through two operators: Init operator describes the
initial state, while Next operator defines the next-state relation. We initialize
the state variables to "0" and "empty" values in the initial state, where empty
defines an empty content. Next is composed of several actions, in disjunction,
where we update the current cycle (currCycle) and the first pipeline stage
(_IF) in order to capture the execution of a program through the pipeline.
TLA+ features expressions such as condition statements implemented with
IF-THEN-ELSE and LET-IN to write the local definition.

Listing 2.5 – Simplified TLA+ specification.
VARIABLES currCycle, _IF, prog,......

Init == /\ currCycle = 0
/\ _IF = [PC |-> empty]
........

FillIF == LET nxt == next_instr (prog) IN
/\ _IF’ = [PC |-> IF condFillIF THEN nxt ELSE _IF]
/\ currCycle’ = currCycle + 1

........

Next == FillIF \/
Spec == Init /\ [][Next]_<< currCycle, _IF, prog,... >>
Prop == currCycle < 50

Formal verification is used to check the correctness of the properties. We
specify the property to verify in Prop and then, the TLC model checker ex-
plores Spec and stops when the property is not verified, for instance, when
the cycle reaches 50 (a counter-example is returned) or when the property is
verified.

2.4 . Conclusion

We introduce the main elements we need in our workflow in Figure 4.1.
We started by presenting a general background on hardware construction
languages and highlighting their advantages in enabling reusability and cus-
tomization. We specified our chosen hardware construction language and its
compilation framework Chisel/FIRRTL in Section 2.1. Then, in Section 2.2, we
introduced themain HDL design of processors related to the pipeline analysis

34

phase. Finally, in Section 2.3, we detailed the formalmodeling and verification
methods and tools we will employ for timing properties proof in our thesis
work. From this preliminary presentation, we detail in the next chapter the
use of these elements for the purpose of generating pipeline models to verify
timing properties.

35

36

3 - State of the Art

Verifying the timing properties of safety-critical systems requires not only
models of the critical applications but also models of the hardware that ex-
ecutes these applications. The hardware models are in general considered
at the micro-architecture level. These micro-architecture models are gener-
ally developed from processor manuals. Recent trends in hardware design
and ISA distribution led to more processor code being made available and
supported by the emergence of new design languages with a high-level ab-
straction, which makes the automatic generation of micro-architecture mod-
els possible.

In this section, we introduce related works on constructing micro-
architecture models from code of hardware designs. Thus, several aspects
should be considered. First, we present various works addressing the core
of our research problem, that of pipeline modeling, in Section 3.1, Second,
we provide an overview of related work on hardware description languages
(HDLs), in Section 3.2, the typeof languagesweanalyze to construct the pipeline
models. In this section, we also highlight the main advantages of employ-
ing Hardware Construction Languages (HCLs) over standard design languages
when describing the semantics of hardware designs. Third, since our ap-
proach is based on code-level analysis, we use several techniques for code
exploration to develop our analysis. Section 3.3 details related work on pro-
gram analysis-based techniques and algorithms to be adapted for our anal-
ysis. Finally, we highlight further in Section 3.4 some related work on for-
mal verification of timing properties by model checking. Our pipeline models
are formalized and used in the verification of timing properties using model
checking. We capture in this section the use ofmodel checking to verify timing
properties. We have a focus on their existing pipeline models in order to gen-
erate, with our thesis work, suitable models for model checking verification.

3.1 . Building Pipeline Models from Hardware Designs

Building pipeline models from hardware designs was the subject of sev-
eral research works, however different in their purpose, technique employed,
and hardware description language of the design. The works [42–44] aim to
generate formal pipelinemodels for functional verificationpurposes. Other
kind of works [3, 4, 9–11, 14, 45–47] focus on constructing pipeline models for
WCETapplications. The pipelinemodel construction could be donemanually
from processor manuals [9–11, 14, 45–47] or built from HDL designs [3, 4]. Fi-
nally, the works [48–50] address a synthesis problem, with [50] that focus on
high-level synthesis and [48, 49] as they synthesize automatically a pipelined

37

implementation, automating the design from a sequential implementation.
We start with works [42–44] on pipeline models for functional verifica-

tion purposes. A first work in automatically generating a formal pipeline is
presented in [42]. This paper introduces the HADES tool, where the pipeline-
based processors are represented as graphs, with the user being required
to identify the architectural resources such as registers and memory ports.
Then, the HADES tool identifies the pipeline stages and generates the pipeline
model as a graph which is then used to deal with data hazards. Indeed, after
having generated the pipeline graph, the HADES tool identifies the pipeline
stages using a data flow analysis. Then it checks the correctness of the in-
struction execution through the identified pipeline stages. Furthermore, the
abstract pipeline models generated with the HADES tool include the forward-
ing mechanism, as HADES concentrates on data hazards. It addresses the ab-
sence of problems caused by data hazards on microprocessors with a single
pipeline and in-order execution.

Furthermore, generating the formal model from hardware designs is a
recurrent task in the hardware compilation field. However, most works fo-
cus on RTL-level designs, described using standard hardware description lan-
guages (VHDL, Verilog) [42,43]. Their micro-architecture designs are modeled
using these kinds of languages. The work in [43] investigates a formal ver-
ification system for hardware designs called Cadence SMV [51]. In fact, the
Cadence-SMV uses Verilog to express the system model. It uses the Verilog
design as input to generate the SMV design. It is constructed by integrating
themicro-controller RTL and embedded software assembly code levels. Then,
the model is validated, and the properties to verify are proved by conducting
a model checking tool..

Moreover, the work in [44] addresses the formal property checking for
the hardware designs. This work aims to provide an automatic verification
technique for Verilog designs as it builds hardware models from the input de-
signs developed in Verilog. The model is a transition system at the RTL level.
Verilog design is translated first to ANSI-C programs based on a synthesis se-
mantics interpretation of the Verilog code, then to a common representation
(IR) for the goal of formal verification with various technologies. The aim is to
increase the performance and scalability in the verification since the new rep-
resentation allows the application of a range of modern analysis techniques
for software.

We continueour survey onpipelinemodelingwithworks addressing pipeline
models in the context of theWCET analysis [3,4,9–11, 14,45–47].

The works in [3,4] address the goal of analyzing processor design code [3]
and determining micro-architecture models for the WCET analysis [4]. More-
over, these works [3,4] present a framework based on static analysis of hard-
ware designs. The hardware design, which is developed in the VHDL language,

38

is transformed into an intermediate control-flow representation on which an
abstract interpretation is built, for each basic block of the input program.

Figure 3.1 illustrates the VHDL static analysis framework, which translates
a VHDL code into a sequential program with an arbitrary execution order of
its processes. The processes corresponding to functions, procedures, assign-
ment signals, loops, etc., are transformed into routine constructs specified
in the intermediate representation (CRL2) of the aiT timing analyzer. Then, a
static analysis is performed through the program analyzer generator (PAG) on
the intermediate VHDL representation, for timing analysis.

Analysis
Specification

VHDL
design

Control-Flow Intermediate
Representation (CRL2)

Program Analyzer
Generator (PAG)

Static
Analysis

Analysis
Results

Figure 3.1 – Structure of a VHDL-based static analysis framework, from [3].
The results of [3] are applied in [4] to determine microarchitecture mod-

els using a semi-automatic procedure based on program slicing. More pre-
cisely, program slicing is used to eliminate parameterized features of the de-
sign (i.e., for conditional compilation), and certain signals (e.g., for events and
interrupts) are manually initialized. Thus, these signals never change value
and can be removed easily through dead-code elimination and control re-
finements. The approach in [4] performs value analysis to approximate reg-
ister and memory contents, aiming to simplify the original VHDL design (i.e.,
changing pseudo-VHDL processes) to a datapath representation with accu-
rate timing. The approach depends on correctly identifying the control path
information, which is not fully automated.

This approach is based on the framework from [3] to perform dead-code
elimination, control signal refinements, and datapath elimination. These ap-
plied transformations reduce the code size of the VHDL design. Then, ab-
stractions are implemented concerning the memory, the types of variables,
and the registers where the analysis focuses on the time of storing values and
ignores the value stored. Figure 3.2 details the main abstractions applied to

39

the VHDL design in order to get timing models. The approach proves its effi-
ciency for simple architecture, such as the DLX pipeline, and failed for more
complex architecture, like LEON2, an industry processor. Indeed, some VHDL
statements are not supported in their modeling as composite data structures
and wait statements. Furthermore, the processor state abstractions areman-
ual and dependent on the particular processor and its complexity.

Dead-Code
Elimination

Control
Refinement

Data-Path
Elimination

VHDL
Model

Processor
Abstractions

Timing
Model

Figure 3.2 – VHDL timing model abstractions, from [4].
Pipeline models which are not extracted from HDL processor designs but

relevant to the WCET analysis are addressed in [9–11, 14,45–47].
State of the art static timing analyzers such as aiT [14,45], Otawa [9], Hep-

tane [10] or Chronos [11] consider architecture models (of caches or pipelines)
and use static analysis to characterize their timing. These architecture mod-
els are usually handcrafted using mainly the processor documentation as in-
put and sometimes validated against hardware simulators for conformance.
Otawa [9] is a toolbox for theWCET analysis integrating analyses for both pro-
gramandarchitecture. Listing 3.1 presents a snapshot of themicro-architecture
configuration file in the XML format. First, the pipeline width and length are
specified. Then, the pipeline model is presented with its stages. Each stage is
characterized with its name specified in id field, lines 6, 11, 16, and 34 in List-
ing 3.1. Number of functional units and their latencies, lines 21-33, binding of
instruction categories to the functional units. The pipeline model is not very
rich. Its description focuses more on the pipeline stages level. In contrast, the
pipeline mechanisms, such as forwarding and stalling, are described later in
the OTAWA code. They are resolved at the program level, where the instruc-
tion dependencies are preliminarily studied.

40

Listing 3.1 – OTAWA XML file for hardware abstraction.
1 <processor class="otawa::hard::Processor">2 ...3 <stages>4 <stage id="FI">5 <name> FI</name>6 <width> 2</width>7 <type> FETCH</type>8 </stage>9 ...10 <stage id="EX">11 <name> EX</name>12 <type> EXEC</type>13 <width> 2</width>14 <ordered> true</ordered>15 <fus>16 <fu id="FALU">17 <name> FALU</name>18 <latency> 3</latency>19 <pipelined> true</pipelined>20 </fu>21 ...22 <stage id="CM">23 <name> CM</name>24 <type> COMMIT</type>25 <width> 2</width>26 </stage>27 </stages>

Heptane [10] and Chronos [11] analyzers are built on top of the freely avail-
able SimpleScalar simulator [52]. SimpleScalar is a cycle-accurate architec-
tural simulator that allows the user to model a variety of processor platforms
in software. Figure 3.3 illustrates the structure of Chronos tool to compute
WCET bounds.

Heptane/Chronos compute WCET using static analysis at the binary code
level. The input program is presented in basic block windows. These tools
perform micro-architecture modeling, which yields time bounds for each ba-
sic block’s execution. Each instruction in the basic block has a time interval at
which it can start/finish the execution. Then, tools compute the dependence
between instructions and the stalling delay to be added to the basic block time
counts to refine the estimates. Thus, the forwarding and stalling mechanisms
are not explicitly coded, and the WCET bounds are determined, including the
program analysis and the pipeline modeling.

As such, the work in [46] considers basic blocks to be mapped into the
pipeline stages in order to define an execution graph, which is then used to

41

Prolog Epilog

Pipeline progress

x x x xx

Basic block
window

IF ID EX MMWB

Figure 3.3 – Chronos pipeline modeling overview.
compute the WCET bound. WCET computation in [46] is enhanced by con-
sidering variable latencies in instruction sequences. The approach exploits
the fact that several latency combinations produce the same WCET and em-
ploys Binary Decision Diagrams to improve the WCET analysis’ scalability. The
work in [47] also models an out-of-order superscalar processor for the WCET
analysis. The approach is based on an execution graph that integrates both
the micro-architecture models and the program-level analysis defined on ba-
sic blocks. The execution graph captures data dependencies, resource con-
tentions and degree of superscalarity. Each node in the execution graph is
associated with the latency interval of the corresponding pipeline stage. The
estimation technique proceeds by a fixed-point analysis of the time intervals
at which the instructions enter/leave a pipeline stage in order to avoid exhaus-
tive enumeration of instruction schedules. Then, the basic block estimates are
combined using Integer Linear Programming (ILP) to produce the program’s
WCET estimate.

Other related works on pipeline modeling address a synthesis problem,
in [48–50]. The paper [50] proposes a SpecHLS, a source-to-source compiler
framework that performs ahigh-level synthesis for speculative hardware struc-
ture. They focus on speculative loop pipelining for arbitrary control flow and
memory speculation patterns. The framework takes as input C code and pro-
duces transformed C code that supports speculative loop pipelining. The
C code is transformed into an intermediate representation (IR). Then, the
analyses are explored on this representation. The approach is also applied
for accelerator-based in-order pipelined RISC-V CPU and shows their perfor-
mance improvement for speculative execution. Furthermore, [48,49] create
automatically the processor pipeline model from a sequential abstract model
based on registers. More specifically, their goal is to synthesize pipeline de-
signs from sequential representations, starting from simple designs [48] to
more complex variants [49]. The approach in [48] has two phases. It first
identifies the number of pipeline stages to create a sequential pipeline imple-

42

mentation based on the forward dependencies. Then it adds, in the second
phase, the forwarding and interlock logic required for a pipelined execution.

Furthermore, thework [49]models the datapath as a transactional specifi-
cation to synthesize automatically an in-order pipelined implementation. The
transactional specification considers the datapath as executing one transac-
tion at a time. It captures an abstract datapath, where its execution semantics
is interpreted as a sequence of "transactions". Transactions consist of state
elements that include the combinatorial and sequential logics, and next-state
compute operations and updates through the logic blocks. The analysis is
based on an assignment algorithm where each module (or interface in the
case of a state element) is assigned to the corresponding pipeline stage.

Summary. Several works have been presented in this section to describe
the techniques of building pipeline models from HDL designs. Hardware de-
signs, in general, and pipeline designs, in particular, can be expressed with
various kinds of hardware languages. We present next works on HDL lan-
guages with a highlight of their semantics and their advantages/shortcom-
ings for the purpose of constructing abstract hardware models which could
be used to verify timing properties.

3.2 . Semantics of High/Low-Level Hardware Languages

Hardware description languages (HDLs) allow the specification of hard-
ware design’s functional and temporal behavior. Wedistinguish betweenmain-
stream, traditional HDLs with low abstraction levels as VHDL and Verilog, and
more expressive languages, capable of high-level of abstraction, such as Chisel [19],
BlueSpec [24], SAFL [53], Lava [54], etc. These languages are known as Hard-
ware Construction Languages (HCLs). HCLs can be seen as domain-specific
languages that leverage the power of high-level languages like Python, Scala,
etc., to build efficient hardware generators that produce, in the end, synthe-
sizable VHDL or Verilog code.

Traditional HDL languages are declarative and provide very little reflexivity
over the circuit being described and could require an appropriate abstraction
level in order to generate a formal model. More precisely, these work [55–57]
address this aspect by presenting the semantic challenges of the Verilog
language. Recently, the hardware designers started to move towards hard-
ware construction languages which are convenient to facilitate formal veri-
fication and synthesis [58] such as SAFL [53], Kami [59], and Bluespec [24], and
domain-specific languages (DSLs) [60] as Chisel [19], Lava [54] and CλaSH [61].
Finally, there are high-level HDL languages designed for specific types of hard-
ware like accelerators, e.g. Spacial [62] and Calyx [63]. Then, we give an

43

overview of the intermediate representations compiled from the hardware
construction languages through the hardware compilation frameworks [23,
64]. We then describe work on comparative studies [65–69] regarding the
general semantics of hardware construction languages and their main advan-
tages over mainstream HDLs.

We start with semantics challenges of Verilog. The following works [55–
57] consider Verilog as the driving example of a hardware description lan-
guage widely employed in industrial designs. The work in [55] describes the
Verilog language and addresses the variety of interesting semantic challenges
that Verilog presents. The first challenge is that the studied Verilog semantics
in [55] does not include value sizing and is not executable, making specifying
what output a given program should produce more difficult. Also, a Verilog
semantic challenge concerns the development of the language’s smaller and
traceable semantics and the synthesis formalization to prove the equivalence
between the hardware structures generated and the behavioural source. An-
other semantic challenge concerns the simulation cycle semantics and how
to integrate it into the formalization of Verilog.

Then, the works in [56, 57] take into consideration these challenges and
propose formal semantics of Verilog towards providing a concise reference of
the official language standard and aiding the development of Verilog-based
verification tools. One of these semantics, proposed in [56] is based on the
functional programming style and covers the Verilog functionalities (e.g., its
non-determinism) in an executable framework, creating the possibility to test
Verilog code. However, the semantics [56] does not deal with events and
simulation traces. These features are considered in [57], where the focus is
on the formal simulation semantics of Verilog. More precisely, this work [57]
presents a formal semantics of traces (the sequence of states in a simulation)
and events in HDLs and, in particular, in the Verilog language. In order to
achieve this goal, their work proceeds in three main steps. First, it presents
the syntax of Verilog linked to time constraints, for instance, events, clocks,
etc. Second, it presents Verilog in the simple form of a pseudocode, in order
to reduce this language constructions to a canonical form and to simplify the
formalization and the verification. Finally, it presents the formal semantics
of traces through a definition of traces for a combinational logic and for a
sequential logic and then a combination of the two, taken at the circuit level.

In summary, Verilog [55] poses a variety of interesting semantic challenges
that are considered in [56, 57], however with this language (or VHDL) the cir-
cuit details are fixed early in the design and the flexibility is lost when further
modifications are required. Thus, hardware designers seek high-level descrip-
tions to synthesize hardware.

In the following, we overview the semantics of more expressive hardware
44

languages, called hardware construction languages. As such, we enumer-
ate SAFL [53], Kami [59] and Bluespec [24] as languages designed to facilitate
the formal verification and Chisel [19], Lava [54] and CλaSH [61] as DSLs.

The work in [53] describes SAFL, a high-level hardware description lan-
guage used in circuit design. In particular, SAFL is expressive to describe pro-
cessors and their functional properties and uses transformations to change
the design. For example, SAFL provides transformations to adjust the source
program’s area-time consumption and optimize the code without altering its
complex structure. Thus, the main advantage of SAFL is that it is resource-
aware.

The work in [59] introduces Kami, a platform for high-level parametric
hardware specifications. Kami is based on Coq [70] to specify and verify hard-
ware designs, then uses Coq’s code extraction to generate code for FPGAs. A
hardware design in the Kami language is presented as a set of modules as it
addresses complete circuits through small components that are combined.
For example, Kami is used to specify, implement and verify realistic multipro-
cessor systems with design functionality covering the pipeline and the simul-
taneous memory/cache access. The main advantage of the Kami framework
is that it can generate HDL code for FPGAs from the formalization.

The work in [24] presents Bluespec, a high-level hardware description lan-
guage that is essentially a variant of SystemVerilog. It is a language that sim-
plifies and promotes formal proof while preserving the compiled circuit’s per-
formance. A hardware design in Bluespec is specified in atomic rules and
guaranteed that rules appear to execute atomically one at a time, controlled
by a scheduler. This scheduler expresses the synthesizable behavior as it is
automatically generated to avoid race conditions between the atomic rules.
The main advantage of Bluespec is its semantics based on rules which lead to
naturally generating HDL code for FPGAs.

All these languages presented in [24, 53, 59] are considered recent hard-
ware construction languages designed for synthesis and functional program-
ming. SAFL [53] is best described as a synthesis rather than a construction
language, while Bluespec [24] and Kami [59] are generally employed for for-
mal proof. Furthermore, Bluespec has adapted imperative features and a
syntax that resembles Verilog. In addition, Bluespec re-implements the func-
tional language itself with its own syntax and parser. However, embedded
languages in a DSL avoid having to re-implement a parser which greatly in-
creases productivity. Furthermore, they are severely limited in practical ap-
plicability [58].

There are hardware construction languages that are embedded in a pow-
erful host language, the so-called domain-specific languages (DSLs) for hard-
ware. The work in [60] surveys such DSLs providing a vision that combines a
meta-programmed host language with a core embedded hardware descrip-
tion language used as the basis for many domain-specific languages. Further-

45

more, this combination provides an abstraction that enables code reuse and
improves programs’ correctness. Several DSLs on hardware designs [19,54,61]
exist in the literature.

Lava [54] and CλaSH [61] are two hardware construction languages em-
bedded in Haskell a functional programming language that focuses on the
hardware’s structural representation. These languages support high-level pro-
gramming features such as polymorphic types and higher-order functions,
besides support for simulation and circuit synthesis. Lava descriptions can be
interfaced with formal verification tools. CλaSH differs from Lava as the de-
scription contains a rich control structure. The control structure contains the
case-expressions and pattern matching as specified with Haskell’s choice ele-
ments. These elements are synthesized into the choice elements in the even-
tual circuit. Thus, they can be best specified in CλaSH than possible within
Lava, and hence are less error-prone.

Chisel [19] is a DSL language in Scala. Chisel benefits from this integration
as Scala is expressive, combining object-oriented and functional abstraction
styles, and allows the encoding of a flexible hardware library. Furthermore,
this embedding brings several other advantages like avoiding re-implementing
a parser and having free access to all Scala libraries, leading to great produc-
tivity. Various aspects of the syntax and the semantics of Chisel are discussed
at the end of this section, where we present several comparative studies as
well as in the next chapters.

We continue our survey with another kind of hardware description lan-
guageswhich are not generic but specialized forhardwareaccelerators in [62,
63]. Spacial [62] is a language and compiler framework for higher-level de-
scriptions of application accelerators. It is developed to support performance-
oriented hardware designs implemented on reconfigurable spatial architec-
tures, including FPGAs. Indeed, it simplifies the accelerator design process,
allowing the development, testing and optimizing hardware accelerators. Ca-
lyx [63] is an intermediate language to compile high-level programs into hard-
ware design. Calyx combines software to represent the control flow of a de-
sign with hardware as a structural language for hardwaremodules. The Calyx
compiler optimizes the programs and emits synthesizable RTL.

The compilation chains for high-level HDLs also propose intermediate
languages to handle the semantics gap with respect to low-level Verilog and
VHDL. Moreover, developing automated techniques for analyzing such HDL
designs becomes tantamount to working with both the high-level HDL lan-
guages as well as with language transformation (i.e., compilation) issues. For
example, the work in [64] proposes an intermediate-language representation
named LLHD, which is inspired by LLVM IR, thus, in the SSA form. LLHD plays
similar roles in a hardware compilation chain as FIRRTL [23]; for example, it

46

helps to integrate compilation passes.
We continuewith papers that focus on the comparative studies between

hardware construction languages and traditional hardware description lan-
guages. Various research studies [65–69] have been carried out on Chisel to
demonstrate its efficiency over other existing HDL languages. While low-level
hardware description languages VHDL and Verilog are still used in industry,
their age and original intention put them behind current high-level languages
in terms of productivity and flexibility [65,66]. The work in [66] reports the im-
portance of static type checks of hardware generators in high-level languages
compared to existing HDLs. HCL languages allow static type checking of a
generator to discover potential design issues early in the design cycle. Fur-
thermore, they need to support sophisticated hardware generators provided
in high-level languages. The paper [65] details these properties by enhanc-
ing the main features of Chisel languages and compares its advantages with
VHDL language in terms of productivity and code size. We present next these
properties highlighted in [65].

First, Chisel features generate predefined blocks [65] in order to simplify
hardware design by providing parameterization for common hardware. Sec-
ond, its datatype structure makes interfacing modules easier, allowing code
reuse. These datatypes will be explained in detail in Section 4.2. Finally, Chisel
benefits from the high-level programming features of Scala language, such as
abstract functions, polymorphism, etc. These concepts are not presented in
VHDL language, which could lead to duplicated code for similar functionality.
However, the work in [65] highlighted that the Chisel language is still in early
development, which makes it not yet suitable for use in industry. At that mo-
ment, it was still under development and suggested a new stable syntax and
documentation.

We continue with works in [67,68] related to benchmark studies between
low-level and high-level HDLs, especially between Verilog andChisel language.
The comparison metrics include the source code density, the synthesizer cir-
cuit area, the RTL simulation runtime [67], design flow runtime and speed of
coding through a range of FPGA design components [68]. High-level program-
ming features in Scala languages allow Chisel designers to reduce the source
code lines. They can reduce codes by using compound types instead of typing
every signal in Verilog and employ functions to describe hardware circuits as,
for example, pipelines. Chisel improves over Verilog in code maintainability
and scalability. It can also efficiently detect architecture issues and generate
direct warning and error messages in complex designs [68].

Summary. This sectionhas detailedworks related to hardware languages,
including the traditional HDLs and HCLs languages. We have focused on their
semantics and their significant differences for the goal of building pipeline

47

models. Building pipelinemodels relies primarily on code analysis. Wepresent
the following works on code analysis techniques, focusing on those that can
be exploited in our approach.

3.3 . Code Analysis Approaches

Analyzing open-source hardware designs means, on the one hand, inte-
grating into the analysis the semantics of the HDL used in the design and, on
the other hand, understanding what the design is about, for example, that
is a processor design. Design complexity and library reuse make working on
thewhole design difficult, therefore, the need for structured code-level design
and analysis techniques is necessary. Several code analysis techniques have
been used in literature to address various problems in design, simulation,
testing and formal verification. We group these works into general-purpose
analysis techniques and code-level HDL-specific techniques. For instance, in
the general-purpose category, we mention the works on the abstract syntax
tree (AST) [71, 72], while other works use dependence graphs [5, 73, 74]. Fur-
thermore, program slicing [75, 76] is among these techniques that intend to
reduce the program and work on the relevant code portions. Finally, static
analysis [77,78] is also used to analyze code for several purposes. For theHDL-
specificmethods, we intend to present the application of these techniques on
hardware designs. As such, theworks in [75,79] address programslicing appli-
cations, while the works in [80–83] propose applications of the static analysis.

We start first with an overview of general-purpose analysis techniques.
Analyzing the source program code based on analyzing the corresponding
AST has been developed in different research works [71, 72]. These works
present an application example of analyzing C programs, more precisely, to
monitor code evolution by comparing the source code of different versions
of the code under analysis. This approach is based on analyzing the partial
AST matching in order to identify the significant changes (additions, deletions
of global variables, types, and functions) between code versions and report
various statistics on dynamic software updates. The approach traverses, in
parallel the two AST produced from the programs parsing and collects the
construction elements as type and name to build a mapping. The approach
in [72] also begins by finding function names that are common between pro-
gram versions and do not change very often as the beginning assumptions.
Then it goes through the AST (function body) to identify changes in function
semantics.

We continue with works [5,73,74] that use dependence graphs to analyze
code. The work in [5] presents an intermediate representation for programs
based on the Program Dependence Graphs (PDGs) [73] which is used to ana-

48

lyze the data/control flows in programs. PDGs provide a unifying framework
that makes data and control dependence explicit for each program operation
and thus it permits an efficient and powerful program transformation. The
intermediate representation in [5] presents various benefits to the program
analysis and a basis for program optimization. Figure 3.4 illustrates a control
dependence graph based on the control flow graph and dominators. A con-
trol flow graph is a directed graph G augmented with a unique entry node
Start and a unique exit node Stop such that each node has at most two suc-
cessors. The two successors of nodes have attributes “T” (true) and “F” (false)
associated with the outgoing edges in the usual way. For each node N, we as-
sume that there exists a path from Start to N and a path from N to Stop. We
construct the control-dependent graph through the following definition. Let X
and Y be nodes in G. Y is control dependent on X if there exist a directed edge
P from X to Y with any Z post-dominated by Y and X is not post-dominated
by Y. We can notice that a node V is post-dominated by a node W in G, if ev-
ery directed path from V to STOP (not including V) contains W. Region nodes R1
through R6 and Entry have been inserted to more accurately represent con-
trol flow dependencies, especially in the presence of loops and conditional
structures. The control dependence graph is built using a control flow graph
and dominators in the approach [84,85].

T F

T TF

F

1

2 3

4 5

6

7

Start

Stop

Start

17

R3 R5

2 3

R1

4

R6

R4

6

R2

5

T F

TT F

Figure 3.4 – A control flow graph and its control dependence subgraph,from [5].
Another work [74] related to the dependency graph implementation for

the goal of detecting polymorphism computer malware. Polymorphism mal-
ware is typically based on malware viruses with different signatures. They

49

are challenging to detect since their signatures still need to be analyzed when
they first appear. Thus, the approach is based on comparing the dependency
graph of the target file with all the database virus dependency graphs to de-
termine whether this target file is a polymorphic variant of existing detected
malware.

Static analysis [77,78,86] is one of themost popular approaches employed
when checking properties at code level. [86] describes the use of the static
analysis fixpoint approach to solve the path problems in graphs. The pa-
per [77] presents the application of semantic-static analysis to check errors
in software design based on abstract interpretation. Semantic-static analysis
can be used to prove properties at various levels of the software designs and
always covers all the program executions as static analysis works on the con-
trol flow graph. The properties of interest in [77] are the run-time errors in
the code. A detailed presentation of static analysis and its applications can
be found in [78]. Program slicing [75, 76] is a static analysis technique that
automatically extracts portions of programs according to an objective (also
known as slicing criterion). Slicing provides a program reduction that simpli-
fies the original code and facilitates its formal verification. The work in [76]
presents an overview of algorithms for program slicing covering both static
and dynamic approaches as well as language features like procedures, data
types, pointers, etc., as data and control flow graphs.

We continue with works in [75, 79–83] related to HDL-specific code-level
analysis. More precisely, the works in [75, 79] present implementations of
program slicing for VHDL designs. The work in [75] presents a slicing tool that
automatically decomposes programs based on data and control flow analysis,
using PDGs, in order to construct sliced programs. This work aims to deal with
the concurrent constructs in the VHDL language. The approach maps VHDL
constructs into constructs of other traditional procedural languages such as C
and Ada languages. The approach relies on the VHDL semantics in a way that
ensures that all the VHDL program traces, which are parallel, are valid for the
corresponding sequential program. The work in [79] extends the static pro-
gram slicing to an improved variation called conditioned slicing. Conditioned
slicing is an abstraction technique used for hardware verification that adds
conditions to the slice in order to produce a smaller and more significant ab-
straction than static slicing. It specifies some initial states of interest in the
slicing criterion for hardware verification. The states rely on the property to
verify to apply conditioned slicing to Verilog code. The resultant conditional
slices are more precise and relevant for the verification and also reduce the
size of the verification state space.

The works in [80–83] focus on using static analysis on HDL designs. The
work in [80] presents an application of static analysis on scheduling hardware
designs to deal with resource-sharing between hardware components. The

50

aim is to ensure scheduling to access a shared resource throughout the hard-
ware compilation fromhigh-level to structural low-level languages. To achieve
this, a dynamic scheduling logic is generated automatically in a manner that
avoids deadlock, then the static analysis is used to remove the redundant
scheduling logic which can significantly improve the efficiency of generated
circuits. Another use of static analysis on HDLs is proposed in [81]. This work
computes code coverage of an assertion in a given RTL source code. We note
that assertions are properties that a hardware design should satisfy, and the
coverage achieved during the verification is an important criterion to consider
when assessing the quality of the verification results. The code coverage of
the assertions is based on the coverage of the statements and their depen-
dencies within the assertions. In order to compute the dependencies of the
statements, static analysis is used to analyze the control data flow graph of
the corresponding code. Finally, static analysis is also employed in the secu-
rity evaluation of HDL code, as in [82,83]. Sapper [82] and Caisson [83] are two
hardware description languages for designing security-critical hardware com-
ponents. These languages express security by using static analysis at compile
time. They are based on the control of the information flow to put restrictions
on the information flow through the system

Summary Various techniques and algorithms for program analysis have
been presented in this section. We have also described their application over
HDLdesigns for different purposes. In the following section, wepresentworks
related to the formal verification of timing properties using the model check-
ing tool.

3.4 . Model Checking for Timing Properties

Formal verification is based on verifying properties of formal specifica-
tions, from where the necessity to generate formal models by adopting an
appropriate level of abstraction. In Chapter 2, we have detailed model check-
ing as our formal proof technique employed in our thesis as the way to ver-
ify timing properties, such as those related to the computation of WCET
bounds [87–94]. All these works employ model checking tools to explore the
execution of the input program under pipeline models. Furthermore, several
works have also usedmodel checking to prove timing predictability-related
properties [95] such as the detection of timing anomalies [6, 96–100], we
present hereafter their applications. Various formalmodeling and verification
languages are used for describing models and verifying timing predictability-
related properties, in particular, UPPAAL in [87,88,91], UCLID5 in [96,97] and
TLA+ in [6,95,98].

51

We start with works [87–94] related to model checking for computing
WCETbounds. Theworks in [87,88,91] computeWCET bounds by usingmodel
checking for both the program and the architecture. Model checking for com-
plete WCET estimation is first proposed in [89]. This approach is standard,
both the program and the architecture (pipeline and caches) are modeled as
transition systems which are then encoded in a model checker. The main
point of this work is thatmodel checking ismore precise than the combination
of abstract interpretation and integer linear programming (ILP), developed in
the WCET analyzers. They have experimented with the behavior of instruc-
tion cache access. Thus, the model checking has proved that it provides a
precise cache behavior prediction that avoids the abstraction methods’ over-
approximations. Since ILP is known to suffer from numerical instabilities that
can produce non-valid solutions, unlike model checking, which produces cor-
rect runtime predictions. The work in [90] supports an opposite point of view,
that it is preferable to estimate the WCET using this combination of abstract
interpretation and ILP thanmodel checking. The main arguments are, on one
hand, the fact that model checking suffers from a state explosion problem,
and on another hand, model checking cannot compute properties (e.g., in-
variants) as abstract interpretation. However, they are experimenting with
quite complex processors. Also, according to [90], model checking may pro-
duce more precise results since it exhaustively checks all possibilities, while
abstract interpretation may lose information due to abstraction.

The work in [87] presents an approach to compute the WCET bounds
based on a combination of model checking and static analysis. This work
combines hardware and software components, where the hardware model
consists of caching and pipelining and the software model is the control-flow
graph of the application binary. Both models are represented as timed au-
tomata and model checked using the UPPAAL toolbox. Timed automata is a
state machine with locations and edges. A state includes the system’s vari-
ables, and the edges describe the possible transitions from the states. The
main characteristics of UPPAAL is the existence of real-valued clocks in ad-
dition to finite-state transition systems. In order to evaluate the approach
and to show its modularity, several implementations have been performed
to support various architectures ARM7, ARM9, and ATMEL AVR. The experi-
ments demonstrate that much tighter WCET estimates are found when taking
instruction caching into account: up to 96% tighter estimates, and 72.2% on
average. Also considering the data cache increases the average to 82.3%. Fur-
thermore, the average analysis time is just under four minutes when taking
both caches. Another work, in [91] also uses the UPPAAL toolbox to compute
WCET bounds. The target architecture is a shared memory multicore system
that executes parallel applications. The paper models and analyses the im-
pact on WCET from a memory hierarchy comprising shared L2 caches and

52

core-specific L1 instruction and data caches.
Thiswork [88] considers an architecturewith a 5-stage pipeline, an instruc-

tion cache, a dynamic branch prediction mechanism, a branch target buffer
(BTB) and a prefetch instruction buffer. The goal is to measure the impact
of dynamic branch prediction and BTB on the estimation of the WCET. The
approach models both the program and the architecture using UPPAAL. The
programmodeling relies on slicing to narrow the set of instructions andmem-
ory locations which are useful in calculating theWCET and to limit, in this way,
the state space explosion problem. The work considers a micro-architecture
inspired by the e200z4 Power 32-bit architecture, a 2-issue static scheduling
superscalar corewith five pipeline stages. The evaluation is conductedby a set
of experiments that used the Malardalen WCET benchmarks [101] to generate
the programs. The paper proves the positive impact of dynamic branch pre-
diction modeling on the WCET estimations. Indeed, A more effective predic-
tion strategy will result in fewer control risks and, thus, fewer configurations
for the pipeline’s lower stages, reducing the state space. Therefore, it shows
the capacity of model checking to analyze the complex interactions between
various micro-architecture components and to perform a complete analysis
of the whole system.

The WCET analysis is dependent both on the properties of the program
which is executed as well as the underlying hardware, thus, an accurate pro-
gram and architecture analysis leads to precise WCET estimations. The ar-
chitecture analysis aims to characterize the cache behavior [92], and the pro-
gram analysis requires trustworthy information about the binary code to de-
tect unreachable code paths [94] and loop bounds calculation [93]. The work
in [92] proposes an approach to remove the uncertainty in the memory ac-
cess, which can lead to the over-approximation of the WCET. The approach is
based on model checking to reason about unknown accesses classified with
an abstract interpretation analysis.

In addition, the paper [94] proposes Sequoll as a framework that employs
themodel checking on binary code to automatically compute both simple and
more complex loop bounds and verify infeasible path information. Sequoll
framework derives a control flow graph from the binary. Then, this graph
can be exploited to identify reducible loops defined with a single entry point
from outside the loop body. Sequoll framework analyses only reducible loops
via a depth-first search, locating the innermost loop for each instruction and
recreating the program’s loop nests. The CFG is converted into a Single State
Assignment (SSA) transformation to simplify the analysis. Therefore, a pro-
gram slicing is also applied to CFG with slice criteria based on the relevant
variables or control flow nodes The reduced program is then exploited with
model checking, which counts the number of times the loop entry node exe-
cutes. Furthermore, the work in [93] highlights also the loop bounds issues in
WCET analysis. The approach includesmodel checking to find loop bounds for

53

applications written in ANSI-C. The analysis framework generates some addi-
tional code to create a loop counter and to specify an assertion to be checked
then with model checking. The approach was tested on several benchmarks.

We continue with works on using model checking for verifying timing
predictability-related properties [95], in particular timing anomalies [6,96–
100]. Timing anomalies pose various issues in timing analysis thus this phe-
nomenon must be defined and included in the timing analysis workflow. The
work in [95] describes an application ofmodel checking to co-validate hardware-
software designs for verifying timing properties through TLA+ modeling and
verification tool. The work derives the timingmodels from hardware and soft-
ware features and verifies their consistency.

Model checking is also used to evaluate the presence/absence of timing
anomalies in predictable pipelines [96] and study their occurrences in an in-
dustrial processor [97]. The automated detection of timing anomalies is im-
plemented using bounded model checking in [96]. The focus of this work is
on amplification timing anomalies, defined as local timing variations leading
to even larger global timing variations. These timing anomalies are in general
caused by memory accesses.

The formal and executable proposed pipeline models are also developed
by hand, in [96], these models are based on a particular abstraction called
the canonical pipeline model, where a pipeline stage is modeled as a single
variable, and the instructions are abstracted to instructions classes. This work
experiments on several predictable pipelines modeled using the UCLID5 for-
mal framework. The amplification timing anomalies have also been verified
in [97], which considers a processor used in the automotive field - the Tri-
Core architecture. The paper extends the canonical pipeline model proposed
in [96] to cover the dual-pipelined TriCore and considers data dependencies
and structural hazards. The encoding and the verification are also performed
with the UCLID5 formal verification framework.

Otherworks related tomodel checking for timing anomalies are presented
in [6, 98]. These works focus on the code-specific problem to identify timing
anomalies based on the shared resources, where multiple instructions com-
pete for functional units. In particular, the work in [6] considers the case of
superscalar in-order pipelines, and the work in [98] is extended to treat out-
of-order pipelines. Both works use TLA+ specification language to formally
model the pipelines and verify the presence/absence of counter-intuitive tim-
ing anomalies using the TLC model checker tool.

Several formal definitions of timing anomalies exist in the literature [102–
104], which are based on the LTL logic defined in Chapter 2. The work in [99]
proposes a framework to test the existing definitions [102, 103]. The evalua-
tion is performed on a formal model of an out-of-order pipeline which en-
codes most of the definitions of timing anomalies into an executable proce-

54

dure based on model checking. The work in [100] revises the formalization
of counter-intuitive timing anomalies by adding the causality concept, which
establishes relations between local and global timing effects. The proposed
framework applies to a concrete architecture independent of the WCET anal-
ysis method. Furthermore, the main advantage of this formalization is that it
includes multiple variations and resource utilization of instructions to reason
about timing anomalies executions. This evaluation framework in [99] and
the formalization in [100] are based on the TLA+ formal modeling and verifi-
cation framework.

Summary. This section has presented works related to the formal ver-
ification of timing properties using model checking as the formal technique
adopted in our thesis. We have described the works related to the WCET
computation bounds, which employ model checking. Furthermore, we have
highlighted those that focus on timing anomalies-related properties. All these
works are based on building formal models of the architecture. Our work re-
volves around this purpose.

3.5 . Synthesis & Conclusion

This chapter reported related works relevant for our thesis work, which
aims to constructmicro-architecturemodels fromhardware designs. Wepresent
next the limitations in the state of the art and the main differences that moti-
vate the work described in the following chapters.

Many studies have been done for building pipelinemodels fromhardware
designs. Various works described come close to our approach proposed in
the following chapters. We aim to generate in this thesis a dedicated pipeline
model to verify timing properties. However, the works in [42–44] focus on the
functionality of the hardware designs given at RTL level. The construction of
the pipeline models in [42] requires preliminary information as the pipeline
depth, i.e., the number of stages as in [48] and the architectural resources.
Our objective remains mainly improved since we aim to automatically gener-
ate the datapath pipelinemodels byworking directly on the original processor
designs. Furthermore, our analysis seeks to provide a bound to the pipeline
depth value.

Other works also address code-level analysis (of hardware designs) to ex-
tract pipeline models for timing analysis [3, 4]. Their approach is based on
abstract interpretation to create a priori correct solutions. We propose an
approach that engineers a solution that could be validated a posteriori. Tim-
ing analysis on hardware designs focuses on the abstractions highlighting the
timing hardware constructions, thus, our thesis work will be based on the
register analysis in the pipeline models. Our approach will focus on the regis-
ters considered in the datapath part of the hardware designs. The work in [3]

55

proposes a semi-automatic analysis that separates the control and datapath
parts in its approach based on the simplification of the original design. In
comparison, the work in [4] combines program slicing with hard-coded ini-
tialization. Regarding the control path, our approach considers all the control
and datapath registers as long as they are in a given set of pipeline design
modules.

There are many other works [9–11, 14, 45–47] that aim to provide the re-
quired pipeline models in order to compute safe and precise WCET bounds.
However, theseworks handcraft thesemodels fromprocessormanuals. They
simplify the pipeline models into a single variable for a stage, which can not
reflect the pipeline design (e.g., forwarding). We aim to generate datapath
pipeline models with a proper abstraction level to obtain correct and precise
timing analysis. We consider the pipeline mechanisms that can impact the
timing behavior of the design and forwarding is among these mechanisms.
The models in [9–11, 14, 45–47] are designed to prioritize the instruction pro-
gression and not its actual computation. Furthermore, certain pipeline opti-
mizations, such as the forwarding mechanism, are not explicitly encoded in
the pipeline models but are handled at the code level through arbitrary tim-
ing values. However, the work [48], which creates a fully functional pipeline
model, also includes the forwarding mechanism in their pipeline synthesis
when assigning states to stages. Finally, in [48,49], the correctness of the au-
tomated pipeline design is ensured during its construction while we will rely
on techniques specific to software engineering to determine a solution.

The abstractions described in [3,4] are also basedonanalyzing thepipeline
registers. However, these approaches analyze primarily the low-level lan-
guages Verilog and VHDL code. Whereas our thesis work will be positioned on
high-level languages, we consider open-source processor designs developed
withmore expressive HDL languages such as Chisel/FIRRTL. Our proposed ap-
proachwill work on the AST of FIRRTL, targeting the Chisel/FIRRTL compilation
framework. We have presented in this chapter, through several comparatives
studies [65–69] the main advantages of high-level hardware description lan-
guages called hardware construction languages, in particular Chisel language,
over the low-level languages.

As introduced in this section, we have presented several techniques and
algorithms for program analysis. The abstract syntax tree (AST) traversal is
among these techniques described in [71, 72]. This AST traversal proposed in
these works is similar to what we need, as we focus on registers and will also
consider in the analysis the semantics of the AST nodes of the pipeline mod-
ule’s body. The approach in [72] poses the initial assumptions as common
function names between program versions to traverse and then go through
the AST to determine changes. Since we are interested in a register analysis,
we can fix the initial assumptions as the pipeline registers, and then we go
through the AST to construct the register analysis. Other works use depen-

56

dence graphs [5, 73, 74] to illustrate their code analysis. Our approach will
construct an intermediate representation of the datapath pipeline designs.
This intermediate representation performs a registers dependency graph to
build the pipeline model. Furthermore, static analysis and program slicing
are also presented in various works [75, 77–79]. Our proposed approach for
constructing pipeline models from high-level HDL designs needs also to use
static analysis and program slicing techniques. Our framework provides the
possibility to employ similar techniques as the program slicing. We favor the
timing aspect over other functional aspects of the design. Furthermore, we
also have the slicing criteria for the Chisel design as we focus on the datapath
pipeline modules. We will traverse the AST only for a given number of mod-
ules: the datapath pipeline modules. In addition, we will iterate over the AST
in order to determine dependency relations between registers as static analy-
sis (fixed-point computation), which determines relations between variables.
Moreover, we can verify the registers dependencies coverage as in [81], which
illustrates the implementation of static analysis to cover assertions.

We have detailed in this chapter theworks related tomodel checking used
to compute WCET bounds [87–94], also to prove timing predictability- related
properties [95] such as the detection of timing anomalies [6, 96–100]. The
work in [88] includes the branch prediction modeling in its pipeline models
construction. Furthermore, [93,94] computes the WCET bounds on an input
program that analyzes loop bounds. In our thesis work, we aim to execute a
sequence of instruction traces where the branches and bounds are already
resolved for the input programs. We intend to employmodel checking for the
architecture as in [89] without cache behavior characterization [92]. Instead,
we will integrate the cache latencies into the input program representation to
compute the precise pipeline cycles. Furthermore, we plan to use TLA+ for-
mal modeling and verification tools based on predicate logic and suitable for
the computer architecture instead of UPPAAL as in [87,91].

We intend to adopt the definition of timing anomalies from [104] and their
integration into the existing detectionprocedure for timing anomalies from [6].
Thedefinition concerns counter-intuitive timing anomalies unlike [96,97]where
they use model checking to verify the amplification timing anomalies with the
UCLID5 formal framework. We plan to construct the pipeline models that in-
clude the pipeline mechanisms. Thus, our models differ from that of these
previous works [6,95,98] in the architecture modeling.

3.6 . Problem Statements

The worst-case timing analysis is performed under (micro)-architecture
considerations. Our primary goal is to develop micro-architecture models,
mainly pipelinemodels, and thus derive, in this way, the required timingmod-
els. Themicro-architecturemodels are usually hand-crafted, frequently based

57

on documentation [6, 98] and validated through testing. There are several
static timing analyzers such as the industrial-strength tool aiT [14] and the
academic ones Otawa [9], Heptane [10] and Chronos [11], for which micro-
architecture models are developed in such a way. Since this process is error-
prone and time-consuming, we aim to address this issue through the auto-
matic generation of these models, specifically the pipeline models. This gen-
eration should be based on open-source hardware designs and should inte-
grate timing behavior as they are used to prove timing properties.

Recent trends in hardware design led tomore processor code beingmade
available 1. This progress is also supported by the emergence of new, high-
level design languages (e.g., Chisel [19] or SpinalHDL [20]), sitting at the top
of specialized hardware compilation frameworks (e.g., FIRRTL [105]). These
hardware compilation chains also have the possibility to define configurable
optimizations through compilation passes. In this context, the problem of
deriving convenient pipeline models is backed by a comprehensive hardware
compilation infrastructure. As a first purpose, we have to define the high-
level language semantics and deal with the compiler framework to develop
analysis.

In order to prove timing properties, we rely on formal verification as the
backbone of our work. Formal verification ensures that correct results are
producedunder all possible execution conditions. We focus on timing predictability-
related properties, more precisely on the detection of timing anomalies, thus,
the need to generate formal models and then to integrate them into a pro-
cedure for the detection of timing anomalies [6]. This application is used to
demonstrate the impact of automatically generated models.

We intend to address these key elements in the following chapters.

1. https://github.com/riscvarchive/riscv-cores-list
58

4 - Workflow of Timing Models Derivation

In this chapter, we present our general workflow to address the problem
of designing abstract architecture models in order to formally prove timing
properties. We detail the proposed workflow in Section 4.1, followed by a
description of the selected RISC-V HDL designs to illustrate our approach, in
Section 4.2. In Section 4.3, we give an overview of the HDL language and its
compilation framework, and then we highlight the complexity of the language
semantics through several RISC-V processor designs.

4.1 . Proposed Workflow

In order to ensure the respect of timing deadlines in safety-critical real-
time systems and to prove their correct behavior, we present in Figure 4.1
our general workflow for this purpose. Figure 4.1 summarizes our proposed
workflow for the formal verification of timing properties related to predictabil-
ity [6, 22], starting from hardware designs developed in a hardware compila-
tion framework. Thus, our workflow includes four major components. We
propose a workflow that analyzes the hardware designs under a compila-
tion framework (i.e., Hardware Compiler Framework component) to extract the
pipeline models for timing analysis (i.e., Pipeline Analysis and Program compo-
nents). Then, thesemodels are integrated into amodel-checking toolchain for
property validation (i.e., Formal Verification component). We detail next each
of these components and the workflow structure from the right-hand side
components to the left-hand side ones.

HCL
Design

IR RTL

Abstract Datapath
Pipeline Models

Property Proved

Hardware Compiler Framework

Formal VerificationPipeline Control
Logics

Pipeline Analysis

Abstract Design
Pipeline Models

Program
(ISA)

Formal Models

Property

Model
Cheker

Figure 4.1 – Formal verification of timing properties from hardware designsworkflow.
Various tools can be used to prove the timing behavior of the system, with

different degrees of confidence, from testing to formal verification. Our work-
flow is based on a formal verification approach. Formal verification needs to

59

specify the system and then verify its properties. In our case, those related to
timing predictability [6, 22]. [6, 22] employ a model checking on constructed
formal models for this purpose.

As such, our required formal models target mainly the non-functional be-
havior of hardware designs, in particular the processors, as our goal is to verify
their timing predictability-related properties. In other words, this means we
should be reasoning about executions of an input program on an underlying
architecture. In this setting, both aspects, that of the program (software) and
the architecture features (hardware), become equally important to character-
ize the timing behavior of the system. The programprovides a sequence of in-
structions to be executed while the architecture adds timing to this sequence,
e.g., counting clock cycles while instructions pass through the pipeline stages.
Since we do not need to consider all the functional aspects in our pipeline
models, the proposed formal models are based on an abstraction that con-
siders the execution progress of the instructions from the program through
the pipeline with cycle-accurate granularity. This combines the Program com-
ponent and Pipeline Analysis component. Therefore, the abstraction focuses
on the sequential logic of the pipeline, more specific details are addressed in
Chapter 5.

A pipeline design includes a datapath and a control path. Automatic con-
struction of these architectural models is possible because hardware designs
aremade available, i.e., open-source, and are supported by the emergence of
high-level HardwareDescription Languages (HDLs) and hardware compilation
frameworks, for example [18,20,21]. Differentways to abstract the pipeline can
be derived while analyzing its code, both data and control paths. Chapter 3
gives more details on the abstract models constructed. In our workflow from
Figure 4.1, the pipeline datapath model is automatically constructed. We note
that the control path captures the instruction flow through the pipeline stages
and currently, the control flow is manually developed and integrated with the
datapath in our model. Then, we also need to map the instructions, i.e., the
input program, on the abstract pipeline models such that we could define an
execution model, in terms of both software and hardware aspects.

Generating formal models from hardware designs is based on the accu-
rate representation of specific details of the processor micro-architecture. In
our workflow, in particular the Hardware Compiler Framework component, they
are derived from HDL processor designs, presented in Chapter 2. We are in-
terested in high-level design languages that pose different challenges when
generating abstract processor models specific to the targeted properties. We
specify the main challenges in Section 4.3. Note that our contribution related
to the automatic generation of abstract processor models is agnostic to the
choice of a hardware compilation toolchain but it is presented for Chisel/-
FIRRTL workflow. More precisely, we propose an analysis of HCL processor
designs based on the high-level language Chisel [19], sitting at the top of spe-

60

cialized hardware compilation frameworks (e.g., FIRRTL [23]). These hardware
compilation chains also have the possibility to define configurable optimiza-
tions through compilation passes. So, how can we take advantage of hard-
ware compilation frameworks to ease the generation of abstract pipeline-
level models? In this context, the problem of deriving convenient pipeline
models is backed by a comprehensive hardware compilation infrastructure.

The HCL designs and their intermediate representations (IR) generated
with the compilation chains correspond to the input of our workflow. The
Chisel/FIRRTL compilation chain is described in detail in the next section 4.2.
Our proposed approach to generate automatically the abstract pipelinemod-
els is described in Chapters 5 and 6. Then, we highlight the formal model
generation from the abstract pipeline models, this constitutes the output of
our workflow. Finally, we present the use of such outputs for the verification
of timing predictability-related properties. Both, workflow output generation
and its application are detailed in Chapter 7.

4.2 . Chisel/FIRRTL High-Level HDL Designs

We select the Chisel/FIRRTL hardware-compilation toolchain [18, 23] to il-
lustrate our approach. Chisel (Constructing Hardware In a Scala Embedded
Language) [18] is an open-source hardware-constructionDomain-Specific Lan-
guage (DSL) embedded in the Scala programming language. Chapter 2 in-
troduced the Chisel language and its corresponding Chisel/FIRRTL hardware
compilation framework. Chisel constitutes the frontend part of the toolchain,
FIRRTL is the middle-end from which all Scala-related hardware generators
have been executed, and Verilog is the backend. We focus next on describ-
ing the Chisel language and the FIRRTL representation, highlighting the main
features needed to develop our analysis.

4.2.1 . Chisel Hardware Description Language
Chisel offers a set of Scala libraries to write complex, parameterizable cir-

cuit generators and new hardware types that can be manipulated to produce
synthesizable Verilog. Each constructor in Chisel language combines the hard-
ware design elements and software programming features provided in Scala
language.

We introduce in this section some features of Chisel (Hardware Compiler
Framework component) with applications in RISC-V processor designs. These
examples include both Chisel (Module, Reg, Wire, Bundle, Vec, etc.) and
Scala constructions (val, class, function, etc.). Our pipeline analysis is
grounded on these constructs, hence on these languages and the compila-
tion toolchain. Chapters 5, and 6 address this pipeline analysis.

61

Modules. A hardware design in Chisel would typically consist of a set of mod-
ules. Chisel modules are defined using Scala classes, i.e., the keyword class.
A Chisel module contains at least one interface wrapped in an object IO().
For example, a Chisel DatPathmodule of the RISC-V Sodor processor [1] is de-
fined as follows, in Listing 4.1.

Listing 4.1 – Module in Chisel language.
1 class DatPath(width: Int) extends Module {2 val io = IO (new DpathIo ())3 val if_pc_next = Wire (())4 val if_reg_pc = RegInit (io.reset_vector)5 val mem_reg_inst = Reg(UInt())6 val wb_reg_inst = Reg(UInt())78 when (C1) {9 if_reg_pc := if_pc_next10 }11 val wb_reg_inst = RegNext(mem_reg_inst)12 if_pc_next := if_reg_pc + 413 }14 class Core(width: Int) extends Module15 {16 val io = IO(new CoreIo())17 val d = Module(new DatPath())18 d.io.reset_vector := io.reset_vector19 }

The variable if_pc_next is a wire declared inside themodule DatPath and
assigned later with the value if_reg_pc + 4, where if_reg_pc is a register
initialized to io.reset_vector, line 12, while d is an instance of DatPath de-
fined in Scala language with new in the module Core, in lines 14-19, which is
further used to access and update this particular value. The remaining con-
structions are described later.
Ports. Each module defines an interface IO to hardware components called
a port. A port is simply any data object that has directions assigned to its
members. The Chisel module DatPath of RISC-V Sodor processor defines a
new type DpathIo, in Listing 4.2, lines 1-4, that can be used as an IO interface
with ports defined by Input/Output Chisel language constructs. The Chisel
language also includes an IO compound named Flipped type. It changes the
direction of all fields of its argument. The class DpathIo defines a Flipped
type, line 4, in order to include the IO control interface through the class
CtlToDatIo, lines 6-8 in Listing 4.2.

62

Listing 4.2 – Port in Chisel language.
1 class DpathIo(width : Int) extends Bundle {2 val reset_vector = Input(UInt())3 val dec_inst = Output(UInt())4 val ctl = Flipped(new CtlToDatIo())5 }6 class CtlToDatIo extends Bundle() {7 val stall = Output(Bool())8 val if_kill = Output(Bool())9 }

DataTypes. The collection of bits is representedby Bits type and theBoolean
values by the Bool type. Chisel also provides Bundle, Vec, which are a com-
pound type to define collections of values with named fields. The Bundle type
contains Data types indexed by name, while Vec is an indexable vector of data
types. The code below, Listing 4.3 is a snapshot of the Rocket processor. The
Bundle and Vec presented, lines 2-3 are nested in order to build complex data
structures for the registers ex_ctrl and ex_reg_rs_bypass. Each field of the
class IntCtrlSigs is a register type, lines 4-8. For example ex_ctrl_fp is a
register type in Rocketmodule.

Listing 4.3 – Data Types in Chisel language.
1 class Rocket(width : Int) extends Module {2 val ex_reg_rs_bypass = Reg (Vec(width, Bool()))3 val ex_ctrl = Reg (new IntCtrlSigs)4 class IntCtrlSigs extends Bundle {5 val fp = Bool()6 val branch = Bool()7 val alu_fn = Bits(width)8 val mem_cmd = Bits(width)9 }10 }

Registers. In Chisel, there are several ways to declare and specify the connec-
tion to the register input. As shown in RISC-V Sodor processor in Listing 4.1,
the variable if_reg_pc is a register declared in the module DatPath using
the primitive RegInit, initialized with a value io.reset_vector, line 4, and
updated then in when construction that defines a conditional block, C1, line
8. Therefore, we pass the next value to the register wb_reg_inst using the
primitive RegNext, it will clock the new value every cycle unconditionally, line
11. Note that UInt design unsigned Int type for the registers mem_reg_inst,
wb_reg_inst, lines 5-6.

63

Other Constructs. A Chisel module features combinational and/or sequen-
tial circuitry design elements using design primitives. The operator := exe-
cutes a mono-directional connection element-wise from right to left, while
the operator <> is a bidirectional (i.e., bulk) connection element-wise.

Listing 4.4 – Other Constructs in Chisel language.
1 class Rocket(width : Int) extends Module {2 val ibuf = Module(new IBuf())3 ibuf.io.imem <> io.imem.resp4 when (!ctrl_killd) {5 ex_reg_pc := ibuf.io.pc6 }7 }

The operator <> is used to connect two modules, Rocket and IBuf, in List-
ing 4.4, line 3. Furthermore, the when block is used to perform a conditional
register update, whenever the condition evaluates to true.

4.2.2 . FIRRTL - The Intermediate Representation
FIRRTL language also has first-class support for high-level constructs such

as vector types, bundle types, conditional statements, partial connects, and
modules. These high-level constructs are then gradually removed by a se-
quence of lowering transformations. Eventually, the circuit is simplified to
resemble a structured netlist, which can then be translated into any output
language (e.g., Verilog). All FIRRTL constructs interoperate with one another;
a simplified circuit is expressed using a subset of the FIRRTL specification.

The FIRRTL representation is internally represented with an Abstract Syn-
tax Tree (AST) structure as described in Figure 4.2, where passes recursively
visit nested elements to manipulate the AST. Chapter 2 presents an example
of this pass. It consists of IR nodes represented by objects, each of which is a
subclass of the following IR abstract classes: circuit, module, port, statement,
expression, or type. The circuit is the root node of any FIRRTL data infras-
tructure, it consists of a set of modules. The statement node describes the
module body and includes the combinatorial and sequential logics as regis-
ters, connections, conditional blocks, etc. Each register update is represented
by a connect node that is also part of the statement class. Expressions repre-
sent references to declared components or logical and arithmetic operations.

Like the software compilers, the FIRRTL compiler framework transforms
the designs to the RTL level. It enables this automatic design transformation
through optimizations and other generic passes. Thus, the main features of
FIRRTL-based hardware compilation are its reusability and its extensibility of
customization. As such, we can develop and integrate custom passes in this

64

toolchain at different levels. Then, the compiler supports a robustmechanism
for communicating information throughout the compilation process to the
lower level. In this context, a question would be to find what are the main
differences between the FIRRTL levels, andwhich level is themost appropriate
to integrate our custom analyses via compilation passes. More details are
addressed in the next section.

Figure 4.2 – FIRRTL Abstract Syntax Tree (AST).

4.3 . Pipeline Construction in the Chisel/FIRRTL Framework

We describe in this section a description of the compilation framework
issues and features in Sections 4.3.1, and 4.3.2, followed by the presentation of
Chisel-based RISC-V processor designs for the goal of reporting the semantics
language complexity in Section 4.3.3.

4.3.1 . Choice of FIRRTL Forms
FIRRTL proposes different Intermediate Representations (IRs), named forms

(i.e., high, mid, low). Each form uses a smaller, stricter and simpler subset of
the Chisel language features and defines different transformations to gener-
ate the next (lower) form. Compiling FIRRTL to Verilog is developed as a set of
passes that implement optimizations, such as constant folding or dead-code
elimination. A so-called high form supports the Chisel high-level constructs
such as vector types, bundle types, and conditional statements that must be
lowered for synthesis. These constructs are replaced by a set of low-level fea-
tures, resembling a structured netlist that simplifies its translation to Verilog,
in the form named low-form. mid-form and low-form, are increasingly restric-
tive subsets of the FIRRTL language that omit many of the higher level con-
structs.

Wenowdescribe thedifferences between thehigh and low forms, through
several cases results from FIRRTL compilation. We also highlight some com-
pilation issues from Chisel to FIRRTL representation.

65

High/Low forms: Conditional Statements. The high form supports high-
level constructs such as conditional statements as when conditions, while in
the low form, these kind of statements go throughmultiple optimizations pro-
ducing instead a simplified and flattened set of multiplexers. The aim is to be
closer to hardware representation, as translated into Verilog.

We illustrate now this case, through a very simple example presented by
Listing 4.5. This example defines two registers, reg1 and reg2, at lines 1 and 2.
Both registers are initialized on reset using the RegInit construct. Note that
the reset and clock signals are implicit in Chisel (but can be explicit in the FIR-
RTL forms). Finally, both registers are updated at lines 3 and 4, but for register
reg2, this update depends on the value of the cond variable (actual value not
defined to simplify) and is thus performed within a Chisel when construct (line
4).

Listing 4.5 – A simple Chisel code.
1 val reg1 = RegInit(0.U(4.W))2 val reg2 = RegInit(0.U(4.W))3 reg1 := value4 when (cond) { reg2 := reg1 }

Listings 4.6 and 4.7 describe, respectively, the FIRRTL high form and low
form obtained from the Chisel code presented in Listing 4.5.

Listing 4.6 – FIRRTL high form from Listing 4.5.
1 reg reg1 : UInt<4> , clock with :2 reset => (reset, UInt<4>)3 reg reg2 : UInt<4> , clock with :4 reset => (reset, UInt<4>)5 reg1 <= value6 when cond :7 reg2 <= reg1

Listing 4.7 – FIRRTL low form from Listing 4.5.
1 reg reg1 : UInt<4> , clock with :2 reset => (UInt<1> , reg1)3 reg reg2 : UInt<4> , clock with :4 reset => (UInt<1> , reg2)5 node _GEN_0 = mux(cond, reg1, reg2)6 reg1 <= mux(reset, UInt<4> , value)7 reg2 <= mux(reset, UInt<4> , _GEN_0)

It can be noticed that the when statement remains in the high form (line 6,
Listing 4.6), while it is translated into a multiplexer in the low form (line 5,

66

Listing 4.7). Note that in Chisel, a condition can be translated into a set of
multiplexers to implement a multi-variable condition.

Such a statement can be safely translated into a formal statement when
targeting a pipeline-stage abstract model. Thus, the higher-level form facili-
tates the integration of our design-level properties, which demonstrates the
need to develop custom FIRRTL passes in high-level form.

4.3.2 . Chisel to FIRRTL Compilation Issues
Chisel is compiled in FIRRTL representation through multiple passes. Our

analysis is positioned in FIRRTL high-level form. We present next the main
issues and differences through the compilation from Chisel constructions to
FIRRTL high form.
RegNext Construct Compilation. The register update can be expressed in
Chisel in different ways, as explained in Section 4.2.1. The Chisel construction
RegNext is employed in order to delay one cycle the associated register up-
date. In order to ensure this delay through compilation, an additional register
is implemented for each delay at the FIRRTL high-level form.

We illustrate now this implementation through an example in the Kyo-
genRVprocessor described in Listing 4.8. The registers imem_read_sig, imem_req
are two Boolean registers, where the second one is updated under the condi-
tional statement whenwith RegNext constructionwith the value of the first reg-
ister respectively (line 4). We notice that at the FIRRTL high-level form in List-
ing 4.9, an additional register REG_1 appears in conditional block when, lines
6-8. It ensures the one-cycle delay for the register imem_req update. Gener-
ally, these additional registers are identified by a general structure REG in our
analysis. This issue can produce an additional register dependence, which
leads to an inaccurate analysis. However, we can handle this issue by relying
on these registers FIRRTL names.

Listing 4.8 – Chisel code of Kyogen processor.
1 val imem_read_sig: Bool = RegInit(false.B)2 val imem_req: Bool = RegInit(false.B)3 when (cond) {4 imem_req := RegNext(imem_read_sig)5 }

Bulk Connection Compilation. The bidirectional connection is performed
using the bulk connection constructor provided by the Chisel language. It is
expressed by the operator <> and allows components with aggregate types

67

Listing 4.9 – FIRRTL high form from Listing 4.8.
1 reg imem_read_sig : UInt<1> , clock with :2 reset => (reset, UInt<1> ("h0"))3 reg imem_req : UInt<1> , clock with :4 reset => (reset, UInt<1> ("h0"))5 when cond:6 reg REG_1 : UInt<1> , clock with :7 reset => (UInt<1> ("h0"), REG_1)8 REG_1 <= imem_read_sig9 imem_req <= REG_1

to be connected in a type-safe manner with a single statement. However,
the FIRRTL compiler removes this bulk connection through transformations.
These passes rewrite the bulk connection into a series of individual connec-
tions. To illustrate this feature, we present a snapshot of the Chisel code
in Rocket processor in Listing 4.10, and its corresponding FIRRTL code is de-
scribed in Listing 4.11.

Listing 4.10 – Chisel code of Rocket processor
1 class FrontendResp extends Bundle {2 val pc = UInt(32)3 val data = UInt(40) }4 class IBuf extends Module {5 val io = IO(new Bundle {6 val imem = Flipped(Decoupled(new FrontendResp))78 })}9 class FrontendIO extends Bundle {10 val resp = Flipped(Decoupled(new FrontendResp))}11 class Rocket extends Module {12 val io = IO(new Bundle {13 val imem = new FrontendIO14})15 val ex_reg_pc = Reg (size)16 val ibuf = Module (new IBuf)17 when (cond1) {18 ex_reg_pc := ibuf.io.pc }19 ibuf.io.imem <> io.imem.resp20 }

68

Listing 4.11 – FIRRTL high form from Listing 4.10.
1 module IBuf:2 output io:3 flip imem: {flip ready: UInt<1>, valid: UInt<1>,4 bits: {pc: UInt<40>, data: UInt<32>}5 module Rocket:6 output io:7 imem: flip resp: {flip ready: UInt<1>, valid: UInt<1>,8 bits: {pc : UInt<40>, data: UInt<32>}}9 inst ibuf of IBuf10 when cond1:11 ex_reg_pc <=ibuf.io.pc12 ibuf.io.imem.bits.pc <=io.imem.resp.bits.pc13 ibuf.io.imem.bits.data <=io.imem.resp.bits.data

The Rocket module includes the module IBuf, in Listing 4.11, line 9, us-
ing the instance element inst. Each module has its IO interface grouped in
Bundle type, in Listing 4.10, lines 5, and 12. Each field is a simple input/output
or an instance of another defined IO class. For Rocketmodule, the value imem
is an IO instantiated from the class FrontendIO and then FrontendResp, line 6.
This IO implementation is performed through the compound type of the IO in-
terface named DecoupledIO. DecoupledIO is an interface for data transfer. It
has three signals or elements: valid and bits are output signals controlled
by the source, the first is activated if there is data to transfer and the second
corresponds to the data. ready is an input signal controlled by the receiver
and indicates that it is ready to receive the data. For the modules Rocket and
IBuf, the class FrondendResp, lines 1-3, is an IO interface used as DecoupledIO,
lines 6, 13, and 10.

In order to connect the IO interface of two modules, the bulk-connection
<> is implemented in the module Rocket. This connection is shown with red
arrows in Listing 4.10, line 19. The connections of this operator are then com-
piled into individual connections of each construction field, in lines 12-13 in
Listing 4.11. Each individual field pc and data in Rocket and IBufmodules are
connected then in high form FIRRTL level. The interfaces between modules
are implemented using this kind of connection components. Thus, their com-
pilation into FIRRTL high form level leads to connecting the constructions of
the modules interfaced. However, it can add a cost in terms of analysis run-
time.

4.3.3 . Description of Chisel-Based Processor Pipelines
The pipeline architecture in Chisel-based processors also includes a con-

trol path and datapath. Using themodularity of Chisel/Scala, Chisel hardware
designers can develop the control path and datapath in separate modules
that interact with each other. As such, it facilitates the management of the

69

abstract pipeline models expected to generate, with a clear overview of the
pipeline design. Furthermore, we can analyze both control and datapath with
the aim of generating timing models without focusing on the functional as-
pect. We introduce next several hardware design features using code snap-
shots of RISC-V processors designed through the Chisel/FIRRTL compilation
framework. We intend to describe how the pipeline architecture is built in
Chisel-based processors. We detail the pipeline structure in Chisel, the con-
nection between pipeline stages through the connection between pipeline
registers, and how the micro-architecture mechanisms such as forwarding
are implemented in Chisel.

We present first the pipeline design structure of different Chisel-based
processors. We exemplify them with the mono-module pipeline of KyogenRV
processor [29], then the multi-module and hierarchical pipeline design of the
Rocket processor [2] and the flat and parametric pipeline construction of the
Fuxi processor [30]. The multi-module pipeline refers to the pipeline design
specified in several FIRRTL modules. We present how Scala constructions
added in Chisel implement the connection between these modules. Finally,
we present two different implementations of the forwarding mechanism, as
developed in RISC-V Sodor [1] and Fuxi [30] processors.
KyogenRVPipeline. Thepipeline design in theKyogenprocessor is presented
as a 5-stage (IF, ID, EX,MEM,WB)with amono-module architecture. Its pipeline
architecture is presented in a single Chisel/FIRRTL module as shown in Fig-
ure 6.7.

Listing 4.12 describes a simplified Chisel pipeline code of the KyogenRV
processor. The pipeline datapath is specified in a single Chisel module named
KyogenRVCpu. The pipeline registers are all defined inside this module, lines
2-5. The sequential logic represented by registers is updated through the
combinatorial logic using when conditional block, lines 6-8. Thereafter, the
connection between pipeline stages is established.

Listing 4.12 – Simplified Chisel code of Kyogen datapath pipeline.
1 class KyogenRVCpu:2 val if_pc: UInt = RegInit()3 val id_inst: UInt = RegInit()4 val id_pc: UInt = RegInit()5 val ex_pc: UInt = RegInit()6 when(cond1) {7 id_pc := if_pc8 id_inst := io.r_imem_dat.data9 }10 ex_pc := id_pc

70

KyogenRVCpu

Stage(i) Stage(i+1)

reg(i)

reg1(i+1)

reg2(i+1)

Figure 4.3 – Datapath pipeline module of Kyogen processor.

Rocket Pipeline. The Rocket core is a 5-stage pipeline (IF, ID, EX, MEM, WB).
However, it is sometimes presented as a 6-stage pipeline with a separate
stage implementing the branch prediction algorithm. The Chisel design of
Rocket consists of several modules grouped into two parts – Frontend and
Rocket, corresponding to the pipeline frontend and the pipeline backend re-
spectively, as shown in Figure 4.4. More specifically, the first two stages, PC-
generator and IF, are implemented in the Frontendmodule, while the remain-
ing four pipeline stages (i.e., from ID to WB) are in the Rocket module. Fig-
ure 4.4 also presents the connections between the pipeline design elements
(e.g., registers or input/output interfaces); the corresponding code snippets
are in Listing 4.13 in Chisel and in Listing 4.14, in FIRRTL high form. From the
code organization point of view, the pipeline is developed in five modules:
Rocket, IBuf, Frontend, ShiftQueue and RocketTile.

RocketTile

Frontend Rocket

ShiftQueue
IBuf

ex_reg_pc mem_reg_pc wb_reg_pc

buf_pc
io.pc

io.imem

s1_pc s2_pc

io.enq io.deq

io.cpu

io.imem

Figure 4.4 – Datapath pipeline modules of Rocket core.
71

Listing 4.13 – Simplified Chisel code of Rocket datapath pipeline.
1 class RocketTile:2 val core = Module(new Rocket)3 frontend.module.io.cpu <> core.io.imem4 −−−−−−−−−−−−−−−−−5 class Rocket:6 val ex_reg_pc = Reg (size)7 /* decls: mem_reg_pc and wb_reg_pc */8 val ibuf = Module (new IBuf)9 when (cond1) {10 ex_reg_pc := ibuf.io.pc11 /* updates: mem_reg_pc and wb_reg_pc */ }12 ibuf.io.imem <> io.imem.resp13 −−−−−−−−−−−−−−−−−14 class Frontend:15 val io = IO(... /* cpu field */)16 /* decls: s1_pc and s2_pc */17 s2_pc := s1_pc18 val fq = Module (new ShiftQueue)19 fq.io.enq.bits.pc := s2_pc20 io.cpu.resp <> fq.io.deq21 −−−−−−−−−−−−−−−−−22 class IBuf:23 val io = new Bundle {/* imem and pc fields */}24 val buf = Reg (io.imem.bits)25 buf.pc := io.imem.bits.pc26 io.pc := Mux (cond2, buf.pc, io.imem.bits.pc)27 −−−−−−−−−−−−−−−−−28 class ShiftQueue :29 io.deq.bits := io.enq.bits

Listing 4.14 – High-form FIRRTL for Listing 4.13.
1 module RocketTile:2 inst frontend of Frontend3 inst core of Rocket4 core.io.imem.resp.bits.pc <=5 frontend.io.cpu.resp.bits.pc6 ---------------7 module Rocket:8 inst ibuf of IBuf9 when cond1 :10 ex_reg_pc <=ibuf.io.pc

72

11 /* updates: mem_reg_pc and wb_reg_pc */12 ibuf.io.imem.bits.pc <=io.imem.resp.bits.pc13 ibuf.io.imem.bits.data <=io.imem.resp.bits.data14 ---------------15 module Frontend:16 output io: {.../* cpu field */}17 s2_pc <=s1_pc18 inst fq of ShiftQueue19 fq.io.enq.bits.pc <=s2_pc20 /* explicit update, field by field, of <>*/21 ---------------22 module IBuf:23 output io : {/* imem and pc fields */}24 reg buf.pc : UInt<40>25 buf.pc <=io.imem.bits.pc26 node _io_pc_T_1 =27 mux(cond2, buf.pc, io.imem.bits.pc)28 io.pc <=_io_pc_T_129 ---------------30 module ShiftQueue:31 io.deq.bits.pc <=io.enq.bits.pc

Listing 4.13 describes how the pipeline modules are connected. Thus, we
illustrate the connection between the registers PC (i.e., those with _pc suffix)
of all the pipeline modules in different stages. The RocketTilemodule is de-
signed to connect the modules Frontend (not shown) and Rocket, in line 2
using their respective IO interface (frontend.module.io.cpu
<> core.io.imem), in line 3. This connection is shown with red arrows in Fig-
ure 4.4 and implemented using the bulk operator <> in Chisel. The PC reg-
isters ex_reg_pc, mem_reg_pc, wb_reg_pc are described in the same module,
i.e., Rocket, while the PC register of the decode stage is presented in the IBuf
module. IBuf is instantiated in Rocket in order to connect the decode and
execute stages through the output io.pc, which receives the output of the
register buf.pc in the IBufmodule, in lines 28-30 in Listing 4.7.

The registers of fetch and decode stages are connected through the inter-
faces between the correspondingmodules. The register buf.pc of the decode
stage, in the IBufmodule, is interfaced with the input port io.imem.bits.pc,
in line 27 in Listing 4.7. The PC registers s1_pc and s2_pc of the fetch stage
are in the Frontendmodule, and s2_pc is connected to the output port
fq.io.enq.bits.pc which is an element of the ShiftQueue module, in line
21 in Listing 4.7. Here, the ShiftQueue module is used as an I/O interface
as it connects the input io.enq to io.deq which is connected to the output
io.cpu.resp. Thus, the fetch stage register s2_pc is connected to the output
io.cpu.resp, while the input io.imem.bits.pc is connected to the decode

73

stage register buf.pc. Finally, the connections between registers in pipeline
stages are obtained through the IO interface of the module RocketTile.
Fuxi Pipeline. Fuxi is a 32-bit pipelined RISC-V processor, designed to run
simple operating systems and bare-metal software. In contrast to the hier-
archical pipeline design of Rocket, in Fig. 4.4, the pipeline design of Fuxi is
flattened, in Fig. 4.5. More precisely, each pair of pipeline stages (e.g., Fetch
and Decode) is connected through an interface I/O named StageIO, described
in a module MidStage.

Core

Stage(i) MidStage Stage(i+1)

io.stage(i) io.prev
reg(i)

StageIO

ff io.next io.stage(i+1)
reg(i+1)

Figure 4.5 – Datapath pipeline modules of Fuxi.
Listing 4.15 shows a simplified Chisel implementation of how the pipeline

modules of Fuxi are connected. More precisely, the module Midstage is in-
stantiated several times, using the StageIO interface, creating the pipeline
connectors between stages, in lines 2-3 of Listing 4.15. The connection of two
pipeline stages is through the I/O interface of Midstage, which features two
ports, prev and next, lines 14-15. Moreover, Midstage contains a bundle reg-
ister named ff, where each field is a simple register.

Listing 4.15 – Simplified Chisel code of Fuxi processor.
1 class Core:2 val ifid = Module(new MidStage(new FetchIO))3 val idex = Module(new MidStage(new DecIO))4 /* Idem for AluIO and MemIO */5 −−−−−−−−−−−−−−−−−6 class StageIO extends Bundle7 class FetchIO extends StageIO:8 ... val pc = UInt(Width)9 /* Idem for DecoderIO, AluIO and MemIO */10 −−−−−−−−−−−−−−−−−

74

11 class MidStage (StageIO):12 val io = IO(new Bundle {13 /*IO of previous/next stage*/14 val prev = Input(StageIO)15 val next = Output(StageIO)16 })17 val ff = Reg(StageIO)18 when (cond) {19 ff := io.prev20 }21 io.next := ff

Forwarding of Sodor and Fuxi. Sodor is a family of processors of different
pipeline depths, from 1- to 5-stage. We present, in Listing 4.16, a snippet of
Sodor 5-stage processor design, i.e., a classical IF to WB pipeline. More specif-
ically, we focus on its forwarding mechanism from the later pipeline stages to
the EX stage. The input to register exe_rs2_data of EX is updated, in line 9,
with the result of the forwarding, through the wire dec_rs2_data, in lines 4-7.
This forwarding is coded with a Chisel construct MuxCase – a syntactic sugar
for a cascade of multiplexers with conditions C1-C3, lines 5-7, where each se-
lection dependency is represented as a tuple in a Scala array. At FIRRTL level,
the MuxCase construct is compiled into nested Mux, for each selection.
Listing 4.16 – Forwarding implementation in the pipeline of Sodor.

1 val exe_rs2_data = Reg (size)2 val dec_rs2_data = Wire (size)3 /* C1-C3: enable and selection signals */4 dec_rs2_data := MuxCase (rf_rs2_data,5 Array (C1→ exe_alu_out,6 C2→ mem_wbdata,7 C3→ wb_wbdata))8 when (C4) /* C4: no stalling condition */ { ...9 exe_rs2_data := dec_rs2_data }
The forwarding of Fuxi is implemented using a Scala function forwardReg

with IO interfaces as parameters, i.e., the register file rf and the operand read,
as shown in Listing 4.17, line 1. Fuxi proposes an alternative implementation of
the forwarding condition checks C1-C3, namely the MuxCase implementation
of Sodor is replaced by when-.elsewhen statements of Chisel, in lines 3-10.
Each forwarding path is then created using calls to forwardReg, in lines 13-14.
This function is called for two operands of the instruction in the Decode stage:
io.regRead2/io.regRead1. Thus, the data read.data is updated under the
when condition if it matches execute, memory, or write back addresses.

At the FIRRTL level, the hardware compilation framework flattens all the
75

abstract functions and takes into account the function calls with the call pa-
rameters instead. The Listing 4.18 describes the corresponding FIRRTL high
formof the function forwardReg(io.regRead1, io.rf1) called in Listing 4.17,
line 13.

Listing 4.17 – Forwarding implementation in the pipeline of Fuxi.
1 def forwardReg(read: RegReadIO, rf: RegReadIO) {2 /* C1-C3 : condition signals */3 when (C1) {4 read.data := io.aluReg.data5 } . elsewhen (C2) {6 read.data := io.memReg.data7 } . elsewhen (C3) {8 read.data := io.wbReg.data9 } . otherwise {10 read.data := rf.data11 }12 }13 forwardReg(io.regRead1, io.rf1)14 forwardReg(io.regRead2, io.rf2)

Listing 4.18 – FIRRTL high form of forwarding implementation in thepipeline of Fuxi.
1 node _T = neq(io.regRead1.addr, UInt<1> ("h00"))2 node _T_1 = and(io.regRead1.en, _T)3 when _T_1 :4 node _T_2 = eq(io.regRead1.addr, io.aluReg.addr)5 node _T_3 = and(io.aluReg.en, _T_2)

The code snippets in Listing 4.13 to Listing 4.18 present processor design
choices addressedusing Scala/Chisel programming language-specific constructs.
Since Chisel is built over Scala, it is often the case that processor designs mix
constructs of the two languages. For example, the forwarding of Sodor com-
bines a Chisel MuxCase with a Scala Array, while the forwarding of Fuxi em-
beds a Chisel when-.elsewhen in a Scala function. Furthermore, all the con-
nection between pipeline modules is performed using the interface IO. They
are implemented in Chisel with the bulk connection construct.

Different descriptions of Chisel-based processors are presented in this
section, such as the pipeline structure and the various ways to implement the
forwarding mechanism at Chisel and its compilation at the FIRRTL level. We
have shown that relying on the FIRRTL level allows us to capture the Chisel di-
versity in our analysis. Furthermore, we highlight the complexity of the hard-
ware compilation framework to compile the Chisel constructions.

76

4.4 . Conclusion

In this chapter, we have detailed our proposed workflow, which is to be
used to formally prove timing properties. We have proceeded first to present
the selected high-level HDL language and its compilation framework Chisel/-
FIRRTL, as the expected input of our workflow. We have introduced then the
Chisel constructions that we rely on to develop our approach in Section 4.2.
Themain goal of Chisel HDL is to allow complex hardware designs fromsimple
components using an advanced module system (in a combination of Scala’s
features andChisel’s specialized operators and language constructs). In essence,
Chisel proposes syntactic sugars to represent a hardware design as a series
of primary component updates (wires, registers) under various static and dy-
namic evaluation contexts (classes, objects, functions, when-blocks etc.). Chisel
is compiled in FIRRTL representation which has three levels (high, mid, low),
and designs written in Scala are typically transformed into the high form of
FIRRTL, which goes throughmultiple optimizations passes to a low form. Since
we aim to formally verify the timing properties, we need to construct the
micro-architecture models with an appropriate level of abstraction. Thus, we
implement our analysis at the high form of FIRRTL, where the designs are
not flattened and preserves the Chisel semantics as when conditional blocks
(that FIRRTL low form flattens their structure and uses a Mux instead, mak-
ing the condition extraction more difficult). These Chisel statements describe
the different execution paths under conditions that go with timing properties
analysis.

The complexity of the hardware compilation framework and the diversity
of Chisel design implementations presented in section 4.3 confirm the need
for studies of the hardware compilation features/issues. Furthermore, the
code analysis of Chisel HDL processor designs (e.g., pipeline structure - stages,
register forwarding, etc.) is the first brick in our approach. Therefore, the
abstract pipeline model needs to include the pipeline structure in terms of
single/multi-module pipeline, also the hierarchy of the pipeline in order to
ensure the efficiency and strength coverage of our approach.

We intend to address our approach that generates the abstract pipeline
models in the next Chapters 5, and 6.

77

78

5 - Register Analysis of Pipeline Designs

The construction of the complete abstract pipeline models requires both
datapath and control path models as described in the workflow in Figure 4.1.
Generally, these pipeline models are developed manually and their develop-
ment is based on themanuals providedby themanufacturers of the hardware
platforms. However, in our work, we aim to automatize the construction of
abstract datapath pipeline models combined with manual control logic to de-
fine the execution models on these architectures.

Each datapath pipeline design comprises several components (ALU, CSR,
Memory, Registers, etc.) that perform all the required operations. Since our
approach aims to verify the timing properties, we construct the abstract dat-
apath models with a focus on the timing aspect of the pipeline; namely, we
focus on the pipeline stages and, more precisely, the pipeline registers.

In this chapter, we describe howwe can construct datapath pipelinemod-
els automatically, starting with a register analysis. We present the registers
analysis for different pipeline structures in Section 5.1. We apply this anal-
ysis on RISC-V Chisel-based processors and detail the results in Section 5.2.
Then, we summarize the experimental results on these RISC-V processors in
Section 5.3.

5.1 . Register Analysis Formalization

In order to construct a pipeline datapath model for the timing analysis,
we need to determine the pipeline depth (i.e., the number of pipeline stages)
as well as the connections between these stages. A pipeline stage is to be
identified by a set of registers, which are updated whenever the pipelined
execution passes from a stage to another.

Intuitively, the construction of a pipeline datapath proceeds as follows: we
compile the Chisel code of hardware designs into the corresponding FIRRTL
representation (AST). Then, we proceed with the development of our custom
pass, which allows us to process the FIRRTL AST and build the desired datap-
ath pipeline abstraction. Writing a FIRRTL pass usually requires writing func-
tions that traverse the FIRRTL data structure (AST) to either collect information
or replace IR (i.e., Intermediate Representation) nodes with new IR nodes. The
circuit is the root node of any FIRRTL AST, and there is only one Circuit. The
circuit contains a list ofmodule definitions and the name of the top-levelmod-
ule. The pipeline modules are given as input, and for each register in these
modules, we investigate each module in order to perform a register analy-
sis to determine precedence relations between registers. We also perform
an output port analysis to determine how registers from different modules

79

will be connected. Finally, we provide an assignment procedure to map each
register to a pipeline stage according to the results of the previously men-
tioned analyses. This phase is more detailed in the next Chapter 6. Next, we
introduce some notations and definitions, following a standard set-theoretic
approach.

Notations. We consider Pr = {M1,M2, ...,Mn}, a processor design, de-fined by a set of n modules Mi and P the pipeline of Pr, with P ⊆ Pr. We
assume that P is given and the (FIRRTL) AST of P is denoted by ASTP , so as
ASTM represents the AST of eachM ∈ P .

Furthermore, for each moduleM ∈ P we define:
- Insts, the set of instanced modules,
- I/Os, the set of input/output ports,
- Regs, the set of registers (or sequential logic),
- Combs, the set of combinatorial elements (e.g., wires,multiplexers, etc.),
- Ctxs, the set of contexts (scopes),
- Exts, the set of external entities.
Each of these sets, when subscripted byM represents the corresponding

set of a module M and, when subscripted by P , represents the union of all
the corresponding sets of the pipeline modules in P .

An element ins ∈ InstsM identifies the name and the type of a mod-
ule instantiated in M . The module of P which contains directly or indirectly
(through transitivity) the instances of all the other pipeline modules in P is
called ‘top‘, denoted by ⊤.

Furthermore, an element x ∈ I/Os, Regs or Combs is the identifier of
the respective design element, i.e., x is a name of an input/output port or a
register or a wire.

An element ctx ∈ CtxsM is defined as a mapping between the context
condition and the respective register updates in M . A context, which is ex-
pressed in Chisel with a when statement, allows guarded register updates (or
any other combinational element) in a compactmanner. Moreover, when is of-
ten used to provide alternative updates of the same register, updates which
are guarded by different conditions.

Our approach considers a given set of pipeline modules P , which is a sub-
set of Pr, the complete processor design.

We denote by Exts, the set of all design elements (i.e., ports, registers,
wires, etc.) which are defined in Pr \ P . For a module M ∈ P , we define
by ExtsM , the set of external design elements which are used in M . For ex-
ample, RegsM consists of only the registers defined in module M , whereas
the "external" registers of M (e.g., defined in other modules but used in M)
are to be included in ExtsM . A similar argumentation stands for I/OsM and
CombsM with ports and respectively, wires being also included in ExtsM .

80

5.1.1 . Register Analysis Algorithm
Wepresent next the algorithm to construct pipeline datapathmodels from

Chisel-based processor designs. As such, we introduce an intermediate rep-
resentation of the processor pipeline P , based on the set of pipeline registers
Regs, a set of dependency relations between these registers, and a set of con-
texts Ctxs. The dependencies between registers are used to produce chains
of registers, and the contexts are used to determine additional relations be-
tween these registers, encoding how the processor is coded. Intuitively, this
intermediate representation is a non-strongly connected graph with registers
as nodes and their dependencies as edges. Also, different contexts determine
different connected components in this graph.

The setsRegs, Combs, I/Os andCtxs of P are obtained, for eachmodule
M ∈ P , from the ASTP , using the standard visitor from [105]. We name this
operator

process_mod : ASTM → I/Os×Regs× Ctxs.

The initial partition of the processor design Pr into the pipeline design P is
also sufficient to determine the set Exts.

The following Algorithm 1 illustrates our AST visitor used to construct the
sets Regs, Combs, I/Os and Ctxs of P . Algorithm 1 is a recursive algorithm
that visits all FIRRT nodes in the AST. First, we start with the root node circuit
of our FIRRTL AST, line 2. The circuit is composed of a set of modules. We visit
each module with the function walkModule, lines 5-7. For each visited mod-
ule, we visit the module body which includes the set of statements and ports
through walkStatement, lines 9-15 and walkPort functions, lines 17-20. The
statement node contains the registers defined as DefRegister node, condi-
tions through Conditionally node, updates and assignment of variables as
Connect node, etc., lines 12-14. Moreover, the ports can be an input or an out-
put module defined as BundleType node with a specification of the direction,
line 19. We store the set of registers, contexts, and input/output ports from
the nodes browsed. For each visited statement, we visit each of its children
statement and expression nodes expressed in walkExpression function, lines
22-25. Note that all the FIRRTL transformations use these recursive walks of
the FIRRTL AST to modify or simplify the circuit.

To express a recursive walk, every IR node has implemented a custom
map function. A node’s map applies a user-specified function to the subset
of children whose node type matches the function’s input and return node
type. For example, in walkModule function, map function will be applied to
the module’s children which are the statement nodes, and then return the
module as the node type, lines 6-7. We recursively walk all FIRRTL modules,
statements and expressions by calling map on modules, statements and ex-
pressions. This procedure is called the pre-order traversal, as we traverse the
FIRRTL AST using map to write recursive functions that visit every child of every

81

node.
Algorithm 1: Process Module Function
Input : P and state = ASTP - The FIRRTL AST
Output: Cstrs : Regs, I/O, Ctxs - Data structure sets of P

1 Function process_mod(state):
2 circuit = state.circuit /* root node of AST FIRRTL */
3 Cstrs← circuitmap walkModule /* browse circuit’s modules

and store data structure */

4 return Cstrs;
5 Function walkModule(module):
6 module.map(s => walkStatement(s)) /* browse the module */
7 module.map(p => walkPort(p)) /* go through the ports */

8 returnmodule;
9 Function walkStatement(stmt):
10 stmt.map(s => walkStatement(s)) /* for children statement */
11 stmtmatch
12 case reg: DefRegister => Cstrs_Regs = Cstrs_Regs ∪ {reg}
13 case cd: Conditionally => Cstrs_Ctxs = Cstrs_Ctxs ∪ {cd}
14 case other => skip
15 stmt.map(s => walkExpression(s)) /* visit each expression */

16 return stmt;
17 Function walkPort(p):
18 pmatch
19 case bd: BundleType => Cstrs_I/Os = Cstrs_I/Os ∪ {bd}
20 case other => skip
21 return p;
22 Function walkExpression(exp):
23 expmatch
24 case mx : Mux => walkExpression(mx)
25 case other => skip
26 return exp;

A depth-first search traversal of the ASTP establishes an order between
the considered pipeline modules, determined by the instancing relation, i.e.,
the set Insts. However, for a module that is instantiated several times, e.g.,
MidStage of Fuxi, in Listing 4.15, our approach computes a module summary
and uses it for all instances of this particular module. We denote by

order_mods : P ×ASTP → P

an operator which establishes an order between the pipeline modules up to
top ⊤ as the last element.

Informally, an analysis for a module has (1) an intra-module component
that focuses on the module’s registers and (2) an inter-module component

82

that overcomes themodule and focuses on themodule’s interface (i.e., input-
output ports), in order to connect between several pipeline modules.

We address the intra-module part by computing dependencies between
registers through a visitor combinator, characterizing the connectivity of each
register w.r.t. the other design elements. Operationally, for a given register r
in moduleM , a visitor combinator iteratively collects the nodes of the ASTMwhich affect the inputs of r. This iterative process corresponds to a standard
dataflow analysis which terminates at a register frontier, defined next.
Definition 12 For a register r ∈ RegsM , we denote by Inr the input frontier of
r, defined by {c1, c2, ..ci.., cn}, where ci ∈ RegsM or ci ∈ I/OsM or ci ∈ ExtsM .

Such an input frontier contains three kinds of design elements: registers
(i.e., that precede r in the pipeline datapath), ports or other design elements of
the considered pipelineP . These are stop conditions of the visitor combinator
as it aims to collect, for all registers in each module M ∈ P , the respective
register contexts.
Definition 13 For a register r ∈ RegsM , we denote by Cr the register contextof r, defined by the pair ⟨Inr, out⟩ with Inr and out being the input frontier and
the output connection of r respectively.

The register context Cr is computed by an operator
regs_ctx : ASTM ×Regs× I/Os→ In×Regs

where In is the set from Definition 12.
The goal of the inter-module part of our analysis is to determine, for each

pipeline module an input-output interface in order to connect the registers of
different modules. Hence, we also define an output frontier of a module.
Definition 14 For an output port p ∈ I/OsM , we denote by Outp the output
frontier of p, defined by {c1, c2, ..ci.., cn}, where ci ∈ RegsM or ci ∈ I/OsM .

An output frontier is established for each output port p of a module M

which registers or input ports are connected to it. The connections between
the module’s registers and the output port are particularly important when
connecting registers from different modules.
Definition 15 For an output port p ∈ I/Os, we denote by Cio the output con-
text of p, defined by (Outp, p) with Outp and p being the output frontier and the
output respectively.

83

The output context Cio is computed by an operator
ios_ctx : ASTM ×Regs× I/Os→ Out× I/Os

where Out is the set from Definition 14.
For a pipeline module M , for all registers r ∈ RegsM and output ports

p ∈ I/OsM , the operators regs_ctx and ios_ctx determine a summary ofM .
Next, our approach determines the dependency relations between registers.
We establish first a precedence relation between two registers then we use
these relations to define our working structure.
Definition 16 For two register contexts Cr1 and Cr2 of r1 and r2 respectively, a
predicate prec(r1, r2) is true if r1 ∈ Inr2, i.e., in the input frontier of r2, and
false otherwise. We denote by Pred the set of (r1, r2) with r1, r2 ∈ Regs, for
which prec(r1, r2) evaluates to true.
Definition 17 The intermediate representation of a pipeline design P , de-
noted by IRP is a non-strongly connected graphG = (V,E) with the set of nodes
V = Regs and the set of edges E = Pred.

This graph is generated by an operator
preced_regs : Cr × Cio→ I

where Cr and Cio are the sets in Definition 13 and Definition 15 respectively
whereas I is the graph from Definition 16.
Definition 18 The operator ctx_reg : Regs→ 2Regs is defined as ctx_reg(r) =
Rwhere for each ri ∈ R, ∃ctx ∈ Ctxswith ctx = cond 7→ Upds and r, ri ∈ Upds.
ctx_reg places registers from different connected components of IRP .
Algorithm 2: Pipeline datapath construction: Register Analysis
Input : P and ASTP = {AST1, ..., ASTn}
Output: Regs 7→ Stages - pipeline datapath of P

1 o← order_mods(P, ASTp) /* order modules based on instancing,
⊤ is last. */

2 foreachm ∈ o do
3 (I/Osm, Regsm, Ctxsm)← process_mod(ASTm)
4 Cr ← Cr ∪ regs_ctx(ASTm, Regsm, I/Osm)
5 Cio ← Cio ∪ ios_ctx(ASTm, Regsm, I/Osm)

6 IRP ← preced_regs(Cr, Cio) /* build intermediate representation
of P */

Algorithm 2 constructs a pipeline datapath out of a given set of pipeline
modules P while working on the corresponding ASTP representation. Once

84

the processing order of the pipeline modules is determined, in line 1, the al-
gorithm calculates amodule summary, in lines 4-5, for eachmodule ofP . The
intra-module phase constructs the register context for the relevantmodule, in
line 4. The inter-module phase performswith the output context constructed,
in line 5. The last iteration, which is over the top⊤module, is followed by the
construction of the intermediate representation of P , in line 6, used to gen-
erate the pipeline datapath.

5.2 . Application to RISC-V Processors

Wepresent the register analysis application for various RISC-V Chisel-based
processors. Section 5.2.1 details the mono-module datapath pipeline appli-
cation. Then, we continue with the multi-module designs illustration in Sec-
tion 5.2.2.

5.2.1 . Mono-module Datapath Pipeline Design
Themono-module datapath pipeline design refers to the datapath pipeline

specified in a single FIRRTLASTmodule. Figure 5.1 illustrates themono-module
design with a focus on the main Chisel/FIRRTL construction of register anal-
ysis. All the analyses for a mono-module pipeline are performed in the rele-
vant module and delimited by the module interface I/O. For each register in
the pipeline module, we construct the register context with a recursive walk
through the combinatorial logic until the input frontier as a stop condition.
These combinatorial logics present the operations such as those with a single
operand op1 as NOT, and with two operands as operations Mux, AND, XOR,
OR etc.

Top Module

input op1
reg3

reg1

reg2

op2

op1

op1
.........

.........

.........
.........

.........
outputop2

.........

.........
.........
.........

CombI/O

Regs

I/OComb.......

.......

Figure 5.1 – Register analysis for mono-module datapath pipeline design.
We exemplify next the notations and definitions described above with the

RISC-V Mini Chisel-based processor. Then, we illustrate the Process Module
Function (Algorithm 1) through RISC-V Mini FIRRTL AST visitor.

85

Listing 5.1 – Snapshot of Chisel code of RISC-V Mini processor.
1 class Datapath(width) extends Module {2 val io = IO (new DatapathIO) /*ctrl, icache fields*/3 val alu = Module (width)4 /***** Fetch / Execute Registers *****/5 val pc = RegInit(size)6 val fe_inst = RegInit(size)7 val fe_pc = Reg(size)8 /***** Execute / Write Back Registers *****/9 val ew_inst = RegInit(size)10 val ew_pc = Reg(size)11 val ew_alu = Reg(size)12 val inst = Mux(io.ctrl.inst_kill, NOP ,io.icache.resp.bits.data)13 when (cond1) {14 fe_pc := pc15 fe_inst := inst16 }17 when(cond2) {18 ew_pc := fe_pc19 ew_inst := fe_inst20 ew_alu := alu.io.out21 }

We illustrate next the examples of Regs, I/Os, Combs, Ctxs, and Exts.
Example 1 The registers pc, fe_inst, fe_pc, ew_inst, ew_pc, ew_alu are in
RegsDatapath, as in Listing 5.1, lines 5-11. The CombsDatapath is represented withthe Mux constructor to assign the wire inst, lines 12. Figure 5.2 summarizes the
RISCV-Mini registers specified in Listing 5.1.

fe_pcpc fe_inst

Datapath

ew_inst ew_pc ew_alu

Figure 5.2 – Datapath pipeline registers in RISC-V Mini.

Example 2 The input/output port is described in the class DatapathIO in List-
ing 5.1, line 2. It is a Bundle type that presents the inputs and outputs of module
Datapath. The module alu is in ExtsDatapath, in Listing 5.1, line 3.
Example 3 The context cond1 7→ (fe_pc, fe_inst) is in CtxsDatapath, as in List-ing 5.1, lines 13-15. Similarly, cond2 7→ (ew_pc, ew_inst, ew_alu) is inCtxsDatapath,

86

in Listing 5.1 which includes three register updates in the same context, lines 17-20.
Figure 5.3 represents these two contexts and their registers inside.

fe_pc
Cxt1

fe_inst

Datapath

ew_pc
Cxt2

ew_inst

ew_alu

Figure 5.3 – RISC-V Mini contexts.
We illustrate following the examples of input frontier and register context.

Example 4 The register context of fe_inst inDatapath processor, in Listing 5.1
line 15, includes the constructors inst which is a Mux primitive. With a recursive
browse of all nodes starting from this register to all inputs frontier, the register
context of this register are the pairs <io.ctrl.inst_kill, fe_inst>
<io.icache.resp.bits.data, fe_inst>, withmodule inputs I/Os as input fron-
tiers.
Example 5 The register context of fe_pc, ew_pc, ew_inst in Datapath pro-
cessor, in Listing 5.1, lines 14, 18, 19 are the pairs <pc, fe_pc>, <fe_pc, ew_pc>,
<fe_inst, ew_inst> respectively. All their input frontiers are delimited by pro-
cessor registers.
Example 6 The register context of ew_alu in Datapath processor, in Listing 5.1,
lines 20, is the pair <alu.io.out, ew_alu> with alu.io.out ∈ alu ∈ ExtsM ,
where the input frontier is an element of the external module ALU.

Figure 5.4 represents the context of all the registers described in these
examples above.

Now, we illustrate the Algorithm 1 application on the RISC-V Mini proces-
sor in Figure 5.5. RISC-V Mini processor is mono-module datapath pipeline
design; its datapath pipeline is specified on a single module named Datapath.
Through process_mod function, we process this module to get the ports that
are stored in DatapathIO IO module and the module body which is a set of
statements. In order to construct the context registers, for each register,
we walk through the statements until input frontiers, which are expression
nodes in FIRRTL AST. For example, to construct the context of the register

87

io.ctrl.inst_kill
fe_inst

ew_alu

fe_pc ew_pc

pc fe_pcalu.io.out

Datapath

io.icache.resp.bits.data
fe_inst ew_inst

ALU

Exts

Figure 5.4 – RISC-V Mini registers context.
fe_inst, we go through the AST with walkStatement first to get the wire inst,
which is a multiplexer Mux and corresponds to an expression node in FIRRTL.
Then, we stop at io.ctrl.inst_kill as the input frontier through multiple
walkExpression calls.

Datapath

Circuit

DatapathIO Body

pc fe_inst fe_pc cond1io.ctrl.inst_kill io.icache.resp.bits

:=

pc fe_pc

:=

fe_inst inst

Mux

io.ctrl.inst_kill io.icache.resp.bits

walkModule

walkPort walkStatement

walkStatement

walkExpression

walkExpression

walkExpression

Figure 5.5 – Process Module Function for RISC-V Mini processor.

5.2.2 . Multi-module Datapath Pipeline Design
The architecture of the pipeline design is becoming increasingly complex.

This complexity can be characterized in pipeline structure for example. As de-
scribed above, the datapath pipeline design can be a mono-module or multi-
module architecture. Themulti-module datapath pipeline designates the dat-
apath pipeline developed in several FIRRTL modules. Each module describes
single or multiple pipeline stages. Then, the connection between modules is

88

obtained through the interface IO. Adding to the intra-module register analy-
sis on each module, we extend the approach to the inter-module analysis.

IO
Interface

Module 1

Top Module

op1
reg5

op1

output
I/OComb

input reg1

op2
.........

.........

.........

.........
CombI/O

.......

reg2

reg3

Inst1

IO IO

reg4

.........

.......

Inst2

IO IO

op1
reg6

.........
.........

Module 2

Regs
Regs

Figure 5.6 – Register analysis for multi-module datapath pipeline design
Figure 5.6 describes themainChisel/FIRRTL constructions to illustratemulti-

module register analysis. We define the top⊤module that contains all the in-
stances of pipeline modules that can include pipeline registers as Inst1 or be
used as an I/O interface as in Inst2. The approach connects the registers of
different modules through the input/output interface. It traverses recursively
the combinatorial logics of the output context until the output frontier as a
stop condition. Then, we can obtain the registers context of all the pipeline
modules.

The RISC-V Chisel-based processors as Rocket, Fuxi, and RISC-V Sodor
3-stage are multi-module datapath pipeline designs. We illustrate next the
notations refer to themulti-module pipeline through the Chisel code of RISC-V
Sodor 3-stage processor.

Listing 5.2 – Snapshot of Chisel code of Sodor 3-stage processor.
1 class Core(width) extends Module {2 val io = IO(new CoreIo())3 val frontend = Module(new FrontEnd())4 val dpath = Module(new DatPath())5 frontend.io.cpu <> dpath.io.imem6 }7 class DpathIo(width) extends Bundle() {8 val imem = Flipped(new FrontEndCpuIO())9 val dmem = new MemPortIo(conf.xprlen)10 val ctl = Input(new CtrlSignals())11 val dat = new DatToCtlIo()12 }13 class DatPath(width) extends Module {14 val io = IO(new DpathIo())15 val alu = Module(new ALU())

89

16 /* Pipeline State Registers */17 val wb_reg_ctrl = Reg(new CtrlSignals)18 val wb_reg_pc = Reg(size)19 val wb_reg_alu = Reg(size)20 val wb_reg_wbaddr = Reg(size)21 /* Wires Declaration */22 val exe_pc = io.imem.resp.bits.pc23 val exe_alu_out = alu.io.out24 val exe_inst = io.imem.resp.bits.inst25 val exe_wbaddr = exe_inst(RD_MSB, RD_LSB)26 /* Registers Update */27 wb_reg_pc := exe_pc28 wb_reg_ctrl := io.ctl29 wb_reg_alu := exe_alu_out30 wb_reg_wbaddr := exe_wbaddr31 }32 class FrontEndIO(width) extends Bundle {33 val cpu = new FrontEndCpuIO34 val imem = new MemPortIo(width)35 }36 class FrontEnd(width) extends Module {37 val io = IO(new FrontEndIO)38 /* Pipeline State Registers */39 val if_reg_pc = RegInit(size)40 val exe_reg_pc = Reg(size)41 val exe_reg_inst = Reg(size)42 /* Registers Update*/43 when (io.cpu.resp.ready) {44 exe_reg_pc := if_reg_pc45 exe_reg_inst := io.imem.resp.bits.data46 }47 io.cpu.resp.bits.inst := exe_reg_inst48 io.cpu.resp.bits.pc := exe_reg_pc49 }
Listing 5.2 describes the multi-module datapath pipeline design of RISC-V

Sodor 3-stage. The datapath pipeline includes threemodules: Core, FrontEnd,
and DatPath, lines 2,36,13. We focus next on the connection betweenmodules
in the multi-module datapath pipeline, all ensuring that the mono-module
features are the same. The first two stages fetch, decode are implemented
in FrontEndmodule, while the execute stage is in DatPath and finally, Core is
top ⊤ module of PSodor3 designed to connect these two modules using their
respective IO interface (frontend.io.cpu <> dpath.io.imem), in line 5. They
are specified as instance in core module. Each module defines its ports as
Bundle module, as DpathIO for DatPath module, FrontEndIO for FrontEnd

90

module, and CoreIO for Coremodule, lines 7,32,2 respectively.
Example 7 The instance dpath of type module DatPath, and frontend for the
module FrontEnd, lines 5-6, are denoted by (dpath, DatPath) ∈ InstsCore and
(frontend, FrontEnd) ∈ InstsCore, for the processor RISC-V Sodor-3stage.
Example 8 Whereas themodules FrontEnd, Core, and DatPath, form the pipeline
P of RISC-V Sodor-3stages in Listing 5.2, othermodules like ALU presented in DatPath
module, line 16, are in ExtsCore.

The connection between registers in amulti-module datapath pipeline de-
sign requires constructing the output context delimited by the output frontier.
This context enables then the possibility to connect registers of differentmod-
ules.
Example 9 The output context of io.cpu.resp.bits.inst and io.cpu.resp
.bits.pc in FrontEndmodule, as the pairs <exe_reg_pc, io.cpu.resp.bits.pc>
and <exe_reg_inst, io.cpu.resp.bits.inst>, in Listing 5.2, lines 47-48. They
include the registers exe_reg_inst, exe_reg_pc as their output frontiers. Fig-
ure 5.7 illustrates the context of FrontEndmodule outputs.

io.cpu.resp.bits.inst
exe_reg_inst

io.cpu.resp.bits.pc

FrontEnd

exe_reg_pc

Figure 5.7 – Outputs context in RISC-V Sodor-3stages.
Through the output context <exe_reg_pc, io.cpu.resp.bits.pc>, the

connection between the registers exe_reg_pc and wb_reg_pc declared in two
different modules FrontEnd and DatPath respectively, lines 48, 27, 22 in List-
ing 5.2. The connections are established through the interface IO specified in
top⊤module Core: frontend.io.cpu <> dpath.io.imem, line 5 in Listing 5.2.
Figure 5.8 illustrates how to obtain the connection between registers of these
two modules through the Coremodule IO interface.

Now, we illustrate how we construct the intermediate representation of
RISC-V Sodor-3 stages pipeline design through the application of the Algo-
rithm 2. For the three pipeline modules of RISC-V Sodor-3stages, order_mods

91

Reg(i)
IO Interface

Reg(i+1)

FrontEnd DatPath

frontend.io.cpu<>dpath.io.imemfrontend.exe_reg_pc dpath.wb_reg_pc

Core

Figure 5.8 – IO interface for register precedence relation
produces the ordered set Frontend, DatPath, and then Core, where Core is the
top ⊤ of PSodor3. For each module, with the previous order, the AST m is vis-
ited through process_mod function developed in Algorithm 1. The algorithm’s
illustration on a single module is detailed in the previous subsection 5.2.1.
Then we construct the register context for the module DatPath, it includes
the pairs <io.imem.resp.bits.pc, wb_reg_pc>, <io.ctl, wb_reg_ctrl>,
<io.imem.resp.bits.inst, wb_reg_wbaddr> where their input frontiers are
themodule inputs. Then, the pair <alu.io.out, wb_reg_alu>with alu.io.out
∈ ExtsM , where the input frontier is an element of the external module ALU.
The process is also applied for the module FrontEnd to construct the reg-
ister context and the output context, which includes the pairs <exe_reg_pc,
io.cpu.resp.bits.pc>, <exe_reg_inst, io.cpu.resp.bits.inst>. Finally,
the process ends with the module Core, which includes the interface IO
(frontend.io.cpu <> dpath.io.imem), line 5, in Listing 5.2. This interface im-
plemented in this module allows the registers context delimited by the mod-
ule inputs to extend to the other module registers, and then obtain the inter-
mediate representation specified in preced_regs function. For example, we
canobtain the precedence relationbetween two registers (dpath.exe_reg_pc,
frontend.wb_reg_pc) through the register context
<frontend.io.imem.resp.bits.pc, frontend.wb_reg_pc> and the output
context <dpath.exe_reg_pc, dpath.io.cpu.resp.bits.pc>which canbe re-
duced to the precedence relation using the interface (frontend.io.cpu <>
dpath.io.imem). Then, the intermediate graph (as in Figure 5.9) is derived for
all the datapath pipeline design.

5.3 . Experimental Results

We implemented our approach in Scala as a pass in the Chisel/FIRRTL
hardware compiler framework. We evaluated its results on several open-
source Chisel-based RISC-V processors described in detail in Section 2.2.2.
Each processor design is considered as is, without manual modifications or

92

if_reg_pc

ex_reg_pc

wb_reg_pcCxt

ex_reg_inst

Inst

wb_reg_alu

wb_reg_wbaddr

wb_reg_ctrl

Ctrl

Alu

Figure 5.9 – Intermediate representation graph for RISC-V Sodor 3-stage
simplifications. Our evaluation is on a quad-core Intel Core i7 at 1.90GHZ
and 16GB RAM memory. We consider the following six RISC-V processor de-
signs: RISC-V Mini [28], Sodor [1] with 3-stage and 5-stage, KyogenRV [29],
Fuxi [30], and Rocket Chip [2]. These processors are developed in different
Chisel versions, from ‘3.2‘ for Fuxi to ‘3.5‘ for Rocket. Our analysis is applied
over single and multi-module datapath pipelines and these processors in-
clude both structures. We report the results of our register analysis in Ta-
ble 5.1. We summarize the processor statistics related to the code and the
pass results.
Table 5.1 – Register analysis experimental results on RISC-V processordesigns.

LOC #Mp #Regs #Cxts #Frt #IRp
Runtime(s)

Mini 241 1 11 3 8 18 0.12Sodor-5 646 1 37 14 88 70 0.68KyogenRV 4568 1 108 59 53 128 16.38Sodor-3 575 3 26 8 17 24 0.52Fuxi 2438 10 54 9 33 78 1752.51Rocket 4159 5 240 68 224 133 49.63
The first three lines in Table 5.1 report the processors made of a single

module implementation of the pipeline datapath, while the three last lines
concern the multi-module pipelines.

The first column, LOC presents the code size of each pipeline P , while
the second column, #MP indicates the number of pipeline modules single
or multi-module, i.e., the cardinal number of P . The following three columns
report statistics related to the numbers of registers#Regs, of contexts#Cxts

93

as well as the largest input frontier#Frt. This parameter measures the max-
imal connectivity between a register and other design elements, either se-
quential or combinational. Then, the next column #IRP summarizes the in-
termediate representation results. It reports the resultant graph depth, i.e.,
the cardinal number of Pred. Finally, the last column reports the run time of
the register analysis algorithm 2.

We can notice that the run-time of register analysis refers mainly on FIR-
RTL AST recursive traversal (#IRP construction is not significant). This run-
time value increases with the number of modules and depends on the datap-
ath pipeline structure. For example, it is longest for the Fuxi processor, where
the datapath pipeline is developed in 10modules, and the pipeline structure is
a linear traverse across the width of the pipeline. This leads to frequent mod-
ule changes moving between pipeline stage modules and the MidStage mod-
ule, as illustrated in Figure 4.5 in Section 4.3.3. Furthermore, the size of the
intermediate representation graph is proportional to the number of registers
for all the processor designs. The graph for Rocket processor is the largest,
a 5-stage multi-module datapath pipeline design composed of 240 registers,
and this graph is smallest for RISC-V Mini, a single 3-stage pipeline design.

5.4 . Conclusion

We have presented our approach that automatically generates the ab-
stract datapath pipeline models, starting with the first phase: the register
analysis. We have described the main steps to develop this register analysis
by developing different algorithms working directly on the hardware designs
at the FIRRTL level.

Our goal is to generate an intermediate representation of the datapath
pipeline designs. In our case, it is represented as a non-strongly connected
graph. The nodes are datapath pipeline registers, and the edges correspond
to the dependency relation between registers and registers with the same
context. We have applied this analysis to various RISC-V Chisel-based proces-
sors with different pipeline depths, and we summarized the processor illus-
trations and their experimental results.

The resultant intermediate representation will be the input feature for the
following phase in our approach, where we assign pipeline registers to their
respective pipeline stage. We present this phase next, in Chapter 6.

94

6 - Automatic Generation of Abstract Datap-
ath Pipeline Models

The automatic generation of abstract pipeline models requires informa-
tion about how the pipeline is designed, for example, if it is coded as a single
or amulti-module pipeline (i.e., Chiselmodules) and also if there is a hierarchy
of modules. In Chapter 5, we have presented the first phase of our approach,
which outputs an intermediate representation of pipeline datapath based on
a register analysis. We intend to address in this chapter the second phase,
which is built around two objectives: to determine the pipeline depth defined
by pipeline stages and to identify how to connect these stages.

We detail in this chapter the automatic construction of the abstract data-
path pipeline model, presenting the procedure to assign registers to pipeline
stages in Section 6.1. Then, we exemplify our approach on several open-
source RISC-V processors (in Section 4.3.3) of various degrees of complexity,
i.e., from single to multi-modular pipeline designs, with the application being
described in Section 6.2. In Section 6.3, we report on the experimental results.

6.1 . Construction of Abstract Datapath Pipeline Models

The automatic generation of abstract datapath pipeline models is based
on two phases. The first phase is based on register analysis, which outputs
an intermediate representation of the pipeline design described as a non-
connected graph. The second phase relies on a register-to-pipeline stage as-
signment function to determine the datapath model. This phase provides
an assignment procedure to map each register to its corresponding pipeline
stage according to the results of the previously mentioned analyses. Next, we
introduce some notations and algorithms of the assignment procedure.

Algorithm 3 summarizes the two phases of the construction algorithm of
the datapath pipeline. The first phase corresponds to the register analysis
presented in the previous Chapter and described in lines 1-6 in Algorithm 3.
The secondphase of the registers’ assignment is described in the assign_regs
function.

The abstract pipeline datapath of pipeline denoted by P is constructed
by unfolding its intermediate representation IRP and assigning nodes (i.e.,
registers) to pipeline stages. We denote by

to_stage : Regs→ N+

an operator to assign to the registers their stages.
95

Algorithm 3: Pipeline datapath construction
Input : P and ASTP = {AST1, ..., ASTn}
Output: Regs 7→ Stages - pipeline datapath of P

1 o← order_mods(P, ASTp) /* order modules based on instancing,
⊤ is last. */

2 foreachm ∈ o do
3 (I/Osm, Regsm, Ctxsm)← process_mod(ASTm)
4 Cr ← Cr ∪ regs_ctx(ASTm, Regsm, I/Osm)
5 Cio ← Cio ∪ ios_ctx(ASTm, Regsm, I/Osm)

6 IRP ← preced_regs(Cr, Cio) /* build intermediate representation
of P */

7 assign_regs(1, PC, IRP , Regs) /* assign registers to stages, PC
is in stage 1 */

Algorithm 4 presents the assignment of registers to pipeline stages. The
intermediate representation IRP is a non-strongly connected graph that can
present a cycle and nodes that correspond to the registers that can not all be
connected. Thus, this algorithm starts by assuming that the program counter
PC ∈ Regs, assigned in the first pipeline stage, i.e., to_stage(PC) = 1, and
performs two assignment strategies.

We distinguish two cases: case 1 driven by register dependencies and
case 2 drivenby aheuristic definedusing the context dependencies,Ctxs. We
further define three possibilities for case 1 : the linear_case 1 , the min_case
1 and the max_case 1 . When the selected register r cannot be assigned by
the above conditions, the operator select_reg selects another assigned reg-
ister r′ to stage i′ from which we proceed, in line 16.

Linear_case 1 (lines 2-4 of Algorithm 4) is applied when the register has
only one source. More specifically, a register r is assigned to the pipeline stage
i + 1 if it is the only destination register of reg, which is already assigned to
stage i. Formally, it is applied when the condition C1_linear is true, where

C1_linear = ∃!(reg, r) ∈ Pred

Min_case 1 (lines 5-7 of Algorithm 4) considers the case when several
source registers are already assigned with no precedence relation between
the source register of the minimal stage and the other source registers. The
stage assigned to r strictly follows this minimal stage of its source registers,
which are already assigned to later pipeline stages. Thus, they are connected
to r through backward edges (i.e., the forwarding mechanism). This case is
applied to some configurations of the forwarding mechanism.

Formally, the min_case 1 is applied to assign r, preceded by regs, when
the condition C1_min is true, where

96

C1_min = ∃(reg, r) ∈ Pred ∧ to_stage(reg) = i ∧
∀(r2, r) ∈ Pred, r2 ̸= reg ∧
to_stage(r2) >= to_stage(reg) ∧ ∄(reg, r2) ∈ Pred

Figure 6.1 illustrates this case in the processor RISC-V Sodor 5-stage. The
source registers if_pc, ex_reg1 and ex_reg2 of the register dec_reg are al-
ready assigned, and there is no relation between the source register of mini-
mal stage if_pcwith the other sources. So, we assign to dec_reg the minimal
stage of its sources plus 1.

ex_pc mem_pc

dec_reg ex_reg1

wb_pcdec_pc

if_pc

ex_reg2
Figure 6.1 – Simple application of min case 1 (C1_min).

Algorithm 4: Register to pipeline stage assignment
1 Function assign_regs(i, reg, IRP , Regs):

/* C1_* and C2 identify r in IRP */
2 if C1_linear then
3 to_stage(r) = i+ 1 ; /* linear_case 1 */
4 assign_regs(i+ 1, r, IRP , Regs)

5 else if C1_min then
6 to_stage(r) = i+ 1 ; /* min_case 1 */
7 assign_regs(i+ 1, r, IRP , Regs)

8 else if C1_max then
9 to_stage(r) = i+ 2 ; /* max_case 1 */
10 assign_regs(i+ 2, r, IRP , Regs)

11 else if C2 then
12 to_stage(r) = i ; /* case 2 */
13 assign_regs(i, r, IRP , Regs)

14 else
15 (i′, r′)← select_reg(IRP , Regs)
16 assign_regs(i′, r′, IRP , Regs)

17 return to_stage;

97

Max_case 1 (lines 8-10 of Algorithm 4) also addresses the case of several
source registers that are already assigned. It checks if the source register of
the minimal stage is directly connected to all the other sources. In that case,
the stage assigned to r follows the maximal stage of its source registers.

Formally, the max_case 1 assigns r (preceded by reg) when C1_max is
true, where

C1_max = ∃(r2, r) ∈ Pred ∧ to_stage(r2) = i+ 1 ∧
∀(reg, r) ∈ Pred ∧ r2 ̸= reg ∧
to_stage(r2) >= to_stage(reg) ∧ ∃(reg, r2) ∈ Pred

Figure 6.2 illustrates this case, which is found in the Rocket processor to
consider compressed instructions in the pipeline design. We explain this im-
plementation later. The two source registers buf.pc and s2_pc of register
ex_reg_pc are already assigned, and moreover, s2_pc precedes buf.pc. So,
we assign to register ex_reg_pc the maximal stage (i.e., that of buf_pc plus 1).

ex_reg_pc
buf_pc

s2_pc
Figure 6.2 – Simple application of max case 1 (C1_max).

Rocket is able to handle compressed instructions. Thus, the pipeline de-
sign has an additional stage to accommodate them, becoming a 6-stage pipeline
instead of a 5-stage one. Listing 6.1 presents a code snippet to illustrate this
situation. If the useCompressed condition is true, in module Rocket, the value
of nBufValid, in module IBuf, is greater than 0, and the register buf.pc is
connected to the output io.pc. As such, an additional pipeline stage is added,
with the register buf.pcpreceding ex_reg_pc. Otherwise, the register ex_reg_pc
has at its input frontier io.imem.bits.pc, which is further connected to the
register s2_pc.
Listing 6.1 – Simplified code for compressed instructions, in Rocket

1 class Rocket :2 val ibuf = Module (new IBuf)3 useCompressed: Boolean = true4 val fetchWidth: Int =5 if (useCompressed) then 2 else 16 ex_reg_pc := ibuf.io.pc7 −−−−−−−−−−−−−−−−−8 class IBuf9 val n = fetchWidth − 1
98

10 val nBufValid =11 if (n == 0) then UInt(0) else Reg(fetchWidth)12 io.pc :=13 Mux(nBufValid > 0, buf.pc, io.imem.bits.pc)
Our approach is developed at FIRRTL high form level. The high form com-

pilation passes rely on the check and simplification transformations and do
not modify the circuit as a propagation constant pass. Thus, the analysis is
conservative as it considers both outcomes of the multiplexer condition, i.e.,
for compressed and uncompressed instructions. Therefore, it constructs a 6-
stage pipeline datapath model for Rocket, applying the max_case 1 . A com-
plete construction of this model is presented in Section 6.2.

This last possibility of case 1 presents an inaccurate result if the register
has two sources connected and one of them is assigned in the same stage
as the particular register. According to this, it will be placed incorrectly with
the max_case 1 . This case refers to the backward edges presented in the
forwarding mechanism when we can find connections between registers of
the same and latter stages. In this case, the register source with the mini-
mally assigned stage is not connected to all the sources of the register under
assignment and the min_case 1 will be applied. We illustrate this case in Fig-
ure 6.3.

ex_reg1dec_pc

ex_reg2
Figure 6.3 – Inaccurate application of min/max_case 1.

The source registers dec_pc and ex_reg2 of ex_reg1 are already assigned,
and the source register dec_pcprecedes this source ex_reg2. So, the max_case
1 is applied, assigning the register ex_reg1 to the maximal stage plus 1. How-
ever, this is the result of an over-approximation. The register ex_reg1 should
be located in the same stage as ex_reg2 since it is a part of the forwarding
mechanism that must be completed with other sources in the latter stages,
where the source with the minimal stage is not connected to all these other
sources. Thus, the min_case 1 will be applied, and we assign the register
ex_reg1 to the minimal stage plus 1.

Case 2 (lines 11-13) assigns a register r in the same pipeline stage as an
already assigned register reg from the same context. Formally, the case 2 is

99

applied when C2 is true, where
C2 = ctx_reg(r) = R ∧ ∃reg ∈ R ∧ to_stage(reg) = i.

Figure 6.4 illustrates in more detail an example of this case in the Rocket
processor, namely the assignment of register ex_reg_inst, which is connected
to an external module inst (i.e., that is not included in the considered data-
path pipeline modules). ex_reg_inst is assigned according to this case 2
since it is collected in the same context as an assigned register ex_reg_pc,
thus in the same stage as this register.

ex_reg_pc

ex_reg_inst

Inst

Stage(i)
ex_reg_pc

Cxt

ex_reg_inst
Inst

buf_data

buf_data
Stage(i)

Figure 6.4 – Simple application of case 2.
The solution produced by our algorithm is the graph IRP with registers as

nodes, for which pipeline stages have been assigned. Our algorithm is based
on dependency relations between registers as well as an heuristic that consid-
ers theway the design ismade. However, some registersmay not be assigned
to a pipeline stage due to the heuristic nature of our assignment algorithm
that combines the various assignment cases defined before.

Therefore, the correctness of the algorithm is reduced to prove a sub-
sumption relation relating the original processor design, say QPr and the so-lution PIRP of our algorithm. Precisely, QPr is the set of prec predicates,
derived and evaluated with respect to a set of processor design executions
and PIRP is the logical encoding (i.e., also as a set of prec predicates) of the
transitions in the subgraph solution of our algorithm.

6.2 . Application to RISC-V Processor Designs

In the last section, we have presented the register assignment procedure
described in the assign_regs function of Algorithm 3. This function, as men-
tioned before, maps registers in their pipeline stages. In this section, we illus-
trate the application of this procedure on different RISC-V Chisel-based pro-
cessors with mono-module and multi-module datapath pipeline designs.

100

Mono-module Pipeline Design - The RISC-V Sodor 5-stage. We illustrate
the construction of the pipeline datapath model for the RISC-V Sodor 5-stage
processor. Our analysis generates an IRP graph as the one presented in Fig-
ure 6.5 and proceeds to register placement.

mem_alu_out

Cxt1

dec_inst

IM

wb_wbdataDM
if_pc

dec_pc

ex_alu_op1

ex_alu_op2

ex_rs2_data

ex_pc

RF

mem_pc

mem_rs2_data

Cxt2

Figure 6.5 – Intermediate representation graph for RISC-V Sodor 5-stage
The processor is made of 37 registers and we present, in Figure 6.6, some

of these registers that we consider relevant. We specify that the if_pc register
(i.e., thePC register) is located in the first pipeline stage. Our algorithmplaces
the registers dec_pc, ex_pc and mem_pc into respectively consecutive stages
as they are part of the same connected component of IRP with one register
source (linear_case 1 , shown in Figure 6.8). Then, our algorithm assigns the
register dec_inst as it is updated in the same context as dec_pc (using case 2).
Indeed the frontier of the register context of dec_inst contains a reference
to an external design element, the module IM (standing for the instruction
memory).

The next registers to be assigned are the forwarding registers ex_alu_op1,
ex_alu_op2 and ex_rs2_data. They should be assigned with the min_case 1
since all these registers are connected to several source registers where there
are no precedence relations between the source register of minimal stage
dec_inst, and all other source registers (like the mem_alu_out, and wb_wbdata
registers). However, their respective input frontiers contain registers that are
not currently assigned (i.e., mem_alu_out and wb_wbdata), since they are part
of the backward edges in blue color in Figure 6.6, coming from the data for-
warding semantics. However, the context of register ex_pc contains these
not assigned registers enabling the use of the case 2 of our algorithm. Fi-
nally, our algorithm places the remaining registers, i.e., mem_rs2_data with
the linear_case 1 based on the register dependencies, and mem_alu_out with

101

min_case 1 . The source registers of mem_alu_out, which are ex_alu_op1, ex_alu_op2,
and ex_pc are already assigned in the same stage, and there are no prece-
dence relations between all of them. Thus, mem_alu_out is assigned with
min_case 1 . Therefore, the algorithm assigns the register wb_wbdata with
the linear_case 1 based on the register dependencies. We summarize in Sec-
tion 6.3, the experimental result of our algorithm application on the complete
design of RISC-V Sodor 5-stage.

if_pc

ex_pc mem_pc

RF

dec_pc

ex_rs2_data

ex_alu_op1

mem_rs2_data

mem_alu_out wb_wbdata
dec_inst

IM

ex_alu_op2
DM

Fetch Decode Execute Memory Write_Back

Figure 6.6 – RISC-V Sodor 5-stage pipeline datapath model.

Mono-module Pipeline Design - Kyogen RISC-V.We now illustrate how our
pass analyzes a RISC-V processor, called KyogenRV [29] in order to construct
its abstract pipeline model. KyogenRV is an open-source 5-stage pipeline pro-
cessor. More details of this processor are presented in Section 2.2. By our
classification, it is a mono-module pipeline design. Our pass focuses on the
top module of the pipeline, namely KyogenRVCpu, which has 108 registers, out
of which we present the application of our algorithm only on a subset of reg-
isters, i.e., those linked to the PC register in Table 6.1 and Figure 6.7.

Table 6.1 describes the register assignment phase on the KyogenRV pro-
cessor. We assume that if_pc is the PC register and is placed in the first
pipeline stage. Then our algorithm assigns the register id_pc_temp using the
linear_case 1 , since it follows directly the source register if_pc. Our algorithm
proceeds to assign the register if_npc with the case 2 since it is updated in
the same context with the PC register. This enables the assignment of the
register id_npc_temp with the linear_case 1 . Then, our algorithm assigns the
register id_inst linked to an external module instruction memory using the
case 2 as it is updated in the same context as the register id_pc_temp, fol-

102

lowed with the assignment of the registers ex_inst and id_inst2_temp with
linear_case 1 . Furthermore, the registers id_pc and id_npc are also assigned
using case 2 , since they are connected to registers that are not already as-
signed. Then, the registers ex_pc, mem_pc, ex_npc, mem_npc, wb_pc are
assigned into their respective pipeline stages with linear_case 1 , as they are
part of the same connected component of the resulting intermediate graph.
The next registers to be assigned are ex_reg_raddr and ex_reg_waddr. Their
respective input frontier includes the external module RegisterFile, so they
are assigned with the case 2 relying on the same context with ex_pc. Then,
the following registers mem_reg_waddr and wb_reg_waddr are assigned with
the linear_case 1 .

The forwarding mechanism of the KyogenRV processor is implicitly imple-
mented with wires that go through the external ALUmodule. So, the registers
ex_rs,mem_rs, mem_alu_out are updated with the output of themodule ALU,
being assigned with case 2 .

Listing 6.2 presents a subset of the data forwarding implemented from the
WB and MEM towards the EX stage. The wire ex_reg_rs1_bypass is updated
from the output of the mem_alu_out register (line 5), located in theMEM stage,
or from the wb_alu_out register (line 6), located in the WB stage, through the
Chisel MuxCase construction. In the FIRRTL low form, a MuxCase is translated
into a cascade of multiplexers. This forwarding corresponds to the blues ar-
rows, shown in Figure 6.7, from the registers wb_alu_out and mem_alu_out
to the input of the ALU red box. The other blue arrow, between the register
wb_reg_waddr and the input of the ALU, is part of the check to detect the need
for forwarding a value, as in line 6.

Listing 6.2 – Forwarding in KyogenRV 5-stage.
1 val ex_reg_rs1_bypass = Wire(UInt(32.W))

3 /* Ci, i = 1..2 - conjuncts of write enable and selection
↪→ signals */4 ex_reg_rs1_bypass := MuxCase(ex_rs(0), Seq(5 (ex_reg_raddr(0) === mem_reg_waddr && C1) → mem_alu_out6 (ex_reg_raddr(0) === wb_reg_waddr && C2) → wb_alu_out))7 ...8 when (C4 /* no stalling condition */) {9 mem_rs(0) := ex_reg_rs1_bypass10 }

Finally, our algorithm assigns the register pc_cntr with the min_case 2 ,
where its source registers mem_pc, mem_alu_out are assigned in the same
pipeline stage.

103

Table 6.1 – Experimental results on KyogenRV processor.
Reg to assign Module Source register #St

if_pc KyogenRVCpu - 1
id_pc_temp KyogenRVCpu if_pc 2

if_npc KyogenRVCpu - 1
id_npc_temp KyogenRVCpu if_npc 2

id_inst KyogenRVCpu - 2
ex_inst KyogenRVCpu id_inst 3

id_inst2_temp KyogenRVCpu id_inst 3
id_pc KyogenRVCpu - 2
ex_pc KyogenRVCpu id_pc 3
mem_pc KyogenRVCpu ex_pc 4
id_npc KyogenRVCpu - 2
ex_npc KyogenRVCpu id_npc 3
mem_npc KyogenRVCpu ex_npc 4
wb_npc KyogenRVCpu mem_npc 5

ex_reg_raddr[0] KyogenRVCpu - 3
ex_reg_raddr[1] KyogenRVCpu - 3
ex_reg_waddr KyogenRVCpu - 3
mem_reg_waddr KyogenRVCpu ex_reg_waddr 4
wb_reg_waddr KyogenRVCpu mem_reg_waddr 5

ex_rs[0] KyogenRVCpu - 3
ex_rs[1] KyogenRVCpu - 3
mem_rs[0] KyogenRVCpu - 4
mem_rs[1] KyogenRVCpu - 4

mem_alu_out KyogenRVCpu - 4
wb_alu_out KyogenRVCpu mem_alu_out 5
pc_cntr KyogenRVCpu mem.pc → 4, mem_alu_out → 4 5
w_addr KyogenRVCpu - 5
w_data KyogenRVCpu - 5

Wepresent the abstract pipelinemodel of KyogenRV in Figure 6.7. It shows
a subset of the identified registers and their dependencies (omitting the com-
binatorial circuitry). Our pass correctly identifies the 5 stages, with forwarding
mechanisms from theWB and theMEM to the EX stage implemented with the
blue edges (potentially merged). We details the statistics result in Section 6.3.

104

if_pc
ex_pc mem_pc

RF

id_pc

ex_rs

ex_npc

ex_inst

mem_reg_waddr

mem_alu_out
ALU

wb_npc

wb_alu_out

wb_reg_waddr

if_npc id_npc

id_inst

IDM

ex_reg_waddr

mem_npc

mem_rs

Fetch Decode Execute Memory Write_Back

Figure 6.7 – Partial representation of the abstract pipeline model of the Kyo-genRV processor.
Multi-module Pipeline Design - Rocket Processor We detail now the ab-
stract datapath pipeline construction of a multi-module pipeline design, that
of the Rocket processor. This particular pipeline is specified in five Chiselmod-
ules Rocket, IBuf, FrontEnd, RocketTile, ShiftQueuewhen the first three
modules contain the pipeline registers, and the last two are developed as in-
terface modules.

Table 6.2 details the execution of the register assignment algorithm (i.e.,
Algorithm 4) on the Rocket processor. Since this design is made of 240 reg-
isters, we choose to present only a subset of these registers. We start, as
usual, with s1_pc, thePC register, assumed to be assigned in the first pipeline
stage. Then, our algorithm proceeds to place registers s2_pc, buf.pc and
buf.data into their respective stages using the linear_case 1 as these regis-
ters are part of the same connected component of IRP . The most interesting
case is that of register ex_reg_pc. Our algorithm proceeds to assign this reg-
ister through the max_case 1 since its source registers s2_pc and buf.pc are
already assigned to stages 2 and 3 respectively, and the source min s2_pc
precedes the other source buf.pc. Then, the linear case 1 is applied in or-
der to assign the registers mem_reg_pc and wb_reg_pc to their corresponding
stages. The next registers to be assigned are ex_reg_cause and ex_reg_inst
as their respective input frontier contains a reference to an external design
element, the module Inst. So, these registers are assigned using case 2 as

105

they are updated in the same context as ex_reg_pc. Then, our algorithm ap-
plies the linear_case 1 to assign pipeline stages to registers mem_reg_cause
and mem_reg_inst, and further to registers wb_reg_cause and wb_reg_inst.

Furthermore, case 2 is applied to register mem_reg_wbdata, which is con-
nected to an external design element, themodule ALU andwhich is updated in
the same context as mem_reg_pc. A similar case is the register wb_reg_wbdata,
updated in the same context as wb_reg_pc, thus, case 2 is applied. Finally, our
algorithmassigns the remaining registers ex_reg_rs0, ex_reg_rs1 to pipeline
stages. More precisely, their respective input frontier contains a reference to
an external design element, the module corresponding to the register file RF.
So these registers are assigned using the case 2 , as they are updated in the
same context as the registers already assigned to the execute stage.

Figure 6.8 shows the resulting pipeline datapath of Rocket, omitting those
registers that are not on the path from the initial PC register.

s1_pc

buf_pc

IM
buf_data

ex_reg_pc mem_reg_pc
RF

s2_pc

ex_reg_inst

ex_reg_rs0

ex_reg_rs1

mem_reg_inst

mem_reg_wbdata

ALU

wb_reg_pc

wb_reg_wdata

wb_reg_inst

Inst

Fetch Decode Execute Memory Write_BackPcgen

Figure 6.8 – Partial representation of the abstract pipelinemodel of the Rocketprocessor.

6.3 . Experimental Results and Synopsis

We evaluated our analysis on several Chisel-based RISC-V processors. We
consider our use case processors presented in Chapter 2, the mono-module
designs such as RISC-VMini [28], Sodor 5-stage [1], and KyogenRV [29], and the
multi-module structure as Sodor 3-stage [1], Fuxi [30], and Rocket Chip [2].
Our evaluation is on a quad-core Intel Core i7 at 1.90GHZ and 16GB RAM
memory. We report the results of our analysis in Table 6.3.

106

Table 6.2 – Experimental results on Rocket chip processor.
Register to assign Module Source register #St

s1_pc Frontend - 1
s2_pc Frontend s1_pc 2
buf.pc IBuf s2_pc 3

buf.data IBuf s2_pc 3
ex_reg_pc Rocket buf.pc → 2, s2_pc → 1 4
mem_reg_pc Rocket ex_reg_pc 5
wb_reg_pc Rocket mem_reg_pc 6

ex_reg_cause Rocket - 4
mem_reg_cause Rocket ex_reg_cause 5
ex_reg_inst Rocket - 4
mem_reg_inst Rocket ex_reg_inst 5
wb_reg_inst Rocket mem_reg_inst 6

ex_reg_raw_inst Rocket - 4
mem_reg_raw_inst Rocket ex_reg_raw_inst 5
wb_reg_raw_inst Rocket mem_reg_raw_inst 6
ex_reg_wphit[0] Rocket - 4
mem_reg_mem_size Rocket - 5
wb_reg_mem_size Rocket mem_reg_mem_size 6
ex_reg_mem_size Rocket mem_reg_mem_size 4
mem_reg_wdata Rocket - 5
wb_reg_cause Rocket - 6
wb_reg_wdata Rocket - 6

wb_reg_wphit[0] Rocket - 6
mem_reg_wphit[0] Rocket wb_reg_wphit[0] 5

ex_reg_rs_bypass[0] Rocket - 4
ex_reg_rs_bypass[1] Rocket - 4
ex_reg_rs_lsb[0] Rocket - 4
ex_reg_rs_lsb[1] Rocket - 4
ex_reg_rs_msb[0] Rocket - 4
ex_reg_rs_msb[1] Rocket - 4

107

Tab
le6

.3–
Exp

erim
ent

alr
esu

ltso
nR

ISC
-Vp

roc
ess

ord
esig

ns.
LOC

#
M

p
#
R
eg
s

#
C
x
ts

#
F
rt

line
ar_

cas
e

min
_ca

se
ma

x_c
ase

Cas
e1

Cas
e2

run
tim

e(s)
-int

ra-
run

tim
e(s)

-as
sign

me
nt-

RIS
C-V

Min
i

241
1

11
3

8
3

-
-

4
7

0.12
0.0

49
Sod

or5
-sta

ge
646

1
37

14
88

24
2

-
27

10
0.6

8
0.17

Kyo
gen

RV
456

8
1

108
59

53
41

2
-

44
30

16.3
8

0.0
47

Sod
or3

-sta
ge

575
3

26
8

17
6

-
-

7
1

0.5
2

0.0
62

Fux
i

243
8

10
54

9
33

29
4

-
34

19
175

2.51
0.0

54
Roc

ket
415

9
5

240
68

224
13

-
1

15
15

49.
63

0.0
87

RI
SC
-V

M
in
i

So
do

r-
5s
ta
ge
s

Ky
og
en

RV

So
do

r-
3s
ta
ge
s

Fu
xi

Ro
ck
et

Figu
re6

.9–
Exe

cut
ion

oft
he

reg
iste

ras
sign

me
nta

lgo
rith

m,
i.e.,

Alg
orit

hm
4.

108

The first column, LOC presents the code size of each pipeline P , while the
second column,#MP indicates the number of pipeline modules, i.e., the car-
dinal number ofP . Our analysis is applied over single andmulti-module data-
path pipelines. The first three lines in Table 6.3 report the processorsmade of
a single module to implement its pipeline datapath, while the three last ones
concern the multi-module pipelines. The next three columns report statistics
related to the numbers of registers #Regs, of contexts #Cxts as well as the
largest input frontier#Frt. This parameter is a measure of the maximal con-
nectivity between a register and other design elements, either sequential or
combinational. The next five columns detail the number of registers success-
fully assigned to pipeline stages. As such, columns linear_case, min_case and
max_case report the number of placed registers by the respective case. Then,
column Case 1 reports the aggregated results of these three cases including
the PC register, and column Case 2 presents the number of registers placed by
this particular case. Finally, the last two columns report the run time of our
algorithm: the first corresponds to the intra-module phase (e.g., lines 2-5 of
Algorithm 3), while the second corresponds to the register assignment phase
(e.g., Algorithm 4).

The depth of each pipeline has been correctly computed, namely our ap-
proach constructs a pipeline datapath of the same depth as in the respec-
tive processor specification. Moreover, using the naming conventions with
respect to register names and the pipeline stages (e.g., prefixes dec_ and ex_
or exe_ for decode and execute stage respectively, as shown in Listing 4.13
or Listing 4.16), we could also check that the registers are assigned in their
expected pipeline stage.

We also encountered several issues. For example, our approach initially
identified the KyogenRV design as a 7-stage pipeline instead of a 5-stage one.
This over-approximation was due to the use of the Chisel RegNext construct.
More specifically, the semantics of RegNext produces a one-cycle delayed ver-
sion of the associated signal as described in Listing 4.8 in Section 4.3. At the
FIRRTL level, it is translated into an additional register for each delay and thus
an additional pipeline stage as there are two uses of RegNext in KyogenRV, as
detailed in Listing 4.9 in Section 4.3. However, these registers can be identi-
fied based on their compiled FIRRTL names (i.e., a particular prefix is added),
allowing us to discard them when building the IRP and then the assignment
of registers.

Furthermore, our approach assigns all the registers of the pipeline mod-
ules only for two designs, Sodor 5-stage, and RISC-V Mini. For the KyogenRV
processor, the unassigned registers are, in fact, not related to the datapath
but to the control path as our algorithm also collected a vector register named
rv32i_reg[0-31], implementing the register file. We present next an exam-
ple of a control register called ex_ctrl.alu_op1 in Listing 6.3. This register is
an element of the register ex_ctrl, which is a Bundle type IntCtrlSigs, lines

109

11-13 in Listing 6.3. Thus, all the fields of this class IntCtrlSigs, lines 2-6 in
Listing 6.3, such as ex_ctrl.br_type, ex_ctrl.legal, ex_ctrl.alu_op1 and
ex_ctrl.alu_op2 are registers defined in the control path and used in the
datapath module.

Listing 6.3 – Control registers in KyogenRV processor.
1 /* Defined in Conrol Module*/2 class IntCtrlSigs extends Bundle {3 val legal: Bool = Bool()4 val br_type: UInt = Bits(size)5 val alu_op1: UInt = Bits(size)6 val alu_op2: UInt = Bits(size)78 }9 /* Called in KyogenRVCpu Module */10 class KyogenRVCpu extends Module {11 val ex_ctrl: IntCtrlSigs = RegInit()12 ex_op1 := MuxCase (0.U(32.W),13 (ex_ctrl.alu_op1 == OP1_RS1) → ex_reg_rs1_bypass,1415)16 }

For Rocket and Sodor 3-stage designs, the control registers are generally de-
fined as a compound type such as Bundle or Vector type. Thus, each field is
considered an individual register and represented as such when the register
assignment is performed. However, these registers are from the control path,
updated in the external modules Exts, for instance, the modules CSR or BTB
of Rocket. Indeed, Rocket is more complex, and modules have emerged that
we have not yet considered. With these modules, we need to be able to link
registers and, therefore, assignmany registers. Sodor 3-stage and 5-stage are
two variants of RISC-V Sodor, of which our algorithm assigns all the pipeline
registers only for the 5-stage. This difference between the two variants of the
same processor is due to their pipeline datapath structure. The Sodor 5-stage
is a mono-module pipeline design. However, the Sodor 3-stage pipeline dat-
apath is built on several pipeline modules.

We can also notice that the runtime of the assignment phase is signifi-
cantly lower than the one of the intra-module phase. The latter increases
with the number of modules, and thus, is the highest for the Fuxi processor.
This runtime value for the intra-module phase summarizes all the iterations
of the processor pipeline modules.

Next, we summarize in Figure 6.9 the execution steps of the register as-
signment, i.e., Algorithm 4, for all the processor designs. We illustrate the
evolution of this assignment function when successfully assigning registers.

110

The coding color of the algorithm traces is also displayed in Table 6.3: green
represents the linear_case 1 , gray and pink are min_case 1 and max_case 1
respectively, and orange represents case 2 . Furthermore, the multi-module
aspect is also reported by specifying the transition between pipeline modules
when assigning registers, using the symbol ‘↑‘. We notice that the register as-
signment applies the linear_case 1 in the beginning as it is driven by the reg-
ister dependencies. We also notice that the transition between modules ex-
poses the way the implementation of the multi-module aspect is done in our
analysis. For Fuxi, the flat module design results in frequent module changes,
moving between pipeline stagemodules and the MidStagemodule, as shown
in Fig. 4.5. It is, however, not the case of Rocket and Sodor 3-stage. This is
due to the hierarchical module design, shown for Rocket in Fig. 4.4, where the
registers are restricted to three modules IBuf, Frontend and Rocket. More
precisely, the registers of the stages PC-generator and IF, are implemented in
the module Frontend while the registers of stages from ID to WB are in the
module Rocket.

6.4 . Conclusion

The automatic generation of the abstract datapath pipeline models aims
to identify the pipeline depth, and the pipeline stages from building associa-
tions of the register-to-pipeline stage. It is structured in two phases; the first
phase concerns register analysis which outputs an intermediate representa-
tion of the datapath pipeline designs. The resulting graph is exploited in the
second phase presented in this chapter.

In this phase, we focus on assigning registers to their pipeline stages.
We specify the first stage as being the stage where the PC register is placed.
Then we assign others according to two strategies; the first one is based on
the dependencies between registers and the second on heuristics, based on
when condition statements, which is used to determine additional relations
between these registers. This heuristics is based on how the processor is
coded. Furthermore, we have applied this analysis to various RISC-V Chisel-
based processors with different pipeline depths ranging from 3 to 6 stages.
We have illustrated the resulting abstract datapath pipeline models for sev-
eral processor designs. We have also summarized the result statistics and
discussed the experimental results for each processor design.

This thesis work aims to automatically build a framework from high-level
designs to abstract models used then for different applications. Our purpose
is to generate pipeline models for timing analysis of safety-critical systems.
We present in the next Chapter 7 how to generate formal micro-architecture
models from the generated abstract pipelinemodels with the goal of formally
verifying timing-related properties such as the detection of timing anomalies.

111

112

7 - Automatic Construction of Formal Models
From Abstract Models

The formal verification of timing properties over pipeline designs requires
the construction of appropriate formal models. These models should con-
sider the execution progress of the input program through the pipeline with
cycle-accurate granularity thus, generating such infrastructure should bebased
on the abstract datapath model. As such, we aim to automatically generate
formal models from the constructed abstract datapath pipeline models, seen
in previous chapters, to which we then manually add the control path to cap-
ture the instruction flow through the pipeline stages.

We present in this chapter how to generate and then integrate formal
pipelinemodels for the purpose of verifying timing properties of safety-critical
systems such as those related to temporal predictability [6,22]. We start with
detailing in Section 7.1, the formalmodel generation from the abstract pipeline
datapath models. Then, we illustrate this generation on various RISC-V pro-
cessor designs in Section 7.2. Finally, we present as a use case the integration
of such formal pipeline models into an existing model checking-based proce-
dure for the detection of timing anomalies in Section 7.3. Finally, we evaluate
the impact of these semi-automatically generated formal models in this inte-
gration through a series of synthetic benchmarks.

7.1 . Formal Modeling of Processor Pipeline Designs

The formal model required should integrate both program and architec-
ture features, where the program provides a sequence of instructions to be
executed while the architecture adds timing to this sequence, e.g., counting
clock cycles while instructions pass through a pipeline. A formal pipeline de-
sign should be based on both a datapath and a control path. In the following,
we combine automatically-constructed datapath pipeline models detailed in
Chapters 5, 6 with control path logic, to define the notion of pipelined execu-
tion. We also need tomap the instructions, i.e., the input program, onto these
abstract pipeline models so as to finish integrating both software and hard-
ware aspects. The two abstract models (i.e., datapath and control logic) and
the program representation are then translated into formal specifications us-
ing the TLA+ language [36].

113

7.1.1 . TLA+ Specification from Datapath Pipeline Designs
We introduce next in, Listing 7.1, the skeleton and some notation elements

of the TLA+ specification language to ease the understanding of the TLA+ code
snapshots of the formal pipeline model that we introduce in this chapter.

Listing 7.1 – Template of a TLA+ formal model.
-----------------------MODULE ModuleName--------------------
EXTENDS M1, M2, ... /* add declarations, definitions from the

↪→ modules M1, M2 to the current module */
CONSTANTS .../* Constants declaration */
VARIABLES ... /* State variables */
--
Init == /* Initial state predicate */

Next == \/ Actions /* Next state relation */
...

Spec == Init /\ [] [Next]_<<Variables>> /* Specification */
Prop == ... /* Property to verify */

A TLA+model is organized as a collection of modules, as presented in List-
ing 7.1, where each module contains a module body. The body consists of a
sequence of statements, which can be a declaration, definition, assumption
or theorem. In order to build large hierarchical specifications, we can build
a new module on top of other modules. One way to do this is with the EX-
TENDS declaration at the beginning of the module, for example including M1,
M2 in module ModuleName. The state variables are declared after the keyword
VARIABLES.

We present next in Listing 7.2 the header of the RISC-V Mini TLA+ formal
model. The formalmodel is described inmodule MODULE formal_model_mini.
Themodule includes othermodules, such as the standardmodules Sequences,
Integers, TLC required to manipulate procedures, integers, and assertions.
Furthermore, it includes the module Instructions defining a representation
of the instruction set architecture (ISA). RISC-V Mini is a processor design with
three pipeline stages. Thus, the state variables are built around these stages
and currCycle variable to describe the cycle-accurate granularity.

Listing 7.2 – TLA+ snapshot code of RISC-V Mini
-------------MODULE formal_model_mini ----------------------
EXTENDS Sequences, Instructions, Integers, TLC
CONSTANTS Program
VARIABLES currCycle, stage_1, stage_2, stage_3
--
...

114

TLA+ allows us to specify the system through a single TLA+ formula con-
taining, in particular, an initial-state predicate (Init) and a next-state relation
(Next) built from actions, capturing the update of variables. More precisely,
an action relates the values of variables in the current state x to their values
in the next state x’. The specification could contain several other operators
that can be parameterized and used later for the next-state relation. Further-
more, the TLA+ specification also contains the properties (i.e., temporal logic
formulas) which are to be verified. We employ model-checking techniques,
using the TLC tool [34], to explore the TLA+ specification while verifying the
required timing properties. The initial state and the next-state relation are
defined through the next algorithms.

Algorithm5describes the formalization of a datapath pipelinemodel from
the constructed datapath abstract pipelinemodel. Thus, we consider as input
the resulting graph of the datapath pipeline generated with the approach de-
scribed in Chapters 5, and 6 and an operatorElmtProg to which the program
is then assigned. The graph corresponds to the resulting registers-to-pipeline
stages and their dependencies, IRP . The program assigned to the operator
ElmtProg represents a sequence of the instructions that are described ac-
cording to the representation of the RISC-V ISA. We detail in Section 7.1.2 the
corresponding representation. The algorithm output conforms to the formal
specification of the datapath pipeline, formalized using the TLA+ language.
Algorithm 5: Datapath TLA+ Model Generation
Input : IRP , ElmtProg and Pregs = Regs 7→ Stages - pipelinedatapath of P
Output: InitP ipe, UpdateP ipe - Datapath TLA+ specification of P

1 State_var ← (currCycle, Stages) /* State variables. */
2 InitP ipe← formal_Init(Pregs, State_var)
3 SrcReg ← MaxCaseRegs (IRP)/* Regs assigned with max case. */
4 PredRegSel← FRegsSelection (IRP) /* Regs used as a selection

of combinatorial logic(mux) */
5 UpdateP ipe←

formal_Next(Pregs, State_var, IRP , SrcReg, PredRegSel, ElmtProg)

Our TLA+ specification targets the execution of instructions through the
pipeline stages with cycle-accurate granularity. Thus, we define first the state
variables, in line 1, which includes the pipeline depth (i.e., pipeline stages, in
variables Stages) and clock cycles defined in currCycle variable. Second, we
distinguish two operators for our specification – initial and update. The initial
operator InitP ipe, line 2 in Algorithm 5 initializes an empty pipeline described
in formal_Init function detailed in Algorithm 6.

Thus, we consider the resulting graphof the datapath pipelinemodel Pregs,
115

then we initialize each register in each pipeline stage with empty, lines 3-4 in
Algorithm 6. We denote by R, line 4 in Algorithm 6 an operator to assign val-
ues to the registers and output TLA+ records Stagei_assign with fields be-
ing the registers assigned to the corresponding pipeline stage. The operator
Stage_upd assigns the registers updated with empty to each pipeline stage.
As mentioned, these fields are initialized with empty, where empty defines an
empty content of a register. Then, we output the StageInit, which contains
the TLA+ records of all the pipeline stages, lines 4-5 in Algorithm 6.

The update state is produced with the formal_Next function, line 5 in Al-
gorithm 5. This function is detailed in Algorithm 7. We model the pipeline
update where each stage update is modeled by an action on its registers
and their dependencies. We consider the corresponding dependencies graph
IRP . We check the registers assigned with the max_case 1 as they are speci-
fied in MaxCaseRegs function, line 3 in Algorithm 5. Then, we only keep in the
IRP graph its register dependency, which corresponds to the maximal stage,
line 3-4 in Algorithm 7. Since the IRP graph includes all the dependencies be-
tween registers, for the register assigned with the max_case 1 which has two
register sources, we only keep the dependency corresponding to the register
with the maximal stage. Indeed, this choice is not fortuitous, it is consistent
with the WCET analysis, where we consider the longest path. Afterward, we
update each stage by updating its pipeline registers, line 5 in Algorithm 7.
Algorithm 6: formal_Init function
1 Function formal_Init(Pregs, State_var):
2 StageInit← TRUE
3 foreach (Stagei, Regs) ∈ Pregs do
4 Stagei_assign = Stage_upd(Stagei, R(Regs, empty))

StageInit = StageInit ∧ Stagei_assign
5 return StageInit;
We update the register PC of the first stage with the first instruction of

the input program, lines 6-8 in Algorithm 7. Furthermore, we consider the
registers for other pipeline stages and update each register with its depen-
dencies, lines 9-26. We distinguish between three cases. The first case de-
scribes the register without dependencies, it is updated with empty content,
lines 11-12. We denote by Reg_updt an operator to assign a value to the reg-
ister. The second case targets the registers placed with the linear case, lines
13-15. The register is updated with the value of its source register using the
function MapStage. This function takes two arguments: the pipeline stage of
the source register and the source register, then it outputs the value of type
string for updating the register, line 14. Finally, the last case updates registers
withmultiple dependencies, lines 16-26. Thus, we present next the dependen-
cies related to the control conditions for each register, line 17. We address

116

first the conditions associated to the forwarding mechanism and defined in
bypass_cond operator, lines 19-21, then, we specify the other conditions speci-
fied in select_cond operator, lines 23-24, which are all to be evaluated to true
or false according to the execution pattern of the instructions.

We note that all the registers dependencies used as a selection relation in
the combinatorial logic do not exist in the update state of the registers, line
4 in Algorithm 5 and line 19 in Algorithm 7. Since these registers are used in
the combinatorial components (e.g., multiplexers) in selection conditions, our
algorithm removes all these dependencies from the graph IRp to represent in
the formal model. Since our approach that generates the datapath pipeline
model outputs more register dependencies (over-approximation), the anal-
ysis does not include the combinatorial logic that distinguishes between the
selection and data dependence relations. Afterwards, we output the TLA+
record in StageUpdate variable, which contains a record of each pipeline stage
R defined in Stagei_assign variable, lines 26-27 in Algorithm 7.

Our TLA+ specification Spec is defined with an initial state Init and a state
transformer Next as follows:

Spec == Init /\ [][Next]_<< State_var >>

The initial state is a conjunction between the resulting empty pipeline stages
defined in InitPipe and the remaining state variable currCycle:

Init == /\ InitPipe
....
/\ currCycle = 0

The transition state is also defined as a conjunction between the update
of pipeline stages and currCycle variable for an ideal pipeline as follows:

Next == ... /\ UpdatePipe
... /\ currCycle’ = currCycle + 1

The TLA+ specification integrates both the datapath and control path of
the pipeline. Thus, each action, Init and Next integrates the generatedpipeline
stages and the control path to define the execution and entail changes in the
datapath process.

117

Algorithm 7: formal_Next function
1 Function

formal_Next(Pregs, State_var, IRP , SrcReg, PredRegSel, Prog):
2 StageUpdate← TRUE
3 if !SrcReg.isEmpty then

/* keep only the max path for max_case */
4 IRP = IRP \ SrcReg

5 foreach (Stagei, Regs) ∈ Pregs do
6 if Stagei == 1 then
7 Stagei_assign = Stage_upd(Stagei, R(Regs, Prog))

StageUpdate = StageUpdate ∧ Stagei_assign
8 else
9 foreach reg ∈ Regs do
10 SrcsReg ← IRP .filter(dest == reg) ; /* filter only

the sources of reg */
11 if SrcsReg.size == 0 then
12 Reg_updt = (reg, empty)

13 else if SrcsReg.size == 1 then
14 Updt = MapStage(Pregs(SrcsReg), SrcsReg)
15 Reg_updt = (reg, Updt)

16 else
/* define select conditions for multiple

sources of reg */
17 foreach src ∈ SrcsReg do

/* Bypass conditions */
18 IfThen← TRUE
19 if (Pregs(src) >= Stagei ∧ (src, reg) /∈

PredRegsSel) then
20 Updt = MapStage(Pregs(src), src)
21 IfThen = IfThen ∪ (bypass_cond, Updt)

22 else
/* Selection conditions */

23 Updt = MapStage(Pregs(src), src)
24 IfThen = IfThen ∪ (select_cond, Updt)

25 Reg_updt = (reg, IfThen)

26 Stagei_assign = Stage_upd(Stagei, R(Reg_updt))
StageUpdate = StageUpdate ∧ Stagei_assign

27 return StageUpdate;

118

7.1.2 . Control and ISA Modeling TLA+ Specification
In our workflow described in Figure 4.1, the TLA+ formal models are based

on the abstract pipeline models and the program executed on this pipeline.
We add the control logic to the automatically constructed model of the dat-
apath pipeline. The control path manages the control of data movement be-
tween components in the pipeline. Since we aim to build pipeline models for
timing analysis, we should integrate how instructions advance through this
pipeline model so as to prove the timing properties. Currently, the integra-
tion of the control path is mainly manual, as is the abstract Instruction Set
Architecture (ISA) semantics for the same design. The Program component,
defined in figure 4.1 and introduced at the beginning of Algorithm 5 as input,
is responsible for defining ISA-level execution patterns on the constructed
pipeline model, describing the necessary infrastructure to reason about tim-
ing properties of the design.

The control logic addresses all the signals that ensure that data flow into
pipeline stages and that instructions are properly executed. It includes the
selection signals of combinatorial and sequential circuitry: multiplexer, func-
tional units, registers, etc. These signals are related to the instruction patterns
and are designed to determine pipeline status such as stalling, branching logic
etc. These execution patterns are specified as a set of control conditions de-
fined in pipeline update UpdatePipe. While their placement is automatically
generated, their actual semantics is added by hand. Pipeline status deter-
mines the progress status of the execution. Thus, in order to correctly add
the control logic, we need to specify the ISA instructions of the processor,
then analyze the implementation of each instruction to determine the place-
ment of control points that affect the register transfer, and finally examine
the input program to define pipeline status (stall, kill, etc).

We also need to introduce the abstract RISC-V ISAmodeling which is spec-
ified also by hand. The abstract ISA consists of a set of instructions grouped
in classes, sharing the same execution patterns, expressed in the form of a
set of conditions conds as follows:
insts == [
[type |-> "alu", rd |-> "rd", rs1 |-> "rs1", rs2 |-> "rs2",
conds = {cond_1, .../* Conditions of type select_cond */ }],
[type |-> "jal", rd |-> "rd", rs1 |-> "empty", rs2 |-> "empty",
conds = {cond_2,.../* Conditions of type select_cond */ }],
[type |-> "lw", rd |-> "rd", rs1 |-> "rs1", rs2 |-> "empty",
conds = {cond_3,... /* Conditions of type select_cond */ }],
...]

The example above describes three types of instruction classes. Adding
to selection conditions specified in conds, the description of the instructions
also exposes the source and destination registers, rs1/2 and rd respectively,
initialized with some default values. We specify in TLA+ these instruction

119

operands to express the dependencies between instructions and then iden-
tify the forwarding mechanism. Then, we define the bypass conditions
bypass_cond by comparing the instruction operands defined in the registers
rs1, rs2, and rd. We detail the semantics and the body of these conditions in
the application case studies in Section 7.2.

Now for the pipeline status, wemodel the stalling logic. This stalling logic is
also defined by hand and based on how the pipeline interacts with the mem-
ory system. For example, we could encode such a logic that stalls the pipeline
for five cycles whenever there is memory access caused by load/store instruc-
tions. The predicates stall and stall_cond state exactly this behavior.

stall == stage_MemStage.MemStage_pc.inst.type = "lw"
\/ stage_MemStage.MemStage_pc.inst.type = "sw"

stall_cond == stall /\ stall_delay < 5

The pipeline stages with the stalling logic are modeled in StallPipe op-
erator and described in formal_Stall function in Algorithm 8. We specify
the pipeline stall from the first stage until the stage for the memory access
defined in MemStage variable, line 4. We stall the pipeline for the memory
latency cycles for all the pipeline stages before the memory stage, lines 4-7,
and we keep the other stage advancing through the pipeline, we update all
the registers in this pipeline stage with empty, in Stagei_assign line 8. Then,
we output the pipeline stages on the stalling state, lines 9,10 in Algorithm 8.
Algorithm 8: formal_Stall function
1 Function formal_Stall(Pregs, State_var, MemStage, IRP):
2 stageStall← TRUE
3 i← 1
4 while i <= MemStage do
5 foreach Stagei ∈ Pregs do
6 stageStall =

stageStall ∧ Stage_upd(Stagei, UNCHANGED)
7 i = i+ 1

8 Stagei_assign = Stage_upd(StageMemStage+1, R(Regs, empty))
9 stageStall = stageStall ∧ Stagei_assign
10 return stageStall;

We integrated the stalling logic into the pipeline definition via a TLA+ op-
erator Stall, which is defined as a conjunction between the pipeline stalling
stages and currCycle, delay_cycle variables. stall_delay is incremented
until stall_cond becomes false.

Stall == ... /\ stall_cond
/\ StallPipe

120

/\ stall_delay’ = stall_delay + 1
/\ currCycle’ = currCycle + 1

The update state Next integrates the pipeline updates without stalling in
TransPipe andwith the stalling logics in Stall. The pipeline update is defined
as follows:

TransPipe == ... /\~stall_cond
/\ UpdatePipe
/\ currCycle’ = currCycle + 1
/\ stall_delay’ = 0

The state transformer of Spec is refined with the Stall as follows:
Spec == Init /\ [][TransPipe \/ Stall]_<< state_vars >>

As such, we distinguish between two types of pipeline progress: pipeline
progresswhen there is stalling, via Stall andpipeline progresswithout stalling,
using Next. Thismodeling accounts for the hardware part of the specification.
Then, in this modeling we map the input program, given as a sequence of in-
structions (specified by the abstract ISA) and having the conditions to guide
their execution through the pipeline. This is the software aspect of the formal
model.

7.2 . Application to RISC-V Processors Case Studies

RISC-V Sodor 5-stage Pipeline. We detail next our formal model for the
pipeline of the Sodor 5-stage processor; this model combines an automati-
cally generated datapath withmanual extensions for the control and ISA-level
semantics. We refer to each aspect in the following description. Our TLA+
specification Spec is defined with an initial state InitPipe and a transition
states defined with TransPipe and StallPipe as follows:
Spec == InitPipe /\ [][TransPipe \/ StallPipe]_state_vars

The state variables include the pipeline depth of RISC-V Sodor 5-stage and
the cycle level granularity, which corresponds to:
state_vars = << stage_1, stage_2, stage_3, stage_4, stage_5,

currCycle >>

The initial state is an empty pipeline. Thus InitPipe contains the initializa-
tion of the pipeline stages. We present next the registers of stage 3, which cor-
respond to the registers described in Figure 6.6. As described in formal_Init
function in Algorithm 6. The record R defined in Stagei_assign corresponds
to the initialization of the stage 3 registers with empty. The initialization for
stage_3 is as follows:
121

InitPipe == ... /\ stage_3 = [ex_pc |-> empty,
ex_alu_op1 |-> empty,
ex_alu_op2 |-> empty,
ex_rs2_data |-> empty]

... /\ currCycle = 0

The TransPipe models the progress of the pipeline where there is no
stalling.

TransPipe ==/\~stall_cond
/\ update_stage_3(regs) /\ ...
/\ currCycle’ = currCycle + 1

The operator update_stage_3(regs) stands for the following partial up-
date of stage_3 (i.e., only 2 registers, ex_pc and ex_alu_op1 out of 13 registers
are shown):
stage_3’ = [ex_pc |-> stage_2.dec_pc,

ex_alu_op1 |-> IF bypass_3_5 THEN stage_5.wb_wbdata
ELSE IF bypass_3_4 THEN stage_4.mem_alu_out
ELSE IF bypass_3_3 THEN stage_3.ex_alu_op2
ELSE IF cond_1 THEN stage_5.wb_wbaddr
ELSE IF cond_2 THEN stage_4.mem_wbaddr
ELSE IF cond_3 THEN stage_2.ex_wbaddr
ELSE IF cond_4 THEN stage_2.dec_pc
ELSE stage_2.dec_inst ...]

The update of register ex_alu_op1 is defined with respect to the set of de-
pendency relations between registers, where each possible update is guarded
by a condition bypass_cond or select_cond as specified in the Algorithm 7.
Each condition is associated with the corresponding source register defined
in Updt with the function MapStage in the Algorithm 7. For example, for the
update of register ex_alu_op1 with the source register wb_wbdata, it corre-
sponds to the value stage_5.wb_wbdata. The condition bypass_cond is de-
fined for each register as bypass_x_y, while select_cond as cond_z. These
conditions correspond to the blue and, respectively, black edges of the dat-
apath from Figure 6.8. More precisely, the ISA model defines, for each in-
struction class, an execution pattern on the pipeline in the form of a set of
conditions cond_z. Now, the semantics of cond_z is as follows: given an in-
struction i in a pipeline stage, if the progression of i is conditioned by cond_1,
then cond_1 evaluates to true only if it is among the stated conditions of the
instruction type of i. The semantics of bypass_x_y is also given by hand and
states the true data dependencies, using the registers rs1, rs2 and rd of in-
structions found in the pipeline stages x and y as follows:
bypass_3_3 == stage_2.dec_pc.inst.RS1 = stage_3.exe_pc.inst.RD
bypass_3_5 == stage_2.dec_pc.inst.RS1 = stage_5.wb_pc.inst.RD
bypass_3_4 == stage_2.dec_pc.inst.RS1 = stage_4.mem_pc.inst.RD

122

For the stalling logic, it is integrated with the operator StallPipe with
stage_4 as the assumedmemory access stage in the case of the Sodor 5-stage
pipeline. The memory stage is added manually. We stall the pipeline stages
from stage_1 to stage_4 with UNCHANGED, as defined in stageStall variable
in the Algorithm 8. The write-back happens in stage_5 where instructions
can leave the pipeline and the register wb_wbdata is updated with empty as
explained in the Algorithm 8, line 8.
StallPipe == /\ stall_cond

/\ stage_5’ = [wb_wbdata |-> empty]
/\ stall_delay’ = stall_delay + 1
/\ currCycle’ = currCycle + 1
/\ UNCHANGED << stage_1, stage_2, stage_3, stage_4>>

Rocket Pipeline. We illustrate now the formal model for the pipeline of the
Rocket processor. The pipeline depth of Rocket is 6 stages. Thus, the state
variables are defined as follows:
state_vars = << stage_1, stage_2, stage_3, stage_4, stage_5,

stage_6, currCycle >>

We model the pipeline update where each stage updates the registers
according to their dependencies. As detailed in Algorithm 5, line 3, we con-
sider the corresponding graph of the register dependencies IRp with only the
longest path in the max_case 1 dependencies. Rocket processor presents the
max_case 1 to assign the register ex_reg_pc as detailed in Figure 6.2. The up-
date of this register in stage 4 is as shown:

stage_4’ = [... ex_reg_pc |-> buf_pc ...]

We next illustrate the ISA model for two instruction classes to map the
input program into the pipeline models to finish integrating both software
and hardware aspects of formal models. We model the update of stage 6
with only one register. The following TLA+ description corresponds to the
datapath pipeline model in Figure 6.8.
stage_6’ = [wb_reg_wdata |->

IF cond_1 THEN stage_5.mem_reg_pc
ELSE IF cond_2 THEN stage_5.mem_reg_wdata
ELSE stage_5.mem_reg_inst

...]

We refer to the ISA model of instruction classes to define their execution
patterns and to evaluate the corresponding conditions to true.
insts == [
[type |-> "add", rd |-> "rd", rs1 |-> "rs1", rs2 |-> "rs2",

123

conds = {cond_2}],
[type |-> "jal", rd |-> "rd", rs1 |-> "empty", rs2 |-> "empty",
conds = {cond_1}],
...]

The input program is a sequence of instructions. Thus, we follow the pro-
gression of each instruction on the pipeline. For example, when an instruction
i is in a pipeline stage, if it is a jump instruction, then cond_1 is evaluated to
true since cond_1 is among the stated conditions of the jump instruction type.

Thus, we semi-automatically generate the formalmodels from the proces-
sor designs. Indeed, we automatically generate the datapath pipeline mod-
els and add the control logic by hand to guide the execution. Furthermore,
we have also generated pipeline models for various RISC-V processor designs
such as Sodor 3-stage, RISC-V Mini [28], Kyogen [29], Rocket [2] and Fuxi [30].
Table 7.1 – Statistics on TLA+ specification of RISC-V processor designs

LOC(automatic) LOC(manual) automatic
Sodor 3-stage 40 16 71%
RISC-V Mini 55 16 77%

Sodor 5-stage 145 25 85%
KyogenRV 239 37 86%
Rocket 103 25 80%
Fuxi 297 32 90%

Table 7.1 presents statistics related to themanual and automatic lines con-
tained in the TLA+ specification for each processor design. The automatic
LOCs include the generated datapath model, while the manual LOCs in-
clude the control (stalling) and the map of the input program into the TLA+
specification. For instance, the TLA+ specification of the RISC-V Sodor 5-stage
pipeline is around 170 lines out of which, 145 lines are automatically generated
and only 25 lines are added by hand. Furthermore, the number of automatic
lines is related to the size of the intermediate graph (i.e., pipeline registers). It
increases for the designs with a large number of pipeline registers assigned
in their pipeline stages, as for KyogenRV and Fuxi processor designs.

Next, we present the impact of control logic (i.e., the pipeline stalling)
which was added manually on the TLA+ specification. We report in Table 7.2
the results for various processor designs, where we evaluate the impact of
checking for stalling conditions, on the TLC running time with a property as
a currCycle is lower than 1000. We design by processor_complete the formal
specification of both datapath and control logics, while the processor_datpath
reports the results for only the datapath formal model. The formal pipeline
models are built to address the execution of basic blocks, basically, not very
long sequences of instructions. Thus, the input program size on which we

124

experiment is relatively small, up to 200 instructions. We can observe that
adding the stalling logic in the TLA+ specification increases the runtime for all
the processor designs. The evaluation includes the stalling conditions and the
pipeline progress in the case of the stalling.

Table 7.2 – Impact of stalling checks on TLA+ pipeline models.
#Instr

Time
(s)

#Instr
Time
(s)

Mini_complete 100 02 200 03
Mini_datpath 01 02
Sodor3_complete 100 02 200 03
Sodor3_datpath 01 02
Sodor5_complete 100 16 200 23
Sodor5_datpath 13 18
Kyogen_complete 100 21 200 29
Kyogen_datpath 18 25
Rocket_complete 100 17 200 23
Rocket_datpath 15 17
Fuxi_complete 100 17 200 26
Fuxi_datpath 10 18

7.3 . Integration of Formal PipelineModels in a TimingAnomaly
Detection Procedure

We detail next the integration of the generated pipeline models into an
existing model checking procedure for the detection of timing anomalies. We
start with presenting the corresponding definition of timing anomalies and
its TLA+ formal encoding. Then, we report the evaluation synthesizes of the
integration through various benchmarks, on a number of RISC-V processor
designs.

7.3.1 . Model Checking for Timing Anomalies
Static WCET analysis can be complicated by the presence of an undesired

timing phenomenon called timing anomalies [106]. Indeed, they are a threat
to the computation of safe bounds, thus it is necessary to explore all the paths

125

in order to compute bounds. A timing anomaly is a counter-intuitive timing
behavior in the sense that the local worst-case timing behavior does not result
in the global worst-case performance. Figure 7.1 illustrates the timing anoma-
lies definition on two executions, in this case, it is a counter-intuitive timing
anomaly.

Timing anomalies can be produced from shared resources between archi-
tecture components or an unpredictable timing behavior coming from the in-
teraction with thememory system. Reasoning about timing anomaliesmeans
reasoning on pairs of different execution traces corresponding to the same
input program. Thus formal models of both the architecture and the input
program are required.

Figure 7.1 – Example of counter-intuitive timing anomalies
In our work, we consider the variabilities in execution latency resulting

from the interaction between the pipeline and the memory system. More-
over, we integrate our semi-automatically generated pipeline model into an
existing procedure for the detection of timing anomalies [6], which encodes
a definition of timing anomalies based on the concept of locality, proposed
in [104]. More specifically, this work defines a timing anomaly regarding local
and global variations.

We illustrate next this integration of the semi-automatically generated
state pipeline model. We define first a state_vars extension to capture local
and global timing variations as part of a new state variable, asi: local vari-
ation defined by delta, global variation identified with ET specified for two
traces. pcid and pathid rely to the program representation. We define their
semantics later.

asi = [delta |-> [n \in 1..2 |-> 0],
ET |-> [n \in 1..2 |-> 0],
pcid |-> Program.did,
pathid |-> 1]

126

A timing anomaly is characterized by a pair of execution paths when we
compare the localworst-case variations array (i.e., delta) with the globalworst-
cases array (i.e., ET). Figure 7.2 describes the timing anomalies intuition from
the previous definition. Hence, the property is encoded as:
Prop == ~(asi.delta[1] < asi.delta[2] /\ asi.ET[1] > asi.ET[2])

Figure 7.2 – Timing anomalies intuition, from [6]
The formal pipelinemodel should be evaluated on two traces, where each

trace is a sequence of instructions, according to the insts definition provided
in Section 7.1.2. Each instruction is represented by several parameters, the
program counter pc, the instruction type in which we specify the operands
inst, and the latency lat (to model the variability which is coming from the
interaction with the memory system). Finally, the procedure for the detection
of timing anomalies evaluates the pair of traces, given in fst and snd fields
and specified in asi.pathid field to be initialized with the first trace, and with
a locality defined whenever the instruction with pc given in field did is in a
particular pipeline stage (e.g., stage_3). We define in the asi.pcid field the
instruction identified in did program field.
Program <- [fst |-> << [pc |-> 1, lat |-> {1, 10},

inst |-> [type |-> "alu" ...]],
[pc |-> 2, ...], ... >>,

snd |-> << [pc |-> 1, lat |-> {1, 10},
inst |-> [type |-> "alu" ...]],
[pc |-> 2, ...], ... >>,

did |-> 2]

The update state is extended to integrate the locality in instruction exe-
cutions. The previously defined operator TransPipe of Sodor 5-stage is ex-
tended to fully explore the instruction latencies of an instruction in stage_2,

127

before entering the locality-related stage, i.e., stage_3. Moreover, TransPipe
is also extended with the corresponding update of the asi state variable,
based on the system state (i.e., the self-explanatory conditions condFlushWB
and not moreIns) as follows:

TransPipe == \exists lat \in stage_2.dec_pc.lat :
...

/\ asi’ = IF condFlushWB /\ ~ moreIns
THEN [asi EXCEPT!.ET[asi.pathid]=

currCycle + 1]
ELSE IF asi.pcid = stage_2.dec_pc.pc
THEN [asi EXCEPT!.delta[asi.pathid] =

stage_2.dec_pc.lat +
asi.delta[asi.pathid]]

ELSE asi

Once the first trace fst is explored, the procedure for the detection of
timing anomalies reloads the second trace snd, extending the specification
with the following straightforward operator Reload:

Reload == condReload
/\ ...
/\ asi’ = [asi EXCEPT!.pathid = 2]

Where the corresponding conditions for Sodor 5-stage are defined as fol-
lows:

condFlushPip == stage_5.wb_pc.pc = 0 /\ stage_4.mem_pc.pc = 0
/\ stage_3.exe_pc.pc = 0 /\ stage_2.dec_pc.pc = 0
/\ stage_1.if_pc.pc = 0

condFlushWB == stage_4.mem_pc.pc = 0 /\ stage_3.exe_pc.pc = 0
/\ stage_2.dec_pc.pc = 0 /\ stage_1.if_pc.pc = 0

condReload == /\ asi.pathid = 1
/\ ~moreIns
/\ condFlushPip

condFlushWB is used to update the global variation ET when the last in-
struction is in the last pipeline stage (write-back), and there is no more in-
struction in the input program to progress. condFlushPip is defined in order
to reload the second program trace snd, where all the instructions of the first
trace fst are already left the pipeline.

As a consequence, The TLA+ formal specification Spec is extended and be-
comes:

128

Spec == InitPipe /\ [][TransPipe \/ StallPipe
\/ Reload]_<< state_vars >>

7.3.2 . Experimental Results
The integration of the generated formal pipeline models into an existing

procedure for the detection of timing anomalies allows us to evaluate the ef-
fectiveness of ourwork. As such, we evaluate its impact on all of the previously
considered RISC-V processor designs, with their different characteristics, in-
cluding the number of datapath pipeline registers, the pipeline depth, and the
execution patterns specified with the tuple (instructions, control conditions).
Furthermore, we evaluate also the path/condition coverage of the models
through various instruction classes. We also measure the model checking-
based exploration of the state space in both its width and depth. The depth
of the state space is expressed through a variation in the size of the input
traces (i.e., instruction sequences), while the width of the state space is im-
pacted by the latency variations of various instructions in the input traces.
We detail next the evaluation of the processor designs.

We experiment with our integration procedure on two processor designs,
RISC-V Sodor 5-stage and Rocket. We select these two due to their complexity
and variety in terms of execution patterns and the pipeline structure, which
is mono-module for RISC-V Sodor and multi-module for Rocket design.

The TLA+ specification of the RISC-V Sodor 5-stage pipeline, integrated into
the procedure for the detection of timing anomalies, is about 320 lines, while
it is composed of 250 lines for the Rocket processor. We then employ the TLC
model checker to explore all the latency variations on the traces and detect
timing anomalies. The input traces are synthetic benchmarks featuring vari-
able latencies on various instructions and which are explainable by external
static cache analyses [12] or measurement strategies [107].

We conduct experiments on three variants of each considered processor.
First, a simple version where each pipeline stage is represented by a single
register. This model is also used in [6] and named simple in our experimen-
tal evaluation. Second, the pipeline from Figure 6.6 and Figure 6.8, which are
a subset of the (semi-)automatically generated pipeline model of Sodor RISC-
V 5-stage and Rocket respectively, named processor_subset in the experi-
ments. Finally, the complete pipeline model which is presented in Section 7.2
and named processor_complete in the following.

The experimentation is conducted on a quad-core Intel Core i7 at a fre-
quency of 1.90GHZ and 16GB RAM memory and with the TLA+ Toolbox using
the TLC model checker version 2.16. We summarize in Tables 7.3-7.8 the ex-
perimental results for multiple test scenarios. The overall goal is to measure
the impact of the generated pipeline processor_complete (over
processor_subset and simple implementations) on synthetic traces with and

129

without timing anomalies. The general format of these tables is seven columns.
We specify in the first column the pipeline models, in the second the corre-
sponding size of pipeline registers, and in the third and fourth columns, some
trace-related statistics namely, the trace size and number of different execu-
tion traces due to latency variations. The last three columns are model check-
ing statistics, on the running time (the fifth column) and on the search space
(the sixth column on the size of the longest behavior and finally the seventh
column on the number of all states).

First, we conduct experiments on proving the absence of timing anoma-
lies, shown in Tables 7.3, and 7.4, with respect to a given scenario, detailed
next. We consider a synthetic trace of 200 instructions in which we specify a
pair of latencies for the instruction of interest (i.e., corresponding to hit/miss
cache activity) as well as other arbitrary latencies for the rest of the instruc-
tions. Then, we employ boundedmodel checking with a bound of 1000 cycles,
roughly established in a worst-case scenario wrt. the provided latencies and
instructions. Then, the TLCmodel checker fully explores the state space, prov-
ing the absence of timing anomalies up to the provided bound with respect
to the considered scenario.
Table 7.3 – Experimental results for the absence of timing anomaliesfor RISC-V Sodor processor.

#Regs #Instr #Execs
Time
(s)

Diam
−eter

States
Found

simple 5 200 65536 32 1170 801678
sodor_subset 11 40
sodor_complete 37 54

Table 7.4 – Experimental results for the absence of timing anomaliesfor Rocket processor.
#Regs #Instr #Execs

Time
(s)

Diam
−eter

States
Found

simple 6 200 65536 38 1172 801707
rocket_subset 16 46
rocket_complete 30 59
Next, we present, in Tables 7.5-7.8, results when timing anomalies are de-

tected. We have experimented with several synthetic benchmarks with vari-
able execution trace size as described in Tables 7.5, and 7.6, and with vari-
able instruction latencies, reported in Tables 7.7, and 7.8 for Sodor 5-stage
and Rocket respectively. The trace size is gradually increased, from 40 to 200

130

instructions, corresponding to reasonably-sized basic blocks, producing dif-
ferences in the running times between simple and
processor_completemodels for longer traces (i.e., measuring the impact on
the depth of the state space, in Tables 7.5, 7.6). Then, we fix the trace size
to 200 instructions and increase the number of variabilities due to instruc-
tion latencies, up to 4M different scenarios, which are explored by the TLC
model checker. This experimentation also reports runtime differences be-
tween simple and processor_complete, which are proportional with respect
to the number of exposed scenarios, measuring the impact on the width of
the state space.

We can observe for all Tables 7.5-7.8 the variable trace sizes and, more
precisely, instruction latencies significantly impact the running time for the
three pipeline variants. Indeed, the processors differ in the number of pipeline
registers that construct the pipeline stages as the state variables. However,
the statistics on the diameter and number of states found by the TLC model
checker are similar for the three pipeline variants. The reason is that we ex-
ecute the same sequence of instructions for the same number of pipeline
stages, and the state variables are pipeline stages that group registers and
not individual registers (which could lead to different state updates). Further-
more, the stalling logic is also the same for the three variants of the same
processors, focusing on blocking the pipeline up to the memory stage. Thus,
the difference between the pipeline variants relies on the pipeline registers
that are included in the pipeline stages as the state variables. Moreover, the
state variables’ size is not changed. Therefore, the variability directly impacts
the runtime and keeps the same diameter and states found for the three vari-
ants.

We have experimented with various complete versions of the processor
designs with different pipeline depths from 3 to 6 pipeline stages with differ-
ent sizes of the intermediate graph representation from previous chapters.
Table 7.9 presents the experimental result with 200 instructions in the input
program and a variability of 4M scenarios explored by the TLCmodel checker.
These benchmarks report runtime differences between all these pipeline de-
signs, which are related to different parameters: the pipeline depth, 3 stages
for Sodor 3-stage and RISC-V Mini, 5 stages for Kyogen, and Fuxi, and finally 6
for Rocket. Furthermore, it depends also on the number of registers contain-
ing the graph and their updates according to control conditions and bypassing
dependencies. For instance, the TLA+ specification of the processors Kyogen
and Fuxi takes longer to run than the other processors with 5 stages, this is
due to their pipeline registers assigned in the graph as reported in Table 6.3.
The depth of state space (i.e., the diameter) increases with the pipeline depth.
For example, it can reach 828 for processors with 3 pipeline stages: RISC-V
Sodor 3-stage and RISC-V Mini, 832 for Kyogen, Sodor 5-stage, and Fuxi pro-

131

Table 7.5 – Experimental results for timing anomalies detection withmultiple program depth for Sodor 5-stage processor.
#Regs #Ins #Exc

Time
(m : s)

Diam
−eter

States
Found

simple 5 40 1024 00:24 172 83288
sodor_subset 11 00:27
sodor_complete 37 00:45
simple 5 80 1024 01:09 332 167768
sodor_subset 11 01:23
sodor_complete 37 01:54
simple 5 120 1024 01:29 492 252248
sodor_subset 11 02:01
sodor_complete 37 02:51
simple 5 160 1024 01:45 652 336728
sodor_subset 11 02:07
sodor_complete 37 02:59
simple 5 200 1024 01:57 812 421208
sodor_subset 11 02:20
sodor_complete 37 03:10

Table 7.6 – Experimental results for timing anomalies detection withmultiple program depth for Rocket processor.
#Regs #Ins #Exc

Time
(m : s)

Diam
−eter

States
Found

simple 6 40 1024 00:02 174 83321
rocket_subset 16 00:03
rocket_complete 30 00:04
simple 6 80 1024 00:05 334 167801
rocket_subset 16 00:17
rocket_complete 30 00:27
simple 6 120 1024 00:09 494 252281
rocket_subset 16 00:42
rocket_complete 30 00:52
simple 6 160 1024 00:14 654 336761
rocket_subset 16 01:30
rocket_complete 30 01:45
simple 6 200 1024 00:28 814 421241
rocket_subset 16 01:50
rocket_complete 30 02:05

132

Table 7.7 – Experimental results for timing anomalies detection withmultiples latencies for Sodor 5-stage processor.
#Regs #Ins #Exc

Time
(m : s)

Diam
−eter

States
Found

simple 5 200 1024 00:09 832 125999
sodor_subset 11 00:10
sodor_complete 37 00:13
simple 5 200 16384 04:43 832 3200254
sodor_subset 11 05:50
sodor_complete 37 07:45
simple 5 200 262144 15:36 832 7614589
sodor_subset 11 17:30
sodor_complete 37 22:40
simple 5 200 4194304 35:49 832 16921893
sodor_subset 11 41:27
sodor_complete 37 45:15
Table 7.8 – Experimental results for timing anomalies detection withmultiples latencies for Rocket processor.

#Regs #Ins #Exc
Time
(m : s)

Diam
−eter

States
Found

simple 6 200 1024 00:08 834 98927
rocket_subset 16 00:09
rocket_complete 30 00:11
simple 6 200 16384 02:49 834 3200343
rocket_subset 16 03:13
rocket_complete 30 03:40
simple 6 200 262144 19:15 834 7614726
rocket_subset 16 22:10
rocket_complete 30 24:19
simple 6 200 4194304 47:37 834 16922102
rocket_subset 16 53:36
rocket_complete 30 58:13

cessor designs with 5 stages, and 834 for Rocket processor with 6 stages as
a pipeline depth. Finally, the state founds number depends on state space
depth (traces) and width (variabilities) and increases with the pipeline stages.
Indeed, it can reach 2K of difference between 3 and 5 pipeline stages.

Integrating our formal pipeline models into a procedure for the detection
of timing anomalies has demonstrated the effectiveness of the automatic gen-
eration of pipelinemodels from the code of processor designs. We haveman-

133

Table 7.9 – Experimental results for timing anomalies detection withvarious processor designs.
#Regs #Ins #Execs

Time
(m : s)

Diam
−eter

States
Found

RISC-V Mini 11 200 4194304 18:38 828 16710594
sodor 3stage 8 21:07 828 16710594
sodor 5stage 37 45:15 832 16921893

Kyogen 74 53:18 832 16921893
Rocket 30 58:13 834 16922102
Fuxi 53 48:05 832 16921893

aged to demonstrate this integration by proving the absence/presence of tim-
ing anomalies on all our use case design processors. The absence is obviously
proved with respect to the considered traces. Furthermore, we can produce
reliable coverage for each processor’s formalmodel with various benchmarks
featuring variable latencies and multiple traces. The code coverage relies on
the coverage of all the execution patterns provided by the Instruction Set Ar-
chitecture (ISA) abstraction as control conditions specified by hand in the cor-
responding ISA module. The code coverage is achieved at runtime when all
the conditions (i.e., bypass and control conditions) are tested and evaluated
through relevant benchmarks. For instance, with a trace size of 200 instruc-
tions and 4M execution paths due to latency variation, we can reach the cov-
erage of all the instruction classes and pipeline status.

As observed, formal verification of properties on the provided models
shows the impact of the automatic generation on the runtime and the state
space size. The TLC model checker needs more time and faces the state
space explosion proportionally with the complexity of the processor designs
in terms of its number of pipeline stages, the pipeline structure, and the num-
ber of registers. Furthermore, the scalability of the automaticmodels remains
reasonable compared to the simple ones.

7.4 . Conclusion

The timing analysis of safety-critical systems relies on hardware models
(e.g., caches, pipelines, etc.); thus, generating pipeline models, wherever pos-
sible, is necessary. We have presented in this chapter the integration of such
pipeline models into an existing model checking-based procedure for the de-
tection of timing anomalies. Our proposed approach is based on a semi-
automatic generation of pipeline datapathmodels fromprocessor design code,
which is then used to produce formal pipelinemodels. Then, wemanually add
to the datapath pipeline model the control logic (stalling), forming complete
pipeline models that could capture the execution of instructions through a
pipeline.

134

Wehave presented first the algorithms of the automatic generation of dat-
apath formal models in TLA+. Then, we have illustrated the approach to var-
ious RISC-V processor designs. Thereafter, we experimented with their TLA+
formal specifications, integrated into a procedure for the detection of timing
anomalies. We have reported preliminary experimental results in which we
detailed the impact of the semi-automatic generation of pipeline models on
the running time and state space explosion through several synthetic bench-
marks.

135

136

8 - Conclusion and Perspectives

In this thesiswork, wehavepresentedour generalworkflow that addresses
the formal verification of timing properties with the goal of automatic gener-
ation of formal pipeline models from high-level hardware designs. We have
proposed an approach to automatically generate the pipeline datapath mod-
els forWCET analysis. It addresses the hardware design developedwith Chisel
language and integrated into the Chisel/FIRRTL hardware compilation frame-
work. The approach considers as a starting point the datapath pipeline mod-
ules and relies on how the design is coded. The datapath pipeline modules
can be an individual module defined as a mono-module pipeline design or is
developed over several software-level modules as the multi-module pipeline,
connected through interfaces and using various internal structures to define
the pipeline circuitry. The analysis is structured into two main phases; the
register analysis and then the construction of the abstract datapath pipeline
model phases. Register analysis constructs an intermediate representation
graph of the datapath pipeline as a dependency registers relation. The analy-
sis is performed through two kinds of relations, the intra-module analysis and
the inter-module analysis. The intra-module relations are performed at each
module level for the register context. In contrast, the inter-module relations
construct the input/output interfaces between pipeline modules in order to
build the register connections. The second phase builds the abstract datapath
pipeline model through a register-assignment procedure.

We have shown how a high-level hardware compilation toolchain can ease
the adaptation of automatically generated formal abstract models to such
safety properties. We have reported on a custompass to generate an abstract
pipelinemodel to be used therefore for the detection of timing anomalies. We
have evaluated our approach on several in-order RISC-V processors, from the
less to more complex range of processors, mono-module and multi-module
of datapath pipeline. We have demonstrated the efficiency of our approach
with various experiments that summarize the results and construct the syn-
thesis.

We have also presented the automatic generation of formal models for
the verification of timing predictability-related properties. These formal mod-
els are based on the generated datapath pipeline models in which we add
control logic manually. We have translated the models into formal specifi-
cations using TLA+ language. This specification is further integrated into an
existing procedure for the detection of timing anomalies. We experimented
with TLA+ formal specification using the TLC model checking technique to ex-
plore the TLA+ specificationwhile verifying the required timing properties. We
have reported the experimental results in which we detailed the impact of the

137

semi-automatic generation of pipeline models on the running time and state
explosion through several synthetic benchmarks.

As future work, we aim to validate the results of our algorithm that con-
structs the datapath pipeline models against processors so as to replace the
currentmanual validation of thesemodelswith an automatedprocedure. Our
model is a subgraph of the original pipeline processor. The objective is to val-
idate the models against the original processor through the processor exe-
cution of assumed programs. Thus, we combine our static construction with
a dynamic analysis through program execution. Several techniques can be
used in order to establish this dynamic aspect. We aim to test the design and
simulate the execution traces. Therefore, the reliability of our model can be
determined by proving that such a subsumption relation between our model
subgraph and the results of the processor design execution exists. We com-
pare the register relations of the original processor execution traces with the
abstract model relations.

We also intend to evaluate our approach on more complex processors
as out-of-order RISC-V designs. Out-of-order processors add more complex
pipeline constructions andmechanisms as structural hazards and speculative
execution. As such, we need to include and treat all the Chisel language con-
structions as queues to correctly approximate the hardware designs’ timing
behavior. Furthermore, analyzing out-of-order processors allows us to add
several design components as functional units on pipeline models. This fea-
ture enables extending the detection of timing anomalies analysis.

138

Publications

• International Conferences

1. Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet, and Mathieu Jan,
“Deriving pipelinemodels for timing analysis from high-level HDL pro-
cessor designs”. In 20th ACM-IEEE International Conference on Formal
Methods andModels for SystemDesign, MEMOCODE 2022, Shanghai,
China, October 13-14, 2022. IEEE, 2022, pp. 1–8.

2. Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet, and Mathieu Jan,
“Work in progress : Automatic construction of pipeline datapaths from
high-level HDL code”. In 28th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, RTAS 2022, Milano, Italy, May 4-6,
2022. IEEE, 2022, pp. 305–308.

3. Benjamin Binder, Samira Ait Bensaid, Simon Tollec, Mihail Asavoae,
Farhat Thabet, and Mathieu Jan, “Formal processor modeling for an-
alyzing safety and security properties”. In 11 th European Congress
Embedded Real-Time Systems, ERTS 2022, Toulouse-France, June 1-2.

• Workshops/Talks

1. Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet, and Mathieu Jan,
“Pipeline datapath models from risc-v based cores”. In RISC-V Spring
Week, 2022.

2. Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet, and Mathieu Jan,
“Pipeline datapath models from risc-v based cores”. In TLA+ Commu-
nity Event Conference, 2023.

139

140

9 - Annexe: Résumé Substanciel

Les systèmes embarqués sont conçus avec des fonctionnalités spécifiques
et intégrés dans des systèmes plus complexes. Les systèmes embarqués dis-
posent d’une infrastructure matérielle (basée sur un processeur) et sont ca-
pables d’exécuter des applications qui répondent à ces fonctionnalités spéci-
fiques. Ces systèmes sont utilisés dans divers contextes allant des appareils
portables aux systèmes critiques. La validité de ces systèmes critiques dépend
non seulement de leur correction fonctionnelle, mais aussi du temps dans
lequel ils sont exécutés. La conception de ces systèmes repose sur des régle-
mentations et des normes pour aider à identifier et à traiter les événements
dangereux potentiels. Par exemple, des événements tels que le non-respect
des délais seraient jugés inacceptables pour ces systèmes.

Les analyses statiques depire tempsd’exécution sont parmi les approches
utilisées pour garantir les délais requis pour les systèmes critiques.
Afin d’estimer des bornes précises sur ces temps d’exécution, ces analyses
nécessitent de modéliser très finement le comportement temporel de la mi-
croarchitecture du ou des processeurs utilisés dans la plateforme matérielle.
Ainsi, ces limites sont exprimées en cycles de processeur. Ces modèles de
micro-architecture sont aujourd’hui développés demanièremanuelle, à partir
d’éléments de documentation des processeurs qui peuvent être face à des er-
reurs. Cependant, avec l’émergence du design des processeurs open-source,
dont les descriptions au niveau RTL sont disponibles, et les langages de de-
scription de matériel de haut niveau (HCLs), la génération automatique de
ces modèles de micro-architecture et, plus spécifiquement, des modèles de
pipeline permet d’envisager une automatisation de cette étape.

Nous proposons unworkflowpour la constructiondemodèles de chemins
de données de pipeline à partir de conceptions de processeurs décrites dans
des langages de construction de matériel (HCLs). Nous intéressons aux con-
ceptions exprimées avec le langage Chisel qui est supporté par la chaîne de
compilationmatériel Chisel/FIRRTL. La conception exprimée enChisel est com-
pilée par la suite en une représentation intermédiaire FIRRTL par le biais des
transformations dont cette infrastructure dispose. Ces chaines de compila-
tion facilitent l’intégration des analyses des conceptions matérielles. Notre
workflow est basé sur cette chaîne de compilation Chisel/FIRRTL. Nous dé-
ployons des analyses qui visent à construire automatiquement au niveau de
la représentation intermédiaire FIRRTL desmodèles de pipeline du chemin de
données.

L’approche prend donc comme un point d’entrée les modules de pipeline
du chemins de données et s’appuie sur la manière dont la conception est
codée. Nous visons par la suite l’utilisation de ces modèles pour des pro-

141

priétés temporelles. Nous nous intéressons donc à l’aspect temporel auniveau
du pipeline pour construire ces modèles. De ce fait, on construit le modèle
de chemin de données de pipeline autour des registres. Nous présentons les
résultats préliminaires de l’application sur plusieurs processeurs RISC-V open-
source. Ces conceptions des processeurs sont caractérisées par leur diversité
au niveau de nombre d’étages de pipeline et leur complexité de la structure
du chemin de données du pipeline.

Nos travaux de thèse vise à appliquer ces modèles générés pour prouver
des propriétés temporelles, notamment des propriétés liées à la prédictibil-
ité temporelle. Pour prouver ces propriétés, diverses méthodes peuvent être
utilisées. Nous adoptons la vérification formelle qui est une méthode ex-
haustive qui garantit que des résultats corrects sont produits dans toutes les
conditions d’exécution possibles, et qui nécessite la construction de modèles
formels. Lesmodèles générés sont suffisamment complets et précis pour être
utilisé comme entrée pour la partie formelle. Nous les traduisons donc en
modèles formels. Nous illustrons par la suite cette génération sur différents
modèles de processeurs RISC-V.

Par ailleurs, nous les intégrons dans une procédure existante de détection
des anomalies temporelle comme cas d’utilisation. Cette procédure est basée
sur la vérification formelle. Nous employant le langage de modélisation et de
vérification TLA+ et le model checking, et expérimentons notre analyse avec
plusieurs processeurs RISC-V open-source. Nous évaluons cette intégration
pour plusieurs processeurs comme cas d’étude. Nous examinons également
l’impact de la génération automatique de modèles par le biais d’une série de
critères synthétiques.

142

Bibliography

[1] “Risc-v sodor,” https://github.com/ucb-bar/riscv-sodor,.
[2] “Rocket chip,” https://github.com/chipsalliance/rocket-chip,.
[3] M. Schlickling and M. Pister, “A framework for static analysis of VHDL

code,” in WCET, ser. OASICS, vol. 6, 2007.
[4] ——, “Semi-automatic derivation of timing models for WCET analysis,”

in LCTES. ACM, 2010, pp. 67–76.
[5] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein, “The program depen-

dence web: A representation supporting control, data, and demand-
driven interpretation of imperative languages,” in Proceedings of the ACM
SIGPLAN’90 Conference on Programming Language Design and Implemen-
tation (PLDI), White Plains, New York, USA, June 20-22, 1990, B. N. Fischer,
Ed. ACM, 1990, pp. 257–271.

[6] M. Asavoae, B. B. Hedia, and M. Jan, “Formal executable models for au-
tomatic detection of timing anomalies,” in WCET 2018, vol. 63, 2018, pp.
2:1–2:13.

[7] D. Kaestner and C. Ferdinand, “Safety standards and wcet analysis
tools,” in ERTS, 2012.

[8] T. Lothar andW. Reinhard, “ Design for Timing Predictability - Real-Time
Systems,” 2004.

[9] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an open
toolbox for adaptive WCET analysis,” in Software Technologies for Embed-
ded andUbiquitous Systems - 8th IFIPWG 10.2 InternationalWorkshop, SEUS
2010, Waidhofen/Ybbs, Austria, October 13-15, 2010. Proceedings, ser. Lec-
ture Notes in Computer Science, S. L. Min, R. G. P. IV, P. P. Puschner,
and T. Ungerer, Eds., vol. 6399. Springer, 2010, pp. 35–46.

[10] D. Hardy, B. Rouxel, and I. Puaut, “The heptane static worst-case execu-
tion time estimation tool,” in 17th International Workshop on Worst-Case
Execution Time Analysis, WCET 2017, June 27, 2017, Dubrovnik, Croatia, ser.
OASIcs, J. Reineke, Ed., vol. 57. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017, pp. 8:1–8:12.

[11] X. Li, L. Yun, T. Mitra, and A. Roychoudhury, “Chronos: A timing analyzer
for embedded software,” Sci. Comput. Program., vol. 69, no. 1-3, pp. 56–
67, 2007.

[12] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on static
cache analysis for real-time systems,” Leibniz Trans. Embed. Syst., vol. 3,
no. 1, pp. 05:1–05:48, 2016.

143

https://github.com/ucb-bar/riscv-sodor
https://github.com/chipsalliance/rocket-chip

[13] J. Engblom and B. Jonsson, “Processor pipelines and their properties for
staticWCET analysis,” in Embedded Software, Second International Confer-
ence, EMSOFT 2002, Grenoble, France, October 7-9, 2002, Proceedings, ser.
Lecture Notes in Computer Science, A. L. Sangiovanni-Vincentelli and
J. Sifakis, Eds., vol. 2491. Springer, 2002, pp. 334–348.

[14] M. Langenbach, S. Thesing, and R. Heckmann, “Pipeline modeling for
timing analysis,” in Static Analysis, 9th International Symposium, SAS 2002,
Madrid, Spain, September 17-20, 2002, Proceedings, ser. Lecture Notes in
Computer Science, M. V. Hermenegildo and G. Puebla, Eds., vol. 2477.
Springer, 2002, pp. 294–309.

[15] R. Wilhelm, M. Pister, G. Gebhard, and D. Kästner, “Testing implemen-
tation soundness of a WCET analysis tool,” in A Journey of Embedded and
Cyber-Physical Systems. Springer, 2021, pp. 5–17.

[16] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13–25, 1997.

[17] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” Tech. Rep. UCB/EECS-2014-146, Aug 2014.

[18] J. Bachrach, H. Vo, B. C. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic, “Chisel: constructing hardware in a scala
embedded language,” in DAC’12, 2012, pp. 1216–1225.

[19] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a scala
embedded language,” in DAC, 2012, p. 1216–1225.

[20] C. Papon, “SpinalHDL,” https://github.com/SpinalHDL.
[21] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: a multi-level inter-

mediate representation for hardware description languages,” in PLDI,
A. F. Donaldson and E. Torlak, Eds., 2020, pp. 258–271.

[22] B. Binder, M. Asavoae, F. Brandner, B. B. Hedia, and M. Jan, “The role of
causality in a formal definition of timing anomalies,” in RTCSA 2022, 2022,
pp. 91–102.

[23] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is firrtl
ground: Hardware construction languages, compiler frameworks, and
transformations,” in ICCAD, 2017, p. 209–216.

[24] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind, “The essence of blue-
spec: A core language for rule-based hardware design.” New York, NY,
USA: Association for Computing Machinery, 2020.

[25] O. Port and Y. Etsion, “Dfiant: A dataflow hardware description lan-
guage,” in 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), 2017.

144

https://github.com/SpinalHDL

[26] “chisel-bootcamp,” https://github.com/freechipsproject/
chisel-bootcamp.

[27] P. Bernardi, R. Cantoro, L. M. C. Brasca, B. Du, E. Sánchez, M. S. Reorda,
M. Grosso, and O. Ballan, “On the functional test of the register for-
warding and pipeline interlocking unit in pipelined processors,” in 14th
International Workshop on Microprocessor Test and Verification, MTV 2013,
Austin, TX, USA, December 11-13, 2013. IEEE Computer Society, 2013, pp.
52–57.

[28] “Risc-v mini,” https://github.com/ucb-bar/riscv-mini,.
[29] A. Saitoh, “Kyogenrv: simple 5-staged pipeline RISC-V,” https://github.

com/panda5mt/KyogenRV.
[30] “Fuxi, a 32-bit pipelined risc-v processor written in chisel3.” https://

github.com/MaxXSoft/Fuxi,.
[31] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. A. Patterson, and

K. Asanovic, “The RISC-V instruction set,” in 2013 IEEE Hot Chips 25 Sympo-
sium (HCS), 2013. IEEE, 2013, p. 1.

[32] J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving. Wiley, 1987.

[33] E. M. Clarke, T. Filkorn, and S. Jha, “Exploiting symmetry in temporal
logic model checking,” in Computer Aided Verification, 5th International
Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings,
ser. Lecture Notes in Computer Science, C. Courcoubetis, Ed., vol. 697.
Springer, 1993, pp. 450–462.

[34] Y. Yu, P. Manolios, and L. Lamport, “Model checking tla+ specifications,”
in CHARME, vol. 1703, 1999, pp. 54–66.

[35] L. Lamport, “The temporal logic of actions,” ACM Trans. Program. Lang.
Syst., vol. 16, no. 3, pp. 872–923, 1994.

[36] ——, The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley Professional, 2002.

[37] G. J. Holzmann, Explicit-State Model Checking, 2018.
[38] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang, “Sym-

bolic model checking: 1020 states and beyond,” Information and compu-
tation, vol. 98, no. 2, pp. 142–170, 1992.

[39] K. L. McMillan, “Symbolic model checking: an approach to the state ex-
plosion problem,” 1992.

[40] C. Eisner andD. A. Peled, “Comparing symbolic and explicitmodel check-
ing of a software system,” inModel Checking of Software, 9th International
SPIN Workshop, Grenoble, France, April 11-13, 2002, Proceedings, ser. Lec-
ture Notes in Computer Science, D. Bosnacki and S. Leue, Eds., vol. 2318.
Springer, 2002, pp. 230–239.

145

 https://github.com/freechipsproject/chisel-bootcamp
 https://github.com/freechipsproject/chisel-bootcamp
https://github.com/ucb-bar/riscv-mini
https://github.com/panda5mt/KyogenRV
https://github.com/panda5mt/KyogenRV
https://github.com/MaxXSoft/Fuxi
https://github.com/MaxXSoft/Fuxi

[41] H. R. Andersen, “An introduction to binary decision diagrams,” 1997.
[42] L. Charvát, A. Smrcka, and T. Vojnar, “HADES: microprocessor hazard

analysis via formal verification of parameterized systems,” in MEMICS,
ser. EPTCS, vol. 233, 2016, pp. 87–93.

[43] A. Mir, S. Balakrishnan, and S. Tahar, “Modeling and verification of em-
bedded systems using cadence smv,” in 2000 Canadian Conference on
Electrical and Computer Engineering. Conference Proceedings. Navigating
to a New Era (Cat. No.00TH8492), 2000.

[44] R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification us-
ing software analyzers,” in 2015 IEEE Computer Society Annual Symposium
on VLSI, ISVLSI 2015, Montpellier, France, July 8-10, 2015. IEEE Computer
Society, 2015, pp. 7–12.

[45] C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling, I. Stein, S. Thesing,
and R. Heckmann, “New developments in WCET analysis,” in Program
Analysis and Compilation, Theory and Practice, Essays Dedicated to Rein-
hard Wilhelm on the Occasion of His 60th Birthday, ser. Lecture Notes in
Computer Science, T. W. Reps, M. Sagiv, and J. Bauer, Eds., vol. 4444.
Springer, 2006, pp. 12–52.

[46] Z. Bai, H. Cassé, M. D. Michiel, T. Carle, and C. Rochange, “Improving the
performance of WCET analysis in the presence of variable latencies,”
in Proceedings of the 21st ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems, LCTES 2020,
London, UK, June 16, 2020, J. Xue and C. Jung, Eds. ACM, 2020, pp. 119–
130.

[47] X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-order processors
for WCET analysis,” Real Time Syst., vol. 34, no. 3, pp. 195–227, 2006.

[48] D. Kroening and W. J. Paul, “Automated pipeline design,” in DAC. ACM,
2001, pp. 810–815.

[49] E. Nurvitadhi, J. C. Hoe, T. Kam, and S. Lu, “Automatic pipelining from
transactional datapath specifications,” IEEE Trans. Comput. Aided Des. In-
tegr. Circuits Syst., vol. 30, no. 3, pp. 441–454, 2011.

[50] J. Gorius, S. Rokicki, and S. Derrien, “Spechls: Speculative accelerator
design using high-level synthesis,” IEEE Micro, vol. 42, no. 5, pp. 99–107,
2022.

[51] K. McMillan, “Cadence smv,” Cadence Berkeley Labs, CA, 2000.
[52] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” 1997.
[53] A. Mycroft and R. Sharp, “Hardware synthesis using SAFL and applica-

tion to processor design,” in Correct Hardware Design and Verification
Methods, 11th IFIPWG 10.5 Advanced ResearchWorking Conference, CHARME

146

2001, Livingston, Scotland, UK, September 4-7, 2001, Proceedings, ser. Lec-
ture Notes in Computer Science, T. Margaria and T. F. Melham, Eds., vol.
2144. Springer, 2001, pp. 13–39.

[54] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: Hardware design
in haskell,” in Proceedings of the third ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’98), Baltimore, Maryland, USA,
September 27-29, 1998, M. Felleisen, P. Hudak, and C. Queinnec, Eds.
ACM, 1998, pp. 174–184.

[55] M. J. C. Gordon, “The Semantic Challenge of Verilog HDL,” in Proceedings
of the 10th Annual IEEE Symposium on Logic in Computer Science. IEEE
Computer Society, 1995, pp. 136–145.

[56] P. O. Meredith, M. Katelman, J. Meseguer, and G. Rosu, “A formal ex-
ecutable semantics of verilog,” in 8th ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE 2010), Grenoble,
France, 26-28 July 2010. IEEE Computer Society, 2010, pp. 179–188.

[57] M. J. C. Gordon, “Relating event and trace semantics of hardware de-
scription languages,” Comput. J., vol. 45, no. 1, pp. 27–36, 2002.

[58] D. J. Greaves, “Layering rtl, safl, handel-c and bluespec constructs on
chisel hcl,” in 2015 ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE), 2015, pp. 108–117.

[59] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind, “Kami: a
platform for high-level parametric hardware specification and itsmodu-
lar verification,” Proc. ACM Program. Lang., vol. 1, no. ICFP, pp. 24:1–24:30,
2017.

[60] L. Truong and P. Hanrahan, “A golden age of hardware description lan-
guages: Applying programming language techniques to improve de-
sign productivity,” in 3rd Summit on Advances in Programming Languages,
SNAPL 2019, May 16-17, 2019, Providence, RI, USA, ser. LIPIcs, B. S. Lerner,
R. Bodík, and S. Krishnamurthi, Eds., vol. 136. SchlossDagstuhl - Leibniz-
Zentrum für Informatik, 2019, pp. 7:1–7:21.

[61] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, “C?ash:
Structural descriptions of synchronous hardware using haskell,” in 2010
13th Euromicro Conference on Digital SystemDesign: Architectures, Methods
and Tools, 2010.

[62] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis, and K. Olukotun, “Spatial: a
language and compiler for application accelerators,” in Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, J. S. Fos-
ter and D. Grossman, Eds. ACM, 2018, pp. 296–311.

147

[63] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infrastructure
for accelerator generators,” in ASPLOS ’21: 26th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, Virtual Event, USA, April 19-23, 2021, T. Sherwood, E. D. Berger,
and C. Kozyrakis, Eds. ACM, 2021, pp. 804–817.

[64] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: a multi-level in-
termediate representation for hardware description languages,” in Pro-
ceedings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, A. F. Donaldson
and E. Torlak, Eds. ACM, 2020, pp. 258–271.

[65] F. Heilmann, C. Brugger, and N. Wehn, “Investigate the high-level hdl
chisel,” 2013, p. 2.

[66] P. Pan, S. Jiang, Y. Ou, and C. Batten, “Towards gradually typed hardware
description languages,” Rem, vol. 504, p. 0, 2023.

[67] J. Im and S. Kang, “Comparative analysis between verilog and chisel in
RISC-V core design and verification,” in 18th International SoC Design Con-
ference, ISOCC 2021, Jeju Island, South Korea, Republic of, October 6-9, 2021.
IEEE, 2021, pp. 59–60.

[68] P. Lennon and R. Gahan, “A comparative study of chisel for fpga design,”
in 2018 29th Irish Signals and Systems Conference (ISSC), 2018, pp. 1–6.

[69] J. Bruant, P. Horrein, O. Muller, T. Groléat, and F. Pétrot, “(system)verilog
to chisel translation for faster hardware design,” in International Work-
shop on Rapid System Prototyping, RSP 2020, Hamburg, Germany, Septem-
ber 24-25, 2020. IEEE, 2020, pp. 1–7.

[70] Ken Roe, “sifive/kami,” https://github.com/sifive/Kami.
[71] I. Neamtiu, J. S. Foster, and M. W. Hicks, “Understanding source code

evolution using abstract syntax treematching,” in Proceedings of the 2005
International Workshop on Mining Software Repositories, MSR 2005, Saint
Louis, Missouri, USA, May 17, 2005. ACM, 2005.

[72] W. Yang, “Identifying syntactic differences between two programs,”
Softw. Pract. Exp., vol. 21, no. 7, pp. 739–755, 1991.

[73] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” in International Symposium on Pro-
gramming, 6th Colloquium, Toulouse, France, April 17-19, 1984, Proceedings,
ser. Lecture Notes in Computer Science, M. Paul and B. J. Robinet, Eds.,
vol. 167. Springer, 1984, pp. 125–132.

[74] K. Kim and B. R. Moon, “Malware detection based on dependency graph
using hybrid genetic algorithm,” in Genetic and Evolutionary Computation
Conference, GECCO 2010, Proceedings, Portland, Oregon, USA, July 7-11, 2010,
M. Pelikan and J. Branke, Eds. ACM, 2010, pp. 1211–1218.

148

https://github.com/sifive/Kami

[75] E. M. Clarke, M. Fujita, S. P. Rajan, T. W. Reps, S. Shankar, and T. Teitel-
baum, “Program slicing of hardware description languages,” in Correct
Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced Re-
searchWorking Conference, CHARME ’99, Bad Herrenalb, Germany, Septem-
ber 27-29, 1999, Proceedings, ser. Lecture Notes in Computer Science,
L. Pierre and T. Kropf, Eds., vol. 1703. Springer, 1999, pp. 298–312.

[76] F. Tip, “A survey of program slicing techniques,” J. Program. Lang., vol. 3,
no. 3, 1995.

[77] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival, “Static analysis by abstract interpretation of embedded critical
software,” ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1–8, 2011.

[78] K. Y. Xavier Rival, Introduction to Static Analysis An Abstract Interpretation
Perspective, 2019.

[79] S. Vasudevan, E. A. Emerson, and J. A. Abraham, “Improved verifica-
tion of hardware designs through antecedent conditioned slicing,” Int. J.
Softw. Tools Technol. Transf., vol. 9, no. 1, pp. 89–101, 2007.

[80] R. Sharp and A. Mycroft, “Soft scheduling for hardware,” in Static Anal-
ysis, 8th International Symposium, SAS 2001, Paris, France, July 16-18, 2001,
Proceedings, ser. Lecture Notes in Computer Science, P. Cousot, Ed., vol.
2126. Springer, 2001, pp. 57–72.

[81] V. Athavale, S. Ma, S. Hertz, and S. Vasudevan, “Code coverage of asser-
tions using RTL source code analysis,” in The 51st Annual Design Automa-
tion Conference 2014, DAC ’14, San Francisco, CA, USA, June 1-5, 2014. ACM,
2014, pp. 61:1–61:6.

[82] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: a language for
hardware-level security policy enforcement,” in Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2014, Salt Lake
City, UT, USA, March 1-5, 2014, R. Balasubramonian, A. Davis, and S. V.
Adve, Eds. ACM, 2014, pp. 97–112.

[83] X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and
B. Hardekopf, “Caisson: a hardware description language for secure in-
formation flow,” in Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose,
CA, USA, June 4-8, 2011, M. W. Hall and D. A. Padua, Eds. ACM, 2011, pp.
109–120.

[84] F. E. Allen, “Control flow analysis,” Proceedings of a sympo-
sium on Compiler optimization, 1970. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:14740595

149

https://api.semanticscholar.org/CorpusID:14740595
https://api.semanticscholar.org/CorpusID:14740595

[85] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools, ser. Addison-Wesley series in computer science / World student
series edition. Addison-Wesley, 1986.

[86] P. Cousot, “Abstract interpretation of graphs,” in Analysis, Verification
and Transformation for Declarative Programming and Intelligent Systems
- Essays Dedicated to Manuel Hermenegildo on the Occasion of His 60th
Birthday, ser. Lecture Notes in Computer Science, P. López-García, J. P.
Gallagher, and R. Giacobazzi, Eds., vol. 13160. Springer, 2023, pp. 72–96.

[87] A. Dalsgaard, M. Olesen, M. Toft, R. Hansen, and K. Larsen, “Metamoc:
Modular execution time analysis usingmodel checking,” inWCET, vol. 15,
2010, pp. 113–123.

[88] A. Mangean, J. Béchennec, M. Briday, and S. Faucou, “WCET analysis by
model checking for a processor with dynamic branch prediction,” in Ver-
ification and Evaluation of Computer and Communication Systems - 11th In-
ternational Conference, VECoS 2017, Montreal, QC, Canada, August 24-25,
2017, Proceedings, ser. Lecture Notes in Computer Science, K. Barkaoui,
H. Boucheneb, A. Mili, and S. Tahar, Eds., vol. 10466. Springer, 2017, pp.
64–78.

[89] A. Metzner, “Why model checking can improve WCET analysis,” in Com-
puter Aided Verification, 16th International Conference, CAV 2004, Boston,
MA, USA, July 13-17, 2004, Proceedings, ser. Lecture Notes in Computer
Science, R. Alur and D. A. Peled, Eds., vol. 3114. Springer, 2004, pp.
334–347.

[90] R. Wilhelm, “Why AI + ILP is good for wcet, but MC is not, nor ILP alone,”
in Verification, Model Checking, and Abstract Interpretation, 5th Interna-
tional Conference, VMCAI 2004, Venice, Italy, January 11-13, 2004, Proceed-
ings, ser. LectureNotes in Computer Science, B. Steffen andG. Levi, Eds.,
vol. 2937. Springer, 2004, pp. 309–322.

[91] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson, “Towards
WCET analysis of multicore architectures using UPPAAL,” in 10th Inter-
national Workshop on Worst-Case Execution Time Analysis, WCET 2010, July
6, 2010, Brussels, Belgium, ser. OASIcs, B. Lisper, Ed., vol. 15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010, pp. 101–112.

[92] V. Touzeau, C. Maïza, D. Monniaux, and J. Reineke, “Ascertaining uncer-
tainty for efficient exact cache analysis,” in Computer Aided Verification
- 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II, ser. Lecture Notes in Computer Science, R. Ma-
jumdar and V. Kuncak, Eds., vol. 10427. Springer, 2017, pp. 22–40.

[93] B. Rieder, P. P. Puschner, and I. Wenzel, “Usingmodel checking to derive
loop bounds of general loops within ANSI-C applications for measure-
ment based WCET analysis,” in International Workshop on Intelligent So-

150

lutions in Embedded Systems, WISES 2008, Regensburg, Germany, July 10-11,
2008, M. Kucera, R. Roth, and M. Conti, Eds. IEEE, 2008, pp. 1–7.

[94] B. Blackham and G. Heiser, “Sequoll: A framework for model checking
binaries,” in 19th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS 2013, Philadelphia, PA, USA, April 9-11, 2013. IEEE
Computer Society, 2013, pp. 97–106.

[95] M. Asavoae, I. Haur, M. Jan, B. B. Hedia, and M. Schoeberl, “Towards for-
mal co-validation of hardware and software timing models of cpss,” in
Cyber Physical Systems. Model-Based Design - 9th International Workshop,
CyPhy 2019, and 15th International Workshop, WESE 2019, New York City,
NY, USA, October 17-18, 2019, Revised Selected Papers, ser. Lecture Notes in
Computer Science, R. D. Chamberlain, M. E. Grimheden, and W. Taha,
Eds., vol. 11971. Springer, 2019, pp. 203–227.

[96] M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee, “Formal semantics of
predictable pipelines: a comparative study,” in ASP-DAC, 2020.

[97] B. Binder, M. Asavoae, F. Brandner, B. B. Hedia, and M. Jan, “Scalable
detection of amplification timing anomalies for the superscalar tricore
architecture,” in FMICS, 2020.

[98] M. Asavoae, B. B. Hedia, and M. Jan, “Formal modeling and verification
for timing predictability,” in ERTS 2020, 2020.

[99] B. Binder, M. Asavoae, B. B. Hedia, F. Brandner, and M. Jan, “Is this still
normal? putting definitions of timing anomalies to the test,” in 27th IEEE
International Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA 2021, Houston, TX, USA, August 18-20, 2021. IEEE,
2021, pp. 139–148.

[100] B. Binder, M. Asavoae, F. Brandner, B. B. Hedia, and M. Jan, “The role of
causality in a formal definition of timing anomalies,” in 28th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA 2022, Taipei, Taiwan, August 23-25, 2022. IEEE, 2022,
pp. 91–102.

[101] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen
WCET benchmarks: Past, present and future,” in 10th International Work-
shop on Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010, Brus-
sels, Belgium, ser. OASIcs, B. Lisper, Ed., vol. 15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2010, pp. 136–146.

[102] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically sched-
uled microprocessors,” in Proceedings of the 20th IEEE Real-Time Systems
Symposium, Phoenix, AZ, USA, December 1-3, 1999. IEEE Computer Society,
1999, pp. 12–21.

[103] I. Wenzel, R. Kirner, P. P. Puschner, and B. Rieder, “Principles of timing
anomalies in superscalar processors,” in Fifth International Conference on

151

Quality Software (QSIC 2005), 19-20 September 2005, Melbourne, Australia.
IEEE Computer Society, 2005, pp. 295–306.

[104] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker, “A definition and classification of timing anomalies,” inWCET,
vol. 4, 2006.

[105] A. M. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is FIR-
RTL ground: Hardware construction languages, compiler frameworks,
and transformations,” in ICCAD, 2017, pp. 209–216.

[106] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically sched-
uled microprocessors,” in RTSS. IEEE Computer Society, 1999, pp. 12–21.

[107] L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti, E. Quiñones,
J. Abella, T. Vardanega, and F. J. Cazorla, “Measurement-based timing
analysis of the AURIX caches,” in WCET, ser. OASIcs, vol. 55, 2016, pp.
9:1–9:11.

152

Titre: Sémantique Formelle d’une Infrastructure de Compilation Matériel
Mots clés: Modélisation des processeurs, Langages de Construction de Matériel (HCLs), Cheminde données du pipeline, Anomalies temporelles, Vérification de modèle
Résumé:Les analyses statiques de pire tempsd’exécution sont utilisées pour garantir lesdélais requis pour les systèmes critiques.Afin d’estimer des bornes précises sur cestemps d’exécution, ces analyses temporellesnécessitent des considérations sur la (micro)-architecture. Habituellement, ces modèles demicro-architecture sont construits à la main àpartir des manuels des processeurs. Cepen-dant, les initiatives du matériel libre et leslangages de description de matériel de hautniveau (HCLs), permettent de réaborder laproblématique de la génération automatiquede ces modèles de micro-architecture, et plusspécifiquement des modèles de pipeline. Nousproposons un workflow qui vise à constru-ire automatiquement des modèles de cheminde données de pipeline à partir de concep-tions de processeurs décrites dans des lan-

gages de contruction de matériel (HCLs). Notreworkflow est basé sur la chaine de compila-tion matériel Chisel/FIRRTL. Nous construisonsau niveau de la représentation intermédiaireles modèles de pipeline du chemin de don-nées. Notre travail vise à appliquer ces mod-èles pour prouver des propriétés liées à laprédictibilité temporelle. Notre méthode re-pose sur la vérification formelle. Les mod-èles générés sont ensuite traduits en modèlesformels et intégrés dans une procédure exis-tante basée sur la vérification de modèles pourdétecter les anomalies de temps. Nous util-isons le langage de modélisation et de vérifica-tion TLA+ et expérimentons notre analyse avecplusieurs processeurs RISC-V open-source. En-fin, nous faisons progresser les études en éval-uant l’impact de la génération automatique àl’aide d’une série de critères synthétiques.

Title: Formal Semantics of Hardware Compilation Framework
Keywords: Modeling of processor design, Hardware Construction Languages (HCLs), Pipelinedatapath, Timing anomalies, Model checking
Abstract: Static worst-case timing analysesare used to ensure the timing deadlines re-quired for safety-critical systems. In order toderive accurate bounds, these timing analy-ses require precise (micro-)architecture con-siderations. Usually, such micro-architecturemodels are constructed by hand from proces-sor manuals. However, with the open-sourcehardware initiatives and high-level HardwareDescription Languages (HCLs), the automaticgeneration of these micro-architecture mod-els and, more specifically, the pipeline modelsare promoted. We propose a workflow thataims to automatically construct pipeline datap-ath models from processor designs describedin HCLs. Our workflow is based on the Chis-

el/FIRRTL Hardware Compiler Framework. Webuild at the intermediate representation levelthe datapath pipeline models. Our work in-tends to prove the timing properties, such asthe timing predictability-related properties. Werely on the formal verification as our method.The generated models are then translated intoformal models and integrated into an existingmodel checking-based procedure for detectingtiming anomalies. We use TLA+ modeling andverification language and experiment with ouranalysis with several open-source RISC-V pro-cessors. Finally, we advance the studies byevaluating the impact of automatic generationthrough a series of synthetic benchmarks.

	Dedications
	Acknowledgment
	Introduction
	Scientific Contributions
	Outline

	Background
	Hardware Construction Languages and their Compilation
	Pipelined Processors
	Pipelining Concepts
	 HDL Designs: RISC-V Processors Overview

	Formal Methods Overview
	Formal Notions
	Model Checking Formal Verification Method
	TLA+ Language

	Conclusion

	State of the Art
	Building Pipeline Models from Hardware Designs
	Semantics of High/Low-Level Hardware Languages
	Code Analysis Approaches
	Model Checking for Timing Properties
	Synthesis & Conclusion
	Problem Statements

	Workflow of Timing Models Derivation
	Proposed Workflow
	Chisel/FIRRTL High-Level HDL Designs
	Chisel Hardware Description Language
	FIRRTL - The Intermediate Representation

	Pipeline Construction in the Chisel/FIRRTL Framework
	Choice of FIRRTL Forms
	Chisel to FIRRTL Compilation Issues
	Description of Chisel-Based Processor Pipelines

	Conclusion

	Register Analysis of Pipeline Designs
	Register Analysis Formalization
	Register Analysis Algorithm

	Application to RISC-V Processors
	Mono-module Datapath Pipeline Design
	Multi-module Datapath Pipeline Design

	Experimental Results
	Conclusion

	 Automatic Generation of Abstract Datapath Pipeline Models
	Construction of Abstract Datapath Pipeline Models
	Application to RISC-V Processor Designs
	Experimental Results and Synopsis
	Conclusion

	Automatic Construction of Formal Models From Abstract Models
	Formal Modeling of Processor Pipeline Designs
	TLA+ Specification from Datapath Pipeline Designs
	Control and ISA Modeling TLA+ Specification

	Application to RISC-V Processors Case Studies
	Integration of Formal Pipeline Models in a Timing Anomaly Detection Procedure
	Model Checking for Timing Anomalies
	Experimental Results

	Conclusion

	Conclusion and Perspectives
	Publications
	Annexe: Résumé Substanciel

