
HAL Id: tel-04408971
https://theses.hal.science/tel-04408971v1

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Encoding TLA+’s Set Theory for Automated Theorem
Provers

Rosalie Defourné

To cite this version:
Rosalie Defourné. Encoding TLA+’s Set Theory for Automated Theorem Provers. Computer Science
[cs]. Université de Lorraine, 2023. English. �NNT : 2023LORR0263�. �tel-04408971�

https://theses.hal.science/tel-04408971v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IAEM

Loria

Thèse

Présentée et soutenue publiquement pour l’obtention du titre de

DOCTEUR DE l’UNIVERSITE DE LORRAINE

Mention : INFORMATIQUE

par Rosalie DEFOURNE

Sous la direction de Stephan MERZ

Encoding TLA⁺’s Set Theory for

Automated Theorem Provers

7 novembre 2023

Membres du jury :

Directeur(s) de

thèse :
M. Stephan MERZ

M. Pascal FONTAINE
Directeur de recherche, INRIA, Nancy

Professeur à l’Université de Liège

Président de jury : Mme Catherine DUBOIS Professeure à l’ENSIIE, Évry-Courcouronnes

Rapporteurs : M. David DELAHAYE

Mme Aurélie HURAULT

Professeur à l’Université de Montpellier

Maîtresse de conférences à l’ENSEEIHT,

Toulouse

Examinateurs : M. Jasmin BLANCHETTE

M. Guillaume BONFANTE

Mme Chantal KELLER

Professeur à l’Université de Munich

Maître de conférences à l’Université de

Lorraine

Maîtresse de conférences à l’Université

Paris-Saclay

2

Remerciements

En préambule de ce long document, je tiens à remercier les personnes qui m’ont aidée à chaque
étape de mon parcours. Je remercie pour commencer Aurélie Hurault, David Delahaye, Cathe-
rine Dubois, Chantal Keller et Guillaume Bonfante, pour avoir accepté d’évaluer mes travaux
et ce manuscrit. Mes encadrants, Stephan Merz, Pascal Fontaine et Jasmin Blanchette, ont
également lu et commenté cette thèse de multiples fois. Je veux surtout les remercier pour
leurs bons conseils, leur patience à mon égard, et leur soutien dans mes moments de doute
parfois terribles.

Je veux ensuite remercier les personnes qui ont partagé mon quotidien au LORIA, pour
avoir su créer un environment bienveillant me permettant d’évoluer en toute confiance. Merci
à Daniel et Hans-Jörg pour m’avoir accueillie mon premier jour à Nancy. Merci à Margaux et
Pierre, pour leur accueil également. Merci à notre assistante d’équipe Sophie, pour son aide
enthousiaste avec toutes les corvées administratives. Merci à Benjamin, Thomas et Dylan,
pour m’avoir laissé la meilleure place du bureau. Merci à Marie, Sophie, Engel, Horatiu, pour
les échanges à l’heure du repas, en séminaire, et aux soirées jeux. Merci à Alessio pour ses
questions, qui ont ravivé mon intérêt pour TLA+ alors que ma thèse s’achevait. Merci à Claire
et Athénaïs, pour leur soutien moral plus que bienvenu dans la dernière ligne droite.

Les dernières personnes que je veux remercier m’ont vue grandir et m’ont soutenue dans
le moment le plus décisif de ma vie. Merci à ma famille, et tout particulièrement ma mère,
mon père, ma sœur et mon frère, pour votre aide, votre soutien, et votre amour. Enfin, merci
à Lucie. Je te remercie en dernier parce que tu es la personne la plus importante dans ma vie
désormais. Merci d’avoir bien voulu la partager.

3

4

Résumé

Cette thèse porte sur TLA+, un langage de spécification fondé sur la logique temporelle et la
théorie des ensembles non typée. TLA+ est principalement utilisé dans l’industrie pour vérifier
des systèmes concurrents et distribués. On s’intéresse en particulier à la preuve interactive de
théorèmes TLA+, qui peut être réalisée avec l’outil TLAPS. Cet assistant de preuve emploie
une batterie de prouveurs automatiques externes afin de vérifier les obligations de preuve qui
correspondent aux étapes de raisonnement de l’utilisateur. Parmi les prouveurs disponibles,
on trouve LS4 pour la logique temporelle, Isabelle/TLA+, Zenon, et des solveurs SMT dont
CVC4, veriT et Z3.

Divers encodages de TLA+ sont implémentés pour que TLAPS traduise les obligations
vers les logiques d’entrée de chaque prouveur. L’encodage SMT, en particulier, est fondé sur un
puissant système de réécriture, complété par un mécanisme d’inférence de types, permettant
à TLAPS de simplifier les obligations de façon considérable avant l’envoi vers SMT. Il est
naturel de chercher à simplifier les obligations : la théorie des ensembles de TLA+ est bien
plus expressive que la logique de SMT, qui comprend la logique du premier ordre et certaines
théories, par exemple l’arithmétique des entiers. Il est possible d’encoder directement TLA+

en fournissant à SMT tous les axiomes qui spécifient les ensembles ; mais cette approche a
auparavant été rejetée, car les axiomes sont des formules avec quantificateurs, et SMT ne peut
gérer ces quantificateurs efficacement.

Néanmoins, il est important de s’assurer que les encodages de TLAPS n’introduisent pas
d’erreur dans la traduction, autrement il serait possible de prouver de faux résultats avec
l’outil. L’encodage SMT actuel est trop complexe pour être vérifié, nous avons donc entrepris
d’implémenter l’encodage direct et naïf de TLA+, dans l’optique de l’optimiser ensuite. Ce
travail a abouti à deux contributions. La première est l’implémentation d’un encodage vers
la logique d’ordre supérieure et l’ajout d’un nouveau prouveur à TLAPS : Zipperposition. Il
est intéressant de disposer d’un tel prouveur, car une petite partie des obligations en TLA+

impliquent des étapes d’ordre supérieur. Cela se produit particulièrement souvent autour des
preuves par induction. La seconde contribution est une refonte de l’encodage SMT, cette fois
basée sur l’encodage direct mais optimisée avec des heuristiques pour instancier les axiomes de
la théorie des ensembles. Il s’agit de la technique des triggers, populaire parmi les utilisateurs
de SMT, et qui nous permet en quelque sorte d’implémenter des procédures d’instanciation
selon nos besoins. L’intérêt majeur des triggers pour notre approche est qu’ils s’ajoutent à la
traduction directe sans en modifier le sens, donc sans compromettre la sûreté de l’encodage.
De façon assez surprenante, notre encodage mène à des résultats aussi bons que le précédent.

5

6

Abstract

This thesis is about TLA+, a specification language based on temporal logic and untyped set
theory. TLA+ is mainly used in the industry for the verification of concurrent and distributed
systems. We focus on interactive theorem proving in the context of TLA+, which is supported
by the proof assistant TLAPS. This system manages the proof obligations that correspond
to each step of the user’s reasoning, and calls different backend automated provers to check
these obligations. Currently the provers available are LS4 for the temporal fragment of the
logic, Isabelle/TLA+, Zenon, and the SMT solvers CVC4, veriT and Z3.

All TLA+ obligations are encoded into the respective logics of the backend solvers by
TLAPS. The SMT encoding, notably, combines a powerful preprocessing phase with type
inference, simplifying obligations in an attempt to remove the TLA+ primitive symbols with
no counterpart in SMT’s language. It is natural to perform these simplifications, as TLA+’s
set theory is much more expressive than what SMT is designed for, which is first-order logic
with theories such as integer arithmetic. In principle, one could encode TLA+ directly by
inserting the necessary axioms of set theory into the SMT problem. This approach was
discarded in favor of preprocessing because SMT solvers do not cope well with quantified
formulas, and the axiomatic theory of TLA+ involves many of them.

Regardless, we must ensure that TLAPS does not encode invalid TLA+ obligations as
valid problems, otherwise one would be able to prove faulty statements unknowingly. Un-
fortunately, the current version of the SMT encoding is too complex to be verified, which
is why we decided to implement the naive, direct encoding of TLA+, as a basis for future
optimizations. This work has lead to two important contributions. The first is an encoding
into higher-order logic, completed by the addition of a new backend for TLAPS: Zipperposi-
tion. A higher-order backend is a worthy addition to the system, because specific situations,
in particular around induction, require higher-order reasoning to be carried out. The second
contribution is a new version of the SMT encoding. This version extends the direct encoding
with heuristics for instantiating the axioms of set theory. More precisely, we annotated our
axioms with triggers. Triggers are a popular feature of SMT solvers that allow users to guide
the instantiation module of the solvers for custom axiomatizations. They allow us to extend
the encoding without compromising its soundness, as they do not alter the semantics of for-
mulas. Surprisingly, our encoding achieves performances comparable to the previous version,
despite its simpler design.

7

8

Résumé étendu

Introduction
Cette thèse porte sur le langage de spécification TLA+ et son assistant de preuve TLAPS, qui
utilise des prouveurs externes pour automatiser la vérification de théorèmes mathématiques.
Notre objectif est d’améliorer l’automatisation apportée par TLAPS en intervenant au niveau
des encodages de TLA+ pour les prouveurs.

Preuve interactive et Preuve automatique

Nos travaux s’inscrivent dans le champ des méthodes formelles, dont l’objectif général est
la vérification des programmes informatiques. Tout développeur veut pouvoir s’assurer qu’il
ou elle écrit du code rigoureux. Dans certains contextes, il est crucial de pouvoir garantir
qu’un système ne tombera pas en panne à cause d’un bug informatique [52, 54, 58, 73]. Les
méthodes formelles recouvrent plusieurs approches visant à certifier que des programmes
satisfont leurs spécifications. Il ne s’agit pas de tester les programmes, mais d’apporter des
preuves mathématiques qu’ils ne contiennent pas de bugs.

Le champ qui nous concerne est la preuve interactive, plus particulièrement dans le
contexte du langage TLA+. Ce langage de spécification permet à l’utilisateur de modéliser des
systèmes par des formules mathématiques [48,51,85]. TLA+ a de nombreux points communs
avec d’autres langages de spécification comme la Notation Z ou la Méthode B [1,2,74]. Comme
ces derniers, TLA+ propose la théorie des ensembles comme base théorique, et y ajoute des
notions de logique temporelle pour modéliser l’évolution des systèmes au cours du temps.

Une fois un système modélisé en TLA+, il est possible d’exprimer ses propriétés de cor-
rection par une formule. Supposons par exemple qu’on a défini une formule temporelle Spec
pour représenter un système. Si n est une variable du système, alors la formule

Spec ⇒ □(n ∈ Nat)

exprime le fait que n est un entier naturel à tout moment de l’exécution du système. Pour
certifier que notre système vérifie la propriété, il suffit de démontrer cette formule comme
n’importe quel théorème mathématique. TLA+ propose une syntaxe pour écrire des preuves,
qui peuvent ensuite être prises en charge par l’outil TLAPS.

TLAPS est un logiciel faisant partie de la famille des prouveurs interactifs, aussi appelés
assistants de preuve. Ces outils associent des langages mathématiques expressifs à des procé-
dures de vérification : l’utilisateur développe sa théorie mathématique à partir de ses propres
définitions, choisit des théorèmes pour lesquels il écrit des preuves.Le rôle du système est
de vérifier que chaque étape du raisonnement de l’utilisateur est logiquement valide. Comme
exemples de prouveurs interactifs populaires, on peut citer Coq, qui est basé sur la théorie

9

10

des types dépendants, et Isabelle/HOL, qui est basé sur la logique d’ordre supérieur (aussi
appelée théorie des types simples) [17,60].

Le fonctionnement de TLAPS repose essentiellement sur l’emploi de prouveurs automa-
tique externes pour assurer la vérification [19]. Un prouveur automatique est un outil prenant
en entrée des problèmes mathématiques afin de décider de leur validité—quand cela est pos-
sible, car le problème général est indécidable pour des logiques suffisamment expressives. Tous
les prouveurs ne prennent pas en charge les mêmes logiques, et tous n’implémentent pas les
mêmes procédures pour aboutir à une réponse. Cette thèse concerne particulièrement ce qu’on
appelle les solveurs SMT (Satisfiability Modulo Theory), qui prennent en charge diverses théo-
ries de la logique du premier ordre, avec ou sans quantificateurs. La plupart des solveurs SMT
acceptent le langage SMT-LIB en entrée [6, 29,32].

Étant donnée une spécification TLA+ avec des preuves, l’assistant TLAPS identifie les
obligations de preuve, qui correspondent à peu près aux étapes du raisonnement de l’utilisa-
teur, et traite ces obligations pour les passer aux prouveurs externes disponibles. Ce traitement
consiste essentiellement en un encodage des obligations pour chaque prouveur invoqué. Un
encodage est une traduction d’une logique vers une autre. Concevoir et implémenter un en-
codage peut s’avérer difficile, car certains aspects de la logique d’entrée peuvent ne pas avoir
d’équivalent dans la logique de sortie. En outre, pour faire confiance à TLAPS, il faut pouvoir
faire confiance aux prouveurs externes d’une part, et aux encodages d’autre part.

Encodage de TLA+ pour SMT

Les prouveurs de TLAPS ont des forces et des faiblesses complémentaires, et tous ne prennent
pas nécessairement en charge la totalité du langage. Les différents prouveurs sont LS4—
seul prouveur à supporter la logique temporelle du langage—Isabelle/TLA+, Zenon [11], et
quelques solveurs SMT : CVC4 [5], veriT [12] et Z3 [25]. La logique de SMT est la logique
du premier ordre sortée. Différentes théories incluant des symboles interprétés sont également
disponibles, par exemple l’arithmétique entière. Les solveurs SMT sont réputés pour leur
efficacité sur des problèmes de très grande taille. Le défi pour un encodage de TLA+ vers
SMT-LIB est de traduire les expressions impliquant des symboles primitifs du langage, car
la grande majorité n’ont pas leur équivalent en SMT. Même pour les symboles qui ont un
équivalent en SMT, en particulier les opérateurs arithmétiques, la traduction directe n’est pas
toujours possible puisque TLA+ autorise des combinaisons de symboles non conventionnelles.

Pour donner un bref exemple, on considère la formule suivante :

∀x : x+ 0 = x

Cette formule est exprimable en TLA+, mais elle n’est pas valide, car il manque l’hypothèse
de type x ∈ Int. Sans cette hypothèse, l’expression x+ 0 est dite sous-spécifiée, et il n’est pas
possible de la simplifier en x. Considérons maintenant la formule suivante en logique sortée :

∀xint : x+ 0 = x

L’annotation de sorte int indique que la variable x est interprétée dans le domaine des entiers
relatifs. Pour cette raison, la dernière formule est valide, car l’argument x de l’addition est
toujours un entier dans le contexte de l’expression.

Ce simple exemple illustre la difficulté d’encoder la logique non typée de TLA+ dans
une logique typée : la traduction requiert d’assigner des types aux symboles et variables

11

quantifiées (car il faut au moins que les expressions encodées respectent les règles de typage),
mais toutes les assignations ne sont pas possibles a priori. On dit qu’un encodage est correct
si la validité d’une obligation encodée implique la valididé de l’obligation source. La correction
est essentielle puisqu’un encodage incorrect autoriserait la dérivation de faux théorèmes. La
traduction naïve de l’exemple précédent est donc incorrecte.

Une traduction correcte possible consisterait à redéfinir l’addition de TLA+ dans le pro-
blème généré pour SMT. Concrètement, on peut créer une sorte ι afin d’accueillir les expres-
sions de TLA+, et déclarer les symboles dont on a besoin comme symboles non interprétés.
En l’occurrence, si on représente l’addition par une fonction plus binaire sur ι, et 0 par une
constante zero de type ι, la formule peut être traduite

∀xι : plus(x, zero) = x

En parallèle, les interprétations de plus et zero seront fournies par un ensemble d’axiomes
que nous ajoutons au problème encodé. Les solveurs SMT pourront alors raisonner sur ces
nouveaux symboles à partir des axiomes, qui incluent principalement la théorie des ensembles,
les fonctions, et l’arithmétique.

Cet encodage hypothétique, que l’on nomme direct, a le mérite d’être simple à implémen-
ter et prouver correct. Mais on peut a priori penser qu’il ne se montrera pas très efficace en
pratique. En effet, la présence de quantificateurs nuit grandement aux performances des sol-
veurs SMT, qui ont d’abord été conçu pour des problèmes sans quantificateurs. Or, l’encodage
direct implique d’ajouter de nombreux axiomes qui, pour la grande majorité, sont des for-
mules quantifiées. Les solveurs SMT devront déterminer quelles sont les instances nécessaires
des axiomes pour résoudre les problèmes encodés ; la difficulté de cette tâche est exacerbée
par le fait que les obligations encodées ne contiennent pas d’information de typage : toutes
les variables quantifiées se voient assigner la sorte générique ι.

Nos travaux poursuivent les efforts de Vanzetto, qui a conçu et implémenté l’encodage
SMT actuel de TLAPS [53]. Partant de cette constatation à propos de l’encodage direct,
Vanzetto a proposé une solution qui consiste à prétraiter les obligations afin de les simplifier.
L’objectif concret de cette simplification est d’éliminer le plus d’occurrences possible de sym-
boles primitifs de TLA+ afin de se ramener à la logique de SMT. L’implémentation s’articule
autour d’un module de réécriture permettant de transformer les obligations. Optionnellement,
il est possible de faire une inférence de types pour affiner la réécriture. Par exemple, la règle
suivante pourrait être appliquée pour simplifier des expressions arithmétiques :

x+ 0 −→ x si x ∈ Int

La règle ne s’applique pas à l’exemple précédent, mais elle peut permettre de simplifier la
formule

∀x : x ∈ Int ⇒ x+ 0 = x

Vérifier que la condition x ∈ Int est satisfaite dans le contexte de l’expression x + 0 relève
de l’inférence de types. Une fois la règle appliquée, le but à prouver est simplement x = x.
En admettant qu’il n’est pas possible de simplifier la formule davantage, l’encodage direct est
appliqué, seulement il n’est plus nécessaire de fournir autant d’axiomes à SMT, et le problème
est plus simple à résoudre.

12

Contributions

L’encodage vers SMT de TLAPS est particulièrement efficace. De nombreuses obligations de
preuve importantes en taille ne peuvent être résolues que par l’un des solveurs SMT intégrés à
TLAPS. Toutefois, l’encodage tire son efficacité de techniques particulièrement sophistiquées,
qui sont difficiles à mettre en place et à vérifier. Cela pose un problème pour la sûreté de
TLAPS, car si un encodage prend en charge une partie du raisonnement—comme celui qui
sous-tend la simplification des formules—alors il incombe aux développeurs de TLAPS de
prouver que leur implémentation est correcte.

Cette thèse améliore l’encodage SMT du point de vue de la sûreté. En effet, notre approche
consiste à partir d’une implémentation de l’encodage direct pour ensuite chercher à l’optimiser
de manière prudente. Il était initialement prévu de réimplémenter la réécriture et l’inférence
de types, mais une autre solution, plus satisfante en termes de correction, a été trouvée.
Concrètement, on peut résumer cette thèse en deux contribution, chacune ayant abouti en
une publication [27,28] :

L’encodage direct, réduit au strict nécessaire, ne vise pas la logique de SMT mais la logique
d’ordre supérieur. On propose un encodage direct réduit à deux étapes élémentaires,
faciles à prouver correctes. L’encodage a été implementé afin d’intégrer un nouveau
prouveur à TLAPS : Zipperposition [20, 82, 83]. L’intérêt d’un prouveur d’ordre supé-
rieur est aussi d’améliorer l’automatisation de preuves qui étaient mal prises en charge
auparavant.

L’encodage SMT étend cet encodage direct de manière minimale. Afin d’optimiser la re-
cherche de preuves, on fournit des heuristiques d’instantiation pour nos axiomes à SMT.
L’intérêt de cette technique est qu’elle ne nécessite pas de modifier les expressions par
de la réécriture. La correction de l’encodage n’est donc pas compromise, et on a pu
constater par l’évaluation que nos heuristiques permettent d’atteindre le même degré
d’efficacité qu’auparavant.

Développons maintenant ces deux contributions dans l’ordre.

Encodage direct de TLA+ vers HOL

Ce premier encodage est qualifié de “direct” car il maintient la structure des expressions aussi
fidèlement que possible. Notre objectif global est d’étendre l’encodage direct pour les solveurs
SMT. Pour des raisons qui seront clarifiées dans cette section, il est utile de définir dans un
premier temps un encodage vers la logique d’ordre supérieur (HOL).

Formalisation de TLA+

Avant de détailler l’encodage de TLA+, il faut clarifier la définition formelle du langage, c’est-
à-dire donner sa syntaxe et sa sémantique. On propose une définition qui se rapproche autant
que possible d’une formalisation standard de la logique du premier ordre. Le mérite de cette
approche est qu’elle met en relief ce qui distingue TLA+ de cette logique, indiquant ainsi
quels aspects du langage sont les plus difficiles à traduire.

La différence entre TLA+ et la logique du premier ordre tient en trois points. Le premier est
la présence de symboles interprétés, principalement pour la théorie des ensembles, les fonctions

13

et l’arithmétique. Ces symboles sont en réalité sous-spécifiés, car le langage non typé autorise
des combinaisons inhabituelles, comme x + 0 dans le cas où x n’est pas un nombre. Il est
en fait assez simple de formaliser cet aspect de TLA+ : au lieu de définir une interprétation
pour chaque symbole, on donne la collection d’axiomes que chaque interprétation est censée
satisfaire. Dire que TLA+ est sous-spécifié revient à dire que cette collection d’axiomes—
cette théorie—n’a pas d’interprétation canonique, qu’aucune interprétation n’est plus légitime
qu’une autre.

Le principe de la sous-spécification s’applique en quelque sorte aux connecteurs Booléens,
mais nous choisissons de formaliser ceux-ci autrement. La principale raison est qu’il serait dif-
ficile en pratique d’encoder les connecteurs Booléens sous la forme de symboles non interprétés
et de fournir des axiomes aux prouveurs ; on préférerait directement utiliser les connecteurs
équivalents dans la logique de sortie. L’examen de la documentation officielle sur TLA+ révèle
qu’il est possible de donner une interprétation totale pour chaque connecteur. Considérons
par exemple l’implication, notée ⇒. En logique traditionnelle, l’implication permet de com-
biner des formules, mais en TLA+ les arguments de ⇒ ne sont pas des formules a priori.
Par exemple, l’expression 1 + 1 ⇒ 2 est légitime, mais le sens qu’il faut lui donner n’est pas
clair. La bonne façon d’interpréter ⇒ consiste à comparer la valeur de ses arguments avec la
valeur de vérité “vrai” pour les évaluer en tant que formules. Notre exemple est logiquement
équivalent à l’expression (1 + 1 = true)⇒ (2 = true), qui est valide.

Le dernier point à souligner est la présence de symboles d’ordre supérieur, spécifiquement
du second ordre. Parmi les symboles primitifs de TLA+, on trouve notamment les expressions
{x ∈ S : e} pour la compréhension ensembliste et [x ∈ S 7→ e] pour les fonctions. Ces deux
symboles lient la variable x dans l’expression e, on considère donc qu’elles sont paramétrées
par la fonction assignant e à tout x, représentée par la lambda-expression λx : e. Cet aspect
ne s’arrête pas aux symboles primitifs, puisque depuis la seconde version du langage l’utilisa-
teur peut définir ses propres symboles du second ordre, qui acceptent comme arguments des
symboles du premier ordre ou des lambda-expressions.

Il est facile d’étendre la logique du premier ordre pour inclure les symboles du second ordre
dont TLA+ a besoin. Cette modification ne fait pas de TLA+ une logique d’ordre supérieur,
car les quantificateurs universel ∀ et existentiel ∃ ne permettent pas de quantifier sur des
symboles de fonctions. Cependant, comme TLA+ autorise le paramétrage de théorèmes par
des symboles de fonction, certaines situations relèvent techniquement de l’ordre supérieur.
Typiquement, une preuve par récurrence exigera d’invoquer le principe selon lequel, pour
tout prédicat P , il suffit de prouver P (0) et ∀n ∈ Nat : P (n) ⇒ P (n + 1) pour dériver
∀n ∈ Nat : P (n). L’une des étapes de la preuve consistera donc à unifier le but courant
avec P (n) pour déterminer la valeur de P , qui est une variable du second ordre.

Pour cette raison, il est intéressant de proposer un encodage vers la logique d’ordre supé-
rieur. Parmi les prouveurs disponibles dans TLAPS, seul Isabelle/TLA+ est capable de traiter
les obligations d’ordre supérieur. Ces obligations ne sont pas particulièrement courantes dans
la pratique de TLAPS, mais elles sont inévitables dans certains contextes, et l’expérience
montre que Isabelle/TLA+ est souvent mis en difficulté lorsque le raisonnement à l’ordre
supérieur devient trop complexe.

Définition de l’encodage direct

L’encodage direct vers HOL se résume à deux étapes essentielles : une passe sur les expressions
pour corriger les ambiguïtés entre termes et formules, puis l’ajout d’axiomes au problème pour

14

encoder la sémantique des symboles de TLA+.
La première étape vise à retrouver la sémantique habituelle pour les connecteurs Booléens.

Dans la logique de TLA+, il n’y pas de distinction entre termes et formules, mais dans la
logique de sortie, les termes sont identifiés par la sorte ι, et les formules sont identifiées par
la sorte o. Il s’agit d’insérer des conversions appropriées entre termes et formules de façon à
obtenir des expressions bien typées. Ces conversions impliquent une injection casto de type
o → ι. Convertir une formule en terme se fait en la passant en argument à casto. L’autre
direction est moins intuitive, mais nous l’avons déjà illustrée avec l’exemple de 1 + 1 ⇒ 2,
dans laquelle deux termes apparaissent là où des formules sont attendues. Notre encodage
réécrira cette expression en (1 + 1 = casto(true))⇒ (2 = casto(true)).

La seconde étape insère des déclarations explicites pour chaque symbole primitif de TLA+

dans l’obligation. Chaque symbole se voit assigné un ou plusieurs axiomes (ou schémas
d’axiomes) qui spécifient sa sémantique. Ces axiomes sont insérés dans le contexte de l’obli-
gation avec la déclaration ; si un axiome mentionne un nouveau symbole, la procédure est
répétée de façon récursive. Typiquement, chaque symbole est spécifié par un à trois axiomes.
Nos axiomes sont formulés de sorte à réduire le nombre de dépendances entre symboles. Par
exemple, le symbole ∩, pour l’intersection entre deux ensembles, est spécifié par l’unique
axiome

∀a, b, x : x ∈ (a ∩ b)⇔ x ∈ a ∧ x ∈ b

Il serait également possible de définir le symbole par la définition a∩b ≜ {x ∈ a : x ∈ b}, mais
cela ferait dépendre ∩ de la notation de compréhension.

Les axiomes que nous utilisons ne proviennent pas de la documentation officielle, mais on
peut les inférer depuis celle-ci assez facilement. Pour résumer la théorie de TLA+, on peut
se concentrer sur trois piliers : les ensembles, les fonctions et l’arithmétique. Les axiomes
de théorie des ensembles sont standards et correspondent à ceux de la théorie ZFC. Les
axiomes des fonctions spécifient le constructeur [x ∈ S 7→ e] et les expressions domain f
et f [x] pour récupérer le domaine d’une fonction et son image par x, respectivement. On
trouve également le constructeur [S → T] pour les ensembles de fonctions. Une présentation
complète de TLA+ devrait inclure les n-uplets, les enregistrements et les séquences, mais ces
trois types de structures sont définis à partir des fonctions, et leurs axiomes sont directement
conséquences de la théorie des fonctions.

À ce stade de nos travaux, nous choisissons d’ignorer l’arithmétique, pour plusieurs raisons.
L’arithmétique entière est une théorie que de nombreux prouveurs prennent en charge de
façon native. Plutôt que de fournir aux prouveurs nos propres axiomes pour l’arithmétique,
il est naturel de chercher à exploiter les procédures natives de ces prouveurs lorsqu’elles
sont disponibles. Pour notre encodage HOL, le prouveur que nous avons choisi d’intégrer
à TLAPS est Zipperposition, mais la version que nous utilisons ne prend pas en charge
l’arithmétique. Puisque nous envisageons Zipperposition pour une utilisation spécialisée—les
obligations d’ordre supérieur—nous traitons le cas de l’arithmétique comme secondaire, et
nous l’ignorons. Il y a des axiomes que nous ajoutons néanmoins, car leur omission rendrait
non prouvables trop de théorèmes : chaque symbole arithmétique de TLA+ a un axiome qui
donne son type, par exemple + a l’axiome

∀x, y ∈ Int : (x+ y) ∈ Int

Nous incluons au moins ces axiomes, car ils sont assez simples et nécessaires pour beaucoup
de vérifications de routine.

15

Intégration de Zipperposition

Zipperposition est un prouveur par superposition pour la logique du premier ordre. Il inclut
une extension à l’ordre supérieur, extension qui a permis à l’outil de gagner la compétition
CASC dans la section THF. Le dialecte THF appartient au standard TPTP pour exprimer
des problèmes mathématiques, et c’est vers ce langage que notre encodage direct traduit les
obligations de TLA+.

Comme dit précédemment, l’intérêt d’un prouveur comme Zipperposition pour TLAPS
est principalement de renforcer l’automatisation pour les obligations d’ordre supérieur, qui
autrement sont prises en charge par Isabelle seulement. Nous avons donc comparé les perfor-
mances de Zipperposition et d’Isabelle sur un ensemble assez grand d’obligations, qui englobe
notamment la librairie d’exemples TLA+ officielle dans son entièreté. Notre évaluation dé-
montre que les deux prouveurs se complètent assez bien, puisque certaines obligations sont
résolues par Zipperposition uniquement, et d’autres par Isabelle uniquement. La principale
faiblesse de Zipperposition est qu’il ne peut pas raisonner dans l’arithmétique entière, qui
est souvent nécessaire. En outre, notre expérience avec Zipperposition suggère que le prou-
veur serait capable de résoudre des obligations plus difficiles quand du raisonnement à l’ordre
supérieur est requis.

Encodage de TLA+ vers SMT-LIB

L’encodage vers SMT-LIB est conçu comme une extension de l’encodage direct. L’extension
se résume à trois modifications, dont seule la première est absolument nécessaire, puisqu’il
s’agit d’éliminer l’ordre supérieur des obligations. Par exemple, les expressions {x ∈ S : e} et
[x ∈ S 7→ e] doivent être exprimées dans la logique du premier ordre. Il existe des procédures
standards pour implémenter cette traduction, et notre approche s’inspire des méthodes de
défonctionnalisation qu’utilisent les compilateurs de langages fonctionnels. Intuitivement, la
méthode consiste à créer un symbole spécialisé pour chaque mention d’un symbole d’ordre
supérieur présent dans l’obligation. Si par exemple une obligation mentionne l’ensemble
{n ∈ Nat : n < 100}, il suffit de créer un symbole spécialisé pour l’argument λn : n < 100. Ce
symbole, que l’on peut noter setst•, doit être spécifié par l’axiome

∀a, x : x ∈ setst•(a)⇔ x < 100

L’expression d’origine peut être traduite setst•(Nat).

Intégration de l’arithmétique SMT

La deuxième modification est essentielle pour supporter l’arithmétique entière de manière
satisfaisante. Les solveurs SMT sont dotés de techniques spéciales pour raisonner sur l’arith-
métique entière, et on souhaite pouvoir mettre ces techniques à profit. Cela implique d’encoder
des expressions vers la sorte int de SMT, ce qui n’est pas simple a priori puisque TLA+ est
non typé. Notre solution, qui était déjà utilisée par l’encodage précédent pour la version sans
inférence de types, consiste à fournir quelques axiomes spéciaux permettant aux solveurs SMT
de basculer le raisonnement dans le domaine des entiers.

Ces axiomes reposent sur un injecteur castint de type int → ι. Si x ∈ Int est vrai, SMT
pourra déduire l’existence d’un n tel que x = castint(n). Pour encoder ce principe, il suffit

16

d’ajouter cet axiome au problème final :

∀xι : x ∈ Int ⇔
[
∃nint : x = castint(n)

]
En plus de cette axiome, chaque symbole arithmétique de TLA+ avec un symbole SMT
équivalent se voit assigner un axiome pour lier les deux versions. Par exemple, nous lions le +
de TLA+ avec le +int interprété de SMT par l’axiome

∀mint, nint : castint(m) + castint(n) = castint(m+int n)

Heuristiques d’instantiation pour SMT

La troisième modification concerne la collection d’axiomes entière. L’encodage SMT précédent
tirait son efficacité du fait qu’il simplifie grandement les expressions de TLA+. Notre encodage
innove sur ce point en se contentant de fournir des heuristiques pour guider les procédures
d’instantiation de SMT. Cette technique ne nécessite pas de simplifier les expressions, il n’y
a donc aucun risque de rendre l’encodage incorrect.

La technique particulière que nous utilisons est celle des triggers de SMT [24, 55]. Dans
le cas de problèmes avec quantificateurs, les solveurs SMT doivent générer des instances
pour les formules universellement quantifiées afin de progresser. Il est difficile en pratique de
déterminer quelles sont les instances importantes, et les solveurs peuvent implémenter diverses
approches pour répondre à ce problème. Un trigger est une annotation sur une séquence de
quantificateurs indiquant aux solveurs comment les instancier.

Considérons par exemple l’axiome suivant, qui spécifie l’opérateur d’intersection entre
deux ensembles :

∀a, b, x : {x ∈ (a ∩ b)}
{a ∩ b, x ∈ a}
{a ∩ b, x ∈ b}

x ∈ (a ∩ b)⇔ x ∈ a ∧ x ∈ b

Nous indiquons les triggers entre accolades ; dans ce cas, trois triggers ont été choisis. Considé-
rons le premier : le motif x ∈ (a∩ b) indique au solveur SMT qu’il peut chercher les termes de
cette forme. Lorsqu’un tel terme est détecté, l’assignation correspondante pour les variables x,
a et b est utilisée pour générer l’instance de l’axiome. En l’occurrence, il s’agira de la formule
qui donne la caractérisation de x ∈ (a ∩ b).

De nombreux solveurs SMT génèrent automatiquement leurs propres triggers, mais nous
avons trouvé profitable de choisir les nôtres manuellement. Notre stratégie pour sélectionner
des triggers repose sur l’hypothèse qu’une obligation TLA+ typique ne requiert pas de raison-
ner sur des ensembles ou fonctions qui ne sont pas mentionnées. On peut donc se contenter
de récupérer le maximum d’informations sur les termes connus, et en même temps rejeter les
triggers susceptibles d’introduire de nouveaux ensembles et fonctions, ce qui complexifierait
inutilement les problèmes.

Un autre aspect de notre stratégie consiste à anticiper le plus de situations de preuve pos-
sible à l’aide de triggers. Dans l’exemple précédent, le premier trigger permet essentiellement
de simplifier une proposition x ∈ (a∩ b). Or, il est parfois nécessaire d’inférer une proposition

17

x ∈ (a ∩ b) sans qu’elle soit explicitement mentionnée—typiquement parce qu’elle intervient
à un niveau plus profond du raisonnement. Par exemple, la formule

S ∩ Int = ∅ ∧ 1 ∈ S ⇒ false

est bien prouvable, mais le solveur doit en quelque sorte deviner l’étape 1 ∈ (S ∩ Int) qui
permet au raisonnement d’aboutir. Les deuxième et troisième triggers de notre exemple sont
adaptés à cette situation, car il suffit de connaître un certain ensemble a ∩ b et un certain
élément x de a ou b pour générer une instance pertinente.

Nous nous sommes efforcés d’appliquer des principes comme ceux que nous venons de
décrire de façon aussi systématique que possible pour l’ensemble de l’axiomatisation. Les
axiomes de théorie des ensembles sont traités de façon assez similaire ; certains axiomes doivent
être reformulés pour placer tous les quantificateurs au début de la formule, afin qu’ils puissent
recevoir une annotation. La théorie des fonctions de TLA+ inclut le constructeur [x ∈ S 7→ e]
et, étant donné une fonction f , les opérateurs domain f et f [x] dénotant respectivement le
domaine de f et l’application de f à x. Notre stratégie s’adate bien aux axiomes spécifiant
ces symboles : nous évitons d’introduire de nouvelles fonctions, mais nous sélectionnons des
triggers qui permettent de récupérer des informations sur les domaines et valeurs d’application
des fonctions connues.

Évaluation de l’encodage SMT

L’évaluation comparée de notre encodage avec l’encodage précédent montre que notre ap-
proche ne mène pas à une perte d’efficacité en termes d’obligations résolues. Compte tenu du
fait que notre implémentation est plus sûre d’utilisation, on peut affirmer que notre encodage
améliore l’état de l’art, puisqu’il est moins risqué de l’utiliser.

Certaines obligations sont résolues par une version de l’encodage mais pas l’autre. Il est
toujours difficile d’expliquer la raison pour laquelle l’un des deux encodages pourrait surpas-
ser l’autre dans une situation donnée. L’approche par simplification semble parfois échouer
parce qu’elle élimine des termes tout en laissant intact des quantificateurs à instancier avec
ces mêmes termes. Notre approche par triggers a quelques faiblesses connues, notamment
au niveau des axiomes d’extensionnalité, pour lesquels il est difficile de sélectionner des an-
notations pertinentes. Pour l’axiome d’extensionnalité ensembliste, nous nous contentons de
générer des instances pour les égalités entre ensembles dans l’obligation initiale. Pour l’exten-
sionnalité fonctionnelle, nous générons une instance pour toute paire de fonctions, ce qui mène
à beaucoup d’instances non pertinentes dans certaines situations impliquant de nombreuses
fonctions.

Perspectives

Cette thèse a permis de rendre TLAPS plus sûr d’utilisation, mais il serait possible d’al-
ler encore plus loin dans la certification des preuves. Nous nous sommes efforcés de justifier
la correction de nos deux encodages, mais nos preuves pourraient être erronées, ou notre
implémentation pourrait contenir des erreurs. Une idée serait de chercher à certifier l’implé-
mentation de l’encodage ; un assistant de preuves comme Coq semble adapté à cette tâche. Il
s’agit toutefois d’un projet ambitieux, et une autre solution semble possible. Certains prou-
veurs automatiques permettent de récupérer une preuve lorsqu’une obligation a été prouvée.

18

Compte tenu du fait que notre encodage modifie assez peu les expressions, il semble possible
de traduire ces preuves dans le langage de TLA+ afin de les faire vérifier par un programme
de confiance. C’est ce qui est actuellement fait avec le prouveur Zenon, dont la sortie peut
être vérifiée par Isabelle/TLA+. Notre encodage SMT pourrait permettre de reproduire cette
fonctionnalité pour les solveurs SMT capables de produire des preuves.

Pour ce qui est d’améliorer l’encodage du point de vue de l’efficacité, la situation est moins
claire. Certaines faiblesses de notre axiomatisation à base de triggers pourraient être corrigées,
notamment au niveau des axiomes d’extensionnalité. L’axiomatisation pourrait aussi être
étendue à d’autres fragments de TLA+. Il semble particulièrement facile d’adapter la méthode
pour exploiter l’arithmétique entière de SMT à l’arithmétique réelle. Nous avons formulé une
stratégie pour sélectionner des triggers de manière plus ou moins systématique, la question
d’automatiser la génération des triggers se pose donc. Il serait notamment intéressant de
pouvoir générer des triggers pour les instances des schémas d’axiomes que nous générons lors
de la réduction au premier ordre.

Contents

1 Introduction 21
1.1 Context . 21
1.2 Motivation . 24
1.3 Contributions . 24
1.4 Outline . 25

2 Background 27
2.1 Automated Theorem Proving . 27

2.1.1 The DPLL Procedure . 27
2.1.2 Satisfiability Modulo Theories . 33

2.2 TLA+ . 39
2.2.1 Specifying Systems . 39
2.2.2 Model Checking with TLC . 44
2.2.3 Interactive Proof with TLAPS . 47

3 Formal Semantics of TLA+’s Constant Fragment 57
3.1 Overview . 57
3.2 The Logic L . 58
3.3 The Theory of TLA+ . 62
3.4 Sequents . 68

4 A Direct Encoding of TLA+ into Higher-order Logic 71
4.1 Overview . 71
4.2 The Logic Ls . 73
4.3 Recovering Formulas . 78

4.3.1 Definition . 79
4.3.2 Correctness . 81
4.3.3 Predicate Types . 84

4.4 Rewriting . 86
4.4.1 Definition and Correctness . 87
4.4.2 Termination and Confluence . 89

4.5 Axiomatization . 94
4.5.1 Definition and Correctness . 94
4.5.2 Second-order Axiomatization of TLA+ 95

4.6 Translation to TPTP . 98
4.7 Evaluation . 99

19

20 CONTENTS

4.7.1 Methodology . 99
4.7.2 Results and Discussion . 99

5 An Optimized Encoding into First-order SMT 103
5.1 Overview . 103
5.2 E-matching Patterns . 104
5.3 Selecting Axioms and Triggers for TLA+ . 107

5.3.1 Case Study . 107
5.3.2 General Strategy . 110

5.4 Other Topics in the SMT Axiomatization . 116
5.4.1 Axiom Schemas . 116
5.4.2 Integer Arithmetic . 119
5.4.3 Set Extensionality . 121

5.5 Evaluation . 122
5.5.1 Methodology . 122
5.5.2 Results and Discussion . 122

6 Conclusion 125

Bibliography 136

A The Standard Theory of TLA+ 137

B Axioms for TPTP 145

C Axioms for SMT 151

Chapter 1

Introduction

This thesis presents translations of TLA+ formulas into the input logics of automated theorem
provers. TLA+ is a formal language combining temporal logic and set theory, used in the
industry to specify and verify computer systems [48]. We implemented our translations into
TLAPS, an interactive proof system that uses backend provers to automatically verify every
step of the user’s reasoning [19]. Special attention is paid to the soundness of each translation,
as any mistake may compromise the integrity of TLAPS, letting users derive invalid statements
with the system.

1.1 Context

Formal methods are a rigorous approach to the verification of software [54]. They are applied
in diverse industrial fields such as avionics [73], cloud computing [58] and hardware design [33]
to specify, check, and sometimes certify various systems. The methods by which programs
can be verified are diverse as well and include model checking and theorem proving.

This thesis is about theorem proving in the context of TLA+, a specification language
aimed at distributed and concurrent systems [48]. The TLA+ Proof System (TLAPS) is an
interactive theorem prover whose purpose is to interpret proofs written in a TLA+ environ-
ment, generate proof obligations corresponding to each step of the user’s reasoning, and have
these obligations proved by specialized automated theorem provers [19]. The logics under-
stood by most provers are very different than TLA+’s, therefore translations (encodings) of
TLA+ must be defined for the backends.

Specification with TLA+

As a formal language, TLA+ combines the Temporal Logic of Actions (TLA) with axiomatic
set theory, more precisely the ZFC theory, named after the mathematicians Zermelo and
Frænkel, and the axiom of choice [47, 48, 51]. It is a purely logical language; one is expected
to define different predicates describing the states and transitions of a system in an abstract
way. This is illustrated in Figure 1.1, where a simple system is defined from an initial state Init
and a transition predicate Next. The variable out is temporal: its value changes over time,
and its value in the next state is denoted out ′. The temporal formula Spec specifies the system
as a whole. It features a temporal connective to state that, for every transition of the system,
either Next holds or out does not change.

21

22 CHAPTER 1. INTRODUCTION

module HelloWorld

variable out

Init
∆
= out = “”

Next
∆
= out = “” ∧ out ′ = “Hello World!”

Spec
∆
= Init ∧2[Next]out

1

Figure 1.1: TLA+ Specification of the “Hello World!” program

TLA+ is close to the Z notation [74], the B method and its extension Event-B [1,2], which
are all specification languages based on set theory. In its classical formulation, set theory
extends first-order logic (FOL) with a membership relation ∈ and several axioms. It is a
very expressive theory; in fact, it is a suitable framework for any kind of mathematics, and is
largely adopted by the mathematical community. In TLA+, systems and their properties are
expressed in the same mathematical language. For instance, the fact that out is a string of
characters is expressed out ∈ string, and the fact that this property is an invariant of the
system is stated

Spec ⇒ □(out ∈ string)

It is a valid temporal formula: for every trace satisfying Spec, the variable out is indeed a
string in all states.

Invariants such as this one are commonly referred to as typing invariants. It is important
to verify them, because TLA+ is an untyped language. This is in line with the choice of ZFC
as a foundation, but unconventional in the context of computer science. In programming,
statically-typed languages benefit from the fact that many type errors can be caught at
compile time. In formalized mathematics, most existing systems are based on a variant of
type theory. As examples, we mention Isabelle and the object logic Isabelle/HOL which are
based on higher-order logic (HOL) [14, 60, 61], the proof assistant Coq which is based on
dependent type theory [17, 18], and PVS which is based on predicate subtyping [67]. The Z
Notation and B-Method are based on typed variants of set theory. The Mizar proof assistant
takes untyped set theory as a foundation, but its syntax includes type annotations, and
expressions must pass type-checking [38,44,84].

In a polemic article, Lamport argues in favor of untyped formalisms for specification [49].
Type systems restrict one’s ability to specify things easily; rich type systems offer more expres-
siveness, but these languages are too complicated for non-experts to use. In contrast, it is easy
to express typing conditions in untyped set theory. For instance, in ordinary mathematics,
one is allowed to write

∀x : x ∈ Real ∧ x ̸= 0⇒ x/x = 1

This is a valid statement, despite the fact that it indirectly refers to nonsensical expressions,
like 0/0. The legitimacy of these expressions is not an issue in an untyped framework, because
the typing condition does not hold when x is 0. Semantically, division is treated as a totally-
defined symbol, specified for some input values, unspecified for the rest [39].

1.1. CONTEXT 23

Interactive Proof with TLAPS

Once a TLA+ specification is written and its properties expressed, one can attempt to verify it.
There are two ways to perform verification in TLA+. The first is model checking. The model
checker TLC explores all the possible traces given by a temporal formula in an exhaustive
way [85]. However, TLC is limited to specifications involving finite data and fixed parameters.
For the general case, one has to write a proof and check it with TLAPS.

TLAPS is an interactive theorem prover (ITP), also called proof assistant. ITPs combine
expressive mathematical languages, interactive environments for users to write proofs, and
procedures that formally check every step of the user’s reasoning. Proofs often involve many
tedious verifications, which is why many ITPs rely on automated procedures to solve easy sub-
goals. Notably, there is a growing interest in integrating automated theorem provers (ATPs)
with interactive environments. This integration comes with many challenges, as ATPs tend
to specialize on particular domains of mathematical logic, and typically do not support logics
as expressive as the ITPs [34]. One particularly successful application of ATPs for interactive
proving is the Sledgehammer system for Isabelle/HOL, which uses relevance-filtering and an
unsound encoding of HOL to quickly derive proofs for the desired goals [10,62]. CoqHammer
is a similar tool for Coq, although it is more difficult to translate Coq’s dependent type theory
into the input logics of ATPs [22]. TLAPS is not as complex a system, but it also relies on
automated backends to verify proof obligations [19]. Given a proof script written in a dialect
of TLA+, TLAPS generates obligations corresponding to the important steps, and translates
each obligation into the logics of the available backends.

Let us review the current backend provers of TLAPS. LS4 is a prover for propositional
temporal logic [76]. No other backend supports temporal logic, but TLA+ proofs are easily
structured in such a way that the temporal part of the reasoning is contained in a single
obligation. The Isabelle backend uses a direct translation to the object logic Isabelle/TLA+

and attempts to prove obligations by using one of the basic automation tactic of Isabelle: auto,
force and blast. Zenon is a tableaux-based prover for first-order logic [11]. One distinctive
feature of the Zenon backend is that it can optionally produce detailed proofs in Isabelle’s
format. These proofs may then be checked automatically by Isabelle to increase trust in the
proof system. Finally, the SMT backend uses an encoding into the SMT-LIB standard format
for SMT solvers [6]. The SMT solvers available are CVC4 [5], veriT [12], and Z3 [25].

SMT is currently TLAPS’s most efficient backend. SMT solvers are recognized for their
ability to handle very large problems, and used by many ITPs to discharge the most tedious
obligations [9, 29, 32]. They excel in contexts involving decidable theories of first-order logic,
but do not cope well with quantifiers. The SMT encoding of TLAPS is designed with these
strengths and limitations of SMT in mind [53, 81]. One can start from the idea of a direct
encoding of TLA+ for SMT solvers. To implement this encoding, it suffices to declare every
primitive of TLA+ as an uninterpreted symbol of SMT (a symbol with no meaning attached to
it), then insert axioms into the problem and translate expressions faithfully. This hypothetical
encoding suffers from at least three issues. SMT solvers are first-order, but TLA+ includes a
few second-order constructs, for example {x ∈ S : P (x)}. First-order instantiation is a difficult
task for SMT solvers, which may struggle to find the relevant axiom instances. Finally, some
symbols of TLA+ have interpreted counterparts in SMT (typically, every operator of integer
arithmetic), but the direct encoding translates them as uninterpreted symbols.

These problems have been tackled through the implementation of various preprocessing
techniques. The core technique is rewriting, which effectively eliminates primitive TLA+

24 CHAPTER 1. INTRODUCTION

symbols from the source obligation. The following rule eliminates an occurrence of ∪:

x ∈ (a ∪ b) −→ x ∈ a ∨ x ∈ b

However, there are many situations where nonprimitive symbols occur but no rule is applica-
ble. Rewriting is then complemented by auxiliary techniques that modify the logical structure
of obligations, enabling further rewritings. Optionally, the preprocessing phase may be opti-
mized by type synthesis. This mechanism attempts to infer types for all subexpressions and
annotates expressions accordingly. This enables many optimizations of the base rewriting
system:

x+ y
x∈Int, y∈Int−→ x+int y

where + is TLA+’s untyped addition, and +int is SMT’s interpreted addition. The rule above
enables a translation of x+ y directly as an integer term in SMT’s logic.

1.2 Motivation
This thesis continues the work of Vanzetto on the SMT encoding of TLAPS [53,81]. We will
refer to Vanzetto’s implementation as the “original encoding”, to distinguish it from our own
work. In order to achieve good results, the original encoding relies on a complex preprocessing
phase. This phase is powerful enough to actually solve some obligations before they are sent
to the SMT solvers. As evidence for this, we report that, during our evaluation of the original
SMT backend (which is detailed in Chapter 5), we found that for about 11% of all obligations,
the goal had been reduced to true during preprocessing.

While this kind of efficiency is desirable, we must also ensure that the encoding is sound.
An unsound encoding may produce a valid SMT problem from an invalid TLA+ obligation,
letting users derive faulty statements with TLAPS. If an invalid statement is proved using a
particular backend, the error may result from a bug in the ATP, or an error in the translation
implemented in TLAPS. Some ATPs can output proofs along with their results, so that these
proofs may be checked internally by the ITP. We already mentioned Zenon, whose output
can be checked by Isabelle. Let us also mention an ongoing effort to reconstruct TLA+ proofs
from veriT’s output [16,68,69].

However, the current SMT encoding carries an important part of the actual solving, and
its output can hardly be exploited for debugging purposes, let alone proof reconstruction.
Encoded proof obligations have often little in common with the source TLA+ obligations,
leaving us with the only option to inspect the source code of TLAPS when a bug is found.

Our primary concern is to increase trust in TLAPS, especially the SMT backend. The
direct encoding would be a safe alternative to the current one, since it is very easy to prove
sound. But it was never implemented fully, as it was assumed too inefficient. Our starting
point is the idea of using the direct encoding as a basis for a more modular design, in which
preprocessing could be turned off to obtain stronger soundness guarantees. We may not
expect the direct encoding to be as efficient, but it would at least let us verify a portion of
the current encoding’s positive results.

1.3 Contributions
Two contributions have been made in the form of new translations of TLA+ for ATPs. The
first is a direct encoding of TLA+ into HOL. The second translation is an optimized encoding

1.4. OUTLINE 25

for SMT solvers. Many assets from the first encoding are reused to implement this new SMT
encoding, which will effectively replace the original one in a future version of TLAPS. Each
contribution has lead to a publication in an international conference [27,28].

The direct encoding targets HOL, so that the second-order constructs and axiom schemas
of TLA+ can be easily encoded. To test this encoding, we added support for Zipperposition,
a superposition prover that supports higher-order logic [20, 82, 83]. As we were working on
this encoding, Zipperposition had just won the CASC competition in the THF division [77,
78]. Besides soundness, a higher-order backend is a worthwhile addition to TLAPS, because
specific TLA+ obligations do require higher-order unification to be solved. As example, one
may take any proof that involves the principle of natural induction:

P (0) ∧ (∀x ∈ Nat : P (x)⇒ P (x+ 1))⇒ ∀x ∈ Nat : P (x)

The principle is formalized as a lemma of TLAPS’s standard library. When it is invoked, the
current goal must be unified with the higher-order variable P . Similar situations arise for
general well-founded inductions, or whenever a proof involves user-defined recursive operators.
Zipperposition is especially useful for these goals, as the only other backend supporting higher-
order logic is Isabelle, whose basic automation tactic are often unable to handle mildly complex
obligations.

Our original plans for the SMT encoding included a reimplementation of type synthesis and
preprocessing. Instead, we found that most obligations could be solved by SMT with heuris-
tics for the instantiation of TLA+’s axioms. These heuristics are implemented by triggers
indicating to the solver some terms to look for in order to derive relevant instances. Triggers
are a popular solution for users of SMT wishing to stabilize custom theories [30,50,55]. They
are pivotal in our approach. We use triggers to implement heuristics for reasoning in untyped
set theory, and the efficacy of these heuristics for TLA+ has been confirmed experimentally.
Moreover, triggers extend the direct encoding with little need to change the translation itself,
so soundness is not compromised by this technique. Only some adjustments are needed to
support second-order constructs, integer arithmetic, and the axiom of set extensionality.

1.4 Outline

In Chapter 2, we present the necessary context about automated theorem proving (with a
focus on SMT) and the specification language TLA+. The first section is an overview of
SMT’s theory with its fundamental results and limits. Some generic definitions from the field
of mathematical logic are given, in anticipation of the formal treatment of TLA+’s logic in
future chapters. The second section is an overview of TLA+ and its tools. The model checker
TLC is briefly introduced, followed by the proof assistant TLAPS. Working TLA+ examples
are presented to illustrate the usage of these tools.

In Chapter 3, we develop our formal definition of TLA+’s constant fragment, including its
syntax and semantics. The constant fragment includes TLA+’s variant of first-order logic and
set theory, but it does not contain the temporal aspects of the logic. In TLA+, silly expressions
such as 1 ∪ “foo” have a denotation. We may not know what this expression denotes, but
we know, for example, that it is a set, and that it equals “foo” ∪ 1. We propose to formalize
the primitive symbols of TLA+ as uninterpreted symbols specified only by axioms. TLA+ is
thus formalized as a logic L + T , where L is a generic logic providing the interpretations of

26 CHAPTER 1. INTRODUCTION

Boolean connectives (including quantifiers), and T a standard theory containing the axioms
of set theory, functions, arithmetic, and more.

In Chapter 4, we define a direct encoding of TLA+ into HOL. A higher-order logic is
necessary to encode the second-order constructs of TLA+ and axiom schemas. For instance,
set comprehension {x ∈ S : e} is viewed as a second-order application setst(S, λx : e), and the
full schema of comprehension from ZF is encoded as a single axiom. The direct encoding con-
sists in two essential steps: first, an elementary pass over expressions to correct ambiguities
regarding Boolean and non-Boolean expressions; second, the insertion of relevant axioms into
the final problem. The translation itself preserves the structure of the original TLA+ expres-
sions. The direct encoding has been implemented in TLAPS, and the superposition prover
Zipperposition added as a new backend. We compare the performances of Zipperposition and
Isabelle on a large collection of TLA+ proof obligations; our results demonstrate that the two
backends have complementary strengths.

In Chapter 5, we extend the direct encoding to an SMT encoding for TLA+. Most of
the direct encoding’s structure and implementation is reused for the SMT encoding; parts of
the axiomatizations are revised. Axioms are reformulated and annotated with E-matching
patterns (triggers), which have been chosen and refined through an empirical process. We
illustrate this process through a simple but realistic TLA+ proof obligation, exploring several
options for triggers and observing their effects on the SMT procedure. We then derive some
general principles underlying our strategy for trigger selection. A few peripheral topics about
the axiomatization of TLA+ for SMT are addressed: reduction to first-order logic and axiom
schemas; axioms for using SMT’s integer arithmetic; axioms for set extensionality. Finally,
our version of the SMT encoding is compared with the original one of TLAPS. Despite the
simpler design of our encoding, we achieve similar performances.

Chapter 2

Background

This chapter is divided into two sections. We first review the theory of automated theorem
proving through the lens of satisfiability modulo theory (SMT). We then give an overview of
TLA+ and its main tools TLC and TLAPS. We conclude this chapter by a brief review of
the SMT encoding currently implemented in TLAPS. That encoding will be referred to as
the “previous” or “original” SMT encoding to distinguish it from our own version.

2.1 Automated Theorem Proving

Automated theorem proving is the design and study of computational procedures (algorithms)
for deciding the validity of mathematical formulas. This presupposes two important notions:
validity and procedure. The first is formally defined by mathematical logic [45], and the second
by the theory of computability [21].

We assume some informal notion of algorithm and will use pseudo-code for our examples.
For any formal problem P (x) with parameter x, we call decision procedure an algorithm that
takes x as input and answers either “yes” or “no”, depending on whether P (x) is true or false.
A problem is called decidable if there is a decision procedure for it, otherwise it is undecidable.
Some undecidable problems still admit semi-decision procedures, which always answer “yes”
in the positive case, but in the negative case may answer “no” or never return an answer.
These problems are called semi-decidable.

SMT solvers extend decision procedures for propositional logic to handle theories of first-
order logic, including the general theory of quantifiers. We present the DPLL procedure for
propositional logic, then the SMT approach for theories of first-order logic, focussing on the
general problem of first-order instantiation.

In the context of interactive theorem proving, SMT solvers are a popular option to auto-
matically handle large proof obligations [9,29,32]. Another important approach to automated
theorem proving is superposition provers, which are based on extensions of the resolution in-
ference rule [4, 66]. The treatment of first-order quantifiers is central in resolution-based
systems, while SMT’s strength is its support for decidable first-order theories.

2.1.1 The DPLL Procedure

For most studies concerning mathematical logic, the starting point is propositional logic
(PL). As we present the syntax and semantics of PL, we introduce some general concepts

27

28 CHAPTER 2. BACKGROUND

of mathematical logic. The truth of a propositional formula ϕ depends on the truth of the
propositional variables it contains, and the problem of deciding, for a given ϕ, if there exists
an assignment of propositional variables making ϕ true is called the SAT problem. The DPLL
procedure is an algorithm for deciding the SAT problem [23]. Modern SAT solvers are based
on an extension of DPLL called CDCL.

Propositional Logic

We define the generic notion of a logic to fix some important terminology. All the logics we
will consider (propositional, first-order logic, TLA+) fit into the following definition.

Definition 2.1.1 (Logic). A logic is a triple (L,M, |=) where L is a collection of formulas (the
language), M a collection of interpretations, and |= a relation on M×L called the satisfaction
relation. For all ϕ ∈ L and I ∈M , we say that I satisfies ϕ if I |= ϕ. A formula is satisfiable
if it is satisfied by some interpretation, otherwise it is unsatisfiable.

All the languages we will consider can be defined from BNF grammars, which are sets of
formation rules describing how complex terms are formed through the combination of simpler
ones. The definition of PL’s syntax below is based on a BNF grammar.

Definition 2.1.2 (Syntax of Propositional Logic). Propositional logic is parameterized by
some collection Σ of propositional variables, called a propositional signature. The language
of PL is given by the grammar

ϕ ::= p | true | false | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ⇔ ϕ where p ∈ Σ

The collection of propositional formulas over the signature Σ is noted P (Σ).

Grammars are ambiguous when certain terms of the language admit several formations.
For instance, ϕ ∧ ψ ∨ ρ is an ambiguous formula. We use parentheses to remove ambiguities
when necessary, for instance we will write (ϕ∧ψ)∨ ρ or ϕ∧ (ψ∨ ρ). To reduce the number of
parentheses, we fix some priority rules between the propositional connectives. The connectives
∧ and ∨ have priority over ⇒ and ⇔, so that ϕ ∧ ψ ⇒ ρ ∨ χ is read (ϕ ∧ ψ)⇒ (ρ ∨ χ). The
connective ¬ has priority over all the other connectives, so ¬ϕ∨ψ is read (¬ϕ)∨ψ for example.

Definition 2.1.3 (Semantics of Propositional Logic). Let Σ be a propositional signature. A
Σ-valuation is a subset θ ⊆ Σ. We define the satisfaction relation for all valuations θ and
formulas ϕ by

θ |= p iff p ∈ θ
θ |= true
θ ̸|= false
θ |= ¬ϕ iff θ ̸|= ϕ

θ |= ϕ ∧ ψ iff θ |= ϕ and θ |= ψ

θ |= ϕ ∨ ψ iff θ |= ϕ or θ |= ψ

θ |= ϕ⇒ ψ iff θ |= ϕ implies θ |= ψ

θ |= ϕ⇔ ψ iff θ |= ϕ equals θ |= ψ

Propositional logic over a signature Σ is defined by the language P (Σ), the collection of
all Σ-valuations, and the satisfaction relation just defined.

2.1. AUTOMATED THEOREM PROVING 29

There is some additional terminology to consider regarding satisfiability. For theorem
proving, we are especially interested in formulas that are true for all interpretations, or for
classes of interpretations fixed by sets of formulas called theories.

Definition 2.1.4 (Theories). Consider a generic logic with satisfaction relation |=. A theory
is a collection of formulas T . T is satisfied by an interpretation I if all formulas of T are
simultaneously satisfied by I. In that case, we call I a model of T , and we note I |= T . T is
unsatisfiable if it has no model.

Let T be a theory. A formula ϕ is a logical consequence of T if ϕ is satisfied by all models
of T . This is noted T |= ϕ. A tautology, or valid formula, is a consequence of the empty
theory. We note |= ϕ when ϕ is valid.

Example 2.1.5. Here are some tautologies of propositional logic (for all ϕ, ψ):

ϕ⇒ ϕ

¬ϕ ∨ ϕ
¬¬ϕ⇔ ϕ

ϕ ∧ ψ ⇔ ψ ∧ ϕ
ϕ ∨ ψ ⇔ ψ ∨ ϕ
ϕ ∧ ψ ⇒ ϕ

ϕ⇒ ϕ ∨ ψ
¬(ϕ ∧ ψ)⇔ (¬ϕ ∨ ¬ψ)
¬(ϕ ∨ ψ)⇔ (¬ϕ ∧ ¬ψ)

The satisfiability or validity of a given formula can be established by the method of truth
tables. Consider the formula ¬(p ⇒ q). There are only two propositional variables in that
formula, p and q. Clearly, for all valuations θ, we only need to consider whether p and q
are satisfied by θ. There are only four possibilities; for each of them, we can simply evaluate
whether the formula is satisfied or not by following the recursive definition of |=. All four
situations are represented by the table below, where 1 indicates satisfaction and 0 indicates
non-satisfaction. We also indicate satisfaction for the subformula p⇒ q.

p q p⇒ q ¬(p⇒ q)
0 0 1 0
0 1 1 0
1 0 0 1
1 1 1 0

As this table shows, ¬(p⇒ q) is satisfiable, and the only valuation that makes it true is the
one that contains p but not q. For a formula to be valid, it must be satisfied in all situations,
so ¬(p⇒ q) is not valid.

The method of truth tables demonstrates a naive decision procedure for propositional
logic. Formally, the problems “ϕ is satisfiable” and “ϕ is valid” for the parameter ϕ ∈ P (Σ)
are both decidable. Moreover, there is a close correspondence between the two. Consider the
equivalence

|= ϕ iff for all θ, θ ̸|= ¬ϕ iff ¬ϕ is unsatisfiable

30 CHAPTER 2. BACKGROUND

More generally,

T |= ϕ iff for all θ, θ |= T implies θ ̸|= ¬ϕ iff T ∪ {¬ϕ} is unsatisfiable

For theorem proving, we are more interested in deciding validity than satisfiability. But
solvers may be more oriented towards the problem of satisfiability. We may still use such
solvers for deciding validity by checking that the negation of a goal is unsatisfiable, possibly
in the context of a theory T .

SAT Solvers

The procedure of decision for PL based on truth tables requires going through all possible
valuations for a given formula. If the input formula contains n propositional variables, the
number of possibilities is 2n. Some industrial applications involve problems with millions of
parameters, so this naive procedure cannot be used realistically. Modern SAT solvers like
Chaff [56], GRASP [72] or MiniSAT [31] are based on a procedure called DPLL [23]. The
first step consists in preprocessing formulas into a more restrictive language [3].

Definition 2.1.6 (Conjunctive Normal Forms). Let Σ be a propositional signature. We
define literals, clauses and CNF formulas by the grammar

l ::= p | ¬p (Literals)
C ::= false | l ∨ C (Clauses)
N ::= true | N ∧ C (CNF Formulas)

A formula ϕ is in conjunctive normal form (CNF) if it can be read as a CNF formula.

Two formulas ϕ and ψ are equisatisfiable when ϕ is satisfiable iff ψ is. We admit that for
all formulas ϕ, there is a CNF formula N(ϕ) such that ϕ and N(ϕ) are equisatisfiable.

Example 2.1.7. Consider the formula

p ∨ q ⇒ r

A possible CNF formula for it is

(¬p ∨ r) ∧ (¬q ∨ r)

One can verify that the equivalence of the two formulas is a tautology. Equivalently, one can
compare the truth tables for the two formulas side to side and verify that they are satisfied
by the same valuations:

p q r p ∨ q p ∨ q ⇒ r ¬p ∨ r ¬q ∨ r (¬p ∨ r) ∧ (¬q ∨ r)
0 0 0 0 1 1 1 1
0 0 1 0 1 1 1 1
0 1 0 1 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0
1 0 1 1 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 1 1 1 1 1

2.1. AUTOMATED THEOREM PROVING 31

CNF formulas admit a simpler representation than general formulas. Consider the follow-
ing logical equivalences for all ϕ, ψ and ρ:

ϕ ∨ ψ ⇔ ψ ∨ ϕ
(ϕ ∨ ψ) ∨ ρ⇔ ϕ ∨ (ψ ∨ ρ)

ϕ ∨ ϕ⇔ ϕ

false ∨ ϕ⇔ ϕ

These laws express that ∨ is commutative, associative, and that false is neutral for ∨. They
justify the representation of clauses by finite sets of literals: the order of literals does not
matter in a clause, nor does the duplication of literals; the clause false can be represented
by the empty set. For similar reasons, CNF formulas can be represented by sets of clauses;
in that case, the empty set represents the formula true.

A literal l is of the form p or ¬p where p is a propositional variable. Let us write l to
refer to whichever case is the opposite for l. The DPLL procedure takes a CNF formula as
input and incrementally takes decisions for all literals, simplifying the current formula for
each decision. That process of simplification is called propagation.

Definition 2.1.8 (Propagation). Let N be a CNF formula and l a literal. The propagation
of l into N is the CNF formula N [l] obtained by removing from N all clauses containing l,
and removing l from the remaining clauses. Clearly, neither l nor l occurs in N [l].

If N is satisfiable, then for all l either l∧N [l] or l∧N[l] is satisfiable. A simple procedure is
implemented by selecting an l, recording the decision and testing for the satisfiability of N [l];
if that formula is unsatisfiable, then we test N[l] instead. Unsatisfiability is easily detected
by searching for the empty clause in derived formulas. This simple procedure still requires
testing for all 2n possibilities in the unsatisfiable case. DPLL optimizes the search through
unit propagation to prune the decision tree.

Definition 2.1.9 (DPLL). Figure 2.1 presents the DPLL procedure in pseudo-code. The
sub-procedure select returns a literal occurring in N but not in decisions or inferred.

The DPLL algorithm selects literals to set and records them in a sequence decisions. Each
decision is propagated through the current formula. If the formula is reduced to the empty
CNF formula true, then the decision trail is a valuation that satisfies the original formula;
if the current formula contains the empty clause false (this is called a conflict), then it is
unsatisfiable under the current constraint, so decisions must be undone. In the algorithm
above, backtracking to an earlier decision is achieved by using recursion. DPLL optimizes
the search by managing another sequence inferred. In some situations, the right value for a
literal can be deduced from the formula and the current constraint. If deciding l resulted in
a conflict, then l is necessarily true. If a unit clause reduced to the literal l occurs in the
formula, then l has to be true. The latter optimization is called unit propagation.

Example 2.1.10. Consider the following set of clauses:

p ∨ q ∨ r, ¬p ∨ q, ¬p ∨ ¬q ∨ r, ¬q ∨ ¬r

32 CHAPTER 2. BACKGROUND

DPLL_main(decisions, inferred, N):
// Unit propagation
for all {l} ∈ N:

inferred := cons(l, inferred)
N := N [l]

if N = ∅ then:
return SAT(decisions + inferred)

if ∅ ∈ N:
return UNSAT

else:
l := select(decisions, inferred, N)
result := DPLL_main(cons(l, decisions), inferred, N [l])
if result is UNSAT then:

result := DPLL_main(decisions, cons(l, inferred), N[l])
return result

DPLL(ϕ):
N := cnf(ϕ)
decisions := nil
inferred := nil
DPLL_main(decisions, inferred, N)

Figure 2.1: DPLL Procedure

We present below a possible run of the DPLL algorithm. Inferred literals either result from
unit propagation (UP) or backtracking after a conflict (BT).

p ∨ q ∨ r, ¬p ∨ q, ¬p ∨ ¬q ∨ r, ¬q ∨ ¬r (Init)
q, ¬q ∨ r, ¬q ∨ ¬r (Decide p)

r, ¬r (Infer q (UP))
false (Infer r (UP))

p ∨ q ∨ r, ¬p ∨ q, ¬p ∨ ¬q ∨ r, ¬q ∨ ¬r (Backtrack)
q ∨ r, ¬q ∨ ¬r (Infer ¬p (BT))

¬r (Decide q)
(Infer ¬r (UP))

There are no clauses left in the last state so the formula is satisfiable. The solution is given
by the set of literals {¬p, q,¬r}. Notice that because q is decided by unit propagation the
first time, the second backtracking step reverts to the decision of p.

Modern SAT solvers are based on an extension of DPLL called conflict-driven clause
learning (CDCL) [43,72]. Whenever the algorithm encounters a conflict (the empty clause is
derived after propagation), the current trail of decisions is analysed to derive a new clause.
Suppose the analysis determines that the decisions l1, . . . , ln lead to the conflict. Then the

2.1. AUTOMATED THEOREM PROVING 33

original formula must entail ¬(l1 ∧ · · · ∧ ln), which corresponds to the clause l1 ∨ · · · ∨ ln. By
adding this learned clause to the original problem, the risk of replaying the same conflict is
removed. This technique can be combined with backjumping to backtrack to earlier decisions
in the trail.

2.1.2 Satisfiability Modulo Theories

Propositional logic has interesting applications but it is not expressive enough for most math-
ematical theories. First-order logic (FOL) extends PL in several aspects. The propositional
variables are replaced by statements expressing relations between different terms; quantifiers
enable the formal expression of universal and existential statements. The satisfaction relation
of FOL involves domains of objects to interpreted terms, which makes first-order satisfiability
inherently more complex than propositional satisfiability. Nevertheless, some theories of FOL
are decidable, and validity in pure FOL is semi-decidable. SMT solvers specialize in deciding
the satisfiability of formulas for first-order theories of interest.

First-order Logic

Definition 2.1.11 (First-order Terms). A term signature is a collection Σ of symbols with
assigned numbers called arities. Let X be some infinite collection of variable symbols. We
define the collection of terms T (Σ, X) by the grammar

t ::= x | f(t, . . . , t)

where x ∈ X and f ∈ Σ. An application f(t1, . . . , tn) is well-formed only if the arity of f
is n. If c is a symbol with arity 0, the application of c to zero arguments is simply noted c.

The collection of variable symbols X is usually fixed and omitted from all notations, so
we usually note T (Σ) for a collection of terms.

Definition 2.1.12 (First-order Logic). A first-order signature is an union Σ = ΣF ⊎ ΣP

where ΣF is a term signature and ΣP a collection of predicate symbols with arities. The
language of first-order logic over Σ is defined by the grammar

ϕ ::= p(t, . . . , t) | t = t

| true | false | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ⇔ ϕ

| ∀x : ϕ | ∃x : ϕ

where x ∈ X, t ∈ T (ΣF), and p ∈ ΣP . The application p(t1, . . . , tn) is well-formed only if the
arity of p is n. An atomic proposition is a formula p(t1, . . . , tn) or t1 = t2. The collection of
atomic propositions is noted A(Σ). The collection of formulas is noted F (Σ).

Let D be some collection called domain. A valuation is a function θ : X → D. An
interpretation I consists of two families (f I)f∈ΣF

and (pI)p∈ΣP
such that f I ∈ Dn → D when

the arity of f is n, and pI ⊆ Dn when the arity of p is n. We define the evaluation of terms
as a function J·KI

θ by

JxKI
θ ≜ θ(x)

Jf(t1, . . . , tn)KI
θ ≜ f

I(Jt1KI
θ , . . . , JtnKI

θ)

34 CHAPTER 2. BACKGROUND

For all t ∈ T (ΣF), the value JtKI
θ is an element of D. For all valuations θ, variables x and

values v ∈ D, let θx
v be the valuation that reassigns x to v. We now define the satisfaction

relation |= as a ternary relation by

I, θ |= p(t1, . . . , tn) iff (Jt1KI
θ , . . . , JtnKI

θ) ∈ pI

I, θ |= t1 = t2 iff Jt1KI
θ = Jt2KI

θ

I, θ |= ∀x : ϕ iff I, θx
v |= ϕ for all v ∈ D

I, θ |= ∃x : ϕ iff I, θx
v |= ϕ for some v ∈ D

The rules involving propositional connectives are omitted as they are analogous to the ones
for propositional logic.

We note Qx : ϕ for a formula ∀x : ϕ or ∃x : ϕ. In such formulas, the variable x is said to
be bound, and ϕ is called the scope of the binder Qx. Any variable in a first-order formula is
bound by at most one quantifier, otherwise it is called free. A formula with no free variables
is called ground. The interpretation of any formula does not depend on the values θ(x) such
that x is not free. In the case of ground formulas, the interpretation does not matter on θ at
all, so we simply note I |= ϕ when ϕ is ground and I, θ |= ϕ for some arbitrary θ.

Chains of quantifiers are usually shortened by writing ∀x, y, z : ϕ and ∃x, y, z : ϕ. The
scope of a quantifier is assumed to be the formula that extends until the next enclosing
parenthesis. For instance, ∀x : p(x)⇒ q(c) is read as ∀x : (p(x)⇒ q(c)).

Example 2.1.13. Here are some tautologies of FOL:

(¬∀x : p(x))⇔ ∃x : ¬p(x)
(¬∃x : p(x))⇔ ∀x : ¬p(x)

(p ∧ ∀x : q(x))⇔ ∀x : p ∧ q(x)
((∀x : p(x))⇒ q)⇔ ∃x : p(x)⇒ q

(∃y∀x : p(x, y))⇒ ∀x∃y : p(x, y)
(∀x : p(x, f(x)))⇒ ∀x∃y : p(x, y)

Validity for arbitrary formulas of first-order logic is undecidable [80]. This classical result
relies on a reduction of the halting problem (the problem of deciding termination for arbitrary
procedures) to the problem of validity for FOL. See for example Paragraph 45 in Kleene [45].
However, some particular theories are known to be decidable. The most popular example is
Presburger arithmetic, also called linear integer arithmetic.

Example 2.1.14 (Presburger Arithmetic). The signature of linear arithmetic contains the
constant symbol Z (zero), the unary symbol S (successor) and the binary symbol + (used in
infix notation). It does not include predicates, but comparisons ≤ and < can be defined by
first-order formulas. The theory is described by the axioms

∀x : S(x) ̸= Z

∀x, y : S(x) = S(y)⇒ x = y

∀x : x+ Z = x

∀x, y : x+ S(y) = S(x+ y)
P (Z) ∧ (∀x : P (x)⇒ P (S(x)))⇒ ∀x : P (x) for all formulas P (x)

2.1. AUTOMATED THEOREM PROVING 35

The last line is not a single axiom but an infinite collection of axioms called a schema.
Let T be the collection of axioms for linear arithmetic. Then the problem T |= ϕ, where

the parameter ϕ is a formula in the language of linear arithmetic, is decidable. The proof of
this results relies on a quantifier-elimination technique [75].

Other examples of decidable theories include the theory of real closed fields or the theory
of fixed-size bitvectors [8,15]. Expressive theories tend to be undecidable; if one extends linear
integer arithmetic with a symbol and axioms for multiplication, one obtains non-linear integer
arithmetic, which is undecidable. It follows that any extension of linear integer arithmetic in
which multiplication can be defined is also undecidable [40].

The generic theory of first-order logic, also called the empty theory because no fixed signa-
ture or axioms are given, is undecidable. However, under some restrictions, it is decidable [36].
A notable decidable class of FOL is the class of effectively propositional formulas (EPR) [26].
While undecidable in general, the empty theory is semi-decidable. This can be established
through a classical result by Herbrand [13,41], which is stated below.

A formula is called quantifier-free when it does not contain quantifiers. Let ϕ be quantifier-
free and let x1, . . . , xn be its free variables. Then the universal closure of ϕ is the formula
∀x1, . . . , xn : ϕ, noted ∀⋆ϕ. When ϕ is quantifier-free, ∀⋆ϕ is said to be universal and prenex.
A substitution is a function σ : X → T (Σ); a substitution is ground if all terms σ(x) are
ground. The result of applying a substitution σ to ϕ is the formula ϕσ (each free variable x
is replaced by σ(x)). Then an instance of ∀⋆ϕ is a ground formula ϕσ.

Theorem (Herbrand). For all ϕ quantifier-free, ∀⋆ϕ is unsatisfiable iff there exists a finite,
unsatisfiable set of instances {ϕσ1, . . . , ϕσn}.

Herbrand’s Theorem gives the basis for a semi-decision procedure for the empty theory.
In order to establish this, we admit two additional results.

Lemma. Every first-order formula ϕ admits an equisatisfiable prenex formula ∀⋆ψ.

Lemma. A quantifier-free formula ϕ is an element of P (A(Σ)). Suppose ϕ is quantifier-free
and without equalities. Then ϕ is satisfiable as a first-order formula iff it is satisfiable as a
propositional formula.

The first lemma is proved by applying a series of logical laws (some of them displayed
in Example 2.1.13) to move quantifiers up the structure of ϕ, then apply a technique called
Skolemization to eliminate existential quantifiers [3]. The second lemma involves building a
first-order model from a propositional one, called a Herbrand model. Its generalization to
formulas with equalities is not trivial, but can be done if satisfiability in PL is constrained by
axioms for equality [70].

The naive semi-decision procedure for FOL proceeds as follows. The input is a formula ϕ.
To decide |= ϕ, we check for the unsatisfiability of ¬ϕ. There is a formula ∀⋆ψ that is
satisfiable iff ¬ϕ is. We enumerate all finite sets of ground instances {ψσ1, . . . , ψσn}, testing
for the propositional satisfiability of every set (using DPLL for example). If a set is satisfiable,
we resume with the next set of instances. If a set is unsatisfiable, then it is also unsatisfiable
as a set of first-order formulas, and by Herbrand’s Theorem ∀⋆ψ is unsatisfiable and thus
|= ϕ. Now, assuming |= ϕ, then an unsatisfiable set of instances must exist, so the procedure
will terminate.

36 CHAPTER 2. BACKGROUND

SMT Solvers

SMT solvers were originally created to solve logical constraints expressed in the quantifier-
free (QF) fragment of FOL. These constraints may involve interpreted domains and symbols
(arithmetic, arrays, fixed size bitvectors, etc.), or uninterpreted symbols over unspecified
domains. Two important extensions of this basic model are the possibility to combine theories
whose signatures do not intersect, and support for first-order quantifiers. The adequate
language for SMT problems is a multi-sorted first-order logic (MS-FOL), which extends the
syntax of FOL with type annotations and restricts the combination of symbols to prohibit
meaningless expressions.

There exist several approaches to implementing SMT. The one we describe here is the
lazy procedure based on the popular DPLL(T) architecture [35, 59]. As the name suggests,
DPLL(T) combines a DPLL procedure with a solver for the parameter theory T , referred to
as a T -solver. Besides checking for satisfiability in T , the T -solver must be able to provide
explanations for unsatisfiable set of literals, in order to cooperate with the propositional
solver. Some problems involve several theories with their corresponding solvers; given a set of
Ti-solvers such that the signatures of distinct theories Ti do not overlap, there is a procedure
for combining all solvers into a single one for the union of all theories [57, 71]. The theory
of equality and uninterpreted functions (EUF), which is decidable, plays a central role in this
framework, as the equality symbol is common to all theories. Procedures for solving problems
of EUF are generally based on congruence closure algorithms [70].

Example 2.1.15. This example will illustrate the cooperation between a SAT solver imple-
menting clause learning and a solver for linear integer arithmetic. Consider the formula

a− b = 0 ∧
(
f(a) = f(b)⇒ P (a) ∧ ¬P (b)

)
where a and b are integer constants and f is an uninterpreted function of integers. From
the SAT solver’s point of view, atoms are abstracted as propositional variables; a possible
representation in CNF form is

p1 ∧ (¬p2 ∨ p3) ∧ (¬p2 ∨ ¬p4)

with the definitions

p1 ≜ a− b = 0 p3 ≜ P (a)
p2 ≜ f(a) = f(b) p4 ≜ P (b)

Naive CNF transformations may result in exponential increases of the lengths of the for-
mulas. Modern solvers implement a CNF transformation called the Tseitin transformation,
which maintains a linear increase in size [79]. That transformation introduces variables for
subformulas; in our example, a variable would be introduced to represent P (a) ∧ ¬P (b).

The propositional formula is satisfied by the valuation {p1,¬p2, p3, p4}. Suppose the SAT
solver returns this candidate model to the T -solver, where T combines linear integer arithmetic
with EUF. The T -solver will find the subset {p1,¬p2} to be unsatisfiable. Indeed, from
a − b = 0 it follows (by arithmetic) that a = b, and then f(a) = f(b) (by congruence). This
contradiction is represented by the clause ¬p1∨p2, which is sent back to the SAT solver. The
new problem is

p1 ∧ (¬p2 ∨ p3) ∧ (¬p2 ∨ ¬p4) ∧ (¬p1 ∨ p2)

2.1. AUTOMATED THEOREM PROVING 37

The SAT solver will return the model p1, p2, p3,¬p4 (this is the only solution as it can be
found directly by unit propagation). The T -solver will again find a contradiction as a = b
entails ¬(P (a)∧¬P (b)). The unsatisfiable subset is {p1, p3,¬p4}, so the clause ¬p1∨¬p3∨p4
is added to the propositional problem:

p1 ∧ (¬p2 ∨ p3) ∧ (¬p2 ∨ ¬p4) ∧ (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p3 ∨ p4)

The SAT solver will find that problem to be unsatisfiable, which means the original formula
is unsatisfiable.

The cooperation of a SAT solver with a T -solver as we just described defines a ground
SMT solver. When a problem contains quantifiers ∀ or ∃, this framework is typically extended
with an instantiation module. The combination of such a module with a ground SMT solver
defines a general SMT solver. Here is a simplified view of this extended architecture: the
problem with quantifiers can be represented as a problem E ⊎Q where E is a set of ground
formulas, and Q a set of formulas with quantifiers. Usually the elements of Q are assumed
to be in universal prenex form ∀⋆ϕ, although solvers may handle quantifiers differently for
efficiency reasons [3]. The ground SMT solver may find E to be unsatisfiable (in which case
the original problem is unsatisfiable). If E is satisfiable, then the instantiation module is
called. Three outcomes are possible: either the satisfiability of E ⊎ Q can be verified (then
the answer is “sat”); if it cannot be verified, then a number of instance lemmas may be
produced and added to the ground problem, restarting the whole process; if the satisfiability
of E⊎Q cannot be verified, and no instance lemmas are produced, the SMT solver will return
“unknown” [63].

In the context of automated theorem proving, our goal is generally to check for unsatisfi-
ability. Therefore, we will focus on strategies to generate instance lemmas. The general form
of an instance lemma is (∀⋆ϕ)⇒ ϕσ where ∀⋆ϕ is an element of Q.

Example 2.1.16. The following example is taken from Reynolds et al [63]. We consider the
set of formulas

¬P (a) ∧ ¬P (b) ∧ P (c) ∧ ¬R(b) ∧
(
∀x : P (x) ∨R(x)

)
where a, b, c are uninterpreted constants and P,R are uninterpreted predicates. As a propo-
sitional CNF formula, this problem is represented

¬p1 ∧ ¬p2 ∧ p3 ∧ ¬p4 ∧ q

with the definitions

p1 ≜ P (a) p4 ≜ R(b)
p2 ≜ P (b) q ≜ ∀x : P (x) ∨R(x)
p3 ≜ P (c)

The problem is partitioned into the ground problem E ≜ {¬p1,¬p2, p3,¬p4} and the set
Q ≜ {q}. E has a trivial (and unique) solution, so the instantiation module is called.

Assuming the only possible terms are a, b and c, there are three possible instance lemmas:

q ⇒ P (a) ∨R(a)
q ⇒ P (b) ∨R(b)
q ⇒ P (c) ∨R(c)

38 CHAPTER 2. BACKGROUND

The second instance, in particular, reduces to the clause ¬q ∨ p2 ∨ p4 by propositional ab-
straction. Suppose our instantiation strategy selects that lemma. Then the new propositional
problem is

¬p1 ∧ ¬p2 ∧ p3 ∧ ¬p4 ∧ q ∧ (¬q ∨ p2 ∨ p4)

That problem is unsatisfiable, so the solver returns “unsat”.

First-order instantiation is a difficult problem, and several strategies for selecting instances
exist. Most SMT solvers that support quantifiers implement a combination of them. Some
strategies are complete, meaning that they will always enable progress towards unsatisfiability
if the formula is indeed unsatisfiable. Let us review the four main approaches to instantiation
for SMT.

Of all methods the enumerative approach is perhaps the simplest to explain [37,64]. The
finite sets of ground terms {t1, . . . , tn} can be enumerated. Then the enumeration of all the
corresponding substitutions results in a complete instantiation procedure, as a straightforward
application of Herbrand’s Theorem. For the example above, the enumeration might consider
the terms a, b and c for the variable x, in that order. The instance P (a)∨R(a) does not make
the problem unsatisfiable, but P (b) ∨ R(b) does. This method can be made more effective
by choosing an appropriate ordering of terms, or basing the search on a refined version of
Herbrand’s Theorem.

If our goal is to prove that a problem is unsatisfiable, then the conflict-based approach is
a good option [63, 65]. This method looks for instances that contradict the ground problem,
such as P (b) ∨R(b) for our example. The other instances are ignored. Successful generation
of conflicting instances forces the SAT solver to find a new propositional model, enabling
progress. The downside is that finding conflicts is expensive, and may result in too few
instances in some cases.

If our goal is to prove that a problem is satisfiable, then model-based quantifier instantia-
tion (MBQI) might be a better choice [36,63]. Consider again the example from above; notice
that the instance P (a)∨R(a), while not contradicting the ground problem E, is not logically
entailed by E either. MBQI targets instances that contradict candidate models for E. For
instance, a possible model for E might interpret R as the predicate that is always false—
that interpretation is possible because all that is known about R is that ¬R(b) is true. But
P (a)∨R(a) contradicts that interpretation (because ¬P (a) holds) so it is generated. MBQI is
complete for some fragments of FOL, but it is difficult in general to construct useful models
in non trivial satisfiable cases.

The last approach is E-matching, which is the most widely used approach for instantiation
in SMT [24, 63]. Quantified formulas are annotated with patterns, which are usually noted
between curly-braces:

∀x1, . . . , xn : {p1, . . . , pk} ϕ

The free variables occurring in the patterns pi must be exactly the variables x1, . . . , xn. Let
t1, . . . , tn be terms and σ a substitution such that, for all i, E |= piσ = ti in the theory of
EUF. Then (t1, . . . , tn) is called a trigger, and σ can be used to produce an instance lemma.
In general, triggers are searched for in the ground problem E. For instance, assuming the
pattern {P (x)} is chosen for our example, then the terms P (a), P (b) and P (c) are all triggers,
and three instances are generated. The procedure for detecting triggers is implemented in an
effective way by modern SMT solvers [24]. However, the problem of selecting patterns for the
quantified formulas is not as easy, and SMT solvers rely on heuristics to generate them [50].

2.2. TLA+ 39

Nevertheless, E-matching is a popular technique among users of SMT, who have the option
to select their own triggers for custom axiomatizations [55]. A recurrent problem with the E-
matching approach is that it tends to generate too many instances, even sometimes resulting
in matching loops (new instances triggering more instances in infinite loops).

This concludes our overview of automated reasoning and SMT. The next part of this
chapter concerns TLA+, which is a logic based on unsorted set theory. Set theory is a
theory of first-order logic, and TLA+ also includes symbols from specific theories like integer
arithmetic or functions. The high expressiveness of TLA+ makes it challenging to encode
for SMT solvers, which are better suited for quantifier-free problems. Previous attempts to
encode TLA+ for SMT relied on preprocessing techniques to eliminate primitive constructs,
in particular set-theoretic ones. An important achievement of this thesis is the application
of a direct encoding, complemented by axioms with custom E-matching patterns, to handle
many proof obligations that were only solved with the help of preprocessing before.

2.2 TLA+

TLA+ is a specification language for modeling computer systems, in particular concurrent
and distributed systems [48, 52]. It is based on a variant of Linear Temporal Logic called
the Temporal Logic of Actions (TLA), and unsorted set theory. As a formal method, TLA+

is similar to the Z notation or Event-B, which are also based on the language of set theory.
The core idea underlying TLA+ is that first-order logic with temporal modalities is a suitable
framework for modeling systems, combining specifications, and refining abstract specifications
to lower levels; untyped set theory gives the language more expressiveness [47,49].

The name “TLA+” only refers to the language. Several tools exist to help users with the
verification of their TLA+ specifications. The main tools are the model checker TLC, which
interprets specifications to directly check that they satisfy desired properties [85], and the
interactive proof assistant TLAPS, which uses external solvers to mechanically verify proofs
written in TLA+’s syntax [19]. Some other tools of interest are the symbolic model checker
Apalache [46], PlusCal for translating algorithms into TLA+ specifications, and the TLA+

Toolbox, an Eclipse-based IDE that integrates TLC, TLAPS, and PlusCal.
In this section, we present TLA+ and its semantics (Section 2.2.1), demonstrate the basic

usage of TLC to verify safety and liveness properties (Section 2.2.2), and introduce the proof
syntax and TLAPS (Section 2.2.3). Our work focusses on TLAPS, but it is still worth knowing
about TLC, which is useful for verifying finite specifications quickly. Users wanting to check
proofs with TLAPS are incited to invoke TLC first, to verify that their specifications are
correct at least in the finite case. We will finish this section with a look at the current
SMT encoding of TLAPS, which is highly optimized and able to cope with very large proof
obligations [53,81].

For a formal presentation of TLA+’s syntax and semantics, we refer the reader to [51].
Our own formalism (Chapter 3) will not include the temporal aspects of TLA+’s logic, for
reasons that we will make clearer in the present chapter.

2.2.1 Specifying Systems

The language of TLA+ is based on first-order predicate logic; it includes the usual connectives:

true, false, ¬A, A⇒ B, A ∧B, A ∨B, ∀x : P (x), ∃x : P (x)

40 CHAPTER 2. BACKGROUND

module SimpleClock

extends Naturals
variable hour

Init
∆
= hour ∈ 1 . . 12

Increment
∆
= ∧ hour < 12

∧ hour ′ = hour + 1

Reset
∆
= ∧ hour = 12

∧ hour ′ = 1

Next
∆
= ∨ Increment

∨ Reset

Spec
∆
= Init ∧2[Next]hour

1

Figure 2.2: Specification of a Simple Clock (Specifying Systems)

Two extensions of predicate logic are combined to obtain TLA+. The first extension is set
theory, which includes several primitive operators:

∈, {e1, . . . , en} , union S, subset S, {x ∈ S : P (x)} , {F (x) : x ∈ S} , . . .

The operators displayed above are for (in that order) set membership, enumeration set, union
of the elements of a set, power set, set comprehension and set replacement. The second
extension is TLA. It extends the syntax of FOL with the prime operator ′, modalities, and
quantification over behaviors (flexible variables):

x′, □A, ♢A, ∀∀x : P (x), ∃∃x : P (x)

We introduce the semantics of TLA+ through a practical example: the SimpleClock spec-
ification, which is inspired by a similar example from TLA+’s reference manual [48].

Specification of a Clock

We specify a clock that tells what hour it is. Initially, the hour is some undetermined number
between 1 and 12. A clock changes its state by either incrementing the hour value, or resetting
it to 1. Which action is taken depends on the current hour (a reset happens iff the current
hour is 12). The TLA+ specification for this system consists of a single TLA+ module, which
is shown in Figure 2.2.

Let us describe the different parts of this module. The header simply contains the name
of the module. It is immediately followed by the names of the modules to import—here,
only Naturals is imported, because some arithmetical operators are needed. Then we find
declarations, in this case only one for the variable hour . The Temporal Logic of Action
admits two kinds of variables: flexible variables take different values across time, while rigid
variable have a fixed value. The keyword variable introduces a flexible variable; there are
no rigid variables in this specification.

The rest of the specification is just a list of defined expressions, starting with

Init ≜ hour ∈ 1 .. 12

2.2. TLA+ 41

The primitive expression 1 .. 12 refers to the set {i ∈ Int : 1 ≤ i ∧ i ≤ 12}. Since hour is a
flexible variable, the truth of Init depends on the current state of execution, and we call Init
a state predicate. A state is simply an assignment of values to the flexible variables of the
specification. We represent the state in which hour is assigned the value 5 by

hour = 5

The state predicate Init is satisfied by this state. If hour is instead assigned the value 0,
or 13, or

√
2, then Init is not satisfied. TLA+ is not a typed language, so the semantics does

not assume distinct domains for interpreting variables. Outside of any context, the value of
hour could be a natural, a real, a set, a Boolean, or something else entirely.

The definition of Increment makes use of TLA+’s notation for multi-line conjunctions; the
expressions prefixed by ∧ on the same level of indentation are part of the same conjunction.
The definition is equivalent to

Increment ≜ hour < 12 ∧ hour ′ = hour + 1

Multi-line disjunctions as in the definition of Next are also allowed. The presence of a primed
variable makes Increment a transition predicate, also called an action. Actions express the
relationship between the current state and the next state. For all state expressions e, the
expression e′ denotes the value of e in the next state of the trace; so hour ′ refers to the next
value of hour . To evaluate Increment, two states are needed. For instance, if hour = 9 in the
current state and hour = 10 in the next state, we represent this situation by

hour = 9 hour = 10

Increment is of course satisfied by that pair of consecutive states. In the same spirit, the
action Reset is satisfied by this transition only:

hour = 12 hour = 1

The action Next is simply the disjunction of Increment and Reset, therefore it is satisfied by
either of the two situations above.

Lastly, we define the temporal formula Spec specifying the whole system:

Spec ≜ Init ∧□ [Next]hour

As a temporal formula, Spec is interpreted relative to behaviors, which are infinite sequences
of states. The predicate Init must be true in the first state. The meaning of the second
conjunct, □ [Next]hour , is that for all future transitions of the system, either Next is true, or
hour ′ = hour is true. The latter case is called a stuttering step.

Here is the beginning of a behavior satisfying Spec:

hour = 11 hour = 12 hour = 1 hour = 1 hour = 2 · · ·

Init holds in the first state. Increment is true for the first transition, then Reset for the next,
then there is a stuttering step and the last transition satisfies Increment.

42 CHAPTER 2. BACKGROUND

The possibility of stuttering steps is essential for combining and refining specifications.
Given two systems specified by temporal formulas Spec1 and Spec2, the combination of both
systems into a single one is specified by the formula

Spec1 ∧ Spec2

A transition of the whole system is the combination of a transition of Spec1 and a transition
of Spec2. Since transitions include possible stuttering steps, the formula above accounts for
transitions in which only one of Spec1 or Spec2 progresses—the other one stutters for this
transition. In short, stuttering steps model transitions during which the environment of the
system may progress. This is essential as components in actual systems may not always
progress in a synchronized way. A similar principle applies to refinement, where several
transitions of the low-level specification may be necessary to model a single transition of the
more abstract specification.

Specification of a Sorting Algorithm

The SimpleClock specification showcases the most basic features of TLA+, but there are not
many meaningful properties to verify about it. To get a fuller picture of the language, we
introduce the AbstractSorting module (Figure 2.3), which specifies a sorting algorithm that
swaps out-of-order values in an array of integers. We call it abstract because it does not
specify an explicit strategy for selecting values to swap.

We import operators from the modules Naturals and Functions. Besides the variable a
denoting the array to be sorted, it is parameterized by two constants N and init. Constants
are rigid variables; their values are fixed for all states. N is the size of the array and init is
the initial array.

The specification makes extensive use of TLA+ functions to represent its data. The
primitive construct [x ∈ S 7→ e] that binds x in the expression e represents a function of
domain S. The domain of a function f is a set denoted domain f . The value of f at x is
denoted f [x]. The class of all functions is defined by the predicate

f = [x ∈ domain f 7→ f [x]]

The principle of functional extensionality applies: two functions f and g are equal iff their
domains are equal and f [x] = g[x] for all x in their common domain. The set of functions
from set S to set T is denoted [S → T].

The functions of TLA+ are regular objects like sets or integers. In fact, since TLA+

assumes an unsorted universe of set theory, we may say that all functions are sets. However a
TLA+ function f is not equal to its graph {⟨x, f [x]⟩ : x ∈ domain f} like it would in Event-
B. Furthermore, functions should not be confused with operators. A function application is
written f [x] while an operator application is written F (x), although some operators admit an
infix notation, for instance x∪ y. All functions have a domain which is a set, while operators
may be specified on classes that are not sets. For instance, the operator ∪ is specified for all
pairs of sets, but there is no function that corresponds to it, because there can be no set of
all sets in ZFC.

AbstractSorting involves the particular set

ArrayType(n) ≜ [1 .. n→ Int]

2.2. TLA+ 43

module AbstractSorting

extends Integers, Functions

We specify an abstract sorting algorithm on arrays of integers. The algorithm non-

deterministically selects two unordered values to swap at each step of the execution.

constant N , Size of the array

init The initial array

variable a The array

Preliminary Definitions and Assumptions

ArrayType(n)
∆
= [1 . . n → Int]

Swap(f , x , y)
∆
= [f except ! [x] = f [y], ! [y] = f [x]]

assume NTyping
∆
= N ∈ Int ∧N > 0

assume InitTyping
∆
= init ∈ ArrayType(N)

Main Specification

Init
∆
= a = init

Next
∆
= ∃ i , j ∈ domain a : ∧ i < j

∧ a[i] > a[j]
∧ a ′ = Swap(a, i , j)

Spec
∆
= Init ∧2[Next]a ∧WFa(Next)

Some relevant properties to verify / prove

TypingInv
∆
= a ∈ ArrayType(N)

g ◦ f ∆
= [x ∈ domain f 7→ g [f [x]]]

PermutationInv
∆
= ∃ p ∈ Bijection(1 . . N , 1 . . N) : a = init ◦ p

Sorted(f)
∆
= ∀ x , y ∈ domain f : x < y ⇒ f [x] ≤ f [y]

theorem Spec ⇒ 2TypingInv

theorem Spec ⇒ 2PermutationInv

theorem Spec ⇒ 2(Sorted(a) ⇒ ¬enabled Next)

theorem Spec ; Sorted(a)

1

Figure 2.3: Abstract Specification of a Sorting Algorithm

44 CHAPTER 2. BACKGROUND

to represent arrays as functions of the interval 1 .. n to integers. The keyword assume intro-
duces two (named) assumptions for specifying type constraints on the constant parameters N
and init. For swapping two values of a generic function, we introduce the operator Swap with
the definition

Swap(f, x, y) ≜ [f except ![x] = f [y] , ![y] = f [x]]

That definition involves a primitive operator of TLA+ for defining a function differing from
another on one or several inputs. If f is a function and z ∈ domain f , then we have

Swap(f, x, y)[z] =

f [y] if z = x

f [x] if z = y

f [z] otherwise

In short, the values at x and y are swapped.
The rest of the specification follows the pattern of defining the state predicate Init, the

transition predicate Next, and the temporal formula Spec. Here, Spec contains the additional
conjunct WFa(Next). The meaning and relevance of this formula will be explained in the next
section. The Init predicate specifies that the initial array is init. The Next predicate specifies
a transition in which two inputs i and j are selected such that a is unordered at i and j,
and a′ is obtained by swapping those values. Notice the use of an existential quantifier to
specify the non-deterministic selection of i and j.

The middle bar is purely cosmetic; we use it to delimit the actual specification from the
relevant properties we want to verify. The keyword theorem introduces those properties
(these statements have no semantics, they are just here for presentation purposes). Let us
explain each of them briefly.

Three properties share the general form Spec ⇒ □P , which is a way of stating that P is an
invariant of the specification. Invariants are also called safety properties. The first invariant
is a typing invariant stating that a is an array of size N . TLA+ is an untyped language,
which means that operators may be combined in unconventional ways; but the semantics
of unconventional expressions is not always specified. It is recommended to always express
a typing invariant for a specification’s variables and verify it. The next safety property,
PermutationInv, states that a is a permutation of the initial array. The definition involves
the operator Bijection, which is defined in the module Functions, and the operator ◦ for
composing functions, which we define ourselves.

The third invariant involves the operator enabled. For all actions A, the expression
enabled A is a state predicate that says a transition specified by A is possible from the
current state. Thus the property asserts that if a is sorted, the system cannot progress.

The fourth property is of the form Spec ⇝ P . This is a notation for □(Spec ⇒ ♢P), and ♢
is the modal operator for asserting that a property is true in some future state of the behavior.
Therefore, the property is understood as the assertion that a is eventually sorted (together
with the previous property, it follows that the specified sorting algorithm is terminating).
Properties asserting that something must eventually happen are called liveness properties.

2.2.2 Model Checking with TLC

Model checking is the verification of specifications through the construction and evaluation
of their models. TLC is called an explicit-state model checker, because it is based on explicit

2.2. TLA+ 45

Figure 2.4: TLC Parameters for the Abstract Sorting Specification

representations of the values of variables of a specification, rather than a symbolic representa-
tion. The model checker, which can be invoked from the TLA+ Toolbox, exhausts the space
of reachable states to verify that all possible behaviors satisfy the desired properties. TLC
is useful for detecting bugs in specifications, but it is limited to specifications involving finite
data and fixed parameter values.

Verifying Invariants

A simple configuration for TLC is shown in Figure 2.4. We indicate to TLC that Init specifies
the initial state and Next the transition. We specify the values N ← 5 and init ← ⟨5, 4, 3, 2, 1⟩
(this uses TLA+’s notation for tuples, which are the same as functions of a domain 1 .. n) for
the two parameters of the specification. If we want to specify bounds rather than explicit
values for the parameters (for instance, to check for all N ≤ 5), we must write AbstractSorting
differently—for the sake of simplicity, we will only invoke TLC with two explicit values here.

We indicate to TLC what it should check. The most important parameters are whether we
check for deadlocks and which invariants to verify. If deadlocks are checked, TLC will return
an error when a state with no possible transition occurs. If TLC reaches a state violating an
invariant, it returns an error. For now, we only verify that TypingInv and PermutationInv
are satisfied in all possible executions; since termination is a desired property in our case, we
disable deadlock checking. We wrote one additional invariant and also a temporal formula
to verify later. The result of calling TLC is shown in Figure 2.5. The call ended with no
errors, so the invariants are indeed satisfied in all reachable states. In total TLC explored 120
distinct states, which corresponds to the number of permutations of a set of five elements.

46 CHAPTER 2. BACKGROUND

Figure 2.5: Checking Invariants with TLC

Figure 2.6: Checking Violation of Invariants with TLC

Verifying Liveness Properties

Liveness properties can also be checked by TLC. There is a general method to verify that a
state satisfying P is reachable which consists in checking that ¬P is not an invariant of the
specification. For instance, if we run TLC with the instruction to check that enabled Next
is an invariant of AbstractSorting, it will return an error upon finding a terminating state, and
show the trace of execution. This is equivalent to selecting “deadlocks” in the configuration
window.

Suppose we want to check that a terminating state in which a is sorted is reachable. The
negation of this property is expressed by the formula

Sorted(a)⇒ enabled Next

which is violated exactly when a is sorted and no transition is possible. Running TLC, we
get an error, and the trace of execution is displayed in Figure 2.6. This trace is actually a
minimal sequence of steps to reach the terminating state in which a is sorted.

This method is not equivalent to the verification of Spec ⇝ P , because by reaching a state
violating ¬P we only find some path that leads to P . To verify the full liveness property,
we may ask TLC to check a temporal formula. For instance, to check that the array is
eventually sorted, we can simply input ♢Sorted(a) in the last box of TLC’s configuration
window. This will not work for the present configuration, because the configuration so far
uses only the Init and Next part of the specification and ignores the condition WFa(Next).
With this configuration, an infinite sequence of stuttering steps in which a is unchanged is

2.2. TLA+ 47

a legitimate behavior, so the property ♢Sorted(a) is in fact not true. The weak fairness
condition WFa(Next) prohibits this behavior. Its formal definition is

WFa(Next) ≜ (♢□ enabled ⟨Next⟩a)⇒ □♢ ⟨Next⟩a
⟨Next⟩a ≜ Next ∧ a′ ̸= a

The action ⟨Next⟩a is a Next step during which the value of a changes. Therefore WFa(Next)
states that if a non-stuttering step becomes always possible, then it will necessarily happen.
After selecting a different option to provide the full formula Spec containing the weak fairness
condition, and running TLC, we find that the property ♢Sorted(a) is verified as expected.

2.2.3 Interactive Proof with TLAPS

Using TLC, we are only able to verify the AbstractSorting specification with bounds on
N and init. For the general case, and for specifications that involve infinite sets, we must
write proofs and check them using TLAPS.

TLA+ Proofs

TLA+ includes a syntax for proofs based on Lamport’s hierarchical style [19]. The syntax
is detailed in a note introducing the second version of the language.1 We demonstrate it
with the module AbstractSortingSafety in Figure 2.7. This module contains proofs that the
properties TypingInv and PermutationInv are inductive invariants of the specification.

A theorem is introduced by the keyword theorem. Those statements may be followed
by proofs (the proofs are considered omitted otherwise). The syntax of TLA+ proofs is based
on a tree structure:

• A leaf is a line of relevant facts and definitions which are necessary to prove the state-
ment. The facts are introduced by the keyword by. The definitions are introduced
by def. If no facts or definitions are invoked, the proof is written obvious.

• A complex proof is a sequence of intermediary steps ending with a conclusion step whose
statement is qed. Each step is a node in the proof structure and must be justified by
its own nested proof.

Each step in a proof is introduced by a level indication and an optional label with the
notation ⟨level⟩ label. The level is a positive number corresponding to the level of nesting in
the proof structure. The label is optional and can be any string of ASCII characters, although
it is common practice to label steps with natural numbers. The presence of a label has an
operational meaning: without a label, the intermediary step is implicitly added as a fact for
the subsequent steps at the same level and in deeper levels; if a label is present, the step is
not implicitly used as a fact, and it must be explicitly invoked when necessary.

This basic syntax suffices to write a proof that TypingInv is an invariant of the specifica-
tion Spec. Let us detail the proof of the theorem named Typing. Although the full statement
is a temporal formula, it is possible to lay out the proof in such a way that most steps can
be solved without temporal reasoning. The first step is

Init ⇒ TypingInv
1http://lamport.azurewebsites.net/tla/tla2-guide.pdf

48 CHAPTER 2. BACKGROUND

module AbstractSortingSafety

extends AbstractSorting , TLAPS , Functions, FunctionTheorems

use NTyping , InitTyping

theorem Typing
∆
= Spec ⇒ 2TypingInv

⟨1⟩1. Init ⇒ TypingInv
by def TypingInv , Init

⟨1⟩2. Next ∧ TypingInv ⇒ TypingInv ′

by def TypingInv , Next , ArrayType, Swap
⟨1⟩3. unchanged a ∧ TypingInv ⇒ TypingInv ′

by def TypingInv
⟨1⟩.qed

by ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, PTL def Spec

theorem Safety
∆
= Spec ⇒ 2PermutationInv

⟨1⟩1. Init ⇒ PermutationInv
⟨2⟩.suffices assume a = init

prove ∃ p ∈ Bijection(1 . . N , 1 . . N) : a = init ◦ p
by def Init , PermutationInv , ◦

⟨2⟩.[k ∈ 1 . . N 7→ k] ∈ Bijection(1 . . N , 1 . . N)
by Fun IsBij

⟨2⟩.qed
by def ArrayType, ◦

⟨1⟩2. Next ∧ TypingInv ∧ PermutationInv ⇒ PermutationInv ′

⟨2⟩.suffices assume a ∈ [1 . . N → Int],
new i ∈ 1 . . N , new j ∈ 1 . . N , a ′ = Swap(a, i , j),
new p ∈ Bijection(1 . . N , 1 . . N), a = init ◦ p

prove ∃ q ∈ Bijection(1 . . N , 1 . . N) : a ′ = init ◦ q
by def Next , TypingInv , PermutationInv , ArrayType, ◦

⟨2⟩.define s
∆
= [k ∈ 1 . . N 7→ case k = i → j

2 k = j → i
2 other → k]

⟨2⟩.(p ◦ s) ∈ Bijection(1 . . N , 1 . . N)
by Fun IsBij , s ∈ Bijection(1 . . N , 1 . . N), Fun BijTransitive def ◦

⟨2⟩.qed
by def ArrayType, Swap, ◦

⟨1⟩3. unchanged a ∧ PermutationInv ⇒ PermutationInv ′

by def PermutationInv
⟨1⟩.qed

by ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, Typing , PTL def Spec

1

Figure 2.7: Proofs of Two Safety Properties for the Sorting Algorithm

2.2. TLA+ 49

It is solved simply by expanding the definition of Init and TypingInv. Actually, the proof also
requires the assumption init ∈ ArrayType(N), which is named InitTyping in the specification.
With the use command at the beginning of the module, we make sure that the typing
assumptions for init and N are always inserted in the proof context.

The second step is the inductive step

Next ∧ TypingInv ⇒ TypingInv′

After expanding the definition of TypingInv′, the prime operator is distributed, resulting in
the expression a′ ∈ ArrayType(N). As a transition predicate, this formula is interpreted for
pairs of states; TLAPS reduces this formula to a regular first-order formula by replacing the
primed variable a′ by a fresh variable. The proof is essentially the verification of

Swap(a, i, j) ∈ ArrayType(N)

under the hypothesis a ∈ ArrayType(N) and for i, j ∈ domain a. This is an elementary
verification which only requires expanding the definitions of Swap and ArrayType.

The last intermediary step is for verifying that TypingInv is invariant for stuttering steps:

unchanged a ∧ TypingInv ⇒ TypingInv′

After this, the three steps ⟨1⟩ 1, ⟨1⟩ 2 and ⟨1⟩ 3 are combined to prove the result. The keyword
PTL is not a fact, but a pragma to indicate the backend to invoke. “PTL” stands for Propo-
sitional Temporal Logic and refers to the LS4 solver [76]. It is typically invoked for a single
step involving elementary temporal logic, like in this proof. The other possible backend calls
are Isa (for the Isabelle backend), Z3, CVC4, veriT, SMT (for the default SMT solver which
may be configured) and Zenon. There are also some variants to specify a different timeout
(ZenonT(30)) or a particular Isabelle method (IsaM("auto"), IsaM("force"), IsaM("blast")).

The proof of Safety, which states that PermutationInv is an invariant of the specification,
is more involved and features some advanced elements of the proof language. The general
structure of the proof is the same: we prove that the invariant is implied by Init, then that it
is inductive for Next, for stuttering steps, and we conclude using PTL for the last step. The
invariant is proved by constructing a permutation p of 1 .. N such that a = init ◦ p. In the
initial state, p is the identity; for the inductive step, p is updated by composing it with s,
which is defined as the permutation that swaps i and j.

The statement of the inductive step features the typing invariant as an hypothesis:

Next ∧ TypingInv ∧ PermutationInv ⇒ PermutationInv′

This is justified by the previously proved result Typing, which is invoked as a lemma for the
last step. In general, if Spec ⇒ □P1 is proved, then it suffices to prove Spec ∧□P1 ⇒ □P2 to
deduce Spec ⇒ □P2.

The first advanced feature of the proof syntax worth noting is the use of the suffices
keyword. An intermediary step starting with suffices modifies the current goal of the proof.
Formally, assuming the current goal is a formula A, then a step consisting of the statement
suffices B corresponds to the obligation B ⇒ A, and replaces the current goal by B for the
subsequent steps. Here, we combine suffices with the use of sequents to manage the context
of the proof. The general form of a TLA+ sequent is

assume H1, H2, . . .

prove A

50 CHAPTER 2. BACKGROUND

TLA+

spec. Preprocess Encode
Backend
solver(s)

MySpec.tla
TLAPS Isabelle/TLA+,

Zenon, SMT, PTL

POs POs

Answer (trusted)

Figure 2.8: Architecture of TLAPS

where A is a formula representing the goal, and each Hi is either a declaration (indicated by
the keyword new) or a formula representing an hypothesis. A bounded declaration new x ∈ S
is just the declaration new x followed by the hypothesis x ∈ S. Combining suffices with
sequents is the most practical way to reformulate a goal while introducing new symbols and
hypotheses.

The keyword define is used to declare and define a symbol locally. Such steps do not
require proofs. Here we use the command to define s as the permutation swapping i and j.
By default, local definitions are always expanded by TLAPS, so there is no need to include
them after a def keyword. In complex proofs, it may become necessary to hide definitions;
this can be done with the command hide def in an intermediary step.

The proof of the intermediary step

(p ◦ s) ∈ Bijection(1 .. N, 1 .. N)

involves several facts which are not previous steps of the current proof. The names Fun_IsBij
and Fun_BijTransitive refer to lemmas from the FunctionTheorems module. The expression
s ∈ Bijection(1 .. N, 1 .. N) is an inline, unproved fact for which TLAPS generates an addi-
tional proof obligation. The context of that proof obligation is obtained by inserting the
previously indicated facts to the current context; here, the lemma Fun_IsBij, which states
the sufficient conditions for something to be a bijection, is used to prove that s is a permuta-
tion of 1 .. N . For the main obligation (p ◦ s) ∈ Bijection(1 .. N, 1 .. N), the two lemmas and
the fact about s are used. The lemma Fun_BijTransitive states that the composition of two
bijections is a bijection.

TLAPS

The architecture of TLAPS is presented in Figure 2.8. The proof assistant parses a TLA+

specification and generates a number of proof obligations (PO) from its proofs. Each obligation
is encoded for one or several of the available backend solvers: Isabelle (using a custom TLA+

object logic), Zenon, SMT and PTL. The SMT solvers available are Z3, CVC4 and veriT.
By default, TLAPS invokes in a portfolio mode Isabelle, Zenon, and Z3. Users may select
a particular backend by using a special keyword in place of an invoked fact. If one of the
invoked backends answers positively (if the encoded obligation has been solved), then TLAPS
considers the PO to be solved. In other words, the backends are treated as trusted oracles
by TLAPS, although there is some support for proof verification in the case of Zenon, whose
output may be translated and checked by Isabelle.

2.2. TLA+ 51

The preprocessing step that precedes the encoding is common to all backends. Prepro-
cessing includes:

• Insertion of all relevant declarations and facts into the PO’s context. Explicitly invoked
lemmas, proof steps and inline facts following a by are appended to the current context
of the proof for all obligations. Some control is given to the user over which facts are
known in the form of the use and hide command, which can be used at the top level
of a specification or inside a proof.

• Expansion of all relevant definitions. By default, top definitions are opaque, but local
definitions with define are expanded. Typically, the def keyword indicates the addi-
tional definitions to use for an obligation. The commands use def and hide def can
be used to override the default behavior of TLAPS for definitions.

• Removal of syntactic sugar. For instance, any expression

[f except ![d1] = e1, . . . , ![dn] = en]

is rewritten as
[. . . [f except ![d1] = e1] . . . except ![dn] = en]

so that except may be treated as a ternary operator. Another example is multi-
argument applications; an application

f [x1, . . . , xn]

is rewritten as
f [⟨x1, . . . , xn⟩]

• (For backends other than PTL) Elimination of the prime operator. In the simplest case,
all primes are found on flexible variables; in this case it suffices to introduce a fresh
variable for any x′. In general a prime may be found on any expression. TLAPS will
distribute the prime operator when possible, for instance (x+y)′ is rewritten x′ +y′. For
an expression F (x)′ where F is not expanded, TLAPS will replace the whole expression
by a fresh identifier.

After preprocessing, the general form of a TLA+ proof obligation (in the case of a backend
other than PTL) is that of a sequent without temporal connectives or primes. One important
omission from our examples is the presence of user-defined second-order operators. Here is
an example:

F (Op(_), x) ≜ Op(x)

When the definition of F is not expanded, any expression F (Op, e) is only naturally encoded
in second-order logic. Currently, these obligations are only supported by the Isabelle backend,
since the logics of Zenon and SMT are first-order. However, a large class of specifications do
not require second-order user definitions, so the current support of TLAPS for second-order
constructs may suffice for those.

52 CHAPTER 2. BACKGROUND

The SMT Encoding

The SMT backend of TLAPS uses an optimized encoding of TLA+ that combines soft type
inference and rewriting [53,81]. The usefulness of SMT solvers is recognized in the context of
interactive theorem proving supported by automation [9, 29,32].

The standard input language for SMT solvers is SMT-LIB [6]. As a logic, SMT-LIB is
best described as multi-sorted first-order logic (MS-FOL), but the interest of SMT lies in its
support for first-order theories. While generic first-order logic is undecidable, some theories
have decision procedures, like linear arithmetic or bitvectors. Encoding TLA+ in such a way
that those procedures can be leveraged is of great interest to the developers of TLAPS, but
the fact that TLA+ is untyped makes it more challenging. Nevertheless, the current SMT
encoding outputs problems expressed in the SMT logic UFNIA (Uninterpreted Functions and
Non-linear Integer Arithmetic).

To understand the SMT encoding, it is useful to consider first a direct encoding of TLA+.
The direct encoding is summed up in the following key ideas:

• A direct, faithful translation of TLA+ into MS-FOL is implemented by just declaring
every TLA+ primitive operator as an uninterpreted symbol in the SMT problem. An
uninterpreted sort ι is declared to receive every term. Some transformations are neces-
sary to recover the Boolean sort (this process is called Boolification and achieved in a
single pass over the expressions).

• The TLA+ primitives, encoded as uninterpreted symbols, are specified by SMT axioms.
All quantifiers range over the uninterpreted sort ι.

• For arithmetic, we use a different set of axioms to specify a correspondence between
TLA+’s integer arithmetic and SMT’s builtin arithmetic.

The support for arithmetic involves a cast operator castint : int → ι and a few axioms. One
axiom specifies castint as a bijection between the sort int and the class of sets that are members
of Int:

∀xι : x ∈ Int ⇔ ∃nint : x = castint(n)

There are axioms to specify a homomorphic relationship between TLA+’s arithmetical oper-
ators and their SMT counterparts. For instance:

∀mint, nint : castint(m) +ι castint(n) = castint(m+int n)

Despite the integration of SMT’s builtin arithmetic, this direct encoding was considered
insufficient, essentially because it results in an SMT problem with many uninterpreted symbols
and many axioms with quantifiers over the uninterpreted sort ι. There were attempts to
make the axiomatization efficient with SMT triggers, but they did not lead to satisfactory
results. Another problem is the encoding of second-order constructs such as explicit functions
[x ∈ S 7→ e], which is far from trivial. For these reasons, an extension of the direct encoding
was implemented. This optimized encoding is based on a preprocessing phase and an optional
type synthesis mechanism.

The preprocessing phase is centered around a rewriting system. A set of rules are provided
for eliminating occurrences of TLA+ primitives. For example, an instance of ∪ is eliminated
by the rule

x ∈ (a ∪ b) −→ x ∈ a ∨ x ∈ b

2.2. TLA+ 53

The more TLA+ primitives we eliminate through rewriting, the better. However, in many
situations it is not possible to apply a rewriting rule directly, like in the formula

c = (a ∪ b)⇒ x ∈ c

Small changes in the structure of expressions can impact the effectiveness of rewriting, which
is why rewriting must be complemented by auxiliary techniques. One of these techniques is
the elimination of definitions, which eliminates hypotheses of the form x = e by substitut-
ing e for x in expressions. Another technique is abstraction, which substitutes parameterized
symbols for complex expressions. For instance, the formula

(a ∪ b) ∈ d

may be rewritten as
k(a, b) ∈ d

where k is a fresh symbol defined by ∀xι, yι : k(x, y) = (x∪ y). That definition would then be
rewritten by an application of set extensionality, which is implemented as the rewriting rule

x = y −→ ∀z : z ∈ x⇔ z ∈ y

The second technique is type synthesis, which identifies subexpressions residing in domains
of interest (integers, functions, sets, etc.) and assigns them different sorts. Consider the valid
TLA+ formula

∀x : x ∈ Int ⇒ x+ 0 = x

According to TLA+’s semantics, the variable x ranges over the whole universe of set theory.
However, it is clear that only the integer values are relevant (the inner formula is trivially
true if x /∈ Int), so type synthesis will annotate ∀x with the sort int. Since 0 is an integer and
the addition of two integers is an integer, it follows that x+ 0 and x are both integers. The
rewriting system will also eliminate the hypothesis x ∈ Int since it is redundant with the sort
of x, resulting in the formula

∀xint : x+ 0 = x

That formula is well-typed in the context of a multi-sorted logic that interprets 0 and + in
the domain of integers. However, arbitrary annotations may result in an unsound encoding.
Consider the TLA+ formula

∀x : x+ 0 = x

This is a legitimate TLA+ formula, but it is not valid, because for instance false+0 = false
is unprovable. This time, if we annotate ∀x with int, we obtain a formula that is again well-
typed, but also valid. Therefore, the typing of x with int is unsound in this case. In general,
type synthesis will look for expressions called typing hypotheses to justify the introduction of
restrictive sorts. The expression x ∈ Int is an example of a typing hypothesis.

The previous example suggests that type synthesis may need to integrate some reasoning
about TLA+’s semantics in order to be practical. The case of TLA+ functions proves this
is actually necessary: the natural way to type an expression f [x] involves the verification of
x ∈ domain f . Since functions can have any set as domain, any reasonable type system for
TLA+ must be undecidable.

The SMT backend implements two type systems for TLA+, T1 and T2. The encoding that
does not use type synthesis is referred to as T0. Both systems are based on the derivation

54 CHAPTER 2. BACKGROUND

of typing judgments Γ ⊢ e : τ where e is an expression, τ a type, and Γ a typing context
(assignment of types to variables). The essential differences between T1 and T2 are seen
in their treatment of functional types and applications. The system T1 features elementary
sorts and type constructors including the arrow τ1 → τ2 for functions. The typing rule for
applications is expressed

Γ ⊢ f : τ1 → τ2 Γ ⊢ x : τ1
Γ ⊢ f [x] : τ2

The types of T1 do not characterize terms finely enough to capture information such as the
domains of functions. For instance, the function f defined as [i ∈ {0, 1, 2} 7→ i] is assigned
the type int → int. As a result, a naive application of the typing system might result in the
typing of f [3] as an int. But it is not the case that f [3] ∈ Int. Therefore, to make T1 usable,
one has to implement a procedure to verify type checking conditions like x ∈ domain f .

The system T2 takes a different approach by introducing dependent and refinement types.
These types are expressive enough to characterize the elements of a function’s domain. In T2,
we have the typing

⊢ [i ∈ {0, 1, 2} 7→ i] : (i : {x : int | x = 0 ∨ x = 1 ∨ x = 2})→ {y : int | y = i}

The expression f [3] will not be well-typed in T2 because the argument 3 cannot be typed with
{x : int | x = 0 ∨ x = 1 ∨ x = 2}. The verification of this condition is expressed as part of the
typing and verified during the type synthesis mechanism rather than aside from it like in T1.

Despite its efficiency, the SMT encoding has some issues. The first kind of issue concerns
the safety, or soundness of the encoding. For instance, testing the encoding with the option
--debug types2 to enable T2 (by default, T1 is enabled), we found that the backend would
let us solve the wrong result [i ∈ {0, 1, 2} 7→ i][3] ∈ Int. This seems to indicate that the
type-checking conditions are not actually verified by the implementation. There are no clear
indications in the code’s documentation for us to know how to fix this problem.

The soundness of the encoding is also compromised by the substantial complexity of
the preprocessing phase. Central to preprocessing is the rewriting system, which is directly
implemented in TLAPS. One can easily make a mistake when implementing a rewriting rule,
resulting in an unsound encoding. These can be difficult to detect, because one usually writes
a proof expecting it to be solved by TLAPS. Nevertheless, we found some examples of unsound
rules.2 Consider the following rules for simplifying applications:

f [x] −→ if x ∈ domain f then α(f, x)
else ω(f, x)

[f except ![y] = z][x] −→ if x ∈ domain f then if x = y then z

else α(f, x)
else ω([f except ![y] = z] , x)

The symbols α and ω are two uninterpreted symbols for representing functional application
in the final SMT problem. α assumes the application is specified, ω is for the unspecified

2The example we are about to show was found after implementing our own SMT encoding. Comparing
the two versions showed a number of proof obligations that were only solved with the original encoding. As it
turned out, these obligations were not valid in the first place.

2.2. TLA+ 55

case. The two rules are sound, but the second rule was actually implemented with the term
ω(f, x) for the else case. A consequence is that the wrong formula

∀f, x, y, z : x ̸= y ⇒ f [x] = [f except ![y] = z][x]

was provable with the SMT backend. The formula is not valid because the assumption
x ∈ domain f is missing.

We should point out that the hypothetical direct encoding, which is based on axioms,
would suffer from the same problem, because it is easy to make a mistake when coding an
axiom in TLAPS’s implementation. However, if an axiom is badly implemented, it must be
visible in the SMT-LIB problem passed to the solver; one may even narrow the search for the
pathological axiom by asking the solver for an unsatisfiable core, if this option is provided.
In the case of rewriting, this is not possible, because the point of rewriting is precisely to
transform proof obligations to make them simpler.

One aim of the present work is to make the SMT encoding safer. Regarding the state of the
original SMT encoding that we just described, we observed that most of the issues stemmed
from the complexity of the implementation, in particular the type synthesis algorithm and the
preprocessing phase. The direct encoding was considered, but not implemented fully. Our idea
then was to revisit the SMT encoding with a more modular design, in which preprocessing
(rewriting) could be considered an optimization rather than a necessity. In principle, the
direct encoding would not achieve the same performances as the original encoding, but it
could be used as a safer version of the SMT encoding.

The next chapter details this direct encoding and presents the arguments for its soundness.
In the end, reimplementing type synthesis and preprocessing proved to be unnecessary, as we
found a simpler, safer way to optimize the encoding using SMT triggers. The chapter after
the next presents that optimization.

56 CHAPTER 2. BACKGROUND

Chapter 3

Formal Semantics of TLA+’s
Constant Fragment

3.1 Overview
This chapter develops the formal semantics of TLA+’s constant fragment. This fragment
excludes all features from temporal logic. The vast majority of TLA+ proof obligations
are expressed as constant, state or transition formulas; the state and transition formulas are
systematically reduced to constant formulas by TLAPS. For the remaining temporal formulas,
users are expected to invoke the PTL backend. For the rest of this manuscript, “TLA+” will
implicitly refer to the constant fragment.

All aspects of the logic are covered in the reference book [48] and the note on TLA+

version 2.1 However our treatment will be more formal. We define TLA+ as a variant of
first-order logic (FOL) with the axioms of ZFC set theory. FOL and set theory are both
standard frameworks, so it may be helpful to highlight the features that set TLA+ apart. We
have identified three:

1. There are second-order operators; those can be passed first-order operators or lambda-
expressions as arguments;

2. The unsorted logic permits unusual combinations of the operators; an expression like
1/0 is not undefined but underspecified;

3. There is no sort for formulas either; an expression like 42⇒ 42 is legitimate.

Underspecification is a central feature of TLA+ [39, 49]. To keep the example of 1/0, in
the context of underspecification we can write this expression in our specifications, but we
may not be able to say anything meaningful about it. We know division on reals is specified
by some laws, for instance

∀x, y ∈ Real : y ̸= 0⇒ y ∗ (x/y) = x

This law will tell us that 0 ̸= 0 ⇒ 0 ∗ (1/0) = 1. This is not a very helpful fact, but our
only concern for now is to define a precise semantics for untyped operators. As the example
of division demonstrates, a natural solution is to avoid interpreting operators and only resort

1http://lamport.azurewebsites.net/tla/tla2-guide.pdf

57

http://lamport.azurewebsites.net/tla/tla2-guide.pdf

58 CHAPTER 3. FORMAL SEMANTICS OF TLA+’S CONSTANT FRAGMENT

to axioms. All interpretations that satisfy the axioms are legitimate. In some interpretations
1/0 will be a real number, in others it will not.

We formalize TLA+ as a logic L + T , where L is a variant of FOL and T a theory with
all the primitive operators and axioms we need. The logic L extends FOL with second-order
operators and a different semantics for Boolean connectives (Section 3.2). The distinction
between term and formula is absent in L, so we use the neutral word “expression” instead.
The theory T contains the axioms of ZF, the axiom of foundation, and Hilbert’s indefinite
choice (also called epsilon-calculus) which trivially implies the axiom of choice (Section 3.3).
The theory also includes axioms for functions, arithmetic, and other structures such as tuples
and records.

The theorems of TLA+ and the proof obligations treated by TLAPS are expressed in the
form of sequents (Section 3.4). Sequents technically make the logic second-order, since they
offer a way to quantify over first-order operators. However this is a rather obscure feature
of the language and it is rarely used in actual proofs. We will discuss sequents in upcoming
chapters to address some fine points about the implementation, but for the most part we will
only consider the encoding of expressions and take L+ T as source logic.

3.2 The Logic L

We introduce some general conventions about notation. If C is a collection, we write x ∈ C
to mean that x is an element of C. When we introduce ∈ as a primitive operator of set
theory the symbol will have two different meanings, but it should always be clear in context
which meaning is the appropriate one. If C1 and C2 are two collections, we note C1 × C2
the collection whose elements are pairs of elements x ∈ C1 and y ∈ C2, and C1 → C2 the
collection of functions f mapping elements x ∈ C1 to elements f(x) ∈ C2. If f is any function,
the collection Dom(f) denotes its domain. If x ∈ Dom(f) and v is some element, we note fx

v

the function that maps x to v and every y ∈ Dom(f) other than x to f(y). We generalize
this notation to multiple reassignments by defining fx,y

v,w as (fx
v)y

w.
We fix some infinite collection V. The elements of V are called variables symbols, or simply

variables.

Definition 3.2.1 (Expressions). A shape is a finite list of natural numbers κ = (n1, . . . , nl). If
ni = 0 for all i then κ is a first-order shape. If l = 0 then κ is the constant shape. A signature
is a function Σ from operator symbols to shapes. We note operators with the letter K.

The syntax of raw Σ-expressions and Σ-arguments is defined by the following grammar:

e ::= x | K(f, . . . , f) | e = e | false | e⇒ e | ∀x : e (Expressions)
f ::= e | K | λx, . . . , x : e (Arguments)

where x ∈ V and K ∈ Dom(Σ). An argument f is constant if it is an expression, otherwise it
is first-order. An operator K occurring as a first-order argument must have a first-order, non
constant shape. The list of variables after a λ must be non-empty and without duplicates.
An application with zero arguments K() is simply noted K.

We assign an arity to every raw Σ-argument f . The arity of an expression e is 0. The
arity of a first-order operator K is the length of Σ(K). The arity of λx1, . . . , xn : e is n. An
application K(f1, . . . , fp) is well-formed if Σ(K) = (n1, . . . , np) and, for all 1 ≤ i ≤ p, the raw
argument fi has arity ni.

3.2. THE LOGIC L 59

We define Σ-expressions (resp. Σ-arguments) as raw Σ-expressions (resp. raw Σ-arguments)
in which all applications are well-formed. We may drop the prefix Σ- if it is clear in context
which signature is considered.

The logical connectives that are not part of the minimalistic grammar of Definition 3.2.1
are introduced as notations:

true ≜ false⇒ false
¬e ≜ e⇒ false

e1 ̸= e2 ≜ ¬(e1 = e2)
e1 ∨ e2 ≜ (¬e1)⇒ e2

e1 ∧ e2 ≜ ¬((¬e1) ∨ (¬e2))
e1 ⇔ e2 ≜ (e1 ⇒ e2) ∧ (e2 ⇒ e1)
∃x : e ≜ ¬(∀x : ¬e)

Example 3.2.2. Even though the language is unsorted, applications must be well-formed.
Let us note K : κ to mean that K is assigned the shape κ in the relevant signature. Consider
a signature Σ with a constant symbol c, a first-order operator F : (0) and a second-order
operator G : (1, 0). Then the following applications are well-formed:

F (x)
F (F (c))
G(F, c)

G(λx : F (x), c)
G(λy : G(F, y), z)

The expression G(F) is not well-formed, because G expects two arguments. F and λx : x
are not well-formed expressions, but they are well-formed first-order arguments. G is not a
first-order argument, it cannot be passed to another operator like F or λx : x can.

Despite the presence of second-order operators and lambda-expressions, most of the fea-
tures of higher-order logic are absent. For instance (λx : x)(c) is not an expression. Lambda-
expressions can appear only as first-order arguments. There are no partial applications either.

Definition 3.2.3. In an expression ∀x : e, the variable x is said to be bound in e. We also
say that e is the scope of the quantifier ∀x. Similarly, in λx1, . . . , xn : e, each xi is bound in
the scope e. A free variable in an expression or argument is a variable x that occurs outside
the scope of a ∀x or λx1, . . . , x, . . . , xn. The collection FV(e) (resp. FV(f)) is the collection
of the free variables of e (resp. f). An expression or argument is called closed if it does not
have any free variables.

We now define the semantics of L, which is very similar to the traditional semantics of
FOL despite the differences between those two logics. Expressions are assigned values in some
indefinite collection D, which must at least contain two values for “true” and “false”. The
meaning of operator symbols is given by an interpretation I. The meaning of free variables
is given by a valuation θ.

60 CHAPTER 3. FORMAL SEMANTICS OF TLA+’S CONSTANT FRAGMENT

Definition 3.2.4 (Evaluation). A domain is a collectionD that includes two distinct elements
⊤D and ⊥D called the Boolean values. We assign a domain Dn to every arity n and a
domain Dκ to every shape κ by the following equations:

D0 ≜ D

Dn ≜ D × · · · ×D → D (n occurrences of D on the left of →)
D() ≜ D

D(n1,...,np) ≜ Dn1 × · · · ×Dnp → D

Let Σ be some signature. A Σ-interpretation I consists of a domain D and a family
(KI)K∈Dom(Σ) such that KI ∈ DΣ(K) for all K. A valuation on D is a function θ : V → D.
For all I and θ, we define recursively the evaluation J·KI

θ of expressions and n-ary arguments
as follows:

JxKI
θ ≜ θ(x)

JK(f1, . . . , fn)KI
θ ≜ K

I(Jf1KI
θ , . . . , JfnKI

θ)

Je1 = e2KI
θ ≜

{
⊤D if Je1KI

θ = Je2KI
θ

⊥D otherwise

JfalseKI
θ ≜ ⊥

D

Je1 ⇒ e2KI
θ ≜

{
⊤D if Je1KI

θ ̸= ⊤D or Je2KI
θ = ⊤D

⊥D otherwise

J∀x : eKI
θ ≜

{
⊤D if JeKI

θx
v

= ⊤D for all v in D

⊥D otherwise

For all v1, . . . , vn ∈ D:

JKKI
θ (v1, . . . , vn) ≜ KI(v1, . . . , vn)

Jλx1, . . . , xn : eKI
θ (v1, . . . , vn) ≜ JeKI

θ
x1,...,xn
v1,...,vn

The evaluation of e1 ⇒ e2 does not assume that e1 or e2 is evaluated as a Boolean.
Similarly for ∀x : e. Note that the evaluation of an expression whose top connective is =,
false, ⇒ or ∀ will always be a Boolean.

Proposition 3.2.5. If e is an expression, then JeKI
θ is well-defined as an element of D. If f

is an n-ary argument, then JfKI
θ is well-defined as an element of Dn.

Proof. This is proved by induction on the construction of expressions and arguments. The
only non-trivial case is the application case. Let K(f1, . . . , fp) and Σ(K) = (n1, . . . , nq).
Applications are well-formed by assumption, so p = q and the arity of every fi is ni. According
to the induction hypothesis, JfiKI

θ ∈ Dni for all i. Since KI ∈ Dn1 × · · · × Dnp → D by
definition, we have JK(f1, . . . , fp)KI

θ ∈ D.

Proposition 3.2.6. If x is not free in the expression e, then JeKI
θx

v
equals JeKI

θ for all θ and v.
The same holds analogously for arguments.

3.2. THE LOGIC L 61

Proof. By induction on the construction of expressions and arguments. In the variable case,
the expression must be a variable symbol y such that y ̸= x; otherwise x would be free in e.
Thus θx

v (y) = θ(y). Binder cases are harder; following the definition, we have

J∀z : eKI
θx

v
=

⊤
D if JeKI

θx,z

v,v′
= ⊤D for all v′

⊥D otherwise

It suffices to verify that JeKI
θx,z

v,v′
= JeKI

θz
v′

. If x = z, the two valuations are equal and the result
is immediate. If x ̸= z, we have

JeKI
θx,z

v,v′
= JeKI

θz,x

v′,v
= JeKI

(θz
v′)x

v
= JeKI

θz
v′

where the last equality is justified by the induction hypothesis on e with the valuation θz
v′ .

This is possible because x is not free in e. Indeed, if x were free in e, it would be free in ∀z : e
since z ̸= x.

Proposition 3.2.6 justifies the notation JeKI when e is closed. Since e does not contain
any free variables, the values θ(x) do not matter, and thus θ itself does not matter in the
evaluation.

Definition 3.2.7 (Satisfiability). The satisfaction relation |= is defined between interpreta-
tions and closed expressions by

I |= e iff JeKI = ⊤D

Let T be a set of closed expressions. We call I a model of T iff every expression of T is
satisfied by I. This is written I |= T . We note T |= e if e is satisfied by every model of T ,
and |= e in the special case where T is empty. An expression e such that |= e is said to be
valid and is called a tautology.

The logic L is defined by the language of expressions and the satisfaction relation |=.

Example 3.2.8. Consider again the signature Σ of Example 3.2.2. The following expressions
are tautologies:

c⇒ c

G(F, c) = G(λx : F (x), c)
∀x : x⇔ (x = true)

The lack of a term/formula distinction sets TLA+ apart from most formalisms. It seems
unlikely that users would take advantage of that feature. However, experience shows they
do so quite naturally. Consider the following expression, which comes from the specification
EWD998 from the library of TLA+ Examples:2

terminationDetected ∈ {false, termination}

where ∈ and {·, ·} are binary operators. terminationDetected and termination are just
constants. With the expected semantics for the pair set, a consequence of the expression
above is

terminationDetected⇒ termination
2https://github.com/tlaplus/Examples

https://github.com/tlaplus/Examples

62 CHAPTER 3. FORMAL SEMANTICS OF TLA+’S CONSTANT FRAGMENT

This is true even if terminationDetected and termination are not Booleans.
Some consequences of the semantics are stranger, like the tautology 42⇒ 42 in a language

with numerical constants. Moreover, since the concept of formula does not exist in the logic,
any expression can technically play the role of a formula. We have 42 |= 42.

The semantics of Boolean operators is explained in the reference book [48, Section 16.1.3]
and also Section 8.1 of the note on TLA+ version 2. TLA+ actually admits two possible
interpretations for Boolean connectives, called the moderate and the liberal interpretation.
Our formalism corresponds to the liberal interpretation, which TLAPS officially supports.
The advantages of the liberal interpretation is that it is formally very close to FOL, and that
it does not impose any constraints on the language of expressions.

3.3 The Theory of TLA+

The logic L is a generic framework that fixes the interpretation of the Boolean connectives and
also equality. We now turn to the second component of TLA+’s logic, which is the theory T .
First we provide a formal definition for the notation L+ T .

Definition 3.3.1. Two signature Σ1 and Σ2 are compatible if their domains do not intersect.
We note Σ1 + Σ2 the union of two compatible signatures.

Definition 3.3.2. A theory (for L) is a set of closed expressions T over some signature ΣT .
Let T be some theory. We define the logic L+ T as follows:

• A signature of L+ T is a signature of L compatible with ΣT ;

• A Σ-expression of L+ T is a (ΣT + Σ)-expression of L;

• A Σ-interpretation is a (ΣT + Σ)-interpretation that is a model of T ;

• The evaluation of expression, arguments, and the satisfaction relation are inherited
from L.

By definition, an expression e is a tautology in L+ T iff T |= e.

Working in L+ T is essentially the same as working in L, only we assume a collection of
primitive operators in some signature ΣT which are specified by the set of axioms T .

The rest of this section is an overview of the theory T specifying the primitive opera-
tors of TLA+. The presentation is organized in several layers: epsilon-calculus, set theory,
functions, arithmetic, and others. We will only present the most important fragments of the
theory and not always formally. For the complete list of operators and axioms, we refer the
reader to Appendix A.

Some axioms are actually axiom schemas. Those schemas are typically parameterized by
one or several natural numbers n, positive numbers p, or operator symbols K. The meaning
of declaring an axiom schema in T is that the axioms for all values of n, p or K are declared
in T . Thus the collection T must be infinite.

3.3. THE THEORY OF TLA+ 63

Epsilon Calculus

The epsilon-calculus has a single operator choose : (1). The expression choose(λx : e) is
usually written choose x : e in TLA+’s user syntax. This notation is not general, because
the argument to choose could be an operator symbol K. However, we have the equality
choose(K) = choose(λx : K(x)), and the second member is represented by choose x : K(x).

The intuitive semantics of choose x : P (x) is that it selects a value x such that P (x) is
true, if one exists. If no such x exists then the expression is unspecified. This is specified by
a schema of axioms, where P is the parameter.

∀x : P (x)⇒ P (choose x : P (x))

Moreover, a second schema specifies choose as deterministic: if two predicates P and Q are
equivalent then choose selects the same witness for both of them.

(∀x : P (x)⇔ Q(x))⇒ (choose x : P (x)) = (choose x : Q(x))

A practical consequence of that last axiom is that we can rewrite expressions below choose.
For instance, we have (choose x : x ̸= x) = (choose x : false).

As a supplement, we define the TLA+ constructs for case expressions and if-then-else
expressions as notations. The definition below features TLA+’s indented notation for multi-
line disjunctions, which also exists for conjunctions.

case p1 → e1, . . . , pn → en

≜ choose x : ∨ p1 ∧ x = e1

∨ p2 ∧ x = e2

∨ · · ·
∨ pn ∧ x = en

case p1 → e1, . . . , pn → en, other→ e

≜ case p1 → e1, . . . , pn → en, (¬p1 ∧ · · · ∧ ¬pn)→ e

if p then e1 else e2

≜ case p→ e1, other→ e2

Note that if several conditions pi are true, then a case expression is ambiguous as it may be
equal to any ei. Users of TLA+ often write case expressions with conditions that obviously
exclude each other, so most case expressions are unambiguous in practice.

Set Theory

We declare the binary operator in : (0, 0). The expressions in(x, y) and ¬in(x, y) are respec-
tively written x ∈ y and x /∈ y. TLA+’s notations for bounded quantification are defined

∀x ∈ e1 : e2 ≜ ∀x : x ∈ e1 ⇒ e2

∃x ∈ e1 : e2 ≜ ∃x : x ∈ e1 ∧ e2

choose x ∈ e1 : e2 ≜ choose x : x ∈ e1 ∧ e2

64 CHAPTER 3. FORMAL SEMANTICS OF TLA+’S CONSTANT FRAGMENT

The axiom of set extensionality is specified for every object in the domain, in accordance with
the view that every mathematical object is a set:

∀x, y : (∀z : z ∈ x⇔ z ∈ y)⇒ x = y

The theory admits an operator subseteq : (0, 0) for the subset relation. The expression
subseteq(x, y) is written x ⊆ y and specified by

∀x, y : x ⊆ y ⇔ (∀z : z ∈ x⇒ z ∈ y)

The rest of the formalization follows the traditional development of ZFC set theory. Here
is a summary of the operators of set theory with their shapes and corresponding TLA+

notations:

Operator Shape Notation

union (0) union e ≜ union(e)
subset (0) subset e ≜ subset(e)
enumn (0, . . . , 0) {e1, . . . , en} ≜ enumn(e1, . . . , en)

∅ ≜ enum0
setst (0, 1) {x ∈ e1 : e2} ≜ setst(e1, λx : e2)
setofn (0, . . . , 0, n) {en+1 : x1 ∈ e1, . . . , xn ∈ en} ≜ setofn(e1, . . . , en, λx1, . . . , xn : en+1)
cup (0, 0) e1 ∪ e2 ≜ cup(e1, e2)
cap (0, 0) e1 ∩ e2 ≜ cap(e1, e2)
diff (0, 0) e1\ e2 ≜ diff(e1, e2)

Note that enum and setof represent two infinite families of operators, indexed by a natural
number n. In both cases the shape consists of a list of zeros of length n. For enum we have
n ≥ 0 while for setof we have n ≥ 1. The ambiguous notation {x ∈ a : x ∈ b} is interpreted
as setst(a, λx : x ∈ b).

The operators {·} (set enumeration), union, subset, {x ∈ · : ·} (set comprehension) and
{· : x ∈ ·} (set replacement) are defined by their axioms and axiom schemas:

∀a, b, x : x ∈ {a, b} ⇔ x = a ∨ x = b

∀a, x : x ∈ union a⇔ (∃y : y ∈ a ∧ x ∈ y)
∀a, x : x ∈ subset a⇔ x ⊆ a

∀a, x : x ∈ {y ∈ a : P (y)} ⇔ x ∈ a ∧ P (x)
∀a, x : x ∈ {F (y) : y ∈ a} ⇔ (∃y ∈ a : x = F (y))

P and F are operator parameters. We only show the axioms for enum2 and setof1 for the
sake of simplicity, but the general schemas for all n are easy to infer.

The operators ∪, ∩ and \ can be specified in two ways. The first solution is to give an
axiom that characterizes the elements of each set, for instance:

∀a, b, x : x ∈ a ∪ b⇔ x ∈ a ∨ x ∈ b

The second solution is to provide an actual definition for the set:

∀a, b : a ∪ b = union {a, b}

3.3. THE THEORY OF TLA+ 65

Both solutions are easily shown equivalent. We prefer the second solution for defining T , as
it makes clear that the additional operators do not make the theory stronger. The following
definitions are admitted:

a ∪ b ≜ union {a, b}
a ∩ b ≜ {x ∈ a : x ∈ b}
a \ b ≜ {x ∈ a : x /∈ b}

So far our axioms make T correspond to the theory ZF minus the axiom of infinity. The
final theory contains that axiom and also the axiom of foundation:

∃x : ∅ ∈ x ∧ ∀y : y ∈ x⇒ y ∪ {y} ∈ x (Inf)
∀x : x ̸= ∅ ⇒ ∃y : y ∈ x ∧ y ∩ x = ∅ (AF)

The resulting theory corresponds to ZFC + AF, where C represents the axiom of choice:

∀x : ∅ /∈ x ∧ (∀y, z ∈ x : y ̸= z ⇒ y ∩ z = ∅)⇒
∃u : ∀v ∈ x : ∃w : u ∩ v = {w}

(AC)

The axiom (AC) is independent from ZF + AF, but in the context of the epsilon-calculus
it can be proved. Given a set x whose elements are non-empty sets all disjoint to each other,
we can define

u ≜ {(choose y : y ∈ v) : v ∈ x}

Let v ∈ x and w ≜ choose y : y ∈ v. Since ∅ /∈ x we have w ∈ v, thus w ∈ u ∩ v. Now
suppose w′ ∈ u∩v. Then there exists a v′ ∈ x such that w′ = choose y : y ∈ v′. Since w′ ∈ v
and all elements of x are disjoint, we have v′ = v, thus w′ = w. Therefore u ∩ v = {w}.

Functions

Functions are defined axiomatically in TLA+. The class of functions is identified by a unary
operator isafcn, which is not part of the user syntax. Here is a summary of the most important
operators:

Operator Shape Notation
isafcn (0)
fcn (0, 1) [x ∈ e1 7→ e2] ≜ fcn(e1, λx : e2)
domain (0) domain e ≜ domain(e)
fcnapp (0, 0) e1[e2] ≜ fcnapp(e1, e2)
arrow (0, 0) [e1 → e2] ≜ arrow(e1, e2)

Functions are built using the constructor [x ∈ e1 7→ e2]. The domain of a function f is
accessed through domain. The value at x is f [x]. This is specified by the following axioms:

∀a : isafcn([x ∈ a 7→ F (x)])
∀a : domain [x ∈ a 7→ F (x)] = a

∀a, x : x ∈ a⇒ [z ∈ a 7→ F (z)][x] = F (x)

where F is an operator parameter.

66 CHAPTER 3. FORMAL SEMANTICS OF TLA+’S CONSTANT FRAGMENT

Two functions with the same domain and the same values on that shared domain are
specified as equal. This is the principle of functional extensionality, which is formally written

∀f, g : ∧ isafcn(f) ∧ isafcn(g)
∧ domain f = domain g

∧ (∀x : x ∈ domain f ⇒ f [x] = g[x])
⇒ f = g

Finally, the set of functions from a to b, written [a→ b], is specified by

∀a, b, f : f ∈ [a→ b]⇔ ∧ isafcn(f)
∧ domain f = a

∧ (∀x : x ∈ a⇒ f [x] ∈ b)

In TLA+’s reference book, the operator isafcn has an actual definition:

isafcn(f) ≜ f = [x ∈ domain f 7→ f [x]]

The proposition below justifies our approach.

Proposition 3.3.3. The following TLA+ expressions are equivalent:

(i) isafcn(f)

(ii) f = [x ∈ domain f 7→ f [x]]

(iii) f ∈ [domain f → Im(f)] where Im(f) ≜ {f [x] : x ∈ domain f}

(iv) ∃a, b : f ∈ [a→ b]

Proof. We prove (i) ⇒ (ii) using extensionality on f and [x ∈ domain f 7→ f [x]]. Both
objects are in the class isafcn, have domain f for domain, and f [x] for value at x ∈ domain f .
Therefore, they are equal.

For proving (ii)⇒ (iii), it suffices to prove [x ∈ domain f 7→ f [x]] ∈ [domain f → Im(f)].
This follows from the axioms of functions and the axiom of set replacement.

The proof of (iii) ⇒ (iv) is trivial. (iv) ⇒ (i) follows from the axiom specifying [a→ b].

The equivalence (i) ⇔ (ii) demonstrates that our formalization is compatible with the
reference book. The proposition above presents two other possible definitions, both of which
use the notion of sets of functions. (iii) is only more precise than (iv). Note that if f ∈ [a→ b],
then a is necessarily domain f , whereas b can be any set that contains Im(f).

Arithmetic

TLA+ includes the arithmetics of naturals, integers and reals. The three sets Nat, Int and Real
are defined with their intended structure in such a way that Nat ⊆ Int ⊆ Real. The numerical
constants and operations of arithmetic are overloaded for the structures in which they are
specified. For instance, 1 is specified as an element of Nat, but as an element of Int or Real it
still represents the same number. Likewise, the operation 1+1 = 2 can be carried out in Nat,

3.3. THE THEORY OF TLA+ 67

but + is also specified as addition on Int and Real, and those three possible interpretations
of + coincide.

The construction of the three structures is detailed in the reference book [48, Section 18.4].
We will not reproduce it here as it is both tricky and not important for our purposes. We
simply provide the list of operators with some clarifications around their semantics:

• The constants 0, 1, 2, etc. are specified as elements of Nat. Non-negative decimal
constants like 3.14 are specified as elements of Real.

• The operator ≤ is specified on all sets. The following definitions hold for all x and y:

x < y ≜ x ≤ y ∧ x ̸= y

x ≥ y ≜ y ≤ x
x > y ≜ y ≤ x ∧ x ̸= y

• The operators +, − (unary and binary versions), ∗ and ˆ are specified on all sets. There
are no numerical constants for negative numbers; −1 is defined as −(1).

• The operator / is division on Real.

• The operators ÷ and % are the Euclidean quotient and remainder. They are defined
for all a ∈ Int and b ∈ Nat \ {0} and satisfy the equations

a = b ∗ (a÷ b) + (a% b)
0 ≤ (a% b) ∧ (a% b) < b

The last operator we need to introduce is range : (0, 0). The expression range(m,n) is
noted m.. n in TLA+. It represents the interval of integers between m and n (included). Its
definition is

m.. n ≜ {p ∈ Int : m ≤ p ∧ p ≤ n}

Other Constructs

The set boolean is defined by

boolean ≜ {true, false}

Tuples are defined from functions and Cartesian products are sets of tuples:

⟨x, y⟩ ≜
[
i ∈ 1 .. 2 7→ case i = 1 then x

case i = 2 then y
]

a× b ≜ {⟨x, y⟩ : x ∈ a, y ∈ b}

The general constructs ⟨x1, . . . , xn⟩ and a1 × · · · × an are defined in the same manner. Note
that tuples are defined for all n, but Cartesian products are only defined for n ≥ 2, because
there are no notations for n = 0 or n = 1.

For every string of ASCII characters, for example “foo”, there is a TLA+ constant “foo”.
All those constants are specified as elements of some set string. Furthermore, “foo” is

68 CHAPTER 3. FORMAL SEMANTICS OF TLA+’S CONSTANT FRAGMENT

specified to be a tuple of length 3 whose components are unspecified objects representing the
characters f , o and o, in that order. Thus “foo”[2] = “foo”[3], and “foo”[1] ̸= “foo”[2].

Records and sets of records are defined in a way analogous to tuples. The domain of a
record is a finite set of strings:

[foo 7→ x, bar 7→ y] ≜
[
s ∈ {“foo”, “bar”} 7→ case s = “foo” then x

case s = “bar” then y
]

[foo : a, bar : b] ≜ {[foo 7→ x, bar 7→ y] : x ∈ a, y ∈ b}

The list of fields can be of any length n > 0 but must not contain duplicates.

3.4 Sequents

The logic L + T is adequate to study TLA+. However, the proof obligations generated by
TLA+ are expressed in the form of sequents, which are not part of that logic.

Definition 3.4.1 (Sequents). We define contexts and sequents using the following grammar:

Γ ::= · | Γ,new K : κ | Γ, e | Γ, S (Contexts)
S ::= Γ ⊢ e (Sequents)

The expressions e and sequents S that occur in a context are called hypotheses. The
expression e after ⊢ is called the goal. The subexpressions new K : κ are declarations, and
we impose two constraints on them: there can be at most one declaration of a given K,
including in nested sequents; the shape κ must be first-order.

Every context Γ can be naturally treated as a signature by taking Dom(Γ) as the collection
of symbols K such that new K : κ is in Γ and then Γ(K) ≜ κ. Let Σ be a signature. By
definition, Σ and Γ are compatible iff Dom(Σ) and Dom(Γ) are disjoint. In that case Σ + Γ
is defined as a signature.

Given a signature Σ, we define well-formedness for contexts and sequents:

• The empty context · is always well-formed;

• Γ,new K : κ is well-formed iff Γ is well-formed and K /∈ Dom(Γ);

• Γ, e is well-formed iff Γ is and e is a well-formed (Σ + Γ)-expression;

• Γ, S is well-formed iff Γ is well-formed and S is a well-formed sequent in the context of
the signature Σ + Γ;

• The sequent Γ ⊢ e is well-formed iff the context Γ, e is.

In the syntax of TLA+, a declaration new K : (0, 0) is written new K(_,_), and similarly
for shapes of any length. If the declared K is constant we just write new K. A sequent Γ ⊢ e
is written assume Γ prove e. The notation new x ∈ e is short for the declaration new x
followed by the hypothesis x ∈ e.

3.4. SEQUENTS 69

Example 3.4.2. Here is an example of a TLA+ sequent:

assume new P (_),
new S,

new x ∈ S,
P (x)

prove {y ∈ S : P (y)} ≠ ∅

Suppose the sequent above corresponds to the statement of a theorem named MyThm
which has been proved by the user. That result may be invoked in proofs further down the
specification. For instance, one may want to prove {n ∈ Nat : n > 100} ≠ ∅ from MyThm
and the fact 101 > 100. This will result in an obligation with one nested sequent:

assume assume new P (_),
new S,

new x ∈ S,
P (x)

prove {y ∈ S : P (y)} ≠ ∅ ,
101 > 100

prove {n ∈ Nat : n > 100} ≠ ∅

The idea of the proof is to instantiate P with the higher-order argument λn : n > 100. This
demonstrates how second-order logic becomes necessary for some proof obligations.

Definition 3.4.3 (Satisfaction for Sequents). Let Σ be a signature, I a Σ-interpretation,
and Γ a context well-formed under Σ. A Γ-extension of I is a (Σ + Γ)-interpretation I ′ on
the same domain and such that KI′ = KI for all K ∈ Dom(Σ).

A sequent Γ ⊢ e is satisfied by I if every Γ-extension of I that is a model of the hypotheses
in Γ also satisfies e. This is noted I,Γ |= e. The sequent is called valid if it is satisfied by all
interpretations; we note this Γ |= e.

Contexts are similar to theories as they contain the declarations of a signature and the
expressions of a collection of axioms. We view contexts as a way to encode explicit information
about a theory: a backend solver taking the encoded obligations as input does not have access
to the theory T , so we must select relevant declarations and axioms to insert in Γ. Since T
is infinite and ZF cannot be characterized by a finite number of axioms, encodings of TLA+

into first-order logic are necessarily incomplete.

70 CHAPTER 3. FORMAL SEMANTICS OF TLA+’S CONSTANT FRAGMENT

Chapter 4

A Direct Encoding of TLA+ into
Higher-order Logic

4.1 Overview

In the previous chapter, we formalized TLA+ as a logic L+ T , where L is a variant of FOL
without formulas and T is a standard theory on top of L. While TLA+ is essentially a first-
order logic, it features second-order applications. Moreover, if we consider the language of
sequents, we have to account for second-order quantifiers. For these reasons, the most natural
encoding of TLA+ is an encoding into HOL. This chapter describes that encoding, which has
been implemented in TLAPS in the form of the Zipperposition backend [27].

Figure 4.1 shows a diagram of the different steps of the encoding. The logic Lι is a
sorted variant of L (Section 4.2), and T ′ is the result of encoding T into Lι. The first step
of the encoding is a simple pass over expressions to recover the usual semantics for Boolean
connectives (Section 4.3). It is described as a sound and complete encoding of L into Lι.
The optional rewriting step, which is adapted from the original SMT encoding, attempts to
eliminate the primitive TLA+ constructs of set theory, functions, arithmetic (Section 4.4).
We provide its definition as a rewriting system and prove its termination and confluence.
The axiomatization step inserts explicit declarations and axioms in the obligation’s context
(Section 4.5). The last step is a direct translation of sequents in the TPTP language, more
precisely the THF dialect (Section 4.6). We conclude this chapter by an evaluation of the
encoding on a large set of TLA+ specifications (Section 4.7).

Example 4.1.1. To illustrate each step of the encoding, we introduce a running example. It
is based on the following TLA+ definition of sets of partial functions:

PFunc(A,B) ≜ union {[X → B] : X ∈ subset A}

The elements of a set PFunc(A,B) can be characterized without any reference to set replace-
ment or union:

f ∈ PFunc(A,B)⇔ ∧ f ∈ [domain f → B]
∧ (domain f) ⊆ A

We will focus on the obligation corresponding to the ⇐ direction of that equivalence.
Figure 4.2 shows a working snippet of code in TLA+ with the definition and the proved

71

72 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

TLA+ Proof Obligation

Recovering Formulas

Rewriting (optional)

Axiomatization

Translation

TPTP/THF

L+ T

Lι + T ′

Lι + T ′

Lι

Disambiguate terms and formulas

Eliminate primitive operators

Append explicit declarations and axioms

Translate directly

Figure 4.1: Encoding Overview

module PartialFunctions

extends TLAPS

PFunc(A, B)
∆
= union {[X → B] : X ∈ subset A}

theorem assume new A, new B , new f ,
f ∈ [domain f → B],
domain f ⊆ A

prove f ∈ PFunc(A, B)
by Zipper def PFunc

1

Figure 4.2: Running Example

4.2. THE LOGIC Ls 73

result. The keyword Zipper in the proof line invokes the Zipperposition backend that is based
on our encoding.

TLAPS generates a single proof obligation by expanding the definition of PFunc in the
original sequent. To clarify the structure of expressions, we will use our notations for TLA+’s
primitive constructs. Without the readable TLA+ notations, the proof obligation is written:

assume new A, new B, new f,

in(f, arrow(domain(f), B)),
subseteq(domain(f), A)

prove in(f, union(setof1(subset(A), λX : arrow(X,B))))

4.2 The Logic Ls

We view Lι as a fragment of a more general logic Ls, which is defined in this section. Ls is
a multi-sorted version of L enjoying the traditional semantics for Boolean connectives. For
the TPTP encoding, we use only one sort other than the Boolean sort, which is noted ι and
called the sort of individuals. In the next chapter about the SMT encoding, we will add the
sort int for integer numbers.

Much of the content of this section is adapted from Section 3.2 on the logic L. The major
differences consist in the presence of sort annotations for bound variables, and the restriction
of expressions by a type system. Additionally, we introduce substitutions and define the
substitution of free variables as an operation on terms of Ls.

Syntax

Definition 4.2.1 (Types). Let S be a non-empty collection and o a symbol not in S. The
elements of S are called sorts and o is the Boolean sort. Types are defined by the grammar

τ ::= s | τ × · · · × τ → s where s ∈ S ∪ {o}

The order of a type is defined by

ord(s) ≜ 0
ord(τ1 × · · · × τn → s) ≜ max

1≤i≤n
(ord(τi)) + 1 when n > 0

A sort is also a type of order 0. When τ = τ1 × · · · × τn → s and n = 0, we write τ = s
and we have ord(τ) = 0. The types of order 1 and 2 are respectively called first-order and
second-order types.

For Ls, we will not consider types of order greater than 2. Our syntax for TLA+ was based
on two syntactical classes: e for expressions and f for arguments. In Ls, well-formed expres-
sions are assigned a sort; well-formed arguments are assigned a type τ such that ord(τ) ≤ 1.
The sorts and first-order types characterize arguments, so we call them argument types.

Definition 4.2.2 (Expressions). A signature in Ls is a map Σ from operator symbols to
types; if K ∈ Dom(Σ) then Σ(K) is a type. The new syntax of expressions and arguments is

74 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

Γ(x) = s
VarΓ ⊢ x : s

Σ(K) = τ1 × · · · × τn → s Γ ⊢ fi : τi
AppΓ ⊢ K(f1, . . . , fn) : s

Γ ⊢ e1 : s Γ ⊢ e2 : s
EqΓ ⊢ e1 = e2 : o

FalseΓ ⊢ false : o
Γ ⊢ e1 : o Γ ⊢ e2 : o

ImpΓ ⊢ e1 ⇒ e2 : o
Γ, x : s ⊢ e : o

ForAllΓ ⊢ (∀xs : e) : o

Σ(K) = τ ord(τ) = 1
OpArgΓ ⊢ K : τ

Γ, x1 : s1, . . . , xn : sn ⊢ e : s
LamArg

Γ ⊢ (λxs1
1 , . . . , x

sn
n : e) : s1 × · · · × sn → s

Figure 4.3: Typing Rules for Ls

defined by the grammar
e ::= x | K(f, . . . , f) | e = e | false | e⇒ e | ∀xs : e (Expressions)
f ::= e | K | λxs, . . . , xs : e (Arguments)

A typing context is a map Γ from some finite collection of variables to sorts. We note
Γ, x : s the updated context that maps x to s. We define two kinds of typing judgments:

• Γ ⊢ e : s means the expression e has sort s;

• Γ ⊢ f : τ where ord(τ) ≤ 1 means the argument f has type τ .
We note ⊢ e : s and ⊢ f : τ when the typing context is empty. The valid typing judgments are
defined by the inductive rules of Figure 4.3. An expression or argument is well-formed in some
typing context if it has a typing with that context. A formula is a well-formed expression
whose sort is o. A predicate is a well-formed argument whose type ends with o.

Example 4.2.3. We note K : τ to mean that the operator K has type τ in some signature.
Consider a signature Σ with operators c : s, F : s → s and G : (s → s) × s → s. Then the
term

G(F, c) = G(λxs : F (x), c)
is a well-formed formula. This is shown by the following derivation:

Σ(F) = s→ s
OpArg⊢ F : s→ s

Σ(c) = s
App⊢ c : s App

⊢ G(F, c) : s

Σ(F) : s→ s
Var

x : s ⊢ x : s
App

x : s ⊢ F (x) : s
LamArg

⊢ (λxs : F (x)) : s→ s

Σ(c) = s
App⊢ c : s

App
⊢ G(λxs : F (x), c) : s

Eq
⊢ G(F, c) = G(λxs : F (x), c) : o

In the example above, the typing ⊢ c : s is derived from the rule App, because a constant
by itself is read as an application with zero arguments. The same judgment cannot be derived
with the rule OpArg because the condition ord(τ) = 1 does not hold for constants.

Let Γ1 and Γ2 be two typing contexts. We write Γ1 ⊆ Γ2 when Dom(Γ1) ⊆ Dom(Γ2) and
Γ1(x) = Γ2(x) for all x ∈ Dom(Γ1). Clearly, any valid typing derivation stays valid when the
context Γ is extended with fresh variables in every node. This is expressed by the following
property, which we admit:
Proposition 4.2.4. Suppose Γ1 ⊆ Γ2. Then Γ1 ⊢ e : s implies Γ2 ⊢ e : s for all e, and
Γ1 ⊢ f : τ implies Γ2 ⊢ f : τ for all f .

4.2. THE LOGIC Ls 75

Substitutions

If F (x, y, z) (for example) is a term with free variables x, y, z, and t1, t2, t3 are three other
terms, then the term F (t1, t2, t3) is the result of a syntactical operation called substitution.

Definition 4.2.5 (Substitution). Let Γ be a typing context. A substitution is a function
that assigns terms to variables. A substitution σ is adequate for Γ if Dom(σ) ⊆ Dom(Γ) and
Γ ⊢ σ(x) : Γ(x) for all x. If the domain of σ is strictly included in Γ, σ may be naturally
extended to the whole context by defining σ(x) = x.

Let e be a term well-formed in Γ. A substitution σ is compatible with e if no bound
variable of e occurs free in a term σ(x). In that case, we define the application of σ to e,
which is a term noted eσ, by recursion on e:

xσ ≜ σ(x)
K(f1, . . . , fn)σ ≜ K(f1σ, . . . , fnσ)

(e1 = e2)σ ≜ (e1σ) = (e2σ)
falseσ ≜ false

(e1 ⇒ e2)σ ≜ (e1σ)⇒ (e2σ)
(∀xs : e)σ ≜ ∀xs : eσx

Kσ ≜ K

(λxs1
1 , . . . , x

sn
n : e)σ ≜ λxs1

1 , . . . , x
sn
n : eσx1,...,xn

where σx is defined as the substitution σ′ such that σ′(x) = x and σ′(y) = σ(y) for y ̸= x.
For all n, σx1,...,xn+1 is defined as (σx1,...,xn)xn+1 .

We write {x1 7→ t1, . . . , xn 7→ tn} the substitution with domain {x1, . . . , xn} that maps
all xi to their respective ti.

To understand why compatibility with e is important in the definition above, consider a
typing context x : s, y : s and the expression ∀xs : P (x, y) where P is some binary predicate.
The substitution {y 7→ x} is adequate for the typing context, but if we forget the compatibility
condition and apply the substitution naively, we obtain

(∀xs : P (x, y)) {y 7→ x} = ∀xs : P (x, x)

The variable y, which is free in the original formula, became bound in the result. We have not
defined semantics yet, but we can explain informally why that substitution does not preserve
interpretation: if s is interpreted as the domain of natural numbers, and P as the relation ≤,
then the original formula is false (because y+1 ̸≤ y in particular) while after the substitution
it is true (by reflexivity of ≤).

This problem, which is called variable capture, is avoided by enforcing the compatibility
condition between e and σ. The condition can always made to hold by renaming the bound
variables of e is necessary. That is why we may accept the following definition as a result:

(∀xs : P (x, y)) {y 7→ x} = ∀zs : P (z, x)

The variable z may be chosen among all the variable symbols that are not included in the
typing context.

76 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

Proposition 4.2.6. Suppose Γ ⊢ e : s and σ is a substitution adequate for Γ compatible
with e. Then Γ ⊢ eσ : s. The property holds analogously for well-formed arguments.

Proof. This is proved by induction on the derivation of Γ ⊢ e : s. We treat the variable,
application and universal quantification case. All the other cases are trivial or analogous.

If the last rule is Var then e = x, s = Γ(x) and eσ = σ(x). We have Γ ⊢ σ(x) : Γ(x) by
assumption, which is exactly the same as Γ ⊢ eσ : s.

If the last rule is App then we have e = K(f1, . . . , fn) with Γ ⊢ fi : τi for all i and
Σ(K) = τ1 × · · · × τn → s. According to the induction hypothesis, Γ ⊢ fiσ : τi for all i.
Therefore

Σ(K) = τ1 × · · · × τn → s Γ ⊢ fiσ : τi
AppΓ ⊢ K(f1σ, . . . , fnσ) : s

But eσ = K(f1σ, . . . , fnσ) so the result is proved.
If the last rule is ForAll then e = ∀xs : e′ with Γ, x : s ⊢ e′ : o. Clearly, σx is an adequate

substitution for Γ, x : s. Therefore, according to the induction hypothesis, Γ, x : s ⊢ e′σx : o.
Then

Γ, x : s ⊢ e′σx : o
ForAll

Γ ⊢ ∀xs : e′σx : o

The result is obtained by eσ = (∀xs : e′σx).

Semantics

Compared to L and its unsorted semantics, Ls assigns a domain of evaluation for every sort
and type. Formulas are always evaluated in the Boolean domain; sort annotations restrict
the domain of evaluation of bound variables.

Definition 4.2.7 (Evaluation). Let S be a collection of sorts. We define Do as the two-valued
collection whose elements are the Boolean values ⊤ and ⊥. Given a family of collections
(Ds)s∈S , we associate a domain to every type in the natural way:

Dτ1×···×τn→s ≜ Dτ1 × · · · ×Dτn → Ds

Let Σ be some signature. An interpretation I consists of two families (Ds)s∈S and
(KI)K∈Dom(Σ) such that KI ∈ DΣ(K) for all K. Let Γ be a typing context. A valuation θ is
a function from Dom(Γ) such that θ(x) ∈ DΓ(x) for all x. The evaluation of expressions and

4.2. THE LOGIC Ls 77

arguments is defined by

JxKI
θ ≜ θ(x)

JK(f1, . . . , fn)KI
θ ≜ K

I(Jf1KI
θ , . . . , JfnKI

θ)

Je1 = e2KI
θ ≜

{
⊤ if Je1KI

θ = Je2KI
θ

⊥ otherwise

JfalseKI
θ ≜ ⊥

Je1 ⇒ e2KI
θ ≜

{
⊤ if Je1KI

θ = ⊥ or Je2KI
θ = ⊤

⊥ otherwise

J∀xs : eKI
θ ≜

{
⊤ if JeKI

θx
v

= ⊤ for all v in Ds

⊥ otherwise

For all v1 ∈ Ds1 , . . . , vn ∈ Dsn :

JKKI
θ (v1, . . . , vn) ≜ KI(v1, . . . , vn) where Σ(k) = s1 × · · · × sn → s

Jλxs1
1 , . . . , x

sn
n : eKI

θ (v1, . . . , vn) ≜ JeKI
θ

x1,...,xn
v1,...,vn

We admit the following result, which can be proved by induction on the structure of typing
derivations:

Proposition 4.2.8. Let Γ be a typing context, I an interpretation and θ a valuation. We
have the following properties:

• For all e and s, if Γ ⊢ e : s then JeKI
θ ∈ Ds

• For all f and τ , if Γ ⊢ f : τ then JfKI
θ ∈ Dτ

We proved (Proposition 4.2.6) that substitutions preserve typing. It follows that if Γ ⊢ e : s
and σ is a substitution then JeσKI

θ ∈ Ds. However, we admit the following stronger property
on the evaluation of eσ:

Proposition 4.2.9. Let Γ, I and θ as in the previous proposition. Let σ be a substitution
adequate for Γ. We define σθ as a valuation for Γ by

(σθ)(x) ≜ Jσ(x)KI
θ

It follows from the definition of a substitution for Γ and Proposition 4.2.8 that σθ is well-
defined. The following equations hold for all e and f well-typed in Γ:

JeσKI
θ = JeKI

σθ

JfσKI
θ = JfKI

σθ

Typing contexts carry the necessary typing information for the free variables of all ex-
pressions. It is clear then that annotations x : s for variables x that do not occur free may
be omitted. In particular, well-typed closed expressions can be typed in the empty context.

78 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

The letter ϕ denotes well-typed formulas. The satisfaction relation |= for Ls is defined for
closed formulas by

I |= ϕ iff JϕKI = ⊤
We define the notations T |= ϕ and |= ϕ as before, where T is a collection of closed formulas.

The language and semantics of TLAPS sequents Γ ⊢ e are extended too. Let us briefly
indicate how the definitions may be adapted. In Γ, the shape specifications that annotate
declarations are replaced by type specifications; we write new K : τ for the declaration of K
with type τ , where ord(τ) ≤ 1. It follows that the signature induced by a sequent context is a
signature of Ls, as it maps operator symbols to types. The hypotheses in Γ must be formulas
or well-formed nested sequents. The goal must be a formula as well.

4.3 Recovering Formulas
Let Lι be the version of Ls for which S is reduced to one sort symbol, noted ι. A term is
an expression e : ι. We describe a sound and complete encoding of L into Lι. We start with
an elementary version of the encoding that systematically assigns types over the sort ι to
all operators. For many TLA+ primitive operators, it is desirable to use types with o; for
example, ∈ should be assigned a predicate type. We consider this feature as an extension and
introduce it in the last section.

Before we start, let us give the basic intuition behind the encoding. All operators are
assigned types corresponding to their original shapes, for instance the shape (1, 0) is mapped
to the type (ι → ι) × ι → ι. All variables are annotated with ι. If we attempt to translate
expressions from L to Lι directly in the most natural way, we will encounter two kinds of
type errors:

true ∈ boolean true is a formula, but ∈ expects a term
false⇒ 42 42 is a term, but ⇒ expects a formula

It suffices to rewrite the subexpressions causing those errors. The first kind is simpler to
address. We add a new primitive operator casto : o→ ι and rewrite:

casto(true) ∈ boolean

The second kind is trickier, as it seems counter-intuitive that any term could be translated
as a formula in a sound way. However, we only need to convert terms when a formula is
expected. This translation is sound:

false⇒ (42 = casto(true))

That conversion formalizes the intuition that the original TLA+ formula is equivalent to
false ⇒ (42 = true) under the liberal interpretation of Boolean connectives. It suffices to
use casto on true to make the expression well-typed.
Example 4.3.1. Here is a simple valid example that illustrates both conversions:

∀x : x = false⇒ ¬x is encoded as ∀xι : x = casto(false)⇒ ¬(x = casto(true))

Note that restricting quantification to o would not be sound in general: consider the non
valid TLA+ expression ∀x : x = true ∨ x = false, which becomes a valid formula of Lι if
we translate it as ∀xo : x = true ∨ x = false. The encoding we consider here will always
annotate quantifiers with ι.

4.3. RECOVERING FORMULAS 79

4.3.1 Definition

We define three mappings Bι, Bo and Bop. The first two are applied to expressions, the last
one is applied to arguments. Before we define the mappings themselves, we define a mapping
Σ 7→ ΣB that maps signatures of L to signatures of Lι.

Definition 4.3.2. For all n > 0, let ιn → ι denote the n-ary type ι× · · · × ι→ ι. The 0-ary
type ι0 → ι is just the sort ι. For all TLA+ shape κ = (n1, . . . , nk), the type type(κ) is defined
as τ1 × · · · × τk → ι where τi is the ni-ary type.

Let Σ be a TLA+ signature. We define ΣB as the signature of Lι whose domain is Dom(Σ)
plus the fresh symbol casto. If K ∈ Dom(Σ), then ΣB(K) ≜ type(Σ(K)). ΣB(casto) ≜ o→ ι.

For example, the TLA+ operator setst (set comprehension) has the shape (0, 1). Its
corresponding type in ΣB is ι × (ι → ι) → ι. Note that for a Σ-interpretation and a ΣB-
interpretation on the same domain D, if K ∈ Dom(Σ) then K is interpreted as a function of
the collection D × (D → D)→ D in both logics.

Definition 4.3.3 (Mappings). The three mappings Bι, Bo and Bop are defined recursively
by the following rules:

Bo(e1 = e2) ≜ Bι(e1) = Bι(e2)
Bo(false) ≜ false
Bo(e1 ⇒ e2) ≜ Bo(e1)⇒ Bo(e2)
Bo(∀x : e) ≜ ∀xι : Bo(e)
Bo(e) ≜ Bι(e) = casto(true) (⋆)

Bι(x) ≜ x
Bι(K(f1, . . . , fn)) ≜ K(Bop(f1), . . . ,Bop(fn))

Bι(e) ≜ casto(Bo(e)) (⋆)

Bop(e) ≜ Bι(e)
Bop(K) ≜ K (⋆⋆)

Bop(λx1, . . . , xn : e) ≜ λxι
1, . . . , x

ι
n : Bι(e)

(⋆) We call these rules conversions. They are applied with lowest priority.
(⋆⋆) Only applies when K is first-order. For constants, the rule just above applies.

The recursive definition above is not inductive, because the two conversion rules are not
applied on a subexpression of the original expression. However, consider the last case of
Bo(e), in which Bo(e) is defined as Bι(e) = casto(true). Then e is necessarily a variable or
an application (otherwise, some non-conversion rule would apply to construct Bo(e)). In that
case, there is a non-conversion rule that applies to construct Bι(e). A similar argument can
be made for the case where Bι(e) is constructed by converting Bo(e) into a term. This proves
that a conversion can never immediately follow another in the recursive construction of Bι(e)
and Bo(e), and so the recursive definition above is well-founded.

This also justifies proofs by induction on the construction of Bι(e), Bo(e) and Bop(f). To
illustrate, we detail the proof of the next theorem.

Theorem 4.3.4. If e is an expression of L, we note Γe the typing context whose domain is
FV(e) and such that Γe(x) = ι for all x free in e. The context Γf is defined analogously for
all arguments f .

For all Σ-expression e and Σ-argument f with arity n, the following properties hold:

80 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

(i) Γe ⊢ Bι(e) : ι

(ii) Γe ⊢ Bo(e) : o

(iii) Γf ⊢ Bop(f) : ιn → ι

Proof. The proof is by induction on the construction of Bι(e), Bo(e) and Bop(f). There is
one case for each equation in Definition 4.3.3. Depending on the term being constructed, we
prove only i, ii or iii.

Variable Let e = x and Bι(e) = x. Γe(x) = ι by definition of Γe, thus Γe ⊢ x : ι by
application of the typing rule Var.

Application Let e = K(f1, . . . , fp) and Bι(e) = K(Bop(f1), . . . ,Bop(fp)). The induction
hypothesis (property iii) states that Γfi

⊢ Bop(fi) : ιn → ι where n is the arity of fi.
Let f ′

i = Bop(fi). Then we must prove Γe ⊢ K(f ′
1, . . . , f

′
p) : ι. Let Σ(K) = (n1, . . . , np).

By assumption, e is a well-formed application, so each fi is ni-ary. Moreover, it is
clear that Γfi

⊆ Γe. Therefore, according to the induction hypothesis, for all i we have
Γe ⊢ f ′

i : ιni → ι. By definition, ΣB(K) = τ1 × · · · × τn → ι where τi = ιni → ι. Then
the following derivation is valid:

ΣB(K) = τ1 × · · · × τn → ι Γe ⊢ f ′
i : τi

App
Γe ⊢ K(f ′

1, . . . , f
′
p) : ι

Formula-to-term conversion Let Bι(e) = casto(Bo(e)). The induction hypothesis (prop-
erty ii) states that Γe ⊢ Bo(e) : o. The result is obtained by the derivation

ΣB(casto) = o→ ι Γe ⊢ Bo(e) : o
AppΓe ⊢ casto(Bo(e)) : ι

Equality Let e be e1 = e2. The induction hypothesis (property i) states Γe1 ⊢ Bι(e1) : ι
and Γe2 ⊢ Bι(e2) : ι. The result Γe ⊢ Bι(e1) = Bι(e2) : o is immediate by Γei ⊆ Γe

(i ∈ {1, 2}) and using the typing rule Eq.

False Let e = false. The result ⊢ Bo(e) : o is immediate by Bo(e) = false.

Implication Let e be e1 ⇒ e2. The induction hypothesis (property ii) states that Γe1 ⊢
Bo(e1) : o and Γe2 ⊢ Bo(e2) : o. The result Γe ⊢ Bo(e1) ⇒ Bo(e2) : o is immediate by
Γei ⊆ Γe (i ∈ {1, 2}) and using the typing rule Imp.

Universal quantification Let e be ∀x : e′. The induction hypothesis (property ii) states
that Γe′ ⊢ Bo(e′) : o. Clearly, Γe′ ⊆ Γe, x : ι (the free variables of e′ are among x and
the free variables of e). Then Γe ⊢ (∀xι : Bo(e′)) : o by application of the rule ForAll.

Term-to-formula conversion Let Bo(e) be Bι(e) = casto(true). The induction hypothesis
(property i) states that Γe ⊢ Bι(e) : ι. The result is obtained by the derivation

Γe ⊢ Bι(e) : ι
ΣB(casto) = o→ ι Γe ⊢ true : o

AppΓe ⊢ casto(true) : ι
Eq

Γe ⊢ Bι(e) = casto(true) : o

4.3. RECOVERING FORMULAS 81

Argument (expression) We have Γe ⊢ Bι(e) : ι by the induction hypothesis (property i).
Then Γe ⊢ Bop(e) : ι0 → ι by Bop(e) = Bι(e) and ι0 → ι = ι.

Argument (operator symbol) Let K be a first-order operator with arity n > 0. By
definition, ΣB(K) = ιn → ι and then ord(ΣB(K)) = 1. The result ⊢ K : ιn → ι is
obtained by the rule OpArg.

Argument (lambda-expression) Let f = λx1, . . . , xn : e and Bop(f) = λxι
1, . . . , x

ι
n :

Bι(e). The induction hypothesis (property i) states that Γe ⊢ Bι(e) : ι. It is clear that
Γe ⊆ Γf , x1 : ι, . . . , xn : ι. Then Γf ⊢ λxι

1, . . . , x
ι
n : Bι(e) : ιn → ι by application of

LamArg.

4.3.2 Correctness

The encoding is defined by Bo, which maps Σ-expressions of L to ΣB-expressions of Lι.
The soundness property states that the validity of Bo(e) entails the validity of e. The dual
implication is completeness. Both properties are derived as corollaries of a result about the
preservation of all values by Bι, Bo and Bop. For completeness, we also need to specify the
operator casto in the target logic.

Soundness

We map Σ-interpretations to ΣB-interpretations in the natural way.

Definition 4.3.5. Let I be a Σ-interpretation with domain D. The ΣB-interpretation IB is
defined as follows:

• Dι ≜ D;

• For all K ∈ Dom(Σ), KIB
≜ KI . This is correct because DΣB(K) equals DΣ(K);

• castIB
o is the function

{
⊤ 7→ ⊤D,⊥ 7→ ⊥D

}
.

IB essentially provides the interpretation for the new operator casto, which maps the truth
values of Do to their counterparts in Dι = D.

By Theorem 4.3.4, for all expressions e, Bι(e) and Bo(e) are well-formed in the context Γe,
and their respective sorts are ι and o. Consider a TLA+ valuation θ for the logic L. θ interprets
variables as elements of D. Since Γe(x) = ι for all x and Dι = D, θ is an adequate valuation
for the context Γe, and the values JBι(e)KIB

θ and JBo(e)KIB

θ are well-defined respectively as
elements of D and Do. Likewise, for all n-ary f then JBop(f)KIB

θ is well-defined as an element
of Dn → D (or simply D if n = 0).

Theorem 4.3.6. Let Σ be a TLA+ signature and I a Σ-interpretation. For all valuations θ,
expression e and argument f , we have the properties:

(i) JBι(e)KIB

θ = JeKI
θ

(ii.a) JBo(e)KIB

θ = ⊤ iff JeKI
θ = ⊤D

82 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

(ii.b) JBo(e)KIB

θ = ⊥ implies JeKI
θ = ⊥D when Bo(e) is not obtained by conversion

(iii) JBop(f)KIB

θ = JfKI
θ

Proof. The result is proved by induction on the construction of Bι(e), Bo(e) or Bop(f). For
cases constructing Bι(e), we prove i. For cases constructing Bo(e), we prove ii.a and ii.b. For
cases constructing Bop(f), we prove iii.

For all cases constructing Bo(e) except the case of term-to-formula conversion, ii.a en-
tails ii.b immediately. That is because, in all those cases, e has a Boolean top connective,
and the semantics of L is made in such a way that JeKI

θ ̸= ⊤D implies JeKI
θ = ⊥D for such e.

Variable The result is immediate since Bι(x) is x. Both values equal θ(x).

Application The result is also immediate since KIB = KI and using the induction hypoth-
esis to derive JBop(fi)KIB

θ = JfiKI
θ for all arguments.

Formula-to-term conversion We have Bι(e) = casto(Bo(e)). By construction, Bo(e) is
not a term-to-formula conversion, because a conversion cannot be applied immediately
after another. Therefore, according to the induction hypothesis, both ii.a and ii.b hold
for Bo(e).

JBι(e)KIB

θ = Jcasto(Bo(e))KIB

θ

= castIB
o (JBo(e)KIB

θ)

=

⊤D if JBo(e)KIB

θ = ⊤
⊥D if JBo(e)KIB

θ = ⊥
(by definition)

=
{
⊤D if JeKI

θ = ⊤D

⊥D if JeKI
θ = ⊥D

(induction hypothesis)

= JeKI
θ

Equality

JBo(e1 = e2)KIB

θ = ⊤ iff JBι(e1) = Bι(e2)KIB

θ = ⊤

iff JBι(e1)KIB

θ = JBι(e2)KIB

iff Je1KI
θ = Je2KI

θ (induction hypothesis)
iff Je1 = e2KI

θ = ⊤D

False The result is immediate: JBo(false)KIB

θ = ⊥ and JfalseKI
θ = ⊥D

Implication

JBo(e1 ⇒ e2)KIB

θ = ⊤ iff JBo(e1)⇒ Bo(e2)KIB

θ = ⊤

iff JBo(e1)KIB

θ ̸= ⊤ or JBo(e2)KIB

θ = ⊤
iff Je1KI

θ ̸= ⊤
D or Je2KI

θ = ⊤D (induction hypothesis)
iff Je1 ⇒ e2KI

θ = ⊤D

Remark that only property ii.a of the induction hypothesis is needed.

4.3. RECOVERING FORMULAS 83

Universal quantification

JBo(∀x : e)KIB

θ = ⊤ iff J∀x : Bo(e)KIB

θ = ⊤

iff JBo(e)KIB

θx
v

= ⊤ for all v in D

iff JeKI
θx

v
= ⊤D for all v in D (induction hypothesis)

iff J∀x : eKI
θ = ⊤D

Term-to-formula conversion

JBι(e) = casto(true)KIB

θ = ⊤ iff JBι(e)KIB

θ = ⊤D

iff JeKI
θ = ⊤D (induction hypothesis)

Argument (expression) If f is just an expression e then the result is immediate by i.

Argument (operator symbol) If f is some K then the result is immediate from KIB = KI

Argument (lambda-expression) If f is λx1, . . . , xn : e then we have, for all v1, . . . , vn:

JBop(f)KIB

θ (v1, . . . , vn) = Jλx1, . . . , xn : Bι(e)KIB

θ (v1, . . . , vn)

= JBι(e)KIB

θ
x1,...,xn
v1,...,vn

= JeKI
θ

x1,...,xn
v1,...,vn

(induction hypothesis)

= Jλx1, . . . , xn : eKI
θ (v1, . . . , vn)

= JfKI
θ (v1, . . . , vn)

Thus JBop(f)KIB

θ = JfKI
θ.

Corollary 4.3.7 (Soundness). Let e be a closed expression of L. If Bo(e) is valid then e is
also valid.

Proof. Let I be a Σ-interpretation. By assumption, IB |= Bo(e), i.e. JBo(e)KIB
= ⊤. By

Theorem 4.3.6, JeKI = ⊤D, i.e. I |= e. Therefore e is valid.

Completeness

Completeness is the fact that Bo preserves validity from L to Lι. It is dual to soundness,
which states that Bo(e)’s validity implies e’s validity. We proved soundness as a corollary of
Theorem 4.3.6 by using only the implication⇒ from case (ii.a). We may derive completeness
by using the other direction ⇐.

However, it may be the case that IB |= Bo(e) for all I, but J ̸|= Bo(e) for some J . The
TLA+ valid formula true ̸= false is encoded as casto(true) ̸= casto(false), but the latter
formula is not valid in Lι, because there are interpretations J such that castJ

o is not injective
(any interpretation where D is reduced to one element suffices). To ensure completeness, we
must put a constraint on the interpretation of casto in the target logic.

84 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

Lemma 4.3.8. Consider the axiom

casto(true) ̸= casto(false) (B)

The mapping I 7→ IB is surjective as a mapping of Σ-interpretations to ΣB-interpretations
satisfying the axiom (B).

Proof. Every IB satisfies (B) by definition of castIB
o , so the mapping is well-defined.

Let J be a ΣB-interpretation satisfying (B). The axiom implies that Jcasto(true)KJ and
Jcasto(false)KJ are two distinct values in D. Thus D is an adequate domain for TLA+. We
let ⊤D ≜ Jcasto(true)KJ and ⊥D ≜ Jcasto(false)KJ . We then define the Σ-interpretation I
as the restriction of J to Σ. It is then easily verified that IB = J . Therefore I 7→ IB is
surjective.

Corollary 4.3.9 (Completeness). Let e be a closed expression of L. If e is valid then Bo(e)
is valid for the class of interpretations that satisfy (B).

Proof. Suppose e is valid. Let J be a ΣB-interpretation. By Lemma 4.3.8, there is an I such
that J = IB. By assumption, I |= e, i.e. JeKI = ⊤D. By Theorem 4.3.6, JBo(e)KJ = ⊤.
Therefore, Bo(e) is valid.

4.3.3 Predicate Types

Bo can be applied to TLA+’s theory T , resulting in a new theory T ′ in the target logic Lι.
However, because the mapping Bo described so far preserves all operator types with ι, the
resulting theory would not feature any predicate or other operator involving Booleans. For
instance, applying Bo to the schema of set comprehension results in

in : ι× ι→ ι

setst : ι× (ι→ ι)→ ι

∀aι, xι : in(x, setst(a, P)) = casto(true)⇔ in(x, a) = casto(true) ∧ P (x) = casto(true)
for all P : ι→ ι

Our implementation actually assigns types with o to some TLA+ primitives and defines
axioms in T ′ closer to what one would expect:

in : ι× ι→ o

setst : ι× (ι→ o)→ ι

∀aι, xι : in(x, setst(a, P))⇔ in(x, a) ∧ P (x) for all P : ι→ o

This optimization is justified by the semantics of in and setst. We present the arguments
for assigning those types to in and setst below. The arguments for in also apply to the subset
relation and the comparison operators, which are encoded as predicates. The arguments for
set comprehension apply to the choose operator, which expects a predicate argument in the
target logic.

The signature ΣB is modified so that ΣB(in) = ι× ι→ o, and the definitions of Bo and Bι

are adapted:

Bι(in(e1, e2)) ≜ casto(in(Bι(e1),Bι(e2)))
Bo(in(e1, e2)) ≜ in(Bι(e1),Bι(e2))

4.3. RECOVERING FORMULAS 85

Next, we define an interpretation for in by

inIB(v1, v2) iff inI(v1, v2) = ⊤D

The proof of Theorem 4.3.6 is easily adapted. The key argument is that set membership is
specified to be a relation in TLA+, meaning in always returns a Boolean value. From this
fact and the definition of IB, it follows that

Jin(e1, e2)KIB
= ⊤ iff Jin(e1, e2)KI = ⊤D

Jin(e1, e2)KIB
= ⊥ iff Jin(e1, e2)KI = ⊥D

The proof is trivial from here. For completeness, remark that the mapping I 7→ IB is still
surjective, because the original interpretation of in : ι × ι → ι can be defined from the
interpretation of in : ι× ι→ o (simply convert ⊤ to ⊤D and ⊥ to ⊥D).

We now turn to set comprehension. The argument is trickier, as we need to prove that
these sets are preserved if their first-order parameters are projected as predicates. To provide
the intuition, remark that the equation

{x ∈ e1 : e2} = {x ∈ e1 : e2 = true}

is provable in TLA+ using set extensionality, because the predicates that characterize both
sets are equivalent.

Let ΣB(setst) ≜ ι× (ι→ o)→ ι. Only one rule for Bι is adapted:

Bι(setst(e1, λx : e2)) ≜ setst(Bι(e1), λxι : Bo(e2))

Note that the second argument to setst will always be a lambda-term, because users only
have access to the notation {x ∈ e1 : e2}. Let the new interpretation for setst be defined by

setstIB(v, p) ≜ setstI(v, p′) where p′(u) ≜ ⊤D if p(u) = ⊤, otherwise ⊥D (∗)

We now indicate how the proof of Theorem 4.3.6 is adapted. It suffices to prove that

JBι(setst(e1, λx : e2))KIB

θ = Jsetst(e1, λx : e2)KI
θ

We define the following values and functions on D:

v ≜ JBι(e1)KIB

θ p(u) ≜ JBo(e2)KIB

θx
u

w ≜ Je1KI
θ q(u) ≜ Je2KI

θx
u

The desired equation is verified by

setstIB(v, p) = setstI(v, p′) = setstI(w, q)

where the first equality is the definition of setstIB and the second equality is proved by set
extensionality. Indeed, the induction hypothesis gives v = w and p(u) = ⊤ iff q(u) = ⊤D for
all u in D. But p(u) = ⊤ iff p′(u) = ⊤D, so the elements of both sets are the same.

Let us now prove that the mapping I 7→ IB remains surjective when setst expects a
predicate argument. Given a ΣB-interpretation J , we define a Σ-interpretation I such that
KIB = KJ for all K ̸= setst, and

setstI(v, f) ≜ setstJ(v, f ′) where f ′(u) ≜ ⊤ if f(u) = ⊤D, otherwise ⊥

86 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

We prove that setstIB = setstJ . Let v in D and p a predicate on D. Let f = p′ defined as
in (∗). Clearly, f ′ = p, thus

setstIB(v, p) = setstI(v, f) = setstJ(v, p)

For choose expressions, the justifications are analogous, but instead of set extensionality,
the axiom of choice determinacy is used:

(∀x : P (x)⇔ Q(x))⇒ choose(P) = choose(Q)

Here is a summary of the TLA+ primitives that are assigned a type with o:

Operator Type
choose (ι→ o)→ ι
in ι× ι→ o
subseteq ι× ι→ o
setst ι× (ι→ o)→ ι
isafcn ι→ o
lteq ι× ι→ o
IsFiniteSet ι→ o

To finish, let us go back to our running example from this chapter.

Example 4.3.10. The result of applying our transformation on the proof obligation is:

new A : ι, new B : ι, new f : ι,
in(f, arrow(domain(f), B)),
subseteq(domain(f), A))

⊢ in(f, union(setof1(subset(A), λXι : arrow(X,B))))

There are no differences with the original form of the obligation, except that declared
constants have sort annotations. The logical context has changed; the primitive symbols
in ΣB are assigned types, some of them featuring the sort o. One could verify that the proof
obligation is well-sorted in the target logic; in particular, the two hypotheses and the goal are
formulas.

4.4 Rewriting

Rewriting is a natural way to eliminate primitive constructs with no counterpart in the target
logic. Sets are essentially defined by their characteristic predicates, so we may attempt to
replace expressions of the form x ∈ S by simpler expressions. For example:

x ∈ (S ∪ T) −→ x ∈ S ∨ x ∈ T

This idea is naturally extended to TLA+ functions, since a function is characterized by its
domain and its body:

[z ∈ D 7→ F (z)][x] −→ F (x) when x ∈ D

4.4. REWRITING 87

This approach leads to some difficulties. As illustrated by the line above, some rewritings
are valid only under certain semantics conditions. Since D can be any set, the problem of
checking the validity of that rewriting is undecidable in general.

Another difficulty is to guarantee that rewriting always terminates. Assuming the natural
rule x ∈ {y ∈ S : P (y)} −→ x ∈ S ∧ P (x), if we define R ≜ {x ∈ S : ¬(x ∈ x)} then we have
the non-terminating sequence

R ∈ R −→ R ∈ S ∧ ¬(R ∈ R) −→ R ∈ S ∧ ¬(R ∈ S ∧ ¬(R ∈ R)) −→ · · ·

Expressions like R are rarely found in the practice of TLA+. A larger obstacle to a suitable
implementation of rewriting is the opposite problem: rewriting often terminates too soon,
leaving primitive constructs in the obligation. The instance of ∪ cannot be simplified by
direct application of a rewriting rule in

z = (S ∪ T)⇒ x ∈ z

The original SMT encoding, currently implemented in TLAPS, features a rewriting system
that is neither terminating nor confluent. We present here an alternative rewriting system that
satisfies both of these properties. Rewriting alone was already recognized as insufficient for
eliminating enough TLA+ primitives, which is why, in the original implementation, rewriting
is supported by a set of auxiliary techniques such as elimination of equalities, or abstraction
of complex subexpressions. Our objective here is not to revisit that fragment of the original
implementation; we will focus on the rewriting system, even if the resulting implementation
is weaker.

4.4.1 Definition and Correctness

Let □ be some variable symbol called a hole. An expression with a hole is any expression
with exactly one occurrence of □. We denote E such expressions. If e is any other expression,
the expression E[e] is defined as E {□ 7→ e}. We leave implicit the sort of □, which may be
ι or o depending on the context. We always assume the sorts of e and □ are identical when
writing E[e], so the substitution is well-defined, and the sorts of E and E[e] coincide.

Definition 4.4.1 (Rewriting). A rewriting rule is a pair of open expressions (l, r) such that
every free variable of r is in l. We introduce a rewriting rule with the notation

l ▷ r

Let Γl be the typing context such that Γl(x) = ι for all x free in l. Both l and r have a sort
in the context Γl; we impose that their sorts coincide.

Let R be a set of rewriting rules, also called rewriting system. The relation −→R is defined
on expressions by

E[lσ] −→R E[rσ]

where l ▷r is a rule in R, E is a term with a hole, and σ is a substitution. We simply note −→
if the set R is obvious in context.

Clearly, if e1 −→ e2 and Γ ⊢ e1 : s then Γ ⊢ e2 : s. The fact that □ only occurs once in
expressions implies that subexpressions can only be rewritten one at a time by −→. This is
relevant to the question of confluence, which is a property we will discuss in the next section.

88 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

Example 4.4.2. Consider the rule
a ∪ ∅ ▷ a

and the expression {S ∪ ∅, T} ∪ ∅, where S and T are two constants.
Here are two different ways to rewrite the expression, with the respective definitions for E

and σ:

{S ∪ ∅, T} ∪ ∅ −→ {S, T} ∪ ∅ σ(a) ≜ S E ≜ {□, T} ∪ ∅
{S ∪ ∅, T} ∪ ∅ −→ {S ∪ ∅, T} σ(a) ≜ {S ∪ ∅, T} E ≜ □

We usually represent this situation with a diagram:

{S ∪ ∅, T} ∪ ∅

{S, T} ∪ ∅ {S ∪ ∅, T}

Proposition 4.4.3. Let E be an expression with a hole, e an expression, I an interpretation
and θ a valuation. Then JE[e]KI

θ = JEKI
θ□v

where v = JeKI
θ.

Proof. This is proved by

JE[e]KI
θ = JE {□ 7→ e}KI

θ by definition of E[e]
= JEKI

{□7→e}θ by Proposition 4.2.9

= JEKI
θ□v

Theorem 4.4.4 (Correctness). A rewriting system is defined as correct iff for all rules l ▷ r,
interpretations I and valuations θ, JlKI

θ = JrKI
θ.

If R is correct, then e1 −→R e2 implies Je1KI
θ = Je2KI

θ for all I and θ.

Proof. Let v = JlσKI
θ and w = JrσKI

θ. Then by Proposition 4.2.9 and the correctness assump-
tion,

v = JlKI
σθ = JrKI

σθ = w

By Proposition 4.4.3, it follows that

JE[lσ]KI
θ = JEKI

θ□v
= JEKI

θ□w
= JE[rσ]KI

θ

An immediate corollary of Theorem 4.4.4 is that e1 −→ e2 implies that I |= e1 iff I |= e2
for all I when e1 and e2 are formulas. Thus we only have to guarantee l and r always have
the same value (if they are formulas, the same truth value) to guarantee both the soundness
and the completeness of rewriting.

Our rewriting system for TLA+ is presented in Figure 4.4. The TLA+ notations are used
for better readability. Note that the characters x, a, b, f , t and r all denote variables. The
characters T and ϕ are not variables but placeholders for terms or formulas, respectively. The

4.4. REWRITING 89

rules that feature a T or a ϕ are schemas of rewriting rules; these rules must be presented as
schemas because they involve a higher-order parameter. There are also schemas of rules for
the operators that accept an arbitrary number of arguments. For instance, the actual schema
for set refinement is

x ∈ {T : y1 ∈ a1, . . . , yp ∈ ap} ▷ ∃y1, . . . , yp : y1 ∈ a1 ∧ · · · ∧ yp ∈ ap ∧ x = T

Only the representative case for p = 1 is shown for the sake of readability. All the rules that
involve tuples or records are understood to be generalized to any p as well.

It is easy to check that all rules preserve types from l to r, and values as well. Thus
rewriting is correct by Theorem 4.4.4. An alternative way to state correctness is to assert
that

∀x1, . . . , xn : l = r

is a theorem of TLA+ for all l ▷ r, where x1, . . . , xn are the free variables of l. Many of these
statements are among the axioms we pass to the provers, which we discuss in the next section.

Any implementation that is based on this rewriting system is therefore correct, but so far
we have described rewriting as a non-deterministic procedure represented by the relation −→.
Any rewriting is of the form E[lσ] −→ E[rσ], but there can be several ways to put a given
expression under the form on the left. The property of confluence ensures that diverging
rewriting sequences can always be joined. Combined with termination, this will guarantee
that any implementation of −→ converges to a unique solution.

4.4.2 Termination and Confluence

The previous version of rewriting did not terminate because of this rule:

x ∈ {y ∈ a : e} ▷ x ∈ a ∧ eσ where σ(y) ≜ x

The problem is that the substitution eσ may introduce a match for some rewriting rule
that was not present before. We illustrated this with the formula R ∈ R where R ≜
{x ∈ S : ¬(R ∈ R)}. Termination is recovered by using this rule instead:

x ∈ {y ∈ a : e} ▷ x ∈ a ∧ ∃y : y = x ∧ e

Applying this to the example:

R ∈ R −→ R ∈ V ∧ ∃x : x = R ∧ ¬(x ∈ x)

The subformula x ∈ x cannot be rewritten because x is a variable.

Theorem 4.4.5 (Termination). The rewriting system of Figure 4.4 terminates, i.e. there is
no infinite sequence e1, e2, . . . such that e1 −→ ei+1.

Proof. The idea of the proof is to exhibit a measure on expressions that is strictly decreasing
with −→, with respect to some well-founded order.

With each expression e, we will associate a triple of natural numbers w(e). We consider
the lexicographic order on N3, noted ≺, which is defined by

(m,n, p) ≺ (m′, n′, p′) iff either m < m′

or m = m′ and n < n′

or m = m′ and n = n′ and p < p′

90 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

a ⊆ b ▷ ∀x : x ∈ a⇒ x ∈ b x ∈ a ∪ b ▷ x ∈ a ∨ x ∈ b
x ∈ {a1, . . . , ap} ▷ x = a1 ∨ · · · ∨ x = ap x ∈ a ∩ b ▷ x ∈ a ∧ x ∈ b

x ∈ ∅ ▷ false x ∈ a \ b ▷ x ∈ a ∧ ¬(x ∈ b)
x ∈ union a ▷ ∃y : y ∈ a ∧ x ∈ y x ∈ boolean ▷ ∨ x = casto(true)
x ∈ subset a ▷ ∀y : y ∈ x⇒ y ∈ a ∨ x = casto(false)
x ∈ {y ∈ a : ϕ} ▷ x ∈ a ∧ ∃y : y = x ∧ ϕ “foo” ∈ string ▷ true
x ∈ {T : y ∈ a} ▷ ∃y : x = T ∧ y ∈ a

f ∈ [a→ b] ▷ ∧ isafcn(f) isafcn([x ∈ a 7→ T]) ▷ true
∧ domain f = a domain [x ∈ a 7→ T] ▷ a

∧ ∀x : x ∈ a⇒ f [x] ∈ b isafcn([f except ! [x] = y]) ▷ true
domain [f except ! [x] = y] ▷ domain f

t ∈ a× b ▷ ∧ t[1] ∈ a isafcn(⟨x, y⟩) ▷ true
∧ t[2] ∈ b domain ⟨x, y⟩ ▷ {1, 2}
∧ t = ⟨t[1] , t[2]⟩ ⟨x, y⟩[1] ▷ x

⟨x, y⟩[2] ▷ y

r ∈ [foo : a, bar : b] ▷ ∧ r[“foo”] ∈ a isafcn([foo 7→ x, bar 7→ y]) ▷ true
∧ r[“bar”] ∈ b domain [foo 7→ x, bar 7→ y] ▷ {“foo”, “bar”}
∧ r = [foo 7→ r[“foo”] , [foo 7→ x, bar 7→ y][“foo”] ▷ x

bar 7→ r[“bar”]] [foo 7→ x, bar 7→ y][“bar”] ▷ y

Figure 4.4: Rewriting Rules

4.4. REWRITING 91

It remains to define w(e) = (n1, n2, n3). The idea is to count occurrences of certain
primitive operators in e. The measure will decrease because all rewriting rules simplify e by
removing at least one primitive operator. But some rules also introduce new operators which
count for w(e), for example:

domain ⟨x, y⟩ ▷ {1, 2}

The key is to define w(e) in such a way that the operator ⟨_,_⟩ weighs more more than {_,_}.
This is why we have chosen a lexicographic order rather than the simpler order < on N.

n1 is defined as the number of occurrences of the operators × and [foo : _, bar : _]. n2 is
the number of occurrences of ⟨_,_⟩ and [foo 7→ _, bar 7→ _]. n3 is the number of occurrences
of ⊆, {_, . . . ,_}, ∅, union, subset, {_ ∈ _ : _}, {_ : _ ∈ _}, ∪, ∩, \ , boolean, string,
[_→ _], [_ ∈ _ 7→ _], [_ except ![_] = _].

We can verify that w(l) ≻ w(r) for all rules l ▷ r. For instance:

w(domain ⟨x, y⟩) = (0, 1, 0) ≻ (0, 0, 1) = w({1, 2})

Then, clearly, w(E[lσ]) ≻ w(E[rσ]) for all l ▷ r. Therefore e −→ e′ implies w(e) ≻ w(e′).
But N3 is known to be well-ordered by ≺, so −→ terminates.

We now turn to the confluence property, starting with some basic definitions.

Definition 4.4.6. We denote by −→⋆ the reflexive transitive closure of −→. Two expres-
sions e1 and e2 are joinable iff there exists e′ such that e1 −→⋆ e′ and e2 −→⋆ e′. A rewriting
system is confluent if for every e, e1 and e2 such that e −→⋆ e1 and e −→⋆ e2, e1 and e2 are
joinable. A rewriting system is locally confluent if for every e, e1 and e2 such that e −→ e1
and e −→ e2, e1 and e2 are joinable.

Any confluent rewriting system is locally confluent. The converse is not true in general,
but a classic result by Newman states that local confluence suffices for terminating systems.

Lemma 4.4.7 (Newman). Any terminating, locally confluent rewriting system is confluent.

Proof. A proof of this result is given by Huet [42]. The proof consists of a double induction
on the lengths of the two sequences e −→⋆ e1 and e −→⋆ e2.

It suffices to prove that our rewriting system is locally confluent. Let us look again at the
rule a ∪ ∅ ▷ a (which is not part of our system). We saw that the expression {S ∪ ∅, T} ∪ ∅
could be reduced in two different ways. The two resulting formulas are joinable:

{S ∪ ∅, T} ∪ ∅

{S, T} ∪ ∅ {S ∪ ∅, T}

{S, T}

However, the introduction of this rule to our system would break (local) confluence, as this
case illustrates:

92 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

x ∈ (S ∪ ∅)

x ∈ S x ∈ S ∨ x ∈ ∅

Since x ∈ ∅ can be rewritten as false, we could join the pair by adding the schema of rules
ϕ ∨ false ▷ ϕ. We purposefully avoided rules that act on propositional connectives to make
confluence easy to prove. In the original version of the encoding, confluence was only proved
for rewriting systems that exclude applications of set extensionality. a∪ ∅ ▷ a is an instance
of set extensionality.

It can be difficult to prove local confluence directly. We may reduce the problem to a
small number of easy verifications with the notion of critical pair.

Definition 4.4.8. A common instance of two expressions e1 and e2 is an expression e′ such
that e′ = e1ρ = e2σ for some substitutions ρ and σ. The expression e′ is a most general com-
mon instance if for all common instance e′′ of the same expressions, there is a substitution σ′

such that e′′ = e′σ′.

Definition 4.4.9. Let l1 ▷ r1 and l2 ▷ r2 be two rewriting rules. Suppose there exists an open
expression e such that l1 = E[e] and a most general common instance eρ = l2σ. Then the
pair of expressions ⟨Eρ[r2σ] , r1ρ⟩ is called a critical pair. A critical pair is joinable if the two
expressions are joinable.

The definition of critical pairs is based on the following template for diverging rewritings:

l1ρ = E[e] ρ = Eρ[eρ] = Eρ[l2σ]

Eρ[r2σ] r1ρ

Example 4.4.10. A critical pair can be derived from the rules

l1 ▷ r1 : x ∈ (a ∪ b) ▷ x ∈ a ∨ x ∈ b
l2 ▷ r2 : a ∪ ∅ ▷ a

The relevant subterm of l1 is (a ∪ b). It admits a most general common instance with l2
through the substitution ρ(b) ≜ ∅ (all other variables are ignored). This leads to the critical
pair ⟨x ∈ a, x ∈ a ∨ x ∈ ∅⟩.

Critical pairs are useful because we can enumerate them. It suffices to go through all rules
l ▷ r and check if some subterm of l can be matched with the left pattern l′ of another (or the
same) rule. When that is the case it suffices to consider the most general match possible.

Lemma 4.4.11. A rewriting system is locally confluent if all of its critical pairs are joinable.

Proof. This is proven by Huet [42].

Theorem 4.4.12 (Confluence). The rewriting system of Figure 4.4 is confluent.

4.4. REWRITING 93

Proof. Since it is terminating (Theorem 4.4.5), it suffices to check that all critical pairs are
joinable (Lemmas 4.4.7 and 4.4.11).

There are actually almost no critical pair in our rewriting system. All critical pairs result
from the rules that are parameterized by a term T or a formula ϕ. For instance, there is a
class of critical pairs that consists of pairs of the form

x ∈ {y ∈ a : E[lσ]}

x ∈ {y ∈ a : E[rσ]} x ∈ a ∧ ∃y : y = x ∧ E[lσ]

x ∈ a ∧ ∃y : y = x ∧ E[rσ]

For some rule l ▷ r. But the pair is easily joinable, as the diagram also shows.
Note that y ∈ a is not a subexpression of {y ∈ a : ϕ}. Although we are using the readable

TLA+ notations here, such an expression must be read as setst(a, λy : ϕ).

To summarize the results of this section, we state the following:
Theorem 4.4.13. For all e, there is a unique e′ such that e −→⋆ e′ and e′ cannot be rewritten.

Proof. Termination ensures the existence of e′. Suppose e′′ also satisfies the conditions of
the theorem. Then e′ and e′′ must be joinable, by confluence. But neither can be rewritten,
therefore e′ = e′′.

Example 4.4.14. Let us see how rewriting affects our running example. The last section
ended with the obligation

assume new A : ι, new B : ι, new f : ι,
in(f, arrow(domain(f), B)),
subseteq(domain(f), A))

prove in(f, union(setof1(subset(A), λXι : arrow(X,B))))

We apply as many rewriting rules as possible (we let the reader translate the expressions
of Figure 4.4 into our alternative notations). With some minor modifications to improve the
presentation, we obtain the following result:

assume new A : ι, new B : ι, new f : ι,
isafcn(f),
domain(f) = domain(f),
∀x : in(x, domain(f))⇒ in(fcnapp(f, x), B),
∀x : in(x, domain(f))⇒ in(x,A)

prove ∃y : ∧ ∃X : ∧ ∀x : in(x,X)⇒ in(x,A)
∧ y = arrow(X,B)

∧ in(f, y)

94 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

Note that it is possible to rearrange quantifiers and substitute arrow(X,B) for y in the
goal, and then eliminate the redundant quantifier ∃y. That would result in the goal

∃X : ∧ ∀x : in(x,X)⇒ in(x,A)
∧ in(f, arrow(X,B))

This can be rewritten further, eliminating the last occurrence of the operator arrow. However,
implementing this kind of simplifications might result in a non-terminating encoding.

4.5 Axiomatization

All TLA+ primitive operators are specified by axioms. During the axiomatization phase of
the encoding, explicit declarations and axioms are inserted in the proof obligation’s context
for all relevant operators.

4.5.1 Definition and Correctness

The input of this step is a sequent Γ ⊢ ϕ, where Γ contains operator declarations with types,
hypotheses which are just Boolean expressions, and the goal ϕ is a Boolean expression. We
consider that the primitive operators of TLA+ are bound to a standard signature Σ, and the
class of possible interpretations is defined by a theory T . Axiomatization can be formally
understood as the selection of operators from Σ and axioms from T to be inserted at the
top of the sequent’s context, resulting in a new sequent ∆,Γ ⊢ ϕ. The signature Σ and the
theory T are omitted; when the obligation is discharged to an automated prover, that prover
will only have access to the information about TLA+’s theory that is encoded in ∆.

The implementation of this step is straightforward. Let Γ ⊢ ϕ be the current sequent and
K ∈ Dom(Σ) some operator that has not been explicitly declared yet. We select a finite set
of axioms T ′ for K and produce the new sequent

new K : Σ(K), T ′,Γ ⊢ ϕ

While the original sequent Γ ⊢ ϕ is preserved, all occurrences of K in it refer to the new
declaration.1 This process must be repeated as long as the sequent contains operator symbols
bound in Σ. Note that the addition of T ′ may introduce operators that did not occur in
the sequent before; we must be mindful of dependencies between primitive operators, or
axiomatization may not terminate.

Theorem 4.5.1. Axiomatization is sound and terminating.

We can only lay out the arguments in an abstract manner. To actually prove it, one would
need to verify all axioms individually, either by hand or by automated means.

Proof. The full list of axioms for the TPTP encoding can be found in appendix B. It is clear
that there is no cycle between operator dependencies, so the process terminates.

1Some transformation of Γ ⊢ ϕ is actually required in practice. TLAPS implements bound variables as
De Bruijn indices—natural numbers identifying the unique binder a variable is linked to. Any modification of
the proof obligation’s context must be accompanied by an update of all variable indices. This technical point
about the implementation is hidden by our formalism.

4.5. AXIOMATIZATION 95

For soundness, consider a Σ-interpretation I such that I |= T . Let ∆ ≜ new k : Σ(k), T ′

as described above. Appending ∆ to the current context is sound if I |= ∆, which is obvious
as long as T |= T ′. In general, the axioms of T ′ are elementary consequences of T (see the
discussion below for examples).

We do not claim that axiomatization is complete. Typical cases of incompleteness arise
when the operator(s) required for expressing an existential witness do not occur in the obli-
gation. Consider Cantor’s theorem expressed as the proof obligation

assume new S, new f ∈ [S → subset S]
prove ∃P ∈ subset S : ∀x ∈ S : f [x] ̸= P

The expected witness for P is the set {x ∈ S : x /∈ f [x]}, but the original obligation does not
include that instance of set comprehension. To prove Cantor’s theorem, users must insert an
intermediary definition or proof step to introduce this set into the proof’s context.

4.5.2 Second-order Axiomatization of TLA+

We refer the reader to appendix B for the full list of axioms. All axioms are elementary
reformulations or consequences of the axioms of TLA+. Since our target language is HOL, we
accept higher-order quantifiers for axioms; typically, the axiom schemas of TLA+ are encoded
as single axioms ∀F τ : ϕ where ord(τ) = 1.

In the original theory, primitive constructs are defined from “more primitive” ones when
possible, for example a ∪ b ≜ union {a, b}. This makes TLA+’s relative consistency with
ZFC more evident. But using those axioms would result in very long chains of dependencies
between operators. Moreover, they reflect poorly how a user would reason about those oper-
ators. In general, we replaced a complex definition from primitive operators by a more direct
characterization, with less dependencies:

∀aι, bι, xι : in(x, cup(a, b))⇔ in(x, a) ∨ in(x, b) (CupDef)

Which axioms are assigned to a given operator is always evident. In each case, the operator
depends on all the other operators that appear in its associated axioms. For instance cup is
specified by (CupDef) and depends on in.

The axioms of set theory are standard; we omit the axiom of infinity and the axiom of
foundation, since they rarely play any role in TLA+ proofs (users can explicitly invoke them
if needed). Here are the basic axioms for TLA+ functions:

96 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

∀f ι, gι : ∧ isafcn(f) ∧ isafcn(g)
∧ domain(f) =ι domain(g)
∧ (∀xι : in(x, domain(f))⇒ fcnapp(f, x) =ι fcnapp(g, x))
⇒ f =ι g

(FcnExt)

∀F ι→ι, aι : isafcn(fcn(a, F)) (FcnIsafcn)
∀F ι→ι, aι : domain(fcn(a, F)) =ι a (FcnDom)
∀F ι→ι, aι, xι : in(x, a)⇒ fcnapp(fcn(a, F), x) =ι F (x) (FcnApp)
∀aι, bι, f ι : in(f, arrow(a, b))⇔

∧ isafcn(f)
∧ domain(f) =ι a

∧ (∀xι : in(x, a)⇒ in(fcnapp(f, x), b))

(ArrowDef)

The operator isafcn is specified by (FcnExt). The operator fcn is specified by (FcnIsafcn),
(FcnDom), (FcnApp). The operator arrow is specified by (ArrowDef). The operators domain
and fcnapp are not assigned any axioms, but all other functional operators depend on them.

Tuples and records inherit from the theory of functions, but specify additional operators
that essentially replace fcn and arrow. For instance, tuples are usually constructed from tup,
and product sets from prod.

For all n ≥ 0,
∀xι

1, . . . , x
ι
n : isafcn(tupn(x1, . . . , xn)) (TupIsafcn)

∀xι
1, . . . , x

ι
n : domain(tupn(x1, . . . , xn)) = enumn(1, . . . , n) (TupDomain)

∀xι
1, . . . , x

ι
n : ∧ fcnapp(tupn(x1, . . . , xn), 1) = x1

∧ . . .
∧ fcnapp(tupn(x1, . . . , xn), n) = xn

(TupApp)

For all n ≥ 2,
∀aι

1, . . . , a
ι
n, t

ι : in(t, prodn(a1, . . . , an))⇔
∧ t = tupn(fcnapp(t, 1), . . . , fcnapp(t, n))
∧ in(fcnapp(t, 1), a1)
∧ . . .
∧ in(fcnapp(t, n), an)

(ProdDef)

The axiom (ProdDef) is justified by the TLA+ theorem

∀a1, . . . , an : a1 × · · · × an = {⟨x1, . . . , xn⟩ : x1 ∈ a1, . . . , xn ∈ an}

4.5. AXIOMATIZATION 97

We chose this formulation because it permits a more efficient treatment of functional exten-
sionality for tuples. If t and u are two tuples of the same length, and all of their components
are equal, then t = u can be derived from (ProdDef) alone.

Our theory does not include proper axiomatizations of natural, integer or real arithmetic.
We would prefer arithmetic to be handled by a prover’s internal engine, but this has only been
implemented for our SMT encoding (Chapter 5). Still, there are a few facts about TLA+’s
arithmetical operators that are required so often that we decided to include them for this
simple encoding. For instance, we specify Int to be closed under the operations +, − (both
the unary and binary versions), ∗. Likewise, ÷ and % are defined as binary functions on Int,
but the second argument must be positive. For every numerical constant n : ι that we declare,
we specify n ∈ Int and n ≥ 0. Note that we treat −1 as −(1), so we only declare constants
for positive numbers. The set Nat is specified as the set of integers z such that z ≥ 0.
Example 4.5.2. We go back to our running example, assuming rewriting has not been
applied. The result with a top context ∆ is

assume new in : ι× ι→ o

new subseteq : ι× ι→ o

new union : ι→ ι

new subset : ι→ ι

new setof1 : ι× (ι→ ι)→ ι

new isafcn : ι→ o

new fcn : ι× (ι→ ι)→ ι

new domain : ι→ ι

new fcnapp : ι× ι→ ι

new arrow : ι× ι→ ι

∀aι, bι : subseteq(a, b)⇔ (∀xι : in(x, a)⇒ in(x, b)), (SubseteqDef)
∀aι, xι : in(x, union(a))⇔ (∃yι : in(x, y) ∧ in(y, a)), (UnionDef)
∀aι, xι : in(x, subset(a))⇔ (∀yι : in(y, x)⇒ in(y, a)), (SubsetDef)
∀F ι→ι, aι, xι : in(x, setof1(a, F))⇔ ∃yι : in(y, a) ∧ x =ι F (y), (SetofDef1)

∀F ι→ι, aι : isafcn(fcn(a, F)), (FcnIsafcn)
∀F ι→ι, aι : domain(fcn(a, F)) =ι a, (FcnDom)
∀F ι→ι, aι, xι : in(x, a)⇒ fcnapp(fcn(a, F), x) =ι F (x), (FcnApp)
∀aι, bι, f ι : in(f, arrow(a, b))⇔ (ArrowDef)

∧ isafcn(f)
∧ domain(f) =ι a

∧ (∀xι : in(x, a)⇒ in(fcnapp(f, x), b)),

new A : ι, new B : ι, new f : ι,
in(f, arrow(domain(f), B)), (Hyp1)
subseteq(domain(f), A)) (Hyp2)

prove in(f, union(setof1(subset(A), λXι : arrow(X,B)))) (Goal)

98 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

thf(fresh_mem, type, (mem: $i > $i > $o)).
thf(fresh_subsetEq, type, (subsetEq: $i > $i > $o)).
thf(fresh_union, type, (union: $i > $i)).
thf(fresh_subset, type, (subset: $i > $i)).
thf(fresh_setof_1, type, (setof_1: $i > ($i > $i) > $i)).
thf(fresh_fcnIsafcn, type, (fcnIsafcn: $i > $o)).
thf(fresh_fcn, type, (fcn: $i > ($i > $i) > $i)).
thf(fresh_fcnDom, type, (fcnDom: $i > $i)).
thf(fresh_fcpApp, type, (fcpApp: $i > $i > $i)).
thf(fresh_arrowSet, type, (arrowSet: $i > $i > $i)).

% axioms omitted...

thf(fresh_a, type, (a: $i)).
thf(fresh_b, type, (b: $i)).
thf(fresh_f, type, (f: $i)).

thf(fact35, axiom,
(mem @ f @

(arrowSet @ (fcnDom @ f) @ b))).

thf(fact36, axiom,
(subsetEq @ (fcnDom @ f) @ a)).

thf(goal, conjecture,
(mem @ f @

(union @
(setof_1 @ (subset @ a) @

(^ [X: $i] :
(arrowSet @ X @ b)))))).

Figure 4.5: Running Example Encoded in TPTP

Axioms that play no part in the proof have been omitted (set and functional extensionality).
All the functional axioms are added, plus some axioms of set theory.

4.6 Translation to TPTP

The proof obligation is now a sequent ∆,Γ ⊢ ϕ in the logic Lι, which we view as a subset
of HOL. All the relevant information about TLA+’s semantics has been encoded into the ∆
part of the context. The last step is the translation to TPTP/THF itself. The translation is
direct and without any difficult point to address, so we will simply demonstrate it by showing
the result of encoding our running example. The output is displayed below; we have omitted
the axioms so that it can fit on the page.

The sorts ι and o are represented by the builtin sorts $i and $o, respectively. A functional

4.7. EVALUATION 99

type s1 → s2 is represented s1 > s2. There is no builtin type for functions of several
arguments, but a type s1 × s2 → s3 may be encoded as s1 → (s2 → s3) in HOL, which is
written s1 > (s2 > s3) in TPTP. An application f(x, y) is then translated as (f @ x) @ y.
The connective > has right associativity and @ has left associativity, therefore parentheses
can be removed for both expressions: s1 > s2 > s3 and f @ x @ y.

4.7 Evaluation
We implemented the TPTP encoding in order to integrate Zipperposition as a backend solver
for TLAPS. Zipperposition is a superposition theorem prover for first-order logic with equality
and theories [20]. It features an extension to support higher-order logic [7, 82,83].

In this section, we evaluate the new Zipperposition backend on a large set of TLA+

specifications. We focus our evaluation on the effects of enabling rewriting in the TPTP
encoding, and the performances of Zipperposition compared to the Isabelle backend.

4.7.1 Methodology

Our data is a set of TLA+ specifications coming from three different sources:

• The library of TLA+ Examples;2

• The TLAPS Examples as found in the distribution of the tool;

• A recent specification of Lamport’s Deconstructed Bakery algorithm [49].

The full dataset contains 35 specifications with proofs, from which TLAPS generates a total
number of 4612 proof obligations. Specifications vary wildly in size: the largest file, which
contains the proof of refinement for the Deconstructed Bakery, contains 892 obligations; in
contrast, many files contains only elementary results of fewer than 10 obligations.

We proceeded in two steps for our experiment: first, we generated benchmarks for each
solver by calling TLAPS on the TLA+ files; then, we ran the solvers on their respective
benchmarks. Each benchmarks corresponds to a different encoding of TLA+ (Isabelle, TPTP
without rewriting, TPTP with rewriting). For the Isabelle benchmark, we tested Isabelle for
the three tactics auto, blast and force, which are the tactics available from TLAPS. We
considered a given obligation to be solved by Isabelle if at least one tactic could solve it.

For all solvers, we set a timeout of 5 seconds, which is the default timeout in TLAPS. The
experiment was carried out on a Dell Latitude laptop with a 1.90 GHz Intel Core i7 processor.

4.7.2 Results and Discussion

The results are presented in Table 4.1 and Table 4.2. The first table compares the results
of Zipperposition with and without rewriting. The second table compares Isabelle with
Zipperposition—for the latter, we combined the results obtained by disabling or enabling
rewriting. For all tables, we indicate the number of obligations solved by each backend (top
numbers) and the number of obligations solved uniquely by each backend (bottom numbers).

As Table 4.1 demonstrates, rewriting’s impact on performances is only marginal. The
overlap between the two versions of the TPTP encoding (2400 obligations) is substantial.

2https://github.com/tlaplus/Examples

https://github.com/tlaplus/Examples

100 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

Specification Size (# POs) Backend
Zipper. Zipper.+RW

TLA+ Distribution 1996 1124 1124
10 10

TLAPS Distribution 1402 810 800
13 3

Deconstructed Bakery 1214 510 498
21 9

Total 4612 2444 2422
44 22

Table 4.1: Number of Obligations Solved by Zipperposition

Specification Size (# POs) Backend
Isabelle Zipperposition

TLA+ Distribution 1996 1106 1134
181 209

TLAPS Distribution 1402 898 813
204 119

Deconstructed Bakery 1214 609 519
196 106

Total 4612 2613 2466
581 434

Table 4.2: Comparison of the Isabelle and Zipperposition Backends

4.7. EVALUATION 101

This is not especially surprising as the rewriting system we implement is very elementary,
compared to the rewriting system of the SMT encoding it is based on. Enabling rewriting
actually results in less obligations being solved. One possible explanation is that rewriting
may remove important terms by eliminating TLA+ primitives, making certain existential
statements harder to prove; however, we could not find a particular obligation that clearly
fails for that specific reason.

Table 4.2 shows that Isabelle and Zipperposition perform rather similarly, with Isabelle
solving 147 additional obligations in total. Isabelle uniquely solves 581 obligations, Zipper-
position uniquely solves 434, which indicates the backends have complementary strengths.
Combined in a portfolio, they solve 3047 obligations.

102 CHAPTER 4. A DIRECT ENCODING OF TLA+ INTO HIGHER-ORDER LOGIC

Chapter 5

An Optimized Encoding into
First-order SMT

5.1 Overview

In Chapter 4, we described a direct encoding of TLA+ into HOL, more precisely the THF
dialect of TPTP. We proved that encoding sound with respect to the semantics defined in
Chapter 3. In this chapter, we describe our encoding to SMT-LIB.

The encoding is presented in Figure 5.1. The general structure is identical to the encoding
presented in the previous chapter (Figure 4.1), with two steps completely preserved (recov-
ering formulas, optional rewriting). The axiomatization is adapted for SMT and completed
with user patterns (triggers) to guide the instantiation module of SMT. Expressions are also
transformed during this step to encode second-order expressions, arithmetical expressions,
and equalities relevant to the axiom of set extensionality. The final translation step is of
course modified to target SMT-LIB. The final problem sets the SMT logic to UFNIA by
default, and UFLIA when the target solver is veriT.

The target logic Lι,int
1 is a restriction of the logic Ls with an uninterpreted sort ι and the

interpreted sort int of SMT. We assume the arithmetical operators of SMT are present with
their intended semantics.1 Moreover, second-order applications are not permitted in Lι,int

1 .
Operator symbols cannot occur as arguments to other operators, and lambda-expressions
cannot appear at all. Nested sequents cannot be parameterized by operators, as this is a form
of second-order quantification. When an obligation Γ ⊢ e is such that Γ contains a sequent S,
and S contains an operator declaration, like new F (_), then S is simply omitted to finish
the translation. If S is essential to the proof then SMT will likely fail, so users should opt for
a higher-order backend like Isabelle or Zipperposition in that case.

The rest of this chapter is organized as follows. We first provide some background on
SMT solvers and E-matching (Section 5.2). This will also serve as a general introduction
to our method supported by some examples. We then present our strategy for writing an
axiomatization of TLA+ with triggers (Section 5.3). We then present some fragments of the
axiomatizations that are handled in a special ways: axiom schemas, integer arithmetic, and
set extensionality (Section 5.4). Finally, we evaluate our SMT encoding and compare its
performances with the original SMT encoding (Section 5.5).

1For a presentation, see the SMT documentation [6] or the page https://smtlib.cs.uiowa.edu/
theories-Ints.shtml

103

https://smtlib.cs.uiowa.edu/theories-Ints.shtml
https://smtlib.cs.uiowa.edu/theories-Ints.shtml

104 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

TLA+ Proof Obligation

Recovering Formulas

Rewriting (optional)

Axiomatization

Translation

SMT-LIB

L+ T

Lι + T ′

Lι + T ′

Lι,int
1

Disambiguate terms and formulas

Eliminate primitive operators

Append explicit declarations and
first-order axioms with triggers

Translate directly

Figure 5.1: SMT Encoding Overview

5.2 E-matching Patterns
SMT solvers extend SAT solvers with procedures for first-order theories. Theories of interest
for SMT users include integer and real arithmetic (linear, non-linear), bit vectors, and exten-
sional arrays. First-order logic is undecidable in general, but quantifiers over uninterpreted
domains are still supported by an instantiation module. The purpose of this module is to
produce instances of the quantified formulas of the problem to insert into the quantifier-free
problem.

Propositional logic is decidable, so we will focus on the much harder problem of generating
the right instances of our first-order axioms. In this context, it is helpful to restrict our study
to universally quantified formulas in prenex form:

∀xs1
1 , . . . , x

sn
n : ϕ where ϕ is quantifier-free

All problems of first-order logic can be reduced to problems with formulas of the form above
through the application of elementary logical equivalences and Skolemization [3].
Example 5.2.1. Take the axiom specifying the subset relation in TLA+:

∀aι, bι : subseteq(a, b)⇔
(
∀xι : in(x, a)⇒ in(x, b)

)
(Subseteq)

To put (Subseteq) in prenex form, we apply logical rules to move the nested quantifier ∀xι

up the structure of the formula. Before this, we split the equivalence in two implications:

∀aι, bι : ∧ subseteq(a, b)⇒
(
∀xι : in(x, a)⇒ in(x, b)

)
∧

(
∀xι : in(x, a)⇒ in(x, b)

)
⇒ subseteq(a, b)

We can now apply the following rules for moving quantifiers above implications:

ϕ⇒ (∀x : ψ) ⇔ ∀x : ϕ⇒ ψ

(∀x : ϕ)⇒ ψ ⇔ ∃x : ϕ⇒ ψ

5.2. E-MATCHING PATTERNS 105

As the second rule shows, the ∀xι that originally occurs on the left of a ⇒ must become
existential. Quantifiers that become existential when moved to the top are called strong, and
the others weak. To finish putting the axiom in prenex form, we put the conjuncts in two
separate axioms:

∀aι, bι, xι : subseteq(a, b)⇒
(
in(x, a)⇒ in(x, b)

)
(SubseteqElim)

∀aι, bι : ∃xι :
(
in(x, a)⇒ in(x, b)

)
⇒ subseteq(a, b) (SubseteqIntro)

Skolemization is a technique for eliminating strong quantifiers. The intuition is that
existentially quantified variables can be safely replaced by terms playing the role of witnesses
in inner formulas. Since ∃xι occurs below two universal quantifiers, we introduce a new binary
symbol w and rewrite (SubseteqIntro) as

∀aι, bι : (in(w(a, b), a)⇒ in(w(a, b), b))⇒ subseteq(a, b)

SMT solvers vary in how they preprocess formulas and apply Skolemization, which itself
admits several definitions. We will not systematically transform expressions to put them in
universal prenex form as we did in Example 5.2.1, because we assume SMT solvers can handle
this part more efficiently. However we will consider moving weak quantifiers at the top of our
axioms, as this makes it easier to focus on quantifier instantiation. Finding relevant instances
is a difficult problem, and we need to assist the SMT solvers for this task.

E-matching is one of several approaches to the problem of quantifier instantiation [24,
36, 63, 64]. The basic principle of E-matching is to look in the current ground problem for
terms matching syntactical patterns. Patterns can be user-defined or heuristically generated.
Formally, we represent the ground problem with a set E of propositional formulas with unin-
terpreted symbols and equalities, and a pattern by a term p with free variables. A match is
a ground term t and a substitution σ such that E |= t = pσ. Typically, solvers will look for
terms t that occur in the current problem, possibly resulting from Skolemization; those terms
are said to be known.

Example 5.2.2. Consider the following elementary theorem of TLA+:
module Subseteq

extends TLAPS

theorem assume new S , new T , new U ,
U = S ∩ T

prove U ⊆ S
obvious

1

This is proved intuitively by taking an x ∈ U and proving x ∈ S. Because U = S ∩ T , we
have x ∈ S ∩ T and therefore x ∈ S. We will now look at a possible formalization in SMT to
see how the automated proof might proceed.

The obligation is first-order and does not feature arithmetic, so the direct encoding of
Chapter 4 results in a problem that SMT can handle. We insert two axioms into the problem
for specifying the subset relation and the intersection operator (one unnecessary axiom is
omitted). Axioms are annotated with patterns indicated between curly braces. The obligation
is proved if the set of formulas below is found unsatisfiable. Note that we use different

106 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

notations to highlight the structures of first-order expressions: subseteq is the relation ⊆, cap
is the binary operator ∩, in is the relation ∈.

∀aι, bι : {subseteq(a, b)} (in(w(a, b), a)⇒ in(w(a, b), b))⇒ subseteq(a, b) (Subseteq)
∀aι, bι, xι : {in(x, cap(a, b))} in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b) (Cap)
U = cap(S, T) (H)
¬subseteq(U, S) (G)

The term subseteq(U, S) in the goal matches the pattern of (Subseteq). We say that the ax-
iom is triggered by this match. The match is represented by the substitution {a 7→ U, b 7→ S}.
That substitution is used to generate an instance of the axiom, which is introduced into the
ground problem:

(in(w(U, S), U)⇒ in(w(U, S), S))⇒ subseteq(U, S) (F1)

Note that w(U, S) plays the role of x in our intuitive proof, because it now suffices to assume
w(U, S) is an element of U and prove it is an element of S to derive a contradiction.

The subterm in(w(U, S), U) in (F1) matches the pattern {in(x, cap(a, b))} for the substitu-
tion {a 7→ S, b 7→ T, x 7→ w(U, S)}. E-matching finds matches modulo equality, so the equality
in (H) is accounted for to match U with cap(a, b). The new fact is

in(w(U, S), cap(S, T))⇔ in(w(U, S), S) ∧ in(w(U, S), T) (F2)

Now a contradiction can be derived from the ground problem, which means the problem has
been solved. That last step was essentially the expansion of x ∈ S ∩ T into x ∈ S ∧ x ∈ T .

Example 5.2.2 considered axioms with single patterns, but typically we want to match
several patterns at the same time. A trigger for the variables x1, . . . , xn is a set of patterns
{p1, . . . , pk} such that the free variables of all pj are exactly the variables xi. We may annotate
axioms with several triggers, so the general form is

∀xs1
1 , . . . , x

sn
n : {p1,1, . . . , p1,n1}
· · ·
{pm,1, . . . , p1,nm}

ϕ

where ϕ is quantifier-free. A term t is a match if there exists a substitution σ such that
E |= t = pi,jσ for some i and all j ≤ ni. So any individual trigger can produce an instance,
but all patterns of that trigger must match simultaneously.

Modern SMT solvers implement efficient procedures for detecting terms matching trig-
gers [24]. As a result, triggers have become a popular solution among SMT users for writing
custom axiomatizations [50, 55]. Triggers offer some control over the instantiation engine to
the user, which is why they are sometimes presented as a way to program SMT solvers. In
fact, it is possible to define notions of termination and completeness for triggers in a satisfac-
tory way [30]. Intuitively, we will say an axiomatization terminates if only a finite number of
instances can be produced from any finite ground problem. We will say it is complete if any
provable problem is still provable when only instances produced by triggers are allowed.

5.3. SELECTING AXIOMS AND TRIGGERS FOR TLA+ 107

SMT solvers can generate triggers automatically, but we found that we could achieve bet-
ter results by selecting our own triggers. The next section will detail our strategy for trigger
selection through motivating examples. On the subject of soundness, there is nothing to add
from our previous discussion on axiomatization (Section 4.5): triggers do not change the se-
mantics of formulas, so they are perfectly safe to use. However, termination and completeness
are not guaranteed. Our axiomatization enjoys neither of these properties, but many of our
choices are still guided by considerations of termination and completeness: we select as many
adequate triggers as possible to anticipate different proof scenarios, but we reject triggers that
obviously result in irrelevant instances or matching loops.

5.3 Selecting Axioms and Triggers for TLA+

5.3.1 Case Study

In this section, we will focus on a simple theorem of TLA+, displayed below.
module Intersection

extends TLAPS , Integers

theorem assume new S ,
S ∩ Int ⊆ {}

prove 1 /∈ S
obvious

1

Here is an intuitive proof: we assume 1 ∈ S and derive a contradiction; since 1 ∈ S and
1 ∈ Int, we have 1 ∈ S ∩ Int; since S ∩ Int ⊆ {}, we have 1 ∈ {}, which is contradictory.

The proof involves three set-theoretic primitive operators of TLA+, namely the subset
relation, the intersection and the empty set. No arithmetic is needed beyond the fact that
1 ∈ Int. We will look at a few different ways to formulate the axioms with triggers, starting
from a rather naive theory and finishing with the actual theory we implement. For every
attempt, it is important that we consider exclusively instances resulting from triggers, so that
the solution scales to larger problems. The problem above is simple enough so that SMT
solvers can find all instances by enumerative approaches; in very large problems, the search
space of ground terms may be too large, and there may be too many quantifiers for this
approach to work.

Example 5.3.1 (First Attempt). The encoded problem is displayed below. We treat 1 as
a constant of the sort ι and assume the fact 1 ∈ Int has been derived. Details about how
arithmetic is handled can be found in Section 5.4.2.

∀aι, bι : {subseteq(a, b)} subseteq(a, b)⇔
(
∀xι : in(x, a)⇒ in(x, b)

)
(Subseteq)

∀aι, bι, xι : {in(x, cap(a, b))} in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b) (Cap)
∀xι : {in(x, enum0)} ¬in(x, enum0) (Empty)

subseteq(cap(S, Int), enum0) (H1)
in(1, Int) (H2)
in(1, S) (G)

108 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

Here, the only match possible is the term subseteq(cap(S, Int), enum0) for the axiom (Subseteq)
and the substitution {a 7→ cap(S, Int), b 7→ enum0}. This results in the new fact

subseteq(cap(S, Int), enum0)⇔
(
∀xι : in(x, cap(S, Int))⇒ in(x, enum0)

)
(F1)

Let us put (F1) in prenex form to continue the proof. This is the exact process we described
earlier, it results in the two facts

∀xι : subseteq(cap(S, Int), enum0) ∧ in(x, cap(S, Int))⇒ in(x, enum0) (F1a)(
in(w(. . .), cap(S, Int))⇒ in(w(. . .), enum0)

)
⇒ subseteq(cap(S, Int), enum0) (F1b)

where w is a new symbol and w(. . .) is the term w(cap(S, Int), enum0).
(F1a) is a quantified formula. Since it has no trigger and we do not consider other methods

of instantiation, we cannot use it. However, the path to a contradiction requires instantiating
the formula with 1. Therefore, we are stuck. The fact (F1b) is ground, but it will not make
the proof progress.

The problem from Example 5.3.1 is not provable using triggers only. Before we present a
solution, let us stress the obvious analogy between those triggers and the rewriting rules

a ⊆ b ▷ ∀x : x ∈ a⇒ x ∈ b
x ∈ a ∩ b ▷ x ∈ a ∧ x ∈ b
x ∈ {} ▷ false

Triggers were directly taken from the left patterns of the rewriting rules. We might say
the axioms essentially implement those rewritings into the SMT problem. In both cases, a
universal quantifier with no trigger is introduced into the problem, getting us stuck.

The solution is to reformulate (Subseteq) as we did in the previous section. The axiom
is split in two; in one case, the nested quantifier ∀xι is moved at the top. This opens up the
possibility to assign a trigger that includes the three variables a, b and x.

Example 5.3.2 (Second Attempt). Compared to the previous example, only (Subseteq) has
changed. We do not Skolemize (SubseteqIntro) below—the axiom plays no role in the proof.
The axiom (SubseteqElim) is slightly reformulated to save some parentheses.

∀aι, bι : {subseteq(a, b)} (SubseteqIntro)(
∀xι : in(x, a)⇒ in(x, b)

)
⇒ subseteq(a, b)

∀aι, bι, xι : {subseteq(a, b), in(x, a)} (SubseteqElim)
subseteq(a, b) ∧ in(x, a)⇒ in(x, b)

∀aι, bι, xι : {in(x, cap(a, b))} in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b) (Cap)
∀xι : {in(x, enum0)} ¬in(x, enum0) (Empty)

subseteq(cap(S, Int), enum0) (H1)
in(1, Int) (H2)
in(1, S) (G)

Despite the modification, the situation has not changed. The axiom (SubseteqIntro) is
triggered by subseteq(cap(S, Int), enum0), but this does not make the proof progress.

5.3. SELECTING AXIOMS AND TRIGGERS FOR TLA+ 109

Formulating the axiom (Subseteq) differently has not solved the issue, but it brought us
closer to the solution. We know that (SubseteqElim) is the relevant axiom and we know how
it must be instantiated. The expected match is {a 7→ cap(S, Int), b 7→ enum0, x 7→ 1}. The
terms SMT must know about in order to find this match are subseteq(cap(S, Int), enum0) and
in(1, cap(S, Int)). Only the latter is missing.

The current trigger for (Cap) can be used to generate the definition of in(x, cap(a, b)) when
the term is already known. However, in situations when that term is not known but must
be inferred, the axiom is useless. It is then natural to provide a new trigger matching the
other side of the equivalence, so that whenever in(x, a) and in(x, b) are known, in(x, cap(a, b))
is inferred.

Example 5.3.3 (Third Attempt). We add a second trigger to (Cap) and consider the problem

∀aι, bι : {subseteq(a, b)} (SubseteqIntro)(
∀xι : in(x, a)⇒ in(x, b)

)
⇒ subseteq(a, b)

∀aι, bι, xι : {subseteq(a, b), in(x, a)} (SubseteqElim)
subseteq(a, b) ∧ in(x, a)⇒ in(x, b)

∀aι, bι, xι : {in(x, cap(a, b))}
{in(x, a), in(x, b)}

(Cap)

in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b)
∀xι : {in(x, enum0)} ¬in(x, enum0) (Empty)

subseteq(cap(S, Int), enum0) (H1)
in(1, Int) (H2)
in(1, S) (G)

The terms in(1, Int) and in(1, S) form an appropriate match, but so does the term in(1, S)
by itself (both a and b are matched to S). If the instantiation engine decides to use that
match, SMT will generate the fact

in(1, cap(S, S))⇔ in(1, S) ∧ in(1, S) (F1)

Then the new term in(1, cap(S, S)) matches (Cap) again; using this match will result in yet
another matching term. Clearly, the new trigger leads to a matching loop.

The trigger {in(x, a), in(x, b)} does make the problem solvable, but it may also result
in SMT generating too many irrelevant instances. This could make large proof obligations
significantly harder to prove in a short amount of time, so we need to avoid this kind of
problem. Hopefully, the problem can be fixed by using triggers as guards. To ensure no new
term of the form cap(a, b) is ever introduced in the ground problem, it suffices to only select
triggers that include that term.

Example 5.3.4 (Final Attempt). This version of the SMT problem is the one we do imple-
ment. Only (Cap) has changed compared with the previous version. The solution pre-
sented here is not the only possible one; in particular, we could have selected the trig-
ger {in(x, a), in(x, b), cap(a, b)}. Our solution does not require both in(x, a) and in(x, b) to

110 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

be known.

∀aι, bι : {subseteq(a, b)} (SubseteqIntro)(
∀xι : in(x, a)⇒ in(x, b)

)
⇒ subseteq(a, b)

∀aι, bι, xι : {subseteq(a, b), in(x, a)} (SubseteqElim)
subseteq(a, b) ∧ in(x, a)⇒ in(x, b)

∀aι, bι, xι : {in(x, cap(a, b))}
{in(x, a), cap(a, b)}
{in(x, b), cap(a, b)}

(Cap)

in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b)
∀xι : {in(x, enum0)} ¬in(x, enum0) (Empty)

subseteq(cap(S, Int), enum0) (H1)
in(1, Int) (H2)
in(1, S) (G)

The axiom (Cap) is triggered by the terms in(1, S) and cap(S, Int), resulting in the
fact (F1) below. Then the facts (F2) and (F3) are successively introduced as instances
of (SubseteqElim) and (Empty). We do not detail the matching terms for those.

in(1, cap(S, Int))⇔ in(1, S) ∧ in(1, Int) (F1)
subseteq(cap(S, Int), enum0) ∧ in(1, cap(S, Int))⇒ in(1, enum0) (F2)
¬in(1, enum0) (F3)

The ground problem is now contradictory, therefore the proof is done.

5.3.2 General Strategy

We refined our axioms and triggers progressively by inspecting some difficult TLA+ obliga-
tions and looking for trigger-based solutions. Thus or method for trigger selection is essentially
heuristic and does not follow a strict set of rules. Nevertheless, we were able to extract some
recurring ideas. In this section, we formulate some key principles behind our strategy for
trigger selection. First, we define a few general notions.

We denote by x⃗ a sequence of variables x1, . . . , xn. The length n of the sequence is left
ambiguous. A sequence of variables annotated by the sort s is written x⃗ s. Our axioms are
all of the form

∀x⃗ ι : {p1, . . . , pn} ϕ

where ϕ is without weak quantifiers. For all terms t, let Terms(t) be the collection of all
first-order subterms of t (including t itself). For a given axiom with a trigger as noted above,
the terms generated by the trigger are the elements of the collection

Terms(ϕ) \
⋃

1≤i≤n

Terms(pi)

By inspecting the terms in that collection, we can predict what kinds of terms an instance
may introduce into the ground problem.

5.3. SELECTING AXIOMS AND TRIGGERS FOR TLA+ 111

Example 5.3.5. Consider again the axiom for the intersection of two sets:

∀aι, bι, xι : in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b)

Here are the four triggers we considered and the set of terms each generates:

{in(x, cap(a, b))} generates in(x, a), in(x, b)
{in(x, a), in(x, b)} generates in(x, cap(a, b)), cap(a, b)
{in(x, a), cap(a, b)} generates in(x, cap(a, b)), in(x, b)
{in(x, b), cap(a, b)} generates in(x, cap(a, b)), in(x, a)

Borrowing the terminology of Leino [50], we call adequate a trigger that mentions all
quantified variables, and parsimonious a trigger {p1, . . . , pn} that becomes inadequate when
any pi is removed. Adequacy is a strict requirement of SMT. Parsimony captures the notion
of a most general trigger: a nonparsimonious trigger can be simplified into another trigger
that matches more often.

Example 5.3.5 above presents the four triggers for cap that are both adequate and parsi-
monious. Of these four triggers, only the one generating the term cap(a, b) has been rejected,
because it results in an obvious matching loop. The remaining triggers only generate terms
that have in as a top connective. Besides the matching loop, we make the following obser-
vation: it is generally useful to generate new facts of the form in(t1, t2) where t1 and t2 are
known, because it may lead to discover some implicit connexions between the different sets
involved in a proof; on the contrary, we can hypothesize that many TLA+ obligations do
not require inventing sets that are not already mentioned in the obligation’s statement, so
generating terms of the form cap(t1, t2) is not as useful.

We found helpful to classify the operators of TLA+ as either constructors or accessors.
Intuitively, constructors (like cap) build complex objects from simpler ones, and accessors
(like in) give information about the objects they are applied to. We assume typical valid
TLA+ obligations can be proved without mentioning objects (sets, functions, etc.) that are
not already mentioned in the obligation; thus we avoid generating terms C(t1, . . . , tn) where C
is a constructor. We also encourage the generation of specific terms A(t1, . . . , tn) where A is
an accessor.

We may now formulate our general strategy for selecting triggers:

I Only axioms of the form ∀x⃗ ι : ϕ where ϕ is without weak quantifiers are considered.
Axioms are reformulated and sometimes split to obtain that form.

II To select triggers, we start from the set of adequate and parsimonious triggers that can
be formulated using only subterms of ϕ.

III We reject a trigger if it generates a term C(t1, . . . , tn) where C is a constructor, or if it
contains two terms with no variable in common.

IV For all terms A(t1, . . . , tn) in ϕ where A is an accessor, we look if the term is generated
by at least one trigger. If not, and if generating A(t1, . . . , tn) is important for some
proofs, we consider adding a nonparsimonious trigger.

The third principle reduces the risk of generating irrelevant terms and prevents matching
loops. The fourth principle increases the chances of generating the terms necessary to a
proof.

112 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

∀aι, xι : {in(x, union(a))} (UnionElim)
in(x, union(a))⇒ ∃yι : in(x, y) ∧ in(y, a)

∀aι, xι, yι : {in(y, a), in(x, union(a))}
{in(x, y), in(x, union(a))}
{in(x, y), in(y, a), union(a)}

(UnionIntro)

in(x, y) ∧ in(y, a)⇒ in(x, union(a))

Figure 5.2: Axioms for union

For the rest of this section, we illustrate how these principles are applied to the axioms
of set theory and functions for TLA+. Integer arithmetic will be dealt with elsewhere (Sec-
tion 5.4.2) as it involves using SMT’s native arithmetic. Other fragments of TLA+’s theory
(tuples, records, sequences. . .) are based on the axioms of functions. For the full list of
axioms used in the SMT encoding, we refer the reader to Appendix C.

Set Theory

The following operators of ZF set theory are considered to be constructors: enumn, union,
subset, setstP , setofF , cup, cap, diff. The only accessor is the membership relation in. The
following pattern is shared by many axioms of set theory:

∀a⃗ ι, xι : in(x,C (⃗a))⇔ ϕ(x, a⃗) (C-Define)

where C is a constructor. When the defining formula ϕ contains quantifiers, we split the
axiom in two, resulting in a introduction and an elimination axioms:

∀a⃗ ι, xι, y⃗ ι : in(x,C (⃗a))⇒ ϕ1(x, a⃗, y⃗) (C-Elim)
∀a⃗ ι, xι, y⃗ ι : ϕ2(x, a⃗, y⃗)⇒ in(x,C (⃗a)) (C-Intro)

The formula ϕ1 may contain strong quantifiers. The formula ϕ2 may contain weak quantifiers
(which are strong for the axiom as a whole, since ϕ2 occurs on the left of an implication).

To illustrate, we take the example of the TLA+ operator union, which we denote union.
Our axioms are displayed in Figure 5.2. The basic form of the axiom is

∀aι, xι : in(x, union(a))⇔ ∃yι : in(x, y) ∧ in(y, a)

The defining formula is an existential statement, so the axiom is split in two. The existential
quantifier is still present in the elimination part; in the introduction part, it is moved at the
front as a universal quantifier.

Axiom (UnionElim) receives only one trigger, {in(x, union(a))}. This is the only adequate
trigger possible. We could apply Skolemization to the formula to have more candidate triggers.
However, Skolem terms do not occur in the starting ground problem, so it is unclear if triggers

5.3. SELECTING AXIOMS AND TRIGGERS FOR TLA+ 113

∀cι
1, . . . , c

ι
n, a

ι : {fcnF (a, c1, . . . , cn)} (FcnIsafcn)
isafcn(fcnF (a, c1, . . . , cn))

∀cι
1, . . . , c

ι
n, a

ι : {fcnF (a, c1, . . . , cn)} (FcnDom)
domain(fcnF (a, c1, . . . , cn)) = a

∀cι
1, . . . , c

ι
n, a

ι, xι : {fcnapp(fcnF (a, c1, . . . , cn), x)}
{in(x, a), fcnF (a, c1, . . . , cn)}

(FcnApp)

in(x, a)⇒ fcnapp(fcnF (a, c1, . . . , cn), x) = F (x, c1, . . . , cn)

Figure 5.3: Axioms for Functions

that mention such terms will generate relevant instances. In general, we do not Skolemize
our axioms.

Axiom (UnionIntro) is an interesting case. The first two triggers are parsimonious. Other
parsimonious triggers are

{in(x, y), in(y, a)}
{in(x, y), union(a)}

We reject the first one because it generates union(a), and the second one because the terms
in(x, y) and union(a) have no variable in common (there are too many ways to match it).

The triggers we kept both mention the term in(x, union(a)), so they can never generate
this term. For the introduction axioms of set theory, we found that many obligations relied
on the implicit inference of such facts. Consider for instance

x ∈ y ∧ y ∈ S ∧ union S ⊆ T ⇒ x ∈ T

The fact x ∈ union S follows from the assumptions, but it is not mentioned explicitly. The
third trigger is added to handle this kind of obligations:

{in(x, y), in(y, a), union(a)}

Note that it is not parsimonious.
In general, for all axioms of the form (C-Define), (C-Elim) or (C-Intro), all selected triggers

contain either in(x,C (⃗a)) or C (⃗a). This ensures no term C (⃗a) is ever generated. Furthermore,
for axioms of the form (C-Define) and (C-Intro), we ensure at least one trigger generates the
term in(x,C (⃗a)). In most cases, this is already done by a parsimonious trigger. (UnionIntro) is
the only exception among the axioms of ZF set theory.

Functions

TLA+’s theory of functions involves the following primitive constructs:

[x ∈ S 7→ F (x)] , domain f, f [x] , [S → T]

114 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

These constructs are respectively noted using the operators fcnF , domain, fcnapp and arrow.
The operator fcnF is rather a family of operators parameterized by the higher-order argu-
ment F . We treat it as a constructor. The operators domain and fcnapp are accessors.
Internally, the class of all functions is specified by a predicate isafcn, which is not accessible
in the user language. We treat is as an accessor. The operator arrow is a constructor specified
by an axiom of the form (C-Define).

Let us focus first on the specification of explicit functions with their domains and values.
They are specified by three axiom schemas, presented in Figure 5.3. The subject of axiom
schemas will be treated in more details in the next section. Each of the three schemas specifies
the return value of some accessor for an explicit function as input. To clarify using TLA+’s
notations:

• (FcnIsafcn) specifies isafcn([y ∈ a 7→ F (y)]) to be true in all cases;

• (FcnDom) specifies domain [y ∈ a 7→ F (y)]) to be a in all cases;

• (FcnApp) specifies [y ∈ a 7→ F (y)][x] to be F (x) under the condition x ∈ a.

In general, each axiom gives the definition of some term A(C (⃗a), x⃗) under an optional
condition ϕ. Thus all the axioms of Figure 5.3 fall under the pattern

∀a⃗ ι, x⃗ ι : ϕ(⃗a, x⃗)⇒ A(C (⃗a), x⃗) = t(⃗a, x⃗) (C-A-Define)

where C is a constructor, A an accessor, ϕ a formula and t a term. The constructor C is fcnF

for the three schemas. ϕ is just true for (FcnIsafcn) and (FcnDom)
It is helpful to consider the general form (C-A-Define), because this form is also applicable

to the axioms of tuples, records and sequences. These theories introduce new constructors,
but also reuse the accessors isafcn, domain and fcnapp.

We describe our strategy for the general axiom. Triggers that do not generate a term
C (⃗a) can be of two sorts; some mention the term C (⃗a), some mention the term A(C (⃗a), x⃗).
When the list of variables x⃗ is empty, the simple trigger {C (⃗a)} is already adequate and
parsimonious, so we just select this one; the axioms (FcnIsafcn) and (FcnDom) fall under this
case. If x⃗ is not empty, then {A(C (⃗a), x⃗)} is adequate and parsimonious, so we select it. In
the case of (FcnApp), this corresponds to the trigger

{fcnapp(fcnF (a, c1, . . . , cn), x)}

It is also desirable to select triggers that generate the term A(C (⃗a), x⃗). We also look for
parsimonious triggers that contain C (⃗a). This must be done on a case by case basis for every
axiom. Typically, adequate triggers are obtained by selecting subterms from the condition
formula ϕ. In the case of (FcnApp), we select

{in(x, a), fcnF (a, c1, . . . , cn)}

We do not look for subterms in F (x, c1, . . . , cn), even though there might be more parsimonious
triggers to select from those subterms. This is a limitation of our implementation, as we have
not gone as far as implementing a procedure for selecting triggers automatically.

Lastly, the operator arrow is treated as a set constructor, and its axiom falls under the
general form (C-Define). The axiom is split into an introduction and elimination axioms, and

5.3. SELECTING AXIOMS AND TRIGGERS FOR TLA+ 115

triggers are selected for it as we described before. Consider the introduction part:

∀aι, bι, f ι : {in(f, arrow(a, b))} (ArrowIntro)
∧ isafcn(f)
∧ domain(f) = a

∧ (∀xι : in(x, a)⇒ in(fcnapp(f, x), b))
⇒ in(f, arrow(a, b))

This axiom is lacking a trigger to generate in(f, arrow(a, b)). The two parsimonious triggers
below do generate this term:

{isafcn(f), arrow(a, b)}
{domain(f), arrow(a, b)}

But we reject them because they both feature two terms with no variable in common; any of
these triggers would lead SMT to match all functions with all sets of functions mentioned in
the problem.

Our solution for generating in(f, arrow(a, b)) comes in the form of a new axiom:

∀cι
1, . . . , c

ι
n, a

ι, bι : {fcnF (a, c1, . . . , cn), arrow(a, b)} (FcnTyping)
(∀xι : in(x, a)⇒ in(F (x, c1, . . . , cn), b))⇒ in(fcnF (a, c1, . . . , cn), arrow(a, b))

To clarify using TLA+’s notations, this axioms allows us to prove [x ∈ a 7→ F (x)] ∈ [a→ b]
when the condition ∀x : x ∈ a ⇒ F (x) ∈ b is verified. It complements the introduction
axiom for arrow by taking advantage of the fact that explicit functions with domain a are
good candidates for the elements of a set [a→ b].

The axiom (FcnTyping) exemplifies another recurrent pattern in our axiomatization,
which is

∀a⃗ι, b⃗ι, c⃗ ι : ϕ(⃗a, b⃗, c⃗)⇒ in(C (⃗a, b⃗), D(⃗a, c⃗)) (C-Typing)

where C is a constructor, D a set constructor, and ϕ a formula. Typing axioms are pervasive
in the theories of tuples, records and sequences. When a⃗ is nonempty, the trigger{

C (⃗a, b⃗), D(⃗a, c⃗)
}

is a good option: the fact that one variable of the list a⃗ must be present in the two terms
matching the pattern ensures less irrelevant instances are considered. When a⃗ is empty, this is
not the case anymore, so we select triggers differently. Typically, the triggers selected mention
C (⃗b) and some subterm of ϕ containing D(c⃗) and a variable of b⃗. Some good examples of this
are found in the theory of sequences. A set of sequences is noted Seq(a) and the concatenation
of two sequences s and t is noted Cat(s, t). The typing axiom for Cat is

∀aι, sι, tι : {in(s,Seq(a)),Cat(s, t)}
{in(t,Seq(a)),Cat(s, t)}

(CatTyping)

in(s,Seq(a)) ∧ in(t,Seq(a))⇒ in(Cat(s, t),Seq(a))

116 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

For all P : ιn+1 → o,
∀cι

1, . . . , c
ι
n, a

ι, xι : {in(x, setstP (a, c1, . . . , cn))}
{in(x, a), setstP (a, c1, . . . , cn)}

(SetstDef)

in(x, setstP (a, c1, . . . , cn))⇔ in(x, a) ∧ P (x, c1, . . . , cn)

Figure 5.4: Axiom Schema for Set Comprehension

5.4 Other Topics in the SMT Axiomatization
Some fragments of the axiomatization are handled in a particular way. This section provides
more details on the topics of axiom schemas, integer arithmetic and set extensionality. Most
of these extensions involve simple transformations on proof obligations, so we will indicate
how they are implemented.

5.4.1 Axiom Schemas

The following primitive operators of TLA+ are specified by one or several axiom schemas:
choose, setst, setof and fcn. For the encoding into HOL, we could simply declare the second-
order operator and the full schema as a second-order axiom, for instance:

∀P ι→o, aι, xι : in(x, setst(a, P))⇔ in(x, a)⇒ P (x)

The principle is the same for each operator, so we will focus on setst for our examples.
A reduction to FOL is achieved by replacing every occurrence setst(a, P) by a first-order

term setstP (a, c1, . . . , cn), where setstP is a new symbol and c1, . . . , cn are parameters that
encode the context in which the original term occurs. The operator setstP is specified by the
particular instance of the set comprehension schema for P . See Figure 5.4 for the first-order
axiom schema used by the SMT encoding, triggers included.

Example 5.4.1. Consider the TLA+ formula

∃n : {p ∈ Int : p ̸= n} ≠ Int

In HOL, the instance of set comprehension above is written setst(Int, λp : p ̸= n). The higher-
order argument is λp : p ̸= n. It includes the variable n, which is bound by a quantifier in
the formula. When writing the relevant instance of the comprehension schema, we cannot
reference n, because it is bound locally. Therefore, we will use a parameter to pass n as an
argument in the encoded term.

We declare setstP : ι× ι→ ι and specify it with the axiom

∀nι, aι, xι : in(x, setstP (a, n))⇔ in(x, a) ∧ x ̸= n

The original formula is encoded as

∃nι : setstP (Int, n) ̸= Int

5.4. OTHER TOPICS IN THE SMT AXIOMATIZATION 117

In general, we must at least make parameters c1, . . . , cn for the free variables of P that
are bound by a quantifier. However, implementing this naively, we will find that many easy
proof obligations have become much harder to solve. Consider the formula

∃n : {p ∈ Int : p ̸= n} = {p ∈ Int : p ̸= 1 + 1}

The set on the left is the same as in example 5.4.1. The set on the right has a different
higher-order argument Q, which does not include the variable n. Applying the procedure we
just described results in the formula

∃nι : setstP (Int, n) = setstQ(Int)

which is still provable, but only by invoking set extensionality, whereas the original obligation
seems trivial by instantiating ∃n with 1 + 1.

To fix this particular example, we can reuse the symbol setstP to encode the other set as
setstP (Int, 1 + 1). In general, when treating an occurrence setst(a, λx : e), we can anticipate
reuses by selecting the most general lambda-expression P such that λx : e is an instance of P .
For λp : p ̸= 1 + 1, we can choose λp : p ̸= x where x is any variable other than p. The same
lambda-expression works for λp : p ̸= n, which shows the two lambda-expressions have the
same “shape”. Let us now make this idea more formal.

Definition 5.4.2. An instance of a lambda-expression f is any lambda-expression fσ for a
substitution σ. The matrix of a lambda-expression f is an m such that f is an instance of m,
and if f is an instance of another m′ then m′ is an instance of m.

Notice that it would not be very useful to generalize the definition above to expressions.
The matrix of any e would just be x for the substitution {x 7→ e}. For a lambda-expression
λx1, . . . , xn : e, the matrix has to be a lambda-expression λx1, . . . , xn : e′ such that e = e′σ
and no xi is in the domain or the range of σ. This follows from the definition and the fact
that we assume σ to be compatible with the lambda-expression.

Proposition 5.4.3. The matrix m of a lambda-expression f is unique up to renaming of free
variables. Furthermore, every free variable of m has exactly one occurrence.

Proof. Suppose m1 and m2 are two matrices of f . By definition, m1 and m2 must be instances
of each other. Let σ1 and σ2 such that m1 = m2σ2 and m2 = m1σ1. We have m1 = m1σ1σ2.
The composite substitution σ1σ2 is the identity, so clearly σ1 and σ2 are just renamings of
free variables.

If m has a free variable x that occurs more than once, then m cannot be a matrix, because
it is easy to construct a m′ such that m is an instance of m′ but not the converse. Simply
define m′ by replacing every occurrence of x in m by a distinct variable yi. Then m is an
instance of m′ for {y1 7→ x, y2 7→ x, . . .}.

It remains to prove the existence of matrices for all lambda-expressions. Consider the
algorithm presented in Figure 5.5. If σ and ρ are substitutions with disjoint domains then
σ⊎ρ is their union. ∅ also denotes the unique substitution whose domain is empty. To simplify
the presentation, we omit all sort annotations. The input expression e is assumed to be
without second-order applications, because during preprocessing all second-order applications
are rewritten from the bottom up.

118 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

abstract(e,X, σ) :=
{

(v, σ ⊎ {v 7→ e}) if FV(e) ∩X = ∅ with v /∈ X ∪Dom(σ)
visit(e,X, σ) otherwise

visit(x,X, σ) := (x, σ)
visit(K(e1, . . . , en), X, σ) := let σ0 := σ

and (e′
i, σi) := abstract(ei, X, σi−1) for 1 ≤ i ≤ n in

(K(e′
1, . . . , e

′
n), σn)

visit(e1 = e2, X, σ) := let (e′
1, σ1) := abstract(e1, X, σ) in

let (e′
2, σ2) := abstract(e2, X, σ1) in

(e′
1 = e′

2, σ2)
visit(e1 ⇒ e2, X, σ) := let (e′

1, σ1) := abstract(e1, X, σ) in
let (e′

2, σ2) := abstract(e2, X, σ1) in
(e′

1 ⇒ e′
2, σ2)

visit(∀x : e,X, σ) := let (e′, σ1) := abstract(e,X ∪ {x} , σ) in
(∀x : e′, σ1)

matrix(e,X) ::= abstract(e,X, ∅)

Figure 5.5: Matrix Algorithm

We admit the algorithm is correct in the following sense: if (e′, σ) = matrix(e, {x1, . . . , xn})
then λx1, . . . , xn : e′ is the matrix of λx1, . . . , xn : e for the substitution σ. The idea of the
algorithm is to build σ incrementally while parsing the input expression from the top down.
When a subterm does not contain any variable from X, it is replaced by a fresh variable and σ
is updated.

We now describe how the implementation of the axiomatization phase must be modified.
During this phase, the proof obligation Γ ⊢ e is parsed; for all primitive operators encountered,
a declaration and axioms are inserted in the sequent. The final sequent has the form ∆,Γ ⊢ e
where ∆ contains the additional declarations and axioms. We focus now on the case where a
second-order application is encountered:

K(e1, . . . , λx1, . . . , xn : e, . . . , en)

If the higher-order argument is a symbol F instead, we treat it as λx1, . . . , xn : F (x1, . . . , xn),
where n is the arity of F . Let (e′, σ) be the result of the call matrix(e, {x1, . . . , xn}). Then
the original application is replaced by

Ke′(e1, . . . , σ(v1), . . . , σ(vm), . . . , en)

where {v1, . . . , vm} is the domain of σ. The operator Ke′ may have been declared already, in
which case we resume parsing the sequent. Otherwise, we need to make a declaration for Ke′

and insert its axioms, if there are any.
An axiom schema for K is a formula ϕ parameterized by an operator F such that ϕ

contains at least one occurrence of K, and all applications of K are of the form

K(e1, . . . , F, . . . en)

5.4. OTHER TOPICS IN THE SMT AXIOMATIZATION 119

∀zint : {castint(z)} z = projint(castint(z)) (CastIntInjective)
∀zint : {castint(z)} in(castint(z), Int) (IntIntro)
∀xι : {in(x, Int)} in(x, Int)⇒ x = castint(projint(x)) (IntElim)
∀zint

1 , zint
2 : {plus(castint(z1), castint(z2))}

plus(castint(z1), castint(z2)) = castint(z1 +int z2) (PlusTyping)

Figure 5.6: Axioms for Integer Arithmetic (Addition Only)

The first-order instance of ϕ for Ke′ is the formula ∀v1, . . . , vm : ϕ′ where ϕ′ is obtained from ϕ
by replacing all applications of K like the one above by

Ke′(e1, . . . , v1, . . . , vm, . . . , en)

The top context ∆ is updated with the declaration of Ke′ (its type is easy to infer from the
type of K and the sorts of the variables in Dom(σ)) and the appropriate instances for all
axiom schemas associated with K.

5.4.2 Integer Arithmetic

Reasoning modulo theory is a strength of SMT. We want to leverage SMT’s native support
for integer arithmetic to handle the TLA+ obligations that involve this theory. Our encoding
so far has only dealt with one sort ι besides the Boolean sort, so no term is encoded into int.
We present now an extension of the axiomatic theory that effectively links SMT’s and TLA+’s
arithmetics.

SMT’s integer arithmetic is characterized by a sort int, several primitive operators like
addition +int : int× int→ int, and a specific interpretation of int and the primitive operators
on it. TLA+, in comparison, defines integers as the elements of the set Int and specifies
operators like + axiomatically. Despite the differences between the two languages, the idea is
still to define a homomorphism between their respective arithmetical structures. Concretely,
we declare a new operator castint : int → ι that is injective and ranges over the elements
of Int. We then introduce axioms to link the operators of TLA+ with their counterparts in
SMT if they have one.

The axioms are displayed in Figure 5.6. Besides castint, we provide the new opera-
tor projint : ι → int. castint is specified as a surjective operator from ι to the subdomain
of ι characterized by the predicate x ∈ Int (axioms (IntIntro) and (IntElim)). It is specified
as injective by (CastIntInjective). Indeed, if castint(m) = castint(n) for some m,n : int, then
m = projint(castint(m)) = projint(castint(n)) = n. Compare (CastIntInjective) with the more
natural expression of injectivity with its obvious trigger:

∀zint
1 , zint

2 : {castint(z1), castint(z2)} castint(z1) = castint(z2)⇒ z1 = z2

Suppose there are N known terms castint(n) at a given time while SMT solves an obliga-
tion. The axiom above will generate N2 different instances—one per couple of terms. The
axiom (CastIntInjective) will only generate N .

120 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

The axiom (PlusTyping) establishes the homomorphic relation between TLA+’s addition
(which is noted plus) and SMT’s +int. It is easily generalized to the other operators of TLA+

for integer arithmetic: unary and binary substraction, multiplication, quotient and remainder,
and the comparison relation. We could apply the same principle to numerical constants, which
would lead to trivial axioms such as

1 = castint(1int)

where 1 is the TLA+ constant and 1int the interpreted SMT constant. It is much simpler to
just rewrite 1 as castint(1int) in proof obligations, so that is what we implement during the
axiomatization phase. For quotient and remainder, we must restrict the axiom to positive
integers for the second argument, as the operators are unspecified in TLA+ otherwise:

∀zint
1 , zint

2 : {div(castint(z1), castint(z2))}
z2 >int 0int ⇒ div(castint(z1), castint(z2)) = castint(z1 ÷int z2)

Without the condition z2 >int 0int, we would be able to prove 1÷ 0 ∈ Int and 1÷ (−1) ∈ Int,
which are both unprovable in TLA+.
Theorem 5.4.4. The extension of the axiomatic theory for including SMT’s arithmetic is
sound.

Proof. The axioms (CastIntInjective), (IntIntro) and (IntElim) essentially declare castint as a
bijection between the domain of int and the elements of TLA+’s domain that are members
of Int. The two collections have the same cardinality so there must be such a bijection. The
axiom (PlusTyping) essentially states that TLA+’s interpretation of plus on the elements
of Int coincides with SMT’s interpretation of +int, which we assume to be true.

Example 5.4.5. To see how the axioms work in practice, we demonstrate with the theorem

∀x : x ∈ Int ⇒ x+ 0 = x

We assume a constant x : ι is declared and derive a contradiction from the assumptions

in(x, Int) (H)
plus(x, castint(0int)) ̸= x (G)

Here is the sequence of relevant instances that are generated from this starting set:

in(x, Int)⇒ x = castint(projint(x)) by (IntElim) (F1)
plus(castint(projint(x)), castint(0int)) = castint(projint(x) +int 0int) by (PlusTyping) (F2)

The fact (F1) is the instance of (IntElim) triggered by the term in(x, Int). After the insertion
of (F1), the equality x = castint(projint(x)) can be derived by ground reasoning, so the subterm
plus(x, castint(0int)) from (G) becomes a match for the axiom (PlusTyping), resulting in the
new fact (F2). The final problem is contradictory, as shown by the following equalities:

plus(x, castint(0int)) = plus(castint(projint(x)), castint(0int))
= castint(projint(x) +int 0int) by (F2)
= castint(projint(x)) by SMT’s arithmetic
= x

But plus(x, castint(0int)) ̸= x by (G).

5.4. OTHER TOPICS IN THE SMT AXIOMATIZATION 121

∀xι, yι : {invokeSetExt(x, y)} (∀zι : in(z, x)⇔ in(z, y))⇒ x = y (SetExt)
∀xι, yι : {setEquals(x, y)} setEquals(x, y)⇔ x = y (SetEqualsDef)
∀xι, yι : {setEquals(x, y)} invokeSetExt(x, y) (InvokeSetExt)

Figure 5.7: Set Extensionality Axioms for SMT

5.4.3 Set Extensionality

Some obligations cannot be solved without the axiom of set extensionality:

∀x, y : (∀z : z ∈ x⇔ z ∈ y)⇒ x = y

The axiom applies to every object in the universe of set theory. We know from experience that
SMT solvers are unable to infer the relevant instances of set extensionality without triggers;
but there is no obvious trigger to choose for the axiom. However, in many cases, the relevant
equality to prove by extensionality occurs explicitly in the obligation. For example:

assume new S, new T

prove S ∪ T = T ∪ S

A less trivial example may be found at the end of the Paxos proof in the distribution of
TLAPS (we modified the names and removed irrelevant facts):

assume new S, new T,

S ⊆ T ∧ S ̸= T,

∀x, y ∈ T : x = y

prove S = ∅

Here is the intuitive proof: T is either empty or a singleton set; S is a proper subset of T , so
it can only be empty. Set extensionality must be invoked twice to prove the goal: one time
to use S ̸= T , the other to prove S = ∅.

The idea then is to let equalities found in the obligation trigger the axiom of set exten-
sionality. This cannot be implemented in the form of a trigger {x = y}, because the symbol =
is interpreted by SMT. The solution is the set of axioms of Figure 5.7. Two new binary predi-
cates invokeSetExt and setEquals are introduced. The axiom (SetEqualsDef) specifies setEquals
as an alias for =. The operator invokeSetExt is not specified by anything; it is just used to
control the instantiation of (SetExt). The axiom (InvokeSetExt) is a rule: it is triggered when
an equality setEquals(x, y) is found; its only effect is to introduce invokeSetExt(x, y) into the
ground problem, triggering (SetExt) right after.

To make this solution work, relevant equalities in the PO must be rewritten:

x = y ▷ setEquals(x, y) in positive contexts when x or y is a set

The two conditions are heuristics to aim for more relevant instances of set extensionality. A
polarity is assigned to every subexpression in the standard way: the top expression is positive;

122 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

the polarity is reversed when going down a negation, or left of an implication, and for the
hypotheses of a sequent. A subexpression is in a positive context if its polarity is positive.
Here is an example of an expression with an equality in a negative context:

∀x, y : x = ∅ ⇒ y /∈ x

The subexpression x = ∅ will not be rewritten; there is no need to in order to prove that
the expression is valid. The second condition is related to typing: it would be ill-advised
to try solving, for example, the goal 1 + 1 = 2 by set extensionality. In the absence of a
type inference mechanism, we simply consider a set to be a term whose top connective is
set-theoretic, like ∪ or union for instance.

5.5 Evaluation
We implemented the new SMT encoding in TLAPS. It can be used in place of the original
encoding. The original encoding can still be used by passing the argument --debug oldsmt
to TLAPS. We present now an evaluation designed to compare the performances of the two
versions of the SMT encoding.

5.5.1 Methodology

We adapt the methodology of Section 4.7 to evaluate the different encodings for the SMT
backend. Our set of TLA+ specifications is the same as before. TLAPS is invoked to encode
each obligation three times: one version is for our encoding, the other two correspond to the
T0 and T1 type systems of the original encoding. There is a third option T2 for the original
encoding, but during our evaluation we found that the implementation of this type system is
unsound in a way that is too difficult to fix. The error would cause type-checking conditions
such as x ∈ domain f to be ignored, making it very easy to prove invalid statements.

The three encodings lead to three different SMT benchmarks. Several SMT solvers are
tested on the benchmarks: CVC4, cvc5, veriT and Z3. The timeout for solving is set to
5 seconds for all solvers (this is the default timeout in TLAPS). For veriT, the mention
of SMT’s logic UFNIA is replaced with UFLIA, because veriT does not support non-linear
integer arithmetic. To obtain the results of the original encoding, we merged the results
obtained from T0 and T1. An obligation is considered solved using the original encoding if it
is solved using either T0 and T1.

By default, SMT solvers use our custom patterns, but this default behavior can be overri-
den by an option for each solver. To confirm the impact of our triggers, we tested every solver
with the default behavior and with an option to ignore user patterns, for every obligation.

5.5.2 Results and Discussion

The results are presented in Tables 5.1, 5.2 and 5.3. Table 5.1 compares performances when
using the original SMT encoding or our new version. We report the number of obligations
solved using each version (top numbers) and the number of obligations uniquely solved using
each version (bottom numbers). Table 5.2 is read similarly. It focuses on our new encoding
and compares the results of three solvers—the results of CVC4 and cvc5 have been merged
because of the substantial overlap between them. Table 5.3 looks at solvers individually to
measure the impact of our custom patterns on performances. The top left numbers indicate

5.5. EVALUATION 123

Specification Size (# POs) Encoding
Original New

TLA+ Distribution 1996 1688 1821
56 189

TLAPS Distribution 1402 1281 1333
44 96

Deconstructed Bakery 1214 1030 1188
26 184

Total 4612 3999 4342
126 469

Table 5.1: Comparison with the Original SMT Encoding

Specification Size (# POs) Solver
Z3 CVC4-5 veriT

TLA+ Distribution 1996 1754 1762 995
53 67 0

TLAPS Distribution 1402 1278 1273 854
52 53 0

Deconstructed Bakery 1214 1104 1121 236
67 84 0

Total 4612 4136 4156 2085
172 204 0

Table 5.2: Solvers’ Performances with the New Encoding

Specification Size (# POs) Solver
Z3 CVC4 cvc5 veriT portfolio

TLA+ Dist. 1996 1516 1754 1695 1750 1686 1722 748 995 1745 1821
21 259 14 69 22 58 18 265 4 80

TLAPS Dist. 1402 1120 1278 1155 1256 1156 1240 510 854 1232 1333
12 170 4 105 5 89 3 347 0 101

D. Bakery 1214 927 1104 1027 1109 1036 1116 199 236 1093 1188
17 194 48 130 42 122 5 42 2 97

Total 4612 3563 4136 3877 4115 3878 4078 1457 2085 4070 4342
50 623 66 304 69 269 26 654 6 278

Table 5.3: Impact of User Patterns (Triggers)

124 CHAPTER 5. AN OPTIMIZED ENCODING INTO FIRST-ORDER SMT

how many obligations where solved without our triggers, the top right numbers indicate how
many obligations where solved with our triggers. The bottom numbers are the numbers of
obligations uniquely solved, for that solver. We also report the performances of a virtual best
solver in the last column “portfolio”, whose results are obtained by merging the results of all
solvers: an obligation is solved in portfolio mode if it solved by one solver at least.

As Table 5.1 shows the original encoding solves 3999 obligations in total while ours solves
4342—an increase of 8,5%. There are 126 obligations that we do not solve anymore, and
469 that only our version solves. Among these 469 obligations, many are not solved with
the original encoding because of a bug in the preprocessing phase: 195 obligations were not
successfully encoded with T0, 432 with T1.

Table 5.2 details how solvers performed with the new encoding. Among the 4342 obli-
gations solved, 4136 (95%) were solved by Z3, 4156 (95%) were solved by either CVC4 or
cvc5, and 2085 (48%) were solved by veriT. The poorer performances of veriT may be due
to the limitation of the solver to linear integer arithmetic. There are 172 obligations solved
uniquely by Z3, and 204 solved by CVC4 or cvc5 but no other solver. Thus, the majority of
TLA+ obligations that can be solved by the SMT backend may be solved by combining Z3
with either CVC4 or cvc5.

If we ask solvers to ignore our triggers (user patterns), the total number of obligations
solved is 4070, as reported by Table 5.3. Thus, our triggers represent an increase of 6,6% in
terms of obligations solved, compared to the triggers automatically generated by the solvers.
Moreover, disabling user patterns results in only 6 additional obligations to be solved. All
solvers are positively impacted by enabling our triggers, but some more than others. Z3
and veriT profit the most from our triggers, with 623 and 654 obligations uniquely solved
respectively. The impact is not as significant for CVC4 and cvc5, with 304 and 269 obligations
solved uniquely respectively.

In summary, there is good evidence that our SMT encoding, which is an almost direct
translation of TLA+ completed by custom triggers, improves the SMT backend of TLAPS.
This conclusion must be nuanced by the fact that 126 obligations are not solved anymore
by our version. We believe our axiomatization could be improved, for example by selecting
better triggers for the instances of axiom schemas.

Chapter 6

Conclusion

TLAPS is used to ensure the soundness of computer systems through theorem proving. While
efficient automation is important, it is critical that TLAPS can be ensured sound as well. To
this end, we defined and implemented a direct encoding of TLA+ for automated theorem
provers. The direct encoding preserves most of the source obligations’ structures and is easy
to prove sound. We extended the direct encoding in a minimal way to implement a new SMT
encoding. We optimized this encoding with custom E-matching patterns, resulting in a new
SMT backend that is not only safer, but also as efficient as the one previously implemented.

New Encodings of TLA+

Our translations are based on a formalization of TLA+ as a particular theory (collection of
symbols and axioms) on top of a first-order logic. We adopted this formalism to capture
the unique semantics of TLA+, which is underspecified. TLA+ features all the usual logical
connectives from propositional and first-order logic, but it extends their traditional semantics
to account for the new combinations the language permits. For instance, the expression 2∧ 5
is legitimate, and this particular example is a refutable formula (if 2 and 5 are both true
then they must be equal). The primitive operators of TLA+, which include symbols from
set theory, arithmetic, and symbols for functions, may also be combined in unconventional
ways. For instance, 2 ∪ 5 is a legitimate expression, and while it seems nonsensical, we may
derive some facts about it, like the fact that it equals 5∪2. Our formalization does not assign
interpretations to the primitive operators of TLA+; it only provides axioms.

This formalization of TLA+ naturally leads to an encoding in two steps: first, “type errors”
resulting from unconventional uses of logical connectives must be corrected, so that the usual
semantics of first-order logic is recovered; second, the relevant operators must be declared
as uninterpreted symbols and their axioms must be included in the problem. Regarding the
first step, a similar transformation was defined for the original version of the SMT encoding,
only it was not total. For instance, with the original backend, the formula 42 ⇒ 42 is not
supported, even though it is both legitimate and valid according to TLA+’s semantics. We
defined this step and proved that it results in equisatisfiable expressions of regular first-order
logic. As for the second step, it is straightforward to implement. Only the operators occurring
in the obligation are declared, along with the axioms we have attached to them.

Encoded problems can be directly translated to higher-order logic. We implemented a
translation to the THF dialect of the TPTP standard, and added the superposition prover

125

126 CHAPTER 6. CONCLUSION

Zipperposition as a backend for TLAPS. This new backend is especially useful for TLA+

obligations that require higher-order reasoning. These obligations are not very common, but
they are inevitable in certain situations: proofs by induction on Nat or other structures, or
proofs involving user-defined recursive operators. Support for these obligations was lacking
before the addition of Zipperposition, as only the Isabelle backend could attempt to solve
them using basic automation tactics. Our evaluation shows Zipperposition and Isabelle have
complementary strengths. Zipperposition is limited by the fact that it does not support
interpreted arithmetic (for the version supporting HOL), but for problems involving higher-
order unification, it can cope with harder problems than Isabelle.

The SMT encoding is based on the architecture of the direct encoding. Second-order
constructs such as set comprehension or explicit functions are reduced to first-order appli-
cations, and the appropriate instances of their axiom schemas are generated in the process.
Integer arithmetic is supported by a few special axioms that specify a correspondence between
TLA+’s arithmetical operators and SMT’s interpreted symbols. Set extensionality is difficult
to support, but the instances of set extensionality needed for most TLA+ obligations fall into
a few predictable patterns; we use some special axioms to generate these instances. The most
important feature of our SMT encoding is the axiomatization, which is fully optimized with
E-matching patterns (triggers). We carefully selected those patterns by inspecting difficult
proof obligations and refining our axioms through an empirical process. Our method relies on
heuristics, but the strategy can be summarized in a few principles. One important principle is
to watch for the kind of terms that specific patterns may produce when they are triggered: for
instance, we avoid producing terms that introduce new sets, but we encourage the production
of new facts x ∈ S for known x and S.

The resulting encoding is still very efficient despite the simple translation it is based
on. Our evaluation shows that most obligations that were previously solved with the previous
SMT backend are still solved with our version using a combination of CVC4 and Z3. There are
also obligations that our version solves uniquely. Typically, the new version is more likely to
solve typing theorems with less assistance from the user than before. These theorems usually
consist of elementary verifications about TLA+’s set theory, but for large specifications there
are many verifications to perform, and several cases for the different possible transitions of
the system. With the previous backend, it is often the case that at least one case of the
lemma is too difficult to prove, so this particular case must be detailed or proved with Zenon.
With our backend, it is more frequent that the whole lemma can be solved in a single step.

Perspectives

Our work on translating TLA+ for ATPs can be continued in many different ways. We
outline some ideas below. The first two are simple ways to improve the SMT encoding that
we described in this work. The remaining ideas are more ambitious, and involve revisiting
the type synthesis mechanism of Vanzetto’s original work.

Verification of the Axioms. The direct encoding is based on a modular architecture
with only two nontrivial components. We presented the arguments for why our translation
is sound, so the next step would be to verify it formally. In particular, one should verify the
axioms used by the SMT encoding and documented in Appendix C. All axioms are either sim-
ple consequences of TLA+’s theory, or special axioms that extend the theory conservatively,
like our axioms for leveraging SMT’s arithmetic. This verification supposes a formalization

127

of the logic Ls (which is essentially MS-FOL with second-order applications). Ideally, the
implementation of TLAPS should be linked to the verified axiomatization, to eliminate the
risk of introducing errors when copying axioms into the code.

Extension of the Axiomatization. There are some fragments of TLA+’s theory that
our implementation does not cover. We could extend the axiomatization to support (for
example) the theory of finite sets, or real arithmetic, or bags. The reals can be supported
in the same way as the integers in our framework, by specifying a few special axioms to link
TLA+’s operators to SMT’s interpreted symbols. The theory of finite sets in TLA+ revolves
around two operators IsFiniteSet and Card. It does not seem difficult to apply our strategy
for assigning triggers to the axioms that specify finite sets. A more ambitious goal would be
to implement our strategy as a general procedure for generating patterns automatically. This
could lead to a better treatment of the axiom schemas of TLA+ for which there is no obvious
pattern (in particular the axiom schema specifying choose) and the user lemmas involved in
proof obligations.

Typed Encodings. One important shortcoming of the original SMT encoding is that
most type information is actually discarded during the translation. Type synthesis assigns
various types to expressions, including the sorts ι, int, but also types for sets, functions, tuples,
records, etc. However, these types are merely used to optimize the preprocessing phase. All
expressions are encoded as terms of the sort ι in the final problem, with the exception of the
sort int which is preserved. Thus the use of various typed encodings preserving constructed
types in their outputs have not been explored yet. Two applications in particular seem more
promising. First, SMT solvers may benefit from refined sort annotations to quantifiers and
symbols, if enumerative instantiation techniques must be used. Second, the type annotations
of the system T1 may be exploited to implement the so-called sets-as-predicates encoding,
which encodes set membership through the functional application of HOL. Types are necessary
for this encoding, because the legitimate TLA+ expression x ∈ x cannot be encoded as the
application of x to itself in HOL.

Soft Typing for TLA+. The lack of a traditional type system allows for more creativity
in formalizations and great ease of use. However, it bears some negative consequences on the
experience of interactive proof with TLAPS. Users of TLA+ are accustomed to the notion of
proving typing lemmas of the form Spec ⇒ □TypingOK . In our experience with the prover,
one should also prove typing lemmas for each user-defined operator, otherwise it becomes
difficult to manage definitions as the proofs get larger. For instance, suppose a specification
defines the composition of two functions:

g ◦ f ≜ [x ∈ domain f : g[f [x]]]

For each step of a proof, the user can choose to either expand every occurrence of ◦ into
its definition, or leave the operator completely opaque. However, there are many kinds of
situations in which the full definition of ◦ is not relevant, but some basic information about
the symbol is necessary. That basic information is precisely the kind of information that is
normally captured by typing. Thus it is often in the interest of the user that they prove the
following lemma and make sure it is always visible in proofs:

theorem assume new A, new B, new C,

new f ∈ [A→ B] , new g ∈ [B → C]
prove (g ◦ f) ∈ [A→ C]

128 CHAPTER 6. CONCLUSION

We want to suggest that the derivation and management of such lemmas could be further
supported by automation. This could take the form of a subsystem of TLAPS that automat-
ically infers typing lemmas from definitions, searches for typing hypotheses to infer the types
of quantified variables in the manner of the T1 type system, and performs type inference over
whole TLA+ specifications. Besides the interest for definition management, the system could
be used to provide immediate feedback in the form of warnings to report type errors.

Bibliography

[1] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge Uni-
versity Press, 1996.

[2] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cam-
bridge University Press, 2010.

[3] Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal form transformations. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning
(in 2 volumes), pages 273–333. Elsevier and MIT Press, 2001.

[4] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes),
pages 19–99. Elsevier and MIT Press, 2001.

[5] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakr-
ishnan and Shaz Qadeer, editors, Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV ’11), volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, July 2011. Snowbird, Utah.

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version
2.6. Technical report, Department of Computer Science, The University of Iowa, 2017.
Available at www.SMT-LIB.org.

[7] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirovic, and Uwe
Waldmann. Superposition with lambdas. In Pascal Fontaine, editor, Automated Deduc-
tion - CADE 27 - 27th International Conference on Automated Deduction, Natal, Brazil,
August 27-30, 2019, Proceedings, volume 11716 of Lecture Notes in Computer Science,
pages 55–73. Springer, 2019.

[8] Nikolaj S. BjØrner and Mark C. Pichora. Deciding fixed and non-fixed size bit-vectors.
In Bernhard Steffen, editor, Tools and Algorithms for the Construction and Analysis of
Systems, pages 376–392, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[9] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending
Sledgehammer with SMT solvers. J. Autom. Reason., 51(1):109–128, 2013.

[10] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban.
Hammering towards QED. J. Formalized Reasoning, 9(1):101–148, 2016.

129

130 BIBLIOGRAPHY

[11] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon : An extensible auto-
mated theorem prover producing checkable proofs. In Nachum Dershowitz and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, 14th
International Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Pro-
ceedings, volume 4790 of Lecture Notes in Computer Science, pages 151–165. Springer,
2007.

[12] Thomas Bouton, Diego Caminha Barbosa De Oliveira, David Déharbe, and Pascal
Fontaine. verit: An open, trustable and efficient smt-solver. In Renate A. Schmidt,
editor, Automated Deduction - CADE-22, 22nd International Conference on Automated
Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture
Notes in Computer Science, pages 151–156. Springer, 2009.

[13] Samuel R. Buss. On Herbrand’s theorem. In Daniel Leivant, editor, Logical and Computa-
tional Complexity. Selected Papers. Logic and Computational Complexity, International
Workshop LCC ’94, Indianapolis, Indiana, USA, 13-16 October 1994, volume 960 of
Lecture Notes in Computer Science, pages 195–209. Springer, 1994.

[14] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68,
1940.

[15] George E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylin-
drical algebraic decomposition. In H. Barkhage, editor, Automata Theory and Formal
Languages, 2nd GI Conference, Kaiserslautern, May 20-23, 1975, volume 33 of Lecture
Notes in Computer Science, pages 134–183. Springer, 1975.

[16] Alessio Coltellacci. Reconstruction of TLAPS proofs solved by VeriT in Lambdapi. In
Rigorous State-Based Methods: 9th International Conference, ABZ 2023, Nancy, France,
May 30–June 2, 2023, Proceedings, page 375–377, Berlin, Heidelberg, 2023. Springer-
Verlag.

[17] The Coq Development Team. The Coq Proof Assistant, version 8.7.1, December 2017.
Official Release.

[18] T. Coquand. Metamathematical investigations of a calculus of constructions. Technical
Report RR-1088, INRIA, September 1989.

[19] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and
Hernán Vanzetto. TLA+ Proofs. In Dimitra Giannakopoulou and Dominique Méry,
editors, 18th International Symposium On Formal Methods - FM 2012, volume 7436 of
Lecture Notes in Computer Science, pages 147–154, Paris, France, August 2012. Springer.
The original publication is available at www.springerlink.com.

[20] Simon Cruanes. Superposition with structural induction. In Clare Dixon and Marcelo
Finger, editors, Frontiers of Combining Systems - 11th International Symposium, FroCoS
2017, Brasília, Brazil, September 27-29, 2017, Proceedings, volume 10483 of Lecture
Notes in Computer Science, pages 172–188. Springer, 2017.

[21] Nigel Cutland. Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, 1980.

BIBLIOGRAPHY 131

[22] Lukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type
theory. J. Autom. Reason., 61(1-4):423–453, 2018.

[23] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[24] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient E-matching for SMT
solvers. In Frank Pfenning, editor, Automated Deduction - CADE-21, 21st International
Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings,
volume 4603 of Lecture Notes in Computer Science, pages 183–198. Springer, 2007.

[25] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes
in Computer Science, pages 337–340. Springer, 2008.

[26] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Deciding effectively propositional
logic using DPLL and substitution sets. In Alessandro Armando, Peter Baumgartner, and
Gilles Dowek, editors, Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes
in Computer Science, pages 410–425. Springer, 2008.

[27] [Rosalie] Defourné. Improving automation for higher-order proof steps. In Boris Konev
and Giles Reger, editors, Frontiers of Combining Systems - 13th International Sympo-
sium, FroCoS 2021, Birmingham, UK, September 8-10, 2021, Proceedings, volume 12941
of Lecture Notes in Computer Science, pages 139–153. Springer, 2021.

[28] Rosalie Defourné. Encoding TLA+ proof obligations safely for SMT. In Uwe Glässer,
José Creissac Campos, Dominique Méry, and Philippe A. Palanque, editors, Rigorous
State-Based Methods - 9th International Conference, ABZ 2023, Nancy, France, May 30
- June 2, 2023, Proceedings, volume 14010 of Lecture Notes in Computer Science, pages
88–106. Springer, 2023.

[29] David Déharbe, Pascal Fontaine, Yoann Guyot, and Laurent Voisin. Integrating SMT
solvers in Rodin. Sci. Comput. Program., 94:130–143, 2014.

[30] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Reasoning with
triggers. In Pascal Fontaine and Amit Goel, editors, 10th International Workshop on
Satisfiability Modulo Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012,
volume 20 of EPiC Series in Computing, pages 22–31. EasyChair, 2012.

[31] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th
International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003
Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–
518. Springer, 2003.

132 BIBLIOGRAPHY

[32] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew
Reynolds, and Clark W. Barrett. SMTCoq: A plug-in for integrating SMT solvers into
Coq. In Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-
ceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages 126–133.
Springer, 2017.

[33] Limor Fix. Fifteen years of formal property verification in Intel. In Orna Grumberg and
Helmut Veith, editors, 25 Years of Model Checking - History, Achievements, Perspectives,
volume 5000 of Lecture Notes in Computer Science, pages 139–144. Springer, 2008.

[34] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Alwen Fer-
nanto Tiu. Expressiveness + automation + soundness: Towards combining SMT solvers
and interactive proof assistants. In Holger Hermanns and Jens Palsberg, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 12th International Con-
ference, TACAS 2006 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Pro-
ceedings, volume 3920 of Lecture Notes in Computer Science, pages 167–181. Springer,
2006.

[35] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare
Tinelli. DPLL(T): fast decision procedures. In Rajeev Alur and Doron A. Peled, editors,
Computer Aided Verification, 16th International Conference, CAV 2004, Boston, MA,
USA, July 13-17, 2004, Proceedings, volume 3114 of Lecture Notes in Computer Science,
pages 175–188. Springer, 2004.

[36] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for quantified
formulas in satisfiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, edi-
tors, Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer
Science, pages 306–320. Springer, 2009.

[37] Paul C. Gilmore. A proof method for quantification theory: Its justification and realiza-
tion. IBM J. Res. Dev., 4(1):28–35, 1960.

[38] Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. J.
Formalized Reasoning, 3(2):153–245, 2010.

[39] David Gries and Fred B. Schneider. Avoiding the undefined by underspecification. In
Jan van Leeuwen, editor, Computer Science Today: Recent Trends and Developments,
volume 1000 of Lecture Notes in Computer Science, pages 366–373. Springer, 1995.

[40] Joseph Y. Halpern. Presburger arithmetic with unary predicates is ∏1
1 complete. J.

Symb. Log., 56(2):637–642, 1991.

[41] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD thesis, Faculté
des Sciences de Paris, 1930.

[42] Gérard P. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems: Abstract properties and applications to term rewriting systems. J.
ACM, 27(4):797–821, 1980.

BIBLIOGRAPHY 133

[43] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In Benjamin Kuipers and Bonnie L. Webber, editors, Proceedings
of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative
Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997,
Providence, Rhode Island, USA, pages 203–208. AAAI Press / The MIT Press, 1997.

[44] Cezary Kaliszyk and Karol Pąk. Semantics of mizar as an isabelle object logic. Journal
of Automated Reasoning, 63(3):557–595, Oct 2019.

[45] S.C. Kleene. Mathematical Logic. Dover books on mathematics. Dover Publications,
2002.

[46] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ model checking made symbolic.
Proc. ACM Program. Lang., 3(OOPSLA):123:1–123:30, 2019.

[47] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

[48] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

[49] Leslie Lamport and Lawrence C. Paulson. Should your specification language be typed.
ACM Trans. Program. Lang. Syst., 21(3):502–526, 1999.

[50] K. Rustan M. Leino and Clément Pit-Claudel. Trigger selection strategies to stabilize
program verifiers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I, volume 9779 of Lecture Notes in Computer Science,
pages 361–381. Springer, 2016.

[51] Stephan Merz. On the logic of TLA+. Comput. Artif. Intell., 22(3-4):351–379, 2003.

[52] Stephan Merz. Formal specification and verification. In Dahlia Malkhi, editor, Concur-
rency: the Works of Leslie Lamport, pages 103–129. ACM, 2019.

[53] Stephan Merz and Hernán Vanzetto. Encoding TLA+ into unsorted and many-sorted
first-order logic. Sci. Comput. Program., 158:3–20, 2018.

[54] Jean-François Monin. Understanding formal methods. Springer, 2003.

[55] Michal Moskal. Programming with triggers. ACM International Conference Proceeding
Series, 01 2009.

[56] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–
535. ACM, 2001.

[57] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27(2):356–364, 1980.

134 BIBLIOGRAPHY

[58] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael
Deardeuff. How Amazon web services uses formal methods. Commun. ACM, 58(4):66–73,
2015.

[59] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo
theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
J. ACM, 53(6):937–977, 2006.

[60] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

[61] Lawrence C. Paulson. The foundation of a generic theorem prover. J. Autom. Reason.,
5(3):363–397, 1989.

[62] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with
Sledgehammer, a practical link between automatic and interactive theorem provers. In
Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska, editors, The 8th International
Workshop on the Implementation of Logics, IWIL 2010, Yogyakarta, Indonesia, October
9, 2011, volume 2 of EPiC Series in Computing, pages 1–11. EasyChair, 2010.

[63] Andrew Reynolds. Conflicts, models and heuristics for quantifier instantiation in SMT.
In Laura Kovács and Andrei Voronkov, editors, Vampire@IJCAR 2016. Proceedings of
the 3rd Vampire Workshop, Coimbra, Portugal, July 2, 2016, volume 44 of EPiC Series
in Computing, pages 1–15. EasyChair, 2016.

[64] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumerative instan-
tiation. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of
Lecture Notes in Computer Science, pages 112–131. Springer, 2018.

[65] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. Finding conflicting
instances of quantified formulas in SMT. In Formal Methods in Computer-Aided Design,
FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014, pages 195–202. IEEE, 2014.

[66] John Alan Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12(1):23–41, 1965.

[67] John M. Rushby, Sam Owre, and Natarajan Shankar. Subtypes for specifications: Pred-
icate subtyping in PVS. IEEE Trans. Software Eng., 24(9):709–720, 1998.

[68] Hans-Jörg Schurr, Mathias Fleury, Haniel Barbosa, and Pascal Fontaine. Alethe: To-
wards a generic SMT proof format (extended abstract). In Chantal Keller and Mathias
Fleury, editors, Proceedings Seventh Workshop on Proof eXchange for Theorem Proving,
PxTP 2021, Pittsburg, PA, USA, July 11, 2021, volume 336 of EPTCS, pages 49–54,
2021.

[69] Hans-Jörg Schurr, Mathias Fleury, and Martin Desharnais. Reliable reconstruction of
fine-grained proofs in a proof assistant. In André Platzer and Geoff Sutcliffe, editors,

BIBLIOGRAPHY 135

Automated Deduction - CADE 28 - 28th International Conference on Automated Deduc-
tion, Virtual Event, July 12-15, 2021, Proceedings, volume 12699 of Lecture Notes in
Computer Science, pages 450–467. Springer, 2021.

[70] Robert E. Shostak. An algorithm for reasoning about equality. Commun. ACM,
21(7):583–585, jul 1978.

[71] Robert E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1–12, 1984.

[72] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[73] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal verification
of avionics software products. In Ana Cavalcanti and Dennis Dams, editors, FM 2009:
Formal Methods, Second World Congress, Eindhoven, The Netherlands, November 2-6,
2009. Proceedings, volume 5850 of Lecture Notes in Computer Science, pages 532–546.
Springer, 2009.

[74] John Michael Spivey. The Z notation - a reference manual. Prentice Hall International
Series in Computer Science. Prentice Hall, 1989.

[75] Ryan Stansifer. Presburger’s article on integer airthmetic: Remarks and translation.
Technical Report TR84-639, Cornell University, Computer Science Department, Septem-
ber 1984.

[76] Martin Suda and Christoph Weidenbach. A PLTL-Prover based on labelled superposition
with partial model guidance. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors,
Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester,
UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer Science,
pages 537–543. Springer, 2012.

[77] Geoff Sutcliffe. The TPTP problem library and associated infrastructure - from CNF to
th0, TPTP v6.4.0. J. Autom. Reason., 59(4):483–502, 2017.

[78] Geoff Sutcliffe. The 10th IJCAR automated theorem proving system competition -
CASC-J10. AI Commun., 34(2):163–177, 2021.

[79] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–483.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[80] Alan M. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proc. London Math. Soc., s2-42(1):230–265, 1937.

[81] Hernán Vanzetto. Proof automation and type synthesis for set theory in the context of
TLA+. (Automatisation de preuves et synthèse de types pour la théorie des ensembles
dans le contexte de TLA+). PhD thesis, University of Lorraine, Nancy, France, 2014.

[82] Petar Vukmirovic, Alexander Bentkamp, and Visa Nummelin. Efficient full higher-order
unification. In Zena M. Ariola, editor, 5th International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France
(Virtual Conference), volume 167 of LIPIcs, pages 5:1–5:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

136 BIBLIOGRAPHY

[83] Petar Vukmirovic and Visa Nummelin. Boolean reasoning in a higher-order superposi-
tion prover. In Pascal Fontaine, Konstantin Korovin, Ilias S. Kotsireas, Philipp Rümmer,
and Sophie Tourret, editors, Joint Proceedings of the 7th Workshop on Practical Aspects
of Automated Reasoning (PAAR) and the 5th Satisfiability Checking and Symbolic Com-
putation Workshop (SC-Square) Workshop, 2020 co-located with the 10th International
Joint Conference on Automated Reasoning (IJCAR 2020), Paris, France, June-July,
2020 (Virtual), volume 2752 of CEUR Workshop Proceedings, pages 148–166. CEUR-
WS.org, 2020.

[84] Freek Wiedijk. Mizar’s soft type system. In Theorem Proving in Higher Order Logics,
20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-
13, 2007, Proceedings, pages 383–399, 2007.

[85] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifications.
In Laurence Pierre and Thomas Kropf, editors, Correct Hardware Design and Verification
Methods, 10th IFIP WG 10.5 Advanced Research Working Conference, CHARME ’99,
Bad Herrenalb, Germany, September 27-29, 1999, Proceedings, volume 1703 of Lecture
Notes in Computer Science, pages 54–66. Springer, 1999.

Appendix A

The Standard Theory of TLA+

This appendix contains an axiomatization for TLA+. This theory is based on the logic L that
is defined in chapter 3. To sum up briefly: L is a variant of unsorted FOL in which formulas
do not form a distinct syntactic class, and second-order operators are permitted in signatures
and can occur in applications.

We have organized the theory in thematic layers: epsilon-calculus, set theory, function
theory, arithmetic, special functions (tuples, records and sequences) and finite sets. For each
layer, we provide the list of primitive operators and their assigned shapes, followed by a list
of axioms. There are several ways to formulate the theory, we have chosen one that highlights
the proximity of TLA+ with traditional ZFC. Many axioms are just definitions of primitive
constructs from already defined constructs; this choice of presentation makes the question of
TLA+’s consistency relative to ZFC easier to apprehend.

The original reference for the standard theory of TLA+ is [48]. While we have adapted
the presentation, we believe that our axiomatization is compatible with the reference book as
it only differs in superficial ways. The most notable difference is our treatment of functions,
as we leave the primitive operator isafcn unspecified. We refer the reader to section 3.3 for a
discussion on this topic.

Some axioms are schemas, in which case the parameters will be put in parentheses next
to the axiom’s name:

EnumDef (p > 0) ∀a1, . . . , ap, x : x ∈ {a1, . . . , ap} ⇔ x = a1 ∨ · · · ∨ x = ap

We use the following convention for denoting parameters: the character n will always denote
a natural number, p a positive natural number, s a string of characters, and F, P,Q first-order
operator symbols whose arity will be obvious in context.

Note that we will use readable notations for primitive constructs when possible. These
notations will be indicated when new primitive operators are introduced. Another kind of
notation we use is the multiline conjunction (or disjunction):

∧ ϕ1

∧ ϕ2

∧ . . .
∧ ϕn

means ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn

137

138 APPENDIX A. THE STANDARD THEORY OF TLA+

Epsilon-calculus

The epsilon-calculus consists of only one second-order operator and two axioms.

Operator Shape Notation

choose (1) choose x : e ≜ choose(λx : e)

ChooseDef (P) ∀x : P (x)⇒ P (choose(P))
ChooseExt (P,Q)

(
∀x : P (x)⇔ Q(x)

)
⇒ choose(P) = choose(Q)

The notation choose is not used in the axioms above because it is not general enough:
choose x : P (x) represents choose(λx : P (x)) but not choose(P). Using the extentionality
axiom, we have the equality choose(λx : P (x)) = choose(P), so may use choose in the
remaining axioms.

The TLA+ constructs for if-then-else- and case-expressions are treated as notations:

case p1 → e1, . . . , pn → en

≜ choose x : ∨ p1 ∧ x = e1

∨ p2 ∧ x = e2

∨ · · ·
∨ pn ∧ x = en

case p1 → e1, . . . , pn → en,other→ e

≜ case p1 → e1, . . . , pn → en, (¬p1 ∧ · · · ∧ ¬pn)→ e

if p then e1 else e2

≜ case p→ e1,other→ e2

Set Theory

139

Operator Shape Notation

in (0, 0) e1 ∈ e2 ≜ in(e1, e2)
e1 /∈ e2 ≜ ¬in(e1, e2)

subseteq (0, 0) e1 ⊆ e2 ≜ subseteq(e1, e2)
enumn (0, . . . , 0)⋆ {e1, . . . , en} ≜ enumn(e1, . . . , en)
union (0) union e ≜ union(e)
subset (0) subset e ≜ subset(e)
setst (0, 1) {x ∈ e1 : e2} ≜ setst(e1, λx : e2)
setofp (0, . . . , 0, p)⋆⋆ {ep+1 : x1 ∈ e1, . . . , xp ∈ ep} ≜ setofp(e1, . . . , ep, λx1, . . . , xp : ep+1)
cup (0, 0) e1 ∪ e2 ≜ cup(e1, e2)
cap (0, 0) e1 ∩ e2 ≜ cap(e1, e2)
diff (0, 0) e1\ e2 ≜ diff(e1, e2)
boolean () boolean ≜ boolean

(⋆) The operator enumn expects n arguments; (⋆⋆) the operator setofp expects p constant
arguments followed by one p-ary operator argument.

TLA+’s set theory follows closely the axiomatic theory of ZFC. Set replacement is treated
differently through the operator setofp, but the traditional schema of replacement can be
derived from the axioms. The axiom of choice is not included, but it is trivially derived from
the epsilon-calculus. The axiom of foundation and the axiom of infinity are included.

SetExt ∀x, y : (∀z : z ∈ x⇔ z ∈ y)⇒ x = y

SubseteqDef ∀x, y : x ⊆ y ⇔ ∀z : z ∈ x⇒ z ∈ y
EnumDef (p) ∀a1, . . . , ap, x : x ∈ {a1, . . . , ap} ⇔ x = a1 ∨ · · · ∨ x = ap

EmptyDef ∀x : x /∈ {}
UnionDef ∀a, x : x ∈ union a⇔ ∃y : y ∈ a ∧ x ∈ y
SubsetDef ∀a, x : x ∈ subset a⇔ x ⊆ a
SetstDef (P) ∀a, x : x ∈ {y ∈ a : P (y)} ⇔ x ∈ a ∧ P (x)
SetofDef (p, F) ∀a1, . . . , ap, x : x ∈ {F (y1, . . . , yp) : y1 ∈ a1, . . . , yp ∈ ap} ⇔

∃z1, . . . , zp : ∧ z1 ∈ a1

∧ . . .
∧ zp ∈ ap

∧ x = F (z1, . . . , zp)
CupDef ∀a, b : a ∪ b = union {a, b}
CapDef ∀a, b : a ∩ b = {x ∈ a : x ∈ b}
SetminusDef ∀a, b : a\ b = {x ∈ a : x /∈ b}
BooleanDef boolean = {true, false}
Foundation ∀x : x ̸= {} ⇒ ∃y : y ∈ x ∧ x ∩ y = {}
Infinity ∃x : {} ∈ x ∧ ∀y : y ∈ x⇒ y ∪ {y} ∈ x

140 APPENDIX A. THE STANDARD THEORY OF TLA+

In the axiom CapDef, the notation {x ∈ a : x ∈ b} is ambiguous, because it can be re-
solved as setst(a, λx : x ∈ b) or as setof(λx : x ∈ a, b). The former resolution holds. In
SetstDef, the notation {x ∈ a : P (x)} is resolved as setst(a, λx : P (x)), but this is equal
to setst(a, P) by extentionality, so there is no loss of generality. A similar argument can be
made about SetofDef.

Function Theory

Operator Shape Notation
isafcn (0)
fcn (0, 1) [x ∈ e1 7→ e2] ≜ fcn(e1, λx : e2)
except (0, 0, 0) [f except ! [x] = y] ≜ except(f, x, y)
domain (0) domain e ≜ domain(e)
fcnapp (0, 0) e1[e2] ≜ fcnapp(e1, e2)
arrow (0, 0) [e1 → e2] ≜ arrow(e1, e2)

In ZFC, functions are typically defined as binary relations with specific properties. TLA+

defines functions axiomatically. Functions are sets like any other element of the theory, but
their underlying representation as sets is not specified. The fact that functions could be
defined from binary relations proves that the following extension is conservative.

FcnExtensionality ∀f, g : ∧ isafcn(f) ∧ isafcn(g)
∧ domain f = domain g

∧ ∀x : x ∈ domain f ⇒ f [x] = g[x]
⇒ f = g

FcnIsafcn (F) ∀a : isafcn([x ∈ a 7→ F (x)])
FcnDomain (F) ∀a : domain [x ∈ a 7→ F (x)] = a

FcnApp (F) ∀a, y : y ∈ a⇒ [x ∈ a 7→ F (x)][y] = F (y)
FcnSet ∀a, b, f : f ∈ [a→ b]⇔

∧ isafcn(f)
∧ domain f = a

∧ ∀x : x ∈ a⇒ f [x] ∈ b
FcnExcept ∀f, x, y : [f except ! [x] = y] =

[z ∈ domain f 7→ if z = x then y else f [z]]

141

Arithmetic
Operator Shape Notation
Int ()
Nat ()
Real ()
0, 1, 2, . . . ()
0.1, 0.2, 1.5, 5.647, . . . ()
Infinity ()
plus (0, 0) e1 + e2 ≜ plus(e1, e2)
uminus (0) −e ≜ uminus(e)
minus (0, 0) e1 − e2 ≜ minus(e1, e2)
mult (0, 0) e1 ∗ e2 ≜ mult(e1, e2)
div (0, 0) e1/e2 ≜ div(e1, e2)
quotient (0, 0) e1 ÷ e2 ≜ quotient(e1, e2)
remainder (0, 0) e1 % e2 ≜ remainder(e1, e2)
exp (0, 0) ee2

1 ≜ exp(e1, e2)
lteq (0, 0) e1 ≤ e2 ≜ lteq(e1, e2)

e1 ≥ e2 ≜ lteq(e2, e1)
e1 < e2 ≜ lteq(e1, e2) ∧ e1 ̸= e2
e1 > e2 ≜ lteq(e2, e1) ∧ e1 ̸= e2

range (0, 0) e1 .. e2 ≜ range(e1, e2)

We use the different font for the constants Int, Nat and Real because it is how they are
written in TLA+, and there is no point in introducing them as notations. The natural and
decimal numbers are also introduced directly with their literal representation. Each number
is a constant in TLA+. The operator ∗ should not be confused with ×, which is used for
product sets.

As for functions, TLA+ does not specify an underlying representation for Int, Nat and Real.
It merely assumes those sets exist and satisfy the theories of integer, natural and real arith-
metic, respectively. This is indeed the case in the context of set theory with the axiom of
infinity. TLA+ furthermore specifies that Nat ⊂ Int ⊂ Real. Operators are defined for real
numbers, but they are overloaded for integers and naturals. For instance, 1 + 1 = 2 and
0.8 + 6.3 = 7.1 are both valid TLA+ statements; both feature the same operator +, but the
former can be derived from the theory of naturals whereas the latter must be derived from
the theory of reals.

We do not provide an explicit axiomatization for the theories of arithmetic of TLA+.
Details about TLA+’s arithmetic can be found in [48, sec. 18.4]. We will generally want
to have TLA+ arithmetic handled by a solver’s builtin arithmetic engine. We may assume
TLA+’s interpretation of arithmetic is the same as that solver’s interpretation—only the
domain of interpretation will generally be a type in the solver’s logic.

It might be useful to clarify how TLA+ defines division. a/b is division on reals, defined
for all a ∈ Real and b ∈ Real \ {0}. a ÷ b and a% b are the euclidian quotient and its
corresponding remainder, defined for all a ∈ Int and b ∈ Nat \ {0}. Unless those expressions
are unspecified, the following relation is always satisfied:

a = b ∗ (a÷ b) + (a% b)

142 APPENDIX A. THE STANDARD THEORY OF TLA+

Moreover, a ÷ b ∈ Int and a% b ∈ 0 .. (b − 1). Therefore, when a < 0, TLA+ truncates the
euclidian quotient towards −∞ and keeps the remainder positive. For instance, −10÷3 = −4
and −10 % 3 = 2. When b < 0 then both results are unspecified.

The only operator that is not purely arithmetic is range, for which we provide an axiom.

RangeDef ∀m,n : m.. n = {i ∈ Int : m ≤ i ∧ i ≤ n}

Tuples

Operator Shape Notation

tupn (0, . . . , 0)⋆ ⟨e1, . . . , en⟩ ≜ tupn(e1, . . . , en)
prodp+1 (0, 0, . . . , 0)⋆ e1 × e2 × · · · × ep ≜ prodp(e1, e2, . . . , ep)

The tuples of TLA+ are just functions from an interval set 1 .. n. They are defined in
terms of functions, which has the benefit of allowing a form of overloading over the operators
for functions. (⋆) The operators tupn and prodn both expect n arguments, but prodn is only
defined for n ≥ 2. It is indeed impossible to write a1 × · · · × an for n = 0, 1 in TLA+’s user
language.

TupleDef (n) ∀x1, . . . , xn : ⟨x1, . . . , xn⟩ =
[
i ∈ 1 .. n 7→ case i = 1→ x1

. . .

case i = n→ xn
]

ProductDef (p) ∀a1, . . . , ap+1 : a1 × · · · × ap+1 =
{⟨x1, . . . , xp+1⟩ : x1 ∈ a1, . . . , xp+1 ∈ ap+1}

Strings

Operator Shape Notation

string () string ≜ string
“foo”, “bar”, . . . ()

StringIntro (“foo”) “foo” ∈ string
StringDistinct (“foo”, “bar” distinct) “foo” ̸= “bar”

143

Records

Operator Shape Notation

records1,...,sp (0, . . . , 0)⋆ [s1 7→ e1, . . . , sp 7→ ep] ≜ records1,...,sp(e1, . . . , ep)
recsets1,...,sp (0, . . . , 0)⋆ [s1 : e1, . . . , sp : ep] ≜ recsets1,...,sp(e1, . . . , ep)

r.s ≜ r[“s”]

(⋆) The operators records1,...,sp and recsets1,...,sp both expect p arguments; string param-
eters s1, . . . , sp are assumed distinct from each other. Records are similar to tuples in that
they are defined as special functions. The domain of a record is a non-empty, finite set of
strings.

RecordDef (s1, . . . , sp) ∀x1, . . . , xp : [s1 7→ x1, . . . , sp 7→ xp] =[
x ∈

{
“s1”, . . . , “sp”

}
7→ case x = “s1”→ x1

. . .

case x = “sp”→ xp
]

RecordSetDef (s1, . . . , sp) ∀a1, . . . , ap : [s1 : a1, . . . , sp : ap] =
{[s1 7→ x1, . . . , xp 7→ xp] : x1 ∈ a1, . . . , xp ∈ ap}

Sequences

Operator Shape Notation
Seq (0)
Len (0)
Cat (0, 0) f ◦ g ≜ Cat(f, g)
Append (0, 0)
Head (0)
Tail (0)
Subseq (0, 0, 0)
Selectseq (0, 1)

Sequences are another special case of TLA+ functions. A sequence over the set S is a
tuple of arbitrary length whose elements are in S. There are many new operators introduced
with sequences, all are defined from previous operators. The definition of Selectseq stands
out as the only recursive definition of this axiomatization; this particular definition is not
particularly useful in practise, but it is the true definition of the operator.

144 APPENDIX A. THE STANDARD THEORY OF TLA+

SeqDef ∀a : Seq(a) = union {[1 .. n 7→ a] : n ∈ Nat}
SeqLenDef ∀f : Len(f) = choose n ∈ Nat : domain f = 1 .. n
SeqCatDef ∀f, g : f ◦ g =

[
i ∈ 1 ..Len(f) + Len(g) 7→

if i ≤ Len(f) then f [i]
else g[i− Len(f)]

]
SeqAppendDef ∀f, x : Append(f, x) = f ◦ ⟨x⟩
SeqHeadDef ∀f : Head(f) = f [1]
SeqTailDef ∀f : Tail(f) = [i ∈ 1 ..Len(f)− 1 7→ f [i+ 1]]
SeqSubseqDef ∀f,m, n : Subseq(f,m, n) = [i ∈ m.. n 7→ f [i−m+ 1]]
SeqSelectDef (P) ∀f : Selectseq(f, P) =

(
choose g :

g =
[
i ∈ 0 ..Len(f) 7→

if i = 0 then ⟨⟩
else if P (f [i]) then Append(g[i− 1] , f [i])
else g[i− 1]

])
[Len(f)]

Finite Sets
Operator Shape
Bijection (0, 0)
IsFiniteSet (0)
Card (0)

A set is finite iff it is in bijection with a set 1 .. n, in which case its cardinality is n.
Cardinalities are not specified for infinite sets. Also note that Card(a) ∈ Nat does not imply
IsFiniteSet(a) with this definition.

BijectionDef ∀a, b : Bijection(a, b) =
{
f ∈ [a→ b] : ∧ ∀x, y : x ∈ a ∧ y ∈ a ∧ f [x] = f [y]⇒ x = y

∧ ∀y : y ∈ b⇒ ∃x : x ∈ a ∧ y = f [x]
}

IsFiniteDef ∀a : IsFiniteSet(a)⇔ ∃n, f : n ∈ Nat ∧ f ∈ Bijection(a, 1 .. n)
CardDef ∀a : Card(a) = choose n : n ∈ Nat ∧ ∃f : f ∈ Bijection(a, 1 .. n)

Appendix B

Axioms for TPTP

This section documents the axioms used in the encoding to TPTP, which is detailed in
chapter 4. The organization of the theory follows the one for TLA+ that we presented in
appendix A (epsilon-calculus, set theory, functions, arithmetic, tuples and records). The
theories of sequences and finite sets are not included here; those theories require non trivial
integer arithmetic to be handled properly, so they are only supported by our SMT backend.

The underlying logic of the axioms is higher-order logic, although only the second-order
fragment is used. Compared to TLA+’s logic, the Boolean sort o is available, and we note
the individuals sort ι. We use standard notations for types, for instance the type of a binary
relation on ι is written ι× ι→ o.

Epsilon-calculus

Operator Type
choose (ι→ o)→ ι

ChooseDef ∀P ι→o, xι : P (x)⇒ P (choose(P))
ChooseExt ∀P ι→o, Qι→o :

(
∀xι : P (x)⇔ Q(x)

)
⇒ choose(P) =ι choose(Q)

Set Theory

Operator Type
in ι× ι→ o
subseteq ι× ι→ o
enumn ιn → ι
union ι→ ι
subset ι→ ι
setst ι× (ι→ o)→ ι
setofp ιp × (ιp → ι)→ ι

Operator Type
cup ι× ι→ ι
cap ι× ι→ ι
diff ι× ι→ ι
boolean ι
casto o→ ι

145

146 APPENDIX B. AXIOMS FOR TPTP

SetExt ∀xι, yι :
(
∀zι : in(z, x)⇔ in(z, y)

)
⇒ x =ι y

SubseteqDef ∀xι, yι : subseteq(x, y)⇔
(
∀zι : in(z, x)⇔ in(z, y)

)
EnumDef (p) ∀aι

1, . . . , a
ι
p, x

ι : in(x, enump(a1, . . . , ap))⇔ x =ι a1 ∨ · · · ∨ x =ι ap

EmptyDef ∀xι : ¬in(x, enum0)
SubsetDef ∀aι, xι : in(x, subset(a))⇔

(
∀yι : in(y, x)⇒ in(y, a)

)
UnionDef ∀aι, xι : in(x, union(a))⇔

(
∃yι : in(x, y) ∧ in(y, a)

)
SetstDef ∀P ι→o, aι, xι : in(x, setst(a, P))⇔ in(x, a) ∧ P (x)
SetofDef (p) ∀F ιp→ι, aι

1, . . . , a
ι
p, x

ι : in(x, setof(a1, . . . , ap, F))⇔
∃yι

1, . . . , y
ι
p : in(y1, a1) ∧ · · · ∧ in(yp, ap) ∧ x =ι F (y1, . . . , yp)

CupDef ∀aι, bι, xι : in(x, cup(a, b))⇔ in(x, a) ∨ in(x, b)
CapDef ∀aι, bι, xι : in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b)
SetminusDef ∀aι, bι, xι : in(x, diff(a, b))⇔ in(x, a) ∧ ¬in(x, b)
BoolCastInj casto(⊤) ̸= casto(⊥)
BooleanDef ∀xι : in(x, boolean)⇔ x =ι casto(⊤) ∨ x =ι casto(⊥)

Function Theory

Operator Type
isafcn ι→ o
fcn ι× (ι→ ι)→ ι
except ι× ι× ι→ ι
domain ι→ ι
fcnapp ι× ι→ ι
arrow ι× ι→ ι

147

FcnExtensionality ∀f ι, gι : ∧ isafcn(f) ∧ isafcn(g)
∧ domain(f) =ι domain(g)
∧ (∀xι : in(x, domain(f))⇒ fcnapp(f, x) =ι fcnapp(g, x))
⇒ f =ι g

FcnIsafcn ∀F ι→ι, aι : isafcn(fcn(a, F))
FcnDom ∀F ι→ι, aι : domain(fcn(a, F)) =ι a

FcnApp ∀F ι→ι, aι, xι : in(x, a)⇒ fcnapp(fcn(a, F), x) = F (x)
ArrowDef ∀aι, bι, f ι : in(f, arrow(a, b))⇔

∧ isafcn(f)
∧ domain(f) =ι a

∧ (∀xι : in(x, a)⇒ in(fcnapp(f, x), b))
ExceptIsafcn ∀f ι, xι, yι : isafcn(except(f, x, y))
ExceptDom ∀f ι, xι, yι : domain(except(f, x, y)) =ι domain(f)
ExceptApp ∀f ι, xι, yι, zι : in(z, domain(f))⇒

∧ z =ι x⇒ fcnapp(except(f, x, y), z) =ι y

∧ z ̸=ι x⇒ fcnapp(except(f, x, y), z) =ι fcnapp(f, z)

Arithmetic and Strings

Contrary to the previous appendix, we note numerical constants with symbols numn. This will
make clearer in expressions when a natural number is an actual constant or some parameter
(for instance the n in enumn).

Our axiomatization does not cover real arithmetic, nor the characterizations of strings as
sequences of characters.

Operator Type
Int ι
Nat ι
numn ι
plus ι× ι→ ι
uminus ι→ ι
minus ι× ι→ ι
mult ι× ι→ ι

Operator Type
quotient ι× ι→ ι
remainder ι× ι→ ι
exp ι× ι→ ι
lteq ι× ι→ o
range ι× ι→ ι
strs ι
string ι

148 APPENDIX B. AXIOMS FOR TPTP

NatDef ∀nι : in(n,Nat)⇔ in(n, Int) ∧ lteq(0, n)
NumTyping (n) in(numn,Nat)
NumDistinct (n1, n2 distincts) numn1 ̸=ι numn2

PlusTyping ∀mι, nι : in(m, Int) ∧ in(n, Int)⇒ in(plus(m,n), Int)
UminusTyping ∀nι : in(n, Int)⇒ in(uminus(n), Int)
MinusTyping ∀mι, nι : in(m, Int) ∧ in(n, Int)⇒ in(minus(m,n), Int)
MultTyping ∀mι, nι : in(m, Int) ∧ in(n, Int)⇒ in(mult(m,n), Int)
QuotientTyping ∀mι, nι : in(m, Int) ∧ in(n,Nat) ∧ n ̸= num0 ⇒

in(quotient(m,n), Int)
RemainderTyping ∀mι, nι : in(m, Int) ∧ in(n,Nat) ∧ n ̸= num0 ⇒

in(remainder(m,n), range(num0, n))
RangeDef ∀mι, nι, pι : in(p, range(m,n))⇔

in(p, Int) ∧ lteq(m, p) ∧ lteq(p, n)
StrTyping (s) in(strs, string)
StrDistinct (s1, s2 distincts) strs1 ̸=ι strs2

Tuples and Records

Operator Type
tupn ιn → ι
prodp ιp+1 → ι

records1,...,sp ιp → ι
recsets1,...,sp ιp → ι

149

TupIsafcn (n) ∀xι
1, . . . , x

ι
n : isafcn(tupn(x1, . . . , xn))

TupDom (n) ∀xι
1, . . . , x

ι
n : domain(tupn(x1, . . . , xn)) = enumn1, . . . , n

TupApp (n) ∀xι
1, . . . , x

ι
n : ∧ fcnapp(tupn(x1, . . . , xn), num1) = x1

∧ . . .
∧ fcnapp(tupn(x1, . . . , xn), numn) = xn

ProdDef (p) ∀aι
1, . . . , a

ι
p, a

ι
p+1, t

ι : in(t, prodp(a1, . . . , ap, ap+1))⇔
∧ t = tupp+1(fcnapp(t, num1), . . . , fcnapp(t, nump+1))
∧ in(fcn(t, num1), a1)
∧ . . .
∧ in(fcn(t, nump+1), ap+1)

RecIsafcn (s1, . . . , sp) ∀xι
1, . . . , x

ι
p : isafcn(records1,...,sp(x1, . . . , xp))

RecDom (s1, . . . , sp) ∀xι
1, . . . , x

ι
p : domain(records1,...,sp(x1, . . . , xp)) = enump(strs1 , . . . , strsp)

RecApp (s1, . . . , sp) ∀xι
1, . . . , x

ι
p : ∧ fcnapp(records1,...,sp(x1, . . . , xp), strs1) = x1

∧ . . .
∧ fcnapp(records1,...,sp(x1, . . . , xp), strsp) = xp

RecsetDef (s1, . . . , sp) ∀aι
1, . . . , a

ι
p, r

ι : in(r, recsets1,...,sp(a1, . . . , ap))⇔
∧ r = records1,...,sp(fcnapp(r, strs1), . . . , fcnapp(r, strsp))
∧ in(fcnapp(r, strs1), a1)
∧ . . .
∧ in(fcnapp(r, strsp), ap)

150 APPENDIX B. AXIOMS FOR TPTP

Appendix C

Axioms for SMT

This section documents the axioms used in the encoding to SMT-LIB, which is detailed in
chapter 5.

Axioms are expressed in multi-sorted first-order logic. Operators are assigned first-order
types at declaration instead of shapes. There are axiom schemas, for which parameters are
indicated after the schema’s name. As before, we use the letter n for natural numbers, p for
positive natural numbers, s for strings of characters, and the letters F, P,Q for operators
symbols, which will be assigned types this time.

A major addition compared to previous axiomatizations is the presence of E-matching
patterns. All patterns are indicated between curly-braces just below the relevant chain of
quantifiers. The general syntax is:

∀xs1
1 , . . . , x

sn
n :

{
t11, . . . , t

1
n1

}
· · ·{
tm1 , . . . , t

m
nm

}
ϕ

Where, for all 1 ≤ i ≤ m, the pattern
{
ti1, . . . , t

i
ni

}
is a set of well-sorted terms, the free

variables of which are exactly x1, . . . , xn.
For abbreviating types, we will sometimes use the syntax sn → s. For instance the

expression int× ι2 → o is short for the type int× ι× ι→ o. If n = 0 then sn → s is just s.

Epsilon-calculus

Operator Type
chooseP

⋆ ιn → ι
(⋆) P : ιn+1 → o.

151

152 APPENDIX C. AXIOMS FOR SMT

ChooseDef (P : ιn+1 → o) ∀cι
1, . . . , c

ι
n, x

ι :
P (x, c1, . . . , cn)⇒ P (chooseP (c1, . . . , cn), c1, . . . , cn)

ChooseExt (P,Q : ιn+1 → o) ∀cι
1, . . . , c

ι
n :(

∀xι : P (x, c1, . . . , cn)⇔ Q(x, c1, . . . , cn)
)

⇒ chooseP (c1, . . . , cn) = chooseQ(c1, . . . , cn)

Set Theory

Operator Type
in ι× ι→ o
subseteq ι× ι→ o
enumn ιn → ι
union ι→ ι
subset ι→ ι
setstP

⋆ ι× ιn → ι

Operator Type
setofF

⋆⋆ ιp × ιn → ι
cup ι× ι→ ι
cap ι× ι→ ι
diff ι× ι→ ι
boolean ι
casto o→ ι

(⋆) P : ιn+1 → o
(⋆⋆) F : ιp+n → ι

SubseteqIntro ∀aι, bι : {subseteq(a, b)}(
∀xι : in(x, a)⇔ in(x, b)

)
⇒ subseteq(a, b)

SubseteqElim ∀aι, bι, xι : {subseteq(a, b), in(x, a)}
subseteq(a, b) ∧ in(x, a)⇒ in(x, b)

EnumIntro (p) ∀aι
1, . . . , a

ι
p : {enump(a1, . . . , ap)}

in(a1, enump(a1, . . . , ap)) ∧ · · · ∧ in(ap, enump(a1, . . . , ap))
EnumElim (p) ∀aι

1, . . . , a
ι
p, x

ι : {in(x, enump(a1, . . . , ap))}
in(x, enump(a1, . . . , ap))⇒ x = a1 ∨ · · · ∨ x = ap

EmptyElim ∀xι : {in(x, enum0)} ¬in(x, enum0)
SubsetDef ∀aι, xι : {in(x, subset(a))}

{subseteq(x, a), subset(a)}
in(x, subset(a))⇔ subseteq(x, a)

UnionIntro ∀aι, xι, yι : {in(y, a), in(x, union(a))}
{in(x, y), in(x, union(a))}
{in(x, y), in(y, a), union(a)}

in(x, y) ∧ in(y, a)⇒ in(x, union(a))
UnionElim ∀aι, xι : {in(x, union(a))}

in(x, union(a))⇒ ∃yι : in(x, y) ∧ in(y, a)

153

SetstDef (P : ιn+1 → o) ∀cι
1, . . . , c

ι
n, a

ι, xι : {in(x, setstP (a, c1, . . . , cn))}
{in(x, a), setstP (a, c1, . . . , cn)}

in(x, setstP (a, c1, . . . , cn))⇔ in(x, a) ∧ P (x, c1, . . . , cn)
SetofIntro (F : ιp+n → ι) ∀cι

1, . . . , c
ι
n, a

ι
1, . . . , a

ι
p, y

ι
1, . . . , y

ι
p :

{F (y1, . . . , yp, c1, . . . , cn), setofF (a1, . . . , ap, c1, . . . , cn)}
{in(y1, a1), . . . , in(yp, ap), setofF (a1, . . . , ap, c1, . . . , cn)}

in(y1, a1) ∧ · · · ∧ in(yp, ap)
⇒ in(F (y1, . . . , yp, c1, . . . , cn), setofF (a1, . . . , ap, c1, . . . , cn))

SetofElim (F : ιp+n → ι) ∀cι
1, . . . , c

ι
n, a

ι
1, . . . , a

ι
p, x

ι :
{in(x, setofF (a1, . . . , ap, c1, . . . , cn))}

in(x, setofF (a1, . . . , ap, c1, . . . , cn))⇒
∃yι

1, . . . , y
ι
p : in(y1, a1) ∧ · · · ∧ in(yp, ap) ∧ x = F (y1, . . . , yp)

CupDef ∀aι, bι, xι : {in(x, cup(a, b))}
{in(x, a), cup(a, b)}
{in(x, b), cup(a, b)}

in(x, cup(a, b))⇔ in(x, a) ∨ in(x, b)
CapDef ∀aι, bι, xι : {in(x, cap(a, b))}

{in(x, a), cap(a, b)}
{in(x, b), cap(a, b)}

in(x, cap(a, b))⇔ in(x, a) ∧ in(x, b)
SetminusDef ∀aι, bι, xι : {in(x, diff(a, b))}

{in(x, a), diff(a, b)}
{in(x, b), diff(a, b)}

in(x, diff(a, b))⇔ in(x, a) ∧ ¬in(x, b)
BoolCastInj casto(true) ̸= casto(false)
BooleanIntro in(casto(true), boolean) ∧ in(casto(false), boolean)
BooleanElim ∀xι : {in(x, boolean)}

in(x, boolean)⇒ x = casto(true) ∨ x = casto(false)

154 APPENDIX C. AXIOMS FOR SMT

Function Theory

Operator Type
isafcn ι→ o
fcnF

⋆ ι× ιn → ι
except ι× ι× ι→ ι
domain ι→ ι
fcnapp ι× ι→ ι
arrow ι× ι→ ι

(⋆) F : ιn+1 → ι

FcnExtensionality ∀f ι, gι : {isafcn(f), isafcn(g)}
∧ isafcn(f) ∧ isafcn(g)
∧ domain(f) = domain(g)
∧ (∀xι : in(x, domain(f))⇒ fcnapp(f, x) = fcnapp(g, x))
⇒ f = g

FcnIsafcn (F : ιn+1 → ι) ∀cι
1, . . . , c

ι
n, a

ι : {fcnF (a, c1, . . . , cn)}
isafcn(fcnF (a, c1, . . . , cn))

FcnDom (F : ιn+1 → ι) ∀cι
1, . . . , c

ι
n, a

ι : {fcnF (a, c1, . . . , cn)}
domain(fcnF (a, c1, . . . , cn)) = a

FcnApp (F : ιn+1 → ι) ∀cι
1, . . . , c

ι
n, a

ι, xι : {fcnapp(fcnF (a, c1, . . . , cn), x)}
{in(x, a), fcnF (a, c1, . . . , cn)}

in(x, a)⇒ fcnapp(fcnF (a, c1, . . . , cn), x) = F (x, c1, . . . , cn)
FcnTyping (F : ιn+1 → ι) ∀cι

1, . . . , c
ι
n, a

ι, bι : {fcnF (a, c1, . . . , cn), arrow(a, b)}
(∀xι : in(x, a)⇒ in(F (x, c1, . . . , cn), b))
⇒ in(fcnF (a, c1, . . . , cn), arrow(a, b))

ArrowIntro ∀aι, bι, f ι : {in(f, arrow(a, b))}
∧ isafcn(f)
∧ domain(f) = a

∧ (∀xι : in(x, a)⇒ in(fcnapp(f, x), b))
⇒ in(f, arrow(a, b))

ArrowElim1 ∀aι, bι, f ι : {in(f, arrow(a, b))}
in(f, arrow(a, b))⇒ ∧ isafcn(f)

∧ domain(f) = a

ArrowElim2 ∀aι, bι, f ι, xι : {in(f, arrow(a, b)), in(x, a)}
{in(f, arrow(a, b)), fcnapp(f, x)}

in(f, arrow(a, b)) ∧ in(x, a)⇒ in(fcnapp(f, x), b)

155

ExceptIsafcn ∀f ι, xι, yι : {except(f, x, y)}
isafcn(except(f, x, y))

ExceptDom ∀f ι, xι, yι : {except(f, x, y)}
domain(except(f, x, y)) = domain(f)

ExceptApp1 ∀f ι, xι, yι : {except(f, x, y)}
in(x, domain(f))⇒ fcnapp(except(f, x, y), x) = y

ExceptApp2 ∀f ι, xι, yι, zι : {fcnapp(except(f, x, y), z)}
{except(f, x, y), fcnapp(f, z)}

in(z, domain(f)) ∧ z ̸= x⇒ fcnapp(except(f, x, y), z) = fcnapp(f, z)
ExceptTyping ∀f ι, xι, yι, aι, bι : {except(f, x, y), in(f, arrow(a, b))}

in(f, arrow(a, b)) ∧ (in(x, a)⇒ in(y, b))⇒ in(except(f, x, y), arrow(a, b))

Arithmetic

Operator Type
castint int→ ι
projint ι→ int
Int ι
Nat ι
plus ι× ι→ ι
uminus ι→ ι

Operator Type
minus ι× ι→ ι
mult ι× ι→ ι
quotient ι× ι→ ι
remainder ι× ι→ ι
lteq ι× ι→ o
range ι× ι→ ι

The symbols +, −, ×, ÷, % and ≤ as used below are not TLA+’s operators, but the
builtin integer operators of SMT-LIB.

156 APPENDIX C. AXIOMS FOR SMT

IntCastInjective ∀zint : {castint(z)} z = projint(castint(z))
IntIntIntro ∀zint : {castint(z)} in(castint(z), Int)
IntIntElim ∀xι : {in(x, Int)} in(x, Int)⇒ x = castint(projint(x))
IntNatIntro ∀zint : {castint(z)}

z ≥ 0⇒ in(castint(z),Nat)
IntNatElim ∀xι : {in(x,Nat)}

in(x,Nat)⇒ x = castint(projint(x)) ∧ projint(x) ≥ 0
IntPlusTyping ∀zint

1 , zint
2 : {plus(castint(z1), castint(z2))}

plus(castint(z1), castint(z2)) = castint(z1 + z2)
IntUminusTyping ∀zint : {uminus(castint(z))}

uminus(castint(z)) = castint(−z)
IntMinusTyping ∀zint

1 , zint
2 : {minus(castint(z1), castint(z2))}

minus(castint(z1), castint(z2)) = castint(z1 − z2)
IntMultTyping ∀zint

1 , zint
2 : {mult(castint(z1), castint(z2))}

mult(castint(z1), castint(z2)) = castint(z1 × z2)
IntQuotientTyping ∀zint

1 , zint
2 : {quotient(castint(z1), castint(z2))}

z2 > 0⇒ quotient(castint(z1), castint(z2)) = castint(z1 ÷ z2)
IntRemainderTyping ∀zint

1 , zint
2 : {remainder(castint(z1), castint(z2))}

z2 > 0⇒ remainder(castint(z1), castint(z2)) = castint(z1 % z2)
IntLteqTyping ∀zint

1 , zint
2 : {lteq(castint(z1), castint(z2))}

lteq(castint(z1), castint(z2))⇔ z1 ≤ z2

IntRangeIntro ∀aι, bι, zint : {in(castint(z), range(a, b))}
lteq(a, castint(z)) ∧ lteq(castint(z), b)⇒ in(castint(z), range(a, b))

IntRangeElim ∀aι, bι, xι : {in(x, range(a, b))}
in(x, range(a, b))⇒ x = castint(projint(x)) ∧ lteq(a, x) ∧ lteq(x, b)

Tuples

Operator Type
tupn ιn → ι
prodp+1 ιp+1 → ι

157

TupIsafcn (n) ∀xι
1, . . . , x

ι
n : {tupn(x1, . . . , xn)}

isafcn(tupn(x1, . . . , xn))
TupDom (n) ∀xι

1, . . . , x
ι
n : {tupn(x1, . . . , xn)}

domain(tupn(x1, . . . , xn)) = enumn(castint(1), . . . , castint(n))

TupApp (p) ∀xι
1, . . . , x

ι
p :

{
tupp(x1, . . . , xp)

}
∧ fcnapp(tupp(x1, . . . , xp), castint(1)) = x1

∧ . . .
∧ fcnapp(tupp(x1, . . . , xp), castint(p)) = xp

TupExcept (p, p′ ≤ p) ∀xι
1, . . . , x

ι
p, x

ι :
{

except(tupp(x1, . . . , xp), castint(p′), x)
}

except(tupp(x1, . . . , xp′ , . . . , xp), castint(p′), x) = tupp(x1, . . . , x, . . . , xp)

ProductIntro (p) ∀aι
1, . . . , a

ι
p, x

ι
1, . . . , x

ι
p :

{
tupp(x1, . . . , xp), prodp(a1, . . . , ap)

}
in(x1, a1) ∧ · · · ∧ in(xp, ap)⇒ in(tupp(x1, . . . , xp), prodp(a1, . . . , ap))

ProductElim (p) ∀aι
1, . . . , a

ι
p, x

ι :
{

in(x, prodp(a1, . . . , ap))
}

in(x, prodp(a1, . . . , ap))⇒ x = tupp(fcnapp(x, castint(1)), . . . , fcnapp(x, castint(p)))

Strings

Operator Type
strs ι
string ι

StringIntro (s) in(strs, string)
StringsDistinct (s1, s2 distincts) strs1 ̸= strs2

Records

Operator Type
records1,...,sp

⋆ ιp → ι
recsets1,...,sp

⋆ ιp → ι

(⋆) Fields s1, . . . , sp

are assumed distinct

158 APPENDIX C. AXIOMS FOR SMT

RecordIsafcn (s1, . . . , sp) ∀xι
1, . . . , x

ι
p :

{
records1,...,sp(x1, . . . , xp)

}
isafcn(records1,...,sp(x1, . . . , xp))

RecordDom (s1, . . . , sp) ∀xι
1, . . . , x

ι
p :

{
records1,...,sp(x1, . . . , xp)

}
domain(records1,...,sp(x1, . . . , xp)) = enump(strs1 , . . . , strsp)

RecordApp (s1, . . . , sp) ∀xι
1, . . . , x

ι
p :

{
records1,...,sp(x1, . . . , xp)

}
∧ fcnapp(records1,...,sp(x1, . . . , xp), strs1) = x1

∧ . . .
∧ fcnapp(records1,...,sp(x1, . . . , xp), strsp) = xp

RecordExcept (s1, . . . , sp, p
′ ≤ p) ∀xι

1, . . . , x
ι
p, x

ι :
{

except(records1,...,sp(x1, . . . , xp), strsp′ , x)
}

except(records1,...,sp(x1, . . . , xp′ , . . . , xp), strsp′ , x)
= records1,...,sp(x1, . . . , x, . . . , xp)

RecsetIntro (s1, . . . , sp) ∀aι
1, . . . , a

ι
p, x

ι
1, . . . , x

ι
p :

{
records1,...,sp(x1, . . . , xp), recsets1,...,sp(a1, . . . , ap)

}
in(x1, a1) ∧ · · · ∧ in(xp, ap)
⇒ in(records1,...,sp(x1, . . . , xp), recsets1,...,sp(a1, . . . , ap))

RecsetElim (s1, . . . , sp) ∀aι
1, . . . , a

ι
p, x

ι :
{
in(x, recsets1,...,sp(a1, . . . , ap))

}
in(x, recsets1,...,sp(a1, . . . , ap))
⇒ x = records1,...,sp(fcnapp(x, strs1), . . . , fcnapp(x, strsp))

Sequences

Operator Type
Seq ι→ ι
Len ι→ ι
Cat ι× ι→ ι
Append ι× ι→ ι

Operator Type
Head ι→ ι
Tail ι→ ι
Subseq ι× ι× ι→ ι
SelectseqT

⋆ ι× ιn → ι

(⋆) T : ιn+1 → o

159

SeqIntro ∀aι, sι : {in(s, Seq(a))}
∧ isafcn(s)
∧ in(Len(s),Nat)
∧ ∀iι : in(i, domain(s))⇔ ∧ in(i, Int)

∧ 1 ≤ projint(i)
∧ projint(i) ≤ projint(Len(s))

∧ ∀iint : 1 ≤ i ∧ i ≤ projint(Len(s))⇒ in(fcnapp(s, castint(i)), a)
⇒ in(s, Seq(a))

SeqElim1 ∀aι, sι : {in(s, Seq(a))}
in(s, Seq(a))⇒ ∧ isafcn(s)

∧ in(Len(s),Nat)
∧ domain(s) = range(castint(1), Len(s))

SeqElim2 ∀aι, sι, iint : {in(s, Seq(a)), fcnapp(s, castint(i))}
in(s, Seq(a)) ∧ 1 ≤ i ∧ i ≤ projint(Len(s))⇒ in(fcnapp(s, castint(i)), a)

CatTyping ∀aι, sι, tι : {in(s, Seq(a)),Cat(s, t)}
{in(t, Seq(a)),Cat(s, t)}

in(s, Seq(a)) ∧ in(t, Seq(a))⇒ in(Cat(s, t),Seq(a))
CatLen ∀sι, tι : {Cat(s, t)}

in(Len(s),Nat) ∧ in(Len(t),Nat)
⇒ Len(Cat(s, t)) = castint(projint(Len(s)) + projint(Len(t)))

CatApp1 ∀sι, tι, iint : {fcnapp(Cat(s, t), castint(i))}
{Cat(s, t), fcnapp(s, castint(i))}

∧ in(Len(s),Nat) ∧ in(Len(t),Nat)
∧ 1 ≤ i ∧ i ≤ projint(Len(s))
⇒ fcnapp(Cat(s, t), castint(i)) = fcnapp(s, castint(i))

CatApp2 ∀sι, tι, iint : {fcnapp(Cat(s, t), castint(i))}
∧ in(Len(s),Nat) ∧ in(Len(t),Nat)
∧ i ≤ projint(Len(s)) + projint(Len(t)) ∧ projint(Len(s)) < i

⇒ fcnapp(Cat(s, t), castint(i)) = fcnapp(t, castint(i− projint(Len(s))))

160 APPENDIX C. AXIOMS FOR SMT

AppendTyping ∀aι, sι, xι : {in(s, Seq(a)),Append(s, x)}
in(s, Seq(a)) ∧ in(x, a)⇒ in(Append(s, x), Seq(a))

AppendLen ∀sι, xι : {Append(s, x)}
in(Len(s),Nat)⇒ Len(Append(s, x)) = castint(projint(Len(s)) + 1)

AppendApp1 ∀sι, xι, iint : {fcnapp(Append(s, x), castint(i))}
{Append(s, x), fcnapp(s, castint(i))}

∧ in(Len(s),Nat)
∧ 1 ≤ i ∧ i ≤ projint(Len(s))
⇒ fcnapp(Append(s, x), castint(i)) = fcnapp(s, castint(i))

AppendApp2 ∀sι, xι : {Append(s, x)}
in(Len(s),Nat)⇒ fcnapp(Append(s, x), castint(projint(Len(s)) + 1)) = x

HeadDef ∀sι : {Head(s)}
Head(s) = fcnapp(s, castint(1))

TailTyping ∀aι, sι : {in(s, Seq(a)),Tail(s)}
∧ in(s, Seq(a))
∧ projint(Len(s)) ̸= 0
⇒ in(Tail(s),Seq(a))

TailLen ∀sι : {Tail(s)}
∧ in(Len(s),Nat)
∧ projint(Len(s)) ̸= 0
⇒ Len(Tail(s)) = castint(projint(Len(s))− 1)

TailApp ∀sι, iint : {fcnapp(Tail(s), castint(i))}
∧ in(Len(s),Nat)
∧ projint(Len(s)) ̸= 0
∧ 1 ≤ i ∧ i ≤ projint(Len(s))− 1
⇒ fcnapp(Tail(s), castint(i)) = fcnapp(s, castint(i+ 1))

161

SubseqTyping ∀aι, sι, xint, yint : {in(s, Seq(a)),Subseq(s, castint(x), castint(y))}
∧ in(s, Seq(a))
∧ 1 ≤ x
∧ y ≤ projint(Len(s))
⇒ in(Subseq(s, castint(x), castint(y)),Seq(a))

SubseqLen ∀sι, xint, yint : {Subseq(s, castint(x), castint(y))}
∧ x ≤ y + 1

⇒ Len(Subseq(s, castint(x), castint(y))) = castint((y + 1)− x)
∧ x > y + 1⇒ Len(Subseq(s, castint(x), castint(y))) = castint(0)

SubseqApp ∀sι, xint, yint, zint : {fcnapp(Subseq(s, castint(x), castint(y)), castint(z))}
∧ 1 ≤ x
∧ 1 ≤ z ∧ z ≤ (y + 1)− x
⇒ fcnapp(Subseq(s, castint(x), castint(y)), castint(z))

= fcnapp(s, castint((z + x)− 1))
SelectseqTyping (T : ιn+1 → o) ∀cι

1, . . . , c
ι
n, a

ι, sι : {in(s, Seq(a)), SelectseqT (s, c1, . . . , cn)}
in(s, Seq(a))⇒ in(SelectseqT (s, c1, . . . , cn),Seq(a))

SelectseqLen (T : ιn+1 → o) ∀cι
1, . . . , c

ι
n, s

ι : {SelectseqT (s, c1, . . . , cn)}
in(Len(s),Nat)
⇒ projint(Len(SelectseqT (s, c1, . . . , cn))) ≤ projint(Len(s))

SelectseqApp (T : ιn+1 → o) ∀cι
1, . . . , c

ι
n, s

ι, xι : {fcnapp(SelectseqT (s, c1, . . . , cn), x)}
in(x, domain(SelectseqT (s, c1, . . . , cn)))
⇒ T (fcnapp(SelectseqT (s, c1, . . . , cn), x))

SelectseqNil (T : ιn+1 → o) SelectseqT (tup0, c1, . . . , cn) = tup0

SelectseqAppend (T : ιn+1 → o) ∀cι
1, . . . , c

ι
n, s

ι, xι : {SelectseqT (Append(s, x), c1, . . . , cn)}
∧ T (x, c1, . . . , cn)⇒

SelectseqT (Append(s, x), c1, . . . , cn)
= Append(SelectseqT (s, c1, . . . , cn), x)

∧ ¬T (x, c1, . . . , cn)⇒
SelectseqT (Append(s, x), c1, . . . , cn)

= SelectseqT (s, c1, . . . , cn)
TupSeqTyping (n) ∀aι, xι

1, . . . , x
ι
n : {in(x1, a), . . . , in(xn, a), tupn(x1, . . . , xn)}

in(x1, a) ∧ · · · ∧ in(xn, a)⇒ in(tupn(x1, . . . , xn),Seq(a))
TupSeqLen (n) ∀xι

1, . . . , x
ι
n : {tupn(x1, . . . , xn)}

Len(tupn(x1, . . . , xn)) = castint(n)

