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Résumé : Les batteries à métaux liquides
(BMLs) sont une solution prometteuse pour
le stockage à grande échelle des énergies re-
nouvelables qui sont produites de manière in-
termittente. Ces BMLs sont moins chères et
peuvent fonctionner plus longtemps que les
batteries habituelles. Elles sont composées de
trois couches : une électrode négative en mé-
tal liquide, un électrolyte en sel fondu et une
électrode positive, alliage formé avec le métal
liquide supérieur. Les BMLs sont des systèmes
multiphysiques dans lesquels des instabilités
magnétohydrodynamiques se produisent et
des écoulements apparaissent pendant le fonc-
tionnement. Les écoulements peuvent être né-
fastes, car ils peuvent déformer les interfaces
jusqu’à induire un court-circuit. Ils peuvent ce-
pendant aussi être utiles pour mélanger l’al-
liage, ce qui limite la chute dupotentiel de la cel-
lule. Dans cette thèse, nous nous concentrons
sur le problème du mélange de l’alliage.

Nous présentons d’abord des contribu-
tions pré-doctorales. Dans une première par-
tie, nous étudions l’effet de la flottabilité solu-
tale sur l’écoulement electrovortex. Nous mon-
trons que, pendant la décharge, cet écoule-
ment n’est pas assez intense pour s’opposer
à la flottabilité et donc ne peut pas mélan-
ger l’alliage. Cependant, l’écoulement electro-
vortex tournant, qui se produit sous l’action
d’un champ magnétique externe, mélange effi-
cacement l’alliage. Pendant la charge, semet en
place de la convection solutale qui est vraiment
efficace pour mélanger l’alliage. La flottabilité
solutale a alors une influence significative sur
l’écoulement. Dans une seconde partie, nous
étudions le transfert de gouttes de l’électrode
négative vers l’électrode positive. Nous mon-
trons que, selon les prototypes, le détachement
et le transfert de gouttes peuvent se produire
au cours du fonctionnement. Dans certains cas,
cela peut conduire à des courts-circuits.

Ensuite, nous caractérisons l’écoulement
electrovortex tournant. Nous menons une

étude numérique paramétrique tridimension-
nelle et axisymétrique afin de mieux com-
prendre les différents régimes d’écoulement.
Nous choisissons commeprototype un cylindre
rempli d’un métal liquide et connecté symétri-
quement à deux fils, ce qui crée un écoulement
similaire à l’écoulement de von Kármán. Nous
analysons l’impact des différents paramètres
sur l’intensité de l’écoulement et fournissons
des lois d’échelle.

Nous nous intéressons par la suite à l’amé-
lioration de notre modèle pour les BMLs. Pour
cela, le potentiel électrique doit être considéré
comme une variable locale dans les équations,
et non pas calculé en post-traitement comme
fait dans nos études précédentes. La distri-
bution du potentiel électrique est influencée
par un saut de potentiel qui apparaît à l’inter-
face alliage-électrolyte. Ce saut affecte les dis-
tributions de courant et de concentration. Ce-
pendant, notre solveur est basé sur une for-
mulation en champ magnétique et ne calcule
pas le potentiel électrique. Nous déterminons
une nouvelle condition d’interface, en utilisant
la variable de champ magnétique, qui modé-
lise les distributions de potentiel discontinues
à une interface. Nous validons numériquement
cette nouvelle formulation. Ensuite, nous im-
plémentons la concentration dans ce modèle
et étudions l’impact du saut de potentiel sur
la composition de l’alliage. Nous montrons que
ce saut affecte modérément la distribution de
la concentration, mais influence le potentiel
de la cellule. Il est alors plus exact de consi-
dérer le saut dans le modèle. Dans la der-
nière partie, nous étudions les écoulements
électrocapillaires qui apparaissent en raison du
saut de potentiel électrique, qui modifie locale-
ment la tension de surface. Nousmontrons que
la flottabilité solutale a un impact significatif
sur l’écoulement, localisé dans une petite zone
proche de l’interface alliage-électrolyte. L’écou-
lement est capable de mélanger cette zone et
de limiter la chute du potentiel de la cellule.
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Abstract : Liquid metal batteries (LMBs) are a
promising solution for large-scale energy sto-
rage of renewable energies, which are produ-
ced in an intermittent way. These LMBs are
cheaper and have a longer lifetime than usual
batteries. They are composed of three layers :
a negative electrode in liquid metal, an elec-
trolyte in molten salt, and a positive electrode
which alloys with the top liquidmetal. LMBs are
multi-physical systems where magnetohydro-
dynamics instabilities occur and flows appear
during operation. Flows can be detrimental, as
they can deform the interfaces until a short cir-
cuit appears. They can however also be useful
for mixing the alloy, which limits the drop of
the cell potential. In this thesis, we focus on the
mixing problem of the alloy phase.

We first present pre-thesis contributions.
In the first part, we study the effect of so-
lutal buoyancy on the electrovortex flow. We
show that, during discharge, this flow is not in-
tense enough to counteract the buoyancy, and
then not able to mix the alloy. However, swir-
ling electrovortex flow, which is driven when an
external magnetic field is applied, mixes effi-
ciently the alloy. During charge, solutal convec-
tion occurs, which is really efficient to mix the
alloy. Solutal buoyancy has then a really signifi-
cant influence on the flow. In the second part,
we study the droplets transfer from the ne-
gative electrode to the positive electrode. We
show that, depending on the prototypes, dro-
plet detachment and transfer can occur during
operation. In certain cases, it can lead to short
circuits.

Later, we characterize the swirling electro-
vortex flow. We conduct a three-dimensional
and axisymmetric numerical parametric study

in order to better understand the different flow
regimes. We choose for the prototype a cylin-
der filled with a liquid metal and symmetrically
connected to two wires, which drives a flow si-
milar to the von Kármán flow. We analyze the
impacts of different parameters on the flow in-
tensity and provide scaling laws.

Then, we are interested in improving our
model for LMBs. For this purpose, the electri-
cal potential should be considered as a local
variable in the equations, and not computed
in post-processing as done before in our pre-
vious studies. The electrical potential distribu-
tion is impacted by a jump in potential which
appears at the interface alloy-electrolyte. This
jump affects the current and concentration dis-
tributions. However, our solver is based on a
magnetic field-based formulation and does not
compute the electrical potential. We determine
a new interface condition using the magnetic
field variable modeling discontinuous potential
distributions at an interface. We validate nume-
rically this new formulation. Then, we imple-
ment the concentration in this model and in-
vestigate the impact of the jump in potential on
the alloy composition. We show that this jump
affects moderately the concentration distribu-
tion, but influences the cell potential. It is then
more accurate to consider the jump in the mo-
del. In the last part, we study electrocapillary
flows that appear due to the jump in electri-
cal potential, which modifies locally the surface
tension. We show that the solutal buoyancy im-
pacts significantly the flow, which is localized in
a small zone close to the alloy-electrolyte inter-
face. The flow is able to mix this zone and to
limit the drop of the cell potential.
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m’améliorer sur certains points. Leur encadrement était exceptionnel, et je leur en suis très
reconnaissante.
Je voudrais maintenant remercier les membres du jury, Alban Pothérat et Thierry Alboussière
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précieuse lors des développements apportés à SFEMaNS, et en particulier Löıc pour le temps
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Le bon déroulement d’une thèse nécessite également une aide admnistrative et technique.
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Chapter 1

Introduction

1.1 Need of energy storage

In the actual context of climate change, the way electricity is generated needs to be changed.
The Paris Agreement aims to limit the global warming at 2◦C, which means reducing drastic-
ally the greenhouse gases. Thus, the production of fossil energy has to be massively reduced.
However, the energy demand keeps growing. In 2050, global worldwide electricity demand is
predicted to be 75% higher than today, for a scenario where current policies are applied. A more
ambitious scenario, with an objective of net zero emissions by 2050, predicts a global electricity
demand 150% higher than today (IEA, 2022). Hence, new ways of generating electricity have
to be used to answer both the energy demand and the Paris Agreement objectives. A solution
is to increase the use of renewable energies, such as solar or wind energies, which are much
more environmentally friendly. The European Commission (EC, 2023) predicts that the share
of renewable energy in EU will reach 80% of the total energy production in 2050, compared to
37% in 2021. Their electricity production is however intermittent, since it highly depends on
environmental conditions. They are then not able to follow instantaneously the energy demand
- production peaks do not concord with demand peaks. Thus, flexibility of these electrical
systems - i.e. the capacity of increasing or reducing the provided energy - is required. By 2050,
the flexibility is predicted to reach 30% of the EU energy demand, compared to 11% in 2021
(EC, 2023). An efficient massive energy storage is then required to provide higher flexibility.
More particularly, long-duration energy storage systems should be used, so that the energy
production is ensured to be cost-effective and decarbonized (EC, 2023). In the US, the US
Advanced Research Projects Agency- Energy has fixed a goal for the cost of energy and power
of storage systems: the energy cost should remain lower than $100kWh−1 and the power cost
lower than $1000kW−1 (Spatocco and Sadoway, 2015).

Different kinds of storage systems exist, such as thermal, mechanical and electrochemical stor-
age. LDES Council (LC, 2021) has shown that chemical storage technologies, such as batteries,
can answer the requirement of a long-duration energy storage. In the EU, batteries are con-
sidered as strategic in order to be independent from non-EU countries (EC, 2022).
Among different kinds of batteries, liquid metal batteries (LMBs) are promising candidates for
large-scale and long-duration stationary storage.
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1.2 Liquid metal batteries

1.2.1 Description of a liquid metal battery

An LMB is an electrochemical cell composed of three liquid layers: a negative electrode of
light liquid metal A at the top, an intermediate layer of molten salt electrolyte, and a positive
electrode made of an alloy between A and a heavy liquid metal B at the bottom. Because of
the difference of densities of each fluid, the fluids are stacked stably on top of each other.
The battery operates as follows: during discharge, the liquid metal A gives =4 electrons e−

to the electrical circuit, where =4 is the charge number. An electrochemical reaction at the
negative electrode-electrolyte interface (oxidation reaction) occurs:

A → A=4+ + =4e−. (1.2.1)

Then, the ions Ane+ diffuse in the electrolyte to the alloy, where the following electrochemical
reaction occurs at the positive electrode-electrolyte interface (reduction reaction)

A=4+ + =4e− → A (in B). (1.2.2)

� atoms diffuse then in the alloy. The thickness of the layer of liquid metal A decreases and
the thickness of the alloy layer increases. The battery is in this case a generator; the negative
electrode corresponds to the anode and the positive electrode corresponds to the cathode.
During charge, the process is reversed. The alloy gives =4 electrons to the external circuit. An
ion A=4+ formed in the alloy diffuses in the electrolyte to be combined with =4 electrons of the
circuit coming from the alloy. The upper layer of metal is restored. The battery is in this
case a receptor; the negative electrode corresponds to the cathode and the positive electrode
corresponds to the anode. See figure 1.1 for a scheme of operation during discharge and charge.
During the process, electrical energy is converted into electrochemical energy (or vice versa),
which is the Gibbs free energy of the cell Δ�̄cell, such as:

Δ�̄cell = �̄A(inB) − �̄A (1.2.3)

(a) (b)

Figure 1.1 – Scheme of an LMB during (a) discharge (b) charge.

The typical size of current LMBs is O(10−2 − 10−1) m (Ning et al. (2015); Weber et al. (2020);
Zhang et al. (2022)). An example of an experimental setup of a Li| |Bi LMB is shown in figure
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1.2. The electrical conductivity of the electrolyte is typically O(102) Sm−1 and the electrical
conductivity of the liquid metals is O(105 − 106) Sm−1. In order to remain liquid, the cell is
heated at high temperature. Even though it is possible to use metals which have a quite low
melting temperature () < 200◦ C), the usual molten salts have a melting temperature above
350◦ C (Weier et al., 2017). It is however not necessary to provide an external heating, the cell
can be self-heated using Joule heating induced by the electrolyte during operation, due to its
low conductivity (Spatocco and Sadoway, 2015).

Figure 1.2 – Experimental setup of a Li| |Bi LMB in a discharged (left) and charged (right)
state. From Kelley and Weier (2018).

1.2.2 Advantages and developments

In the 1960s, the idea of using these stably-stratified three-layer cells has emerged for energy
storage (Cairns and Shimotake (1969)), since they offer high current densities. Yet, they were
abandoned afterwards, likely because of the need of mobile batteries (Kim et al. (2013a)).
Because they are fully liquid, LMBs should not be put into motion: the interfaces could be de-
formed during motion and this could lead to a short circuit when both the top and the bottom
electrodes enter in contact. Around 2011, the group of Donald Sadoway (MIT) has re-initiated
research on LMB technology because of their capacity to answer the issue of massive energy
storage. They have shown that LMBs could be a cheaper solution.

For stationary energy storage applications, LMBs have many advantages compared to other
electrochemical cells. First, they can be significantly cheaper than classical batteries. A Li| |Pb-
Sb setup from GroupSadoway has a power cost of 283 $kW−1 and an energy cost of 84 $kWh−1

(Spatocco and Sadoway, 2015). This answers demands of power and energy costs lower than
1000 $kW−1 and 100 $kWh−1, respectively (see section §1.1). In comparison, a Li-ion battery
has a minimal power cost of 1800 $kW−1 and a minimal energy cost of 900 $kWh−1 (Spatocco
and Sadoway, 2015). Furthermore, this setup is not the cheapest that can be used. Indeed,
LMBs can be built with earth-abundant materials, i.e. low cost materials (see section §1.2.3 for
more details about the materials). The manufacturing is also not expensive because simple: the
materials are poured into a vessel which is sealed, and the battery is heated. This is much more
straightforward that other technologies which need finer procedures (Spatocco and Sadoway,
2015), such as Li-ion batteries in which the solid electrodes are often thin roles up blades.
In addition, LMBs are liquid cells. Liquid metal electrodes allow high exchange current densities
of O(101)A cm−2 compared to other types of electrodes (such as oxygen or hydrogen electrodes).
Coupled with liquid electrolytes, the liquid-liquid interfaces allow more efficient charge transfer
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and then higher current densities than other types of interfaces, usually around 1 A cm−2 and
up to 13 A cm−2 (Cairns and Shimotake (1969)). Solid-liquid and solid-solid interfaces are
subjected to degradation after a large amount of charge-discharge cycles, which is detrimental
for the battery life-time. Such degradation cannot occur with liquid-liquid interfaces, hence
we expect that the life-time is significantly increased and that much more charge-discharge
cycles are allowed. For instance, the Li| |Pb-Sb setup from GroupSadoway previously cited can
support up to 10000 cycles, as compared to Li-ion batteries which can support up to 6000 cycles
only (Spatocco and Sadoway, 2015).
Moreover, LMBs are also scalable and modular. Cells can be easily connected to form a platform
in order to reach the desired amount of energy stored (https://ambri.com).
Finally, we must stress that LMBs are not only a concept. A calcium-antimony battery platform
is already commercialized by Ambri (https://ambri.com). This platform is composed of several
cells providing 1 kWh of energy which are connected in parallel. This makes the platform
scalable to large-scale needs. It can support multiple charge-discharge cycles and safety is
ensured. It is also self-heated. This platform offers a life-time of over 20 years. The materials
chosen (calcium is one of the most earth-abundant materials) and the simple manufacturing
make this battery much cheaper than Li-ion batteries, non-toxic and easily recyclable.

1.2.3 Materials suitable for LMBs

The metals that can be chosen to build an LMB must verify particular properties. For in-
stance, they must remain liquid during operation. Then, their melting temperature should be
quite low so that not too much energy is spent to heat the battery. They have to be good
conductors as well (better than the electrolyte). Then, these materials are separated in two
categories, the materials appropriate for the negative electrode and the ones for the positive
electrode. This separation is realized mainly regarding their electronegativity: a metal with
a low electronegativity is a good electron donor, when a metal with a high electronegativity
is a good electron acceptor. The higher the electronegativity difference between anode and
cathode metals are, the higher the cell voltage. After this selection, several couples of metals
are suitable to make LMBs. In figure 1.3, we show in red the metals that can be used for the
negative electrode and in blue the ones for the positive electrode. Moreover, metals should
also be selected regarding their earth-abundance and their cost (Kim et al. (2013a)). A table
of kilowatt hour costs regarding the materials is given in Spatocco and Sadoway (2015). This
eliminates a lot of possible couples which would cost more than 300 $kWh−1 and would then
not be competitive. Another condition is the maximum annual energy storage available, which
must be high enough to answer production demand. Lithium-based cells provide a too low
energy storage (0.0071 TWh), when calcium- and sodium-based cells are able to store a large
amount of energy (38.1 TWh and 111.50 TWh, respectively) (Spatocco and Sadoway, 2015).
Sodium-based LMBs are the most preferable regarding their operation temperature, compared
to calcium-based LMBs.

Several cells using different materials have been developed: Li| |Pb (Cairns et al., 1967), Mg| |Sb
(Bradwell et al., 2012), Ca| |Bi (Kim et al., 2013b), Li| |Pb-Sb (Wang et al., 2014), Li| |Bi (Ning
et al., 2015), Na| |Zn (Xu et al., 2016), Na| |Bi (Weier et al., 2017) or Ca| |Sb (Ouchi et al. (2014),
https://ambri.com), for example. The last one is commercialized.
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Figure 1.3 – Metals suitable to build the electrodes of an LMB. In red the metals for the
negative electrode and in blue the ones for the positive electrode. Inspired by Kim et al.

(2013a).

1.2.4 Challenges on liquid metal batteries

LMBs face several challenges. First, the cell design is not straightforward. The first LMBs
setups considered were a superposition of three full liquid layers as schematized in figure 1.1.
However, the system has to be insulated from its environment. The fluid container must be
hermetically sealed. But it must be a good insulator too, so that the metal electrodes are not
connected through this container - which would lead to a short circuit. The vessel could be
made of ceramics which is an efficient insulator, but it is also really expensive, which does not
meet the need for a low-cost system (Spatocco and Sadoway, 2015). Another solution to this
issue is to place the upper liquid metal A in a metal retainer, which could be nickel spirals
(Personnettaz et al., 2019), wire loops (Weier et al., 2017) or foams (Wang et al., 2014; Weber
et al., 2019). Foams are porous solid usually made of steel (figure 1.4). These metal retainers
retain the metal A by capillarity. This allows the use of a negative electrode whose radius is
lower than the radius of the other layers. Thus, the upper metal is isolated from the vessel.
Despite the fact that the capacity of the cell is limited in this setup, this setup is actually more
realistic and more often used in experiments. Moreover, the high temperature of the cell makes
it more vulnerable to corrosion (Kim et al., 2013a). It is then not easy to find a combination
of materials which limits this phenomenon.

Moreover, no matter what the materials are, LMBs have always a low cell voltage, usually
under 1 V (Kim et al. (2013a)), and, like any other battery, are subjected to voltage losses.
The cell potential �cell can be decomposed like (Vetter, 1967)

�cell = �cell,eq ± ([Ω + [mt + [ct) (1.2.4)

where �cell,eq is the equilibrium cell potential, [Ω is the overpotential due to ohmic losses, [mt

the overpotential due to mass transfer and [ct the overpotential due to charge transfer (induced
by electrochemical reactions). The + sign is used during charge and the − sign during discharge.
These overpotentials characterize a decrease in potential due to the different phenomena that
affect the battery out of equilibrium, and they should remain as low as possible.
The equilibrium cell potential �cell,eq is measured with no applied current, when the cell has
reached an equilibrium and the alloy is homogeneous. This potential depends on the alloy
composition (i.e. on the concentration of A in the alloy). It is actually the maximal potential
reachable by the cell.
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(a)

(b)

Figure 1.4 – (a) Scheme of the foam setup of an LMB: the metal of the negative electrode is
contained in a foam. The cell is in a metallic container. (b) A foam used by the LMB team of

HZDR.

[ct is due to the activation barrier at the interfaces. Newhouse and Sadoway (2017) have shown
that for Li| |Bi and Mg| |Sb LMBs, the measured exchange current densities are 10 times higher
than the operating current density. These high exchange current densities make that [ct is
negligible in LMBs (Kim et al., 2013a; Newhouse and Sadoway, 2017).
[Ω is due to ionic and electronic currents. It increases with the current and the thickness of
the electrolyte, and decreases with its electrical conductivity. It can be reduced by using thin
electrolytes or by modifying the electrolyte composition, and by reducing the applied current.
This last modification is less desirable since LMBs are desired to operate with high current
densities.
[mt is due to the inhomogeneity of the alloy. The diffusion coefficient of light metal A in the
alloy B(A) is typically really low. Hence, during charge and discharge, the diffusion process
is slow. Thus, especially at high current densities, i.e. when the discharge/charge process
is fast, light metal A accumulates just below the electrolyte-alloy interface (see figure 1.5).
This inhomogeneity in the alloy is not desirable. First, [mt, which is directly related to the
composition of the surface of the alloy, increases with this inhomogeneity, which directly affects
the cell potential. The cell performance is reduced. Second, it can lead to the formation of solid
intermetallic phases, when the local concentration of metal A in the alloy is above a critical
value. Even though certain types of batteries can operate with these solid phases (Li| |Bi LMB,
Ning et al. (2015)), they can be harmful for other batteries (Ca| |Bi LMB, Kim et al. (2013b)).
In order to limit the inhomogeneity in the alloy, ways to homogenize it have to be found. An
idea is to produce an intense enough flow in the alloy. According to Weber et al. (2020), this
idea has emerged already 60 years ago. However, if this is flow too intense, the interface can
deform and the cell can be short-circuited. A compromise has to be realized considering the
flow intensity.
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Figure 1.5 – Scheme of the slow diffusion in the alloy and the accumulation of A at the top of
the alloy.

1.3 Simulations of liquid metal batteries

Experimental works are needed to study real setups. Post-mortem analysis can be easily per-
formed which gives information about the final state of the cell - if short circuits have occurred,
if intermetallic phases have formed... However, these experiments are expensive and, because
of the hostile experimental environment (high temperature of the system, electrochemical reac-
tions,...), it is not possible to observe the battery’s interior during operation, since the interior
must be isolated from the environment. Thus, only few measurable quantities are accessible
during experiments. For instance, one can measure the current and the cell potential dur-
ing operation, but the internal state such as the local alloy composition remains inaccessible.
Moreover, flow measurements with the UDV (Ultrasound Doppler Velocimetry) method re-
quires temperature lower than 230 ◦C (Weier et al., 2017), which is lower than the operating
temperature of an LMB, above 350◦C (see section §1.2.1). PIV (particle image velocimetry) is
not possible because liquid metals are opaque (Ashour et al., 2018). This is why numerical work
is essential to understand what is occurring in LMBs’ interior. These numerical investigations
require accurate models for LMBs, which are not easy to develop.

1.3.1 Difficulties of simulating liquid metal batteries

An LMB is a complex multi-physical system. It is above all an electrochemical cell, in which
electrochemical reactions occur. The cell is subjected to mass transport, since the species are
migrating during operation. The heating of the cell induces heat transport. Local variations
of temperature and concentration can cause phase changes. During operation, charge transfer
occurs and the electrical current induces a magnetic field. In large cells, the induced Lorentz
force can drive flows and magnetohydrodynamic instabilities. The electrical potential of the cell
can vary locally and depends on the alloy composition. In addition, the system is multiphase
and the interfaces can deform. All of these phenomena make LMBs non-trivial to model.
Moreover, the material properties are not always available, particularly those of the alloy. There
is a lack of experimental data for a lot of couples used in real LMBs.
Furthermore, the numerical implementation of relevant quantities is not straightforward. For
instance, as said in section §1.2.4, the cell potential is a sum of the equilibrium cell potential
and overpotentials. The way to compute these overpotentials must be well-defined and accurate.

To conclude, accurately modeling an LMB is not straightforward. The models can be sometimes
simplified, but should not neglect relevant phenomena. Which models should be used and which
simplifications can be done? We present in the next sections the different generations of models
that are available in the literature.
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1.3.2 Flows and magnetohydrodynamics instabilities

The first studies on LMBs were mainly interested in the flows and magnetohydrodynamics
instabilities that can appear during operation. The goal was twofold: determine whether these
flows and instabilities can be detrimental to the battery or not by leading to short circuits,
and estimate the mixing efficiency of these flows in the alloy phase. The earliest models have
supposed fluid layers of constant composition (density, conductivity...) for simplification. Four
main flow types have been studied: the Tayler instability, the Metal Pad Roll instability, the
thermal convection and the electrovortex flow. These flows are not specific to LMBs, they have
been already studied in other types of systems. We summarize in this section the literature
on this topic. A schematic representation of some of these flows and instabilities in LMBs is
shown in figure 1.6.

Figure 1.6 – Schematic representation of the flows and instabilities in liquid metal batteries.

Tayler instability

The Tayler instability is a magnetohydrodynamic instability, also present in astrophysics (Tayler,
1973; Vandakurov, 1972). We consider an axial current density distribution � which goes
through a liquid conductor. This current induces an azimuthal magnetic field 1\ . The interac-
tion between � and 1\ creates a radial Lorentz force. Usually, this force can be balanced by a
magnetic pressure and does not act on the system. However, this system is sensitive to small
perturbations and becomes unstable under certain conditions, particularly when the current
density is above a critical value, and a flow is driven. The instability threshold can be defined
using the Hartmann number

�0 =
`0�'

2

2

(
f

da

)1/2
(1.3.1)

where `0 is the magnetic permeability of vacuum, � is the characteristic current density, ' is
the characteristic length of the system, and f, d, a are the electrical conductivity, the density
and the viscosity of the fluid, respectively. When �0 is above a critical value (�0 > 20, Kelley
and Weier (2018)), the system can become unstable. In LMBs, this flow appears mainly in the
top electrode, which has the highest conductivity and the lowest density.

First, it was thought that the Tayler instability could induce a limitation of the size of the LMBs
(Stefani et al., 2011). Several studies have been conducted in order to find means to avoid the
appearance of this instability in LMBs (Stefani et al., 2011; Weber et al., 2013, 2014, 2015).
For instance, Weber et al. (2014) have studied the suppression of this instability by using axial
and transverse magnetic fields. Weber et al. (2015) have shown that using lower conductivities
of the current collectors reduce the instability. Moreover, the aspect ratio of the cylinder (the
ratio between the height and the radius) impacts significantly the critical current: the lower
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the aspect ratio, the higher the critical current. Herreman et al. (2015) have shown that Tayler
instability can lead to short circuits only in very large cells. For a unitary aspect ratio, the
critical radius for the appearance of the instability is 43 cm, and short circuits can appear for
radius larger than 3 m. For lower aspect ratio, this critical size is even larger. Because realistic
LMBs’ sizes, in the order of O(10−2−10−1) m, are much lower than this critical size, the Tayler
instability is likely negligible in LMBs.

Metal Pad Roll instability

The Metal Pad Roll (MPR) instability is a classical instability in magnetohydrodynamics. The
principle is the following: we consider a system of two superposed layers of liquid metal sur-
rounded by a weak vertical magnetic field �I. A current � is applied and runs vertically through
these layers. When the interface is slightly deformed, the current distribution is modified, and
a horizontal perturbed current density j appears. This current interacts with �I and creates a
Lorentz force. This force can amplify a rotating wave at the interface. If other forces such as
capillarity, viscous or gravity forces cannot balance the Lorentz force, the wave motion ampli-
fies. This so-called metal pad roll instability has been a lot investigated in aluminium reduction
cells (Bojarevics and Romerio (1994); Davidson and Lindsay (1998); Gerbeau et al. (2006)),
which are two-layer systems used to produce aluminium. A parameter VB for the appearance
of the MPR instability in a two-layer system has been given by Sele (1977):

VB =
��I

Δd6H1H2
(1.3.2)

where H1 and H2 are the heights of the layers, 6 the gravity coefficient and Δd the density
difference between the layers. The MPR instability appears when VB is above a critical value.
Herreman et al. (2019a) have provided an improved stability theory for such a system. The
MPR instability can appear in three-layer systems too, such as LMBs, where waves can appear
at both interfaces. This can cause short circuits if the wave motion is too intense.
Several theoretical and numerical studies have been realized on this topic in three-layer domains
(Herreman et al. (2019a, 2023); Horstmann et al. (2018); Weber et al. (2017a,b); Weier et al.
(2021); Zikanov (2015, 2018)).

The first study on Metal Pad Roll applied to LMBs has been realized by Zikanov (2015). This
study suggested that the MPR instability could exist in LMBs and should be further invest-
igated. A numerical work by Weber et al. (2017b) has highlighted that the appearance of the
Metal Pad Roll instability depends on several parameters such as the materials, the current
density, the size and the shape of the cell. For example, it is particularly detrimental in Mg| |Sb
liquid metal batteries, in large cells and in cells subjected to high current densities. Short
circuits are not expected in small cells with shallow layers. In a three-layer system, both inter-
faces can be significantly deformed if the density differences at each interface are of the same
order of magnitude. We can observe in this case either symmetrically or anti-symmetrically
coupled interfacial waves (Horstmann et al., 2018). However, in most LMBs, the density dif-
ference between the top-layer and the electrolyte is much smaller that the density difference
between the electrolyte and the bottom layer. In this case, only the upper interface moves
and the bottom interface remains at rest. The three-layer LMB system mostly behaves as a
two-layer system. This has been numerically observed by Herreman et al. (2019a); Weber et al.
(2017a,b). Herreman et al. (2023) have extended the stability theory to a three-layer system
and have theoretically confirmed this observation.
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Thermal convection

Differences of temperature appear in LMBs. During operation, Joule effect is heating up the
electrolyte, that has an electrical conductivity much lower than those of the liquid metals
(O(102) vs O(106) Sm−1). Electrochemical reactions can also locally modify the temperature
(Personnettaz et al., 2018). This heating near the interfaces drives convective flows.

The first experiment to study thermal convection in LMBs was done by Kelley and Sadoway
(2014). The authors have studied a single liquid metal electrode heated from the bottom, and
have shown that a quite intense flow appears in the electrode. This work has been numerically
modeled a few years later by Ashour et al. (2018); Beltrán (2017); Weber et al. (2018b). The
first numerical study of thermal convection applied to LMBs was realized by Shen and Zikanov
(2015). They have shown that the main source of heat in an LMB is the electrolyte, which
creates an important Joule effect due to its low conductivity. Thus, in the bottom electrode,
the temperature increases with the vertical coordinate I. In the top electrode, it is the contrary:
the temperature decreases with I. In the electrolyte, the temperature does not vary monoton-
ously: it increases with I at the bottom of the electrolyte, and decreases with I at the top of the
electrolyte. Therefore, since the density decreases with the temperature, thermal convection
drives a flow only in the electrolyte and in the top electrode, but not in the bottom electrode
which is stably stratified. This result, confirmed by Personnettaz et al. (2022), proves that
thermal convection is not able to mix the alloy phase. Personnettaz et al. (2018) have invest-
igated the thermal convection due to electrochemical reactions. This electrochemical heating
increases the cell temperature up to 30%, compared to the Joule heating. This could induce
a flow in the bottom electrode but the conditions for the appearance of such a flow have not
been well investigated. In addition, the flow is dominant in the negative electrode, but it is not
intense enough to lead to short circuits. Because the temperature distribution in the electrolyte
is more complex than in the electrodes, the appearance of flow in the electrolyte depends on
its thickness. Shen and Zikanov (2015), Personnettaz et al. (2022) and Köllner et al. (2017)
have shown that thermal convection in the electrolyte appears more easily in thick electrolytes.
Using thin enough electrolytes limits heating and hence convective fluid motion.

Electrovortex flow

The electrovortex flow (EVF) has been thoroughly investigated in and outside of the context
of LMBs. We consider a thin current collector connected to a larger cylinder containing liquid
metal. A current j goes through the cylinder via the current collectors. Because the current
collectors are thinner than the cylinder, the current distribution is non-uniform. This current
induces a magnetic field b such as ∇ × b = `0 j. Supposing axisymmetry, 1A = 1I = 0. The
interaction between this current and the induced magnetic field creates a Lorentz force j × b
which contains a radial part which cannot be compensated by the pressure. This radial part of
the Lorentz force drives a poloidal flow, which is called electrovortex flow. When an external
vertical magnetic field �I is added to the system, an azimuthal Lorentz force − 9A�Ie\ is created.
Thus, a toroidal swirl motion is driven as well, the resulting flow is called swirling electrovortex
flow. These electrovortex flows always appear in non-uniform current distributions, there is no
threshold of appearance. The books of Bojarevics et al. (1989) and Davidson (2001) give an
overview of the topic.
EVFs have been studied in several fluid domains: semi-infinite planes, cylinders and hemi-
spheres for example. The work on hemispherical geometries has been motivated by the arc
welding process, where a current goes through an electrode in contact with a molten metal.
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Fluid motion has been observed in the liquid metal and could affect the welding process.

The earliest studies have been realized by Hunt and Malcolm (1968) and Hunt and Stewartson
(1969), who have studied the flow in a horizontally finite domain confined between two planes.
Two identical conducting electrodes of a finite diameter are connected to the fluid and a vertical
magnetic field is imposed. They have conducted experiments and an asymptotic analysis of the
flow. This has motivated many studies.
In a first series of studies, the current comes radially from a point source in a semi-infinite
domain (figure 1.7a) (Lundquist (1969); Shercliff (1970)). Analytical solutions have been pro-
posed for inviscid fluids (Shercliff, 1970) and for viscous fluids (Sozou, 1971).
Later, other studies have been conducted in an hemisphere where the current comes from a
point source located on the flat side of the hemisphere (figure 1.7b), and provide analytical
solutions (Andrews and Craine, 1978; Atthey, 1980; Sozou and Pickering, 1976).
Then studies have been realized in a finite cylinder, connected to an electrode (figure 1.7c).
Vlasyuk (1987) has studied the effect of the electrode radius on the flow. Chudnovskii (1989a,b)
has proposed a theoretical model of the EVF intensity as a function of different parameters,
such as the applied current and the electrode radius. Scaling laws were proposed and veri-

(a) (b)
(c)

Figure 1.7 – Different geometries for the study of EVF (a) semi-infinite plane (b) hemisphere
(c) cylinder.

fied to describe the non-swirling EVF. A non-dimensionalized number has been introduced to
characterize the changes of regimes

( =
`0c�

2'4

4da2
(1.3.3)

where `0 is the magnetic permeability of vacuum, � the imposed current density in the cylinder,
' the radius of the cylinder, d the mass density and a the viscosity of the liquid metal. It has
been shown that, for low magnetic Prandtl number %< = f`$a - where f is the electrical
conductivity of the fluid - the flow’s velocity * varies like ( for low ( and like

√
( for large

( (Bojarevics et al. (1989); Herreman et al. (2019b)). Bojarevics et al. (1989) have improved
these scaling laws by fitting the dependency with the electrode radius 'F:

'4 =

{
((101+5'F )−1/2 for ( < 103

√
((103−5'F )1/3 for ( > 105

(1.3.4)

where '4 = *'/a is the Reynolds number. Nowadays, these non-swirling EVF are still of
interest. Kazak (2013); Kazak and Semko (2011, 2012) have conducted numerical studies of
EVF in an hemisphere connected to one or two electrodes.
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For the swirling EVF, Millere et al. (1980) have conducted the earliest numerical study and have
analyzed the flow structure. They have provided boundary conditions for the current density
at the electrode-cylinder interface. Bojarevics et al. (1981) have noticed that significant swirl
is observed in laboratory models of EVF that do not have externally imposed magnetic fields.
They have conducted a numerical study of swirling EVF in a semi-infinite domain, where the
current comes from a point source. This work has been extended by Bojarevičs and Shcherbinin
(1983) and it was proposed that vorticity stretching was a source of the swirl amplification.
Davidson (1992) has extensively analyzed the swirling EVF induced by a rotating magnetic
field in different geometries, such as a cylinder or an hemisphere, and has provided theory and
scaling laws. The swirl motion has been more precisely explained by Davidson et al. (1999),
who has proved that a weak magnetic field is sufficient to generate swirl motion. This mechan-
ism is also named as poloidal suppression, because the swirl motion gradually suppresses the
poloidal motion and becomes dominant in the flow. Nowadays, these swirling EVFs are still of
interest. Kharicha et al. (2015); Vinogradov et al. (2018) have conducted experimental studies
of swirling EVF induced by the Earth’s magnetic field in an hemisphere. More recently, Koles-
nichenko et al. (2020) studied the swirling EVF in a different experimental setup. In a cylinder,
the current is injected through a thin hole at the bottom of the cylinder and is evacuated by the
lateral sides. The surface of the metal is free. This experimental and numerical study confirms
the mechanism of poloidal flow suppression by weak magnetic fields introduced by Davidson
et al. (1999). The suppression mechanism is indeed slow in time.
In chapter 3, we investigate the structure and the flow regimes of the swirling EVF in a sym-
metrically electrically connected cylinder.

Considering the ingredients which drive EVFs, we can easily imagine them to appear in LMBs.
Indeed, the solid current collectors are usually thinner than the container which creates a non-
uniform current distribution. The EVF appears then naturally during operation, and seems
quite easy to control. It is therefore a good candidate for the mixing of the alloy phase. This is
the main motivation of most studies that were conducted on EVFs in LMBs. These studies have
been realized both with and without modeling mass transport. The first investigation of the
mixing efficiency of the EVF in the alloy phase was experimental, coupling electrovortex flow
and thermal convection in an electrode (Kelley and Sadoway, 2014). Weber et al. (2015) have
shown that EVF is possible in LMBs, and can prevent the Tayler instability from appearing.
Weber et al. (2018a) have numerically studied EVF in the same experimental setup as Zhilin
et al. (1986), and have obtained a good agreement between the experimental and numerical
results. Ashour et al. (2018) have numerically and experimentally investigated both thermal
convection and EVF in the same setup as Kelley and Sadoway (2014). They have concluded
that the flow intensity can be high enough to efficiently mix the cell. Weber et al. (2018b)
have used the same setup too, to conduct a numerical study of thermal convection and EVF
in an electrode. They have compared two types of EVF, an horizontal one and a vertical one
- the way they are driven depends of the current supply, when the current leaves the electrode
at the bottom of the cell or at the lateral sides. They have moreover examined the impact of
the Earth’s magnetic field on the flow. They have shown that the vertical EVF is damped by
thermal convection, unlike the horizontal EVF which is barely affected. The interaction of the
vertical flow with the Earth’s magnetic field induces a swirl and a poloidal flow reduction is
observed. For the horizontal EVF, the flow structure is modified but no flow is observed. They
suggest that, even though the vertical EVF has a lower velocity than the horizontal EVF, it is
expected to better enhance mass transfer. Herreman et al. (2019b) have conducted a numerical
study of EVF in a single, a two- and a three-layer system. They have shown that the flow can
become three-dimensional for high (. For a two- or three-layer system, deformations of the
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interfaces are observed. Moreover, they have shown that under certain conditions, the EVF
can become so intense that it is able to short-circuit the LMB. An estimation of the maximal
deformation as a function of the applied current and the radius of the cell is provided. For
instance, in a Mg| |Sb battery, current above 10 kA m−2 leads to short circuit if the cell radius
is above 5 cm. Liu et al. (2020) have experimentally and numerically investigated the swirling
EVF in a three-layer cylinder. The experimental and numerical results match, and the external
magnetic field affects strongly the EVF structure.

1.3.3 Mass transport and enhanced mixing

In section §1.3.2, we have seen that some authors, like Ashour et al. (2018), have concluded
that EVF can be intense enough to mix the alloy, and others, like Herreman et al. (2019b),
have shown that EVF can be so intense that short circuits appear. Generally, it was shown that
thermal convection has no effect on the mixing of the alloy phase, unlike EVF which seems quite
efficient to mix the alloy. However, most studies on flows in LMBS have been realized without
considering that an LMB is an electrochemical cell, i.e. that species are being transported into
or away from the alloy during operation. In reality, the alloy composition and properties - such
as density, conductivity, viscosity - are not constant during operation, they are modified at each
instant. This mass transport and the way it modifies the material properties has been ignored
in a lot of studies, although it can significantly impact the flow.

The first mass transport models for LMBs are very recent. The effect of thermal convection on
the concentration in the alloy has been investigated by Barriga (2013), and Ashour et al. (2018)
studied the influence of EVF on the concentration. However, these works have both modeled
the concentration as a passive scalar, i.e. its potential influence on the velocity or density fields
was not taken into account. Kelley and Weier (2018) have suggested that solutal convection,
driven by concentration differences in the alloy, could be generated in a charging LMB. The
first study modeling an active mass transport was realized by Personnettaz et al. (2019). They
study a discharge-charge cycle of a Li| |Bi LMB and model the local variations of the alloy com-
position. These variations create density differences inside the alloy, since the zones of the alloy
richer in Li are lighter than the ones containing less Li. This induces solutal buoyancy. During
discharge, Li is arriving in the alloy by the top. Then the top of the alloy is enriched with Li
and becomes lighter than the bottom. In this case, no flow is driven and a stable stratification
appears at the top of the alloy (figure 1.8 left). During charge, Li is removed from the alloy.
Therefore the top of the alloy becomes poorer in Li and heavier than the bottom of the alloy.
After a certain time, the system is destabilized and plums form close to the alloy-electrolyte in-
terface. A solutal flow is driven, which is intense enough to mix the alloy (figure 1.8 right). This
work of Personnettaz et al. (2019) has shown that solutal buoyancy has a major effect in LMBs.

Figure 1.8 – Effect of solutal buoyancy in LMBs: scheme of the concentration distribution of
light metal A in the alloy during discharge and charge.

Mass transport can also significantly influence the EVF. The studies detailed in section §1.3.2
have led to the conclusion that non-swirling EVF can be intense enough to mix the alloy.
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However, in Herreman et al. (2020), we have conducted a study coupling solutal buoyancy and
non-swirling electrovortex flow. This work has shown that during discharge, the EVF cannot
pierce through the light stratified layer at the top of the alloy and gradually vanishes. An
estimation of the minimal velocity to mix the alloy has shown that EVF would be able to
efficiently mix the alloy in a realistic setup with a size in the order of cm, if the current density
is larger that 330 kA m−2. For more realistic current densities, the radius should be larger
than 1.1m. This shows that previous conclusions of section §1.3.2 are drastically changed:
non-swirling EVF are not able to mix the alloy in LMBs. During charge, solutal convection
dominates the EVF. Further details on this study are given in chapter 2.
A way to counteract the buoyancy effects during discharge is to add an external magnetic field,
which drives a swirling EVF. This flow is efficient to mix the alloy. This has been shown in
a study by Weber et al. (2020) and confirmed by Herreman et al. (2021). Even low magnetic
fields, of the order of few mT, are enough to drive a flow intense enough.
Personnettaz et al. (2020) have studied the effects of different current distributions in the
positive electrode of a Li| |Bi battery during charge. It was shown that the current distribution
has a negligible effect on the solutal convection and on the cell performance. The flow and
concentration distributions are modified only at short times. Personnettaz et al. (2022) have
compared thermal convection and solutal convection during charge. They have shown that
thermal convection appears 10 times later than solutal convection, and that solutal convection
has a strong capacity of mixing of the positive electrode, unlike thermal convection which is not
able to mix the alloy. Therefore, no external mixing is needed during charge, solutal convection,
which appears naturally and rapidly, homogenizes very efficiently the alloy.

1.3.4 Electrical potential distribution

The cell potential is a quantity that is of direct interest to battery manufacturing but its com-
putation is not straightforward. The electrical potential distribution in an LMB is actually
quite complex and can display sharp variations. At an interface between two chemical phases
which transport free charges, electric charges are created. Thus, electroneutrality, which is
respected in the bulk, is not valid anymore close to the interface. The electrical potential i
and the currents vary locally close to this interface, and electrochemical reactions are impacted
(Lück and Latz, 2016). In the particular case of electrode-electrolyte interfaces, a structure
named electrochemical double layer (EDL) is created when an electronic conductor (here the
electrodes) is in contact with a ionic conductor (here the electrolyte). Due to chemical inter-
actions, ions are absorbed at the interface: this is the first layer, called surface charge. Then,
ions with an opposite charge are attracted by this first layer by coulombian interactions and
create a second layer: the diffusive layer. See figure 1.9a for a scheme of the EDL. This induces
a continuous variation of potential at the interface. Lück and Latz (2016) have presented a
theoretical model for the electrochemical double layer at an electrolyte-electrode interface. In
their model, the EDL is not spatially resolved. The quantities of the EDL are associated to
the local corresponding quantities in the bulk, at the interface. This allows them to use a
macroscopic approach, where the continuous variation of the electrical potential in the EDL
is approximated by a jump in potential. See figure 1.9b for a scheme of the modeled jump in
potential at an interface.

LMBs are also subjected to variations of potential at each electrode-electrolyte interface, where
EDLs exist. Yet, the electrical potential influences directly the currents. Thus, the current
distribution can be modified. Since the flux of metal A into the alloy is directly linked to the
current density at the alloy-electrolyte interface, this could significantly impact the concentra-
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(a) (b)

Figure 1.9 – (a) Scheme of the electrochemical double layer. (b) Simplification of the variation
of electrical potential in the electrochemical double layer EDL (black line) by a jump in

potential (red dashed line).

tion distribution in the alloy.
In LMBs, local variations of potential due to the EDL appear at each electrode-electrolyte
interface. The first study which has considered this phenomenon was realized by Weber et al.
(2019). In their model, the EDL is not spatially resolved, like in Lück and Latz (2016), and
the variation of potential at the interfaces is approximated by two jumps. Moreover, all phases
are considered electrically neutral. The simplified electrical potential distribution in the cell
chosen by Weber et al. (2019) shows that, at equilibrium - i.e. when no current is applied -,
the only contributions to the cell voltage are these two jumps. This can be easily understood:
when the cell is at equilibrium, the overpotentials of equation (1.2.4) are zero. The only source
of potential is due to electrochemical mechanisms and to local variations of potential at the
interfaces. However, it is not easy to determine the value of each jump separately. They can
be theoretically determined by using the Nernst equation (Duczek et al., 2023):

in-e
jump = i0 +

R)
=4�

ln
0A=+4

0A
at the negative electrode-electrolyte interface

i
e-p
jump = i0 +

R)
=4�

ln
0A=+4

0A(in B)
at the positive electrode-electrolyte interface

where i0 is the standard potential, R is the universal gas constant, ) the temperature, and
0A=+4 , 0A, and 0A(in B) are the activities of A=+4 , A and A(in B), respectively. However, this
requires to know the activities of the chemical components, which are not always available.
Since the foam composition does not vary during the battery operation, the jump at the neg-
ative electrode-electrolyte interface remains constant. Its impact on the current is likely not
significant. When this upper jump is neglected, only the jump at the alloy-electrolyte interface
is considered in the model. This jump depends on the local molar fraction of A in the alloy
G |alloy−electrolyte at this interface. In this case, the value of the jump can be easily related to the
equilibrium potential �cell,eq. We have then:

ijump(G |alloy−electrolyte) = �cell,eq(G |alloy−electrolyte).

This equilibrium potential is experimentally known. Weber et al. (2019) have only modeled the
jump at the alloy-electrolyte interface. It is an approximation, but in their study, numerical
results were in accordance with the experimental results, which validates the relevance of this
model.
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Only a few studies focused on LMBs and taking into account this jump exist (Duczek et al.
(2023); Weber et al. (2019, 2020)). Weber et al. (2019) have implemented the jump in their
model and conducted a numerical and experimental study, by ignoring the flow. Simulations
and experiments yield similar results. Weber et al. (2020) have added the swirling electrovortex
flow in this model and studied its effect. They have concluded, like Herreman et al. (2021), that
swirling EVF is efficient to mix the alloy. Duczek et al. (2023) have proposed a 1D electrochem-
ical model where the two jumps are taken into account. A detailed work on electrochemical
properties is realized and they model the concentration migration in the electrolyte, without
flow.

To summarize, it is necessary to stress that the electrical potential is a local variable which
can influence significantly the currents and concentration in the cell in LMBs. The jump in
potential induces a new coupling between the electrical problem and the mass transport, which
makes them coupled in two ways: the material flux in the alloy is defined by the electrical
current at the alloy-electrolyte interface; the electrical potential jumps at this interface, and
this jump is directly related to the local concentration. However, in all of the studies previously
described in sections §1.3.2 and §1.3.3, the electrical potential of the cell was computed in post-
processing from the internal state of the cell. But ignoring this jump in numerical models is
not self-consistent, since the electrical distribution is modified, and then the cell potential too.
Results and conclusions of the previous studies about enhanced mixing and cell performance
could be modified with an improved model. We investigate this topic in chapters 4, 5 and 6.

1.4 Outline of the thesis

This thesis is organized as follows.
In chapter 2, we present two studies that were initiated in internships preceding this PhD.
First we present a study about the effect of solutal buoyancy on electrovortex flow in liquid
metal batteries. We show that, during discharge and charge, solutal buoyancy dominates the
EVF and cannot be neglected in the models, and that the EVF is not able to mix the alloy
during discharge. In a second part of the chapter, we focus on another study about droplets
detachment in liquid metal batteries. We show, by studying different setups, that, under certain
conditions, droplets can form in the negative (top) electrode and detach, until falling into the
positive electrode. In certain cases, short circuits are observed.
In chapter 3, we extend the studies of section §1.3.2 and characterize the swirling EVF by
conducting a parametric study. We use a symmetrical setup, so that the flow obtained is
similar to the von Kármán flow. We analyze the influence of several parameters on the flow
structure and intensity, and provide scaling laws for the flow intensity.
In chapter 4, we focus on improving our model for LMBs by adding the jump in potential at
the alloy-electrolyte interface. We propose a new magnetic field-based interface condition to
model a jump in potential at an interface without the electrical potential variable. In order to
validate this condition, we develop two solvers, one based on the electrical potential, using the
classical interface condition, and the other based on the magnetic field, using the new interface
condition. We validate these solvers and show that they are indeed equivalent.
In chapter 5, we use the magnetic field-based interface condition to improve our model for
LMBs by considering the jump at the alloy-electrolyte interface. We examine how much the
jump in potential affects the current and the concentration distributions, and how wrong the
results of the previous studies - like those described in section §1.3.3 - are. We show that the
jump in potential impacts slightly the alloy composition and moderately the ohmic losses.
In chapter 6, we show that the jump in potential can locally modify the surface tension at
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the alloy-electrolyte interface, which can drive electrocapillary flows. We investigate how these
flows affect the alloy composition, and show that they are significantly affected by the solutal
buoyancy.
In chapter 7, we summarize the results and give perspectives for future work.
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Chapter 2

Pre-thesis contributions

2.1 Introduction

Before this PhD, I have done two internships on the topic of liquid metal batteries, and this
research led to two articles described here. During my M2 internship at LISN between March
and July 2019, we studied the effect of solutal buoyancy on electrovortex flows (EVFs) in liquid
metal batteries. This study is a basis for part of the work realized during this PhD. In my second
internship at HZDR (Helmholtz-Zentrum Dresden-Rossendorf) in Dresden, Germany, between
September 2019 and July 2020, we studied the droplets detachment during the operation of an
LMB. This work was supervised by Norbert Weber and Tom Weier.

2.2 Solutal buoyancy vs electrovortex flow in liquid metal

batteries

2.2.1 Motivation

Mixing the alloy phase can be useful to limit the drop of the cell potential. Electro-vortex flow
is a natural candidate to enhance mixing in the alloy. Several studies have concluded that the
driven EVF can be quite intense, but not all studies have modeled mass transport, which is
really non negligible in LMBs, as solutal buoyancy seems to have a major effect on the alloy
composition and on the flow. During discharge, a light stratified layer forms at the top of the
alloy. Then, how does solutal buoyancy affect EVF? Is EVF still able to mix efficiently the
alloy? What is the minimal flow’s intensity for an efficient mixing? During charge, a very
efficient mixing occurs by solutal convection in presence of solutal buoyancy. How does this
solutal convection interact with EVF?
To answer these questions, we have modeled and performed numerical simulations of EVF in
presence of solutal buoyancy effects. The results of this work are gathered in Herreman et al.
(2020). We detail the model in section §2.2.2, and the findings in sections §2.2.3 and §2.2.4.

2.2.2 Model and material properties

The material properties of the alloy in LMBs are not always available. This is why we got
interested in the Li| |Pb cell. This LMB is likely not marketable, because lead is toxic and then
not easy to handle. A lithium-based battery also provides a too low annual energy storage.
However, this cell is really well adapted to fundamental studies, as we know the electrochem-
ical properties of the Li-Pb alloy, which have been a lot studied for nuclear fusion reactors
(De Les Valls et al., 2008; Martelli et al., 2019; Schulz, 1991).
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The Li| |Pb cell is composed of three liquid layers, schematized in figure 2.1a. The cur-
rent collectors are here supposed to be wires made of copper whose electrical conductivity
is fCu = 5.8 · 107 Sm−1. In the simulations, we only solve evolution equations in the alloy layer
and the bottom wire. We denote ', H and 'F the radius of the alloy, the height of the alloy
and the radius of the wire, respectively. A scheme of the setup used for the simulations is
represented in figure 2.1b.

(a)
(b)

Figure 2.1 – (a) Three liquid layer battery setup. (b) Scheme of the setup used for the
simulations. Only the alloy and the bottom wire are modeled.

Material properties of the Li-Pb alloy

We assume that the alloy in the battery evolves around the eutectic mixture, i.e. the com-
position of the Li-Pb alloy with the lowest melting point. This eutectic mixture has a molar
fraction of lithium equal to 0.17. While the battery is charging or discharging, the composition
of the alloy varies, and so do the material properties. We do not have information about the
dependence of the viscosity a and the electrical conductivity of the alloy f, on its composition.
From Khairulin et al. (2017b), we get that the variation of the coefficient diffusion � with the
concentration of Li in the alloy is actually not significant. In our model, we will consider �, a
and f equal to those of the eutectic at 500◦C (Khairulin et al., 2017b; Martelli et al., 2019):

� = 8 · 10−9 m2s−1, a = 1.44 · 10−7 m2s−1, f = 7.39 · 105 Sm−1.

The mass density of the alloy varies significantly during operation, and cannot be approximated
as being constant. The density of the eutectic alloy is d∗ = 9543 kg m−3. In an experimental
study, Khairulin et al. (2017a) measured the variation of the density of Li-Pb alloys. A linear
fit on these data-points as a function of the molar concentration of Li, 2, yields the following
law:

d(2) = d∗ −MLij(2 − 2∗), with j = 15.1. (2.2.1)

2∗ = 9365 mol m−3 is the molar concentration of lithium in the eutectic alloy. This fit was used
in Herreman et al. (2020). It can be noticed that the coefficient j is quite large, and this
suggests that density variations can be large.
In most of the previous studies, the field used to track the local composition of the alloy is the
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molar fraction of Li in the alloy, denoted G in our model. The fields G, 2 and d are connected
by the fundamental relation

G =

[
1 + MLi

MPb

(
d

2M!8

− 1

)]−1

.

where MLi = 6.941 · 10−3 kg mol−1 is the molar mass of Li and MPb = 207.2 · 10−3 kg mol−1 is
the molar mass of Pb. Injecting the fit (2.2.1) for d, this leads to the relation

G =

[
1 + M!8

M%1

(
d0

2M!8

− j − 1

)]−1

(2.2.2)

that connects G and 2. Here d0 = 10525 kg m−3 is the extrapolated density of pure lead, from
the fit (2.2.1). This value is quite close to the real density of pure lead, equal to 10433 kg m−3.

Equations

The molar concentration field in the alloy satisfies an advection-diffusion equation

mC2 + u ·∇2 = �∇22. (2.2.3)

Here u is the velocity of the mixture, and we assume � to be constant.
The governing field equations for the velocity derive from a Boussinesq model. The magnetic
field is solution of the induction equation. Hence, we also solve in the alloy

d∗(mCu + (u ·∇)u) = −∇? − d(2)6eI + ∇ · (d∗a(∇D + (∇D)) ) + j × b (2.2.4a)

mCb = ∇ × (u × b) + (`0f)−1∇2b, (2.2.4b)

∇ · u = 0, ∇ · b = 0. (2.2.4c)

We denote `0 the magnetic permeability of vacuum, ? the pressure field, 6 the gravity, j the
current density and b the magnetic field.
In the wire, there is no flow and only the magnetic field is to be solved

mCb = (`0fCu)−1b, ∇ · b = 0. (2.2.5)

In the model, we fix the total electrical current � that is running through the cell. This electrical
current also defines the material flux of lithium that enters the alloy at its top:

�mI2 |Σ =
�

=4�
. (2.2.6)

� is the current density related to � in our model such as � = �/(c'2). We suppose a homo-
geneous current density at the top surface of the alloy. This condition is not fully realistic and
is modified in chapters 4, 5 and 6. � = 96485 sA mol−1 is the Faraday constant, =4 = 1 the
number of charges carried by lithium ions and the index Σ corresponds to the localization of
the alloy-electrolyte interface. No-slip boundary conditions are applied for the velocity.
The simulations start with the eutectic alloy, 2 = 2∗ everywhere and u = 0.
The problem is numerically solved using the code SFEMaNS. Details about this code are given
in chapters 3, 4 and 5.
One can remark that we solve the full MHD problem in this case, which is not necessary regard-
ing the low values of the magnetic Reynolds number. However, these equations were already
implemented in SFEMaNS, and the simulations that we show below only take a few hours. We
have thus chosen to not modify the equations.
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Ideal and worst scenarios

Our goal is to examine how much the EVF can mix the alloy. In order to measure the effect of
EVF on the alloy composition, we compare our numerical results with two scenarios, that we
name the ideal scenario and the worst scenario.
The ideal scenario for the battery corresponds to the case of a perfectly mixed alloy. In this
case, the concentration is homogeneous and only time-dependent. We suppose that the mixing
is instantaneous and ignore how this is done. The evolution equation is then

mC2 = ∇ · (�∇2). (2.2.7)

After having integrated this equation on the volume and used the Green-Ostrogradski formula,
we can find the following analytical solution for the concentration

2ideal(C) = 2∗ +
�

=4�H
C. (2.2.8)

In the worst scenario, there is no flow and diffusion is the only transfer mechanism. Since
diffusion is really weak, this process is inefficient and the inhomogeneity close to the alloy-
electrolyte interface is very large. In this case, the concentration depends only on I and C and
is solution of (2.2.3) with u = 0. The expression

2diff (I, C) = 2∗ + 2
�

=4�

√
C

�
ierfc

(
H − I
2
√
�C

)
(2.2.9)

is an approximated analytical solution of this diffusion problem for short times (C � H2/�).
The goal of the mixing is to be as close as possible to the ideal scenario.

Computing the potential of the cell

In this study, the potential of the cell �cell is computed by post-processing using the equilibrium
potential function Φ(G), corrected by ohmic losses. In the alloy, the main contribution for the
potential is due to the surface where the molar fraction G is locally higher than in the bulk. We
use the following formula to compute the cell potential:

�cell = Φ(〈G〉Σ) + [Ω (2.2.10)

where 〈G〉Σ is the averaged molar fraction at the alloy-electrolyte interface. This average is an
approximation, and we will see later in chapter 5 that this approximation is not consistent.
The ohmic losses [Ω occur mainly in the electrolyte that we do not solve. We estimate that

[Ω =
�H4
fe

. (2.2.11)

We fix, somehow arbitrarily, the height of the electrolyte H4 = 1 cm and fe = 187 Sm−1 is a
realistic electrical conductivity for the electrolyte.
The equilibrium potential depends on the molar fraction of lithium in the alloy G. From the
experimental study of Gasior and Moser (2001), we can deduce that a linear fit is applicable in
the range G ∈ [0.17, 0.60]:

Φ(G) = U − V(G − G∗), with U = 0.614 V, V = 0.598 V. (2.2.12)

Here G∗ = 0.17 is the molar fraction of lithium at the eutectic mixture (see Herreman et al.
(2020) for more details).
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We aim to assess how mixing improves the cell potential with respect to the diffusive case and
how close we can get to the ideal scenario. For this purpose, we define the ideal potential � ideal

cell
,

when the alloy is homogeneous, such as

� ideal
cell = Φ(Gideal) + [Ω (2.2.13)

where Gideal is the molar fraction in an homogeneous alloy. This formula can be analytically
computed by using equations (2.2.8) and (2.2.2) to compute Gideal.
Another potential that can be considered is the one of the worst scenario, when the flow is
absent and only diffusion acts. It can be computed such as

�diff
cell = Φ(G

diff ) + [Ω (2.2.14)

where Gdiff is the molar fraction at the alloy-electrolyte interface in the pure diffusion case,
which is constant at the surface. Gdiff is determined by using equations (2.2.9) and (2.2.2).
The mass transfer overpotential [mt, defined in equation (1.2.4) of chapter 1, measures the vari-
ation of the cell potential due to local inhomogeneity in the alloy. In this study, it corresponds
to the difference between the observed cell potential and the ideal potential

[mt = |�cell − � ideal
cell | = |Φ(〈G〉Σ) −Φ(G

ideal) | (2.2.15)

In the pure diffusion scenario, [mt is the difference between �diff
cell

and � ideal
cell

. In the ideal
scenario, [mt is zero.

2.2.3 Discharge

In this section, we focus on discharging cells. We first conduct a study without considering
buoyancy and compare these results to a configuration with solutal buoyancy present. In all
simulations, we have a non-swirling EVF that is stirring the alloy.

Electrovortex flow without buoyancy

We run three simulations with three currents, � = 0.25, 2.5, 25 A and no solutal buoyancy. We
show in figure 2.2 the velocity field and the molar fraction field at a fixed instant for each current.
We notice that for low currents, the flow cannot mix the alloy: the concentration profile is close
to the diffusive solution. In contrast, for high currents, the flow is intense enough to mix the
alloy. In figure 2.3, we plot the surface averaged molar fraction 〈G〉Σ, the potential �cell and the
overpotential [mt as a function of time for the three currents (solid lines). We compare these
profiles with the worst scenario, i.e. the pure diffusive case (dashed lines). This allows us to
measure how mixing is impacting the battery. For low currents, the EVF does not bring real
improvements of these quantities compared to the pure diffusive case, the dashed and solid lines
are almost superposed. For high currents, the surface averaged molar fraction is significantly
reduced and this also keeps �cell higher. Overall, the mass transfer overpotential remains quite
low with respect to the dominant ohmic losses.
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Figure 2.2 – Snapshots of the magnitude of the velocity (left) and the molar fraction
distribution (right) for three currents: (top) � = 0.25 A, C = 5556 s, (middle) � = 2.5 A, C =

6111 s, (bottom) � = 25 A, C = 2889 s.

(a)
(b) (c)

Figure 2.3 – Comparison of the pure diffusion case and the numerical results with EVF for
three currents, � = 0.25 A (blue), � = 2.5 A (red), � = 25 A (green) as a function of time. (a)
Averaged molar fraction at the alloy-electrolyte interface. (b) Potential of the cell. (c) Mass

transfer overpotential.
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Effect of solutal buoyancy on Electrovortex flow

When the buoyancy term is active in the equations, the flow is drastically modified. Even with
the highest current � = 25 A, the EVF is not intense enough to counteract buoyancy. An EVF
is certainly present in the bulk, but it never pierces through a stagnant buoyant layer, forming
at the top of the alloy. As time evolves, the flow is progressively crushed by the thickening
stagnant layer. This can be seen in figure 2.4, where we represent the molar fraction in the
alloy and streamlines of the flow at different times for � = 25 A. In the stagnant layer, there is
almost no flow, so diffusion dominates the mass transport. Hence we retrieve the same alloy
composition as in the pure diffusion case in the presence of solutal buoyancy. Consequently, the
solutal buoyancy has a major impact on the flow and on the battery: the flow cannot longer
mix the alloy.

Figure 2.4 – Snapshots of the molar fraction field and streamlines of the velocity (black lines)
for � = 25 A, at different times.

Criteria for an efficient mixing

Our simulations have shown that, for the currents studied, the EVF is not able to mix the
alloy of an LMB. We aim to theoretically estimate the minimal flow intensity required to blend
efficiently the alloy.
We introduce two reference velocities: *?, the minimal flow intensity necessary to pierce the
buoyant layer, and *<, the minimal flow intensity needed to mix the alloy. We can distinguish
three flow regimes:

• * � *?: this means that the flow cannot pierce the buoyant layer and has no impact at
all on the mixing.

• *? � * � *<: the flow is able to pierce the buoyant layer and impacts the molar fraction
distribution in the alloy, but its influence is moderate and finite in time.

• *< � *: the mixing is efficient at all times.
Thus, the EVF mixes efficiently the alloy if *< � *.
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It is possible to estimate the dependency of *? and *< as a function of control parameters,
which is done in details in Herreman et al. (2020). To pierce the buoyant layer, the flow, which
develops during an advection time, has to be intense enough to bring parcels of heavier fluid in
the bulk through the buoyant layer and up to the top of the alloy. Using the diffusive solution
and a balance between the kinetic energy of the flow and the work required to bring heavier
parcels of fluid to the top of the alloy, this yields

*? =

(
2�MLij6H

d∗�

)1/3
.

The flow can mix efficiently the alloy if its intensity is high enough to bring lighter parcels of
fluid from the top of the alloy into the bulk. Using the maximal density difference between the
bulk and the top of the alloy, and a balance between the kinetic energy of the flow and the
work required to bring lighter parcels of fluid from the top of the alloy into the bulk, this yields

*< =

(
4�MLij6

�d∗

)2/5 H3/5

(c�)1/5
.

If we apply the formula for *< to our model, really high currents are required to develop intense
enough EVF for mixing efficiently the alloy (� > 330 kA m−2 i.e. � > 1650 A). These currents
are not realistic. Using a realistic current density for LMBs (� = 10 kA m−2), we estimate that
the radius of the setup should be greater than 1.1 m to reach this *< scale, this is far from the
actual setups. We conclude from this study that non-swirling EVFs are likely not able to mix
efficiently the alloy in LMBs.
In these estimations, we did not consider the dependency on the wire radius 'F, whose value
impacts the intensity of the EVF. Moreover, swirling EVF, driven when an external magnetic
field is applied, creates more intense flows and could modify these conclusions.

2.2.4 Charge

In this study, we have also investigated charging cells. In simulations, this corresponds to
a negative current density. We expect the development of solutal convection due to solutal
buoyancy. We show in figure 2.5a the velocity field and the molar fraction field at three times
with � = 0.22 A. At the beginning, the EVF appears progressively in the bulk. After a critical
time, we retrieve the same observations as Personnettaz et al. (2019). Heavier plums form at
the top of the alloy and drop down. This solutal convection flow mixes very efficiently the alloy.
Notice also how this convective flow dominates the EVF that is not visible anymore. Figure
2.5b shows that the resulting molar fraction field obtained is clearly three-dimensional after a
certain time.
The efficiency of mixing by solutal convection can be seen in figure 2.6, where the evolution
of 〈G〉Σ, �cell and [mt with time is plotted, and compared to the ideal scenario (homogeneous
alloy, dot-dashed lines) and to the worst scenario (pure diffusion, dashed lines). Here, � = 22 A.
We find that 〈G〉Σ, �cell and [mt remain close to the values of the ideal scenario, confirming the
very intense mixing.
In the article, we obtain a theoretical estimation of the intensity of the driven flow, using a
balance between the kinetic energy of the flow and the gravitational potential energy:

* ∼
(
j�MLi6

�d∗

)1/5 H3/5

�1/5 . (2.2.16)

The PhD thesis of Personnettaz (2022) investigates further the solutal convection in LMBs.
In summary, during charge, solutal buoyancy has a major influence on the flow. Even for low
charging currents, an intense solutal convection flow develops and dominates the EVF.
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(a)

(b)

Figure 2.5 – (a) Snapshots of the velocity (left) and molar fraction (right) fields for � = 0.22
A, at different times. (b) Snapshot of the three-dimensional molar fraction for � = 0.22 A and

C = 300 s.
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(a) (b) (c)

Figure 2.6 – Comparison of the worst scenario i.e. pure diffusion (dashed lines), the numerical
results with the convective flow (solid lines), and the ideal scenario i.e. homogeneous alloy
(dot-dashed lines) for � = 22 A as a function of time. (a) Averaged molar fraction at the

alloy-electrolyte interface. (b) Potential of the cell. (c) Mass transfer overpotential.

2.2.5 Conclusion and perspectives

In this section, we have studied the effect of solutal buoyancy on EVF and on the alloy com-
position, during discharge and charge.
During discharge, we have shown that the EVF is not intense enough to pierce the light strat-
ified layer at the top of the alloy, and has no effect on the mixing. The diffusion process
dominates the EVF due to the solutal buoyancy. We have found three regimes of flows, and
estimated the minimal flow required to efficiently mix the alloy. This has shown that EVF can
efficiently mix the alloy in a small cell for non-realistic current densities. For realistic current
densities, the EVF can mix only in very large cells. We deduce then that the EVF cannot be
used for the mixing process in realistic LMBs, which are quite small.
During charge, solutal convection appears and mixes efficiently the alloy. This phenomenon
dominates the EVF which is not visible after a short time, and is clearly three-dimensional. We
have been able to theoretically estimate a scaling law for the flow intensity, which is consistent
with the numerical simulations.
Therefore, this study has shown that non-swirling EVF is dominated by solutal buoyancy
during both charge and discharge.

We have concluded from this internship that non-swirling EVFs cannot mix the alloy. But what
happens when we consider swirling EVFs in discharge instead? Herreman et al. (2021) have
studied the effect of swirling EVF on the mixing of the alloy in discharging cells. We recall that
the swirling EVF is driven by an external vertical magnetic field. In practice, this magnetic
field of magnitude � can be for instance induced by a solenoid placed around the LMB. This
magnetic field adds an azimuthal component to the flow. The swirling EVF is actually very
efficient for the mixing, even with low magnetic field. Figures 2.7a and 2.7b show the averaged
molar fraction at the surface of the alloy and the molar fraction distribution in the alloy for
different magnetic fields. We remark that even a weak magnetic field influences the flow. For
higher magnetic fields, the mixing is really efficient since 〈G〉Σ becomes almost constant with
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time. Hence, these results are promising findings to answer the issue of mixing of the alloy.
In this study, it is interesting to notice that the flow velocity varies like

* ∼
(
��

d∗

)2/3
'

a1/3 . (2.2.17)

We try to understand the origin of this scaling law in chapter 3.

(a) (b)

Figure 2.7 – � = 25 A. (a) Surface averaged molar fraction as a function of time for different
magnetic fields. (b) Snapshots of the molar fraction distribution for different magnetic fields

at C=20 s. Adapted from Herreman et al. (2021).

Furthermore, in this study, we have computed the cell potential in post-processing using ap-
proximations. This computation does not consider the complex electrical potential distribution
in LMBs, like the jump in potential at the alloy-electrolyte interface. In chapters 4 and 5, we
provide a better model for �cell, taking into account this jump.
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2.3 Droplets detachment in liquid metal batteries

2.3.1 Motivation

In HZDR (Helmholtz-Zentrum Dresden-Rossendorf), experiments are conducted on liquid metal
batteries. During experimental studies, issues arise that are not encountered in numerical sim-
ulations. For instance, droplets and localized short circuits have been observed. In setups
where the negative electrode is not fully liquid and is a metal retainer, the liquid metal of the
negative electrode is maintained by capillarity in this retainer. However, Walsh et al. (1971)
have reported that a low wettability of the metal retainer could lead to droplet formation.
In a setup where the metal retainer is a wire loop (figure 2.8a), droplets can been seen at the
bottom of the loop, maybe because of a low wettability. In figure 2.8b, the negative collector
in a solid foam. We can notice that intermetallic solid phases have formed on this foam. These
intermetallic phases appear when the concentration of Li in the alloy exceeds a certain value,
they do not form in pure lithium. Then, they could not have formed at the bottom of the
foam. A possible explanation could be that due to a low wetting, a droplet has formed at
the bottom of the foam and is entered in contact with the alloy, leading to a short circuit.
This metal bridge between the two metallic phases might lead to the formation of intermetallic
phases which attach to the foam. Figure 2.8c shows the experimentally measured cell potential
�cell as a function of time during three charge-discharge cycles (the first, the 20th and the 25th
cycle), measured in a Li| |Bi LMB. A typical charge-discharge cycle for an LMB consists of a
first rest phase where no current is applied (� = 0). Then, a positive current is applied during
the charge phase. Later, the current is turned off during another rest phase, and a negative
current is applied for the discharge phase. Finally, the current is once more turned off. On
this graph, we can observe a sudden short drop of the cell potential after several cycles, during
discharge. This could be explained by non-faraidic transfer of lithium from the negative (top)
electrode into the positive (bottom) electrode, i.e. a droplet transfer. If such a transfer occurs,
the concentration of lithium in the alloy locally increases close to the alloy-electrolyte interface,
which decreases locally the potential. Since the total cell potential is directly linked to the
potential at the surface of the alloy, the cell potential is reduced too.
In LMBs where the three layers are fully liquid, short circuits can be due to short-wave in-
stabilities which deform the interfaces. These deformations might be amplified by the Lorentz
force, until a short circuit occurs.
We are interested in understanding the amplification of the deformations in a fully liquid LMB,
and the detachment of droplets in LMBs made with a metal retainer. These phenomena could
lead to short circuits, which can be detrimental to LMBs. The results and details of this invest-
igation can be found in Bénard et al. (2021). We summarize the study in the next paragraphs.
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(a) (b)

(c)

Figure 2.8 – (a) Droplets in a spiral setup of an LMB. (b) Intermetallic phases observed on a
foam. (c) Charge-discharge cycle of the cell potential vs time for different cycles.

2.3.2 Cases investigated

We study two types of LMB setups: a setup where the three phases are liquid (like in figure
1.1a), which will be called the three-layer setup, and a setup where the lithium of the negative
electrode is contained in a foam, which will be called the foam setup.
In the three-layer setup, short-wave instabilities can deform the interfaces. These local deform-
ations could be amplified if the current is high enough, until a possible short circuit occurs.
In the foam setup, an insufficient wetting could lead to the formation of droplets at the bottom
of the foam in the electrolyte. These droplets could deform due to local forces, until a detach-
ment and a local short circuit occur.

In order to analyze both situations, we conduct numerical studies in a Li| |Bi LMB. The radius
of the cell is ' = 5 cm, the heights of the negative electrode, of the electrolyte and of the
positive electrode are H= = 4.5 cm, H4 = 1 cm, H?=4.5 cm, respectively. The external current
collectors are not modeled in the setup and are replaced by simplified boundary conditions on
the current. The negative (top) electrode of the LMB is either full liquid (figure 2.9a) or full
solid to model the foam (figure 2.9b).
We add an initial perturbation to the system to model the deformation of the droplet in order to
investigate the detachment process. In the three-layer setup, the perturbation is modeled by a
hemispherical deformation of the negative electrode-electrolyte interface (figure 2.9a). Without
the Lorentz force, we expect this deformation to flatten out due to gravity and capillarity. With
the Lorentz force, this deformation might amplify. In the foam setup, the initial perturbation
is an hemispherical liquid droplet, fixed at the bottom of the solid foam (figure 2.9b). Without
the Lorentz force, we expect the droplet to stay at equilibrium below the foam. With the
Lorentz force, the droplet might deform and detach. The radius of the perturbation is denoted
n .
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(a) (b)

Figure 2.9 – Schemes of the studied setups. (a) Three-layer setup, with an hemispherical
deformation of the negative electrode-electrolyte interface. The phases are fully liquid. (b)

Foam setup, with a liquid droplet at the bottom of the foam. The foam is solid and the other
phases are liquid.

We focus on the discharge case. We fix a uniform current density � at the bottom and at
the top of the cell. The model is multiphase, the phases are solved with a volume-of-fluid
method. The positive electrode is considered as made of pure Bi, and the negative electrode is
considered as made of pure Li, both in the three-layer and in the foam setups. The potential i
is solved with the Laplace equation. The current density j is deduced from i. The magnetic
field b is solved with the induction equation. The velocity is computed using the Navier-Stokes
equations, where two external forces, the Lorentz force fL and the surface tension force f st,
are applied. Mass transfer is not modeled here. The model of the droplet in the foam setup
requires to know the contact angle between the droplet and the foam, which depends on numer-
ous parameters, like the materials, the surface roughness and the temperature. The surface of
the foam is porous, which means that the contact angle can change depending on the porosity.
Thus, the contact angle is unknown in our case. We will arbitrarily fix it to 90◦.
In an already existing multiphase solver of OpenFOAM, we have added the induction and the
Laplace equations, as well as the Lorentz force in the Navier-Stokes equation and the compu-
tation of the current density. To avoid oscillations of the droplets in the foam setup, we have
added an algorithm which smooths the phase fraction field. Only axisymmetric simulations are
conducted. Equations and more details about the model can be found in Bénard et al. (2021).

2.3.3 Three-layer setup

In the three-layer setup, we use a deformation of the negative (top) electrode-electrolyte inter-
face as an initial perturbation. This deformation is taken as hemispherical for simplicity and
is placed at the center of the LMB. We can remark that in this case, the initial state is not at
equilibrium.
In figure 2.10, we focus on an initial perturbation with a radius n = 8 mm and study the
influence of the current density. The insert graph shows the distance 3, which represents the
minimal distance between the negative electrode and the positive electrode, as a function of
time. When 3 = 0, both metallic phases have entered in contact. When � = 4.4 A cm−2, we
observe a re-stabilization of the system, 3 increases with time. This can be seen on the top
snapshots of figure 2.10 too, where the three phases are represented. Gravity and surface ten-
sion re-stabilize the system by acting on the interface, generating a flow represented by velocity
arrows.
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When � = 10 A cm−2, we observe a destabilization of the system. The deformation deviates
the current lines (in blue on the snapshots). This deviation increases locally the Lorentz force
(arrows on the bottom snapshots), which is predominant at the upper right corner of the de-
formation. This Lorentz force is high enough to counteract surface tension forces, therefore a
droplet is cut. The induced flow drives the droplet downwards into the positive electrode. In
this case 3 reaches 0, but no short circuit is observed.
These observations suggest that a critical current density exists. We have determined the crit-
ical current density �2 for different perturbation radii. We have observed that �2 decreases
when n increases. For n = 9 mm, �2 = 4.1 A cm−2. This current density could be used in LMBs,
but such a large initial deformation is really unlikely, this could require a very intense flow
to distort the interface as much. For smaller and more likely perturbation sizes, the critical
current density is not realistic. Moreover, no short circuit is observed. This means that, in the
three-layer setup, droplet transfers are unlikely. Even though a droplet transfer can occur, it
requires either a too large initial deformation or a too large electrical current.

Figure 2.10 – Study of the three-layer setup for n = 8 mm. On the insert graph is plotted 3 as
a function of time for � = 4.4, 10 A cm−2. The snapshots represent a zoom on the three phases
at different times as indicated. Only a meridian plane is displayed with the symmetry axis on

the left. The top snapshots are for � = 4.4 A cm−2 and the arrows represent the velocity
vectors u. The bottom snapshots are for � = 10 A cm−2 and the arrows represent the Lorentz

force vectors fL. The blue lines are streamlines of the current.

In order to understand better the detachment process and the forces involved, we have con-
ducted a theoretical analysis to determine the critical current density. This analysis is based
on the assumption that the detachment is due to the competition between the surface tension
force, whose characteristic magnitude is denoted �st, and the Lorentz force, whose characteristic
magnitude is denoted �L. The deformation induces a perturbed current, which deviates from
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the purely vertical applied current. This perturbed current creates a radial part in the Lorentz
force, which acts on the detachment of the droplet. The magnitude of this radial Lorentz force
is directly linked to the magnitude of the perturbed current which can be estimated as a func-
tion of the size of the deformation. This estimation has been done in Bénard et al. (2021),
as well as the estimation of �st. A non-dimensionalized parameter V which characterizes the
competition between the surface tension and the Lorentz forces has been determined:

V =
�L

�st
=
`0�

2c2'4

Wn−e

n

(3H4 − 2n)2
(2.3.1)

where `0 is the magnetic permeability of vacuum and Wn−e the surface tension between the
electrolyte and the negative (top) electrode. When V > V2 ' 37, a droplet detachment is
observed in our simulations. This non-dimensional parameter seems to be a good criterion to
describe the detachment process in the three-layer system.

2.3.4 Foam setup

In the foam setup, the liquid lithium is contained in a solid foam. We suppose that liquid
droplets can be formed below the negative (top) electrode due to an insufficient wetting. We
do not know the exact equilibrium shape of this droplet. In order to determine this shape, we
first add an initial hemispherical droplet at the bottom of the solid foam and at the center of
the LMB. We suppose a contact angle between the droplet and the foam of 90◦. We then run
a first simulation without any Lorentz force until the droplet takes its equilibrium shape. We
finally conduct the study from this equilibrium state. We can remark that, contrary to the
three-layer setup, the initial state is at equilibrium.

Figure 2.11a shows a plot of the distance 3 as a function of time for different current densities,
and n = 6 mm. The critical current density �2 is equal to 3.5 A cm−2. For � < �2, oscillations
of the droplet are observed, but no detachment occurs. For � > �2, we observe a droplet
detachment but no short circuit. This can be seen on the snapshots of figure 2.11a too, which
are represented for � = 3.5 A cm−2.
Figure 2.11b shows a plot of the distance 3 as a function of time for different current densities,
and n = 8 mm. The critical current density �2 is equal to 2.45 A cm−2. For � < �2, we observe
oscillations but no detachment. For � slightly above �2, we observe first several oscillations
before the droplet detaches. This can be seen on the snapshots of figure 2.11b too, which are
represented for � = 2.5 A cm−2. In this case, a short circuit is observed at C = 0.272 s. For
� > �2, the droplet detaches immediately, no oscillations are observed.
We can remark that critical current densities are much lower than in the three-layer setup, for
an identical size of the perturbation. These critical current densities can be reached in LMBs.
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(a) (b)

Figure 2.11 – Snapshots of the detachment process and distance 3, minimal distance between
the top and the bottom electrode, as a function of time for different current densities. The

snapshots are a zoom on the three liquid phases, the solid foam is not visible. (a) n = 6 mm.
Snapshots are represented for � = 3.5 A cm−2. (b) n = 8 mm. Snapshots are represented for

� = 2.5 A cm−2.

2.3.5 Conclusion

To conclude this study, the droplet detachment process is due to the Lorentz force which, for
high enough current density, dominates the surface tension force, and pinches the droplet. In
the three-layer setup, a critical current always exists depending on the size of the deformation,
above which a droplet detaches. But this current is not realistic for reasonable deformation
sizes. Thus, no droplet detachment is expected in this case. In the foam case, the critical
current is more realistic in real LMBs, and short circuit can happen.
However, our model uses simplifications. The simulations conducted are purely axisymmetric.
In the foam case, we suppose a contact angle of 90◦, but this value was taken arbitrarily. In all
of our simulations, the droplet is initially present, we did not study how it forms. Moreover,
the droplet volume can vary during operation. Although our model clearly has its limitations,
this study provides a first explanation to the observation of droplets and local short circuits in
LMBs.
A perspective of this work would be the understanding of the droplet formation below the foam.
This would allow us to examine how droplets can appear at the bottom of the foam, and to
better model the shape of these droplets.
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Chapter 3

Numerical study of swirling
electrovortex flows in a cylinder

In this chapter, we present the work published in the article Bénard et al. (2022) in Journal of
Fluid Mechanics in September 2022.

3.1 Introduction

The swirling electrovortex flow has been thoroughly investigated in and outside the context
of LMBs (Bojarevics et al., 1989; Davidson, 2001). Much attention went to the estimation of
scaling laws for the intensity of the flow. The work of Davidson et al. (1999) about swirling
EVF has suggested the following scaling laws for swirling EVF (see appendix A of Bénard et al.
(2022)):

* ∼
(
��'

d

)5/9 (
'

a

)1/9
. (3.1.1)

Another study realized by Herreman et al. (2021) on the mixing of the alloy of LMBs by swirling
electrovortex flow has suggested the existence of a so called boundary layer regime, where the
velocity varies like

* ∼
(
��

d

)2/3
'

a1/3 (3.1.2)

which is different from the findings of Davidson et al. (1999). Herreman et al. (2021) have
explained that the forcing by the Lorentz force is the largest at the rim of the electrical contact
between the electrode and the cylinder, where this force is actually singular. This indicates
that this regime is controlled by the boundary layer. However, the origin of this regime was not
so clear to us. We wonder then what are the conditions of the existence of the boundary layer
regime described by equation (3.1.2). Moreover, both above scaling laws have been determined
without considering the induction effects, which cannot be neglected for high magnetic fields.
How these scaling laws are modified when the induction-less approximation is not valid any-
more?
With the numerical code SFEMaNS, we are able to conduct three-dimensional direct simu-
lations. Previously, a lot of numerical simulations were realized using axisymmetric approx-
imation, as this is significantly less costly. Although axisymmetry is sometimes exact, this
approximation is certainly not always valid. How does three-dimensionality affect the flow and
does it influence the scaling laws?
To answer these questions, we conduct a magnetohydrodynamic study in a cylinder filled with
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(a) (b)

Figure 3.1 – Scheme of the setup used and of the induced swirling EVF. (a) An electrical
current is driven through solid copper wires in a cylinder filled with liquid GaInSn and

surrounded by a vertical magnetic field �. The current density lines are deviated as shown by
the blue lines. The Lorentz force j × �eI is mainly azimuthal, localized near the electrical

contact. (b) Swirling flow driven, mainly azimuthal and structurally similar to a von Kármán
flow.

a single liquid metal. Unlike the setup of Herreman et al. (2021), this fluid domain is sym-
metrically connected to two thin solid electrodes (see figure 3.1a) at the top and bottom of
the cylinder. Due to this wiring, we expect an azimuthal Lorentz force j × b near the top
and bottom of the cylinder, with opposite directions and identical magnitude. The swirling
electrovortex flow driven is thus expected to be counter-rotating (see figure 3.1b). We have
chosen this setup as it should drive a similar flow to the well-known von Kármán flow, in-
vestigated by many teams (Berhanu et al. (2007); Monchaux et al. (2007); Nore et al. (2003,
2004)). In this way we can compare the electrovortex flow to the classical counter-rotating von
Kármán flow. Our principal aims are to better characterize the different flow regimes of this
counter-rotating electrovortex flow and how the flow intensity varies with the different control
parameters. Moreover, most of the studies realized in the literature use axisymmetric simula-
tions. By running both axisymmetric and three-dimensional simulations, we are able to analyze
differences between them and this allows us to estimate whether axisymmetric simulations can
be a good approximation or not.
We begin by describing the model used in the study. Then we show the results of axisymmetric
and three-dimensional parametric studies by varying the current, the magnetic field and the
viscosity and we identify scaling laws. Finally, we investigate how the geometry influences the
flow, before concluding on the results of the chapter.
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3.2 Model

We study a cylinder filled with Galistan (GaInSn) liquid metal. We denote H the height of the
cylinder and ' its radius. This cylinder is electrically connected to two identical copper wires,
one at the top of the cylinder and one at the bottom of the cylinder as shown in figure 3.1a.
We denote 'F and HF the radius and the height of the wires, respectively. An external vertical
magnetic field H = �eI is applied and a current � is imposed. We will denote � = �/(c'2)
the corresponding current density. This current density is nearly that found at the mid-plane.
Although � is the actual control parameter and not �, we will often use � to describe the value
of the applied current in our study. The system is described by cylindrical coordinates (A, \, I).
The plane I = 0 corresponds to the equatorial, mid-plane of the cylinder.
In the cylinder, we impose the magnetohydrodynamics equations:

d(mCu + (u ·∇)u) = −∇? + da(∇D + (∇D)) ) + j × b, (3.2.1a)

mCb = ∇ × (u × b) + (`0f
−1)∇ × j, (3.2.1b)

∇ · u = 0, (3.2.1c)

∇ · b = 0. (3.2.1d)

u is the velocity of the fluid, ? the pressure, j = (∇ × b)/`0 the current density and b the
magnetic field. We denote d, a and f the density, the kinematic viscosity and the conductivity
of the GaInSn, respectively. From Plevachuk et al. (2014), at a temperature ) = 303 K, we
have

d = 6345 kg m−3, a = 3.2 · 10−7 m2 s−1, f = 3.24 · 106 S m−1. (3.2.2)

`0 is the magnetic permeability of vacuum. In the solid wires, the magnetic induction equation
fixes

mCbF = (`0fCu)−1∇2 bF, (3.2.3a)

∇ · bF = 0, (3.2.3b)

where bF is the magnetic field in the wires, and fCu = 5.96 · 107 S m−1 their conductivity.
On the boundaries of the fluid domain we impose no-slip boundary conditions for the velocity.
The fluid is initially at rest.
In SFEMaNS, the electrical boundary conditions need to be imposed through the magnetic
field, and this can be done using Ampère’s law. At any radial coordinate 0, we have

1\ |A=0 =
1

0

∫ 0

0
`0 9IA3A. (3.2.4)

This yields for instance at A = '
1\ |A=' = `0�'/2. (3.2.5)

Applying this to other boundaries leads to the following boundary conditions. On the insulating
part of the liquid domain, we have:

1I |A=' = �, 1\ |A=' = `0�'/2, (3.2.6a)

1A |I=±H/2 = 0, 1\ |I=±H/2 = `0�'
2/(2A), ∀A ∈ ['F, '] . (3.2.6b)

On the insulating part of the wires, we have:

1F,I |A='F = �, 1F,\ |A='F = `0�'
2/(2'F). (3.2.7)
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At the top and bottom of the wires, we have:

1F,A |I=±(H/2+HF ) = 0, 1F,\ |I=±(H/2+HF ) = `0�'
2A/(2'2

F) ∀A ∈ [0, 'F] . (3.2.8)

These conditions are exact for axisymmetric simulations and a suitable approximation for three-
dimensional simulations for low magnetic Reynolds numbers, as shown in Herreman et al.
(2019b). In our simulations, the magnetic Reynolds number remains always low.
The transmission conditions at the interfaces between the cylinder and the wires, i.e. the
continuity of the tangential magnetic and electrical field, are

eI × (b − bF) |I=±H/2 = 0, eI × ( j/f) − ( jF/fF)) |I=±H/2 = 0, ∀A ∈ [0, 'F],

where jF is the current density in the wire.
To solve these equations, we use the numerical code SFEMaNS (Spectral/Finite Elements for
Maxwell and Navier-Stokes). This code is written in Fortran 90 and is developed since 2001 in a
long-term collaboration between LISN (ex-LIMSI) and TAMU (College Station, Texas). SFE-
MaNS was initially developed to study dynamo problems in axisymmetrical geometries. This
code was already validated thoroughly and previously used to solve different magnetohydro-
dynamic problems (Guermond et al., 2007, 2009, 2011). As said in section §2.2.2, to avoid
new developments, we solve in this chapter the full MHD problem, even though the magnetic
Reynolds number remains low.
In SFEMaNS, the numerical method is based on a hybrid decomposition of the fields. Each field
A, scalar or vectorial, is decomposed according to a spectral representation in the azimuthal
direction and a finite element representation in the meridian plane, such as

A(A, I, \, C) =
"−1∑
<=0

A2
< (A, I, C) cos(<\) +

"−1∑
<=1

AB
< (A, I, C) sin(<\) (3.2.9)

where " is the total number of Fourier modes. We further detail this decomposition and the
finite element method in chapters 4 and 5.
In order to characterize the intensity of the flow, we will use the following global quantities:

D =
√
〈‖u‖2〉V , Dmax = max

x∈V
‖u(x, C)‖. (3.2.10)

Here 〈...〉V means a volume average and ‖u‖2 = (D2
A (x, C) + D2

\
(x, C) + D2

I (x, C)). V is the volume
of the cylindrical fluid domain.
Denoting X:; the Kronecker symbol, we also define the following quantities for all < ∈ {0, . . . , "−
1} in order to measure the modal content of the flow:

Dm =

√
0.5〈(1 + X<,0)‖u2< ‖2 + (1 − X<,0)‖uB< ‖2〉V . (3.2.11)

The toroidal and the poloidal parts of the axisymmetric component of the flow are measured
with the following quantities:

Dtor =

√〈
(D20,\)2

〉
V
, Dpol =

√〈
(D20,A)2 + (D

2
0,I)2

〉
V
. (3.2.12)

We finally denote time-averaged quantities by using overbars - D is the time-average of D for
example.
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3.3 Influence of �, � and a on the flow

In this section, we study the influence of the current intensity, of the magnetic field and of the
viscosity on the flow. We fix the geometry: '= 10 cm, H = 18 cm, 'F = 2 cm and HF = 4 cm.
The aspect ratio H/' = 1.8 is the same used in the von Kármán Sodium experiment (Berhanu
et al. (2007); Monchaux et al. (2007)).

3.3.1 Influence of the current density �, axisymmetric study

The external magnetic field is fixed such as � = 1 mT. We vary the current density in the range
[10−2, 2000] A m−2, equivalent to � ∈ [3.1 · 10−4, 62.8] A. We first conduct purely axisymmetric
simulations only. We use a non-uniform mesh. For � ≤ 50 A m−2, the non-constant mesh size
ℎ varies in the range [0.0025, 0.005] m. For � ≥ 100 A m−2, ℎ ∈ [0.0005, 0.0025] m.
We show in figure 3.2a the time evolution of the rms velocity D for several current densities.
We remark the existence of different states. For � = 5, 10 A m−2, the velocity magnitude
reaches a steady state. For � = 50, 100 A m−2, the velocity magnitude reaches a non-steady
state characterized with weak fluctuations. At some time, a transition occurs. The velocity
decreases suddenly, fluctuations are larger. For � = 500, 2000 A m−2, the velocity is unsteady
and presents strong fluctuations after a short transient regime. The time-averaged velocity D
increases with the current density �, as shown in figure 3.2b. For low � we observe a scaling
D ∼ �1. For intermediate �, the power-law D ∼ �2/3 is merely visible over a decade. At high �,
we can observe a power-law D ∼ �1/2.
The ratio between the poloidal and toroidal velocities Dpol/Dtor is plotted in figure 3.2c. The
toroidal component always dominates the poloidal component. This ratio is really low for
� = 0.01 A m−2, and increases until reaching a maximum almost equal to 0.5 at � = 5 A m−2.
When � is higher, the ratio decreases and fluctuates around a plateau just below 0.4.
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Figure 3.2 – Variable �, axisymmetric simulations. (a) Time evolution of the volume-averaged
velocity D for different values of �. (b) Time- and space-averaged velocity D̄ as a function of �

(time average done after the transient). (c) Ratio Dpol/Dtor as a function of �.

The spatial distribution of the flow can be seen in figure 3.3. Figures 3.3a and 3.3b represent
the streamlines of the velocity, colored by the velocity magnitude, for two current densities. For
� = 5 A m−2, the flow is mainly azimuthal and steady. The flow is directed along the symmetry
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axis and to the electrical bottom and top wires. Then it comes back from the top and bottom
walls to the equatorial plane following a spiral fashion around the vertical axis. This structure
is 'c-symmetric, which means that

©­«
DA
D\
DI

ª®¬ (A, \, I) = ©­«
DA
−D\
−DI

ª®¬ (A,−\,−I). (3.3.1)

This flow structure is similar to the von Kármán flow studied by Nore et al. (2003). For
� = 500 A m−2, the flow is turbulent and predominantly azimuthal. The 'c-symmetry is
broken.
The influence of the current density on the spatial structure of the velocity field is studied more
precisely in figure 3.3c, where the velocity magnitude | |u | | is represented for different current
densities in a meridional plane. For � = 0.1 A m−2, the flow is steady and largest close to the
electrical contacts with the wires. When � increases, the flow becomes more intense along the
vertical axis. The flow is still 'c-symmetric. From � = 50 A m−2 the system is destabilized, the
'c-symmetry is broken and the flow becomes ”turbulent”.

The different spatial structures observed highlight the existence of a symmetry-breaking bifurc-
ation in the interval [10, 50] A m−2. Figure 3.4a shows the velocity magnitude at two instants
for � = 50A m−2 before and after the bifurcation. At C = 4000 s the flow is strongest along
the vertical axis and presents a 'c-symmetry. At C = 30000 s, the flow is disorganized and
unsteady, the 'c-symmetry is broken.
We use this symmetry-breaking to determine the bifurcation threshold. We define the top (resp.
bottom) energy �top (resp. �bot) as the volume-averaged magnetic energy computed in the top
(resp. bottom) half of the cylinder. If |�top − �bot | increases with time, the 'c-symmetry is
broken. We use this quantity to determine the threshold of the bifurcation. On the inset graph
of figure 3.4b we plot |�top − �bot | with time using a logarithmic scale, for � = 50 A m−2. This
difference increases linearly with time before reaching a plateau where it oscillates. From these
data, we measure the growth rate _A , i.e. the slope of the linear part. In figure 3.4b, we show
_A in blue points for different values of �. Close to the threshold, _A increases linearly with �.
The points for � > 90 A m−2 are far from the threshold, and deviate from this linear behavior.
A linear interpolation of _A for low � (orange dashed line) yields the threshold �2 = 17 A m−2.
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(a) � = 5 A m−2 (b) � = 500 A m−2

(c)

Figure 3.3 – Variable �. Axisymmetric simulations. Spatial structure of the flow. (a-b)
Streamlines colored by the velocity magnitude in axisymmetric simulations for different values

of �. (c) Transition of the axisymmetric flow as � increases, visualized by the velocity
magnitude ‖u‖ in a meridian plane (the symmetry axis is on the left).
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Figure 3.4 – Determination of the threshold of unsteadiness. (a) Velocity distribution for
� = 50 A m−2 at C = 4000 s and at C = 30000 s (b) On the inset graph is plotted the difference
|�top − �bot | for � = 50 A m−2. The growth rate _A of this difference, which corresponds to the

slope of the increasing part, is plotted in blue for different �. A linear fit of these values
(orange dashed line) leads to the threshold �2 = 17 A m−2.

3.3.2 Influence of the current density �, three-dimensional study

The unsteady behavior of the system for high enough current densities suggests a three-
dimensional flow. Thus, we conduct three-dimensional simulations and compare them with
axisymmetric simulations. We use " = 20, and show further why 20 modes are enough to
conduct our study. The meshes are the same as in section §3.3.1.
In figure 3.5 are shown the time evolution of the volume-averaged velocity D as well as its
modal components D0, D1, D2 and D3. For � = 1 A m−2, the system remains axisymmetric. For
� = 5 A m−2, the three-dimensional behavior appears from C = 8000 s. The flow oscillates until
it stabilizes at C = 20000 s. The mode 2 dominates the three-dimensional components. For
� = 10 A m−2, the mode 2 also dominates, but the three-dimensional behavior appears sooner,
from C = 2000 s, and the system remains unsteady with large oscillations. For � = 50 A m−2,
the three-dimensional behavior appears very quickly and the flow is turbulent with large fluc-
tuations. The modes are all non-zero. Even though the flow is clearly three-dimensional, the
axisymmetric component remains dominant.

In order to compare axisymmetrical and three-dimensional simulations, we plot in figure 3.6a
the mean velocities D̄ obtained with axisymmetric and three-dimensional simulations, as a func-
tion of the current density. The flow becomes three-dimensional between 1 and 5 A m−2. For
high current densities, the law D̄ ∼ �1/2 or D̄ ∼ �5/9 can be observed. More precisely, a fit of the
values give a slope of 0.51 for axisymmetric simulations, i.e. rather D̄ ∼ �1/2, and a slope equal
to 0.55 for three-dimensional simulations, i.e. rather D̄ ∼ �5/9. For medium current densities
the law D̄ ∼ �2/3 is not clearly visible. The three-dimensional rms velocity is always lower than
the axisymmetric velocity, but remains of the same order of magnitude. This is shown more
precisely in figure 3.6b, where the ratio between both quantities D̄3D/D̄axi is represented. This
ratio decreases with � until it fluctuates around a plateau from � = 50 A m−2. The fact that this
ratio remains slightly above 0.75 shows that axisymmetric simulations can give a reasonable
order of magnitude of the flow intensity.
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Figure 3.5 – Time evolution of D and modal content D0, D1, D2, D3 for different current densities
�.

The spatial distribution of the three-dimensional flow is represented in figure 3.7, which shows
the velocity magnitude on a meridian plane and a horizontal plane at I = 8.8 cm for three
current densities. For � = 5 A m−2, the flow is steady and presents a weak top-bottom asym-
metry, unlike in the axisymmetric simulations. For � = 50 A m−2 and � = 500 A m−2, the flow is
clearly turbulent and three-dimensional. Notice that the low-velocity zone around the vertical
axis visible in axisymmetric simulations (figure 3.3c) is completely absent in three-dimensional
simulations.

For high current densities, the flow is turbulent and presents large fluctuations. Thus, we can
wonder if 20 Fourier modes are enough to accurately represent the flow. For this reason, we
have conducted a small convergence study using " = 20 to " = 40 and for three current dens-
ities, � = 100, 500 and 2000 A m−2. In figure 3.8 we represent the time- and space-averaged
modal kinetic energy �2 = D̄2V/2 as a function of < for " = 20 and " = 40.
For � = 100 A m−2, the spectra present small differences for < ≥ 15. For � = 500 A m−2, similar
differences appear for < ≥ 10. In both cases, the most energetic modes are well converged.
Hence " = 20 is enough to properly represent the flow. For � = 2000 A m−2, the spectra
show more significant differences, particularly for the first modes. Thus, the use of 40 modes
is preferable in this case. However, we see that the averaged velocity D̄ is identical with 20 or
40 modes. The plots of figure 3.6 computed with " = 20 remain valid.

The first bifurcation observed in the three-dimensional simulations with increasing � is the
breaking of axisymmetry. This happens in the range between � = 1 A m−2 and � = 5 A m−2.
The flow in the case � = 5 A m−2, just after this bifurcation, is characterized in figure 3.9. This
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Figure 3.6 – (a) D as a function of � in axisymmetrical and three-dimensional simulations. (b)
Ratio D3D/Daxi vs �.
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Figure 3.7 – Spatial distribution of the velocity magnitude ‖u‖ for � = 5, 50, 500 A m−2.
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Figure 3.8 – Spectra of the time-averaged kinetic energy in the statistically steady state as a
function of the mode < for � = 100, 500, 2000 A m−2, using " = 20 and " = 40.
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flow is steady and three-dimensional. In figure 3.9a we show the vertical component of the
velocity DI on three horizontal planes at I = −3 cm, I = 0 cm and I = 3 cm. One can clearly
see the dominance of the mode 2, and the 'c-symmetry, also visible in 3.9b. This flow is struc-
turally very close to the counter-rotating von Kármán flow studied in Nore et al. (2003). This
predominance of the mode 2 in the horizontal planes is due to two opposite vortices centered
at \ = −c/2 and \ = c/2, separated by two opposite fronts centered at \ = 0 and \ = c where
the flow is drawn towards the center of the cylinder. These equatorial vortices are visible in
figure 3.9c, where the velocity magnitude is plotted at A = 0.8'.
The second bifurcation in the simulations with increasing � is the appearance of the unsteadi-
ness. This occurs between � = 5 A m−2 and � = 10 A m−2. The flow oscillates but still remains
'c-symmetric. The mode 2 remains dominant.
The third and final bifurcation is the appearance of turbulence and the loss of the 'c symmetry,
which happens between � = 10 A m−2 and � = 50 A m−2.

We focus on the determination of the threshold of the first bifurcation, when the axisymmetry
is broken. The velocity component of the two first three-dimensional modes D1 and D2 increases
exponentially with time for � = 5 A m−2 (see the inset in figure 3.10). In figure 3.10 is plotted
the growth rate _ of the modes 1 and 2 for � = 1 A m−2, � = 5 A m−2 and � = 10 A m−2. The
growth rates for � = 1 A m−2 are negative because this case is axisymmetrical. We deduce from
a linear fit between � = 1 A m−2 and � = 5 A m−2 the threshold �3D

2 = 2.5 A m−2, which is
identical for both modes 1 and 2. This result is qualitatively similar to the findings of Nore
et al. (2004) where it was shown that, for an aspect ratio of 1.8, modes 1 and 2 destabilize at
the same threshold.
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(a)

(b) 0 ≤ \ ≤ c
(c)

Figure 3.9 – Flow structure after the first bifurcation, for � = 5 A m−2. (a) Vertical velocity DI
at I = −0.03 m, I = 0 m and I = 0.03 m. (b) Contour of ‖u‖ taken for ‖u‖ = 0.6 ‖u‖max and

colored by DI. (c) ‖u‖ at A = 0.8' and −c/2 ≤ \ ≤ c/2 (left) and 0 ≤ \ ≤ c (right).
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Figure 3.10 – Threshold of the first bifurcation i.e. the three-dimensionalization of the flow.
Exponential growths of D1, D2 are shown in the inset for � = 5 A m−2. The measured growth
rates plotted as a function of � permit to locate the threshold of the first three-dimensional

bifurcation near �3D
2 ≈ 2.5 A m−2 for both modes < = 1, 2.

3.3.3 Influence of the magnetic field �

In a second series of simulations, we fix the current density at � = 50 A m−2. We vary the
external magnetic field magnitude �. We focus on axisymmetric simulations, and conduct only
one three-dimensional simulation with " = 20 modes. For � ≤ 10−3 T, the mesh size ℎ varies
in the range [0.0025, 0.005] m. For 2 · 10−3T ≤ � ≤ 5 · 10−1 T, ℎ ∈ [0.0005, 0.0025] m. For
� = 1 T, ℎ ∈ [0.001, 0.005] m.
In figure 3.11, we show the time- and volume-averaged velocity D as a function of �. This
quantity increases with � following the law D ∼ �2/3 until � = 5 · 10−4 T, then the law D ∼ �1/2

is observed until � = 2 · 10−3 T. For higher �, the slope increases progressively, until a max-
imum is reached and the behavior is drastically modified. For the highest magnetic fields, the
velocity decreases with � and we observe a law D ∼ �−1.

Figure 3.12 shows snapshots of the current density distribution (left) and velocity field (right)
for three magnetic fields between 10−3, 10−2 and 10−1 T. When the magnetic field increases, the
flow becomes steady and the current density lines are compressed. For the highest magnetic
field studied, the flow and the current are concentrated in a thin vertical column whose borders
are aligned with the boundaries of the wires. Outside of this column the velocity is zero.
In this case, for high magnetic fields, the flow remains axisymmetric. We have conducted
a three-dimensional simulation for � = 10−1T which has shown that D is identical in both
axisymmetric and three-dimensional simulations (it corresponds to the red point in figure 3.11).
The three-dimensional modes (< ≠ 0) are zero. Hence, high magnetic fields make the flow more
axisymmetric and reduce drastically the flow intensity. The term fu × �eI in (3.2.1b), which
corresponds to the induction effects, is the source of the reorganization of the current density
and velocity distributions.
One can also notice that, unlike in duct flows (Hunt and Stewartson (1965); Moresco and
Alboussiere (2004)), Hartmann boundary layers are not present at high magnetic field in our
setup. Such layers are always localised near the solid boundaries of the domain and channel
the electrical current for large Hartmann numbers, defined as

�0 = �'

(
f

da

)1/2
. (3.3.2)
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Figure 3.11 – Time- and volume-averaged velocity D as a function of �.

(a) � = 10−3 T
(b) � = 10−2 T (c) � = 10−1 T

Figure 3.12 – Spatial representation of the current density (left) and of the velocity
magnitude (right) for three magnetic fields. The current density is scaled from yellow to

purple in the range [0,�F] where �F = 1250 A m−2 is the imposed current density in the wires.

In our case, we have, for the three simulations reported in figure 3.12, �0 ≈ 4, 40, 400, for
� = 10−3, 10−2, 10−1 T, respectively, and does effectively become large. Yet, in our setup,
the configuration is different from the duct flows. The imposed current density and external
magnetic field are parallel, unlike the case of duct flows where they are perpendicular. However,
free Shercliff layers can be observed.
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3.3.4 Influence of the viscosity a

We study in this section the influence of the viscosity a. We use the same geometry as in the
previous sections. We fix � = 50 A m−2, � = 1 mT, and we artificially vary the viscosity of the
liquid metal. Usually, the viscosity of a liquid metal is between 10−7 and 10−6 m2s−1. Yet, in
order to better understand the behavior of the flow, we extend the study to other non-realistic
viscosities. We conduct only axisymmetric simulations. We vary the viscosity in the range
a ∈ [8 · 10−8, 3 · 10−5]m2s−1. The mesh size ℎ varies in the range [0.0025, 0.005] m for each
value of viscosity.
We show in figure 3.13 the time- and volume-averaged velocity D as a function of the viscosity.
The velocity decreases with a. For small values of a, it is not so clear if we observe the power-
law D ∼ a−1/9 or a0, but the flow magnitude is pretty independent of a. For large viscosities,
we observe the behavior D ∼ a−1.
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Figure 3.13 – Velocity D̄ as a function of the viscosity a.

3.3.5 Scaling laws

Let us now explain the scaling laws observed in figures 3.2b, 3.11 and 3.13. We first introduce
the non-dimensional quantity Γ = `0�'/� which is a ratio between the horizontal component
of the magnetic field and the vertical magnetic field. For all simulated cases, we have Γ � 1.
This means that the dominant part of the magnetic field is � and that the EVF is likely always
swirling. We then introduce the typical scales for the velocity, the current density and the
magnetic field: [u] = *, [ j] = � and [b] = �.
We first describe the inductive regime for high magnetic fields. In this regime, the inductive
term f(u × b) becomes dominant in Ohm’s law. We conjecture that the flow saturates when
this term balances the applied current density �. This yields:

* ∼ �

f�
(3.3.3)

which is in accordance with the observation D̄ ∼ �−1 for high � (figure 3.11).
When induction is not important, we can distinguish three flow regimes. The first regime cor-
responds to the Stokes regime where the viscous term dominates, valid for low velocities. Thus,
a balance between the viscous and the Lorentz force terms from the Navier-Stokes equations
(equation (3.2.1a)) is verified. We have then [∇ · (da(∇u + (∇u)T))] ∼ [ j × b]. In this regime,
the velocity fills the whole cell, the scale [A] = ' is then accurate. This yields the following
relation:

* ∼ ��'
2

da
(3.3.4)
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Thus, in this regime, the velocity varies like � and a−1. This is in agreement with our simulations
where D̄ ∼ �1 and D̄ ∼ a−1 for low velocities. This regime has been also observed in duct flows
(Poyé et al. (2020)).
A second regime is the inertial regime, valid for high velocities. In this regime, inertia dominates
viscosity and balances the Lorentz force. We have then [d(u ·∇)u] ∼ [ j × b], which yields:

* ∼
(
��'

d

)1/2
(3.3.5)

We recover the power-laws D̄ ∼ �1/2, D̄ ∼ �1/2 and D̄ ∼ a0 found in our simulations (figures
3.2b, 3.11 and 3.13). This regime has been already investigated by Bojarevics et al. (1989).
Davidson (1992); Davidson et al. (1999) have proposed a finer approach to derive scaling laws
of axisymmetric flows driven by azimuthal body forces. A reinterpretation of the scaling law
proposed by Davidson et al. (1999) in the turbulent regime, by using the Lorentz force as the
driving body force, yields

* ∼
(
��'

d

)5/9 (
'

a

)1/9
(3.3.6)

(see appendix A of Bénard et al. (2022) for details on this reinterpretation). This explains the
law D̄ ∼ �5/9, D̄ ∼ a−1/9 that could be observed in figures 3.2b and 3.13. However, it is difficult
to determine which law for the inertial regime (3.3.5) or (3.3.6) is the most adapted in our case.
A third intermediate regime, that we call the boundary layer regime, can sometimes be observed.
It exists when the viscous effects, the inertial effects and the Lorentz force have all the same
intensity, which is possible because forcing principally occurs near the electrical contact, in
the viscous boundary layer. The derivation of the scaling law for this regime is explained in
Herreman et al. (2021). It is based on the I-component of the vorticity equation

mClI + (u ·∇)DI ≈ (8 ·∇)DI + d�mI 9I + amIIlI . (3.3.7)

If the viscous effects, the inertial effects and the Lorentz force have the same intensity, this
yields the three-term balance

[(u ·∇)lI − (8 ·∇)DI] ∼ [d−1�mI 9I] ∼ [am2
IIlI] . (3.3.8)

This regime is mainly controlled by the flow in the boundary layer with thickness X. We can
then estimate the scales [mI] = X−1 and [mA] = '−1. We suppose [DA , D\] = *. We have
then [DI] = *X'−1 due to incompressibility. Thus, [lA , l\] = *X−1 and [lI] = *'−1 for the
vorticity. From this, the three-term balance becomes

*2

'2
∼ ��
dX
∼ a*

'X2
(3.3.9)

which yields, after having eliminated X

* ∼
(
��

d

)2/3
'

a1/3 . (3.3.10)

This scaling law has been observed by Poyé et al. (2020) in duct flows, and was explicitly visible
in Herreman et al. (2021). However, in this symmetrically wired setup, with pairs of opposing
wire electrodes, this scaling law is not so clearly observed or only in a short range of current
densities. The flow driven in this setup is much more turbulent than that in Herreman et al.
(2021). This likely implies that the boundary layer will also become more easily turbulent
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too. Since the three-term balance is based on a laminar boundary layer, it will then be easily
broken. This regime can be also derived from the model of Davidson (1992), by supposing a
laminar boundary layer and using a laminar friction law for the viscous stress (see Davidson
et al. (2022)).

Until now, we have chosen to use a dimensional representation to stress the fact that varying �
and varying � is not equivalent. In the induction-less regime previously defined, we can gather
our results of flow intensity using a non-dimensional representation. In the inertial regime, we
can define a Reynolds number

'4in =

(
��

d

)1/2
'3/2

a
(3.3.11)

based on the velocity scale for the inertial regime (3.3.5). We define an output Reynolds number
'4 = D'/a based on the measured velocity from the axisymmetric simulations conducted.
Because we focus on the induction-less regime, we only consider the data in the range � ∈
[0, 2] mT for the simulations with varying �. In figure 3.14 is plotted '4 as a function of
'4in. All the data are remarkably superposed on a single curve. At high '4in, we observe that
'4 ∼ '4in, which confirms the inertial scaling law.
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Figure 3.14 – Computed Reynolds number '4 = D'/a vs the input Reynolds numbers '4in

which is defined in (3.3.11).

3.3.6 Boundary layer

We want now to focus on the induction-less regimes, and more particularly on the boundary
layer regime, in order to better understand it.
In order to characterize the transition between the three induction-less regimes, we define
the velocities *St, *BL and *In in the Stokes, the boundary layer and the inertial regime,
respectively:

*St = �St
��'2

da
, *BL = �BL

(
��

d

)2/3
'

a1/3 , *In = �In

(
��'

d

)1/2
(3.3.12)

where we introduce �St, �BL and �In which correspond to the multiplicative constants in the
scaling laws. These constants are only geometrical dependent.
By looking closer to the behavior of the velocity with the current density, one can remark that
the regime chosen by the system is the one which gives the lowest velocity. We show in figure
3.15a a graphical explanation, with constants �St, �BL and �In chosen arbitrarily. This means
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that the system is in the Stokes regime when *St < *BL,*In and in the inertial regime when
*In < *BL,*St. The particularity of the boundary layer regime is that it only exists when
both conditions *BL < *St and *BL < *In are verified, i.e. when �St�

2
In > �

3
BL. The existence

of this regime depends thus on the geometry. In figure 3.15b is represented a case where the
velocity will never be in the boundary layer regime.
This observation could be an explanation of why the boundary layer regime is not clearly visible
in our simulations.
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(a)
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∼ J2/3

∼ J1/2

(b)

Figure 3.15 – Representation of the velocity as a function of the current density with different
values for the constants �St, �BL and �In. The path followed by * when increasing � is

represented by the black dots. (a) Case where all regimes are encountered. (b) Case where
the boundary layer regime is not encountered.

The boundary layer regime is based on the fact that the system behavior is controlled by the
flow in the boundary layer. In figure 3.16a we show the distribution of the injected power at
the bottom of the cylinder for different current densities. The injected power is defined such
as %inj =

∭
+
( j × b) · u3g and represents the power provided by the Lorentz force. It can be

seen that the injected power is located really close to the electrical contact in each case, and
the height of the zone where it takes its most significant values decreases with �.
From the balance (3.3.9) we estimate the thickness of the boundary layer X:

X ∼
( d
a�

)
a2/3. (3.3.13)

For � = 10 A m−2, we plot in figures 3.16b, 3.16c and 3.16d the toroidal and poloidal com-
ponents of the velocities as well as the radial component of the vorticity, respectively, around
the electrical contact and in a meridian plane. In this case, X = 4 mm. The toroidal velocity
presents a bump for A > 2 cm close to the bottom, before becoming almost constant with I

from I = X. The poloidal velocity presents the same behavior, it increases when I increases
before being concentrated in a vertical column from I = X. The last figure, showing the radial
vorticity, highlights that this vorticity is non-zero only in a layer with a thickness X, i.e. in the
boundary layer. All these observations confirm that X is a relevant estimate of the thickness of
this boundary layer.
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� = 10 A m−2

� = 50 A m−2

� = 2000 A m−2

(a)

(b)

(c)

(d)

Figure 3.16 – Zoom on the flow in the bottom boundary layer. The electrical contact is at
A = 2 cm. (a) Injected power field %inj for different �, for I ≤ −4.5 cm. The power is located

close to the electrical contact and in the boundary layer. (b) Velocity D\ in the meridian plane
for � = 10 A m−2. One can see the appearance of a bump close to the bottom when A > 2 cm.

(c) Velocity Dpol in the meridian plane for � = 10 A m−2. (d) Radial vorticity lA in the
meridian plane for � = 10 A m−2. The vorticity decreases with I and becomes almost zero
from I = X. All of these profiles show that X is an appropriate characteristic length for the

height of the boundary layer.
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3.4 Influence of the geometry

In this section, we modify the geometry of the setup and study its influence on the flow. We
vary the radius of the wire and also the aspect ratio of the cylinder. We study in addition
the influence of using asymmetrical wires like in Herreman et al. (2021). We fix the exterior
magnetic field to 10−3 T and the viscosity to 3.23 · 10−7 m2 s−1.

3.4.1 Influence of the wire radius 'F

We study first the impact of size of the wires’ radius. We fix ' = 10 cm, H = 18 cm, HF = 4
cm, and vary 'F.
On figure 3.17a we show the velocity D as a function of time for four different ratios 'F/' =
0.2, 0.4, 0.6, 0.8. When 'F/' decreases, the velocity increases and the flow presents larger fluc-
tuations. This can be also seen on the top of figure 3.17b, where we plot the time-averaged
velocity D̄ as a function of 'F/' for different current densities, between 5 and 2000 A m−2.
These curves have a similar behavior with 'F/', the velocity increases when � increases and
'F/' decreases. It seems that the velocity converges to a constant when 'F/' approaches
zero. The bottom of figure 3.17b shows that the evolution of D̄ with � slightly differs when
'F/' varies, scaling laws are not identical.
The flow distribution for the different wire radii is shown on figure 3.18. We have conducted
axisymmetric (top of figure 3.18) and three-dimensional simulations (bottom of figure 3.18) for
four values of 'F/'. In axisymmetric simulations, there is a low-speed zone around the axis
where the flow intensity is almost zero. This zone has the same width as the wires. Three-
dimensional simulations give a different flow distribution. The low-speed region does not exist
in three-dimensional simulations, the flow fills the whole cylinder and is more turbulent. The
velocity magnitude remains equivalent in axisymmetrical and three-dimensional simulations,
for the same wire radius.

We have observed that D̄ depends on the ratio 'F/'. We now try to model this dependency.
Laws are given by Bojarevics et al. (1989); Vlasyuk (1987) for non-swirling EVF, and a theor-
etical model has been realized by Chudnovskii (1989a). However, this model cannot be applied
to swirling EVF. Thus, we determine theoretically an approximation of the torque exerted by
the Lorentz force on the bottom half of the cylinder.
For this purpose, we use the torque balance of Davidson et al. (1999). We can approximate the
Lorentz force by − 9A�e\ . The axial torque balance between the Lorentz force and the viscous
stress yields ∫

V
A 9A� 3+︸        ︷︷        ︸
 

≈
∫
3V
Ag\ 3(. (3.4.1)

We take V as the bottom half of the cylinder. If we suppose axisymmetry, Ampère’s law yields
9A ≈ −`−1

0 mI1\ . Thus, the expression for the torque induced by the Lorentz force becomes

 =
2c�

`0

∫ '

0

(
1\ |I=−H/2 − 1\ |I=0

)
A2 3A. (3.4.2)

The radial integral can be numerically evaluated by using the computed values of the magnetic
field. However, a theoretical approximation can also be obtained. Since we impose j |I=0 = �eI
at the top of the cell, we have

1\ |I=0 =
`0�A

2c'2
. (3.4.3)
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(a)

(b)

Figure 3.17 – (a) Evolution of the velocity D with time for different 'F/' and � = 500 A m−2.
(b) Time- and volume-averaged velocity D̄ as a function of 'F/' for different � (top), as a

function of � for different 'F/' (bottom).

Figure 3.18 – Snapshots of the velocity distribution ‖u‖ for � = 500 A m−2 and different
'F/'. (top) axisymmetric simulations, (bottom) three-dimensional simulations. In

axisymmetrical simulations we observe low speeds in a cylinder with radius 'F.

On the insulating part of the bottom surface, i.e. for A ∈ ['F, '], the magnetic field can be
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computed from the boundary conditions (3.2.6b). Then, using � = �/c'2, this yields

for A ∈ ['F, '], 1\ |I=−H/2 =
`0�

2cA
. (3.4.4a)

At the electrode-cylinder interface, i.e. for A ∈ [0, 'F] we consider two limiting cases. Herreman
et al. (2019b) have shown that the Millere approximation is well adapted if the connecting wire
is very thin compared to ' (see Millere et al. (1980)). Otherwise, if the connecting wire is
thick, a uniform current density is a good approximation. We have then the two possible
approximations:

for A ∈ [0, 'F], 1\ |I=−H/2 =
`0�

2c

{(
1 −

√
1 − (A/'F)2

)
/A, (Millere)

A/'2
F, (uniform).

(3.4.4b)

We deduce two possible torques:

 =  0

{
1 − (4'2

F/3'2), (Millere)

1 − '2
F/'2, (uniform)

(3.4.5)

where  0 = (1/4)��'2. We compare both expressions with the real torque that we can de-
termine numerically from our simulations in figure 3.19a. For ratio 'F/' lower than 0.5, the
Millere’s approximation gives a good accuracy. Now that we have determined the torque, we
are interested in the velocity. We do not know the dependency of the velocity with the torque,
but we suppose that they are proportional:

* ≈ *0

{
1 − (4'2

F/3'2), (Millere)

1 − '2
F/'2, (uniform).

(3.4.6)

where we have chosen *0 to be the maximum of * when 'F/' → 0. It can be numerically
determined by a fit of the data of figure 3.17b. We plot in figure 3.19b the quantity D/D0 as a
function of 'F/' for � > 100A m−2, with the two theoretical profiles of (3.4.6). This simplistic
model seems quite accurate for these current densities. Yet, for lower �, the quantity D/D0 seems
to vary rather linearly with 'F/' (see Figure 3.19c) and the parabolic profile determined does
not fit well the data. It would then require another model for this range of current density.
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Figure 3.19 – (a) Normalized torque  / 0 vs 'F/'. (b) Normalized velocity D/D0 vs 'F/'
for high �. The orange zone corresponds to the zone between the two determined theoretical

profiles, uniform and Millere. (c) Normalized velocity D/D0 for low �.

3.4.2 Influence of the height H
We study the impact of the aspect ratio of the liquid metal domain. We fix ' = 10 cm, 'F =
2 cm, HF = 4 cm, and vary H .
We plot in figure 3.20a the time series of the velocity D for different aspect ratios H/' =

0.5, 1, 1.8,and � = 500 A m−2. This velocity increases with the aspect ratio, as well as the amp-
litude of the fluctuations. We present in figure 3.20b the velocities D̄ and D̄max as a function
of the current density for the three studied aspect ratios. We remark that D̄ presents the same
behavior for the three aspect ratios, where D̄ ∼ �1/2 for high current densities. However, the
quantity D̄ is computed using a volume average, then this quantity is probably not really relev-
ant since the volume changes with the aspect ratio. This is why we show also the evolution of
D̄max with � for the same aspect ratios. The observed behavior is significantly different, as the
slope for high current densities changes with the aspect ratio. We still observe the law D̄ ∼ �1/2

for H/' = 1.8 but the law is modified when H/' decreases. We observe rather D̄ ∼ �2/3 for
H/' = 0.5. This could be explained by the less turbulent flow for low aspect ratios, thus the
laminar boundary layer scaling is the most accurate. Therefore, the validity of the scaling laws
seems to depend on the aspect ratio.

Figure 3.21 shows the flow spatial distribution for two current densities, � = 5 A m−2 and
� = 500 A m−2, and for the three studied aspect ratios. For the lowest current density the flow
is steady for each aspect ratio, and for the highest aspect ratio, the flow is turbulent. However,
when H/' = 0.5, the flow motion is concentrated close to the central vertical axis, for both
current densities. This shows that the aspect ratio impacts the flow distribution in space, and
also provides an explanation for the different behaviors observed between D̄ and D̄max, since the
first quantity is influenced by the spatial distribution.
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Figure 3.20 – (a) Volume-averaged velocity D for different aspect ratios and � = 500 A m−2.
(b) D̄ (top) and D̄max (bottom) as a function of �.

(a) (b)

Figure 3.21 – Snapshots of ‖u‖ in a meridian plane for (a) � = 5 A m−2 and (b) � = 500 A m−2.
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3.4.3 Asymmetrical or symmetrical wires

In all of the previous series of simulations, the boundary layer regime was not really observable.
In the study of Herreman et al. (2021), this regime was however clearly present over several
decades. This is why we compare two configurations: the symmetrical configuration that we
studied previously in this chapter with identical and symmetrical wires and an asymmetrical
configuration like in Herreman et al. (2021), with only one wire at the bottom of the cell. We
study two cells, whose radius remains '= 10 cm. The first cell is symmetrical with an aspect
ratio H/' = 1 and two symmetrical and identical wires at the top and at the bottom of the
cell (figure 3.22a). In this cell, the mid-plane can be easily destabilized. The second cell is
asymmetrical with an aspect ratio H/' = 0.5, and with only one wire at the bottom (figure
3.22b). At the top of the cell, we fix no-slip boundary conditions for the velocity at the top of
the cell and the current enters uniformly. The top of this cell corresponds to the mid-plane of
the symmetrical cell, and the flow there is expected to be more stable. We fix ('F,HF) = (2, 4)
cm in both setups. We conduct only axisymmetric simulations.

(a) (b)

Figure 3.22 – Scheme of (a) the symmetrical and (b) the asymmetrical setups.

We show in figure 3.23a the velocity D̄ as a function of � for both configurations. This velocity
is always higher in the asymmetrical cell. We can notice that the law D̄ ∼ �1/2 that we can
observe in the symmetrical cell does not exist in the asymmetrical cell where the law D̄ ∼ �2/3

is clearly visible. This is in accordance with the results of Herreman et al. (2021). Thus, the
flow is really different in both configurations. The spatial distribution of the velocity can be
seen in figure 3.23b for three current densities. For � = 5 A m−2, the flow is laminar and similar
in both configurations, with a slight difference near the axis where the velocity is almost zero
in the asymmetrical cell. For � = 500 A m−2, the structure is radically different: the flow is
concentrated near the axis in the symmetrical cell, and fills the whole cell in the asymmetrical
configuration. For � = 500 A m−2, the flow is much more turbulent in the symmetrical config-
uration.
The difference between the symmetrical and asymmetrical setup can be explained by the fact
that in the symmetrical cell, a mixing layer at the equatorial plane is present and is easily
destabilized. This increases the level of turbulence, and highlights the fact that the laminar
boundary layer regime requires a low turbulence level.
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(a)

(b)

Figure 3.23 – Symmetrical and asymmetrical setups. (a) Time- and space-averaged magnitude
of the velocity D̄ as a function of � in both set-ups. (b) Snapshots of ‖u‖ in both setups.

3.5 Conclusion

In this chapter, we have numerically studied and characterized the swirling electrovortex flow
in a cylinder filled of GaInSn liquid metal.
We have first conducted a parametric study by varying the parameters �, � and a and by
focusing on axisymmetric simulations. When varying �, we have found that, for low current
densities, the flow remains steady and is mainly close to the electrical contacts. When � is
above a critical value that we could determine, the flow becomes unstable and mixes the whole
cell. The flow intensity * increases with �, following different regimes: * ∼ � for low current
densities, * ∼ �2/3 for intermediate current densities and * ∼ �1/2 for high current densities.
When varying �, if � remains below a critical value, the flow is turbulent and the flow intensity
increases with the magnetic field following the laws * ∼ �2/3 then * ∼ �1/2 for higher �.
But, when � is above a critical value, the flow decreases with � and becomes steady until it is
concentrated in a line between the top and the bottom lids. In this regime, * ∼ �−1. When
varying a, we can find the following regimes, from low to high a: * ∼ a−1/9 or a0 then * ∼ a−1.
The parametric study has allowed us to highlight the existence of four different flow regimes:

• an inductive regime for high magnetic fields � where the induction term dominates. Here,
the velocity varies like

* ∼ �

f�
,
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• an inductive-less and viscous regime, for low velocities and large viscosities. Here, we
have

* ∼ ��'
2

da
,

• an inductive-less and inertial regime, for high velocities. Here, we have

* ∼
(
��'

d

)1/2
or * ∼

(
��'

d

)5/9 (
'

a

)1/9
.

There are two possible scaling laws in this regime, it is difficult to distinguish which one
is the more adapted in the simulations.

• an inductive-less with laminar boundary layer, for intermediate velocities. Here, we have(
��

d

)2/3
'

a1/3 .

This last regime was barely visible in the simulations.
We have then investigated how the geometry influences the flow intensity. When varying the
radius of the wire 'F, we remark that the velocity increases when 'F/' decreases. It is quite
difficult to model theoretically the variation of the velocity * with 'F/', but we have pro-
posed two possible scaling laws, depending of the way we model the interface conditions at
the cylinder-wire interfaces. Surprisingly, these simplistic theoretical laws are quite accurate
at high enough current densities. When varying the aspect ratio H/' of the cylinder, we have
found that the smaller the aspect ratio is, the more the flow is concentrated in a small region
close to the axis. For low aspect ratio, the flow is rather situated in the boundary layer regime,
and for high aspect ratios, the inertial regime is the most accurate.
We compared an asymmetrical and a symmetrical cell, as represented in figure 3.22. We have
shown that the flow is much less turbulent when the cell is asymmetric, and that the boundary
layer regime is clearly visible in this case, contrary to the symmetrical cell, where we rather
observe an inertial regime.

We have run three-dimensional simulations in the study of the parameter �. We have observed
several bifurcations between different regimes. We have been able to determine the threshold of
the first bifurcation. In the regime where the flow is three-dimensional and steady, this counter-
rotating EVF is von Kármán like. We can therefore use electrodes to drive von Kármán flows
without impellers.
When we compare axisymmetric with three-dimensional simulations, we have noticed that the
spatial distribution of the flow can be significantly different. Yet, the mean velocity keeps in
both cases the same order of magnitude. Thus, when one is only interested in the velocity
intensity of the flow, axisymmetric simulations can be a good approximation. In addition, we
retrieve the inertial regime in three-dimensional simulations, but the boundary layer regime is
not visible at all.
In order to conclude on the boundary layer regime, this regime is not really observable in sym-
metrical setups. However, it seems to exist when the flow is not too turbulent, which is the
case in the asymmetrical cell for instance. We suppose that the boundary layer regime requires
a laminar boundary layer, and cannot be observed when the turbulence is too intense.
A perspective of this work would be the investigation of the transition between the boundary
layer regime to the inertial regime. More particularly, it would be interesting to examine the
structure of the boundary layer in order to understand the transition to turbulence in this layer.
We could also extend this work to other types of geometries, such as an hemispherical setup.
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Chapter 4

Modeling discontinuous electrical
potential distributions with a magnetic
field formulation

In this chapter, we present the work published in the article Bénard et al. (2023) in Comptes
Rendus. Mécanique in April 2023.

4.1 Introduction

As said in chapter 1, variations of potential exist at the alloy-electrolyte interface in LMBs,
due to the formation of an electrochemical double layer. These variations can be modeled by a
jump in electrical potential on a macroscopic scale (Lück and Latz, 2016; Weber et al., 2019).
The impact of this potential jump has not been well investigated: only a few studies focused
on LMBs model this jump, and none of them gives information on the specific effect of this
jump on the mixing process and on the cell potential. In this chapter, we improve our model
for the LMB interior by considering this jump in electrical potential, and we will study how
the electrical current and concentration distribution are affected.
As explained by Weber et al. (2019), there is a potential jump at each interface. The value
of each of these jumps is not easy to determine and depends on the activity of the chemical
components. The simplified model used by Weber et al. (2019) considers only one jump at
the alloy-electrolyte interface, that varies locally with the composition of the alloy along the
interface. Their numerical results were in accordance with experiments. Moreover, the lithium
remains pure in the foam, no change in composition occurs at the foam-electrolyte interface.
Therefore, the jump at the upper interface has likely no impact on the electrical current distri-
bution. Because this model is quite simple, we have chosen it to perform our study.

The model used by Weber et al. (2019) is based on finite volumes and solves the electrical
problem:

−∇ · (f∇i) , in all domains, (4.1.1a)

ialloy − ielectrolyte = ijump at the alloy-electrolyte interface (4.1.1b)

where f is the electrical conductivity of the domain and i the electrical potential in the do-
main. Equation (4.1.1b) represents the imposition of the jump at the interface. Our goal is
to implement this electrical problem in our solver, and more particularly the potential jump
condition. However, the code SFEMaNS that we use to conduct our numerical studies is based
on a magnetic field formulation, the electrical potential field is not explicitly available. Hence,
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how can we impose a discontinuity in the electrical potential at an interface without the po-
tential variable i?

In order to tackle this problem, two ideas emerge. The first idea is simply to develop a new
numerical solver for the electrical problem, defined by equations (4.1.1a)-(4.1.1b). This solver
can be used to solve the diffusion and electrical problems. However, we cannot use this solver
to study EVF like in chapter 2: the Lorentz force term requires to know the magnetic field.
This magnetic field can be computed by using Biot-Savart’s law, as in the model of Weber
et al. (2020), but the numerical development and evolution of this law are complex. A second
idea is to provide an alternative magnetic field formulation. We then need to find an interface
condition based on the magnetic field that is equivalent to the potential jump condition. In
the existing code, we then need to program this new condition.

In this chapter, we first give details about meridional and azimuthal decomposition in the
code SFEMaNS. Then we focus on the formulation in electrical potential by describing the
electrical problem, the numerical developments realized and we validate our solver, denoted
i-solver. Later, we present the new magnetic field formulation and the new interface condition,
by describing the equivalent magnetic problem, the numerical developments realized and we
validate our solver, denoted N-solver. Finally, we show that both formulations are indeed
equivalent by comparing both solvers in different geometries.
We solve neither the concentration nor the velocity, we only focus on the electrical and magnetic
problems. When not precised, the quantities in this chapter are non-dimensionalized.

4.2 Spectral and meridional decomposition in the nu-

merical code SFEMaNS

In SFEMaNS, the numerical resolution is based on a hybrid decomposition of the fields. Each
field is decomposed according to a spectral representation in the azimuthal direction and a
finite element representation in the meridian plane. The geometry being axisymmetric, the
cylindrical coordinates (A, \, I) are always used.

For the spectral decomposition, a scalar field A(A, \, I) can be approximated by the following
form

A(A, \, I) '
"−1∑
<=0

A<,2

ℎ
(A, I) cos(<\) +

"−1∑
<=1

A<,B

ℎ
(A, I) sin(<\). (4.2.1)

" ∈ N is the number of Fourier modes used. The fields A<
ℎ

only depend on A and I and must
be now decomposed in the meridian plane.

We introduce the meridian section Ω2� of a cylindrical domain Ω. Ω2� is decomposed in non-
overlapping triangles whose maximal size is denoted ℎ. An example of a mesh can be seen in
figure 4.1. A transformation is applied on each triangle to straighten this triangle in order to
deal only with canonical triangles. The scalar fields A<,2

ℎ
(A, I) and A<,B

ℎ
(A, I) are approximated

on nodes associated to the triangles by using polynomial decomposition with a degree =, which
indicates the precision of the approximation. We say then that we use P= finite elements (see
figure 4.2). For example, the pressure is approximated on P1 finite elements, contrary to the
velocity and the magnetic field which use P2 finite elements.

We denote # the number of nodes. We define a base of functions (k 9 )1≤ 9≤# adapted to the
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Figure 4.1 – Example of a mesh decomposed in finite elements. The domain has a height of
0.5 and a length of 1. The maximal size of the triangles is 0.025.

(a) (b)

Figure 4.2 – Nodes of a canonical triangle for different degrees of precision. (a) Element P1.
(b) Element P2

mesh, which are chosen as Lagrange polynomials. Thus, A<,2

ℎ
(A, I) can be decomposed on the

base at a node G8 such as

A<,2

ℎ
(G8) =

#∑
9=1

0 9k 9 (G8) (4.2.2)

where 0 9 are coefficients. We can define a similar decomposition for A<,B

ℎ
(A, I).

For vectorial fields, each component is approximated in the same way as a scalar field. For
more details about finite element decomposition, see Ern and Guermond (2004).

4.3 Electrical potential i formulation

In this section, we present the model of a jump of electrical potential on an interface using the
potential variable i. We implement the weak formulation in the code SFEMaNS and validate
it by using a comparison with analytical solutions.

4.3.1 Problem description

We consider a cylindrical domain Ω, separated in two sub-domains Ω1 and Ω2. We denote its
boundary Γ = mΩ, and the interface between the domains Σ. We use a system of cylindrical
coordinates. A sketch of the studied domain is shown in figure 4.3. The radius of the cylinder
is ', the vertical coordinates of the bottom and top of the cylinder are I0 and I2, and the one
of the interface I1. We set ' = 0.5, I0 = 0, I1 = 0.5, and I2 = 1. The outward normal to a
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surface will be denoted n.

Figure 4.3 – Sketch of the cylindrical domain used for numerical investigations.

The electrical potential i is solution, in each subdomain, of the equation −∇ · (f∇i) = 0,
where f is the electrical conductivity. On the interface, the normal component of the electrical
current, equal to −f∇i · n, is continuous. By denoting i1 and i2 the potential in the sub-
domains Ω1 and Ω2, respectively, and f1 and f2 the corresponding conductivities, this leads
to (f1∇i1 − f2∇i2) · n = 0. We introduce a jump in potential ijump at the interface. We
impose Dirichlet boundary conditions at the top and at the bottom of the cylinder (Γ�), and
Neumann boundary conditions at the lateral border (Γ#), such as ∇i · n = 0. The function for
the Dirichlet boundary conditions is denoted 6� .

The final problem to solve is hence

− ∇ · (f∇i) = 0 in Ω1 and Ω2, (4.3.1a)

i1 − i2 = ijump on Σ, (4.3.1b)

(f1∇i1 − f2∇i2) · n = 0 on Σ. (4.3.1c)

i = 6� on Γ� and ∇i · n = 0 on Γ# . (4.3.1d)

4.3.2 Weak formulation

General weak formulation

The Dirichlet boundary conditions of (4.3.1d) are imposed strongly, and do not appear in the
weak formulation. We determine the weak formulation for homogeneous Dirichlet boundary
conditions, i.e. 6� = 0. We will see later how inhomogeneous boundary conditions are numer-
ically applied.
The electrical potential i is solution of the equation −∇ · (f∇i) = 0. We denote k the test
functions. i and k are in !2(Ω) and continuous on each subdomain Ω8. We have, for all k, on
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the domain Ω8: ∫
Ω8

−∇ · (f∇i)k = 0

⇐⇒
∫
Ω8

∇k · (f∇i) −
∫
Ω8

∇ · (f∇i k) = 0

⇐⇒
∫
Ω8

∇k · (f∇i) −
∫
mΩ8

k(n ·f∇i) = 0. (4.3.2)

We sum (4.3.2) on Ω:

∫
Ω1

∇k · (f∇i) +
∫
Ω2

∇k · (f∇i) −
∫
Γ#

k(n ·f∇i) −
∫
Σ

(k1(n1 ·f1∇i1) +k2(n2 ·f2∇i2)) = 0

(4.3.3)
where n1 and n2 are the outward normal to Σ relatively to Ω1 and Ω2. n is the outward normal
to Σ such as n = n1 and n = −n2.
Because of the Neumann boundary condition (4.3.1d), k(n ·f∇i) = 0 on Γ# . We impose this
boundary condition strongly, by directly setting

∫
Γ#
k(n ·f∇i) = 0.

We introduce the notations [F] = F1 − F2 and {F} = 1
2 (F1 + F2).

We have

k1(n1 ·f1∇i1) + k2(n2 ·f2∇i2) = k1(n ·f1∇i1) − k2(n ·f2∇i2) = [k(n ·f∇i)],

and
[k(n ·f∇i)] = {n ·f∇i}[k] + [n ·f∇i]{k}.

However [n ·f∇i] = (f1∇i1 − f2∇i2) · n = 0 from (4.3.1c). Thus (4.3.3) leads to∫
Ω1

∇k · (f∇i) +
∫
Ω2

∇k · (f∇i) −
∫
Σ

{n ·f∇i}[k] = 0

which can be rewritten∫
Ω1

∇k · (f∇i) +
∫
Ω2

∇k · (f∇i) −
∫
Σ

1

2
(n1 ·f1∇i1 − n2 ·f2∇i2) (k1 − k2) = 0. (4.3.4)

In order to impose the jump at the interface Σ, i.e. equation (4.3.1b), we have to use a
penalization term

2

∫
Σ

1

ℎ
(i1 − i2) (k1 − k2) = 2

∫
Σ

1

ℎ
ijump(k1 − k2) (4.3.5)

where 2 is a constant which will be set to one. We remark that this jump is imposed weakly,
which means that it is enforced in the weak formulation, unlike the boundary conditions.
All of this yields the following weak formulation

∫
Ω1

∇k · (f∇i) +
∫
Ω2

∇k · (f∇i) −
∫
Σ

1

2
(n1 ·f1∇i1 − n2 ·f2∇i2) (k1 − k2)

+ 2

∫
Σ

1

ℎ
(i1 − i2) (k1 − k2) = 2

∫
Σ

1

ℎ
ijump(k1 − k2). (4.3.6)
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Weights

When electrical conductivities f are very different, some of the terms of the weak formulation
have to be balanced with weights (Ern and Guermond, 2021; Ern et al., 2009). We introduce
the weights

_ =
2f1f2

f1 + f2
, l1 =

f2

f1 + f2
, l2 =

f1

f1 + f2
. (4.3.7)

The weak formulation (4.3.6) becomes hence∫
Ω1

∇k · (f∇i) +
∫
Ω2

∇k · (f∇i) −
∫
Σ

(l1n1 ·f1∇i1 − l2n2 ·f2∇i2) (k1 − k2)

+ 2
∫
Σ

_

ℎ
(i1 − i2) (k1 − k2) = 2

∫
Σ

_

ℎ
ijump(k1 − k2). (4.3.8)

Numerics

We implement this weak formulation in the code SFEMaNS by introducing a new variable i
in the code. We present now how (4.3.8) is solved.
For each mode <, we denote for more simplicity iℎ the cosinus part of this mode. The process
is the same for the sinus part. As said in section §4.2, we can write

iℎ (G8) =
#∑
9=1

0 9k 9 (G8) (4.3.9)

where G8 is a node. The coefficients 0 9 are unknown. We solve equation (4.3.8) for all 1 ≤ 9 ≤ #,
by replacing the test function k by k 9 . This yields a linear system of # equations of the form
�- = �, where � and � are known matrice and vector respectively and - is the unknown
vector. This system is then solved numerically.

When inhomogeneous boundary conditions are imposed, like in our problem in equation (4.3.1d)
where we impose i = 6� , they are enforced strongly. The function 6� can be decomposed on
the base: 6� =

∑#
9=1 6�, 9 k 9 . On each node of Γ� , we have 0 9 = 6�, 9 . Thus in the linear system,

we add for the nodes on Γ� the condition 0 9 = 6�, 9 .

Solving the weak formulation (4.3.8) requires to solve many integrals. The Gauss quadrature
is used to compute these integrals. The principle is to approximate the integral by the value of
the function at certain points, called Gauss points. We denote ;� the number of Gauss points.
An integral on a canonical triangle  ̂ is approximated by∫

 ̂

iℎ (A, I)3A3I =
;�∑
;=1

l̂;iℎ (Ĝ;) (4.3.10)

where l̂; are called the Gauss weights, and (Ĝ;) are the Gauss points. The weights depend on
the point considered and on the mesh we use.
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4.3.3 Determination of analytical solutions

In order to validate the numerical solutions, we give as boundary conditions and initial condition
a known solution of the problem. We are then expecting that the solver retrieves this solution.
We can determine solutions of the problem by calculating analytical solutions. We are then
looking for analytical solutions of the problem (4.3.1), before comparing them with numerical
solutions.

Analytical solutions with ijump = 0

We are looking first for solutions of the equation −∇ · (f∇i) = 0 (4.3.1a). In a single domain
with f constant, this equation is equivalent to ∇2i = 0, i.e.

m2i

mA2
+ 1

A

mi

mA
+ 1

A2

m2i

m\2
+ m2i

mI2
= 0. (4.3.11)

There are solutions depending only on I, which take the form i = 0I+1 with 0 and 1 constants.

We are now looking for more complex solutions that also depend on A and \ to test all the
terms of this new formulation. We take an analytical solution with separable variables such as
i(A, \, I) = R(A)Θ(\)Z(I), where R, Θ, and Z are functions. This yields, ∀A, \, I

R′′(A)Θ(\)Z(I) + 1

A
R′(A)Θ(\)Z(I) + 1

A2
R(A)Θ′′(\)Z(I) + R(A)Θ(\)Z′′(I) = 0.

⇐⇒ R′′(A) + 1

A
R′(A) + 1

A2
R(A)Θ

′′(\)
Θ(\) + R(A)

Z′′(I)
Z(I) = 0.

We denote Θ′′(\)
Θ(\) = −<

2 and Z
′′(I)
Z(I) = :

2 where < is an integer and : a real number. Hence

R′′(A) + 1

A
R′(A) + <2

A2
R(A) + :2 R(A) = 0, (4.3.13a)

Θ′′(\) + <2 Θ(\) = 0, (4.3.13b)

Z′′(I) − :2 Z(I) = 0. (4.3.13c)

Because of the cylindrical shape of the domain, the function Θ is necessarily periodic, i.e.
<2 > 0, and the solutions of (4.3.13b) take the form Θ(\) = 4±8<\ .
We choose :2 > 0 so that the solutions of (4.3.13c) are non-periodic: Z(I) = 4±:I.
For the equation (4.3.13a), the solutions are Bessel functions R(A) = �< (:A).
Thus, the solutions of equation (4.3.11) are

i(A, I, \) = 48<\�< (:A) 4±:I . (4.3.14)

The integer < corresponds to the mode we choose for the following numerical tests.

Moreover, the Neumann boundary condition (4.3.1d) ∇i · n = 0 on the lateral border has to be
verified. We must choose : such that, for a given <, �′< (:') = 0. Thus we can take : = ^′

<1/',

where ^′
<1 is the first zero of �′<. Every linear combination of 4±:I is a solution of (4.3.13c), we

can use the functions sinh and cosh to impose the chosen Dirichlet boundary conditions at the
top and at the bottom of the cylinder.
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Analytical solutions with ijump ≠ 0

In a case with a non-zero jump in electrical potential, the solutions take the same form as the
ones in the last paragraph with ijump = 0 in Ω1 and Ω2. At the interface Σ, equations (4.3.1b)
and (4.3.1c) have to be also verified.
For a solution depending only on I, analytical solutions of the problem can be written as:

i1(I) = 0I + 1, for I ≤ I1,
i2(I) = 3I + 4, for I > I1. (4.3.15)

3 must be equal to (f1/f2)0 to verify (4.3.1c). The other constants should be chosen so that
ijump = (i1(I) − i2(I))|I=I1 = (0 − 3)I1 + (1 − 4) is non zero (equation (4.3.1b)).
For a solution depending also on A and \, the analytical solutions take the form

i1(A, I, \) = 48<\ �< (:A) 4±:I, I ≤ I1
i2(A, I, \) = (f1/f2) 48<\ �< (:A) 4±:I, I > I1. (4.3.16)

Here, ijump = (1 − f1/f2)48<\ �< (:A) 4±:I, which is non zero at I = I1.

4.3.4 Numerical investigations

In this section we validate our solver in the domain Ω defined in section §4.3.1 by comparing
the numerical solutions with analytical solutions found in section §4.3.3. The tests are done for
a solution depending only on I and then for solutions depending on A and \ too, with different
Fourier modes (<= 0,1 or 2), in two cases, first without a jump (single domain) and then with
a jump on the interface Σ. The values of ^′

<1 are in these cases ^′01 = 3.8317059702, ^′11 =

1.841183781200789, ^′21 = 3.054236935206724. We define the relative error in !2-norm of i

bi =
‖inum − iex‖2
‖iex‖2

, (4.3.17)

where inum is the numerical solution and iex the analytical solution. This error is expected
to vary like O(ℎ3), where ℎ is the mesh size, because P2 finite elements are used (Brenner and
Scott, 2008; Ern and Guermond, 2004).

Tests without jump

The first set of tests is done for a case with no interface and then no jump. The electrical
conductivity is f = 1. We run the following tests:

• Test 0 (mode < = 0, variable I only) :
iex(I) = 0I + 1 with 0 = 5/(I2 − I0), V = 5 − I20, as imposed by (4.3.14) and so that
iex(I = I0) = 0.

• Test 1 (mode < = 0) :
iex(A, I) = �0(:A) sinh(: (I + I0)) with : = ^′01/'.

• Test 2 (mode < = 1) :
iex(A, I, \) = 48\ �1(:A) sinh(: (I + I0)) with : = ^′11/'.

• Test 3 (mode < = 2) :
iex(A, I, \) = 428\ �2(:A) cosh(: (I − I2)) with : = ^′21/'.

We report the relative error bi in table 4.1.
For test 0, bi is really low and almost equal to the zero-machine, which is an expected result
for a linear solution. For the other tests, the error varies like O(ℎ3), which can also be seen in
figure 4.4. These results validate the numerical solver.
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ℎ Test 0 Test 1 Test 2 Test 3
0.1 1.29 · 10−15 6.12 · 10−4 5.21 · 10−5 2.58 · 10−4

0.05 2.20 · 10−15 5.87 · 10−5 4.55 · 10−6 1.77 · 10−5

0.025 1.77 · 10−15 5.06 · 10−6 4.11 · 10−7 1.70 · 10−6

0.0125 4.57 · 10−15 4.37 · 10−7 3.55 · 10−8 1.51 · 10−7

0.00625 3.58 · 10−14 3.80 · 10−8 3.11 · 10−9 1.35 · 10−8

Table 4.1 – Relative error bi for different mesh sizes ℎ for ijump = 0.

6.2 · 10−3 1.2 · 10−2 2.5 · 10−2 5.0 · 10−2 1.0 · 10−1

h

1 · 10−6

1 · 10−4

1 · 10−2

ξ ϕ

O(h3)

Test 1

Test 2

Test 3

Figure 4.4 – Order of convergence of bi when ijump = 0 as a function of mesh size ℎ for the
different tests. The dashed line represents the theoretical order of convergence ℎ3.

Tests with jump

The second set of tests is done for a case with an interface and a jump in electrical potential.
The electrical conductivities are f1 = 104 and f2 = 1. We run the following tests

• Test 4 (mode < = 0, variable I only) :
i4G,1(I) = 0I + 1, for I ≤ I1
i4G,2(I) = 3I + 4, for I > I1
with 0 = 4f2

f2 (I1−I0)−f1 (I1−I2) , 1 = 0I0, 3 = (f1/f2)0, 4 = 5 − 3I2, as imposed by (4.3.16).
Value of the jump: ijump = 1.

• Test 5 (mode < = 0) :
i4G,1(A, I) = �0(:A) sinh(: (I + I0)), for I ≤ I1
i4G,2(A, I) = �0(:A) (f1/f2) sinh(: (I + I0)), for I > I1
with : = ^′01/'.
Value of the jump: ijump = �0(:A) (f1/f2 − 1) sinh(: (I1 + I0)).

• Test 6 (mode < = 1) :
i4G,1(A, I, \) = 48\ �1(:A) sinh(: (I + I0)), for I ≤ I1
i4G,2(A, I, \) = 48\ �1(:A) (f1/f2) sinh(: (I + I0)), for I > I1
with : = ^′11/'.
Value of the jump: ijump = 4

8\ �1(:A) (f1/f2 − 1) sinh(: (I1 + I0)).
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• Test 7 (mode < = 2) :
i4G,1(A, I, \) = 428\ �2(:A) cosh(: (I − I2)), for I ≤ I1
i4G,2(A, I, \) = 428\ �2(:A) (f1/f2) cosh(: (I − I2)), for I > I1
with : = ^′21/'.
Value of the jump: ijump = 4

28\ �2(:A) (f1/f2 − 1) cosh(: (I1 − I2)).

ℎ Test 4 Test 5 Test 6 Test 7
0.1 3.56 · 10−16 6.48 · 10−4 2.30 · 10−4 4.77 · 10−3

0.05 1.32 · 10−15 7.38 · 10−5 3.46 · 10−5 7.21 · 10−4

0.025 5.25 · 10−15 8.14 · 10−6 4.70 · 10−6 1.10 · 10−4

0.0125 6.57 · 10−15 8.92 · 10−7 5.95 · 10−7 1.47 · 10−5

0.00625 1.17 · 10−14 1.05 · 10−7 7.57 · 10−8 1.92 · 10−6

Table 4.2 – Relative error bi for different mesh sizes ℎ for ijump ≠ 0.

For test 4, bi is really low and reaches almost the zero-machine, which is an expected result for
a linear solution. For the other tests, the error varies like O(ℎ3), that we can also see in figure
4.5. These results validate the numerical solver.

6.2 · 10−3 1.2 · 10−2 2.5 · 10−2 5.0 · 10−2 1.0 · 10−1

h

1 · 10−6

1 · 10−4

1 · 10−2

ξ ϕ

O(h3)

Test 5

Test 6

Test 7

Figure 4.5 – Order of convergence of bi when ijump ≠ 0 as a function of mesh size ℎ for the
different tests. The dashed line represents the theoretical order of convergence ℎ3.
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4.4 Magnetic field N formulation

In this section, we present a new formulation using the magnetic field N to model a jump in
potential on an interface. The relation between N and the usual magnetic field H is H = `0N.
We implement the weak formulation in the code SFEMaNS and validate it by comparing with
analytical solutions.

4.4.1 Problem description

Equation on N

We consider the same problem as in section §4.3.3.
In the magnetostatic approximation, the classical equations for the magnetic field N are

∇ ×
(
∇ × N

f

)
= 0, (4.4.1a)

∇ · (`N) = 0. (4.4.1b)

where ` is the magnetic permeability.
From equation (4.3.1a), one can retrieve (4.4.1a). Indeed, the electrical current is j = −f∇i.

Thus, ∇ ×
(
j
f

)
= 0. However, j = ∇ × N. This yields ∇ ×

(
∇×N
f

)
= 0.

Extension to discontinuous distributions of electrical potential

We aim now to adapt this formulation to discontinuous electrical potential at the interface Σ.
In each subdomain Ω1 and Ω2, j1 = −f1∇i1 and j2 = −f2∇i2. Then on the interface Σ,
( j1/f1 − j2/f2) × n = −∇) (i1 − i2) × n, where the index ) is for the tangential part of the
gradient. We know that ∇ × N = j. This finally yields:

n ×
(
∇ × N1

f1

)
− n ×

(
∇ × N2

f2

)
= −n × ∇) (i1 − i2) (4.4.2)

By denoting K =

(
∇×N
f

)
the electrical field, we have shown that a discontinuous electrical po-

tential distribution is equivalent to a discontinuity in the tangential component of the electrical

field. The jump in
(
∇×N
f

)
is denoted

(
∇×N
f

)
jump

in the following.

Final problem

Two other conditions must be verified for the magnetic field on the interface, the continuity of
the tangential components of N and the continuity of the normal component of `N.
We impose Dirichlet boundary conditions N� on all the borders Γ� .
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The final problem to solve is

∇ ×
(
∇ × N

f

)
= 0 in Ω1 and Ω2, (4.4.3a)

∇ · (`N) = 0 in Ω1 and Ω2, (4.4.3b)(
∇ × N1

f1
− ∇ × N2

f2

)
× n =

(
∇ × N

f

)
jump

× n on Σ, (4.4.3c)

(N1 − N2) × n = 0 on Σ, (4.4.3d)

`(N1 − N2) · n = 0 on Σ. (4.4.3e)

N = N� on Γ� . (4.4.3f)

4.4.2 Weak formulation

General weak formulation

In the volume
In order to find the weak formulation of equation (4.4.3a), we integrate (4.4.1a) on Ω8 (8=1 or
2) after having multiplied it by a test function v. N and v are in !2(Ω) and continuous on each
domain Ω8. This gives: ∫

Ω8

(
∇ × ∇ × N

f

)
· v 3+ = 0. (4.4.4)

However
(
∇ × ∇×N

f

)
· v = n8 9 :m9

(
∇×N
f

)
:
E8, where n8 9 : is the Levi-Civita symbol.

And n8 9 :m9

(
∇×N
f

)
:
E8 = m9

(
n8 9 :

(
∇ × N

f

)
:

E8

)
︸                      ︷︷                      ︸

(i)

− n8 9 :

(
∇ × N

f

)
:

m9E8︸                  ︷︷                  ︸
(ii)

.

On one hand

(i) = m9

(
n8 9 :

(
∇ × N

f

)
:

E8

)
= m9

((
∇ × N

f

)
× v

)
9

= ∇ ·
((
∇ × N

f

)
× v

)
.

which gives, from Green-Ostrogradski formula,∫
Ω8

∇ ·
((
∇ × N

f

)
× v

)
3+ =

∫
mΩ8

((
∇ × N

f

)
× v

)
· n83(,

where n8 is the outward normal of mΩ8. On the other hand

(ii) = n8 9 :
(
∇ × N

f

)
:

m9E8 =

(
∇ × N

f

)
:

n8 9 :m9E8 =

(
∇ × N

f

)
:

· (−∇ × v): = −
(
∇ × N

f

)
· (∇ × v).

Hence∫
Ω8

(
∇ × ∇ × N

f

)
· v 3+ = 0 ⇐⇒

∫
Ω8

(
∇ × N

f

)
· (∇ × v)3+ +

∫
mΩ8

((
∇ × N

f

)
× v

)
· n83( = 0.

By summing this on Ω and using the relation
((

∇×N
f

)
× v

)
· n8 =

(
n8 ×

(
∇×N
f

))
· v, we obtain∫

Ω1

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Ω2

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Σ

n1 ×
(
∇ × N

f

)
· v13(

+
∫
Σ

n2 ×
(
∇ × N

f

)
· v23( = 0.
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We define the normal n at the interface such as n = n1 and n = −n2. This yields∫
Ω1

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Ω2

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Σ

[
n ×

(
∇ × N

f

)
· v

]
3( = 0.[

n ×
(
∇×N
f

)
· v

]
can be rewritten as

[(
∇×N
f

)
· (v × n)

]
.

We have [(
∇ × N

f

)
· (v × n)

]
=

{
∇ × N

f

}
· [v × n] +

[
∇ × N

f

]
· {v × n}.

Thus (4.4.5) becomes∫
Ω1

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Ω2

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Σ

{
∇ × N

f

}
· [v × n]3(

+
∫
Σ

[
∇ × N

f

]
· {v × n}3( = 0

with n = n1 and n = −n2, [v × n] = v1 × n1 + v2 × n2 and {v × n} = 1
2 (v1 × n1 − v2 × n2).

Therefore∫
Ω1

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Ω2

(
∇ × N

f

)
· (∇ × v)3+

+
∫
Σ

1

2

(
∇ × N1

f1
+ ∇ × N2

f2

)
· (v1 × n1 + v2 × n2)3(

+
∫
Σ

1

2

(
∇ × N1

f1
− ∇ × N2

f2

)
· (v1 × n1 − v2 × n2)3( = 0. (4.4.5)

Terms of continuity
In order to ensure the continuity of N × n and `N · n at the interface (equations (4.4.3d) and
(4.4.3e)), N must verify

V3

∫
Σ

1

ℎ
(N1 × n1 + N2 × n2) · (v1 × n1 + v2 × n2)3( = 0 (4.4.6)

and

V1

∫
Σ

1

ℎ
(`1N1 · n1 + `2N2 · n2) (`1v1 · n1 + `2v2 · n2)3( = 0 (4.4.7)

where V1 and V3 are penalty coefficients.

Imposition of the jump

Our first attempt to impose the jump in
(
∇×N
f

)
jump

(equation (4.4.3c)) was, as in the electrical

potential case, to use a penalty term such as

2

ℎ

∫
Σ

(
∇ × N1

f1
× n − ∇ × N2

f2
× n

)
· (v1 − v2) 3( =

2

ℎ

∫
Σ

(
∇ × N

f

)
jump

× n · (v1 − v2) 3(

i.e.

2

∫
Σ

1

ℎ

(
∇ × N1

f1
− ∇ × N2

f2

)
· (v1×n1+v2×n2) 3( = 2

∫
Σ

1

ℎ

(
∇ × N

f

)
jump

· (v1×n1+v2×n2) 3(.
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However, by looking on the continuity term (4.4.6), both terms have the same form relatively
to the test functions: v1 × n1 + v2 × n2. This means that numerically, these terms cannot be
distinguished and the code will read∫

Σ

1

ℎ

(
2

(
∇ × N1

f1
− ∇ × N2

f2

)
+ V3(N1 × n1 + N2 × n2)

)
· (v1 × n1 + v2 × n2) 3(

= 2

∫
Σ

1

ℎ

(
∇ × N

f

)
jump

· (v1 × n1 + v2 × n2) 3(

which enforces

1

ℎ

(
2

(
∇ × N1

f1
− ∇ × N2

f2

)
+ V3(N1 × n1 + N2 × n2)

)
=

2

ℎ

(
∇ × N

f

)
jump

. (4.4.8)

After having implemented this method, it was shown that the code is not able to impose the
desired jump and the numerical solution is not continuous at the interface.
We have then to impose the jump in another way. We finally impose it strongly, that is to say

we replace the term
∫
Σ

1
2

(
∇×N1
f1
− ∇×N2

f2

)
· (v1 × n1 − v2 × n2)3( by

∫
Σ

1
2

(
∇×N
f

)
jump

· (v1 × n1 −
v2 × n2)3(.
This term is now known, we pass it to the right-hand side.

This yields∫
Ω1

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Ω2

(
∇ × N

f

)
· (∇ × v)3+

+
∫
Σ

1

2

(
∇ × N1

f1
+ ∇ × N2

f2

)
· (v1×n1+v2×n2)3( = −

∫
Σ

1

2

(
∇ × N

f

)
jump

· (v1×n1−v2×n2)3(.

(4.4.9)

Divergence and magnetic pressure
In order to ensure ∇ · (`N) = 0 (equation (4.4.3b)), a magnetic pressure ?< has been imple-
mented in SFEMaNS to control the divergence. ?< is a solution of

− ∇ · (ℎ2(1−0)
∇?<) = −∇ · (`N) in Ω1 and Ω2. (4.4.10)

where 0 is a constant between 0 and 1. In the weak formulation, where we denote @ a test
function related to ?<, this is translated by

V1

(∫
Ω1

`∇?< · v3+ −
∫
Ω1

`N ·∇@3+ +
∫
Ω1

ℎ2(1−0)
∇?< ·∇@3+ +

∫
Ω1

ℎ20
∇ · (`N)∇ · (`v)3+

)
+V1

(∫
Ω2

`∇?< · v3+ −
∫
Ω2

`N ·∇@3+ +
∫
Ω2

ℎ2(1−0)
∇?< ·∇@3+ +

∫
Ω2

ℎ20
∇ · (`N)∇ · (`v)3+

)
= 0.

(4.4.11)

86



4.4. MAGNETIC FIELD N FORMULATION

Dirichlet boundary conditions
The Dirichlet boundary conditions (equation (4.4.3f)) are enforced weakly, i.e. in the weak
formulation, unlike the code with i. They are imposed on N × n. This is written∫

Γ�

1

f
∇×N · (v×n)3(+V3

∫
Γ�

ℎ−1(N×n) · (v×n)3( = V3

∫
Γ�

ℎ−1(N�×n) · (v×n)3(. (4.4.12)

`N · n is constrained by the code on the boundaries via the divergence equation (4.4.3b).

Final weak formulation
Using all the previous calculations, the final weak formulation can be written as

∫
Ω1

(
∇ × N

f

)
· (∇×v)3++

∫
Ω2

(
∇ × N

f

)
· (∇×v)3++

∫
Σ

(
∇ × N1

f1
+ ∇ × N2

f2

)
· (v1×n1+v2×n2)3(

+ V1

(∫
Ω1

`∇?< · v3+ −
∫
Ω1

`N ·∇@3+ +
∫
Ω1

ℎ2(1−0)
∇?< ·∇@3+ +

∫
Ω1

ℎ20
∇ · (`N)∇ · (`v)3+

)
+ V1

(∫
Ω2

`∇?< · v3+ −
∫
Ω2

`N ·∇@3+ +
∫
Ω2

ℎ2(1−0)
∇?< ·∇@3+ +

∫
Ω2

ℎ20
∇ · (`N)∇ · (`v)3+

)
+ V3

∫
Σ

1

ℎ
(N1 × n1 + N2 × n2) · (v1 × n1 + v2 × n2)3(

+ V1

∫
Σ

1

ℎ
(`N1 · n1 + `N2 · n2) (`v1 · n1 + `v2 · n2)3(

+
∫
Γ�

1

f
(∇ × N) · (v × n)3( + V3

∫
Γ�

ℎ−1(N × n) · (v × n)3( =

−
∫
Σ

(
∇ × N

f

)
jump

· (v1 × n1 − v2 × n2)3( + V3

∫
Γ�

ℎ−1(N� × n) · (v × n)3(. (4.4.13)

Weights

The weights have to be applied to the term
[
n ×

(
∇×N
f

)
· v

]
in the weak formulation (4.4.5).

The weights in this case are

g1 =
(1/f2)

(1/f1) + (1/f2)
=

f1

f1 + f2
, g2 =

(1/f1)
(1/f1) + (1/f2)

=
f2

f1 + f2
. (4.4.14)

We have [
n ×

(
∇ × N

f

)
· v

]
= n ×

(
∇ × N1

f1

)
· v1 − n ×

(
∇ × N2

f2

)
· v2

= n ×
(
g1
∇ × N1

f1
+ g2

∇ × N2

f2

)
· (v1 − v2) + n ×

(
∇ × N1

f1
− ∇ × N2

f2

)
· (g2v1 − g1v2)

= n ×
(
g1
∇ × N1

f1
+ g2

∇ × N2

f2

)
· (v1 − v2) + n ×

(
∇ × N

f

)
jump

· (g2v1 − g1v2).
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The final weak formulation with weights is hence∫
Ω1

(
∇ × N

f

)
· (∇ × v)3+ +

∫
Ω2

(
∇ × N

f

)
· (∇ × v)3+

+
∫
Σ

(
g1
∇ × N1

f1
+ g2

∇ × N2

f2

)
· (v1 × n1 + v2 × n2)3(︸                                                                 ︷︷                                                                 ︸

(∗)

+ V1

(∫
Ω1

`∇?< · v3+ −
∫
Ω1

`N ·∇@3+ +
∫
Ω1

ℎ2(1−0)
∇?< ·∇@3+ +

∫
Ω1

ℎ20
∇ · (`N)∇ · (`v)3+

)
+ V1

(∫
Ω2

`∇?< · v3+ −
∫
Ω2

`N ·∇@3+ +
∫
Ω2

ℎ2(1−0)
∇?< ·∇@3+ +

∫
Ω2

ℎ20
∇ · (`N)∇ · (`v)3+

)
+ V3

∫
Σ

1

ℎ
(N1 × n1 + N2 × n2) · (v1 × n1 + v2 × n2)3(

+ V1

∫
Σ

1

ℎ
(`N1 · n1 + `N2 · n2) (`v1 · n1 + `v2 · n2)3(

+
∫
Γ�

1

f
(∇ × N) · (v × n)3( + V3

∫
Γ�

ℎ−1(N × n) · (v × n)3( =

−
∫
Σ

(
∇ × N

f

)
jump

· (g2v1 × n1 − g1v2 × n2)3(︸                                                          ︷︷                                                          ︸
(∗)

+V3

∫
Γ�

ℎ−1(N� × n) · (v × n)3(. (4.4.15)

Numerics

Most of the terms of this weak formulation were already present in SFEMaNS. During this
thesis, we have implemented the terms modeling the jump and the weights, i.e. the terms
indicated by (∗) in formulation (4.4.15). The numerical decomposition and solving process is
similar to that presented in section §4.3.
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4.4.3 Determination of analytical solutions

In order to validate the numerical solutions, we need to compare them to analytical solutions.
We are looking for solutions to the problem (4.4.3).

Analytical solutions with
(
∇×N
f

)
jump

= 0

In a single domain, we are looking for solutions of the system

{
∇ × (∇ × N) = 0,
∇ · N = 0,

which is

equivalent to (
4 − 1

A2

)
�A −

2

A2
m\�\ = 0, (4.4.16a)(

4 − 1

A2

)
�\ +

2

A2
m\ = 0, (4.4.16b)

4�I = 0, (4.4.16c)(
mA +

1

A

)
�A +

1

A
m\�\ + mI�I = 0. (4.4.16d)

Let �+ = �A + 8�\ and �− = �A − 8�\ . Thus �A = (�+ + �−)/2 et �\ = (�+ − �−)/28.

Hence

(4.4.16a)+8(4.4.16b)⇒
(
4 − 1

A2

)
(�A+8�\) + 2

m\

A2
(8�A−�\) = 0 ⇒

(
4 − 1

A2

)
�+ + 28

m\

A2
�+ = 0

(4.4.16a)−8(4.4.16b)⇒
(
4 − 1

A2

)
(�A−8�\) − 2

m\

A2
(8�A+�\) = 0 ⇒

(
4 − 1

A2

)
�− − 28

m\

A2
�− = 0

which leads to (
m2
AA +

1

A
mA +

m2
\\

A2
+ m2

II −
1

A2
+ 28

m\

A2

)
�+ = 0,(

m2
AA +

1

A
mA +

m2
\\

A2
+ m2

II −
1

A2
− 28

m\

A2

)
�− = 0,(

m2
AA +

1

A
mA +

m2
\\

A2
+ m2

II

)
�I = 0.

We take solutions with separable variables such as (�+, �−, �I) = 48<\ (ℎ+, ℎ−, ℎI) with
ℎ+ = �+R+(A)Z+(I), ℎ− = �−R−(A)Z−(I), ℎI = �IRI (A)ZI (I), where �+, �−, �I are
constants and R+, R−, RI, Z+, Z−, ZI are functions.

We solve then (
m2
AA +

1

A
mA −

<2

A2
+ m2

II −
1

A2
− 2

<

A2

)
ℎ+ = 0,(

m2
AA +

1

A
mA −

<2

A2
+ m2

II −
1

A2
+ 2

<

A2

)
ℎ− = 0,(

m2
AA +

1

A
mA −

<2

A2
+ m2

II

)
ℎI = 0.
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i.e. (
m2
AA +

1

A
mA −

(< + 1)2
A2

+ m2
II

)
ℎ+ = 0,(

m2
AA +

1

A
mA −

(< − 1)2
A2

+ m2
II

)
ℎ− = 0,(

m2
AA +

1

A
mA −

<2

A2
+ m2

II

)
ℎI = 0.

We choose Z+(I),Z−(I),ZI (I) = 4:I.
Thus R+(A) = �<+1(:A), R−(A) = �<−1(:A) et RI (A) = �< (:A) where � are Bessel functions.

Hence we find

�+ = �+ �<+1(:A) 4:I 48<\

�− = �− �<−1(:A) 4:I 48<\

�I = �I �< (:A) 4:I 48<\ .

To find a relation between the constants �, we inject the result in the divergence equation
(4.4.16d), which gives(

mA +
1

A

)
�A +

1

A
m\�\ + mI�I = 0

⇒
(
mA +

1

A

)
(�+ + �−)

2
+ 1

A
m\
(�+ − �−)

28
+ mI�I = 0

⇒ 1

2

(
mA +

1

A
+ 1

8A
m\

)
�+ +

1

2

(
mA +

1

A
− 1

8A
m\

)
�− + mI�I = 0

⇒ 1

2

(
mA +

1

A
+ <

A

)
ℎ+ +

1

2

(
mA +

1

A
− <

A

)
ℎ− + mIℎI = 0

⇒ 1

2

(
mA +

< + 1

A

)
ℎ+ +

1

2

(
mA −

< − 1

A

)
ℎ− + mIℎI = 0

⇒ 1

2

(
mA +

< + 1

A

)
�+�<+1(:A) +

1

2

(
mA −

< − 1

A

)
�−�<−1(:A) + �I:�< (:A) = 0.

Using the relations (
mA +

< + 1

A

)
�<+1(:A) = :�< (:A),(

mA −
< − 1

A

)
�<−1(:A) = −:�< (:A),

we find
�+
2
− �−

2
+ �I = 0⇒ �I =

�− − �+
2

.

We obtain finally the following complex solutions

�A =
�+ �<+1(:A) + �−�<−1(:A)

2
4:I 48<\

�\ =
�+ �<+1(:A) − �−�<−1(:A)

28
4:I 48<\

�I =
�− − �+

2
�< (:A) 4:I 48<\

90



4.4. MAGNETIC FIELD N FORMULATION

and, after having taken the real part, we get the solution

�A =
�+ �<+1(:A) + �−�<−1(:A)

2
4:I cos(<\) (4.4.24a)

�\ =
�+ �<+1(:A) − �−�<−1(:A)

2
4:I sin(<\) (4.4.24b)

�I =
�− − �+

2
�< (:A) 4:I cos(<\) (4.4.24c)

where < is the mode we choose for the following numerical tests. �+ and �− can be chosen
arbitrarily.

Analytical solutions with
(
∇×N
f

)
jump

≠ 0

In a case with a non-zero jump in
(
∇×N
f

)
jump

, the solutions take the same form as the ones in

the last paragraph with
(
∇×N
f

)
jump

= 0 in Ω1 and Ω2. At the interface Σ, equations (4.4.3c),

(4.4.3d) and (4.4.3e) have to be also verified. We set ` to a constant in the whole domain Ω,
this means that N1 = N2 at the interface.

Thus, at the interface
∇ × N1

f1
− ∇ × N2

f2
= ∇ × N1

(
1

f1
− 1

f2

)
because N1 = N2. This means that, if we choose f1 ≠ f2 and N1 = N2 = N where N is the
solution (4.4.24), it verifies at the interface N1 = N2 and the jump is non-zero. This is the
solution that we choose for the following.
In order to find the value of the jump, we calculate ∇ × N with the solution (4.4.24). Using
properties of Bessel functions, this gives

∇ × N =

�����������
:4:Isin(<\)

4
(�+ + �−) (�<−1(:A) − �<+1(:A))

:4:Icos(<\)
4

(�+ + �−) (�<+1(:A) + �<−1(:A))
:4:Isin(<\)

2
(�+ + �−)�< (:A)

. (4.4.25)

Hence we have
(
∇×N
f

)
jump

= ∇ × N
(

1
f1
− 1
f2

)
|Σ

where ∇ × N is equal to (4.4.25).
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4.4.4 Numerical investigations

In this section we validate our solver in the domain Ω defined in section §4.3.1 by comparing
the numerical solution with analytical solutions found in section §4.4.3.
The tests are done using solution (4.4.24)

�A =
�+ �<+1(:A) + �−�<−1(:A)

2
4:I cos(<\)

�\ =
�+ �<+1(:A) − �−�<−1(:A)

2
4:I sin(<\)

�I =
�− − �+

2
�< (:A) 4:I cos(<\)

for different Fourier modes (<= 0,1 or 2), in two cases, first without a jump (single domain)
and then with a jump on the interface Σ. We fix �+ = 2 and �− = 1. We define the relative
error in !2-norm of N

bN =
‖Nnum − Nex‖2
‖Nex‖2

, (4.4.27)

where Nnum is the numerical solution and Nex the analytical solution. This error is expected
to vary like O(ℎ3), like in the case with the i-solver (section §4.3.4).
In the following we denote by ^<1 the first root of the Bessel function �<. The numerical tests
presented in this section use ^01, ^11 and ^21 whose values are

^01 = 2.4048255577, ^11 = 3.8317059702, ^21 = 5.1356223018.

We precise that, for < = 0, we need �−1 which is equal to −�1.

Tests without jump

The first set of tests is done for a case with no interface and then no jump. The electrical
conductivity is f = 1, and the magnetic permeability ` = 1. We run the following tests

• Test 1: mode < = 0, : = ^01.
• Test 2: mode < = 1, : = ^11.
• Test 3: mode < = 2, : = ^21.

We report the relative error bN in table 4.3.

ℎ Test 1 Test 2 Test 3
0.1 3.18 · 10−2 1.56 · 10−2 3.59 · 10−2

0.05 5.88 · 10−3 2.79 · 10−3 6.51 · 10−3

0.025 9.27 · 10−4 4.08 · 10−4 9.50 · 10−4

0.0125 1.40 · 10−4 5.54 · 10−5 1.30 · 10−4

0.00625 2.07 · 10−5 7.33 · 10−6 1.73 · 10−5

Table 4.3 – Relative errors bN for different mesh sizes ℎ for
(
∇×N
f

)
jump

= 0.

For each test, the error bN varies like O(ℎ3), that we can also see in figure 4.6. These results
validate the numerical solver.
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Test 1

Test 2

Test 3

Figure 4.6 – Order of convergence of bN when
(
∇×N
f

)
jump

= 0 as a function of the mesh size ℎ

for different tests. The dashed line represents the theoretical order of convergence ℎ3.

Tests with jump

The second set of tests is done for a case with an interface and a jump of the tangential
components of the electrical current. The electrical conductivities are f1 = 104 and f2 = 1, and

the magnetic permeability ` = 1. The jump is fixed to
(
∇×N
f

)
jump

= ∇×N
(

1
f1
− 1
f2

)
|Σ

. We run

the following tests:
• Test 4: mode < = 0, : = ^01.
• Test 5: mode < = 1, : = ^11.
• Test 6: mode < = 2, : = ^21.

We report the relative error bN in table 4.4.

ℎ Test 4 Test 5 Test 6
0.1 3.53 · 10−1 4.53 · 10−2 3.93 · 10−2

0.05 3.18 · 10−2 4.22 · 10−3 6.82 · 10−3

0.025 2.29 · 10−3 4.63 · 10−4 9.79 · 10−4

0.0125 2.10 · 10−4 5.74 · 10−5 1.31 · 10−4

0.00625 2.38 · 10−5 7.46 · 10−6 1.74 · 10−5

Table 4.4 – Relative errors bN for different mesh sizes ℎ for
(
∇×N
f

)
jump

≠ 0.

For each test, the error bN varies like O(ℎ3), that we can also see in figure 4.7. These results
validate the numerical solver.
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Figure 4.7 – Order of convergence of bN when
(
∇×N
f

)
jump

≠ 0 as a function of the mesh size ℎ

for different tests. The dashed line represents the theoretical order of convergence ℎ3.

4.5 Comparison between both formulations

In this section, we show that both formulations are equivalent. For this purpose, we compare the
electrical current obtained, which should be the same. We first determine equivalent analytical
solutions in order to validate the numerical solutions. We validate our solver first in a cylinder
like in sections §4.3.4 and §4.4.4. Then we extend our validation in an LMB setup.

4.5.1 Determination of equivalent analytical solutions

Analytical solutions without jump

We found in section §4.3.3 the following analytical solution for the problem in i

i(A, \, I) = �< (:A)48<\4:I .

We want to find the equivalent magnetic field N. We know that the electrical current j verifies
j = ∇ × N and j = −f∇i. Thus N must verify

∇ × N = −f∇i, (4.5.1a)

∇ · N = 0. (4.5.1b)

N can be written such as N = ∇ × (T eI) with T a scalar.
First ∇ · N = ∇ · (∇ × (T eI)) = 0, therefore (4.5.1b) is verified.
Then let us calculate (∇ × N) · eI.
On one hand (∇ × N) · eI = (∇ × ∇ × (T eI)) · eI = (−∇2(T eI) + ∇(mIT)) · eI = −∇2

)
T (where

∇2
)

is the tangential laplacian).
On the other hand (∇ × N) · eI = −fmIi.
Hence T is solution of ∇2

)
T = fmIi .

Let us take T as T = ��< (:A)48<\4:I where � is a constant. This yields

∇2
)
T = 1

A
mA (AmAT)+

1

A2
m2
\\
T = �48<\4:I

(
m2
AA�< (:A) +

1

A
mA�< (:A) −

<2

A2
�< (:A)

)
= −:2��< (:A)48<\4:I.
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However fmIi = f:�< (:A)48<\4:I.
This leads to � = −f

:
and thus T = −f

:
�< (:A)48<\4:I.

We deduce N from T :

N = ∇ × (T eI) = −
f

2
48<\4:I

������8(�<+1(:A) + �<−1(:A))
�<+1(:A) − �<−1(:A)
0

and, after having taken the real part of this solution,

N = −f
2
4:I

������−(�<+1(:A) + �<−1(:A))sin(<\)
(�<+1(:A) − �<−1(:A))cos(<\)
0

. (4.5.2)

This solution of the magnetic field problem is equivalent to the electrical potential
i(A, \, I) = �< (:A)48<\4:I.

Analytical solutions with jump

In a case with ijump ≠ 0, an analytical solution of the problem in i is (see equation (4.3.16)):

{
i1(A, \, I) = �< (:A)48<\4:I,
i2(A, \, I) =

f1

f2
�< (:A)48<\4:I .

ijump =

(
1 − f1

f2

)
�< (:A)48<\4:� .

The equivalent solution for the magnetic field N must be continuous at the interface and must
verify (

∇ × N1

f1
− ∇ × N2

f2

)
× eI = −∇) (i1 − i2) × eI on Σ. (4.5.3)

In each subdomain, we define T1 and T2 such as N1 = ∇ × (T1eI) and N2 = ∇ × (T2eI).
From the last section, we can find T1 and T2 from i1 and i2

T1(A, \, I) = −
f1

:
�< (:A)48<\4:I,

T2(A, \, I) = −
f2

:

f1

f2
�< (:A)48<\4:I = −

f1

:
�< (:A)48<\4:I .

We remark that T1 = T2, that we will denote T . Then N is indeed continuous on Σ.
We now show that this solution respects (4.5.3).
On one hand

− ∇(i1 − i2) × eI = −
(
1 − f1

f2

)
48<\4:I1

�������
8<

A
�< (:A)

−:�′< (:A)
0
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On the other hand

(
∇ × N1

f1
− ∇ × N2

f2

)
× eI =

���������
1

A

(
1

f1
m\mIT −

1

f2
m\mIT

)
− 1

f1
mAmIT +

1

f2
mAmIT

0

=

����������
1

A

(
1

f1
− 1

f2

)
8<(−f1)�< (:A)48<\4:I(

1

f2
− 1

f1

)
: (−f1)�′< (:A)48<\4:I

0

= −
(
1 − f1

f2

)
48<\4:I

�������
8<

A
�< (:A)

−:�′< (:A)
0.

Hence we have indeed (4.5.3) for I = I1 at the interface.
We deduce N from T like in the previous section. Therefore, the solution

N = −f1

2
4:I

������−(�<+1(:A) + �<−1(:A))sin(<\)
(�<+1(:A) − �<−1(:A))cos(<\)
0

(4.5.4)

is equivalent to the problem (4.5.3).

4.5.2 Numerical investigations in a cylinder

In this section, we show that the two solvers are equivalent (i.e. they give the same electrical
current) in the domain Ω defined in section §4.3.1. We study two cases, a case without a jump
(single domain) and then a case with a jump on the interface Σ. Here we compare the numerical
solutions with the analytical solutions found in section §4.5.1. To compare the results, we define
two relative errors in !2-norm of the electrical current j

Zi =
‖ ji − jex‖2
‖ 9ex‖2

, ZN =
‖ jN − jex‖2
‖ 9ex‖2

, (4.5.5)

where ji is the numerical electrical current obtained with the i−solver, jN the numerical elec-
trical current obtained with the N−solver, and jex the analytical solution. These errors are
expected to vary like O(ℎ2). We will show this by calculating the rate of convergence defined by

rate = log

(
Z8 − Z8−1

ℎ8 − ℎ8−1

)
(4.5.6)

where Z is equal to Zi or ZN, and 8 is an index. The rate is expected to be around 2.

Tests in a cylinder without jump

The first set of tests is done in the cylinder Ω for a case with no interface and then no jump. The
electrical conductivity is f = 1, and the magnetic permeability ` = 1. We use the analytical
solution with no jump from section §4.5.1 defined as follows

i(A, \, I) = �< (:A)48<\4:I

96



4.5. COMPARISON BETWEEN BOTH FORMULATIONS

N = −f
2
4:I

������−(�<+1(:A) + �<−1(:A))sin(<\)
(�<+1(:A) − �<−1(:A))cos(<\)
0

.

We run the following tests
• Test 1: mode < = 0, : = ^′01.
• Test 2: mode < = 1, : = ^′11.
• Test 3: mode < = 2, : = ^′21.

We report the relative errors Zi and ZN in three tables 4.5, 4.6, 4.7 which gather the rates and
the relative errors for the tests 1, 2 and 3, respectively.

i-solver N-solver

ℎ Zi Rate ZN Rate
0.1 1.34 · 10−2 - 1.02 · 10−2 -
0.05 4.37 · 10−3 1.62 7.53 · 10−3 2.30
0.025 1.22 · 10−3 1.84 1.55 · 10−3 2.28
0.0125 3.07 · 10−4 1.99 3.70 · 10−4 2.07
0.00625 7.72 · 10−5 1.99 9.14 · 10−5 2.01

Table 4.5 – Case with no jump, test 1 (< = 0). Rate of convergence and relative errors Zi and
ZN for different mesh sizes ℎ.

i-solver N-solver

ℎ Zi Rate ZN Rate
0.1 3.50 · 10−3 - 6.70 · 10−3 -
0.05 9.52 · 10−4 1.88 1.61 · 10−3 2.06
0.025 2.48 · 10−4 1.94 3.80 · 10−4 2.08
0.0125 6.29 · 10−5 1.98 9.34 · 10−5 2.02
0.00625 1.57 · 10−5 2.00 2.27 · 10−5 2.04

Table 4.6 – Case with no jump, test 2 (< = 1). Rate of convergence and relative errors Zi and
ZN for different mesh sizes ℎ.

i-solver N-solver

ℎ Zi Rate ZN Rate
0.1 6.42 · 10−3 - 1.47 · 10−2 -
0.05 1.88 · 10−3 1.77 3.41 · 10−3 2.11
0.025 5.41 · 10−4 1.80 7.94 · 10−4 2.10
0.0125 1.37 · 10−4 1.98 1.97 · 10−4 2.01
0.00625 3.46 · 10−5 1.99 4.91 · 10−5 2.00

Table 4.7 – Case with no jump, test 3 (< = 2). Rate of convergence and relative errors Zi and
ZN for different mesh sizes ℎ.

All the errors vary like O(ℎ2), as shown by the values of the rates which are around 2. Moreover,
the solutions converge to the same limit. This shows that the two solvers give equivalent results.
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Tests in a cylinder with jump

The second set of tests is done in the cylinder Ω for a case with an interface and a jump. The
electrical conductivities are f1 = 104 and f2 = 1, and the magnetic permeability ` = 1. We use
the analytical solution with a jump from section §4.5.1:{

i1(A, \, I) = �< (:A)48<\4:I,
i2(A, \, I) =

f1

f2
�< (:A)48<\4:I

ijump =

(
1 − f1

f2

)
�< (:A)48<\4:�

N = −f1

2
4:I

������−(�<+1(:A) + �<−1(:A))sin(<\)
(�<+1(:A) − �<−1(:A))cos(<\)
0

We run the following tests
• Test 4: mode < = 0, : = ^′01.
• Test 5: mode < = 1, : = ^′11.
• Test 6: mode < = 2, : = ^′21.

We report the relative errors Zi and ZN in three tables 4.8, 4.9, 4.10 which gather the rates and
the relative errors for the tests 4, 5 and 6, respectively.

i-solver N-solver

ℎ Zi Rate ZN Rate
0.1 1.34 · 10−2 - 3.72 · 10−2 -
0.05 4.37 · 10−3 1.62 7.54 · 10−3 2.30
0.025 1.22 · 10−3 1.84 1.55 · 10−3 2.28
0.0125 3.07 · 10−4 1.99 3.70 · 10−4 2.06
0.00625 7.72 · 10−5 1.99 9.14 · 10−5 2.02

Table 4.8 – Case with jump, test 4 (< = 0). Rate of convergence and relative errors Zi and ZN
for different mesh sizes ℎ.

i-solver N-solver

ℎ Zi Rate ZN Rate
0.1 3.52 · 10−3 - 1.63 · 10−2 -
0.05 9.53 · 10−4 1.89 2.62 · 10−3 2.64
0.025 2.48 · 10−4 1.94 3.40 · 10−4 2.95
0.0125 6.28 · 10−5 1.98 6.97 · 10−5 2.29
0.00625 1.57 · 10−5 2.00 1.70 · 10−5 2.04

Table 4.9 – Case with jump, test 5 (< = 1). Rate of convergence and relative errors Zi and ZN
for different mesh sizes ℎ.

All the errors vary like O(ℎ2), as shown by the values of the rates which are around 2. Moreover,
the solutions converge to the same limit. This shows that the two solvers give equivalent results.
In figure 4.8 are shown snapshots of results obtained with the test 4 (< = 0 and a jump
in electrical potential) on a meridian plane, for ℎ = 0.025. In figure 4.8a, we display the
azimuthal component of the magnetic field (all the other components are zero) and the current

98



4.5. COMPARISON BETWEEN BOTH FORMULATIONS

i-solver N-solver

ℎ Zi Rate ZN Rate
0.1 6.43 · 10−3 - 2.14 · 10−2 -
0.05 1.88 · 10−3 1.77 3.88 · 10−3 2.46
0.025 5.41 · 10−4 1.80 7.79 · 10−4 2.31
0.0125 1.37 · 10−4 1.98 1.88 · 10−4 2.05
0.00625 3.46 · 10−5 1.99 4.69 · 10−5 2.00

Table 4.10 – Case with jump, test 6 (< = 2). Rate of convergence and relative errors Zi and
ZN for different mesh sizes ℎ.

density obtained with the N-solver. Figure 4.8b shows the electrical potential and the current
density obtained with the i-solver. The current density field is identical for both formulations.
We remark that the electrical potential presents indeed a jump at the interface, whereas the
magnetic field is continuous.

(a) (b)

Figure 4.8 – Snapshots of fields obtained with both solvers represented on a meridian plane.
(a) N-solver, left: magnetic field �\ and right: current density. (b) i-solver, left: current

density and right: electrical potential i.
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4.5.3 Numerical investigations in a liquid metal battery

In order to validate our solvers in a geometry that we will use afterwards, we now compare
both formulations in a Li| |Pb LMB setup, solving neither the concentration nor the velocity.
We choose a setup really similar to the one studied by Weber et al. (2019), where the lithium is
contained in a foam. The only differences with the original setup are that we do not model the
side walls for simplicity, and we choose a cylindrical foam (and not spherical at the bottom).
The current collectors are made of copper, we recall that fCu = 5.8 · 107 Sm−1 . The negative
electrode (the foam) is composed of steel and lithium. The electrical conductivity of pure lith-
ium is fLi = 2.7 · 106 Sm−1 and the conductivity of steel is equal to 1.5 · 106 Sm−1. These two
values have the same order of magnitude. Hence, the electrical conductivity of the negative
electrode can be approximated by fLi. We take the same conductivity for the alloy and the
electrolyte as in section §2.2.2, f = 7.39 · 105 Sm−1 and fe = 187 Sm−1. A scheme of the setup
is shown in figure 4.9a, where the dimensions of the setup are given. We denote the height of
the whole cell Hcell, its radius ' and the radius of the top current collector 'F. The vertical
coordinate I is set to 0 at the bottom of the cell. In figure 4.9b is represented a meridian plane
of the battery which is used for the representation of snapshots in the following because the
simulations are axisymmetric. The colored lines represent the profiles used for figures 4.10b
and 4.11b. The mesh is non-uniform, the mesh size ℎ varies in the range [0.00025, 0.0005] m.

(a)

(b)

Figure 4.9 – (a) Scheme of the LMB setup used for the comparison between both
formulations. The dimensions are in mm. (b) Scheme of a meridian plane of the setup with

colored lines used for the profiles in figures 4.10b and 4.11b.

We study two cases, a case with a constant jump in electrical potential and a case with a jump
in electrical potential depending in A.
For the potential, we solve the following problem

−∇ · (f8∇i) = 0 in all domains, (4.5.7a)

ialloy − ielectrolyte = ijump at the alloy-electrolyte interface (4.5.7b)

where f8 are the different conductivities of the domains. We impose a constant potential at
the bottom of the cell. We fix the electrical current � = 1 A. We impose no flux of current at
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the lateral border. This yields the following boundary conditions

−fw mIi |I=Hcell
=

�

c'2
F

, (4.5.8a)

m=i |A≥'F ,I>0 = 0, (4.5.8b)

i |I=0 = 0 (4.5.8c)

where fw is the electrical conductivity of the current collectors.
For the magnetic field,

∇ ×
(
∇ × N

f8

)
= 0 in all domains, (4.5.9a)

∇ · (`N) = 0 in all domains, (4.5.9b)(
∇ × Nalloy

f
−
∇ × Nelectrolyte

f4

)
× n =

(
∇ × N

f

)
jump

× n at the alloy-electrolyte(4.5.9c)

interface.

Here, ` = `0 the permeability of vacuum and f4 the conductivity of the electrolyte.
In order to be able to compare both solvers, we have to find equivalent boundary conditions
for the magnetic field.
At the bottom, i |I=0 = 0 for all {A, \} means that mAi |I=0 = 0 i.e. − 9A f−1

Cu |I=0 = 0 and m\i |I=0 = 0

i.e. −A 9\ f−1
Cu |I=0 = 0. Thus j × n|I=0 = 0 i.e. (∇ × N) × n|I=0 = 0.

On the other borders, Dirichlet boundary conditions for the magnetic field can be found using
Ampère’s law at a radial coordinate 0 (like in chapter 3):

�\ |A=0 =
1

0

∫ 0

0
9IA3A (4.5.10)

This yields

�\ |I=Hcell
=

�

2c'2
F

A, �\ |A≥'F ,I>0 =
�

2cA
. (4.5.11)

We use hence the following boundary conditions for N, equivalent to equations (4.5.8):

�\ |I=Hcell
=

�

2c'2
F

A, (4.5.12a)

�\ |A≥'F ,I>0 =
�

2cA
, (4.5.12b)

(∇ × N) × n|I=0 = 0 (4.5.12c)

and �A = �I = 0 on all borders.
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Tests with a constant jump in electrical potential

We first study a simple case where the jump in potential is constant, ijump = 0.8 V for all A at

the alloy-electrolyte interface. The equivalent jump for the magnetic field is
(
∇×N
f

)
jump

= 0.

The results are gathered in figure 4.10. Using the i-solver, we show in figure 4.10a a snapshot
of the obtained electrical potential. We remark the constant jump of 0.8 V at the alloy-
electrolyte interface. This jump can also be noticed in figure 4.10b, where we plot the electrical
potential as a function of I at different radii A. The profile along the I-axis is coherent with
the profile obtained by Weber et al. (2019) in a Li| |Bi battery. Figure 4.10c shows streamlines
of the electrical current j computed with the two solvers. These streamlines are colored by
the amplitude of 9I. This figure highlights that the electrical current obtained with both
formulations is identical as expected.

Tests with a jump in electrical potential depending on A

Secondly we study a case where the jump in potential depends on A such as ijump = �0(:A) (in

V), where : = ^′01/'. The equivalent jump for the magnetic field is
(
∇×N
f

)
jump

= −:�′0(:A)eA .
The results are gathered in figure 4.11. Using the i-solver, we show in figure 4.11a a snapshot of
the obtained electrical potential. We remark that the jump varies with A at the alloy-electrolyte
interface. This jump can also be noticed in figure 4.11b, where we plot the electrical potential
as a function of I at different radii A. Figure 4.11c shows streamlines of the electrical current
j computed with the two solvers. These streamlines are colored by the amplitude of 9I. This
figure highlights that the electrical current obtained with both formulations is identical as
expected. We can notice the current loop due to the change of sign of the jump along the
interface.
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Figure 4.10 – Case with a constant jump in electrical potential ijump = -0.8 V. (a) Snapshot
of the electrical potential i in a meridian plane. (b) Profile of the electrical potential vs I at
different radii A, defined in figure 4.9b. (c) Streamlines of the current density j colored with
amplitude of 9I using both formulations, in a meridian plane: (left) N-solver (right) i-solver.

103



CHAPTER 4. MODELING DISCONTINUOUS ELECTRICAL POTENTIAL
DISTRIBUTIONS WITH A MAGNETIC FIELD FORMULATION

(a)

−1.0 −0.5 0.0 0.5
ϕ (V)

0

5

10

15

20

25

z
(m

m
)

current collector

foam

electrolyte

alloy

current collector

r = 0 mm

r = 6.5 mm

r = 9.1 mm

r = 14.5 mm

(b)

(c)

Figure 4.11 – Case with a jump in electrical potential ijump = - �0(:A) (in V). (a) Snapshot
of the electrical potential i in a meridian plane. (b) Profile of the electrical potential vs I at
different radii A, defined in figure 4.9b. (c) Streamlines of the current density j colored with

amplitude of 9I using both formulations, in a meridian plane: (left) N-solver; (right) i-solver.
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4.6 Conclusion

In this chapter, we have proposed a new magnetic field based formulation to model discontinuous
electrical potential distributions. Indeed, a jump in electrical potential ijump can be linked to

a jump in the tangential components of the rotational of the magnetic field
(
∇×N
f

)
jump

with

the formula

n ×
(
∇ × N

f

)
jump

= −n × ∇) (ijump). (4.6.1)

We have developed a finite element code solving the electrical problem and validated it in a
cylinder subdivided in one or two domains, by comparing the numerical solutions to analytical
solutions. Then, we have implemented the magnetic field-based interface condition (4.6.1)
in a finite element code solving the magnetic problem and validated it in the same cylinder,
using the same method for the validation. We have finally shown that both formulations are
equivalent by comparing the current density obtained in both cases with analytical solutions,
in the cylinder as well as in a liquid metal battery setup.
Now that these developments are realized, it is necessary to extend the study by adding the
concentration and the velocity to be able to analyze the impact of the jump in electrical potential
on the concentration and current distributions. This work is done in chapter 5.
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Chapter 5

Influence of the electrical potential on
the alloy composition and on the cell
potential

5.1 Introduction

In an LMB, the electrical potential distribution is complex. A jump in electrical potential
appears at the alloy-electrolyte interface. This jump has been ignored in most of the studies,
and has been considered only recently in a few studies (Duczek et al., 2023; Weber et al., 2019,
2020). These latter do not provide comparison with other simulations without jump in poten-
tial, therefore, the impact of the potential jump on the current and concentration distributions,
as well as on the cell potential, is not easy to distinguish from other physical phenomena.

Our goal is to understand the effect of the jump in potential on the alloy composition. We
consider an LMB setup with a foam electrode, which is a setup more often used in the experi-
ments than the three-liquid layer setup. The foam has a thinner radius than the alloy. During
discharge, the material flux in the alloy is inhomogeneous at the alloy-electrolyte interface and
we expect a higher concentration close to the axis than on the lateral borders (figure 5.1).

Figure 5.1 – Scheme of the diffusion process in the alloy in a foam setup.

The effects of the EVF and the solutal buoyancy, that we have already studied in this thesis,
are also different from chapter 2 due to the foam. The thinner current collector is above the
alloy, and not below like in section §2.2. The EVF is then induced in the opposite direction,
and brings the lithium towards the axis (figure 5.2a). The buoyancy term impacts the vertical
velocity and depends on local densities in the alloy. Because the alloy-electrolyte interface is
not homogeneous, the alloy density is lower at the center - richer in lithium - than on the sides.
Thus, the vertical velocity is directed downwards everywhere with a higher amplitude on the
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sides. We expect an almost homogeneous alloy in the radial direction (figure 5.2b).

(a) (b)

Figure 5.2 – Scheme of the (a) EVF and (b) buoyancy effects in the alloy in a foam setup.

Now we wish to understand how the potential jump influences the alloy. A scheme of the pro-
cess is shown on figure 5.3. Since the electrical potential (red line) is almost homogeneous in the
alloy, it varies only in the electrolyte. The inhomogeneity of the alloy-electrolyte interface yields
an inhomogeneity of the potential jump along the interface. The jump in electrical potential
decreases with the molar fraction. We expect then a lower jump at the center (ijump,−) than on
the sides (ijump,+). Therefore, the electrical potential in the electrolyte just above the interface
alloy-electrolyte is higher at the center (i+) than on the borders (i−). A radial current 9A is
then induced, directed from the axis to the sides. The current distribution in the electrolyte is
modified and the vertical current 9I decreases on the axis and increases on the borders. Thus,
an homogenization of the material flux, proportional to 9I, occurs.

Figure 5.3 – Scheme of the current redistribution and the homogenization of the alloy by the
potential jump.

We expect therefore a redistribution of the current in the electrolyte and of the material flux
due to the potential jump. How much does this redistribution impact the alloy composition?
Do the conclusions of enhanced mixing by flows (section §1.3.3) remain valid?
We have seen in chapter 1 that the jump defines the electrical potential distribution and con-
sequently the total potential of the cell. In section §2.2 of chapter 2, we have ignored the
potential jump and computed the cell potential in post-processing from the surface averaged
molar fraction. This computation is not self-consistent. The cell potential is affected by local
variations of the potential at the alloy-electrolyte interface and taking a surface average ignores
these local variations. Is a self-consistent way of computation significantly different from the
post-processed computation from the surface averaged molar fraction? How much does the
potential jump impact the cell potential?
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In chapter 4, we have found a new magnetic field-based interface condition to model the jump
at the alloy-electrolyte interface. Now that we have developed this formulation, we can improve
our solver by coupling the potential jump along the alloy-electrolyte interface to the local alloy
concentration. In our model, we will solve the magnetic field, the flow and the concentration.
We first present the new model used in this chapter. Then, we present some numerical de-
tails on the development of the concentration variable in SFEMaNS, that we call the 2-solver.
Later, we compare the i-solver with the results of Weber et al. (2019) and validate the N-solver
coupled with the 2-solver, using the i-solver. Once this is done, we conduct a study on the
effect of the potential jump. We compare simulations with and without jump, in a small and
a larger LMB setups, and study the effect of the jump on the flow and the alloy composition.
We also compare different ways of computation of the cell potential.

5.2 Model

We consider a cylindrical Li| |Pb liquid metal battery and use the same setup as in section
§4.5.3 of chapter 4. The lithium in the negative electrode is contained in a foam, considered
as solid and composed of pure lithium in the simulations. The current collectors are assumed
to be made of copper that has an electrical conductivity fCu = 5.8 · 10−7 S m−1. The material
properties of the Li-Pb alloy are given in section §2.2.2 of chapter 2.
We study two different setups, with different dimensions but a similar shape, shown in figure
5.4. We denote ' and 'F the radius of the cell and the radius of the upper current collector,
respectively, and Hcell the total height of the cell. The vessel which contains the phases (light
grey on the sketch) is not modeled.

Figure 5.4 – Sketch of the LMB setups. Dimensions are specified below.

5.2.1 Electrical potential formulation with concentration

We first develop a model which solves the electrical potential variable i and the concentration
2. Solving the velocity requires to compute the Lorentz force j × b. While the current density
j can be easily computed from the electrical potential i, obtaining the magnetic field b from
the current density j is not trivial. Biot-Savart’s law gives b from j, but its computation is
not easy. Therefore, we do not solve the velocity in this formulation.
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This model will allow us to reproduce the results of Weber et al. (2019), without any flow,
and to compare its results with the ones of our magnetic field-based model described in section
§5.2.2.

The electrical potential formulation is based on the formulation in i defined in chapter 4. The
electrical potential i is then solution in all domains of the equation

∇ · (f8∇i) = 0 (5.2.1)

where f8 are the different electrical conductivities of the domains.
We fix the total current �. This yields the same boundary conditions as in section §4.5.3:

fCumIi|I=Hcell
=

�

c'2
F

, (5.2.2a)

m=i|A>'F = 0, (5.2.2b)

i |I=0 = 0. (5.2.2c)

At the alloy-electrolyte interface, the jump in electrical potential is imposed as:

ialloy − ielectrolyte = ijump. (5.2.3)

ijump is a function of the local molar fraction of lithium at the interface G |Σ,

ijump = Φ(G |Σ) (5.2.4)

where Φ is the open-circuit voltage. We remind that

Φ(G) = U − V(G − G∗) (5.2.5)

where G∗ = 0.17, U = 0.614 V and V = 0.598 V. The jump induces a new coupling between the
potential and the molar fraction, absent in chapter 2. We will talk about the jump coupling in
what follows.
The concentration 2 of lithium in the alloy is solution of the diffusion equation

mC2 = �∇22 (5.2.6)

where � = 8 · 10−9 m2s−1 is the diffusion coefficient. At the alloy-electrolyte interface, denoted
Σ, the material flux depends here on the local electrical current density:

�mI2 |Σ = − 9I

=4�
(5.2.7)

where � is the Faraday constant. Unlike in section §2.2.2, the current density at the alloy-
electrolyte interface is not homogeneous. It is computed as j = −f∇i. The material flux is
zero at the other boundaries of the alloy (m=2 = 0).

5.2.2 Magnetic field formulation with concentration and velocity

We develop a second model which solves the magnetic field variable b, the concentration 2 and
the velocity u. Unlike the previous model based on the electrical potential, the Lorentz force
can be easily computed since j = `−1

0 ∇ × b.
This model will be compared to the previous model with the electrical potential, and will be
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used to conduct the studies of this chapter.
The magnetic field based formulation in this model is described in chapter 4. This model,
unlike in section §2.2, uses the magnetostatic approximation. In our simulations, the velocity
and thus the magnetic Reynolds number remain low. The magnetostatic approximation is
then valid, which is consistent with the models used in the literature of liquid metal batteries
(Personnettaz et al. (2020); Weber et al. (2018b, 2019) for instance).
In all domains, the magnetic field N is solution of the equations

∇ ×
(
∇ × N

f8

)
= 0, (5.2.8a)

∇ · N = 0 (5.2.8b)

where f8 are the different electrical conductivities of the domains.
The equivalent magnetic field boundary conditions are (see section §4.5.3)

�\ |I=Hcell
=

�

2c'2
F

A, (5.2.9a)

�\ |A>'F =
�

2cA
, (5.2.9b)

(∇ × N) × n|I=0 = 0. (5.2.9c)

In axisymmetric simulations, �A = �I = 0 everywhere.
In chapter 4, we have shown that a jump in electrical potential is equivalent to a jump in the

tangential component of the electrical field K =

(
∇×N
f

)
. Hence, at the alloy-electrolyte interface

Σ (
∇ × N

f

)
jump

× n = −∇) (ijump) × n = −∇(Φ(G |Σ)) × n. (5.2.10)

In the alloy, we solve the concentration field 2 as well as the velocity field u. 2 is solution of
the advection-diffusion equation

mC2 + u ·∇2 = �∇22. (5.2.11)

The material flux of Li at the alloy-electrolyte interface is the same as in the model with the
electrical potential:

�mI2 |Σ = − 9I

=4�
(5.2.12)

At the other boundaries of the alloy, this flux is zero. The current density j is this time
computed as j = ∇ × N.
The flow field u is solution of the Boussinesq model

d∗(mCu + (u ·∇)u) = −∇? − d(2)6eI + ∇ · (d∗a(∇D + (∇D)) ) + j × b (5.2.13a)

∇ · u = 0 (5.2.13b)

where ? is the pressure, 6 the gravity, `0 the magnetic permeability of vacuum, and b = `0N
the magnetic field. We recall that the density d(2) of the alloy depends on the concentration
2 through the constitutive law (see section §2.2.2)

d(2) = d∗ − jMLi(2 − 2∗). (5.2.14)

Here, d∗ = 9543kg m−3, j = 15.1 and 2∗ = 9365 mol m−3.
In real LMBs, the electrolyte is subject to fluid motion. Yet, modeling also the flow in the
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electrolyte requires a multiphase model. Combining the mass transfer model with a multiphase
approach is quite difficult to do, therefore we decided to neglect the flow in the electrolyte. At
the alloy-electrolyte interface, we then impose free-slip boundary conditions. This approxim-
ation is not necessarily better than the no-slip boundary conditions that were used in section
§2.2.2, but these conditions allow more fluid motion near the interface. On the other borders
of the alloy, no-slip boundary conditions are used.
The simulations start with the eutectic alloy, 2 = 2∗ and u = 0.

5.2.3 Computation of the electrical potential using the magnetic
field

The electrical potential of the cell �cell is the difference between the potentials at the top and
the bottom of the cell. In the i-solver, �cell = ibot − itop, where itop (resp. ibot) is the
potential at the top (resp. bottom) of the cell. In the N-solver, the potential variable is not
directly accessible, but it can be computed from the current density. Indeed, in each domain,
we still have j = −f8∇i. Thus, integrating f−1

8
j along a line gives the electrical potential

i. The line the most accessible is the vertical axis. If the vertical coordinate I is above the
alloy-electrolyte interface, the discontinuity due to the jump has to be taken into account. We
can then deduce, the potential on the axis as given by:

i(I) =


∫ I

0
− j

f8
· eI3I if I is below Σ,∫ I

0
− j

f8
· eI3I − ijump |A=0 otherwise

Since the potential is constant at the top and at the bottom of the cell, we deduce the cell
potential:

�cell = ibot − itop = ijump |A=0 −
∫ Hcell

0
− j

f8
· eI3I (5.2.15)

Because of the high electrical conductivities of the metals, the electrical potential is almost
constant in these layers, i.e. the ohmic losses are very little. Therefore, we can focus on the
ohmic losses in the electrolyte [Ω only. Hence, �cell can be approximated by

�cell ' ijump |A=0 − [Ω. (5.2.16)

where [Ω =
∫
electrolyte

− j

f8
· eI3I.

Considering the formula (1.2.4) of chapter 1, we notice that ijump |A=0 = �cell,eq − [mt.
To compute the mass transfer overpotential, we need to know �cell,eq. It corresponds to the cell
potential in the ideal scenario, when the alloy is everywhere perfectly blended and homogeneous.
We can compute �cell,eq = Φ(〈G〉V), where 〈G〉V is the averaged molar fraction on the volume.
Hence, [mt is computed such as:

[mt = |�cell − �cell,eq + [Ω |. (5.2.17)
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5.3 Numerical development in SFEMaNS: adding the

concentration variable

Before this PhD, the concentration variable 2 was not explicitly present in SFEMaNS. In the
previous studies realized, we have used the analogous temperature variable to compute the con-
centration. Indeed, temperature and concentration are both solutions of an advection-diffusion
equation and so we could use this solver. However, it could be interesting in the future to be
able to compute both the temperature and the concentration. Therefore, we have chosen to
add in SFEMaNS the concentration field by developing a 2-solver.

5.3.1 Temporal advancement in SFEMaNS

Unlike the problem studied in chapter 4, the problem we want to solve is now time-dependent.
In SFEMaNS, for the temporal advancement, the solver uses a constant time-step XC. At
each iteration the time C is incremented by XC. We denote C= the time after = iterations. The
time derivatives are decomposed according to the second-order Backward Difference Formula
(BDF2). After having discretized the concentration and velocity variables (the discretized
variables are denoted with the index ℎ), this yields at C=+1

mC2
=+1
ℎ =

32=+1
ℎ
− 42=

ℎ
+ 2=−1

ℎ

2XC
+ O(XC2), mCu

=+1
ℎ =

3u=+1
ℎ
− 4u=

ℎ
+ u=−1

ℎ

2XC
+ O(XC2).

where 2=+1
ℎ

, 2=
ℎ
, 2=−1

ℎ
(resp. u=+1

ℎ
, u=

ℎ
, u=−1

ℎ
) are the concentration (resp. the velocity) at the

times C=+1, C=, C=−1, respectively. We recall that we use the magnetostatic approximation, there
is no time derivative for the magnetic field.
The use of an implicit scheme improves the numerical stability. Equation (5.2.11) becomes at
C=+1

32=+1
ℎ

2XC
+ �∇22=+1ℎ =

42=
ℎ
− 2=−1

ℎ

2XC
− u∗,=+1

ℎ
∇2
∗,=+1
ℎ

. (5.3.1)

Equation (5.2.13a) is first rewritten as

mCu + (u ·∇)u = −∇ ?̂ + 2a∇ · (∇(u) − f d + f ! (5.3.2)

where we denote f ! = j × `0N/d∗ the Lorentz force, f d = (d(2)/d∗)6eI the buoyancy term

and ?̂ = ?/d∗ + 1/2 u2 a modified pressure. We also denote

∇
(u =

1

2
(∇u + (∇u)) ).

This yields at C=+1

3u=+1
ℎ

2XC
− 2a∇ · (∇(u=+1ℎ ) =

4u=
ℎ
− u=−1

ℎ

2XC
− ∇ ?̂= − (u∗,=+1

ℎ
·∇)u∗,=+1

ℎ
− f ∗,=+1

d,ℎ
+ f ∗,=+1

!,ℎ
. (5.3.3)

The unknown variables in the right-hand side are approximated such as

2=+1ℎ = 2
∗,=+1
ℎ

with 2
∗,=+1
ℎ

= 22=
ℎ
− 2=−1

ℎ
,

u=+1ℎ = u∗,=+1
ℎ

with u∗,=+1
ℎ

= 2u=
ℎ
− u=−1

ℎ
,

N=+1
ℎ = N∗,=+1

ℎ
with N∗,=+1

ℎ
= 2N=

ℎ
− N=−1

ℎ
.
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The velocity equation is solved with a prediction-correction method, which ensures a weak
velocity divergence. This method has been first proposed by Timmermans et al. (1996), then
adapted and validated by Guermond and Shen (2004).
We now detail the time-marching algorithm. The domains where each variable is solved are
denoted Ω2, Ωu and ΩN for the variables 2, u and N, respectively. First, both the fields at C0
and C1 are initialized with the given initial condition. Then, for = > 1, at C=, the concentration
field 2=

ℎ
is solved on Ω2 using D∗,=

ℎ
and N∗,=

ℎ
. Later, 2=

ℎ
is mapped on Ωu, so that 2=

ℎ
is known

on Ωu. The velocity u=
ℎ

is determined using 2=
ℎ

and N∗,=
ℎ

. Finally, 2=
ℎ

is mapped on ΩN and the
magnetic field is updated using 2=

ℎ
. The last step is to increment C= by XC, and the same process

is realized at C=+1.
During this thesis, we have implemented this algorithm in the solver.

5.3.2 Validation of the 2-solver

For the validation of the 2-solver, we compare numerical solutions to analytical solutions. We
focus on a case without flow.
Equation (5.2.11) becomes without velocity

mC2 = �∇22. (5.3.5)

A simple solution of this equation is

2(I, C) = e−�:
2C cos(:I) (5.3.6)

where : is a constant.
We are looking for a simple test in a cylinder with a radius ' and a height H , where material
flux 6 is imposed at the top of a domain (mI2 |I=H = 6), and the flux is zero on the other borders
(m=2 = 0).
With solution (5.3.6), at I = 0, mI2 = 0 for all :. At A = ', mA2 = 0 is always verified because

the solution does not depend on A. At I = H , mI2 |I=H = −:e−�:
2C sin(:H). We impose then

the flux 6 = −:e−�:
2C sin(:H) at I = H .

For the numerical tests, we use non-dimensional variables. We consider a cylinder with a height
H = 0.5 and a radius ' = 1. The diffusion coefficient is fixed to � = 10−2. We fix : = c/(2H).
We define the relative error in !2-norm of 2

b2 =
| |2num − 2ex | |2

2ex
(5.3.7)

where 2num is the numerical solutions and 2ex the analytical one. The error is expected to vary
like O(ℎ3) + O(XC2) where ℎ is the mesh-size and XC the time-step.

We run a first series of tests where we fix XC = 10−4 and vary ℎ. The relative errors b2 are
reported in table 5.1a at two different times C = 5 · 10−3 and C = 5 · 10−2.
For both times C, we find that the error b2 varies like O(ℎ3) (see figure 5.5a).

We run a second test where we fix ℎ = 0.0125 and vary XC. The relative errors b2 are reported
in table 5.1b at C = 1. The error b2 varies like O(XC2) for large XC, and becomes constant when
XC becomes lower than a certain value. That can also be seen in figure 5.5b. For low XC, the
error is dominated by the spatial error in O(ℎ3), which explains why it becomes independent
of XC. Notice that the limit reached when XC decreases is equal to b2 when ℎ = 0.0125 in table
5.1a.
These results validate the 2-solver.
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ℎ C = 5 · 10−3 C = 5 · 10−2

0.1 5.60 · 10−6 1.60 · 10−5

0.05 1.04 · 10−6 1.84 · 10−6

0.025 1.35 · 10−7 1.67 · 10−7

0.0125 1.46 · 10−8 1.52 · 10−8

0.00625 1.34 · 10−9 1.34 · 10−9

(a)

XC C = 1

1 × 100 2.21 · 10−4

5 × 10−1 6.43 · 10−5

1 × 10−1 3.11 · 10−6

5 × 10−2 7.96 · 10−7

1 × 10−2 3.58 · 10−8

5 × 10−3 1.72 · 10−8

1 × 10−3 1.52 · 10−8

5 × 10−4 1.52 · 10−8

1 × 10−4 1.52 · 10−8

(b)

Table 5.1 – (a) Relative errors b2 for different mesh-sizes ℎ with XC = 10−4. (b) Relative errors
b2 for different time steps XC with ℎ = 0.0125.

6.2 · 10−3 2.5 · 10−2 1.0 · 10−1

h

1 · 10−10

1 · 10−8

1 · 10−6

1 · 10−4

ξ c

O(h3)

t = 5 · 10−3

t = 5 · 10−2

(a)

1.0 · 10−4 1.0 · 10−2 1.0 · 100
δt

1 · 10−8

1 · 10−7

1 · 10−6

1 · 10−5

1 · 10−4

1 · 10−3

ξ c
O(δt2)

t = 1

(b)

Figure 5.5 – (a) Order of convergence of b2 as a function of the mesh size ℎ, at different times
C = 5 · 10−3 and C = 5 · 10−2. The dashed line represents the theoretical order of convergence ℎ3.

(b) Order of convergence of b2 as a function of the time step XC at C = 1. The dashed line
represents the theoretical order of convergence C2.

5.4 Investigation of the i- and N-solvers coupled with

the 2-solver in an LMB

In this section, we investigate the coherence of our numerical results with previous studies. We
first compare the numerical results of the i-solver coupled with the 2-solver to the simulations
of Weber et al. (2019), without flow. Then, we show that the N-solver coupled with the 2-solver
give results very similar to those of the i-solver. We only run axisymmetric simulations. The
mesh is non-uniform, the mesh size ℎ varies in the range [0.00025, 0.0005] m.

The investigation is done in the same LMB setup that was used in section §4.5.3. This cell is a
simplification of the setup studied by Weber et al. (2019), which is inspired from an experimental
LMB setup, and shown on figure 5.6a. The setup that we have used is given in figure 5.6b. In
the simplifications, we consider a cylindrical foam instead of a spherical foam, and we do not
model the vessel made in tantalum (light grey). We only use copper current collectors. We will
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show that this simplified setup yields results similar to those of the original setup.

(a) (b)

Figure 5.6 – (a) Scheme of the LMB setup used in Weber et al. (2019). (b) Scheme of the
simplified LMB setup that we use in the simulations. The dimensions are in mm.

5.4.1 Comparison of the i-solver coupled with the 2-solver to the
results of Weber et al. (2019)

In this section, we compare the numerical results of the i-solver coupled with the 2-solver to
the study of Weber et al. (2019). We use the simplified setup of figure 5.6b. We consider a
Li| |Bi LMB as in Weber et al. (2019), where the material properties are modified with respect
to Li| |Pb properties. We take for the alloy the diffusion coefficient � = 2 · 10−8 m2s−1 and
the electrical conductivity f = 7.2 · 105 Sm−1. The electrical conductivity of the electrolyte
is fel = 271 Sm−1 (Weber et al., 2019). The density of the alloy can be computed from the
concentration of lithium 2 with the law (Wax et al., 2011):

d(2) = −1.3 · 10−6 22 − 0.0382 2 + 9780.

Using this law, we can deduce the relation between the molar fraction of lithium G and the
concentration 2:

G(2) = 2MBi

−1.3 · 10−6 22 + 2 (MBi −MLi − 0.0382) + 9780
,

where MBi = 209.0 kg mol−1.
The equilibrium potential, required to compute the jump in potential, can be computed such
as (Gasior et al., 1994)

Φ(G) = 0.19

G + 0.41
+ 0.5.

We run a simulation during the discharge phase using the i-solver described in section §5.2.1,
the 2-solver, and without flow. The simulation starts with an homogeneous molar fraction of
Li G(C = 0) = 0.236.

In figure 5.7a, we show snapshots of the molar fraction of Li G at different times (1, 5 and 10
min). The molar fraction is inhomogeneous at the alloy-electrolyte interface. This is explained
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by the fact that the foam has a smaller radius than the alloy, which is different from the
results of section §2.2. Figure 5.7b shows the electrical potential i as a function of I on the
axis. The jump at the alloy-electrolyte interface is clearly visible and is around −0.8 V. The
potential is almost constant in the current collectors, in the foam and in the alloy, and only
varies significantly in the electrolyte. This can be also seen on figure 5.7c, where the electrical
potential field is represented at C = 10 min. This confirms that the ohmic losses in the electrolyte
dominate the losses in the other phases. The potential gradients are also the most significant
in the electrolyte.
Even with the simplified setup, our results are substantially similar to the results of Weber
et al. (2019).

(a)
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Figure 5.7 – Investigation of the i-solver in axisymmetric computation. (a) Snapshots of the
molar fraction of Li in the alloy, G, at different times: 1 min, 5 min, 10 min. (b) Potential on

the axis vs I at C = 1 s. (c) Electrical potential field at C = 1 s in the total domain. Black
lines are contours of the field.
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5.4.2 Validation of the N-solver coupled with the 2-solver

In this section, we show that the N-solver and the i-solver coupled with the 2-solver give very
similar results, which allows us to validate the N-solver. We compare numerical solutions of
the N-solver with the i-solver that we use in the last section. We use the same LMB setup,
but consider this time a Li| |Pb battery. This is the LMB that we will use for some of the
next studies in this chapter. We solve the electrical potential and magnetic field formulations
described in section §5.2, without flow, in a discharge regime.

In figure 5.8a are represented snapshots of the molar fraction of Li G in the alloy computed
with the two solvers at C = 500 s, in a meridian plane. The molar fraction fields obtained with
both formulations are identical. Notice that the diffusion process is really similar in this Li| |Pb
battery to the diffusion in the Li| |Bi battery of the previous section. Figure 5.8b shows the
streamlines of the electrical current j, colored by the amplitude of 9I, at the same time, C = 500
s. The current density j is computed using j = −f∇i in the i-solver and using j = ∇ × N in
the N-solver. The streamlines are also very similar in both cases.

We then compare the computation of the electrical potential of the cell. In the i-solver, we
simply compute the difference between the potentials at the top and at the bottom of the
cell. In the N-solver, we use the formula (5.2.16). We plot in figure 5.8c �cell as a function of
time using both solvers. The cell potential decreases with time, as expected during a discharge
phase. Both solvers yields identical results.
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Figure 5.8 – Validation of the N-solver in axisymmetric computation.(a) Snapshots of the
molar fraction G at C = 500 s in a meridian plane with both solvers: (left) N-solver, (right)
i-solver. (b) Streamlines of the current density colored by the amplitude of 9I in a meridian

plane with both solvers: (left) N-solver, (right) i-solver. (c) Potential �cell vs time using both
solvers.

5.4.3 Conclusion

This study allowed us to show that the i-solver is in good agreement with the study of Weber
et al. (2019). We have seen that the ohmic losses and the potential gradients are dominant
in the electrolyte. We have then validated the N-solver, by comparing the numerical results
with those of the i-solver. In the following, we will use the N-solver to conduct the numerical
studies.
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5.5 Numerical investigation of the effect of the jump in

potential on the alloy composition

We investigate the effect of the jump coupling on the alloy composition in a Li| |Pb battery,
using the N-solver. In a first part, we study this effect in the small LMB setup that we have
used in the previous section. Then, we conduct the study in a larger setup so that the effects
are more visible. In this work, we compare simulations with and without jump in order to
analyze more precisely the influence of the jump coupling in different configurations.

5.5.1 Simulations in a small setup

We conduct the first study in the setup represented in figure 5.6b. The mesh is non-uniform,
the mesh size ℎ varies in the range [0.00025, 0.0005] m.
We first run two simulations without flow in a discharging cell. We study a pure diffusive
case without jump and a case with the jump coupling. We fix � = 3.3 A. The molar fraction
distribution at C = 500 s is represented in figure 5.9 for both cases. In the pure diffusive case,
the molar fraction decreases gradually from the axis to the borders, due to the shape of the
foam, the molar fraction at the alloy-electrolyte interface is inhomogeneous. When the jump
coupling is added, the molar fraction at the alloy-electrolyte interface is slightly homogenized
and the maximal molar fraction is reduced. The jump coupling homogenizes the alloy in the
radial direction, as expected. This can be also seen in figure 5.11 looking at the red and green
curves, where we plot the surface molar fraction in the alloy as a function of the radius A. In
the study of section §5.4.1, the electrical potential distribution in the battery has shown that
the electrical potential is almost constant in the alloy, and the potential gradients are dominant
in the electrolyte. Therefore, a current redistribution due to the jump coupling, which spatially
depends on the molar fraction, occurs in the electrolyte, and the radial current increases at the
alloy-electrolyte interface. The vertical current then decreases, and the material flux is more
evenly distributed at this interface. The alloy is then more homogeneous in the radial direction.

We run a second simulation where we consider all the effects, i.e. the flow and the solutal
buoyancy, as well as the jump coupling. Figure 5.10 shows a snapshot of the molar fraction
field in the alloy at C = 500 s. We do not observe EVF effects as expected, since the flow is
crushed by the solutal buoyancy. The alloy is almost homogeneous in the radial direction due
to buoyancy, and the maximal molar fraction is also reduced compared to the cases with no
buoyancy. This can be also seen on figure 5.11 (blue curve).

Figure 5.9 – � = 3.3 A. Snapshots of the molar fraction field in the alloy at C = 500 s in the
pure diffusive case and in the case with the jump coupling.

This study shows that the jump coupling homogenizes the molar fraction field in the alloy.
When the solutal buoyancy is added, the alloy is almost homogeneous in the radial direction.
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Figure 5.10 – � = 3.3 A. Snapshots of the molar fraction field in the alloy at C = 500 s with all
the effects (jump, flow and buoyancy).
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Figure 5.11 – Surface molar fraction G |Σ as a function of the radius at C = 500 s.

However, these effects are quite limited. The differences between the studied cases are not
significant. This is why we have chosen to conduct another study in a larger setup, where the
effects are more visible.

5.5.2 Simulations in a larger setup: with or without jump

We run the second study in a larger setup, with dimensions given in figure 5.12. This setup
has been chosen so that the dimensions of the alloy and the electrolyte are equal to the ones
in Herreman et al. (2020). The goal of this work is to analyze more precisely the impact of the
jump coupling on the alloy composition. For this purpose, we compare simulations with and
without jump coupling. We focus on four cases:

• a pure diffusive case (no flow)
• a case with EVF (no buoyancy)
• a case with buoyancy and EVF
• a case with a swirling EVF and buoyancy.

We fix � = 10 A. We focus on discharging cells. The mesh is non-uniform, the mesh size ℎ
varies in the range [0.0005, 0.001] m.

In the first case, the flow is set to zero, u = 0. Thus, only diffusion transports the lithium in the
alloy. Figure 5.13 shows a comparison of the alloy composition and current density at C = 500s,
with or without jump coupling. We can see in figure 5.13a that the molar fraction distribution
in the alloy is quite similar without (top) and with (bottom) the jump coupling. Due to a slow
diffusion, lithium accumulates near the alloy-electrolyte interface. The jump coupling slightly
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Figure 5.12 – Scheme of the larger setup. The dimensions are in cm.

homogenizes the surface of the alloy, compared to the case without jump coupling, and reduces
the maximal molar fraction G. This can be also seen in figure 5.13c, where we plot the molar
fraction at the alloy-electrolyte interface G |Σ as a function of the radius A. Figure 5.13b shows
that the potential jump locally deflects the current density lines near the interface. This can
be more clearly seen in figure 5.13d where we plot 9A and 9I as a function of the radius at
the alloy-electrolyte interface. We can notice that the current distribution is slightly modified,
and that 9I is more homogeneous with the jump coupling, which is in concordance with the
homogenization of the Li-flux observed in figure 5.13a.

In the second case, we add the flow in the alloy, i.e. we set u ≠ 0, but solutal buoyancy is neg-
lected, i.e. d(2) = d∗. The flow driven is a non-swirling electrovortex flow, D\ = 0. Figure 5.14
shows a comparison of the alloy composition and current density at C = 500s, with or without
jump coupling. We can see in figure 5.14a that the molar fraction distribution in the alloy is
clearly impacted by the flow (streamlines in black). At the top of the alloy, the flow transports
the lithium from the lateral sides to the axis. Then, lithium is conducted to the bottom of the
cell and then back to the sides. In this case, the jump coupling has a significant impact: we
can notice that the surface is much more homogeneous with the jump coupling and that the
maximal molar fraction is reduced from 0.46 to 0.37. The flow intensity is also impacted: the
EVF is slightly less intense with jump coupling (| |u | |max = 2.7× 10−4 m s−1) than without jump
coupling (| |u | |max = 3.2×10−4 m s−1). Figure 5.14c shows that the jump coupling affects mostly
the zone around the axis. Off-axis, the alloy composition remains quite similar in both cases.
The same is observable for the currents. The current lines (figure 5.14b) are deflected close to
the axis in the case with jump coupling, and the current densities 9A and 9I differ significantly
close to the axis.
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Figure 5.13 – �= 10 A. Molar fraction in the alloy and current density in pure diffusive case,
at C = 500 s, with or without jump coupling. (a) Snapshots of the molar fraction of lithium in

the alloy G. (b) Streamlines of the current density in the cell. (c) Molar fraction G |Σ at the
alloy-electrolyte interface as a function of radius A.(d) Current density 9A (top) and 9I

(bottom) at the alloy-electrolyte interface as a function of radius A.
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Figure 5.14 – �= 10 A. Molar fraction in the alloy and current density in the case with EVF
and no buoyancy, at C = 500 s, with or without jump coupling. (a) Snapshots of the molar

fraction of lithium in the alloy G. (b) Streamlines of the current density in the cell. (c) Molar
fraction G |Σ at the alloy-electrolyte interface as a function of radius A. (d) Current density 9A

(top) and 9I (bottom) at the alloy-electrolyte interface as a function of radius A.

124



5.5. NUMERICAL INVESTIGATION OF THE EFFECT OF THE JUMP IN POTENTIAL
ON THE ALLOY COMPOSITION

In the third case, we consider the EVF and solutal buoyancy. We retrieve the same results
as Herreman et al. (2020): the light stably stratified layer which forms at the top of the al-
loy cannot be pierced by EVF (see figure 5.15a, at C = 500 s). EVF is still present but it is
compressed at the bottom of the alloy and becomes really weak (| |u | |max = 2.3 × 10−5 m s−1).
Solutal buoyancy prevents enhanced mixing in this case. At the alloy-electrolyte interface, the
alloy is quite homogeneous, G |Σ is quasi uniform. Thus, the potential jump coupling has very
little effect. Since concentration gradients are low, we have ∇Φ(G |Σ) ≈ 0, so the gradient of
the potential jump in the interface condition (5.2.10) is almost zero. Therefore, it is normal
that simulations with or without jump yield similar results. This is effectively what we obtain,
current distribution (figures 5.15b and 5.15d) and molar fraction distribution (figures 5.15a and
5.15c) are almost identical in both cases.

In the fourth case, we consider a swirling EVF coupled with solutal buoyancy. This swirling
EVF is driven by an external magnetic field fixed at � = 2 · 10−3 T. We retrieve the same results
as those of Herreman et al. (2021): this quite weak magnetic field induces a sufficiently intense
flow to pierce the stably stratified layer (see figure 5.16a, at C = 260 s). The velocity field can be
seen in figure 5.17a. At the alloy-electrolyte interface, the alloy is quite homogeneous, and the
jump has then no real impact on the molar fraction distribution (figure 5.16c). Current lines
(figure 5.16b) and interfacial current densities (figure 5.16d) remain quite similar in both cases.
The azimuthal velocity D\ , which is the dominant component of the velocity, is slightly reduced
at the alloy-electrolyte interface in the case with the jump, but its effect is limited (figure 5.17b).

To conclude, the influence of the jump coupling on the alloy composition is quite moderate, since
the surface of the alloy is much homogenized by solutal buoyancy effects which are dominant.
The flow driven by the swirling EVF, which can counteract the solutal buoyancy, is also little
affected by the jump coupling.
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Figure 5.15 – �= 10 A. Molar fraction in the alloy and current density in the case with EVF
and buoyancy, at C = 500 s, with or without jump coupling. (a) Snapshots of the molar

fraction of lithium in the alloy G. (b) Streamlines of the current density in the cell. (c) Molar
fraction G |Σ at the alloy-electrolyte interface as a function of radius A. (d) Current density 9A

(top) and 9I (bottom) at the alloy-electrolyte interface as a function of radius A.
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Figure 5.16 – �= 10 A. Molar fraction in the alloy, current density in the case with swirling
EVF and buoyancy, at C = 260 s, with or without jump coupling. (a) Snapshots of the molar
fraction of lithium in the alloy G. (b) Streamlines of the current density in the cell. (c) Molar
fraction G |Σ at the alloy-electrolyte interface as a function of radius A. (d) Current density 9A

(top) and 9I (bottom) at the alloy-electrolyte interface as a function of radius A.
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Figure 5.17 – Velocity in the alloy in the case with swirling EVF and buoyancy, at C = 260 s,
with or without jump coupling. (a) Snapshots of the velocity magnitude in the alloy. (b)

Azimuthal velocity D\ at the alloy-electrolyte interface as a function of radius A.

5.6 A self-consistent potential computation

In this section, we are interested in the computation of the cell potential �cell. In section §2.2
in chapter 2, we have computed the cell potential from the surface averaged molar fraction.
We investigate how much this computation differs from a more consistent computation. We
examine also how the ohmic losses and the mass transfer overpotentials are influenced by the
jump coupling. We focus on the simulations of the previous section in the large LMB setup
with non-swirling EVF and solutal buoyancy effects present.

We define �cell, [mt and [Ω the cell potential, the mass transfer overpotential and the ohmic
losses, respectively, computed with the formulas given by equations (5.2.16) and (5.2.17), in
the simulation with the jump coupling. We recall the formulas here:

�cell ' ijump |A=0 − [Ω, [Ω =

∫
electrolyte

− j

f8
· eI3I,

[mt = |�cell − �cell,eq + [Ω |.
This potential computation is the most self-consistent.
We define [̃Ω and �̃cell the ohmic losses and the cell potential, respectively, computed from
simulations without jump coupling, i.e.:

�̃cell ' Φ(G |Σ,A=0) − [̃Ω, [̃Ω =

∫
electrolyte

− j

f8
· eI3I,

[̃mt = |�cell − �cell,eq + [̃Ω |. (5.6.2a)

In section §2.2, the cell potential was computed from the surface averaged molar fraction. We
define �cell and [mt such as

�cell = Φ(〈G〉Σ) −
∫

electrolyte
− j

f8
· eI3I, [mt = |�cell − �cell,eq + [̃Ω | (5.6.3)

128



5.6. A SELF-CONSISTENT POTENTIAL COMPUTATION

that we apply to the simulations without jump coupling (the ohmic losses are then also equal
to [̃Ω, they are not modified by operations on the molar fraction).

We present in figure 5.18 the three mass transfer overpotentials and cell potentials previously
defined. We notice that the jump coupling modifies very little the mass transfer overpotential
- [̃mt and [mt are almost superposed, which is expected since the alloy composition is barely
affected by this jump. However, the computation from the surface averaged molar fraction [mt

is around 20% lower than the direct computation [mt, which is a significant difference. When
regarding the cell potential, the results are a bit different. �cell and �cell differ only by around
3%. But we notice that �cell and �̃cell are not superposed and differ by around 4%. Since the
mass transfer overpotential is not modified by the jump coupling, this means that the ohmic
losses in the electrolyte are impacted by the jump coupling.
Figure 5.19 shows the ohmic losses in the electrolyte [Ω and [̃Ω as a function of time. We no-
tice that [̃Ω remains constant with time, unlike [Ω which decreases with time until reaching a
constant. Without jump coupling, the current in the electrolyte is constant with time, and the
ohmic losses do not vary. But the current distribution in the electrolyte is modified during time
by the jump coupling, which explains the time variation observed. Moreover, at large times,
[Ω is 3% lower than [̃Ω. Then the jump coupling reduces the ohmic losses. This can be easily
explained: the jump coupling increases the radial current in the electrolyte, and decreases the
vertical current 9I. The integral on the axis used to compute the ohmic losses is then reduced.

Therefore, the computation from a surface averaged molar fraction under-estimates the mass
transfer overpotential. Even if the difference is quite weak on the cell potential, this approx-
imation should be avoided. Moreover, the ohmic losses are slightly over-estimated when the
jump coupling is neglected in the simulations. Hence, a self-consistent computation is the most
accurate.
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Figure 5.18 – (a) Overpotentials [mt, [̃mt and [mt vs time. (b) Potentials �cell, �̃cell and �cell

vs time.
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Figure 5.19 – Ohmic losses [Ω and [̃Ω vs time.
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5.7 Conclusion

In this chapter, we have studied the influence of a jump in potential on the alloy composition
in a discharging LMB.
We have first implemented in SFEMaNS a 2-solver for the concentration, which was not present,
and validated this development. This has allowed us to extend our i-solver and N-solver by
adding the concentration variable. Our numerical results are substantially similar to those of
Weber et al. (2019).

Using the N-solver, we have conducted a study in a small LMB setup. We have shown that the
jump coupling homogenizes the alloy in the radial direction, compared to the case with pure
diffusion only. Solutal buoyancy homogenizes even more the alloy in the radial direction. In
this setup, all of these effects have a a quite limited impact on the alloy composition.

In the larger LMB setup, we have shown that, in realistic situations which consider the solutal
buoyancy, the influence of the jump coupling is quite moderate, since the alloy surface is already
much homogenized by the solutal buoyancy. Only slight differences are observed between
simulations with and without jump coupling. Hence, the results from previous studies of chapter
2 and Herreman et al. (2020, 2021) which have ignored the jump coupling, remain more or less
valid. However, our simulations have confirmed that flow motion and alloy composition are
significantly impacted by buoyancy. This phenomenon cannot be ignored in LMBs models.
Furthermore, we have compared two ways of computing the cell potential: a computation from
the averaged molar fraction, used in chapter 2, and a direct computation from its definition
- difference of the potentials at the top and at the bottom of the cell. The post-processed
computation yields major errors for the mass transfer overpotential, even though the total cell
potential remains quite accurate. Thus, this post-processed computation should be avoided. In
addition, the jump coupling impacts very moderately the mass transfer overpotential since its
effect on the alloy composition is limited. However, we observe differences in the ohmic losses,
since the jump influences the current distribution in the electrolyte. Therefore, it is more
accurate to consider the potential jump in order to not over-estimate the ohmic overpotential.
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Chapter 6

Electrocapillary flows

6.1 Introduction

Surface tension represents the force at a surface of a liquid created by molecular interactions.
A variation of surface tension along a surface drives a Marangoni flow, directed from the zones
of lower surface tension to the zones of higher surface tension (see figure 6.1 for a scheme of
the situation). The surface tension can change with temperature, concentration, potential, and
other parameters. In LMBs we can expect such changes, therefore Marangoni flows are likely
in LMBs.

Figure 6.1 – Scheme representing a Marangoni flow due to spatial gradients of surface tension
at a surface.

Thermal Marangoni flows (or thermocapillary flows) have already been investigated in LMBs.
Köllner et al. (2017) have numerically considered thermal convection and thermocapillary flow
in a Li| |Pb-Bi LMB. Joule heating during operation causes local changes in temperature. At
the interfaces, thermocapillary flow has been observed in these simulations.
Solutal Marangoni flows are also likely in LMBs, because the concentration of the alloy var-
ies along the interface with the electrolyte. Numerical and experimental studies on solutal
Marangoni flow have been realized in two-layer setups (Köllner et al. (2013, 2015)), but never
in LMBs. Kelley and Weier (2018) attempted to estimate an order of magnitude of the variation
of the surface tension with the alloy composition, but most often this dependency is unknown
in LMBs.
Electrocapillary flows are also possible in LMBs. The surface tension varies with the jump in
potential ijump at an interface between two conductive phases, a phenomenon that has been
discovered by Lippmann (1873). This phenomenon is well-known in the context of the elec-
trowetting of droplets. A liquid and conductive droplet is placed on an insulating layer, which
separates the droplet from a solid conductor. When an electrical tension is applied between
the droplet and the solid, the surface tension of the droplet is modified and so its shape. If the
potential jump ijump varies spatially along an interface, so will the surface tension, and a so-
called electrocapillary flow will be driven. Dreyer et al. (2018) have proposed a thermodynamic
model for the variation of surface tension with a potential jump at the interface between a
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liquid metal and an aqueous electrolyte. Their model includes the effect of the electrochemical
double layer. In LMBs, we have seen that the jump in potential at the alloy-electrolyte interface
depends on the molar fraction of the alloy and varies along this interface. Therefore, it is not
excluded that variations in potential jump drive electrocapillary flows. This type of flow has
never been investigated in LMBs.

In this chapter, we are interested in studying these flows structure and their intensity. Are
electrocapillary flows able to mix the alloy? How are they affected by solutal buoyancy? A
difficulty here is that the dependency of the alloy-electrolyte surface tension on the potential
jump is not known. Dreyer et al. (2018) model chemical reactions and the thermodynamic
state of the double layer, but this model requires a deep understanding of the electrochemical
reactions and the knowledge of many material properties. We will use a simplified heuristic
model for the dependency of the surface tension on the potential jump.
In this exploratory chapter, we focus on flows driven by electrocapillarity near the alloy-
electrolyte interface. We present first our estimation of the surface tension variation with
the jump in potential. Then, we present the model used, and finally some first results. This
study is not finalized yet and will be continued in the future.

6.2 Surface tension law

Experimental studies have been conducted to analyze how the surface tension of the Li-Pb alloy
varies with the temperature and the molar fraction of lithium in the alloy (Alchagirov et al.
(2016)). However, up to our knowledge, no work has been realized to determine the variation
of the surface tension of a Li-Pb alloy with the potential jump. We attempt to estimate this
here.
The variation of surface tension W with the difference in potential ijump at an interface Σ is
given by the Lippmann equation (Bard and Faulkner, 2001):

mW

mijump
= &B . (6.2.1)

Here &B is the surface charge of the interface.
Our first idea was to try to determine &B. The Maxwell-Gauss equation gives ∇ · J = & where
J = n0f

−1 j is the displacement vector and & the volume charge. We denote J1 and J2 the
displacement vectors at each side of the interface. On Σ, the Maxwell-Gauss equation becomes
J1 · n1 + J2 · n2 = &B, i.e. �1,I − �2,I = &B.
This means that

&B = n0

(
91,I

f1
− 92,I
f2

)
However, 9I is continuous at the interface Σ, thus 91,I = 92,I. We denote 9B the value of the
vertical current at the interface. This yields

&B = n0 9B

(
1

f1
− 1

f2

)
(6.2.2)

Let us estimate numerically &B. In the LMB setup of figure 5.12 we have n0 = 8.8 · 10−12F m−1,
f1 = 187 S m−1, f2 = 7.39 · 105 S m−1. If we take the current � = 10 A, this yields the equivalent
current density � = 2000 A m−2 - with ' = 4 cm - and this leads to &B ' 10−10 C m−2. This
value is really low, and would mean that the variation of the surface tension with the potential
is negligible. However, this model is wrong, as it ignores the presence of the electrochemical
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double layer.

The work of Dreyer et al. (2018) contains a much more elaborate description of this electroca-
pillarity phenomena. They provide laws for the variation of W with ijump for several parameters
and several electrolyte types. All the proposed laws follow a similar parabolic trend. We sup-
pose here that this trend also applies to our case of a Li-Pb alloy-electrolyte interface. This
parabolic law depends on the double layer capacity � which is a function of the potential,

� =
3&B

3ijump
:

W = W0 − � (ijump − ijump,0)2. (6.2.3)

Here we will suppose �, W0 and ijump,0 constant. Exact numerical values are unknown, so we
choose to vary these parameters in acceptable intervals.

γ

ϕjump
ϕjump,0

Figure 6.2 – Representations of the variation of the surface tension W with the difference of
potential ijump.

6.3 Model and numerics

6.3.1 Equations and boundary conditions

We consider the same large LMB setup as in figure 5.12. In our model, the potential jump
appears at the alloy-electrolyte interface. We can use the same magnetic field formulation
as in section §5.2 of chapter 5 to solve this jump. The main novelty will be that we add a
hydrodynamical boundary condition that captures the electrocapillarity effect.
Let us recall the model. The magnetic field N verifies in all domains the equations

∇ ×
(
∇ × N

f8

)
= 0, (6.3.1a)

∇ · N = 0 (6.3.1b)

where f8 are the electrical conductivities of the different domains. The magnetic field boundary
conditions are:

�\ |I=Hcell
=

�

2c'2
F

A, (6.3.2a)

�\ |A>'F =
�

2cA
, (6.3.2b)

(∇ × N) × n|I=0 = 0 (6.3.2c)
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and �A = �I = 0 on all borders. The potential jump at the interface is computed as:(
∇ × N

f

)
jump

× n = −∇) (ijump) × n = −∇(Φ(G |Σ)) × n. (6.3.3)

In the alloy, the concentration 2 is solution of the advection-diffusion equation

mC2 + u ·∇2 = �∇22. (6.3.4)

The material flux is equal to

�mI2 |Σ = − 9I

=4�
(6.3.5)

at the alloy-electrolyte interface and is zero at the other boundaries of the alloy.
As before, we do not solve the flow in the electrolyte. The velocity u in the alloy verifies

d∗(mCu + (u ·∇)u) = −∇? − d(2)6eI + ∇ · (d∗a(∇D + (∇D)) ) + j × b (6.3.6a)

∇ · u = 0 (6.3.6b)

with ? the pressure, 6 the gravity, `0 the magnetic permeability of vacuum, b the magnetic
field such as b = `0N and

d(2) = d∗ − jMLi(2 − 2∗). (6.3.7)

On the solid boundaries, we use a no-slip boundary condition. At the alloy-electrolyte interface,
we still use a free boundary condition but this time, this condition needs to include Marangoni
effects:

d∗a mIu) = ∇)W. (6.3.8)

Here u) is the tangential velocity at the interface and

W = W0 − � (ijump − ijump,0)2 (6.3.9)

is used to model te influence of surface tension on the flow. Considering equation (6.3.8), we
do not need to know W0, because only the tangential gradient of W influences the velocity. We
estimate � between 0.1 and 1 F m−2 taking inspiration from the typical values calculated by
Dreyer et al. (2018). This parameter is however unsure and will be varied in our study. We do
not know ijump,0 either, so we take ijump,0 = ijump(C = 0). Notice that, with this choice, the
surface tension W can only decrease.
The simulations start with the eutectic alloy, 2 = 2∗ everywhere and u = 0.

The surface tension must remain positive, i.e. � (ijump − ijump,0)2 should remain lower than
W0. Typically, W0 = O(0.1)Nm−1. The maximal molar fraction G that we usually reach in our
simulations is around 0.3. With � = 1 F m−2, we estimate � (ijump − ijump,0)2 ∼ 0.006 Nm−1,
which is much lower than W0.

Normally, ∇)W drives a flow in the electrolyte too. Modeling this flow requires to use a mul-
tiphase solver, or a hydrodynamical model with layers that can transfer tangential stress. This
is not present in SFEMaNS and it is complex to develop. We then ignore the flow in the
electrolyte.

In the numerical development, we have implemented the condition (6.3.8) in SFEMaNS.
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6.3.2 Expected Marangoni flow

When the battery is in discharge, the incoming mass flux of lithium is higher near the center
than on the sides, due to the thinner width of the foam. Gradients of molar fraction at the
alloy-electrolyte interface create gradients of surface tension. Considering the law that we have
chosen for the variation of W (equation 6.3.9), the surface tension can only decrease. Therefore,
W decreases at the center of the interface. Gradients of surface tension are directed radially
from the axis to the sides, and an electrocapillary flow is driven radially outwards. Figure 6.3
shows a sketch of the process.

Figure 6.3 – Scheme showing how a Marangoni flow is driven by electrocapillarity effects in
the alloy of our LMB setup.

6.4 Effect of electrocapillary flows on the alloy compos-

ition

We fix �= 10 A. We vary � in our simulations in the range [0.1,1] F m−2, and analyze its
influence on the flow and on the alloy composition. We study two cases: with and without
solutal buoyancy. All simulations are axisymmetric.

6.4.1 Without buoyancy

We first ignore the solutal buoyancy, i.e. we set d(2) = d∗. In order to focus on electrocapillary
flows, we deactivate the Lorentz force j × b, and hence the EVF.
The mesh is non-uniform, the mesh size ℎ varies in the range [0.000125, 0.001] m.

Figure 6.4 shows the space-averaged velocity D as a function of time for different �. We observe
that, for each capacity �, the velocity increases with time until reaching a maximum at C = C2,
and suddenly decreases to reach an almost constant value slightly above zero. The time C2 is
shorter as � increases. We also notice that the maximal velocity mostly increases with � up
to � = 0.8.

In order to understand better what happens, we plot on figure 6.5(a-c) snapshots of the molar
fraction G and of the velocity magnitude in the alloy at C = 100, 600, 1100 s, for � = 1 F m−2

- these instants correspond to the black dots of figure 6.4. In figure 6.5d, we also show the
molar fraction G |Σ at the surface of the alloy as a function of the radius at the same instants.
At C = 100 s, which corresponds to the part where the velocity increases with time, we observe
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Figure 6.4 – Space-averaged velocity D as a function of time for different �. The black dots
represent the times for the snapshots of figure 6.5.

that the flow is driven radially outwards at the alloy-electrolyte interface. At the edges, it is
driven downwards and loops back towards the axis at the bottom. This is consistent with our
expectations (figure 6.3). A small recirculation zone can be observed at the bottom of the alloy.
The flow velocity is the largest close to the interface. At C = 600 s, the velocity is maximal. The
recirculation zone is larger than at C=100 s, and influences the molar fraction. At C = 1100 s,
which corresponds to the part where the velocity is really low, the maximal velocity is drastically
reduced and the recirculation zone has disappeared. We can notice that the molar fraction at
the surface of the alloy G |Σ is really homogeneous, which was not the case for the instants
before. This can be clearly seen in figure 6.5d. The quantity G |Σ homogenizes with time. These
observations suggest that the electrocapillary flow driven by the local differences in surface
tension homogenizes the surface of the alloy. As this surface becomes more homogeneous, the
surface tension becomes almost constant along the surface, i.e. ∇)W ' 0. Since this gradient
drives the flow, the velocity decreases. Electrocapillary flow has therefore a natural tendency
to cancel itself.
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Figure 6.5 – (a,b,c) Snapshots of the molar fraction G (top) and of the velocity magnitude
| |u | | (bottom) at different times. (d) Molar fraction at the alloy-electrolyte interface G |Σ as a

function of the radius A, at different times.

6.4.2 With buoyancy

We run the same simulations but with the solutal buoyancy included. We still deactivate the
EVF. Therefore, we do not consider the EVF in these series of simulation, i.e. we ignore the
Lorentz force j × b.
The mesh is non-uniform, the mesh size ℎ varies in the range [0.000075, 0.001] m.

Figure 6.6 shows the space-averaged velocity D as a function of time for different �. We ob-
serve for each � a peak in the velocity at short times, and then a few oscillations until the
flow reaches a constant value. The higher �, the higher the velocity. However, in the late
regime, the velocity values have the same order of magnitude, between 0.08 and 0.17 mm s−1,
to be compared with figure 6.4. The flow’s intensity is much lower here than in the simulations
without buoyancy. Solutal buoyancy significantly reduces the flow.

We plot on figure 6.7 snapshots of the molar fraction G and of the velocity magnitude in the
alloy at C = 10, 100, 600 s, for � = 1 F m−2 - these instants correspond to the black dots of
figure 6.6. We show also the molar fraction G |Σ at the surface of the alloy as a function of the
radius at the same instants. At C = 10 s, which corresponds to the first peak in velocity, the
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Figure 6.6 – Space-averaged velocity D as a function of time for different �. The black points
represent the times for the snapshots of figure 6.7.

electrocapillary flow extends into the alloy and the maximal velocity is equal to 6.49 mm s−1.
At C = 100 s, i.e. just after the last oscillation in figure 6.6, the flow structure is drastically
modified: it is localized in a thin layer just below the alloy-electrolyte interface. The maximal
velocity is also much reduced. At C = 600 s, the flow is in a stationary state quite similar to
that of C = 100 s. The surface molar fraction G |Σ is significantly more homogeneous.
The localization of the flow in a thin layer can be explained as follows. The flow driven at the
alloy-electrolyte interface is directed radially from the center to the edges, and is then driven
downwards at the edges, like in the case with no buoyancy. However, as the fluid also becomes
lighter at the top, the flow then needs to transport light fluid parcels into the heavier bulk. In
these simulations, the flow is not intense enough anymore to drive the lighter fluid far down
into the bulk. Instead, the lighter fluid goes back radially towards the center. The zone where
the flow can mix the alloy is then restricted to a thin layer. The size of this zone depends on
the flow intensity. Unlike the EVF, the electrocapillary flow is localized near the interface, and
not in the bulk.

We now investigate the impact of electrocapillary flows on the mixing of the alloy phase. For
this purpose, we plot on figure 6.8 the cell potential and the mass transfer overpotential as a
function of time. We compare the case without flow, i.e. with the pure diffusion (dashed lines)
to two cases with electrocapillary flows, with the two extreme values of � used for the studies,
� = 0.1 F m−2 and � = 1 F m−2. With the lowest �, the drop in the cell potential is limited
and the mass transfer overpotential is slightly reduced. With the highest �, the mixing seems
more effective.

We have conducted three-dimensional simulations for the studied cases. The velocity mag-
nitudes are quite low in these cases and the flow remains axisymmetric (data not shown).
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Figure 6.7 – (a,b,c) Snapshots of the molar fraction G (top) and of the velocity magnitude
| |u | | (bottom) at different times. (d) Molar fraction at the alloy-electrolyte interface G |Σ as a

function of the radius A, at different times.

With buoyancy and with EVF

We have seen in the previous chapters that solutal buoyancy has a very significant impact on
the EVF. We have run a simulation taking into account the EVF and the electrocapillarity. No
visible differences are observed compared to a case without EVF. This result is expected since
solutal buoyancy significantly reduces the EVF intensity, which is compressed at the bottom
of the alloy. The conclusions of the previous sections are not modified if the Lorentz force is
activated.
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Figure 6.8 – Comparison between simulations with and without electrocapillary flow, with
� = 1 F m−2 and � = 0.1 F m−2. (a) Cell potential �cell vs time. (b) Overpotential [mt vs time.

6.5 Conclusion

The jump in potential at the alloy-electrolyte interface modifies locally the surface tension
at this interface giving rise to a Marangoni effect that drives electrocapillary flows. We have
investigated how these flows may look like and how they impact the alloy composition using
axisymmetric simulations.
We have estimated the dependency of the surface tension W on the jump in potential as

W = W0 − � (ijump − ijump,0)2 (6.5.1)

and implemented this law in our numerical model. We have studied how the flow varies with
changing �. Overall, the intensity of the flow increases with �. If we ignore solutal buoyancy,
the electrocapillary flow is significantly contributing to the homogenization of the alloy. With
solutal buoyancy, the flow is restricted to a thin layer and is less effective in the mixing process.
In the future, it would be interesting to try to determine more precisely the law which connects
the surface tension with the jump in potential, and also to theoretically estimate the flow’s
velocity and the height of the mixing layer in the case with buoyancy as a function of relevant
parameters. In our model, we have neglected the flow in the electrolyte, which could significantly
influence the flow in the alloy. It would be important to consider this flow in the future.
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Chapter 7

Conclusion and Perspectives

Liquid metal batteries (LMBs) are a promising solution for large-scale and cheap energy storage
and we need models to estimate the cell potential during operation. This potential depends on
the alloy composition that is changing in time and space and is affected by diffusion and flows.
Numerical simulations are essential to better understand battery interiors during operation,
but they require accurate models and knowledge of material parameters.

During this PhD-thesis, we have numerically modeled magnetohydrodynamical flows and mass
transport that occur inside liquid metal batteries. Our understanding of this complex, mul-
tiphysical system is still strongly evolving and so are the numerical models that can describe
them. We have had to implement new algorithms in the SFEMaNS code and this allowed us
to do several physically orientated studies. The work done during this PhD has lead to five
research articles.

7.1 Achievements

In a first generation of studies, LMBs were not modeled as electrochemical cells. The variation
of the alloy composition during operation was totally ignored and the focus was on flows inside
LMBs. Around 2018, the mixing of the alloy by means of electrovortex flows (EVF) started
to be investigated (for example by Ashour et al. (2018); Herreman et al. (2019b); Weber et al.
(2018b)) and these studies concluded that electrovortex flow could be efficient to mix the alloy.
Personnettaz et al. (2019) were first to show that mass transport in LMBs comes along with
high variations of density in the alloy. We have therefore, during my M2 internship and the
beginning of this PhD, investigated the effect of these solutal buoyancy effects, and studied how
they affect electrovortex flows (chapter 2, section §2.2). We have found that, during charge,
solutal convection is driven and dominates EVF. This convective flow mixes efficiently the alloy.
During discharge, the solutal buoyancy is stabilizing and the electrovortex flow is not intense
enough to prevent a light stratified layer from forming at the top of the alloy. A theoretical
estimation of the flow intensity needed to mix the alloy suggests that the electrovortex flow
cannot mix efficiently the alloy in realistic LMBs. This study highlighted that solutal buoyancy
is really important in LMB alloys and should never be neglected in the models. This work has
been published in Physical Review Fluids (Herreman et al., 2020).

The year later, I continued my research on LMBs in HZDR, Germany. During experiments in
unsealed LMB prototypes done in this research center, it was observed that droplets could form
near the top electrode. Experimental data also suggested possible detachment of these droplets
during operation. We have attempted to understand this droplet detachment process (chapter

143



CHAPTER 7. CONCLUSION AND PERSPECTIVES

2, section §2.3). Starting from a droplet that is already formed, we have shown that, when the
applied current is high enough, the droplet is cut by the Lorentz force and transported down
towards the bottom electrode. When the droplet is initially large enough, it is not excluded
that this can create short circuits. This work has been published in Journal of Power Sources
(Bénard et al., 2021).

During this year abroad, the team in LISN continued the investigation of mixing of the alloy,
by means of swirling electrovortex flow. This type of rotating electrovortex flow is driven when
adding a small vertical external magnetic field. In Herreman et al. (2021), it was shown that
such swirling electrovortex flow can counteract solutal buoyancy and mix the alloy efficiently.
This study also suggested the existence of a particular flow regime governed by a rather un-
known scaling law and we wanted to better understand this flow. Therefore, we have conducted
a parametric study on swirling electrovortex flows in a liquid metal (chapter 3). We have chosen
to carry out this study in a symmetrically connected setup with symmetrically opposed wire
electrodes. In this setup we expect a counter-rotating von Kármán-like flow (without impellers).
Our numerical investigation shows that axisymmetric simulations can lead to a very different
flow structure than those observed in three-dimensional simulations. The velocity magnitude
remains however of the same order as in three-dimensional simulations. We have found four
different flow regimes, an inductive regime and three-induction less regimes: inertial, boundary
layer and viscous. We retrieved scaling laws for each of these regimes from the literature. The
particular intermediate boundary layer regime that motivated this study in the first place was
not clearly visible in this symmetrical setup, even though it was very present in the simulations
of Herreman et al. (2021). The existence of this regime likely depends on the degree of turbu-
lence in the flow, since it is controlled by a laminar boundary layer. In our symmetrical setup,
the flow destabilizes much more easily than in the setup of Herreman et al. (2021), therefore
canceling this boundary layer regime. This work has been published in Journal of Fluid Mech-
anics (Bénard et al., 2022).

After this study, we focused back on LMBs. In most previous studies, the cell potential was
computed in post-processing (as in Herreman et al. (2020)). However, the electrical potential
distribution is complex in LMBs and locally connected to the composition of the alloy at the
alloy-electrolyte interface. In the models we can capture this by allowing the potential to jump
discontinuously at this interface. This jump depends on the local composition of the alloy and
directly affects the current distribution in the cell, and hence the cell potential. The existence
of this potential jump has only been considered in a few previous studies (Duczek et al., 2023;
Weber et al., 2019, 2020). We wanted to improve our LMB simulations by including this jump
in SFEMaNS. We also wanted to better understand the impact of this jump on the alloy com-
position and on the cell potential. This motivated the studies of chapters 4, 5 and 6.

The code SFEMaNS is a full MHD code which uses a magnetic field formulation that never
solves the electrical potential. In order to be able to model the potential jump in our solver,
we have had to find a magnetic field interface condition, that captures the effect of the discon-
tinuous electrical potential (chapter 4). We have shown that a jump in electrical potential is
actually equivalent to a jump in the tangential components of the electrical field. To test this,
we have developed two new solvers, one using an electrical potential formulation and another
one using a magnetic field formulation. We have validated both solvers by comparing numerical
solutions with analytical solutions. We have then compared these solvers in different setups and
showed that they are equivalent. This work has been published in Comptes Rendus. Mécanique
(Bénard et al., 2023).
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With this new solver, we could study the effect of the jump in potential on the alloy compos-
ition and on the cell potential (chapter 5). In this work we also consider the mass transport
and capture how the local potential jump is connected to the alloy composition near the alloy-
electrolyte interface. We have conducted several numerical studies in different LMB setups.
We have observed that the jump in potential creates a current redistribution in the electrolyte
that also homogenizes the material flux at the alloy-electrolyte interface. By comparing simu-
lations with and without a jump, we have found that this jump has a slight impact on the alloy
composition. Solutal buoyancy remains the dominant actor. Furthermore, we have succeeded
to compute the cell potential in a self-consistent way. This is preferable to post-processed
computations of the cell potential. We find that this jump in potential weakly affects the mass
transfer overpotential and the ohmic losses, due to the current redistribution in the electrolyte.
This work has been submitted to Journal of Power Sources in august 2023.

The spatial variations of the potential jump at the alloy-electrolyte interface can create surface
tension gradients that may drive electrocapillary Marangoni flows in the alloy. We have started
an exploratory study on these flows (chapter 6). We have first estimated the dependency of
the surface tension with the jump in potential. We have then shown that, without solutal
buoyancy, the electrocapillary flow cancels itself after a certain time: the flow is homogen-
izing the composition of the alloy and hence it reduces the surface gradients that power the
Marangoni flow. When included, solutal buoyancy has a major effect on the electrocapillary
flow structure: this flow becomes localized in a thin layer close to the alloy-electrolyte interface.

7.2 Perspectives

The existing models can already quite accurately describe the main phenomena in LMBs. Flows
and mass transport have been well investigated. The cell potential computation, as well as the
electrical potential description, have been improved. However, further work is necessary to
describe more realistic LMBs.

Multiphase model

In all of our work, the flow in the electrolyte has been ignored. The velocity boundary con-
ditions at the alloy-electrolyte interface have been modeled as no-slip or free-slip boundary
conditions, but neither really applies. The flow in the electrolyte could affect the flow in the
alloy through the stress conditions at the interface. Therefore, a logical next step in the numer-
ical development would be to implement a multiphase model where the flow in the electrolyte is
considered. We would model the stress conditions at the alloy-electrolyte interface but keep the
interface flat and non-deformable. We could then still use our magnetic field-based interface
condition for the potential jump. This multiphase model will modify some of our preliminary
results on electrocapillary flows.

Improving the setup model

In our simulations, we could also consider different setups, maybe more realistic. In existing
prototypes, the current leaves the cell at the lateral edges as in the setup used by Weber et al.
(2019), and not at the bottom of the cell. The current distribution in the alloy is significantly
modified by this difference in design. We should analyze how the flow and the concentration

145



CHAPTER 7. CONCLUSION AND PERSPECTIVES

distributions are impacted.

In our models, we have considered the foam as solid and made of pure lithium. We have also
considered a smooth interface between the foam and the electrolyte, even though the foam is a
porous solid. The upper metal-electrolyte interface is therefore likely not smooth and depends
on the porosity of the foam. This may have an impact on the study of section §2.3 of chapter
2. We should investigate the droplet formation at the rough bottom of the foam. The shape of
the foam-electrolyte interface is complex, and the current at this interface is probably locally
not homogeneous. It would be interesting to model more precisely the foam and to examine
how the current and the battery are affected by its porosity.

Electrochemical properties

The electrochemical properties of materials in LMBs are actually really intricate and deserve
more investigation. We have considered mass transport and density variations in the alloy, but
we have neglected a lot of other phenomena. For instance, intermetallic phases can form when
the concentration of light metal in the alloy reaches a critical value. In our simulations, we
stayed below this critical concentration but, in real cells, solid intermetallic phases may form.
It would be interesting to model phase changes in the alloy.

Furthermore, ions are transported in the electrolyte, whose composition and volume changes
during operation. We have fully neglected interface displacements. In addition, we have
modeled only one jump, but there are actually two potential jumps in an LMB, one at each
interface. It would be interesting to determine the value of each jump and to implement them
both in our model, in order to see if our conclusions are modified.

Manufacturing

Theoretical modeling of LMBs is interesting but we also think that more investments should be
done in the real manufacturing of LMBs. Which materials are the most relevant, what is the
ideal thickness of the electrolyte, which cheap materials can we use for the vessel, and should
we modify the general shape of the setup (foam, wire loop, three-layer...), for instance, are
important questions that deserved to be investigated.
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Appendix A

Résumé en français

A.1 Introduction

Dans le contexte actuel du réchauffement climatique, les moyens de production d’énergie doivent
évoluer, en privilégiant des énergies respectueuses de l’environnement comme les énergies renou-
velables. Celles-ci doivent être développées à grande échelle, pour répondre au besoin croissant
en énergie. Cependant, les énergies renouvelables sont produites de manière intermittente et
ne peuvent répondre aux pics de demande en énergie. C’est pourquoi des solutions pour le
stockage massif d’énergie doivent être mises en place. Il existe différents types de systèmes de
stockage qui peuvent répondre à cette demande. Parmi ceux-ci, le stockage électrochimique,
en particulier au sein de batteries, est une solution viable. Parmi ces batteries, les batteries
à métaux liquides (BMLs) représentent un candidat prometteur car elles peuvent être moins
chères et ont une durée de vie plus longue que d’autres types de batteries.
Les BMLs sont composées de trois couches : une couche supérieure en métal liquide dénommée
électrode négative, une couche intermédiaire constituée d’un électrolyte en sel fondu et une
couche inférieure qui est un alliage formé entre un métal liquide et le métal liquide supérieur,
dénommée électrode positive.
Les BMLs doivent cependant répondre à certaines contraintes : elles doivent rester peu chères et
garder une grande efficacité. Cela influence les configurations possibles : une des configurations
les plus utilisées dans les expériences est composée d’une electrode négative où le métal liquide
est contenu dans une mousse (solide poreux) et est maintenu par capillarité. Cela permet de
faciliter l’isolation des métaux par rapport au contenant. De plus, les matériaux utilisés doivent
rester abordables.
Pour améliorer l’efficacité, le potentiel de la batterie, qui est déjà naturellement assez faible et
décroit lors du fonctionnement, doit être optimisé. Ce potentiel peut être décomposé en une
somme de surpotentiels et d’un potentiel d’équilibre :

�cell = �cell,eq ± ([Ω + [mt + [ct). (A.1.1)

Le potentiel d’équilibre �cell,eq est le potentiel de la batterrie lorsqu’aucun courant n’est ap-
pliqué, [Ω est le surpotentiel dû aux chutes ohmiques, [mt celui dû au transport de masse et
[ct celui dû au transport de charges. Ces surpotentiels doivent rester aussi faibles que possible.
[mt est dû à l’accumulation de métal supérieur en haut de la couche d’alliage, à cause de la
faible diffusion des ions du métal supérieur dans l’alliage. Cette inhomogénéité de l’alliage aug-
mente [mt. Pour réduire ce surpotentiel, on peut mélanger l’alliage grâce à des écoulements.
Cependant, ces écoulements peuvent être néfastes car ils peuvent déformer les interfaces jusqu’à
induire un court-circuit.
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Les simulations numériques sont nécessaires pour étudier les phénomènes apparaissant dans les
BMLs car les expériences ne permettent pas l’accès à toutes les quantités d’intérêt. Cependant,
les simulations numériques nécessitent des modèles précis. Il est donc important d’étudier les
approximations et simplifications qui peuvent être faites ou pas. Nous résumons maintenant
différentes générations d’études numériques présentes dans la littérature.
Dans une première génération d’études, le transport de matière a été ignoré. Des instabilités
magnétohydrodynamiques, telles que l’instabilité de Tayler et l’instabilité de Metal Pad Roll,
ont été étudiées, ainsi que la convection thermique et l’écoulement electrovortex (EVF). Ce
dernier apparâıt quand les collecteurs de courant ont un rayon plus petit que le système qui
contient le fluide. Ces études ont conclu que l’instabilité de Tayler ne pouvait pas apparâıtre
dans des batteries de taille réalistes, que l’instabilité de Metal Pad Roll apparâıt principalement
au niveau de l’interface supérieure, que la convection thermique ne peut pas mélanger l’alliage
et que l’écoulement electrovortex semble efficace pour mélanger l’alliage.
Dans une deuxième génération d’études, le transport de matière a été pris en compte, ce qui a
modifié de manière significative certains résultats. Pendant la charge, le phénomène de convec-
tion solutale se met en place et mélange efficacement l’alliage. Pendant la décharge, une couche
légère stratifiée apparâıt en haut de l’alliage. Cette couche ne peut être percée par l’écoulement
electrovortex qui n’est pas assez intense pour mélanger l’alliage. Cependant, l’écoulement elec-
trovortex tournant, qui est généré lorsqu’un champ magnétique extérieur est appliqué, est lui
efficace pour le mélange, même pour de faibles champs magnétiques.
Dans une troisième génération d’études, le saut de potentiel, qui apparâıt à l’interface alliage-
electrolyte, a été pris en compte. Ce saut est en fait une modélisation macroscopique de la
double couche électrochimique. Il modifie les courants et donc la composition de l’alliage.
Les modèles qui ont été utilisés montrent de bons résultats comparés aux expériences mais ne
montrent pas l’effet du saut sur la composition de l’alliage, ni comment les distributions de
courant et de concentration sont modifiées.
Dans cette thèse, nous nous intéressons au problème du mélange, en particulier avec l’écoulement
electrovortex (EVF), et à l’amélioration de notre modèle numérique.

A.2 Contributions pré-doctorales

Avant ce doctorat, j’ai contribué à certains travaux portant sur les batteries à métaux liquides.
Nous présentons d’abord le travail réalisé pendant mon stage de M2, effectué au LISN en 2019,
où l’effet de la flottabilité solutale sur l’EVF dans les batteries à métaux liquides a été étudié.
Nous avons vu que le mélange de l’alliage est essentiel pour limiter la chute du potentiel de la
batterie. Plusieurs études ont conclu que l’EVF est efficace pour mélanger l’alliage, mais ces
études n’ont pas modélisé le transport de matière. Nous étudions alors numériquement l’EVF
couplé avec le transport de matière.
Pendant la décharge, nous montrons que l’EVF n’est pas assez intense pour percer la couche
stratifiée légère au sommet de l’alliage et n’a pas d’effet sur le mélange. Le processus de dif-
fusion domine l’EVF en raison de la flottabilité solutale. Nous avons trouvé trois régimes
d’écoulement et estimé l’intensité minimale de l’écoulement nécessaire pour mélanger efficace-
ment l’alliage. Cela a montré que l’EVF peut mélanger efficacement l’alliage dans une petite
cellule pour des densités de courant non réalistes. Pour des densités de courant réalistes, l’EVF
ne peut mélanger l’alliage que dans une très grande cellule. Nous en déduisons donc que l’EVF
ne peut pas être utilisé pour le processus de mélange dans les BMLs réalistes, qui sont plutôt
petites. Pendant la charge, la convection solutale entre en jeu et mélange efficacement l’alliage.
Ce phénomène domine l’EVF, qui n’est plus visible après un court laps de temps, et est claire-
ment tridimensionnel. Nous avons pu estimer théoriquement une loi d’échelle pour l’intensité
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de l’écoulement créé.

Ensuite, nous présentons le travail réalisé durant mon année de recherche à HZDR à Dresde,
en Allemagne, en 2019-2020. Des détachements de gouttes et des courts-circuits locaux ont
été observés dans des expériences. Nous souhaitons comprendre le détachement de ces gouttes
et leur transfert dans l’alliage, car cela peut conduire à des courts-circuits qui peuvent être
néfastes aux BMLs.
Nous étudions deux configurations : une configuration où les trois couches de la BML sont
liquides et une configuration où l’electrode négative est une mousse. Nous imposons une per-
turbation initiale qui est une déformation de l’interface supérieure dans le cas de la configuration
trois couches et une goutte attachée à la mousse dans le cas de la configuration mousse. Nous
montrons que le processus de détachement des gouttes est dû à la force de Lorentz qui, pour une
densité de courant suffisamment élevée, domine les forces de gravité et de tension superficielle
et pince la goutte. Dans la configuration à trois couches, il existe toujours un courant critique
dépendant de la taille de la déformation, au-delà duquel une goutte se détache. En dessous de
ce courant, l’interface se restabilise. Mais ce courant n’est pas réaliste pour des déformations
de taille raisonnable. Par conséquent, aucun détachement de gouttes n’est attendu dans ce cas,
et aucun court-circuit n’est observé. Dans le cas de la mousse, il existe également un courant
critique pour chaque taille de perturbation, mais ce courant critique est réaliste et atteignable
dans les vraies BMLs. Nous observons de plus que des court-circuits peuvent se produire.

A.3 Étude numérique de l’écoulement electrovortex tour-

nant dans un cylindre

Afin de mieux comprendre les différents régimes d’écoulement, nous étudions et caractérisons
numériquement l’écoulement électrovortex tournant dans un cylindre rempli de métal liquide
GaInSn. Ce cylindre est connecté de manière symétrique à deux collecteurs de courant en
cuivre, l’un sur et l’autre sous le cylindre. Nous résolvons avec le code SFEMaNS les équations
de la magnétohydrodynamique pour mener cette étude. Nous notons � la densité de courant
imposée dans le cylindre, � le champ magnétique extérieur et a la viscosité. La hauteur du
cylindre est H , son rayon est ' et le rayon des collecteurs de courant est 'F.

Nous menons d’abord une étude paramétrique en faisant varier les paramètres �, � et a et en
nous concentrant sur des simulations axisymétriques. En faisant varier �, nous constatons que,
pour de faibles densités de courant, l’écoulement est stationnaire et se fait principalement à
proximité des contacts électriques. Lorsque � est supérieur à une valeur critique que nous avons
pu déterminer, l’écoulement devient instationnaire et remplit tout le cylindre. L’intensité de
l’écoulement * augmente avec �, suivant différents régimes : * ∼ � pour les faibles densités de
courant, * ∼ �2/3 pour les densités de courant intermédiaires et* ∼ �1/2 pour les fortes densités
de courant. Lorsque � varie, si � est inférieur à une valeur critique, l’écoulement est turbulent
et l’intensité de l’écoulement augmente avec le champ magnétique suivant les lois * ∼ �2/3 puis
* ∼ �1/2 pour des � plus élevés. Mais, lorsque � est supérieur à une valeur critique, l’intensité
de l’écoulement diminue avec � et devient stable jusqu’à ce qu’il soit concentré dans une région
cylindrique fine joignant les bords des collecteurs de courant supérieur et inférieur. Dans ce
régime, * ∼ �−1. En faisant varier a, nous pouvons trouver les régimes suivants, de a faible à
a élevé : a−1/9 ou a0 puis a−1.
L’étude paramétrique nous permet de mettre en évidence l’existence de différents régimes
d’écoulement, que nous pouvons expliquer théoriquement. Nous pouvons distinguer quatre
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régimes d’écoulements:
• un régime inductif pour les grands �, où la vitesse varie comme

* ∼ �

f�
, (A.3.1)

• un régime visqueux et sans induction, pour des vitesses faibles :

* ∼ ��'
2

da
, (A.3.2)

• un régime inertiel et sans induction, pour des vitesses élevées :

* ∼
(
��'

d

)1/2
ou * ∼

(
��'

d

)5/9 (
'

a

)1/9
. (A.3.3)

Notons qu’il existe deux lois d’échelle possibles dans ce régime et qu’il est difficile de
distinguer celle qui est la plus adaptée dans les simulations.

• un régime de couche limite et sans induction, pour des vitesses intermédiaires :(
��

d

)2/3
'

a1/3 . (A.3.4)

Nous étudions ensuite l’influence de la géométrie sur l’intensité de l’écoulement. En faisant
varier le rayon des fils 'F, nous remarquons que la vitesse augmente lorsque 'F/' diminue. Il
est assez difficile de modéliser théoriquement la variation de la vitesse * avec 'F/', mais nous
avons trouvé deux lois d’échelle possibles :

* ≈ *0

{
1 − (4'2

F/3'2), (Millere)

1 − '2
F/'2, (uniforme)

(A.3.5)

qui dépendent des conditions d’interface utilisées pour modéliser le profil de densité de courant
entre le cylindre et le collecteur de courant (profil de Millere ou profil uniforme).
La loi observée dans les simulations pour de fortes densités de courant semble se situer entre les
deux lois trouvées théoriquement. Ces lois théoriques sont donc assez précises, mais pas pour
les faibles densités de courant où une variation linéaire avec le rayon A semble plus exacte. En
faisant varier les rapports de forme H/' du cylindre, nous constatons que plus le rapport de
forme est petit, plus l’écoulement est concentré dans une petite région proche de l’axe. Pour un
faible rapport de forme, l’écoulement se situe plutôt dans le régime de la couche limite et, pour
des rapports de forme élevés, c’est le régime inertiel qui est le plus précis. En comparant une
cellule asymétrique (où il y a seulement un collecteur de courant situé en bas du cylindre) et
une cellule symétrique, celle que l’on a utilisée pour les études précédentes, nous montrons que
l’écoulement est beaucoup moins turbulent lorsque la cellule est asymétrique et que le régime
de la couche limite est clairement visible dans ce cas, contrairement à la cellule symétrique où
l’on observe plutôt un régime inertiel.

Nous effectuons des simulations tridimensionnelles dans le cadre de l’étude du paramètre �.
Il existe plusieurs bifurcations entre différents régimes, du plus faible au plus grand courant :
l’écoulement est d’abord axisymétrique, puis devient tridimensionnel avec un mode azimutal 2
prédominant mais reste stationnaire, puis reste tridimensionnel avec un mode 2 prédominant
mais devient instationnaire, et enfin devient turbulent, où tous les modes azimutaux sont
nourris. Dans le régime où l’écoulement est tridimensionnel et stationnaire, nous retrouvons
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un écoulement qui a une structure similaire à l’écoulement de von Kármán avec des disques
lisses tournant en sens inverse. En comparant les simulations axisymétriques et tridimension-
nelles, nous remarquons que la distribution spatiale de l’écoulement peut être significativement
différente. Pourtant, la vitesse moyenne reste dans les deux cas du même ordre de grandeur.
Ainsi, lorsque l’on ne s’intéresse qu’à l’intensité de la vitesse de l’écoulement, les simulations
axisymétriques peuvent constituer une bonne approximation. De plus, nous retrouvons le
régime inertiel dans les simulations tridimensionnelles, mais le régime de la couche limite n’est
pas du tout visible.

Le régime de la couche limite ne semble exister que lorsque l’écoulement n’est pas trop turbulent,
ce qui est le cas dans la cellule asymétrique ou à faible rapport de forme par exemple. Cela
pourrait expliquer pourquoi ce régime n’est pas visible dans les simulations tridimensionnelles
et peu visible dans le cylindre symétrique où l’écoulement est plus turbulent. Nous supposons
que le régime de la couche limite nécessite une couche limite laminaire, et ne peut être observé
lorsque la turbulence est trop intense.

A.4 Modélisation des distributions discontinues de po-

tentiel électrique avec une formulation en champ

magnétique

Nous avons pour but d’étudier l’impact du saut en potentiel électrique sur la composition de
l’alliage, en utilisant le modèle de Weber et al. (2019), avec notre code SFEMaNS. Ce code
utilise une décomposition spectrale dans la direction azimutale et en éléments finis dans le
plan méridional. Cependant, SFEMaNS est basé sur le champ magnétique N et ne résout pas
la variable potentiel i. Pour remédier à ce problème, nous introduisons donc une condition
d’interface basée sur le champ magnétique pour modéliser des distributions discontinues de
potentiel électrique. Ainsi, un saut en potentiel électrique isaut est équivalent à un saut sur le

terme
(
∇×N
f

)
tel que :

n ×
(
∇ × N

f

)
saut

= −n × ∇) (isaut). (A.4.1)

Nous proposons donc une formulation en champ magnétique pour décrire des distributions
discontinues de potentiel électrique utilisant cette condition.
Pour valider cette formulation, nous nous plaçons dans un cylindre Ω présentant une interface
Σ, ce qui divise le domaine en deux sous-domaines Ω1 et Ω2, de conductivités électriques f1

et f2. Les bords où des conditions de Neumann sont imposées sont notés Γ# et ceux où des
conditions de Dirichlet sont imposées sont notés Γ� .
Tout d’abord, nous développons un code utilisant une formulation en potentiel électrique et
résolvant le problème :

− ∇ · (f∇i) = 0 dans Ω1 et Ω2, (A.4.2a)

i1 − i2 = isaut sur Σ, (A.4.2b)

(f1∇i1 − f2∇i2) · n = 0 sur Σ. (A.4.2c)

i = 6� sur Γ� et ∇i · n = 0 sur Γ# . (A.4.2d)

Nous déterminons ensuite des solutions analytiques de ce système, afin de pouvoir valider le
solveur. Nous réalisons des tests de convergence en comparant l’erreur entre des solutions
analytiques du problème et les solutions numériques corespondantes. Cela nous permet de
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valider le code.
Ensuite nous développons un code utilisant une formulation en champ magnétique et résolvant
le problème suivant :

∇ ×
(
∇ × N

f

)
= 0 dans Ω1 et Ω2, (A.4.3a)

∇ · (`N) = 0 dans Ω1 et Ω2, (A.4.3b)(
∇ × N1

f1
− ∇ × N2

f2

)
× n =

(
∇ × N

f

)
saut

× n sur Σ, (A.4.3c)

(N1 − N2) × n = 0 sur Σ, (A.4.3d)

`(N1 − N2) · n = 0 sur Σ. (A.4.3e)

N = N� sur Γ� . (A.4.3f)

Comme avec le solveur en potentiel électrique, nous validons ce code grâce à des tests de
convergence construits avec des solutions analytiques.
Nous montrons enfin que les deux formulations sont bien équivalentes en comparant la densité
de courant obtenue dans les deux cas avec des solutions analytiques, dans le cylindre et dans
une configuration de batterie à métaux liquides.

A.5 Influence du potentiel électrique sur la composition

de l’alliage

Nous nous sommes ensuite intéressés à l’influence du saut de potentiel à l’interface alliage-
électrolyte sur la composition de l’alliage dans une BML Li| |Pb, où l’électrode négative est une
mousse.
Nous implémentons d’abord dans SFEMaNS la variable de concentration, qui n’était pas
présente, et validons ce développement. Cela nous permet d’étendre notre solveur en champ
magnétique en ajoutant les variables de concentration et de vitesse. Ce solveur a été validé en
utilisant le solveur en potentiel électrique couplé avec la concentration et les résultats de Weber
et al. (2019).

En utilisant le solveur en champ magnétique, nous menons une première étude dans une con-
figuration similaire à celle de Weber et al. (2019) et de mêmes dimensions. Nous avons analysé
l’effet du saut de potentiel sur la composition de l’alliage. Le saut de potentiel homogénéise
la composition en surface de l’alliage, par rapport au cas de la diffusion pure. Cela induit une
réduction du surpotentiel de transport de masse [mt. En ajoutant la flottabilité solutale et
l’EVF, on remarque que la composition à la surface de l’alliage est très homogène. Dans cette
configuration, les effets du saut et de la flottabilité ont un impact assez limité sur la composi-
tion de l’alliage. Nous menons ensuite une autre étude dans une configuration de plus grandes
dimensions.

Dans cette nouvelle configuration, nous comparons des simulations avec et sans saut de poten-
tiel. Dans un premier cas, nous ne prenons en compte que la diffusion et ignorons l’écoulement.
On observe que le saut homogénéise la composition en surface et modifie les lignes de courant.
Dans un deuxième cas, nous ajoutons l’écoulement electrovortex mais ignorons la flottabilité.
Dans cette situation, l’écoulement electrovortex fait apparâıtre de forts gradients de concen-
tration à la surface près de l’axe central, qui sont significativement lissés par le saut. En
ajoutant la flottabilité, nous remarquons que la composition en surface est déjà très homogène.
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Ainsi, l’influence du saut est assez faible. Nous pouvons aussi faire cette remarque dans le cas
d’un écoulement electrovortex tournant, qui rend également la composition en surface assez
homogène. Seulement de faibles différences sont observées entre les simulations avec et sans
saut. Par conséquent, les résultats des études précédentes qui ont ignoré le saut restent valables.
Cependant, nos simulations ont montré une nouvelle fois que l’écoulement et la composition de
l’alliage sont fortement influencés par la flottabilité. Ce phénomène ne peut être ignoré dans les
modèles pour les BMLs. En outre, nous avons comparé deux façons de calculer le potentiel de
la cellule : une ancienne méthode de calcul à partir de la fraction molaire moyenne à la surface
de l’alliage et un calcul direct à partir de sa définition - la différence des potentiels en haut et
en bas de la cellule. Le calcul post-traité produit des erreurs majeures pour le surpotentiel de
transport de masse, même si le potentiel total de la cellule demeure assez proche de la valeur
directement calculée. Par conséquent, ce calcul utilisant la moyenne de la fraction molaire dev-
rait être évité. De plus, le saut en potentiel n’a qu’un impact très modéré sur le surpotentiel
de transport de masse car son effet sur la composition de l’alliage est limité. Cependant, nous
observons que le surpotentiel ohmique est réduit par ce saut, car il modifie la distribution du
courant dans l’électrolyte. Par conséquent, il est plus précis de modéliser le saut de potentiel
afin de ne pas surestimer le surpotentiel ohmique.

A.6 Écoulements électrocapillaires

Nous étudions enfin l’impact des écoulements électrocapillaires sur la composition de l’alliage.
Le saut en potentiel électrique modifie localement la tension de surface entre l’alliage et l’électrolyte.
Des gradients de tension de surface apparaissent donc à l’interface alliage-électrolyte, ce qui
entrâıne un écoulement dirigé des zones à faible tension de surface aux zones à forte tension de
surface.

Tout d’abord, nous estimons la dépendance de la tension de surface W avec le saut en potentiel
avec la loi

W = W0 − � (isaut − isaut,0)2 (A.6.1)

où � est une constante et isaut,0 est le saut à C = 0. Comme nous ne connaissons pas �, nous
estimons sa valeur d’après Dreyer et al. (2018) et la faisons varier dans l’intervalle [0, 1; 1] F m−2.
La tension de surface influence la vitesse à l’interface alliage-électrolyte par la condition :

d∗a mIu) = ∇)W. (A.6.2)

où ∇)W est le gradient tangentiel de la tension de surface.

Dans un premier cas, nous avons ignoré la flottabilité. Nous remarquons que la vitesse augmente
avec �. De grandes différences de tension superficielle à l’interface alliage-électrolyte induisent
un écoulement qui s’intensifie avec le temps et homogénéise la composition en surface. Lorsque
la composition en surface devient plus homogène, les gradients de tension superficielle sont
moins importants et l’intensité de l’écoulement diminue jusqu’à devenir presque nulle.
L’ajout de la flottabilité solutale a un impact significatif sur l’écoulement. Nous observons
des oscillations rapides qui s’amortissent jusqu’à ce que la vitesse de l’écoulement atteigne
une valeur presque constante. La composition en surface de l’alliage devient très homogène et
l’écoulement est localisé dans une couche fine près de l’interface alliage-électrolyte. Dans ce
cas, l’écoulement électrocapillaire est suffisamment intense pour limiter la chute de potentiel et
réduire le surpotentiel dû au transfert de masse, pour toutes les valeurs de � étudiées. Plus �
est élevé, plus ce surpotentiel est réduit.
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A.7 Conclusion

Au cours de cette thèse, nous avons modélisé numériquement les écoulements magnétohydrodyna-
miques et le transport de masse qui se produisent à l’intérieur des batteries à métaux liquides.
Notre compréhension de ce système complexe et multiphysique est encore en pleine évolution,
tout comme les modèles numériques qui peuvent les décrire. Nous avons dû implémenter de
nouveaux algorithmes dans le code SFEMaNS, ce qui nous a permis de réaliser plusieurs études
orientées vers la physique du système. Le travail effectué au cours de cette thèse a donné lieu
à cinq articles de recherche.

Nous avons d’abord mené une première étude sur l’effet de la flottabilité solutale sur l’écoulement
electrovortex. Nous avons montré que, pendant la décharge, cet écoulement ne peut pas
contrer la flottabilité et n’est pas assez intense pour mélanger l’alliage. Pendant la charge,
un mouvement de convection solutale se met naturellement en place et mélange efficacement
l’alliage.
L’équipe au LISN a continué l’étude et montré qu’un écoulement electrovortex tournant est ef-
ficace poue le mélange de l’alliage. Cette étude a suggéré l’existence d’un régime d’écoulement
particulier. Cela a motivé une étude paramétrique sur l’écoulement electrovortex tournant.
Nous avons mené cette étude dans un cylindre connecté de manière symétrique à deux collec-
teurs de courant. Nous avons trouvé l’existence de quatre régimes d’écoulements. Le régime
particulier de couche limite n’est pas vraiment visible dans cette configuration symétrique, et
ne semble exister que lorsque la turbulence n’est pas trop forte et que la couche limite reste
laminaire.
Ensuite nous sommes revenus sur les BMLs. Comme les études existantes sur le saut en po-
tentiel ne fournissent pas de détails sur l’effet du saut sur la composition de l’alliage et la
distribution de courant, nous avons voulu implémenter ce saut dans notre code. Cependant,
dans le code SFEMaNS, la variable potentiel n’est pas présente, le code ne résout que le champ
magnétique. Nous avons donc déterminé une condition d’interface pour modéliser un saut de
potentiel avec la variable en champ magnétique. Nous avons développé un solveur implémentant
cette condition et nous l’avons validé.
Ensuite, nous avons étudié l’effet du saut en potentiel sur la composition de l’alliage et le cal-
cul du potentiel. Nous avons montré que le saut en potentiel redistribue les courants dans la
batterie et homognénéise le flux de matériel. Cependant, ce saut affecte peu la composition de
l’alliage qui est déjà homogénéisé par la flottabilité. Mais il réduit également modérément les
chutes ohmiques et modifie donc le potentiel total de la cellule. Il est plus précis de le prendre
en compte dans les modèles.
Le saut en potentiel varie spatialement à l’interface alliage-électrolyte et modifie la tension
de surface. Les gradients de tension de surface qui apparaissent entrâınent des écoulements
électrocapillaires. Nous avons montré que ces écoulements sont très impactés par la flottabilité
et sont concentrés dans une fine couche près de l’interface alliage-électrolyte.

Plusieurs perspectives peuvent être envisagées pour la poursuite de ces travaux. Dans toutes
nos études, l’écoulement dans l’électrolyte a été ignoré. Les conditions limites de vitesse à
l’interface alliage-électrolyte ont été modélisées avec des conditions limites de glissement ou
de non glissement. Cependant, l’écoulement dans l’électrolyte pourrait affecter l’écoulement
dans l’alliage à travers les contraintes à cette interface. Par conséquent, la prochaine étape
consisterait à les implémenter dans le modèle et à examiner dans quelle mesure le mouvement
du fluide et la concentration dans l’alliage sont affectés. En outre, nous avons dit qu’il y a en fait
deux sauts de potentiel dans une BML, un à chaque interface. Il serait également intéressant de
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modéliser plus précisément la configuration de BML, avec des courants qui sortent par les côtés
de la cellule et non par le bas. Ensuite, modéliser plus précisément la mousse, qui est poreuse
et peut conduire à la formation de gouttes, pourrait améliorer notre modèle. Nous pourrions
également améliorer notre prise en compte des propriétés électrochimiques des matériaux. Une
autre perspective serait d’étudier la construction pratique de ces batteries, comme par exemple
déterminer quels matériaux et quelle configuration sont les plus adaptés dans le contexte du
stockage massif de l’énergie.
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